
SC23-2198-00

First Edition (March 1990)

This edition of the AIX Calls and Subroutines Reference for IBM RISC Systeml6000 applies to IBM AIX
Version 3 for RISC System/6000, Version 3 of IBM AIXwindows EnvironmenV6000, IBM AIX System
Network Architecture Services/SOOO, IBM AIX 3270 Host Connection Program/SOOO, IBM AIX 3278/79
Emulation/SOOO, IBM AIX Network Management/SOOO, and IBM AIX Personal Computer Simulator/SOOO and
to all subsequent releases of these products until otherwise indicated in new releases or technical
newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY OF AN.Y KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

@) Copyright Adobe Systems, Inc., 1984, 1987

@) Copyright X/Open Company Limited, 1988. All Rights Reserved.

@) Copyright IXI Limited, 1989. All rights reserved.

@) Copyright AT&T, 1984,1985, 1985, 1987, 1988, 1989. All rights reserved.

@) Silicon Graphics, Inc., 1988. All rights reserved.

Use, duplication or disclosure of the SOFTWARE by the Government is subject to restrictions as set
forth in FAR 52.227-19(c)(2) or subparagraph (c)(1)(Ii) of the Rights in Technical Data and Computer
SOFTWARE clause at SFARS 252.227-7013, and/or in similar or successor clauses in the FAR, or
the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the
United States. Contractor/manufacturer is SILICON GRAPHICS, INC., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

@) Copyright Carnegie Mellon, 1988. All rights reserved.

@) Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation, the name of Carnegie Mellon and Stanford University not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission, and
notice be given in supporting documentation that copying and distribution is by permission of
Carnegie Mellon and Stanford University. Carnegie Mellon and Stanford University make no
representations about the suitability of this software for any purpose. It is provided lias is" without
express or implied warranty.

@) Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.

The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

@) Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided "as is" without express or implied
warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

@) Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.

@) Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program and its documentation for any purpose
and without fee is hereby granted, provided that this copyright, permission, and disclaimer notice
appear on all copies and supporting documentation; the name of M.I.T. or Digital not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission.
M.I.T. and Digital makes no representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

@) Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

@) Copyright 1989, Open Software Foundation, Inc. All rights reserved.

@) Copyright 1987, 1988, 1989, Hewlett-Packard Company. A" rights reserved.

@) Copyright 1988 Microsoft Corporation. All rights reserved.

@) Copyright Graphic Software Systems Incorporated, 1984, 1990. A" rights reserved.

@) Copyright Micro Focus, Ltd., 1987, 1990. All rights reserved.

@) Copyright Paul Milazzo, 1984, 1985. All rights reserved.

@) Copyright EG Pup User Process, Paul Kirton, and lSI, 1984. All rights reserved.

@) Copyright Apollo Computer, Inc., 1987. All rights reserved.

@) Copyright TITN, Inc., 1984, 1989. All rights reserved.

This software is derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The Northrup
Corporation and The Wollongong Group.

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

@) Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

AIX is a trademark of International Business Machines Corporation.

AIXwindows is a trademark of International Business Machines Corporation.

Apollo is a trademark of Apollo Computer, Inc.

IBM is a registered trademark of International Business Machines Corporation.

NCK is a trademark of Apollo Computer, Inc.

NCS is a trademark of Apollo Computer, Inc.

Network Computing Kernel is a trademark of Apollo Computer, Inc.

Network Computing System is a trademark of Apollo Computer, Inc.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).

RISC System/6000 is a trademark of International Business Machines Corporation.

SNA 3270 is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

X/OPEN is a trademark of X/OPEN Company Limited.

Note to Users
The term "network information services (NIS)" is now used to refer to the service formerly
known as "Yellow Pages." The functionality remains the same; only the name has changed.
The name "Yellow Pages" is a registered trademark in the United Kingdom of British
Telecommunications pic, and may not be used without permission.

Legal Notice to Users Issued by Sun Microsystems, Inc.
"Yellow Pages" is a registered trademark in the United Kingdom of British
Telecommunications pic, and may also be a trademark of various telephone companies
around the world. Sun will be revising future versions of software and documentation to
remove references to "Yellow Pages."

Trademarks V

vi Base Operating System Reference

About This Book

This book, Calls and Subroutines Reference: Base Operating System, provides information
on application programming interfaces to the Advanced Interactive Executive Operating
System (referred to in this text as AIX) for use on the IBM RISC System/6000 System. This
book is part of AIX Calls and Subroutines Reference for IBM RISC System/6000,
SC23-2198, which is divided into the following four major sections:

• Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AIX base operating system runtime services, communications
services, and devices services.

• Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AIXwindows widget classes, subroutines, and resource sets; the
AIXwindows Desktop resource sets; the Enhanced X-Windows subroutines, macros,
protocols, extensions, and events; the X-Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

• Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

• Volumes 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AIXwindows Graphics
Support Library (XGSL) subroutines.

Who Should Use This Book
This book is intended for experienced C programmers. To use this book effectively, you
should be familiar with AIX or UNIX System V commands, system calls, subroutines, file
formats, and special files. If you are not already familiar with the AIX operating system or the
UNIX System V operating system, see AIX General Concepts and Procedures.

How to Use This Book
Overview of Contents

This book contains the following alphabetically arranged sections consisting of system calls,
subroutines, functions, macros and statements. In this book all system calls are described
as subroutines.

• Base Operating System Runtime (80S) Services

• Communications Services

- SNA Services

- AIX 3270 Host Connection Program (HCON)

- Remote Procedure Calls (RPC)

- Sockets

- Simple Network Management Protocol (SNMP)

- Network Computing System (NCS)

About this Book v'i i

Highlighting

- Data Link Controls

- X.25 Application

• Devices Services

The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to application programming
interfaces:

• AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

• AIX Communication Programming Concepts for IBM RISC System/6000, Order Number
SC23-220S.

• AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

• AIX Files Reference for IBM RISC System/6000, Order Number SC23-2200.

• IBM RISC System/6000 Problem Solving Guide, Order Number. SC23-2204.

• XL C Language Reference for IBM AIX Version 3 for RISC System/6000, Order Number
SC09-12S0.

• XL C User's Guide for IBM AIX Version 3 for RISC System/6000, Order Number
SC09-1259.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2198.

viii Base Operating System Reference

Contents

Base Operating System (BOS) Runtime Services

Subroutines A - Z . 1-1
FORTRAN Basic Linear Algebra Subroutines (BLAS) 1-823

Communications Services
AIX 3270 Host Connection Program (HCON) . 2-1
Data Link Controls ... 3-1
Network Computing System (NCS) 4-1
Remote Procedure Calls (RPC) 5-1
Simple Network Management Protocol (SNMP) 6-1
SNA Services ... 7-1
Sockets . 8-1
X.25 Application ... 9-1

Devices Services ... 10-1

Appendix A: Base Operating System Error Codes A-1

Appendix B: ODM Error Codes B-1

Appendix C: X.2S Application Error Codes. C-1

Index ... X-1

Contents ix

X Base Oper;:lting SY$tem Reference

AIX 3270 Host Connection Program (HCON)

AIX 3270 Host Connection Program (HCON) 2-1

2-2 Base Operating System Reference

BREAK

BREAK Statement

Purpose
Interrupts a loop in a LAF script.

Syntax
BREAK;

Description

Example

The BREAK statement interrupts the execution of the innermost enclosing WHILE or
REPEAT-UNTIL statement. Execution continues with the statement following the WHILE or
REPEAT-UNTIL statement. The BREAK statement is one of the script statements in the
LAF language that are used to compose a LAF script.

The statements below execute a loop. If a time out for the WAIT statement occurs, the
BREAK statement terminates the repeat loop and executes the next statement:

REPEAT
DO
MATCHAT(l,l, 'VM/370?ONLINE');

IF (NOT MATCH) DO /* if not found */
WAIT(2); /* wait for update to display or timeout */

IF(TIMEOUT)
BREAK;

END;
END;

UNTIL(MATCH);

Implementation Specifics
The BREAK statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/GOOO (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-3

cfxfer

cfxfer Function

Purpose

Library

C Syntax

Checks the status of the programmatic File Transfer.

File Transfer Library (Iibfxfer.a)

#include <fxfer.h>
cfxfer(sxfet)

struct fxs *sxfer;

Pascal Syntax
%include fxfer.inc

%include fxhfile.inc

function pcfxfer(var sxfer : fxs) : integer; external;

FORTRAN Syntax
INTEGER FCFXFER
EXTERNAL FCFXFER
CHARACTER* XX SRC, OST, TIME
INTEGER BYTCNT, STAT

INTEGER ERRNO

RC = FCFXFER (SRC, OST, BYTCNT, STAT, ERRNO, TIME, RC)

Description
The cfxfer function returns the status of the file transfer request made by the fxfer function.
This function must be called once for each file transfer request. The cfxfer function places
the status in the structure specified by the sxfer parameter for C and Pascal. For
FORTRAN, status is placed in each corresponding parameter.

Each individual file transfer and file transfer status completes the requests in the order the
requests are made. If multiple asynchronous requests are made:

• To a single host session, the cfxfer function returns the status of each request in the
same order the requests are made

• To more than one host session, the cfxfer function returns the status of each request in
the order it is completed.

If the file transfer is run asynchronously and the cfxfer function is immediately called, the
function returns a status not available (-2) code. An application performing a file transfer
should not call the cfxfer function until an error (-1) or ready status (0) is returned. The
application program can implement the status check in a FOR LOOP or a WHILE LOOP
and wait for a -1 (negative one) or 0 (zero) to occur.

2-4 Base Operating System Reference

C Parameter
sxfer

Pascal Parameter
Sfxfer

Specifies a record of type fxs defined in the fxfer.h file.

The C struct fxs is defined as follows:

struct fxs

]c. ;

int fxs_bytcnt;
char *fxs_src;
char *fxs_dst;
char *fxs_ctirne;
int fxs stat;
int fxs_errno;

Specifies a record of type fxs within the fxfer.inc file.

The Pascal fxs record format is as follows:

fxs = record

end;

fxs_bytcnt : integer;
fxs_src : stringptr;
fxs_dst : stringptr;
fxs_ctirne : stringptr;
fxs_stat : integer;
fxs_errno : integer;

cfxfer

C and Pascal fxs Field Descriptions
Indicates the number of bytes transferred.

Points to a static buffer containing the source file name. The static buffer is
overwritten by each call.

Points to a static buffer containing the destination file name. The static
buffer is overwritten by each call.

Specifies the time the destination file is created relative to Greenwich Mean
Time (GMT), midnight on January 1, 1970.

Specifies the status of the file transfer request.

Specifies the error number that results from an error in a system call.

FORTRAN Parameters
SRC

DST

BYTCNT

STAT

ERRNO

TIME

Specifies a character array of XX length containing the source file name

Specifies a character array of XX length containing the destination file
name.

Indicates the number of bytes transferred.

Specifies the status of the file transfer request.

Specifies the error number that results from an error in a system call

Specifies the time the destination file is created.

AIX 3270 Host Connection Program (HCON) 2-5

cfxfer

Return Value
The cfxfer function returns the following:

a (zero), if status is available.

-1, if an I/O error occurs on the fx_statxxxxxx status file and the status cannot be obtained

-2, if status is not available or if there are no outstanding file transfer requests.

The fx_statxxxxxx status file contains the status of each file transfer request made by the
application program. The fxfer function fills in the xxxxxx portion of the fx_stat file based on
random letter generation and places the file in the $HOME directory.

Implementation Specifics

Files

The cfxfer function is part of the AIX 3270 Host Connection Program/6000 (HCON).

$HOME/fx_statxxxxxx

/usr/lib/libfxfer.a

/usrli ncl ude/fxfer. h

/usr/include/fxfer.inc

/usrlinclude/fxconst.inc

/usr/include/fxhfile.inc

Temporary file used for status

Library containing C, FORTRAN, and Pascal interface
file transfer functions.

File transfer include file with structures and definitions.

Pascal file transfer include file with structure.

Pascal file transfer function constants.

Pascal file transfer invocation include file.

Related Information
The fxfer command, fxfer function.

HCON Overview for Programming, Understanding File Transfer Programming, File Transfer
Program Interface Error Codes in Communications Programming Concepts.

2-6 Base Operating System Reference

DEBUG

DEBUG Statement

Purpose
Enables debugging messages in a Logon Assist Feature (LAF) script.

Syntax
DEBUG;

Description
The DEBUG statement enables debugging messages in a LAF script. The DEBUG
statement is one of the script statements in the LAF language that are used to compose a
LAF script. The DEBUG statement operates on successive LAF statements. Debugging
occurs up to the end of the LAF script or when a NODEBUG statement is encountered. The
messages are written to the standard error. This statement should only be used in a script
linked with the tlaf test program. If a script containing the DEBUG statement is linked with
the file transfer program or an application using the HCON API, unpredictable results occur.

Implementation Specifics
The DEBUG statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/SOOO (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-7

DO-END

DO-END Statement

Purpose
Groups Logon Assist Feature (LAF) statements.

Syntax
DO statement/ist END;

Description
The DO-END statement is used for grouping LAF statements. The DO-END statement is
one of the script statements in the LAF language that are used to compose a LAF script.

Expression
statementlist A statement or statements to be executed that are grouped by a

DO-END statement.

Example
The statements below search for CP READ string on line 24 of the terminal screen. The list
waits for a screen update and then looks for the string. If the string cannot be found in two
seconds, an exit is performed with a return code of 2.

DO
MATCH(24,1,'CP?READ');

END;

IF (NOT MATCH) DO /* if not found */
WAIT(2); /* wait for update to display or timeout */
IF(TIMEOUT)
EXIT(2);

END;
/* exit with error--can't find it */

Implementation Specifics
The DO-END statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2~8 Base Operating System Reference

EXIT

EXIT Statement

Purpose
Terminates the execution of a Logon Assist Feature (LAF) script.

Syntax
EXIT(number);

Description
The EXIT statement halts the execution of a LAF script. The EXIT statement is one of the
script statements in the LAF language that are used to compose a LAF script. Upon
termination a specified return value is passed to the program that uses the LAF script. If a
LAF script exits with a successful logon or logoff the return value is zero (0). The EXIT
statement allows for abnormal exits whose return values indicate the area in the LAF script
that failed.

Expression
number Specifies the return code value.

Example
This statement terminates the script with a return code of 3 if a time out occurs:

IF(TIMEOUT) EXIT(3);

Implementation Specifics
The EXIT statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-9

FINISH

FINISH Statement

Purpose
Ends a Logon Assist Feature (LAF) script.

Syntax
FINISH;

Description
The FINISH statement ends a LAF script. The FINISH statement is one of the script
statements in the LAF language that are used to compose a LAF script.

Each LAF script requires one FINISH statement, and it must be the last statement in the
script. The FINISH statement implies that a zero (0) return value is passed back to the
program using the LAF script (fxfer function or API functions). This return value denotes a
successful logon or logoff. Any other return value is interpreted by the program using the
LAF script as unsuccessful logon or logoff.

Implementation Specifics
The FINISH statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information
The EXIT statement.

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-10 Base Operating System Reference

fxfer

fxfer Function

Purpose

Library

C Syntax

Initiates a file transfer from within a program executing in AIX.

File Transfer Library (Iibfxfer.a)

#include <fxfer.h>

fxfer (xfer,sessionname)

struct fxc * xfer,

char * sessionname;

Pascal Syntax
%include /usr/include/fxfer.inc
%include /usr/include/fxhfile.inc
%include /usr/include/fxconst.inc
function pfxfer
(var xfer: fxc; session name : stringptr) :
integer; external;

FORTRAN Syntax
INTEGER FFXFER
EXTERNAL FFXFER
CHARACTER*XX SRCF, DSTF, LOGID, SESSIONNAME
INT FLAGS, RECL, BLKSIZE, SPACE, INCR, UNIT, RC
RC = FFxfer (SRCF, DSTF, LOGID, FLAGS, RECL, BLKSIZE, SPACE,
+ INCR, UNIT, SESSIONNAME)

Description
The fxfer function transfers a file from a specified source to a specified destination. The file
transfer is accomplished as follows:

• In the C or Pascal language, the fxfer or pfxfer function transfers a file specified by the
fxc_src variable to the file specified by the fxc_dst variable. Both variables are defined in
the fxc structure.

• In the FORTRAN language, the FFxfer function transfers a file specified by the SRCF
variable to the file specified by the DSTFvariable.

The file names are character strings. The RISC System/6000 file names must be in AIX
format. The host file names must conform to the host naming convention, which must be
one of the following formats:

VM/CMS:

MVSITSO:

C Parameters
xfer

filename filetype filemode

data_set_name [(member_name)][/password]

Specifies a pointer to the fxc structure defined in the fxfer.h
file.

AIX 3270 Host Connection Program (HCON) 2-11

fxfer

sessionname

Pascal Parameters
xfer

sessionname

FORTRAN Parameters
SRCF

OSTF

LOGIO

SESSIONAME

FLAGS

2-12 Base Operating System Reference

Points to the name of a session, specifying the host
connectivity to be used by the File Transfer Programming
Interface. The session name is a single character in the range
of a-z. Capital letters are interpreted as lowercase letters.
Session variables are defined in a HCON session profile. If
the sessionname is set to NULL the fxfer function assumes
you are running in an e789 subshell.

Specifies a record of type fxc within the fxfer.inc file.

Points to the name of a session. The session name defines
the host connectivity to be used by the File Transfer
Programming Interface. The session name is a single
character in the range of a-z. Capital letters are interpreted
as lowercase letters. Session variables are defined in a
HCON session profile. If the sessionname is set to char(O) the
pfxfer function assumes you are running in an e789 subshell.

Specifies a character array of XX length containing the source
file name.

Specifies a character array of XX length containing the
destination file name.

Specifies a character array of XX length containing the logon
10.

Points to the name of a session. The session name defines
the host connectivity to be used by the File Transfer
Programming Interface. The session name is a single
character in the range of a-z. Capital letters are interpreted
as lowercase letters. Session variables are defined in a
HCON session profile. If the SESSIONNAME is set to char(O)
the FFxfer function assumes you are running in an e789
subshell.

Contains the option flags value, which is the sum of the
desired option values listed below:

1 Upload

2 Download

4 Translate On

8 Translate Carriage Return Line Feed

16 Replace

32 Append

64 Queue

128 Fixed Length Records

RECL

BLKSIZE

SPACE

INCR

UNIT

256 Variable Length Records

512 Undefined Length (TSO only)

1024 Host System TSO

2048 Host System CMS

Specifies the logical record length.

Specifies the block size.

Specifies the allocation space.

Specifies the allocation space increment.

Specifies the unit of allocation, which is:

-1

-2

Specifies the number of TRACKS

Specifies the number of CYLINDERS

fxfer

Note: All FORTRAN character array strings must be NULL-terminated. For example:

SRCF = 'rtfile'!!CHAR(O)

A positive number indicates the number of bytes to be allocated.

Return Value
If the fxfer function is called synchronously, it returns the value zero (0) when the transfer is
completed. The application program can then issue a cfxfer function call to obtain the status
of the file transfer.

If the fxfer function is called asynchronously, it returns zero (0) immediately. The
application program can issue a cfxfer function call to determine when the file transfer is
completed and to obtain the status of the file transfer. If the status cannot be reported by the
cfxfer function due to an 1/0 error on the fx_statxxxxxx status file, the cfxfer function
returns a -1 (negative one). If the status is not ready, the cfxfer function returns a-2
(negative two).

The fx_statxxxxxx status file contains the status of each file transfer request made by the
application program. The fxfer function fills in the xxxxxx portion of the fx_stat file based on
random letter generation and places the file in the $HOME directory.

Implementation Specifics
The fxfer function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The fxfer function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter plus appropriate cables for attachment to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter plus appropriate cables for attachment to an IBM
5088 Graphics Control Unit.

This function requires one of the following IBM System/370 operating system environments
be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E, or MVS/XA
TSO/E.

AIX 3270 Host Connection Program (HCON) 2-13

fxfer

Files

This function requires that the System/370 IBM Host-Supported File Transfer Program
(IND$FILE) be installed on the System/370.

This function is not available for Japanese Language Support.

$HOM E/fx _ statxxxxxx

lusr/lib/libfxfer.a

lusr/include/fxfer.h

lusr/i ncl ude/fxfer.i nc

lusr/include/fxconst.inc

lusr/include/fxhfile.inc

Temporary file used for status

Library containing C, FORTRAN, and Pascal interface
file transfer functions.

File transfer include file with structures and definitions.

Pascal file transfer include file with structure.

Pascal file transfer function constants.

Pascal file transfer invocation include file.

Related Information

2-14

The file transfer check status function is the cfxfer function.

HCON Overview for Programming, Understanding the File Transfer Program Interface, How
to Compile a File Transfer Program, File Transfer Program Interface Error Codes in
Communications Programming Concepts.

Base Operating System Reference

G32ALLOC

G32ALLOC Function

Purpose

Syntax

Starts interaction with an AIX API application running simultaneously on the RISC
System/SOOO.

G32ALLOC

Description
The G32ALLOC function starts a session with an AIX API application by sending a message
to the AIX g32_alloc system call indicating that the allocation is complete. The G32ALLOC
function is a HCON API function that can be called by a 370 Assembler applications
program.

Return Values

Example

This call sets register 0 (zero), to the following values:

>= 0 Normal return; successful call. The value returned indicates the maximum
number of bytes that may be transferred to an AIX application via
G32WRITE or received from an AIX application via G32READ.

The following 370 Assembler code example illustrates the use of the host G32ALLOC
function:

L Rll,=v(G32DATA)
USING G32DATAD,Rll
G32ALLOC
LTR RO,RO
BNM OK

/* Allocate a session */

/* Normal completion */
C RO,G32ESESS /*Session error */
BE SESSERR
C RO,G32ESYS /* System error */
BE SYSERR

Implementation Specifics
The G32ALLOC function is part of the AIX 3270 Host Connection Program/SOOO (HCON).

The G32ALLOC function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 43S1 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

AIX 3270 Host Connection Program (HCON) 2-15

G32ALLOC

The G32ALLOC function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The G32ALLOC function is not available for Japanese Language Support.

Related Information

2-16

Additional host interface functions are the G32DLLOC function, G32READ function, and
G32WRITE function.

AIX session control subroutines are the g32_alloc subroutine, g32_close subroutine,
g32_dealloc subroutine, g32_open subroutine, and g32_openx subroutine.

AIX message interface subroutines are the g32_get_status subroutine, g32_read
subroutine, and g32_write subroutine.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the HCON Host Interface in Communications Programming
Concepts.

How to Compile a Host HCON API Program, Host API Errors, Sample Flows of API
Programs in Communications Programming Concepts.

Base Operating System Reference

g32_alloc Function

Purpose

Library

C Syntax

Initiate interaction with a host application.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>

g32_alloc (as, applname, mode)

struct g32_api * as;

char * applname;

int mode;

Pascal Syntax
function g32allc(var as : g32_api;

applname : stringptr;
mode: integer): integer; external;

FORTRAN Syntax
EXTERNAL G32ALLOC
INTEGER RC, MODE, AS(9), G32ALLOC
CHARACTER* XX NAME

RC = G32ALLOC (AS, NAME, MODE)

Description
The g32_alloc function initiates interaction with a host application and sets the API mode.
The host application program is invoked by entering its name, using the logical terminal
interface.

If invocation of the host program is successful and the mode is API/API, control of the
session is passed to the AIX application. If the mode is AP1I3270, the emulator retains
control of the session. The application communicates with the session by way of the logical
terminal interface.

The g32_alloc function may be used only after a successful open using the g32_open or
g32_openx function. The g32_alloc function must be issued before using any of the
message or logical terminal interface functions.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

AIX 3270 Host Connection Program (HCON) 2-17

C Parameters
as

applname

mode

Pascal Parameters
as

applname

sessionmode

Specifies a pointer to a g32_api structure. Status information is
returned in this structure.

Specifies a pointer to the name of the host application that is to be
executed. This string should be the entire string necessary to start
the application, including any necessary parameters or options.
When using API/3270 mode, place the value in two double quotes
(''''Testload'''') or specify a null string (" "). When using API/API
mode, place the host application name in double quotes ("Testload")

Specifies the API mode.The types of modes that can be used are
contained in the g32_api.h file and are defined as follows:

MODE_3270
The API/3270 mode is for communicating with host
applications that assume they are communicating with a
3270terminal. Applications in this mode use the logical
terminal interface to communicate with the host application. In
API/3270 mode, if applname is a null pointer, no host
application is started.

MODE_API
The API/API mode is for communicating with host applications
that assume they are communicating with a program.
Applications in this mode use the message interface to
communicate with host applications using the host API.

Note: When a session is in this mode, all activity to the
screen is stopped until this mode is exited. API/3270
mode functions cannot be used while in the API/API
mode.

MODE_API_T
The AP,-T mode is the same as MODE_API except this mode
translates messages received from the host from EBCDIC to
ASCII, and translates messages sent to the host from ASCII to
EBCDIC. The translation table used is determined by the
country field in the HCON session profile.

Note: A host application started in API/API or API/API_ T
mode must issue a G32ALLOC function as the API
waits for an acknowledgment from the host application,
when starting an API/API mode session.

Specifies the g32_api structure.

Specifies a stringptr containing the name of the host application to
be executed. This string should be the entire string necessary to
start the host application, including any necessary parameters and
options. A NULL application name is valid in 3270 mode.

Specifies the mode desired for the session.

2-18 Base Operating System Reference

FORTRAN Parameters
AS

NAME

MODE

Specifies the g32_api equivalent structure as an array of integers.

Specifies the name of the application that is to execute on the host.

Specifies the desired mode for the API.

Return Values

Example
C Language

Upon successful completion:

• A value of 0 is returned.

Upon unsuccessful completion:

• A value of -1 is returned.

• The errcode bit is set to an error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example illustrates the use of the g32_alloc function:

#include <g32_api.h
main ()
{
struct g32_api *as, asx;
int session mode = MODE API - -

char appl_name [20]

int return;

/* API include file */

/* asx is statically defined*/
/* api session mode. Other modes

are MODE API T */
/* name of the application to

run on the host*/
/* return code */

strcpy (appl_name, uAPITESTN"); /* name of host application*/
return g32 alloc(as, appl name, session_mode);

return g32 dealloc(as);

Implementation Specifics
The g32_alloc function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_alloc function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

AIX 3270 Host Connection Program (HCON) 2-19.

Files

The g32_alloc function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_alloc function is not available for Japanese Language Support.

lusr/include/g32_api.h

lusr/include/g32const.inc

lusr/include/g32hfile.inc

lusrli ncl ude/g32types. i nc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information

2-20

Additional session control functions are the g32_close function, g32_dealloc function,
g32_open function, and g32_openx function.

AIX logical terminal interface functions are the g32_get_cursor function, g32_get_data
function, g32_notify function, g32_search function, and g32_send_keys function.

The API file transfer functions is the g32_fxfer function.

AIX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interface, Understanding the AIX Interface for HCON API, API error codes, Sample Flows of
API Programs in Communications Programming Concepts.

Understanding HCON Emulator Session Profiles in Communication Concepts and
Procedures.

Base Operating System Reference

g32_close

g32_close Function

Purpose

Library

C Syntax

Detaches from a session.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a
FORTRAN (libg3270f.a)

#include <g32_api.h>

g32_close(as)

struct g32_api * as;

Pascal Syntax
function g32clse (var as : g32_api) : integer; external;

FORTRAN Syntax
EXTERNAL G32CLOSE
INTEGER AS(9), G32CLOSE

RC = G32CLOSE(AS)

Description
The g32_close function relinquishes use of the session. If the g32_open or g32_openx
created the session, the g32_close function will log off from the host and terminate the
session. Any session must be terminated (by using the g32_dealloc function) before
issuing the g32_close function.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameter
as

Pascal Parameter
as

FORTRAN Parameter
AS

Specifies a pointer to a g32_api structure. Status is returned in this
structure.

Specifies a g32_api structure.

Specifies the g32_api equivalent structure as an array of integers.

AIX 3270 Host Connection Program (HCON) 2-21·

Return Values

Examples
C Language

Upon successful completion:

• A value of 0 is returned.

Upon unsuccessful completion:

• A value of -1 is returned.

• The errcode bit is set to an error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example fragment illustrates the use of the g32_close function:

#include <g32_api.h>
main ()
{
struct g32_api *asj
int return;

return g32_close(as);

/* API include file */

/* g32 structure */

Implementation Specifics

Files

The g32_close function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_close function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
DFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_close function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_close function is not available for Japanese Language Support.

lusr/include/g32_api.h

lusr/include/g32const.inc

lusr/i ncl ude/g32hfile.i nc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

2-22 Base Operating System Reference

Related Information
Additional session control functions are the g32_alloc function, g32_dealloc function
g32_open function, and g32_openx function.

AIX logical terminal interface functions are the g32_get_cursor function, g32_get_data
function, g32_notify function, g32_search function, and g32_send_keys function.

The API file transfer functions is the g32_fxfer function.

AIX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-23

g32_dealloc Function

Purpose

Library

C Syntax

Ends interaction with a host application.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a
FORTRAN (libg3270f.a)

#include <g32_api.h>

g32_ dealloc(as)

struct g32_api * as;

Pascal Syntax
function g32deal (var as : g32_api) : integer; external;

FORTRAN Syntax
EXTERNAL G32DEALLOC
INTEGER AS(9), G32DEALLOC

RC = G32DEALLOC(AS)

Description
The g32_dealloc function ends interaction with the AIX application and the host application.
The function releases control of the session.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameter
as Specifies a pointer to a g32_api structure as an array of integers.

Pascal Parameter
as Specifies the g32_api structure.

FORTRAN Parameters
AS Specifies the g32_api equivalent structure.

Return Values
Upon successful completion:

• The session is terminated.

• A value of 0 is returned.

2-24 Base Operating System Reference

Examples
C Language

Upon unsuccessful completion:

• A value of -1 is returned.

• The errcode bit is set to an error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example illustrates the use of the g32_dealloc function:

#include <g32_api.h>
main ()
{
struct g32_api *as, asx;
int session_mode = MODE_API;

char appl_name (20];

int return;

/* API include file */

/* asx is statically defined */
/* api session mode. Other modes

are MODE_API_T */
/* name of the application to

run on the host */
/* return code */

strcpy (appl_name, uAPITESTN U
); /* name of host application */

return = g32_alloc(as, appl_name, session_mode);

return g32_dealloc(as);

Implementation Specifics

Files

The g32_dealloc function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_dealloc function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_dealloc function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_dealloc function is not available for Japanese Language Support.

/usr/include/g32_apLh

/usr/include/g32const.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

AIX 3270 Host Connection Program (HCON) 2-25

lusr/include/g32hfile.inc

lusr/include/g32types.inc

Defines Pascal API external definitions

Defines Pascal API data types

Related Information

2-26

Additional session control functions are the g32_alloc function, g32_close function,
g32_open function, and g32_openx function.

AIX logical terminal interface functions are the g32_get_cursor function, g32_get_data
function, g32_notify function, g32_search function, and g32_send_keys function.

The API file transfer functions is the g32_fxfer function.

AIX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

Base Operating System Reference

G32DLLOC

G32DLLOC Function

Purpose

Syntax

Terminates interaction with an AIX API application running simultaneously on the RISC
System/6000.

G32DLLOC

Description
The G32DLLOC function ends interaction with an AIX API application. The G32DLLOC
function is a HCON API function that can be called by a 370 Assembler applications
program.

Return Values

Examples

This call sets register 0 (zero) to the following values:

o Zero. A normal return; call successful

Less than zero. Error condition.

The following 370 Assembler code example illustrates the use of the host G32DLLOC
function:

L Rll,=v(G32DATA)
USING G32DATAD,Rll
G32DLLOC /* Deallocate a session */
C RO, G32ESESS /* Check for G32 error */
BE SESSERR /* Branch if error */
C RO, G32ESYS /* Check for system error */
BE SYSERR /* Branch if error */

Implementation Specifics
The G32DLLOC function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The G32DLLOC function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The G32DLLOC function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The G32DLLOC function is not available for Japanese Language Support.

AIX 3270 Host Connection Program (HCON) 2-27

G32DLLOC

Related Information

2-28

Additional host interface functions are the G32ALLOC function, G32READ function, and
G32WRITE function.

AIX session control subroutines are the g32_alloc subroutine, g32_close subroutine,
g32_dealloc subroutine, g32_open subroutine, and g32_openx subroutine.

AIX message interface subroutines are the g32_get_status subroutine, g32_read
subroutine, and g32_write subroutine.

Base Operating System Reference

g32_fxfer Function

Purpose

Library

C Syntax

Invokes a file transfer.

HCON Library

File Transfer Library (libfxfer.a)
C (libg3270.a)
Pascal (libg3270p.a)
Fortran (libg3270f.a)

#include <g32_apLh>
#include <fxfer.h>

g32_fxfer(AS,Xfery
struct g32_api * AS;
struct fxc * Xfer,

Pascal Syntax
const
%include lusr/include/g32const.inc
%include lusr/include/g32fxconst.inc
type
%include lusr/include/g32types.inc
%include lusr/include/fxhfile.inc

function g32fxfer(var AS : g32_api; var Xfer : fxc) : integer; external;

FORTRAN Syntax
INTEGER G32FXFER, RC, AS(9)
EXTERNAL G32FXFER
CHARACTER* XX SRCF, DSTF
INTEGER FLAGS,RECL,BLKSIZE,SPACE,INCR,UNIT

RC = G32FXFER(AS,SCRF,DSTF,FLAGS,RECL,BLKSIZE,SPACE,
+ INCR, UNI1)

Description
The g32_fxfer function allows a file transfer to take place within an API program without the
API program having to invoke a g32_close and relinquish the link. The file transfer is run
programmatically, meaning the user must set up the flag options, the source file name, and
the destination file name using either the programmatic fxfer fxc structure for C and Pascal
or the numerous variables for FORTRAN. The g32_fxfer function will in affect detach from
the session without terminating it, run the specified file transfer and then reattach to the
session.

If a g32_alloc has been issued before invoking the g32_fxfer command, be sure that the
corresponding g32_dealloc is incorporated into the program before the g32_fxfer function
is called.

AIX 3270 Host Connection Program (HCON) 2-29

The status of the file transfer can be checked by using the cfxfer file transfer status check
function after the g32_fxfer function has been invoked.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters
AS Specifies a pointer to the g32_api structure. Status is returned in this

structure.

Xfer

Pascal Parameters
AS

Xfer

Specifies a pointer to the fxc structure defined in the fxfer.h file.

Specifies a record of type g32_api.

Specifies a record of type fxc within the fxfer.inc file.

FORTRAN Parameters

2-30

AS

SRCF

DSTF

FLAGS

Specifies the g32_api equivalent structure as an array of integers.

Specifies a character array of XX length containing the source file name.

Specifies a character array of XX length containing the destination file
name.

Contains the option flags value, which is the sum of the desired option
values listed below:

1 Upload

2 Download

4 Translate On

8 Translate Carriage Return Line Feed

16 Replace

32 Append

64 Queue - this option may be specified by the user, but it is
blocked by the G32FXFER command

128 Fixed Length Records

256 Variable Length Records

512 Undefined Length (TSO only)

1024 Host System TSO

2048 Host System eMS

RECL Specifies the logical record length.

Base Operating System Reference

BLKSIZE Specifies the block size. (TSO only)

SPACE Specifies the allocation space. (TSO only)

INCR Specifies the allocation space increment. (TSO only)

UNIT Specifies the unit of allocation (TSO only), which is:

-1 is the number of TRACKS

-2 is the number of CYLINDERS

A positive number indicates the number of bytes to be allocated.

Note: All FORTRAN character array strings must be NULL-terminated (for
example, SRCF = rtfile//CHAR(O)).

Return Values

Examples

Upon successful completion:

o The user may call the cfxfer function to get the status of the
file transfer.

Upon unsuccessful completion:

1

-1

1. c:

The file transfer did not complete successfully. The user
may call the cfxfer function to get the status of the file
transfer.

The g32_fxfer command failed while accessing the link.
The errcode bit is set to an error code identifying the error.
The xerrinfo bit can be set to give more information about
the error.

#include <g32_api.h> /* API include file */
#include <fxfer.h> /* file transfer include file */
main ()
{

struct g32_api *as,asx;
struct fxc *xfer;
struct fxs sxfer;
int session_mode=MODE_3270;
char *aixfile="/etc/motd";
char *hostfile="test file a";
char sessionname[30],uid[30],pw[30];
int mlog=O,ret=O;
as = &asx;
sessionname = '\0'; /* We are assuming SNAME is set */

ret=g32_open(as,mlog,uid,pw,sessionname);

AIX 3270 Host Connection Program (HCON) 2-31

2-32

printf("The g32_open return code %d\n" , ret) ;

/* Malloc space for the file transfer structure */
xfer = (struct fxc *) malloc(2048);
/* Set the file transfer flags to upload,

replace, translate and Host CMS */
xfer->fxc_opts.f_flags FXC_UP I FXC_REPL I FXC_TNL I FXC_CMSi
xfer->fxc_opts.f_lrecl 80; /* Set the Logical Record length

to 80 */
xfer->fxc src - aixfile; /* Set the Source file name to

aixfile */
xfer->fxc dst hostfile; /* Set the Destination file name

to hostfile */
ret=g32_fxfer(as,xfer);
printf("The g32_ fxfer return code = %d\n" , ret) ;

/* If the file transfer completed then get the status code of
the file transfer */

if ((ret == 0) I I (ret == 1» {
ret = cfxfer(&sxfer);
if (ret == 0) {

printf("Source file: %s\n",sxfer.fxs_src);
printf("Destination file: %s\n",sxfer.fxs_dst);
printf("Byte Count: %d\n",sxfer.fxs_bytcnt);
printf("File transfer time: %d\n",sxfer.fxs_ctime)i
printf("Status Message Number: %d\n",sxfer.fxs_stat)i
printf("System Call error number: %d\n",sxfer.fxs_errno);

}

}
}

ret=g32_close(as);
printf("The g32_close return code
return (0) ;

2. Pascal:

program testl(input,output);
const
%include /usr/include/g32const.inc
%include /usr/include/fxconst.inc
type
%include /usr/include/g32hfile.inc
%include /usr/include/g32types.inc
%include /usr/include/fxhfile.inc
var

as:g32_api;
xfer:fxc;
sxfer:fxs;
ret,sess_mode,flag:integer;
session,timeout,uid,pw:stringptr;
source,destination:stringptr;

begin
sess mode

Base Operating System Reference

%d\n",ret);

flag := 0:
{* Initialize API stringptrs and create space *}
new(uid,8):
uid@ := chr(O);
new(pw,8):
pw@ : = chr (0) ;
new(session,2):
session@ := 'a'; {* Open session a *}
new(timout,8);
timeout := '60';
{* Call g320penx and open session a *}
ret := g32openx(as,flag,uid,pw,session,timeout);
writeln('The g320penx return code = ' ,ret:4);

{* Set up the file transfer options and file names *}
new(source,1024);
source := 'testfile'; {* Source file, assumes testfile exists

in the current directory *}
new(destination,1024);
destination := 'testfile'; {* Destination file, TSO file

testfile *}
{* Set flags to Upload, Replace, Translate and Host TSO *}
xfer.fxc_opts.f_flags := FXC_UP + FXC_TSO + FXC REPL + FXC_TNL;
xfer.fxc src := source;
xfer.fxc_dst := destination;
{* Call the g32_fxfer using the specified flags and file names

*}
ret := g32fxfer(as,xfer);
writeln('The g32fxfer return code = ' ,ret:4);
{* If g32_fxfer returned with 1 or 0 call the file transfer

status check function *}
if (ret >= 0) then begin

ret := pcfxfer(sxfer);
if (ret = 0) then begin

writeln('Source file: ' ,sxfer.fxs_src@);
writeln('Destination file: ' ,sxfer.fxs_dst@);
writeln('File Transfer Time: ' ,sxfer.fxs_ctime@);
writeln('Byte Count: ' ,sxfer.fxs_bytcnt);

writeln('Status Message Number: ' ,sxfer.fxs_stat);
writeln('System Call Error Number: ' ,sxfer.fxs_errno);

end;
end;

{* Close the session using the g32close function *}
ret := g32close(as);
writeln('The g32close return code = ',ret:4):
end.

AIX 3270 Host Connection Program (HCON) 2-33

2-34

3. FORTRAN:

C
1
2
3
4
5
10
11
12
13
14
15

INTEGER G320PENX,G32FXFER,G32CLOSE,FCFXFER
INTEGER RET,AS(9)FLAG
EXTERNAL G320PENX
EXTERNAL G32FXFER
EXTERNAL G32CLOSE
EXTERNAL FCFXFER
CHARACTER*8 UID
CHARACTER*8 PW
CHARACTER*2 SESSION
CHARACTER*8 TIMEOUT
CHARACTER*256 SRCF
CHARACTER*256 DSTF
CHARACTER*256 SRC
CHARACTER*256 DST
CHARACTER*40 TIME
INTEGER BYTCNT,STAT,ERRNO,TIME
INTEGER FLAGS,RECL,BLKSIZE,SPACE,INCR,UNIT

Set up all FORMAT statement
FORMAT("THE G320PENX RETURN CODE =
FORMAT("THE G32FXFER RETURN CODE
FORMAT("THE G32CLOSE RETURN CODE
FORMAT("THE FCFXFER RETURN CODE

",I4)
",I4)
",I4)
",I4)

FORMAT ("------------------")
FORMAT("SOURCE FILE: ",A)
FORMAT("DESTINATION FILE: ",A)
FORMAT("BYTE COUNT: ",I10)
FORMAT("TIME: ",A)
FORMAT("STATUS MESSAGE NUMBER: ",I10)
FORMAT("SYSTEM CALL ERROR NUMBER: ",I10)

C Set up all character values for the G320PENX command
UID = CHAR(O)
PW = CHAR(O)
SESSION = 'z'IICHAR(O)
TIMEOUT = '60'IICHAR(0)
FLAG 0
SRCF = 'testcase1'IICHAR(0)
DSTF = '/u/test.case1'IICHAR(0)

C Source and Destination files for the fcfxfer status check
command

SRC = CHAR(O)
DST = CHAR(O)

C Set the G32FXFER
C Take the defaults
and Space

RECL = 0
BLKSIZE = 0
SPACE = 0

file transfer flags and options
for Logical Record Length, Block

C Set FLAGS to download (2), translate(4), and Host
TSO(1024)

FLAGS = 1030
C Call G320PENX

RET = G320PENX(AS,FLAG,UID,PW,sessionname,TIMEOUT)
WRITE(*,l) RET

Base Operating System Reference

Size,

C Call G32FXFER
RET = G32FXFER(AS,SRCF,DSTF,FLAGS,RECL,BLKSIZE,SPACE

+ INCR,UNIT)
WRITE(*,2) RET

C Call G32CLOSE
RET = G32CLOSE(AS)
WRITE(*,3) RET

C Call FCFXFER for file transfer status output
RET = FCFXFER(SRC,DST,BYTCNT,STAT,ERRNO,TIME)
WRITE(*,4) RET
WRITE(*,S)
WRITE(*,lO) SRC
WRITE(*,ll) DST
WRITE(*,12) BYTCNT
WRITE(*,13) TIME
WRITE(*,14) STAT
WRITE(*,lS) ERRNO
WRITE(*,S)
STOP
END

Implementation Specifics

Files

The g32_fxfer function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_fxfer function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter plus appropriate cables for attachment to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter plus appropriate cables for attachment to an IBM
5088 Graphics Control Unit.

This function requires one of the following IBM System/370 operating system environments
be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E, or MVS/XA
TSO/E.

This function requires that the System/370 IBM Host-Supported File Transfer Program
(IND$FILE) be installed on the System/370.

This function is not available for Japanese Language Support.

lusr/include/fxfer.h File transfer include file with structures and definitions for
C.

lusr/include/fxconst.inc

lusr/include/fxhfile.inc

lusr/include/g32_api.h

Pascal fxfer function constants.

Pascal file transfer invocation include file.

Contains data structures and associated symbol
definitions.

AIX 3270 Host Connection Program (HCON) 2-35

lusr/include/g32const.inc

lusr/include/g32hfile.inc

lusr/include/g32types.inc

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information

2-36

Session control functions are the g32_open function, the g32_openx function, the
g32_close function, the g32_alloc function, and the g32_dealloc function.

The fxfer function and cfxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

Base Operating System Reference

g32_get_cursor Function

Purpose

Library

C Syntax

Sets the row and column components of the g32_api structure to the current cursor position
in a presentation space.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>

g32_get_cursor(as)
struct g32_api as

Pascal Syntax
function g32curs (var as : g32_api) : integer; external;

FORTRAN Syntax
EXTERNALG32GETCURSOR
INTEGER AS(9), G32GETCURSOR

RC = G32GETCURSOR(AS)

Description
The g32_get_cursor function obtains the row and column address of the cursor and places
these values in the as structure. An application can only use the g32_get_cursor function
in API/3270 mode.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameter
as Specifies a pointer to the g32_api structure. The row (row) and column (column)

address of the cursor is set here. Status information is also set in this structure.

Pascal Parameter
as Specifies the g32_api structure.

FORTRAN Parameter
AS Specifies the g32_api equivalent structure as an array of integers.

AIX 3270 Host Connection Program (HCON) 2-37

Return Values

Examples
C Language

Upon successful completion:

• A value of 0 is returned.

• The corresponding row element of the as structure is the row position of the beginning of
the matched string.

• The corresponding column element of the as structure is the column position of the
beginning of the matched string.

Upon unsuccessful completion:

• An error code (-1 (-one)) is returned.

• The errcode bit is set to the error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example fragment illustrates the use of the g32_get_cursor function in an
api_3270 mode program:

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation API program.

#include <g32_api.h>
main ()

/* API include file */

{
struct g32_api *as; /* g32 structure */

char *buffer;
*/
int return;
char *malloc();

return
buffer

g32_notify(as,I);
malloc(10);

/* pointer to char string

/* return code */
/* C memory allocation

function */

/* Turn notification on */

return g32_get_cursor(as); /* get location of cursor */
printf (H The cursor positionis row: %d col: %d/n";

as -> row, as -> column);
/* Get data from host starting at the current row and column */
as -> length = 10; /* length of a pattern on host */
return = g32_get_data(as,buffer); /* get data from host */
printf("The data returned is <%s>\n",buffer);

/* Try to search for a particular pattern on host */
as ->row =1; /* row to start search */
as ->column =1; /* column to start search */
return = g32_search(as,"PATTERN");

/*Send a clear key to the host *?
strcpy (buffer, "CLE/O");
return = g32_send_keys(as, buffer);

2-38 Base Operating System Reference

/* Turn notification off */
return = g32_notify(as,O);

Implementation Specifics

Files

The g32_get_cursor function is part of the AIX 3270 Host Connection Program/6000
(HCON).

The g32_get_cursor function requires one of the following network communication
adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_get_cursor function requires one of the following IBM System/370 operating
system environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP
TSO/E, or MVS/XA TSO/E.

The g32_get_cursor function is not available for Japanese Language Support.

lusr/include/g32_apLh

lusr/include/g32const.inc

lusr/include/g32hfile.inc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information
Additional logical terminal interface functions are the g32_get_data function,
g32_send_keys function, g32_notify function, and g32_search function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interface, Understanding the AIX Interface for HCON API, API error codes, Sample Flows of
API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-39

g32_get_data Function

Purpose

Library

C Syntax

Obtains current specified display data from the presentation space.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>

g32 _get_ data(as, buffer)

struct g32_api * as;
char*buffer,

Pascal Syntax
function g32data (var as : g32_api;

buffer: integer) : integer; external;

FORTRAN Syntax
EXTERNAL G32GETDATA
INTEGER AS(9), G32GETDATA
CHARACTER * XX Buffer

RC = G32GETDATA(AS,Buffer)

Description
The g32_get_data function obtains current display data from the presentation space. If the
starting offset in the buffer plus the transfer length is greater than the size of the presentation
space, the transfer wraps from the last buffer position to the first and the transfer continues
from there until the transfer length is exhausted.

Note: The address of a packed array can be obtained by using the addr() system call:
Buffer: = addr «message array name> [1 (one)])

The g32_get_data function can only be used in API/3270 session mode.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters
as Specifies a pointer to the g32_api structure containing the row (row) and

column (column) address where the data begins, and the length (length) of
data to return. Status information is also returned in this structure.

buffer Specifies a pointer to a buffer where the data is placed.

2-40 Base Operating System Reference

Pascal Parameters
as

buffer

Specifies the g32_api structure as an array of integers.

Specifies an address of a character-packed array. The array must be the
same length or greater than the length field in the g32_api structure.

FORTRAN Parameters
AS

Buffer

Specifies the g32_api equivalent structure.

Specifies the character array that receives the retrieved data. The array
must be the same length or greater than the length field in the g32_api
structure.

Note: If the size of the buffer is smaller than AS(LENGTH), a memory fault may occur.

Return Values

Examples
C Language

Upon successful completion:

• A value of 0 is returned.

Upon unsuccessful completion:

• An error code -1 is returned.

• The errcode bit is set to the error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example fragment illustrates the use of the g32_get_data function in an
apL3270 mode program:

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation API program.

#include <g32_api.h>
main ()
{
struct g32_api *as;

char *buffer;
int return;
char *malloc();

/* API include file */

/* g32 structure */

/* pointer to char string */
/* return code */
/* C memory allocation function */

return g32_notify(as,1); /* Turn notification on */
buffer malloc(10);
return g32_get_cursor(as); /* get location of cursor */
printf (H The cursor positionis row: %d col: %d/n";

as -> row, as -> column);
/* Get data from host starting at the current row and column */
as -> length = 10; /* length of a pattern on host */
return = g32_get_data(as,buffer); /* get data from host */
printf(HThe data returned is <%s>\n",buffer);

AIX 3270 Host Connection Program (HCON) 2-41

/* Try to search for a particular pattern on host */
as ->row =1; /* row to start search */
as ->column =1; /* column to start search */
return = g32_search(as,"PATTERN");

/*Send a clear key to the host *7
strcpy (buffer, "CLE/O");
return = g32_send_keys(as, buffer);

/* Turn notification off */
return = g32_notify(as,O);

Implementation Specifics

Files

The g32_get_data function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_get_data function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_get_data function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_get_data function is not available for Japanese Language Support.

lusr/include/g32_apLh

lusr/include/g32const.inc

lusrlinclude/g32hfile.inc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information

2-42

Additional Logical Terminal Interface functions are the g32_get_cursor function, g32_notify
function, g32_search function, and g32_send_keys function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interface, Understanding the AIX Interface for HCON API, API error codes, Sample Flows of
API Programs in Communications Programming Concepts.

Base Operating System Reference

g32_get_status Function

Purpose

Library

C Syntax

Returns status information of the logical path.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>

g32_get_status(as)
struct g32_api * as;

Pascal Syntax
function g32stat (var as: g32_api) : integer; external;

FORTRAN Syntax
EXTERNAL G32GETSTATUS
INTEGER AS(9),G32GETSTATUS

RC = G32GETSTATUS(AS)

Description
The g32_get_status function obtains status information about the communication path. The
function is called after an AIX API application determines that an error has occurred while
reading from or writing to the communication path or after a time out. The HCON session
profile specifies the communication path.

Note: The g32_get_status function can only be used in API/API or API/APLT mode.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameter
as

Pascal Parameter
as

FORTRAN Parameter
AS

Specifies a pointer to a g32_api structure; status is returned in this
structure.

Specifies the g32_api structure.

Specifies a g32_api equivalent structure as an array of integers.

Note: This function is used to determine the condition or status of the link. It should not be
used to determine whether the previous I/O operation was successful or
unsuccessful (the return code will provide this information).

AIX 3270 Host Connection Program (HCON) 2-43

Return Values

Example
C Language

Upon successful completion:

• A value of 0 is returned.

The values of errcode are as follows:

• No error has occurred (G32_NO_ERROR, error value = 0).

• A communications check has occurred (G32_COMM_CHK, error value = -1).

• A program check has occurred within the emulator (G32_PROG_CHK, error value = -2).

• A machine check has occurred (G32_MACH_CHK, error value = -3).

If errcode is anything other than G32_NO_ERROR, then xerrinfo contains an emulator
program error code.

Upon unsuccessful completion:

• An error code of -1 is returned.

• The errcode bit is set to the error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example fragment illustrates the use of the g32_get_status function:

#include <g32_api.h>
main ()
{
struct g32_api *as;
int return;

/* API include file */

/* g32 structure */

return = g32_write(as, mssg, length);
/* see if unsucessful */

if (return < 0) {
return = g32_get_status(as);
printf("Return from g32_get_status = %d \n",return);
printf("errcode = %d xerrinfor = %d \n",

as -> errcode , as -> xerrinfo

Implementation Specifics

2-44

The g32_get_status function is part of the AIX 3270 Host Connection Program/6000
(HCON).

Base Operating System Reference

Files

The g32_get_status function requires one of the following network communication
adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_get_status function requires one of the following IBM System/370 operating
system environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP
TSO/E, or MVS/XA TSO/E.

The g32_get_status function is not available for Japanese Language Support.

lusr/include/g32_api.h

lusr/include/g32const.inc

/usr/include/g32hfile.inc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information
Additional message interface functions are the g32_read function and g32_write function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-45

g32_notify Function

Purpose

Library

C Syntax

Turns data notification On or Off.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_apLh>

g32_notify(as, note)

struct g32_api * as;
int note;

Pascal Syntax
subroutine g32Note (var as : g32_api;

note: integer) : integer; external;

FORTRAN Syntax
EXTERNAL G32NOTIFY
INTEGER AS(9), Note, G32NOTIFY

RC = G32NOTIFY(AS,Note)

Description
The g32_notify subroutine is used to turn notification of data arrival On and Off. The
g32_notify subroutine may be used only by applications in API/3270 session mode.

If an application wants to know when the emulator receives data from the host, it turns
notification On. This causes the emulator to send a message to the application whenever it
receives data from the host. The message is sent to the IPC message queue who's file
pointer is stored in the eventf field of the as data structure. The application may then use
the poll system call to wait for data from the host. Once notified the application should clear
notification messages from the IPC queue using the msgrcv subroutine. When the
application no longer wants to be notified, it should turn notification Off with another
g32_notify call.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters
as Specifies a pOinter to the g32_api structure. Status is returned in this

structure.

note Specifies to turn notification Off (if the note parameter is zero) or On (if the
note parameter is nonzero).

2-46 Base Operating System Reference

Pascal Parameters
as

note

Specifies a g32_api structure.

Specifies an integer that signals whether to turn notification Off (if the note
parameter is zero) or On (if the note parameter is nonzero).

FORTRAN Parameters
AS Specifies a g32_api equivalent structure as an array of integers.

Note Specifies to turn notification Off (if Note is zero) or On (if Note is nonzero).

Return Values

Example
C Language

Upon successful completion:

• A value of 0 is returned.

Upon unsuccessful completion:

• An error code -1 is returned.

• The errcode bit is set to the error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example fragment illustrates the use of the g32_notify function in an
apL3270 mode program:

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation API program.

#include <g32_api.h>
main ()
{
struct g32_api *as;

/* API include file

/* g32 structure

*/

*/

char *buffer;
int return;
char *malloc();

/* pointer to char string */
/* return code */
/* C memory allocation function */

return g32_notify(as,I); /* Turn notification on */
buffer malloc(10);
return g32_get_cursor(as); /* get location of cursor */
printf (H The cursor positionis row: %d col: %d/n";

as -> row, as -> column);
/* Get data from host starting at the current row and column */
as -> length = 10; /* length of a pattern on host */
return = g32_get_data(as,buffer);/* get data from host */
printf(HThe data returned is <%s>\n",buffer);

AIX 3270 Host Connection Program (HCON) 2-47

/*Try to search for a particular pattern on host */
as ->row =1; /* row to start search */
as ->column =1; /* column to start search */
return = g32_search(as,"PATTERN");

strcpy (buffer, "CLE/O");
return g32_send_keys(as, buffer); /* Send clear key to host */

return g32_notify(as,O); /* Turn notification off */

Implementation Specifics

Files

The g32_notify function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_notify function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode .

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_notify function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_notify function is not available for Japanese Language Support.

/usr/include/g32_api.h

lusr/include/g32const.inc

lusr/include/g32hfile.inc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants.

Defines Pascal API external definitions.

Defines Pascal API data types.

Related Information

2-48

Additional logical terminal interface subroutines are the g32_get_cursor subroutine,
g32_get_data subroutine, g32_search subroutine, and g32_send_keys subroutine.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

Base Operating System Reference

g32_open Function

Purpose

Library

C Syntax

Attaches to a session. If the session does not exist, the session is started.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>

g32_ open(as, flag, uid,pw,sessionname)

struct g32_api * as;
int flag;
char * uid;
char * Pw;
char * sessionname;

Pascal Syntax
function g32open(var as : g32_api; flag: integer;
uid : stringptr;
pw : stringptr;
sessionname : stringptr,) : integer; external;

FORTRAN Syntax
INTEGER G320PEN, RC, AS(9), FLAG
EXTERNAL G320PEN
CHARACTER*XX UID, PW, SESSIONNAME

RC = G320PEN(AS, FLAG, UID, PW; SESSIONNAME)

Description
The g32_open function attaches to a session with the host. If the session does not exist,
the session is started (i.e. implicit). The user is logged on to the host if request. This
function is a subset of the capability provided by the g32_openx function. An application
program must call the g32_open or g32_openx function before calling any other API
function. If an API application is running implicitly an implicit logon is performed.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters
as Specifies a pointer to the g32_api structure. Status is returned in this

structure.

AIX 3270 Host Connection Program (HCON) 2-49

flag

uid

pw

sessionname

Pascal Parameters
as

flag

Signals whether the logon procedure should be performed. Flag values
are as follows:

• If the emulator is running and the user is logged on to the host, the
value of the flag parameter must be 0 (zero).

• If the emulator is running, the user is not logged on to the host, and the
API logs on to the host, the value of the flag parameter must be set to
1 (one).

• If the emulator is not running and the API application executes an
implicit logon/logoff procedure, the value of flag parameter is ignored.

If the g32_open function is to log on to the host, the uid parameter
specifies a pointer to the logon 10 string. If the logon 10 is a null string,
the Logon procedure prompts the user for both the logon 10 and the
password unless the host login 10 is specified in the session profile in
which case the user is prompted only for a password. The logon 10 is a
string consisting of the host user 10 and, optionally, a list of
comma-separated AUTOLOG variables, which is passed to the implicit
procedure. The following is a sample list of AUTOLOG variables:

userid, nOde_id, trace, time=n, ...

Specifies a pointer to the password string associated with the logon 10
string. The following usage considerations apply to the pw parameter:

• If no password is to be specified, the user can specify a null string.

• If no value is provided and the program is running implicitly, the logon
procedure prompts the user for the password.

• if the uid parameter is a null string, the pw parameter is ignored.

Specifies a pointer to the name of a session. The session name is a
single character in the range of a-z. Capital letters are interpreted as
lowercase letters.

Specifies the g32_api structure.

Signals whether the logon procedure should be performed.

• If the emulator is running, the user is logged on to host, and the API
application executes as a subshell of the emulator, the value of the flag
parameter must be 0 (zero).

• If the emulator is running, the user is not logged on to host, and the API
application executes as a subs hell of the emulator and the application is
to perform an implicit logon/logoff procedure, the value of the flag
parameter must be set to 1 (one).

• If the emulator is not running and the API application executes an implicit
logon/logoff procedure, the value of flag parameter is ignored.

2-50 Base Operating System Reference

uid Specifies a pOinter to the logon 10 string. If the user 10 is a null string, the
Logon procedure prompts the user for both the user 10 and the password
unless the host login 10 is specified in the session profile. In the latter case,
the user is prompted only for a password.

pw Specifies a pOinter to the password string associated with the logon 10
string. If it points to a null string, the Logon procedure prompts the user for
the password. This parameter is ignored if the uid parameter is a null string.

sessionname Specifies a pOinter to the name of a session, which indicates the host
connectivity to be used by the API application. The session name is a
single character in the range of a-z. Capital letters are interpreted as
lowercase letters.

FORTRAN Parameters
When creating strings in FORTRAN that are to be passed as parameters, the strings must
be terminated by with a null character CHAR(O).

AS

FLAG

UfO

PW

Specifies the g32_api equivalent structure as an array of integers.

Signals whether the logon procedure should be performed.

Specifies a pointer to the logon 10 string. If the user 10 is a null string, the
Logon procedure prompts the user for both the user 10 and the password
unless the host login 10 is specified in the session profile. In the latter case,
the user is prompted only for a password.

Specifies a pointer to the password string associated with the logon 10
string. If the parameter specifies a null string, the Logon procedure prompts
the user for the password. This parameter is ignored if the uid parameter is
a null string.

SESSfONNAME
Specifies the name of a session, which indicates the host connectivity to be
used by the API application. The session name is a single character in the
range of a-z. Capital letters are interpreted as lowercase letters.

Return Values
Upon successful completion:

• A value of 0 is returned

• The Ipid bit is set to the session 10.

Upon unsuccessful completion:

• A value of -1 is returned.

• The errcode bit is set to an error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

AIX 3270 Host Connection Program (HCON) 2-51

Examples
1. c:

#include <g32_api.h>
main ()
{

struct g32_api *as, asx;
int flag=O;
int ret;
char uid(30),pw[30);
char *sn;

/* asx is statically declared */

char nrn=' a ' ;
int log=O;
as &asx;
sn = &nrn;

/* as points to an allocated structure */

ret=g32_open(as,log,uid,pw,sn);

}

2. Pascal:

program apitest (input, output);
const
%include /usr/include/g32const.inc
type
%include /usr/include/g32types.inc
var

as : g32_api;
rc : integer;
flag : integer;
sn : stringptr;
ret : integer;
uid, pw : stringptr;

%include /usr/include/g32hfile.inc
begin

end.

flag := 0;
new (u i d , 2 0) ;
uid@ := chr(O);
new (pw, 2 0) ;
pw@ := chr(O);
new (sn, 1) ;
sn@ := 'a';
ret := g32open(as,flag,uid,pw,sn);

2-52 Base Operating System Reference

3. FORTRAN:

INTEGER G320PEN
INTEGER RC, AS(9), FLAG
CHARACTER*20 UID
CHARACTER*10 PW
CHARACTER*l SN
EXTERNAL G320PEN
UID = CHAR(O)
PW = CHAR(O)
SN = 'a'!!CHAR(O)
FLAG = 0
RC = G320PEN(AS, FLAG, UID, PW, SN)

Implementation Specifics

Files

The g32_open function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_open function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_open function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_open function does not feature Japanese Language Support.

lusr/include/g32_apLh

lusr/include/g32const.inc

lusr/include/g32hfile.inc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Contains Pascal API external definitions

Defines Pascal API data types

Related Information
Additional session control functions are the g32_alloc function, g32_close function,
g32_dealloc function, and g32_openx function.

Additional logical terminal interface functions are the g32_get_cursor function,
g32_get_data function, g32_notify function, g32_search function, and g32_send_keys
function.

AIX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

The API file transfer function is the g32_fxfer function.

AIX 3270 Host Connection Program (HCON) 2-53

2-54

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

Base Operating System Reference

g32_openx Function

Purpose

Library

C Syntax

Attaches to a session and provides extended open capabilities. If the session does not
exist, the session is started.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_api.h>
g32_openx(as, flag, uid, pw, sessionname, timeou~

struct g32_api • as;
int flag;
char· uid;
char· Pw;
char • sessionname;
char • timeout;

Pascal Syntax
function g32openx(var as : g32_api; flag: integer;

uid : stringptr;

pw : stringptr;

sessionname : stringptr;

timeout: stringptr) : integer; external;

FORTRAN Syntax
INTEGER G320PENX,RC,AS(9),FLAG

EXTERNAL G320PEN
CHARACTER· XX UIO, PW, SESSIONNAME

RC = G320PEN (AS, FLAG, UIO, PiN, SESSIONNAME, TIMEOUT)

Description
The g32_openx function attaches to a session. If the session does not exist, the session is
started. This is an implicit logon. The user is logged on to the host if requested. The
g32_openx function provides additional capability beyond that of the g32_open function.
An application program must call g32_openx or g32_open before any other API function.

If an API application is run implicitly, the function performs an implicit logon is performed.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

AIX 3270 Host Connection Program (HCON) 2-55

C Parameters

2-56

The g32_openx function allows for a varying number of parameters after the 'flag
parameter. This function uses two required parameters: as and flag plus the optional
parameters: uid, pw, session, and timeout.

With the g32_open function, the timeout parameter does not exist and the parameters for
uid, pw, and session are not optional. The reason for making the last four parameters
optional is that the system either prompts for the needed information (uid and pw) or defaults
with valid information (session or timeout).

Unless all of the parameters are defined for this function, the parameter list in the calling
statement must be terminated with the integer a (zero) (like the exec function). Providing an
integer of 1 forces a default on an parameter. Use the default to provide a placeholder for
optional parameters that you do not need to supply.

as

flag

uid

PW

Specifies a pointer to the g32_api structure.

Requires one of the following:

• Set the flag parameter to a (zero), if the emulator is running and the user
is logged on to host.

• Set the flag parameter to 1 (one) if the emulator is running, the user is not
logged on to host, and the API application is to perform the logon/logoff
procedure.

The g32_open function ignores the flag parameter, if the emulator is not
running and the API application executes an implicit logon/logoff procedure.

Specifies a pointer to the logon 10 string. If the logon 10 is a null string, the
Logon procedure prompts the user for both the logon 10 and the password,
unless the host login 10 is specified in the session profile. In the latter case
the user is prompted only for a password. The logon 10 is a string consisting
of the host user 10 and, optionally, a list of additional variables separated by
session, as shown in the example:

userid,varl,var2, ...

In this example, var1 is the logon script name (when using AUTOLOG) and
var2 is the optional trace and time values. The list is passed to the implicit
procedure.

Specifies a pointer to the password string associated with the logon 10
string. The following usage considerations apply to the pw parameter:

• If no password is to be specified, the user can specify a null string.

• If no value is provided and the program is running implicitly, the logon
procedure prompts the user for the password.

• If the uid parameter is a null string, the pw parameter is ignored.

sessionname Points to the name of a session. The session name is a Single character in
the range of a-z. Capital letters are interpreted as lowercase letters.
Parameters for each session are specified in a per-session profile.

Base Operating System Reference

timeout

Pascal Parameters

Specifies a pointer to a numerical string (such as 30 or 60) that specifies the
amount of nonactive time (in seconds) allowed to occur between the
workstation and the host operations (that is, g32_read/G32WRITE). This
parameter is optional. If no value is provided in the calling statement, the
default value is 15 seconds. The minimum value allowed is 1. There is no
maximum value limitation.

When using C as a programming language, you can make use of the feature of variable
numbered parameters. In Pascal, however, this feature is not allowed. Therefore, calls to the
g32_openx function must contain all six parameters.

To use defaults for the four optional parameters of C, provide a variable whose value is a
null string.

Note: The use of the integer one (1) is not allowed in the Pascal version of the g32_openx
function. Space must be allocated for any string pointers prior to calling the
g32_openx function.

as

flag

uid

pw

Specifies the g32_api structure.

Signals whether the logon procedure should be performed.

• Set the flag parameter to 0 (zero), if the emulator is running, the user is
logged on to host.

• Set the flag parameter to 1 (one), if the emulator is running, the user is
not logged on to host, and the API application performs the logon/logoff
procedure.

• If the emulator is not running and the API application executes an implicit
logon/logoff procedure, the value of flag is ignored.

Specifies a pointer to the logon 10 string. If the logon 10 is a null string, the
logon procedure prompts the user for both the logon 10 and the password,
unless the host login 10 is specified in the session profBe. In the latter case
the user is prompted only for a password.

Specifies a pointer to the password string associated with the logon 10
string. The following usage considerations apply to the pw parameter:

• If no password is to be specified, the user can specify a null string.

• If no value is provided and the program is running implicitly, the logon
procedure prompts the user for the password.

• If the uid parameter is a null string, the pw parameter is ignored.

sessionname Points to the name of a session. The session name is a single character in
the range of a-z. Capital letters are interpreted as lowercase letters.
Parameters for each session are specified in a per session profile.

timeout Specifies a pointer to a numerical string (such as 30 or 60) that specifies the
amount of nonactive time (in seconds) allowed to occur between the
workstation and the host operations (that is, g32_read/g32WRITE). This
parameter is optional. If no value is provided in the calling statement, the
default value is 15 seconds. The minimum value allowed is one. There is
no maximum value limitation.

AIX 3270 Host Connection Program (HCON) 2-57

FORTRAN Parameters
FORTRAN calls to G32_0PENX must contain all six parameters. To use defaults for the
four optional parameters of C language, provide a variable whose value is a null string.
Note that the use of the integer 1 (one) is not allowed in the FORTRAN version of this
function. When creating strings in FORTRAN that are to pass as parameters, the strings
must be linked with a null character, CHAR (0).

AS

FLAG

UIO

PW

Specifies the g32_api equivalent structure as an array of integers.

Signals that the logon procedure should be performed.

• Set the Flag parameter to 0 (zero), if the emulator is running, the user is
logged on to host.

• Set the Flag parameter to 1 (one), if the emulator is running, the user is
not logged on to host.

• If the emulator is not running and the API application executes an implicit
logon/logoff procedure, the value of Flag is ignored.

Specifies a pointer to the logon 10 string. If the logon 10 is a null string, the
logon procedure prompts the user for both the logon ID and the password,
unless the host login 10 is specified in the session profile. In the latter case
the user is prompted only for a password.

Specifies a pointer to the password string associated with the logon ID
string. The following usage considerations apply to the pw parameter:

• If no password is to be specified, the user can specify a null string.

• If no value is provided and the program is running implicitly, the logon
procedure prompts the user for the password.

• If the uid parameter is a null string, the pw parameter is ignored.

SESSIONNAME

TIMEOUT

Specifies the name of a session. The session name is a single character in
the range of a-z. Capital letters are interpreted as lowercase letters.
Parameters for each session are specified in a per session profile.

Specifies a numerical string (such as 30 or 60) that specifies the amount of
nonactive time (in seconds) allowed to occur between the workstation and
the host operations (that is, g32_read/g32WRITE). There is no maximum
to this, but the minimum is 1 (one).

Return Values

2-58

Upon successful completion:

• A value of 0 is returned.

• The Ipid bit is set to the session ID.

Upon unsuccessful completion:

• A value of -1 is returned.

• The errcode bit is set to an error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

Base Operating System Reference

Examples
Examples of ways to use the g32_openx function are as follows:

1. With fewer than four optional string constant parameters specified and used with
AUTOLOG:

g32_openx (AS, 0, "john, tso, trace", "jI2hn");

2. With fewer than four optional string constant parameters specified and used with LAF:

g32_openx (AS, 1, "john", "jI2hn", liZ", 0);

3. With all optional parameters not specified:

g32_openx (AS, 1, 0);
or
g32_openx (AS, 0, 0);

4. With four variable optional parameters:

g32_openx (AS, 0, UID, Pw, Sessionname, TimeOut);

5. With fewer than four variable optional parameters:

g32_openx (AS, 1, UID, Pw, 0);

6. With two default optional parameters:

g32_openx (AS, 0, 1,1,1, "60");

7. With a mixture:

g32_openx (AS, 0, 1, 1, Session, 0);

The following examples illustrate the use of the g32_openx function within a program
segment in the C, Pascal, and FORTRAN languages:

1. c:
#include <g32_api.h>
main ()
{

struct g32_api *as, asx; /* asx is a temporary struct */
/* g32.api so that storage */
/* is allocated */

}

int flag=O;
int ret;
char uid[30],pw[30];
char *sn;
char nm='a';
char timeout="60";
int 10g=0;

sn = &nrn;
as = &asx; /* as points to an allocated structure */
ret=g32_openx(as,flag,uid,pw,sn,timeout);

AIX 3270 Host Connection Program (HCON) 2-59

2-60

2. Pascal:

program apitest (input, output);
const
%include /usr/include/g32const.inc
type
%include /usr/include/g32types.inc
var

as : g32_api~

rc : integer;
flag : integer~

sn : stringptr;
timeout : stringptr~
ret : integer;
uid, pw : stringptr;

%include /usr/include/g32hfile.inc
begin

end.

flag := 0;
new(uid,20);
uid@ : = chr (0) ~
new (pw,20);
pw@ := chr(O);
new (sn,l);
sn@ := 'a';
new (timeout,32);
timeout@ := '60';
ret := g32openx(as,flag,uid,pw,sn,timeout);

3. FORTRAN:

INTEGER G320PENX
INTEGER RC, AS(9), FLAG
CHARACTER*20 UID
CHARACTER*lO PW
CHARACTER*lO TIMEOUT
CHARACTER*l SN
EXTERNAL G320PENX
UID = CHAR(O)
TIMEOUT = CHAR(O)
MODEL = CHAR(O)
PW = CHAR(O)
SN = 'a'//CHAR(O)
TIMEOUT = '60'//CHAR(0)
FLAG = 0
RC = G320PENX(AS, FLAG, UID, PW, SN, TIMEOUT)

Base Operating System Reference

Implementation Specifics

Files

The g32_openx function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_openx function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_openx function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_openx function is not available for Japanese Language Support.

lusr/include/g32_api.h

lusr/incl ude/g32const. i nc

lusr/include/g32hfile.inc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information
Additional session control functions are the g32_alloc function, g32_close function,
g32_dealloc function, and g32_open function.

Additional logical terminal interface functions are the g32_get_cursor function,
g32_get_data function, g32_search function, g32_notify function, and g32_send_keys
function.

AIX message interface functions are the g32_get_status function, g32_read function, and
g32_write function.

The API file transfer functions is the g32_fxfer function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-61

G32READ

G32READ Function

Purpose

Syntax

Receives a message from the AIX API application running simultaneously on the RISC
System/6000.

G32READ

Description
The G32READ function receives a message from an AIX API application. The G32READ
function returns when a message is received. The status of the transmission is returned in
register zero (RO).

The G32READ function returns the following values:

RO Is the number of bytes read.

R1 Is the address of the message buffer.

Return Values

2-62

The G32READ function sets register zero (RO) to the following values:

>= 0 Normal return. This is the length of the message (the number of bytes
read).

Less than zero. Host API error condition.

In VM/CMS, storage for the read command is obtained using the DMSFREE macro. RO
contains the number of bytes read. R1 contains the address of the buffer. It is the
responsibility of the host application to release the buffer with a DMSFRET call. Assuming
the byte count and address are in RO and R1, respectively, the following code fragment
should be used to free the buffer:

SRL RO,3
A RO,=F'l'
DMSFRET DWORDS=(O),LOC=(l)

In MVS/TSO, storage for the READ command is obtained using the GETMAIN macro. RO
contains the number of bytes read. R1 contains the address of the buffer. The host
application must release the buffer with a FREEMAIN call.

In MVS/TSO, when programming an API assembly language application, you must be
careful with the TPUT macro. If it is used in a sequence of G32READ and G32WRITE
subroutines, it will interrupt the API/API mode and switch the host to API/3270 mode to exist.
You will not be able to get the API/API mode back until you send the Enter key.

Base Operating System Reference

Example

G32READ

The following 370 Assembler code example illustrates the use of the host G32READ
function:

MEMORY L 12,=v(G32DATA)

L 2,=F'2'
G32READ
ST 1,ADDR
ST O,LEN
BAL 14,CHECK

/* SET POINTER TO API DATA AREA */

/* RECEIVE MESSAGE FROM AIX */
/* STORE ADDRESS OF MESSAGE */
/* STORE LENGTH OF MESSAGE */

Implementation Specifics
The G32READ function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The G32READ function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The G32READ function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The G32READ function is not available for Japanese Language Support.

Related Information
Additional host interface functions are the G32ALLOC function, G32DLLOC function, and
G32WRITE function.

AIX session control subroutines are the g32_alloc subroutine, g32_close subroutine,
g32_dealloc subroutine, g32_open subroutine, and g32_openx subroutine.

AIX message interface subroutines are the g32_get_status subroutine, g32_read
subroutine, and g32_write subroutine.

For documentation on the OMSFREE and OMSFRET macros, consult the VMISP System
Programmer's Guide.

For documentation on the GETMAIN and FREEMAIN macros, consult the MVSIXA System
Macros and Facilities, Volume 2 or MVSIXA Supervisor Services and Macro Instructions.

AIX 3270 Host Connection Program (HCON) 2-63

G32READ

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the HCON Host Interface in Communications Programming
Concepts.

How to Compile a Host HCON API Program, Host API Errors, Sample Flows of API
Programs in Communications Programming Concepts.

2-64 Base Operating System Reference

g32_read Function

Purpose

Library

C Syntax

Receives a message from a host application.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_apLh>

g32_read (as, msgbuf, msglen)
struct g32_api * as;
char ** msgbuf,
int * msglen;

Pascal Syntax
function g32read (var as : g32_api;

var Buffer: stringptr;
var msglen : integet) : integer; external;

FORTRAN Syntax
EXTERNAL G32READ
INTEGER AS(9), BUFLEN, G32READ
INTEGER AS(9), BUFLEN, G32READ
CHARACTER *XX MSGBUF

RC= G32READ (AS, MSGBUF, BUFLEN)

Description
The g32_read function receives a message from a host application. The g32_read function
may only be used by those applications having API/API or API/APLT mode specified with
the g32_alloc function.

• In C or Pascal, a buffer is obtained, a pointer to the buffer is saved, and the message
from the host is read into the buffer. The length of the message and the address of the
buffer are returned to the user application.

• In FORTRAN, the calling procedure must pass a buffer large enough for the incoming
message. The BUFLEN parameter must be the actual size of the buffer. The G32READ
function uses the BUFLEN parameter as the upper array bound. Therefore, any
messages larger than BUFLEN are truncated to fit the buffer.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

AIX 3270 Host Connection Program (HCON) 2-65

C Parameters
as

msgbuf

msg/en

Specifies a pointer to a g32_api structure.

Specifies a pointer to a pointer to a buffer where a message from the host is
placed. The API obtains space for this buffer by using the A/X ma"oe library
subroutine, and the user is responsible for releasing it by issuing a free call
after the g32_read function.

Specifies a pointer to an integer where the length, in bytes, of the msgbuf
parameter is placed. The message length must be greater than 0 (zero) but
less than or equal to the maximum 1/0 buffer size parameter specified in the
HCON session profile.

Pascal Parameters
as

Buffer

msg/en

Specifies the g32_api structure.

Specifies a stringptr. The API obtains space for this buffer by using the AIX
ma"oe C library subroutine, and the user is responsible for releasing it by
issuing a dispose subroutine after the g32_read function.

Specifies an integer where the number of bytes read is placed. The
message length must be greater than 0 (zero) but less than or equal to the
maximum 1/0 buffer size parameter specified in the HCON session profile.

FORTRAN Parameters
AS Specifies the g32_api equivalent structure.

MSGBUF

B UFL EN

Specifies the storage area for the character data read from the host.

Specifies the size, in bytes, of the value contained in the MSGBUF
parameter. The message length must be greater than 0 (zero) and less
than the maximum 1/0 buffer size parameter specified in the HCON
session profile.

Return Values

Example
C Language

Upon successful completion:

• The number of bytes read is returned (~ 0).

Upon unsuccessful completion:

• An error code -1 is returned.

• The erreode bit is set to the error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example illustrates the use of the g32read function:

#include <g32_api>
main ()
{
struct g32_api *as;

/* API include file */

/* g32_api structure */

2-66 Base Operating System Reference

char **msg_buf;
char *messg;
int *msg_ len;

char * malloc () ;
int return;

messg = malloc(30);
msg_buff = &messg;

/*
/*
/*

/*
/*

pointer to host msg buffer */
pointer to character string */
pointer to host msg length */

c memory allocation function */
return code is no. of bytes read

msg_Ien = malloc(sizeof(int»;

/* allocate 30 bytes */
/* point to a string */
/* allocate storage */

*/

Implementation Specifics

Files

The g32_read function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_read function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
OFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_read function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_read function is not available for Japanese Language Support.

lusr/include/g32_api.h

lusr/include/g32const.inc

lusr/include/g32hfile.inc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information
Additional message interface functions are the g32_get_status function and g32_write
function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

AIX 3270 Host Connection Program (HCON) 2-67

2-68

The malloe subroutine and free subroutine.

HCON Overview for Programming, Understanding the HCON Application Programming
Interface, Understanding the AIX Interface for HCON API, API error codes, Sample Flows of
API Programs in Communications Programming Concepts.

Base Operating System Reference

g32_search Function

Purpose

Library

C Syntax

Searches for a character pattern in a presentation space.

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

#include <g32_api.h>

g32_search(as,pattern)
struct g32_api * as;
char * pattern;

Pascal Syntax
function g32srch(var as : g32_api;
pattern: stringptr) : integer; external;

FORTRAN Syntax
EXTERNAL G32SEARCH
INTEGER AS(9), G32SEARCH
CHARACTER*XX PATTERN

RC = G32SEARCH(AS,PATTERN)

Description
The g32_search function searches for the specified byte pattern in the presentation space
associated with the application.

Note: The g32_search function can only be used in API/3270 mode.

The search is performed from the row and column given in the g32_api structure to the end
of the presentation space. Note that the row and column pOSitions start at 1 (one) and not 0
(zero). If you start at 0 for row and column, you get invalid position errors.

In any given search pattern, the following characters have special meaning:

?

*

\

The Question mark is the arbitrary character, matching anyone character.

The Asterisk is the wildcard character, matching any sequence of zero or
more characters.

The Backslash is the escape character meaning the next character is to be
interpreted literally.

AIX 3270 Host Connection Program (HCON) 2-69

The following rules apply to the use of wildcard characters:

• The pattern can not begin with the wildcard character.

• The pattern can not end with the wildcard character.

• The pattern can not contain two consecutive wildcard characters.

Pattern Matching Example
The string AB?DE matches any of ABCDE, AB9DE, ABxDE, but does not match ABCD,
ABCCDE, or ABDE.

The string AB*DE matches any of ABCDE, AB9DE, ABCCDE, ABDE, but does not match
ABCD, ABCDF, or ABC.

Pattern Matching in C and Pascal:
If the pattern needs to contain either a question mark or an asterisk as a literal character,
these symbols must be preceded by two escape characters (\\? or *). For example, to
search for the string, How are you today?, the pattern might be:

How are you today \\?

The backslash can be used as a literal character by specifying four backslash characters
(\\\\) in the pattern. For example, to search for the string, We found the \., the pattern might
be:

We found the \\\\.

Pattern Matching in FORTRAN:
If the pattern needs to contain either a question mark or an asterisk as a literal character,
these symbols must be preceded by one escape character (\? or *). For example, to search
for the string, How are you today?, the pattern might be:

How are you today\?

The backslash can be used as a literal character by specifying two backslash characters (\\)
in the pattern. For example, to search for the string, We found the \., the pattern might be:

We found the \\.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters
as

pattern

Pascal Parameters
as

Specifies a pointer to a g32_api structure. It also contains the row and
column where the search should begin. Status information is returned in this
structure.

Specifies a pointer to a byte pattern, which is searched for in the
presentation space.

Specifies the g32_api structure.

2-70 Base Operating System Reference

pattern Specifies pointer to a string containing the pattern to search for in the
presentation space. The string must be at least as long as the length
indicated in the g32_api structure.

FORTRAN Parameters
AS

Pattern

Specifies a g32_api equivalent structure as an array of integers.

Specifies string that is searched for in the presentation space.

Return Values

Example
C Language

Upon successful completion:

• A value of 0 is returned

• The corresponding row element of the as structure is the row position of the beginning of
the matched string.

• The corresponding column element of the as structure is the column position of the
beginning of the matched string.

• The corresponding length element of the as structure is the length of the matched string.

Upon unsuccessful completion:

• An error code -1 is returned.

• The errcode bit is set to the error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example fragment illustrates the use of the g32_search function in an
apL3270 mode program:

Note: The following example is missing the required g32_open and g32_a"oc
functions which are necessary for every HCON Workstation API program.

#include <g32_api.h>
main ()
{
struct g32_api *as;

/* API include file */

/* g32 structure */

AIX 3270 Host Connection Program (HCON) 2-71

char *buffer;
int return;
char *malloc();

1* pointer to char string *1
1* return code *1
1* C memory allocation function *1

return g32_notify(as,1); 1* Turn notification on *1
buffer malloc(10);
return g32_get_cursor(as); 1* get location of cursor *1
printf (U The cursor positionis row: %d col: %d/n";

as -> row, as -> column);
1* Get data from host starting at the current row and column *1
as -> length = 10; 1* length of a pattern on host *1
return = g32_get_data(as,buffer); 1* get data from host *1
printf(UThe data returned is <%s>\n",buffer);

1* Try to search for a particular pattern on host *1
as ->row =1; 1* row to start search *1
as ->column =1; 1* column to start search *1
return = g32_search(as,"PATTERN");

I*Send a clear key to the host *?
strcpy (buffer, "CLE/O");
return = g32_send_keys(as, buffer);

1* Turn notification off *1
return = g32_notify(as,0);

Implementation Specifics

Files

2-72

The g32_search function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_search function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
DFT) mode .

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_search function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_search function is not available for Japanese Language Support.

lusr/i ncl ude/g32_api. h

lusr/include/g32constinc

lusr/include/g32hfile.inc

lusrlinclude/g32types.inc

Base Operating System Reference

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information
Additional Logical Terminal Interface functions are the g32_get_cursor function,
g32_get_data function, g32_notify function, and g32_send_keys function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-73

g32_send_keys Function

Purpose

Library

C Syntax

Sends key strokes to the terminal emulator.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_apLh>
#include <g32_keys.h>

g32_send_keys(as, buffer)

struct g32_api * as;
char * buffer,

Pascal Syntax
const
%include lusr/include/g32keys.inc
function g32sdky (var as: g32_api;

buffer: stringptr) : integer; external;

FORTRAN Syntax
EXTERNALG32SENDKEYS
INTEGER AS(9), G32SENDKEYS
CHARACTER *XX BUFFER

RC = G32SENDKEYS(AS,BUFFER)

Description
The g32_send_keys function sends one or more key strokes to a terminal emulator as
though they came from the keyboard. ASCII characters are sent by coding their ASCII
value. Other keys (such as Enter and the cursor-movement keys) are sent by coding their
values from the g32_keys.h file (for C programs) or g32keys.inc file (for Pascal programs).
FORTRAN users send other keys by passing the name of the key through the
G32SENDKEYS buffer.

The g32_send_keys function can only be used in API/3270 mode.

C Parameters
as Specifies a pointer to the g32_api structure. Status is returned in this

structure.

buffer Specifies a pointer to a buffer of key stroke data.

2-74 Base Operating System Reference

Pascal Parameters
as Specifies the g32_api structure. Status is returned in this structure.

buffer Specifies a pointer to a string containing the keys to be sent to the host. The
string must be at least as long as indicated in the g32_api structure.

FORTRAN Parameters
AS Specifies the g32_api equivalent structure as an array of integers.

BUFFER The character array containing the key sequence to send to the host. A
special emulator key can be sent by the g32_send_keys function as
follows:

BUFFER = 'ENTER'//CHAR(O)
RC = G32SENDKEYS (AS,BUFFER)

The special emulator strings recognized by the g32_send_keys function
are as follows:

CLEAR
EOF
INSERT
LEFT
LLEFT
TAB
PAl
PFl
PF5
PF9
PFl3
PFl7
PF2l

DELETE
ERASE
NEWLINE
RIGHT
RRIGHT
BTAB
PA2
PF2
PF6
PFlO
PFl4
PF18
PF22

DUP
FMARK
RESET
UP
UUP

PA3
PF3
PF7
PFll
PFl5
PFl9
PF23

ENTER
HOME
SYSREQ
DOWN
DDOWN

PF4
PF8
PF12
PFl6
PF20
PF24

Return Values

Examples
C Language

Upon successful completion:

• A value of 0 is returned.

Upon unsuccessful completion:

• An error code -1 is returned.

• The errcode bit is set to the error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example fragment illustrates the use of the g32_send_keys function in an
api_3270 mode program:

Note: The following example is missing the required g32_open and g32_alloc
functions which are necessary for every HCON Workstation API program.

AIX 3270 Host Connection Program (HCON) 2-75

#include <g32_api.h>
main()

/* API include file */

{
struct g32_api *as;

char *buffer;
int return;
char *malloc();

/* g32 structure */

/* pointer to char string */
/* return code */
/* C memory allocation function */

return g32_notify(as,1); /* Turn notification on */
buffer malloc(10);
return g32_get_cursor(as); /* get location of cursor */
printf (U The cursor positionis row: %d col: %d/n u

;

as -> row, as -> column);
/* Get data from host starting at the current row and column */
as -> length = 10; /* length of a pattern on host */
return = g32_get_data(as,buffer); /* get data from host */
printf(UThe data returned is <%s>\n",buffer);

/* Try to search for a particular pattern on host */
as ->row =1; /* row to start search */
as ->column =1; /* column to start search */
return = g32_search(as,"PATTERN");

/*Send a clear key to the host *?
strcpy (buffer, "CLE/O");
return = g32_send_keys(as, buffer);

/* Turn notification off */
return = g32_notify(as,0);

Implementation Specifics

2-76

The g32_send_keys function is part of the AIX 3270 Host Connection Program/6000
(HCON).

The g32_send_keys function requires one of the following network communication
adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
DFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_send_keys function requires one of the following IBM System/370 operating
system environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP
TSO/E, or MVS/XA TSO/E.

The g32_send_keys function is not available for Japanese Language Support.

Base Operating System Reference

Files
lusr/include/g32_api.h

lusr/include/g32_keys.h

lusr/include/g32keys.inc

lusr/include/g32const.inc

lusr/include/g32hfile.inc

lusr/include/g32types.inc

Contains data structures and associated symbol
definitions.

Defines key values for C language use.

Defines key values for Pascal language use.

Defines Pascal API constants.

Defines Pascal API external definitions.

Defines Pascal API data types.

Related Information
Additional Logical Terminal Interface functions are the g32_get_cursor function,
g32_get_data function, g32_notify function, and g32_search function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer function is the g32_fxfer function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-77

G32WRITE

G32WRITE Function

Purpose

Syntax

Sends a message to an AIX API application running simultaneously on the RISC
System/6000.

G32WRITE MSG,LEN

Description
The G32WRITE function sends a message to an AIX API application. The maximum number
of bytes that may be transferred is specified by the value returned in RO after a successful
completion of the G32ALLOC function.

The G32 WRITE function is a HCON API function that can be called by a 370 Assembler
applications program.

Parameters
MSG The address of the message to be sent. It may be:

Label A label on a DC or OS statement declaring the message.

O(reg) A register containing the address of the message.

LEN The length, specified in bytes, of the message. It is a full word, whose contents
cannot exceed the value returned by the G32ALLOC function in RO. It must be:

Label The address of a full word containing the length of the message.

Return Values

Examples

The G32WRITE function sets register a (zero) to the following values:

o Zero. A normal return; call successful.

Less than zero. Host API error condition.

The following 370 Assembler code example illustrates the use of the host G32WRITE
function:

L Rll,=v(G32DATA)
USING G32DATAD,Rll
G32WRITE MSGl, LENl
LTR RO,RO
BE WRITEOK

error code

MSGl DC C 'HELLO'
LENl DC AL4(*-MSG1)

/* write "Hello" to AIX */

/* check return code */
/* if good, go to write */

2-78 Base Operating System Reference

G32WRITE

Implementation Specifics
The G32WRITE function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The G32WRITE function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
DFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The G32WRITE function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The G32WRITE function is not available for Japanese Language Support.

Related Information
Additional host interface functions are the G32ALLOC function, G32DLLOC function, and
G32WRITE function.

AIX session control subroutines are the g32_alloc subroutine, g32_close subroutine,
g32_dealloc subroutine, g32_open subroutine, and g32_openx subroutine.

AIX message interface subroutines are the g32_get_status subroutine, g32_read
subroutine, and g32_write subroutine.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the HCON Host Interface in Communications Programming
Concepts.

How to Compile a Host HCON API Program, Host API Errors, Sample Flows of API
Programs in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-79

g32_write Function

Purpose

Library

C Syntax

Sends a message to a host application.

HCON Library

C (libg3270.a)
Pascal (libg3270p.a)
FORTRAN (libg3270f.a)

#include <g32_apLh>

g32_write(as, msgbuf, msglen)

struct g32_api * as;
char * msgbuf;
int msglen;

Pascal Syntax
function g32wrte (var as: g32_api;

Buffer : integer;
msglen : integef) : integer; external;

FORTRAN Syntax
EXTERNAL G32WRITE
INTEGER AS(9), MSGLEN, G32WRITE
CHARACTER*XX MSGBUF

RC = G32WRITE(AS, MSGBUF, MSGLEN)

Description
The g32_write function sends the message pointed to by the msgbufparameter to the host.
This function may only be used by those applications having API/API or API/APL T mode
specified by the g32_alloc command.

HCON application programs using the Pascal language interface must include and link both
the C and Pascal libraries. Applications programs using the FORTRAN language for the
HCON API must include and link both the C and FORTRAN libraries.

C Parameters
as

msgbuf

msglen

Specifies the pointer to a g32_api structure.

Specifies a pOinter to a message, which is a byte string.

Specifies the length, in bytes, of the message pointed to by the msgbuf
parameter. The value of the msglen parameter must be greater than 0 and
and less than or equal to the maximum I/O buffer size specified in the
HCON session profile.

2~80 Base Operating System Reference

Pascal Parameters
as Specifies the g32_api structure.

Buffer

msg/en

Specifies an address of a character-packed array.

Note: The address of a packed array can be obtained by the addrO
function call: buffer := addr «msg array name> (1 (one)])

Specifies an integer indicating the length of the message to send to the
host. The msg/en parameter must be greater than 0 and less than or equal
to the maximum liD buffer size specified in the HCON session profile.

FORTRAN Parameters
AS Specifies the g32_api equivalent structure as an array of integers.

Specifies a character array containing the data to be sent to the host. MSGBUF

MSGLEN Specifies the number of bytes to be sent to the host. The MSGLEN
parameter must be greater than 0 and less than or equal to the maximum
liD buffer size specified in the HCON session profile.

Return Values

Example
C Language

Upon successful completion:

• The number of bytes written is returned (>= 0).

Upon unsuccessful completion:

• An error code -1 is. returned.

• The errcode bit is set to the error code identifying the error.

• The xerrinfo bit can be set to give more information about the error.

1. The following example illustrates the use of the g32_write function:

#include <g32_api>
main ()
{
struct g32_api *as;

char *messg;

int length;

char *malloc();
*/
int return;

/* API include */

/* the g32 structure */

/* pointer to a character string
to send to the host */

/* Number of bytes sent */

/* C memory allocation function

/* return code is no. of bytes
sent */

AIX 3270 Host Connection Program (HCON) 2-81

messg = malloc(30); /* allocate 30 bytes for the string */
/* initialize message string with information */

strcpy(messg,ustring to be sent to host/O u

length strlen(messg); /* length of the message */
return = g32_write(as,messg,length);

Implementation Specifics

Files

The g32_write function is part of the AIX 3270 Host Connection Program/6000 (HCON).

The g32_write function requires one of the following network communication adapters:

• IBM 3270 Connection Adapter and attachment cables for connection to an IBM
3174/3274 Control Unit, IBM 4361 Work Station Adapter, or an IBM 9370 Work Station
Subsystem Controller configured for non-SNA distributed function terminal (non-SNA
DFT) mode.

• IBM System/370 Host Interface Adapter and attachment cables for connection to an IBM
5088 Graphics Control Unit.

The g32_write function requires one of the following IBM System/370 operating system
environments be installed on the System/370: VM/SP CMS, VM/XA CMS, MVS/SP TSO/E,
or MVS/XA TSO/E.

The g32_write function is not available for Japanese Language Support.

lusr/include/g32_api.h

lusr/include/g32const.inc

lusr/include/g32hfile.inc

lusrlinclude/g32types.inc

Contains data structures and associated symbol
definitions.

Defines Pascal API constants

Defines Pascal API external definitions

Defines Pascal API data types

Related Information

2-82

Additional message interface functions are the g32_get_status function and g32_read
function.

AIX session control functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_open function, and g32_openx function.

The API file transfer functions is the g32_fxfer function.

Host interface functions are the G32ALLOC function, G32DLLOC function, G32READ
function, and G32WRITE function.

HCON Overview for Programming, Understanding the HCON Application Programming
Interfaces, Understanding the AIX Interface for HCON API, API error codes, Sample Flows
of API Programs in Communications Programming Concepts.

Base Operating System Reference

IF-ELSE

IF-ELSE Statement

Purpose

Syntax

Provides a two-way alternative test for conditional execution of Logon Assist Feature (LAF)
statements.

IF (condition) t-statement [ELSE f-statemen~

Description
The IF-ELSE statement provides a two-way alternative test for conditional execution of LAF
statements. The IF-ELSE statement is one of the script statements in the LAF language
that are used to compose a LAF script.

Expressions

Example

condition Condition to be evaluated

t-statement Statement performed if condition evaluates true

f-statement Statement performed if condition evaluates false

The statements below search for a pattern. If a match is found, PA2 is sent to the host and a
WAIT statement is executed, else the program exists with a return code of three (3).

IF(MATCH)DO
SEND(PA2);
WAIT(l);
END;

ELSE
EXIT(3);

Implementation Specifics
The IF-ELSE statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/SOOO (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-83

MATCH

MATCH Statement

Purpose
Searches for a pattern in the current presentation space.

Syntax
MATCH(rownum, colnum, stringlA RG(N);

Description
The Logon Assist Feature (LAF) MATCH statement searches for a pattern in the current
presentation space. The presentation space is the characters that appear on a terminal
display. The MATCH statement searches without waiting for receipt of data from the host.
The MATCH statement is one of the script statements in the LAF language that are used to
compose a LAF script.

The special variable MATCH is set to a (zero) if the operation is not successful and to 1
(one) if the operation is successful. If the search is successful, the special variables ROW
and COL are set to reflect the location of the beginning of the match in the presentation
space.

Note: The WAIT statement can be used before MATCHAT (or MATCH) to control the time
delay to receive data from the host before searching the presentation space.

Parameters

Example

rownum

colnum

string

ARG(N)

Specifies the row number in the presentation space at which to
begin the search for the pattern.

Specifies the column number in the presentation space to begin
searching for the pattern.

Contains the string pattern to be used in the search.

Contains the string pattern that is the Nth argument in the LAF
logon 10 string and should be used in the search.

The MATCH statement searches the entire presentation space for the string MORE starting at
row 24, column 1.

MATCH(24,1,"MORE");

Implementation Specifics
The MATCH statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/SOOO (HCON).

Related Information

2--84

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

Base Operating System Reference

MATCHAT

MAlCHAl Statement

Purpose
Searches for a pattern in the cu rrent presentation space.

Syntax
MATCHAT(rownum,colnum,stringl A RG(N);

Description
The MATCHAT LAF statement is very similar to the MATCH statement. It searches for a
pattern in the current presentation space without waiting for receipt of data from the host.
The search is successful only if a match is found in the presentation space beginning at the
specified position. The MATCHAT statement is one of the script statements in the LAF
language that are used to compose a LAF script.

If a MATCHAT search operation is successful, ROWand COL are always set equal to
rownum and colnum. The special variable MATCH is set to 0 (zero), if the operation is not
successful and to 1 (one) for successful completion.

Note: The WAIT statement can be used before MATCHAT (or MATCH) to control the time
delay to receive data from the host before searching the presentation space.

Parameters

Example

rownum

colnum

string

ARG(N)

Specifies the row number in the presentation space to begin the
search for the pattern.

Specifies the column number in the presentation space at which to
search for the pattern.

Contains the string pattern to be used in the search

Contains the string pattern that is the Nth argument in the LAF
logon 10 string and should be used in the search.

The MATCHAT statement searches for VM/ 370 ?ONLINE string starting at row 1, column 1 :

MATCHAT(1,1,'VM/370?ONLINE')~

Implementation Specifics
The MATCHAT statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information
The MATCH statement and RECEIVE statement.

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-85

NODEBUG

NODEBUG Statement

Purpose
Disables debugging messages in a LAF script.

Syntax
NODEBUGj

Description
The NODEBUG statement turns off the generation of run-time debugging messages. The
NODEBUG statement is one of the script statements in the LAF language that are used to
compose a LAF script.

Implementation Specifics
The NODEBUG statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-86 Base Operating System Reference

RECEIVE

RECEIVE Statement

Purpose

Syntax

Waits for data to be received from the host and then searches the presentation space for a
pattern.

RECEIVE(rownum;colnum,string / ARG(N));

Description
The RECEIVE statement waits 15 seconds or until data is received from the host and then
searches the presentation space for a pattern. The RECEIVE statement is one of the script
statements in the LAF language that are used to compose a LAF script.

The special variable MATCH is set to a (zero), if the RECEIVE operation is not successful,
and to 1 if the operation is successful. If the search is successful, the special variables ROW
and COL are set to reflect the location of the beginning of the match in the presentation
space.

Parameters

Example

rownum

colnum

string

ARG(N)

Specifies the row number in the presentation space at which to begin the
search for the pattern.

Specifies the column number in the presentation space at which to begin
the search for the pattern.

Specifies a text string.

Contains the string pattern which is the Nth argument in the LAF logon 10
string and should be used it') the search.

The RECEIVE statement searches for MORE ... , starting in row 25, column 75:

RECEIVE(25,75,'MORE ... ');

Note: The RECEIVE statement waits up to 15 seconds to receive data from the host before
searching the presentation space, but the MATCH and MATCHAT statements search
immediately. The WAIT statement can be used in combination with MATCH and
MATCHAT to control the time delay to receive data from the host.

Implementation Specifics
The RECEIVE statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

AIX 3270 Host Connection Program (HCON) 2-87

RECEIVE

Related Information
The MATCHAT statement and WAIT statement.

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-88 Base Operating System Reference

RECVAT

RECVAT Statement

Purpose

Syntax

Waits for data to be received from the host and then searches the presentation space for a
pattern.

RECVAT(rownum,colnum,string I ARG(N));

Description
The RECVAT statement is very similar to the RECEIVE statement. It waits for data to be
received from the host and then searches the presentation space for a pattern. The search
is successful only if a match is found in the presentation space beginning at the specified
position. The RECVAT statement is one of the script statements in the LAF language that
are used to compose a LAF script.

The special variable MATCH is set to a (zero) if the search is not successful and to 1 if the
search is successful. If the search is successful, the special variables ROWand COL are set
to indicate the location of the beginning of the match in the presentation space. Unlike the
RECEIVE statement, if a RECVAT statement is successful, ROWand COL are always set
equal to the rownum and colnum parameters, respectively.

Parameters

Example

rownum

colnum

string

ARG(N)

Specifies the row number in the presentation space at which to begin the
search for the pattern.

Specifies the column number in the presentation space at which to begin
the search for the pattern.

Contains the string pattern to be used in the search

Contains the string pattern which is the Nth argument in the LAF logon ID
string and should be used in the search.

The RECVAT statement searches for the string passed in the fifth token of the logon ID
string. The search begins at row 3, column 1 :

RECVAT(3,1,ARG(4));

Implementation Specifics
The RECVAT statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2--89

REPEAT-UNTIL

REPEAT-UNTIL Statement

Purpose
Executes LAF script subject statement until the tested condition is found to be true.

Syntax
REPEAT statemen/ist UNTIL (condition);

Description
The REPEAT-UNTIL statement executes the subject statement until the tested condition is
found to be true.

Expressions
statement/ist Statement or statements to be executed until condition is true.

Example

condition Condition that halts execution of REPEAT-UNTIL loop,when true.

The following REPEAT-UNTIL statement causes the WAIT statement to continue to execute
until the TIMEOUT flag is set:

REPEAT
WAIT(2) ;

UNTIL(TIMEOUT);

Implementation Specifics
The REPEAT-UNTIL statement is part of the Logon Assist Feature of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-90 Base Operating System Reference

SELECT

SELECT Statement

Purpose

Syntax

Provides a multiple alternative test for conditional execution of Logon Assist Feature (LAF)
statements.

SELECT; WHEN-clause [OTHERWISE-clause] END;

WHEN (condition) statement
OTHERWISE statement

Description
The SELECT statement provides a multiple alternative test for conditional execution of LAF
statements. The SELECT statement is one of the script statements in the LAF language
that are used to compose a LAF script.

Reserved Words
WHEN-clause Evaluates each statement in the WHEN clause until a true

condition is found. The statement in the WHEN clause is
then executed and control passes to the next statement
following the SELECT statement. There may be multiple
WHEN clauses in a SELECT statement.

OTHERWISE-clause Executed only if none of the WHEN clauses is true.

Expressions
Condition A condition, when true, causes the statement in the WHEN clause to be

executed.

Example

Statement Statement to execute.

If there is no OTHERWISE clause and none of the WHEN clauses are true, the SELECT
statement does nothing.

These statements check for the ENTER *PASSWORD: string starting at row 1, column 1 until a
timeout occurs. If the timeout occurs the routine exits with a return code of three (3).

REPEAT
DO;
MATCHAT(l,l,'ENTER*PASSWORD:');

SELECT;
WHEN(NOT MATCH) WAIT(2);
WHEN(TIMEOUT) EXIT(3);

END;
END;

UNTIL(MATCH);

Implementation Specifics
The SELECT statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

AIX 3270 Host Connection Program (HCON) 2-91

SELECT

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-92 Base Operating System Reference

SEND

SEND Statement

Purpose
Sends a string of keys to the emulator and from there to the host.

Syntax
SEND(string I keydef I UfO I PW I ARG(N);

Description
The SEND statement sends a string of keys to an emulator and from there to the host.

• If the string parameter is coded, that string is sent to the host.

• If the keydef parameter is coded, that special key is sent to the host.

• If anyone or more of the UfO, PW, or ARG(N) parameters are coded, they are passed as
parameters to the LAF script and sent as strings to the host.

The SEND statement is one of the script statements in the LAF language that are used to
compose a LAF script.

Parameters
string Specifies a text string

Example

keydef

UfO

PW

ARG(N)

Contains the string or key definition to be sent to the host.

Specifies the host user 10.

Specifies the password associated with the UfO.

Contains the string pattern which is the Nth argument in the LAF logon
10 string and should be used in the search.

The SEND statement sends the Enter key to the host:

SEND (ENTER) ;

Implementation Specifics
The SEND statement is part of the Logon Assist Feature of the in AIX 3270 Host Connection
Program/GOOO (HCON).

AIX 3270 Host Connection Program (HCON) 2-93

START

START Statement

Purpose
Begins a Logon Assist Feature (LAF) script.

Syntax
STA RT [string]

Description
The START statement begins a LAF script. The START statement is one of the script
statements in the LAF language that are used to compose a LAF script.

Parameters
string Defines the name of the generated C function. If a name is not

supplied, the g32_logon script is used. Each script must have one
START statement, which must be the first statement in the script.

Example
The following START statement specifies the start of a new script labeled g32_logoff:

Implementation Specifics
The START statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000.

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

2-94 Base Operating System Reference

WAIT

WAIT Statement

Purpose

Syntax

Causes the Logon Assist Feature (LAF) script to wait until data is received from the host or
until the specified number of seconds has elapsed.

WAIT(numbery;

Description
The WAIT statement causes the LAF script to wait until data is received from the host or
until the specified number of seconds has elapsed. The special variable TIMEOUT is set to 0
(zero) if data is received from the host and to one (1) if the specified time has elapsed.

Note: Use of the WAIT statement at the beginning of a script is not a good practice as the
initial data from the host is received immediately.

The WAIT statement is one of the script statements in the LAF language that are used to
compose a LAF script.

Expression
number Specifies in seconds, the amount of time to wait. A negative value indicates

that the WAIT statement only returns when data is received from the host. A
value of 0 indicates that the WAIT statement returns immediately.

Example
This statement executes a one-second wait if a match is not found:

IF(NOT MATCH) WAIT(l):

Due to variability in the amount of time it may take to log on, the WAIT statement should be
used sparingly outside of loops. REPEAT-UNTIL loops are another means of waiting for an
event to occur at the host.

The following loop can be used instead of a WAIT statement:

REPEAT
DO
MATCH(l,l,'MORE');

IF (MATCH) DO;
SEND(PA2);
END:

MATCH (1, 1, , R; T');
IF (NOT MATCH) DO

WAIT (2) :
IF (TIMEOUT)

BREAK;
END:

END:
UNTIL (MATCH);

Implementation Specifics
The WAIT statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/SOOO (HCON).

AIX 3270 Host Connection Program (HCON) 2-95

WAIT

Related Information

2-96

How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF).
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

Base Operating System Reference

WHILE

WHILE Statement

Purpose
Executes a Logon Assist Feature (LAF) script subject statement.

Syntax
WHILE (condition) statement

Description
The WHILE statement executes a subject statement as long as the tested condition remains
true. The WHILE statement is one of the script statements in the LAF language that are
used to compose a LAF script.

Expression
condition A condition may be any of the following:

Example

MATCH
TIMEOUT
RECOVERY
ROW <comparison operator> <number>
COL <comparison operator> <number>
<condition> AND <condition>
<condition> OR <condition>
NOT <condition>

The following example is a condition in the LAF language. Conditions are used in the
WHILE, REPEAT-UNTIL, IF-ELSE, and SELECT statements.

WHILE(NOT TIMEOUT) WAIT(2):

The WHILE statement continues to execute until the TlMEOUTfiag is set.

Implementation Specifics
The WHILE statement is part of the Logon Assist Feature of the AIX 3270 Host Connection
Program/6000 (HCON).

Related Information
How To Use a Logon Assist Feature Script, Understanding the Logon Assist Feature (LAF)
in Communications Programming Concepts.

HCON Overview for Programming in Communications Programming Concepts.

AIX 3270 Host Connection Program (HCON) 2-97

WHILE

2-98 Base Operating System Reference

Data Link Controls

Data Link Controls 3-1

3-2 Base Operating System Reference

close

close Subroutine Interface for Data Link Control (dlc) Devices

. Purpose

Syntax

Closes the GDLC device manager using a file descriptor.

int close (tildes);
int fildes;

Description

Parameter

The close subroutine disables a generic data link control (GDLC) channel. If this is the last
channel to close on a port, the GDLC device manager is reset to an idle state on that port
and the communications device handler is closed.

fildes Specifies the file descriptor of the GDLC being closed.

Return Values
Upon successful completion, the close subroutine returns a value of 0 (zero).

If an error occurs, a value of -1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file:

EBADF Bad file number

Implementation Specifics
This close subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The close subroutine.

open Subroutine Interface for Data Link Control (dlc) Devices

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-3

dlcclose

dlcclose Entry Point of the GDLC Device Manager

Purpose

Syntax

Entry point to close a GOLC channel.

#include <sys/device.h>

int dlcclose (devno, chan, ext)
dey _t devno;
int chan, ext;

Note: The dlc prefix is replaced with the 3-digit prefix for the specific GOLC device
manager being closed.

Description
The dlcclose routine is called when a user's application program invokes the close
subroutine or when a kernel user calls the fp_close kernel service. This routine disables a
generic data link control (GOLC) channel for the user. If this is the last channel to close on
the port, the GOLC device manager issues a close to the network device handler and
deletes the kernel process that serviced device handler events on behalf of the user.

'Parameters
devno

chan

ext

Return Values

Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GOLC device
manager. There is one dev_t device number for each type of GOLC, such
as Ethernet, Token-Ring, or SOLC.

Specifies the channel 10 assigned by GOLC in the dlcmpx routine at open
time.

Specifies the extended subroutine parameter. This parameter is ignored by
GOLC.

Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, the following error value is returned, as defined in the errno.h header file:

EBADF Bad file number.

Implementation Specifics
This dlcclose entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

3-4 Base Operating System Reference

Related Information
The ddclose device entry point.

The fp_close kernel service.

The close subroutine.

dlcopen Entry Point of the GDLC Device Manager.

dlcmpx Entry Point of the GDLC Device Manager.

dlcclose

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-5

dlcconfig

dlcconfig Entry Point of the GDLC Device Manager

Purpose

Syntax

Entry pOint to configure the GDLC device manager.

#inelude <sys/uio.h>
#inelude <sys/deviee.h>

int dleeonfig (devno, op, uiop)
dey _t devno;
int op;
struet uio * uiop;

Note: The die prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being configured.

Description
The dleconfig routine is called during the kernel startup procedures to initialize the GDLC
device manager with its device information. This routine is also called by the operating
system when the GDLC is being terminated or queried for vital product data.

Parameters
devno

op

uiop

Return Values

Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

Specifies the operation code that indicates the function to be performed:

INIT

TERM

QVPD

Initializes the GDLC device manager.

Terminates the GDLC device manager.

Queries GDLC vital product data. This operation code is
optional.

A pointer to the uio structure specifying the location and length of the
caller's data area for the INIT and QVPD operation codes. No data areas
are specifically defined for GDLC, but DLC's may define the data areas for a
particular network.

Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

EINVAL Invalid value

ENODEV No such device handler

EFAULT Kernel service, such as uiomove or devswadd, has failed.

3-6 Base Operating System Reference

dlcconfig

Implementation Specifics
This dlcconfig entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Theddconfig device entry point.

The uiomove kernel service.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-7

dlcioctl

dlcioctl Entry Point of the GDLC Device Manager

Purpose

Syntax

Entry point to issue specific commands to GDLC.

#include <sys/device.h>
#include <sys/gdlextcb.h>

int dlcioctl (devno, op, arg, devflag, chan, ext)
dey _t devno;

ulong_t devtlag;

int op, arg, chan, ext;

Note: The dlc prefix is replaced with the 3-digit prefix for the specific GOLC device
manager being controlled.

Description
The dlcioctl routine is called when a user's application program invokes the ioctl subroutine
or when a kernel user calls the fp_ioctl kernel service. The dlcioctl routine decodes
commands for special functions in the generic data link control (GOLC).

Parameters
devno

op

arg

devflag

Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GDLC device
manager. There is one dey _t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

Specifies the parameter from the subroutine that specifies the operation to
be performed. loctl Operations for DLC provides a listing of all possible
operators.

Indicates the parameter from the subroutine that specifies the address of a
parameter block. Parameter Blocks by ioctl Operation for OLC provides a
listing of all possible arguments.

Specifies the flag word with the following flags defined:

DKERNEL

DREAD

DWRITE

DAPPEND

DNDELAV

Entry point called by kernel routine using the fp_open
kernel service. This indicates that the arg parameter points
to kernel space.

Open for reading. This flag is ignored.

Open for writing. This flag is ignored.

Open for appending. This flag is ignored.

Device open in nonblocking mode. This flag is ignored.

chan Specifies the channel 10 assigned by GDLC in the dlcmpx routine at open
time.

3-8 Base Operating System Reference

dlcioctl

ext Specifies the extended subroutine parameter. This parameter is ignored by
GDLC.

Return Values
Upon successful completion, this service returns a value of O.

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

Bad file number

Invalid value

EBADF

EINVAL

ENOMEM Not enough resources to satisfy the ioctl subroutine.

Implementation Specifics
This dlcioctl entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddioctl device entry point.

The fp_ioctl kernel service, fp_open kernel service.

The ioctl subroutine.

dlcmpx Entry Point of the GDLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-9

dlcmpx

dlcmpx Entry Point of the GDLC Device Manager

Purpose

Syntax

Entry point to decode the device handlers special file name appended to the open call.

#include <sys/device.h>

int dlcmpx (devno, chanp, channame)

dev_t devno;

int *chanp;

char * channame;
Note: The dlc prefix is replaced with the 3-digit prefix for the specific GDLC device

manager being opened.

Description
The dlcmpx routine is called by the operating system when a generic data link control
(GDLC) channel is being allocated. This routine decodes the name of the device handler
that is appended to the end of the GDLC's special file name at open time. GDLC allocates
the channel and returns the value in the chanp parameter.

This routine is also called following a close subroutine to deallocate the channel. In this
case the chanp parameter is passed to GDLC in order to identify the channel being
deallocated. Since GDLC allocates a new channel for each open subroutine, there is a
dlcmpx routine following each call to the dlcclose routine.

Parameters
devno Indicates major and minor device numbers. This is a dev_t device number

that specifies both the major and minor device numbers of the GDLC device
manager. There is one dev_t device number for each type of GDLC, such
as Ethernet, Token-Ring, or SDLC.

chanp

channame

Specifies the channellD returned if a valid path name exists for the device
handler, and the openflag is set. If no channel ID is allocated, this field is
set to a value of -1 by GDLC.

Specifies a pointer to the appended path name (path name extension) of the
device handler that is used by GDLC to attach to the network. If this is
NULL, the channel is to be deallocated.

Return Values

3-10

Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

EBADF Bad file number.

EINVAL Invalid value.

Base Operating System Reference

dlcmpx

Implementation Specifics
This dlcmpx entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddmpx device entry point.

The close subroutine, open subroutine.

dlcclose Entry Point of the GDLC Device Manager.

dlcopen Entry Point fo the GOLC Device Manager.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-11

dlcopen

dlcopen Entry Point of the GDLC Device Manager

Purpose

Syntax

Entry point to open a GOLC channel.

#include <sys/device.h>

#include <sys/gdlextcb.h>

int dlcopen (devno, devflag, chan, ext)
dey _t devno;

ulong_t devt/ag;

int chan, ext;

Note: The dlc prefix is replaced with the 3-digit prefix for the specific GOLC device
manager being opened.

Description
The dlcopen routine is called when a user's application program invokes the open or
openx subroutine, or when a kernel user calls the fp_open kernel service. The generic data
link control (GOLC) device manager opens the specified communications device handler and
creates a kernel process to catch posted events from that port. Additional opens to the same
port share both the device handler open and the GOLC kernel process created on the
original open.

Note: It may be more advantageous to handle the actual device handler open and
kernel process creation in the dlcmpx routine. This is left as a specific OLC's option.

Parameters
devno Indicates major and minor device numbers. This is a dev_t device number

that specifies both the major and minor device numbers of the GOLC device
manager. There is one dev_t device number for each type of GOLC, such
as Ethernet, TOken-Ring, or SOLC.

3-12

devt/ag Specifies the flag word with the following flags defined:

DKERNEL

DREAD

DWRITE

DAPPEND

DNDELAY

Entry point called by kernel routine using the fp_open
kernel service. All command extensions and ioctl
arguments will be in kernel space.

Open for reading. This flag is ignored.

Open for writing. This flag is ignored.

Open for appending. This flag is ignored.

Device open in non-blocking mode. This flag is ignored.

chan Specifies the channel 10 assigned by GDLC in the dlcmpx routine.

ext Specifies the extended subroutine parameter. This is a pointer to the
dlc_open_ext extended I/O structure for open subroutine.

Base Operating System Reference

dlcopen

Return Values
Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

ECHILD

EINVAL

ENODEV

ENOMEM

EFAULT

Cannot create a kernel process.

Invalid value.

No such device handler.

Not enough resources to satisfy the open subroutine.

Kernel service, such as copyin or initp, failed.

Implementation Specifics
This dlcopen entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddopen device entry point.

The open, openx subroutine.

Thefp_open kernel service, copyin kernel service, initp kernel service.

dlcclose Entry Point of the GDLC Device Manager.

dlcmpx Entry Point of the GDLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-13

dlcread

dlcread Entry Point of the GDLC Device Manager

Purpose

Syntax

Entry point to read receive data from GDLC.

#include <sys/device.h>

#include <sys/gdlextcb.h>

int dlcread (devno, uiop, chan, ext)

dey _t devno;

struct uio * uiop;

int chan, ext;

Note: The dlc prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being read.

Description

3-14

The dlcread routine is called when a user's application program invokes the readx
subroutine. Kernel users do not call an fp_read kernel service. All receive data is returned to
the user in the same order as received. The type of data that was read is indicated, as well
as the service access point (SAP) and link station (LS) identifiers.

The following fields in the uio and iov structures are used to control the read-data transfer
operation:

iovec structure

Points to an iovec structure.

Number of elements in the iovec structure. This must be set to a
value of 1. Vectored read operations are not supported.

The file offset established by a previous fp_lseek subroutine. This
field is ignored by generic data link control (GDLC).

Indicates whether the data area is in application or kernel space.
This is set to the UIO_USERSPACE value by the file I/O subsystem
to indicate application space.

Contains the value of the file mode set with the open applications
subroutine to GDLC.

This field is initially the total byte count of the receive data area.
GDLC decrements this count for each packet byte received using
the uiomove subroutine.

A structure that contains the starting address and length of the
received data.

A variable in the iovec structure where GDLC writes the address of
the received data.

A variable in the iovec structure that contains the byte length of the
data.

Base Operating System Reference

Parameters
devno

uiop

chan

ext

Return Values

dlcread

Indicates major and minor device numbers. This is a dev_t device number
that specifies both the major and minor device numbers of the GOLC device
manager. There is one dev_t device number for each type of GOLC, such
as Ethernet, Token-Ring, or SOLC.

Points to the uio structure containing the read parameters.

Specifies the channel 10 assigned by GDLC in the dlcmpx routine at open
time.

Specifies the extended subroutine parameter. This is a pointer to the
extended 1/0 structure. The argument to this parameter must always be in
the application space. DLC Extended Parameters for read Subroutine
provides more information on this parameter.

Reads that are successful and reads that must be truncated due to limited user data space
each return a value of O. If more data is received from the media than will fit into the
application data area, the DLC_OFLO value indicator is set in the command extension area
(dlc_io_ext) to indicate that the read is truncated. All excess data is lost.

If other errors occur, one of the following error values is returned, as defined in the errno.h
header file:

EBADF

EINTR

EINVAL

ENOMEM

Bad file number.

A signal interrupted the subroutine before it received data.

Invalid value.

Not enough resources to satisfy the read.

Implementation Specifics
This dlcread entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddread device entry point.

The fp_read kernel service.

The readx subroutine, fp_lseek subroutine, uiomove subroutine, open subroutine.

dlcmpx Entry Point of the GOLC Device Manager.

OLC Extended Parameters for read Subroutine.

dlcwrite Entry Point of the GOLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-15

dlcselect

dlcselect Entry Point of the GDLC Device Manager

Purpose

Syntax

Entry point to select for asynchronous criteria from GDLC, such as receive data completion
and exception conditions.

#include <sys/device.h>

#include <sys/gdlextcb.h>

int dlcselect (devno, events, reventp, chan)

dev_t devno;

ushort_t events;

ushort_t * reventp;

int chan;

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device
manager being selected.

Description
The dlcselect routine is called when a user's application program invokes a select or poll
subroutine. This allows the user to select receive data or exception conditions. The
OPOLLOUT write-availability criteria is not supported. If no results are available at the time
of a select subroutine, the user process is put to sleep until an event occurs.

If one or more events specified in the events parameter are true, the dlcselect routine
updates the returned events parameter (passed by reference), reventp, by setting the
corresponding event bits that indicate which events are currently true.

If none of the requested events are true, the dlcselect routine sets the returned events
parameter to a value of 0 (passed by reference using the reventp parameter) and checks the
DPOLLSYNC flag in the events parameter. If this flag is true, the routine returns because
the event request was a synchronous request. If the DPOLLSYNC flag is false, an internal
flag is set for each event requested in the events parameter.

When one or more of the requested events become true, generic data link control (GDLC)
issues the selnotify kernel service to notify the kernel that a requested event or events
have become true. The internal flag indicating that the event was being requested is then
reset to prevent renotification of the event.

If the port in use is in a closed state, implying that the requested event or events can never
be satisfied, GDLC sets the returned events flags to a value of 1 for each event that can
never be satisfied. This is done so that the select or poll subroutine does not wait
indefinitely.

Kernel users do not call an fp_select kernel service since their receive data and exception
notification functions are called directly by GDLC. The OLe Extended Parameters for open
Subroutine details how these function handlers are specified.

Parameters
devno Indicates major and minor device numbers. This is a dev_t device number

that specifies both the major and minor device numbers of the GDLC device

3-16 Base Operating System Reference

events

reventp

chan

Return Values

dlcselect

manager. There is one dev_t device number for each type of GOLC, such
as Ethernet, Token-Ring, or SOLC.

Identifies the events that are to be checked. The following events are:

DPOLLIN

DPOLLOUT.

DPOLLPRI

DPOLLSYNC

Read selection.

Write selection. This is not supported by GOLC.

Exception selection.

This request is a synchronous request only. The
routine should not perform a selnotify kernel service
routine due to this request if the events occur later.

Identifies a returned events pointer. This is a parameter passed by
reference to indicate which of the selected events are true at the time of the
call. See the preceding events parameter for possible values.

Specifies the channellD assigned by GOLC in the dlcmpx routine at open
time.

Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error numbers is returned, as defined in the errno.h
header file:

EBADF

EINTR

EINVAL

Bad file number.

A signal interrupted the subroutine before it found any of the selected
events.

The specified DPOLLOUT write selection is not supported.

Implementation Specifics
This dlcselect entry point of the GDLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ddselect device entry point.

The select subroutine, poll subroutine.

The fp_select kernel service.

OLC Extended Parameters for open Subroutine.

dlcselect Entry Point of the GOLC Device Manager.

dlcmpx Entry Point of the GOLC Device Manager.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-17

dlcwrite

dlcwrite Entry Point of the GDLC Device Manager

Purpose

Syntax

Entry point to write transmit data to GDLC.

#include <sys/uio.h>
#include <sys/device.h>

#include <sys/gdlextcb.h>
int dlcwrite (devno, uiop, chan, ext)

dev _t devno;

struct uio * uiop;

int chan, ext;

Note: The dlc prefix is replaced with the 3-digit prefix for the specific GDLC device
manager being written.

Description

3-18

The dlcwrite routine is called when a user's application program invokes a writex
subroutine or when a kernel user calls the fp_write kernel service. An extended write is
used in order to specify the type of data being sent, as well as the service access point
(SAP) and link station (LS) identifiers.

The following fields in the uio and iov structures are used to control the write data transfer
operation:

uioJovcnt

Points to an iovec structure.

Number of elements in the iovec structure. This must be set to a value of 1
for the kernel user, indicating that there is a single communications memory
buffer (mbuf) chain associated with the write subroutine.

uio_offset The file offset established by a previous fp_lseek kernel service. This field
is ignored by GDLC.

uio_segflag Indicates whether the data area is in application or kernel space. This field
is set to the UIO_USERSPACE value by the file I/O subsystem if the data
area is in application space. The field must be set to the UIO_SYSSPACE
value by the kernel user to indicate kernel space.

uio_fmode Contains the value of the file mode set during an application open
subroutine to GDLC or can be set directly during a kernel user's fp_open
kernel service to GDLC.

uio_resid For application users this field is set to the total byte count of the transmit
data area. For kernel users, GDLC ignores this field since the
communications memory buffer (mbuf) also carries this information.

iovec structure A structure that contains the starting address and length of the transmit.
(See the iov_base field and iov_len field.)

Base Operating System Reference

iov_base

iovJen

Parameters
devno

uiop

chan

ext

Return Values

dlcwrite

A variable in the iovec structure where GOLC gets the address of the
application user's transmit data area or the address of the kernel user's
transmit mbuf.

A variable in the iovec structure that contains the byte length of the
application user's transmit data area. This variable is ignored by GOLC for
kernel users, since the transmit mbuf contains a length field.

Indicates major and minor device numbers. This is a dey _t device number
that specifies both the major and minor device numbers of the GOLC device
manager. There is one dev_t device number for each type of GOLC, such
as Ethernet, Token-Ring, or SOLC.

Points to the uio structure containing the write parameters.

Specifies the channel 10 assigned by GOLC in the dlcmpx routine at open
time.

Specifies the extended subroutine parameter. This is a pointer to the
extended I/O structure. This data must be in the application space if the
iov_fmode field indicates an application subroutine or in the kernel space if
the iov_fmode field indicates a kernel subroutine. OLC Extended
Parameters for Write provides more information on this parameter.

Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

EAGAIN

EBADF

EINVAL

ENOMEM

ENXIO

Transmit is temporarily blocked, and a sleep cannot be issued.

Bad file number (application).

Invalid value, such as too much data for a single packet.

Not enough resources to satisfy the write subroutine, such as a lack of
communications memory buffers (mbufs).

Invalid file pointer (kernel).

Implementation Specifics
This dlcwrite entry point of the GOLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Data Link Controls 3-19

dlcwrite

Related Information

3-20

The ddwrite device entry pOint.

dlcmpx Entry Point of the GDLC Device Manager.

The writex subroutine, open subroutine.

The fp_write kernel service, fp_lseek kernel service, fp_open kernel service.

dlcread Entry Point of the GDLC Device Manage.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Base Operating System Reference

fp_close Kernel Service for Data Link Control (DLC) Devices

Purpose

Syntax

Allows kernel closes to the GOLC device manager using a file pOinter.

int fp_close (fp, exO;
struct file * fp;

Description
The fp_close kernel service disables a generic data link control (GDLC) channel. If this is
the last channel to close on a port, the GOLC device manager resets to an idle state on that
port and the communications device handler is closed.

Parameters
fp Specifies the file pointer of the GOLC being closed.

ext Specifies the extension parameter. This parameter is ignored by GDLC.

Return Values
Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, the following error value is returned, as defined in the errno.h header file:

ENXIO Invalid file pointer.

Implementation Specifics
This fp_close kernel service is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The fp_close kernel service.

fp_open Kernel Service for Data Link Control (OLC) Devices.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-21

fp_ioctl

fp_ioctl Kernel Service for Data Link Control (DLC) Devices

Purpose

Syntax

Transfers special commands from the kernel to GOLC using a file pointer.

#include <sys/gdlextcb.h>

#include <fcntl.h>

int fp_ioctl (fp, cmd, arg, ext)

struct file * fp;
unsigned int cmd;

caddr_t arg;

int ext;

Description
Various generic data link control (GOLC) functions can be initiated using the fp_ioctl kernel
service, such as changing configuration parameters, contacting the remote, and testing a
link. Most of these operations can be completed before returning to the user synchronously.
Some operations take longer, so asynchronous results are returned some time later using
the exception function handler. GOLC calls the kernel user's exception handler to complete
these results. For more information on the functions that can be initiated using the fp_ioctl
kernel service, see loctl Operations (op) OLC and Parameter Blocks by Operation for OLe.

Note: The OLC_GET _EXCEP ioctl command operation is not used since all exception
conditions are passed to the kernel user through the exception handler.

Parameters
fp Specifies the file pointer of the target GOLC.

cmd

arg

ext

Specifies the operation to be performed by GOLC. For a listing of all
possible operators, see loctl Operations (op) for OLC.

Specifies the address of the parameter block. The argument for this
parameter must be in the kernel space. For a listing of possible values, see
Parameters Blocks by Operations for OLC.

Specifies the extension parameter. This parameter is ignored by GOLC.

Return Values

3-22

Upon successful completion, the fp_ioctl kernel service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

ENXIO Invalid file pointer

EINVAL Invalid value

ENOMEM Not enough resources to satisfy the ioctl subroutine.

Base Operating System Reference

fp_ioctl

Implementation Specifics
This fp_ioctl kernel service is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The fp_ioctl kernel service.

The ioctl subroutine.

The ioctl subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-23

fp_open Kernel Service for Data Link Control (DLC) Devices

Purpose

Syntax

Allows kernel opens to the GOLC device manager by its device name.

#include <sys/gdlextcb.h>
#include <fcntl.h>

fp_open (path, oflags, cmode, ext, segflag fpp)
char path;
unsigned int oflags;

unsigned int cmode;

int ext;
unsigned int segflag;

struct file ** fpp;

Description
The fp_open kernel service allows the kernel user to open a generic data link control
(GDLC) device manager by specifying the special file names of both the OLC and the
communications device handler. Since the GOLC device manager is multiplexed, more than
one process can open it (or the same process multiple times) and still have unique channel
identifications.

Each open carries the communications device handier's special file name so that the OLC
knows which port to transfer data on.

The kernel user must also provide functional entry addresses in order to obtain receive data
and exception conditions. Using Special Kernel Services provides related information.

Parameters
path Consists of a character string containing the /dev special file name of the

GDLC device manager, with the name of the communications device
handler appended. The format is shown in the following example:

3-24

o flags

cmode

ext

/dev/dlcether/entO

Specifies a value to set the file status flag. The GDLC device manager
ignores all but the following values:

Open for reading and writing. This must be set for GOLC or
the open will fail.

O_NDELA~O_NONBLOCK

Subsequent writes return immediately if no resources are
available. The calling process is not put to sleep.

Specifies the O_CREAT mode parameter. This is ignored by GDLC.

Specifies the extended kernel service parameter. This is a pointer to the
dlc_open_ext extended I/O structure for open subroutines. The argument

Base Operating System Reference

segf/ag

fpp

Return Values

for this parameter must be in the kernel space. OLC Extended Parameters
for open Subroutine provides more information on the extension parameter.

Specifies the segment flag indicating where the path parameter is located:

The path parameter is stored in kernel memory.

The path parameter is stored in application memory.

Specifies the returned file pointer. This parameter is passed by reference
and updated by the file 1/0 subsystem to be the file pointer for this open
subroutine.

Upon successful completion, this service returns a value of 0 (zero) and a valid file pointer in
the fp parameter.

If an error occurs, one of the following error values is returned as defined in the errno.h
header file:

ECHILD

EINVAL

ENODEV

ENOMEM

EFAULT

Cannot create a kernel process.

Invalid value.

No such device handler.

Not enough resources to satisfy the open.

Kernel service, such as copyin or initp, has failed.

Implementation Specifics
This fp_open kernel service is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The fp_open kernel service, copyin kernel service, initp kernel service.

fp_close Kernel Service for Data Link Control (DLC) Devices.

OLC Extended Parameters for the open Subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-25

fp_write

fp_write Kernel Service for Data Link Control (OLC) Devices

Purpose

Syntax

Allows kernel data to be sent using a file pointer.

#include <sys/gdlextcb.h>
#include <sys/fp_io.h>

int fp_write (fp, buf, nbytes, ext, segflag, countp)
struct file * fp;

char *buf;

int nbytes;

int ext;

int segflag;

int *countp;

Description
Four types of data can be sent to GDLC. Network data can be sent to a service access point
(SAP), and normal, Exchange Identification (XIO), or datagram data can be sent to a link
station (LS).

Kernel users pass a communications memory buffer (mbuf) directly to generic data link
control (GOLC) on the fp_write kernel service. In this case, a uiomove kernel service is not
required, and maximum performance can be achieved by merely passing the buffer pointer
to GOLC. Each write buffer is required to have the proper buffer header information and
enough space for the data link headers to be inserted. A write data offset is passed back to
the kernel user at start LS completion for this purpose.

All data must fit into a single packet for each write call. That is, GDLC does not separate the
user's write data area into multiple transmit packets. A maximum write data size is passed
back to the user at OLC_ENABLE_SAP completion and at OLC_START_LS completion for
this purpose.

Normally, a write subroutine can be satisfied immediately by GDLC by completing the data
link headers and sending the transmit packet down to the device handler. In some cases,
however, transmit packets can be blocked by the particular protocol's flow control or a
resource outage. GOLC reacts to this differently, based on the system blocked/non blocked
file status flags (set by the file system and based on the O_NDELAY and O_NONBLOCKED
values passed on the fp_open kernel service). Nonblocked write subroutines that cannot
get enough resources to queue the communications memory buffer (mbuf) return an error
indication. Blocked write subroutines put the calling process to sleep until the resources free
up or an error occurs.

Parameters
fp Specifies file pointer returned from the fp_open kernel service.

3-26

buf

nbytes

Points to a kernel mbuf.

Contains the byte length of the write data. It is not necessary to set this field
to the actual length of write data, however, since the mbuf contains a length

Base Operating System Reference

ext

segf/ag

countp

Return Values

fp_write

field. Instead, this field can be set to any non-negative value (generally set
to 0 (zero)).

Specifies the extended kernel service parameter. This is a pointer to the
dle_io_ext extended 1/0 structure for writes. The argument for this
parameter must be in the kernel space. For more information on this
parameter, see OLC Extended Parameters for write Subroutine.

Specifies the segment flag indicating where the path parameter is located.
The only valid value is:

The path parameter is stored in kernel memory.

Points to the location where a count of bytes actually written is to be
returned (must be in kernel space). GOLC does not provide this information
for a kernel user since mbufs are used, but the file system requires a valid
address and writes a copy of the nbytes parameter to that location.

Upon successful completion, this service returns a value of 0 (zero).

If an error occurs, one of the following error values is returned, as defined in the errno.h
header file:

EAGAIN Transmit is temporarily blocked, and the calling process cannot be put to
sleep.

EINVAL

ENXIQ

Invalid argument, such as too much data for a single packet.

Invalid file pointer.

Implementation Specifics
This fp_write kernel service is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The fp_write kernel service.

The uiomove subroutine, fp_open kernel service.

Parameter Blocks by ioctl Operation for OLC.

OLC Extended Parameters for the write Subroutine.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-27

ioctl (OLe)

ioctl Subroutine Interface for Data Link Control (OLC) Devices

Purpose

Syntax

Transfers special commands to GDLC using a file descriptor.

#include <sys/ioctl.h>

#include <sys/devinfo.h>

#include <sys/gdlextcb.h>

int ioctl (tildes, op, arg);

int tildes;

int op;

char *arg;

Description
The ioctl subroutine initiates various generic data link control (GOLC) functions, such as
changing configuration parameters, contacting a remote link, and testing a link. Most of
these operations can be completed before returning to the user (synchronously). Since some
operations take longer, asynchronous results are returned some time later using the
exception condition notification. Application users can obtain these exceptions using the
DLC_GET_EXCEP ioctl operation. For more information on the functions that can be
initiated using the ioctl subroutine, see loctl Operations for OLC (op) and Parameter Blocks
by Operations for OLC.

Parameters
tildes Specifies the file descriptor of the target GDLC.

op Specifies the operation to be performed by GOLC. For a listing of all
possible operators, see loctl Operations.

arg Specifies the address of the parameter block. For a listing of possible
values, see Parameter Blocks by Operations for OLC.

Return Values
Upon successful completion, the ioctl subroutine returns a value of 0 (zero).

If an error occurs, a value of -1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file:

EBADF

EINVAL

ENOMEM

Bad file number.

Invalid argument.

Not enough resources to satisfy the ioctl subroutine.

Implementation Specifics
This ioctl subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

3-28 Base Ooeratina SYstem Reference

ioctl (OLe)

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
loctl Operations (op) for OLC and Parameter Blocks by Operations for OLe.

The ioctl subroutine.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-29

ioctl (Op)

ioctl Subroutine Operations (op) for OLe

Description

3-30

GDLC supports the following ioctl command operations:

#define DLC ENABLE SAP - -
#define DLC DISABLE SAP - -
#define DLC START LS - -
#define DLC HALT LS - -
#define DLC TRACE
#define DLC CONTACT
#define DLC TEST

#define DLC ALTER

#define DLC_QUERY SAP -
#define DLC_QUERY_LS
#define DLC ENTER LBUSY - -
#define DLC EXIT LBUSY - -
#define DLC ENTER SHOLD - -
#define DLC EXIT SHOLD - -
#define DLC GET EXCEP
#define DLC ADD GRP
#define IOCINFO

OLC_ALTER

OLC_CONTACT

OLC_ENTER_LBUSY

OLC_ENTER_SHOLO

OlC_EXIT _LBUSY

Base Operating System Reference

1
2

3
4

5
6
7

8

9

10

11

12

13

14

15
16

/* see /usr/include/sys/ioctl.h */

Add a group or multicast receive address to a port. This
command allows additional address values to be filtered in
receive as supported by the individual communication
device handlers. See the device handler specifications to
determine which address values are supported.

Alters link station (LS) configuration.

Contacts the remote LS. This ioctl operation does not
complete processing before returning to the user. The
DLC_CONTACT notification is returned asynchronously to
the user using exception.

Disables a service access point (SAP). This ioctl operation
does not fully complete the disable SAP processing before
returning to the user. The DLC_DISABLE_SAP notification
is returned asynchronously to the user some time later
using exception.

Enables a SAP. This ioctl operation does not fully complete
the enable SAP processing before returning to the user.
The OLC_ENABLE_SAP notification is returned
asynchronously to the user some time later using exception.

Enters local busy mode on an LS.

Enters short hold mode on an LS.

Exits local busy mode on an LS.

OLC_EXIT_SHOLD

OLC_GET_EXCEP

OLC_QUERY _LS

OLC_QUERY_SAP

o LC_START_LS

OLC_TRACE

IOCINFO

Implementation Specifics

ioctl (op)

Exits short hold mode on an LS.

Returns asynchronous exception notifications to the
application user.

Note: This ioetl command operation is not used by the
kernel user since all exception conditions are
passed to the kernel user via their exeception
handler routine.

Halts an LS. This ioetl operation does not complete
processing before returning to the user. Notification of the
ioetl operation, OLC_HALT _LS, is returned asynchronously
to the user using exception.

Queries an LS.

Queries a SAP.

Starts an LS. This ioetl operation does not complete
processing before returning to the user. Notification of the
ioetl operation, o LC_START _LS, is returned
asynchronously to the user using exception.

Tests LS connectivity. This joetl operation does not
complete processing before returning to the user.
Notification of the joetl operation, OLC_ TEST completion,
is returned asynchronously to the user using exception.

Traces LS activity.

Returns a structure that describes the device. Refer to the
description of the sys/devjnfo.h file in AIX Version 3
Application Programming Interface, File Formats. The first
byte is set to an ioetype of OO_OLC. The -subtype and
data are defined by the individual DLC devices.

These joetl operations for OLC are part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SOLe, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-31

ioctl (op) .

ioctl Subroutine Operations Parameter Blocks for Ole
Eaehcommand operation has a specific parameter block associated with the command that
is pointed to by the arg pointer. Some parameters are sent to GOLC and some are returned.

The ioetl command operations for OLC are as follows:

• OLC_ENABLE_SAP ioetl Operation for OLC
• OLC_OISABLE_SAP ioetl Operation for OLC
• OLC_START _LS ioetl Operation for OLC
• OLC_HALT _LS ioetl Operation for OLC
• OLC_ TRACE ioetl Operation for OLC
• OLC_CONTACT ioetl Operation for OLC
• OLC_ TEST ioetl Operation for OLC
• OLC_ALTER ioetl Operation for OLC
• OLC_QUERY _SAP ioetl Operation for OLC
• OLC_QUERY _LS ioetl Operation for OLC
• OLC_ENTER_LBUSY ioetl Operation for OLC
• OLC_EXIT _LBUSY ioetl Operation for OLC
• OLC_ENTER_SHOLO ioetl Operation for OLC
• OLC_EXIT _SHOLO ioetl Operation for OLC
• OLC_GET _EXCEP ioetl Operation for OLC
• OLC_AOO_GRP ioetl Operation for OLC
• IOCINFO ioetl Operation for OLC.

Ole_ENABLE_SAP ioctl Operation for Ole

3-32

The following parameter enables a service access point (SAP).

#define DLC MAX NAME
#define DLC MAX GSAPS
#define DLC MAX ADDR

struct dlc_esap_arg
{

20 /* maximum size of the address/name */

7

8

/* maximum number of group sap */
/* maximum byte length of an address */

ulong_t user_sap_corr:
ulong_t len_func_addr_mask;

/* GDLC SAP correlator */
/* RETURNED */

/* User's SAP correlator */
/* length of the field */

/* below it */

uchar t func_addr_mask[DLC_MAX_ADDR];/* Mask of the valid
/* functional address

*/

*/

Base Operating System Reference

/* length of the field
/* below it

*/

*/
/* Address of group packet */

/* to be received
/* Max number of link

/* stations per SAP

*/
*/
*/

ulong_t flags;
ulong_t len laddr name;

u_char_t laddr_name[DLC_MAX_NAME];
u_char_t num_grp_saps;
u_char_t grp_sap[DLC_MAX_GSAPS];

u_char_t resl[3];
u_char_t local_sap;
} ;

ioctl (op)

/* Enable SAP flags */

/* Length of the local */
/* name/address */

/* The local address/name */

/* Number of group SAPs */

/* Group SAPs the SAP will */
/* rsp to * /
/* reserved */

/* ID of local SAP */

gdlc_sap_corr GOLC SAP correlator: The GDLC's service access point (SAP) identifier
that is returned to the user. This correlator must accompany all subsequent
commands associated with this service access point.

user_sap_corr User SAP correlator: The user's SAP identifier to be returned by GOLC on
all SAP results. It allows routing of the SAP-specific results when multiple
SAPs have been opened by a single user.

len_func_addr _mask
Length of functional address mask: Specifies the byte length of the following
functional address mask. This field must be set to 0 (zero) if no functional
address is required. Length values of 0 through 8 are supported.

func_addr_mask
Functional address mask: The functional address mask to be ORed with the
functional address on the adapter. This address mask allows packets that
are destined for specified functions to be received by the local adapter. See
the individual OLC interface documentation to determine the format and
length of this field.

Note: GOLC does not distinguish whether a received packet was accepted
by the adapter due to a pre-set network, group, or functional
address. If the SAP address matches and the packet is otherwise
valid (no protocol errors, for instance), the received packet is passed
to the user.

len_grp_addr Length of group address: Specifies the byte length of the following group
address. This field must be set to 0 if no group address is required. Length
values of 0 through 8 are supported.

Group address: The group address value to be written to the adapter. It
allows packets that are destined for a specific group to be received by the
local adapter.

Note: Most adapters allow only one group address to be active at a time. If
this field is nonzero and the adapter rejects the group address
because it is already in use, the enable SAP call fails with an
appropriate error code.

Data Link Controls 3-33

ioctl (op)

3-34

flags

#define

#define

#define

#define

#define

Maximum link stations (LS): Specifies the maximum number of LSs allowed
to operate concurrently on a particular SAP. This field can be set to a value
from 1 through 255 inclusive.

Common SAP flags: The following flags are supported:

DLC ESAP NTWK

DLC ESAP LINK - -

DLC ESAP PHYC - -
DLC ESAP ANSW - -

DLC ESAP ADDR - -

Ox4OOOOOOO /* teleprocessing network
/* type (LEASED)

Ox20000000 /* teleprocessing link
/* type (multi)

OxlOOOOOOO /* physical network call

Ox08000000 /* teleprocessing auto
/* call/answer

Ox04000000 /* local address/name
/* indicator (ADDR)

Teleprocessing network type:

o = Switched (default)
1 = Leased.

Teleprocessing link type:

o = Point to point (default)
1 = Multipoint.

Physical network call (teleprocessing):

o = Listen for incoming call.
1 = Initiate call.

Local address or name indicator:

o = Local name specified (default)
1 = Local address specified.

*/
*/

*/
*/

*/

*/
*/
*/
*/

Specifies whether the local address or name field
contains an address or a name.

Teleprocessing autocall or autoanswer:

o = Manual call and answer (default)
1 = Automatic call and answer.

len_laddr _name
Length of local address or name: Specifies the byte length of the following
local address or name. Length values of 1 through 20 are supported.

laddr_name Local address or name: Contains the unique network name or address of
the user's local SAP as indicated by the DLC_ESAP _ADDR flag.

num_grp_sapsNumber of group SAPs: Specifies the number of group SAPs the user's
local SAP responds to. If no group SAPs are needed, this field must contain
a O. Up to seven group SAPs can be specified.

Group SAP array: Contains the specific group SAP values that the user's
local SAP responds to (maximum of seven).

Base Operating System Reference

ioctl (op)

Local SAP address: Specifies the local SAP address being opened. Receive
packets with this LSAP value indicated in the destination SAP field are
routed to the LSs opened under this particular SAP.

Protocol Specific Data Area
Optional: Allows parameters to be defined by the specific GOLC device
manager, such as X.21 call-progress signals or smartmodem
call-establishment data. This data area must directly follow (or append to)
the end of the dlc_esap_arg structure.

Implementation Specifics
This OLC_ENABLE_SAP ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Parameter Blocks by ioctl Operation for DLC on page.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLe_DISABLE_SAP ioctl Operation for OLe
The following parameter disables a service access point (SAP).

struct dlc_corr_arg
{
ulong_t gdlc_sap_corr;
ulong_t gdlc_ls_corr;

/* GDLC SAP correlator */
/* « not used for disabling a SAP » */

} ;

Implementation Specifics

GDLC SAP correlator: Indicates the GOLC SAP identifier to be
disabled.

This OLC_DISABLE_SAP ioctl operation for DLC is pa.·t of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-35

ioctl (op)

o LC_START _LS ioctl Operation for OLC

3-36

The following parameter starts a link station (LS) on a particular SAP as caller or listener.

#define DLC MAX DIAG 16 /* the maximum string of chars */
/ / in the diag name

struct dlc_sls_arg
{
ulong_t gdlc_ls_corr; /* GDLC User link station */

*/
*/

*/

*/

*/

*/
*/

*/
*/

/* correlator
u_char_t ls_diag[DLC_MAX_DIAG]; /* the char name of the ls
ulong_t gdlc_sap_corr; /* GDLC SAP correlator
ulong_t user Is _corr; /* User's SAP correlator -
ulong_t flags; /* Start Link Station flags
ulong_t trace_chan; /* Trace Channel

/* (rc of trcstart)
ulong_t len _raddr_name; /* Length of the remote

/* name/addr
u_char_t raddr_name[DLC_MAX_NAME]; /* The Remote addr/name */
ulong_t maxif; /* Maximum number of byte*/

u char t - -
u char t - -

u char t - -

u char t - -
ulong_t
ulong_t
ulong_t

ulong_t

ulong_t

} ;

rsap;
rsap_ low;

rsap_high;

res1;
max_repoll;
repoll time;
ack time; -

inact time; -

force_time;

/* in an I-field */
/* Maximum size of the */

/* receive window */
/* Maximum size of the */

/ / transmit window
/* Remote SAP value */

/* Remote SAP low range */
/* value */

/* Remote SAP high range */
/* value */
/* Reserved */

/* Maximum Repoll count */
/* Repoll timeout value */
/* Time to delay trans of*/

/* an ack */
/* Time before inactivity*/

/* times out */
/* Time before a forced */

/* disconnect */

GDLC LS correlator: The GDLC LS identifier returned to the user as
soon as resources are determined to be available. This correlator must
accompany all commands associated with this LS.

LS diagnostic tag: Any ASCII 1 to 16-character name to be written to
GDLC trace, error log, and status entries for LS identification. (The
end-of-name delimiter is the AIX null character).

GDLC SAP correlator: The correlator returned by GDLC when the SAP
is enabled by the user. This correlator identifies the user's service
access point to the GDLC protocol process. .

Base Ooeratina SYstem Reference

ioctl (op)

User LS correlator: The user's LS identifier to be returned by GDLC on
all results and data. It allows routing of the station-specific results
when multiple logical links have been started by a single user.

flags Common LS flags: The following flags are supported:

#define DLC TRCO
#define DLC TRCL

#define DLC SLS STAT

#define DLC SLS NEGO

#define DLC SLS HOLD
#define DLC SLS LSVC
#define DLC SLS ADDR

OLC_TRCO

OLC_TRCL

Ox80000000 /* Trace Control On */

Ox40000000 /* Trace Control Long */
/* (full packet) */

Ox20000000 /* Station type for SDLC */
/* (primary) */

OxlOOOOOOO /*Negotiate Station Type for*/
/* SDLC */

Ox08000000 /* Hold link on inactivity */
Ox04000000 /* Link Station Virtual Call */
Ox02000000 /* Address Indicator

/* (not discovery)

Trace control on:

o = Disable link trace.

1 = Enable link trace.

Trace control long:

o = Link trace entries are short (80 bytes).

1 = Link trace entries are long (full packet).

Station type for SDLC:

o = Secondary (default)

1 = Primary.

Negotiate station type for SDLe:

o = No (default)

1 = Yes.

Hold link on inactivity:

o = No (default), terminate the LS.

1 = Yes, hold it active.

LS virtual call:

o = Listen for incoming call.

1 = Initiate call.

Data Link Controls

*/
*/

3-37

ioctl (op)

3-38

Address indicator:

o = Remote is identified by name (discovery).

1 = Remote is identified by address (resolve,
SOLC).

Trace channel: Specifies the channel number obtained from the trestart
subroutine. This field is valid only if the OLC_TRCO indicator is set active.

len_raddr_name
Length of remote's address or name: Specifies the byte length of the remote
address or name. This field must be set to 0 (zero) if no remote address or
name is required to start the LS. Length values of 0 through 20 are
supported.

raddr_name Remote's address or name: Contains the unique network address of the
remote node if the DLC_SLS_ADOR indicator is set active. Contains the
unique network name of the remote node if the OLC_SLS_AOOR indicator
is reset. Addresses are entered in hexadecimal notation, and names are
entered in character notation. This field is only valid if the previous length
field is nonzero.

maxif Maximum I-field length: Specifies the maximum number of I-field bytes that
can be in one packet. This value is reduced by GOLC if the device handler's
buffer sizes are too sma" to hold the maximum I-field specified here. The
resultant size is returned from GDLC when the link station has been started.

rev_wind Receive window: The receive window specifies the maximum number of
sequentially numbered receive I-frames the local station can accept prior to
sending an acknowledgment.

xmit_wind Transmit window: The transmit window specifies the maximum number of
sequentially numbered transmitted I-frames that can be outstanding at any
time.

rsap Remote SAP: Specifies the remote service access point address being
called. This field is valid only if the OLC_SLS_LSVC indicator or the
OLC_SLS_AOOR indicator is set active.

rsap_low RSAP low range: Specifies the lowest value in the range of remote SAP
address values that the local SAP responds to when listening for a
remote-initiated attachment. This value cannot be the Null SAP (OxOO) or
the Discovery SAP (OxFC), and must have the low-order bit set to 0
(B'nnnnnnnO') to indicate an individual address.

rsap_high RSAP high range: Specifies the highest value in the range of remote SAP
address values that the local SAP responds to, when listening for a
remote-initiated attachment. This value cannot be the Null SAP (OxOO) or
the Discovery SAP (OxFC), and must have the low-order bit set to 0
(B'nnnnnnnO') to indicate an inJividual address.

max_repoll Maximum repoll count: Specifies the maximum number of retries for an
unacknowledged command frame, or in the case of an I-frame time out, the
number of times the nonresponding remote link station is polled with a
supervisory command frame.

Base Operating System Reference

ioctl (op)

Repoll time-out value: Contains the time-out value (in increments defined by
the specific GOLC) used to specify the amount of time allowed prior to
retransmitting an unacknowledged command frame.

Acknowledgment time-out: Contains the time-out value (in increments
defined by the specific GOLC) used to specify the amount of time to delay
the transmission of an acknowledgment for a received I-frame.

Inactivity time-out value: Contains the time-out value (in increments of 1
second) used to specify the maximum amount of time allowed before
receive inactivity returns an error.

Force halt time-out value: Contains the time-out value (in increments of 1
second) specifying the period to wait for a normal disconnection. Once the
time-out occurs, the disconnection is forced and the link station halted.

Protocol Specific Data Area
Optional: Allows parameters to be defined by a specific GOLC device
manager, such as token-ring dynamic window increment or SOLC primary
slow poll. This data area must directly follow (or append to) the end of the
dlc_sls_arg structure.

Implementation Specifics
This OLC_START _LS ioctl operation for OLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

DLC_HALT_LS ioctl Operation for OLC
The following parameter halts a link station (LS).

struct dlc_corr_arg
{
ulong_t gdlc_sap_corr;
ulong_t gdlc_ls_corr;

/* GDLC SAP correlator */
/* GDLC link station correlator */

} ;

gdlc_sap_corr

gdlc_ls_corr

Implementation Specifics

GOLC SAP correlator: The GOLC SAP identifier of the target LS.

GOLC LS correlator: The GOLC LS identifier to be halted.

This OLC_HALT _LS ioctl operation for OLC is part of the device manager Data Link Control
in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager

. you decide to use.

Data Link Controls 3-39

ioctl (op)

Related Information
Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

OLC_ TRACE ioctl Operation for OLC
The following parameter traces a link stations (LS) activity for short or long activities.

struct dlc_trace_arg

flags

{

ulong_t gdlc_sap_corr;

ulong_t gdlc ls corr;
ulong_t trace_chan;
ulong_t flags;

/* GOLC SAP correlator */

/* GOLC link station correlator */

/* Trace Channel (rc of trcstart) */

/* Trace Flags */

} ;

GOLC SAP correlator: The correlator returned by GOLC when the SAP
was enabled by the user. This correlator identifies the user's service
access point to the GOLC protocol process.

GOLC LS correlator: The correlator returned by GDLC when the LS
was started by the user. This correlator identifies the user's LS to the
G OLC protocol process.

Trace channel: Specifies the channel number obtained from the
trcstart subroutine. This field is only valid if the DLC_ TRCO indicator
is set active.

Trace flags: The following flags are supported:

#define OLC TRCO

#define OLC TRCL
Ox80000000

Ox40000000

/* Trace Control On

/* Trace Control Long
/* (full packet)

*/

*/
*/

DLC_TRCL

Trace control on:

o = Disable link trace.

1 = Enable link trace.

Trace control long:

o = Link trace entries are short (80 bytes).

1 = Link trace entries are long (full packet).

Implementation Specifics

3-40

This DLC_ TRACE ioctl operation for OLC is part of the device manager Data Link Control in
80S Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Base Operating System Reference

ioctl (op)

Related Information
Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

OLC_CONTACT ioctl Operation for OLC
The following parameter contacts a remote station for a particular local link station (LS).

struct d1c_corr_arg
{
u1ong_t gd1c_sap_corr;
u1ong_t gd1c ls corr;
} ;

/* GDLC SAP corre1ator */
/* GDLC link station corre1ator */

gdlc_sap_corr

gdlc_ls_corr

GOLC SAP correlator: The GOLC SAP identifier of the target LS.

GDLC LS correlator: The GOLC LS identifier to be contacted.

Implementation Specifics
This OLC_CONTACT ioctl operation for OLC is part of the device manager Data Link Control
in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 OLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

OLC_TEST ioctl Operation for OLe
The following parameter tests the link to a remote for a particular local link station (LS).

struct dlc_corr_arg
{
u1ong_t gd1c_sap_corr;
u1ong_t gd1c ls corr;
} ;

/* GDLC SAP corre1ator */
/* GDLC link station corre1ator */

gdlc_sap_corr

gdlc_ls_corr

GOLC SAP correlator: The GOLC SAP identifier of the target LS.

GOLC LS correlator: The GDLC LS identifier to be tested.

Implementation Specifics
This OLC_ TEST ioctl operation for OLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 OLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Data Link Controls 3-41

ioctl (op)

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

OLC_ALTER ioctl Operation for OLC

3-42

The following parameter alters a link station's (LS) configuration parameters.

#define OLC MAX ROUT 20 /* Maximum Size of Routing Info

struct dlc_alter_arg
{

ulong_t gdlc_sap_corr;
ulong_t gdlc_ls_corr;
ulong_t flags;
ulong_t repoll_time;
ulong_t ack_time;

/* GOLC SAP correlator
/* GDLC link station correlator
/* Alter Flags
/* New Repoll Timeout
/* New Acknowledge Timeout

ulong_t inact_time; /* New Inactivity Timeout
ulong_t force_time; /* New Force Timeout
ulong_t maxif; /* New Maximum I-Frame Size
ulong_t xmit_wind; /* New Transmit Value
ulong_t max_repoll; /* New Max Repoll Value
ulong_t routing_len; /* Routing Length
u_char_t routing[DLC_MAX_ROUT]; /* New Routing Oata
ulong_t result_flags; /* Returned flags
} ;

gdlc_sap_corr

gdlc_ls_corr

GDLC SAP correlator: The GDLC SAP identifier of the target LS.

GDLC LS correlator: The GDLC LS identifier to be altered.

flags Alter flags: The following flags are supported:

/* Alter Repoll Timeout */

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

#define DLC ALT RTO
#define OLC ALT AKT
#define OLC ALT ITO
#define DLC ALT FHT
#define DLC ALT MIF
#define DLC ALT XWIN
#define OLC ALT MXR
#define OLC ALT RTE
#define OLC ALT SMI

Ox80000000
Ox40000000
Ox20000000
OxlOOOOOOO
Ox08000000
Ox04000000
Ox02000000
OxOlOOOOOO
Ox00800000

/* Alter Acknowledge Timeout */
/* Alter Inactivity Timeout */
/* Alter Force Halt Timeout */
/* Alter Maximum I-Frame Size*/
/* Alter Tranxmit Window Size*/
/* Alter Maximum Repoll Count*/
/* Alter Routing */
/* Alter Mode (SOLC) bit 1 */

#define OLC ALT SM2

#define DLC ALT ITI

#define DLC ALT IT2

Base Operating System Reference

/* (Primary) */
Ox00400000 /* Alter Mode (SOLC) bit 2 */

/* (Secondary) */
Ox00200000 /* Alter Inactivity bit 1 */

/* (Notify) */
OxOOlOOOOO /* Alter Inactivity bit 2

/* (Halt)
*/

*/

ioctl (op)

Alter repoll time out:

o = Do not alter repoll time out.

1 = Alter configuration with value specified.

Alters the length of time the LS waits for a response before
repolling the remote station. When specified, the repoll time
out value specified in the LS's configuration is overridden by
the value supplied in the repoll time-out field of the Alter
command. This new value remains in effect until another
value is specified or the LS is halted.

Alter acknowledgment time out:

o = Do not alter the acknowledgment time out.

1 = Alter configuration with value specified.

Alters the length of time the LS delays the transmission of
an acknowledgment for a received I-frame. When specified,
the acknowledgment time out value specified in the LS's
configuration is overridden by the value supplied in the
acknowledgment time-out field of the Alter command. This
new value remains in effect until another value is specified
or the LS is halted.

Alter inactivity time out:

o = Do not alter inactivity time out.

1 = Alter configuration with value specified.

Alters the maximum length of time allowed without receive
link activity from the remote station. When specified, the
inactivity time-out value specified in the LS's configuration is
overridden by the value supplied in the inactivity time-out
field of the Alter command. This new value remains in
effect until another value is specified or the LS is halted.

Alter force halt time out:

o = Do not alter force halt time out.

1 = Alter configuration with value specified.

Alters the period to wait for a normal disconnection before
forcing the halt LS to occur. When specified, the force halt
time-out value specified in the LS's configuration is
overridden by the value supplied in the force halt time-out
field of the Alter command. This new value remains in
effect until another value is specified or the LS is halted.

Maximum I-field length:

o = Do not alter maximum I-field length.

1 = Alter configuration with value specified.

Data Link Controls 3-43

ioctl (op)

3-44 Base Operating System Reference

Sets the value for the maximum length of transmit or
receive data in one I-field. If received data exceeds this
length, a buffer overflow indication set by GOLC in the
receive extension. When specified, the maximum I-field
length value specified in the LS's configuration is overridden
by the value supplied in the maximum I-field length
specified in the Alter command. This new value remains in
effect until another value is specified or the LS is halted.

Alter transmit window:

o = Do not alter transmit window.

1 = Alter configuration with value specified.

Alters the maximum number of information frames that can
be sent in one transmit burst. When specified, the transmit
window count value specified in the LS's configuration is
overridden by the value supplied in the transmit window
field of the Alter command. This new value remains in
effect until another value is specified or the LS is halted.

Alter maximum repoll:

o = Do not alter maximum repol!.

1 = Alter configuration with value specified

Alters the maximum number of retries for an acknowledged
command frame, or in the case of an I-frame time out, the
number of times the nonresponding remote LS will be
polled with a supervisory command frame. When specified,
the maximum repoll count valJe specified in the LS's
configuration is overridden by/the value supplied in the
maximum repoll count field of the Alter command. This new
value remains in effect until another value is specified or the
LS is halted.

Alter routing:

o = Do not alter routing.

1 = Alter configuration with value specified.

Alters the route that subsequent transmit packets take when
transferring data across a local area network bridge. When
specified, the routing length and routing data values
specified in the LS's configuration are overridden by the
values supplied in the routing fields of the Alter command.
These new values remain in effect until another route is
specified or the LS is halted.

Set SOLC Control mode - primary:

o = Do not alter SOLC Control mode.

1 = Set SOLC Control mode to primary.

repolLtime

maxif

ioctl (op)

Sets the local station to a primary station in NDM, waiting
for a command from PU services to write an XID or TEST,
or a command to contact the secondary for NRM data
phase. This control can only be issued if not already in
NRM, and no XID, TEST, or SNRM is in progress. This flag
cannot be set if the OLC_ALT _SM2 flag is set.

Set SDLC Control mode - secondary:

o = Do not alter SDLC Control mode.

1 = Set SDLC Control mode to secondary.

Sets the local station to a secondary station in NOM, waiting
for XID, TEST, or SNRM from the primary station. This
control can only be issued if not already in NRM, and no
XID, TEST, or SNRM is in progress. This flag cannot be set
if the DLC_ALT_SM1 flag is set.

Set Inactivity Time Out mode - notification only:

o = Do not alter Inactivity Time Out mode.

1 = Set Inactivity Time Out mode to notification only.

Inactivity does not cause the LS to be halted, but notifies
the user of inactivity without termination.

Set Inactivity Time Out mode - automatic halt:

o = Do not alter Inactivity Time Out mode.

1 "" Set Inactivity Time Out mode to automatic halt.

Inactivity causes an automatic halt of the LS with a reason
code of inactivity.

Repoll time-out value: Provides a new value to replace the LS's repoll
time-out value whenever the OLC_ALT_RTO flag is set.

Acknowledge time-out value: Provides a new value to replace the LS's
acknowledgment time-out value whenever the DLC_ALT_AKT flag is set.

Inactivity time-out value: Provides a new value to replace the LS's inactivity
time-out value whenever the Alter OLC_ALT_ITO flag is set.

Force halt time-out value: Provides a new value to replace the LS's force
halt time-out value whenever the o LC_ALT _FHT flag is set.

Maximum I-field size value: Provides a new value to replace the LS started
result value for the maximum I-field size whenever the DLC_ALT_MIF flag
is set. GDLC does not allow this value to exceed the capacity of receive
buffer and only increases the internal value to the allowed maximum.

Transmit window value: Provides a new value to replace the LS's transmit
window count value whenever the DLC_ALT_XWIN flag is set.

Data Link Controls 3-45

ioctl (op)

3-46

max_repoll Maximum repoll count value: Provides the new value that is to replace the
LS's maximum repoll count value whenever the DLC_ALT_MXR flag is set.

routing_len Routing field length value: Provides a new value to replace the LS's routing
field length whenever the DLC_ALT _RTE flag is set.

routing Routing data field value: Provides a new value to replace the LS's routing
data whenever the DLC_ALT_RTE flag is set.

result_flags Returned result indicator flags: The following result indicators may be
returned at the completion of the alter operation, depending on the
command:

#define
#define
#define
#define

OLe MSS RES OxOOO40000 /* Mode Set Secondary */

OLe MSSF RES OxOOO20000 /* Mode Set Secondary Failed */ - -
OLe MSP RES OxOOO1OOOO /* Mode Set Primary */
OLe MSPF RES OxOOOO8000 /* Mode Set Primary Failed */ - -

DLC_MSS_RES Mode set secondary:

This bit set to 1 indicates that the station mode has been
set to secondary as a result of the user's issuing an Alter
(set mode secondary) command.

Mode set secondary failed:

This bit set to 1 indicates that the station mode has been
not set to secondary as a result of the user's issuing an
Alter (set mode secondary) command. This occurs
whenever an SOLC LS is already in data phase or an SOLC
primary command sequence has not yet completed.

Mode set primary:

This bit set to 1 indicates that the station mode has been
set to primary as a result of the user's issuing an Alter (set
mode primary) command.

Mode set primary failed:

This bit set to 1 indicates that the station mode has not
been set to primary as a result of the user's issuing an Alter
(set mode primary) command. This occurs whenever an
SOLC LS is already in data phase.

Protocol Dependent Area
Optional: Allows additional fields to be provided by a specific protocol type.
Corresponding flags may be necessary to support additional fields. This
data area must directly follow (or append to) the end of the dlc_alter_arg
structure.

Base Operating System Reference

ioctl (op)

Implementation Specifics
This OLC_ALTER ioctl operation for OLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

DLC_QUERV_SAP ioctl Operation for OLC
The following parameter queries statistics of a particular service access point (SAP).

#define DLC MAX DIAG 16 /* the max string of chars in the */
/* diag name */

struct dlc_qsap_arg
{

ulong_t
ulong_t
ulong_t

uchar t

ulong_t

} ;

gdlc_sap_corr; /* GDLC SAP correlator
user _sap_corr; /* user SAP correlator (returned)
sap_ state; /* state of the SAP, returned by

/* the kernel
dev[DLC_MAX_DIAG]; /* the returned device handler's

/* device name
devdd_len; /* device driver dependent data

/* byte length

GDLC SAP correlator: The GOLC SAP identifier to be queried.

User SAP correlator: The user's identifier for the SAP, returned for
routing purposes.

Current SAP state: Contains the current state of this SAP:

*/

*/

*/
*/

*/
*/
*/
*/

#define DLC OPENING 1 /* the SAP or link station is in the */
/* process of opening */

#define DLC OPENED 2 /* the SAP or ls has been opened */
#define DLC CLOSING 3 /* the SAP or link station is in the */

/* process of closing */

dey Device handler dev name: Contains the /dev name of the communications
I/O device handler being used by this SAP.

Length of device driver dependent data: Contains the byte length of the
expected device driver statistics that will be appended to the dlc_qsap_arg
structure.

Data Link Controls 3-47

ioctl (op)

Device Driver Dependent Data
Optional: Contains the device statistics of the attached device handler. This
may be the query device statistics (reliability/availability/serviceability log
area) returned from a DLC_Query_LS, or if supported by the device
handler, this may be the result of a DLC_Query_SAP issued to the attached
device handler. See the individual device handler's specifications for
information on the particular fields returned. This data area must directly
follow (or append to) the end of the dlc_qsap_arg structure.

Implementation Specifics
This DLC_QUERY _SAP ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.2S QLLC (or
any combination) in place of device manager above, dep8nding on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

OLC_QUERV_LS ioctl Operation for OLC

3-48

The following parameter queries statistics of a particular link station (LS).

struct dlc_qls_arg
{

ulong_t gdlc_sap_corr;
ulong_t gdlc_ls_corr;
ulong_t user_sap_corr;

ulong_t user ls corr;
/* corr - RETURNED */

u_char_t ls_diag[DLC_MAX_DIAG];
ulong_t ls_state;
ulong_t ls_sub_state;

/* GDLC SAP correlator
/* GDLC ls correlator
/* user's SAP correlator

/* - RETURNED
/* user's link station

/* the char name of the
/* current ls state
/* further clarification

/* of state

*/

*/

*/
*/
*/

ls */

*/

*/
*/

struct dlc ls counters counters;
ulong_t protodd_len; /* protocol dependent data */

} ;

gdlc_sap_corr

gdlc_ls_corr

/* byte length */

GDLC SAP correlator: The GDLC SAP identifier of the target LS.

GDLC LS correlator: The GDLC LS identifier to be queried.

User SAP correlator: The user's SAP identifier returned for routing
purposes.

User LS correlator: The user's LS identifier returned for routing
purposes.

Base Operating System Reference

ioctl (op)

Link station diagnostic tag: Contains the ASCII character string tag
passed to GDLC at the DLC_START_LS ioctl operation to identify the
station being queried. For example, SNA Services puts the attachment
profile name in this field.

Current station state: Contains the current state of this LS:

#define DLC OPENING 1 /* the SAP or link station is in the */
/* process of opening */

#define DLC OPENED 2 /* the SAP or Is has been opened */

#define DLC CLOSING 3 /* the SAP or link station is in the */
/* process of closing */

#define DLC INACTIVE 4 /* the link station is in an inactive */ -
/* state at present */

Is_sub_state Current station substate: Contains the current substate of this LS.
Several indicators may be active concurrently.

#define DLC CALLING Ox80000000 /* the Is is calling */ -
#define DLC LISTENING Ox40000000 /* the Is is listening */

#define DLC CONTACTED Ox20000000 /* the Is is contacted into */
/* sequenced data mode */

#define DLC LOCAL BUSY OxlOOOOOOO /* the local link station is */ - -
/* busy right now */

#define DLC REMOTE BUSY Ox08000000 /* the remote link station */ - -
/* is busy right now */

counters Link station reliability/availability/serviceability counters: These 14
reliability/availability/serviceability counters are shown as an example
only. Each GDLC device manager provides as many of these counters
as necessary to diagnose specific network problems for its protocol
type.

struct dlc Is counters

ckets

{

ulong_t test cmds sent; /* number of test commands sent */

ulong_t test_cmds fail; /* number of test commands failed */
ulong_t test_cmds rec; /* num of test commands received */

ulong_t data pkt sent; /* number of sequenced data */ /*
sent */

ulong_t data_pkt_resent; /* number of sequenced data
/* packets resent

ulong_t max cont resent; /* maximum number of contiguous - -
/* resendings

ulong_t data_pkt_rec; /* data packets received
ulong_t inv_pkt_rec; /* num of invalid packets rcvd
ulong_t adp_rec_err; /* number of data detected

/* receive errors
ulong_t adp_send_err; /* number of data detected

/* transmit errors */
ulong_t rec inact to; /* number of received inactivity -

/* tirneouts

pa

*/
*/

*/
*/

*/

*/

*/
*/

*/

*/
*/

Data Link Controls 3-49

ioctl (op)

ulong_t cmd_polls_sent; /* number of command polls sent */
ulong_t cmd _repolls_sent /* number of command repolls sent */

ulong_t cmd _cont_repolls;/* maximum number of continuous */

/* repolls sent */
} ;

protodd_'en Length of protocol dependent data: Contains the byte length of the following
area.

Protocol Dependent Data
Optional: Contains any additional statistics that a particular GDLC device
manager might provide. See the individual GDLC specifications for
information on the specific fields returned. This data area must directly
follow (or append to) the end of the dlc_qls_arg structure.

Implementation Specifics
This DLC_QUERY _LS ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_ENTER_LBUSY ioctl Operation for OLC
The following parameter enters local busy mode on a particular link station (LS).

struct dlc_corr_arg
{
ulong_t gdlc_sap_corr;
ulong_t gdlc_ls_corr;
} ;

/* GDLC SAP correlator */
/* GDLC link station correlator */

gdlc_sap_corr

gd'c_'s_corr

GDLC SAP correlator: The GDLC SAP identifier of the target LS.

GDLC LS correlator: The GDLC LS identifier to enter local busy mode.

Implementation Specifics
This DLC_ENTER_LBUSY ioctl operation for DLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3-50

Parameter Blocks by ioctl Operation for DLC.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Base Operating System Reference

ioctl (op)

DLC_EXIT_LBUSV ioctl Operation for OLC
The following parameter exits local busy mode on a particular link station (LS).

struct dlc_corr_arg
{
ulong_t gdlc_sap_corr~
ulong_t gdlc_ls_corr~
} ;

/* GDLC SAP correlator */
/* GDLC link station correlator */

GDLC SAP correlator: The GOLC SAP identifier of the target LS.

GDLC LS correlator: The GOLC LS identifier to exit local busy mode.

Implementation Specifics
This DLC_EXIT _LBUSY ioctl operation for OLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

DLC_ENTER_SHOLD ioctl Operation for OLe
The following parameter enters short hold mode on a particular link station (LS).

struct dlc_corr_arg
{
ulong_t gdlc_sap_corr;
ulong_t gdlc_ls_corr;
} ;

/* GDLC SAP correlator */
/* GDLC link station correlator */

GDLC SAP correlator: The GDLC SAP identifier of the target LS.

GOLC LS correlator: The GOLC LS identifier to enter short hold mode.

Implementation Specifics
This DLC_ENTER_SHOLD ioctl operation for OLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Parameter Blocks by ioctl Operation for OLC.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-51

ioctl (op)

OLC_EXIT_SHOLO ioctl Operation for OLC
The following parameter exits short hold mode on a particular link station (LS).

struct dlc_corr_arg
{
ulong_t gdlc_sap_corr;
ulong_t gdlc_ls_corr;
} ;

/* GDLC SAP correlator */
/* GDLC link station correlator */

GDLC SAP correlator: The GOLC SAP identifier of the target LS.

GOLC LS correlator: The GOLC LS identifier to exit short hold mode.

Implementation Specifics
This OLC_EXIT _SHOLO ioctl operation for OLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to U~9.

Related Information
Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

DLC_GET_EXCEP ioctl Operation for OLC

3-52

The following parameter returns asynchronous exception notifications to the application
user.

struct dlc_getx_arg
{
ulong_t user_sap_corr;
ulong_t user_ls_corr;
ulong_t result_ind;

/* user SAP corr - RETURNED */
/* user Is corr - RETURNED */
/* the flags identifying the */

/* type of excep */
int result_code; /* the manner of excep */
u char t result_ext[DLC_MAX_EXT]; /* excep specific ext
} ;

*/

User service access point (SAP) correlator: The user's SAP identifier
for this exception.

#define
#define
#define
#define
#define
#define
#define

#define

User link station (LS) correlator: The user's LS identifier for this
exception.

Result indicators:

DLe TEST RES Ox08000000 /* a test cmd completion - -
DLe SAPE RES Ox04000000 /* an enable SAP completion
DLe SAPD RES Ox02000000 /* a disable SAP completion - -
DLe STAS RES OxOlOOOOOO /* a start Is completion - -
DLe STAH RES OxOO800000 /* a halt Is completion - -
DLC DIAL RES OxOO400000 /* manually dial the phone now - -
DLC IWOT RES OxOO200000 /* inactivity without -

/* termination
DLC lEND RES OxOOlOOOOO /* the inactivity has ended -

Base Operating System Reference

*/

*/

*/

*/

*/

*/

*/
*/
*/

#define DLC CONT RES - -

#define DLC RADD RES - -
#define DLC MAX EXT 48

ioctl (op)

OxOOO80000 /* the station is now */
/* contacted */

OxOOOO4000 /* the remote addr has changed */

/* max size of the result */
/* extension field */

Test complete: A nonextended result. Set to 1,
this bit indicates that the link test has completed
as indicated in the result code.

SAP enabled: An extended result. Set to 1, this
bit indicates that the SAP is active and ready for
LSs to be started. See DLC_SAPE_RES
operation for the format of the extension area.

SAP Disabled: A nonextended result. Set to 1,
this bit indicates that the SAP has been
terminated as indicated in the result code.

Link station started: An extended result. Set to 1,
this bit indicates that the link station is connected
to the remote station in asynchronous or normal
disconnected mode. GDLC is waiting for link
receive data from the device driver, or additional
commands from the user such as the
DLC_CONTACT ioctl operation. See
DLC_STAS_RES operation for the format of the
extension area.

Link station halted: A nonextended result. Set to
1, this bit indicates that the LS has terminated
due to a DLC _HALT _LS ioctl operation from the
user, a remote discontact, or an error condition
indicated in the result code.

Dial the phone: A nonextended result. Set to 1,
this bit indicates that the user may now manually
dial an outgoing call to the remote station.

Inactivity without termination: A nonextended
result. Set to 1, this bit indicates that the LS
protocol activity from the remote station has
terminated for the length of time specified in the
configuration (receive inactivity time out). The
local station remains active and notifies the user
if the remote station begins to respond.
Additional notifications of inactivity without
termination are suppressed until the inactivity
condition clears up.

Inactivity ended: A nonextended result. Set to 1,
this bit indicates that the LS protocol activity from
the remote station has restarted after a condition
of inactivity without termination.

Data Link Controls 3-53

ioctl (op)

3-54

Contacted: A nonextended result. Set to 1, this
bit indicates that GDLC has either received a Set
Mode, or has received a positive response to a
Set Mode initiated by the local LS. GOLC is now
able to send and receive normal sequenced data
on this LS.

Remote address/name change: An extended
result. Set to 1 , this bit indicates that the remote
LS address (or name) has been changed from
the previous value. This can occur on SOLC links
when negotiating a point to point connection, for
example. See the DLC_RAOD_RES operation
for the format of the extension area.

result_code Result code: The following values specify the result codes for GDLC.
Negative return codes that are even indicate that the error condition can be
remedied by restarting the LS returning the error. Return codes that are odd
indicate that the error is catastrophic, and,at the minimum, the SAP must
be restarted. Additional error data may be obtained from the GOLC error log
and link trace entries.

#define DLC SUCCESS

#define DLC PROT ERR
#define DLC BAD DATA
#define DLC NO RBUF
#define DLC RDISC
#define DLC_DISC_TO
#define DLC INACT TO
#define DLe MSESS RE - -
#define DLC NO FIND
#define DLC INV RNAME
#define DLC_SESS_LIM

o

-906
-908
-910
-912
-914
-916
-918
-920
-922
-924

#define DLC LST IN PRGS -926 - --
#define DLC_LS_NT_COND -928
#define DLC LS ROUT -930
#define DLC_REMOTE_BUSY -932
#define DLC_REMOTE_CONN -936

#define DLC NAME IN USE -901

/* the result indicated was
/* successful
/* protocol error
/* a bad data compare on a TEST
/* no remote buffering on test
/* remote initiated discontact
/* discontact abort timeout
/* inactivity timeout
/* mid session reset
/* cannot find the remote name
/* invalid remote name
/* session limit exceeded
/* listen already in progress
/* ls unusual network condition
/* link station resource outage
/* remote station found, but busy
/* specified remote is already
/* connected */

/* local name already in use
#define DLC INV LNAME -903 /* invalid local name

*/
*/

*/

*/

*/

*/

*/
*/

*/

*/

*/

*/

*/
*/
*/

*/

*/

*/
*/

#define DLC_SAP_NT_COND -905 /* SAP network unusual network */

#define DLC SAP ROUT
#define DLC USR INTRF
#define DLC ERR CODE

#define DLC SYS ERR

Base Operating System Reference

/* condition
-907 /* SAP resource outage

-909 /* user interface error
-911 /* error in the code has been

/* detected
-913 /* system error

*/

*/

*/

*/
*/

*/

ioctl (op)

Result extension: Several results carry extension areas to provide additional
information about them. The user must provide a full sized area for each
result requested since there is no way to tell if the next result is extended or
nonextended. The extended result areas are described by type below.

OLC SAPE_RES - SAP Enabled Result Extension
The following parameter's service access point (SAP) enables a result extension.

struct dlc_sape_res
{

ulong_t max net send; /* maximum write network */
/* data length */

ulong_t Iport_addr_len; /* local port network */
/* address length */

u char t Iport_addr[DLC_MAX_ADDR]; /* the local port */
/* address */

} ;

max_net_send Maximum write network data length: The maximum number of bytes that the
user can write for each packet when writing network data. This is generally
based on a communications mbuf/mbuf's page cluster size, but is not
necessarily limited to a single mbuf/mbuf's since mbuf/mbuf's can be linked.

Iport_addr_len Local port net address length: Contains the byte length of the local port
network address.

Local port network address: Contains the hexadecimal value of the local
port network address.

OLC STAS_RES - Link Station Started Result Extension
The following parameter starts a link station's (LS) result extension.

struct dlc stas res
{

ulong_t maxif; /* max size of the data sent */
/* on a write */

/* remote port network */
/* address length */

u_char_t rport_addr[DLC_MAX_ADDR];
ulong_t rname_leni

/* remote port address */

/* remote network name length */
u_char_t rname[DLC_MAX_NAME];
uchar_t res[3]i

/* remote network name
/* reserved

*/

*/

*/

*/
*/

uchar_t rsapi /* remote SAP

maxif

ulong_t max_data_off; /* the maximum data offsets

} i
/* for sends

Maximum I-field size: Contains the maximum byte size allowable for user
data. This value is derived from the value supplied by the user at start link
station (OLC_START _LS) and the actual number of bytes that can be
handled by the GOLC and device handler on a single transmit or receive.
Generally this value is something less than the size of a communications
mbuf page cluster. However, some communications devices may be able to
link page clusters together, so the maximum I-field receivable may be even

Data Link Controls 3-55

ioctl (op)

greater than the length of a single mbuf. The returned value will never
exceed the value supplied by the user, but may be smaller if buffering is not
large enough to hold the specified value.

rport_addr _len Remote port network address length: Contains the byte length of the remote
port network. address.

rna me

rsap

Remote port network address: Contains the hexadecimal value of the
remote port network address.

Remote network name length: Contains the byte length of the remote port
network name. This is returned only when name discovery procedures are
used to locate the remote station. Otherwise this field is set to zero. Network
names can be 1 to 20 characters in length.

Remote network name: Contains the name being used by the remote SAP.
This field is valid only if name-discovery procedures were used to locate the
remote station.

Remote SAP: Contains the hexadecimal value of the remote SAP address.

max_data_off Write data offset Contains the data offset in bytes of a communications
mbuf where transmit data must minimally begin. This allows ample room for
the DLC and MAC headers to be inserted if needed. Some DLC's may be
able to prepend additional mbufs for their headers, and will set this field to
zero.

This field is only valid for kernel users that pass in a communications mbuf
on write operations.

Note: In order to align the data moves to a particular byte boundary, the
kernel user may wish to choose a value larger than the minimum
value returned

OLC STAH_RES - Link Station Halted Result Extension
The following parameter halts the link station (LS) result extension.

struct dIc stah res - -
{

ulong conf_ls_corr;
} ;

1* conflicting link station corr *1

This extension is valid only if the result code value indicates -936 (specified remote is
already connected).

conf_Is_corr Conflicting link station correlator: Contains the user's link station identifier
that already has the specified remote station attached.

OLC_RAOO_RES - Remote Address/Name Change Result Extension

3-56

The following parameter changes the remote address or name of the result extension.

struct dlc radd res - -
{

ulong rname_len; 1* remote network name/addr length *1
u_char rname[DLC_MAX_NAME]; 1* remote network name/addr */
} ;

Base Operating System Reference

rname

ioctl (op)

Remote network address or name length: Contains the byte length of the
updated remote service access point (SAP)'s network address or name.

Remote network address or name: Contains the updated address or name
being used by the remote SAP.

Implementation Specifics
This OLC_GET _EXCEP ioctl operation for OLC is part of the device manager Data Link
Control in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 OLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

OLC_AOO_GRP loctl Operation for OLC
The following parameter adds a group or multicast receive address.

struct dlc_add_grp
{

} ;

ulong_t gdlc_sap_corr;
ulong_t grp_addr_len;
uchar t grp_addr[DLC_MAX_ADDR];

/* GDLC SAP correlator */
/* group address length */
/* grp addr to be added */

GDLC SAP Correlator: This is GDLC's SAP identifier being requested
to add a group or multicast address to a port.

Group Address Length: Contains the byte length of the group or
multicast address to be added.

Group Address: Contains the group or multicast address value to be
added.

Implementation Specifics
This OLC_ADD_GRP ioctl operation for DLC is part of the device manager Data Link Control
in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 OLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

IOCINFO ioctl Operation for OLC
Returns a structure that describes the device (refer to the description of the sys/devinfo.h
file. The first byte is set to an ioctype of DO_OLC. The subtype and data are defined by the
individual OLC devices. See the /usr/include/sys/devinfo.h file for details.

Data Link Controls 3-57

ioctl (op)

Implementation Specifics
This IOCINFO ioctl operation for OLC is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Ethernet (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

3-58 Base Operating System Reference

open,openx

open, openx Subroutine Interface for Data Link Control (DLC)
Devices

Purpose

Syntax

Opens the GOLC device manager by special file name.

#include <sys/fcntl.h>

#include <sys/gdlextcb.h>

int open(path, of/ag, mode)

or

int openx(path, of/ag, mode, ext)

char *path;

int of/ag;

int mode;

int ext;

Description
The open subroutine allows the application user to open a generic data link control (GDLC)
device manager by specifying the OLC's special file name and the target device handler's
special file name. Since the GOLC device manager is multiplexed, more than one process
can open it (or the same process many times) and still have unique channel identifications.

Each open carries the communications device handler's special file name so that the OLC
knows on which port to transfer data. This name must directly follow the OLC's special file
name. For example, in the I dev I dlcether I entO character string, entO is the special file
name of the Ethernet device handler. GOLC obtains this name using its dlcmpx routine.

Parameters
path Consists of a character string containing the Idev special file name of the

GOLC device manager, with the name of the communications device
handler appended, as follows:

Idev/dlcether/entO

of/ag Specifies a value for the file status flag. The GOLC device manager ignores
all but the following flags:

O_RDWR Open for reading and writing. This must be set for GDLC or
the open will fail.

O_NDELAY, O_NONBLOCK
Subsequent reads with no data present and writes that
cannot get enough resources will return immediately. The
calling process is not put to sleep.

mode Specifies the O_CREAT mode parameter. This is ignored by GDLC.

Data Link Controls 3-59

open,openx

ext Specifies the extended subroutine parameter. This is a pointer to the
dlc_open_ext extended 1/0 structure for the open subroutines. DLC
Extended Parameters for open Subroutine provides more information on
this parameter.

Return Values
Upon successful completion, the open subroutine returns a valid file descriptor that identifies
the opened GDLC channel.

If an error occurs, a value of -1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file:

ECHILD

EINVAL

ENODEV

ENOMEM

EFAULT

Cannot create a kernel process.

Invalid value.

No such device handler.

Not enough resources to satisfy the open subroutine.

Kernel service, such as copyin or initp, has failed.

Implementation Specifics
This open subroutine interface is part of the device manager Data Link Control in 80S
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3-60

The dlcmpx routine.

The copyin kernel service, initp kernel service.

open, openx Subroutine, Extended Parameters.

close Subroutine Interface for Data Link Control (OLC) Devices.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Base Ooeratina SYstem Reference

open,openx

open, openx Subroutine, Extended Parameters

Description
An extended open (openx) subroutine may be issued to alter certain normally defaulted
parameters, such as maximum service access points (SAPs) and ring queue depths. Kernel
users may change these normally defaulted parameters, but are required to provide
additional parameters to notify the dlcopen routine that these callers are to be treated as
kernel processes and not as application processes. Additional parameters passed include
functional addresses that the user wishes GDLC to call for notification of asynchronous
events, such as receive data available.

The structure for the open subroutine extension parameters is as follows:

struct dlc _open_ ext
{

ulong_t maxsaps; /* 1 (1 to 127) service access points */
int (*rcvi_fa)();
int (* rcvx _ fa) () ;
int (*rcvd_fa) () ;
int (*rcvn_fa)();
int (*excp_fa)();

} ;

/*
/*
/*
/*

/*

receive I-frame function address */
receive XID function address */
receive Datagram function address */
receive Network data function address */
exception handler function address */

See the linclude/sys/gdlextcb.h file for more details on GDLC structures.

The first parameter is optional for both the application and the kernel user. If the default
value is desired, the field must be set to zero by the user prior to issuing the open
subroutine.

maxsaps Maximum SAPs: The maximum number of SAPs that this user
channel is going to start and have running concurrently. The default
is 1. Any value from 1 to 127 can be specified (0 gets the default).

The last five parameters are mandatory for kernel users but are ignored by GDLC for
application users. There are no default values. Each field must be filled in by the kernel user.
All functional entry addresses must be valid. That is, entry points that the kernel user does
not wish to support must at least point to a routine that frees the communication's memory
buffer (mbuf) passed on the call.

Receive I-Frame Data Function Pointer: The address of a user
routine that handles the sequenced I-frame receive data
completions. This field is valid for kernel users only and must be set
to 0 (zero) by application users.

Receive XID Function Pointer: The address of a user routine that
handles the exchange I D receive data completions.

Receive Datagram Function Pointer: The address of a user routine
that handles the datagram receive data completions.

Receive Network Data Function Pointer: The address of a user
routine that handles the network receive data completions.

Data Link Controls 3-61

open,openx

Implementation Specifics

Exception Handler Function Pointer: The address of a user routine
that handles the exception conditions, such as DLC_SAPE_RES
(SAP Enabled) or OLC_CONT _RES (LS contacted).

These OLC extended parameters for open subroutine are part of the device manager Data
Link Control in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The open, openx subroutine.

The dlcopen entry point routine.

Parameter Blocks by ioctl Operation for OLC

Generic Oata Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

3-62 Base Operating System Reference

open,openx

Datagram Data Received Routine, for OLe
Function

This routine is coded by the kernel user and called by GOLC each time a datagram packet is
received for the kernel user.

Subroutine Call

Parameters

#include <sys/gdlextcb.h>
int (*dlc_open_ext.rcvd_fa)(m, ext)
struct mbuf * m;
struct dlc_io_ext *ext;

m

ext

Specifies the pOinter to a communications memory buffer (mbuf).

Specifies the receive extension parameter. This is a pOinter to the
dlc_io_ext extended I/O structure for reads.

Returns to GDLC
int Indicates one of the following return codes from this function call:

Implementation Specifics

The received datagram mbuf data has been
accepted.

The received datagram mbuf data cannot be
accepted at this time. GDLC should retry this
function later. The actual retry wait period
depends on the OLC in use. Excessive retries
may close the link station.

This OLC datagram data received routine is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
OLC Extended Parameters for read Subroutine.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-63

open,openx

Exception Condition Routine
Function

This routine is coded by the kernel user and called by GOLC each time an asynchronous
event occurs that must notify the kernel user, such as OLC_SAPO_RES (SAP disabled) or
OLC_CONT _RES (contacted).

Subroutine Call

Parameter

#include <sys/gdlextcb.h>
int (*dlc_open_ext.excp_fa)(ext)
struct dlc_getx_arg *ext;

ext Specifies the same structure for a dlc_getx_arg (get exception) ioctl
subroutine.

Returns to GDLC
int Indicates the following return code from the function call:

The exception has been accepted.

Note: The function call above has a hidden parameter extension for internal use only,
defined as int *chanp, the channel pointer.

Implementation Specifics
This OLC exception condition routine is part of the device manager Data Link Control in BaS
Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3-64

The ioctl subroutine.

Parameter Blocks by ioctl Operation for OLC.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Base Operating System Reference

open,openx

I-Frame Data Received Routine
Function

This routine is coded by the kernel user and called by GOLC each time a normal sequenced
data packet is received for the kernel user.

Subroutine Call

Parameters

#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvi_fa){m, ext)

struct mbuf * m;
struct dlc_io_ext *ext;

m

ext

Specifies the pointer to a communications memory buffer (mbuf).

Specifies the receive extension parameter. This is a pointer to the
dlc_io_ext extended I/O structure for reads. The argument to this
parameter must be in the kernel space.

Returns to GDLC
int Indicates one of the following return codes from the function call:

DLC_FUNC_OK

DLC_FUNC_BUSY

Implementation Specifics

The received I-frame function call is accepted.

The received I-frame function call cannot be
accepted at this time. The ioctl command
operation OLC_EXIT _LBUSY must be issued
later using the ioctl subroutine.

The received I-frame function call cannot be
accepted at this time. GOLC should retry this
function call later. The actual retry wait period
depends on the OLC in use. Excessive retries
can be subject to a halt of the link station.

This OLC I-frame data received routine is part of the device manager Data Link Control in
BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The ioctl subroutine.

Parameter Blocks by ioctl Operation for OLC.

OLC Extended Parameters for read Subroutine.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-65

open,openx

Network Data Received Routine
Function

This routine is coded by the kernel user and called by GDLC each time network-specific data
is received for the kernel user.

Subroutine Call

Parameters

#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvn_fa)(m, ext)
struct mbuf * m;
struct dlc_io_ext *ext;

m

ext

Specifies the pointer to a communications memory buffer (mbuf).

Specifies the receive extension parameter. This is a pointer to the
dlc_io_ext extended 110 structure for reads.

Returns to GDLC
int Indicates one of the following return codes from this function call:

The received network mbuf data has been

accepted.

The received network mbuf data cannot be
accepted at this time. GDLC should retry this
function call some time later. The actual retry
wait period depends on the OLC in use, and
excessive retries can cause a disabling of the
service access point.

Implementation Specifics
This OLC network data received routine is part of the device manager Data Link Control in
80S Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3-66

DLC Extended Parameters for read Subroutine.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Base Operating System Reference

open,openx

XID Data Received Routine
Function

This routine is coded by the kernel user and called by GOLC each time an exchange
identification (XID) packet is received for the kernel user.

Subroutine Call

Parameters

#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvx_fa)(m, ext)
struct mbuf * m;
struct dlc_io_ext *ext;

m

ext

Specifies the pointer to a communication memory buffer (mbuf).

Specifies the receive extension parameter. This is a pointer to the
dlc_io_ext extended 1/0 structure for reads. The argument to this
parameter must be in the kernel space.

Returns to GDLC
int Indicates one of the following return codes from this function call:

DLC_FUNC_OK

DLC_FUNC_RETRY

Implementation Specifics

The received XID mbuf data has been accepted.

The received XID mbuf data cannot be accepted
at this time. GDLC should retry this function call
some time later. The actual retry wait period
depends on the OLC in use. Excessive retries
may close the link station.

This OLC XIO data received routine is part of the device manager Data Link Control in 80S
Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
OLC Extended Parameters for read Subroutine.

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Data Link Controls 3-67

read, readx

read, readx Subroutine, Extended Parameters

Description

3-68

An extended read (readx) subroutine must be issued by an application user to provide
GDLC with a structure to return the type of data and the service access point (SAP) and link
station (LS) correlators.

The structure for the read subroutine extension parameters is as follows:

struct dlc io ext - -
{

ulong_t sap_ corr; /* Sap correlator
*/

ulong_t Is _corr; /* Link Station correlator
*/

ulong_t flags; /* flags
*/

ulong_t dlh len; /* data link header length
*/
} ;

sap_corr

Is_corr

flags

#define DLC INFO
*/
#define DLC XIDD
*/
#define DLC DGRM
*/
#define DLC NETD
*/
#define DLC OFLO
ed */
#define DLC RSPP
*/

-

User SAP Correlator: The user's SAP identifier of the received data.

User LS Correlator: The user's LS identifier of the received data.

Result Flags: The following flags are supported:

Ox80000000 /* normal I-frame

Ox40000000 /* XID data

Ox20000000 /* datagram

OxlOOOOOOO /* network data

OxOOOOOOO2 /* receive overflow occurr

OxOOOOOOOl /* response pending

I-Frame Data Received: Indicates that normal sequenced data has
been received for a link station. If buffer overflow (OFLO) is indicated,
the received data has been truncated because the received data
length exceeds either the maximum I-field size derived at completion
of o LC_START _LS ioctl operation or the application user's buffer
size.

XID Data Received: Indicates that exchange identification (XID) data
has been received for a link station. If buffer overflow (OFLO) is
indicated, the received XID has been truncated because the received
data length exceeds either the maximum I-field size derived at
DLC_START _LS completion or the application user's buffer size. If
response pending (RSPP) is indicated, an XID response is required

Base Operatino System Reference

Implementation Specifics

read, read x

and must be provided to GDLC using a write XID as soon as possible
to avoid repolling and possible termination of the remote LS.

Datagram Data Received: Indicates that a datagram has been
received for an LS. If buffer overflow (OFLO) is indicated, the
received data has been truncated because the received data length
exceeds either the maximum I-field size derived at DLC_START _LS
completion or the application user's buffer size.

Network Data: Indicates that data has been received from the
network for a service access point. This may be link-establishment
data such as X.21 call-progress signals or smart modem command
responses. It can also be data destined for the user's SAP when no
link station has been started that fits the addressing of the packet
received. If buffer overflow (OFLO) is indicated, the received data
has been truncated because the received data length exceeds either
the maximum packet size derived at DLC_ENABLE_SAP completion
or the application user's buffer size.

Network data contains the entire MAC layer packet, excluding any
fields stripped by the adapter such as Preamble or CRC.

Buffer Overflow: Indicates that overflow of the user data area has
occurred and the data was truncated. This error does not set a
u.u_error indication.

Response Pending: This bit indicates that the XID received requires
an XID response to be sent back to the remote link station.

Data Link Header Length: This field has different meaning depending
on whether the extension is for a readx subroutine call to GDLC or a
response from GDLC.

On the application readx subroutine it indicates whether the user
wishes to have datalink header information prefixed to the data. If this
field is set to 0 (zero), the data link header is nolto be copied (only
the I-field is copied). If this field is set to any nonzero value, the data
link header information will be included in the read.

On the response to an application readx subroutine this field contains
the number of data link header bytes received and copied into the
Data Link Header Information field.

On asynchronous receive function handlers to the kernel user, this
field contains the length of the data link header within the
communications memory buffer (mbuf).

These DLC extended parameters for read subroutine are part of the device manager Data
Link Control in BOS Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Data Link Controls 3-69

read, readx

Related Information

3-70

The read, readx, ready, or readvx Subroutine.

OLC Extended Parameters for write Subroutine

Parameter Blocks by ioctl Operation for OLC

Generic Data Link Control (GOLC) Environment Overview in Communications Programming
Concepts.

Base Operating System Reference

readx

readx Subroutine Interface for Data Link Control (dlc) Devices

Purpose

Syntax

Allows receive application data to be read using a file descriptor.

#include <sys/gdlextcb.h>

#include <sys/uio.h>

int readx (fildes, but, len, ext)

int fildes;
char *buf;

int len;
int ext;

Description
The receive queue for this application user is interrogated for any pending data. The oldest
data packet is copied to user space, with the type of data, the link station correlator, and the
service access point (SAP) correlator written to the extension area. When attempting to read
an empty receive data queue, the default action is to delay until data is available. If the
O_NDELAY or O_NONBLOCK flags are specified in the open subroutine, the readx
subroutine returns immediately to the caller.

Data is transferred using the uiomove kernel service between the user space and kernel
communications memory buffers (mbufs). A complete receive packet must fit into the user's
read data area. GDLC does not break up received packets into multiple user data areas.

Parameters
tildes Specifies the file descriptor returned from the open subroutine.

but Points to the user data area.

len Contains the byte count of the user data area.

ext Specifies the extended subroutine parameter. This is a pointer to the
dlc_io_ext extended I/O structure for the readx subroutine. DLC Extended
Parameters for read Subroutine provides more information on this
parameter.

Return Values

Note: It is the user's responsibility to set the ext parameter area to 0 (zero)
prior to issuing the readx subroutine to insure valid entries when no
data is available.

Upon successful completion, the readx subroutine returns the number of bytes read and
placed into the application data area. If more data is received from the media than will fit into
the application data area, the DLC_OFLO flag is set in the dlc_io_ext command extension
area to indicate that the read is truncated. All excess data is lost.

If no data is available and the application user has specified the O_NDELAY or
O_NONBLOCK flags at open time, a zero is returned.

Data Link Controls 3-71

readx

If an error occurs, a value of -1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file:

EBADF

EINTR

EINVAL

ENOMEM

Bad file number.

A signal interrupted the subroutine before it received data.

Invalid value.

Not enough resources to satisfy the read.

Implementation Specifics
This read x subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information
The readxsubroutine, open subroutine.

The uiomove kernel service.

read, readx Subroutine, Extended Parameters.

writex Subroutine Interface for Data Link.

3-72 Base Operating System Reference

select

select Subroutine Interface for Data Link Control (dlc) Devices

Purpose

Syntax

Allows data to be sent using a file descriptor.

#include <sys/select.h>

int select (nfdsmsgs, readfist, writelist, exceptlist, timeout)
int nfdsmsgs;

struct sellist *read/ist, *writefist, *exceptlist;
struct timeval *timeout;

Description
The select subroutine checks the specified file descriptor and message queues to see if
they are ready for reading (receiving) or writing (sending), or if they have an exception
condition pending.

Note: GDLC does not support transmit for nonblocked notification in the full sense. If the
writefist parameter is specified in the select call, GDLC always returns as if transmit
is available. There is no checking to see if internal buffering is available or if internal
control-block locks are free. These resources are much too dynamic, and tests for
their availability can only be done reasonably at the time of use.

The readlist and exceptlist parameters are fully supported. Whenever the selection criteria
specified by the Se/Type parameter is true, the file system returns a value that indicates the
total number of file descriptors and message queues that satisfy the selection criteria. The
fdsmask bit masks are modified so that bits set to a value of 1 indicate file descriptors that
meet the criteria. The msgids arrays are altered so that message queue identifiers that do
not meet the criteria are replaced with a value of -1. If the selection is not satisfied, the
calling process is put to sleep waiting on a selwakeup subroutine at a later time.

Parameters
nfdsmsgs

sellist

timeout

Return Values

Specifies the number of file descriptors and message queues to check.

The readlist, write/ist, and exceptlist parameters specify what to check for
during reading, writing, and exceptions, respectively. Each sellist is a
structure that contains a file descriptor bit mask (fdsmask) and message
queue identifiers (msgids).

The write/ist criterion is always set true by GDLC.

Points to a structure that specifies the maximum length of time to wait for at
least one of the selection criteria to be met (if the timeout parameter is not a
null pointer).

Upon successful completion, the select subroutine returns a value that indicates the total
number of file descriptors and message queues that satisfy the selection criteria. The return
value is similar to the nfdsmsgs parameter in that the low-order 16 bits give the number of
file descriptors, and the high-order 16 bits give the number of message queue identifiers.
These values indicate the sum total that meet each of the read and exception criteria.

Data Link Controls 3-73

select

If the time limit specified by the timeout parameter expires, then the select subroutine
returns a value of O.

If an error occurs, a value of -1 is returned.with one of the following error numbers available
using errno, as defined in the errno.h header file:

EBADF

EINTR

EINVAL

Bad file number.

A signal interrupted the subroutine before it found any of the selected.
events.

One of the parameters contained an invalid value.

Implementation Specifics
This select subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3 74

The select subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Base Operating System Reference

write, writex

write, writex Subroutine, Extended Parameters

Purpose
An extended write (writex) subroutine must be issued by an application or kernel user to
provide GDLC with the type of data and the service access pOint (SAP) and link station (LS)
correlators. The structure for the write subroutine extension parameters is shown below:

*/

*/

*/

*/
} ;

flags

u1ong_t

u1ong_t

u1ong_t

u1ong_t

sap_corr; /* Sap corre1ator

1s corr; /* Link Station corre1ator -

flags; /* flags

d1h _len; /* «< not used for writes »>

GDLC SAP Correlator: The user's SAP identifier of the received data.

GDLC Link Station Correlator: The user's link station identifier of the
received data.

Write Flags: The following flags are supported:

/*** Read and Write Flags ***/

#define DLC INFO Ox80000000 /* normal I-frame
*/
#define DLC XIDD
*/
#define DLC DGRM
*/
#define DLC NETD
*/

Ox40000000 /* XID data

Ox20000000 /* datagram

OxlOOOOOOO /* network data

Write I-Frame Data: Requests a sequenced data class of information
to be sent (generally called I-frames).

This request is valid any time the target link station has been started
and contacted.

Write XID Data: Requests an exchange identification (XID) or
response to be sent.

This request is valid any time the target link station has been started
with the following rules:

GDLC sends the XID as a command as long as no DLC_ TEST,
DLC_CONTACT, DLC_HALT_LS, or DLC_XIDD write subroutine is
already in progress, and no received XID is waiting for a response. If
a received XID is waiting for a response, GDLC automatically sends
the write XID as that response. If no response is pending and a
command is already in progress, the write is rejected by GDLC.

Write Datagram: Requests an unnumbered datagram to be sent.

Data Link Controls 3-75

write, writex

This request is valid any time the target link station has been started.

Write Network Data: Requests that network data be sent.

Examples of network data include special modem control data or
user-generated medium access control (MAC) and logical link control
(LLC) headers.

Network data must contain the entire MAC layer packet headers so
that the packet can be sent without the data link control (DLC)'s
intervention. GDLC only provides a pass-through function for this
type of write.

This request is valid any time the SAP is open.

Implementation Specifics
These OLC extended parameters for write subroutine are part of the device manager Data
Link Control in BOS Extensions 2.

Insert the Standard Ethernet, SOLC, Token-Ring, IEEE Etherent (802.3), or X.25 QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3-76

The write, writex subroutine.

OLC Extended Parameters for read Subroutine.

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Base Operating System Reference

writex

writex Subroutine Interface for Data Link Control (dlc) Devices

Purpose

Syntax

Allows application data to be sent using a file descriptor.

#include <sys/gdlextcb.h>

#include <sys/uio.h>

int writex (fildes, buf, len, ext)

char*buf;
int ext;

int fildes, len;

Description
Four types of data can be sent to GOLC. Network data can be sent to a service access point
(SAP), while normal, Exchange Identification (XI D), or datagram data can be sent to a link
station (LS). Data is transferred using the uiomove subroutine between the application user
space and kernel communications I/O buffers (mbufs). All data must fit into a single packet
for each write subroutine. The generic data link control (GOLC) does not separate the user's
write data area into multiple transmit packets. A maximum write data size is passed back to
the user at DLC_ENABLE_SAP completion and at OLC_START _LS completion for this
purpose. See DLC_SAPE_RES and DLC_STAS_RES for further information.

Normally, GDLC can immediately satisfy a write subroutine by completing the data link
headers and sending the transmit packet down to the device handler. In some cases,
however, transmit packets can be blocked by the particular protocol's flow control or by a
resource outage. GDLC reacts to this differently based on the systems blocked or
nonblocked file status flags. These are set for each channel using the O_NOELAY and
O_NONBLOCK values passed on open subroutines or on fcntl subroutines with the
F _SETFD parameter.

GDLC only looks at the uio_fmode on each write subroutine to determine whether the
operation is blocked or nonblocked. Nonblocked writes that cannot get enough resources to
queue the data return an error indication. Blocked write subroutines put the calling process
to sleep until the resources free up or an error occurs.

Note: GDLC does not support nonblocked transmit users based on resource availability
using the selwakeup subroutine. Internal resources such as communications 1/0
buffers and control block locks are very dynamic. Any write subroutines that fail with
errors (such as EAGAIN or ENOMEMj should be retried at the users discretion.

Parameters
fi/des Specifies the file descriptor returned from the open subroutine.

buf Points to the user data area.

len Contains the byte count of the user data area.

ext Specifies the extended subroutine parameter. This is a pOinter to the
dlc_io_ext extended I/O structure for the writex subroutine. DLC Extended

Data Link Controls 3-77

writex

Parameters for write subroutine provides more information on this
parameter.

Return Values
Upon successful completion, this service returns the number of bytes that were written into a
communications packet from the user data area.

If an error occurs, a value of -1 is returned with one of the following error numbers available
using errno, as defined in the errno.h header file.

EAGAIN

EBADF

EINVAL

EIO

ENOMEM

Not enough resources to satisfy the write; for example, unable to obtain a
necessary lock. The user can try again later.

Bad file number.

Invalid value, such as too much data for a single packet.

An I/O error has occurred, such as loss of the port.

Not enough resources to satisfy the write; for example, a lack of
communications memory buffers (mbufs). The user can try again later.

Implementation Specifics
This writex subroutine interface is part of the device manager Data Link Control in BOS
Extensions 2.

Insert the Standard Ethernet, SDLC, Token-Ring, IEEE Etherent (802.3), or X.2S QLLC (or
any combination) in place of device manager above, depending on which device manager
you decide to use.

Related Information

3-78

The writex subroutine, uiomove subroutine, fentl subroutine, open subroutine.

DLC Extended Parameters for write Subroutine

readx Subroutine Interface for Data Link Control (dlc) Devices

Parameter Blocks by ioctl Operation for DLC

Generic Data Link Control (GDLC) Environment Overview in Communications Programming
Concepts.

Base Operating System Reference

Network Computing System (NCS)

Network Computing System (NCS) 4-1

4-2 Base Operating System Reference

Ib_$lookup_interface

Ib_$lookup_interface Library Routine (NCS)

Purpose

Syntax

Looks up information about an interface in the GLB database.

void Ib_$lookup_interface (objeclinterface, lookup_handle, max_results, num_results,
results, status)
uUid_$t *objecLinterface;
Ib_$lookup_handle_t *Iookup_handle;
unsigned long max_results;
unsigned long * num_results;
Ib_$entry_t results [];
status_$t *status;

Parameters
Input

objecLin terface

Input/Output

lookup_handle

Output

results

status

Points to the UUID of the interface being looked up.

Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results parameter array.

Specifies a location in the database. On input, the lookup_handle
value indicates the location in the database where the search
begins. An input value of Ib_$default_lookup_handle specifies
that the search starts at the beginning of the database.

On return, the lookup_handle parameter indicates the next
unsearched part of the database (that is, the point at which the
next search should begin). A return value of
Ib_$default_lookup_handle indicates that the search reached
the end of the database. Any other value indicates that the
search found at most the number of matching entries specified by
the max_results parameter before it reached the end of the
database.

Points to the number of entries that are returned in the results
parameter array.

Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

Points to the completion status.

Network Computing System (NCS) 4-3

Description

Example

The Ib_$lookup_interface routine returns GL8 database entries whose object_interface
fields match the specified interface. It returns information about all replicas of all objects that
can be accessed through that interface.

The Ib_$lookup_interface routine cannot return more than the number of matching entries
specified by the max_results parameter at one time. The lookup_handle parameter directs
this routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls, which can cause the locations of entries relative to a lookup_handle
value to change. If multiple calls are made to find all matching results in the
database, the returned information may skip or duplicate entries from the
database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

1. To look up information in the GL8 database about a matrix multiplication interface, use
the following:

Ih_$lookup_interface (&matrix_if_id, &lookup_handle,
results_array_size, &num_results,
&matrix_if_results_array, &status);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

4-4 Base Operating System Reference

Ib_$lookup_object

Ib_$lookup_object Library Routine (NCS)

Purpose

Syntax

Looks up information about an object in the GLB database.

void Ib_$lookup_object (object, lookup_handle, max_results, num_results, results, status)

uUid_$t *object;
Ib_$lookup_handle_t *Iookup_handle;
unsigned long max_results;
unsigned long *num_results;
Ib_$entry _t results [];
status_$t * status;

Parameters
Input

object

Input/Output

lookup_handle

Output

results

status

Points to the UUID of the object being looked up.

Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results parameter array.

Specifies a location in the database. On input, the value of the
lookup_handle parameter indicates the location in the database
where the search begins. An input value of
Ib_$default_lookup_handle specifies that the search starts at
the beginning of the database.

On return, the lookup_handle parameter indicates the next
unsearched part of the database (that is, the point at which the
next search should begin). A return value of
Ib_$default_lookup_handle indicates that the search reached
the end of the database. Any other value indicates that the
search found at most the number of matching entries specified by
the max_results parameter before it reached the end of the
database.

Points to the number of entries that were returned in the results
parameter array.

Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

Points to the completion status.

Network Computing System (NCS) ~5

Description

Example

The Ib_$lookup_object routine returns GLB database entries whose object fields match
the specified object. It returns information about all replicas of an object and all interfaces to
the object.

The Ib_$lookup_object routine cannot return more than the number of matching entries
specified by max_results parameter at one time. The lookup_handle parameter directs this
routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls, which can cause the locations of entries relative to a value of the
lookup_handle parameter to change. If multiple calls are made to find all matching
results in the database, the returned information may skip or duplicate entries from
the database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

1. To look up GLB database entries for the bank bank_id, enter the following:

lb_$lookup_object(&bank_id, &lookup_handle, MAX_LOCS, &n locs,
bank_loc, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-6 Base Operating System Reference

Ib_$lookup_object_local Library Routine (NCS)

Purpose

Syntax

Looks up information about an object in an LLB database.

void Ib_$lookup_object_local (object, sockaddr, slength, lookup_handle, max_results,
num_results, results, status)
uUid_$t *object;
socket_ $addr _ t * sockaddr,
unsigned long slength;
Ib_$lookup_handle_t *Iookup_handle;
unsigned long max_results;
unsigned long * num_results;
Ib_$entry_t results [];
status_$t *status;

Parameters
Input

object

sockaddr

slength

Input/Output

lookup_handle

Points to the UUID of the object being looked up.

Specifies the location of the LLB database to be searched. The
socket address must specify the network address of a host.
However, the port number in the socket address is ignored. The
lookup request is always sent to the host's LLB port.

Specifies the length, in bytes, of the socket address specified by
the sockaddr parameter.

Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results parameter array.

Specifies a location in the database. On input, the value of the
lookup_handle parameter indicates the location in the database
where the search begins. An input value of
Ib_$default_lookup_handle specifies that the search starts at
the beginning of the database.

On return, the lookup_handle indicates the next unsearched part
of the database (that is, the point at which the next search should
begin). A return value of Ib_$default_lookup_handle indicates
that the search reached the end of the database. Any other value
indicates that the search found at most the number of matching
entries specified by the max_results parameter before it reached
the end of the database.

Network Computing System (NCS) 4-7

I b _ $Iookup _object_local

Output

results

status

Points to the number of entries that were returned in the results
parameter array.

Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

Points to the completion status.

Description

Example

The Ib_$lookup_object_local routine searches the specified LLB database and returns all
entries whose object fields match the specified object. It returns information about all
replicas of an object and all interfaces to the object that are located on the specified host.

The Ib_$lookup_interface routine cannot return more than the number of matching entries
specified by the max_results parameter at one time. The lookup_handle parameter directs
this routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls. This can cause the locations of entries relative to a value of the
lookup_handle parameter to change. If multiple calls are made to find all matching
results in the database, the returned information may skip or duplicate entries from
the database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

1. In the following example, the repob object is replicated, with only one replica located on
any host. To look up information about the repob object, enter the following:

Ib_$lookup_object_local (&repob_id, &location, location_length,
&lookup_handle, 1, &num_results, myob_entry, &st):

Since there is only one replica located on any host, the routine returns at most one result.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-8 Base Operating System Reference

Ib_$lookup_range Library Routine (NCS)

Purpose

Syntax

Looks up information in a GLB or LLB database.

void Ib_$lookup_range (object, objecLtype, objecLinterface, location, lookup_handle,
location_length, max_results, num_results, results, status)

uuid_$t *object;
uuid_$t *objecLtype;
uuid_$t *objecLinterface;
socket_$addr_t *Iocation;
unsigned long location_length;
Ib_$lookup_handle_t * lookup_handle;
unsigned long max_results;
unsigned long * num_results;
Ib_$entry_t results [];
status_$t *status;

Parameters
Input

object

objecLtype

objecLinterface

location

'ocation_'ength

Points to the UUID of the object being looked up.

Points to the UUID of the type being looked up.

Points to the UUID of the interface being looked up.

Points to the location of the database to be searched. If the value
of the location_'ength parameter is 0, the GLB database is
searched. Otherwise, the LLB database at the host specified by
the socket address is searched. If the LLB database is searched,
the port number in the socket address is ignored, and the lookup
request is sent to the LLB port.

Specifies the length, in bytes, of the socket address indicated by
the location parameter. A value of 0 indicates that the GLB
database is to be searched.

Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results array.

Network Computing System (NCS) 4-9

Ib_$lookup_range

Input/Output

lookup_ handle

Output

results

status

Specifies a location in the database. On input, the value of the
lookup_handle parameter indicates the location in the database
where the search begins. An input value of
'b_$defau't_'ookup_hand'e specifies that the search starts at
the beginning of the database.

On return, the lookup_handle parameter indicates the next
unsearched part of the database (that is, the point at which the
next search should begin). A return value of
'b_$default_'ookup_hand'e indicates that the search reached
the end of the database. Any other value indicates that the
search found at most the number of matching entries specified by
the max_results parameter before it reached the end of the
database.

Points to the number of entries that were returned in the results
parameter array.

Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

Points to the completion status.

Description

4-10

The Ib_$lookup_range routine returns database entries that contain matching object,
obi_type, and obi_interface identifiers. A value of uuid_$nil in any of these input
parameters acts as a wild card and matches a" values in the corresponding entry field. You
can include wild cards in any combination of these parameters.

The Ib_$lookup_interface routine cannot return more than the number of matching entries
specified by the max_results parameter at one time. The lookup_handle parameter directs
this routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls, which can cause the locations of entries relative to a value of the
lookup_handle parameter value to change. If multiple calls are made to find all
matching results in the database, the returned information may skip or duplicate
entries from the database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPe packet (64K
bytes).

Base Operating System Reference

Example
1. To look up information in the GLB database about the change_if interface to the

proc_db2 object (which is of the proc_db type), enter the following:

lb_$lookup_range (&proc_db2_id, &proc_db_id, &change_if_id,
glb, 0, & lookup_handle , 10, &num_results, results, &st);

The name glb is defined elsewhere as a null pointer. The results parameter is a
1 O-element array of the Ib_$entry_t type.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-11

Ib_$lookup_type Library Routine (NCS)

Purpose

Syntax

Looks up information about a type in the GLB database.

void Ib_$lookup_type (objecCtype, lookup_handle, max_results, num_results, results,
status) .

uUid_$t *objecLtype;
Ib_$lookup_handle_t *Iookup_handle;
unsigned long max_results;
unsigned long * num_results;
Ib_$entry_t results [];
status_$t *status;

Parameters

4-12

Input

objecLtype

Input/Output

lookup_handle

Output

results

status

Points to the UUID of the type being looked up.

Specifies the maximum number of matching entries that can be
returned by a single call. This should be the number of elements
in the results parameter array.

Specifies a location in the database. On input, the value of the
lookup_handle parameter indicates the location in the database
where the search begins. An input value of
Ib_$default_lookup_handle specifies that the search starts at
the beginning of the database.

On return, the lookup_handle parameter indicates the next
unsearched part of the database (that is, the point at which the
next search should begin). A return value of
Ib_$default_lookup_handle indicates that the search reached
the end of the database. Any other value indicates that the
search found at most the number of matching entries specified by
the max_results parameter before it reached the end of the
database.

Points to the number of entries that were returned in the results
parameter array .

. Specifies the array that contains the matching GLB database
entries, up to the number specified in the max_results parameter.
If the array contains any entries for servers on the local network,
those entries appear first.

Points to the completion status.

Base Operating System Reference

Description

Example

The Ib_$lookup_type routine returns GLB database entries whose obi_type fields match
the specified type. It returns information about all replicas of all objects of that type and
about all interfaces to each object.

The Ib_$lookup_type routine cannot return more than the number of matching entries
specified by the max_results parameter at one time. The lookup_handle parameter directs
this routine to do sequential lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between
lookup calls, which can cause the locations of entries relative to a value of the
lookup_handle parameter to change. If multiple calls are made to find all matching
results in the database, the returned information may skip or duplicate entries from
the database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries.
This can occur if the size of the results exceeds the size of an RPC packet (64K
bytes).

1. To look up information in the GLB database about the array_proc type, enter the
following:

lb_$lookup_type (&array_proc_id, &lookup_handle, 10,
&nurn_results, &results, &st)

The results parameter is a 1 O-element array of the Ib_$entry_t type.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (80S) Runtime.

Network Computing System (NCS) ~13

Ib_$register

Ib_$register Library Routine (NCS)

Purpose

Syntax

Registers an object and an interface with the Location Broker.

void Ib_$register (object, objecCtype, objecCinterface, flags, annotation, sockaddr,
s/ength, entry, status)
uUid_$t *object;
uUid_$t *objecCtype;
uuid_$t *objecCinterface;
b_$server_flag_t *flags;
char annotation [];
socket_$addr_t*sockaddr,
unsigned long slength;
Ib_$entry _t *entry;
status_$t *status;

Parameters
Input

object

objecCtype

objecCinterface

flags

annotation

sockaddr

slength

Output

entry

status

Points to the UUID of the object being looked up.

Points to the UUID of the type being looked up.

Points to the UUID of the interface being looked up.

Points to the server that implements the interface. The value
must be a or Ib_$server_flag_local.

Specifies information, such as textual descriptions of the object
and the interface. It is set in a 64-character array.

Points to the socket address of the server that exports the
interface to the object.

Specifies the length, in bytes, of the socket address (sockaddr).

Points to the copy of the entry that was entered in the Location
Broker database.

Points to the completion status.

Description

4-14

The Ib_$register routine registers with the Location Broker a specific interface to an object
and the location of a server that exports that interface. This routine replaces an existing
entry in the Location Broker database that matches the object, objecCtype, and
objecCinterface parameters as well as both the address family and host in the socket
address specified by the sockaddr parameter. If no such entry exists, the routine adds a new
entry to the database.

Base Operating System Reference

Example

If the flags parameter has a value of Ib_$server_flag_local, the entry is registered only in
the LLB database at the host where the call is issued. Otherwise, the entry is registered in
both the LLB and the GLB databases.

1. To register the bank interface to the bankJd object, enter the following:

Ib_$register (&bank_id, &bank_$uuid, &bank_$if_spec.id, 0,
BankName, &saddr, slen, &entry, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (80S) Runtime.

Network Computing System (NCS) 4-15

Ib_$unregister

Ib_$unregister Library Routine (NCS)

Purpose

Syntax

Removes an entry from the Location Broker database.

void Ib_$unregister (entry, status)
Ib_$entry_t *entry;
status_$t *status;

Parameters
Input

entry Points to the entry being removed from the Location Broker database.

Output

status Points to the completion status.

Description

Example

The Ib_$unregister routine removes from the Location Broker database the entry that
matches the value supplied in the entry parameter. The value of the entry parameter should
be identical to that returned by the Ib_$register routine when the database entry was
created. However, the Ib_$unregister routine does not compare all of the fields in the entry
parameter. It ignores the flags field, the annotation field, and the port number in the saddr
field.

This routine removes the entry from the LLB database on the local host (the host that issues
the call). If the flags field of the entry parameter is not the value Ib_$server_flag_local, this
routine also removes the entry from all replicas of the GLB database.

1. To unregister the entry specified by the BankEntry results structure, which was obtained
from a previous call to the Ib_$register routine, enter the following:

Ib_$unregister (&BankEntry, &st);

Implementation Specifics

4-16

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Base Operating System Reference

pfm_$cleanup Library Routine (NCS)

Purpose

Syntax

Establishes a cleanup handler.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

status_$t
pfm_$cleanup(cleanup_record)
pfm_$cleanup_rec *cleanup_record;

Parameters
Input

cleanup_record A record of the context in which the pfm_$cleanup routine is called. A
program should treat this as an opaque data structure and not try to
alter or copy its contents. It is needed by the pfm_$cleanup and
pfm_$reset_cleanup routines to restore the context of the calling
process at the cleanup handler entry point.

Description
The pfm_$cleanup routine establishes a cleaunup handler that is executed when a fault
occurs. A cleaunup handler is a piece of code executed before a program exits when a
signal is received by the process. The cleaunup handler begins with a call to the
pfm_$cleanup routine. This routine registers an entry point with the system where program
execution resumes when a fault occurs. When a fault occurs, execution resumes after the
most recent call to the pfm_$cleanup routine.

There can be more than one cleaunup handler in a program. Multiple cleaunup handlers are
executed consecutively on a last-in/first-out basis, starting with the most recently established
handler and ending with the first cleaunup handler. The system provides a default cleaunup
handler established at program invocation. The default cleaunup handler is always called
last, just before a program exits, and releases any system resources still held before
returning control to the process that invoked the program.

When called to establish a cleaunup handler, the pfm_$cleanup routine returns the
pfm_$cleanup_set status to indicate that the cleaunup handler was successfully
established. When the cleaunup handler is entered in response to a fault signal, the
pfm_$cleanup routine effectively returns the value of the fault that triggered the handler.

Note: Cleanup handler code runs with asynchronous faults inhibited. When the
pfm_$cleanup routine returns something other than pfm_$cleanup_set status,
which indicates that a fault has occurred, there are four possible ways to leave the
clean_up code:

• The program can call the pfm_$signal routine to start the next cleaunup handler
with a different fault signal.

• The program can call the pfm_$exit routine to start the next cleaunup handler
with the same fault signal.

Network Computing System (NCS) 4-17

Example

• The program can continue with the code following the cleaunup handler. It should
generally call the pfm_$enable routine to re-enable asynchronous faults.
Execution continues from the end of the cleaunup handler code; it does not
resume where the fault signal was received.

• The program can re-establish the handler by calling the pfm_$reset_cleanup
routine before proceeding.

1. To establish a cleaunup handler for a routine, use the following:

fst = pfm_cleanup(crec)

where fst is of type status_$t and crec is of type pfm_$cleanup_crec.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Related Information
The pfm_$signal routine.

4-18 Base Operating System Reference

pfm_$enable Library Routine (NeS)

Purpose

Syntax

Enables asynchronous faults.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$enable (void)

Description

Example

The pfm_$enable routine enables asynchronous faults after they have been inhibited by a
call to the pfm_$inhibit routine. The pfm_$enable routine causes the operating system to
pass asynchronous faults on to the calling process.

While faults are inhibited, the operating system holds at most one asynchronous fault.
Consequently, when pfm_$enable returns, there can be at most one fault waiting on the
process. If more than one fault was received between calls to the pfm_$inhibit and
pfm_$enable routines, the process receives the first asynchronous fault received while
faults were inhibited.

1. To enable asynchronous interrupts to occur after a call to the pfm_$inhibit routine, use
the following:

pfrn_$enable();

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The pfm_$enable_faults routine, pfm_$inhibit routine.

Network Computing System (NCS) 4-19

pfm_$enable_faults Library Routine (NCS)

Purpose

Syntax

Enables asynchronous faults.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$enable_faults (void)

Descri ption

Example

The pfm_$enable_faults routine enables asynchronous faults after they have been
inhibited by a call to the pfm_$inhibit_faults routine. The pfm_$enable_faults routine
causes the operating system to pass asynchronous faults on to the calling process.

While faults are inhibited, the operating system holds at most one asynchronous fault.
Consequently, when pfm_$enable_faults returns, there can be at most one fault waiting on
the process. If more than one fault was received between calls to the pfm_$inhibit_faults
and pfm_$enable_faults routines, the process receives the first asynchronous fault
received while faults were inhibited.

1. To enable faults to occur after a call to pfm_$inhibit_faults, use the following:

pfm_$enable_faults();

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Related Information
The pfm_$enable routine, pfm_$inhibit_faults routine.

4-20 Base Operating System Reference

pfm_$inhibit Library Routine (NeS)

Purpose

Syntax

Inhibits asynchronous faults.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$inhibit (void)

Description

Example

The pfm_$inhibit routine prevents asynchronous faults from being passed to the calling
process. While faults are inhibited, the operating system holds at most one asynchronous
fault. Consequently, a call to the pfm_$inhibit routine can result in the loss of some signals.
For that and other reasons, it is good practice to inhibit faults only when absolutely
necessary.

Note: This routine has no effect on the processing of synchronous faults, such as access
violations or floating-point and overflow exceptions.

1. To prevent asynchronous interrupts from occurring in a critical portion of a routine, use
the following:

pfrn_$inhibit();

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The pfm_$enable routine, pfm_$inhibit_faults routine.

Network Computing System (NCS) 4-21

pfm_$inhibit_faults Library Routine (NeS)

Purpose

Syntax

Inhibits asynchronous faults, but allows task switching.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$inhibit_faults (void)

Description

Example

The pfm_$inhibit routine prevents asynchronous faults, except for time-sliced task
switching, from being passed to the calling process. While faults are inhibited, the operating
system holds at most one asynchronous fault. Consequently, a call to the
pfm_$inhibit_faults routine can result in the loss of some signals. For that and other
reasons, it is good practice to inhibit faults only when absolutely necessary.

Note: This routine has no effect on the processing of synchronous faults, such as access
violations or floating-point and overflow exceptions.

1. To prevent faults from occurring in a critical portion of a routine, use the following:

pfm_$inhibit_faults();

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The pfm_$enable_faults routine, pfm_$inhibit routine.

4-22 Base Operating System Reference

pfm_$init Library Routine (NCS)

Purpose

Syntax

Initializes the program fault management (PFM) package.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$init (flags)
unsigned long flags;

Parameters
Input

flags Indicates which initialization activities to perform. Currently only one value is
valid: pfm_$init_signal_handlers. This causes C signals to be intercepted
and converted to PFM signals. The signals intercepted are SIGINT,
SIGILL, SIGFPE, SIGTERM, SIGHUP, SIGQUIT, SIGTRAP, SIGBUS,
SIGSEGV, and SIGSYS.

Description

Example

The pfm_$init routine initializes the PFM package. Applications that use the PFM package
should invoke the pfm_$init routine before invoking any other NCS routines.

1. To initialize the PFM subsystem, use the following:

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-23

pfm _ $reset_ cleanup

pfm_$reset_cleanup Library Routine (NCS)

Purpose

Syntax

Resets a cleanup handler.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$reset_cleanup (cleanup_record, status)
pfm_$cleanup_rec *cleanup_record;
status_$t *status;

Parameters
Input

cleanup_ record

Output

status

A record of the context at the cleanup handler entry point. It is supplied
by the pfm_$cleanup routine when the cleanup handler is first
established.

Points to the completion status.

Description

Example

The pfm_$reset_cleanup routine re-establishes the cleanup handler last entered so that
any subsequent errors enter it first. This procedure should only be used within cleanup
handler code.

1. To re-establish a cleanup handler, use the following:

pfm_$reset_cleanup(crec, st);

where the crec cleanup record is a valid cleanup handler.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

4-24 Base Operating System Reference

pfm_$rls_cleanup

pfm_$rls_cleanup Library Routine (NCS)

Purpose

Syntax

Releases cleanup handlers.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$rls_cleanup(cleanup_record, status)
pfm_$cleanup_rec *cleanup_record;
status_$t *status;

Parameters
Input

cleanup_record

Output

status

The cleanup record for the first cleanup handler to release.

Points to the completion status. If the status parameter has a value of
pfm_$bad_rls_order, it means that the caller attempted to release a
cleanup handler before releasing all handlers established after it. This
status is only a warning. The intended cleanup handler is released,
along with all cleanup handlers established after it.

Description

Example

The pfm_$rls_cleanup routine releases the cleanup handler associated with the
cleanup_record parameter and all cleanup handlers established after it.

1. To release an established cleanup handler, use the following:

pfm_$rls_cleanup(crec, st);

where crec is a valid cleanup record established by the pfm_$cleanup routine.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-25

pfm_$signal

pfm_$signal Library Routine

Purpose

Syntax

Signals the calling process.

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void
pfm_$signal (faulLsigna~
status_$t *fauILsignal;

Parameters
Input

faulL signal A fault code.

Description

Example

The pfm_$signal routine signals the fault specified by the faulLsignal parameter to the
calling process. It is usually called to leave cleanup handlers.

Note: This routine does not return when successful.

1. To send the calling process a fault signal, use the following:

pfm_$signal(fst);

where fst is a valid PFM fault.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

4-26 Base Operating System Reference

rpc_$alloc_handle Library Routine (NCS)

Purpose

Syntax

Creates an RPC handle.

handle_t rpc_$alloc_handle (objecCid, family, status)

uUid_$t *objecCid;
unsigned long family;
status_$t *status;

Parameters
Input

objecCid

family

Output

status

Points to the UUID of the object to be accessed. If there is no specific
object, specify uuid_$nil as the value.

Specifies the address family to use in communications to access the object.

Points to the completion status.

Description
The rpc_$alloc_handle routine creates an unbound RPC handle that identifies a particular
object but not a particular server or host. A remote procedure call made using an unbound
handle is broadcast to all Local Location Brokers (LLBs) on the local network. If the call's
interface and the object identified by the handle are both registered with any LLB, that LLB
forwards the request to the registering server. The client RPC runtime library returns the first
response that it receives and binds the handle to the server.

Note: This routine is used by clients only.

Return Value

Example

Upon successful completion, the rpc_$alloc_handle routine returns an RPC handle
identifying the remote object in the form handle_t. This handle is used as the first input
parameter to remote procedure calls with explicit handles.

The following statement allocates a handle that identifies the Acme company's payroll
database object:

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-27

rpc_$bind Library Routine (NCS)

Purpose

Syntax

Allocates an RPC handle and sets its binding to a server.

handle_t rpc_$bind (objecLid, sockaddr, slength, status)
uUid_$t *objecLid;
socket_$addr_t*sockaddr,
unsigned long slength;
us_$t *status;

Parameters
Input

objecLid

sockaddr

slength

Output

Points to the UUID of the object to be accessed. If there is no specific
object, specify uuid_$nil as the value.

Points to the socket address of the server.

Specifies the length, in bytes, of the socket address (sockaddfj.

status Points to the completion status.

Description
The rpc_$bind function creates a fully bound RPC handle that identifies a particular object
and server. This routine is equivalent to an rpc_$alloc_handle routine followed by an
rpc_$set_binding routine.

Note: This routine is used by clients only.

Return Value

Example

Upon successful completion, this routine returns an RPC handle (handle_t) that identifies
the remote object. This handle is used as the first input parameter to remote procedure calls
with explicit handles.

The following example binds a banking client program to the specified object and socket
address:

h = rpc_$bind(&bank_id, &bank_loc[O].saddr, bank_loc[O].saddr_len,
&st) ;

The bankJoc structure is the results parameter of a previous Location Broker lookup call.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (80S) Runtime.

Related Information
The rpc_$alloc_handle routine, rpc_$set_binding routine.

4-28 Base Operating System Reference

rpc_$clear_binding Library Routine (NCS)

Purpose

Syntax

Unsets the binding between an RPC handle and a host and server.

void rpc_$clear_binding (handle, status)
handle_t handle;
status_$t *status;

Parameters
Input

handle Specifies the RPC handle from which the binding is being cleared.

Output

status Points to the completion status.

Description

Example

The rpc_$clear_binding routine removes any association between an RPC handle and a
particular server and host, but does not remove the association between the handle and an
object. This routine saves the RPC handle so that it can be reused to access the same
object, either by broadcasting or after resetting the binding to another server.

A remote procedure call made using an unbound handle is broadcast to all Local Location
Brokers (LLBs) on the local network. If the call's interface and the object identified by the
handle are both registered with any LLB, that LLB forwards the request to the registering
server. The client RPC runtime library returns the first response that it receives and binds the
handle to the server.

The rpc_$clear_binding routine reverses an rpc_$set_binding routine.

Note: This routine is used by clients only.

To clear the binding represented in a handle, enter the following:

rpc_$clear_binding(handle, &st)i

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_$set_binding routine.

Network Computing System (NCS) 4-29

rpc_$clear_server_binding Library Routine (NCS)

Purpose

Syntax

Unsets the binding between an RPC handle and a server.

void rpc_$clear_server_binding (handle, status)
handle_t handle;
status_$t *status;

Parameters
Input

handle Specifies the RPC handle from which the server binding is being cleared.

Output

status Points to the completion status.

Description

Example

The rpc_$clear_server_binding routine removes the association between an RPC handle
and a particular server (which is a particular port number), but does not remove the
associations with an object and a host. For example, the routine unmaps the handle to the
port number, but it leaves the object and host associated through a network address.

This routine replaces a fully bound handle with a bound-to-host handle. A bound-to-host
handle identifies an object located on a particular host, but does not identify a server
exporting an interface to the object.

If a client uses a bound-to-host handle to make a remote procedure call, the call is sent to
the Local Location Broker (LLB) forwarding port at the host identified by the handle. If the
call's interface and the object identified by the handle are both registered with the host's
LLB, the LLB forwards the request to the registering server. When the client RPC runtime
library receives a response, it binds the handle to the server. Subsequent remote procedure
calls that use this handle are then sent directly to the bound server's port.

The rpc_$clear_server_binding routine is used for client error recovery when a server
dies. The port that a server uses when it restarts is not necessarily the same port that it used
previously. Therefore, the binding that the client was using may not be correct. This routine
enables the client to unbind from the dead server while retaining the binding to the host.
When the client sends a request, the binding is automatically set to the server's new port.

Note: This routine is used by clients only.

To clear the server binding represented in a handle, enter the following:

rpc_$clear_server_hinding(handle, &st);

Implementation Specifics

4-30

This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Base Operating System Reference

rpc_$dup_handle Library Routine (NCS)

Purpose

Syntax

Makes a copy of an RPC handle.

handle_t rpc_$dup_handle (handle, status)
handle_t handle;
status_$t *status;

Parameters
Input

handle

Output

Specifies the RPC handle to be copied.

status Points to the completion status.

Description
The rpc_$dup_handle routine returns a copy of an existing RPC handle. Both handles can
then be used in the client program for concurrent multiple accesses to a binding. Because all
duplicates of a handle reference the same data, a call to the rpc_$set_binding,
rpc_$clear_binding, or rpc_$clear_server_binding routine made on anyone duplicate
affects all duplicates. However, an RPC handle is not freed until the rpc_$free_handle
routine is called on all copies of the handle.

Note: This routine is used by clients only.

Return Value

Example

Upon successful completion, this routine returns the duplicate handle (handle_t).

1. To create as thread_2_handle a copy of a handle, enter the following:

thread 2 handle = rpc_$dup_handle(handle, &st)i

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-31

rpc_$free_handle Library Routine (NCS)

Purpose

Syntax

Frees an RPC handle.

void rpc_$free_handle (handle, status)
handle_t handle;
status_$t *status;

Parameters
Input

handle Specifies the RPC handle to be freed.

Output

status Points to the completion status.

Description

Example

The rpc_$free_handle routine frees an RPC handle by clearing the association between the
handle and a server or an object, and then releasing the resources identified by the RPC
handle. The client program cannot use a handle after it is freed.

To make multiple RPC calls using the same interface but different socket addresses, replace
the binding in an existing handle with the rpc_$set_binding routine instead of creating a
new handle with the rpc_$free_handle and rpc_$bind routines.

To free copies of RPC handles created by the rpc_$dup_handle routine, use the
rpc_$free_handle routine once for each copy of the handle. However, the RPC runtime
library does not differentiate between calling the rpc_$free_handle routine several times on
one copy of a handle and calling it one time for each of several copies of a handle.
Therefore, if you use duplicate handles, you must ensure that no thread inadvertently makes
multiple rpc_$free_handle calls on a single handle.

Note: This routine is used by clients only.

1. To free two copies of a handle, enter the following:

rpc_$free_handle(handle, &st);
rpc_$free_handle(thread_2_handle, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Related Information
The rpc_$set_binding routine, rpc_$dup_handle routine.

4-32 Base Operating System Reference

rpc_$inq_binding Library Routine (NCS)

Purpose

Syntax

Returns the socket address represented by an RPC handle.

void rpc_$inq_binding (handle, sockaddr, slength, status)
handle_t handle;
socket_$addr_t*sockaddr,
unsigned long *slength;
status_$t * status;

Parameters
Input

handle Specifies an RPC handle.

Output

sockaddr Points to the socket address represented by the handle parameter.

slength Points to the length, in bytes, of the socket address (sockaddt).

status Points to the completion status.

Description
The rpc_$inq_binding routine enables a client to determine the socket address, and
therefore the server, identified by an RPC handle. It can be used to determine which server
is responding to a remote procedure call when a client uses an unbound handle in the call.

Note: This routine is used by clients only.

Diagnostics

Example

The rpc_$inq_binding routine fails if the following is true:

The handle is not bound and does not represent a specific
host address.

1. The Location Broker administrative tool, Ib_admin, uses the following statement to
determine the particular GLB that responded to a lookup request:

rpc_$inq_binding(glb_$handle, &global_broker_addr,
&global_broker_addr_len, &status);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-33

rpc_$inq_object

rpc_$inq_object Library Routine (NCS)

Purpose

Syntax

Returns the object UUID represented by an RPC handle.

void rpc_$inq_object (handle, objecCid, status)
handle_t handle;
uuid_$t *objecCid;
status_$t *status;

Parameters
Input

handle Specifies an RPC handle.

Output

objecCid Points to the UUID of the object identified by the handle parameter.

status Points to the completion status.

Description

Example

The rpc_$inq_object routine enables a server to determine the particular object that a client
is accessing. A server must use rpc_$inq_object if it exports an interface through which
multiple objects may be accessed.

A server can make this call only if the interface uses explicit handles (that is, if each
operation in the interface has a handle argument). If the interface uses an implicit handle,
the handle identifier is not passed to the server.

Note: This routine is used by servers only.

1. A database server that manages multiple databases must determine the particular
database to be accessed whenever it receives a remote procedure call. Each manager
routine therefore makes the following call:

rpc_$ing_object(handle, &db_uuid, sst);

The routine then uses the returned UUID to identify the database to be accessed.

Implementation Specifics

4-34

This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Base Operating System Reference

rpc_$listen Library Routine (NCS)

Purpose

Syntax

Listens for and handles remote procedure call packets.

void rpc_$listen (max_calls, status)
unsigned long max_calls;
status_$t *status;

Parameters
Input

max_calls

Output

status

Specifies the maximum number of calls (in the range 1 through 10) that the
server is allowed to process concurrently.

Points to the completion status.

Description
The rpc_$listen routine dispatches incoming remote procedure call requests to manager
procedures and returns the responses to the client. You must issue an rpc_$use_family or
rpc_$use_family_wk routine before you use the rpc_$listen routine.

If the value of the max_calls parameter is greater than 1, the server RPC runtime library
uses Concurrent Programming Support (CPS) to handle multiple calls simultaneously. As a
result, the manager routines must be re-entrant. This means they must maintain
concurrency controls on any nonlocal variables to prevent conflicts among the various
threads of execution.

Note: This routine is used by servers only.

Return Value

Example

This routine normally does not return.

1. To have a server listen for incoming remote procedure call requests, handling up to trve
concurrently, enter the folliowing:

rpc_$listen(5, &status);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Related Information
The rpc_$use_family routine, rpc_$use_family_wk routine.

Network Computing System (NCS) 4-35

rpc_$name_to_sockaddr

rpc_$name_to_sockaddr Library Routine (NCS)

Purpose

Syntax

Converts a host name and port number to a socket address.

void rpc_$name_to_sockaddr (name, nlength, port, family, sockaddr, slength, status)

char *name;
unsigned long nlength;
unsigned long port;
unsigned long family;
socket_$addr_t*sockaddr,
unsigned long * slength;
status_$t *status;

Parameters
Input

4-36

name

nlength

port

family

Output

sockaddr

slength

status

Points to a host name, and optionally, a port and an address family, in the
form: family:host{porfj. The family: and [porfj parameters are optional. If
you specify a family variable as part of the name parameter, you must
specify socket_$unspec in the family parameter. The only supported value
for the family variable is ip. The host parameter specifies the host name,
and port specifies a port number in integer form.

Specifies the number of characters in the name parameter.

Specifies the socket port number. If you are not specifying a well-known
port, this parameter should have the value socket_$unspec_port. The
returned socket address will specify the Local Location Broker (LLB)
forwarding port at the host. If you specify the port number in the name
parameter, this parameter is ignored.

Specifies the address family to use for the socket address. This value
corresponds to the communications protocol used to access the socket and
determines how the socket address (sockaddr) is expressed. If you specify
the address family in the name parameter, this parameter must have the
value socket_$unspec.

Points to the socket address corresponding to the name, port, and family
parameters.

Points to the length, in bytes, of the socket address (specified by the
sockaddr parameter).

Points to the completion status.

Base Operating System Reference

rpc_$name_to_sockaddr

Description

Example

The rpc_$name_to_sockaddr routine provides the socket address for a socket, given the
host name, the port number, and the address family.

You can specify the socket address information either as one text string in the name
parameter, or by passing each of the three elements as a separate parameter. When three
separate elements are passed, the name parameter should contain only the host name.

1. To place in the sockaddr structure a socket address that specifies the LLB forwarding
port at the host identified by host_name, enter the following:

rpc_$name_to_sockaddr(host_name, strlen(host_name) ,
socket_$unspec_port,socket_$dds, &sockaddr, &slen, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) .4-37

rpc_$register

rpc_$register Library Routine (NeS)

Purpose

Syntax

Registers an interface at a server.

void rpc_$register (ilspec, epv, status)
rpc_$if_spec_t *ilspec;
rpc_$epv_t epv;
status_$t *status;

Parameters
Input

ilspec

epv

Output

status

Points to the interface being registered.

Specifies the entry point vector (EPV) for the operations in the interface.
The EPV is normally defined in the server stub that is generated by the
NIDL compiler from an interface definition.

Points to the completion status.

Description
The rpc_$register routine registers an interface with the RPC runtime library. After an
interface is registered, the RPC runtime library passes requests for that interface to the
server.

You can call rpc_$register multiple times with the same interface (for example, from various
subroutines of the same server), but each call must specify the same EPV. Each registration
increments a reference count for the registered interface. An equal number of calls to the
rpc_$unregister routine are then required to unregister the interface.

Note: This routine is used by servers only.

Diagnostics

Example

4-38

The rpc_$register routine fails if one or more of the following is true:

rpc_$illegal_register

The maximum number of interfaces is already registered with the
server.

You are trying to register an interface that is already registered,
and you are using an EPV different from the one used when the
interface was first registered.

1. To register a bank interface with the bank server host's RPe runtime library, enter the
following:

Base Operating System Reference

rpc_$register

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Related Information
The rpc_$unregister routine.

Network Computing System (NCS) 4-39

rpc_$set_binding Library Routine (NeS)

Purpose

Syntax

Associates an RPe handle with a server.

rpc_$set_binding (hafJdle, sockaddr, slength, status)
struct handle_t * handle;
struct socket_$addr_t *sockaddr;
int slength;
struct status_$t *status;

Parameters
Input

handle

sockaddr

slength

Output

Specifies an RPe handle.

Specifies the socket address of the server with which the handle is being
associated.

Specifies the length, in bytes, of the socket address {sockaddt}.

status Specifies the completion status.

Description

Example

The rpc_$set_binding routine sets the binding of an RPe handle to the specified server.
The handle then identifies a specific object at a specific server. Any subsequent remote
procedure calls that a client makes using the handle are sent to this destination. This routine
can also replace an existing binding in a fully bound handle, or set the binding in an unbound
handle. .

Note: This routine is used by clients only.

1. To set the binding on the m_handle handle to the first server in the results array, which
was returned by a previous Location Broker lookup call, enter the following:

rpc_$set_binding(m_handle, &lb_reslts[O].saddr,
Ib_reslts[O].saddr_len, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

4-40 Base Operating System Reference

rpc_$sockaddr_to_name

rpc_$sockaddr_to_name Library Routine (NCS)

Purpose

Syntax

Converts a socket address to a host name and port number.

void rpc_$sockaddr_to_name (sockaddr, s/ength, name, n/ength, port, status)

socket_$addr_t*sockaddr,
unsigned long slength;
unsigned long * nlength;
char *name;
unsigned long *port;
status_$t * status;

Parameters
Input

sockaddr

slength

Input/Output

nlength

Output

name

port

status

Points to a socket address.

Specifies the length, in bytes, of socket address (sockaddr).

On input, points to the length of the name parameter in the buffer. On
output, points to the number of characters returned in the name parameter.

Points to a character string that contains the host name and the address
family in the format: family:host. The value of the family parameter must be
ip.

Points to the socket port number.

Points to the completion status.

Description

Example

The rpc_$sockaddr_to_name routine provides the address family, the host name, and the
port number identified by the specified socket address.

1. To take the bank server's socket address, return the server's host name and port, and
then print the information, enter the following:

rpc_$sockaddr_to_name(&saddr, slen, name, &namelen, &port, &st);
printf("(bankd) name=\"%.*s\", port=%d\n", name, namelen, port

) ;

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Network Computing System (NCS) 4-41

rpc_$unregister

rpc_$unregister Library Routine (NCS)

Purpose

Syntax

Unregisters an interface.

void rpc_$unregister (iLspec, status)
rpc_$if_spec_t * iLspec;
status_$t *status;

Parameters
Input

iLspec

Output

Points to the interface being unregistered.

status Points to the completion status.

Description

Example

The rpc_$unregister routine unregisters an interface that the server previously registered
with the RPC runtime library. After an interface is unregistered, the RPC runtime library does
not pass requests for that interface to the server.

If a server uses multiple calls to the rpc_$register routine to register an interface more than
once, then the server must call the rpc_$unregister routine an equal number of times to
unregister the interface.

Note: This routine is used by servers only.

1. To unregister a matrix arithmetic interface, use the following:

rpc_$unregister (&matrix_$if_spec, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Related Information
The rpc_$register routine.

4-42 Base Operating System Reference

rpc_$use_family Library Routine (NCS)

Purpose

Syntax

Creates a socket of a specified address family for an RPC server.

void rpc_$use_family (family, sockaddr, slength, status)
unsigned long family;
socket_$addr_t*sockaddr,
unsigned long * slength;
status_$t * status;

Parameters
Input

family Specifies the address family of the socket to be created. This value
corresponds to the communications protocol used to access the socket and
determines how the socket address (sockaddrj is expressed.

Output

sockaddr

slength

status

Description

Points to the socket address of the socket on which the server listens.

Points to the length, in bytes, of the socket address (sockaddrj.

Points to the completion status.

The rpc_$use_family routine creates a socket for a server without specifying its port
number. (The RPC runtime software assigns the port number.) Use this routine to create the
server socket unless the server must listen on a particular well-known port. If the socket
must listen on a specific well-known port, use the rpc_$use_family_wk routine to create the
socket.

A server can listen on more than one socket. However, a server normally does not listen on
more than one socket for each address family, regardless of the number of interfaces that it
exports. Therefore, most servers should make this call once for each supported address
family.

Note: This routine is used by servers only.

Diagnostics
The rpc_$use_family routine can fail if one or more of the following is true:

rpc_$cant_create_sock
The RPC runtime library is unable to create a socket.

rpc_$cant_bind_sock
The RPC runtime library created a socket but is unable to bind it to a socket
address.

rpc_$too_many_sockets
The server is trying to use more than the maximum number of sockets

Network Computing System (NCS) 4-43

Example

allowed. The server has called the rpc_$use_family or
rpc_$use_family_wk routines too many times.

1. To create the bank server's socket, enter the following:

rpc_$use_family(atoi(argv[l]), &saddr, &slen, &st);

The numeric value of the address family to be used is supplied as an argument to the
program.

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Related Information
The rpc_$use_family_wk routine.

4-44 Base Operating System Reference

rpc_$use_family_wk Library Routine (NCS)

Purpose

Syntax

Creates a socket with a well-known port for an RPC server.

void rpc_$use_family_wk (family, ilspec, sockaddr, slength, status)

unsigned long family;
rpc_$if_spec_t *iLspec;
socket_$addr_t *sockaddr;
unsigned long *slength;
status_$t *status;

Parameters
Input

family

iLspec

Output

sockaddr

slength

status

Description

Specifies the address family of the socket to be created. This value
corresponds to the communications protocol used to access the socket and
determines how the socket address (sockaddt) is expressed.

Points to the interface that will be registered by the server. Typically, this
parameter is the $if_spec interface generated by the NIDL compiler from
the interface definition. The well-known port is specified as an interface
attribute.

Points to the socket address of the socket on which the server listens.

Points to the length, in bytes, of the socket address (sockaddt).

Points to the completion status.

The rpc_$use_family_wk routine creates a socket that uses the port specified with the
iLspec parameter. Use this routine to create a socket if a server must listen on a particular
well-known port. Otherwise, create the socket with the rpc_$use_family routine.

A server can listen on more than one socket. However, a server normally does not listen on
more than one socket for each address family, regardless of the number of interfaces that it
exports. Therefore, most servers that use well-known ports should make this call once for
each supported address family.

Note: This routine is used by servers only.

Diagnostics
The rpc_$use_family_wk routine fails if one or more of the following is true:

rpc _$cant_ create_sock
The RPe runtime library is unable to create a socket.

Network Computing System (NCS) 4-45

Example

rpc_$cant_bind_sock
The RPC runtime library created a socket but is unable to bind it to a socket
address.

rpc_$too_many _sockets
The server is trying to use more than the maximum number of sockets
allowed. The server has called the rpc_$use_family or
rpc_$use_family_wk routines too many times.

rpc_$addr_in_use
The specified address and port are already in use. This is caused by
multiple calls to the rpc_$use_family_wk routine with the same well-known
port.

1. To create a well-known socket for an array processor server, use the following:

rpc_$use_farnily_wk (socket_$internet, &rnatrix_$if_spec,
&sockaddr, slen, &st);

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Related Information
The rpc_$use_family routine.

4-46 Base Operating System Reference

uuid_$decode Library Routine (NeS)

Purpose

Syntax

Converts a character-string representation of a UUID into a UUID.

void uuid_$decode (uuid_string, uuid, status)
char *uuid_string;
uUid_$t *uuid;
status_$t *status;

Parameters
Input

Output

Points to the character-string representation of a UUID in the form
uuid_$strinQ_t.

uuid Points to the UUID that corresponds to the character string represented in
the uuid_string parameter.

status Points to the completion status.

Description

Example

The uuid_$decode routine returns the UUID corresponding to a valid character-string
representation of a UUID.

1. The following call returns as my _uuid the UUID corresponding to the character-string
representation in my _uuid_rep:

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

Network Computing System (NCS) 4-47

uUid_$encode Library Routine (NCS)

Purpose

Syntax

Converts a UUID into its character-string representation.

void uuid_$encode (uuid, uuid_string)
uuid_$t *uuid;
char *uuid_string;

Parameters
Input

uuid Points to the UUID.

Output

Points to the character-string representation of a UUID, in the form
uuid_$strin9_t.

Description

Example

The uuid_$encode call returns the character-string representation of a UUID.

1. The following call returns as my _uuid_rep the character-string representation for the
UUID my _uuid:

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
8ase Operating System (80S) Runtime.

4-48 Base Operating System Reference

uUid_$gen Library Routine (NCS)

Purpose

Syntax

Generates a new UUID.

void uUid_$gen (uuid)
uUid_$t *uuid;

Parameters
Output

uuid Points to the new UUID in the form of uUid_$t.

Description

Example

The uUid_$gen routine returns a new UUID.

1. The following call returns as my _ uuid a new UUID:

uuid_$gen (&my_uuid)~

Implementation Specifics
This Library Routine is part of Network Computing System in Network Support Facilities in
Base Operating System (BOS) Runtime.

Network Computing System (NCS) 4-49

4-50 Base Operating System Reference

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) 5-1

5-2 Base Operating System Reference

authdes_create

authdes create Subroutine

Purpose

Library

Syntax

Enables the use of DES from the client side.

C Library (libc.a)

#include <rpc/rpc.h>

AUTH*
authdes_create (name, window, syncaddr, ckey)
char *name;
u_int window;
struct sockaddr *syncaddr;
des_block *ckey;

Description
The authdes_create subroutine interfaces to the secure authentication system, known as
Data Encryption Standard (DES). This subroutine, used from the client side, returns the
authentication handle that allows use of the secure authentication system.

Note: The keyserv daemon must be running for the DES authentication system to work.

Parameters
name

window

syncaddr

ckey

Specifies the network name (or netname) of the server process owner. The
name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

Specifies the confirmation of the client credentials, given in seconds. A
small value for the window parameter is more secure than a large one. Yet,
choosing too small a value for the window parameter increases the
frequency of resynchronizations due to clock drift.

Identifies clock synchronization. If the syncaddrparameter has a NULL
value, then the authentication system assumes that the local clock is always
in sync with the server's clock. The authentication system will not attempt
resynchronizations. However, if an address is supplied, the system uses the
address for consulting the remote time service whenever resynchronization
is required. This parameter usually contains the address of the RPC server
itself.

Specifies the DES key. If the value of the ckey parameter is NULL, the
authentication system generates a random DES key to be used for the
encryption of credentials. However, if a DES key is supplied, the supplied
key is used.

Remote Procedure Calls (RPC) 5-3

authdes_create

Return Values
This subroutine returns a pointer to a DES authentication object.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

5-4 Base Operating System Reference

authdes_getucred

authdes_getucred Subroutine

Purpose

Library

Syntax

Maps a DES credential into a UNIX credential.

C Library (libc.a)

#include <rpc/rpc.h>

authdes_getucred (adc, uid, gid, group/en, groups)"
struct authdes_cred * adc;
short *uid;
short *gid;
short *group/en;
int *groups;

Description
The authdes_getucred subroutine interfaces to the secure authentication system known as
Data Encryption Standard (DES). The server uses this subroutine to convert a DES
credential, which is the independent operating system, into a UNIX credential. The
authdes_getucred subroutine retrieves necessary information from a cache, instead of
using the network information service (NIS).

Note: The keyserv daemon must be running for the DES authentication system to work.

Parameters
adc

uid

gid

group/en

groups

Return Values

Points to the DES credential structure.

Specifies the caller's effective user 10 (UID).

Specifies the caller's effective group ID (GID).

Specifies the group's length.

Points to the group's array.

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The keyserv daemon.

Network Information Service (NIS) Overview for System Management in Communication
Concepts and Procedures.

Remote Procedure Calls (RPe) 5-5

auth_destroy

auth_destroy Macro

Purpose

Library

Syntax

Destroys authentication information.

C Library (libc.a)

#include <rpc/rpc.h>

void
auth_destroy (auth)
auth *auth;

Description

Parameter

The auth_destroy macro destroys the authentication information structure pointed to by the
auth parameter. Destroying the structure deallocates private data structures. The use of the
auth parameter is undefined after calling this macro.

auth Points to the authentication information structure to be destroyed.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

5-6 Base Operating System Reference

authnone_create

authnone_create Subroutine

Purpose

Library

Syntax

Creates NULL authentication.

C Library (libc.a)

#include <rpc/rpc.h>

AUTH *
authnone_create ()

Description
The authnone_create subroutine creates and returns a default Remote Procedure Call
(RPC) authentication handle that passes NULL authentication information with each remote
procedure call.

Return Values
This subroutine returns a pointer to an RPC authentication handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auth_destroy macro.

The authunix_create subroutine, authunix_create_default subroutine, svcerr_auth
subroutine.

Remote Procedure Calls (RPC) 5-7

authunix_create

authunix create Subroutine

Purpose

Library

Syntax

Creates an authentication handle with AIX permissions.

C Library (libc.a)

#include <rpc/rpc.h>

AUTH*
authunix_create (host, uid, gid, len, aupgids)
char *host;
int uid, gid
int len, * aupgids;

Description
The authunix_create subroutine creates and returns a Remote Procedure Call (RPC)
authentication handle with AIX permissions.

Parameters
host

uid

gid

len

aupgids

Return Values

Points to the name of the machine on which the permissions were created.

Specifies the caller's effective user 10 (UIO).

Specifies the caller's effective group 10 (GIO).

Specifies the length of the groups array.

Points to the counted array of groups to which the user belongs.

This subroutine returns an RPC authentication handle.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The auth_destroy macro.

The authnone_create subroutine, authunix_create_default subroutine, svcerr_auth
subroutine.

5-8 Base Operating System Reference

authunix_create_default Subroutine

Purpose

Library

Syntax

Sets the authentication to default.

C Library (libc.a)

#include <rpc/rpc.h>

AUTH*
authunix_create_default()

Description

authunix_create_default

The authunix_create_default subroutine calls the authunix_create subroutine to create
and return the default AIX authentication handle.

Parameters
This subroutine contains no parameters.

Return Values
Upon successful completion, this subroutine returns an authentication handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auth_destroy macro.

The authnone_create subroutine, authunix_create subroutine, svcerr_auth subroutine.

Remote Procedure Calls (RPe) 5-9

callrpc

callrpc Subroutine

Purpose

Library

Syntax

Calls the remote procedure on the machine specified by the host parameter.

C Library (libc.a)

#include <rpc/rpc.h>

callrpc (host, prognum, versnum, procnum,
inproc, in, outproc, out)

char *host;
u_long prognum, versnum, procnum;
xdrproc_t inproc;
char * in;
xdrproc_t outproc;
char *out;

Description
The callrpc subroutine calls a remote procedure identified by the prognum parameter, the
versnum parameter, and the procnum parameter on the machine pointed to by the host
parameter.

This subroutine uses User Datagram Protocol/Internet Protocol (UDP/IP) as a transport to
call a remote procedure. No connection will be made if the server is supported by
Transmission Control Protocol/Internet Protocol (TCP/IP). This subroutine does not control
time outs or authentication.

Parameters
host Points to the program name of the remote machine.

Specifies the number of the remote program. prognum

versnum

procnum

inproc

in

outproc

out

Specifies the version number of the remote program.

Specifies the number of the procedure associated with the remote program
being called.

Specifies the name of the XDR procedure that encodes the procedure
parameters.

Specifies the address of the procedure arguments.

Specifies the name of the XDR procedure that decodes the procedure
results.

Specifies the address where results are placed.

Return Values

5-10

This subroutine returns a value of enum clnt_stat. Use the clnt_perrno subroutine to
translate this failure status into a displayed message.

Base Operating System Reference

callrpc

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related information
The clnt_call macro.

The clnt_broadcast subroutine, clnttcp_create subroutine, clntudp_create subroutine,
clnt_perrno subroutine, registerrpc subroutine, svc_run subroutine.

Using the callrpc Routine in Communications Programming Concepts.

Understanding Protocols for TCP/IP, User Datagram Protocol in Communication Concepts
and Procedures.

Remote Procedure Calls (RPC) 5-11

clnt_broadcast

clnt broadcast Subroutine

Purpose

Library

Syntax

Broadcasts a remote procedure call to all locally connected networks.

C Library (Jibc.a)

#include <rpc/rpc.h>

enum clnt_stat
clnt_broadcast (prognum, versnum, procnum,
inproc, in, outproc, out, each result)
u_long prognum, versnum, procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
resultproc_t eachresult;

Descri ption
The clnt_broadcast subroutine broadcasts a remote procedure call to all locally connected
networks. The remote procedure is identified by the prognum, versnum, and procnum
parameters on the workstation identified by the host parameter.

Broadcast sockets are limited in size to the maximum transfer unit of the data link. For
Ethernet, this value is 1500 bytes.

When a client broadcasts a remote procedure call over the network, a number of server
processes respond. Each time the client receives a response, the clnt_broadcast
subroutine calls the eachresult routine. The eachresult routine takes the following form:

eachresult {out, *addrj
char *out;
struct sockaddr_in *addr,

Parameters
prognum Specifies the number of the remote program.

Specifies the version number of the remote program.

Identifies the procedure to be called.

5-12

versnum

procnum

inproc

in

outproc

out

eachresult

addr

Specifies the procedure that encodes the procedure's parameters.

Specifies the address of the procedure's arguments.

Specifies the procedure that decodes the procedure results.

Specifies the address where results are placed.

Specifies the procedure to call when clients respond.

Specifies the address of the workstation that sent the results.

Base Operating System Reference

clnt broadcast

Return Values
If the eachresult subroutine returns a value of 0, the clnt_broadcast subroutine waits for
more replies. Otherwise, the clnt_broadcast subroutine returns with the appropriate results.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The callrpc subroutine.

Sockets Overview in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-13

clnt call Macro

Purpose

Library

Syntax

Calls the remote procedure associated with the clnt parameter.

C Library (libc.a)

#include <rpc/rpc.h>
enum clnt_stat

clnt_call (clnt, procnum, inproc, in, outproc, out, tout)
CLIENT *clnt;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;

Description
The clnt_call macro calls the remote procedure associated with the client handle pointed to
by the clnt parameter.

Parameters
clnt Points to the structure of the client handle that results from a Remote

Procedure Call (RPC) client creation subroutine, such as the
clntudp_create subroutine that opens a User Datagram Protocol/Internet
Protocol (UDP/IP) socket.

procnum

inproc

in

outproc

out

tout

Identifies the remote procedure on the host machine.

Specifies the procedure that encodes the procedure's parameters.

Specifies the address of the procedure's arguments.

Specifies the procedure that decodes the procedure's results.

Specifies the address where results are placed.

Sets the time allowed for results to return.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

5-14 Base Operating System Reference

clnt call

Related Information
The callrpc subroutine, clnt_perror subroutine, clnttcp_create subroutine, clntudp_create
subroutine.

Sockets Overview in Communications Programming Concepts.

User Datagram Protocol (UDP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-15

clnt control Macro

Purpose

Library

Syntax

Changes or retrieves various information about a client object.

C Library (libc.a)

#include <rpc/rpc.h>

bool_t
clnt_control (cl, req, info)
CLIENT *c/;
int req
char *info;

Description
The clnt_control macro is used to change or retrieve various information about a client
object.

User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) have the following
supported values for the req parameter's argument types and functions:

Values for the req Parameter Argument Type

CLSET_TIMEOUT

CLGET_TIMEOUT

struct timeval

struct timeval

Function

Sets total time out

Gets total time out

Note: If the time out is set using the clnt_control subroutine, the timeout parameter
passed to the clnt_call subroutine will be ignored in all future calls.

struct sockaddr

The following operations are valid for UDP only:

CLSET _RETRY_TIMEOUT

CLGET _RETRY_TIMEOUT

struct timeval

struct timeval

Gets server's address

Sets the retry time out

Gets the retry time out

Note: The retry time out is the time that User Datagram Protocol/Remote Procedure Call
(UDP/RPC) waits for the server to reply before retransmitting the request.

Parameters
cl Points to the structure of the client handle.

req Indicates the type of operation.

info Points to the information for request type.

Return Values

5-16

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Base Operating System Reference

Implementation Specifics
This macro is part of AIX Base Operating System (80S) Runtime.

Related Information
The clnt_call macro.

The clnttcp_create subroutine, clntudp_create subroutine.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

Remote Procedure Calls (RPe) 5-17

clnt create Subroutine

Purpose

Library

Syntax

Creates and returns a generic client handle.

C Library (Iibc.a)

#include <rpc/rpc.h>

CLIENT *
clnt_create (host, prognum, versnum, protoco~
char *host;
unsigned prognum, versnum;
char * protocol;

Description
Creates and returns a generic client handle.

RPC messages transported by UDP/IP can hold up to 8K bytes of encoded data. Use this
transport for procedures that take arguments or return results of less than 8K bytes.

Parameters
host

prognum

versnum

protocol

Return Values

Identifies the name of the remote host where the server is located.

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Identifies which data transport protocol the program is using (UDP or TCP).

Upon successful completion, this subroutine returns a client handle.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The clnt_control macro, clnt_destroy macro.

The clnttcp_create subroutine, clntudp_create subroutine.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

5-18 Base Operating System Reference

clnt_destroy Macro

Purpose

Library

Syntax

Destroys the client's RPC handle.

C Library (libc.a)

#include <rpc/rpc.h>

void
clnt_destroy (clnt)
CLIENT *clnt;

Description

Parameter

The clnt_destroy macro destroys the client's Remote Procedure Call (RPC) handle.
Destroying the client's RPC handle deallocates private data structures, including the clnt
parameter itself. The use of the clnt parameter becomes undefined upon calling the
clnt_destroy macro.

clnt Points to the structure of the client handle.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The clntudp_create subroutine, clnt_create subroutine.

Sockets Overview in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-19

clnt freeres Macro

Purpose

Library

Syntax

Frees data that was allocated by the RPC/XDR system.

C Library (libc.a)

#include <rpc/rpc.h>

clnt_freeres (clnt, outproc, out)
CLIENT *clnt;
xdrpoc_t outproc;
char *out;

Description
The clnt_freeres macro frees data allocated by the Remote Procedure Cali/eXternal Data
Representation (RPC/XDR) system. This data was allocated when the RPC/XDR system
decoded the results of an RPC call.

Parameters
clnt

outproc

out

Points to the structure of the client handle.

Specifies the XDR subroutine that describes the results in simple decoding
primitives.

Specifies the address where the results are placed.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-20 Base Operating System Reference

clnt_geterr Macro

Purpose

Library

Syntax

Copies error information from a client handle.

C Library (libc.a)

#include <rpc/rpc.h>

void
clnt_geterr (clnt, errp)
CLIENT *clnt;
struct rpc_err *errp;

Description
The clnt_geterr macro copies error information from a client handle to an error structure.

Parameters
clnt Points to the structure of the client handle.

errp Specifies the address of the error structure.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Remote Procedure Calls (RPe) 5-21

clnt_pcreateerror

clnt_pcreateerror Subroutine

Purpose

Library

Syntax

Indicates why a client RPC handle was not created.

C Library (libc.a)

#include <rpc/rpc.h>

void
clnt_pcreateerror (5)
char *5;

Description
The clnt_pcreateerror subroutine writes a message to standard error output, indicating why
a client Remote Procedure Call (RPC) handle could not be created. The message is
preceded by the string pOinted to by the 5 parameter and a c%n.

Use this subroutine if one of the following calls fails: the clntraw_create subroutine,
clnttcp_create subroutine, or clntudp_create subroutine.

Parameters
5 Points to a character string that represents the error text.

Implementation Specifics
This subroutine is part of A/X Base Operating System (BOS) Runtime.

Related Information
The clnt_create subroutine, clntraw_create subroutine, clnttcp_create subroutine,
clntudp_create subroutine, clnt_spcreateerror subroutine.

5-22 Base Operating System Reference

clnt_perrno Subroutine

Purpose

Library

Syntax

Specifies the condition of the stat parameter.

C Library (libc.a)

#include <rpc/rpc.h>

void
clnt_perrno (stat)
enum clnt_stat stat;

Description
The clnt_perrno subroutine writes a message to standard error output, corresponding to the
condition specified by the stat parameter.

This subroutine is used after a callrpc subroutine fails. The clnt_perrno subroutine
translates the failure status (the enum clnt_stat subroutine) into a message.

If the program does not have a standard error output, or the programmer does not want the
message to be output with the printf subroutine, or the message format used is different
from that supported by the clnt_perrno subroutine, then the clnt_sperrno subroutine is
used instead of the clnt_perrno subroutine.

Parameters
stat Specifies the client error status of the remote procedure call.

Return Values
The clnt_perrno subroutine translates and displays the following enum clnt_stat error
status codes:

RPC_SUCCESS = 0

RPC_CANTENCODEARGS = 1

RPC_CANTDECODERES=2

RPC_CANTSEND = 3

RPC_CANTRECV = 4

RPC_ TIMEDOUT = 5

Implementation Specifics

Call succeeded.

Cannot decode arguments.

Cannot decode results.

Failure in sending call.

Failure in receiving result.

Call timed out.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The callrpc subroutine, clnt_sperrno subroutine.

Remote Procedure Calls (RPC) 5-23

clnt_perror Subroutine

Purpose

Library

Syntax

Indicates why a remote procedure call failed.

C Library (libc.a)

#include <rpc/rpc.h>

clnt_perror (elnt, s)
CLIENT *elnt;
char *s;

Description
The clnt_perror subroutine writes a message to standard error output indicating why a
remote procedure call failed. The message is prepended with the string pointed to by the s
parameter and a colon.

This subroutine is used after the clnt_call macro.

Parameters
clnt

s

Return Values

Points to the structure of the client handle.

Points to a character string that represents the error text.

This subroutine returns an error string to standard error output.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The clnt_call macro.

The clnt_sperror subroutine.

5-24 Base Operating System Reference

clnt_spcreateerror Subroutine

Purpose

clnt_ spcreateerror

Indicates why a client RPC handle was not created.

Library

Syntax

C Library (libc.a)

#include <rpc/rpc.h>

char *
clnt_spcreateerror (s)
char *s;

Description
The clnt_spcreateerror subroutine returns a string indicating why a client Remote
Procedure Call (RPC) handle was not created.

Note: This subroutine returns the pointer to static data that is overwritten on each call.

Parameters
s Points to a character string that represents the error text.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The clnt_pcreateerror subroutine.

Remote Procedure Calls (RPe) 5-25

clnt_sperrno

clnt_sperrno Subroutine

Purpose

Library

Syntax

Specifies the condition of the stat parameter by returning a pointer to a string containing a
status message.

C Library (libc.a)

#include <rpc/rpc.h>

char *
clnt_sperrno (sta~
enum clnt_stat stat;

Description
The clnt_sperrno subroutine specifies the condition of the stat parameter by returning a
pointer to a string containing a status message. The string ends with a new-line character.

Whenever one of the following conditions exists, the clnt_sperrno subroutine is used
instead of the clnt_perrno subroutine when a callrpc routine fails:

• The program does not have a standard error output. This is common for programs
running as servers.

• The programmer does not want the message to be output with the printf subroutine.

• A message format differing from that supported by the clnt_perrno subroutine is being
used.

Note: The clnt_sperrno subroutine does not return the pointer to static data, so the result
is no~ overwritten on each call.

Parameters
stat Specifies the client error status of the remote procedure call.

Return Values
The clnt_sperrno subroutine translates and displays the following enum clnt_staterror
status messages:

RPC_SUCCESS = 0

RPC_CANTENCODEARGS=1

RPC_CANTDECODERES = 2

RPC_CANTSEND = 3

RPC_CANTRECV = 4

RPC_TIMEDOUT = 5

5-26 Base Operating System Reference

Call succeeded.

Cannot decode arguments.

Cannot decode results.

Failure in sending call.

Failure in receiving result.

Call timed out.

clnt_sperrno

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The clnt_perrno subroutine.

Remote Procedure Calls (RPe) 5-27

clnt_sperror Subroutine

Purpose

Library

Syntax

Indicates why a remote procedure call failed.

C Library (libc.a)

#include <rpc/rpc.h>

char *
clnt_sperror (c/,s)
CLIENT *c/;
char *5;

Description
The clnt_sperror subroutine returns a string to standard error output indicating why a
Remote Procedure Call (RPC) call failed. This subroutine also returns the pointer to static
data overwritten on each call.

Parameters
c/ Points to the structure of the client handle.

5 Points to a character string that represents the error text.

Return Values
This subroutine returns an error string to standard error output.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The clnt_perror subroutine.

5-28 Base Operating System Reference

clntraw_create

clntraw_create Subroutine

Purpose

Library

Syntax

Creates a toy RPC client for simulation.

C Library (libc.a)

#include <rpc/rpc.h>

CLIENT *
clntraw_create (prognum, versnum)
u_long prognum, versnum;

Description
The clntraw_create subroutine creates a toy Remote Procedure Call (RPC) client for
simulation of a remote program. This toy client uses a buffer located within the address
space of the process for the transport to pass messages to the service. If the corresponding
RPC server lives in the same address space, simulation of RPC and acquisition of RPC
overheads, such as round-trip times, are done without kernel interference.

Parameters
prognum

versnum

Return Values

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Upon successful completion, this subroutine returns a pointer to a valid RPC client. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The clnt_pcreateerror subroutine, svcraw_create subroutine.

Remote Procedure Calls (RPC) 5-29

clnttcp_create

clnttcp_create Subroutine

Purpose

Library

Syntax

Creates a TCP/IP client transport handle.

C Library (libc.a)

CLIENT *
clnttcp_create (addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in *addr;
u_'ong prognum, versnum;
int *sockp;
u_int sendsz, recvsz;

Description
The clnttcp_create subroutine creates a Remote Procedure Call (RPC) client transport
handle for a remote program. This client uses Transmission Control Protocol/Internet
Protocol (TCP/IP) as the transport to pass messages to the service.

The TCP/IP remote procedure calls use buffered inpuVoutput (I/O). Users can set the size of
the send and receive buffers with the sendsz and recvsz parameters. If the size of either
buffer is set to a value of 0, the svctcp_create subroutine picks suitable default values.

Parameters
addr Points to the Internet address of the remote program. If the port number for

this Internet address (addr->sin_port) is a value of 0, then the addr
parameter is set to the actual port on which the remote program is listening.
The client making the remote procedure call consults the remote portmap
daemon to obtain the port information.

prognum

versnum

sockp

sendsz

recvsz

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Specifies a pointer to a socket. If the value of the sockp parameter is
RPC_ANYSOCK, the clnttcp_create subroutine opens a new socket and
sets the sockp pointer to the new socket.

Sets the size of the send buffer.

Sets the size of the receive buffer.

Return Values
Upon successful completion, this routine returns a valid TCPIIP client handle. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

5-30 Base Operating System Reference

clnttcp _create

Related Information
The portmap daemon.

The clnt_call macro.

The callrpc subroutine, clntudp_create subroutine, svctcp_create subroutine,
clnt_pcreateerror subroutine.

Sockets Overview in Communications Programming Concepts.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-31

clntudp_create

clntudp_create Subroutine

Purpose

Library

Syntax

Creates a UDP/IP client transport handle.

C Library (libc.a)

#include <rpc/rpc.h>

CLIENT *
clntudp_create (addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;
u_long prognum, versnum;
struct timeval wait;
int *sockp;

Description
The clntudp_create subroutine creates a Remote Procedure Call (RPC) client transport
handle for a remote program. The client uses User Datagram Protocol/Internet Protocol
(UDP/IP) as the transport to pass messages to the service.

RPC messages transported by UDP/IP can hold up to 8K bytes of encoded data. Use this
subroutine for procedures that take arguments or return results of less than 8K bytes.

Parameters
addr Points to the Internet address of the remote program. If the port number for

this Internet address (addr->sin_port) is 0, then the value of the addr
parameter is set to the port that the remote program is listening on. The
clntudp_create subroutine consults the remote portmap daemon for this
information.

prognum

versnum

wait

sockp

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Sets the amount of time that the UDP/IP transport waits to receive a
response before the transport sends another remote procedure call or the
remote procedure call times out. The total time for the call to time out is set
by the clnt_call macro.

Specifies a pointer to a socket. If the value of the sockp parameter is
RPC_ANYSOCK, the clntudp_create subroutine opens a new socket and
sets the sockp pointer to that new socket.

Return Values
Upon successful completion, this subroutine returns a valid UDP client handle. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

5-32 Base Operating System Reference

clntudp_create

Related Information
The portmap daemon.

The clnt_call macro.

The callrpc subroutine, clnt_pcreateerror subroutine, clnttcp_create subroutine,
svcudp_create subroutine.

Sockets Overview in Communications Programming Concepts.

User Datagram Protocol (UDP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPe) 5-33

dbm close Subroutine

Purpose

Library

Syntax

Closes a database.

C Library (libc.a)

#include <ndbm.h>
void dbm_close (db)
OBM *db;

Description
The dbm_close subroutine closes a database.

Parameter
db Specifies the database to close.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The dbmclose subroutine.

5-34 Base Operating System Reference

dbm_delete Subroutine

Purpose

Library

Syntax

Deletes a key and its associated contents.

C Library (libc.a)

#include <ndbm.h>
int dbm_delete (db, key)
OBM *db;
datum key;

Description
The dbm_delete subroutine deletes a key and its associated contents.

Parameters
db Specifies a database.

key Specifies the key to delete.

Return Values

dbm delete

Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The delete subroutine.

Remote Procedure Calls (RPe) 5-35

dbm fetch Subroutine

Purpose

Library

Syntax

Accesses data stored under a key.

C Library (Iibc.a)

#include <ndbm.h>
datum dbm_fetch(db, key)
OBM *db;
datum key;

Description
The dbm_fetch subroutine accesses data stored under a key.

Parameters
db Specifies the database to access.

key Specifies the input key.

Return Values
Upon successful completion, this subroutine returns a datum structure containing the value
returned for the specified key. If it is unsuccessful, the dptr field of the datum structure is set
to NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The fetch subroutine.

5-36 Base Operating System Reference

dbm_firstkey Subroutine

Purpose

Library

Syntax

Returns the first key in a database.

C Library (libc.a)

#include <ndbm.h>
datum dbm_firstkey (db)
OBM *db;

Description
The dbm_firstkey subroutine returns the first key in a database.

Parameter
db Specifies the database to access.

Return Values
Upon successful completion, this subroutine returns a datum structure containing the value
for the first key. If it is unsuccessful, the dptr field of the datum structure is set to NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The firstkey subroutine.

Remote Procedure Calls (RPC) 5-37

dbm_nextkey

dbm_nextkey Subroutine

Purpose

Library

Syntax

Returns the next key in a database.

C Library (libc.a)

#include <ndbm.h>
datum dbm_nextkey (db)
OBM *db;

Description
The dbm_nextkey subroutine returns the next key in a database.

Parameter
db Specifies the database to access.

Return Values
Upon successful completion, this subroutine returns a datum structure containing the value
for the next key. If it is unsuccessful, the dptr field of the datum structure is set to NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The nextkey subroutine.

5-38 Base Operating System Reference

dbm_open Subroutine

Purpose

Library

Syntax

Opens a database for access.

C Library (libc.a)

#include <ndbm.h>
DBM *dbm_open (file, flags, mode)
char *file;
int flags, mode;

Description

dbm_open

The dbm_open subroutine opens a database for access. This opens and/or creates the
file.dir and file.pag files, depending on the flags parameter. The returned OBM structure is
used as input to other NOBM routines.

Parameters
file Specifies the path to open a database.

flags Specifies the flags required to open a subroutine.

mode Specifies the mode required to open a subroutine.

Return Values
Upon successful completion, this subroutine returns a pointer to the OBM structure. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbminit subroutine.

Remote Procedure Calls (RPC) 5-39

dbm store

dbm store Subroutine

Purpose

Library

Syntax

Places data under a key.

C Library (Iibe.a)

#inelude <ndbm.h>
int dbm_store (db, key, content, flags)
DBM *db;
datum key, content;
int flags;

Description
The dbm_store subroutine places data under a key .

. Parameters
db

key

content

flags

Return Values

Specifies the database to store.

Specifies the input key.

Specifies the value associated with the key to store.

Contains either OBM-,NSERT or OBM_REPLACE. If the dbm_store
subroutine is called with flags set to OBM_INSERT, and if an entry for the
key already exists, then the dbm_store subroutine returns a value of 1. If
the flags parameter is set to OBM_REPLACE then the entry will be replaced
if it already exists.

Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value. If the dbm_store subroutine is called with the flags parameter set
to OBM_INSERT and an existing entry is found, then it returns a value of 1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The store subroutine.

5-40 Base Operating System Reference

dbmclose Subroutine

Purpose

Library

Syntax

Closes a database.

OBM Library (Iibdbm.a)

#include <dbm.h>
void dbmclose (db)
OBM *db;

Description
The dbmclose subroutine closes a database.

Parameter
db Specifies the database to close.

Implementation Specifics

dbmclose

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_close subroutine.

Remote Procedure Calls (RPC) 5-41

dbminit

dbminit Subroutine

Purpose

Library

Syntax

Opens a database for access.

DBM Library (libdbm.a)

#include <dbm.h>
dbminit (file)
char *fi/e;

Description

Parameter

The dbminit subroutine opens a database for access. At the time of the call, the file.dir and
file.pag files must exist.

Note: To build an empty database, create zero-length .dir and .pag files.

file Specifies the path name of the database to open.

Return Values
Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The dbm_open subroutine.

5-42 Base Operating System Reference

delete Subroutine

Purpose

Library

Syntax

Deletes a key and its associated contents.

D8M Library (Iibdbm.a)

#include <dbm.h>
delete (key)
datum key;

Description
The delete subroutine deletes a key and its associated contents.

Parameter
key Specifies the key to delete.

Return Values

delete

Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The dbm_delete subroutine.

Remote Procedure Calls (RPC) 5-43

fetch

fetch Subroutine

Purpose

Library

Syntax

Accesses data stored under a key.

DBM Library (Iibdbm.a)

#include <dbm.h>
datum fetch (key)
datum key;

Description
The fetch subroutine accesses data stored under a key.

Parameter
key Specifies the input key.

Return Values
Upon successful completion, this subroutine returns data corresponding to the specified key.
If it is unsuccessful, a NULL value is indicated in the dptr field of the datum structure.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_fetch subroutine.

5-44 Base Operating System Reference

firstkey Subroutine

Purpose

Library

Syntax

Returns the first key in the database.

OBM Library (libdbm.a)

#include <dbm.h>
datum firstkey 0

Description
The firstkey subroutine returns the first key in the database.

Parameters
This subroutine contains no parameters.

Return Values
Returns a datum structure containing the first key value pair.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BaS) Runtime.

Related Information
The dbm_firstkey subroutine.

firstkey

Remote Procedure Calls (RPC) 5-45

get_myaddress

get_myaddress Subroutine

Purpose

Library

Syntax

Gets the user's IP address.

C Library (libc.a)

#include <rpc/rpc.h>

void
get_myaddress (addr)
struct sockaddr _in * addr,

Description

Parameter

The get_myaddress subroutine gets the machine's Internet Protocol (IP) address without
consulting the library routines that access the /etc/hosts file.

addr Specifies the address where the machine's IP address is placed. The port
number is set to a value of htons (PMAPPORT).

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The /etc/hosts file.

Internet Protocol (IP) Overview in Communication Concepts and Procedures.

5-46 Base Operating System Reference

getnetname

getnetname Subroutine

Purpose

Library

Syntax

Installs the network name of the caller in the array specified by the name parameter.

C Library (libc.a)

#include <rpc/rpc.h>

getnetname (name)
char name [MAXNETNAMELEN];

Description

Parameter

The getnetname subroutine installs the caller's unique, operating-system-independent
network name in the fixed-length array specified by the name parameter.

name Specifies the network name (or netname) of the server process owner. The
name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The host2netname subroutine, user2netname subroutine.

Remote Procedure Calls (RPC) 5-47

host2netname

host2netname Subroutine

Purpose

Library

Syntax

Converts a domain-specific host name to an operating-system-independent network name.

C Library (Iibc.a)

#include <rpc/rpc.h>

host2netname (name, host, domain)
char *name;
char *host
char *domain

Description
The host2netname subroutine converts a domain-specific host name to an
operating-system-independent network name.

This subroutine is the inverse of the netname2host subroutine.

Parameters
name Points to the network name (or netname) of the server process owner. The

name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

host Points to the name of the machine on which the permissions were created.

domain Points to the domain name.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The netname2host subroutine, user2netname subroutine.

5--48 Base Operating System Reference

key _decryptsession

key _decryptsession Subroutine

Purpose

Library

Syntax

Decrypts a server network name and a DES key.

C Library (Iibc.a)

key_decryptsession (remotename, deskey)
char * remotename;
des_block *deskey;

Description
The key_decryptsession subroutine interfaces to the keyserv daemon, which is associated
with the secure authentication system known as Data Encryption Standard (DES). The
subroutine takes a server network name and a DES key and decrypts the DES key by using
the public key of the server and the secret key associated with the effective user number
(UID) of the calling process. User programs rarely need to call this subroutine. System
commands such as keylogin and the Remote Procedure Call (RPC) library are the main
clients.

This subroutine is the inverse of the key_encryptsession subroutine.

Parameters
remotename Points to the remote host name.

deskey Points to the des_block structure.

Return Values
Upon successful completion, this subroutine returns a value of O. If unsuccessful, it returns a
value of -1.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The keylogin command.

The keyserv daemon.

The key_encryptsession subroutine.

Remote Procedure Calls (RPC) 5-49

key _ encryptsession

key_encryptsession Subroutine

Purpose

Library

Syntax

Encrypts a server network name and a DES key.

C Library (Iibc.a)

#include <rpc/rpc.h>

key _ encryptsession (remotename, deskey)
char * remotename;
des_block *deskey;

Description
The key _encryptsession subroutine interfaces to the keyserv daemon, which is associated
with the secure authentication system know as Data Encryption Standard (DES). This
subroutine encrypts a server network name and a DES key. To do so, the routine uses the
public key of the server and the secret key associated with the effective user number (UIO)
of the calling process. System commands such as keylogin and the Remote Procedure Call
(RPC) library are the main clients. User programs rarely need to call this subroutine.

This subroutine is the inverse of the key_decryptsession subroutine.

Parameters
remotename Points to the remote host name.

deskey Points to the des_block structure.

Return Values
Upon successful completion, this subroutine returns a value of O. If unsuccessful, it returns a
value of -1.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The keylogin command.

The keyserv daemon.

The key_decryptsession subroutine.

5-50 Base Operating System Reference

key_gendes Subroutine

Purpose

Library

Syntax

Asks the keyserv daemon for a secure conversation key.

C Library (libc.a)

#include <rpc/rpc.h>

key_gendes(deskey)
des_block *deskey;

Description
The key_gendes subroutine interfaces to the keyserv daemon, which is associated with the
secure authentication system know as Data Encryption Standard (DES). This subroutine
asks the keyserv daemon for a secure conversation key. Choosing a key at random is not
recommended because the common ways of choosing random numbers, such as the
current time, are easy to guess. User programs rarely need to call this subroutine. System
commands such as keylogin and the Remote Procedure Call (RPC) library are the main
clients.

Parameters
deskey Points to the des_block structure.

Return Values
Upon successful completion, this subroutine returns a value of O. If unsuccessful, it returns a
value of -1.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The keylogin command.

The keyserv daemon.

Remote Procedure Calls (RPC) 5-51

key _setsecret

key_setsecret Subroutine

Purpose

Library

Syntax

Sets the key for the effective UID of the calling process.

C Library (libc.a)

#include <rpc/rpc.h>

key_setsecret (key)
char *key,

Description
The key_setsecret subroutine interfaces to the keyserv daemon, which is associated with
the secure authentication system know as Data Encryption Standard (DES). This subroutine
is used to set the key for the effective user number (UID) of the calling process. User
programs rarely need to call this subroutine. System commands such as keylogin and the
Remote Procedure Call (APC) library are the main clients.

Parameters
key

Return Values

Points to the key name.

Upon successful completion, this subroutine returns a value of O. If unsuccessful, it returns a
value of -1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The keylogin command.

The keyserv daemon.

5-52 Base Operating System Reference

netname2host

netname2host Subroutine

Purpose

Library

Syntax

Converts an operating-system-independent network name to a domain-specific host name.

C Library (libc.a)

#include <rpc/rpc.h>

netname2host (name, host, host/en)
char *name;
char * host;
int host/en;

Description
The netname2host subroutine converts an operating-system-independent network name to
a domain-specific host name.

This subroutine is the inverse of the host2netname subroutine.

Parameters
name Specifies the network name (or netname) of the server process owner. The

name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

host Potnts to the name of the machine on which the permissions were created.

host/en Specifies the size of the host name.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The host2netname subroutine, user2netname subroutine.

Remote Procedure Calls (RPe) 5-53

netname2user

netname2user Subroutine

Purpose

Library

Syntax

Converts from an operating-system-independent network name to a domain-specific UID.

C Library (libc.a)

#include <rpc/rpc.h>

netname2user (name, uidp, gidp, gidlenp, gidlist)
char *name;
int *uidp;
int *gidp;
int * gidlenp;
int * gidlist,

Description
The netname2user subroutine converts from an operating-system-independent network
name to a domain-specific user number (UID). This subroutine is the inverse of the
user2netname subroutine.

Parameters
name Points to the network name (or netname) of the server process owner. The

name parameter can be either the host name derived from the
host2netname subroutine or the user name derived from the
user2netname subroutine.

uidp

gidp

gidlenp

gidlist

Return Values

Points to the user 10.

Points to the group ID.

Points to the size of the group ID.

Points to the group list.

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The host2netname subroutine, user2netname subroutine.

5-54 Base Operating System Reference

nextkey Subroutine

Purpose

Library

Syntax

Returns the next key in a database.

OBM Library (libdbm.a)

#include <dbm.h>
datum nextkey (key)
datum key;

Description
The nextkey subroutine returns the next key in a database.

nextkey

Parameters
key Specifies the input key. This value has no effect on the return value but

must be present.

Return Values
Returns a datum structure containing the next key-value pair.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dbm_nextkey subroutine.

Remote Procedure Calls (RPC) 5-55

pmap_getmaps

pmap_getmaps Subroutine

Purpose

Library

Syntax

Returns a list of the current RPC program to port mappings on the host.

C Library (Iibc.a)

#include <rpc/rpc.h>

struct pmaplist *
pmap_getmaps (addr)
struct sockaddr _in * addr,

Description

Parameter

The pmap_getmaps subroutine acts as a user interface to the portmap daemon. The
subroutine returns a list of the current Remote Procedure Call (RPC) program to port
mappings on the host located at the Internet Protocol (IP) address pointed to by the addr
parameter.

Note: The rpcinfo -p command calls this subroutine.

addr Specifies the address where the machine's IP address is placed.

Return Value
If there is no list of current RPC programs, this procedure returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The rpcinfo command.

The portmap daemon.

The pmap_set subroutine, pmap_unset subroutine, svc_register subroutine.

5-56 Base Operating System Reference

pmap_getport

pmap_getport Subroutine

Purpose

Library

Syntax

Requests the port number on which a service waits.

C Library (libc.a)

#include <rpc/rpc.h>

u_short
pmap_getport (addr, prognum, versnum, protoco~
struct sockaddr_in *addr,
u_long prognum, versnum, protocol;

Description
The pmap_getport subroutine acts as a user interface to the portmap daemon in order to
return the port number on which a service waits.

Parameters
addr

prognum

versnum

protocol

Return Values

Points to the Internet Protocol (IP) address of the host where the remote
program that supports the waiting service resides.

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Specifies the transport protocol that the service recognizes.

If the mapping does not exist or the Remote Procedure Call (RPC) system could not contact
the remote portmap daemon, this subroutine returns a value of O. If the remote portmap
daemon could not be contacted, the rpc_createerr subroutine contains the RPC status.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The portmap daemon.

Internet Protocol (IP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-57

pmap_rmtcall Subroutine

Purpose

Library

Syntax

Instructs the portmap daemon to make a remote procedure call.

C Library (libc.a)

#include <rpc/rpc.h>

enum clnt_stat
pmap_rmtcall (addr, prognum, versnum, procnum,
inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr,
u_long prognum, versnum, procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;
u_long * portp;

Description
The pmap_rmtcall subroutine is a user interface to the portmap daemon. The routine
instructs the host portmap daemon to make a remote procedure call. Clients consult the
portmap daemon when sending out Remote Procedure Call (RPC) calls for given program
numbers. The portmap daemon tells the client the ports to which to send the calls.

Parameters
addr Points to the Internet Protocol (IP) address of the host where the remote

program that supports the waiting service resides.

5-58

prognum

versnum

procnum

inproc

in

outproc

out

tout

portp

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Identifies the procedure to be called.

Specifies the eXternal Data Representation (XDR) routine that encodes the
remote procedure parameters.

Points to the address of the procedure arguments.

Specifies the XDR routine that decodes the remote procedure results.

Points to the address where the results are placed.

Sets the time the routine waits for the results to return before sending the
call again.

Points to the program port number if the procedure succeeds.

Base Operating System Reference

pmap_rmtcall

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The portmap daemon.

The clnt_broadcast subroutine.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Internet Protocol (IP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-59

pmap_set Subroutine

Purpose

Library

Syntax

Maps a remote procedure call to a port.

C Library (libc.a)

#include <rpc/rpc.h>

pmap_set (prognum, versnum, protocol, port)
u_'ong prognum, versnum, protocol;
u_short port;

Description
The pmap_set subroutine acts as a user interface to the portmap daemon to map the
program number, version number, and protocol of a remote procedure call to a port on the
machine portmap daemon.

Note: The pmap_set subroutine is called by the svc_register subroutine.

Parameters
prognum

versnum

protocol

port

Return Values

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Specifies the transport protocol that the service recognizes. The values for
this parameter can be IPPROTO_UDP or IPPROTO_TCP.

Specifies the port on the machine's portmap daemon.

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The portmap daemon.

The pmap_getmaps subroutine, pmap_unset subroutine, svc_register subroutine.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

5-60 Base Operating System Reference

pmap_unset Subroutine

Purpose
Destroys the mappings between a remote procedure call and the port.

Library

Syntax

C Library (libc.a)

#include <rpc/rpc.h>

pmap_unset (prognum, versnum)
u_long prognum, versnum;

Description
The pmap_unset subroutine destroys mappings between the program number and version
number of a remote procedure call and the ports on the host portmap daemon.

Parameters
prognum

versnum

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The portmap daemon.

The pmap_getmaps subroutine, pmap_set subroutine, svc_unregister subroutine.

Remote Procedure Calls (RPC) 5-61

registerrpc

registerrpc Subroutine

Purpose

Library

Syntax

Registers a procedure with the RPC service package.

C Library (Iibc.a)

#include <rpc/rpc.h>
registerrpc (prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum, versnum, procnum;
char * (*procname) 0;
xdrproc_t inproc, outproc;

Description
The registerrpc subroutine registers a procedure with the Remote Procedure Call (RPC)
service package.

If a request arrives that matches the values of the prognum parameter, the versnum
parameter, and the procnum parameter, then the procname parameter is called with a
pointer to its parameters, after which it returns a pointer to its static results.

Note: Remote procedures registered in this form are accessed using the User Datagram
Protocol/Internet Protocol (UDP/IP) transport protocol only.

Parameters
prognum Specifies the program number of the remote program.

versnum

procnum

procname

inproc

outproc

Specifies the version number of the remote program.

Identifies the procedure number to be called.

Identifies the procedure name.

Specifies the eXternal Data Representation (XDR) subroutine that decodes
the procedure parameters.

Specifies the XDR subroutine that encodes the procedure results.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of -1.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

5-62 Base Operating System Reference

reg isterrpc

Related Information
The callrpc subroutine, svcudp_create subroutine.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

User Datagram Protocol (UDP) in Communication Concepts and Procedures.

Remote Procedure Calls (RPC) 5-63

rtime

rtime Subroutine

Purpose

Library

Syntax

Gets remote time.

C Library (Iibc.a)

#include <rpc/rpc.h>

#include <sys/types.h>
#include <sys/time.h>
#include <netinet/in.h>
int rtime (addrp, timep, timeout)
struct sockaddr_in *addrp;
struct timeval *timep;
struct timeval *timeout;

Description
The rtime subroutine consults the Internet Time Server (TIME) at the address pointed to by
the addrp parameter and returns the remote time in the timeval structure pointed to by the
timep parameter. Normally, the User Datagram Protocol (UDP) protocol is used when
consulting the time server. If the timeout parameter is specified as NULL, however, the
routine instead uses Transmission Control Protocol (TCP) and blocks until a reply is
received from the time server.

Parameters
addrp Points to the Internet Time Server.

timep Points to the timeval structure.

timeout Specifies how long the routine waits for a reply before terminating.

Return Values
Upon successful completion, this subroutine returns a value of O. If unsuccessful, it returns a
value of -1, and the error number parameter (ermo) is set to reflect the cause of the error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

5-64

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

Base Operating System Reference

store Subroutine

Purpose

Library

Syntax

Places data under a key.

OBM Library (libdbm.a)

#include <dbm.h>
store (key, content)
datum key, content;

Description
The store subroutine places data under a key.

Parameters
key

content

Return Values

Specifies the input key.

Specifies the value associated with the key to store.

store

Upon successful completion, this subroutine returns a value of 0 (zero). If unsuccessful, it
returns a negative value.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The dbm_store subroutine.

Remote Procedure Calls (RPe) 5-65

svc_destroy

svc_destroy Macro

Purpose

Library

Syntax

Destroys an RPC service transport handle.

C Library (Iibc.a)

#include <rpc/rpc.h>

void
svc_destroy (xprt)
SVCXPRT * xprt;

Descri ption

Parameter

The svc_destroy macro destroys a Remote Procedure Call (RPC) service transport handle.
Destroying the service transport "handle deallocates the private data structures, including the
handle itself. After the svc_destroy macro is used, the handle pointed to by the xprt
parameter is no longer defined.

xprt Points to the RPC service transport handle.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The clnt_destroy macro, svc_freeargs macro.

5-66 Base Operating System Reference

svc_freeargs Macro

Purpose

Library

Syntax

Frees data allocated by the RPC/XDR system.

C Library (libc.a)

#include <rpc/rpc.h>

svc_freeargs (xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Description
The svc_freeargs macro frees data allocated by the Remote Procedure Cali/eXternal Data
Representation (RPC/XDR) system. This data is allocated when the RPC/XDR system
decodes the arguments to a service procedure with the svc_getargs macro.

Parameters
xprt

inproc

in

Points to the RPC service transport handle.

Specifies the XDR routine that decodes the arguments.

Specifies the address where the procedure arguments are placed.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The svc_getargs macro, svc_destroy macro.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-67

svc_getargs

svc_getargs Macro

Purpose

Library

Syntax

Decodes the arguments of an RPC request.

C Library (Iibc.a)

#include <rpc/rpc.h>

svc_getargs (xprt, inproc, in)
SVCXPRT * xprt;
xdrproc_t inproc;
char *in;

Description
The svc_getargs macro decodes the arguments of a Remote Procedure Call (RPC) request
associated with the RPC service transport handle.

Parameters
xprt

inproc

in

Return Values

Points to the RPC service transport handle.

Specifies the eXternal Data Representation (XDR) routine that decodes the
arguments.

Specifies the address where the arguments are placed.

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The svc_freeargs macro.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-68 Base Operating System Reference

svc_getcaller Macro

Purpose
Gets the network address of the caller of a procedure.

Library

Syntax

C Library (libc.a)

#include <rpc/rpc.h>

struct sockaddr_in *
svc_getcaller (xprt)
SVCXPRT * xprt;

Description
The svc_getcaller macro retrieves the network address of the caller of a procedure
associated with the Remote Procedure Call (RPC) service transport handle.

Parameters
xprt Points to the RPC service transport handle.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The svc_register subroutine, svc_run subroutine.

Remote Procedure Calls (RPe) 5-69

svc _getreqse~

Svc_getreqset Subroutine

Purpose

Library

Syntax

Services an RPC request.

C Library (Iibc.a)

#include <rpc/rpc.h>

void
svc_getreqset (rdfds)
fd_set * rdfds;

Description
The svc_getreqset stJbroutine is only used if a service implementor does not call the
svc_run subroutine, but instead implements custom asynchronous event processing. The
subroutine is called when the select subroutine has determined that a Remote Procedure
Call (RPC) request has arrived on any RPC sockets. The Svc_getreqset subroutine returns
when all sockets associated with the value specified by the rdfds parameter have been
serviced.

Parameters
rdfds Specifies the resultant read-file descriptor bit mask.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The select subroutine, svc_run subroutine.

Sockets Overview in Communications Programming Concepts.

5-70 Base Operating System Reference

svc_register

svc_register Subroutine

Purpose

Library

Syntax

Maps a remote procedure.

C Library (libc.a)

#include <rpc/rpc.h>

svc_register (xprt, prognum, versnum, dispatch, protoco~
SVCXPRT * xprt;
u_long prognum, versnum;
void (*dispatch) 0;
int protocol;

Description
The svc_register subroutine maps a remote procedure with a service dispatch procedure
pointed to by the dispatch parameter. If the protocol parameter has a value of 0, the service
is not registered with the portmap daemon. If the protocol parameter does not have a value
of 0 (or if it is IPPROTO_UDP or IPPROTO_ TCP), the remote procedure triple (prognum,
versnum, and protocol parameters) is mapped to the xprt->xp_port port.

The dispatch procedure takes the following form:

dispatch (request, xprt)
struct svc_req * request;
SVCXPRT * xprt;

Parameters
xprt

prognum

versnum

dispatch

protocol

Return Values

Points to a Remote Procedure Call (RPC) service transport handle.

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Points t9 the service dispatch procedure.

Specifies the data transport used by the service.

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Remote Procedure Calls (RPe) 5-71

svc_register

Related Information
The portmap daemon.

The pmap_set subroutine, pmap_getmaps subroutine, svc_unregister subroutine.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

5-72 Base Operating System Reference

svc run

svc run Subroutine

Purpose

Library

Syntax

Waits for a Remote Procedure Call (RPC) service request to arrive.

C Library (libc.a)

#include <rpc/rpc.h>

void
svc_run (xprt);
SCVXPRT * xprt;

Description
The svc_run subroutine waits for an RPC service request to arrive. When a request arrives,
the svc_run subroutine calls the appropriate service procedure with the svc_getreqset
subroutine. This procedure is usually waiting for a select subroutine to return.

Parameters
xprt Points to an RPC service transport handle.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The callrpc subroutine, registerrpc subroutine, select subroutine, svc_getreqset
subroutine.

Using the Intermediate Layer of RPC, Using the registerrpc Routine in Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-73

svc_sendreply

svc_sendreply Subroutine

Purpose

Library

Syntax

Sends back the results of a remote procedure call.

C Library (Iibe.a)

#inelude <rpe/rpc.h>

svc_sendreply (xprt, outproc, out)
SVCXPRT * xprt;
xdrproc_t outproc;
char *out;

Description
The svc_sendreply subroutine sends back the results of a remote procedure call. This
subroutine is called by a Remote Procedure Call (RPC) service dispatch subroutine.

Parameters
xprt

outproc

out

Return Values

Points to the RPC service transport handle of the caller.

Specifies the eXternal Data Representation (XDR) routine that encodes the
results.

Points to the address where results are placed.

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-74 Base Operating System Reference

svc_unregister

svc_unregister Subroutine

Purpose

Library

Syntax

Removes mappings between procedures and objects.

C Library (libc.a)

#include <rpc/rpc.h>

void
svc_unregister (prognum, versnum)
u_long prognum, versnum .

Description
The svc_unregister subroutine removes mappings between dispatch subroutines and the
service procedure identified by the prognum parameter and the versnum parameter. It also
removes the mapping between the port number and the service procedure which is identified
by the prognum parameter and the versnum parameter.

Parameters
prognum

versnum

Specifies the program number of the remote program.

Specifies the version number of the remote program.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The pmap_unset subroutine, svc_register subroutine.

Remote Procedure Calls (RPC) 5-75

svcerr_8uth Subroutine

Purpose

Library

Syntax

Indicates that the service dispatch routine cannot complete a remote procedure call due to
an authentication error.

RPC Library (libcrpc.a)

#include <rpc/rpc.h>

void
svcerr _auth (xprt, why)
SVCXPRT * xprt;
enum auth_stat why;

Description
The svcerr _auth subroutine is called by a service dispatch subroutine that refuses to
perform a remote procedure call because of an authentication error. This subroutine sets the
status of the RPC reply message to AUTH_ERROR.

Parameters
xprt

,why

Points to the Remote Procedure Call (RPC) service transport handle.

Specifies the authentication error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

5-76 Base Operating System Reference

svcerr _decode

svcerr_decode Subroutine

Purpose

Library

Syntax

Indicates that the service dispatch routine cannot decode the parameters of a request.

C Library (libc.a)

#include <rpc/rpc.h>

void
svcerr _decode (xprt)
SVCXPRT * xprt;

Description

Parameter

The svcerr_decode subroutine is called by a service dispatch subroutine that cannot
decode the parameters specified in a request. This subroutine sets the status of the RPC
reply message to the GARBAGE_ARGS condition.

xprt Points to the Remote Procedure Call (RPC) service transport handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The svc_getargs macro.

Remote Procedure Calls (RPC) 5-77

svcerr_noproc

svcerr _noproc Subroutine

Purpose

Library

Syntax

Indicates that the service dispatch routine cannot complete a remote procedure call because
the program cannot support the requested procedure.

C Library (Iibc.a)

#include <rpc/rpc.h>

void
svcerr _noproc (xprt)
SVCXPRT *xprt;

Description

Parameter

The svcerr_"oproc subroutine is called by a service dispatch routine that does not
implement the procedure number the caller has requested. This subroutine sets the status of
the RPC reply message to the PROC_UNAVAIL condition, which indicates that the program
cannot support the requested procedure.

Note: Service implementors do not usually need this subroutine.

xprt Points to the Remote Procedure Call (RPC) service transport handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

5-78 Base Operating System Reference

svcerr _"oprog

svcerr_noprog Subroutine

Purpose

Library

Syntax

Indicates that the service dispatch routine cannot complete a remote procedure call because
the requested program is not registered.

C Library (libc.a)

#include <rpc/rpc.h>

void
svcerr _noprog (xprt)
SVCXPRT * xprt;

Description

Parameter

The svcerr_noprog subroutine is called by a service dispatch routine when the requested
program is not registered with the Remote Procedure Call (RPC) package. This subroutine
sets the status of the RPC reply message to the PROG_UNAVAIL condition, which indicates
that the remote server has not exported the program.

Note: Service implementors do not usually need this subroutine.

xprt Points to the RPC service transport handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Remote Procedure Calls (RPC) 5-79

svcerr _progvers Subroutine

Purpose

Library

Syntax

Indicates that the service dispatch routine cannot complete the remote procedure call
because the requested program version is not registered.

C Library (Iibe.a)

#inelude <rpe/rpe.h>

void
sveerr_progvers (xprt)
SVCXPRT *xprt;
u_'ong

Description

Parameter

The sveerr_progvers subroutine is called by a service dispatch routine when the requested
version of a program is not registered with the Remote Procedure Call (RPC) package. This
subroutine sets the status of the RPC reply message to the PROG_ MISMATCH condition,
which indicates that the remote server cannot support the client's version number.

Note: Service implementors do not usually need this subroutine.

xprt Points to the RPC service transport handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

5-80 Base Operating System Reference

svcerr _systemerr

svcerr _systemerr Subroutine

Purpose

Library

Syntax

Indicates that the service dispatch routine cannot complete the remote proc'edure call due to
an error that is not covered by a protocol.

C Library (libc.a)

#include <rpc/rpc.h>

void
svcerr_systemerr (xprt)
SVCXPRT *xprt;

Description

Parameter

The svcerr _systemerr subroutine is called by a service dispatch subroutine that detects a
system error not covered by a protocol. For example, a service dispatch subroutine calls the
svcerr_systemerr subroutine if the first subroutine can no longer allocate storage. The
routine sets the status of the RPC reply message to the SYSTEM_ERR condition.

xprt Points to the Remote Procedure Call (RPC) service transport handle.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Remote Procedure Calls (RPC) 5-81

svcerr _ weakauth

svcerr_weakauth Subroutine

Purpose

Library

Syntax

Indicates that the service dispatch routine cannot complete the remote procedure call'due to
insufficient authentication security parameters.

C Library (Jibc.a)

#include <rpc/rpc.h>

void
svcerr_weakauth (xprt)
SVCXPRT *xprt;

Description

Parameter

The svcerr_weakauth subroutine is called by a service dispatch routine that cannot make
the remote procedure call because the supplied authentication parameters are insufficient
for security reasons.

The svcerr_weakauth subroutine calls the svcerr_auth subroutine with the correct Remote
Procedure Call (RPC) service transport handle (the xprt parameter). The subroutine also
sets the status of the RPC reply message to the AUT"H_ TOOWEAK condition as the
authentication error (AUTH_ERR).

xprt Points to the RPC service transport handle.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The svcerr_auth subroutine, svcerr_decode subroutine.

5-82 Base Operating System Reference

svcfd_create Subroutine

Purpose

Library

Syntax

Creates a service on any open file descriptor.

C Library (libc.a)

#include <rpc/rpc.h>

SVCXPRT*
svcfd_create (fd, sendsize, recvsize)
int fd;
u_int sendsize;
u_int recvsize;

Description
The svcfd_create subroutine creates a service on any open file descriptor. Typically, this
descriptor is a connected socket for a stream protocol such as Transmission Control
Protocol (TCP).

Parameters
fd

sendsize

recvsize

Return Values

Identifies the descriptor.

Specifies the size of the send buffer.

Specifies the size of the receive buffer.

Upon successful completion, this subroutine returns a TCP-based transport handle. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Sockets Overview in Communications Programming Concepts.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

Remote Procedure Calls (RPe) 5-83

svcraw_create

svcraw_create Subroutine

Purpose

Library

Syntax

Creates a toy RPC service transport handle for simulation.

C Library (Iibc.a)

#include <rpc/rpc.h>

SVCXPRT*
svcraw_create ()

Description
The svcraw_create subroutine creates a toy Remote Procedure Call (RPC) service
transport handle. The service transport handle is located within the address space of the
process. If the corresponding RPC server resides in the same address space, then
simulation of RPC and acquisition of RPC overheads, such as round-trip times, are done
without kernel interference.

Parameters
This subroutine contains no parameters.

Return Values
Upon successful completion, this subroutine returns a pOinter toa valid RPC transport
handle. If unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The clntraw_create subroutine.

5-84 Base Operating System Reference

svctcp _create

svctcp_create Subroutine

Purpose

Library

Syntax

Creates a TCP/IP service transport handle.

C Library (libc.a)

#include <rpc/rpc.h>

SVCXPRT*
svctcp _create (sock, sendsz, recvsz)
int sock;
u_int sendsz, rcvcsz;

Description
The svctcp_create subroutine creates a Remote Procedure Call (RPC) service transport
handle based on Transmission Control Protocol/Internet Protocol (TCP/IP) and returns a
pointer to it.

Since TCP/IP remote procedure calls use buffered 1/0, users can set the size of the send
and receive buffers with the sendsz and recvsz parameters, respectively. If the size of either
buffer is set to a value of 0, the svctcp_create subroutine picks suitable default values.

Parameters
sock

sendsz

recvsz

Return Values

Specifies the socket associated with the transport. If the value of the sock
parameter is RPC_ANYSOCK, the svctcp_create subroutine creates a new
socket. The service transport handle socket number is set to
xprt->xp_sock. If the socket is not bound to a local TCP/IP port, then this
routine binds the socket to an arbitrary port. Its port number is set to
xprt->xp_port.

Specifies the size of the send buffer.

Specifies the size of the receive buffer.

Upon successful completion, this subroutine returns a valid RPC service transport handle. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The registerrpc subroutine, svcudp_create subroutine.

Sockets Overview in Communications Programming Concepts.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

Remote Procedure Calls (RPe) 5-85

svcudp_create

svcudp_create Subroutine

Purpose

Library

Syntax

Creates a UDP/IP service transport handle.

C Library (libc.a)

#include <rpc/rpc.h>

SVCXPRT*
svcudp_create (sock)
int sock;

Description

Parameter

The svcudp_create subroutine creates a Remote Procedure Call (RPC) service transport
handle based on User Datagram Protocol/internet Protocol (UDP/IP) and returns a pOinter to
it.

The UDP/IP service transport handle is used only for procedures that take up to 8K bytes of
encoded arguments or results.

sock Specifies the socket associated with the service transport handle. If the
value specified by the sock parameter is RPC_ANYSOCK, the
svcudp_create subroutine creates a new socket and sets the service
transport handle socket number to xprt->xp_sock. If the socket is not
bound to a local UDP/IP port, then the svcudp_create subroutine binds the
socket to an arbitrary port. The port number is set to xprt->xp_port.

Return Values
Upon successful completion, this subroutine returns a valid RPC service transport. If
unsuccessful, it returns a value of NULL.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The registerrpc subroutine, svctcp_create subroutine.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

5-86 Base Operating System Reference

user2netname

user2netname Subroutine

Purpose
Converts from a domain-specific user ID to an operating-system-independent network name.

Library

Syntax

C Library (libc.a)

#include <rpc/rpc.h>

user2netname (name, uid, domain)
char *name;
int uid;
char * domain;

Description
The user2netname subroutine converts from a domain-specific user 10 to an operating
system-independent-network name.

This subroutine is the inverse of the netname2user subroutine.

Parameters
name Points to the network name (or netname) of the server process owner.

uid Points to the caller's effective user 10 (UIO).

domain Points to the domain name.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The host2netname subroutine, netname2user subroutine.

Remote Procedure Calls (RPC) 5-87

xdr _accepted_reply Subroutine

Purpose

Library

Syntax

Encodes RPC reply messages.

C Library (Jibc.a)

#include <rpc/rpc.h>

xdr _accepted_reply (xdrs, ar)
XDR *xdrs;
struct accepted_reply * ar;

Description
The xdr_accepted_reply subroutine encodes Remote Procedure Call (RPC) reply
messages. The routine generates message replies similar to RPC message replies without
using the RPC program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

ar Specifies the address of the structure that contains the RPC reply.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-88 Base Operating System Reference

xdr_array

xdr_array Subroutine

Purpose

Library

Syntax

Translates between variable-length arrays and their corresponding external representations.

C Library (libc.a)

#include <rpc/xdr.h>

xdr_array (xdrs, arrp, sizep, maxsize, e/size, e/proc)
XDR *xdrs;
char ** arrp;
u_int * sizep;
u_int maxsize;
u_int e/size;
xdrproc_t e/proc;

Description
The xdr_array subroutine is a filter primitive that translates between variable-length arrays
and their corresponding external representations. This subroutine is called to encode or
decode each element of the array.

Parameters
xdrs

arrp

sizep

maxsize

e/size

e/proc

Return Values

Points to the eXternal Data Representation (XDR) stream handle.

Specifies the address of the pointer to the array. If the arrp parameter is
NULL when the array is being deserialized, XDR allocates an array of the
appropriate size and sets the parameter to that array.

Specifies the address of the element count of the array. The element count
cannot exceed the value for the maxsize parameter.

Specifies the maximum number of array elements.

Specifies the byte size of each of the array elements.

Translates between the C form of the array elements and their external
representations. This parameter is an XDR filter.

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-89

xdr _authunix_parms Subroutine

Purpose

Library

Syntax

Describes UNIX-style credentials.

C Library (libc.a)

#include <rpc/rpc.h>

xdr_authunix_parms (xdrs, app)
XDR *xdrs;
struct authunix_parms * app;

Description
The xdr_authunix_parms subroutine describes UNIX-style credentials. This subroutine
generates credentials without using the Remote Procedure Call (RPC) authentication
program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

app Points to the structure that contains the UNIX-style authentication
credentials.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-90 Base Operating System Reference

xdr_bytes

xdr_bytes Subroutine

Purpose

Library

Syntax

Translates between internal counted byte arrays and their external representations.

C Library (Jibc.a)

#include <rpc/xdr.h>

xdr _bytes (xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep;
u_int maxsize;

Description
The xdr_bytes subroutine is a filter primitive that translates between counted byte arrays
and their external representations. This subroutine treats a subset of generic arrays, in
which the size of array elements is known to be 1 (one), and the external description of each
element is built-in. The length of the byte array is explicitly located in an unsigned integer.
The byte sequence is not terminated by a null character. The external representation of the
bytes is the same as their internal representation.

Parameters
xdrs

sp

sizep

maxsize

Return Values

Points to the eXternal Data Representation (XDR) stream handle.

Specifies the address of the pointer to the byte array.

Points to the length of the byte area. The value of this parameter cannot
exceed the value of the maxsize parameter.

Specifies the maximum number of bytes allowed when XDR encodes or
decodes messages.

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-91

xdr_callhdr Subroutine

Purpose

Library

Syntax

Describes RPC call header messages.

C Library (Iibe.a)

#include <rpe/rpc.h>

xdr _callhdr (xdrs, chdr)
XDR *xdrs;
struct rpc_msg * chdr;

Description
The xdr_callhdr subroutine describes Remote Procedure Call (RPC) call-header messages.
This subroutine generates call headers that are similar to RPC call headers without using
the RPC program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

chdr Points to the structure that contains the header for the call message.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

5-92 Base Operating System Reference

xdr_callmsg Subroutine

Purpose

Library

Syntax

Describes RPC call messages.

C Library (libc.a)

#include <rpc/rpc.h>

xdr_callmsg (xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Description
The xdr_callmsg subroutine describes Remote Procedure Call (RPC) call messages. This
subroutine generates messages similar to RPC messages without using the RPC program.

Parameters
xdrs Points to the eXternal Data Representatiion (XDR) stream handle.

cmsg Points to the structure that contains the text of the call message.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepts.

Remote Procedure Calls (RPe) 5-93

xdr char Subroutine

Purpose

Library

Syntax

Translates between C language characters and their external representations.

C Library (Iibc.a)

#include <rpc/xdr.h>

xdr_char (xdrs, cp)
XDR *xdrs;
char *cp;

Description
The xdr_char subroutine is a filter primitive that translates between C characters and their
external representations.

Note: Encoded characters are not packed and occupy 4 bytes each. For arrays of
characters, the programmer should consider using the xdr_bytes, xdr_opaque, or
xdr _string routine.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

cp Points to the character.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-94 Base Operating System Reference

xdr_destroy Macro

Purpose

Library

Syntax

Destroys the XDR stream pointed to by the xdrs parameter.

C Library (libc.a)

#include <rpc/xdr.h>

void
xdr _destroy (xdrs)
XDR *xdrs;

Description .

Parameter

The xdr_destroy macro invokes the destroy routine associated with the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter and frees the private data
structures allocated to the stream. The use of the XDR stream handle is undefined after it is
destroyed.

xdrs Points to the XDR stream handle.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-95

xdr double

xdr double Subroutine

Purpose

Library

Syntax

Translates between C language double-precision numbers and their external
representations.

C Library (Iibc.a)

#include <rpc/xdr.h>

xdr_double (xdrs, dp)
XDR *xdrs;
double *dp;

Description
The xdr_double subroutine is a filter primitive that translates between C double-precision
numbers and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

dp Specifies the address of the double-precision number.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BO~) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-96 Base Operating System Reference

xdr enum

xdr enum Subroutine

Purpose

Library

Syntax

Translates between a C language enumeration (enum) and its external representation.

C Library (Jibe.a)

#inelude <rpe/xdr.h>

xdr_enum (xdrs, ep)
XDR *xdrs;
enum_t *ep;

Description
The xdr_enum subroutine is a filter primitive that translates between a C language
enumeration (enum) and its external representation.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

ep Specifies the address of the enumeration data.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPe) 5-97

xdr float Subroutine

Purpose

Library

Syntax

Translates between C language floats and their external representations.

C Library (Iibc.a)

#include <rpc/xdr.h>

xdr _float (xdrs, fp)
XDR *xdrs;
float *fp;

Description
The xdr_float subroutine is a filter primitive that translates between C floats (normalized
single floating-point numbers) and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

fp Specifies the address of the float.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-98 Base Operating System Reference

xdr free

xdr_free Subroutine

Purpose

Library

Syntax

Deallocates, or frees, memory.

C Library (libc.a)

#include <rpc/xdr.h>

void
xdr_free (proc, objp)
xdrproc_t proc;
char *objp;

Description
The xdr_free subroutine is a generic freeing routine that deallocates memory. The first
argument is the eXternal Data Representation (XDR) routine for the object being freed. The
second argument is a pointer to the object itself.

Note: The pointer passed to this routine is not freed, but what it points to is freed
(recursively).

Parameters
proc Points to the XDR stream handle.

objp Points to the object being freed.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPe) 5-99

xdr_getpos Macro

Purpose

Library

Syntax

Returns an unsigned integer that describes the current position in the data stream.

C Library (Iibc.a)

#include <rpc/xdr.h>

u_int
xdr _getpos (xdrs)
XDR *xdrs;

Description

Parameter

The xdr_getpos macro invokes the get-position routine associated with the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter. This routine returns an
unsigned integer that describes the current position in the data stream.

xdrs Points to the XDR stream handle.

Return Values
This macro returns an unsigned integer describing the current position in the stream. In
some XDR streams, this routine returns a value of -1 , even though the value has no
meaning.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-100 Base Operating System Reference

xdr inline Macro

Purpose

Library

Syntax

Returns a pointer to the buffer of a stream pointed to by the xdrs parameter.

C Library (libc.a)

#include <rpc/xdr.h>

long *
x_inline (xdrs, len)
XDR *xdrs;
int len;

Description
The xdr_inline macro invokes the inline routine associated with the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter. The routine returns a
pointer to a contiguous piece of the stream's buffer, whose size is specified by the len
parameter. The buffer can be used for any purpose, but it is not data-portable. This routine
may return a value of NULL if it cannot return a buffer segment of the requested size.

Parameters
xdrs

len

Return Values

Points to the XDR stream handle.

Specifies the size, in bytes, of the internal buffer.

This macro returns a pointer to a piece of the stream's buffer.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-101

xdr int

xdr int Subroutine

Purpose

Library

Syntax

Translates between C language integers and their external representations.

C Library (libc.a)

#include <rpc/xdr.h>

xdr_int (xdrs, ip)
XDR *xdrs;
int *ip;

Descri ption
The xdr_int subroutine is a filter primitive that translates between C language integers and
their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

ip Specifies the address of the integer.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-102 Base Operating System Reference

xdr_long Subroutine

Purpose

Library

Syntax

Translates between C language long integers and their external representations.

C Library (Iibe.a)

#inelude <rpe/xdr.h>

xdr_long (xdrs, /p)
XDR *xdrs;
long *Ip;

Description
The xdr_long filter primitive translates between C language long integers and their external
representations. This primitive is characteristic of most eXternal Data Representation (XDR)
library primitives and all client XDR routines.

Parameters
xdrs

Ip

Return Values

Points to the XDR stream handle. This parameter can be treated as an
opaque handler and passed to the primitive routines.

Specifies the address of the number.

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-103

xdr_opaque Subroutine

Purpose

Library

Syntax

Translates between fixed-size opaque data and its external representation.

C Library (Iibc.a)

#include <rpc/xdr.h>

xdr_opaque(xdrs,cp,cnn
XDR *xdrs;
char *cp;
u_int cnt;

Description
The xdr _opaque subroutine is a filter primitive that translates between fixed-size opaque
data and its external representation.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

cp Specifies the address of the opaque object.

cnt Specifies the size, in bytes, of the object. By definition, the actual data
contained in the opaque object is not machine-portable.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-104 Base Operating System Reference

xdr_opaque_auth Subroutine

Purpose

Library

Syntax

Describes RPC authentication messages.

C Library (libc.a)

#include <rpc/rpc.h>

xdr_opaque_auth (xdrs, ap)
XDR *xdrs;
struct opaque_auth * ap;

Description
The xdr_opaque_auth subroutine describes Remote Procedure Call (RPC) authentication
information messages. It generates RPC authentication message data without using the
RPC program.

Parameters
xdrs

ap

Return Values

Points to the eXternal Data Representation (XDR) stream handle.

Points to the structure that contains the authentication information.

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-105

xdr_pmap Subroutine

Purpose

Library

Syntax

Describes parameters for portmap procedures.

C Library (Iibc.a)

#include <rpc/rpc.h>

xdr_pmap (xdrs, regs)
XDR *xdrs;
struct pmap * regs;

Description
The xdr_pmap subroutine describes parameters for portmap procedures. This subroutine
generates portmap parameters without using the portmap interface.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

regs Points to the buffer or register where the portmap daemon stores
information.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

5-106

The portmap daemon.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Base Operating System Reference

xdr_pmaplist Subroutine

Purpose

Library

Syntax

Describes a list of port mappings externally.

C Library (Iibe.a)

#include <rpe/rpc.h>

xdr _pmaplist (xdrs, rp)
XDR *xdrs;
struet pmaplist ** rp;

Description
The xdr_pmaplist subroutine describes a list of port mappings externally. This subroutine
generates the port mappings to Remote Procedure Call (RPC) ports without using the
portmap interface.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

rp Points to the structure that contains the portmap listings.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The portmap daemon.

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-107

xdr_pointer Subroutine

Purpose

Library

Syntax

Provides painter chasing within structures and serializes NULL pointers.

C Library (libc.a)

#include <rpc/xdr.h>

xdr_pointer (xdrs, objpp, objsize, xdrobJ)
XDR *xdrs;
char ** objpp;
u_int objsize;
xdrproc_t xdrobj;

Description
The xdr_pointer subroutine provides pointer chasing within structures and serializes NULL
pointers. This subroutine can represent recursive data structures, such as binary trees or
linked lists.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

objpp Points to the character pointer of the data structure.

objsize Specifies to the size of the structure.

xdrobj Specifies the XDR filter for the object.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-108 Base Operating System Reference

xdr _reference

xdr reference Subroutine

Purpose

Library

Syntax

Provides pointer chasing within structures.

C Library (Jibc.a)

#include <rpc/xdr.h>

xdr_reference (xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

Description
The xdr_reference subroutine is a filter primitive that provides pointer chasing within
structures. This primitive allows the serializing, deserializing, and freeing of pointers within
one structure that are referenced by another structure.

The xdr_reference subroutine does not attach any special meaning to a nUll-value pointer
during serialization. Attempting to pass the address of a NULL pointer can cause a memory
error. The programmer must describe data with a two-armed discriminated union. One arm
is used when the pointer is valid; the other arm is used when the pointer is NULL.

Parameters
xdrs

pp

size

proc

Return Values

Points to the eXternal Data Representation (XDR) stream handle.

Specifies the address of the pOinter to the structure. When decoding data,
XDR allocates storage if the pointer is NULL.

Specifies the byte size of the structure pointed to by the pp parameter.

Filters the structure between its C form and its external representation. This
parameter is the XDR procedure that describes the structure.

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-109

xdr _rejected_reply Subroutine

Purpose

Library

Syntax

Describes RPC message rejection replies.

C Library (Iibc.a)

#include <rpc/rpc.h>

xdr _rejected_reply (xdrs, rr)
XDR *xdrs;
struct rejected_reply * rr,

Oescri ption
The xdr_rejected_reply subroutine describes Remote Procedure Call (RPC) message
rejection replies. This subroutine can be used to generate rejection replies similar to RPC
rejection replies without using the RPC program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

rr Points to the structure that contains the rejected reply.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

5-110

eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepts.

Base Operating System Reference

xdr_replymsg Subroutine

Purpose

Library

Syntax

Describes RPC message replies.

C Library (libc.a)

#include <rpc/rpc.h>

xdr_replymsg (xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

Description
The xdr_replymsg subroutine describes Remote Procedure Call (RPe) message replies.
Use this subroutine to generate message replies similar to RPC message replies without
using the RPC program.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

rmsg Points to the structure containing the parameters of the reply message.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Remote Procedure Calls (RPC) 5-111

xdr_setpos Macro

Purpose

Library

Syntax

Changes the current position in the XDR stream.

C Library (libc.a)

#include <rpc/xdr.h>

xdr_setpos (xdrs, pos)
XDR *xdrs;
uJnt pos;

Description
The xdr_setpos macro invokes the set-position routine associated with the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter. The new position setting is
obtained from the xdr _getpos routine. This routine returns a value of FALSE if the set
position is impossible or if the requested position is out of bounds.

A position cannot be set in some XDR streams. Trying to set a position in such streams
causes the routine to fail. This routine also fails if the programmer requests a position that is
not within the stream's boundaries.

Parameters
xdrs Points to the XDR stream handle.

pos Specifies a position value obtained from the xdr_getpos macro.

Return Values
Upon successful completion (if the stream is positioned successfully), this routine returns a
value of 1. If unsuccessful, the routine returns a value of O.

Implementation Specifics
This macro is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The xdr _getpos macro.

Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-112 Base Operating System Reference

xdr short Subroutine

Purpose

Library

Syntax

Translates between C language short integers and their external representations.

C Library (libc.a)

#include <rpc/xdr.h
xdr_short (xdrs, sp)
XDR *xdrs;
short *sp;

Description
The xdr_short subroutine is a filter primitive that translates between C language short
integers and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

sp Specifies the address of the short integer.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-113

xdr_string Subroutine

Purpose

Library

Syntax

Translates between C language strings and their external representations.

C Library (libc.a)

#include <rpc/xdr.h>

xdr_string (xdrs, sp, maxs;ze)
XDR *xdrs;
char **sp;
u_int maxsize;

Description
The xdr _string subroutine is a filter primitive that translates between C language strings
and their corresponding external representations. Externally, strings are represented as
sequences of ASCII characters, while internally, they are represented with character
pointers.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

Specifies the address of the pointer to the string. sp

maxsize Specifies the maximum length of the string allowed during encoding or
decoding. This value is set in a protocol. For example, if a protocol specifies
that a file name cannot be longer than 255 characters, then a string cannot
exceed 255 characters.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-114 Base Operating System Reference

xdr_u_char Subroutine

Purpose
Translates between unsigned C language characters and their external representations.

Library

Syntax

C Library (libc.a)

#include <rpc/xdr.h>

xdr_u_char (xdrs, ucp)
XDR *xdrs;
char *ucp;

Description
The xdr_u_char subroutine is a filter primitive that translates between unsigned C language
characters and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

ucp Points to an unsigned integer.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-115

xdr u int Subroutine

Purpose

Library

Syntax

Translates between C language unsigned integers and their external representations.

C Library (libe.a)

#include <rpe/xdr.h>

xdr_u_int (xdrs, up)
XDR *xdrs;
u_int *up;

Descri ption
The xdr_u_int subroutine is a filter primitive that translates between C language unsigned
integers and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

up Specifies the address of the unsigned long integer number.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BaS) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-116 Base Operating System Reference

xdr_u_long Subroutine

Purpose
Translates between C language unsigned long integers and their external representations.

Library

Syntax

C Library (Iibc.a)

#include <rpc/xdr.h>

xdr_u_long (xdrs, ulp)
XDR *xdrs;
uJong * ulp;

Description
The xdr_u_long subroutine is a filter primitive that translates between C language unsigned
long integers and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

ulp Specifies the address of the unsigned long integer.

Return Values
Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPe) 5-117

xdr u short Subroutine

Purpose

Library

Syntax

Translates between C language unsigned short integers and their external representations.

C Library (libc.a)

#include <rpc/xdr.h>

xdr_u_short (xdrs, usp)
XDR *xdrs;
u_short * usp;

Description
The xdr_u_short subroutine is a filter primitive that translates between C language
unsigned short integers and their external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

usp Specifies the address of the unsigned short integer.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-118 Base Operating System Reference

xdr union

xdr union Subroutine

Purpose

Library

Syntax

Translates between discriminated unions and their external representations.

C Library (libc.a)

#include <rpc/xdr.h>

xdr _union (xdrs, dscmp, unp, armchoices, defaultarm)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim * armchoices;
xdrproc_t (*defaultarm) ; /* may equal NULL */

Description
The xdr_union subroutine is a filter primitive that translates between a discriminated C
union and its corresponding external representations. It first translates the discriminant of the
union located at the address pointed to by the dscmp parameter. This discriminant is always
an enum_t value. Next, the union located at the address pointed to by the unp parameter is
translated. The armchoices parameter is a pointer to an array of xdr_discrim structures.
Each structure contains an ordered pair of parameters[value, proc]. If the union's
discriminant is equal to the associated value, then the proc is called to translate the union.
The end of the xdr_discrim structure array is denoted by a routine of value NULL. If the
discriminant is not found in the choices array, then the defaultarm procedure is called (if it is
not NULL).

Parameters
xdrs

dscmp

unp

armchoices

de fa ultarm

Return Values

Points to the eXternal Data Representation (XDR) stream handle.

Specifies the address of the union's discriminant. The discriminant is an
enum_t value.

Specifies the address of the union.

Points to an array of xdr_discrim structures.

A structure provided in case no discriminants are found.

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-119

xdr vector Subroutine

Purpose

Library

Syntax

Translates between fixed-length arrays and their corresponding external representations.

C Library (libc.a)

#include <rpc/xdr.h>

xdr_vector (xdrs, arrp, size, e/size, e/proc)
XDR *xdrs;
char *arrp;
u_int size, e/size;
xdrproc_t e/proc;

Description
The xdr vector subroutine is a filter primitive that translates between fixed-length arrays
and their corresponding external representations.

Parameters
xdrs Points to the eXternal Data Representation (XDR) stream handle.

arrp

size

e/size

e/proc

Specifies the the pointer to the array.

Specifies the element count of the array.

Specifies the size of each of the array elements.

Translates between the C form of the array elements and their external
representation. This is an XDR filter.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-120 Base Operating System Reference

xdr void Subroutine

Purpose

Library

Syntax

Supplies an XDR subroutine to the RPC system without transmitting data.

C Library (libc.a)

#include <rpc/xdr.h>

xdr_void 0

Description
The xdr_void subroutine has no function parameters. It may be passed to other Remote
Procedure Call (RPC) routines that require a function parameter, where nothing is to be
done.

Parameters
This subroutine contains no parameters.

Return Values
This subroutine always returns a value of 1.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Library Filter Primitives, Remote Procedure Call (RPe) Overview for
Programming in Communications Programming Concepts.

Remote Procedure Calls (RPe) 5-121

xdr_wrapstring

xdr_wrapstring Subroutine

Purpose

Library

Syntax

Calls the xdr_string subroutine.

C Library (Iibc.a)

#include <rpc/xdr.h>

xdr_wrapstring (xdrs, sp)
XDR *xdrs
char **sp

Description
The xdr_wrapstring subroutine is a primitive that calls the xdr_string subroutine (xdrs, sp,
MAXUN. UNSIGNED); where the MAXUN. UNSIGNED value is the maximum value of an
unsigned integer. The xdr_wrapstring subroutine is useful because the Remote Procedure
Call (RPC) package passes a maximum of two eXternal Data Representation (XDR)
routines as parameters, and xdr_string requires three.

Parameters
xdrs Points to the XDR stream handle.

sp Specifies the address of the pointer to the string.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The xdr_string subroutine.

Understanding XDR Library Filter Primitives in Communications Programming Concepts.

5-122 Base Operating System Reference

xdrmem create

xdrmem_create Subroutine

Purpose

Library

Syntax

Initializes in local memory the XDR stream pointed to by the xdrs parameter.

C Library (libc.a)

#include <rpc/xdr.h>
void
xdrmem_create (xdrs, addr, size, op)
XDR *xdrs;
char*addr;
u_int size;
enum xdr_op op;

Description
The xdrmem_create subroutine initializes in local memory the eXternal Data
Representation (XDR) stream pointed to by the xdrs parameter. The XDR stream data is
written to or read from a chunk of memory at the location specified by the addr parameter.

Parameters
xdrs Points to the XDR stream handle.

addr Points to the memory where the XDR stream data is written to or read from.

size Specifies the length of the memory in bytes.

op Specifies the XDR direction. The possible choices are XDR_ENCODE,
XDR_DECODE, or XDR_FREE.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-123

xdrrec_create

xdrrec_create Subroutine

Purpose

Library

Syntax

Provides an XDR stream that can contain long sequences of records.

C Library (Jibc.a)

#include <rpc/xdr.h>

void
xdrrec_create (xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
u_int sendsize;
u_int recvsize;
char * handle;
int (*readit) 0, (*writeit) 0;

Description
The xdrrec_create subroutine provides an eXternal Data Representation (XDR) stream that
can contain long sequences of records and handle them in both the encoding and decoding
directions. The record contents contain data in XDR form. The routine initializes the XDR
stream object pointed to by the xdrs parameter.

Note: This XDR stream implements an intermediate record stream. Therefore, there are
additional bytes in the stream to provide record boundary information.

Parameters
xdrs Points to the XDR stream handle.

sendsize

recvsize

handle

readit

write it

Sets the size of the input buffer where data is written to. If 0 is specified, the
buffers are set to the system defaults.

Sets the size of the output buffer where data is read from. If 0 is specified,
the buffers are set to the system defaults.

Points to the input/output buffer's handle, which is opaque.

Points to the subroutine to call when a buffer needs to be filled. Similar to
the read system call.

Points to the subroutine to call when a buffer needs to be flushed. Similar to
the write system call.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-124 Base Ooeratina Svstem Reference

xdrrec_endofrecord

xdrrec endofrecord Subroutine

Purpose

Library

Syntax

Causes the current outgoing data to be marked as a record.

C Library (libc.a)

#include <rpc/xdr.h>

xdrrec_endofrecord (xdrs, sendnow)
XDR *xdrs;
bool_t sendnow;

Description
The xdrrec_endofrecord subroutine causes the current outgoing data to be marked as a
record and can only be invoked on streams created by the xdrrec_create subroutine. The
data in the output buffer is marked as a completed record, and the output buffer is optionally
written out if the value of the sendnow parameter is nonzero.

Parameters
xdrs

sendnow

Points to the eXternal Data Representation (XDR) stream handle.

Specifies whether the record should be flushed to the output tcp stream.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The xdrrec_create subroutine.

Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-125

xdrrec_eof

xdrrec_eof Subroutine

Purpose

Library

Syntax

Checks the buffer for an input stream that indicates the end of file (EOF).

C Library (Iibc.a)

#include <rpc/xdr.h>

xdrrec_eof (xdrs)
XDR *xdrs;

Description

Parameter

The xdrrec_eof subroutine checks the buffer for an input stream to see if it reached the end
of the file. This routine can only be invoked on streams created by the xdrrec_create
subroutine.

xdrs Points to the eXternal Data Representation (XDR) stream handle.

Return Values
After consuming the rest of the current record in the stream, this routine returns a value of 1
if the stream has no more input and a value of 0 otherwise.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The xdrrec_create subroutine.

Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-126 Base Operating System Reference

xdrrec_skiprecord

xdrrec_skiprecord Subroutine

Purpose

Library

Syntax

Causes the position of an input stream to move to the beginning of the next record.

C Library (Jibc.a)

#include <rpc/xdr.h>

xdrrec_skiprecord (xdrs)
XDR *xdrs;

Description

Parameter

The xdrrec_skiprecord subroutine causes the position of an input stream to move past the
current record boundary and onto the beginning of the next record of the stream. This
subroutine can only be invoked on streams created by the xdrrec_create subroutine. The
xdrrec_skiprecord subroutine tells the eXternal Data Representation (XDR) implementation
that the rest of the current record in the stream's input buffer should be discarded.

xdrs Points to the XDR stream handle.

Return Values
Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a
value of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The xdrrec_create subroutine.

Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

Remote Procedure Calls (RPe) 5-127

xdrstdio create

xdrstdio create Subroutine

Purpose

Library

Syntax

Initializes the XDR data stream pointed to by the xdrs parameter.

C Library (Iibc.a)

#include <stdio.h>
#include <rpc/xdr.h>

void
xdrstdio_create (xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr_op op;

Descri ption
The xdrstdio_create subroutine initializes the eXternal Data Representation (XDR) data
stream pointed to by the xdrs parameter. The XDR stream data is written to or read from the
standard inpuVoutput stream pointed to by the file parameter.

Note: The destroy routine associated with such XDR stream calls the fflush function on
the file stream, but never calls the fclose function.

Parameters
xdrs Points to the XDR stream handle to initialize.

file Points to the standard I/O device which data is written to or read from.

op Specifies an XDR direction. The possible choices are XDR_ENCODE,
XDR_DECODE, or XDR_FREE.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding XDR Non-Filter Primitives in Communications Programming Concepts.

5-128 Base Operating System Reference

xprt_register

xprt_register Subroutine

Purpose

Library

Syntax

Registers an RPC service transport handle.

C Library (libc.a)

void
xprt_register (xprt)
SVCXPRT * xprt;

Description

Parameter

The xprt_register subroutine registers a Remote Procedure Call (RPC) service transport
handle with the RPC program after the transport has been created. This subroutine modifies
the svc_fds global variable.

Note: Service implementors do not usually need this subroutine.

xprt Points to the newly created RPC service transport handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
eXternal Data Representation (XDR) Overview for Programming i n Communications
Programming Concepts.

Remote Procedure Calls (RPe) 5-129

xprt_unregister

xprt_unregister Subroutine

Purpose

Library

Syntax

"Removes an RPC service transport handle.

C Library (libc.a)

void
xprt_unregister (xprt)
SVCXPRT *xprt;

Description

Parameter

The xprt_unregister subroutine removes a Remote Procedure Call (RPC) service transport
handle from the RPC service program before the transport handle can be destroyed. This
subroutine modifies the svc_fds global variable.

Note: Service implementors do not usually need this subroutine.

xprt Points to the RPC service transport handle to be destroyed.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

5-130

eXternal Data Representation (XDR) Overview for Programming in Communications
Programming Concepts.

Base Operating System Reference

yp_all Subroutine

Purpose

Library

Syntax

Transfers all of the key-value pairs from the network information service (NIS) server to the
client as the entire map.

C Library (libc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_all (indomain, inmap, incallback)
char * indomain;
char * inmap;
struct ypall_CaliBack *incallback {

int (* foreach) 0;

};
char *data;

foreach (instatus, inkey, inkey/en, inva/, invallen, indata)

int instatus;
char * in key;
int inkey/en;
char * inva/;
int invallen;
char * indata;

Description
The yp_all subroutine provides a way to transfer an entire map from the server to the client
in a single request. The routine uses Transmission Control Protocol (TCP) rather than User
Datagram Protocol (UDP) as with other functions in this package. This entire transaction
takes place as a single Remote Procedure Call (RPC) request and response. The yp_all
subroutine is used like any other NIS procedure to identify a subroutine and the map in the
normal manner. The subroutine is supplied to process each key-value pair within the map.

Note: The remote procedure call is returned to the yp_all subroutine only after the
transaction is completed (successfully or unsuccessfully), or the foreach function
decides that it does not want to see any more key-value pairs.

Parameters
indomain

inmap

incallback

instatus

inkey

Points to the name of the domain used as input to the subroutine.

Points to the name of the map used as input to the subroutine.

Specifies the structure containing the user-defined foreach function, which
is called for each key-value pair transfered.

Specifies either a return status value of the form NIS_ TRUE or an error
code. The error codes are defined in the <rpcsvc/yp_prot.h> header file.

Points to memory that is private to the yp_all subroutine and is overwritten
when each new key-value pair arrives. The foreach function can use the

Remote Procedure Calls (RPe) 5-131

inkeylen

in val

invallen

indata

contents of the memory but does not own the memory itself. Key and value
objects presented to the foreach function look exactly as they do in the
server's map. Objects not terminated by NEWLINE or NULL in the server's
map are not terminated by NEWLINE or NULL in the client's map.

Returns the length of the inkey parameter in bytes.

Specifies the value as returned from the server's database.

Specifies the size of the value in bytes.

Specifies the contents of the incallback->data element passed to the
yp_all subroutine. The data element shares state information between the
foreach function and the mainline code. It is an optional parameter because
no part of the NIS client package inspects its contents.

Return Values
Since the foreach subroutine is a Boolean, it returns a value of 0 (zero) to indicate that it is
ready to be called again for additional received key-value pairs. It returns a nonzero value to
stop the flow of key-value pairs. If the foreach function returns a nonzero value, it is not
called again, and the yp_all subroutine returns a value of 0 (zero).

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

5-132

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts, Understanding Protocols for TCP/IP in Communication Concepts and
Procedures.

Base Operating System Reference

yp_bind Subroutine

Purpose

Library

Syntax

Used in programs to call the ypbind daemon directly for processes that use backup
strategies when NIS is not available.

C Library (libc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_bind (indomain)
char * indomain;

Description

Parameter

In order to use network information service (NIS), the client process must be bound to an
NIS server that serves the appropriate domain. That is, the client must be associated with a
specific NIS server that services the client's requests for NIS information. The NIS lookup
processes automatically use the ypbind daemon to bind the client, but the yp_bind
subroutine can be used in programs to call the daemon directly for processes that use
backup strategies (for example, a local file) when NIS is not available.

Each NIS binding allocates, or uses up, one client process socket descriptor, and each
bound domain uses one socket descriptor. Multiple requests to the same domain use the
same descriptor.

Note: If a Remote Procedure Call (RPC) failure status returns from the use of the yp_bind
subroutine, the domain is unbound automatically. When this occurs, the NIS client
tries to complete the operation if the ypbind daemon is running and either of the
following is true:

• The client process cannot bind a server for the proper domain.

• Remote procedure calls to the server fail.

indomain Points to the name of the domain for which to attempt the bind.

Return Values
The NIS client returns control to the user with either an error or a success code if any of the
following occurs:

• The error is not related to RPC.

• The ypbind daemon is not running.

• The ypserv daemon returns the answer.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Remote Procedure Calls (RPC) 5-133

Related Information

5-134

The ypbind daemon, ypserv daemon.

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts.

Base Operating System Reference

yp_first Subroutine

Purpose

Library

Syntax

Returns the first key-value pair from the named network information service (NIS) map in the
named domain.

C Library (Iibc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_first (indomain, inmap, outkey, outkeylen, outval, outvallen)
char * indomain;
char * inmap;
char **outkey;
int *outkeylen;
char ** outval;
int *outvallen;

Description
The yp_first routine returns the first key-value pair from the named NIS map in the named
domain.

Parameters
indomain

in map

outkey

outkeylen

outval

outvallen

Return Values

Points to the name of the domain used as input to the subroutine.

Points to the name of the map used as input to the subroutine.

Specifies the address of the uninitialized string pointer where the first key is
returned. Memory is allocated by the NIS client using the malloc
subroutine, and may be freed by the application.

Returns the length of the outkey parameter in bytes.

Specifies the address of the uninitialized string pointer where the value
associated with the key is returned. Memory is allocated by the NIS client
using the malloc subroutine, and may be freed by the application.

Returns the length of the outval parameter in bytes.

Upon successful completion, this routine returns a value of 0 (zero). If unsuccessful, it
returns an error as described in the <rpcsvc/yp_prot.h> header file.

Remote Procedure Calls (RPC) 5-135

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

5-136

The malloe subroutine.

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts.

Base Operating System Reference

yp_get_default_domain

yp_get_default_domain Subroutine

Purpose

Library

Syntax

Gets the default domain of the node.

C Library (Iibe.a)

#inelude <rpesve/ypelnt.h>
#inelude <rpesve/yp_prot.h>

yp_get_default_domain (outdomain)
ehar ** outdomain;

Description

Parameter

Network information service (NIS) look-up calls require a map name and a domain name.
The client processes can get the default domain of the node by calling the
yp_get_default_domain routine and using the value returned in the outdomain parameter
as the input domain (indomain) parameter for its NIS remote procedure calls.

outdomain Specifies the address of the uninitialized string pointer where the default
domain is returned. Memory is allocated by the NIS client using the malloe
subroutine, and may be freed by the application.

Return Values
Upon successful completion, this routine returns a value of 0 (zero). If unsuccessful, it
returns an error as described in the <rpesve/yp_prot.h> header file.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The malloe subroutine.

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts.

Remote Procedure Calls (RPe) 5-1.37

yp_master Subroutine

Purpose

Library

Syntax

Returns the machine name of the NIS master server for a map.

C Library (Iibc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_master (indomain, inmap,outname)
char * indomain;
char * inmap;
char ** outname;

Description
The yp_master subroutine returns the machine name of the network information service
(NIS) master server for a map.

Parameters
indomain Points to the name of the domain used as input to the subroutine.

in map

outname

Points to the name of the map used as input to the subroutine.

Specifies the address of the unitialized string pointer where the name of the
domain's yp_master server is returned. Memory is allocated by the NIS
client using the malloc subroutine, and may be freed by the application.

Return Values
Upon successful completion, this routine returns a value of 0 (zero). If unsuccessful, it
returns an error as described in the <rpcsvc/yp_prot.h> header file.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

5-138

The malloc subroutine.

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts.

Base Operating System Reference

yp_match Subroutine

Purpose

Library

Syntax

Searches for the value associated with a key.

C Library (Iibc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_match (indomain, in map, in key, inkeylen, outval, outvallen)
char * indo main;
char * inmap;
ehar * inkey;
int inkeylen;
ehar ** outval;
int *outvallen;

Description
The yp_match subroutine searches for the value associated with a key. The input character
string entered as the key must match a key in the network information service (NIS) map
exactly because pattern matching is not available in NIS.

Parameters
indomain

in map

inkey

inkeylen

outval

outvallen

Return Values

Points to the name of the domain used as input to the subroutine.

Points to the name of the map used as input to the subroutine.

Points to the name of the key used as input to the subroutine.

Specifies the length of the key in bytes.

Specifies the address of the unitialized string pointer where the values
associated with the key are returned. Memory is allocated by the NIS client
using the malloe subroutine, and may be freed by the application.

Returns the length of the outval parameter in bytes.

Upon successful completion, this routine returns a value of 0 (zero). If unsuccessful, it
returns an error as described in the <rpesve/yp_prot.h> header file.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The malloe subroutine.

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts.

Remote Procedure Calls (RPC) 5-139

yp_next

yp_next Subroutine

Key Concepts

Purpose

Library

Syntax

Returns each subsequent value it finds in the named network information service (NIS) map
until it reaches the end of the list.

C Library (libc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_next (indomain, inmap, in key, inkeylen, outkey, outkeylen, outval, outvallen)
char * indomain;
char * inmap;
char *inkey
int inkeylen
char ** outkey;
int * outkeylen;
char ** outval;
int *outvallen;

Description
The yp_next subroutine returns each subsequent value it finds in the named NIS map until it
reaches the end of the list.

The yp_next routine must be preceded by an initial yp_first subroutine. Use the outkey
parameter value returned from the initial yp_first subroutine as the value of the inkey
parameter for the yp_next subroutine. The inkey parameter values for subsequent calls are
retrieved as the nth + second key-value pair. That is, each time the routine returns a
key-value to use as the next inkey parameter.

The concepts of first and next depend on the structure of the NIS map being processed. The
routines do not retrieve the information in a specific order, such as the lexical order from the
original database information files or the numerical sorting order of the keys, values, or
key-value pairs. They do show every entry in the NIS map if the yp_first subroutine is called
on a specific map with the yp_next subroutine called repeatedly. The process returns the
YPERR_NOMORE message to the user to indicate that every entry in the NIS map has
been seen once. If the same sequence of operations is performed on the same map at the
same server, the entries are seen in the same order.

Note: If a server operates under a heavy load or fails, the domain can become unbound
and then bound again while a client is running. If it binds itself to a different server, it
can cause entries to be seen twice or not be seen at all. The domain rebinds itself to
protect the enumeration process from being interrupted before it completes. Avoid
this situation by returning all of the keys and values with the yp_all subroutine.

Parameters
indomain Points to the name of the domain used as input to the subroutine.

in map Points to the name of the map used as input to the subroutine.

5-140 Base Operating System Reference

inkey

inkey/en

outkey

outkeylen

outval

outvallen

Return Values

yp_next

Points to the key that is used as input to the subroutine.

Returns the length of the inkey parameter in bytes.

Specifies the address of the unitialized string pointer where the first key is
returned. Memory is allocated by the NIS client using the malloe
subroutine, and may be freed by the application.

Returns the length of outkey in bytes.

Specifies the address of the unitialized string pointer where the values
associated with the key are returned. Memory is allocated by the NIS client
using the malloe subroutine, and may be freed by the application.

Returns the length of the outval parameter in bytes.

Upon successful completion, this routine returns a value of O. If unsuccessful, it returns an
error as described in the <rpesve/yp_prot.h> header file.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The malloe subroutine, yp_all subroutine, yp_first subroutine.

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts.

Remote Procedure Calls (RPC) 5-141

yp_order Subroutine

Purpose

Library

Syntax

Returns the order number for a network information service (NIS) map that identifies when
the map was built.

C Library (Iibc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_order (indomain, inmap, outordef)
char * indomain;
char * inmap;
int *outorder,

Description
The yp_order subroutine returns the order number for an NIS map that identifies when the
map was built. The number determines whether the local map is the most current version or
the master NIS database has a more current one.

Parameters
indomain Points to the name of the domain used as input to the subroutine.

in map

outorder

Points to the name of the map used as input to the subroutine.

Points to the returned order number, which is a ten-digit ASCII integer that
represents the AIX time, in seconds, when the map was built.

Return Values
Upon successful completion, this routine returns a value of 0 (zero). If unsuccessful, it
returns an error as described in the <rpcsvc/yp_prot.h> header file.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

5-142

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts.

Base Operating System Reference

yp_unbind Subroutine

Purpose

Library

Syntax

Manages socket descriptors for processes that access multiple domains.

C Library (Jibc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

void yp_unbind (indomain)
char * indo main;

Description
The yp_unbind subroutine is available to manage socket descriptors for processes that
access multiple domains. When the yp_unbind subroutine is used to free a domain, all
per-process and per-node resources that were used to bind it are also freed.

Parameter
indomain Points to the name of the domain used as input to the subroutine.

Return Values
Upon successful completion, this routine returns a value of 0 (zero). If unsuccessful, it
returns an error as described in the <rpcsvc/yp_prot.h> header file.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ypbind daemon.

The yp_bind subroutine.

Sockets Overview in Communications Programming Concepts.

Remote Procedure Calls (RPC) 5-143

yp_update Subroutine

Purpose

Library

Syntax

Used to make changes to the network information service (NIS) map.

C Library (libc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

yp_update (indomain, inmap, ypop, inkey, inkeylen, indata, indatalen)
char * indomain;
char * inmap;
unsigned ypop;
char * inkey;
int inkeylen;
char * indata;
int indatalen;

Description
The yp_update subroutine is used to make changes to the NIS map. The syntax is the
same as that of the yp_match subroutine except for the extra parameter ypop which may
take on one of the following four values:

ypop _INSERT Inserts the key-value pair into the map. If the key already exists in the
map, the yp_update subroutine returns a value of YPERR_KEY.

Changes the data associated with the key to the new value. If the key
is not found in the map, the yp_update subroutine returns a value of
YPERR_KEY.

Stores an item in the map whether or not it already exists. No error will
be returned if the key exists already or does not exist.

Deletes an entry from the map.

Note: This routine depends upon secure Remote Procedure Call (RPC), and will not work
unless the network is running secure RPC.

Parameters
indomain Points to the name of the domain used as input to the subroutine.

5~144

inmap

ypop

inkey

inkeylen

Points to the name of the map used as input to the subroutine.

Specifies the update operation to be used as input to the subroutine.

Points to the input key to be used as input to the subroutine.

Specifies the length of the inkey parameter in bytes.

Base Operating System Reference

indata Points to the data used as input to the subroutine.

indatalen Specifies the length of the data in bytes used as input to the subroutine.

Return Values
Upon successful completion, this routine returns a value of O. If unsuccessful, it returns an
error as described in the <rpcsvc/yp_prot.h> header file.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The /etc/yp/updaters file.

The yp_match subroutine.

Remote Procedure Calls (RPe) ~145

yperr_string Subroutine

Purpose

Library

Syntax

Returns a pointer to an error message string.

C Library (libc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

char *yperr_string (incode)
int incode;

Description

Parameter

The yperr_string routine returns a pOinter to an error message string. The error message
string is null-terminated but contains no period or new-line escape characters.

incode Contains network information service (NIS) error code as described in the
<rpcsvc/yp_prot.h> header file.

Return Values
This routine returns a pointer to an error message string corresponding to the incode
parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information

5--146

Remote Procedure Call (RPe) Overview for Programming in Communications Programming
Concepts.

Base Operating System Reference

ypprot_err Subroutine

Purpose

Library

Syntax

Takes a network information service (NIS) protocol error code as input, and returns an error
code to be used as input to a yperr_string subroutine.

C Library (libc.a)

#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp_prot.h>

ypprot_err (incode)
u_int incode;

Description

Parameter

The ypprot_err subroutine takes an NIS protocol error code as input, and returns an error
code to be used as input to a yperr_string subroutine.

incode Specifies an NIS protocol error used as input to the subroutine.

Return Values
This routine returns a corresponding error code to be passed to the yperr _string
subroutine.

Implementation Specifics
This subroutine is p~rt of AIX 8ase Operating System (80S) Runtime.

Related Information
The yperr_string subroutine.

Remote Procedure Call (RPC) Overview for Programming in Communications Programming
Concepts.

Remote Procedure Calls (RPe) 5-147

5-148 Base Operating System Reference

Simple Network Management Protocol (SNMP)

Simple Network Management Protocol (SNMP) 6-1

6-2 Base Operating System Reference

aix exec Function

Purpose

Syntax

Executes AIX programs and commands from within a virtual G machine environment.

(int) aix_exec (Command)
string Command;

Description

Parameter

The aix_exec function uses the AIX exec subroutine to execute programs and commands.
These execute as separate processes outside the VGM environment. The standard input
file is not opened for the spawned processes, so they cannot read input. The VGM does not
wait for the spawned process to terminate.

Command Specifies the AIX command to be invoked. This parameter must be a string.

Return Values
The aix_exec function returns the process 10 of the spawned process. There are no error
return codes.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-3

alloc

alloc Function

Purpose

Syntax

Makes a specified amount of storage space available and returns a pointer to the newly
allocated space.

(pointer) alloe (Words)
int Words;

Description

Parameter

The alloe function dynamically allocates a specified amount of storage space in memory.
This space is measured in units of 32 bits. These units are also referred to as words. Once
it allocates space, the alloe function returns a pointer that points to the newly allocated
space.

Note: This is useful for building arrays.

Words Specifies the amount of space, in units of 32 bits, to be made available. This
parameter must be an integer data type.

Return Value
The alloe function returns a pOinter that points to the allocated space.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-4 Base Operating System Reference

ascii

ascii Function

Purpose

Syntax

Returns the integer ASCII value of the first character in the specified string.

(int) ascii (String)
string String;

Description

Parameter

The ascii function returns the integer ASCII value of the first character in the parameter
string. It is useful, in conjunction with the mid function, for handling binary data embedded
within a string.

String Specifies the string in which the ASCII value of the first character is
requested.

Return Value
The ascii function returns the integer ASCII value of the first character in the parameter
string.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The mid function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-5

base_type Function

Purpose

Syntax

Takes a Management Information Database (MIS) numeric-format variable name or
numeric-format instance ID and returns a number that indicates its base type.

(int) base_type (ObjectlD)
string ObjectlD;

Description

Parameter

The base_type function takes an MIS numeric-format variable name or numeric-format
instance ID and returns a number that indicates its base type.

Note: See RFC 1066 for further information.

ObjectlD Specifies the MIS numeric-format variable name or numeric-format
instance ID whose base type is queried. This parameter must be a string
data type.

Return Values
If the parameter identifies an integer, the base_type intrinsic function returns a 1. If the
parameter identifies a string, the base_type intrinsic function returns a 2.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Understanding the Simple Network Management Protocol (SNMP), Understanding the
Management Information Sase (MIS), Understanding Terminology Related to Management
Information Sase (MIS) Variables, Working with Management Information Sase (MIS)
Variables in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

·6-6 Base Operating System Reference

close

close Function

Purpose

Syntax

Closes the open file indicated by the specified file descriptor.

(int) close (FileDescriptory
int FileDescriptor,

Description
The close function closes the open file indicated by the File Des crip tor parameter.

Parameter
FileDes crip tor File descriptor. This parameter must be an integer.

Return Values
The close function returns a (zero) if the file closes successfully; otherwise, it returns -1.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The fopen function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-7

create_SNMP _port Subroutine

Purpose

Syntax

Creates a UDP socket to communicate with an SNMP agent.

extern struct sockaddr_in snmp_dest;
extern int SNMP_port;
int create_SNMP _port (agenCaddress)
unsigned long agenLaddress;

Description

Parameter

The create_SNMP _port subroutine creates a UDP socket and prepares the structure
specified by the snmp_dest parameter for communication with an SNMP agent specified by
the agenLaddress parameter.

Note: This subroutine should only be called once. It does not support opening multiple
sockets for concurrent communication with several agents.

agenCaddress Specifies the agent with which to communicate.

External Variables
snmp_dest The structure that contains the socket address prepared for communication

by the create_SNMP _port subroutine.

SNMP -port The file descriptor that denotes the UDP socket created for communication
by the create_SNMP _port subroutine.

Return Values
If an error occurs, the create_SNMP _port subroutine returns -1. Otherwise, it returns a
(zero).

Note: The file descriptor for the socket is stored in the SNMP_port external variable. A
socket address is stored in the snmp_dest external variable.

Implementation Specifics
This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/SOOO.

Related Information
The SNMP _errormsg array.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP) in Communications Programming Concepts.

6-8 Base Operating System Reference

ctime

ctime· Function

Purpose

Syntax

Generates a text string that corresponds to an integer expression of time.

(string) ctime (TimeExpry
int TimeExpr;

Description

Parameter

The ctime function generates a text string that corresponds to the time specified by the
TimeExpr parameter. Note that the ctime function does not add a new-line character to the
end of the string, while the C library function does.

TimeExpr Specifies the time to be expressed. This parameter must be an integer.

Return Value
The ctime function returns a string of text characters that expresses the time as an integer.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Managementl6000.

Related Information
The time function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-9

dep_info Function

Purpose

Syntax

Returns information about a display element.

(string) dep_info (ElementName)
string ElementName;

Description

Parameter

The dep_info function returns information about a display element. If the name passed
does not refer to a display element, the null string is returned. The type of string returned
depends on the type of the display element specified.

ElementName Specifies the name of the element about which the dep_info function
is to get information. This parameter must be a string data type. To
name a link, this parameter takes the form:

hostnamel<->hostname2

Return Values
Returns information about a specific display element, for instance:

1. When information is requested on a node, the xgmon program returns the following:

x,yln:

In this example, the lin" indicates the display element is a node. The x and y coordinates
indicate the position of the display element on the screen.

2. When information is requested on a host, the xgmon program returns the following:

x,ylh:addrl,addr2,addr3, ...

In this example, the "h" indicates the display element is a host. The x and y coordinates
indicate the position of the display element on the screen. Also, the IP addresses
associated with the host are listed.

3. When information is requested on a link, the xgmon program returns the following:

x,yll:from_addr,to_addr

In this example, the I (bar) indicates the display element is a link. The x and y
coordinates are meaningless in this case, but the format is identical to the previous
examples to permit easier parsing. Also, the IP addresses indicate where each end of
the link connects.

4. If the name passed does not refer to a display element, the null string is returned.

Implementation Specifics

6-10

This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Base Operating System Reference

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-11

dotaddr

dotaddr Function

Purpose

Syntax

Returns a string representing the IP address in dot notation.

(string) dotaddr (lPAddress)
int IPAddress;

Description
The dotaddr function returns a string representing the specified IP address in dot notation.

Parameter
IPAddress Specifies the IP address. This parameter must be an integer.

Return Value
The dotaddr function returns a string representing the IP address in dot notation (for
example, 129.35.1.1).

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The hostname function, ipaddr function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-12 Base Operating System Reference

draw line

draw line Function

Purpose

Syntax

Draws a line.

(int) draw_line (x1, y1, x2, y2, Width, C%n
int x1, y1, x2, y2;
int Width;
int C%r,

Description
The draw_line function draws a line from pixel point (x1,y1) to pixel point (x2,y2) on the
display associated with the virtual G machine. The width of the line is specified by the Width
parameter,and is drawn in the color or style indicated by the C%r parameter. On a
monochrome display, this can be either 1 or 2, indicating a solid or dotted line, respectively.
On color displays, the color specification can be 1,2,3,4, 5, 6, 7, or 8 corresponding to the
color for up, unknown, down, background, white, acknowledged, ignored, and inactive,
respectively.

Parameters
x1, y1, x2, y2

Indicate, in pixel points, the exact location of a line on the display. These
parameters are integers.

Width Indicates the width, in pixel pOints, of the line. This parameter is an integer.

C%r Indicates the color of the line or, if the display is monochrome, indicates
whether the line is solid or dotted. This parameter is an integer.

Return Values
If the line displays successfully, the draw_line function returns a (zero). Otherwise, the
draw_line function returns -1.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-13

draw_string Function

Purpose

Syntax

Enables the display of formatted output in color.

(int) draw_string (Format, Argument ... , Color)
string Format;
Data Type Argument;
int Color;

Description
The draw_string function is used to display formatted output on the graphics window
associated with the virtual G machine. The string is drawn in the color indicated by the Color
parameter. On a color display, this can be 1, 2, 3, 4, 5, 6, 7, or 8 corresponding to the color
for up, unknown, down, background, white, acknowledged, ignored, and inactive,
respectively. On a monochrome display, the color specification can only be white.

Parameters
Format This parameter must be a string.

Argument This parameter can be an integer, string, or pointer.

Color Indicates the color of the string. If the display is monochrome,
the color is white. This parameter is an integer.

Note: The Format string can be specified as permitted by the printf subroutine.

Return Values

Examples

If the string displays successfully, the draw_string function returns 0 (zero). If the string fails
to display, the draw_string function returns -1.

1. draw_string ("%c%c%c%s", 27, 1, 1, "hello world", 3);

In this example, the draw_string function writes hello world to the upper left corner
in the color for down.

2. draw_string ("%s", "hello world", 2);

In this example, the draw_string function writes hello world at the current cursor
position in the color for unknown.

Implementation Specifics

6-14

This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Base Operating System Reference

draw_string

Related Information
The printf command.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-15

exec

exec Function

Purpose

Syntax

Allows a virtual G machine to start execution of a library command in another virtual G
machine or allows a virtual G machine to issue a system command.

(int) exec (Command)
string Command;

Description

Parameter

The exec function allows a virtual G machine to start execution of a library command in
another virtual G machine or to issue a system command, such as the compile command.
If the exec function successfully executes a library command, it returns the machine ID of
the virtual G machine on which the command is to be executed. If there are no free virtual G
machines, the exec function returns -1. If a system command is invoked, a a (zero) is
returned. If the command is not recognized as a system command or a library command,
the exec function returns -2.

Command Specifies the library command or system command to be executed.
This parameter must be a string data type.

Return Values
Machine 10 If a library command is successfully executed, the exec function

returns the ID of the virtual G machine on which the command is to be
executed.

a

-1

-2

This value is returned if a system command is invoked.

This value is returned if no machines are available to execute the
library command.

This value is returned if the command is not recognized as a system
command or a library command.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information

6-16

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

extract_SNMP _name Subroutine

Purpose

Syntax

Extracts the variable name portion of a numeric-format instance 10.

char *extract_SNMP _name (instance_id)
char * instance_id;

Description

Parameter

An instance 10 consists of a variable name followed by an instance value. The
extract_SNMP _name subroutine accepts instance IDs in numeric format, and returns a
pOinter to the numeric-format variable name. The returned name is terminated by a . (dot)
so that an instance value can be directly concatenated to it.

A pointer to an instance 10 in numeric format.

Return Values

Example

If the instance_id parameter contains a variable name registered in the /etc/mib_desc file, a
pOinter to that name (in numeric format) is returned. Otherwise, a pointer to the empty string
is returned.

1. The following line returns a pOinter to "1 . 3 . 6 . 1 . 2 . 1 . 4 . 21 . 1. 10. ":

extract_SNMP_name {"1.3.6.1.2.1.4.21.1.10.127.0.0.1"};

Note: An instance 10 value of "ipRouteAge. 127.0.0.1" is invalid since the
instance_id parameter must be numeric.

Implementation Specifics

File

This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

/etc/mib_desc Defines the Management Information Sase (MIS) variables.

Related Information
The SNMP _errormsg array.

The lookup_SNMP _group subroutine, lookup_SNMP _name subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP), Understanding the Management Information Sase (MIS), Understanding
Terminology Related to Management Information Sase (MIS) Variables, Working with
Management Information Sase (MIS) Variables in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-17

flush_trap Function

Purpose

Syntax

Flushes the current trap that is being processed.

(int) flush_trap (Flag)
int Flag;

Description

Parameter

The flush_trap function is used to flush the current trap that is being processed. It returns
the number of traps pending (this number is also available in the traps_pending global
variable.) Normally, a (zero) is passed, an'd only the current trap is flushed. If a value other
than a (zero) is passed, all of the pending traps are flushed.

Flag Specifies either a zero or nonzero integer.

Return Value
Returns the number of traps pending.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Working with Virtual G Machine (VGM) Variables in Communications Programming
Concepts.

6-18 Base Operating System Reference

font_height Function

Purpose

Syntax

Returns the height, in pixels, of the font being used in the graphics window associated with a
virtual G machine.

(int) font_height(O)

Description

Parameter

The font_height function returns the height, in pixels, of the font being used in the graphics
window associated with the virtual G machine in which the program is running.

Dummy parameter a (zero) is required.

Return Values
The font_height function returns the height of the font being used in the graphics window. If
there is no window associated with the virtual G machine, -1 is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The font_width function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-19

font width Function

Purpose

Syntax

Returns the width, in pixels, of the font being used in the graphics window associated a
virtual G machine.

(int) font_width(O)

Description

Parameter

The font_width function returns the width, in pixels, of the font being used in the graphics
window associated with the virtual G machine in which the program is running.

Dummy parameter 0 (zero) is required.

Return Values
The font_width function returns the width of the font being used in the graphics window. If
there is no window associated with the virtual G machine, -1 is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The font_height function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-20 Base Operating System Reference

fopen

fopen Function

Purpose

Syntax

Opens the file indicated by the specified file name.

(int) fopen (File, AccessMode)
string File;
string AccessMode;

Description
The fopen function is used to open the file specified by the File parameter. Three values for
AccessMode are recognized. The first two open the file for writing using the print ... to
statement; the third opens the file for read using the read function.

The integer value returned is a file descriptor to be used in the to clause of a print
statement or passed as an argument to the read function. Files are automatically closed
when a virtual G machine is halted but can be closed by the close function.

Note: Although xgmon normally runs setuid to the root user, file opens are validated with
the permissions associated with the user running the xgmon client instead of the
unlimited permissions associated with root privileges.

Parameters
File The name of the file including the path name. This parameter must be

a string data type.

AccessMode Indicates how the file is to be opened as follows:

w Creates or truncates a file.

a Appends a file. If the file does not exist, append mode creates
the file.

r Reads a file.

This parameter must be a string data type.

Return Values

Example

Returns the file descriptor (integer value) if the file opens successfully, or returns a (zero) if
the file fails to open.

1. int fd;
string filename;
filename="rny_file";
fd = (int) fopen (filename, "r");

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Simple Network Management Protocol (SNMP) 6-21

fopen

Related Information

6-22

The close function, read function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

get_deps

get_deps Function

Purpose

Syntax

Returns a list of display elements that are grouped under a particular node.

(string) get_deps (ElementName)
string ElementName;

Description

Parameter

The get_deps function makes available the hierarchy of display elements that make up the
current active topology description. This function is passed the name of a node and returns
a list of display elements that are grouped underneath it. The pseudo-root element is
specified by the null string.

If the specified display element does not exist or is not a node with display elements
grouped under it, the null string is returned.

ElementName Specifies the name of the node about which information is desired.
This parameter must be a string data type.

Return Values
Returns the null string if the specified display element does not exist or if the specified
display element is not a node with display elements grouped under it. Otherwise, the
get_deps function returns a list of the display elements that are grouped under the display
element.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Cr.eate xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-23

get_MIB_base_type Subroutine

Purpose

Syntax

Returns a value indicating the base type of a Management Information Base (MIB) variable.

int get_MIB_base_type (objecLid)
char *objecLid;

Description

Parameter

The get_MIB_base_type subroutine returns a value indicating the base type of the specified
variable. These types are defined by RFC 1066 for the standard MIB.

objecLid Specifies the MIB variable name in numeric format.

Return Values
If the numeric-format MIB variable name is unrecognized, -1 is returned. Otherwise, one of
the following values is returned:

1 unsigned long

2 string.

Implementation Specifics

File

This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

/etc/mib_desc Defines the Management Information Base (MIB) variables.

Related Information
The SNMP _errormsg array.

The get_MIB_name subroutine, get_MIB_variable_type subroutine, lookup_SNMP _name
subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP), Understanding the Management Information Base (MIB), Understanding
Terminology Related to Management Information Base (MIB) Variables, Working with
Management Information Base (MIB) Variables in Communications Programming Concepts.

6-24 Base Operating System Reference

get_MIB_group Function

Purpose

Syntax

Finds the set of all Management Information Sase (MIS) variable names that contain a given
text string as a prefix.

(pointer) get_MIB_group (Prefix)
string Prefix;

Description

Parameter

The get_MIB_group intrinsic function searches all text-format names in the /etc/mib_desc
file and extracts those that contain the string specified by the Prefix parameter. The search
is not case-sensitive. A pOinter to an array of the numeric-format names is returned. Each
numeric-format name is terminated with a . (dot) so that an instance can be directly
concatenated with it.

Note: See RFC 1066 for further information.

Prefix Specifies a prefix of a group of MIS variable names in text format. This
parameter must be of the string data type.

Return Values

Example

If matching names are found, a pOinter to an array of strings containing the matching names
is returned. Otherwise, a pointer to the empty string ("") is returned.

1. The following example obtains a list of MIS variables that contain the if prefix, and prints
out all the numeric-format variables in the list:

pointer
string
int

list;
variable;
i-,

list = (pointer) get_MIB_group("if");
variable = list[O];
i = 0;
while (variable != "") {

}

print "\nvariable = %s", variable;
i = i + 1;
variable = list[i];

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol Manager in AIX
Network Management/6000.

Simple Network Management Protocol (SNMP) 6-25

Files
/etc/mib_desc Defines the Management Information Base (MIS) variables. The user

specifies a time-to-live (TTL) value (in seconds) for each variable.

Related Information

6-26

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Understanding the Simple Network Management Protocol (SNMP), Understanding the
Management Information Base (MIB), Understanding Terminology Related to Management
Information Base (MIB) Variables, Working with Management Information Base (MIB)
Variables in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

get_MIB_name Subroutine

Purpose

Syntax

Returns the text name of a Management Information Sase (MIS) variable.

char *get_MIB_name (var_name)
char *var_name;

Description

Parameter

The get_MIS_name subroutine maps the numeric-format variable name specified by the
var_name parameter to the corresponding text name. These names are defined by RFC
1066 for the standard MIS.

Specifies the MIB variable name in numeric format.

Return Values

Example

The text name corresponding to the numeric-format variable name specified by the
var_name parameter is returned. If the variable name is unrecognized, the null string is
returned.

1. If the var_name parameter is "1.3.6.1.2.1.1. 1", a pointer to the string
"sysDescr" is returned.

Note: A variable name value of "sysDescr" is invalid since the var_name parameter
must be in numeric format.

Implementation Specifics

File

This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

/etc/mib_desc Defines the Management Information Base (MIS) variables.

Related Information
The SNMP _errormsg array.

The get_MIB_base_type subroutine, get_MIB_variable_type subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP), Understanding the Management Information Sase (MIB), Understanding
Terminology Related to Management Information Base (MIS) Variables, Working with
Management Information Base (MIB) Variables in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-27

get_ MI B _variable_type Su broutine

Purpose

Syntax

Returns a value indicating the variable type of a Management Information Base (MIB)
variable.

int get_MIB_variable_type (var_name)
char *var_name;

Description

Parameter

The get_MIB_variable_type subroutine returns a value indicating the type of the specified
variable. These types are defined by RFC 1066 for the standard MIB.

Specifies the MIB variable name in numeric format.

Return Values
If the variable name is unrecognized, -1 is returned. Otherwise, one of the fol/owing values
is returned:

1 number

2 string

3 object identifier

4 empty

5 internet address

6 counter

7 gauge

8 time ticks.

Implementation Specifics

File

This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

/etc/mib_desc Defines the Management Information Base (MIB) variables.

6-28 Base Operating System Reference

get_MI B _ variable_type

Related Information
The SNMP _errormsg array.

The get_MIB_base_type subroutine, get_MIB_name subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP), Understanding the Management Information Sase (MIS), Understanding
Terminology Related to Management Information Base (MIS) Variables, Working with
Management Information Sase (MIS) Variables in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-29

get_primary Function

Purpose

Syntax

Returns the current primary address associated with the specified host.

(int) get_primary (HostName)
string HostName;

Description

Parameter

The get_primary function returns the current primary address associated with the specified
host. The primary address can be changed by the next_alternate function. These two
functions are used to implement adaptive, alternate addresses, permitting xgmon
applications to adapt to the failure of an interface on a network element the xgmon program
is monitoring. The designated host should be fully described by the current topology
description. Most applications would want to use this function instead of the ipaddr function.

HostName Specifies the name of the host to be queried. This parameter must be a
string data type.

Return Value
Returns the primary address of the host queried.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information

6-30

The next_alternate function, ipaddr function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

getenv

getenv Function

Purpose

Syntax

Obtains the value of a user-defined environment variable for a host.

(string) getenv (OisplayElementName, VariableName)
string OisplayElementName;
string VariableName;

Description
The getenv function retrieves the value of a user-defined environment variable associated
with the specified display element. The xgmon program recognizes the RIGHTCLICK
environment variable name as being associated with the name of the library command that
should be run when the display element is double-clicked using the right mouse button.

Parameters
OisplayElementName

Variable Name

Return Values

Specifies the name or IP address (in dot notation) of the display
element for which an environment variable is to be retrieved. This
parameter must be a string data type.

Specifies the name of the user-defined environment variable. This
parameter must be a string data type.

Returns the value of the user-defined environment variable in string format.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The getenv library command, load_env library command, setenv library command.

The setenv intrinsic function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-31

group_dep Function

Purpose

Syntax

Maps a dynamically created node or host to the topology display window.

(int) group_dep (Node, ElementName)
string Node;
string ElementName;

Description
The group_dep function maps a dynamically created node or host to the topology display.
The normal sequence of events is for a display element to be created by the make_dep
function or by the xgmon program in the learn mode. Then, the move_dep function
positions the element and finally, the group_dep function maps the element to the topology
display.

Parameters
Node Specifies the name of the node under which the display element specified

by the ElementName parameter is to be mapped to the display. This
parameter must be a string data type. The pseudo-root node is indicated
by passing the null string as the value of the Node parameter.

ElementName Specifies the name of the display element to be mapped to the topology
display. This parameter must be a string data type.

Return Values
Returns an integer value as follows:

o (zero)

1

2

3

4

5

The group_dep function successfully groups the display element specified
by the ElementName parameter under the node specified by the Node
parameter.

The ElementName parameter does not specify a display element when
grouping under the pseudo-root.

The node defined by the Node parameter is not a display element.

The node defined by the Node parameter is invalid because it has an IP
address; that is, the parameter specified is a host, not a node.

The ElementName parameter does not specify a display element when
grouping under a node other than the pseudo-root.

The display element specified by the ElementName parameter is already
grouped under a node.

Implementation Specifics

6-32

This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Base Operating System Reference

Related Information
The learn subcommand, the make_depsubcommand, move_dep subcommand.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-33

gw_var Function

Purpose

Syntax

Extracts the value of the specified Management Information Sase (MIS) numeric-format
instance ID for the specified host from the internal database.

(Data Type) gw_var (HostName, Object/D)
string HostName;
string ObjectlD;

Description

Data Type

The gw_var intrinsic function extracts the value of the specified HostName, ObjectlD pair
from the internal database.

Notes:

1. If the MIS variable's time-to-live (TTL) has expired, there will be no value for the
specified HostName, ObjectlD pair in the internal database. The TTL value is
specified in the /etc/mib_desc file.

2. See RFC 1066 for further information.

The data type can be an integer, a string, or a pointer.

Parameters
HostName Specifies the name or IP address (in dot notation) of a host. The value

of this parameter must be a string data type.

ObjectlD Specifies the MIS numeric-format instance ID. The value of this
parameter must be a string data type.

Return Values
The return value is the value of the MIS variable. Since the gw_var function can return
variables of any type (such as integers, strings, or pointers), it is up to the programmer to
know which of these formats is used for the stored data. To find out which type to expect,
use the base_type function.

Implementation Specifics

File

6-34

This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

/etc/mib/_desc Defines the Management Information Sase (MIS) variables that the
xgmon program should recognize and handle. The user also specifies
a time-to-live (TTL) value (in seconds) for each variable.

Base Operating System Reference

Related Information
The base_type function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Understanding the Simple Network Management Protocol (SNMP), Understanding the
Management Information Sase (MIS), Understanding Terminology Related to Management
Information Sase (MIS) Variables, Working with Management Information Sase (MIS)
Variables in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-35

hexval

hexval Function

Purpose

Syntax

Returns the integer value represented by the text characters in the specified string.

(int) hexval (HexString)
string HexString;

Description

Parameter

The hexval function returns the integer value represented by the text characters in the
HexString parameter. It assumes the number is to be interpreted as a hexadecimal number
and accepts both uppercase and lowercase representations of hex digits.

Note: If a character is specified in the string that is not a valid hex digit, it is ignored.

HexString Specifies the hex string to be queried. This parameter must be a
string data type.

Return Value
This hexval function returns the integer value represented by the text characters in the
specified string.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Managementl6000.

Related Information

6-36

The nurn function, val function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgrnon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

highlight_dep Function

Purpose

Syntax

Permits a virtual G machine to temporarily highlight a display element.

(int) highlight_dep (ElementName)
(int) highlight_dep (ElementName, TimeOut)
(int) highlight_dep (ElementName, TimeOut, State)
string ElementName;
int TimeOut;
string State;

Description
The highlight_dep function permits a virtual G machine to change the color of a display
element temporarily. If the timeout value is not specified, the display element is changed to
white for 30 seconds. If the state is not specified, the display element is changed to white
for the specified timeout period; otherwise, the display element is changed to the color
specified by the State parameter.

The virtual G machine uses different colors to indicate a display element's state for the
timeout period. When the time elapses and the window is redrawn, the element returns to
its normal color.

Note: To redraw the screen, call the set_element_mask function.

Parameters

State

up

down

unknown

highlight

acknowledge

ignore

inactive

ElementName Name of the display element to be highlighted. This parameter must be a
string.

TimeOut Specifies the period of time for the display element to be highlighted. This
parameter must be an integer.

State Specifies, through the use of color, the state of a display element. This
parameter must be a string. Choose from the following states:

Color Black-and-White Black-and-White

hosts, node, links hosts and nodes links only

green white background solid line

red black background dotted line, large spaces

yellow shaded, white letters dotted line, finely spaced

white white background solid line

cyan (blue green) shaded, black letters thin, dashed line

violet shaded, black letters thin, dashed line

blue shaded, black letters thin, dashed line

Return Values
The function returns 0 if the element was defined, otherwise it returns -1.

Simple Network Management Protocol (SNMP) 6-37

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information

6-38

The set_element_mask function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

hostname

hostname Function

Purpose

Syntax

Returns the text name of the host.

(string) hostname (/PAddress)
int IPAddress;

Description

Parameter

The hostname function returns the text name of the host.

IPAddress Specifies the IP address of the specified host. This parameter must be an
integer.

Return Values
The hostname function returns the name of the host. If the text name of the host cannot be
determined, the IP address in dot notation is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information
The dotaddr function, ipaddr function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-39

ipaddr

ipaddr Function

Purpose

Syntax

Returns the normal, primary IP address of the specified host.

(int) ipaddr (HostName)
string HostName;

Description

Parameter

The ipaddr function returns the normal, primary IP address of the host queried.

HostName Specifies the name of the host to be queried. The HostName parameter
may be specified as either the text name or the IP address in dotted decimal
or dot notation (for example, 129.35.1.1). This parameter must be a
string data type.

Return Value

Example

Returns the binary 4-byte value of the IP address of the HostName parameter.

1. The following is an example of the ipaddr function with a dotted decimal parameter:

int rCi
rc = (int) ipaddr ("128.83.1.35");
print nrc is: %d\n",rCi

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The dotaddr function, hostname function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-40 Base Operating System Reference

left

left Function

Purpose

Syntax

Extracts a substring beginning at the leftmost portion of the source string.

(string) left (Source, Length)
string Source;
int Length;

Description
The left function returns a substring of a specified length that is extracted beginning at the
leftmost portion of the source string.

Parameters
Source

Length

Return Value

Specifies which string to use as source. This parameter must be a string
data type.

Specifies a number of characters to extract. This parameter must be an
integer data type.

Note: The index of the first character in the source string is always 1 (one).
All strings in the xgmon programming utility are indexed this way.

The left function returns a substring extracted from the left side of the source string.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The mid function, right function, strlen function, substr function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-41

lookup_addr Subroutine

Purpose

Syntax

Returns the text name of a host.

char *Iookup_addr (address)
unsigned long * address;

Description

Parameter

The lookup_addr subroutine returns the text name of the host specified by the address
parameter.

address A pointer to the Internet address of the host.

Return Value
Returns the text name of the host specified by the address parameter.

Implementation Specifics
This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

Related Information
The SNMP _errormsg array.

The lookup_host subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP) in Communications Programming Concepts.

6-42 Base Operating System Reference

lookup_host Subroutine

Purpose

Syntax

Returns the Internet address of a host.

unsigned long lookup_host (hostname)
char * hostname;

Description

Parameter

The lookup_host subroutine returns the Internet address associated with the host denoted
by the hostname parameter.

hostname Specifies the host for which the address is requested. The hostname
parameter can be specified by using either the text name of the host (for
example, localhost) or the name in dot notation (for example,
127.0.0.1). If the hostname parameter is not specified in dot notation, the
gethostbyname library routine is used to look up the host's address.

Return Values
If the host is unknown, the lookup_host subroutine returns a a (zero). Otherwise, the return
value is the Internet address of the named host.

Implementation Specifics
This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

Related Information
The SNMP _errormsg array.

The lookup_addr subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP) in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-43

lookup_SNMP _group Subroutine

Purpose

Syntax

Finds the set of all numeric-format variable names that contain a given text string as prefix.

char **lookup_SNMP _group (prefix)
char * prefix;

Description

Parameter

The lookup_SNMP _group subroutine searches all text-format names in the /etc/mib_desc
file and extracts those that are prefixed by the string given in the text parameter. The search
is not case-sensitive. An array of pointers to the numeric-format names is returned. Each
numeric-format name is terminated by a . (dot) so that an instance can be directly
concatenated to it.

prefix A pointer to a text string assumed to be the prefix of a group of MIS variable
names in text format.

Return Values

Example

If matching names are found, a pointer to an array of pointers to the matching names is
returned. The array is terminated by a pointer to an empty string. If no matching names are
found, the array contains only the empty string pointer.

1. The following entry returns a pOinter to an array of four pointers:

lookup_SNMP_group ("sys");

The first three pointers refer to the following character strings:

"1.3.6.1.2.1.1.1."
"1.3.6.1.2.1.1.2."
"1.3.6.1.2.1.1.3."

which are, respectively, "sysDescr", "sysObjectld", and "sysUpTirne".

The fourth pointer ("") refers to an empty string.

Note: A prefix value of "1.3.6" is invalid since the prefix parameter must not be
numeric.

Implementation Specifics

File

6-44

This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/SOOO.

/etc/mib_desc Defines the Management Information Sase (MIS) variables.

Base Operating System Reference

Related Information
The SNMP _errormsg array.

The extract_SNMP _name subroutine, lookup_SNMP _name subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP), Understanding the Management Information Sase (MIS), Understanding
Terminology Related to Management Information Base (MIS) Variables, Working with
Management Information Sase (MIB) Variables in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-45

lookup_SNMP _name Subroutine

Purpose

Syntax

Returns the numeric-format name of a Management Information Sase (MIS) variable.

char *lookup_SNMP _name (texLname)
char *texLname;

Description

Parameter

The lookup_SNMP _name subroutine maps the text name of the MIS variable specified by
the texLname parameter to the corresponding numeric-format name. This search is not
case-sensitive.

texLname Specifies the text name of the MIB variable.

Return Values

Example

A pointer to the numeric-format name of the MIB variable specified by the texLname
parameter is returned. If the text name is not recognized, a pointer to the null string is
returned. Note that the returned name is terminated with a . (dot) so that an instance value
can be directly concatenated to it.

1. If the texLname parameter is "sysDescr", a pointer to the string
"1.3.6.1.2.1.1.1." is returned.

Note: A text name value of "1.3 . 6 . 1 . 2 . 1 . 1 . 1" is invalid since the texLname
parameter must not be numeric.

Implementation Specifics

File

This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/SOOO.

/etc/mib_desc Defines the Management Information Base (MIB) variables.

Related Information

6-46

The SNMP _errormsg array.

The extract_SNMP _name subroutine, get_MIB_base_type subroutine, get_MIB_name
subroutine, get_MIB_variable_type subroutine, lookup_SNMP _group subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP), Understanding the Management Information Sase (MIB), Understanding
Terminology Related to Management Information Base (MIS) Variables, Working with
Management Information Base (MIB) Variables in Communications Programming Concepts.

Base Operating System Reference

make_dep Function

Purpose

Syntax

Dynamically creates a new node or host.

(int) make_dep (ElementName)
string ElementName;

Description

Parameter

The make_dep function dynamically creates a new node or host in the topology display
window. Before a node or host created by the make_dep function can appear in the
topology display window, it must be mapped to the display by calling the group_dep
function.

If the new display element cannot be mapped to an IP address, the display element is
treated as a node. If the display element does map to an IP address, the display element is
treated as a host.

Note: The display element names are treated case-insensitive; that is, a node or host
named austin is the same node or host as the one named Austin.

ElementName Indicates the name to be assigned to the new display element. This
parameter must be a string data type.

Return Values
Returns a a (zero) if successful. Otherwise, -1 is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The group_dep function, make_link function, move_dep function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-47

make link Function

Purpose

Syntax

Dynamically creates a link between two hosts.

(int) make_link (FromAddr, ToAddlj
string FromAddr;
string ToAddr;

Descri ption
The make_link function dynamically creates a link display element.

Note: A node does not have an IP address and can therefore not be linked.

Parameters
FromAddr Specifies the host name or IP address from which the link extends. This

parameter must be a string data type.

ToAddr Specifies the host name or the IP address to which the link extends. This
parameter must be a string data type.

Return Values
Returns an integer value as follows:

o (zero)

1

2

3

4

The make_link function successfully created a link between two hosts.

The host defined by the FromAddr parameter has an invalid IP address.

The Fromaddr parameter defines a node in the topology description file and
has no interface.

The host defined by the ToAddr parameter has an invalid IP address.

The ToAddr parameter defines a node in the topology description file and
has no interface.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information

6-48

The make_dep function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Base Operating System Reference

make_SNMP _request

make_SNMP _request Subroutine

Purpose

Syntax

Encodes an SNMP request.

int make_SNMP _request (req_type, community, num_ vars, req_name,
seLva/ue, ouLpacket, max_outten)
int req_type;
char * community;
int num_ vars;
char *req_name[];
unsigned long seLva/ue[];
char * ouLpacket;
int max_out/en;

Description
The make_SNMP _packet subroutine encodes a get, get-next, or set request.

Parameters
community

max_out/en

num_vars

ouLpacket

reCI-name

req_type

seLva/ue

Return Values

Specifies a string that is the community name to be encoded in the packet.

Specifies the maximum length of the output buffer into which the encoded
packet is placed.

Specifies the number of variables to be requested or set.

Points to a buffer in which the encoded packet is placed.

Specifies an array of pointers to the instance IDs on which an operation is
performed. Each entry in the req_name array points to a string that
represents a MIS instance 10 in numeric format.

Specifies the request type, which can be one of the following:

1 Indicates a get request.

2 Indicates a get-next request.

3 Indicates a set request.

Specifies an array of pointers or unsigned integers that correspond
one-to-one with the instance IDs in the req_name array. Each entry is either
the value of the corresponding instance 10 if its base type is integer, or a
pointer to the value if the base type is string. The seL value parameter is
used only with set requests.

If a fatal error occurs, -1 is returned. If the return value is non-negative, it represents the
length of the generated packet.

Simple Network Management Protocol (SNMP) 6-49

Implementation Specifics
This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

Related Information
The SNMP _errormsg array.

The parse_SNMP _packet subroutine, send_recv_SNMP _packet subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP), Understanding the Management Information Sase (MIS), Understanding
Terminology Related to Management Information Sase (MIS) Variables, Working with
Management Information Sase (MIS) Variables in Communications Programming Concepts.

6-50 Base Operating System Reference

mid

mid Function

Purpose

Syntax

Extracts a substring from within the source string.

(string) mid (Source, Start, Length)
string Source;
int Start;
int Length;

Description
The mid function returns a substring of a specified length that is extracted from the source
string beginning at the start position.

Parameters
Source

Start

Length

Return Value

Specifies which string to use as source. This parameter must be a string
data type.

Specifies the position of the first character extracted from the specified
source string. This parameter must be an integer data type.

Specifies a number of characters to extract. This parameter must be an
integer data type.

Note: The index of the first character in the source string is always 1 (one).
All strings in the xgmon programming utility are indexed this way.
For example, to specify the first character in the source string, set
the Start parameter to 1.

The mid function returns characters from the middle of the source string.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The ascii function, left function, right function, strlen function, substr function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-51

move_dep Function

Purpose

Syntax

Changes the relative location of a display element within a topology display window.

(int) move_dep (ElementName, IntX, IntY)
string ElementName;
int IntX;
int IntY;

Description
The move_dep function changes the relative location of a display element within a topology
display window. The x and y coordinates are relative to the 100 x 100 reference grid used
by the topology description utility.

Note: Links cannot be moved. They are rooted to the hosts they connect.

Parameters
ElementName

IntX

IntY

Return Values

Specifies the name of the element to be moved. This parameter must
be a string data type.

Specifies the position of the x coordinate. This parameter must be an
integer data type.

Specifies the position of the y coordinate. This parameter must be an
integer data type.

If successful, the move_dep function returns a a (zero). Otherwise, -1 is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-52 Base Operating System Reference

new_deps Function

Purpose

Syntax

Returns a pointer to an array of strings representing the names of dynamically created
display elements.

(pointer) new_deps(O)

Description

Parameter

The new_deps function returns a pointer to an array of strings representing the names of
dynamically created display elements. The end of the list is marked by the null string.

The list represents all of the display elements created by the xgmon program since the last
call to the new_deps function. Note that the display elements created by the make_dep
and make_link functions also appear in this list if they were created after the first display
element was created by the xgmon program.

Dummy parameter 0 (zero) is required.

Return Value
Returns a pointer to an array of strings representing the names of dynamically created
display elements.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information
The make_dep function, make_link function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-53

next_alternate

next alternate Function

Purpose

Syntax

Changes the current primary address of the specified host to be the next available alternate
address.

(int) next_alternate (Hostname)
string HostName;

Description

Parameter

The next_alternate function changes the current primary address of the designated host to
be the next available alternate address. Alternate addresses are selected in round-robin
order.

Note: Alternate addresses are specified in the topology description file. The designated
host must have alternate addresses specified in the current topology description file;
otherwise this command has no effect.

HostName Specifies the name of the host to be queried. This parameter must be a
string data type.

Return Values
The next_alternate function returns a if the attempt fails, or 1 if it is successful.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information
The get_primary function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-54 Base Operating System Reference

num

nurn Function

Purpose

Syntax

Returns a string of text characters representing the decimal value of the specified integer.

(string) nurn (Numbery
int Number;

Description

Parameter

The nurn function returns the string of text characters that represent the decimal value of the
Number parameter. The nUrn function is the inverse of the val function. For various ways
to format the string, refer to the sprintf function.

Number The decimal value to be converted into a string of text characters. This
parameter must be an integer.

Return Value
The nurn function returns the string of text characters that represent the decimal value of the
Number parameter.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The val function, sprintf function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgrnon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-55

parse_SNMP _packet Subroutine

Purpose

Syntax

Decodes an SNMP packet.

int parse_SNMP _packet (packet, packeC/en, from_host)
char * packet;
int packeL/en;
unsigned long from_host;

Description
The parse_SNMP _packet subroutine is called by the send_recv_SNMP _packet
subroutine when an SNMP get-response packet is received. It may be called directly if an
application receives packets directly. It extracts variable bindings from the packet and calls
the save_SNMP _var or save_SNMP _trap subroutines as appropriate to process each
binding in the packet.

Parameters
from_host

packet

packeL/en

Return Value

Specifies the Internet address of the host sending the trap.

Points to the contents of the packet.

Specifies the packet length.

If a fatal error occurs, a -1 is returned. If the return value is not non-negative, it is the error
status from the SNMP packet. A return value of 0 (zero) indicates no error.

Implementation Specifics
This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

Related Information
The SNMP _errormsg array.

The save_SNMP _var subroutine, save_SNMP _trap subroutine, send_recv_SNMP _packet
subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP) in Communications Programming Concepts.

6-56 Base Operating System Reference

password

password Function

Purpose

Syntax

Returns the SNMP community name associated with the specified host.

(string) password (HostName)
string HostName;

Description

Parameter

The password function returns the SNMP community name associated with the specified
host. This information is obtained from the current topology description. If there is no entry
for the host, then the null string is returned.

HostName Specifies the name of the host to be queried. This parameter must be a
string data type.

Return Values
The password function returns the SNMP community name associated with the specified
host in string format. If there is no entry for the host, the null string is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-57

ping

ping Function

Purpose

Syntax

Sends an Internet Control Message Protocol (ICMP) ECHO request to the specified host.

(int) ping (HostName)
string HostName;

Description

Parameter

The ping function sends an ICMP ECHO request to the named host. The HostName
parameter can be either the host name or an IP address in dot notation.

HostName Specifies the text name or IP address (in dot notation) of the host to be
queried. This parameter must be a string data type.

Return Values
If a reply is not received, the return value is -1; otherwise, the return value is the number of
milliseconds elapsed between the sending of the request and the arrival of the response.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The ping subcommand, ping_all subcommand.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-58 Base Operating System Reference

raise_window Function

Purpose
Raises the graphics window associated with the virtual G machine in which the program is
running.

Syntax
(int) raise_window(O)

Description

Parameter

The raise_window function attempts to raise the graphics window associated with the
virtual G machine in which the program is running.

Dummy parameter a (zero) is required.

Return Values
If no window is associated with the virtual G machine, -1 is returned. If successful, the
raise_window function returns a (zero).

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-59

read

read Function

Purpose

Syntax

Reads the next line in an open file specified by the file descriptor.

(string) read (FileDescriptory
int FileDescriptor,

Description

Parameter

The read function returns the next line in the open file indicated by the FileDescriptor
parameter. When it reaches end-of-file, this routine returns the null string. The read
function always adds a trailing space to the actual data.

File Descrip tor File descriptor. This parameter must be an integer.

Return Value

Example

The line of text string read from the file.

1. int fd;
string s;
fd = (int) fopen (filename, "r");
if (fd ! =0)

s=(string)read(fd);

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The fopen function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-60 Base Operating. System. Reference

real_type Function

Purpose

Syntax

Takes a Management Information Sase (MIS) numeric-format variable name or
numeric-format instance 10 and returns a number indicating its actual MIS type.

(int) real_type (Object/D)
string ObjectlD;

Description

Parameter

The real_type function takes an MIS numeric-format variable name or numeric-format
instance 10 and returns a number indicating its actual MIS type.

ObjectlD Specifies the numeric-format variable name or numeric-format instance 10
of the MIB object whose MIS type is queried. This parameter must be a
string data type.

Return Values
Returns an integer designating the MIS type as follows:

1 = number

2 = string

3 = object ID

4 = empty

5 = IP address

6 = counter

7 = gauge

8 = time ticks.

If the MIS type cannot be determined, -1 is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Understanding the Simple Network Management Protocol (SNMP), Understanding the
Management Information Sase (MIS), Understanding Terminology Related to Management
Information Base (MIS) Variables, Working with Management Information Sase (MIS)
Variables in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-61

rename_dep Function

Purpose

Syntax

Renames a display element.

(int) rename_dep (ElementName, NewName)
string ElementName;
string NewName;

Description
The rename_dep function renames a display element. The new name must map to the
same IP address as the original. This means that the new name and IP address must be in
the /etc/hosts file or the auxiliary host file. Remember to execute the clearcache system
command when these files are altered.

Parameters
Elem en tNa me

NewName

Specifies the name of the display element to be renamed. This
parameter must be a string data type.

Specifies the new name of the display element. This parameter must
be a string data type.

Return Values
If successful, the rename_dep function returns a (zero). Otherwise, it returns -1.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information

6-62

The clearcache system command, hostdata system command.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

reuse_mem

reuse_mem Function

Purpose

Syntax

Controls garbage collection by a virtual G machine (VGM).

(int) reuse_mem{EnableFlag)
int EnableFlag;

Description

Parameter

The reuse_mem function is used by a VGM to control garbage collection. By default,
garbage collection is not enabled. If the reuse_mem function is called with a nonzero
argument, an attempt to enable garbage collection is made. This may not be successful
because the operator has the ability to disable garbage collection by using the reuse system
command.

EnableFlag This parameter is set to a nonzero value to enable garbage collection.

Return Values
Returns a 1 if garbage collection is enabled. Otherwise, a a (zero) is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The reuse system command.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP)6-63

right

right Function

Purpose

Syntax

Extracts a substring from the rightmost portion of the source string.

(string) right (Source, Length)
string Source;
int Length;

Description
The right function returns a substring of a specified length that is extracted from the
rightmost portion of the source string.

Parameters
Source Specifies which string to use as source. This parameter must be a string

data type.

Length Specifies a number of characters to extract. This parameter must be an
integer data type.

Note: The index of the first character in the source string is always 1 (one).
All strings in the xgmon programming utility are indexed this way.

Return Value
The right function returns a substring extracted from the right side of the source string.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information

6-64

The left function, mid function, strlen function, substr function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

save_SNMP _trap Subroutine

Purpose

Syntax

Stores SNMP trap data.

void save_SNMP _trap (enterprise, address, generic, specific, time_stamp)
char * enterprise;
unsigned long address;
char *generic;
char * specific;
unsigned long time_stamp;

Description
The save_SNMP _trap subroutine is called by the parse_SNMP _packet subroutine when a
trap packet is parsed. This routine prints the obtained values on the standard output in the
following format:

"trap received from [enterprise] address: (generic, specific) time
stamp = time_stamp"

Parameters
enterprise

address

generic

specific

Specifies the value of the sysObjectlD MIS variable of the agent generating
the trap. This MIS variable is explained in RFC 10SS.

Specifies the Internet address of the host generating the trap.

Specifies the generic trap type. The string is the text representation of the
number associated with the trap type. For example, the number a
corresponds to a cold-start trap, and the number 2 corresponds to a
link-down trap.

Specifies a particular instance of a trap identified by a user. For the link-up
and link-down traps, the value specified by the specific parameter indicates
the interface number associated with the trap. For EGP neighbor-loss trap,
specific indicates the address of the neighbor in dot notation.

Specifies the time stamp associated with the trap. The time stamp
represents the number of 1 OOths of seconds passed since the agent was
initialized at the time the trap was regenerated.

Note: The generic and specific parameters point to space on the stack; this space is
reclaimed when the save_SNMP _trap subroutine returns. The enterprise parameter
points to a static data area which will be overwritten after the save_SNMP _trap
returns.

Implementation Specifics
This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/SOOO.

Simple Network Management Protocol (SNMP) 6-65

Related Information
The SNMP _errormsg array.

The parse_SNMP _packet subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP) in Communications Programming Concepts.

6-66 Base Operating System Reference

save_SNMP _var Subroutine

Purpose

Syntax

Stores retrieved SNMP variable data.

void save_SNMP _var (from_host, var_name, reaLtype, base_type, result, len)
unsigned long from_host;
char *var_name;
int reaL type;
int base_type;
union_var_val result;
int len;

Description
The save_SNMP _var subroutine is called by the parse_SNMP _packet subroutine when a
get-response packet is parsed. The default routine prints the obtained values on the
standard output in the format of either vacname = string value or var_name = integer value.
The save_SNMP _var subroutine does not manipulate the retrieved data.

Parameters
base_type

len

reaL type

Specifies the base type of the object. A value of 1 indicates that the object
is a string. A value of 2 indicates that the object is an unsigned long integer.

Specifies the Internet address of the host generating the trap.

The size of the integer specified by the base type, or the length of the string
specified by the base type.

If the value specified by the base_type parameter is a string, the value of
the len parameter does not include the trailing null byte.

If the value specified by the base_type parameter is an integer, the len
parameter has the value of 0 (zero) in special cases of empty objects.

Specifies the variable type as defined in RFC 1066.

The values for the reaL type parameter are:

1 number

2 octet string

3 object identifier

4 empty

5 Internet address

6 counter

7 gauge

8 time ticks.

Simple Network Management Protocol (SNMP) 6-67

result Specifies the value of the variable. It has the following format:

var_name

union var val {

} ;

unsigned long ul;
char *cp;

Specifies the variable name in numeric format.

Note: If the base type of the object is a string (that is, base_type = 1), then the storage
pointed to by the var_name and result parameters is reclaimed by the operating
system when the save_SNMP _var subroutine returns.

Implementation Specifics
This subroutine is part of SNMP Applicatio.n Programming Interface in AIX Network
Management/6000.

Related Information
The SNMP _errormsg array.

The parse_SNMP _packet subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP) in Communications Programming Concepts.

6-68 Base Operating System Reference

send_recv_SNMP _packet Subroutine

Purpose

Syntax

Sends a query to and awaits a response from an SNMP agent.

int send_recv_SNMP _packet (fd, dest, ouLpacket, packeL/en)
int fd;
struct sockaddr_in *dest;
char * ouLpacket;
int packeL/en;

Description
The send_recv_SNMP _packet subroutine can be used to send an SNMP request to an
SNMP agent, await a response, and process the response packet.

The routine sends the packet to the destination specified by the dest parameter.

If a response is obtained from the SNMP agent, then the parse_SNMP _packet subroutine
will be called with the contents of the received response packet.

Parameters
dest

fd

ouLpacket

packeL/en

Specifies the destination address to which the SNMP request is sent. The
dest parameter can be the desLhost external variable set by the
create_SNMP _port subroutine.

Describes a socket used for the sendto and recvfrom I/O subroutines. The
fd parameter can be the address of the SNMP _port external variable set by
the create_SNMP _port subroutine.

Contains the SNMP request to be sent.

Length of the data specified by the ouLpacket parameter.

External Variables
max_SNMP_retries

Determines the maximum number of times to retry a request. The default
value is 3.

SNMP _timeout Determines the time to wait for a response to be received. The default
value is 5 seconds.

The values of these external variables can be reset in the user's main() initialization code if
necessary.

Return Values
If the agent does not respond, or if an I/O error occurs, -1 is returned; otherwise, the SNMP
error status from the response packet is returned. An SNMP error status of 0 indicates no
error.

Simple Network Management Protocol (SNMP) 6-69

Implementation Specifics
This subroutine is part of SNMP Application Programming Interface in AIX Network
Management/6000.

Related Information
The SNMP _errormsg array.

The create_SNMP _port subroutine, parse_SNMP _packet subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP) in Communications Programming Concepts.

6-70 Base Operating System Reference

set_element_mask Function

Purpose

Syntax

Allows a virtual G machine to change the current display element mask.

(int) set_element_mask (New Mask)
int NewMask;

Description

Parameter

The element_mask global variable controls how the display elements are drawn. The
set_element_mask function allows a virtual G machine to change the current mask and
returns the value of the old mask. The function also controls whether or not the bell sounds
and whether the bell sound is double or two-tone.

The mask element starts at the low-order bit 0 (zero) and controls several types of objects.
When one of the following bits is specified, the set_element_mask function causes the bit's
corresponding object to be drawn on the screen:

Bit Object

o reserved

hosts

2 nodes

3 logical links

5 physical links

9 bell; double alert if bit 10 is not set

10 two-tone alert.

Note: The set_element_mask function always causes the visible topology window to be
redrawn, even if the mask has not been changed.

NewMask Specifies the display element mask to be changed. This parameter must be
an integer.

Return Value
The set_element_mask function returns the value of the new mask and expresses it as an
integer.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Simple Network Management Protocol (SNMP) 6-71

Related Information

6-72

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Working with Virtual G Machine (VGM) Variables in Communications Programming
Concepts.

Base Operating System Reference

setenv

setenv Function

Purpose

Syntax

Sets the user-defined environment variable for a host to the specified value.

(int) setenv (DisplayElementName, VariableName, Value)
string DisplayElementName;
string VariableName;
string Value;

Description
The setenv function sets the user-defined environment variables associated with a display
element to the specified value. The xgmon program recognizes the RIGHTCLICK
environment variable name as being associated with the name of the library command that
should be run when the display element is double-clicked with the right mouse button.

Parameters
DisplayElemen tNa me

Variable

Value

Specifies the name or IP address (in dot notation) of the display element for
which an environment variable is to be set. This parameter must be a string
data type.

Specifies the name of the user-defined environment variable to be set. This
parameter must be a string data type.

Specifies the value to which the user-defined environment variable will be
set. This parameter must be a string data type.

Examples of environment variables and values defined by the user are as follows:

as IBM AIX Version 3.1

owner Gideon Kim

name Token-Ring LAN

Return Values
The return code is a (zero) if the setenv function is successful; otherwise, -1 is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Simple Network Management Protocol (SNMP) . 6-73

setenv

Related Informati_on

6-74

The getenv subcommand, setenv subcommand, load_env subcommand.

The getenv intrinsic function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic FunctionsCommunications Programming Concepts.

Using Intrinsic FunctionsCommunications Programming Concepts.

Base Operating System Reference

SNMP _errormsg

SNMP _errormsg Array

Purpose
Stores SNMP error messages.

Syntax
char *SNMP _errormsg[];

Description
The SNMP _errormsg array is an array of pointers to strings containing the appropriate
English text corresponding to each SNMP error status value returned by the
send_recv_SNMP _packet subroutine as follows:

Index Contents

o No error

1 Too big

2 No such name

3 Bad value

4 Read only.

5 Unsupported or unauthorized operation.

Implementation Specifics
This array is part of SNMP Application Programming Interface in AIX Network
Management/6000.

Related Information
The send_recv _SNMP _packet subroutine.

Using the SNMP API Subroutine Library, Understanding the Simple Network Management
Protocol (SNMP) in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-75

snmp_var Function

Purpose

Syntax

Returns the Management Information Sase (MIS) numeric-format variable name associated
with a specified MIS text-format variable name.

(string) snmp_ var (VariableName)
string VariableName;

Description

Parameter

The snmp_var function returns the MIS numeric-format variable name associated with the
VariableName parameter. The returned string always has a trailing. (dot). If no such MIB
text-format variable name is known, the null string is returned. The MIB text-format variable
name and MIS numeric-format variable name mappings are obtained from the mib_desc
file.

VariableName Specifies the MIS text-format variable name for which the MIS
numeric-format variable name is queried. This parameter must be a
string data type.

Return Value
Returns the MIB numeric-format variable name associated with the Simple Network
Management Protocol (SNMP) variable in string format.

Implementation Specifics

File

This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

/etc/mib/ _desc Defines the Management Information Sase (MIB) variables that the
xgmon program should recognize and handle. The user also specifies
a time-to-live (TTL) value (in seconds) for each variable.

Related Information

6-76

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Understanding the Simple Network Management Protocol (SNMP), Understanding the
Management Information Base (MIS), Understanding Terminology Related to Management
Information Base (MIS) Variables, Working with Management Information Base (MIS)
Variables in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

sprintf Function

Purpose
Enables formatted arguments.

Syntax
(string) sprintf (Format,. Argument1, Argument2 ...)
string Format;
DataType Argument;

Description
The sprintf function provides various ways to format arguments.

Parameters
Format A string specifying the format requirements.

sprintf

Argument1, Argument2 ... These parameters can be integers, strings, or pointers.

Return Value
The sprintf intrinsic function returns a formatted string.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information
The sprintf function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-77

strlen

strlen Function

Purpose

Syntax

Returns the length of a string.

(int) strlen (String)
string String;

Description

Parameter

The strlen function returns the length of the string specified by the String parameter.

String Specifies the string to be queried. This parameter must be a string data
type.

Return Value
The strlen function returns the length of the string.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The left function, mid function, right function, substr function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-78 Base Operating System Reference

substr

substr Function

Purpose

Syntax

Searches a source string for a particular substring and returns the position of the leftmost
occurrence of that substring.

(int) substr (Source, Target)
string Source;
string Target;

Description
The substr function searches the string specified by the Source parameter for a string
specified by the Target parameter. Once the target string is located, the substr function
returns the position of the leftmost occurrence of the Target string.

Note: The index of the first character in the source string is always 1 (one). All strings in
the xgmon programming utility are indexed this way.

Parameters
Source Specifies the name of the source string to be queried. This parameter must

be a string data type.

Target Specifies the name of the target string to be queried. This parameter must
be a string data type.

Return Values
If the Target string does not appear in the Source string, 0 is returned. Otherwise, the
position of the leftmost occurrence of the Target string is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information
The left function, mid function, righf function, strlen function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-79

time

time Function

Purpose
Returns the current system time.

Syntax
(int) time(O)

Description
The time function returns the current system time and expresses it in seconds.

Parameter
Dummy parameter 0 (zero) is required.

Return Value
The time function returns the current system time and expresses it in seconds.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The ctime function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-80 Base Operating System Reference

val

val Function

Purpose

Syntax

Returns the integer value represented by the text characters in the specified string.

(int) val (NumberString)
string NumberString;

Description

Parameter

The val function returns the integer value represented by the text characters in the specified
string. It assumes the number is to be interpreted as a decimal number.

Note: See the atoi subroutine for details.

NumberString Specifies the number string to be queried. This parameter must be a
string data type.

Return Value
The val function returns the integer value represented by the text characters in the specified
string.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information
The hexval function, nurn function.

The atoi subroutine.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgrnon Intrinsic Functions in Communications Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-81

window_height

window_height Function

Purpose
Returns the height, in pixels, of the graphics window associated with a virtual G machine.

Syntax
int window_height(O)

Description

Parameter

The window_height function returns the height, in pixels, of the graphics window
associated with the virtual G machine in which the program is running.

Dummy parameter a (zero) is required.

Return Values
Returns the height, in pixels, of the graphics window associated with the virtual G machine in
which the program is running. If there is no window associated with the virtual G machine,
-1 is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/SOOO.

Related Information
The window_width function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

6-82 Base Operating System Reference

window width

window width Function

Purpose
Returns the width, in pixels, of the graphics window associated with a virtual G machine.

Syntax
(int) window_width(O)

Description

Parameter

The window_width function returns the width, in pixels, of the graphics window associated
with the virtual G machine in which the program is running.

Dummy parameter 0 (zero) is required.

Return Values
Returns the width, in pixels, of the graphics window associated with the virtual G machine in
which the program is running. If there is no window associated with the virtual G machine,
-1 is returned.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Managementl6000.

Related Information
The window_height function.

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Simple Network Management Protocol (SNMP) 6-83

words_free Function

Purpose
Returns the number of free words remaining in the data segment of the virtual G machine.

Syntax
(int) words_free(O)

Description

Parameter

The words_free function returns the amount of free space available in the data segment of
the virtual G machine. This storage space is measured in units of 32 bits. These units are
also referred to as words.

Note: If a virtual G machine attempts to use more storage than allocated in its data
segment, it is stopped.

Dummy parameter 0 (zero). This parameter is required.

Return Value
Returns the number of free storage units (32-bit words) remaining in the data segment of
the virtual G machine.

Implementation Specifics
This intrinsic function is part of Simple Network Management Protocol (SNMP) Manager in
AIX Network Management/6000.

Related Information

6-84

Alphabetic List of Intrinsic Functions, Functional List of Intrinsic Functions, How to Create
xgmon Intrinsic Functions, How to Create xgmon Library Commands in Communications
Programming Concepts.

Using Intrinsic Functions in Communications Programming Concepts.

Base Operating System Reference

SNA Services

SNA 7-1

7-2 Base Operating System Reference

close

close Subroutine for SNA Services/6000

Purpose

Syntax

Closes a file descriptor.

#include <Iuxsna.h>

int close(fi/des)
int fildes;

Description
The close subroutine closes a connection specified by its file descriptor.

Limited Interface
If the file descriptor was opened using the limited interface, this routine also deallocates the
conversation associated with the file descriptor, using the following parameters (see the
ioctl(DEALLOCATE) subroutine):

• The type parameter has a value of FLUSH (DEAL_FLUSH)

• The deal_flag parameter is DISCARD.

Extended Interface

Parameter

If the file descriptor was opened using the extended interface, any active conversations on
the connection end abnormally.

fildes Specifies a variable containing the file descriptor of the connection to be
closed. This file descriptor is the value returned by the open subroutine that
opened the connection.

Return Values
When the subroutine completes successfully, it returns a value of O. If an error occurs, the
routine returns a value of -1 and sets the errno global variable to indicate the error.

Error Code

File

The close subroutine sets the errno global variable to a value to indicate the cause of any
errors that occur. The value that this variable can receive is shown below. Error Code
Constants in Communications Programming Concepts contains a brief description of the
error values for AIX SNA Services/6000.

EBADF

lusr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

SNA 7-3

close

Related Information
The close subroutine.

The open subroutine for SNA Services/6000, ioetl subroutine for SNA Services/6000,
snaelse subroutine for SNA Services/6000.

7-4 Base Operating System Reference

close (Generic SNA)

close Subroutine for Generic SNA

Purpose

Syntax

Closes a file descriptor.

#include <Iuxgsna.h>

int close (fildes, ext)

int tildes;

int ext,

Description
The close subroutine releases resources that are tied to an AIX SNA Services/6000
attachment specified by its file descriptor.

Parameters
tildes Specifies a variable containing the file descriptor to be closed. This file

descriptor is the value returned by the open subroutine.

ext Ignored by generic SNA.

Return Values
Upon successful completion, the close subroutine returns a value of O. If an error occurs, it
returns a value of -1 and sets errno to indicate the error.

Err.or Code
The call sets errno to a value which indicates the cause of any errors that occur, as in the
following case:

EBADF An invalid file descriptor was specified.

Related Information
The open Subroutine for Generic SNA, read Subroutine for Generic SNA, write Subroutine
for Generic SNA, ioctl Subroutine for Generic SNA, select Subroutine for Generic SNA.

Developing Special AIX SNA Services/6000 Functions in Communications Programming
Concepts.

SNA 7-5

ioctl

ioctl Subroutine for SNA Services/6000

Purpose

Syntax

Controls data transfer between local and remote transaction programs.

#include <Iuxsna.h>

int ioctl(fd, request, arg)
int fd;
int request;
int arg;

Description

ALLOCATE

Note: Do not use this subroutine for programs that use the limited interface.

This subroutine provides control functions for transfer operations between a local and a
remote transaction program. The specific control function is specified by the request
parameter and must be one of the integers (defined in the luxsna.h include file) as
explained in the following sections:

• ALLOCATE

• ALLOCATE_LISTEN (LU 6.2 only)

• CONFIRM

• CONFIRMED

• CP _STATUS (LU 6.2 only)

• DEALLOCATE

• FLUSH

• GET_ATTRIBUTE (LU 6.2 only)

• GET_PARAMETERS (LU 6.2 only)

• GET_STATUS (LUs 1, 2, and 3 only)

• PREPARE_ TO_RECEIVE

• REQUEST_TO_SEND

• SEND_ERROR

• SEND_FMH (LU 1 only)

• SEND_STATUS (LUs 1, 2, and 3 only).

The ALLOCATE request allocates a session between the local logical unit or control point
(LU/CP) and a remote LU/CP. It then allocates a conversation between the local transaction
program and a remote transaction program using the allocated session. The request returns
a resource ID to identify the conversation. Use this request before using any other
subroutine that refers to the conversation.

7-6 Base Operating System Reference

ioctl

If two LUs, connected by a session, try to allocate a conversation on that session at the
same time, one of the LUs will be successful and the other will not. Which LU is successful
is determined by the BIND negotiation that occurred when the session was established.

The arg parameter is a pointer to a structure of type allo_str that contains additional
information for the request. This structure contains a pointer to an additional structure,
pip_str. These structures are defined in the luxsna.h include file. The resource 10 (RID) is
returned in the extended allocate structure. Refer to the allo_str and pip_str structures for
information about the fields in these structures.

You must ensure that the remote transaction program name (tpn) is in EBCDIC coding
before it is stored in the allo_str structure. Refer to EBCDIC to ASCII Translation for US
English (TEXT) Communication Concepts and Procedures for assistance in converting ASCII
to EBCDIC.

LU 6.2

When this request completes successfully, the local transaction program (the one that used
this request) is in the send state and the remote transaction program is in the receive state.

For two programs to reconnect to each other after they have been disconnected, the
following events must occur:

1. One program uses a DEALLOCATE request with the deal_flag parameter set to
retain to deallocate the conversation.

2. The program initiating the reconnection uses an ALLOCATE request with the type
parameter set to reconnect. This action sends a reconnection request to the remote
LU.

3. The remote program completes the reconnection when it uses the read or readx
subroutines to receive information.

4. If the application program is performing a remotely attached ALLOCATE request or
reconnection, the program must specify the resource 10, rid, in the allo_str structure.

LUs 1, 2, and 3

When this request completes successfully, the appropriate session (SSCP-LU or LU-LU) is
established and both LUs are in HDX contention state. The SSCP-LU session must be
active and allocated before allocating the LU-LU session. Trying to allocate the LU-LU
session before the SSCP-LU session results in a SNA_STATE error return from the
ALLOCATE request.

If an application program tries to allocate an SSCP-LU session and the ACTLU request has
not yet been received:

• This subroutine returns a SNA_NSES error.

• When the ACTLU request arrives, the logical unit (LU) starts.

Note: If a NOTIFY signal is not supported by the host system, the ACTLU request is
always accepted with a +RSP (SLU-enabled) ACTLU. If a NOTIFY signal is
supported by the host system, the ACTLU request is accepted with a +RSP
(SLU-enabled) if an ALLOCATE SSCP request was previously attempted or with
a +RSP (SLU-disabled) if an ALLOCATE SSCP request has not yet been
attempted.

• A +RSP ACTLU (SLU-enabled) request is sent.

SNA 7-7

ioctl

• The select subroutine notifies the application program of a change in status.

• The GET_STATUS request indicates that the SSCP is active.

• The application program allocates the SSCP-LU session.

If an application program tries to allocate an SSCP-LU session after the ACTLU request is
received:

• If a NOTIFY signal is supported by the Host system and an ACTLU (SLU-disabled) signal
was accepted, a NOTIFY (SLU-enabled) signal is sent to the Host system.

• A session is allocated.

If an application program tries to allocate an LU-LU session and the BIND request has not
yet been received:

• The ioctl subroutine puts the application to sleep waiting for the BIND request to be
received and processed.

• An INIT _SELF request is sent to the Host system to request the BIND request.

• When the BIND request arrives, the logical unit (LU) starts.

• A +RSP BIND is sent.

• The LU-LU session is allocated to the application program.

If an application program tries to allocate an LU-LU session after the BIND request is
received:

• A session is allocated.

If the host bids for a session, a subsequent ALLOCATE causes sense code Ox0813 (Host
bid reject). The bid can be either sent with the Begin Bracket (BB) bit on or a BID command.

ALLOCATE_LISTEN

CONFIRM

The ALLOCATE_LISTEN request registers a list or Transaction Program Names (TPNs) for
which an application wishes to accept allocate requests (for example, FMH5 Attaches).
When an allocate request is received by SNA for one of the registered TPNs, the application
will be informed via the select(EXCEPTION) subroutine. This routine may be issued multiple
time on any connection. Each successive call registers another set of TPNs on that
connection. The ALLOCATE_LISTEN request can be used by LU 6.2 only.

The CONFIRM request asks the remote transaction program to tell whether the last
transmission was successfully received. The remote transaction program must respond with
one of two ioctl subroutine requests: CONFIRMED or SEND_ERROR.

The filedes for this request is the connection ID (cid) returned from a previous open
routine.

For this request, the arg parameter is a pointer to a structure of type confirm_st. The
resource ID (rid) that was returned on a previous ALLOCATE must be passed in the
confirm_str structure. Information about the conversation is returned in the sense_code
field of the confirm_str structure. This structure is defined in the luxsna.h include file. Refer
to the confirm_str structure for information about the fields' in this structure.

7-8 Base Operating System Reference

ioctl

LU 6.2

The program may use the CONFIRM request for the following special cases:

• Immediately following an ioetl(ALLOCATE) request to determine if the allocation of the
conversation was successful before sending data

• Following transmission of data to the remote program to get an acknowledgment from the
remote program.

LUs 1, 2, and 3

LU 1 uses the CONFIRM request to get an acknowledgment for data that the LU sent to the
remote program. However, LUs 2 and 3 do not use this request. The remote program must
handle error recovery for the local LU 2 or 3 program.

CONFIRMED
The CONFIRMED request is a response to the CONFIRM request indicating that the
transmission was received without detecting any errors. This request can only be used in
response to a CONFIRM request.

The filedes for this request is the connection ID (cid) returned from a previous open
routine.

For this request, the arg parameter is the resource ID (r id) that was returned on a previous
ALLOCATE request.

CP _STATUS requests information about the capabilities of the control point at the remote
node.

The filedes for this request is the connection ID (cid) returned from a previous open
routine.

For this request, the arg parameter is a pOinter to a structure of type ep_str. The resource
10 (r id) that was returned on a previous ALLOCATE request must be passed in the cp_str
structure. The remote control pOint name, the conversation groupO ID, and the session type
(contention winner or contention loser) are returned by the ioetl subroutine in the ep_str
structure pointed to by the arg parameter. This subroutine also returns a list of remote CP
capabilities in the ep_str structure as defined in the luxsna.h include file. Refer to the
ep_str structure for a description of the fields in this structure.

DEALLOCATE
The DEALLOCATE request deallocates the specified conversation from the local transaction
program and makes the conversation available to be allocated by another transaction
program. Information about the specific type of DEALLOCATE request is supplied in the
deal_str structure pOinted to by the arg parameter.

The filedes for this request is the connection ID (cid) returned from a previous open
routine.

For this request, the arg parameter is a pointer to a structure of type deal_str. The resource
ID (r id) that was returned on a previous ALLOCATE must be passed in the deal_str
structure. The transaction program should specify the type of deallocate to be preformed'
(DEFAULT, CONFIRM, ABEND, or FLUSH) in the type field of the deal_str structure. The
transaction program should also specify whether the conversation should be discarded or
retained for possible reconnection in the deal_flag field of the deal_str structure.

SNA 7-9

ioctl

7-10

This structure is defined in the luxsna.h include file. Refer to the deal_str structure for
information about the fields in this structure.

LU 6.2

The DEALLOCATE request ends the conversation but not the session. The LU resource
manager determines whether to keep or end the session. The DEALLOCATE request is only
issued by a local transaction program. A remote transaction program receives an indication
that a DEALLOCATE request was received from the SNA device driver. The device driver
sets the what_control_rcvd field in the ext_io_str structure to indicate the type of
deallocation the device driver received from the remote program.

The remote transaction program must take appropriate action based on the type of
DEALLOCATE request received. For example, for deallocate type CONFIRM, the remote
transaction program issues the ioctl(CONFIRMED) subroutine to complete the deallocation
sequence. The remote transaction program is not required to issue a DEALLOCATE request
in response to a received DEALLOCATE.

See the readx subroutine for an explanation of the ext_io_str structure. The SNA device
driver performs the local deallocation function when it receives a DEALLOCATE request
from the remote transaction program.

LUs 1, 2, and 3

Do not use the DEALLOCATE request with an LU-LU session for either LUs 2 or 3. If used
with these sessions, the routine returns with an SNA_STATE error.

To deallocate an LU-LU session that has a corresponding SSCP-LU session, use the
DEALLOCATE request to deallocate the SSCP-LU session.

When the local transaction program issues a DEALLOCATE request with type set to
(DEAL_FLUSH) for the SSCP-LU session:

1. An RSHUTD is sent to the host requesting that the host issue an UNBIND request to
terminate the LU-LU session.

2. The local LU rejects all data from the host on the LU-LU session until it receives the
UNBIND request.

3. If the host supports a NOTIFY signal, a NOTIFY (SLU_DISABLED) signal is sent to the
SSCP.

4. The next allocation of SSCP causes a NOTIFY (SLU_enabled) signal.

5. The local LU rejects all data from the host on the SSCP-LU session until that session is
allocated to another application program.

The host can issue an UNBIND request at other times to end the LU-LU session. When the
UNBIND occurs, the local program using the LU-LU session receives a return code of
SNA_NSES to notify it of the session end.

Unless an RSHUTD is sent, all UNBIND requests are unsolicited. The SNA_NSES signal is
returned by SNA_DD (for the read subroutine, the write subroutine, and so on). The
SELECT is completed, if there is one pending. When an unsolicited UNBIND request occurs,
the local LU ends the session and uses the select subroutine to notify the application
program using the session. The select subroutine will complete with an exceptional
condition. If the application uses a GET_STATUS request of the ioctl subroutine, the
returned status indicates that the session is not active.

Base Operating System Reference

FLUSH

ioctl

The local LU cannot issue a DACTLU request to end the SSCP-LU session. Therefore, the
session remains active until the host ends it with a DACTLU, DACTPU or ACTPU request. In
this case, the DEALLOCATE request used on the SSCP-LU session removes the
connection to the local program, but does not remove the SSCP-LU session itself.

When used on an LU 1 LU-LU session, the DEALLOCATE request ends a bracket.

The FLUSH request sends any information in the local LU send buffer to the remote LU. The
LU normally buffers the data from write subroutines until it has enough data to transmit.
Using this request the local program forces the local LU to transmit the data in the buffer.
The local program can use this request to decrease the delay required to get the data to the
remote system. If you use this request when the local transmit buffer is empty, the local LU
transmits a null chain element to the remote LU if end chain is specified.

The arg parameter for this request is a pointer to a structure of type flush_str, which
contains the input parameters for the request. For LU 6.2, the end_chain field in the
flush_str structure should always be set to a value of O. Refer to the flush_str structure for
a description of the fields in this structure.

GET_ATTRIBUTE
The GET_ATTRIBUTE request gets information about the specified LU 6.2 conversation.

The arg parameter for this request is a pointer to a structure of type attr_str which contains
the input parameter rid and receives the output information from the request. Refer to the
attr_str structure for a description of the fields in this structure.

GET_PARAMETERS
The GET_PARAMETERS request retrieves the data associated with the receipt of an
allocate request (for example, FMH5 Attach) for a registered TPN on a particular connection.
The data that is returned is for the first allocate request received since the last
GET_PARAMETERS call was issued. The GET_PARAMETERS request can be used by LU
6.2 only.

GET_STATUS
The GET_STATUS request gets information about the current link and session, as well as
the unprocessed image from the BIND request for the LU-LU session. It can be used by
LUs 1, 2, and 3 only.

When an event occurs that changes the status of a link or session, the system informs the
application program, using the select subroutine. If the application program then uses
GET_STATUS, the status returned is for the session that was affected by the change in
status. For example, when a BIND request and an SOT request are received, the system
uses the select subroutine to notify the application program of the change. When the
application uses GET_STATUS, the returned status indicates that the LU-LU session is
active.

The arg parameter for this request is a pOinter to a structure of type gstat_str, which
contains the input parameter rid and receives the output status information from the
request. Refer to the gstat_str structure for a description of the fields in this structure.

Because GET_STATUS reports status changes, gstat_str can have a status value of O.

SNA 7-11

ioctl

PREPARE_TO _ RECEIVE
The PREPARE_ TO_RECEIVE request notifies the remote LU that the local LU needs to
change the conversation direction so that the local LU can begin receiving from the remote
LU.

The arg parameter for this request is a pointer to a structure of type prep_str which contains
the input parameters for the request. Refer to the prep_str structure for a description of the
fields in this structure.

Special Cases

Transaction programs can use this request with a type field of FLUSH to complete a write
subroutine and send a change-of-direction (CD) indication to the remote transaction
program. If the send buffer is empty, the request sends a Null FMD with a CD to the remote
transaction program.

Transaction programs also use this request with a type field of CONFIRM to complete a
write subroutine. In this case, the request sends the CD indication with a Request
Defini te Response message.

REQUEST_TO_SEND
The REQUEST _TO_SEND request notifies the remote LU that the local LU needs to change
the conversation direction so that the local LU can begin sending to the remote LU. The local
program uses a readx subroutine to get the send indication from the remote program (in the
what_control_rcvd field). When the local program receives this indication from the
remote program, it enters the send state and the remote program is in the receive state.

The arg parameter for this request specifies the resource 10 for the conversation that was
returned by the ALLOCATE request for the conversation.

SEND_ERROR

7-12

The SEND_ERROR request informs the remote transaction program that the local
transaction program has detected an error in the information that it received from the remote
program.

The arg parameter for this request is a pointer to a structure of type erro_str which contains
the input parameters for the request. Refer to the erro_str structure for a description of the
fields in this structure.

LU 6.2

When this request is issued in send state, the LU:

1. Flushes the local send buffer.

2. Creates and sends an FMH7.

When this request is issued in receive state, the LU:

1. Generates a negative response.

2. Purges all incoming data.

3. Creates an FMH7.

4. Waits for a send indication to arrive from the remote program.

5. Enters send state to send the error message.

Base Operating System Reference

ioctl

LUs 1, 2, and 3

When this request is issued in send state, the LU:

1. Flushes the local send buffer.

2. Sends a CANCEL request to the remote session.

When this request is issued in receive state, the LU:

1. Generates a negative response, using the sense_code specified in the subroutine.

2. Purges all incoming data to the end of chain.

The SEND_FMH request sends the FM header to the remote LU. Used only by LU 1
support, this request must be used on a basic conversation.

The arg parameter for this request is a pointer to a structure of type fmh_str which contains
the input parameters for the request. Refer to the fmh_str structure for a description of the
fields in this structure.

The application program must build the complete FM header to be sent. If more than one FM
header is to be sent, the application must build all FM headers with the concatenation bit set
within a contiguous area. The application program must also enforce concatenation and
chaining rules.

SEND_STATUS
The SEND_STATUS request sends status information about the devices on the local
session (LUs 1, 2 and 3, only) to the host program. This request can be used on a basic
conversation only. When issued in send state, an LUSTAT is sent to the remote session
using the ID to indicate which device the LUSTAT is for. When issued in receive state, the
SNA_STATE return code is returned. This request is used for LU-LU sessions only.

The arg parameter for this request is a pOinter to a structure of type stat_str, which contains
the input parameters for the status request. Refer to the stat_str structure for a description
of the fields in this structure.

Parameters
fd

request

arg

Return Values

Specifies the variable that contains the file descriptor returned by the open
subroutine.

Specifies the function to be performed as defined in the luxsna.h include
file.

An integer that can be used to specify either the variable that contains the
resource 10 (r id) returned by the ioctl(ALLOCATE) subroutine or a pointer
to a structure that contains additional input parameters for the requested
function.

When the subroutine completes successfully, it returns a value of O. If an error occurs, the
subroutine returns a value of -1 and sets the errno global variable to indicate the error.

Error Codes
The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive vary with the requested function. The

SNA 7-13

ioctl

File

table in the Error Code Constants in Communications Programming Concepts section
contains a brief description of the error values for AIX SNA Services/6000.

/usr/i neludelluxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information

7-14

Node Verification in Defining LU Type 6.2 Connection Characteristics in Communication
Concepts and Procedures.

The ioetl subroutine.

The open subroutine for SNA Services/6000, read subroutine for SNA Services/6000, readx
subroutine for SNA Services/6000, write subroutine for SNA Services/6000.

Base Operating System Reference

ioctl (Generic SNA)

ioctl Subroutine for Generic SNA

Purpose

Syntax

Controls data transfer between local and remote transaction programs.

#include <sys/devinfo.h>

#include <Iuxgsna.h>

int ioetl (fildes, request, arg)

int fildes;

int request,

struct devinfo *arg;

Description
This subroutine provides control functions for generic SNA applications. The specific control
function is specified by the request parameter and must be one of the integers (defined in
the luxgsna.h file) as explained in the following:

HIER_RESET_RSP

INOP_RSP

IOCINFO

Parameters
fildes

request

arg

Return Values

The HIER_RESET _RSP function informs AIX SNA Services/SOOO that
cleanup has been done after receiving a hierarchical reset from the PU
Services of AIX SNA Services/SOOO. This command is allowed only if the
file descriptor was opened for an AIX SNA Services/SOOO attachment.

The INOP _RSP function is used to inform AIX SNA Services/SOOO that
cleanup has been done after receiving an INOP command from the PU
Services of AIX SNA Services/SOOO. This command is allowed only if the
file descriptor was opened for an AIX SNA Services/SOOO attachment.

The IOCINFO function returns a devinfo structure that describes the device.
After the IOCINFO operation is executed, the device type and flags
associated with the file descriptor are returned in the devinfo structure
pointed to by the arg parameter.

Specifies the file descriptor return by the open subroutine.

Specifies the function to be performed as defined in the luxgsna.h file.

A pointer to a structure of type devinfo if the request is IOCINFO,
(struct devinfo*). Otherwise the arg parameter is NULL.

Upon successful completion, the ioctl subroutine returns a value of O. If an error occurs, it
returns a value of -1 and sets errno to indicate the error.

SNA 7-15

ioctl (Generic SNA)

Error Codes
The ioctl subroutine sets errno to a value which indicates the cause of any errors that
occur, as shown in the following list:

EBADF

EFAULT

EINVAL

An invalid file descriptor was specified.

An invalid address was specified.

An invalid parameter was passed.

Related Information

7-16

The close Subroutine for Generic SNA, open Subroutine for Generic SNA, read Subroutine
for Generic SNA, write Subroutine for Generic SNA, select Subroutine for Generic SNA.

Developing Special AIX SNA Services/6000 Functions in Communications Programming
Concepts.

Base Operating System Reference

luOapi

luOapi Subroutine

Purpose

Syntax

Creates 4680 commands for the ADCS Emulator.

#include <luO.h>
#include <adscapi.h>
extern int luOapiO;

rc = luOapi (cmd, option, data, fname, parm1, parm2);
short int cmd;
short int option;
char *data;
char * fname;
short int parm1;
short int parm2;
int rc;

Description
The luOapi subroutine creates 4680 commands for the ADCS Emulator and places them in
the lusr/lpp/luO/cmd4680 file, which is read by the adcs command when it starts the ADCS
emulator. You must compile the luOapi.c module with your source code.

Parameters
cmd Specifies the code for the command to be created. Valid values for the cmd

parameter are:

add cmd = ADDK;
add/replace option:

add
option = 0;
replace
option = 1;

fname = (6 byte ascii string, blank padded,
left justified)

parm1 = (the number of records you wish to add)
parm2 = (the maximum length of a logical record)
rc = luOapi (cmd, option, data, fname, parm1, parm2);

create cmd = CREATEF;
fname = (6 byte ascii string, blank padded,

left justified)
parm1 = (how many 256 byte blocks in this file)
parm2 = (maximum length of a logical record)
rc = luOapi (cmd, option, data, fname, parm1, parm2);
(fill in the next 3 fields for keyed files only)
(short int) &data[102] = (key length)
(short int) &data[104] = (key offset)
(short int) &data[106] = (randomizing divisor)

SNA 7-17

luOapi

7-18

option

data

fname

delete

dump

load

cmd = DELETEK;
ignore error option:

don't ignore errors
option = 0;
ignore errors
option = 1;

fname = (6 byte ascii string, blank padded,
left justified)

parm1 = (the number of records you wish to delete);
parm2 = (maximum length of ~ logical record);
rc = luOapi (cmd, option, data, fname, parm1, parm2);

cmd = DUMPF;
fname = (6 byte ascii string, blank padded,

left justified)
parm1 = (relative starting sector or token);
parm2 = (number of sectors to dump);
rc = luOapi (cmd, option, data, fname, parm1, parm2);

cmd = LOADF;
replace option:

don't replace
option = 0;

replace
option = 1;

fname = (6 byte ascii string, blank padded,
left justified)

parm 1 = (how many records to load)
parm2 = (starting sector number)
rc = luOapi (cmd, option, data, fname, parm1, parm2);
(short int) &data[60] = (how many bytes in last sector);

purge cmd = PURGEF;
fname = (6 byte ascii string, blank padded,

left justified)
rc = luOapi (cmd, option, data, fname, parm1, parm2);

replace cmd = REPLACEK;
add/replace option:

add
option = 0;
replace
option = 1;

fname = (6 byte ascii string, blank padded,
left justified)

parm1 = (the number of records you wish to add);
parm2 = (maximum record length);
rc = luOapi (cmd, option, data, fname, parm1, parm2);

Specifies an option dependent on the value of the cmd parameter.

Specifies the address where the command is stored.

Specifies the address of the file that the command affects.

Base Operating System Reference

parm 1 Specifies a value dependent on the value of the cmd parameter.

parm2 Specifies a value dependent on the value of the cmd parameter.

rc Specifies the return value indicating the success or failure of the luOapi
subroutine.

luOapi

Return Values

Files

If the function is completed successfully a 0 will be returned. If the command code is not
valid, then the LUO_CMD value is returned.

lusr/lpp/luO/luO.h
Specifies the LUO header file containing common definitions.

lusr/lpp/luO/adcsapi.h
Specifies the LUO header file containing ADCS user application API
definitions.

lusr/lpp/luO/luOapi.h
Specifies the LUO header file containing LUO API definitions.

lusr/lpp/luO/luOapis.h
Specifies the LUO header file containing cmd4680 command file record
formats.

lusr/lpp/luO/luOconf.h
Specifies the LUO header file containing configuration file definitions.

lusr/lpp/luO/luOapi.c
Specifies the C source file that defines the luOapi subroutine.

lusr/lpp/luO/cmd4680
Specifies the file containing 4680 commands, which the ADCS emulator
program processes.

Related Information
The adcs command.

Applications in Communications Programming Concepts.

SNA 7-19

luOclosep

luOclosep Subroutine

Purpose

Syntax

Allows the application to end a session with a secondary LU.

#include '<luO.h>
extern int luOclosepO;

rc = luOclosep (Iuid);
int luid;
int rc;

Description
The luOclosep subroutine closes a SNA Primary LUO session. The luOclosep subroutine
ends a session with the secondary LU.

Parameters
luid Specifies the LU identifier which was returned by a previous luOopenp

subroutine.

rc Specifies the return value indicating the success or failure of the luOclosep
subroutine.

Return Values

File

If the close is successful, a 0 is returned. If there are close errors, -1 is returned and the
errno global variable is set to one of the error codes specified in the luO.h file.

lusr/lpp/luO/luO.h Specifies the LUO header file containing common definitions.

Related Information
The luOctlp subroutine, luOopenp subroutine, luOreadp subroutine, luOwritep subroutine.

Application Program Interface in Communications Programming Concepts.

7-20 Base Operating System Reference

luOcloses

luOcloses Subroutine

Purpose

Syntax

Allows the application to end a session with a host application.

#include <luO.h>
extern int luOclosesO;

rc = luOcloses (/uid);
int luid;
int rc;

Description
The luOcloses subroutine closes the SNA Secondary LUO session. The luOcloses
subroutine ends a session with the host application.

Parameters
luid Specifies the LU identifier that was returned by the luOopens subroutine.

rc Specifies the return value indicating the success or failure of the luOcloses
subroutine.

Return Values

File

If the close is successful, a 0 is returned. If there are close errors, -1 is returned and the
errno global variable is to one of the error codes specified in the luO.h file.

lusr/lpp/luO/luO.h Specifies the LUO header file containing common definitions.

Related Information
The luOctls subroutine, luOopens subroutine, luOreads subroutine, luOwrites subroutine.

Application Program Interface in Communications Programming Concepts.

SNA 7-21

luOctlp

luOctlp Subroutine

Purpose

Syntax

Allows the application to send SNA commands to the secondary LU.

#include <luO.h>
extern int luOctlPO;

rc = luOctlp(luid, senseptr, optcode)
int luid;
char * senseptr,
int optcode;
int rc;

Description
The luOctip subroutine sends SNA commands or responses to the secondary LU.

Parameters
luid

senseptr

optcode

Specifies the LU identifier which was returned by the luOopenp subroutine.

Points to the address of the sense data buffer (6 bytes).

Specifies the option code. The following are valid values for the optcode
parameter:

LUOACPT Sends accept to previous request.

LUOREJ Sends re j ect to previous request, parm2 has 4 bytes of
sense data.

LUORSTAT Receives sense bytes(6) from LUSTAT or response
information into parm2 buffer.

LUOFSM Returns 4 FSM bytes into parm2 buffer.

LUOSDT Sends sdt.

LUOCLEAR Sends clear.

LUOSTSN Sends stsn, parm2 has ru data, 5 bytes.

LUOSTAT Sends lustat, parm2 has 4 sense bytes.

LUOOEC Sends quiesce at end of chain.

LUOOC Sends quiesce complete.

LUORELO Sends release quiesce.

LUOCAN Sends cancel partially sent chain.

LUOCHASE Sends chase.

7-22 Base Operating System Reference

rc

luOctlp

LUOSHUTD Sends shutdown.

LUOBID Sends bid.

LUOSIG Sends signal, parm2 has 4 sense bytes.

Specifies the return value indicating the success or failure of the luOctlp
subroutine.

Return Values

File

If the function completes successfully, a 0 will be returned. If errors are encountered, -1 is
returned and the errno global variable is set to one of the error codes specified in the luO.h
file.

lusr/lpp/luOlluO.h Specifies the LUO header file containing common definitions.

Related Information
The luOclosep subroutine, IUOopenp subroutine, luOreadp subroutine, luOwritep
subroutine.

Application Program Interface in Communications Programming Concepts.

SNA 7-23

luOctls

luOctls Subroutine

Purpose

Syntax

Allow the application to send SNA commands to the host.

#include <luO.h>
extern int luOctlsO;

rc = luOctls(luid, senseptr, optcode);
int luid;
char * senseptr,
int optcode;
int rc;

Description
The luOctis subroutine controls function for SNA Secondary LUO sessions. The luOctis
subroutine sends SNA commands or responses to the host system. The luid parameter is
the LU identifier returned on a previous luOopens subroutine.

Parameters
luid Specifies the LU identifier that was returned by the luOopens subroutine.

Points to the address of the sense data buffer (6 bytes).

7-24

senseptr

optcode Specifies the option code. The following are valid values for the optcode
parameter:

LUOACPT

LUOREJ

LUORSTAT

LUOFSM

LUORQR

LUOSTAT

LUORTR

LUOQEC

LUOQC

LUORELQ

LUOCAN

LUOCHASE

Sends accept to previous request.

Sends reject to previous request, parm2 has 4 bytes of
sense data.

Receives sense bytes (6) from LUSTAT or response
information into parm2 buffer.

Returns 4 FSM bytes into parm2 buffer.

Sends request recovery.

Sends lustat, parm2 has 4 sense bytes.

Sends ready to receive.

Sends quiesce at end of chain.

Sends quiesce complete.

Sends release quiesce.

Sends cancel partially sent chain.

Sends chase.

Base Operating System Reference

rc

LUOSHUTC

LUOSIG

Sends shutdown complete.

Sends signal, parm2 has 4 sense bytes.

luOctls

Specifies the return value indicating the success or failure of the luOctis
subroutine.

Return Values

File

If the function completes successfully a 0 is returned. If errors are encountered, -1 is
returned and the errno global variable is set to one of the error codes specified in the luO.h
file.

lusr/lpp/luO/luO.h Specifies the LUO header file containing common definitions.

Related Information
The luOcloses subroutine, luOopens subroutine, luOreads subroutine, luOwrites
subroutine.

Application Program Interface in Communications Programming Concepts.

SNA 7-25

IUOopenp

luOopenp Subroutine

Purpose

Syntax

Allows the application to begin a session with a secondary application.

#include <luO.h>
extern int luOopenp();

rc = luOopenp (Iuname, bindptr, bindlenp);
char * luname;
char * bindptr,
int * bindlenp;
int rc;

Description
The luOopenp subroutine opens a SNA Primary LUO session. The luOopenp subroutine
opens a session with the secondary application. The value returned for the luid parameter is
used on subsequent operations to define the LU identifier.

Parameters
luname Specifies the address of an 8 byte name in the configuration file. The name

should be left justified and padded with spaces.

bindptr

bindlenp

rc

Points to the address of a 256 byte bind record buffer. On input to this
routine, if the buffer contains a bind record (first byte = Ox31), then it will be
the bind record sent to the secondary LU. Otherwise, the bind record is
formatted from the information in the configuration file LU record and will be
copied into this buffer.

Specifies the address of the integer that contains the length of the bind
record. If the bind record is formatted by the caller in parm 2, then parm 3
should point to an integer that contains the length of the bind record.
Otherwise parm 3 should point to an integer into which the length of the bind
record is returned.

Specifies the return value indicating the success or failure of the IUOopenp
subroutine.

Return Value

File

If the open is successful, the LU identifier is returned. The LU identifier is actually the
address of the LUO table entry in shared memory. If there are open errors, -1 is returned
and the errno global variable is set to one of the error codes specified in the luO.h file.

lusr/lpp/luO/luO.h Specifies the LUO header file containing common definitions.

Related Information
The luOclosep subroutine, luOctlp subroutine, luOreadp subroutine, luOwritep subroutine.

Application Program Interface in Communications Programming Concepts.

7-26 Base Operating System· Reference

luOopens

luOopens Subroutine

Purpose

Syntax

Allows the application to begin a session with a host application.

#include <luO.h>
extern int luOopens();

luid = luOopens (Iuname, bindptr, bindlenp);
int luid;
char 1< luname;
char 1< bindptr;
int 1< bindlenp;

Description
The luOopens subroutine opens a SNA Secondary LUO session. The luOopens subroutine
opens a session with the host application. The value returned for the luid parameter is used
on subsequent operations to define the LU identifier.

Parameters
luname Specifies the address of an a-byte name in the configuration file. The name

should be left-justified and padded with spaces.

bindptr

bindlenp

luid

Points to the address of a 256 byte buffer into which the bind record is
placed.

Specifies the address of the integer into which the length of the bind record
is placed.

Specifies the return value indicating the success or failure of the luOopens
subroutine.

Return Values

File

If the open is successful, the LU identifier is returned. The LU identifier is actually the
address of the LUO table entry in shared memory. After a successful open, the application
should check the bind record that was returned. It should then call the luOctls subroutine
with the LUOACPT function code to accept the BIND request or the LUOREJ function code to
reject the BIND request. No other processing can be done until the bind has been responded
to. If there are open errors, -1 is returned and the errno global variable is set to one of the
error codes specified in the luO.h file.

lusr/lpp/luO/luO.h Specifies the LUO header file containing common definitions.

Related Information
The luOcloses subroutine, luOctis subroutine, luOreads subroutine, luOwrites subroutine.

Application Program Interface in Communications Programming Concepts.

SNA 7-27

luOreadp

luOreadp Subroutine

Purpose

Syntax

A"ows the application to receive data from the secondary LU.

#include <luO.h>
extern int luOreadp 0;

rc = luOreadp(/uid, buffptr, buff/en)
int /uid;
char *buffptr,
int buff/en;
int rc;

Description
The luOreadp subroutine reads a request from a SNA Primary LUO session. The luOreadp
subroutine receives data from the secondary LU. .

Parameters
/uid Specifies the LU identifier returned by the IUOopenp subroutine.

Points to the address of the PIU buffer. buffptr

buff/en

rc

Specifies the length of the PIU buffer. The buffer length should be long
enough to hold the largest request plus the SNA TH and RH.

Specifies the return value indicating the success or failure of the luOreadp
subroutine.

Return Value

File

If the read is successful, the length of the PIU is returned Ifthere are read errors, -1 is
returned and the errno global variable is set to one of the error codes specified in the luO.h
file.

lusr/lpp/luO/luO.h Specifies the LUO header file containing common definitions.

Related Information
The luOclosep subroutine, luOctip subroutine, luOopenp subroutine, luOwritep subroutine.

Application Program Interface in Communications Programming Concepts.

7-28 Base Operating System Reference

luOreads

luOreads Subroutine

Purpose

Syntax

Allows the application to receive data from the host application.

#include <luO.h>
extern int luOreadsO;

rc = luOreads(luid, buffptr, buff/en);
int luid;
char * buffptr;
int buff/en;
int rc;

Description
The luOreads subroutine reads a request from a SNA Secondary LUO session. The
luOreads subroutine receives data from the host application.

Parameters
luid Specifies the LU identifier returned by the luOopens subroutine.

Points to the address of the PIU buffer. buffptr

buff/en

rc

Specifies the length of the PIU buffer. The buffer length should be long
enough to hold the largest request plus the SNA TH and RH.

Specifies the return value indicating the success or failure of the luOreads
subroutine.

Return Value

File

If the read is successful, the length of the PIU is returned. If there are read errors, -1 is
returned, and the errno global variable is set to one of the error codes specified in the luO.h
file.

lusr/lpp/luO/luO.h Specifies the LUO header file containing common definitions.

Related Information
The luOcloses subroutine, luOctis subroutine, luOopens subroutine, luOwrites subroutine.

Application Program Interface in Communications Programming Concepts.

SNA 7-29

luOwritep

luOwritep Subroutine

Purpose

Syntax

Allows the application to send data to the secondary LU.

#include <luO.h>
extern int luOwritepO;

rc = luOwritep(luid, buffptr, buff/en);
int luid;
char *buffptr,
int buff/en;
int rc;

Parameters
luid

buffptr

buff/en

rc

Descri ption

Specifies the LU identifier returned by a previous IUOopenp subroutine.

Points to the address of the PIU.

Specifies the length of the PIU.

Specifies the return value indicating the success or failure of the luOwritep
subroutine.

The luOwritep subroutine writes a request in a SNA Primary LUO session. The luOwritep
subroutine sends data to the secondary LU. The following fields will be set in the TH and
RH:

TH FlO type = 2

RH

Return Value

Destination address field

Origination address field

Sequence number field

Type = request

RU category = FMD

No sense data

No enciphered data

No padded data

No conditional end bracket

If the write is successful, the length of the PIU is returned If there are write errors, -1 is
returned and the errno global variable is set to one of the error codes specified in the luO.h
file.

7-30 Base Operating System Reference

luOwritep

File
lusr/lpp/luO/luO.h

Specifies the LUO header file containing common definitions.

Related Information
The luOclosep subroutine, luOctlp subroutine, luOopenp subroutine, luOreadp subroutine.

Application Program Interface in Communications Programming Concepts.

SNA 7-31

luOwrites

luOwrites Subroutine

Purpose

Syntax

Allows the application to send data to the host application.

#include <luO.h>
extern int luOwritesO;

rc = luOwrites (Iuid, buffptr, buff/en);
int luid;
char * buffptr,
int buff/en;
int rc;

Description
The luOwrites subroutine writes a request in a SNA Secondary LUO session. The luOwrites
subroutine sends data to the host application. The following fields are set in the TH and RH:

TH FID type = 2

RH

Parameters
luid

buffptr

buff/en

rc

Return Value

Destination address field

Origination address field

Sequence number field

Type = request

RU category = FMD

No sense data

No enciphered data

No padded data

No conditional end bracket

Specifies the LU identifier returned by the luOopens subroutine.

Points to the address of the PIU.

Specifies the length of the PIU.

Specifies the return value indicating the success or failure of the luOwrites
subroutine.

If the write is successful, the length of the PIU is returned If there are write errors, -1 is
returned and the errno global variable is set to one of the error codes specified in the luO.h
file.

7-32 Base Operating System Reference

luOwrites

File
lusr/lpp/luO/luO.h

Specifies the LUO header file containing common definitions.

Related Information
The luOcloses subroutine, luOctis subroutine, luOopens subroutine, luOreads subroutine.

Application Program Interface in Communications Programming Concepts.

SNA 7-33

nm close

nm close Subroutine

Purpose

Syntax

Releases the SSCP _PU session.

int nm_close (sscp_id)

char * sscp_id;

Description

Parameter

An application uses the nm_close subroutine to release the specified session so another
application can use it.

An ID predefined by the host for a specific SSCP-PU session.

Return Values
When the subroutine completes successfully, it returns a 0 (zero) to indicate that the
specified session is closed. Otherwise, the subroutine returns a value of -1 and sets the
errno global variable to indicate the error.

Error Code

File

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown below. Error Code Constants
in Communications Programming Concepts contains a brief description of the error values
for AIX SNA Services/6000.

/usr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The nmopen subroutine, nmsend subroutine, nmrecv subroutine, nmstat subroutine.

7-34 Base Operating System Reference

nm_open Subroutine

Purpose

Syntax

Establishes the SSCP _PU session.

int nm_open (sscp_id, application_server_name, sna_server_name)

char * sscp_id;
char * application_server_name;
char * sna_server_name;

Description
An application uses the nm_open subroutine to associate itself with the specified session.
The nm_open subroutine should be the first network management API subroutine called.

Parameters
sscp_id An 10 predefined by the host for a specific SSCP-PU session.

application_server_name
A pointer to the application server name. The argv{O] parameter contains
the server name.

sna_server_name
A pointer to the sna server name. If the name pointer is NULL, the default
SNA server name is sna.

Return Values
When the subroutine completes successfully, it returns a zero to indicate that the specified
session is active and not being used by' another application. Otherwise, the subroutine
returns a value of -1 and sets the errno global variable to indicate the error.

Error Codes

File

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Conceptscontains a brief description of
the error values for AIX SNA Services/6000.

SNA_ERP

SNA_INUSE

SNA_UNDEF _SVR

lusr/include/luxsna.h

SNA_INACT

SNA_NOTAVAIL

Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The nm_send subroutine, nm_recv subroutine, nm_close subroutine, nm_stat subroutine.

SNA 7-35

nm receive Subroutine

Purpose

Syntax

Receives NMVT data from the specified SSCP _PU session.

int nm_receive (sscp_id, buffer, length, type)

char * sscp_id;
char*buffer,
int length
int *type

Description
An application uses the nm_receive subroutine to receive NMVT data for the specified
session. If no data is available for that session, the subroutine waits until data is available or
until the application ends the subroutine.

Parameters
sscp_id An 10 predefined by the host for a specific SSCP-PU session.

buffer

length

type

A pointer to the buffer area where the data is received.

The number of bytes of data. If this value is less that the actual number of
bytes received, the message is truncated and the remainder is discarded.

The type of data. The following types are returned:

o Request

1 Positive response

2 Negative response.

Return Values
When the subroutine completes successfully, it returns a positive integer that indicates the
number of bytes received and placed in the user buffer. Otherwise, the subroutine returns a
value of -1 and sets the errno global variable to indicate the error.

Error Codes

7-36

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the error values for AIX SNA Services/6000.

SNA_ERP

SNA_INVALID

SNA_INACT

SNA_LENGTH

Base Operating System Reference

File
lusr/include/luxsna.h

Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The nm_open subroutine, nm_send subroutine, nm_close subroutine, nm_stat
subroutine.

SNA 7-37

nm .. send

nm send Subroutine

Purpose

Syntax

Sends NMVT data to the specified SSCP _PU session.

int nm_send (sscp_id, data, length, type)

char * sscp_id;
char *data;
int length
int type

Description
An application uses the nm_send subroutine to send NMVT data, including the NMVT
header, to the specified session. The application must specify the data, the data length and
the data type. SNA sets RH according to the data type:

request OxOB8000

positive response Ox838000

negative response Ox879000

Parameters
sscp_id An 10 predefined by the host for a specific SSCP-PU session.

data

length

type

A pointer to the buffer area from which the data is sent. The data should
contain a sense code if the type parameter is negative response.

The number of bytes of data sent

The type of data. The following types are allowed:

o Request

1 Positive response

2 Negative response.

Return Values

7--38

When the subroutine completes successfully, it returns a positive integer that indicates the
number of bytes sent. Otherwise, the subroutine returns a value of -1 and sets the errno
global variable to indicate the error.

Base Operating System Reference

Error Codes

File

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the error values for AIX SNA Services/6000.

SNA_ERPSNA_INACT

SNA_NMVT_HDR

SNA_INVALID

SNA_lENGTH

SNA_STATE

/usr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The nm_open subroutine, nm_recv subroutine, nm_close subroutine, nm_stat subroutine.

SNA 7-39

nm status

nm status Subroutine

Purpose

Syntax

Provides the status of the specified SSCP _PU session.

int nm_status (sscp_id)

char *sscp_id;

Description

Parameter

An application uses the nm_status subroutine to obtain the status of a session. There are
three types of status: active, inactive, and reset.

An 10 predefined by the host for a specific SSCP-PU session.

Return Values
When the subroutine completes successfully, it returns a 0 (zero) to indicate that the
specified session is active. Otherwise, the subroutine returns a value of -1 and sets the
errno global variable to indicate the error.

Error Codes

File

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the error values for AIX SNA Services/6000.

SNA_ERP (reset)

SNA_INVALID

SNA_INACT (inactive)

lusr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The nm_open subroutine, nm_send subroutine, nm_recv subroutine, nm_stat subroutine.

7-40 Base Operating System Reference

open

open Subroutine for SNA Services/6000

Purpose

Syntax

Opens a resource.

#include <Iuxsna.h>

int open(path, of/ag)
char *path;
int of/ag;

Description
The open subroutine for AIX SNA Services/6000 initializes a connection to a resource
described in a specified connection profile. You must use the open subroutine before using
any other SNA subroutine for a particular connection. Each open subroutine ties a local LU
to a remote LU.

Note: Opening a connection causes the associated attachment to be started if the
attachment is not already active.

Limited Interface
When the connection profile defines the connection to be limited, the open subroutine
also allocates the conversation between the local LU and the remote LU using the
connection created by the open subroutine. The allocation uses the default allocation
parameters as defined in the connection profile. Only one conversation can be allocated to
this connection.

Extended Interface
The calling program must also allocate conversations to the connection after it is opened.
Use the ioctl subroutine to perform the allocation.

For LUs 1, 2 and 3, only two sessions (SSCP-LU, LU-LU) can be allocated to a particular
open file descriptor (connection). However, for LU 6.2 several conversations can be
allocated to an open file descriptor.

Parameters
path Specifies the resource to be opened. It must be in the form:

ddn/cpn [/tpn]

The parameters in this string have the following meanings:

ddn Specifies the SNA device driver name to be used to open the
resource. This will always be in the /dev/sna directory.

cpn Specifies the connection profile name of the resource to be
opened.

SNA 7-41

open

tpn Specifies the remote transaction profile name to be used in place
of the transaction profile name found in the connection profile.
This parameter is optional. If you do not specify this parameter,
the open subroutine uses the remote transaction profile name
found in the connection profile. If you specify this parameter,
separate it from the connection profile name with a / (slash).

of/ag Specifies a value to set the file status flag. The of/ag parameter values for
the SNA device driver are constructed by logically ORing flags from the
following list:

O_RDWR Open for reading and writing

O_NDELAV Subsequent reads will return immediately if no data is
present.

Return Values
When the routine completes successfully, it returns a non-negative integer that specifies the
file descriptor (tildes) or connection 10 (cid) for the connection. If an error occurs, the
routine returns a value of -1 and sets the errno global variable to indicate the error.

Error Codes

File

The routine sets the errno global variable to a value to indicate the cause of any errors that
occur. The values that this variable can receive are shown in following list. Error Code
Constants in Communications Programming Concepts contains a brief description of the
following error values for AIX SNA Services/6000:

ENOENT

EMFILE

ENOTDIR

EACCES

EFAULT

ENOMEM

ENXIO

ETXTBSV

EROFS

EISDIR

lusr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information

7-42

The open subroutine, close subroutine.

The close subroutine for SNA Services/6000, ioctl subroutine for SNA Services/6000,
snaopen subroutine for SNA Services/6000.

Base Operating System Reference

open (Generic SNA)

open Subroutine for Generic SNA

Purpose

Syntax

Opens a file descriptor.

#include <Iuxgsna.h>

int openx(path, of/ag, mode, ex~

char *path;

int of/ag;

int mode;

int ext,

Description
The open subroutine initializes resources to tie an AIX SNA Services/6000 attachment to a
file descriptor such that each file descriptor corresponds to an AIX SNA Services/6000
attachment. This command must be issued b~fore using any other generic SNA device
driver subroutine.

Parameters
path Specifies the resource to be opened. It must be in the following form:

Idev/gsna/attachment_profile_name

The attachment_profile_name in the path is required. It is used to
start an AIX SNA Services/6000 attachment only if AIX SNA Services/6000
is running and an appropriate AIX SNA Services/6000 attachment profile is
defined. AIX SNA Services/6000 supports only PU type 2.1 nodes.

of/ag Specifies the value of the file status flag. The generic SNA device driver
uses only the following values of this flag (all other values are ignored):

Open for reading and writing

Subsequent reads will return immediately if no data
is present.

mode Ignored by generic SNA.

ext Ignored by generic SNA.

Return Values
Upon successful completion, the open subroutine returns a a (zero). If an error occurs, it
returns a value of -1 and sets errno to indicate the error.

SNA 7-43

open (generic SNA)

Error Codes
The open subroutine sets errno to a value which indicates the cause of any errors that
occur. The values that errno can receive are shown in the following list:

ENXIO

ENOENT

EACCES

ENOMEM

EISDIR

ENOTDIR

ETXTBSY

EROFS

EMFILE

EFAULT

SNA_NO_LU

SNA_FAIL

No such device or address exists.

The named file does not exist.

A component of the path prefix denies search permission, or
permission is denied for the named file.

Either this node or the server does not have enough memory
available to service the request.

The named file is a directory, and the oflag parameter is write or
read/write.

A component of the path prefix is not a directory.

The file is a pure procedure (shared text) file that is being executed
and the oflag parameter is write or read/write.

The named file resides on a read-only file system, and the oflag
parameter is write or read/write.

The maximum number of file descriptors are currently open.

The path parameter points to a location outside the process's
allocated address space.

No LUs are registered for the Generic SNA device driver.

SNA system failure. SNA is not currently running.

Related Information

7-44

The close Subroutine for Generic SNA, read Subroutine for Generic SNA, write Subroutine
for Generic SNA, ioctl Subroutine for Generic SNA, select Subroutine for Generic SNA.

Developing Special A/X SNA Services/SOOO Functions in Communications Programming
Concepts.

Base Operating System 'Ref.erence

read

read Subroutine for SNA Services/6000

Purpose

Syntax

Receives data from the remote transaction program.

#include <Iuxsna.h>

int read(fildes, data, length)

int tildes;
char *data;
int length;

Description
Note: Use this subroutine for LU 6.2 limited connections only. Applications using LU 6.2

extended connections or LU 1, LU 2, or LU 3 connections should use the readx
subroutine.

The read subroutine waits for information to arrive on the specified conversation and then
receives the information. If the information is already available, it receives the information
without waiting.

When trying to read from a conversation that has no data available, the state of the
O_NDELAY flag (see the open or fcntl subroutines) determines what happens to the read
operation:

set The read returns a value of 0 to indicate that no data has been received.

clear The read is blocked until data becomes available.

An application program should not use the read subroutine unless the program is performing
a very simple function. Use the readx subroutine instead. The readx subroutine returns
additional information to inform the application program what state it is in. The read
subroutine does not provide that information.

If the application program uses this command when the conversation is in send state, the
following actions occur:

1. The LU flushes its send buffer, sending all buffered information and the send indication to
the remote program,

2. The local program enters the receive state and waits for data from the remote program.

Extended Interface
When using the extended interface for LU 6.2 connections with multiple conversations, only
the first conversation is accessible with this command.

Parameters
tildes Specifies the variable that contains the file descriptor returned by the open

subroutine.

data Specifies a pOinter to the buffer area into which the data will be read.

SNA 7-45

read

length Specifies the variable that contains a value indicating the maximum number
of bytes of data to be received. This value cannot be larger than 32,764
(32K - 4) bytes.

Return Values
When the subroutine completes successfully, it returns a positive integer that indicates the
number of bytes received. If an error occurs, the routine returns a value of -1 and sets the
errno global variable to indicate the error.

If an interrupt occurs while the subroutine is processing, it returns the number of bytes that
have already been transferred to the user buffer. If no data has been moved when the
interrupt occurs, it returns a value of -1 and sets the errno global variable to EINTR.

Error Codes

File

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the following error values for AIX SNA Services/6000:

EBADF SNA_NPIP SNA_PROTOCOL

EINTR SNA_NREC SNA_PTR

EINVAL SNA_NRMDEAL SNA_RFN

ENOMEM SNA_NRREC SNA_RFR

SNA_ALFN SNA_NSES SNA_RREC

SNA_ALFR SNA_NSYC SNA_SNTR

SNA_BOUNDARY SNA_PGMDEAL SNA_SPURG

SNA_CTYPE SNA_PNREC SNA_STATE

SNA_INVACC SNA_PNSYC SNA_SVCDEAL

SNA_NOCONN SNA_PNTR SNA_TIMDEAL

SNA_NOTPN SNA_PPURG SNA_WRGPIP

lusr/i ncl ude/luxsna. h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information

7-46

The read subroutine.

The write subroutine for SNA Services/6000, ioctl subroutine for SNA Services/6000, open
subroutine for SNA Services/6000.

Base Operating System Reference

read (Generic SNA)

read Subroutine for Generic SNA

Purpose

Syntax

Receives data from a file descriptor.

#include <Iuxgsna.h>

int read (fildes, data, length)

int readx (fildes, data, length, ext)

int fiJdes;

char *data;

int length;

int ext,

Description
The read subroutine receives normal sequenced data, exchange 10 (XID) data, network
data, or datagram data.

A read subroutine can be issued for normal data when the open subroutine has completed
successfu lIy.

The read subroutine waits for information to arrive on the specified AIX SNA Services/6000
attachment, then receives the information. If information is already available, it receives the
information without waiting.

Parameters
fiJdes

data

length

ext

Return Values

Specifies the file descriptor returned by the open subroutine.

Specifies a pointer to the buffer area into which the data will be read.

Specifies the maximum number of bytes of data to be received. This value
cannot be larger than 32,764 (32K - 4) bytes.

Ignored by generic SNA.

Upon successful completion, this subroutine returns a non-negative integer that indicates
the number of bytes received. If an error occurs, it returns a value of -1 and sets errno to
indicate the error.

Error Codes
The call sets errno to a value that indicates the cause of any errors that occur, as shown in
the following list:

EBADF

EFAULT

EINTR

An invalid file descriptor was specified.

An invalid address was specified.

The read subroutine was interrupted.

SNA 7-47

read (Generic SNA)

EINVAL

SNA_HIER_RESET

SNA_'NOP

SNA_FAIL

Related Information

An invalid parameter was passed.

Hierarchical Reset was received from AIX SNA
Services/6000.

INOP was received from AIX SNA Services/6000.

SNA system failure.

The close Subroutine for Generic SNA, open Subroutine for Generic SNA, write Subroutine
for Generic SNA, ioctl S·ubroutine for Generic SNA, select Subroutine for Generic SNA.

Developing Special AIX SNA Services/6000 Functions in Communications Programming
Concepts.

7-48 Base Operating System Reference

readx

readx Subroutine for SNA Services/6000

Purpose

Syntax

Receives data from the remote transaction program.

#include <Iuxsna.h>

int readx (fildes, data, length, exO

int tildes;

char *data;

int length;

struct ext_io_str *ext;

Description
Note: Do not use this subroutine for LU 6.2 programs that use the limited interface.

The readx subroutine waits for information to arrive on the specified conversation and then
receives the information. If the information is already available, it receives the information
without waiting. The information can be data, conversation status, or a request for
confirmation. The connection profile for this connection must designate the use of the
extended interface as described in Defining AIX SNA Services/6000 Characteristics in
Communication Concepts and Procedures.

Note: SNA Services defines all LU 1, LU 2, and LU 3 connections as extended interface
connections.

If the application program uses this command when the conversation is in send state, the
following actions occur:

1. The LU flushes its send buffer, sending all buffered information and the send indication to
the remote program,

2. The local program enters the receive state and waits for information from the remote
program.

If you specify the rid parameter in the ext_io_str structure to be 0 (zero) or NULL, the
subroutine performs a read any operation. The data that the routine returns is from the first
resource allocated to the connection that has data available. The subroutine then sets the
rid parameter to indicate the resource ID of the resource that supplied the data.

When trying to read from a conversation that has no data available, the state of the
O_NDELAY flag (see the open or fcntl subroutine) determines what happens to the read
operation:

set The read returns a value of 0 to indicate that no data has been received.

clear The read is blocked until data becomes available.

When header information is received, it is moved into the usrhdr field of the extended I/O
structure, ext_io_str. If the header information is longer than the space allowed (specified in
the usrhdr_len parameter), the usr~trunc field is set to indicate the error. No
information, data or header is returned when the header is truncated.

SNA 7-49

readx

The ext parameter points to a structure that contains additional input and output parameters
for the readx subroutine. This same structure is used for the writex subroutine. Refer to the
ext_io_str structure for a description of the fields. The readx subroutine uses only the
following fields in that structure:

• deallocate

• deallo_type (type=B' 010' only - deallocate with abnormal end of conversation)

• deallo_flag

• allocate

• fill

• sess_type

• rq_to_snd_rcvd

• what data rcvd - -
• what control rcvd - -

• sense code

• rid

• usrhdr len

• usr trunc

• usrhdr

User Header Field
In addition to the data provided in the extended 1/0 structure, the sending program can
supply header information about the data being sent. The receiving program must allow for
receiving this information by doing the following:

1. Define the length of the header information in the usrhdr_len field.

2. Reserve consecutive space following the extended 1/0 structure (ext_io_str) for the
header information.

3. Pass the extended 1/0 structure pointer (the ext parameter) in a readx subroutine.

LUs 1,2 and 3

7-50

The amount of data returned depends upon the type of information read (FM header or
data), the length specified in the read, and the size of the data. For FM headers data, the
amount of data depends upon the size of the FM header. For a chain element, the amount of
data depends upon the size of the chain element request unit.

Use only the buffer value for the fill option. Use confirm_deallocate and
normal_deallocate parameters only on an LU-LU session to indicate the end of a
bracket.

Do not use the following:

• confirm deallocate retain

• normal_deal locate_retain

• confirm_deallocate on an SSCP-LU session

• normal_deallocate on an SSCP-LU session.

Base Operating System Reference

readx'

When FM header data is received, the FM header data is moved to the user buffer. The
what_data_rcvd field is set to indicate the receipt of FM header data. If data was received
in addition to the FM header data, a separate readx subroutine must be issued to obtain the
data.

If the host bids for the session, a readx subroutine with the allocate bit on accepts the bid.
For additional information, refer to the ALLOCATE section of the ioetl subroutine and to the
writex subroutine.

Parameters
tildes Specifies the variable that contains the file descriptor returned by the open

subroutine.

data

length

ext

Return Values

Specifies a pointer to the buffer area into which the data will be read.

Specifies the variable that contains a value indicating the maximum number
of bytes of data to be received. This value cannot be larger than 32,764
(32K - 4) bytes.

Specifies a pOinter to an extended I/O structure of type ext_io_str. The
ext_io_str structure allows the user to combine functions into one routine.
You can use readx(ALLOCATE and DEALLOCATE) on one routine. This
structure type is defined in the luxsna.h include file. See the ext_io-str
structure.

When the subroutine completes successfully, it returns a positive integer that indicates the
number of bytes received. If an error occurs, the routine returns a value of -1 and sets the
errno global variable to indicate the error.

If an interrupt occurs while the subroutine is processing, it returns the number of bytes that
have already been transferred to the user buffer. If no data has been moved when the
interrupt occurs, it returns a value of -1 and sets the errno global variable to EINTR.

Error Codes
The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the following error values for AIX SNA Services/6000:

EBADF SNA_NPIP SNA_PROTOCOL

EINTR SNA_NREC SNA_PTR

EINVAL SNA_NRMDEAL SNA_RFN

ENOMEM SNA_NRREC SNA_RFR

SNA_ALFN SNA_NSES SNA_RREC

SNA_ALFR SNA_NSYC SNA_SNTR

SNA_BOUNDARY SNA_PGMDEAL SNA_SPURG

SNA_CTYPE SNA_PNREC SNA_STATE

SNA 7-51

readx

File

SNA_INVACC

SNA_NOCONN

SNA_NOTPN

SNA_PNSYC

SNA_PNTR

SNA_PPURG

SNA_SVCDEAL

SNA_ TIMDEAL

SNA_WRGPIP

/usr/includelluxsna.h
Defines constants and structures used by AIX SNA Services/SOOO
subroutines.

Related Information
The readx subroutine.

The writex subroutine for SNA Services/SOOO, ioctl subroutine for SNA Services/SOOO,
open subroutine for SNA Services/SOOO, snaread subroutine for SNA Services/SOOO.

select

select Subroutine for SNA Services/6000

Purpose

Syntax

Examines a file descriptor or message queue.

#include <sys/time.h>
#include <sys/select.h>

int select(nfdsmsgs, read/ist, write/ist, exceptfist, timeout)

ulong nfdsmsgs;

void * readlist;

void * writelist;

void *exceptlist;

struct timeval *timeout;

Description
The select subroutine examines a set of resource IDs (file descriptors) to determine how
many of the indicated resources:

• Are available for reading or receiving data

• Are available for writing or sending data (not supported by AIX SNA Services/6000)

• Have an outstanding exceptional condition.

Exceptional conditions include the status conditions listed in the gstat_str structure.

AIX SNA Services/6000 supports the select(data received) and select(exceptional
conditions) subroutines.

A time-out value is also provided to prevent the subroutine from waiting for a response for
too long a period of time.

Each of the operations (read, write or exception) is described with a structure of type
sellist that is defined in the lusr/include/sys/select.h file. This structure is defined as
follows:

struct sellist
{

}

long fdsmask[]i
long msgids[]i

The additional parameters have the following meanings:

fdsmask[1 Specifies an array of int values that are used as a continuous stream of
bits. Each long value contains 32 bits, so that the first array member
contains bits a through 31, the second array member contains bits 32
through 63, and so forth. The bit number plus one corresponds to the file
descriptor that the number represents (that is, bit 35 represents file
descriptor 36). The SELECT operation examines all file descriptors up to
the limit specified in the nfdsmsgs parameter for the condition
corresponding to this structure (read, write, or exception). When the

SNA 7-53

select

msgids[}

subroutine returns, it sets the bits in this structure that represent the file
descriptors that satisfied the examination to a value of 1. To disable
file-descriptor checking for an operation, set all members of this array to a
value of O.

Specifies an array of int values. Each long value is a message queue
identifier that specifies a message queue to be examined. The select
operation examines the message queues for each 10 up to the number of
IDs indicated by the limit specified in the nfds parameter for the condition
corresponding to this structure (read, write, or exception). When the
subroutine returns, it sets all members of this array whose queues do not
satisfy the examination to a value of OxFFFFFFFF.

Message queue checking is not supported by AIX SNA Services/6000 and should be
disabled by setting all members of this array to a value of OxFFFFFFFF. The value provided
in the nfdsmsgs parameter determines the size that must be given to the fdsmask[} and
msgids[} arrays.

The /usr/include/sys/select.h header file also defines two macros to help split the
nfdsmsgs parameter and the return value into their component halves:

NFDS(nfdsmsgs) Extracts the number of file descriptors.

NMSGS(nfdsmsgs) Extracts the number of message queues.

Parameters
nfdsmsgs A long integer that is evaluated in two halves, described as follows:

7-54

readlist

writelist

exceptlist

timeout

Low 16 bits

High 16 bits

Contain the number of file descriptor bits to use from the
mask value provided in the fdsmask[} array of the structure
of type sellist for each of the operations. If this value is
OxOOOO, no file-descriptor checking is performed.

Not supported by AIX SNA Services/6000 and should be
set to OxOOOO.

Points to a structure defined by the SELLlST() macro that specifies file
descriptors for examination to see if they are ready for reading or receiving
data.

Points to a structure defined by the SELLlST() macro that specifies file
descriptors for examination to see if they are ready for writing or sending
data. Do not use this structure with SNA Services.

Points to a structure defined by the SELLlST() macro that specifies file
descriptors for examination to see if they have an exception condition
pending.

Points to a structure of type timeval that indicates the maximum number of
seconds or microseconds to wait for the selection to complete. If this value
is 0, the operation waits indefinitely. For polling, this value should be
nonzero, pointing to a zero-valued structure.

Base Operating System Reference

select

Return Values
When the subroutine completes successfully, it returns an integer value. The integer is
evaluated in two halves:

Low 16 bits

High 16 bits

This half contains the total number of file descriptors that satisfied the
selection criteria (for all requested operations: read, write, and exception).

Not supported by SNA Services.

In addition, the SELECT operation modifies the sellist structures to indicate which file
descriptors were selected:

• Selected file descriptor bits are set to 1.

• Not selected file descriptor bits are set to O.

If the time limit runs out, the subroutine returns a value of O. If an error occurs, the ioctl
subroutine returns a value of -1. In either case, the subroutine sets the errno global variable
to indicate the error.

Error Codes

Files

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list.

EBADF

EINTR

One of the bit masks specified an invalid file descriptor.

A signal interrupted the subroutine before it found any of the selected
events, or the time limit ran out.

lusr/include/sys/times.h
Defines constants and structures used by the AIX operating system.

lusr/include/sys/select.h
Defines constants and structures used by the AIX operating system.

Related Information
The select subroutine.

SNA 7-55

select (Generic SNA)

select Subroutine for Generic SNA

Purpose

Syntax

Examines a set of file descriptors.

#include <sys/time.h>
#include <sys/select.h>

int select(nfdsmsgs, readlist, writelist, exceptlist, timeou~

ulong nfdsmsgs;

void * readlist,

void *writelist,

void *exceptlist,

struct timeval * timeout,

Description

7-56

The select subroutine examines a set of resource IDs (file descriptors) to determine how
many of the indicated resources:

• Are available for reading or receiving data

• Are available for writing or sending data (not supported by AIX SNA Services/6000)

• Have an outstanding exception condition.

The Generic SNA device driver supports the select (data received) and the select
(exception condition). The select (write available) condition will always be satisfied because
the Generic SNA device driver does not support the writelist parameter.

The select (exception condition) results from one of the following:

• INOP received from the PU Services of AIX SNA Services/6000.

• Hierarchical_Reset received from the PU Services of AIX SNA Services/6000.

After the select subroutine co~pletes successfully, the application may issue a read
subroutine to get the exception' condition (returned by the errno of the read subroutine).

A timeout value is also provided to prevent the operation from waiting for a long response
time. If the nfdsmsgs parameter is a value of 0, the select subroutine acts as a timer and
returns after the time period specified in the timeval structure.

The read, write, and exception events are described with an unnamed structure, which is
defined by a macro in the /usr/include/sys/select.h header file. This macro is defined as
follows:

#define SELLIST (F,M)

struct
{

} ;

int fdsmask[F);
int rnsgids [M] ;

Base Operating System Reference

select (Generic SNA)

The additional parameters have the following meanings:

fdsmask[F]

msgids[M]

Specifies an array of int values that is used as a continuous stream of bits.
Each long value contains 32 bits, so that the first array member contains
bits 0 through 31, the second array member contains bits 32 through 63,
etc. The bit number plus one corresponds to the file descriptor that it
represents (that is, bit 35 represents file descriptor 36). The SELECT
operation examines all file descriptors up to the limit specified in the
nfdsmsgs parameter for the condition corresponding to this structure (read,
write or exception). When the subroutine returns, it sets the bits in this
structure that represent the file descriptors that satisfied the examination to
a value of 1. To disable a file descriptor checking for an operation, set all
members of this array to a value of o.

Specifies an array of int values. Each long value is a message queue
identifier that specifies a message queue to be examined. The SELECT
operation examines the message queues for each 10 up to the number of
IDs indicated by the limit specified in the nfdsmsgs parameter for the
condition corresponding to this structure (read, write or exception). When
the subroutine returns, it sets all members of this array whose queues do
not satisfy the examination to a value of -1. To disable message queue
checking for an operation, set all members of this array to a value of -1.

Message queue checking is not supported by AIX SNA Services/6000 and should be
disabled by setting all members of this array to a value of OxFFFFFFFF. The value provided
in the nfdsmsgs parameter determines the size that must be given to the fdsmask[F] and
msgids[M] arrays.

The lusr/include/sys/select.h header file also defines two macros to help split nfdsmsgs
and the return value into their component halves:

NFDS(nfdsmsgs)
Extracts the number of file descriptors.

NMSGS(nfdsmsgs)

Parameters
nfdsmsgs

rea dlis t

writelist

Extracts the number of message queues.

A long integer that is evaluated in two halves, described as follows:

Low 16 bits

High 16 bits

Contains the number of file descriptor bits to use from the
mask value provided in the fdsmask[F] array of the structure
of type sellist for each of the operations. If this value is
OxOOOO, no file descriptor checking is performed.

Not supported by AIX SNA Services/6000 and should be
set to OxOOOO.

Points to a structure defined by the SELLlST() macro that specifies file
descriptors for examination to see if they are ready for reading or receiving
data.

Points to a structure defined by the SELLlST() macro that specifies file
descriptors for examination to see if they are ready for writing or sending
data. Do not use this structure with generic SNA device driver subroutines.

SNA 7-57

select (Generic SNA)

exceptlist

timeout

Points to a structure defined by the SELLlST() macro that specifies file
descriptors for examination to see if they have an exception condition
pending.

Points to a structure of type timeval that indicates the maximum number of
seconds or microseconds to wait for the selection to complete. If this value
is 0, the operation waits indefinitely. For polling, this value should be
non-zero, pointing to a zero-valued structure.

Return Values
When the subroutine completes successfully, it returns an integer value that is evaluated in
two halves, described as follows:

Low 16 bits

High 16 bits

Contains the total number of file descriptors that satisfy the selection
criteria (for all requested subroutines: read, write, and exception).

Contains the number of message queues that satisfy the selection criteria
(for all requested subroutines: read, write, and exception).

In addition, the SELECT operation modifies the sellist structures to indicate which file
descriptors and message queues are selected:

• Selected file descriptor bits are set to 1.

• Unselected file descriptor bits are set to O.

• Selected message queue IDs remain unchanged.

• Unselected message queue IDs are set to -1.

If the time limit runs out, the subroutine returns a value of O. If an error occurs, the ioctl
subroutine returns a value of -1. In either case, it sets errno to indicate the error.

Error Codes
The call sets errno to a value that indicates the cause of any errors that occur, as shown in
the following list:

EBADF

EINTR

EINVAL

EAGAIN

EFAULT

One of the bit masks specified an invalid file descriptor or message queue
index.

A signal interrupted the subroutine before it found any of the selected
events, or the time limit ran out.

A bad timeout value was given in the timeout parameter.

An internal storage allocation problem was detected.

A bad address value was passed in one of the parameters.

Related Information

7-58

The close Subroutine for Generic SNA, open Subroutine for Generic SNA, read Subroutine
for Generic SNA, write Subroutine for Generic SNA, ioctl Subroutine for Generic SNA.

Developing Special AIX SNA Services/6000 Functions in Communications Programming
Concepts.

Base Operating System Reference

snaclse

snaclse Subroutine

Purpose

Syntax

Closes a connection.

#include <Iuxsna.h>

int snaclse(cid)

int cid;

Description

Parameter

The snaclse subroutine closes a connection specified by its connection 10. Deallocate all
conversations on the connection before closing the connection (see the snadeal
subroutine). If the conversations are not deallocated, closing the connection causes an
abnormal end of the conversation.

cid Specifies the variable that contains the connection 10 returned by the
snaopen subroutine.

Return Values
When the subroutine completes successfully, it returns a value of O. If an error occurs, the
subroutine returns a value of -1 and sets the errno global variable to indicate the error.

Error Code

File

The subroutine sets the errno global variable to a value that indicates the cause of any
errors that occur. The values that this variable can receive are shown below. Error Code
Constants in Communications Programming Concepts contains a brief description of the
error values for AIX SNA Services/6000.

EBADF

lusr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The snaopen subroutine, snadeal subroutine.

SNA 7-59

snactl

snactl Subroutine

Purpose

Syntax

Controls data transfer between local and remote transaction programs.

#include <Iuxsna.h>

int snactl(cid, request, arg, c_type)

int cid;
int request;
int arg;
char c_type;

Description

CONFIRM

7-60

This subroutine provides control functions for transfer operations between a local and a
remote transaction program. The control function is specified by the request parameter, and
must be one of the integers (defined in the luxsna.h include file) explained in the following
paragraphs:

• ALLOCATE_LISTEN (LU 6.2 only)

• CONFIRM

• CONFIRMED

• CP _STATUS (LU 6.2 only)

• FLUSH

• GET_ATTRIBUTE (LU 6.2 only)

• GET_PARAMETERS (LU 6.2 only)

• GET_STATUS (LUs 1, 2, and 3 only)

• PREPARE_ TO_RECEIVE

• REQUEST_TO_SEND

• SEND_ERROR

• SEND_FMH (LU 1 only)

• SEND_STATUS (LUs 1,2, and 3 only).

The CONFIRM request asks the remote transaction program to tell whether the last
transmission was successfully received. The remote transaction program must respond with
one of two snactl requests: CONFIRMED or SEND_ERROR.

LU 6.2

The program may use the CONFIRM request for the following special cases:

• Directly following a snalloc function to determine if the allocation of the conversation was
successful before sending data

• Following transmission of data to the remote program to get an acknowledgment from the
remote program.

Base Operating System Reference

snactl

For LU 6.2, the arg parameter specifies a pointer to a structure of type confirm_str, which
contains additional input parameters for the request. Refer to the confirm_str structure for
field descriptions.

LUs 1, 2, and 3

LU 1 uses the CONFIRM request to get an acknowledgement for data that it sent to the
remote program. However, LUs 2 and 3 do not use this request for that purpose. The remote
program must handle error recovery for the local LU 2 or 3 program.

For LUs 1, 2, and 3, the arg parameter specifies a pointer to a structure of type confirm_str
which contains additional parameters for the request. Refer to the confirm_str structure for
field descriptions.

CONFIRMED

FLUSH

The CONFIRMED request is a response to the CONFIRM request indicating that the remote
site received the transmission without detecting any errors. This request cannot be used
except in response to a CONFIRM request.

This request can be used to create and send a positive response to the remote session to
indicate the successful receipt of a command.

For this request, the arg parameter specifies the resource 10.

CP _STATUS requests information about the capabilities of the control pOint at the remote
node. The request includes the resource 10, the rid parameter, returned from the
ALLOCATE request.

The remote node responds with its control point name and the session type, contention
winner CONWINNER or contention loser CONLOSER. The remote node also returns a list
of capabilities, each followed by a YES or NO, indicating whether the feature is supported.

For this request, the arg parameter is a pointer to a structure of type cp_status. This
structure contains the parameters that are sent and the parameters that are returned. Refer
to the cp_str structure for field descriptions.

The FLUSH request sends any information in the local LU send buffer to the remote LU.
This function can be used on a basic conversation only. The LU normally buffers the data
from snawrit functions until it has enough data to transmit. Using this request the local
program forces the local LU to transmit the data in the buffer. The local program can use this
request to decrease the delay required to get the data to the remote system.

The arg parameter for this request is a pointer to a structure of type flush_str, which
contains the input and output parameters for the request. Refer to the flush_str structure for
field descriptions.

GET_ATTRIBUTE
The GET_ATTRIBUTE request gets information about the specified LU 6.2 conversation.

The arg parameter for this request is a pointer to a structure of type aUr_str, which contains
the input parameter rid and receives the output information from the request. Refer to the
aUr_str structure for field descriptions.

SNA 7-61

snactl

GET_STATUS
The GET_STATUS request gets information about the current link and session, as well as
information from the BIND request for the LU-LU session. This information is used for LUs
1, 2, and 3 only.

The arg parameter for this request is a pointer to a structure of type gstat_str, which
contains the the output status information from the request. Refer to the gstat_str structure
for field descriptions.

PREPARE_TO _ RECEIVE
The PREPARE_ TO_RECEIVE request notifies the remote LU that the local LU needs to
change the conversation direction so that the local LU can begin receiving from the remote
LU.

The arg parameter for this request is a pointer to a structure of type prep_str, which
contains the input and output parameters for the request. Refer to the prep_str structure for
field descriptions.

REQUEST_TO_SEND
The REQUEST _TO_SEND request notifies the remote LU that the local LU needs to change
the conversation direction so that the local LU can begin sending to the remote LU. The local
program uses a readx subroutine to get the send indication from the remote program (in the
what_control_rcvd field). When the local program receives this indication from the
remote program, it enters the send state.

For this request, the arg parameter specifies the resource ID.

SEND_ERROR

7-62

The SEND_ERROR request informs the remote transaction program that the local
transaction program has detected an error in the information that it received from the remote
program.

The arg parameter for this request is a pointer to a structure of type erro_str, which contains
the input parameters for the request. Refer to the erro_str structure for field descriptions.

LU 6.2

When this request is issued in send state, the LU:

1. Flushes the local send buffer.

2. Creates and sends an FMH7 request.

When the FMH7 request is issued in receive state, the LU:

1. Generates a negative response.

2. Purges all incoming data.

3. Waits for a send indication to arrive from the remote program.

4. Creates an FMH7 request and sends it.

5. Enters send state to send the error message.

Base Operating System Reference

SEND_FMH

snactl

LUs 1, 2, and 3

When the FMH7 request is issued in send state, the LU:

1. Flushes the send buffer.

2. Sends a CANCEL request to the remote session.

When this request is issued in receive state, the LU:

1. Generates a negative response, using the sense_code parameter specified in the
erro_str structure.

2. Purges all incoming data to the end of chain.

The SEND_FMH request sends the FM header to the remote LU. Since the SEND_FMH
request is used only by LU 1 support, it must be used on a basic conversation.

The arg parameter for this request is a pointer to a structure of type fmh_str, which contains
the input parameters for the request. Refer to the fmh_str structure for field descriptions.

The application program must build the complete FM header to be sent. If more than one FM
header is to be sent, the application must build all FM headers with the concatenation bit set
within a contiguous area. The application program must also enforce concatenation and
chaining rules.

SEND_STATUS
The SEND_STATUS request sends status information about the devices on the local
session (LUs 1, 2, and 3, only) to the host program. This request can be used on a basic
conversation only. When issued in send state, an LUSTAT is sent to the remote session,
using the 10 to indicate which device the LUSTAT is for. This request is used for LU1 LU-LU
sessions only.

The arg parameter for this request is a pointer to a structure of type stat_str, which contains
the input parameters for the status request. Refer to the stat_str structure for field
descriptions.

Parameters
cid

request

arg

Specifies the variable that contains the connection 10 returned by the
snaopen subroutine.

Specifies the function to be performed as defined in the luxsna.h include
file.

Specifies the variable that contains one of the following (varies with the
function performed as specified in the request parameter):

• The resource 10 returned by the snalloc subroutine.

• A pointer to a structure that contains additional input parameters for the
requested function.

Specifies a character constant that indicates the conversation type:

'B' The request is performed on a basic conversation.

'M' The request is performed on a mapped conversation.

SNA 7-63

snactl

Return Values
When the subroutine completes successfully, it returns a non-negative integer that is equal
to a for most requests. However, when the CONFIRM and SEND_ERROR requests
complete successfully, they return one of the following values:

o Successful completion, but did not receive a request to send.

1 Successful completion and received a request to send from the remote
transaction program.

Additional information, if any, is stored in the structures provided by the specific request. If
an error occurs, the subroutine returns a value of -1 and sets the errno global variable to
indicate the error.

Error Codes

7-64

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive vary with the requested function as
shown in the following table. Error Code Constants in Communications Programming
Concepts contains a brief description of the following error valUes for AIX SNA
Services/6000.

Base Operating System Reference

snactl

ERR NO VALUE GET STATUS - - PEEP RECVUS - -
GET_ATTR- r- CP STATUS

FLUSH - r--SEND_ERROR
CONFIRMED- r- SEND_STATUS

CONFIRM l r- SEND_FMH
I RTS

REQUEST TYPE I
~--------------~~~~~~~~~~~~~~~~

EBADF • • • • • • • • • • •
EINTR • ••
EINVAL • •• •• •••
ENOMEM • • •• •

ENXIO
SNA ALFN
SNA-ALFR
SNA=BOUNDARY

SNA CTYPE
SNA-DEAL
SNA -DEALPGM
SNA=EXCEED

SNA INVACC
SNA-NFMH
SNA-MAPEXEC
SNA=MAP _NOTFN D

SNA NMAP
SNA-NOCONN
SNA-NOTPN
SNA=NPIP

SNA NREC
SNA -NRMDEAL
SNA-NRREC
SNA=NSES

SNA NSYC
SNA-PGMDEAL
SNA-PGMPURGE
SNA=PNREC

SNA PNSYC
SNA-PNTR
SNA-PPURG
SNA=PROTOCOL

SNA PTR
SNA-RFN
SNA-RFR
SNA=RREC

SNA SHUT
SNA-SNTR
SNA-SPURG
SNA=STATE

SNA SVCDEAL
SNA -TIM DEAL
SNA-WRGPIP
SNA=NOTCP

• • •
•

• • • •
• •• • • •
• • • • • • •
• • •
•
• • • • •
• • • •
• •

•
' ...
• • •

• • •
•

•

• • •
• • • •
• •
•
• • • •
• • • •
• • • •

• • • • •
•

•

• • • • •

• • • •
• • • • • •••
• • •
•
• • •

• •

• •
• • •• • •• •
• •

• •
• •••

• • • • • • •
Figure 1. The snactl Subroutine Error Returns

SNA 7-65

snactl

File
/usr/include/luxsna.h

Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information

7-66

Node Verification in Defining LU Type 6.2 Connection Characteristics in Communication
Concepts and Procedures.

The snaopen subroutine, snalloc subroutine.

Base Operating System Reference

snadeal

snadeal Subroutine

Purpose

Syntax

Deallocates the specified conversation from the transaction program.

#include <Iuxsna.h>

int snadeal(cid, ptr, c_type)
int cid;
struct deal_str *ptr,
char c_type;

Description
The snadeal subroutine removes the allocation of the specified conversation from the local
transaction program. Information about the deallocation is supplied in the structure of type
deal_str pointed to by the ptr parameter. Refer to the deal_str structure for field
descriptions.

LU 6.2

The snadeal subroutine ends the conversation but not the session. The LU resource
manager determines whether to keep or end the session.

Although a deallocation with a type field of local occurs in the general SNA specifications,
do not use that type with AIX SNA Services/6000. The SNA device driver performs the local
deallocation function when the device driver receives a deallocate request from the remote
transaction program. The device driver then sets the what_control_rcvd field in the
read_out structure to indicate the type of deallocation the device driver received from the
remote program. See the snaread subroutine for an explanation of the read_out structure.

LUs 1, 2, and 3

Do not use the snadeal subroutine with an LU-LU session for either LUs 2 or 3. If used with
these sessions, the subroutine returns with an SNA_STATE error. Using snadeal with an
LU-LU session for LU 1 ends a bracket.

Use the confirm_deallocate and normal_deallocate parameters only on an LU-LU
session to indicate the end of a bracket.

Do not use the following parameters:

• confirm deallocate retain - -

• normal deallocate retain - -

• confirm_deallocate on an SSCP-LU session

• normal_deallocate on an SSCP-LU session.

To deallocate an LU-LU session that has a corresponding SSCP-LU session, use the
snadeal subroutine to deallocate the SSCP-LU session. When the local transaction
program issues a snadeal routine with type set to B' a 10' (flush) for the SSCP-LU
session, the local LU issues an RSHUTD to request an UNBIND negotiation to terminate the
LU-LU session. The local LU rejects all data from the host on the LU-LU session until it

SNA 7-67

snadeal

receives the UNBIND request. The local LU rejects all data from the host on the SSCP-LU
session until that session is allocated to another application program.

The host can issue an UNBIND request at other times to end the LU-LU session. When the
UNBIND request occurs, the local program using the LU-LU session receives a return code
of SNA_NSES that notifies this program of the session end. If the application uses a
GET_STATUS request of the snactl subroutine, the returned status indicates that the
session is not active.

The local LU cannot issue a DACTLU request to end the SSCP-LU session. Therefore, the
session remains active until the host ends it with a DACTLU, DACTPU or ACTPU request. In
this case, the snadeal subroutine used on the SSCP-LU session removes the connection to
the local program, but does not remove the SSCP-LU session itself.

When used on an LU 1 LU-LU session, the snadeal subroutine ends a bracket.

Parameters
cid Specifies the variable that contains the connection 10 returned by the

snaopen subroutine.

ptr Specifies a pointer to a structure that contains additional input parameters.

Specifies a character constant that indicates the conversation type:

'B' The request is performed on a basic conversation.

'M' The request is performed on a mapped conversation.

Return Values
When the subroutine completes successfully, it returns a value of O. If an error occurs, the
subroutine returns a value of -1 and sets the errno global variable to indicate the error.

Error Codes

7--68

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the error values for AIX SNA Services/6000.

EBADF SNA_MAP SNA_PPURG

EINTR SNA_NOCONN SNA_PROTOCOL

EINVAL SNA_NOTPN SNA_PTR

ENOMEM SNA_NPIP SNA_RFN

SNA_ALFN SNA_NREC SNA_RFR

SNA_ALFR SNA_NRMDEAL SNA_RREC

SNA_BOUNDARY SNA_NRREC SNA_SNTR

SNA_CTYPE SNA_NSYC SNA_SPURG

SNA_INVACC SNA_PGMDEAL SNA_STATE

SNA_MAPEXEC SNA_PNREC SNA_SVCDEAL

Base Operating System Reference

File

SNA_MAP _NOTFND

SNA_NFMH

/usr/include/luxsna.h

SNA_PNSYC

SNA_PNTR

SNA_ TIM DEAL

SNA_WRGPIP

snadeal

Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The snactl subroutine, snaopen subroutine, snalloc subroutine.

SNA 7-69

snalloc

snalloc Subroutine

Purpose

Syntax

Creates a session and conversation between two transaction programs.

#include <Iuxsna.h>

long snalloc(cid, a/lo_ptr, c_type)
int cid;
struct allo_str * allo_ptr;
char c_type;

Description

7-70

The snalloc subroutine allocates a session between the local LU and a remote LU. Then it
allocates a conversation between the local transaction program and a remote transaction
program using the allocated session. The subroutine returns a resource 10 to identify the
conversation. Use this subroutine before using any other subroutine that refers to the
conversation.

The alloytr parameter is a pointer to a structure of type allo_str, which contains additional
information for the subroutine. This structure contains a pointer to an additional structure
pip_str. Refer to the allo_str and pip_str structures for field descriptions.

LU 6.2

When this subroutine completes successfully, the local transaction program (the one that
used this subroutine) is in the send state and the remote transaction program is in the
receive state.

If two LUs that are connected by a session try to allocate a conversation on that session at
the same time, one of the LUs is successful and the other is not. Which LU is successful is
determined by the BIND negotiation that occurred when the session was established.

For two programs to reconnect to each other, the following events must occur:

1. One program uses the snadeal subroutine with the deal_flag parameter set to retain
to deallocate the conversation.

2. The program initiating the reconnection uses the snalloc subroutine with the type
parameter set to reconnect. This action sends a reconnection request to the remote LU.

3. The remote program completes the reconnection when it uses the snaread subroutine to
receive information.

LUs 1, 2, and 3

When this subroutine completes successfully, the appropriate session (SSCP-LU or LU-LU)
is established and both LUs are in HOX contention state. The SSCP-LU session must be
active and allocated before allocating the LU-LU session. Trying to allocate the LU-LU
session before the SSCP-LU session results in a SNA_STATE error return from the snalloc
subroutine.

If an application program tries to allocate an SSCP-LU session and the ACTLU request has
not yet been received, the subroutine returns the SNA_NSES error code (session not active)

Base Operating System Reference

snalloc

and does not allocate a session. If the application program then uses the GET_STATUS
request of the snactl subroutine, the returned status shows that the SSCP-LU session is
inactive.

If an application program tries to allocate an LU-LU session, but the BIND request for that
session has not yet been received, the result depends upon whether the LU names for both
LUs of the requested session are specified in the connection profile:

• LU Names Specified: The local LU sends an INIT_SELF request on the SSCP-LU
session to request the needed BIND negotiation. When the LU receives and accepts the
BIND request, it then completes the requested allocation of the LU-LU session.

• LU Names Not Specified: The LU-LU session cannot be allocated. The subroutine
returns the SNA_NSES error code to indicate that the session is not active.

If the host bid for the session, the snalloc subroutine rejects the bid. See the ALLOCATE
section of the ioctl subroutine for more information.

Parameters
cid

a lIo-p tr

Return Values

Specifies the variable that contains the connection 10 returned by the
snaopen subroutine.

Specifies a pointer to the structure that contains additional input parameters
for the subroutine. If you do not provide this information, the subroutine uses
the values contained in the remote transaction profile specified in the
snaopen subroutine. If no remote transaction profile is specified in the
snaopen subroutine, the first remote transaction profile in the connection
profile associated with the snaopen subroutine is used.

Specifies a character constant that indicates the conversation type:

'B'

'M'

The request is performed on a basic conversation. When
the type field of the allo_str structure is B' 11' (see
type), this parameter indicates that a basic conversation is
to be reconnected.

The request is performed on a mapped conversation. When
the type field of the allo_str structure is B' 11' (see
type), this parameter indicates that a mapped conversation
is to be reconnected.

When the subroutine completes successfully, it returns a positive integer that indicates the
resource 10 for the conversation. If an error occurs, the subroutine returns a value of -1 and
sets the errno global variable to indicate the error.

SNA 7-71

snalloc

Error Codes

File

The subroutine sets the errno global variable to a value that indicates the cause of any
errors that occur. The values that this variable can receive are shown in the following list.
Error Code Constants in Communications Programming Concepts contains a brief
description of the error values for AIX SNA Services/6000.

EBADF SNA_LUNSVC SNA_NRESTART

EINTR SNA_NIMMED SNA_NSVC

ENOMEM SNA_NOCONN SNA_PROTOCOL

SNA_ALFN SNA_NOMODE SNA_RFN

SNA_ALFR SNA_NOTPN SNA_RFR

SNA_LUNREC SNA_NREC SNA_STATE

lusr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The snadeal subroutine, snaopen subroutine, and snaread subroutine.

7-72 Base Operating System Reference

snaopen

snaopen Subroutine

Purpose

Syntax

Opens an SNA connection.

#include <Iuxsna.h>

int snaopen(resource)
char * resource;

Description
The snaopen subroutine initializes a connection to a resource described in a specified
connection profile. You must use the snaopen subroutine before using any other SNA
subroutine for a particular connection.

Parameters
The resource parameter consists of:

cpn

tpn

Return Values

Specifies the connection profile name of the resource to be opened.

Specifies the remote transaction profile name to be used in place of the
remote transaction profile name found in the connection profile. The tpn
parameter is optional. If you do not specify this parameter, the snaopen
subroutine uses the remote transaction profile name found in the connection
profile. If you specify this parameter, separate it from the connection profile
name with a / (slash). Remote transaction profiles are used in LU 6.2 only.
Do not supply this parameter for LUs 1 , 2, or 3.

When the subroutine completes successfully, it returns a positive integer that specifies the
connection 10 (cid) for the connection. If an error occurs, the subroutine returns a value of-1
and sets the errno global variable to indicate the error.

Error Codes
The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the error values for AIX SNA Services/6000.

EEXIST

EINVAL

ENOENT

ENOMEM

ENOTDIR

ENXIO

EACCES

EISDIR

EROFS

EM FILE

ETXTBSY

EFAULT

SNA 7-73

snaopen

File
/usr/include/luxsna.h

Defines constants and structures used by AIX SNA Services/SOOO
subroutines.

Related Information
The snaclse subroutine.

7-74 Base Operating System Reference

snaread

snaread Subroutine

Purpose

Syntax

Receives information from a specified conversation.

#include <Iuxsna.h>

int snaread (cid, data, length, rid, fill, outpuLptr, c_type)

int cid;

char * data;

int length;

int rid;

int fill;

struct read_out *outpuLptr,

char c_type;

Description
The snaread subroutine waits for information to arrive on the specified conversation and
then receives the information. If information is already available, the program receives it
without waiting. The information can be data, conversation status, or a request for
confirmation.

The program uses this subroutine when in the send state, causing the following actions to
occur:

1. The LU flushes its send buffer, sending all buffered information and the send indication to
the remote program,

2. The local program enters the receive state and waits for information from the remote
program.

When trying to read from a conversation that has no data available, the state of the
O_NDELAY flag (see the open or fcnt! subroutine) determines what happens to the read
operation:

set The read returns a value of 0 and sets the what_data_rcvd field (in the
ext_io_str structure) to indicate whether the received data was complete.

clear The read is blocked until data becomes available.

To perform a read_any function, the O_NDELAY flag must be set on.

LUs 1, 2, and 3

Use only the buf fer value for the fill option.

Parameters
cid

data

Specifies the variable that contains the connection 10 returned by the
snaopen subroutine.

Specifies a pointer to the buffer area into which the data will be read.

SNA 7-75

snaread

length

rid

outpuLptr

Specifies the variable that contains a value indicating the maximum number
of bytes of data to be received. This value cannot be larger than 32,764
(32K - 4) bytes.

Specifies the variable that contains the resource 10 returned by the snalloc
subroutine that allocated the resource to be read. If you do not specify a
value for the rid parameter(a null value), the subroutine performs a
read_any operation. It reads the first resource that is allocated to the
program and that has data to be read.

Specifies a pointer to a structure of type read_out, which contains space for
the output parameters from this subroutine.

Specifies a character constant that indicates the conversation type:

'B' The request is performed on a basic conversation.

'M' The request is performed on a mapped conversation.

fill Specifies whether the program receives data in terms of the logical record
format of the data. If you do not specify one of the two following values, the
program uses a value of buffer. Always use a value of buffer for LUs 1, 2,
and 3.

buffer (0) Specifies that the program receives data without regard to the logical record
format of the data.

11 (1) Specifies that the program receives one complete logical record or a logical
record that has been truncated to the length specified in the length
parameter of this subroutine. This value is used for LU 6.2 basic
conversations only.

The outpuLptr parameter for this request is a pointer to a structure of type read_out, which
receives the information produced by this subroutine. Refer to the read_out structure for
field descriptions.

Return Values

7-76

When the subroutine completes successfully, it returns a positive integer that indicates the
number of bytes received and places received data in the user buffer pointed to by the data
parameter. Additional information is stored in the read_out structure. If an error occurs, the
subroutine returns a value of -1 and sets the errno global variable to indicate the error.

If an interrupt occurs while the subroutine is processing, it returns the number of bytes that
have already been transferred to the user buffer. If no data has been moved when the
interrupt occurs, it returns a value of -1 and sets the errno global variable to EINTR.

Base Operating System Reference

snaread

Error Codes

File

The subroutine sets the errno global variable to a value that indicates the cause of any
errors that occur. The values that this variable can receive are shown in the following list.
Error Code Constants in Communications Programming Concepts contains a brief
description of the error values for AIX SNA Services/6000.

EBADF SNA_NMAP SNA_PPURG

EINTR SNA_NOCONN SNA_PROTOCOL

EINVAL SNA_NOTPN SNA_PTR

ENOMEM SNA_NPIP SNA_RFN

SNA_ALFN SNA_NREC SNA_RFR

SNA_ALFR SNA_NRMDEAL SNA_RREC

SNA_BOUNDARY SNA_NRREC SNA_SNTR

SNA_CTYPE SNA_NSES SNA_SPURG

SNA_EC SNA_NSYC SNA_STATE

SNA_INVACC SNA_PGMDEAL SNA_SVCDEAL

SNA_NFMH SNA_PNREC SNA_TIMDEAL

SNA_MAPEXEC SNA_PNSYC SNA_WRGPIP

SNA_PNTR SNA_MAP _NOTFND

/usr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The snactl subroutine, snadeal subroutine, snaopen subroutine, snalloc subroutine.

SNA 7-77

snawrit

snawrit Subroutine

Purpose

Syntax

Sends data to the remote transaction program.

#include <Iuxsna.h>

int snawrit (cid, data, length, rid, write_ptr, c_type)

int cid;

char *data;

int length;

long rid;

struct write_out *write_ptr;

char c_type;

Description

7-78

The snawrit subroutine sends data to the remote transaction program. The local LU buffers
all data to be transmitted until the buffers contain enough data to make a transmission block,
or until the local transaction program forces the LU to transmit the data (see the snactl and
snaread subroutines).

Mapped Conversations

For mapped conversations, the data to be sent consists of data records that contain only
data and no record length parameter. The length parameter of the snawrit subroutine
defines the length of the data record. In addition, each snawrit subroutine can send up to
32,764 (32K - 4) bytes of data. Use several snawrit subroutines to send blocks of data that
are longer than this limit.

Basic Conversations for LU 6.2

The data to be sent consists of logical records with a length that is determined by the local
application program data format. The length is independent from the length parameter of this
subroutine. A complete logical record contains the 2-byte 11 field plus all bytes of a logical
record from the local application program. The 11 field contains the length of the complete
logical record (the 11 field plus the logical record). Transmission of a logical record is not
complete until the last byte of logical record is sent. Each snawrit subroutine can send up to
32,764 (32K - 4) bytes of data.

The local program must finish sending a logical record before using any of the following
subroutines:

• snactl with a CONFIRM request

• snactl with a PREPARE_TO_RECEIVE request

• snaread

• snadeal using a type field that is not B ' 010' (indicating an abnormal end).

Using any of these subroutines before the logical record transmission is complete, results in
a bad return code from the subroutine.

Base Operating System Reference

snawrit

Basic Conversations for LUs 1, 2 and 3

The data to be sent consists of chain elements with a length that is determined by the
maximum request/response unit size specified in the BIND or ACTLU image.

Parameters
cid

data

length

rid

Return Values

Specifies the variable that contains the connection 10 returned by the
snaopen subroutine.

Specifies a pointer to the buffer area from which the data will be sent.

Specifies the variable that contains a value indicating the number of bytes of
data to be sent. This value cannot be larger than 32,764 bytes (32K bytes
minus 4 bytes).

Specifies the variable that contains the resource 10 returned by the snalloc
subroutine.

Specifies a pointer to the write_out structure.

Specifies a character constant that indicates the conversation type:

'B' The request is performed on a basic conversation.

'M' The request is performed on a mapped conversation.

When the subroutine completes successfully, it returns a positive integer that indicates the
number of bytes sent. If an error occurs, the subroutine returns a value of -1 and sets the
errno global variable to indicate the error.

If an interrupt occurs while the subroutine is processing, it returns the number of bytes that
have already been transferred to the network. If no data has been transferred when the
interrupt occurs, it returns a value of -1 and sets the errno global variable to EINTR.

Error Codes
The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the error values for AIX SNA Services/6000.

EBADF SNA_NPIP SNA_PROTOCOL

EINTR SNA_NREC SNA_PTR

EINVAL SNA_NRESTART SNA_RFN

ENOMEM SNA_NRMDEAL SNA_RFR

SNA_ALFN SNA_NRREC SNA_RREC

SNA_ALFR SNA_NSES SNA_SHUT

SNA_CTVPE SNA_NSVC SNA_SNTR

SNA_INVACC SNA_PGMDEAL SNA_SPURG

SNA 7-79

snawrit

File

SNA_NIMMED

SNA_NOCONN

SNA_NOM,ODE

SNA_NOTPN

LUs 1, 2, and 3

SNA_PNREC

SNA_PNSYC

SNA_PNTR

·SNA_PPURG

SNA_STATE

SNA_SVCDEAL

SNA_TIMDEAL

SNA_WRGPIP

An errno value of SNA_SHUT indicates that a shutdown request had been received. The
snawrit subroutine failed because the transmission requires a new bracket and new
brackets are not allowed when shutdown is active. This value occurs during an LU-LU
session only.

/usr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The snactl subroutine, snadeal subroutine, snalloc subroutine, snaopen subroutine,
snaread subroutine.

7-80 Base Operating System Reference

write

write Subroutine for SNA Services/6000

Purpose

Syntax

Sends data to the remote transaction program.

#include <Iuxsna.h>

int write(fi/des, data, length)
int fildes;
char *data;
int length;

Description
Note: Use this subroutine for LU 6.2 applications that use the limited interface only.

The write subroutine sends data to the remote transaction program. The local LU buffers all
data to be transmitted until the buffers contain enough data to make a transmission block or
until the local transaction program forces the LU to transmit the data (see the i"octl(FLUSH)
subroutine). The write subroutine uses the first conversation if multiple conversations are
active.

Data sent by the write subroutine consists of logical records. The length of the logical
records is not determined by the length parameter of this subroutine. A complete logical
record contains the 2-byte 11 (logical length) field plus all bytes of a logical record from the
local application program. The 11 field contains the length of the complete logical record (11
field plus the logical record). Transmission of a logical record is not complete until the last
byte of the logical record is sent.

The local program must finish sending a logical record before using any of the following
subroutines:

• read

• ioctl with any of the following:

- CONFIRM request

- PREPARE_ TO_RECEIVE request

- DEALLOCATE request using a type field that is not B ' 010' (indicating an abnormal
end).

Using any of these routines before the transmission is complete results in a return code from
the routine that indicates that the local program has not finished sending a logical record.

Parameters
tildes

data

length

Specifies the file descriptor returned by the open subroutine.

Specifies a pOinter to the buffer area from which the data will be sent.

Specifies the variable that contains a value indicating the number of bytes of
data to be sent.

SNA 7-81

write

Return Values
When the subroutine completes successfully, it returns a positive integer that indicates the
number of bytes sent. If an error occurs, the routine returns a value of -1 and sets the errno
global variable to indicate the error.

If the subroutine is interrupted by a signal, it returns the number of bytes that have already
been transferred to the network. If no data has been moved when the interrupt occurs, it
returns a value of -1 and sets the errno global variable to EINTR.

Error Codes

File

The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the error values for AIX SNA Services/6000.

EBADF SNA_NPIP SNA_PROTOCOL

EINTR SNA_NREC SNA_PTR

EINVAL SNA_NRESTART SNA_RFN

ENOMEM SNA_NRMDEAL SNA_RFR

SNA_ALFN SNA_NRREC SNA_RREC

SNA_ALFR SNA_NSES SNA_SHUT

SNA_BOUNDARY SNA_NSYC SNA_SNTR

SNA_CTYPE SNA_PGMDEAL SNA_SPURG

SNA_INVACC SNA_PNREC SNA_STATE

SNA_NIMMED SNA_PNSYC SNA_SVCDEAL

SNA_NOCONN SNA_PNTR SNA_TIMDEAL

SNA_NOMODE SNA_PPURG SNA_WRGPIP

SNA_NOTPN

/usr/include/luxsna.h
Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information
The write subroutine.

The ioctl subroutine for SNA Services/6000, open subroutine for SNA Services/6000, read
subroutine for SNA Services/6000.

7-82 Base Operating System Reference

write (Generic SNA)

write Subroutine for Generic SNA

Purpose

Syntax

Sends data to a file descriptor.

#include <Iuxgsna.h>

int write (fildes, data, length)

int writex (fildes, data, length, ext)

int fildes;

char *data;

int length;

int ext,

Description
The write subroutine sends normal sequenced data, exchange ID (XID) data, network data,
or datagram data to a file descriptor. A write subroutine can be issued for normal data when
the open subroutine has completed successfully.

Parameters
fildes

data

length

ext

Return Values

Specifies the file descriptor returned by the open subroutine.

Specifies a pointer to the buffer area from which the data is sent.

Specifies the number of bytes of data to be sent.

Ignored by generic SNA.

Upon successful completion, the write subroutine returns a non-negative integer that
indicates the number of bytes sent. If an error occurs, it returns a value of -1 and sets errno
to indicate the error.

Error Codes
The call sets errno to a value which indicates the cause of any errors that occur, as shown
in the follqwing list:

EBADF

ENOMEM

EFAULT

EINTR

EINVAL

SNA_HIER_RESET

An invalid file descriptor was specified.

No write buffer available.

An invalid address was specified.

The write subroutine was interrupted.

An invalid parameter was passed.

Hierarchical Reset was received from AIX SNA
Services/GOOO.

SNA 7-83

write (Generic SNA)

SNA_INOP

SNA_FAIL

Related Information

An INOP was received from AIX SNA Services/SOOO.

SNA system failure. SNA is not currently running.

The close Subroutine for Generic SNA, open Subroutine for Generic SNA, read Subroutine
for Generic SNA, ioctl Subroutine for Generic SNA, select Subroutine for Generic SNA.

Developing Special AIX SNA Services/SOOO Function in Communications Programming
Concepts.

7-84 Base Operating System Reference

writex

writex Subroutine for SNA Services/6000

Purpose

Syntax

Sends data to the remote transaction program.

#include <Iuxsna.h>

int writex (fildes, data, length, ext)

int fi/des;
char *data;
int length;
struct ext_io_str *ext;

Description
Note: Do not use this subroutine for programs that use the limited interface.

The writex subroutine sends data to the remote transaction program. The local LU buffers
all data to be transmitted until the buffers contain enough data to make a transmission, or
until the local transaction program forces the LU to transmit the data (see the ioctl
subroutine).

The ext parameter points to a structure that contains additional input and output parameters
for the writex subroutine. This same structure is used for the readx subroutine. This
structure is defined in the luxsna.h include file. Refer to the ext_io_str structure for a
description of the fields in this structure. The writex subroutine uses only the following fields:

• priority

• confirm

• deallocate

• deallo_type

• deallo_flag

• allocate

• rid

• usrhdr len

SNA 7-85

writex

User Header Field

LU 6.2

In addition to the data provided in the extended 1/0 structure ext_io_str, a program can
supply header information about the data being sent. To do this, the program must:

1. Define the length of the header information in the usrhdr_len field of the ext_io_str
structure.

2. Reserve consecutive space following the extended 1/0 structure (ext_io_slr) for the
header information.

3. Store the header information in the contiguous space following the ext_io_slr structure.

4. Pass the extended 1/0 structure pointer (the ext parameter) in a writex subroutine.

Data sent to the remote transaction program consists of logical records. The length of the
logical records is not determined by the length parameter of this subroutine. A complete
logical record contains the 2-byte 11 (logical length) field plus all bytes of a logical record
from the local application program. The 11 field contains the length of the complete logical
record (11 field plus the logical record). Transmission of a logical record is not complete untii
the last byte of the logical record is sent.

The local program must finish sending a logical record before using any of the following
subroutines:

• read

• ioctl with any of the following:

- CONFIRM request

- PREPARE_ TO_RECEIVE request

- DEALLOCATE request, using a type field that is not B&ssq.01 O&ssq. (indicating an
abnormal end).

Using any of these routines before the transmission is complete results in a bad return code
from the routine that indicates that the local program has not finished sending a logical
record.

LUs 1, 2, and 3
The data to be sent consists of chain elements whose length is determined by the maximum
request/response unit size specified in the BIND or ACTLU request.

If an error (negative response) occurs during the write, the subroutine sets the errno global
variable to SNA_PPURG and sets the sense_code field to indicate the sense data received
in the negative response.

If the host bids for a session, a writex subroutine with the allocate bit on rejects the host bid
and any data associated with the bid. For additional information, refer to the ALLOCATE
section of the ioctl and readx subroutines.

Parameters

7--86

tildes Specifies the variable that contains the file descriptor returned by the open
subroutine.

data Specifies a pointer to the buffer area from which the data will be sent.

Base Operating System Reference

length

ext

Return Values

writex

Specifies the variable that contains a value indicating the number of bytes of
data to be sent.

Specifies a pOinter to an extended I/O structure of type ext_io_str. The
ext_io_str structure allows the user to combine functions into one routine.
You can use the writex(ALLOCATE and DEALLOCATE) functions on one
routine. This structure type is defined in the luxsna.h include file. See the
ext_io_str structure.

When the subroutine completes successfully, it returns a positive integer that indicates the
number of bytes sent. If an error occurs, the routine returns a value of -1 and sets the errno
global variable to indicate the error.

If an interrupt occurs while the subroutine is processing, it returns the number of bytes that
have already been transferred to the network. If no data has been moved when the interrupt
occurs, it returns a value of -1 and sets the errno global variable to EINTR.

Error Codes
The subroutine sets the errno global variable to a value to indicate the cause of any errors
that occur. The values that this variable can receive are shown in the following list. Error
Code Constants in Communications Programming Concepts contains a brief description of
the error values for AIX SNA Services/6000.

EBADF SNA_NPIP SNA_PROTOCOL

EINTR SNA_NREC SNA_PTR

EINVAL SNA_NRESTART SNA_RFN

ENOMEM SNA_NRMDEAL SNA_RFR

SNA_ALFN SNA_NRREC SNA_RREC

SNA_ALFR SNA_NSES SNA_SHUT

SNA_BOUNDARY SNA_NSVC SNA_SNTR

SNA_CTYPE SNA_PGMDEAL SNA_SPURG

SNA_INVACC SNA_PNREC SNA_STATE

SNA_NIMMED SNA_PNSVC SNA_SVCDEAL

SNA_NOCONN SNA_PNTR SNA_ TIMDEAL

SNA_NOMODE SNA_PPURG SNA_WRGPIP

SNA_NOTPN

SNA 7-87

writex

File
/usr/include/luxsna.h

Defines constants and structures used by AIX SNA Services/6000
subroutines.

Related Information

7-88

The writex subroutine.

The readx subroutine for SNA Services/6000, ioctl subroutine for SNA Services/6000, open
subroutine for SNA Services/6000, snawrit subroutine for SNA Services/6000.

Base Operating System Reference

Sockets

Base Operating System Runtime 8-1

8-2 Base Operating System Reference

accept

accept Subroutine

Purpose

Syntax

Accepts a connection on a socket to create a new socket.

#include <sys/types.h>

#include <sys/socket.h>

int accept (Socket, Address, AddressLength)
int Socket;
struct sockaddr * Address;
int * AddressLength;

Description
The accept subroutine extracts the first connection on the queue of pending connections,
creates a new socket with the same properties as the specified socket, and allocates a new
file descriptor for that socket.

If the listen queue is empty of connection requests, the accept subroutine:

• Blocks a calling socket of the blocking type until a connection is present.
• Returns an EWOULDBLOCK for sockets marked nonblocking.

The accepted socket cannot itself accept more connections. The original socket remains
open and can accept more connections.

Parameters
Socket

Address

Specifies a socket created with the socket subroutine, bound to an address
with the bind subroutine, and that has issued a successful call to the listen
subroutine.

Specifies a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The exact format
of Address is determined by the domain in which the communication occurs.

AddressLength Specifies a parameter that initially contains the amount of space pointed to
by the Address parameter. Upon return, the parameter contains the actual
length (in bytes) of the address returned. The accept subroutine is used
with SOCK_STREAM socket types.

Return Values
Upon successful completion, the accept subroutine returns the nonnegative socket
descriptor of the accepted socket.

If the accept subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable ernno.

Sockets 8-3

accept

Error Codes

Examples

The accept subroutine fails if one or more of the following are true:

EBADF

ENOTSOCK

EOPNOTSUPP

EFAULT

EWOULDBLOCK

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The referenced socket is not of type SOCK_STREAM.

The Address parameter is not in a writable part of the user address
space.

The socket is marked as nonblocking, and no connections are
present to be accepted.

1. As illustrated in the following program fragment, once a socket is marked as listening, a
server process may accept a connection:

struct sockaddr in from;

frornlen = sizeof{from);
newsock = accept(socket, (struct sockaddr*)&from, &fromlen);

2. The Accepting a UNIX Stream Connection program fragrment illustrates the use of the
accept subroutine.

Implementation Specifics

Files

The accept subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the accept subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/netinet/in.h
lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/i nclude/sys/types. h

Contains Internet constants and structures.
Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

Contains unsigned data types.

Related Information
Other socket creation and connection subroutines are the bind subroutine, connect
subroutine, listen subroutine, select subroutine, and socket subroutine.

Sockets Overview, Understanding Socket Creation, and Binding Names to Sockets in
Communications Programming Concepts.

8-4 Base Ooeratina SYstem Reference

bind

bind Subroutine

Purpose

Syntax

Binds a name to a socket.

#include <sys/types.h>

#include <sys/socket.h>

#include <netinetlin.h>

int bind (Socket, Name, NameLength)

int Socket;

struct sockaddr *Name;

int NameLength

Description
The bind subroutine assigns a Name to an unnamed socket. Sockets created by the socket
subroutine are unnamed; they are identified only by their address family. Subroutines that
connect sockets either assign names or use unnamed sockets.

An application program can retrieve the assigned socket name with the getsockname
subroutine.

Parameters
Socket

Name

NameLength

Return Values

Specifies the socket descriptor (an integer) of the socket to be
bound.

Points to an address structure that specifies the address to which
the socket should be bound. The Isys/socket.h file defines the
sockaddr address structure. The sockaddr structure contains an
identifier specific to the address format and protocol provided in the
socket subroutine.

Specifies the length of the socket address structure.

Upon successful completion, the bind subroutine returns a value of 0 (zero).

If the bind subroutine fails, the subroutine handler performs the following actions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes
The bind subroutine fails if anyone of the following errors occurs:

EBADF The Socket parameter is not valid.

ENOTSOCK The Socket parameter refers to a file, not a socket.

Sockets 8-5

bind

Examples

EADDRNOTAVAIL

EADDRINUSE

EINVAL

EACCESS

EFAULT

The specified address is not available from the local
machine.

The specified address is already in use.

The socket is already bound to an address.

The requested address is protected, and the current user
does not have permission to access it.

The Address parameter is not in a writable part of the
UserAddress space.

1. The following program fragment illustrates the use of the bind subroutine to bind the
name "/tmp/zan/" to a UNIX domain socket.

#include <sys/un.h>

struct sockaddr un.addr

strcpy(addr.sun_path, "/tmp/zan/");

addr.sun_family = AF_UNIX;

bind(s,(struct sockaddr*)&addr, strlen(addr.sun_path)+

sizeof(addr.sun_family»;

2. The Reading UNIX Domain Datagrams Example Program fragrment illustrates the use of
the bind subroutine.

Implementation Specifics

Files

The bind subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the bind subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library /ibbsd.

/usr /i ncl ude/neti net/i n. h

/usr/include/sys/socket.h

/usr/i ncl ude/sys/socketva r. h

/usr/include/sys/types.h

Contains internet constants and structures
definitions.

Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

Contains definitions of unsigned data types.

8--6 Base Operating System Reference

Related Information
Other socket creation and connection subroutines are the connect subroutine, listen
subroutine, and socket subroutine.

The subroutine to retrieve the socket name is the getsockname subroutine.

Sockets Overview, Understanding Socket Connections, Binding Names to Sockets in
Communications Programming Concepts.

bind

Sockets 8-7

connect

connect Subroutine

Purpose

Syntax

Connects two sockets.

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

int connect (Socket, Name, NameLength)

int Socket;

struct sockaddr * Name;

int NameLength;

Description
The connect subroutine requests a connection between two sockets. The kernel sets up
the communications links between the sockets; both sockets must use the same address
format and protocol.

If a connect subroutine is issued on an unbound socket, the system automatically binds the
socket.

The connect subroutine performs a different action for each of the following two types of
initiating sockets:

• If the initiating socket is SOCK_DGRAM, then the connect subroutine establishes the
peer address. The peer address identifies the 'socket where all datagrams are sent on
subsequent send subroutines. No connections are made by this connect subroutine .

• If the initiating socket is SOCK_STREAM, then the connect subroutine attempts to make
a connection to the socket specified by the Name parameter. Each communication space
interprets the Name parameter differently.

Parameters
Socket

Name

NameLength

Return Value

Specifies the unique name of the socket.

Specifies the address of target socket that will form the other end of
the communications line.

Specifies the length of the address structure.

Upon successful completion, the connect subroutine returns a value of 0 (zero).

If the connect subroutine fails, the system handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

8-8 Base Operating System Reference

connect

Error Codes

Examples

The connect subroutine fails if anyone of the following errors occurs:

EBADF

ENOTSOCK

EADDRNOTAVAIL

EAFNOSUPPORT

EISCONN

ETIMEDOUT

ECONNREFUSED

ENETUNREACH

EADDRINUSE

EFAULT

EWOULDBLOCK

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The specified address is not available from the local
machine.

The addresses in the specified address family cannot be
used with this socket.

The socket is already connected.

The establishment of a connection timed out before a
connection was made.

The attempt to connect was rejected.

No route to the network or host is present.

The specified address is already in use.

The Address parameter is not in a writable part of the user
address space.

The socket is marked nonblocking, the connection cannot
be immediately completed. The application program can
select the socket for writing during the connection process.

1. The following program fragment illustrates the use of the connect subroutine by a client
to initiate a connection to a server's socket.

struct sockaddr un server;

connect(s,(struct sockaddr*}&server, strlen{server.sun_path}+
sizeof(server.sun_family}};

2. The Initiating a UNIX Stream Connection program fragrment illustrates the use of the
connect subroutine.

Implementation Specifics

Files

The connect subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the connect subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

lusrlinclude/netinetlin.h

lusr/include/sys/socket.h

Contains internet constants and structures
. definitions.

Contains socket definitions.

Sockets 8-9

connect

lusr Ii nc I ude/sys/socketvar. h

lusr/include/sys/types.h

Defines the kernel structure per socket and
contains buffer queues.

Contains definitions of unsigned data types.

Related Information

8-10

Other socket creation subroutines are the accept subroutine, bind subroutine, and socket
subroutine.

Socket information retrieval and transmission subroutines are the getsockname subroutine,
select subroutine, and send subroutine.

Sockets Overview, Understanding Socket Connections in Communications Programming
Concepts.

Base Operating System Reference

dn_comp Subroutine

Purpose

Library

Syntax

Compresses a domain name.

(Iibc.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_comp (ExpOomNam, CompDomNam, Length,

OomNamPtr, LastOomNamPtr)

u_char *ExpOomNam, *CompDomNam;

int Length;

u_char ** OomNamPtrs, ** LastOomNamPtr;

Description
The dn_comp (domain name compression) subroutine compresses a domain name to
conserve space. When compressing names, the client process must keep a record of
suffixes that have appeared previously. The dn_comp subroutine compresses a full domain
name by comparing suffixes to a list of previously used suffixes and removing the longest
possible suffix.

The dn_comp compresses the domain name pointed to by the ExpandedDomNam
parameter and stores it in the area pointed to by the CompOomNam parameter. The
dn_comp subroutine inserts labels into the message as the name is compressed. The
dn_comp subroutine also maintains a list of pOinters to the message labels and updates the
list of label pointers.

• If the value of OomNamPtr is NULL, the dn_comp subroutine does not compress any
names. The dn_comp subroutine translates a domain name from ASCII to internal
format without removing suffixes (compressing). Otherwise, DomNamPtr is the address
of pointers to previously compressed suffixes.

• If the LastDomNamPtr parameter is NULL, the dn_comp subroutine does not update the
list of label pointers.

The dn_comp subroutine is one of a set of subroutines that form the resolver. The resolver
is a set of functions that perform a translation between domain names and network
addresses. Global information used by the resolver subroutines resides in the _res data
structure. The linclude/resolv.h file contains the _res data structure definition.

Parameters
ExpOomNam

CompDomNam

Specifies the address of an expanded domain name.

Points to an array containing the compressed domain
name.

Sockets 8-11

Length

DomNamPtrs

LastDomNamPtr

Specifies the size of the array pointed to by the
CompDomNam parameter.

Specifies a list of pointers to previously compressed names
in the current message.

Points to the end of the array specified to by the
CompDomNam parameter.

Return Value
Upon successful completion, the dn_comp subroutine returns the size of the compressed
domain name.

If unsuccessful, the dn_comp subroutine returns a value of -1 (negative one) to the calling
program.

Implementation Specifics

Files

The dn_comp subroutine is part of AIX Base Operating System (BaS) Runtime.

All applications containing the dn_comp subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

letc/resolv.conf

lusr/include/netinet/in.h

lusr/includelarpa/nameser.h

lusr/include/resolv.h

lusr/include/sys/types.h

Defines name server and domain name structures,
constants, and values.

Contains Internet constants and structures.

Defines Internet name server structures, constants,
and values.

Contains global information used by the resolver
subroutines.

Contains definitions of unsigned data types.

Related Information

8-12

Domain name access subroutines are the res_init subroutine, res_mkquery subroutine,
and res_send subroutine.

Domain name translation subroutines are the dn_expand subroutine, dn_find subroutine,
and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the --getshort subroutine,
_getlong subroutine, putshort subroutine, and putlong subroutine.

The named daemon.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Understanding Naming for TCP/IP in Communication Concepts and Procedures.

Base Operating System Reference

dn_expand Subroutine

Purpose

Library

Syntax

Expands a compressed domain name.

(Iibc.a)

#include <sys/types.h>

#include <netinetlin.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_expand (MessagePtr, EndOfMesOrig,

CompOomNam, ExpandOomNam, Length)

u_char * MessagePtr, * EndOfMesOrig;

u_char *CompOomNam, *ExpandOomNam;

int Length;

Description
The dn_expand subroutine expands a compressed domain name to a full domain name,
converting the expanded names to all uppercase letters. A client process compress domain
names to conserve space. Compression consists of removing the longest possible
previously occuring suffixes. The dn_expand subroutine restores a domain name
compressed by the dn_comp subroutine to its full size.

The dn_expand subroutine is one of a set of subroutines that form the resolver. The
resolver is a set of functions that perform a translation between domain names and network
addresses. Global information used by the resolver subroutines resides in the _res data
structure. The linclude/resolv.h file contains the _res data structure definition.

Parameters
MessagePtr

EndOfMesOrig

CompOomNam

ExpandOomNam

Length

Return Value

Specifies a pointer to the beginning of a message.

Points to the end of the original message that contains the
compressed domain name.

Specifies a pOinter to a compressed domain name.

Specifies a painter to a buffer that holds the resulting
expanded domain name.

Specifies the size of the buffer pointed to by the
ExpandOomNam parameter.

Upon successful completion, the dn_expand subroutine returns the size of the expanded
domain name.

Sockets 8-13

If unsuccessful, the dn_expand subroutine returns a value of -1 (negative one) to the
calling program.

Implementation Specifics

Files

The dn_expand subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the dn_expand subroutine must be compiled with _bsd defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

letc/resolv.conf

lusr/include/netinetlin.h

lusr/include/arpa/nameser.h

lusr Ii ncl ude/sys/socketva r. h

lusr/include/sys/types.h

Defines name server and domain name constants,
structures, and values.

Defines Internet constants and structures.

Defines Internet name server constants, structures,
and values.

Defines the kernel structure per socket and contains
buffer queues.

Contains definitions of unsigned data types.

Related Information

8-14

Domain name access subroutines are the res_init subroutine, res_mkquery subroutine,
and res_send subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_find subroutine,
and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the getshort subroutine, _getlong
subroutine, putshort subroutine, and putlong subroutine.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Understanding Naming for TCP/IP in Communication Concepts and Procedures.

Base Operating System Reference

dn find

dn_find Subroutine

Purpose

Library

Syntax

Searches for an expanded domain name.

(Iibc.a)

#include <sys/types.h>

#include <netinetlin.h>

#include <arpa/nameser.h>

#include <resolv.h>

dn_find (ExpandOomNam, Message, DomNamPtrs, LastOomNamPtt)

char * ExpOomNam, * Message;

char ** OomNamPtrs, ** LastDomNamPtr,

Description
The dn_find (domain name find) subroutine searches for an expanded domain name from a
list of previously compressed names. An expanded domain name is an one that is not
compressed. If an expanded domain name is found, the dn_comp subroutine returns the
offset from Message. An application program does not call the dn_find subroutine, directly.
Instead, the dn_find subroutine is called indirectly by the dn_comp subroutine.

The dn_find subroutine is one of a set of subroutines that form the resolver. The resolver is
a set of functions that perform a translation between domain names and network addresses.
Global information used by the resolver subroutines resides in the _res data structure. The
linclude/resolv.h file contains the _res data structure definition.

Parameters
ExpandOomNam

Message

DomNamPtrs

LastOomNamPtr

Return Values

Points to an expanded domain name.

Points to the address of a domain name message that
contains the name sought by the dn_find operation.

Specifies an array of pointers to previously compressed
names in the current message.

Points to the end of an array of pointers. The array is
indicated by the OomNamPtrs parameter.

Upon successful completion, the dn_find subroutine returns the offset from the Message
parameter.

If unsuccessful, the dn_find subroutine returns a value of -1 (negative one).

Implementation Specifics
The dn_find subroutine is part of AIX Base Operating System (BOS) Runtime.

Sockets 8-15

Files

All applications containing the dn_find subroutine must be compiled with _SSC defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

letc/resolv.conf

lusr/include/netinet/in.h

lusr Ii ncl udelarpa/na meser. h

lusr/include/resolv.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Defines name server and domain name structures and
constants.

Defines Internet constants and structures.

Defines Internet name server structures and
constants.

Contains global information used by the resolver
subroutines.
Defines the kernel structure per socket and contains
buffer queues.

Contains definitions of unsigned data types

Related Information

8-16

Domain name access subroutines are the res_init subroutine, res_mkquery subroutine,
and res_send subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the _getshort subroutine,
_getlong subroutine, putshort subroutine, and putlong subroutine.

The named daemon.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts

Understanding Naming for TCP/IP in Communication Concepts and Procedures

Base Operating System Reference

dn_skipname Subroutine

Purpose

Library

Syntax

Skips over a compressed domain name.

(Jibc.a)

#include <sys/types.h>

#include <netinetlin.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_skipname (CompOomNam, EndOfMessage)

u_char *CompOomNam;

u_char * EndOfMessage;

Description
The dn_skipname subroutine skips over a compressed domain name.

The dn_skipname subroutine is one of a set of subroutines that form the resolver, a set of
functions that resolve domain names. Global information that is used by the resolver
subroutines is kept in the _res data structure. The linclude/resolv.h file contains the _res
structure definition.

Parameters
CompOomNam Specifies a pointer to a compressed domain name.

EndOfMessage Specifes a pointer to the end of the message string.

Return Value
Upon successful completion, the dn_skipname subroutine returns the size of
CompOomNam.

If the dn_skipname subroutine fails, the subroutine returns a -1 (negative one).

Implementation Specifics

Files

The dn_skipname subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the dn_skipname subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

/etc/resolv.conf

/usr/include/resolv.h

Defines name server and domain name structures,
values, and constants.

Contains global information used by the resolver
subroutines.

Sockets 8-17

lusr/include/arpa/nameser.h

lusr/include/sys/types.h

lusr/include/netinet/in.h

Defines Internet name server structures, values,
and constants.

Contains definitions of unsigned data types.

Defines Internet constants and structures.

Related Information

8-18

Domain name access subroutines are the res_init subroutine, res_mkquery subroutine,
and res_send subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
and dn_find subroutine.

Byte stream and byte boundary retrieval subroutines are the _getshort subroutine,
_getlong subroutine, putshort subroutine, and putlong subroutine.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Base Operating System Reference

endhostent

endhostent Subroutine

Purpose
Ends retrieval of network host entries.

Library
(libc.a)

Syntax
#include <netdb.h>

void endhostent ()

Description

Example

The endhostent subroutine closes the letc/hosts file. The letc/hosts file is opened by
either the gethostbyaddr or gethostbyname subroutine.

Note: If a previous sethostent (STAYOPEN); routine has been performed and the
STAYOPEN value does not equal 0 (zero), then the endhostent{); routine will not
close the letc/hosts file. Also, the sethostent{); routine does not indicate that it
closed the file. A second sethostent (STAYOPEN); routine has to be issued with the
STAYOPEN value equal to 0 (zero) in order for a following endhostent{); routine to
succeed. If this is not done, the letc/hosts file closes on an exit(); call.

To close the letc/hosts file:

endhostent();

Implementation Specifics

Files

The endhostent subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the endhostent subroutine must be compiled with _SSC defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

letc/hosts

lusr/include/netdb.h

Contains the host name database.

Contains the network database structures.

Related Information
Additional host information retrieval subroutines are the gethostbyaddr subroutine,
gethostbyname subroutine, and sethostent subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-19

endnetent

endnetent Subroutine

Purpose
Closes the networks file.

Library
libc.a

Syntax
#include <netdb.h>

void endnetent ()

Description

Example

The endnetent (end network entry) subroutine closes the letc/networks file. Calls made to
the getnetent, getnetbyaddr, or getnetbyname subroutines open the letc/networks file.

Note: If a previous setnetent (STAYOPEN) subroutine has been performed and the
STAYOPEN value does not equal 0 (zero), then the endnetent subroutine will not
close the /etc/networks file. Also, the setnetent subroutine does not indicate that it
closed the file. A second setnetent (STAYOPEN); routine has to be issued with the
STAYOPEN value equal to 0 (zero) in order for a following endnetent subroutine to
succeed. If this is not done, the letc/networks file closes on an exit call.

To close the letc/networks file:

endnetent();

Implementation Specifics

Files

The endnetent subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the endnetent subroutine must be compiled with _SSD defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

letc/networks

/usr/include/netdb.h

Contains official network names.

Contains the network database structures.

Related Information

8-20

Additional network information retrieval subroutines are the getnetbyaddr subroutine,
getnetbyname subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Base Operating System Reference

endprotoent

endprotoent Subroutine

Purpose
Closes the letc/protocols file.

Library
(libc.a)

Syntax
void endprotoent ()

Description

Example

The endprotoent (end protocol entry) subroutine closes the letc/protocols file.

Calls made to the getprotoent subroutine, getprotobyname subroutine, or
getprotobynumber subroutine open the letc/protocols file. An application program can
use the endprotoent subroutine to close the letc/protocols file.

Note: If a previous setprotoent (STAYOPEN); routine has been performed and the
STAYOPEN value does not equal 0 (zero), then the endprotoent; routine will not
close the letc/protocols file. Also, the setprotoent; routine does not indicate that it
closed the file. A second setprotoent (STAYOPEN); routine has to be issued with
the STAYOPEN value equal to 0 (zero) in order for a following endprotoent; routine
to succeed. If this is not done, the letc/protocols file closes on an exit; call.

To close the letc/protocols file:

endprotoent();

Implementation Specifics

File

The endprotoent subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the endprotoent subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the 8SD library
libbsd.

letc/protocols Contains protocol names.

Related Information
Additional protocol information retrieval subroutines are the getprotobynumber subroutine,
getprotobyname subroutine, getprotoent subroutine, and setprotoent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-21

endservent

endservent Subroutine

Purpose
Closes the letc/service file entry.

Library
(libc.a)

Syntax
#include <netdb.h>

void endservent ()

Description

Example

The endservent (end service entry) subroutine closes the /etc/services file. A call made to
the getservent subroutine, getservbyname subroutine, or getservbyport subroutine
opens the /etc/services file. An application program can use the endservent subroutine to
close the /etc/services file.

Note: If a previous setservent (STAYOPEN); routine has been performed and the
STAYOPEN value does not equal 0 (zero), then the endservent(); routine will not
close the /etc/services file. Also, the setservent(); routine does not indicate that it
closed the file. A second setservent (STAYOPEN); routine has to be issued with the
STAYOPEN value equal to 0 (zero) in order for a following endservent(); routine to
succeed. If this is not done, the /etc/services file closes on an exit(); call.

To close the /etc/services file:

endservent ();

Implementation Specifics

Files

The endservent subroutine is part of AIX Base Operating System (80S) Runtime.

A" applications containing the endservent subroutine must be compiled with _BSD defined.
In addition, when applicable, a" socket applications must include the 8SD library libbsd.

/etc/services

/usr/include/netdb.h

Contains service names.

Contains network database structures.

Related Information

8-22

Additional service information retrieval subroutines are the getservbyname subroutine,
getservbyport subroutine, getservent subroutine, and setservent subroutine.

Protocol information retrieval subroutines are the endprotoent subroutine,
getprotobynumber subroutine, getprotobyname subroutine, getprotoent subroutine, and
setprotoent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Base Operating System Reference

getdomainname

getdomainname Subroutine

Purpose

Syntax

Gets the name of the current domain.

int getdomainname (name, name/en)

char *name;
int name/en;

Description
The getdomainname subroutine returns the name of the domain for the current processor
as previously set by the setdomainname subroutine. The returned name is null-terminated
unless insufficient space is provided.

The purpose of domains is to enable two distinct networks that may have host names in
common to merge. Each network would be distinguished by having a different domain name.
At the current time, only the NIS and the sendmail command make use of domains

Note: Domain names are restricted to 64 characters.

Parameters
name Specifies the domain name to be returned.

name/en Specifies the size of the array pOinted to by the name parameter.

Return Values
If the call suceeds, a value of 0 (zero) is returned. If the call fails, a value of -1 is returned
and an error code is placed in the global location errno.

Error Codes
The following error may be returned by this subroutine:

EFAULT The Name parameter gave an invalid address.

Implementation Specifics
The getdomainname subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the getdomainname subroutine must be compiled with _BSC
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Related Information
The gethostname subroutine, setdomainname subroutine, sethostname subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-23

gethostbyaddr

gethostbyaddr Subroutine

Purpose

Library

Syntax

Gets network host entry by address.

(libc.a)

#include<netdb.h>

struct hostent *gethostbyaddr (Address, Length, Type)

char * Address;

int Length, Type;

Description
The gethostbyaddr subroutine retrieves information about a host using the host address as
a search key.

The gethostbyaddr subroutine recognizes domain name servers as described in RFC883.
If the file /etc/resolv.conf exists, the gethostbyaddr subroutine queries the domain name
server. If the request to the domain name server times out, the gethostbyaddr subroutine
checks the local/etc/hosts file.

The gethostbyaddr returns a pointer to a hostent structure, which contains information
obtained from the domain name server or which contains a field from a line in the letc/hosts
file. The hostent structure is defined in the netdb.h header file.

Parameters
Address Specifies a host address. The host address is passed as a character string

and is assumed to be in dotted IP format.

Length

Type

Specifies the length of host address.

Specifies the domain type of the host address. This currently works only on
address family: AF _INET.

Return Values
The gethostbyaddr subroutine returns a pointer to a hostent structure upon success.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or if the end of the file is reached, the gethostbyaddr subroutine returns a
NULL pointer and sets the h_errno variable to indicate the error.

Error Codes

8-24

The gethostbyaddr subroutine fails if anyone of the following errors occurs:

HOST _NOT_FOUND

TRY_AGAIN

Base Operating System Reference

The host specified by the Name parameter is not found.

The local server does not receive a response from an
authoritative server. Try again later.

NO_RECOVERY

NO_ADDRESS

gethostbyaddr

This error code indicates an unrecoverable error.

The requested Name parameter is valid but does not have
an Internet address at the name server.

Implementation Specifics

Files

The gethostbyaddr subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the gethostbyaddr subroutine must be compiled with _BSO
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

letc/hosts

lusr/include/netdb. h

letc/resolv.conf

Contains the host name data base.

Contains the network data base structures.

Contains the name server and domain name information.

Related Information
Additional host information retrieval socket subroutines are the endhostent subroutine,
gethostbyname subroutine, and sethostent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-25

gethostbyname

gethostbyname Subroutine

Purpose

Library

Syntax

Gets network host entry by name.

(libc.a)

#include <netdb.h>

struct hostent *gethostbyname (Name)

char *Name;

Description

Parameter

The gethostbyname subroutine retrieves host address and name information using a host
name as a search key

The gethostbyname subroutine recognizes domain name servers as described in RFC883.
If the file letc/resolv.conf exists, the gethostbyname subroutine queries the domain name
server. If the request to the domain name server times out, the gethostbyname subroutine
checks local letc/hosts file.

The gethostbyname subroutine returns a pOinter to a hostent structure, which contains
information obtained from a name server program or contains a field from a line in the
letc/hosts file. The hostent structure is defined in the netdb.h header file.

Use the endhostent subroutine to close the letc/hostsl file or the TCP connection.

Name Points to the host name.

Return Values
The gethostbyname subroutine returns a pointer to a hostent structure on success.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or if the end of the file is reached, the gethostbyname subroutine returns
a NULL pointer and sets h_ernno variable to indicate the error.

Error Codes

8-26

The gethostbyname subroutine fails if anyone of the following errors occur:

HOST_NOT_FOUND

TRY_AGAIN

NO_RECOVERY

NO_ADDRESS

Base Operating System Reference

The host specified by the Name parameter was not found.

The local server did not receive a response from an
authoritative server. Try again later.

This error code indicates an unrecoverable error.

The requested Name is valid but does not have an Internet
address at the name server.

Example

gethostbyname

1. The following program fragment illustrates the use of the gethostbyname subroutine to
look up a destination host.

hp=gethostbyname(argv[l]);
if(hp = NULL) {

}

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]);
exit(2);

Implementation Specifics

Files

The gethostbyname subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the gethostbyname subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the 8SD library
libbsd.

letc/hosts

lete/reso Iv.conf

lusr/include/netdb.h

Contains the host name data base.

Contains the name server and domain name.

Contains the network data base structures.

Related Information
Additional host information retrieval routines are the gethostent subroutine, endhostent
subroutine, gethostbyaddr subroutine, and sethostent subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-27

gethostent

gethostent Subroutine

Purpose
Retrieves a network host entry.

Library
(libc.a)

Syntax
#include <netdb.h>

gethostent ()

struct hostent *gethostent 0

Description
The gethostent subroutine allows an application program to retrieve an entry from the
/etc/host file. The gethostent subroutine opens the /etc/host file and performs a
sequential read of each line in the file starting from the beginning of the file. Each
subsequent gethostent subroutine call returns information for a different host.

The gethostent subroutine returns a pointer to a hostent structure, which contains the
equivalent fields for a host description line in the /etc/hosts file. The hostent structure is
defined in the netdb.h header file.

Use the endhostent subroutine to close the /etc/hostsfile.

Return Values
Upon successful completion, the gethostent subroutine returns a pointer to a hostent
structure.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the gethostent subroutine returns a
NULL pointer.

Implementation Specifics

Files

The gethostent subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the gethostent subroutine must be compiled with _BSC defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

/etc/hosts

/usr/include/netdb.h

Contains the host name database.

Contains the network database structures.

Related Information
Additional host information retrieval subroutines are the gethostbyaddr subroutine,
gethostbyname subroutine, and sethostent subroutine.

Sockets Overview in Communications Programming Concepts.

8-28 Base Ooeratina Svstem Reference

gethostid

gethostid Subroutine

Purpose
Gets the unique identifier of the current host.

Syntax
int gethostid ()

Description
The gethostid subroutine allows a process to retrieve the 32-bit identifier for the current
host. In most cases, the host 10 is stored in network standard byte order and is a DARPA
Internet address for the local machine.

Return Value
Upon successful completion, the gethostid subroutine returns the identifier for the current
host.

If the gethostid subroutine fails, the system handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Implementation Specifics
The gethostid subroutine is part of AIX Base Operating System (80S) Runtime.

All applications containing the gethostid subroutine must be compiled with _BSC defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

Related Information
Socket subroutines to set and obtain host names and to set host IDs, respectively, are the
gethostname subroutine, sethostname subroutine, and sethostid subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-29

gethost;name

gethostname Subroutine

Purpose

Syntax

Gets the name of the local host.

int gethostname (Name, NameLength)

char *Name;

int NameLength;

Description
The gethostname subroutine retrieves the standard host name of the local host. If sufficient
space is provided, the returned Name parameter is null-terminated. System host names are
limited to MAXHOSTNAMELEN as defined in lusr/include/sys/param.h. The
MAXHOSTNAMELEN value is set at 32.

The gethostname subroutine allows a calling process to determine the internal host name
for a machine on a network.

Parameters
Name Returns the address of an array of bytes where the host name is stored.

Returns an integer that specifies the length of the Name array. NameLength

Return Values
Upon successful completion, the system returns a value of 0 (zero).

If the gethostname subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes
The gethostname subroutine fails if the following is true:

EFAULT The Name parameter or NameLength parameter gives an invalid address.

Implementation Specifics
The gethostname subroutine is part of AIX 8ase Operating System (80S) Runtime.

A" applications containing the gethostname subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the 8S0 library
Iibbsd.

Related Information

8-30

Socket subroutines to obtain and set the host 10 are the gethostid subroutine and
sethostid subroutine.

The socket subroutine to set the host name is the sethostname subroutine.

Sockets Overview in Communications Programming Concepts.

Base Operating System Reference

_getlong

_getlong Subroutine

Purpose

Library

Syntax

Retrieves long byte quantities.

(libc.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

unsigned long _getlong (MessagePtt)

u_char * MessagePtr,

Description
The _getlong subroutine gets long quantities from the byte stream or arbitrary byte
boundaries.

The _getlong subroutine is one of a set of subroutines that form the resolver, a set of
functions that resolves domain names. Global information that is used by the resolver
subroutines is kept in the _res data structure. The linclude/resolv.h file contains the _res
structure definition.

Parameters
MessagePtr Specifies a pointer into the byte stream.

Return Value
The _getlong subroutine returns an unsigned long (32-bit) value.

Implementation Specifics

Files

The _getlong subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the _getlong subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

letc/resolv.conf

lusr/include/resolv.h

lusr/include/arpa/nameser.h

lusr/include/sys/types.h

lusr/include/netinet/in.h

Lists name server and domain names.

Contains global information used by the resolver
subroutines.

Defines Internet name server structures and
constants.

Contains definitions of unsigned data types.

Contains Internet constants and structures.

Sockets 8-31

_getlong

Related Information

8-32

Domain name access subroutines are the res_init subroutine, res_mkquery subroutine,
and res_send subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
dn_find subroutine,and dn_skipname subroutine.

Byte stream and boundary retrieval subroutines are the _getshort subroutine, putshort
subroutine, and putlong subroutine.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Base Operating System Reference

getnetbyaddr

getnetbyaddr Subroutine

Purpose

Library

Syntax

Gets network entry by address.

(libc.a)

#include <netdb.h>

struct netent *getnetbyaddr (Network, Type)

long Network;

int Type;

Description
The getnetbyaddr subroutine retrieves information from the /etc/networks file using the
network address as a search key. The getnetbyaddr subroutine searches the file
sequ.entially from the start of the file until it encounters a matching net number and type or
until it reaches the end of the file.

The getnetbyaddr subroutine returns a pointer to a netent structure, which contains the
equivalent fields for a network description line in the /etc/networks file. The netent
structure is defined in the netdb.h header file.

Use the endnetent subroutine to close the /etc/networks file.

Parameters
Network Specifies the number of the network to be located.

Type Specifies the address family for the network. The only supported value is
AF _INET.

Return Values
Upon successful completion, the getnetbyaddr returns a pointer to a netent structure.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the getnetbyaddr subroutine returns a
NULL pointer.

Implementation Specifics

Files

The getnetbyaddr subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the getnetbyaddr subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

/etc/networks

lusr/include/netdb.h

Contains official network names.

Contains the network database structures.

Sockets 8-33

getnetbyaddr

Related Information

8-34

Additional network information retrieval subroutines are the endnetent subroutine,
getnetbyname subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview in Communications Programming Concepts.

Base Operating System Reference

getnetbyname

getnetbyname Subroutine

Purpose

Library

Syntax

Gets network entry by name.

(libc.a)

#include <netdb.h>

struct netent *getnetbyname (Name)

char *Name;

Description

Parameter

The getnetbyname subroutine retrieves information from the /etc/networks file using the
domain Name as a search key. The getnetbyname subroutine searches the /etc/networks
file sequentially from the start of the file until it encounters a matching net name or until it
reaches the end of the file.

The getnetbyname subroutine returns a pointer to a netent structure, which contains the
equivalent fields for a network description line in the /etc/networks file. The netent
structure is defined in the netdb.h header file.

Use the endnetent subroutine to close the /etc/networks file.

Name Points to a string containing the name of the network.

Return Values
Upon successful completion, the getnetbyname subroutine returns a pointer to a netent
structure.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the getnetbyname subroutine returns a
NULL pointer.

Implementation Specifics

Files

The getnetbyname subroutine is part of AIX Base Operating System (BOS) Runtime.

AII·applications containing the getnetbyname subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

/etc/networks Contains official network names.

/usr/i ncl ude/netdb.h Contains the network database structures.

Sockets 8-35

getnetbyname

Related Information

8-36

Additional network information retrieval subroutines are the endnetent subroutine,
getnetbyaddr subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview in Communications Programming Concepts.

Base Operating System Reference

getnetent

getnetent Subroutine

Purpose
Gets network entry.

Library
(libe.a)

Syntax
#inelude <netdb.h>

struet netent *getnetent ()

Description
The getnetent subroutine retrieves network information by opening and sequentially reading
the lete/networks file.

The getnetent subroutine returns a pointer to a netent structure, which contains the
equivalent fields for a network description line in the lete/networks file. The netent
structure is defined in the netdb.h header file.

Use the endnetent subroutine to close the lete/networks file.

Return Values
Upon successful completion, the getnetent subroutine returns a pointer to a netent
structure.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the getnetent subroutine returns a NULL
pointer.

Implementation Specifics

Files

The getnetent subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the getnetent subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

lete/networks

lusr/inelude/netdb.h

Contains official network names.

Contains the network database structures.

Related Information
Additional network information retrieval subroutines are the endnetent subroutine,
getnetbyaddr subroutine, getnetbyname subroutine, and setnetent subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-37

getpeername

getpeername Subroutine

Purpose

Syntax

Gets the name of the peer socket.

#include<sys/types.h>

#include <sys/socket.h>

int getpeername (Socket, Name, NameLength);

int Socket;

struct sockaddr * Name;

int * NameLength;

Description
The getpeername subroutine retrieves the Name of the peer socket connected to the
specified socket. The Name parameter contains the address of the peer socket upon
successful completion.

A process created by another process can inherit open sockets. The created process may
need to identify the addresses of the sockets it has inherited. The getpeername subroutine
allows a process to retrieve the address of the peer socket at the remote end of the socket
connection.

Note: The getpeername subroutine operates only on connected sockets.

A process can use the getsockname subroutine to retrieve the local address of a socket.

Parameters
Socket Specifies the descriptor number of a connected socket.

Name

NameLength

Points to a sockaddr structure that contains the address of the
destination socket upon successful completion. The Isys/socket.h
file defines the sockaddr structure.

Points to the size of the address structure. Initializes the
NameLength to indicate the amount of space pointed to by the
Name parameter. Upon successful completion, it returns the actual
size of the Name parameter returned.

Return Value

8-38

Upon successful completion, a value of 0 (zero) is returned and the Name parameter holds
the address of the peer socket.

If the getpeername subroutine fails, the system handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Base Operating System Reference

getpeername

Error Codes

Examples

The getpeername subroutine fails if anyone of the following errors occur:

EBADF

ENOTSOCK

ENOTCONN

ENOBUFS

EFAULT

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The socket is not connected.

Insufficient resources were available in the system to complete the call.

The Address parameter is not in a writable part of the user address
space.

1. The following program fragment illustrates the use of the getpeername subroutine to
return the address of the peer connected on the other end of the socket.

struct sockaddr_in name;
int namelen = sizeof(name);

if(getpeername(O,(struct sockaddr*)&name, &namelen)<O){
syslog(LOG_ERR,"getpeername: %m");
exi t (1) ;

} else
syslog(LOG_INFO,"Connection from %s",inet_ntoa(name.sin_addr));

Implementation Specifics

Files

The getpeername subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the getpeername subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and contains
buffer queues.

Contains definitions of unsigned data types.

Related Information
The socket subroutines to create and name sockets are the accept subroutine, bind

subroutine, and socket subroutine.

The socket subroutine used to retrieve a local socket address is the getsockname
subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-39

getprotobyname

getprotobyname Subroutine

Purpose

Library

Syntax

Gets protocol entry from the /etc/protocols file by protocol name.

(libc.a)

#include <netdb.h>

struct protoent *getprotobyname (Name)

char *Name;

Description
The getprotobyname (get protocol by name) subroutine retrieves protocol information from
the /etc/protocols file by protocol name.

An application program can use the getprotobyname subroutine to access a protocol
name, its aliases, and protocol number.

The getprotobyname subroutine searches the protocols file sequentially from the start of
the file until it finds a matching protocol name or until it reaches the end of the file.

The subroutine returns a pointer to a protoent structure, which contains fields for a line of
information in the protocols file. The netdb.h header file defines the protoent structure.

Use the endprotoent subroutine to close the protocols file.

Parameters
Name Specifies the protocol name.

Return Values
Upon successful completion, the getprotobyname subroutine returns a pointer to a
protoent structure.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the getprotbyname subroutine returns a
NULL pointer.

Implementation Specifics

Files

8-40

The getprotobyname subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the getprotobyname subroutine must be compiled with _BSO
defined. In addition, when applicable, all socket applications must include the 8SD library
libbsd.

/etc/protocols

lusr/include/netdb.h

Base Operating System Reference

Contains protocol information.

Contains the network database structures.

getprotobyname

Related Information
Additional protocol information retrieval subroutines are the endprotoent subroutine,
getprotobynumber subroutine, getprotoent subroutine, and setprotoent subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-41

getprotobynumber

getprotobynumber Subroutine

Purpose

Library

Syntax

Gets a protocol entry from the /etc/protocols file by number.

(Iibc.a)

#include <netdb.h>

struct protoent *getprotobynumber (Protoco~

int Protocol;

Description

Parameter

The getprotobynumber (get protocol by number) subroutine retrieves protocol information
from the /etc/protocols file using a specified protocol number as a search key.

An application program can use the getprotobynumber subroutine to access a protocol
name, its aliases, and protocol number.

The getprotobynumber subroutine searches the /etc/protocols file sequentially from the
start of the file until it finds a matching protocol name or protocol number, or until it reaches
the end of the file.

The subroutine returns a pointer to a protoent structure, which contains fields for a line of
information in the /etc/protocols file. The netdb.h file defines the protoent structure.

Use the endprotoent subroutine to close the /etc/protocols file.

Protocol Specifies the protocol number.

Return Values
Upon successful completion, the getprotobynumber subroutine, returns a pointer to a
protoent structure.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the getprotobynumber subroutine
returns a NULL pointer.

Implementation Specifics

8-42

The getprotobynumber subroutine is part of AIX Base Operating System (BaS) Runtime.

All applications containing the getprotobynumber subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Base Operating System Reference

getprotobynumber

Files
/etc/protocols

/usr/include/netdb.h

Contains protocol information.

Contains network database structures.

Related Information
Additional protocol information retrieval subroutines are the endprotoent subroutine,
getprotobyname subroutine, getprotoent subroutine, and setprotoent subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-43

getprotoent

getprotoent Subroutine

Purpose
Gets protocol entry from the /etc/protocols file.

Library
(Iibc.a)

Syntax
#include <netdb.h>

struct protoent *getprotoent ()

Description
The getprotoent (get protocol entry) subroutine retrieves protocol information from the
/etc/protocols file.

An application program can use the getprotoent subroutine to access a protocol name, its
aliases, and protocol number.

The getprotoent subroutine opens and performs a sequential read of the /etc/protocols
file.

The getprotoent subroutine returns a pointer to a protoent structure, which contains the
fields for a line of information in the /etc/protocols file. The netdb.h header file defines the
protoent structure.

Use the endprotoent subroutine to close the /etc/protocols file.

Return Values
Upon successful completion, the getprotoent subroutine returns a pointer to a protoent
structure.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the getprotoent subroutine returns a
NULL pointer.

Implementation Specifics

Files

8-44

The getprotoent subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the getprotoent subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the 8S0 library libbsd.

/etc/protocols

/usr/include/netdb.h

Base Operating System Reference

Contains protocol information.

Contains the network database structures.

getprotoent

Related Information
Additional protocol information retrieval subroutines are the endprotoent subroutine,
getprotobyname subroutine, getprotobynumber subroutine, and setprotoent subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-45

getservbyname

getservbyname Subroutine

Purpose

Library

Syntax

Gets service entry by name.

(libc.a)

#include <netdb.h>

struct servent *getservbyname (Name, Protoco~

char * Name, * Protocol;

Description
The getservbyname (get service by name) subroutine retrieves an entry from the
fetc/services file using the service name as a search key.

An application program can use the getservbyname subroutine to access a service, service
aliases, the protocol for the service, and a protocol port number for the service.

The getservbyname subroutine searches the /etc/services file sequentially from the start of
the file until it finds one of the following: " ;

• a matching name and protocol number

• a matching name when the Protocol parameter is set to 0 (zero)

• the end of the file

Upon locating a matching name and protocol, the getservbyname returns a pointer to the
servent structure, which contains fields for a line of information from the /etc/services file.
The netdb.h header file defines the servent structure and structure fields.

Use the endservent subroutine to close the /etc/host file.

Parameters
Name Specifies the name of a service.

Protocol Specifies a protocol for use with the specified service.

Return Value

8-46

The getservbyname subroutine returns a pointer to a servent structure when a successful
match occurs.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the getservbyname subroutine returns a
NULL pointer.

Base Operating System Reference

getservbyname

Implementation Specifics

Files

The getservbyname subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the getservbyname subroutine must be compiled with _BSC
defined. In addition, when applicable, all socket applications must include the 8SD library
libbsd.

letc/services

lusr/include/netdb.h

Contains service names.

Contains network database structures.

Related Information
Additional service information retrieval subroutines are the endservent subroutine,
getservbyport subroutine, getservent subroutine, and setservent subroutine.

Protocol information retrieval subroutines are the endprotoent subroutine,
getprotobynumber subroutine, getprotobyname subroutine, getprotoent subroutine, and
setprotoent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-47

getservbyport

getservbyport Subroutine

Purpose

Library

Syntax

Gets service entry by port.

(Iibc.a)

#include <netdb.h>

struct servent *getservbyport (Port, Protoco~

int Port;

char * Protocol;

Description
The getservbyport (get service by port) subroutine retrieves an entry from the /etc/services
file using a port number as a search key.

An application program can use the getservbyport subroutine to access a service, service
aliases, the protocol for the service, and a protocol port number for the service.

The getservbyport subroutine searches the services file sequentially from the beginning of
the file until it finds one of the following:

• a matching protocol and port number

• a matching protocol when the Port parameter value equals 0 (zero)

• the end of the file

Upon locating a matching protocol and port number or upon locating a matching protocol
only if the Port parameter value equals 0 (zero), the getservbyport subroutine returns a
pointer to a servent structure, which contains fields for a line of information in the
/etc/services file. The netdb.h header file defines the servent structure and structure
fields.

Use the endservent subroutine to close the /etc/services file.

Parameters
Port Specifies the port where a service resides.

Protocol Specifies a protocol for use with the service.

Return Value

8-48

Upon successful completion, the getservbyport subroutine returns a pointer to a servent
structure.

Note: The return value points to static data that is overwritten by subsequent calls.

if an error occurs or the end of the file is reached, the getservbyport subroutine returns a
NULL pointer.

Base Operating System Reference

getservbyport

Implementation Specifics

Files

The getservbyport subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the getservbyport subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the 8SD library
libbsd.

letc/services

lusr/include/netdb.h

Contains service names.

Contains network database structures.

Related Information
Additional service information retrieval subroutines are the endservent subroutine,
getservbyname subroutine, getservent subroutine, and setservent subroutine.

Protocol information retrieval subroutines are the endprotoent subroutine,
getprotobynumber subroutine, getprotobyname subroutine, getprotoent subroutine, and
setprotoent subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-49

getservent

getservent Subroutine

Purpose
Gets services file entry.

Library
(libc.a)

Syntax
#include <netdb.h>

struct servent *getservent ()

Description
The getservent (get service entry) subroutine opens and reads the next line of the
/etc/services file.

An application program can use the getservent subroutine to retrieve information about
network services and the protocol ports they use.

The getservent subroutine returns a pointer to a servent structure, which contains fields for
a line of information from the /etc/services file. The servent structure is defined in the
netdb.h header file.

The /etc/services file remains open after a call by the getservent subroutine. To close the
/etc/services file after each call, use the setservent subroutine. Otherwise, use the
endservent subroutine to close the /etc/services file.

Return Value
The getservent subroutine returns a pointer to a servent structure when a successful match
occurs.

Note: The return value points to static data that is overwritten by subsequent calls.

If an error occurs or the end of the file is reached, the getservent subroutine returns a
NULL pointer.

Implementation Specifics

Files

The getservent subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the getservent subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

/etc/services

/usr/include/netdb.h

Contains service names.

Contains network database structures.

Related Information

8-50

Additional service information retrieval subroutines are the endservent subroutine,
getservbyname subroutine, getservbyport subroutine, and setservent subroutine.

Base Operating System Reference

getservent

Protocol information retrieval subroutines are the endprotoent subroutine,
getprotobynumber subroutine, getprotobyname subroutine, getprotoent subroutine, and
setprotoent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-51

_getshort

_getshort Subroutine

Purpose

Library

Syntax

Retrieves short byte quantities.

(Iibc.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

unsigned short getshort (MessagePtlj

u_char * MessagePtr,

Description
The _getshort subroutine gets quantities from the byte stream or arbitrary byte boundaries.

The _getshort subroutine is one of a set of subroutines that form the resolver, a set of
functions that resolve domain names. Global information that is used by the resolver
subroutines is kept in the _res data structure. The linclude/resolv.h file contains the _res
structure definition.

Parameters
MessagePtr Specifies a pointer into the byte stream.

Return Value
The _getshort subroutine returns an unsigned short (16-bit) value.

Implementation Specifics

Files

8-52

The _getshort subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the _getshort subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

letc/resolv.conf

lusr/include/resolv.h

lusr/include/arpa/nameser.h

lusr/i ncl ude/sys/types.h

lusr/i ncl ude/neti net/in.h

Base Operating System Reference

Defines name server and domain names.

Contains global information used by the resolver
subroutines.

Defines Internet name server structures, constants,
and values.

Defines unsigned data types.

Defines Internet constants and structures.

_getshort

Related Information
Domain name access subroutines are the res_init subroutine, res_mkquery subroutine,
and res_send subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
dn_find subroutine, and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the _getlong subroutine, putshort
subroutine, and putlong subroutine.

Sockets 8-53

getsockname

getsockname Subroutine

Purpose

Syntax

Gets the socket name.

#i nclude<sys/types.h >

#include <sys/socket.h>

int getsockname(Socket, Name, NameLength)

int Socket;

struct sockaddr * Name;

int * NameLength;

Description
The getsockname subroutine retrieves the locally bound address of the specified socket.
The socket address represents a port number in the Internet domain and is stored in the
sockaddr structure pointed to by the Name parameter. The /sys/socket.h file defines the
sockaddr data structure.

Note: The getsockname subroutine does not perform operations on UNIX domain sockets.

A process created by another process can inherit open sockets. To use the inherited socket,
the created process needs to identify their addresses. The getsockname subroutine allows
a process to retrieve the local address bound to the specified socket.

A process can use the getpeername subroutine to determine the address of a destination
socket in a socket connection.

Parameters
Socket Specifies the socket for which the local address is desired.

Name

NameLength

Points to the structure containing the local address of the specified
socket.

Specifies the size of the local address in bytes. Initialize the value
pointed to by the NameLength parameter to indicate the amount of
space pointed to by the Name parameter.

Return Value

8-54

Upon successful completion, a value of 0 (zero) is returned, and the NameLength parameter
points to the size of the socket address.

If the getsockname subroutine fails, the subroutine handler performs the following
functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno.

Base Operating System Reference

getsockname

Error Codes

Examples

The getsockname subroutine fails if anyone of the following errors occur:

EBADF

ENOTSOCK

ENOBUFS

EFAULT

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

Insufficient resources are available in the system to complete the call.

The Address parameter is not in a writable part of the user address
space.

1. The Reading Internet Domain Datagrams program fragment illustrates the use of the
getsockname subroutine.

2. The Check for Pending Connections program fragrment illustrates the use of the
getsockname subroutine.

Implementation Specifics

Files

The getsockname subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the getsockname subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the 8SD library
libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and contains
buffer queues.

Contains definitions of unsigned data types.

Related Information
Socket subroutines to name and create sockets are the accept subroutine, the bind
subroutine, and socket subroutine.

The socket subroutine to get the destination address of a connected socket is the
getpeername subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-55

getsockopt

getsockopt Subroutine

Purpose

Syntax

Gets options on sockets.

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt (Socket, Level, OptionName, Option Value, OptionLength)

int Socket, Level, OptionName;

char * Option Value;

int *OptionLength;

Description
The getsockopt subroutine allows an application program to query socket options. The
calling program specifies the name of the socket, the name of the option, and a place to
store the requested information. The operating system gets the socket option information
from its internal data structures and passes the requested information back to the calling
program.

Options may exist at multiple protocol levels. They are always present at the uppermost
socket level. When retrieving socket options, specify the level at which the option resides
and the name of the option.

Parameters
Socket Specifies the unique socket name.

8-56

Level

OptionName

Specifies the protocol level at which the option resides. To retrieve options
at the:

• Socket level-specify the Level parameter as SOL_SOCKET.

• Other levels-supply the appropriate protocol number for the protocol
controlling the option. For example, to indicate that an option will be
interpreted by the TCP protocol, set Level to the protocol number of TCP,
as defined in the netinet/in.h header file.

Specifies a single option. The OptionName parameter and any specified
options are passed uninterpreted to the appropriate protocol module for
interpretation. The sys/socket.h header file contains definitions for socket
level options. The socket level options can be enabled or disabled; they
operate in a toggle fashion. The getsockopt subroutine retrieves
information about the following options:

• SO_ACCEPTCONN

Specifies the recording of debugging
information. This option enables or disables
debugging in the underlying protocol modules.

Socket had a listen call.

Base Operating System Reference

• SO_BROADCAST

• SO_REUSEADDR

• SO _KEEPALIVE

• SO_DONTROUTE

• SO_SNDBUF

• SO_RCVBUF

• SO_SNDLOWAT

• SO_RCVLOWAT

• SO _SNDTIMEO

getsockopt

Specifies whether transmission of broadcast
messages is supported. The option enables
or disables broadcast support.

Specifies that the rules used in validating
addresses supplied by a bind subroutine
should allow reuse of local addresses. This
option enables or disables reuse of local
addresses.

Keeps connections active. Enables or diables
the periodic transmission of messages on a
connected socket. If the connected socket
fails to respond to these messages, the
connection is broken and processes using that
socket are notified with a SIGPIPE signal.

Does not apply routing on outgoing
messages. Indicates outgoing messages
should bypass the standard routing facilities.
Directs messages to the appropriate network
interface according to the network portion of
the destination address. This option enables
or disables routing of outgoing messages.

Lingers on a close subroutine if data is
present. This option controls the action taken
when unsent messages queue on a socket
and a close subroutine is performed. It uses
a struct Linger parameter defined in the
sys/socket.h file. The parameter specifies
the state of the option and linger interval.
Specify the linger interval by using the
setsockopt subroutine when requesting
SO_LINGER. This option enables or disable
lingers on a close subroutine.

If SO_LINGER is set, the system blocks the
process during the close subroutine until it
can transmit the data or until the time expires.
If SO_LINGER is not specified, and a close
subroutine is issued, the system handles the
call in a way that allows the process to
continue as quickly as possible.

Leaves received out-of-band data (data
marked urgent) in line. This option enables or
disables the receipt of out-of-band data.

Retrieves buffer size information.

Retrieves buffer size information.

Retrieves low-water mark information.

Retrieves low-water mark information.

Retrieves time-out information.

Sockets 8-57

getsockopt

Option Value

• SO_RCVTIMEO

• SO_ERROR

Retrieves time-out information.

Retrieves information about error status and
clear

Retrieves information about a socket type.

Specifies a pointer to the address of a buffer. The Option Value parameter
takes an integer parameter. The Option Value parameter should be set to a
nonzero value to enable a Boolean option or to a value of 0 (zero) to disable
the option. The following options enable and disable in the same manner:

• SO_DEBUG

• SO_REUSEADDR

• SO_KEEPALIVE

• SO_DONTROUTE

• SO_BROADCAST

• SO_OOBINLINE

OptionLength Specifies the length of the OptionValue. The OptionLength parameter
initially contains the size of the buffer pointed to by the Option Value
parameter. On return, the OptionLength parameter is modified to indicate
the actual size of the value returned. If no option value is supplied or
returned, the OptionValue parameter can be 0 (zero).

Options at other protocol levels vary in format and name.

Return Value
Upon successful completion, the getsockopt subroutine returns a value of 0 (zero).

If the getsockopt subroutine fails, the subroutine handler performs the following actions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes

8-58

The getsockopt subroutine fails if anyone of the following errors occur:

EBADF

ENOTSOCK

ENOPROTOOPT

EFAULT

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The option is unknown.

The address pointed to by the Option Value parameter is not in a
valid (writable) part of the process space, or the OptionLength
parameter is not in a valid part of the process address space.

Base Operating System Reference

Example

getsockopt

1. The following program fragment illustrates the use of the getsockopt subroutine to
determine an existing socket type.

#include <sys/types.h>
#include <sys/socket.h>
int type, size;
size = sizeof(int);
if(getsockopt(s, SOL_SOCKET, SO_TYPE, (char*)&type,&size)<O){

}

Implementation Specifics

Files

The getsockopt subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the getsockopt subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and contains
buffer queues.

Contains definitions of unsigned data types.

Related Information
Socket subroutines to manipulate protocol information are the endprotoent subroutine,
getprotobynumber subroutine, getprotoent subroutine, setprotoent subroutine, and
socket subroutine.

The socket subroutine to set socket options is the setsockopt subroutine.

Socket subroutines to assign names to sockets and end communications, respectively, are
the bind subroutine and close subroutine.

Sockets Overview, Understanding Socket Options in Communications Programming
Concepts.

Sockets 8-59

htonl

htonl Subroutine

Purpose

Syntax

Converts an unsigned long integer from host byte order to Internet network byte order.

#include <sys/types.h>

#include <netinetlin.h>

unsigned long htonl (HostLong)

unsigned long HostLong;

Description

Parameter

The htonl (host to network long) subroutine converts an unsigned long (32-bit) integer from
host byte order to Internet network byte order.

The Internet network requires addresses and ports in network standard byte order. Use the
htonl subroutine to convert the host integer representation of addresses and ports to
Internet network byte order.

The htonl subroutine is defined in the netinet/in.h file as a macro.

HostLong Specifies a 32-bit integer in host byte order.

Return Values
The htonl subroutine returns a 32-bit integer in Internet network byte order (most significant
byte first).

Implementation Specifics

Files

The htonl subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the htonl subroutine must be compiled with _BSO defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/sys/types.h

lusr/include/netinet/in.h

Defines unsigned data types.

Defines Internet constants and structures.

Related Information

8-60

Additional conversion subroutines are the htons subroutine, ntohl subroutine, and ntohs
subroutine.

Sockets Overview in Communications Programming Concepts.

Base Operating System Reference

htons

htons Subroutine

Purpose

Syntax

Converts an unsigned short integer from host byte order to Internet network byte order.

#include <sys/types.h>

#include <netinet/in.h>

unsigned short htons (HostShorf)

unsigned short HostShort;

Description

Parameter

The htons (host to network short) subroutine converts an unsigned short (16-bit) integer
from host byte order to Internet network byte order.

The Internet network requires ports and addresses in network standard byte order. Use the
htons subroutine to convert addresses and ports from their host integer representation to
network standard byte order.

The htons subroutine is defined in the netinet/in.h file as a macro.

HostShort Specifies a 16-bit integer in host byte order that is a host address or port.

Return Values
The htons subroutine returns a 16-bit integer in Internet network byte order (most
significant byte first).

All applications containing the htons subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

Implementation Specifics

Files

The htons subroutine is part of AIX Base Operating System (BOS) Runtime.

lusr/include/sys/types.h

lusr/include/netinetlin.h

Contains definitions of unsigned data types.

Defines Internet constants and structures.

Related Information
Additional conversion subroutines are the htonl subroutine, ntohl subroutine, and ntohs
subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-61

inet addr

inet addr Subroutine

Purpose

Library

Syntax

Converts Internet addresses to Internet numbers.

(Iibe.a)

#inelude <sys/soeket.h>

#inelude <sys/soeketvar.h>

#inelude <netinetlin.h>

#inelude <arpa/inet.h>

unsigned long inet_addr (CharString)

ehar * CharString;

Description

Parameter

The inet_addr subroutine interprets character strings representing numbers expressed in
the Internet. (dot) notation, returning numbers suitable for use as Internet addresses.

All Internet addresses are returned in network order, with the first byte being the high-order
byte.

Use C language integers when specifying each part of a dot notation.

CharString Represents a string of characters in the Internet address form.

Return Values
Upon successful completion, the inet_addr subroutine returns Internet addresses and
Internet network numbers.

If the inet_addr subroutine fails, the subroutine returns a value of -1 (negative one).

Implementation Specifics

Files

8-62

The inet_addr subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the inet_addr subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

fete/hosts

fete/networks

/usr/i nel ude/sys/soeket. h

/usr/inelude/sys/soeketvar.h

Base Operating System Reference

Contains host names.

Contains network names.

Contains socket definitions.

Defines the kernel structure per socket and contains
buffer queues.

lusr/include/netinet/in.h

lusr/include/arpa/inet.h

Related Information

Defines Internet constants and structures.

Contains external definitions for functions in inet.

Internet address conversion subroutines are the inet_lnaof subroutine, inet_makeaddr
subroutine, inet_netof subroutine, inet_network subroutine, and inet_ntoa subroutine.

Host information retrieval subroutines are the endhostent subroutine, gethostbyaddr
subroutine, gethostbyname subroutine, sethostent subroutine.

Network information retrieval subroutines are the endnetent subroutine, getnetbyaddr
subroutine, getnetbyname subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-63

inet Inaof

inet Inaof Subroutine

Purpose

Library

Syntax

Separates local Internet addresses into their network number and local network address.

(Iibc.a)

#incl ude<sys/socket. h>

#include <sys/socket.h>

#include <netinetlin.h>

#include <arpa/inet.h>

int inet_lnaof (/nternetAddf)

struct in_addr InternetAddr,

Description

Parameter

The inet_lnaof subroutine breaks apart Internet addresses, returning the local network
address part.

All Internet addresses are returned in network order, with the first byte being the high-order
byte. All network numbers and local addresses are returned as integer values in machine
format. Internet addresses are specified using a dot notation.

Use C language integers when specifying each part of a dot notation.

InternetAddr Specifies the Internet address to separate.

Return Values
Upon successful completion, the inet_network subroutine returns an Internet network
number.

If the inet_network subroutine fails, the subroutine returns a -1 (negative one).

Implementation Specifics

Files

8-64

The inet_lnaof subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the inet_lnaof subroutine must be compiled with _BSC defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

/etc/hosts

lusr/i ncl ude/sys/socket. h

/usr/include/sys/socketvar.h

Base Operating System Reference

Contains host names.

Contains socket definitions.

Defines the kernel structure per socket and contains
buffer queues.

lusriinclude/netinetlin.h

lusr/include/arpa/in.h

Related Information

Defines Internet constants and structures.

Contains external definitions for functions in inet.

The inet_addr subroutine, inet_makeaddr subroutine, inet_netof subroutine,
inet_network subroutine, and inet_ntoa subroutine.

Host information retrieval subroutines are the endhostent subroutine, gethostbyaddr
subroutine, gethostbyname subroutine, and sethostent subroutine.

Network information retrieval subroutines are the endnetent subroutine, getnetbyaddr
subroutine, getnetbyname subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-65

inet makeaddr

inet makeaddr Subroutine

Purpose

Library

Syntax

Makes an Internet address.

(Iibe.a)

#i nel ude<sys/soeket. h>

#inelude <sys/soeket.h>

#inelude <netinet/in.h>

#inelude <arpa/inet.h>

struet in_addr inet_makeaddr (Net, LocalNetAddf)

int Net, LocalNetAddr,

Description
The inet_makeaddr takes an Internet network number and a local network address and
constructs an Internet address from it.

All Internet addresses are returned in network order, with the first byte being the high-order
byte. All network numbers and local addresses are returned as integer values in machine
format. Internet addresses are specified using a dot notation.

Use C language integers when specifying each part of a dot notation.

Parameters
Net Contains an Internet network number.

LocalNetAddr Contains a local network address.

Return Values
Upon successful completion, the inet_addr subroutine returns an Internet address.

If the inet_addr subroutine is unsuccessful, the subroutine returns a -1 (negative one).

Implementation Specifics

Files

8-66

The inet_makeaddr subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the inet_makeaddr subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

fete/hosts

/usr/inelude/netinet/in.h

/usr/i nel ude/arpa/i net. h

Base Operating System Reference

Contains host names.

Contains Internet constants and structures.

Contains external definitions for functions in inet.

inet_makeaddr

lusr/include/sys/socketvar.h Defines the kernel structure per socket and contains
buffer queues.

lusr/include/sys/socket.h Contains socket definitions.

Related Information
Internet address conversion subroutines are the inet_addr subroutine, inet_lnaof
subroutine, inet_netof subroutine, inet_network subroutine, and inet_ntoa subroutine.

Host information retrieval subroutines are the endhostent subroutine, gethostbyaddr
subroutine, gethostbyname subroutine, sethostent subroutine.

Network information retrieval subroutines are the endnetent subroutine, getnetbyaddr
subroutine, getnetbyname subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-67

inet_netof

inet netof Subroutine

Purpose

Library

Syntax

Separates network Internet addresses into their network number and local network address.

(Iibe.a)

#inelude <sys/soeket.h>

#inelude <sys/soeketvar.h>

#inelude <netinet/in.h>

#inelude <arpa/inet.h>

int inet_netof (InternetAddfj

struet in_addr InternetAddr,

Description

Parameter

The inet_netof subroutine breaks apart Internet addresses, returning the network number.
Internet addresses are specified using a dot notation.

Al! Internet addresses are returned in network order, with the first byte being the high-order
byte.

Use C language integers when specifying each part of a dot notation.

InternetAddr Specifies the Internet address to separate.

Return Values
Upon successful completion, the inet_netof subroutine returns a network number.

If the inet_netof subroutine fails, the subroutine returns a -1 (negative one).

Implementation Specifics

Files

8-68

The inet_netof subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the inet_netof subroutine must be compiled with _BSC defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

fete/hosts

fete/networks

/usr/inelude/sys/soeket.h

/usr/inelude/sys/socketvar.h

/usr/inelude/netinet/in.h

/usr/inelude/arpalinet.h

Base Operating System Reference

Contains host names.

Contains network names.

Contains socket definitions.

Defines the kernel structure per socket and contains
buffer queues.

Defines Internet constants and structures.

Contains external definitions for functions in inet.

Related Information
Internet address conversion subroutines are the inet_addr subroutine, inet_lnaof
subroutine, inet_makeaddr subroutine, inet_network subroutine, and inet_ntoa
subroutine.

Host information retrieval subroutines are the endhostent subroutine, gethostbyaddr
subroutine, gethostbyname subroutine, and sethostent subroutine.

Network information retrieval subroutines are the endnetent subroutine, getnetbyaddr
subroutine, getnetbyname subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-69

inet network Subroutine

Purpose

Library.

Syntax

Converts Internet network addresses in . (dot) notation to Internet numbers.

(libc.a)

#include <sys/socket.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inet_network (CharString)

char * CharString;

Description

Parameter

The inet_network subroutine interprets character strings representing numbers expressed
in the Internet. (dot) notation and returns numbers suitable for use as Internet addresses
and Internet network numbers.

All Internet addresses are returned in network order, with the first byte being the high-order
byte.

Use C language integers when specifying each part of a dot notation.

CharString Represents a string of characters in the Internet address form.

Return Values
Upon successful completion, the inet_network subroutine returns numbers suitable for use
as Internet network numbers.

If the inet_network subroutine fails, the subroutine returns a value of -1 (negative one).

Implementation Specifics

Files

8-70

The inet_network subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the inet_network subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the 8SD library
libbsd.

/etc/hosts

/etc/networks

/usr/include/sys/socket.h

/usr/include/sys/socketvar.h

Base Operating System Reference

Contains host names.

Contains network names.

Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

lusr/include/netinetlin.h

lusr/i ncl ude/arpa/i net. h

Related Information

inet network

Defines Internet constants and structures.

Contains external definitions for functions in
Internet.

Internet address conversion subroutines are the inet_addr subroutine, inet_lnaof
subroutine, inet_makeaddr subroutine, inet_netof subroutine, and inet_ntoa subroutine.

Host information retrieval subroutines are the endhostent subroutine, gethostbyaddr
subroutine, gethostbyname subroutine, sethostent subroutine.

Network information retrieval subroutines are the endnetent subroutine, getnetbyaddr
subroutine, getnetbyname subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-71

inet_ntoa

inet ntoa Subroutine

Purpose

Library

Syntax

Converts an Internet address into an ASCII string.

(libc.a)

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char *inet_ntoa (lnternetAddf)

struct in_addr InternetAddr,

Description

Parameter

The inet_ntoa subroutine takes an Internet address and returns an ASCII string
representing the Internet address in dot notation. All Internet addresses are returned in
network order, with the first byte being the high-order byte.

Use C language integers when specifying each part of a dot notation.

InternetAddr Contains the Internet address to be converted to ASCII.

Return Values
Upon successful completion, the inet_ntoa subroutine returns an Internet address.

If the inet_ntoa subroutine fails, the subroutine returns a -1 (negative one).

Implementation Specifics

Files

8-72

The inet_ntoa subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the inet_ntoa subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

/etc/hosts

/etc/networks

/usr/include/sys/socket.h

/usr/include/sys/socketvar.h

/usr/i ncl ude/neti netli n. h

Base Operating System Reference

Contains host names.

Contains network names.

Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

Defines Internet constants and structures.

Related Information
Internet address conversion subroutines are the inet_addr subroutine, inet_lnaof
subroutine, inet_makeaddr subroutine, inet_network subroutine, and inet_ntoa
subroutine.

Host information retrieval subroutines are the endhostent subroutine, gethostbyaddr
subroutine, gethostbyname subroutine, and sethostent subroutine.

Network information retrieval subroutines are the endnetent subroutine, getnetbyaddr
subroutine, getnetbyname subroutine, getnetent subroutine, and setnetent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-73

listen

listen Subroutine

Purpose

Syntax

Listens for socket connections and limits the backlog of incoming connections.

int listen (Socket, Backlog)

i nt Socket, Backlog;

Description
The listen subroutine performs the following activities:

1. Identifies the socket that receives the connections.

2. Marks the socket as accepting connections.

3. Limits the number (Backlog) of outstanding connection requests in the system queue.

The maximum queue length (Backlog) that the listen subroutine can specify is ten (10). The
maximum queue length is indicated by the SOMAXCONN value in the
/include/sys/socket.h file.

Parameters
Socket Specifies the unique name for the socket.

Backlog Specifies the maximum number of outstanding connection requests.

Return Value
Upon successful completion, the listen subroutine returns a value 0 (zero).

If the listen subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno.

Error Codes

8-74

The subroutine fails if anyone of the following errors occurs:

EBADF

ECONNREFUSED

ENOTSOCK

EOPNOTSUPP

Base Operating System Reference

The Socket parameter is not valid.

A connection request arrived exceeding the backlog
amount.

The Socket parameter refers to a file, not a socket.

The referenced socket is not a type that supports the listen
subroutine.

Examples

listen

1. The following program fragment illustrates the use of the listen subroutine with five (5)
as the maximum number of outstanding connections which may be queued awaiting
acceptance by the server process.

listen(s,5)

Implementation Specifics

Files

The listen subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the listen subroutine must be compiled with _BSC defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/sys/socket.h

lusr/i ncl ude/sys/socketva r. h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

Contains definitions for unsigned data types.

Related Information
Other creation and connection socket subroutines are the accept subroutine, connect
subroutine, and socket subroutine.

Sockets Overview, Understanding Socket Connections in Communications Programming
Concepts.

Sockets 8-75

ntohl

ntohl Subroutine

Purpose

Syntax

Converts an unsigned long integer from Internet network standard byte order to host byte
order.

#i ncl u de<sys/types. h>

#include <netinet/in.h>

unsigned long ntohl (NetLong)

unsigned long NetLong;

Description

Parameter

The ntohl (network to host long) subroutine converts an unsigned long (32-bit) integer from
Internet network standard byte order to host byte order.

Receiving hosts require addresses and ports in host byte order. Use the ntohl subroutine to
convert Internet addresses and ports to the host integer representation.

The ntohl subroutine is defined in the netinet/in.h file as a macro.

NetLong Requires a 32-bit integer in network byte order.

Return Values
The ntohl subroutine returns a 32-bit integer in host byte order.

Implementation Specifics

Files

The ntohl subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the ntohl subroutine must be compiled with _BSO defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/sys/types.h

lusr/include/netinet/in.h

Contains definitions of unsigned data types.

Defines Internet constants and structures.

Related Information

8-76

Additional conversion subroutines are the htonl subroutine, htons subroutine, and ntohs
subroutine.

Host address retrieval subroutines are the endhostent subroutine, gethostbyaddr
subroutine, gethostbyname subroutine, and sethostent subroutine.

Port retrieval subroutines are the endservent subroutine, the getservbyname subroutine,
getservbyport subroutine, getservent subroutine, and setservent subroutine.

Sockets Overview in Communications Programming Concepts.

Base Operating System Reference

ntohs

ntohs Subroutine

Purpose

Syntax

Converts an unsigned short integer from Internet network byte order to host byte order.

#include<sys/types.h>

#include <netinetlin.h>

unsigned short ntohs (NetShorf)

unsigned short NetShort;

Description

Parameter

The ntohs (network to host short) subroutine converts an unsigned short (16-bit) integer
from Internet network byte order to the host byte order.

Receiving hosts require Internet addresses and ports in host byte order. Use the ntohs
subroutine to convert Internet addresses and ports to the host integer representation.

The ntohs subroutine is defined in the netinetlin.h file as a macro.

NetShort Requires a 16-bit integer in network standard byte order.

Return Value
The ntohs subroutine returns the supplied integer in host byte order.

Implementation Specifics

Files

The ntohs subroutine is part of AIX Base Operating System (80S) Runtime.

All applications containing the ntohs subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the 8SD library Iibbsd.

lusr/include/sys/types.h

lusr/include/netinetlin.h

Contains definitions of unsigned data types.

Defines Internet constants and structures.

Related Information
Additional conversion subroutines are the htonl subroutine, htons subroutine, and ntohl
subroutine.

Host address retrieval subroutines are the endhostent subroutine, gethostbyaddr
subroutine, gethostbyname subroutine,and sethostent subroutine.

Port retrieval subroutines are the endservent subroutine, getservbyname subroutine,
getservbyport subroutine, getservent subroutine, and setservent subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-77

_putlong

_putlong Subroutine

Purpose

Library

Syntax

Places long byte quantities into the byte str~am.

(libc.a)

#include <sys/types.h>

#include <netinetlin.h>

#include <arpa/nameser.h>

#include <resolv.h>

void _putlong (Long, MessagePtt)

unsigned long Long;

u_char * MessagePtr,

Description
The _putlong subroutine places long byte quantities into the byte stream or arbitrary byte
boundaries.

The _putlong subroutine is one of a set of subroutines that form the resolver, a set of
functions that resolve domain names. Global information that is used by the resolver
subroutines is kept in the _res data structure. The linclude/resolv.h file contains the _res
structure definition.

Parameters
Long Represents a 32-bit integer.

MessagePtr Represents a pointer into the byte stream.

Implementation Specifics

Files

S-78

The _putlong subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the _putlong subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

letc/resolv.conf

lusr/i ncl ude/resolv. h

lusr/include/arpa/nameser.h

lusr/i ncl ude/sys/types.h

lusrlinclude/netinet/in.h

Base Operating System Reference

Lists the name server and domain name.

Contains global information used by the resolver
subroutines.

Defines the Internet name server structure.

Contains definitions of unsigned data types.

Defines Internet constants and structures.

_putlong

Related Information
Domain name access subroutines are the res_init subroutine, res_mkquery subroutine,
and res_send subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
dn_find subroutine, and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the _getlong subroutine,
_getshort subroutine, and putshort subroutine.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Sockets 8-79

_putshort

_putshort Subroutine

Purpose

Library

Syntax

Places short byte quantities into the byte stream.

Clibc.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

void _putshort (Short, MessagePtr)

unsigned short Short;

u_char *MessagePtr,

Description
The _putshort subroutine puts short byte quantities into the byte stream or arbitrary byte
boundaries.

The _putshort subroutine is one of a set of subroutines that form the resolver, a set of
functions that resolve domain names. Global information that is used by the resolver
subroutines is kept in the _res data structure. The linclude/resolv.h file contains the _res
structure definition.

Parameters
Short Represents a 16-bit integer.

MessagePtr Represents a pointer into the byte stream.

Implementation Specifics

Files

8-80

The _putshort subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the _putshort subroutine must be compiled with _BSD defined.
In "addition, when applicable, all socket applications must include the BSD library libbsd.

letc/resolv.conf

lusr/include/resolv.h

lusr/include/arpa/nameser.h

lusr/include/sys/types.h

lusr/include/netinet/in.h

Base Operating System Reference

Lists the name server and domain name.

Contains global information used by the resolver
subroutines.

Contains the Internet name server.

Defines unsigned data types.

Contains Internet constants and structures.

_putshort

Related Information
Domain name access subroutines are the res_init subroutine, res_mkquery subroutine,
and res_send subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
dn_find subroutine, and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the _getlong subroutine,
_getshort subroutine, and putlong subroutine.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Sockets 8-81

rcmd

rcmd Subroutine

Purpose

Library

Syntax

Allows execution of commands on a remote host

(libe.a)

int remd (Host, Port, LocalUser, RemoteUser, Command, ErrFileOesc)

char ** Host;

u_short Port;

char * LocalUser, * RemoteUser, * Command;

int * ErrFileOesc;

Description
The remd (remote command) subroutine allows execution of certain commands on a remote
host that supports rshd, rlogin, and rpe among others.

Only processes with an effective user 10 of root user can use the remd subroutine. An
authentication scheme based on remote port numbers is used to verify permissions. Ports
in the range from 0 to 1023 can only be used by a root user.

The remd subroutine looks up a host via the nameserver or if the local nameserver isn't
running, via the fete/hosts file.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the calling process and given to the remote command as standard input (stdin)
and standard output (stdout).

Always specify the Host name. If the local domain and remote domain are the same,
specifying the domain parts is optional.

Parameters
Host Specifies the name of a remote host that is listed in the fetefhosts file. If

the specified name of the host is not found in this file, the remd subroutine
fails.

8-82

Port Specifies the well-known port to use for the connection. The fete/services
file contains the DARPA Internet services, their ports, and socket types.

LocalUser and RemoteUser

Command

ErrFileOesc

Points to user names that are valid at the local and remote host,
respectively. Any valid user name can be given.

Specifies the name of the command to be executed at the remote host.

Specifies an integer controlling the set up of communications channels.
Integer options are as follows:

• Not 0 (zero) = an auxiliary channel to a control process is set up, and the
ErrFileOesc parameter points to the file descriptor for the channel. The

Base Operating System Reference

rcmd

control process provides diagnostic output from the remote command on
this channel and also accepts bytes as signal numbers to be forwarded to
the process group of the command.

• 0 (zero) = the standard error (stderr) of the remote command is the same
as standard output (stdout), and no provision is made for sending
arbitrary signals to the remote process. However, it is possible to send
out-of-band data to the remote command.

Return Values
Upon successful completion, the rcmd subroutine returns a valid socket descriptor.

Upon unsuccessful completion, the rcmd subroutine returns a value of -1 (negative one).
The subroutine returns a -1 (negative one), if the effective user 10 of the calling process is
not root user or if the subroutine fails to resolve the host.

Implementation Specifics

Files

The rcmd subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the rcmd subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSO library libbsd.

/etc/services

/etc/hosts

/etc/resolv.config

Contains the service names, ports, and socket type.

Contains host names and their addresses for hosts in a
network.

Contains the name server and domain name.

Related Information
Additional remote command execution subroutines are the rresvport subroutine and
ruserok subroutine.

TCP/IP Interface Program commands are the rlogind command and rshd command.

TCP/IP daemons are the named daemon.

System calls to get and set the host name are, respectively, the gethostname subroutine
and sethostname subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-83

recv

recv Subroutine

Purpose

Syntax

Receives messages from connected sockets.

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/socketvar.h>

int recv (Socket, Buffer, Length, Flags)

int Socket,

char * Buffer,

int Length, Flags;

Description
The recv (receive) subroutine receives messages from a connected soCket. The recvfrom
and recvmsg subroutines receive messages from both connected and unconnected
sockets. However, they are usually used for unconnected sockets only.

The recv subroutine returns the length of the message. If a message is too long to fit in the
supplied buffer, excess bytes may be truncated depending on the type of socket that issued
the message.

If r.o messages are available at the socket, the recv subroutine waits for a message to
arrive, unless the socket is nonblocking. If a socket is nonblocking, the system returns an
error.

Use the select subroutine to determine when more data arrives.

Parameters
Socket Specifies the socket descriptor.

8-84

Buffer

Length

Flags

Specifies an address where the message should be placed.

Specifies the size of the Buffer parameter.

Points to a value controlling the message reception. The /sys/socket.h file
defines the Flags value. The argument to receive a call is formed by
logically ~Ring one or more of the following values:

MSG_OOB

Peeks at incoming message. The data is treated as
unread and the next recv (or similar call) will still return
this data.

Processes out-of-band data.

Base Operati ng System Reference

recv

Return Value
Upon successful completion, the recy subroutine returns the length of the message in bytes.

If the recy subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes
The recy subroutine fails if anyone of the following errors occurs:

EBADF

ENOTSOCK

EWOULDBLOCK

EINTR

EFAULT

The Socket parameter is not valid.

The Socket parameter refe.rs to a file, not a socket.

The socket is marked nonblocking, and no connections are present
to be accepted.

A signal interrupted the recv subroutine before any data was
available.

The data was directed to be received into a non-existent or
protected part of the process address space. The Buffer is invalid.

Implementation Specifics

Files

The recy subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the recY subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/sys/socket.h
lusr/include/sys/socketyar.h

lusr/include/sys/types.h

Contains socket definitions.
Defines the kernel structure per socket and contains
buffer queues.
Contains definitions for unsigned data types.

Related Information
The fgets subroutine and fputs subroutine.

Additional receive subroutines are the recyfrom subroutine and recymsg subroutine.

Subroutines for sending messages over sockets are the send subroutine, sendmsg
subroutine, and sendto subroutine.

Socket subroutines for disabling communications, creating sockets and monitoring data
reception are, respectively, the select subroutine, shutdown subroutine, and socket
subroutine.

The read subroutine and write subroutine.

Sockets Overview, Understanding Socket Data Transfer in Communications Programming
Concepts.

Sockets 8-85

recvfrom

recvfrom Subroutine

Purpose

Syntax

Receives messages from sockets.

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/socket.h>

int recvfrom (Socket, Buffer, Length, Flags, From, FromLength)

int Socket;

char * Buffer,

int Length, Flags;

struct sockaddr * From;

int * FromLength;

Description
The recvfrom subroutine allows an application program to receives messages from
unconnected sockets. The recvfrom subroutine is normally applied to unconnected sockets
as it includes parameters that allow the calling program to specify the source point of the
data to be received.

To return the source address of the message, specify a non-Null value for the From
parameter. The recvfrom subroutine initializes the FromLength parameter to the size of the
buffer associated with the From parameter. On return, the recvfrom subroutine modifies the
FromLength parameter to indicate the actual size of the stored address. The recvfrom
subroutine returns the length of the message. If a message is too long to fit in the supplied
buffer, excess bytes may be truncated depending on the type of socket that issued the
message.

If no messages are available at the socket, the recvfrom subroutine waits for a message to
arrive, unless the socket is nonblocking. If the socket is nonblocking, the system returns an
error.

Parameters
Socket Specifies the socket descriptor.

8-86

Buffer

Length

Flags

Specifies an address where the message should be placed.

Specifies the size of the Buffer parameter.

Points to a value controlling the message reception. The argument to
receive a call is formed by logically ORing one or more of the values shown
in the following list:

Peeks at incoming message.

Processes out-of-band data.

Base Operating System Reference

recvfrom

From Points to a socket structure, filled in with source's address.

FromLength Specifies the length of the sender's or source's address.

Return Value
If the recvfrom subroutine is successful, the subroutine returns the length of the message in
bytes.

If the call is unsuccessful, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes
The recvfrom subroutine fails if anyone of the following errors occurs:

EBAOF

ENOTSOCK

EWOULOBLOCK

EFAULT

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The socket is marked nonblocking, and no connections are
present to be accepted.

The data was directed to be received into a non-existent or
protected part of the process address space. The buffer is
invalid.

Implementation Specifics

Files

The recvfrom subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the recvfrom subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and contains
buffer queues.

Contains definitions for unsigned data types.

Related Information
The fgets subroutine and fputs subroutine.

Additional socket receive subroutines are the recv subroutine and recvmsg subroutine.

Subroutines for sending messages over sockets are the send subroutine, sendmsg
subroutine, and sendto subroutine.

Socket subroutines for disabling communications, creating sockets and monitoring data
reception are, respectively, the select subroutine, shutdown subroutine, and socket
subroutine.

Sockets 8-87

recvfrom

8-88

The read subroutine and write subroutine.

Sockets Overview, Understanding Socket Data Transfer in Communications Programming
Concepts.

Base Operating System Reference

recvmsg

recvmsg Subroutine

Purpose

Syntax

Receives a message from any socket.

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/socketvar.h>

int recvmsg (Socket, Message, Flags)

int Socket;

struct msghdr Message[];

int Flags;

Description
The recvmsg subroutine receives messages from unconnected or connected sockets. The
recvmsg subroutine returns the length of the message. If a message is too long to fit in the
supplied buffer, excess bytes may be truncated depending on the type of socket that issued
the message.

If no messages are available at the socket, the recvmsg subroutine waits for a message to
arrive. If the socket is nonblocking and no messages are available, the recvmsg subroutine
fails.

Use the select subroutine to determine when more data arrives.

The recvmsg subroutine uses a msghdr structure to decrease the number of directly
supplied parameters. The msghdr structure is defined in the sys/socket.h header file.

Parameters
Socket

Message

Flags

Specifies the unique name of the socket.

Points to the address of the msghdr structure which contains both the
address for the incoming message and the space for the sender address.

Permits the subroutineer to exercise control over the reception of
messages. The Flags parameter to receive a call is formed by logically
~Ring one or more of the values shown in the following list:

Peeks at incoming message.

Processes out-of-band data.

The Isys/socket.h file contains the possible values for the Flags parameter.

Sockets 8-89

recvmsg

Return Value
Upon successful completion, the length of the message in bytes is returned.

If the recvrnsg subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes
The recvmsg subroutine fails if anyone of the following error codes occurs:

EBADF

ENOTSOCK

EWOULDBLOCK

EINTR

EFAULT

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The socket is marked nonblocking, and no connections are present
to be accepted.

The recvmsg subroutine was interrupted by delivery of a signal
before any data was available for the receive.

The Address parameter is not in a writable part of the user address
space.

Implementation Specifics

Files

The recvmsg subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the recvrnsg subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and contains
buffer queues.

Contains definitions for unsigned data types.

Related Information

8-90

Additional socket receive subroutines are the recv subroutine and recvfrom subroutine.

Socket send subroutines are the send subroutine, sendmsg subroutine, and sendto
subroutine.

Socket subroutines for closing communications, monitoring data broadcasts, and creating
sockets are, respectively, the select subroutine, shutdown subroutine, and socket
subroutine.

Base Operating System Reference

res init Subroutine

Purpose

Library

Syntax

Searches for a default domain name and Internet address.

(libc.a)

#include <sys/types.h>

#include <netinetlin.h>

#include <arpa/nameser.h>

#include <resolv.h>

void res_init ()

Description
The res_init subroutine reads the /etc/resolv.conf file for the default domain name and the
Internet address of the initial hosts running the name server.

Note: If the /etc/resolv.conf file does not exist, the res_init subroutine attempts name
resolution using the local/etc/hosts file. If the system is not using a domain name
server, the /etc/resolv.conf file should not exist. The /etc/host file should be
present on the system even if the system is using a name server. In this instance,
the file should contain the host ids that the system requires to function even if the
name server is not functioning.

The res_init subroutine is one of a set of subroutines that form the resolver, a set of
functions that translate domain names to Internet addresses. All resolver subroutines use
the /usr/include/resolv.h header file, which defines the _res structure. The res_init
subroutine stores domain name information in the _res structure.

Implementation Specifics

Files

The res_init subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the res_init subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library Iibbsd.

/etc/resolv.conf

/etc/hosts

/usr/include/arpa/nameser.h

/usr/include/netinetlin.h

/usr/include/resolv.h

/usr/include/sys/types.h

Contains the name server and domain name.

Contains host names and their addresses for hosts
in a network. This file is used to resolve a host
name into an Internet address.

Contains the Internet name server.

Contains Internet constants and structures.

Contains global information used by the resolver
subroutines.

Contains definitions of unsigned data types.

Sockets 8-91

Related Information

8-92

Domain name access subroutines are the res_mkquery subroutine and res_send
subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
dn_find subroutine, and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the _getlong subroutine,
_getshort subroutine, putlong subroutine, and putshort subroutine.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Base Operating System Reference

res_mkquery Subroutine

Purpose

Library

Syntax

Makes query messages for name servers.

(libc.a)

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_mkquery (Operation, DomName, Class, Type, Data, DataLength, Reserved,

Buffer, BufferLength)

int Operation;

char * DomName;

int Class, Type;

char *Data;

int DataLength;

struct rrec * Reserved;

char * Buffer,

int BufferLength;

Description
The res_mkquery subroutine makes packets for name servers in the Internet domain. The
res_mkquery subroutine makes a standard query message and places this message in the
location pointed to by the Buffer parameter.

The res_mkquery subroutine is one of a set of subroutines that form the resolver, a set of
functions that resolve domain names. Global information that is used by the resolver
subroutines is kept in the _res data structure. The linclude/resolv.h file contains the _res
structure definition.

Parameters
Operation

DomName

Specifies a query type. The usual type is QUERY, but the parameter can
be set to any of the query types defined in the arpa/nameser.h file.

Points to the name of the domain. If the DomName parameter points to a
single label and the RES_DEFNAMES bit is set, as it is by default, the
subroutine appends DomName to the current domain name. The current
domain name is defined by the name server in use or in the
letc/resolv.conf file.

Sockets 8-93

res __ mkquery

8--94

Class Specifies one of the following parameters:

Specifies the ARPA Internet.

Specifies the Chaos network at MIT.

Type Requires one of the following values:

T_A Host address

T_NS Authoritative server

T_MD Mail destination

T MF Mail forwarder

T_CNAME Canonical name

T_SOA Start of authority zone

T MB Mailbox domain name

T_MG Mail group member

T_MR Mail rename name

T_NULL NULL resource record

T_WKS Wellknown service

T_PTR Domain name pointer

T_HINFO Host information

T_MINFO Mailbox information

T_MX Mail routing information

T_UINFO User (finger) information

T_UID User 10

T_GID Group 10.

Data Points to the data that is sent to the name server as a search key. The data
is stored as a character array.

DataLength Defines the size of the array pOinted to by the Data parameter.

Reserved Specifies a reserved and currently unused parameter.

Buffer Points to a location containing the query message.

BufferLength Specifies the length of the message pointed to by the Buffer parameter.

Base Operating System Reference

Return Value
Upon successful completion, the res_mkquery subroutine returns the size of the query. If
the query is larger than the value of the BufferLength parameter, the subroutine fails and
returns a value of -1 (negative one).

Implementation Specifics

Files

The res_mkquery subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the res_mkquery subroutine must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

letc/resolv.conf

lusr/include/resolv.h

lusr/includelarpa/nameser.h

lusr/include/sys/types.h

lusr/include/netinet/in.h

Contains the name server and domain name.

Contains global information used by the resolver
subroutines.

Contains Internet name servers.

Contains definitions of unsigned data types.

Contains Internet constants and structures.

Related Information
Domain name access subroutines are the res_init subroutine and res_send subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
dn_find subroutine, and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the _getlong subroutine,
_getshort subroutine, putlong subroutine, and putshort subroutine.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Sockets 8-95

res_send

res send Subroutine

Purpose

Library

Syntax

Sends a query to a name server and retrieves a response.

(Iibc.a)

#include <sys/types.h>

#include <netinetlin.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_send (MessagePtr, MessageLength; Answer, AnswerLength)

char * MsgPtr,

int MsgLength;

char * Answer,

int AnswerLength;

Description
The res_send subroutine sends a query to name servers and calls the res_init subroutine if
the RES_INIT option of the _res structure is not set. This subroutine sends the query to the
local name server and handles timeouts and retries.

The res_send subroutine is one of a set of subroutines that form the resolver, a set of
functions that resolve domain names. Global information that is used by the resolver
subroutines is kept in the _res structure. The linclude/resolv.h file contains the _res
structure definition.

Parameters
MessagePtr Points to the beginning of a message.

MessageLength Specifies the length of the message.

Answer Points to an address where the response is stored.

AnsLength Specifies the size of the answer area.

Return Value
Upon successful completion, the res_send subroutine returns the length of the message.

If the res_send subroutine fails, the subroutine returns a -1 (negative one).

Implementation Specifics

8-96

The res_send subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the res_send subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

Base Operating System Reference

Files
letc/resolv.conf

lusr/include/resolv.h

lusr/include/arpa/nameser.h

lusr/include/sys/types.h

lusr/include/netinetlin.h

res send

Contains general name server and domain name
information.

Contains global information used by the resolver
subroutines.

Contains general Internet name server information.

Contains definitions of unsigned data types.

Contains Internet constants and structures.

Related Information
Domain name access subroutines are the res_init subroutine and res_mkquery subroutine.

Domain name translation subroutines are the dn_comp subroutine, dn_expand subroutine,
dn_find subroutine, and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines are the _getlong subroutine,
_getshort subroutine, putlong subroutine, and putshort subroutine.

Sockets Overview, Understanding Domain Name Resolution in Communications
Programming Concepts.

Sockets 8-97

rexec

rexec Subroutine

Purpose

Library

Syntax

Allows command execution on a remote host.

(libc.a)

int rexec (Host, Port, User, Passwd, Command, ErrFileDescParam)

char ** Host;

int Port; char * User, * Passwd, * Command;

int * ErrFileDescParam;

Description
The rexec (remote execution) subroutine allows the calling process to execute commands
on a remote host.

If the rexec connection succeeds, a socket in the Internet domain of type SOCK_STREAM
is returned to the calling process and is given to the remote command as standard input and
standard output.

Parameters
Host Contains the name of a remote host that is listed in the letc/hosts file or

letc/resolv.config file. If the name of the host is not found in either file, the
rexec fails.

8-98

Port Specifies the well-known DARPA Internet port to use for the connection. A
pointer to the structure that contains the necessary port can be obtained by
issuing the following library call:

getservbyname("exec","tcp")

User and Passwd

Command

Points to a user 10 and password valid at the host. If these parameters are
not supplied, the rexec subroutine takes the following actions until finding a
user 10 and password to send to the remote host:

1. Searches the current environment for the user ID and password on the
remote host.

2. Searches the user's home directory for a file called $HOME/.netrc that
contains a user 10 and password.

3. Prompts the user for a user ID and password.

Points to the name of the command to be executed at the remote host.

ErrFileDescParam
Specifies one of the following values:

• Not 0 (zero) = an auxiliary channel to a control process is set up, and a
descriptor for it is placed in the ErrFileDescParam parameter. The

Base Operating System Reference

rexec

control process provides diagnostic output from the remote command on
this channel and also accepts bytes as signal numbers to be forwarded to
the process group of the command. This diagnostic information does not
include remote authorization failure, since this connection is set up after
authorization has been verified.

• 0 (zero) = the standard error of the remote command is the same as
standard output, and no provision is made for sending arbitrary signals to
the remote process. In this case, however, it may be possible to send
out-of-band data to the remote command.

Return Value
Upon successful completion, the system returns a socket to the remote command.

If the rexee subroutine is unsuccessful, the system returns a -1 (negative one) indicating
that the specified host name does not exist.

Implementation Specifics

Files

The rexee subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the rexee subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

fetefhosts

fetefresolv.eonfig

$HOMEf.netre

Contains host names and their addresses for hosts in a
network. This file is used to resolve a host name into an
Internet address.

Contains the name server and domain name.

Contains Automatic login information.

Related Information
The rexeed command.

The getservbyname subroutine.

Additional remote command execution subroutines are the remd subroutine, rresvport
subroutine, and ruserok subroutine.

Sockets Overview in Communications Programming Concepts.

The TCPflP Overview for System Management in Communication Concepts and
Procedures.

Sockets 8-99

rresvport

rresvport Subroutine

Purpose

Library

Syntax

Retrieves a socket with a privileged address.

(Iibe.a)

int rresvport (Port)

int *Port,

Description
The rresvport subroutine obtains a socket with a privileged address bound to the socket. A
privileged Internet port is one that falls in the range of 0 to 1023.

Only processes with an effective user 10 of root user can use the rresvport subroutine. An
authentication scheme based on remote port numbers is used to verify permissions.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the calling process.

Parameters
Port Specifies the port to use for the connection.

Return Values
Upon successful completion, the rresvport subroutine returns a valid, bound socket
descriptor.

If the rresvport subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program.

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes

8-100

The rresvport subroutine fails if anyone of the following errors occur:

EAGAIN All network ports are in use.

EAFNOSUPPORT

EMFILE

ENFILE

ENOBUFS

The addresses in the specified address family cannot be used with this
socket.

Two hundred (200) file descriptors are currently open.

The system file table is full.

Insufficient buffers are available in the system to complete the subroutine.

Base Operating System Reference

rresvport

Implementation Specifics

File

The rresvport subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the rresvport subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

/etc/services Contains the service names.

Related Information
Additional remote command execution subroutines are the rcmd subroutine and ruserok
subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-101

ruserok

ruserok Subroutine

Purpose

Library

Syntax

The ruserok subroutine allows servers to authenticate clients.

(Iibc.a)

int ruserok (Host, RootUser, Remote User, Loea/Usery

char *Host;

int RootUser,

char * Remote User, * Loea/User,

Description
The ruserok (remote command user OK) subroutine allows servers to authenticate clients
requesting services.

Always specify the host name. If the local domain and remote domain are the same,
specifying the domain parts is optional. To determine the domain of the host, use the
gethostname subroutine.

Parameters
Host Specifies the name of a remote host. The ruserok subroutine checks for

this host in the letc/host.equiv file. Then, if necessary, the subroutine
checks a file in the user's home directory at the server called
I$HOME/.rhosts for a host and remote user ID.

RootUser

Remote User

Loea/User

Specifies a value to indicate whether the effective user ID of the calling
process is that of a root user. A value of 0 (zero) indicates the process
does not have a root user ID. A value of 1 (one) indicates that the
process has local root user privileges, and the letc/host.equiv file is not
checked.

Points to a user name that is valid at the remote host. Any valid user
name can be specified.

Points to a user name that is valid at the local host. Any valid user name
can be specified.

Return Values

8-102

The ruserok subroutine returns a 0 (zero), if the subroutine successfully locates the name
specified by the Host parameter in the letc/hosts.equiv file or the IDs specified by the Host
and RemoteUser parameters are found in the I$HOME/.rhosts file.

If the name specified by the Host parameter was not found, the ruserok subroutine returns
a -1 (negative one).

Base Operating System Reference

ruserok

Implementation Specifics

Files

The ruserok subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the ruserok subroutine must be compiled with _BSC defined. In
addition, when applicable, all socket applications must include the BSD library libbsd.

letc/services

letc/host.eq u iv

I$HOME/.rhosts

Contains service names.

Specifies foreign host names.

Specifies the remote users of a local user account.

Related Information
Additional remote command execution subroutines are the rcmd subroutine and rresvport
subroutine.

subroutines to get and set the host name, respectively, are the gethostname subroutine and
sethostname subroutine.

TCP/IP Interface Program commands are the rlogind command and rshd command.

Sockets Overview in Communications Programming Concepts.

Sockets 8-103

send

send Subroutine

Purpose

Syntax

Sends messages from a connected socket.

#include <sys/types.h>

#include <sys/socketvar.h>

#include <sys/socket.h>

int send (Socket, Message, Length, Flags)

int Socket;

char * Message;

int Length, Flags;

Description
The send subroutine sends a message only when the socket is connected. The sendto and
sendmsg subroutines can be used with unconnected or connected sockets.

To broadcast on a socket, first issue a setsockopt subroutine using the SO_BROADCAST
option to gain broadcast permissions.

Specify the length of the message with the Length parameter. If the message is too long to
pass through the underlying protocol, the system returns an error and does not transmit the
message.

No indication of failure to deliver is implied in a send subroutine. A return value of-1
(negative one) indicates some locally detected errors.

If no space for messages is available at the sending socket to hold the message to be
transmitted, the send subroutine blocks unless the socket is in a nonblocking 1/0 mode.
Use the select subroutine to determine when it is possible to send more data.

Parameters
Socket Specifies the unique name for the socket.

8-104

Message

Length

Flags

Points to the address of the message to send.

Specifies the length of the message in bytes.

Allows the sender to control the transmission of the message. The Flags
parameter to send a call is formed by logically ~Ring one or both of the
values shown in the following list:

MSG_DONTROUTE

Processes out-of-band data on sockets
that support SOCK_STREAM
communication.

Sends without using routing tables.

The Isys/socket.h file defines the Flags values.

Base Operating System Reference

send

Return Value
Upon successful completion, the send subroutine returns the number of characters sent.

If the send subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes
The subroutine fails if anyone or of the following errors occurs:

EBADF

ENOTSOCK

EFAULT

EMSGSIZE

EWOULDBLOCK

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The Address parameter is not in a writable part of the user address
space.

The message is too large be sent all at once, as the socket
requires.

The socket is marked nonblocking, and no connections are present
to be accepted.

Implementation Specifics

Files

The send subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the send subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the BSD library Iibbsd.

lusr/include/sys/socket.h

lusr/include/sys/types.h

Contains socket definitions.

Contains definitions of unsigned data type.

Related Information
Subroutines to receive and send data over sockets are the recv subroutine, recvfrom
subroutine, recvmsg subroutine, sendmsg subroutine, sendto subroutine, and shutdown
subroutine.

Socket creation and connection subroutines are the connect subroutine and socket
subroutine.

Subroutines for monitoring data broadcasts and manipulating socket options are the
getsockopt subroutine, select subroutine, and setsockopt subroutine.

Sockets Overview, Understanding Socket Data Transfer in Communications Programming
Concepts.

Sockets 8-105

sendmsg

sendmsg Subroutine

Purpose

Syntax

Sends a message from a socket using a message structure.

#include<sys/types.h>

#include <sys/socketvar.h>

#include <sys/socket.h>

int sendmsg (Socket, Message, Flags)

int Socket;

struct msghdr Message[];

int Flags;

Description
The sendmsg subroutine sends messages through connected or unconnected sockets
using the msghdr message structure. The Isys/socket.h file contains the msghdr
structure and defines the structure members.

To broadcast on a socket, the application program must first issue a setsockopt subroutine
using the SO_BROADCAST option to gain broadcast permissions.

Parameters
Socket Specifies the socket descriptor.

Message

Flags

Points to the msghdr message structure containing the message to be
sent, the message length, the destination address, and the size of the
destination address.

Allows the sender to control the message transmission. The Isys/socket.h
file contains the Flags values. The Flags value to send a call is formed by
logically ~Ring one or both of the following values:

MSG_OOB Processes out-of-band data on sockets that
support SOCK_STREAM.

Note: The following value is not for general use. It is an administrative
tool used for debugging or for routing programs.

MSG_DONTROUTE Sends without using routing tables.

Return Value

8--106

Upon successful completion, the sendmsg subroutine returns the number of characters
sent.

If the sendmsg subroutine fails, the system handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Base Operating System Reference

sendmsg

Error Codes
The sendmsg subroutine fails if anyone of the following errors occurs:

EBAOF

ENOTSOCK

EMSGSIZE

EWOULDBLOCK

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The message is too large to be sent all at once, as the socket
requires.

The socket is marked nonblocking, and no connections are present
to be accepted.

Implementation Specifics

Files

The sendmsg subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the sendmsg subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

Contains definitions of unsigned data types.

Related Information
Subroutines to receive and send data over sockets are the recv subroutine, recvfrom
subroutine, recvmsg subroutine, send subroutine, sendto subroutine, and shutdown
subroutine.

Subroutines are to create sockets, the socket subroutine; to monitor data broadcasts, the
select subroutine; to manipulate socket options, the getsockopt subroutine and
setsockopt subroutine.

Sockets Overview, Understanding Socket Data Transfer in Communications Programming
Concepts.

Sockets 8-107

sendto

sendto Subroutine

Purpose

Syntax

Sends messages through a socket.

#include <sys/types.h>

#include <sys/socket.h>

int sendto (Socket, Message, Length, Flags, To, ToLength)
int Socket;

char * Message;
int Length, Flags;

struct sockaddr * To;
int ToLength;

Description
The sendto subroutine allows an application program to sends messages through an
unconnected sockets by specifying a destination address.

To broadcast on a socket, first issue a setsockopt subroutine using the SO_BROADCAST
option to gain broadcast permissions.

Provide the address of the target using the To parameter. Specify the length of the message
with the Length parameter. If the message is too long to pass through the underlying
protocol, the error EMSGSIZE is returned and the message is not transmitted.

If the sending socket has no space to hold the message to be transmitted, the sendto
subroutine blocks the message unless the socket is in a nonblocking I/O mode.

Use the select subroutine to determine when it is possible to send more data.

Parameters
Socket Specifies the unique name for the socket.

8-108

Message

Length

Flags

Specifies the address containing the message to be sent.

Specifies the size of the message in bytes.

Allows the sender to control the message transmission. The Flags value to
send a call is formed by logically ~Ring one or both of the following values:

MSG_OOB Processes out-of-band data on sockets that
support SOCK_STREAM.

Note: The following value is not for general use.

MSG_DONTROUTE Sends without using routing tables.

The /sys/socket.h file defines the Flags arguments.

Base Operating System Reference

To

ToLength

sendto

Specifies the destination address for the message. The destination address
is a sockaddr structure defined in the Isys/socket.h header file.

Specifies the size of the destination address.

Return Value
Upon successful completion, the sendto subroutine returns the number of characters sent.

If the sendto subroutine fails, the system returns a value of -1 (negative one), and errno is
set to indicate the error.

Error Codes

Examples

The subroutine fails if anyone of the following errors occurs:

EBADF

ENOTSOCK

EFAULT

EMSGSIZE

EWOULDBLOCK

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The Address parameter is not in a writable part of the user address
space.

The message is too large be sent all at once, as the socket
requires.

The socket is marked nonblocking, and no connections are present
to be accepted.

1. The Sending UNIX Domain Datagrams program fragment illustrates the use of the
sendto subroutine.

2. The Sending Internet Domain Datagrams program fragment illustrates the use of the
sendto subroutine.

Implementation Specifics

Files

The sendto subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the sendto subroutine must be compiled with _BSD defined. In
addition, when applicable, all socket applications must include the 8SD library libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

Contains definitions of unsigned data types.

Related Information
Subroutines to receive and send data over sockets are the recv subroutine, recvfrom
subroutine, recvmsg subroutine, send subroutine, sendmsg subroutine, and shutdown
subroutine.

Subroutines are: to create sockets, the socket subroutine; to monitor data broadcasts,
select subroutine; to manipulate socket options, the getsockopt subroutine and
setsockopt subroutine.

Sockets 8-109

sendto

8-110

Sockets Overview, Understanding Socket Data Transfer in Communications Programming
Concepts.

Base Operating System Reference

setdomainname

setdomainname Subroutine

Purpose

Syntax

Sets the name of the current domain.

int setdomainname (name, name/en)

char *name;
int name/en;

Description
The setdomainname subroutine sets the name of the domain for the host machine. It is
normally used when the system is bootstrapped. You must have root user authority to run
this subroutine.

The purpose of domains is to enable two distinct networks that may have host names in
common to merge. Each network would be distinguished by having a different domain name.
At the current time, only the NIS and the sendmail command make use of domains

Note: Domain names are restricted to 64 characters.

Parameters
name Specifies the domain name to be set.

name/en Specifies the size of the array pointed to by the name parameter.

Return Values
If the call suceeds, a value of 0 (zero) is returned. If the call fails, a value of -1 is returned
and an error code is placed in the global location errno.

Error Codes
The following error may be returned by this subroutine:

EFAULT

EPERM

The name parameter gave an invalid address.

The caller was not the root user.

Implementation Specifics
The setdomainname subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the setdomainname subroutine must be compiled with _BSC
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Related Information
The getdomainname subroutine, gethostname subroutine, sethostname subroutine.

Sockets Overview in Communications Programming Concepts.

Sockets 8-111

sethostent

sethostent Subroutine

Purpose

Library

Syntax

Opens network host file.

(Iibc.a)

#include <netdb.h>

void sethostent (StayOpen)

int StayOpen;

Description

Parameter

The sethostent (set host entry) subroutine opens the letc/hosts file and resets the file
marker to the beginning of the file.

Passing a nonzero value to the StayOpen parameter establishes a connection with a name
server and allows a client process to retrieve one entry at a time from the letc/hosts file.
The client process can close the connection with the endhostent subroutine.

StayOpen Contains a value used to indicate when to close the host file.

Specifying a value of 0 (zero) closes the letc/hosts file after each call to the
gethostbyname or gethostbyaddr subroutine.

Specifying a nonzero value allows the letc/hosts file to remain open after
each call.

Return Values
If an error occurs or if the end of the file is reached, the sethostent subroutine returns a
NUll (0) pointer to the calling program. The subroutine handler moves an error code,
indicating the specific error, into the h_errno variable. The calling program must examine
h_errno, to determine the error.

Error Code
The sethostent subroutine fails if the following is true:

This error code indicates an unrecoverable error.

Implementation Specifics

8-112

The sethostent subroutine is part of AIX Base Operating System (BOS) Runtime.

A" applications containing the sethostent subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

Base Operating System Reference

sethostent

Files
/etc/hosts

/etc/resolv.conf

/usr/include/netdb.h

Contains the host name database.

Contains the name server and domain name.

Contains the network database structures.

Related Information
Additional host information retrieval subroutines are the endhostent subroutine,
gethostbyaddr subroutine, and gethostbyname subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-113

sethostid

sethostid Subroutine

Purpose

Syntax

Sets the unique identifier of the current host.

intsethostid (HostlD)

int HostlD;

Description
The sethostid subroutine allows a calling process with a root user ID to set a new 32-bit
identifier for the current host. The sethostid subroutine enables an application program to
reset the host I D.

Parameters
HostlD Specifies the unique 32-bit identifier for the current host.

Return Value
Upon successful completion, the sethostid subroutine returns a value of 0 (zero).

If the sethostid subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Code
The sethostid subroutine fails if the following is true:

EPERM The calling process did not have an effective user I D of root user.

Implementation Specifics
The sethostid subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the sethostid subroutine must be compiled with _BSD defined.
In addition, when applicable, a" socket applications must include the 8SD library libbsd.

Related Information

8-114

Socket subroutines to obtain host names, IDs, and socket names, respectively, are the
gethostid subroutine, gethostname subroutine, and getsockname subroutine.

Base Operating System Reference

sethostname

sethostname Subroutine

Purpose

Syntax

Sets the name of the current host.

int sethostname (Name, NameLength)

char *Name;

int NameLength;

Description
The sethostname subroutine sets the name of a host machine. Only programs with a root
user ID can use this subroutine.

The sethostname subroutine allows a calling process with root user authority to set the
internal host name of a machine on a network.

Parameters
Name Returns the address of an array of bytes where the host name is

stored.

NameLength Returns an integer that specifies the length of the Name array.

Return Values
Upon successful completion, the system returns a value of 0 (zero).

If the sethostname subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes
The sethostname subroutine fails if anyone of the following errors occur:

EFAULT The Name parameter or NameLength parameter gives an address that is
not valid.

EPERM The calling process did not have an effective root user 10.

Implementation Specifics
The sethostname subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the sethostname subroutine must be compiled with _BSO
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Sockets 8-115

sethostname

Related Information

8-116

Socket subroutines to obtain and set the host ID are the gethostid subroutine and
sethostid subroutine.

The socket subroutine to obtain the host name is the gethostname subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Base Operating System Reference

setnetent

setnetent Subroutine

Purpose

Library

Syntax

Opens and rewinds the networks file.

(libc.a)

#include <netdb.h>

void setnetent (StayOpen)

int StayOpen;

Description

Parameter

The setnetent (set network entry) subroutine opens the letc/networks file and sets the file
marker at the beginning of the file.

StayOpen Contains a value used to indicate when to close the networks file.

Specifying a value of 0 (zero) closes the networks file after each call to the
getnetent subroutine.

Specifying a nonzero values leaves the letc/networks file open after each
call.

Return Values
If an error occurs or the end of the file is reached, the setnetent subroutine returns a NULL
pointer.

Implementation Specifics

Files

The setnetent subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the setnetent subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the BSD library Iibbsd.

letc/networks

lusr/include/netdb.h

Contains official network names.

Contains the network database structures.

Related Information
Additional network information retrieval subroutines are the endnetent subroutine,
getnetbyaddr subroutine, getnetbyname subroutine, and getnetent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-117

setprotoent

setprotoent Subroutine

Purpose

Library

Syntax

Opens and rewinds the letc/protocols file.

(libc.a)

#include <netdb.h>

void setprotoent (StayOpen)

int StayOpen;

Description

Parameter

The setprotoent (set protocol entry) subroutine opens the letc/protocols file and sets the
file marker to the beginning of the file.

StayOpen Indicates when to close the protocols file.

Specifying a value of 0 (zero) closes the file after each call to getprotoent.

Specifying a nonzero value allows the letc/protocols file to remain open
after each subroutine.

Return Value
The return value points to static data that is overwritten by subsequent calls.

Implementation Specifics

Files

The setprotoent subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the setprotoent subroutine must be compiled with _BSO defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

letc/protocols

lusr/include/netdb.h

Contains the protocol names.

Contains the network database structures.

Related Information

8-118

Additional protocol information retrieval subroutines are the endprotoent subroutine,
getprotobynumber subroutine, getprotobyname subroutine, and getprotoent subroutine.

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Base Operating System Reference

setservent

setservent Subroutine

Purpose

Library

Syntax

Gets service file entry.

(libc.a)

#include <netdb.h>

void setservent (StayOpen)

int StayOpen;

Description
The setservent (set service entry) subroutine opens the /etc/services file and sets the file
marker at the beginning of the file.

Parameters
StayOpen Indicates when to close the services file.

Specifying a value of 0 (zero) closes the file after each call to the
getservent subroutine.

Specifying a nonzero value allows the file to remain open after each call.

Return Value
If an error occurs or the end of the file is reached, the setservent subroutine returns a NULL
(0) pointer.

Implementation Specifics

Files

The setservent subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the setservent subroutine must be compiled with _sse defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

/etc/services

/usr/include/netdb.h

Contains service names.

Contains network database structures.

Related Information
Additional service information retrieval subroutines are the endservent subroutine,
getservbyport subroutine, getservbyname subroutine,and getservent subroutine.

Protocol information retrieval subroutines are the endprotoent subroutine,
getprotobyname subroutine, getprotobynumber subroutine, getprotoent subroutine, and
setprotoent subroutine. .

Sockets Overview, Understanding Network Address Translation in Communications
Programming Concepts.

Sockets 8-119

setsockopt

setsockopt Subroutine

Purpose

Syntax

Sets socket options.

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/sockevar.h>

int setsockopt (Socket, Level, OptionName, Option Value, OptionLength)

int Socket, Level, OptionName;

char * Option Value;

int OptionLength;

Description
The setsockopt subroutine sets options associated with a socket. Options may exist at
multiple protocol levels. The options are always present at the uppermost socket level.

The setsockopt subroutine provides an application program with the means to control a
socket communication. An application program can use the setsockopt subroutine to
enable debugging at the protocol level, allocate buffer space, control timeouts, or permit
socket data broadcasts. The Isys/socket.h file defines all the options available to the
setsockopt subroutine.

When setting socket options, specify the protocol level at which the option resides and the
name of the option.

Use the parameters Option Value and OptionLength to access option values for the
setsockopt subroutine. These parameters identify a buffer in which the value for the
requested option or options is returned.

Parameters
Socket Specifies the unique socket name.

8-120

Level Specifies the protocol level at which the option resides. To set options at:

Socket level

Other levels

Base Operating System Reference

specify Level as SOL_SOCKET.

supply the appropriate protocol number for the
protocol controlling the option. For example, to
indicate that an option will be interpreted by the TCP
protocol, set Level to the protocol number of TCP, as
defined in the netinet/in.h file.

OptionName

setsockopt

Specifies the option to set. The Option Name parameter and any
specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The sys/socket.h header file defines the
socket level options. The socket level options can be enabled or
disabled; they operate in a toggle fashion. The options are:

SO_BROADCAST

SO_LINGER

Turns on recording of debugging
information. This option enables or
disables debugging in the underlying
protocol modules.

Specifies that the rules used in validating
addresses supplied by a bind subroutine
should allow reuse of local addresses.

Keeps connections active. Enables the
periodic transmission of messages on a
connected socket. If the connected socket
fails to respond to these messages, the
connection is broken and processes using
that socket are notified with a SIGPIPE
signal.

Does not apply routing on outgoing
messages. Indicates that outgoing
messages should bypass the standard
routing facilities. Instead, they are directed
to the appropriate network interface
according to the network portion of the
destination address.

Permits sending of broadcast messages.

Lingers on a close subroutine if data is
present. This option controls the action
taken when unsent messages queue on a
socket and a close subroutine is
performed. It uses a struct linger
parameter defined in the sys/socket.h file.
The parameter specifies the state of the
option and linger interval. Specify the
linger interval by using the setsockopt
subroutine when requesting SO_LINGER.

If SO_LINGER is set, the system blocks
the process during the close subroutine
until it can transmit the data or until the time
expires. If SO_LINGER is not specified
and a close subroutine is issued, the
system handles the call in a way that allows
the process to continue as quickly as
possible.

Leaves received out-of-band data (data
marked urgent) in line.

Sockets 8-121

setsockopt

Option Value

OptionLength

SO_SNDBUF

SO_RCVBUF

SO_SNDLOWAT

SO_RCVLOWAT

SO_SNDTIMEO

SO_RCVTIMEO

SO_ERROR

SO_TYPE

Sets send buffer size.

Sets receive buffer size.

Sets send low-water mark.

Sets receive low-water mark.

Sets send time out.

Sets receive time out.

Sets the retrieval of error status and clear

Sets the retrieval of a socket type.

The Option Value parameter takes an Int parameter. To enable a Boolean
option, set the Option Value parameter to a nonzero value. To disable an
option, set the Option Value parameter to 0 (zero).

The following options enable and disable in the same manner:

SO_DEBUG

SO_REUSEADDR

SO_KEEPALIVE

SO_DONTROUTE

SO_BROADCAST

SO_OOBINLINE

SO_LINGER.

The OptionLength parameter initially contains the size of the buffer
pointed to by the Option Value parameter. On return, the OptionLength
parameter is modified to indicate the actual size of the value returned. If
no option value is supplied or returned, the Option Value parameter can
be 0 (zero).

Options at other protocol levels vary in format and name.

Return Value
Upon successful completion, a value of 0 (zero) is returned.

If the setsockopt subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

8-;-122 Base Operating System Reference

setsockopt

Error Codes

Example

The setsockopt subroutine fails if anyone of the following errors occur:

EBADF

ENOTSOCK

ENOPROTOOPT

EFAULT

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The option is unknown.

The Address parameter is not in a writable part of the user
address space.

1. To mark a socket for broadcasting:

int on=l;
setsockopt(s, SOL_SOCKET, SO BROADCAST, &on, sizeof(on));

Implementation Specifics

Files

The setsockopt subroutine is part of AIX Base Operating System (BOS) Runtime.

All applications containing the setsockopt subroutine must be compiled with _SSC defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

lusr/include/sys/socket.h
lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.
Defines the kernel structure per socket and
contains buffer queues.

Contains definitions of unsigned data types.

Related Information
The socket subroutine used for retrieving socket option data is the getsockopt subroutine.

subroutines used for creating and naming sockets are, respectively, the bind subroutine and
socket subroutine.

Socket subroutines used to retrieve protocol data are the endprotoent subroutine,
getprotobynumber subroutine, getprotoent subroutine, and setprotoent subroutine.

Sockets Overview, Understanding Socket Options in Communications Programming
Concepts.

Sockets 8-123

shutdown

shutdown Subroutine

Purpose

Syntax

Shuts down all socket send and receive operations.

intshutdown (Socket, How)

int Socket, How;

Description
The shutdown subroutine disables all receive and send operations on the specified socket.

Parameters
Socket Specifies the unique name of the socket

How Specifies the type of subroutine shutdown. Use the following values:

o To disable further receive operations.

To disable further send operations.

2 To disable further send operations and receive operations.

Return Values
Upon successful completion, a value of 0 (zero) is returned.

If the shutdown subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno

Error Codes
The shutdown subroutine fails if anyone of the following errors occurs:

EBADF

ENOTSOCK

ENOTCONN

The Socket parameter is not valid.

The Socket parameter refers to a file, not a socket.

The socket is not connected.

Implementation Specifics

Files

8-124

The shutdown subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the shutdown subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

lusr/include/sys/socket.h

lusr/include/sys/types.h

Base Operating System Reference

Contains socket definitions.

Contains definitions of unsigned data types.

shutdown

Related Information
Subroutines to receive and send data over sockets are the read subroutine, recv subroutine,
recvfrom subroutine, recvmsg subroutine, send subroutine, sendto subroutine, and write
subroutine.

Subroutines to create sockets, monitor data broadcasts, and manipulate socket options are
the getsockopt subroutine, select subroutine, setsockopt subroutine, and socket
subroutine.

Sockets 8-125

socket

socket Subroutine

Purpose

Syntax

Creates an end point for communication and returns a descriptor.

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/socketvar.h>

int socket (AddressFamily, Type, Protoco~

int Domain, Type, Protocol;

Description
The socket subroutine creates a socket in the specified AddressFamily and of the specified
Type. A protocol can be specified or assigned by the system. If the protocol is left
unspecified (a value of 0), the system selects an appropriate protocol from those protocols in
the address family that can be used to support the requested socket type.

The socket subroutine returns a descriptor (an integer) that can be used in later subroutines
that operate on sockets.

Socket level options control socket operations. The getsockopt and setsockopt
subroutines are used to get and set these options, which are defined in the sys/socket.h
file.

Parameters

8-126

AddressFamily Specifies an address family with which addresses specified in later socket
operations should be interpreted. The /sys/socket.h file contains the
definitions of the address families. Commonly used families are:

AIX path names

ARPA Internet addresses.

Type Specifies the semantics of communication. The /sys/socket.h file defines
the socket types. AIX supports the following types:

Protocol

Provides sequenced, two-way byte streams with a
transmission mechanism for out-of-band data.

Provides datagrams, which are connectionless
messages of a fixed maximum length (usually
short).

Provides access to internal network protocols and
interfaces. This type of socket is available only to
the root user.

Specifies a particular protocol to be used with the socket. Specifying a
Protocol of 0 (zero) causes the socket subroutine to default to the typical
protocol for the requested type of returned socket.

Base Operating System Reference

socket

Return Value
Upon successful completion, the socket subroutine returns an integer (the socket
descriptor).

If the socket subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno ..

Error Codes

Example

The socket subroutine fails if anyone of the following errors occurs:

EAFNOSUPPORT

ESOCKTNOSUPPORT

EMFILE

ENOBUFS

The addresses in the specified address family cannot be
used with this socket.

The socket in the specified address family is not supported.

The per-process descriptor table is full.

Insufficient resources were available in the system to
complete the call.

1. The following program fragment illustrates the use of the socket subroutine to create a
datagram socket for on-machine use.

s = socket(AF_UNIX, SOCK~DGRAM,O);

Implementation Specifics

Files

The socket subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the socket subroutine must be compiled with _BSC defined. In
addition, when applicable, all socket applications must include the 8SD library libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

Contains definitions for unsigned data types.

Related Information
Other socket creation and connection subroutines are the accept subroutine, bind
subroutine, connect subroutine, listen subroutine, and socketpair subroutine.

Subroutines for retrieving socket information and setting socket options are the
getsockname subroutine, getsockopt subroutine, and setsockopt subroutine.

Subroutines for receiving and sending data over sockets are the recv subroutine, recvfrom
subroutine, recvmsg subroutine, send subroutine, sendto subroutine, sendmsg
subroutine, and shutdown subroutine.

Sockets 8-127

socket

8-128

The ioctl subroutine and select subroutine.

Sockets Overview, Understanding Socket Creation in Communications Programming
Concepts.

Base Operating System Reference

socketpair

socketpair Subroutine

Purpose

Syntax

Creates a pair of connected sockets.

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/socketvar.h>

socketpair (Domain, Type, Protocol, SocketVectorJ

int Domain, Type, Protocol;

int SocketVector{2];

Description
The socketpair subroutine creates an unnamed pair of connected sockets in a specified
Domain, of a specified Type, and using the optionally specified Protocol. The two sockets
are identical.

Note: Create sockets with this subroutine only in the AF _UNIX domain.

The descriptors used in referencing the new sockets are returned in SocketVectorf0] and
SocketVectorf1].

The Isys/socket.h file contains the definitions for socket domains, types, and protocols.

Parameters
Domain

Type

Protocol

SocketVector

Return Value

Specifies the communications domain within which the sockets are
created. This subroutine does not create sockets in the Internet domain.

Specifies the communications method, whether SOCK_DGRAM or
SOCK_STREAM, that the socket uses.

Points to an optional identifier used to specify which standard set of rules
(such as UDP/IP and TCP/IP) governs the transfer of data.

Points to a two-element vector that contains the integer descriptors of a
pair of created sockets.

Upon successful completion, the socketpair subroutine returns a value of ° (zero).

If the socketpair subroutine fails, the subroutine handler performs the following functions:

• Returns a value of -1 (negative one) to the calling program

• Moves an error code, indicating the specific error, into the global variable errno.

Sockets 8-129

socketpair

Error Codes
The socketpair subroutine fails for anyone of the following errors occurs:

EMFILE

EAFNOSUPPORT

EPROTONOSUPPORT

EOPNOSUPPORT

EFAULT

This process has too many descriptors in use.

The addresses in the specified address family cannot be
used with this socket.

The specified protocol cannot be used on this system.

The specified protocol does not allow creation of socket
pairs.

The Socket Vector parameter is not in a writable part of the
user address space.

Implementation Specifics

Files

The socketpair subroutine is part of AIX 8ase Operating System (80S) Runtime.

All applications containing the socketpair subroutine must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the 8SD library libbsd.

lusr/include/sys/socket.h

lusr/include/sys/socketvar.h

lusr/include/sys/types.h

Contains socket definitions.

Defines the kernel structure per socket and
contains buffer queues.

Contains definitions for unsigned data types.

Related Information

8-130

An additional socket creation method is the socket subroutine.

Sockets Overview, Understanding Socket Creation in Communications Programming
Concepts.

Base Operating System Reference

X.25 Application

X.25 Application 9-1

9-2 Base Operating System Reference

x25 ack

x25 ack Subroutine

Purpose

Library

C Syntax

Acknowledges data received with the O-bit set.

The X.25 Communications Library (libx25s.a)

int x25_ack(
int conn_id

) ;

Description

Parameter

The x25_ack subroutine sends an acknowledgement for the data packet most recently
received with the O-bit set for the call specified by conn_id.

Control is returned to the calling application when the adapter has queued the packet for
transmission.

connJd Connection identifier of the call.

Return Value
If successful, x25_ack returns a value of O. If an error occurs, x25_ack returns -1 and sets
x25_errno to one of the error codes shown below.

Error Codes
X25BADCONNID, X25NOACKREQ, X25NOCARD, X25NOLlNK, X25NOTINIT,
X25PROTOCOL, X25RESETCLEAR, X25SYSERR, X25TRUNCTX.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO, ENOS PC.

Implementation Specifics
This subroutine is part of X.25 Application in AIX BOS Extensions 2.

Related Information
The x25_send subroutine.

X.25 Application 9-3

x25 call

x25 call Subroutine

Purpose

Library

C Syntax

Makes an X.2S call, by setting up a switched virtual circuit (SVC).

The X.2S Communications Library (libx25s.a)

int x25_call(
struct cb_call_struct *cb_call,
int ctr_id

) ;

Descri ption
The x25_call subroutine sets up a switched virtual circuit (SVC) for the X.2S port specified in
cb_call_struct, for an X.2S call between the calling address and called address, also
specified in cb_call_struct.

Control is returned to the application as soon as the call-request packet has been
transmitted, but the SVC is not actually established until a call-connected packet is received
(using x25_receive).

Optional facilities, such as fast-select calls, can be requested by entering the correct values
in cb_fac_struct. If the facilities requested are not allowed by the network, the call is
cleared and an appropriate error code is made available in cb_clear_struct, which can be
received using x25_receive.

Parameters
cb_call

ctr_id

Return Value

Pointer to cb_call_struct.

Identifier of a counter allocated by a previous x25_ctr_get.

If successful, x25_call returns the connection identifier to be used by other subroutines for
the duration of the call. If an error occurs, or the call is cleared, x25_call returns -1 and sets

x25_errno to one of the error codes shown below.

Error Codes
X25CALLED, X25CALLlNG, X25INVCTR, X25INVFAC, X25LONG, X25NOCARD,
X25NOLlNK, X25NOSUCHLlNK, X25NOTINIT, X25PROTOCOL, X25SVSERR,
X25TOOMANVVCS, X25TRUNCTX.

If x25_errno is set to X25SVSERR, errno is set to one of the following values:

EINTR, EIO, ENOSPC.

9-4 Base Operating System Reference

x25 call

Implementation Specifics
This subroutine is part of X.25 Application in AIX 80S Extensions 2.

Related Information
The x25_calLaccept and x25_call_clear subroutines.

X.25 Application 9-5

x2S_call_accept Subroutine

Purpose

Library

C Syntax

Accepts an incoming call.

The X.25 Communications Library (libx25s.a)

int x25_call_accept(
int conn_id,
struct cb_call_struct *cb_call,
int ctr_id

) ;

Description
The x25_call_accept subroutine accepts an incoming call, by generating and sending a
call-accepted packet. It then returns control to the application. If the facilities requested are
not allowed by the network, the call is cleared and an appropriate error code is made
available in a later cb_clear_struct control block.

Parameters
conn_id

Return Value

Connection identifier of the call

Pointer to the call control block, cb_call_struct.

Identifier of a counter allocated by a previous x25_ctr_get, to be associated

with this call.

If successful, x25_call_accept returns a value of O. If an error occurs, x25_call_accept
returns -1 and sets x25_errno to one of the error codes shown below.

Error Codes
X25BADCONNID, X25CALLED, X25CALLlNG, X25INVCTR, X25INVFAC,X25LONG,
X25NOCARD, X25NOLlNK, X25NOTINIT, X25PROTOCOL, X25RESETCLEAR,
X25SYSERR, X25TRUNCTX.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO, ENOSPC.

Implementation Specifics
This subroutine is part of X.25 Application in AIX BOS Extensions 2.

Related Information
The x25_call and x25_call_clear subroutines.

9-6 Base Operating System Reference

x25 call clear - -

x25 call clear Subroutine - -
Purpose

Library

C Syntax

Clears a call.

The X.25 Communications Library (libx25s.a)

int x25_call_clear (
int conn_id,
struct cb_clear_struct *cb_clear,
struct cb_msQ_struct *cb_mSQ

);

Description
The x25_call_clear subroutine clears a call by generating and sending a clear-request
packet. Control is not returned to the application until a clear-confirmation or a
clear-indication packet has been received.

The effect of clearing a call is to disconnect a connected call, or to reject a call that has not
been accepted.

Parameters
conn_id Connection identifier of the call

Pointer to the clear structure, cb_clear_struct.

Pointer to the message structure, cb_msQ_struct. This structure is used to
return information from the clear-confirmation packet. The application must
interpret the appropriate structure to access the message. This structure is
allocated by the API; it is the responsibility of the application to free this
memory. If you set cb_msQ value to NULL, no clear confirmation
information is returned.

Return Value
If successful, x25_call_clear returns a value of O. If an error occurs, x25_call_clear returns
-1 and sets x25_errno to one of the error codes shown below.

Error Codes

Example

X25BADCONNID, X25CALLED, X25CALLlNG, X25LONG, X25NOCARD, X25NOLlNK,
X25NOTINIT, X25PROTOCOL, X25SYSERR, X25RESETCLEAR, X25TRUNCTX.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO, ENOSPC.

Terminate (clear) a call: example program svcxmit in Communications Programming
Concepts.

X.25 Application 9-7

Implementation Specifics
This subroutine is part of X.2S Application in AIX 80S Extensions 2.

Related Information
The x25_call and x25_call_accept subroutines.

9-8 Base Operating System Reference

x2S_circuit_query Subroutine

Purpose

Library

C Syntax

Returns configuration information about a virtual circuit.

The X.25 Communications Library (libx25s.a)

struct cb_circuit_info_struct *x25_circuit_query(
int conn_id

);

Description

Parameter

The x25_circuit_query subroutine returns the current information about the specified virtual
circuit in cb_circuit_info_struct. .

Connection identifier of the call currently using the virtual circuit.

Return Values
If successful, x25_circuit_query returns a pointer to cb_circuit_info_struct, the structure
containing the information. Storage for this structure is allocated by the API; it is the
responsibility of the application to free it. If an error occurs, x25_circuit_query returns NULL
and sets x25_errno to one of the error codes shown below.

Error Codes
X25BADCONNID, X25NOLlNK, X25NOTINIT, X25SVSERR.

If x25_errno is set to X25SYSERR, errno is set to:

ENOMEM

X.25 Application 9-9

x25_circuit_query

Example
1. Print current information for the virtual circuit identified by conn_id.

struct cb_circuit_info_struct *cct_ptr;
cct_ptr = x25_circuit_query(conn_id);
if (cct_ptr == NULL)

(void)printf("Error %d from x25_circuit_query.",x25_errno);
else
{

if (cct_ptr -> flags & X25FLG_LCN)
(void)printf("Logical Channel Number (LCN) : %d\n",cct_ptr ->

lcn) ;
if (cct ptr -> flags & X25FLG INCOMING PACKET SIZE)

(void)printf("Incoming Packet Size :-%d\n",
cct_ptr -> incoming_packet_size);

if (cct ptr -> flags & X25FLG OUTGOING PACKET SIZE)
(void)printf("Outgoing Packet Size :-%d\n",

cct_ptr -> outgoing_packet_size);
if (cct ptr -> flags & X25FLG INCOMING THROUGHPUT CLASS)

(void)printf("Incorning thro~ghput cliss : %d\n"~
cct_ptr -> incoming_throughput_class);

if (cct ptr -> flags & X25FLG OUTGOING THROUGHPUT CLASS)
(void)printf("Outgoing thro~ghput cliss : %d\n"~

cct_ptr -> outgoing_throughput_class);
if (cct_ptr -> flags & X25FLG_INCOMING_WINDOW_SIZE)

(void)printf("Incorning window size: %d\n",
cct_ptr -> incoming_window_size);

if (cct_ptr -> flags & X25FLG_OUTGOING_WINDOW_SIZE)
(void)printf("Outgoing window size: %d\n",

cct_ptr -> outgoing_window_size);

free(cct_ptr);
}

Implementation Specifics
This subroutine is part of X.25 Application in AIX 80S Extensions 2.

Related Information
The x2S_device_query and x2S_link_query subroutines.

9-10 Base Operating System Reference

x25_ctr_get Subroutine

Purpose

Library

C Syntax

Gets a counter.

The X.25 Communications Library (libx25s.a)

int x25_ctr_get(
void

);

Description
The x25_ctr_get subroutine allocates a counter whose value will be incremented whenever
a message associated with it arrives and decremented whenever a message associated with
it is received by an application.

Return Value
If successful, x25_ctr_get returns the counter identifier. If an error occurs, x25_ctr_get
returns -1 and sets x25_errno to one of the error codes shown below.

Error Codes
X25NOCTRS, X25NOTINIT, X25SVSERR.

Example
Get a counter: example program svcxmit in Communications Programming Concepts.

Implementation Specifics
This subroutine is part of X.25 Application in AIX BOS Extensions 2.

Related Information
The x25_ctr_remove, x25_ctr_test and x25_ctr_wait subroutines.

X.25 Application 9-11

x25 ctr remove Subroutine - -
Purpose

Library

C Syntax

Removes a counter.

The X.2S Communications Library (libx25s.a)

int x25_ctr_remove(
int ctr_id

) ;

Description

Parameter

The x25_ctr_remove subroutine removes the specified counter from the system. The
counter identifier may be reused by a future x25_ctr_get. Only the application that
requested the counter can remove the counter from the system. The counter cannot be
removed if it has a non-zero value, which indicates that some data is still waiting to be read
from an associated call.

ctr_id Identifier of a counter allocated by a previous x25_ctr_get.

Return Values
If successful, x25_ctr_remove returns O. If an error occurs, x25_ctr_remove returns -1 and
sets x25_errno to one of the error codes shown below.

Error Codes
X25AUTHCTR, X25CTRUSE, X25INVCTR, X25NOTINIT, X25SVSERR.

Example
Remove a counter: example program svcxmit in Communications Programming Concepts.

Implementation Specifics
This command is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x25_ctr_get, x25_ctr_test and x25_ctr_wait subroutines.

9-t2 Base Operating System Reference

x25 ctr test Subroutine - -
Purpose

Library

C Syntax

Returns the current value of a counter.

The X.2S Communications Library (libx25s.a)

int x25_ctr_test(
int ctr_id

) ;

Description

Parameter

The x25_ctr _test subroutine returns the current value of an active counter, so that it can be
tested.

ctr_id Counter identifier allocated by a previous x25_ctr_get.

Return Values
If successful, x25_ctr_test returns the current value of the counter. If an error occurs,
x25_ctr_test returns -1 and sets x25_errno to one of the error codes shown below.

Error Codes

Example

X25INVCTR, X25NOTINIT, X25SYSERR.

To find out how many messages for a call are waiting to be received, assuming we have an
array of information about calls in our application:

ctr_id = calls[i].counter_idi
number_of_messages = x25_ctr_test(ctr_id);
if (number_of_messages != -1)

(void) printf("The number of messages waiting is %d",
number_of_messages);

Note that the array used here is not part of the X.25 API.

Implementation Specifics
This subroutine is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x25_ctr_get, x25_ctr_remove and x25_ctr_wait subroutines.

X.25 Application 9-13

x25 ctr wait Subroutine - -
Purpose

Library

C Syntax

Waits for counters to change in value.

The X.2S Communications Library (libx25s.a)

int x25_ctr_wait(
int ctr_num,
struct ctr_array_struct ctr_array[]

);

Description
The x25_ctr_wait subroutine waits for the values of active counters to change in value. The
process is suspended until the value of one of the counters is greater than the specified
value. Setting this value in the application is optional, but recommended.

Parameters
ctr_num Number of elements in ctr_array_struct.

An array of structures containing:

Counter identifier allocated by a previous x25_ctr_Qet.

The value that must be exceeded by this counter.

Return Values
If successful, x25_ctr_wait returns the ctr_id of the counter that satisfied the condition by
exceeding the specified value. (If more than one counter exceeded its specified value, only
one of the counter identifiers is returned.) If an error occurs, x25_ctr_wait returns -1 and
sets x25_errno to one of the error codes shown below.

Error Codes

Examples

X25INVCTR, X25NOTINIT, X25SYSERR.

1. Wait for a call to be connected (or cleared): example program svcxmit in Communications
Programming Concepts.

2. Wait for an incoming call: example program svcrcv in Communications Programming
Concepts.

3. Wait for data (or some other message): example program svcrcv in Communications
Programming Concepts.

9-14 Base Operating System Reference

Implementation Specifics
This command is part of X.25 Application in AIX 80S Extensions 2.

Related Information
The x25_ctr_get, x25_ctr_remove and x25_ctr_test subroutines.

X.25 Application 9-15

x25~deafen

x25 deafen Subroutine

Purpose

Library

C Syntax

Turns off listening.

The X.2S Communications Library (libx25s.a)

int x25_deafen(
int listen_id

);

Description

Parameter

The x25_deafen subroutine turns off listening for incoming calls. In other words, it stops
routing the calls that this application was listening for using the specified listen_id.

The listen identifier returned from a previous x25_listen.

Return Values
If successful, x25_deafen returns O. If an error occurs, x25_deafen returns -1 and sets
x25_errno to one of the error codes shown below.

Error Codes
X25BADLISTENID, X25NOTINIT, X25SYSERR, X25TIMEOUT.

Example
Stop listening: example program svcrcv in Communications Programming Concepts.

Implementation Specifics
This subroutine is part of X.2S Application in AIX 80S Extensions 2.

Related Information
The x25_listen subroutine.

9-16 Base Operating System Reference

x2S_device_query Subroutine

Purpose

Library

C Syntax

Returns configuration information about a device.

The X.25 Communications Library (libx25s.a)

struct cb_dev_info_struct *x25_device_query(
struct cb_link_name_struct *link_name

);

Description

Parameter

The x25_device_query subroutine returns information about the X.25 adapter in
cb_dev_info_struct.

The information returned is the information entered when you configured the adapter.
Changes made to a particular switched virtual circuit (SVC) by requests entered in the
facilities fields of X.25 API structures are not reflected by this subroutine; these values can
be obtained by using the x25_circuit_query subroutine.

A pOinter to cb_link_name_struct, which gives the name of the X.25 port.

Return Values
If successful, x25_device_query returns a pOinter to cb_dev_info_struct, the structure
containing the information. The storage for this structure is allocated by the API; it is the
responsibility of the application to free it. If an error occurs, x25_device_query returns
NULL and sets x25_errno to one of the error codes shown below.

Error Codes
X25NOTINIT, X25SYSERR.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

ENOMEM.

X.25 Application 9-17

Example
1. Print out the number of PVCs and the default and maximum packet sizes for an X.25

port:

struct cb_dev_info_struct *dev_ptr;
dev_ptr = x25_device_query(&link_name);
if (dev_ptr == NULL)

(void)printf("Error %d from x25_device_query.",x25_errno);
else
{

if (dev_ptr -> flags & X25FLG_NUA)
{

}

(void)printf("NUA : %s\n",dev_ptr -> nua);
free(dev_ptr -> nua);

if (dev_ptr -> flags & X25FLG_NO_OF_VCS)
r (void)printf("Number of PVCs : %d\n",dev_ptr -> no_of_vcs);

if (dev ptr -> flags & X25FLG MAX RX PACKET SIZE)
(voidTprintf("MaX receive pit sIze-: %d\n~,

dev_ptr -> max_rx_packet_size);
if (dev ptr -> flags & X25FLG MAX TX PACKET SIZE)

(voidTprintf("MaX transmit ~kt ;iz; : %d\~",
dev-ptr -> max tx packet size);

if (dev ptr -> flags & X25FLG DEFAULT SVC RX PACKET SIZE)
(void)printf ("Default receive pkt size -;- %d\n", -

dev_ptr -> default_svc_rx_packet_size);
if (dev_ptr -> flags & X25FLG_DEFAULT_SVC_TX_PACKET_SIZE)

(void)printf("Default transmit pkt size: %d\n",
dev_ptr -> default_svc_tx_packet_size);

free(dev_ptr);
}

Implementation Specifics
This subroutine is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x2S_circuit_query and x2S_link_query subroutines.

9-18 Base Operating System Reference

x2S_init Subroutine

Purpose

Library

C Syntax

Initialize the X.2S application programming interface (API).

The X.2S Communications Library (libx25s.a)

int x25_init(
struct cb_link_name_struct *Iink_name

);

Description

Parameter

The x2S_init subroutine sets up X.2S communications with the X.2S port named by
link_name, by establishing communication with the X.2S device driver. The application must
invoke x25_init before any other X.2S subroutines. Note that initializing a port does not
guarantee that the port is connected (see x25_link_query and x25_link_connect).

A pointer to cb_link_name_struct, which gives the name of the X.2S port.

Return Values
If successful, x25_init returns O. If an error occurs, x25Jnit returns -1 and sets x25_errno
to one of the error codes shown below.

Error Codes

Example

X25BADDEVICE, X25INIT, X25MAXDEVICE, X25NOSUCHLlNK, X25SYSERR.

Initialize the API for an X.2S port: example program svcxmit in Communications
Programming Concepts.

Implementation Specifics
This subroutine is part of X.2S Application in AIX 80S Extensions 2.

Related Information
The x25_term subroutine.

X.2S Application 9-19

x25 _interrupt

x25_interrupt Subroutine

Purpose

Library

C Syntax

Sends an interrupt packet.

The X.25 Communications Library (libx25s.a)

int x25_interrupt(
int conn_id,
struct cb_int_data_struct *cb_int

);

Description
The x25_interrupt subroutine sends an interrupt message. Control is returned to the
application when the message has been received by the adapter.

Parameters
conn_id Connection identifier of the call.

cbJnt Pointer to cb_int_data_struct, which contains the interrupt data.

Return Values
If successful, x25_interrupt returns O. If an error occurs, x25_interrupt returns -1 and sets
x25_errno to one of the error codes shown below.

Error Codes

Example

X25BADCONNID, X25NOCARD, X25NOLlNK, X25NOTINIT, X25PROTOCOL,
X25RESETCLEAR, X25SYSERR, X25TRUNCTX.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO, ENOSPC.

1. Send an interrrupt:

struct cb_int_struct int_data;
int_data.flags = X25FLG_INT_DATA;
int_data.data_len = 20;
int_data.int_data = "This is an interrupt";
rc = x2S_interrupt(conn_id,&int_data);
if (rc < 0)

(void)printf("Error %d from x25_interrupt.",x25_errno);

Implementation Specifics
This subroutine is part of X.25 Application in AIX BOS Extensions 2.

9-20 Base Operating System Reference

x25_link_connect Subroutine

Purpose

Library

C Syntax

Connects an X.2S port to the X.2S network.

The X.2S Communications Library (libx25s.a)

int x25_link_connect(
struct cb_link_name_struct *Iink_name

);

Description

Parameter

The x25_link_connect subroutine initializes the X.25 port. Control is returned to the calling
application when communications have been established at link level. NET _CONFIG
permission is required to use this subroutine. Note that the connection may take 30 seconds
to complete.

A pointer to cb_link_name_struct, which gives the name of the X.2S port.

Return Values
If successful, x25_link_connect returns O. If an error occurs, x25_link_connect returns -1
and sets x25_errno to one of the error codes shown below.

Error Codes

Example

X25AUTH, X25L1NKUP, X25NOCARD, X25NOLlNK, X25NOTINIT, X25SVSERR,
X25TIMEOUT.

If x25_errno is set to X25SVSERR, errno is set to one of the following values:

EINTR, EIO.

1. Connect the x2Ss1 port to the network and print a message if an error occurs:

struct cb_link_name_struct link_name;
link_name. flags = X25FLG_LINK_NAME;
link_name. link_name = "x25s1"i
rc = x25_link_connect(&link_name);
if (rc < 0)

(void)printf("Error %d occurred while connecting the link.",
x25_errno);

Implementation Specifics
This subroutine is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x25_link_disconnect, x25Jink_monitor, x25_link_statistics, and x25_link_query
subroutines.

The xmanage command.

X.25 Application 9-21

x25 link disconnect Subroutine - -
Purpose

Library

C Syntax

Disconnects an X.25 port.

The X.25 Communications Library (libx25s.a)

int x25_link_disconnect(
struct cb_link_name_struct *link_name,
int override

);

Description
The x25_link_disconnect subroutine disconnects the X.25 port from the X.25 network.
NET _CONFIG permission is required to use this subroutine. Note that the disconnection
may take 30 seconds to complete.

Parameters
link_name A pointer to cb_link_name_struct, which gives the name of the X.25 port.

override o means that the X.25 port is disconnected if a" calls have been cleared and
a" permanent virtual circuits (PVCs) freed. 0 is assumed if the override
parameter is not used.

A value other than 0 means that the X.25 port is disconnected immediately.
Set the override parameter to 1 if you want immediate disconnection.

Return Values
I. If successful, ?C25_link_disconnect returns O. If an error occurs, x25_link_disconnect
returns -1 and sets x25_errno to one of the error codes shown below.

Error Codes

Examples

X25AUTH, X25L1NKUSE, X25NOCARD, X25NOLlNK, X25NOTINIT, X25SYSERR,
X25TIMEOUT.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO.

1. Disconnect port x25s1 when all calls have been cleared:

struct cb_link_name_struct link_name;
link_name. flags = X25FLG_LINK_NAME;
link_name. link_name = "x25s1";
override = 0;
rc = x2S_link_disconnect(&link_name,override};
if (rc < O)

(void)printf("Error %d from x25_link_disconnect.",x25_errno);

9-22 Base Operating System Reference

2. Disconnect port x25s2 without waiting for calls to be cleared:

struct cb_link_name_struct link_name;
link_name. flags = X25FLG_LINK_NAME;
link_name. link_name = "x25s2";
override = 1;
rc = x25_link_disconnect{&link_name,override);
if (rc < 0)

(void)printf{"Error %d from x25_link_disconnect.",x25_errno);

Implementation Specifics
This subroutine is part of X.25 Application in AIX BOS Extensions 2.

Related Information
The x2S_link_connect, x25_link_monitor, x25_link_statistics, and x25_link_query
subroutines.

The xmanage command.

X.25 Application 9-23

x25_link_monitor Subroutine

Purpose

Library

C Syntax

Controls monitoring of the activity on an X.25 port.

The X.25 Communications Library (libx25s.a)

int x25_link_monitor(
struct cb_link_name_struct *link_name,
long mode,
int ctr_id

);

Description
The x25Jink_monitor subroutine turns on or off monitoring for an X.25 port. NET _CON FIG
and RAS_CONFIG permissions are required to use this subroutine. The application must
use the x25_receive subroutine to get the monitoring data obtained by x25_link_monitor.

Parameters
link_name A pointer to cb_link_name_struct, which gives the name of the X.25 port.

This consists of a long formed by ORing the values specified using the
monitoring flags, X25_MON_PACKET and X25_MON_FRAME, which enable
packet-level and frame-level monitoring respectively. If the mode is set to 0,
both frame-level and packet-level monitoring are turned off.

mode

Identifier of a counter allocated by a previous x25_ctr_get. Although you
must pass this parameter, you need use it only if you want to wait for
notification before receiving the monitoring data.

Return Values
If successful, x25_link_monitor returns the connection identifier of the channel on which the
monitoring data must be received. If an error occurs, x25_link_monitor returns -1 and sets
x25_errno to one of the error codes shown below.

Error Codes
X25INVMON, X25MONITOR, X25NOCARD, X25NOLlNK, X25NOTINIT, X25SYSERR.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO, EPERM.

9-24 Base Operating System Reference

Examples
1. Start monitoring port x25s1 at both packet-level and frame-level; then wait for and

receive one packet of monitoring data:

cb_link_name.link_name "x25s1";
ctr_id = x25ctr_get();
mode = X25 MON PACKET; /* For packet-level monitoring */
mode \= X25_MON_FRAME; /* For frame-level monitoring */
conn id = x25 link monitor(&link name,mode,ctr id);
if (conn id <-0) - - -

(void)printf("Error %d from x25_link_monitor.",x25_errno);
else
{

/* Wait for and receive a packet of monitoring data. */
ctr_array[O].ctr_id = ctr_id;
ctr_array[O].ctr_value = 0;

rc = x25_ctr_wait(ctr_array,1);
rc = x25_receive(&conn_id,&cb_msg);

/* cb_msg will now contain relevant monitor information. */
}

2. Stop monitoring port x25s 1 :

cb_link_name.link_name = "x25s1"i
mode = 0;
conn_id = x25_link_monitor(&link_name,mode,ctr_id)i
if (conn_id < 0)

(void)printf("Error %d from x25_link_monitor.",x25_errno)i

Implementation Specifics
This subroutine is part of X.25 Application in AIX BOS Extensions 2.

Related Information
The x25_link_connect, x25_link_disconnect, x25_link_statistics, and
x25_link_query subroutines.

The xmonitor command.

X.25 Application 9-25

x2S_link_query Subroutine

Purpose
Returns information about the current status of an X.2S port.

Library
The X.2S Communications Library (libx25s.a)

C Syntax
int x25_link_query(
struct cb link name struct *link name

); - - - -

Description
The x25_link_query subroutine returns the status of the X.2S port as an integer.

Parameter
A pOinter to cb_link_name_struct, which gives the name of the X.2S port.

Return Values
If successful, x25_link_query returns an integer that indicates the status, one of
X25_LlNK_CONNECTED, X25_LlNK_DISCONNECTED, X25_LlNK_CONNECTING. If an
error occurs, x25_link_query returns -1 and sets x25_errno to one of the error codes
shown below.

Error Codes
X25NOCARD, X25NOTINIT, X25SYSERR.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO.

9-26 Base Operating System Reference

Example
1. Find out whether port x2Ss1 is connected, disconnected, or connecting:

struct cb_link_name_struct link_name;
link_name. flags = X25FLG_LINK_NAME;
link_name. link_name = "x25s1";
rc = x25_link_query(&link_name);
switch (rc)
{

case X25 LINK CONNECTED: - -
(void)printf("Link is connected\n");
break;

case X25_LINK_DISCONNECTED:
(void)printf("Link is disconnected\n");
break;

case X25 LINK CONNECTING: - -
(void)printf("Link is connecting\n");
break;
case -1;

switch (x25_errno);
{

case X25SYSERR:
(void)printf("System error errno %d\n",errno):
perror () i
break:

case X25NOCARD:
(void)printf("The X.25 adapter is either not

installed\n")i
(void)printf("or not functioning:");
(void)printf("Call your system administrator.\n");
break;

case X25NOTINIT:

}
break;

(void)printf("The application has not initialized\n",
(void)printf("X.25 communications:");
(void)printf("Call your system administrator.\n");
break;

}

Implementation Specifics
This subroutine is part of X.25 Application in AIX 80S Extensions 2.

Related Information
The x25_circuit_query, x25_device_query, x25Jink_connect, x25_link_disconnect,
x25_link_statistics, and x25_link_monitor subroutines.

The xmanage command.

X.25 Application 9-27

x25 _link~statistics

x25 link statistics Subroutine

Purpose

Library

C Syntax

Request statistics for an X.2S port.

The X.2S Communications Library (libx25s.a)

struct cbJink,;""stats_struct *x25_lin~_statistics(
struct cb_link_name_struct *link_name,
unsigned short reset

);

Description
The x25_link stats subroutine obtains statistics about the X:2S activity on an X.2S port.

Parameters
link_name

reset

Return Values

A pointer to cb_link_name_struct, which gives the name of the X.25 port.

If reset is set to 1 , statistics are reset to O.

If successful, x25_links_statistics returns a pointer to cb_link_stats_struct. The storage
for cb_link_stats_struct is allocated by the API; it is the responsibility of the application to
free it. If an error occurs, x25_link stats returns NULL and sets x25_errno to one of the
error codes shown below.

Error Codes
X25NOCARD, X25NOTINIT, X25SYSERR.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO.

9-28 Base Operating System Reference

Example
1. Find out the number of virtual circuits currently in use for a port:

struct cb_link_stats_struct *link_ptr;
reset = 0;
link_ptr = x25_link_statistics(&link_name,reset);
if (link_ptr == NULL)

(void)printf("Error %d from x25_link_statistics.",x25_errno);
else
{

if (link_ptr -> flags & X25FLG_NO_OF_VCS)
(void)printf("Number of virtual circuits %d\n",

link_ptr -> no_of_vcs);
if (link_ptr -> flags & X25FLG_LINK_STATS)

printf ("link statistics returned in x25_query data
structure\n");

free(link_ptr);
}

Implementation Specifics
This subroutine is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x2S_link_connect, x25_link_disconnect, x25_link_monitor, and x25_link_query
subroutines.

The xmanage command.

X.2S Application 9-29

x25 listen Subroutine

Purpose

Library

C Syntax

Starts listening for incoming calls.

The X.2S Communications Library (libx25s.a)

int x25_listen{
NLchar *name,
int ctr_)d

);

Description
The x25_listen subroutine tells the API that this application is interested in incoming calls
that fit the criteria in the routing list entry that has the specified name. It also tells the API to
associate such calls with the counter identifier specified. It returns a listen identifier to be
used by x25_receive.

Parameters
name Pointer to a name that is specified in the routing list.

ctr_id Identifier of a counter, allocated by a previous x25_ctr_get.

Return Values
If successful, x25_Iisten returns the listen identifier. If an error occurs, x25_listen returns-1
and sets x25_errno to one of the error codes shown below.

Error Codes

Example

X25AUTHLISTEN, X25INVCTR, X25NAMEUSED, X25NOLlNK, X25NONAME,
X25NOTINIT, X25SYSERR, X25TABLE, X25TIMEOUT.

Start listening for incoming calls: example program svcrcv in Communications Programming
Concepts.

Implementation Specifics
This subroutine is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x25_deafen subroutine.

9-30 Base Operating System Reference

x25_pvc_alloc Subroutine

Purpose

Library

C Syntax

Allocates a permanent virtual circuit (PVC) for use by an application.

The X.25 Communications Library (libx25s.a)

int x25_pvc_alloc(
struct cb_pvc_alloc_struct *pvc_ptr,
int ctr_id

);

Description
The x25_pvc_alloc subroutine reserves the use of the specified permanent virtual circuit
(PVC) for this application only.

Parameters
pvc_ptr A pointer to cb_pvc_alloc_struct, which contains the name of the X.25 port

and the logical channel number of the PVC to be used. (Together, these
identify the PVC.)

Identifier of a counter allocated by a previous x25_ctr_get.

Return Values
If successful, x25_pvc_alloc returns the connection identifier to be used by other
subroutines. If an error occurs, x25_pvc_alloc returns -1 and sets x25_errno to one of the
error codes shown below.

Error Codes

Example

X25INVCTR, X25NOCARD, X25NOLlNK, X25NOSUCHLlNK, X25NOTINIT, X25NOTPVC,
X25PVCUSED, X25SYSERR.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO.

Allocate a PVC: example program pvcxmit in Communications Programming Concepts.

Implementation Specifics
This subroutine is part of X.25 Application in AIX 80S Extensions 2.

Related Information
The x25_pvc_free subroutine.

X.25 Application 9-31

x25_pvc_free Subroutine

Purpose

Library

C Syntax

Frees a permanent virtual circuit (PVC).

The X.25 Communications Library (libx25s.a)

int x25_pvc_free(
int conn_id

) ;

Description

Parameter

The x25_pvc_free subroutine frees the permanent virtual circuit (PVC) used for the
specified connection, so that it can be used by another application. Any data queued for
x25_receive is lost. It is the responsibility of the application to check the counter identifier for
queued data before freeing the PVC.

Connection identifier, returned by the previous x25_pvc_alloc.

Return Values
If successful, x25_pvc_free returns O. If an error occurs, x25_pvc_free returns -1 and sets
x25_errno to one of the error codes shown below.

Error Codes
X25BADCONNID, X25NOCARD, X25NOLlNK, X25NOTINIT, X25SYSERR.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO.

Example
Free a PVC: example program pvcxmit in Communications Programming Concepts.

Implementation Specifics
This subroutine is part of X.25 Application in AIX 80S Extensions 2.

Related Information
The x25_pvc_alloc subroutine.

9-32 Base Operating System Reference

x25 receive

x25 receive Subroutine

Purpose

Library

C Syntax

Receives an incoming packet and indicates the packet type.

The X.2S Communications Library (libx25s.a)

int x25_receive(
int *conn_id,
struct cb_ms9_struct *cb_ms9

);

Description
The x25_receive subroutine is used to receive both incoming calls and messages or
monitoring data for already-connected calls. One x25_receive receives a complete packet
sequence. In the event of an interrupt packet being received, an interrupt confirmation is
sent automatically by the system.

Parameters
conn_id

Return Value

To receive an incoming call, a pointer to an integer that contains the listen
identifier.

To receive a message for any already-connected call, a pointer to an integer
that contains O.

To receive a message for a specific already-connected call, a pointer to an
integer that contains the connection identifier of the call.

To receive monitoring data for a call, a pointer to an integer that contains the
connection identifier returned by x25_link_monitor.

On return from this subroutine, in all cases, a pointer to an integer that now
contains the actual connection identifier.

Pointer to the message structure, cb_ms9_struct, which includes the
mS9_type. This structure is allocated by the API; it is the responsibility of
the application to free this memory.

If successful, x25_receive returns a non-negative value. If an error occurs, x25_receive
returns -1 and sets x25_errno to one of the error codes shown below.

Error Codes
X25BADID, X25NOACK, X25NOCARD, X25NODATA, X25NOLlNK, X25NOTINIT,
X25RESETCLEAR, X25SYSERR, X25TRUNCTX.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR.

X.25 Application 9-33

Examples
1. Receive an incoming call: example program svcrcv in Communications Programming

Concepts.

2. Receive data (or some other message): example program svcrcv in Communications
Programming Concepts.

3. Receive an acknowledgment that data has been received: example program svcxmit in
Communications Programming Concepts.

Implementation Specifics
This subroutine is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x25_send subroutine.

9-34 Base Operatinq System Reference

x25_reset

x25_reset Subroutine

Purpose

Library

C Syntax

Resynchronizes communications on a virtual circuit.

The X.2S Communications Library (libx25s.a)

int x25_reset(
int conn_id,
struct cb_res_struct *cb_res

);

Description
The x25_reset subroutine sends out a reset-indication packet to reset the virtual circuit,
using the specified connection identifier.

If the application was sending any data at the time of calling this subroutine, the data is
flushed from the system, and the x25_send subroutine returns an appropriate error code.
Incoming data not already passed to the application will be flushed. As resets can cause
data to be lost, it is the responsibility of the application to provide higher-level protocol to
protect data.

Parameters
conn_id Connection identifier of the call.

Pointer to cb_res_struct, which is used to pass the reset cause and
diagnostic codes.

Return Values
If successful, x25_reset returns O. If an error occurs, x25_reset returns -1 and sets
x25_errno to one of the error codes shown below.

Error Codes

Example

X25BADCONNID, X25NOCARD, X25NOLlNK, X25NOTINIT, X25PROTOCOL,
X25RESETCLEAR,X25SYSERR.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EINTR, EIO, ENOSPC.

Reset a call: example program pvcxmit in Communications Programming Concepts.

Implementation Specifics
This subroutine is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x25_reset_confirm subroutine.

X.25 Application 9-35

x25 _reset_ confi rm

x25 reset confirm Subroutine - -

Purpose

Library

C Syntax

Confirms that a reset-indication has been received.

The X.25 Communications Library (libx25s.a)

int x25_reset_confirm(
int connJd,

);

Description

Parameter

The x25_reset_confirm subroutine sends a reset-confirmation packet. After an
reset-indication packet has been received, by x25_receive, no further data can be sent or
received until the reset-confirmation has been sent. Any data currently in transmission is
discarded with an appropriate return code.

Connection identifier of the call.

Return Values
If successful, x25_reset_confirm returns O. If an error occurs, x25_reset_confirm returns
-1 and sets x25_errno to one of the error codes shown below.

Error Codes

Example

EINTR, EIO, ENOSPC, X25BADCONNID, X25NOACK, X25NOCARD, X25NOLlNK,
X25NOTINIT, X25PROTOCOL, X25RESETCLEAR, X25SYSERR, X25TRUNCTX.

Confirm that a reset indication has arrived: example program pvcrcv in Communications
Programming Concepts.

Implementation Specifics
This subroutine is part of X.25 Application in AIX BOS Extensions 2.

Related Information
The x25_reset subroutine.

9-36 Base Operating System Reference

x25_send Subroutine

Purpose

Library

C Syntax

Sends a data packet.

The X.25 Communications Library (libx25s.a)

int x25_send(
int conn_id,
struct cb_data_struct *cb_data

);

Description
The x25_send subroutine transfers the data packet to the adapter for transmission across
the network. Control is returned to the calling application as soon as the device driver has
indicated successful transferral of the data to the adapter.

Parameters
conn_id Connection identifier of the call.

Pointer to data structure, cb_data_struct.

Return Values
If successful, x25_send returns O. If an error occurs, x25_send returns -1 and sets
x25_errno to one of the error codes shown below.

Error Codes

Examples

X25BADCONNID, X25NOACK, X25NOCARD, X25NOLlNK, X25NOTINIT,
X25PROTOCOL, X25RESETCLEAR, X25SYSERR, X25TRUNCTX.

If x25_errno is set to X25SYSERR, errno is set to one of the following values:

EFAULT, EINTR, EIO, ENOSPC.

1. Send data without the O-bit set: example program svcxmit in Communications
Programming Concepts.

2. Send data with the O-bit set to request acknowledgment: example program svcxmit in
Communications Programming Concepts.

Implementation Specifics
This subroutine is part of X.25 Application in AIX 80S Extensions 2.

Related Information
The x25_receive and x25_ack subroutines.

X.25 Application 9-37

x25 term

x25 term Subroutine

Purpose

Library

C Syntax

Terminates the X.2S API for a specified X.2S port.

The X.2S Communications Library (libx25s.a)

int x25_term(
struct cb_link_name_struct *link_name

);

Description

Parameter

The x25_term subroutine stops X.2S communications with the X.2S port named by
link_name, by terminating communication with the X.2S device driver. If this is the last X.2S
port open for this process, X.2S resources are freed.

x25_term clears any virtual circuits that are still being used by the application. Nevertheless,
you should clear the virtual circuits and tidy up in a controlled way before invoking
x25_term.

A pointer to cb_link_name_struct, which gives the name of the X.2S port.

Return Values
If successful, x25_term returns O. If an error occurs, x25_term returns -1 and sets
x25_errno to one of the error codes shown below.

Error Codes
X25BADDEVICE, X25SYSERR.

Example
Terminate the API: example program svcxmit in Communications Programming Concepts.

Implementation Specifics
This subroutine is part of X.2S Application in AIX BOS Extensions 2.

Related Information
The x25_init subroutine.

9-38 Base Operating System Reference

Devices Services

Devices 10-1

/

10-2 Base Operating System Reference

SYS CFGDD

SVS_CFGDD sysconfig Operation

Purpose
Calls a previously loaded device driver at its module entry point.

Description
The SYS_CFGDD sysconfig operation calls a previously loaded device driver at its module
entry point. The device driver's module entry point, by convention, is its ddconfig entry
point. The SYS_CFGDD operation is typically invoked by device configure or unconfigure
methods to initialize or terminate a device driver, or to request device vital product data.

The sysconfig subroutine puts no restrictions on the command code passed to the device
driver. This allows the device driver's ddconfig entry point to provide additional services, if
desired.

The parmp parameter on the SYS_CFGDD sysconfig operation points to a cfg_dd
structure defined in the sys/sysconfig.h header file. The parmlen parameter on the
sysconfig system call should be set to the size of this structure.

If the kmid variable in the cfg_dd structure is 0, the desired device driver is assumed to be
already installed in the device switch table. The major portion of the device number (passed
in the devno field in the cfg_dd structure) is used as an index into the device switch table.
The device switch table entry indexed by this devno field contains the device driver's
ddconfig entry point to be called.

If the kmid variable is not 0, it contains the module I D to use in calling the device driver. A
uio structure is used to pass the address and length of the device-dependent structure,
specified by the cfg_dd.ddsptr and cfg_dd.ddslen fields, to the device driver being called.

The ddconfig device driver entry point provides information on how to define the ddconfig
routine.

The device driver to be called is responsible for using the appropriate routines to copy the
device-dependent structure (DDS) from user to kernel space.

Return Values
If the SYS_CFGDD sysconfig operation successfully calls the specified device driver, the
return code from the ddconfig routine determines the value returned by this subroutine. If
the ddconfig routine's return code is 0, then the value returned by the sysconfig subroutine
is 0. Otherwise the value returned is a -1, and the errno global variable is set to the return
code provided by the device driver's ddconfig routine.

Errors detected by the SYS_CFGDD sysconfig operation result in the following values for
the errno variable:

EACESS

EFAULT

The calling process does not have the required privilege.

The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
system call. This error is also returned if an I/O error occurred when
accessing data in this area.

Devices

EINVAL

ENODEV

Invalid module 10.

Module 10 specified by the cfQ_dd.kmid field was 0, and an invalid or
undefined devno value was specified.

Related Information

10-4

The sysconfiQ subroutine.

The ddconfig device driver entry point.

The Device Switch Table.

The uio structure.

The Device-Dependent (DDS) structure.

Understanding Major and Minor Numbers For A Special File in Kernel Extensions and
Device Support Programming Concepts.

System Call Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Device Driver Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Virtual File System Introduction in Kernel Extensions and Device Support Programming
Concepts.

Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment in Kernel Extensions and Device Support
Programming Concepts.

Understanding Kernel Extension Binding in Kernel Extensions and Device Support
Programming Concepts.

Base Operating System Reference

SYS_CFGKMD sysconfig Operation

Purpose
Invokes a previously loaded kernel object file at its module entry point.

Description
The SYS_CFGKMO sysconfig operation invokes a previously loaded kernel object file at its
module entry point, typically for initialization or termination functions. The SYS_CFGDD
operation performs a similar function for device drivers.

The parmp parameter on the sysconfig subroutine points to a cfg_kmod structure, which is
defined in the sys/sysconfig.h header file. The kmid field in this structure specifies the
kernel module 10 of the module to invoke. This value is returned when using the
SYS_KLOAO or SYS_SINGLELOAD sysconfig operation to load the object file.

The cmd field in the cfg_kmod structure is a module-dependent parameter specifying the
action that the routine at the module's entry point should perform. This is typically used for
initialization and termination commands after loading and prior to unloading the object file.

The mdiptr field in the cfg_kmod structure points to a module-dependent structure whose
size is specified by the mdilen field. This field is used to provide module-dependent
information to the module to be called. If no such information is needed, the mdiptr field can
be NULL.

If the mdiptr field is not NULL, then the SYS_CFGKMD operation builds a uio structure
describing the address and length of the module-dependent information in the caller's
address space. The mdiptr and mdilen fields are used to fill in the fields of this uio
structure. The module is then called at its module entry point with the cmd parameter and a
pointer to the uio structure. If there is no module-dependent information to be provided, the
uiop parameter passed to the module's entry point is set to NULL.

The module's entry point should be defined as follows:

int module_entry{cmd, uiop)
int cmd;
struct uio * uiop;

The definition of the module-dependent information and its length is specific to the module
being configured. The module to be called is responsible for using the appropriate routines
to copy the module-dependent information from user to kernel space.

Return Values
If the kernel module to be invoked is successfully called, its return code determines the
value that is returned by the SYS_CFGKMOD sysconfig operation. If the called module's
return code is 0, then the value returned by the sysconfig subroutine is O. Otherwise the
value returned is -1 and the errno global variable is set to the called module's return code.

Errors detected by the SYS_CFGKMOD sysconfig operation result in the following values
for the errno variable:

EINVAL Invalid module 10.

Devices 10-5

SYS CFGKMD

EACESS

EFAULT

The calling process does not have the required privilege.

The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
system call. This error is also returned if an I/O error occurred when
accessing data in this area.

Related Information

10--6

The sysconfig subroutine.

The SYS_CFGDD sysconfig subroutine, SYS_KLOAD sysconfig subroutine,
SYS_SINGLELOAD sysconfig operation.

The uio structure.

System Call Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Device Driver Introduction in Kernel Extensions and Device Support Programming
Concepts. '

Device Driver Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Virtual File System Introduction in Kernel Extensions and Device Support Programming
Concepts.

Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment in Kernel Extensions and Device Support
Programming Concepts.

Understanding Kernel Extension Binding in Kernel Extensions and Device Support
Programming Concepts.

Base Operating System Reference

sysconfig

sysconfig Subroutine

Purpose

Syntax

Provides a service for controlling system/kernel configuration.

#include <sys/types.h>
#include <sys/sysconfig.h>

int sysconfig (cmd, parmp, parmlen)
int cmd;
void * parmp;
int parmlen;

Parameters
cmd Specifies the function that the sysconfig subroutine is to perform.

parmp Specifies a user-provided structure.

parmlen Specifies the length of the user-provided structure indicated by the parmp
parameter.

Description
The sysconfig subroutine is used to customize the AIX Operating System. This subroutine
provides a means of loading, unloading, and configuring kernel extensions. These kernel
extensions can be additional kernel services, additional system calls, device drivers, or file
systems. The sysconfig subroutine also provides the ability to read and set system runtime
operating parameters.

Use of the sysconfig subroutine requires appropriate privilege.

The particular operation that the sysconfig subroutine provides is defined by the value of
the cmd parameter. The following operations are defined:

SYS_KLOAD Loads a kernel extension object file into kernel memory.

SYS_SINGLELOAD
Loads a kernel extension object file only if it is not already loaded.

SYS_QUERYLOAD
Determines if a specified kernel object file is loaded.

Unloads a previously loaded kernel object file.

SYS_CFGKMOD
Calls the specified module at its module entry point for configuration
purposes.

SYS_CFGDD Calls the specified device driver configuration routine (module entry point).

Checks the status of a device switch entry in the device switch table.

Devices 10-7

sysconfig

SVS_GETPARMS
Returns a structure containing the current values of runtime system
parameters found in the var structure.

SVS_SETPARMS
Sets runtime system parameters from a caller-provided structure.

Loader Symbol Binding Support, described with the sysconfig SYS_KLOAD operation,
explains the symbol binding support provided when loading kernel object files.

Return Values
These sysconfig operations return a value of 0 upon successful completion of the
subroutine. Otherwise, a value of -1 is returned and the errno global variable is set to
indicate the error.

Any sysconfig operation requiring a structure from the caller fails if the structure is not
entirely within memory addressable by the calling process. A return value of -1 is passed
back and the errno global variable is set to EFAULT.

Related Information

10-8

The ddconfig device driver entry point.

Understanding the device switch table.

Loader Symbol Binding Support in the SYS_KLOAD sysconfig operation.

System Call Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Device Driver Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Virtual File System Introduction in Kernel Extensions and Device Support Programming
Concepts.

Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment in Kernel Extensions and Device Support
Programming Concepts.

Understanding Kernel Extension Binding in Kernel Extensions and Device Support
Programming Concepts.

Base Operating System Reference

SYS_GETPARMS

SYS_GETPARMS sysconfig Operation

Purpose
Copies the system parameter structure into a user-specified buffer.

Description
The SYS_GETPARMS sysconfig operation copies the system parameter var structure into
a user-allocated buffer. This structure may be used for informational purposes alone or
prior to setting specific system parameters.

In order to set system parameters, the required fields in the var structure must be modified,
and then the SYS_SETPARMS sysconfig operation can be called to change the system
runtime operating parameters to the desired state.

The parmp parameter on the sysconfig subroutine points to a buffer that is to contain all or
part of the var structure defined in the sys/var.h header file. The fields in the var_hdr part
of the var structure are used for parameter update control.

The parmlen parameter on the system call should be set to the length of the var structure or
to the number of bytes of the structure that is desired. The complete definition of the system
parameters structure can be found in the sys/var.h header file.

Return Values
The SYS_GETPARMS sysconfig operation returns a value of -1 if an error occurs and the
errno global variable is set to the following:

EACCES

EFAULT

Related Information

The calling process does not have the required privilege.

The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
subroutine. This error is also returned if an I/O error occurred when
accessing data in this area.

The sysconfig subroutine.

The SYS_SETPARMS sysconfig operation.

Programming in the Kernel Environment in Kernel Extensions and Device Support
Programming Concepts.

Devices 10-9

SYS_KLOAD sysconfig Operation

Purpose
Loads a kernel extension into the kernel.

Description
The SYS_KLOAO sysconfig function is used to load a kernel extension object file specified
by a pathname into the kernel. A kernel module 10 for that instance of the module is
returned. The SYS_KLOAO sysconfig operation loads a new copy of the object file into the
kernel even though one or more copies of the specified object file may have already been
loaded into the kernel. The returned module 10 can then be used for any of these three
functions:

• Subsequent invocation of the module's entry point (using the sysconfig SYS_CFGKMOO
operation)

• Invocation of a device driver's ddconfig routine (using the sysconfig SYS_CFGOD
operation)

• Unloading the kernel module (using the sysconfig SYS_KULOAO operation).

The parmp parameter on the sysconfig subroutine must point toa cfg_load structure,
(defined in the sys/sysconfig.h header file), with the path field specifying the path name for
a valid kernel object file. The parmlen parameter should be set to the size of the cfg_load
structure.

Note: A separate sysconfig operation exists, the SYS_SINGLELOAD operation, which
also loads kernel extensions. This operation, however, only loads the requested
object file if it has not already been loaded.

Loader Symbol Binding Support
The following information describes the symbol binding support provided when loading
kernel object files.

Importing Symbols

10-10

Symbols imported from the kernel name space are resolved with symbols that exist in the
kernel name space at the time of the load. (Symbols are imported from the kernel name
space by specifying the #!/unix character string as the first field in an import list at link-edit
time.)

Kernel modules can also import symbols from other kernel object files. These other kernel
object files are loaded along with the specified object file if they are required to resolve the
imported symbols.

Loader Symbol Binding Support, described with the sysconfig SYS_KLOAO operation,
explains the symbol binding support provided when loading kernel object files.

Finding Directory Locations For Unqualified File Names

If the module header contains an unqualified base filename for the symbol (no / (slash)
characters in thename), a libpath search string is used to find the location of the shared
object file required to resolve imported symbols. This libpath search string can be taken from
one of two places. If the libpath field in the cfg_load structure is not NULL, then it pOints to
a character string specifying the libpath to be used. However, if the libpath field is NULL,

Base Operating System Reference

SVS_KLOAD

then the libpath is taken from the module header of the object file specified by the path field
in the same (cfg_load) structure.

The libpath specification found in object files loaded in order to resolve imported symbols is
not used.

The kernel loader service does not support deferred symbol resolution. The load of the
kernel object file is terminated with an error if any imported symbols cannot be resolved.

Exporting Symbols
Any symbols exported by the specified kernel object file are added to the kernel name
space. This makes these symbols available to other subsequently loaded kernel object files.
Any symbols specified with the SYSCALL keyword in the export list at linkedit time are
added to the system call table at load time. These symbols are then available to application
programs as a system call.

Kernel object files loaded on behalf of the specified kernel object file, in order to resolve
imported symbols, do not have their exported symbols added to the kernel name space.

These object files are considered private since they do not export symbols to the global
kernel name space. For these types of object files, a new copy of the object file is loaded on
each SYS_KLOAO operation of a kernel extension that imports symbols from the private
object file. In order for a kernel extension to add its exported symbols to the kernel name
space, it must be explicitly loaded with the SYS_KLOAO sysconfig operation before any
other object files using the symbols are loaded. For kernel extensions of this type (those
exporting symbols to the kernel name space), typically only one copy of the object file should
ever be loaded.

Return Values
If the object file is loaded without error, the module 10 is returned in the kmid variable within
the cfg-'oad structure and the subroutine returns a O.

On error, the subroutine returns a -1 and the errno global variable is set to one of the
following values:

EACESS

EFAULT

ENOEXEC

EINVAL

One of the following reasons applies:

• The calling process does not have the required privilege.

• An object module to be loaded is not an ordinary file.

• The mode of the object module file denies read-only permission.

The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
system call. This error is also returned if an 1/0 error occurred when
accessing data in this area.

The program file has the appropriate access permission, but has an invalid
XCOFF object file indication in its header. The sysconfig SYS_KLOAO
operation only supports loading of XCOFF object files. This error is also
returned if the loader is unable to resolve an imported symbol.

The program file has a valid XCOFF indicator in its header, but the header
is damaged or is incorrect for the machine on which the file is to be run.

Devices 10-11

ENOMEM

ETXTBSY

The load requires more kernel memory than is allowed by the
system-imposed maximum.

The object file is currently open for writing by some process.

Related Information

10-12

The sysconfig subroutine.

The SVS_SINGlElOAD sysconfig operation, SVS_KUlOAD sysconfig operation,
SVS_CFGDD sysconfig operation, SVS_CFGKMOD sysconfig operation.

The ddconfig device driver entry point.

System Call Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Device Driver Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Virtual File System Introduction in Kernel Extensions and Device Support Programming
Concepts.

Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment in Kernel Extensions and Device Support
Programming Concepts.

Understanding Kernel Extension Binding in Kernel Extensions and Device Support
Programming Concepts.

Base Operating System Reference

SYS_KULOAD sysconfig Operation

Purpose
Unloads a loaded kernel object file and any imported kernel object files that were loaded
with it.

Description
The SYS_KULOAO syseonfig operation unloads a previously loaded kernel file and any
imported kernel object files that were automatically loaded with it. It does this by
decrementing the load and use counts of the specified object file and any object file having
symbols imported by the specified object file.

The parmp parameter on the syseonfig subroutine should point to a efg_load structure, as
described for the SYS_KLOAO operation. The kmid field should specify the kernel module
10 that was returned when the object file was loaded by the syseonfig SYS_KLOAD or
SYS_SINGLELOAO operation. The path and libpath fields are not used for this command
and can be set to NULL. The parmlen parameter should be set to the size of the efg_load
structure.

Upon successful completion, the specified object file (and any other object files containing
symbols that the specified object file imports) will have their load and use counts
decremented. If there are no users of any of the module's exports and its load count is 0,
then the object file is immediately unloaded.

However, if there are users of this module, (that is, there are modules bound to this module's
exported symbols), the specified module is not unloaded. Instead, it is unloaded on some
subsequent unload request, when its use and load counts have gone to zero. The specified
module is not in fact unloaded until all current users have been unloaded.

Note: Care must be taken to ensure that a routine has freed all of its system resources
before being unloaded. For example, a device driver is typically prepared for
unloading by using the syseonfig subroutine's SYS_CFGDD operation and
specifying termination.

Loader Symbol Binding Support, described with the syseonfig SYS_KLOAO operation,
explains the symbol binding support provided when loading kernel object files.

Return Values
If the unload operation is successful or the specified object file's load count is successfully
decremented, a value of 0 is returned.

On error, the specified file and any imported files are not unloaded, nor are their load and
use counts decremented. A value of -1 is returned and the errno global variable is set to
one of the following:

EACESS

EINVAL

EFAULT

The calling process does not have the required privilege.

Invalid module 10 or the specified module is no longer loaded or already has
a load count of O.

The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided to the
subroutine. This error is also returned if an 1/0 error occurred when
accessing data in this area.

Devices 10-13

SYS_KULOAD

Related Information

10-14

The sysconfig subroutine.

The SYS_KLOAD sysconfig operation, SYS_SINGLELOAD sysconfig operation,
SYS_CFGDD sysconfig operation.

Base Operating System Reference

SVS_QOVSW

SYS_QOVSW sysconfig Operation

Purpose
Checks the status of a device switch entry in the device switch table.

Description
The SYS_QDVSW sysconfig operation checks the status of a device switch entry in the
device switch table.

The parmp parameter on the sysconfig subroutine points to a qry _devsw structure defined
in the sys/sysconfig.h header file. The parmlen parameter on the subroutine should be set
to the length of the qry_devsw structure.

The qry _devsw field in the qry _devsw structure is modified to reflect the status of the
device switch entry specified by the qry_devsw field. (The value in the devno field
corresponds to the major portion of the device number.) The following flags can be returned
in the status field:

DSW_UNDEFINED
The device switch entry is not defined if this flag has a value of 0 on return.

DSW_DEFINED
The device switch entry is defined.

DSW_CREAD The device driver in this device switch entry provides a routine for character
reads or raw input. This flag is set when the device driver provides a
ddread entry point.

DSW_CWRITE
The device driver in this device switch entry provides a routine for character
writes or raw output. This flag is set when the device driver provides a
ddwrite entry point.

DSW_BLOCK The device switch entry is defined by a block device driver. This flag is set
when the device driver provides a ddstrategy entry point.

DSW_MPX

DSW_SELECT

The device switch entry is defined by a multiplexed device driver. This flag
is set when the device driver provides a ddmpx entry point.

The device driver in this device switch entry provides a routine for handling
the select or poll subroutines. This flag is set when the device driver
provides a ddselect entry point.

DSW_DUMP The device driver defined by this device switch entry provides the capability
to support one or more of its devices as targets for a kernel dump. This flag
is set when the device driver has provided a dddump entry point.

DSW_CONSOLE
The device switch entry is defined by the console device driver.

Devices 10-15

SYS_QOVSW

DSW_TCPATH
The device driver in this device switch entry supports devices that are
considered to be in the Trusted Computing Path and provides support for
the revoke subroutine and frevoke subroutine. This flag is set when the
device driver provides a ddrevoke entry point.

The device switch entry is defined and the device has outstanding opens.
This flag is set when the device driver has at least one outstanding open.

The DSW_UNDEFINED condition is indicated when the device switch entry has not been
defined or has been defined and subsequently deleted. Multiple status flags may be set for
other conditions of the device switch entry.

Return Values
If no error is detected, this operation returns with a value of O. If an error is detected, the
return value is set to a value of -1. The errno global variable is also set to one of these
three values:

EACESS

EINVAL

EFAULT

The calling process does not have the required privilege.

Device number exceeds the maximum allowed by the kernel.

The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
system call. This error is also returned if an liD error occurred when
accessing data in this area.

Related Information

10-16

The sysconfig subroutine.

The ddread device driver entry point, ddwrite device driver entry point, ddstrategy device
driver entry point, ddmpx device driver entry point, ddselect device driver entry point,
dddump device driver entry point, ddrevoke device driver entry point.

console special file.

Understanding the Device Switch Table in Kernel Extensions and Device Support
Programming Concepts.

Trusted Computing Path Support In a Character Device Driver in Kernel Extensions and
Device Support Programming Concepts.

Understanding Block liD Device Drivers in Kernel Extensions and Device Support
Programming Concepts.

Providing Raw liD Support In a Block liD Device Driver in Kernel Extensions and Device
Support Programming Concepts.

Understanding Character liD Device Drivers, Multiplexed Support In a Character Device
Driver in Kernel Extensions and Device Support Programming Concepts.

System Call Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Device Driver Kernel Extension Overview in Kernel Extensions and Device Support
Programming Concepts.

Base Operating System Reference

SYS_QOVSW

Virtual File System Introduction in Kernel Extensions and Device Support Programming
Concepts.

Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment in Kernel Extensions and Device Support
Programming Concepts.

Understanding Kernel Extension Binding in Kernel Extensions and Device Support
Programming Concepts.

Devices 10-17

SYS_QUERYLOAD

SYS_QUERYLOAD sysconfig Operation

Purpose
Determines if a kernel object file has already been loaded.

Description
The SYS_QUERYLOAD syseonfig operation performs a query operation to determine if a
given object file has been loaded. This object file is specified by the path field in the
efg_load structure passed in with the parmp parameter. This operation utilizes the same
efg_load structure that is specified for the SYS_KLOAD operation.

If the specified object file is not loaded, the kmid field in the efg_load structure is set to a
value of 0 on return. Otherwise, the kernel module 10 of the module is returned in the kmid
field. If multiple instances of the module have been loaded into the kernel, the module ID of
the one most recently loaded is returned.

The lib path field in the efg_load structure is not used for this option.

Note: Note that a path name comparison is done to determine if the specified object file
has been loaded. This operation will erroneously return a not loaded condition if the
path name to the object file is expressed differently than it was on a previous load
request.

Loader Symbol Binding Support, described with the syseonfig SYS_KLOAD operation,
explains the symbol binding support provided when loading kernel object files.

Return Values
If the specified object file is found, the module 10 is returned in the kmid variable within the
efg_load structure and the subroutine returns a O. If the specified file is not found, a kmid
variable of 0 is returned with a return code of O. On error, the subroutine returns a -1 and the
errno global variable is set to one of the following values:

EACCES

EFAULT

EFAULT

EIO

The calling process does not have the required privilege.

The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided on the
subroutine. This error is also returned if an 110 error occurred when
accessing data in this area.

The path parameter points to a location outside of the process's allocated
address space.

An I/O error occurred during the operation.

Related Information

10-18

The syseonfig subroutine.

The SYS_SINGLELOAD syseonfig operation, SYS_KLOAD syseonfig operation.

Loader Symbol Binding Support in the SYS_KLOAD syseonfig operation.

Base Operating System Reference

SYS_QUERYLOAD

Programming in the Kernel Environment in Kernel Extensions and Device Support
Programming Concepts.

Understanding Kernel Extension Binding in Kernel Extensions and Device Support
Programming Concepts.

Devices 10-19

SYS_SETPARMS sysconfig Operation

Purpose
Sets the kernel runtime tunable parameters.

Description
The SYS_SETPARMS sysconfig operation sets the current system parameters from a copy
of the system parameter var structure provided by the caller. Only the runtime tunable
parameters in the var structure can be set by this subroutine.

If the var_vers and var_gen values in the caller-provided structure do not match the
var_vers and var_gen values in the current system var structure, no parameters are
modified and an error is returned. The var_vers, var_gen and var_size fields in the
structure should not be altered. The var_vers value is assigned by the kernel and is used to
insure that the correct version of the structure is being used. The var_gen value is a
generation number having a new value for each read of the structure. This provides
consistency between the data read by the SYS_GETPARMS operation and the data written
by the SYS_SETPARMS operation.

The parmp parameter on the sysconfig subroutine points to a buffer that contains all or part
of the var structure as defined in the <sys/var.h> header file.

The parmlen parameter on the subroutine should be set either to the length of the var
structure or to the size of the structure containing the parameters to be modified. The
number of system parameters modified by this operation is determined either by the parmlen
parameter value or by the var_size field in the caller-provided var structure. (The smaller of
the two values is used.)

The structure provided by the caller must contain at least the header fields of the var
structure. Otherwise, an error will be returned. Partial modification of a parameter in the var
structure can occur if the caller's data area does not contain enough data to end on a field
boundary. It is up to the caller to ensure that this does not happen.

Return Values

10-20

The SYS_SETPARMS sysconfig operation returns a value of -1 if an error occurred, and
the errno global variable is set to one of the following:

EACESS

EINVAL

The calling process does not have the required privilege.

One of the following error situations exists:

• The var_vers version number of the provided structure does not match
the version number of the current var structure.

• The structure provided by the caller does not contain enough data to
specify the header fields within the var structure.

• One of the specified variable values is invalid or not allowed. On the
return from the subroutine, the var_vers field in the caller-provided buffer
contains the byte offset of the first variable in the structure that was
detected in error.

EAGAIN

EFAULT

Related Information

SYS_SETPARMS

The var_gen generation number in the structure provided does not match
the current generation number in the kernel. This occurs if consistency is
lost between reads and writes of this structure. The caller should repeat the
read, modify, and write operations on the structure.

The calling process does not have sufficient authority to access the data
area described by the parmp and parmlen parameters provided to the
subroutine. This error is also returned if an I/O error occurred when
accessing data in this area.

The sysconfig subroutine.

The SYS_GETPARMS sysconfig operation.

Understanding Kernel Extension Binding in Kernel Extensions and Device Support
Programming Concepts.

Devices 10-21

SVS~SINGLELOAD

SYS_SINGLELOAD sysconfig Operation

Purpose
Loads a kernel extension module if it is not already loaded.

Description
The SYS_SINGLELOAD sysconfig operation is identical to the SYS_KLOAO operation,
except that the SYS_SINGLELOAD operation loads the object file only if an object file with
the same path name has not already been loaded into the kernel.

If an object file with the same path name has already been loaded, the module 10 for that
object file is returned in the kmid field and its load count incremented. If the object file is not
loaded, this operation performs the load request exactly as defined for the SYS_KLOAO
function.

This option is useful in supporting global kernel routines where only one copy of the routine
and its data can be present. Typically routines that export symbols to be added to the kernel
name space are of this type.

Note: Note that a path name comparison is done to determine if the same object file has
already been loaded. This function will erroneously load a new copy of the object file
into the kernel if the path name to the object file is expressed differently than it was
on a previous load request.

Loader Symbol Binding Support, described with the sysconfig SYS_KLOAD operation,
explains the symbol binding support provided when loading kernel object files.

Return Values
The SYS_SINGLELOAD operation returns the same set of error codes that the
SYS_KLOAD operation returns.

Related Information

10-22

The sysconfig subroutine.

The SYS_KLOAD sysconfig operation.

Programming in the Kernel Environment in Kernel Extensions and Device Support
Programming Concepts.

Understanding Kernel Extension Binding in Kernel Extensions and Device Support
Programming Concepts.

Base Operating System Reference

Base Operating System Error Codes

Appendix A. Base Operating System Error Codes for
Services That Require Path Name Resolution

The following errors apply to any service that requires path name resolution:

EACCES

EFAULT

ELOOP

ENAMETOOLONG

ENOENT

ENOENT

ENOENT

ENOTDIR

ESTALE

EIO

Search permission is denied on a component of the path prefix.

The Path parameter points outside of the allocated address
space of the process.

Too many symbolic links were encountered in translating the
Path parameter.

A component of a path name exceeded 255 characters and the
process has the DisallowTruncation attribute (see the ulimit
subroutine), or an entire path name exceeded 1023 characters.

A component of the path prefix does not exist.

A symbolic link was named, but the file to which it refers does not
exist.

The path name is null.

A component of the path prefix is not a directory.

The root or current directory of the process is located in a virtual
file system that is unmounted.

An liD error occurred during the operation.

Base Operating System Error Codes A-1

A-2 Base Operating System Reference

OOM Error Codes

Appendix B. OOM Error Codes

When an OOM subroutine fails, a value of -1 is returned and the odmerrno variable is set to
one of the following values:

ODMI_BAD_CLASSNAME
The specified object class name does not match the object class name in
the file. Check path name and permissions.

ODMI_BAD_CLXNNAME
The specified collection name does not match the collection name in the file.

ODMI_BAD_CRIT
The specified search criteria is incorrectly formed. Make sure the criteria
contains only valid descriptor names and the search values are correct. For
information on qualifying criteria, see Understanding OOM Object

Searches in General Programming Concepts.

ODMI_BAD_LOCK
Cannot set a lock on the file. Check path name and permissions.

ODMI_BAD _TIMEOUT
The timeout value was not valid. It must be a positive integer.

ODMI_BAD _TOKEN
Cannot create or open the lock file. Check path name and permissions.

The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_EXISTS
The specified object class already exists. An object class must not exist
when it is created.

ODMI_CLASS_PERMS
The object class cannot be opened because of the file permissions.

ODMI_CLXNMAGICNO_ERR
The specified collection is not a valid object class collection.

Cannot fork the child process. Make sure the child process is executable
and try again.

ODMI_INTERNAL_ERR
An internal consistency problem occurred. Make sure the object class is
valid or contact the person responsible for the system.

ODMI_INVALlD_CLASS
The specified file is not an object class.

OOM Error Codes 8-1

OOM Error Codes

ODMI_INVALlD_CLXN
Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALlD_PATH
The specified path does not exist on the file system. Make sure the path is
accessible.

ODMI_LlNK_NOT _FOUND
The object class that is linked to could not be opened. Make sure the linked
object class is accessible.

ODMI_LOCK_BLOCKED
Cannot grant the lock. Another process already has the lock.

Cannot retrieve or set the lock environment variable. Remove some
environment variables and try again.

ODMI_LOCK_ID
The lock identifier does not refer to a valid lock. The lock identifier must be
the same as what was returned from the odm_lock subroutine.

ODMI_MAGICNO_ERR
The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR
Cannot allocate sufficent storage. Try again later or contact the person
responsible for the system.

ODMLNO_OBJECT
The specified object identifier did not refer to a valid object.

ODMI_OPEN_ERR
Cannot open the object class. Check path name and permissions.

ODMI_OPEN_PIPE
Cannot open a pipe to a child process. Make sure the child process is
executable and try again.

ODMI_PARAMS
The parameters passed to the subroutine were not correct. Make sure there
are the correct number of parameters and that they are valid.

ODMI_READ_ONLY
The specified object class is opened as read-only and cannot be modified.

ODMI_READ_PIPE
Cannot read from the pipe of the child. Make sure the child process is
executable and try again.

ODMLTOOMANYCLASSES
Too many object classes have been accessed. An application can only
access less than 1024 object classes.

8-2 Base Operating System Reference

ODM Error Codes

ODMI_UNLINKCLASS_ERR
Cannot remove the object class from the file system. Check path name and
permissions.

ODMI_UNLINKCLXN_ERR
Cannot remove the object class collection from the file system. Check path
name and permissions.

ODMI_UNLOCK
Cannot unlock the lock file. Make sure the lock file exists.

ODM Error Codes B-3

OOM Error Codes

8-4 Base Operating System Reference

X.2S Application Error Codes

Appendix C. List of X.2S API Error Codes

List of X.2S-Specific Error Codes
For X.25-specific error conditions, x25_errno is set to one of the following values:

X25ACKREQ

X25AUTH

X25AUTHCTR

X25AUTHLISTEN

X25BADCONNID

X25BADDEVICE

X25BADID

X25BADLISTENID

X25CAllED

X25CAlLiNG

X25CTRUSE

X251NIT

X251NVCTR

X251NVFAC

X251NVMON

X25L1NKUP

X25L1NKUSE

X25l0NG

One or more packets require acknowledgement. Issue x25_ack
before continuing.

The calling application does not have system permission to
control the status of the link.

The application does not have permission to remove this counter
because it is not the application that issued the corresponding
x25_ctr_get.

The application cannot listen to this name, because the
corresponding entry in the routing list has a user name that
excludes the user running the application. Use another routing
list name, or change the user name in the routing list entry.

The connection identifier is invalid.

The X.25 port name is invalid.

The connection identifier or listen identifier is invalid.

The listen identifier is invalid.

The called address is invalid. Check that the address is correct
and is a NULL-terminated string.

The calling address is invalid. Check that the address is correct
and is a NULL-terminated string.

The counter has a non-zero value.

X.25 is already initialized for this X.25 port, so cannot be
initialized again.

The specified counter does not exist. (In the case of
x25_ctr_wait, the counter is one of an array of counters.)

An optional facility requested is invalid. Check cb_fac_struct.

The monitoring mode is invalid.

The X.25 port is already connected.

The X.25 port still has virtual circuits established; it may still be in
use. Either free all virtual circuits or disconnect the port using the
override.

The parameter is too long. Check each of the parameters for this
subroutine.

X.25 Application Error Codes C-1

X.2S Application Error Codes

X25MAXDEVICE

X25MONITOR

X25NAMEUSED

X25NOACKREQ

X25NOCARD

X25NOCTRS

X25NODATA

X25NODEVICE

X25NOLINK

X25NONAME

X25NOSUCHLINK

X25NOTINIT

X25NOTPVC

X25PROTOCOL

X25PVCUSED

X25RESETCLEAR

X25SYSERR

X25TABLE

X25TIMEOUT

X25TOOMANYVCS

Attempts have been made to connect more X.2S ports than are
available. Check the smit configuration to see how many ports
are available.

X.2S traffic on this X.2S port is already being monitored by
another application. The other application must stop monitoring
before any other application can start it.

Calls for this name are already being listened for.

No packets currently require acknowledgement.

The X.2S adapter is either not installed or not functioning.

No counters are available.

No data is has arrived for this connection identifier. Issue
x25_ctr_wait to be notified when data arrives.

The X.2S device driver is either not installed or not functioning.

The X.2S port is not connected. Issue x2SJink_connect, or use
xmanage to connect it.

The name is not in the routing list. Add the name or use one that
is already in the list.

The X.2S port does not exist. Check the smit configuration.

The application has not initialized X.2S communications. Issue
x2Sjnit.

This is not defined as a permanent virtual circuit (PVC). Check
the smit configuration.

An X.2S protocol error occurred.

This permanent virtual circuit (PVC) is already allocated to
another application. The other application must free the PVC
before it can be used.

The call was reset or cleared during processing. Issue
x25_receive to obtain the reset-indication or clear-indication
packet. Then issue x25_reset_confirm or x2S_clear_confirm,
as necessary.

An error occurred that was not an X.2S error. Check the value of
errno.

The routing list cannot be updated because xroute is using it. Try
again after xroute has completed.

A timeout problem occurred.

No virtual circuits are free on the listed X.2S ports.

C-2 Base Operating System Reference

X.25 Application Error Codes

,

X25TRUNCTX The packet size is too big for internal buffers, so data cannot be
sent.

List of System Error Codes
For non-X.25-specific error conditions, x25_errno is set to X2 5SYSERR and errno is set to
one of the following values:

EFAULT

EINTR

EIO

ENOMEM

ENOSPC

EPERM

Bad address pointer.

A signal was caught during the call.

An I/O error occurred.

Could not allocate memory for device information.

There are no buffers available in the pool.

Calling application does not have sufficient authorization.

X.25 Application Error Codes C-3

Index

Special Characters
_atojis macro, 1-285
_exit subroutine, 1-127-1-128
jistoa macro, 1-285
_NLxout subroutine, 1-484
_tojlower macro, 1-285
_tojupper macro, 1-285

A
a641 subroutine, 1-3
abort subroutine, 1-4
abs subroutine, 1-5-1-6
absinterval subroutine, 1-190-1-192
accept a connection on a socket, Sockets, 8-3
accept subroutine, Sockets, 8-3
access control information

changing
using acLchg subroutine, 1-11-1-13,

1-706-1-708
using acl_fchg subroutine, 1-11-1-13

getting, using acLget subroutine, 1-14-1-15
setting

using acl_fset subroutine, 1-19-1-21
using acl_set subroutine, 1-19-1-21

access data stored under a key, fetch, 5-44
access data stored under key, dbm_fetch, 5-36
access subroutine, 1-7-1-8
acct subroutine, 1-9-1-10
acl_chg subroutine, 1-11-1-13
acLfchg subroutine, 1-11-1-13
acLget subroutine, 1-14-1-15
acLput subroutine, 1-16-1-18
acLset subroutine, 1-19-1-21
acos subroutine, 1-673-1-674
acosh subroutine, 1-26
add group or multicast receive address, OLC, 3-57
addresses, define program, 1-117
addssys subroutine, 1-22-1-23
adjtime subroutine, 1-24-1-25
advance subroutine, 1-87-1-90
AIX API application, HCON programming

receiving message from, 2-62
sending message to, 2-78
starting interaction with, 2-15

AIX Input Method, notifying input auxiliary area,
using IMProcess Auxiliary subroutine,
1-271-1-272

aix_exec function, xgmon, 6-3
alarm subroutine, 1-190-1-192
alloc function, xgmon, 6-4
alloca subroutine, 1-399-1-402

allow command execution on a remote host,
Sockets, 8-98

allow execution of commands on a remote host,
Sockets, 8-82

allow servers to authenticate clients, Sockets, 8-102
allow VGM to change current display element mask,

xgmon, 6-71
allow VGM to issue system command, xgmon, 6-16
allow VGM to start execution of library command in

other VGM, xgmon, 6-16
alphasort subroutine, 1-591-1-592
alter a link station's configuration parameters, OLC,

3-42
alter normally defaulted parameters, OLC, 3-61
API for X.25

initializing, using x25_init subroutine, 9-19
terminating for a specified X.25 port, using

x25_term subroutine, 9-38
array, allocating space, using imcalloc subroutine,

1-256
ascii function, xgmon, 6-5
asctime subroutine, 1-101-1-103
asin subroutine, 1-673-1-674
asinh subroutine, 1-26
assert macro, 1-27
asynchronous event call, OLC, 3-64
atan subroutine, 1-673-1-674
atan2 subroutine, 1-673-1-674
atanh subroutine, 1-26
atexit subroutine, 1-127-1-128
atof subroutine, 1-28-1-29
atoff subroutine, 1-28-1-29
atoi subroutine, 1-721-1-722
atojis subroutine, 1-285
atol subroutine, 1-721-1-722
attach to session with extended open capabilities,

HCON programming, 2-55
attach to session, HCON programming, 2-49
audit

generating an audit record, using auditlog
subroutine, 1-37-1-38

reading a record, using auditread subroutine,
1-47

writing a record, using auditwrite subroutine,
1-48

audit bins, compressing and uncompressing, using
auditpack subroutine, 1-42-1-43

audit subroutine, 1-30-1-31
auditbin subroutine, 1-32-1-34

Index X-1

auditevents subroutine, 1-35-1-36
auditing

defining a file, using auditbin subroutine,
1-32-1-34

disabling, using audit subroutine, 1-30-1-31
enabling, using audit subroutine, 1-30-1-31
getting system event status, using auditevents

subroutine, 1-35-1-36
setting mode of system data object, using

auditobject subroutine, 1-39-1-41
setting system event status, using auditevents

subroutine, 1-35-1-36
. auditlog subroutine, 1-37-1-38

auditobj subroutine, , 1-40
auditobject subroutine, 1-39-1-41
auditpack subroutine, 1-42-1-43
auditproc subroutine, 1-44-1-46
auditread subroutine, 1-47
auditwrite subroutine, 1-48
auth_destroy macro, RPC, 5-6
authdes_create subroutine, RPC, 5-3
authdes_getucred subroutine, RPC, 5-5
authentication

closing the database, using endpwdb
subroutine, 1-631-1-632

opening the database, using setpwdb
subroutine, 1-631-1-632

authnone_create subroutine, RPC, 5-7
authunix_create subroutine, RPC, 5-8
authunix_create_default subroutine, RPC, 5-9
auxiliary area, hiding, using IMAuxHide subroutine,

1-254

B
base_type function, xgmon, 6-6
Baud Rates Subroutines

cfgetispeed subroutine, 1-61-1-62
cfgetospeed subroutine, 1-61-1-62
cfsetispeed subroutine, 1-61-1-62
cfsetospeed subroutine, 1-61-1-62

bcmp subroutine, 1-49
bcopy subroutine, 1-49
begin LAF script, HCON programming, 2-94
Berkeley Compatibility Library

alloca subroutine, 1-399-1-402
calloc subroutine, 1-399-1-402
fmin subroutine, 1-396-1-398
fmout subroutine, 1-396-1-398
free subroutine, 1-399-1-402
ftime subroutine, 1-218-1-219
gcd subroutine, 1-396-1-398
invert subroutine, 1-396-1-398
itom subroutine, 1-396-1-398
mjn subroutine, 1-396-1-398
m_out subroutine, 1-396-1-398
madd subroutine, 1-396-1-398
mal/info subroutine, 1-399-1-402
malloc subroutine, 1-399-1-402

X-2 Base Operating System Reference

mal/opt subroutine, 1-399-1-402
mcmp subroutine, 1-396-1-398
mdiv subroutine, 1-396-1-398
min subroutine, 1-396-1-398
mkstemp subroutine, 1-421
mout subroutine, 1-396-1-398
move subroutine, 1-396-1-398
msqrt subroutine, 1-396-1-398
msub subroutine, 1-396-1-398
mult subroutine, 1-396-1-398
nice subroutine, 1-204-1-205
nlist subroutine, 1-469-1-470
om in subroutine, 1-396-1-398
omout subroutine, 1-396-1-398
pow subroutine, 1-396-1-398
psignal subroutine, 1-548
rand subroutine, 1-564-1-565
re_comp subroutine, 1-568
re_exec subroutine, 1-568
realloc subroutine, 1-399-1-402
rpow subroutine, 1-396-1-398
sdiv subroutine, 1-396-1-398
signal subroutine, 1-651
sigvec subroutine, 1-651
srand subroutine, 1-564-1-565
sys_siglist vector, 1-548
vfork subroutine, 1-147
vtimes subroutine, 1-211-1-213

bind a name to a socket, Sockets, 8-5
bind subroutine, Sockets, 8-5
binding handles

clearing, 4-29
clearing server bindings, 4-30
freeing, 4-32
socket address representation, 4-33

BREAK LAF statement, HCON programming, 2-3
brk subroutine, 1-52-1-53
bsearch subroutine, 1-54
bytes, copy, using swab subroutine, 1-724
bzero subroutine, 1-49

C
cabs subroutine, 1-248-1-249
call for X.25

accepting an incoming, using x25_cal/_accept
subroutine, 9-6

clearing, using x25_cal'-clear subroutine,
9-7-9-8

making, using x25_cal/ subroutine, 9-4-9-5
starting listening for incoming, using x25_listen

subroutine, 9-30
turning off listening for, using x25_deafen

subroutine, 9-16
calling process

returning parent process group 10, using
getppid subroutine, 1-202

returning process 10, using getpid subroutine,
1-202

returning the process group 10, using getpgrp
subroutine, 1-202

suspending, using pause subroutine, 1-527
calloc subroutine, 1-399-1-402
callrpc subroutine, RPC, 5-10
catclose subroutine, 1-56
catgetmsg subroutine, 1-57
catgets subroutine, 1-58
catopen subroutine, 1-59-1-60
cbrt subroutine, 1-676
ceil subroutine, 1-141-1-143
cfxfer function, HCON programming, 2-4
chacl subroutine, 1-63-1-65
change configuration parameters, OLC, 3-22, 3-28
change current primary address of host, xgmon,

6-54
change NIS map, yp_update, 5-144
change relative location of display element, xgmon,

6-52
change remote address/name result extension, OLC,

3-56
character

classifying
using ctype subroutines, 1-104-1-105
using Japanese ctype subroutines,

1-287-1-291
using NCctype subroutines, 1-453-1-455

determining the length of multipbyte character,
using mblen subroutine, 1-405

locating first occurence in a string, using
wcspbrk subroutine, 1-803

translating
Japanese conv subroutine, 1-285-1-286
using conv subroutines, 1-91-1-93

character data
read and interpret according to a format, using

wsscanf subroutine, 1-815
read and interpret according to format,

1-593-1-597
chdir subroutine, 1-66-1-67
check file descriptor readiness, OLC, 3-73
check I/O status, file descriptors and message

queues, using select subroutine, 1-598-1-600
check the status of the programmatic file transfer,

HCON programming, 2-4
chmod subroutine, 1-68-1-70
chown subroutine, 1-71-1-73
chownx subroutine, 1-71-1-73
chroot subroutine, 1-74-1-75
chssys subroutine, 1-76-1-77
cjistosj subroutine, 1-292-1-293
ckuseracct subroutine, 1-80-1-81
ckuserlO subroutine, 1-78-1-79
class subroutine, 1-82-1-83
clearerr macro, 1-140
clnt_broadcast subroutine, RPC, 5-12
clnt_call macro, RPC, 5-14
clnt_control macro, RPC, 5-16
clnt_create subroutine, RPC, 5-18

clnt_destroy macro, RPC, 5-19
clnt_freeres macro, RPC, 5-20
clnt_geterr macro, RPC, 5-21
clnt_pcreateerror subroutine, RPC, 5-22
clnt_perrno subroutine, RPC, 5-23
clnt_perror subroutine, RPC, 5-24
clnt_spcreateerror subroutine, RPC, 5-25
clnt_sperrno subroutine, RPC, 5-26
clnt_sperror subroutine, RPC, 5-28
clntraw_create subroutine, RPC, 5-29
clnttcp_create subroutine, RPC, 5-30
clntudp_create subroutine, RPC, 5-32
clock, system, correcting time for synchronization,

using adjtime subroutine, 1-24-1-25
clock subroutine, 1-84
close a file, 1-85-1-86
close function, xgmon, 6-7
close open file, xgmon, 6-7
close subroutine, 1-85-1-86

OLC, 3-3
close subroutine for generic SNA, SNA, 7-5
close subroutine for SNA Services/6000, SNA, 7-3
close the /etc/service file entry, Sockets, 8-22
closedir subroutine, 1-522-1-524
closelog subroutine, 1-734
closes a database, dbmclose, 5-41
closes the letclprotocols file, Sockets, 8-21
closes the database, dbm_close, 5-34
closes the networks file, Sockets, 8-20
code pOints, returning the number, using NCcplen

suboutine, 1-465
compare and swap data, 1-98-1-99
compile and match patterns, 1-578
compile subroutine, 1-87-1-90
compress a domain name, Sockets, 8-11
connect subroutine, Sockets, 8-8
connect two sockets, Sockets, 8-8
contact a remote station for a link station, OLC, 3-41
control garbage collection by VGM, xgmon, 6-63
control open file descriptors, 1-336-1-338
control operations, using IMloctl subroutine,

1-266-1-267
controlling terminal, generate path name for, using

ctermid subroutine, 1-100
conversion

date and time to string representation
using asctime subroutine, 1-101-1-103
using ctime subroutine, 1-101-1-103
using difftime subroutine, 1-101-1-103
using gmtime subroutine, 1-101-1-103
using localtime subroutine, 1-101-1-103
using mktime subroutine, 1-101-1-103
using strftime subroutine, 1-101-1-103
using timezone subroutine, 1-101-1-103
using tzset subroutine, 1-101-1-103

multibyte character string to wide-character
string, using mbstowcs subroutine, 1-413

multipbyte character to wide character, using
mbtowc subroutine, 1-414

Index X-3

wide-character sequence to multibyte
character sequence, 1-806

wide-character to multibyte character, wctomb
subroutine, 1-808

convert an Internet address to ASCII, Sockets, 8-72
convert Internet addresses to Internet numbers,

Sockets, 8-62
convert Internet dot notation addresses to Internet

numbers, Sockets, 8-70
convert long integer from host order to Internet order,

Sockets, 8-60
convert long integer from network byte order to host

byte order, Sockets, 8-76
convert short integer from host order to Internet

order, Sockets, 8-61
convert short integer from network byte order to host

byte order, Sockets, 8-77
converting character strings to UUIOs, 4-47
converting host names to socket addresses, 4-36
converting UUIOs to character strings, 4-48
copysign subroutine, 1-94-1-95
cos subroutine, 1-673-1-674
cosh subroutine, 1-675
counter for X.25

getting a, using x25_ctr_get subroutine, 9-11
removing, using x25_ctr_remove subroutine,

9-12
returning the current value of, using

x25_ctr_test subroutine, 9-13
waiting for changes in value, using

x25_ctr_wait subroutine, 9-14-9-15
creat subroutine, 1-517
create a pair of connected sockets, Sockets, 8-129
create a socket and return a descriptor, Sockets,

8-126
create link between hosts, xgmon, 6-48
create node or host, xgmon, 6-47
create UOP socket to communicate with SNMP

agent, SNMP, 6-8
create_SNMP _port subroutine, 6-8
crypt subroutine, 1-96-1-97
cs subroutine, 1-98-1-99
csjtojis subroutine, 1-292-1-293
csjtouj subroutine, 1-292-1-293

. ctermid subroutine, 1-100
ctime function, xgmon, 6-9
ctime subroutine, 1-101-1-103
cujtojis subroutine, 1-292-1-293
cujtosj subroutine, 1-292-1-293
cuserid subroutine, 1-106

D
data packet for X.25

acknowledging with the O-bit set, using
x25_ack subroutine, 9-3

sending a, using x25_send subroutine, 9-37
datagram data received routine, OLC, 3-63
datagram packet received call, OLe, 3-63

X-4 Base Operating System Reference

date

OBM

formatting, using NLstrtime subroutine,
1-475-1-477

getting, using gettimeofday subroutine,
1-218-1-219

setting, using settimeofday subroutine,
1-218-1-219

dbmclose subroutine, 5-41
dbminit subroutine, 5-42
delete subroutine, 5-43
fetch subroutine, 5-44
firstkey subroutine, 5-45
nextkey subroutine, 5-55
store subroutine, 5-65

dbm_close subroutine, 5-34
dbm_delete subroutine, 5-35
dbm fetch subroutine, 5-36
dbm=first subroutine, 5-37
dbm_nextkey subroutine, 5-38
dbm_open subroutine, 5-39
dbm_store subroutine, 5-40
dbmclose subroutine, 5-41
dbminit subroutine, 5-42
debug LAF script, HCON programming

disabling, 2-86
enabling messages, 2-7

DEBUG LAF statement, HCON programming, 2-7
decode device handler name, OLC, 3-10
decode SNMP packet, SNMP, 6-56
decode special functions commands, OLC, 3-8
default domain of NIS node, 5-137
defssys subroutine, 1-107-1-108
delete key and associated contents, dbm_delete,

5-35
delete key and associated contents, delete, 5-43
delete subroutine, 5-43
delssys subroutine, 1-109
dep_info function, xgmon, 6-10
descriptor table, getting the size, 1-177
detach AIX API from session, HCON programming,

2-21
dfftime subroutine, 1-101-1-103
directory

changing, using chdir subroutine, 1-66-1-67
creating, using mkdir subroutine,

1-417-1-418
gets path name, using getwd subroutine, 1-243
gets the path name, using getcwd subroutine,

1-176
perform operations on directories,

1-522-1-524
removing an entry, using unlink subroutine,

1-781-1-782
renaming, using rename subroutine,

1-584-1-586
disable a GOLC channel, 3-4, 3-21
disable a GOLC channel" 3-3

disable a service access point, OLC, 3-35
disable debugging in LAF script, HCON

programming, 2-86
disclaim subroutine, 1-110
dispatching remote procedure calls, 4-35
div subroutine, 1-5-1-6
OLC entry points

dlcclose, 3-4
dlcconfig, 3-6
dlcioctl, 3-8
dlcmpx, 3-10
dlcopen, 3-12
dlcread, 3-14
dlcselect, 3-16
dlcwrite, 3-18

OLC ioctl operations, 3-30
dlc_add_grp, 3-57
dlc_alter, 3-42
dlc_contact, 3-41
dlc_disable_sap, 3-35
dlc_enable_sap, 3-32
dlc_enterJbusy, 3-50
dlc_enter_shold, 3-51
dlc_exitJbusy, 3-50
dlc_exit_shold, 3-52
dlc_get_excep, 3-52
dlc_haltJs, 3-39
dlc_query _Is, 3-48
dlc_query_sap, 3-47
dlc_startJs, 3-36
dlc_test, 3-41
dlc_trace, 3-40
iocinfo, 3-57

OLC kernel services
fp_close, 3-21
fp_ioctl, 3-22
fp_open, 3-24
fp_write, 3-26

OLC result extensions
dlc_radd_res - remote address/name change,

3-56
dlc_sape_res - sap enabled, 3-55
dlc_stah_res - link station halted, 3-56
dlc_stas_res - link station started, 3-55

OLC routines
datagram data received, 3-63
exception condition, 3-64
I-frame data received, 3-65
network data received, 3-66
xid data received, 3-67

OLC subroutines
close, 3-3
ioctl,3-28
open, 3-59

extended parameters for, 3-61
read, extended parameters for, 3-68
readx, 3-71
select, 3-73
write, extended parameters for, 3-75

writex, 3-77
dlc_add_grp ioctl operation, 3-57
dlc_alter ioctl operation, 3-42
dlc_contact ioctl operation, 3-41
dlc_disable_sap ioctl operation, 3-35
dlc_enable_sap ioctl operation, 3-32
dlc.:-enterJbusy ioctl operation, 3-50
dlc_enter_shold ioctl operation, 3-51
dlc_exit_lbusy ioctl operation, 3-50
dlc_exit_shold ioctl operation, 3-52
dlc_get_excep ioctl operation, 3-52
dlc_haltJs ioctl operation, 3-39
dlc_query_ls ioctl operation, 3-48
dlc_query_sap ioctl operation, 3-47
dlc_startJs ioctl operation, 3-36
dlc_test ioctl operation, 3-41
dlc_trace ioctl operation, 3-40
dlcclose entry point, 3-4
dlcconfig entry point, 3-6
dlcioctl entry point, 3-8
dlcmpx entry point, 3-10
dlcopen entry pOint, 3-12
dlcread entry point, 3-14
dlcselect entry point, 3-16
dlcwrite entry point, 3-18
dn_comp subroutine, Sockets, 8-11
dn_expand subroutine, Sockets, 8-13
dn_find subroutine, Sockets, 8-15
dn_skipname subroutine, Sockets, 8-17
~O-END LAF statement, HCON programming, 2-8
dotaddr function, xgmon, 6-12
drand 48 subroutine, 1-111-1-113
draw a line, xgmon, 6-13
drawJine function, xgmon, 6-13
draw_string function,xgmon, 6-14
drem subroutine, 1-114
dup subroutine, 1-135-1-139
dup2 subroutine, 1-135-1-139

E
ecvt subroutine, 1-115-1-116
edata identifier, 1-117
enable a service access point, OLC, 3-32
enable debugging messages in LAF script, HCON

programming, 2-7
enable display of formatted output in color, xgmon,

6-14
enable formatted arguments, xgmon, 6-77
encode SNMP request, SNMP, 6-49
encrypt subroutine, 1-96-1-97
end identifier, 1-117
end interaction with a host application, HCON

programming, 2-24
end LAF script, HCON programming, 2-10
end retrieval of network host entries, Sockets, 8-19
end-of-file character, inquire about, using feof

macro, 1-140
endfsent subroutine, 1-179

Index X-5

endgrent subroutine, 1-182-1-183
endhostent subroutine, Sockets, 8-19
endnetent subroutine, Sockets, 8-20
endprotoent subroutine, Sockets, 8-21
endpwdb subroutine, 1-631-1-632
endpwent subroutine, 1-206-1-207
endservent subroutine, Sockets, 8-22
endttyent subroutine, 1-224-1-225
endutent subroutine, 1-237-1-239
endvfsent subroutine, 1-240-1-241
enter local busy mode on a link station, OLC, 3-50
enter short hold mode on a link station, OLC, 3-51
enuserdb subroutine, 1-638-1-639
erand48 subroutine, 1-111-1-113
erf subroutine, 1-118
erfc subroutine, 1-118
errlog subroutine, 1-119
error codes, base operating system, for services

requiring path name resolution, A-1
error codes for X.25, non-X.25 specific, list of, C-3
error handling

controlling the system error log, 1-734
including error messages, 1-27
numbering an error message string, 1-715
writing error messages, 1-529

error information from load or exec subroutines,
1-331-1-332

errors, writing to the error log device driver, using
errlog subroutine, 1-119

etext identifier, 1-117
exception condition routine, OLC, 3-64
exchange identification packet received call, OLC,

3-67
exec function, xgmon, 6-16
exec I subroutine, 1-120-1-126
exec Ie subroutine, 1-120-1-126
execlp subroutine, 1-120-1-126
execute AIX programs and commands from within

VGM, xgmon, 6-3
execute LAF script subject statement, HCON

programming, 2-97
execute subject statment until tested condition is

true, HCON programming, 2-90
execution profiling

start and stop after monitor initialization,
1-425-1-426

start and stop using data areas defined in
parameters, 1-427-1-435

start and stop using default sized data areas,
1-436-1-439

execv subroutine, 1-120-1-126
execve subroutine, 1-120-1-126
execvp subroutine, 1-120-1-126
EXIT LAF statement, HCON programming, 2-9
exit local busy mode on a link station, OLC, 3-50
exit short hold mode on a link station, OLC, 3-52
exit subroutine, 1-127-1-128
exp subroutine, 1-129-1-131

X-6 Base Operating System Reference

expands a compressed domain name, Sockets,
8-13

expm1 subroutine, 1-129-1-131
extract a substring at left, xgmon, 6-41
extract a substring at right, xgmon, 6-64
extract a substring from within string, xgmon, 6-51
extract value of specified MIS instance 10 for host,

xgmon, 6-34
extract variable name portion of instance 10, SNMP,

6-17
extract_SNMP _name subroutine, 6-17

F
fabs subroutine, 1-141-1-143
fchmod subroutine, 1-68-1-70
fchown subroutine, 1-71-1-73
fchownx subroutine, 1-71-1-73
fclacl subroutine, 1-65
fclear subroutine, 1-132-1-133
fclose subroutine, 1-134
fcntl subroutine, 1-135-1-139
fcvt subroutine, 1-115-1-116
fdopen subroutine, 1-144-1-146
feof macro, 1-140
ferror macro, 1-140
fetch subroutine, 5-44
fflush subroutine, 1-134
ffs subroutine, 1-49
ffullstat subroutine, 1-711-1-714
fgetc subroutine, 1-174-1-175
fgetpos subroutine, 1-167-1-168
fgets subroutine, 1-214
fgetwc subroutine, 1-242
fgetws subroutine, 1-244-1-245
file

accessing utmp file entries, 1-237-1-239
changing access permissions

using chmod subroutine, 1-68-1-70
using fchmod subroutine, 1-68-1-70

changing the access control
using acl_chg subroutine, 1-11-1-13
using acl_fchg subroutine, 1-11-1-13

changing the protection, using chacl
subroutine, 1-63-1-65

constructing a unique name, 1-421
creating file or directory, using mknod, mkfifo

subroutines, 1-419-1-420
creating temporary, using tmpfile subroutine,

1-753
determining accessibility, using access

subroutine, 1-7-1-8
get vfs file entry, 1-240-1-241
making a hole in, 1-132-1-133
making a symbolic link, using symlink

subroutine, 1-728-1-730
moving read/write pointer, using Iseek

subroutine, 1-341-1-342

open for reading or writing, 1-517-1-521
perform controlling operations, 1-135-1-139
reading, 1-570-1-573
removing, using remove subroutine, 1-583
renaming, using rename subroutine,

1-584-1-586
retrieving access control information, using

acl_chg subroutine, 1-706-1-708
retrieving implementation characteristics,

1-525-1-526
revoking access, using revoke subroutine,
1-587-1-588

set and get value of file creation mask, using
umask subroutine, 1-774

setting access control information, using
acl_put subroutine, 1-16-1-18

setting the access control information
using acl_fset subroutine, 1-19-1-21
using acLset subroutine, 1-19-1-21

writing changes to permanent storage, using
fsync subroutine, 1-169

writing to, 1-809-1-812
file descriptors, checking I/O status, using poll

subroutine, 1-535-1-536
file ownership, changing

using chown subroutine, 1-71-1-73
using chownx subroutine, 1-71-1-73
using fchown subroutine, 1-71-1-73
using fchownx subroutine, 1-71-1-73

file pointer, repositioning, using fseek subroutine,
1-167-1-168

file system
getting information about, 1-179
make file system available, 1-790

file transfer, HCON programming
initiating within program executing in AIX, 2-11
invoking API, 2-29

fileno macro, 1-140
find set of all MIS variable names containing prefix,

xgmon, 6-25
find set of variable names containing prefix, SNMP,

6-44
FINISH LAF statement, HCON programming, 2-10
finite subroutine, 1-82-1-83
firstkey subroutine, 5-45
flag letters, get from an argument vector,

1-194-1-195
flock subroutine, 1-336
floor subroutine, 1-141-1-143
flush the current trap, xgmon, 6-18
flush_trap function, xgmon, 6-18
fmin subroutine, 1-396
fmod subroutine, 1-141-1-143
fmout subroutine, 1-396
font_height function, xgmon, 6-19
font_width function, xgmon, 6-20
fopen function, xgmon, 6-21
fopen subroutine, 1-144-1-146
fork subroutine, 1-147-1-149

fp_any_enable subroutine, 1-150-1-151
fp_any_xcp subroutine, 1-155
fp_close kernel service, OLC, 3-21
fp_clr_flag subroutine, 1-152-1-154
fp_disable subroutine, 1-150
fp_disable_all subroutine, 1-150
fp_divbyzero subroutine, 1-155-1-156
fp_enable subroutine, 1-150-1-151
fp_enable_all subroutine, 1-150-1-151
fp_inexact subroutine, 1-155
fp_invalid_op subroutine, 1-155-1-156
fp_ioctl kernel service, OLC, 3-22
fp_iop_infdinf subroutine, 1-155
fp_iopjnfmzr subroutine, 1-155
fp_iopjnfsinf subroutine, 1-155
fp_iop_invcmp subroutine, 1-155
fpjop_snan subroutine, 1-155
fpjop_zrdzr subroutine, 1-155
fpjs_enabled subroutine, 1-150-1-151
fp_open kernel service, OLC, 3-24
fp_overflow subroutine, 1-155
fp_read_flag subroutine, 1-152-1-154
fp_read_rnd subroutine, 1-157-1-158
fp_set_flag subroutine, 1-152-1-154
fp_swap_flag subroutine, 1-152-1-154
fp_swap_rnd subroutine, 1-157-1-158
fp_underflow subroutine, 1-155
fp_write kernel service, OLC, 3-26
fpathconf subroutine, 1-525-1-526
fprintf subroutine, 1-538-1-543
fputc subroutine, 1-555-1-556
fputs subroutine, 1-558
fputwc subroutine, 1-559-1-560
fputws su brouti ne, 1-561
fread subroutine, 1-159-1-160
freopen subroutine, 1-144-1-146
frevoke subroutine, 1-161-1-162
frexp subroutine, 1-163-1-164
fscanf subroutine, 1-593-1-597
fseek subroutine, 1-167-1-168
fsetpos subroutine, 1-167-1-168
fsstatfs system cli, 1-709-1-710
fstat subroutine, 1-711-1-714
fstatacl subroutine, 1-706-1-708
fstatx subroutine, 1-711-1-714
fsync subroutine, 1-169
ftell subroutine, 1-167-1-168
ftime subroutine, 1-218-1-219
ftok subroutine, 1-170-1-171
ftruncate subroutine, 1-764-1-765
ftw subroutine, 1-172
fullstat subroutine, 1-711-1-714
fwrite subroutine, 1-159-1-160
fxfer function, HCON programming, 2-11

G
g32_alloc function, HCON programming, 2-17
g32_close function, HCON programming, 2-21

Index X-7

g32_dealloc function, HCON programming, 2-24
g32_fxfer function, HCON programming, 2-29
g32_get_cursor function, HCON programming, 2-37
g32_get_data function, HCON programming, 2-40
g32_get_status function, HCON programming, 2-43
g32_notify function, HCON programming, 2-46
g32_open function, HCON programming, 2-49
g32_openx function, HCON programming, 2-55
g32_read function, HCON programming, 2-65
g32_search function, HCON programming, 2-69
g32_send_keys function, HCON programming, 2-74
g32_write function, HCON programming, 2-80
G32ALLOC function, HCON programming, 2-15
G32DLLOC function, HCON programming, 2-27
G32WRITE function, HCON programming, 2-78
gamma subroutine, 1-322-1-323
gcd subroutine, 1-396
gcvt subroutine, 1-115-1-116
GDLC ioctl command opertions, 3-30
generate text string corresponding to integer

expression of time, xgmon, 6-9
genprof command, HCON programming, 2-62
get a protocol entry by name, Sockets, 8-40
get a protocol entry by number, Sockets, 8-42
get a protocol entry, Sockets, 8-44
get default domain of node, yp_get_default_domain,

5-137
get file system statistics, 1-709-1-710
get network entry by address, Sockets, 8-33
get network entry by name, Sockets, 8-35
get network entry, Sockets, 8-37
get network host entry by name, Socekts, 8-26
get network hsot entry by address, Sockets, 8-24
get options on sockets, Sockets, 8-56
get service entry by name, Sockets, 8-46
get service entry by port, Sockets, 8-48
get service file entry, Sockets, 8-50, 8-119
get socket name, Sockets, 8-54
get the name of the current domain, Sockets, 8-23
get the name of the peer socket, Sockets, 8-38
get tty description file entry, 1-224
get unique identifies of current host, Sockets, 8-29
get_deps function, xgmon, 6-23
get_MIS_base_type subroutine, 6-24
get_MIS_group function, xgmon, 6-25
get_MiS_name subroutine, 6-27
get_MIS_variable_type subroutine, 6-28
get_myaddress subroutine, RPC, 5-46
get_primary function, xgmon, 6-30
getc subroutine, 1-174-1-175
getchar subroutine, 1-174-1-175
getcwd subroutine, 1-176
getdomainname subroutine, Sockets, 8-23
getdtablesize subroutine, 1-177
getegid subroutine, 1-180
getenv function, xgmon, 6-31
getenv subroutine, 1-178
geteuid subroutine, 1-226
getfsenct subroutine, 1-179

x-a Base Operating System Reference

getfsspec subroutine, 1-179
getfstype subroutine, 1-179
getgid subroutine, 1-180
getgidx subroutine, 1-181
getgrent subroutine, 1-182-1-183
getgrgid subroutine, 1-182-1-183
getgrnam subroutine, 1-182-1-183
getgroupattr subroutine, 1-184-1-187
getgroups subroutine, 1-188-1-189
gethostbyaddr subroutine, Sockets, 8-24
gethostbyname subroutine, Sockets, 8-26
gethostent subroutine, Sockets, 8-28
gethostid subroutine, Sockets, 8-29
gethostname subroutine, Sockets, 8-30
getinterval subroutine, 1-190-1-192
getitimer subroutine, 1-190-1-192
getlogin subroutine, 1-193
_getlong subroutine, Sockets, 8-31
getnetbyaddr subroutine, Sockets, 8-33
getnetbyname subroutine, Sockets, 8-35
getnetent subroutine, Sockets, 8-37
getnetname subroutine, RPC, 5-47
getopt subroutine, 1-194-1-195
getpagesize subroutine, 1-196
getpass subroutine, 1-197
getpcred subroutine, 1-198-1-199
getpeername subroutine, Sockets, 8-38
getpenv subroutine, 1-200-1-201
getpgrp subroutine, 1-202
getpid subroutine, 1-202
getppid subroutine, 1-202
getpri subroutine, 1-203
getpriority subroutine, 1-204-1-205
getprotobyname subroutine, Sockets, 8-40
getprotobynumber subroutine, Sockets, 8-42
getprotoent subroutine, Sockets, 8-44
getpwent subroutine, 1-206-1-207
getpwnam subroutine, 1-206-1-207
getpwuid subroutine, 1-206-1-207
getrlimit subroutine, 1-208-1-210
getrusage subroutine, 1-211-1-213
gets subroutine, 1-214
gets the name of the local host, Sockets, 8-30
getservbyname subroutine, Sockets, 8-46
getservbyport subroutine, Sockets, 8-48
getservent subroutine, Sockets, 8-50
getsfile subroutine, 1-179
_getshort subroutine, Sockets, 8-52
getsockname subroutine, Sockets, 8-54
getsockopt subroutine, Sockets, 8-56
getssys subroutine, 1-215
getsubsvr subroutine, 1-216-1-217
gettimeofday subroutine, 1-218-1-219
gettimer subroutine, 1-220-1-221
gettimerid subroutine, 1-222-1-223
gettyent subroutine, 1-224-1-225
gettynam subroutine, 1-224-1-225
getuid subroutine, 1-226
getuidx subroutine, 1-227

getuinfo subroutine, 1-228
getuserattr subroutine, 1-229-1-234
getuserpw subroutine, 1-235-1-236
getutent subroutine, 1-237-1-239
getutid subroutine, 1-237-1-239
getutline subroutine, 1-237-1-239
getvfsbyname subroutine, 1-240-1-241
getvfsbytype subroutine, 1-240-1-241
getvfsent subroutine, 1-240-1-241
getw subroutine, 1-174-1-175
getwc subroutine, 1-242
getwchar subroutine, 1-242
getwd subroutine, 1-243
getws subroutine, 1-244-1-245
Global Location Broker

looking up information, 4-5
looking up interface information, 4-3
looking up type information, 4-12

gmtime subroutine, 1-101-1-103
group access list

getting, using getgroups subroutine,
1-188-1-189

initializing, using initgroups subroutine, 1-281
group file, accessing

using endgrent subroutine, 1-182-1-183
using getgrent subroutine, 1-182-1-183
using getgrgid subroutine, 1-182-1-183
using getgrnam subroutine, 1-182-1-183
using putgrent subroutine, 1-182-1-183
using setgrent subroutine, 1-182-1-183

group LAF statements, HCON programming, 2-8
group_dep function, xgmon, 6-32
gsignal subroutine, 1-704-1-705
gtty subroutine, 1-723
gw_var function, xgmon, 6-34

H
halt a link station, OLC, 3-39
halt a link station's result extension, OLC, 3-56
handles

clearing binding, 4-32
copying, 4-31
determining objects, 4-34

HCON programming commands
genprof, 2-62
mtlaf, 2-86

HCON programming functions
cfxfer, 2-4
fxfer, 2-11
g32_alloc, 2-17
g32_close, 2-21
g32_dealloc, 2-24
g32_fxfer, 2-29
g32_get_cursor, 2-37
g32_get_data, 2-40
g32_get_status, 2-43
g32_notify, 2-46
g32_open, 2-49

g32_openx, 2-55
g32_read, 2-65
g32_search, 2-69
g32_send_keys, 2-74
g32_write, 2-80
G32ALLOC, 2-15
G320LLOC, 2-27
G32WRITE,2-78

HCON programming LAF statements
BREAK, 2-3
DEBUG,2-7
DO-END,2-8
EXIT,2-9
FINISH, 2-10
IF-ELSE, 2-83
MATCH,2-84
MATCHAT, 2-85
RECEIVE, 2-87
RECVAT, 2-89
REPEAT-UNTIL, 2-90
SELECT, 2-91
SEND, 2-93
START, 2-94
WAIT, 2-95
WHILE,2-97

hcreate subroutine, 1-246
hdestroy subroutine, 1-246
hexval function, xgmon, 6-36
highlight_dep function, xgmon, 6-37
host API application, HCON programming

end interaction with, 2-24
initiating interaction with. See G32DEALLOC

Function
host application, HCON programming, receive

message from, 2-65
host data, HCON programming

receiving and searching for pattern match in
presentation space, 2-87

receiving and searching for pattern match in
specified position of presentation space, 2-89

host2netname subroutine, RPC, 5-48
hostname function, xgmon, 6-39
hsearch subroutine, 1-246
htonl subroutine, Sockets, 8-60
htons subroutine, Sockets, 8-61
hypot subroutine, 1-248-1-249

I
I-frame data received routine, DLC, 3-65
1/0 errors, inquire about, using ferror macro, 1-140
10, getting the process group

using getegid subroutine, 1-180
using getgid subroutine, 1-180

10togroup subroutine, 1-184-1-187
10touser subroutine, 1-229-1-234
IEEE Math Library

acos subroutine, 1-673-1-674
acosh subroutine, 1-26

Index X-9

asin subroutine, 1-673-1-674
asinh subroutine, 1-26
atan subroutine, 1-673-1-674
atan2 subroutine, 1-673-1-674
atanh subroutine, 1-26
cabs subroutine, 1-248-1-249
cbrt subroutine, 1-676
ceil subroutine, 1-141-1-143
copysign subroutine, 1-94-1-95
cos subroutine, 1-673-1-674
cosh subroutine, 1-675
erf subroutine, 1-118
erfc subroutine, 1-118
exp subroutine, 1-129-1-131
expm1 subroutine, 1-129-1-131
fabs subroutine, 1-141-1-143
floor subroutine, 1-141-1-143
fmod subroutine, 1-141-1-143
gamma subroutine, 1-322-1-323
hypot subroutine, 1-248-1-249
ilogb subroutine, 1-94-1-95
Itrunc subroutine, 1-141-1-143
jO subroutine, 1-50-1-51
j1 subroutine, 1-50-1-51
jn subroutine, 1-50-1-51
Igamma subroutine, 1-322-1-323
log subroutine, 1-129-1-131
log10 subroutine, 1-129-1-131
log1 p subroutine, 1-129
10gb subroutine, 1-94-1-95
nearest subroutine, 1-141-1-143
nextafter subroutine, 1-94-1-95
pow subroutine, 1-129-1-131
rint subroutine, 1-141-1-143
scalb subroutine, 1-94-1-95
sin subroutine, 1-673-1-674
sinh subroutine, 1-675
sqrt subroutine, 1-676
tan subroutine, 1-673-1-674
tanh subroutine, 1-675
trunc subroutine, 1-141-1-143
uitrunc subroutine, 1-141-1-143
yO subroutine, 1-50-1-51
y1 subroutine, 1-50-1-51
yn subroutine, 1-50-1-51

IF-ELSE LAF statement, HCON programming, 2-83
ilogb subroutine, 1-94-1-95
IMAIXMapping subroutine, 1-250
IMAuxCreate subroutine, 1-251
IMAuxDestroy subroutine, 1-252
IMAuxDraw, drawing auxiliary area, using

IMAuxDraw subroutine, 1-253
IMAuxDraw Callback Function, 1-253
IMAuxHide Callback Function, 1-254
IMBeep subroutine, 1-255
imcalloc subroutine, 1-256
IMClose subroutine, 1-257
IMCreate subroutine, 1-258
IMDestroy subroutine, 1-259

X-10 Base Operating System Reference

IMFEP, clearing IMObject, using IMTextHide
subroutine, 1-279

imfree subroutine, 1-260
IMFreeKeymap subroutine, 1-261
IMlndicatorDraw subroutine, 1-262
IMlndicatorHide subroutine, 1-263
IMlnitialize subroutine, 1-264
IMlnitializeKeymap subroutine, 1-265
IMloctl subroutine, 1-266-1-267
immalloc subroutine, 1-268
IMObject, destroying, using IMDestroy subroutine,

1-259
IMObject pointer, creating, using IMCreate

subroutine, 1-258
IMProcess subroutine, 1-269-1-270
IMProcessAuxiliary subroutine, 1-271-1-272
IMQueryLanguage subroutine, 1-273
imrealloc subroutine, 1-274
IMRebindCode subroutine, 1-275
IMSimpleMapping subroutine, 1-276
IMTextCursor Callback Function, 1-277
IMTextDraw subroutine, 1-278
IMTextHide Subroutine, 1-279
IMTextStart subroutine, 1-280
imuLdbl subroutine, 1-5-1-6
incinterval subroutine, 1-190-1-192
index subroutine, 1-717
inet_addr subroutine, Sockets, 8-62
inet_lnaof subroutine, Sockets, 8-64
inet_makeaddr subroutine, Sockets, 8-66
inet_netof subroutine, Sockets, 8-68
inet_network subroutine, Sockets, 8-70
inet_ntoa subroutine, Sockets, 8-72
initgroups subroutine, 1-281
initialize GDLC device manager, 3-6
initiate file transfer within an executing AIX program,

HCON programming, 2-11
initiate interaction with host application, HCON

programming, 2-17
initstate subroutine, 1-566-1-567
input

assigning buffering, using setbuf subroutine,
1-610-1-611

binary, using fread subroutine, 1-159-1-160
getting a character

using fgetc subroutine, 1-174-1-175
using fgetwc subroutine, 1-242
using getc subroutine, 1-174-1-175
using getchar subroutine, 1-174-1-175
using getw subroutine, 1-174-1-175
using getwc subroutine, 1-242
using getwchar subroutine, 1-242

AIX Input Method, initializing the IMFepRec
structure, using IMlnitialize subroutine, 1-264

Input Method
Callback functions

IMAuxCreate, 1-251
IMAuxDestroy, 1-252
IMAuxDraw,1-253

IMAuxHide, 1-254
IMBeep, 1-255
IMlndicatorDraw, 1-262
IMlndicatorHide, 1-263
IMTextCursor, 1-277
IMTextDraw, 1-278
IMTextHide, 1-279
IMTextStart, 1-280

closing, using IMClose subroutine, 1-257
Input Method Library

IMAIXMapping subroutine, 1-250
imcalloc subroutine, 1-256
IMClose subroutine, 1-257
IMCreate subroutine, 1-258
IMDestroy subroutine, 1-259
imfree subroutine, 1-260
IMFreeKeymap, 1-261
IMlnitialize subroutine, 1-264
IMlnitializeKeymap subroutine, 1-265
IMloctl subroutine, 1-266
immalloc subroutine, 1-268
IMProcess subroutine, 1-269
IMProcessAuxiliary subroutine, 1-271
IMQueryLanguage subroutine, 1-273
imrealloc subroutine, 1-274
IMRebindCode subroutine, 1-275
IMSimpleMapping subroutine, 1-276

input stream
check status

using clearerr macro, 1-140
using fileno macro, 1-140

getting a string
fgetws subroutine, 1-244-1-245
getws subroutine, 1-244-1-245

pushing a character back into, using ungetc,
ungetwc subroutines, 1-779-1-780

reading characters
fgets subroutine, 1-214
gets subroutine, 1-214

insque subroutine, 1-282
interfaces

looking up information in GLB, 4-3
registering with Location Broker, 4-14
unregistering, 4-42

interprocess channel, create, using pipe subroutine,
1-530

interrupt LAF script to wait until data receive from
host, HCON programming, 2-95

interrupt loop in LAF script, HCON programming,
2-3

interrupt packet for X.25, sending, using
x25_interrupt subroutine, 9-20

interval timer
allocating per-process, using gettimerid

subroutine, 1-222-1-223
manipulating the expiration time

using absinterval subroutine,
1-190-1-192

using alarm subroutine, 1-190-1-192

using getinterval subroutine,
1-190-1-192

using getitimer subroutine, 1-190-1-192
using incinterval subroutine, 1-190-1-192
using resabs subroutine, 1-190-1-192
using resinc subroutine, 1-190-1-192
using setitimer subroutine, 1-190-1-192
using ualarm subroutine, 1-190-1-192

releasing, using reltimerid subroutine, 1-582
intrinsic functions, xgmon

database operations
base_type, 6-6
getenv, 6-31
get_MIB_group, 6-25
gw _ var, 6-34
real_type, 6-61
sete nv, 6-73
snmp_var, 6-76

file liD
close, 6-7
fopen, 6-21
read,6-60

formatted output
num, 6-55
sprintf, 6-77

graphics functions
dep_info, 6-10
draw_line, 6-13
draw_string, 6-14
font_height, 6-19
font_width, 6-20
get_deps, 6-23
group_dep, 6-32
highlight_dep, 6-~7
make_dep, 6-47
make_link, 6-48
move_dep, 6-52
new_deps, 6-53
raise_window, 6-59
rename_dep, 6-62
set_element_mask, 6-71
window_height, 6-82
window_width, 6-83

host information
dotaddr, 6-12
get_primary, 6-30
hostname, 6-39
ipaddr, 6-40
next_alternate, 6-54
password,6-57
ping, 6-58

string manipulation
ascii, 6-5
hexval, 6-36
left, 6-41
mid,6-51
right, 6-64
strlen, 6-78
substr, 6-79

Index X-11

val,6-81
virtual G machine (VGM) control

aix_exec, 6-3
alloc, 6-4
ctime, 6-9
exec,6-16
flush_trap, 6-18
reuse_mem, 6-63
time, 6-80
words_free, 6-84

invert subroutine, 1-396
invoke a file transfer, HCON programming, 2-29
iocinfo ioctl operation, OLC, 3-57
ioctl operations, OLC, parameter blocks, 3-32
ioctl operations, OLC, 3-30
ioctl subroutine, OLC, 3-28
ioctl subroutine for generic SNA, SNA, 7-15
ioctl subroutine for SNA Services/6000, SNA, 7-6
ioctl subroutines, 1-283
ioctlx subroutines, 1-283
ipaddr function, xgmon, 6-40
isalnum subroutine, 1-104
isalpha subroutine, 1-104
isascii subroutine, 1-104
isatty subroutine, 1-770
iscntrl subroutine, 1-104
isdigit subroutine, 1-104
isgraph subroutine, 1-104
isjalnum subroutine, 1-287
isjalpha subroutine, 1-287
isjdigit subroutine, 1-287
isjgraph subroutine, 1-287
isjhira subroutine, 1-288
isjis subroutine, 1-287
isjkanji subroutine, 1-288
isjkata subroutine, 1-288
isjlbytekana subroutine, 1-287
isjlower subroutine, 1-287
isjparen subroutine, 1-287
isjprint subroutine, 1-287
isjpunct subroutine, 1-287
isjspace subroutine, 1-287
isjupper subroutine, 1-287
isjxdigit subroutine, 1-287
islower subroutine, 1-104
isnan subroutine, 1-82-1-83
isparent subroutine, 1-287
isprint subroutine, 1-104
ispunct subroutine, 1-104
isspace subroutine, 1-104
isupper subroutine, 1-104
isxdigit subroutine, 1-104
itom subroutine, 1-396

J
jO subroutine, 1-50-1-51
j1 subroutine, 1-50-1-51
Japanese Language Support, varargs parameter list,

format and print, 1-481

X-12 Base Operating System Reference

jistoa subroutine, 1-285
jistosj subroutine, 1-292-1-293
jistouj subroutine, 1-292-1-293
jn subroutine, 1-50-1-51
jrand48 subroutine, 1-111-1-113

K
key_decryptsession subroutine, RPC, 5-49
key_encryptsession subroutine, RPC, 5-50
key_gendes subroutine, RPC, 5-51
key_setsecret subroutine, RPC, 5-52
keymap, intializing, using IMlnitializeKeymap

subroutine, 1-265
kill subroutine, 1-294-1-295
killpg subroutine, 1-294-1-295
kleenup subroutine, 1-296
knlist subroutine, 1-297-1-298
kutentojis subroutine, 1-285

L
13tol subroutine, 1-299
164a subroutine, 1-3
labs subroutine, 1-5-1-6
LAF script, HCON programming

ending, 2-10
executing subject statement in, 2-90
executing subject statements in, 2-97
grouping statements, 2-8
interrupt loop in, 2-3
interrupting to wait for host data, 2-95
sending key string to emulator and host, 2-93
starting, 2-94
terminating execution of, 2-9
testing for conditional execution (two-way),

2-83
testing for conditional execution of (multiple

alternative), 2-91
language specific input processing, using the

IMProcess subroutine, 1-269
Ib_$lookupjnterface library routine, NCS, 4-3
Ib_$lookup_object library routine, NCS, 4-5
Ib_$lookup_object_locallibrary routine, NCS, 4-7
Ib_$lookup_range library routine, NCS, 4-9
Ib_$lookup_type library routine, NCS, 4-12
Ib_$register library routine, NCS, 4-14
Ib_$unregister library routine, NCS, 4-16
Icong48 subroutine, 1-111-1-113
Idaclose"subroutine, 1-301
Idahread subroutine, 1-300
Idaopen subroutine, 1-311
Idclose subroutine, 1-301
Idexp subroutine, 1-163-1-164
Idfhread subroutine, 1-303
Idgetname subroutine, 1-304
Idiv subroutine, 1-5-1-6
Idlinit subroutine, 1-306
Idlitem subroutine, 1-306
Idlread subroutine, 1-306

Idlseek subroutine, 1-308
Idnlseek subroutine, 1-308
Idnrseek subroutine, 1-313
Idnshread subroutine, 1-315
Idnsseek subroutine, 1-317
Idohseek subroutine, 1-310
Idopen subroutine, 1-311
Idrseek subroutine, 1-313
Idshread subroutine, 1-315
Idsseek subroutine, 1-317
Idtbindex subroutine, 1-319
Idtbread subroutine, 1-320
Idtbseek subroutine, 1-321
left function, xgmon, 6-41
Ifind subroutine, 1-339
Igamma subroutine, 1-322-1-323
link, create additional, for existing file, 1-324-1-325
link subroutine, 1-324-1-325
listen for and limit socket connections, Sockets, 8-74
listen subroutine, Sockets, 8-74
load and bind object module, 1-326-1-328
load subroutine, 1-326-1-328
loadbind subroutine, 1-329-1-330
loadquery subroutine, 1-331
locale, changing, using the setlocale subroutine,

1-619-1-620
localeconv subroutine, 1-333-1-335
localtime subroutine, 1-101-1-103
Location Broker

looking up information, 4-7
registering objects and interfaces, 4-14
removing entries from database, 4-16
routines. See Ib_$ library routines

lock, process, text, or data in memory, using plock
subroutine, 1-531-1-532

lockf subroutine, 1-336-1-338
lockfx subroutine, 1-336-1-338
log subroutine, 1-129-1-131
log10 subroutine, 1-129-1-131
log1p subroutine, 1-129-1-131
10gb subroutine, 1-94-1-95
logical path, HCON programming, returning status

information of, 2-43
logical volume

changing attributes, using Ivm_changelv
subroutine, 1-343-1-345

changing physical volume attributes, using
livm_changepv subroutine, 1-346-1-348

creating a new volume group, Ivm_createvg
subroutine, 1-352-1-354

creating empty volume, using Ivm_createlv
subroutine, 1-349-1-351

deleting a physical volume, using Ivm_deletepv
subroutine, 1-357-1-358

deleting from its volume group, using
Ivm_deletelv subroutine, 1-355-1-356

extending specified number of partitions, using
Ivm_extendlv subroutine, 1-359-1-362

installing physical volume, using Ivm_installpv
subroutine, 1-363-1-365

moving a physical partition, using
Ivm_migratepp, 1-366-1-367

querying for pertinent information, using
Ivm_querylv subroutine, 1-368-1-371

querying volume group, using Ivm_queryvg
subroutine, 1-375-1-377

querying volume groups for ids, using
Ivm_queryvgs subroutine, 1-378-1-379

reducing number of partitions, using
Ivm_reducelv subroutine, 1-380-1-382

synchronizing all physical partitions, using
Ivm_resynclp subroutine, 1-383-1-384

synchronizing physical copies of logical
partition, using Ivm_resynclv subroutine,
1-385-1-386

synchronizing physical partitions, using
Ivm_resyncpv subroutine, 1-387-1-388

varying a volume group on-line, using
Ivm_varyonvg subroutine, 1-391-1-395

varying volume group off-line, using
Ivm_varyoffvg subroutine, 1-389-1-390

Logical Volume Manager Library, 1-366-1-367
Ivm_changelv subroutine, 1-343-1-345
Ivm_changepv subroutine, 1-346-1-348
Ivm_createlv subroutine, 1-349-1-351
Ivm_createvg subroutine, 1-352-1-354
Ivm_deletelv subroutine, 1-355-1-356
Ivm_deletepv subroutine, 1-357-1-358
Ivm_extendlv subroutine, 1-359-1-362
IvmJnstallpv subroutine, 1-363-1-365
Ivm_querylv subroutine, 1-368-1-371
Ivm_querypv subroutine, 1-372-1-374
Ivm_queryvg subroutine, 1-375-1-377
Ivm_queryvgs subroutine, 1-378-1-379
Ivm_reducelv subroutine, 1-380-1-382
Ivm_resynclp subroutine, 1-383-1-384
Ivm_resynclv subroutine, 1-385-1-386
Ivm_resyncpv subroutine, 1-387-1-388
Ivm_varyoffvg subroutine, 1-389-1-390
Ivm_varyonvg subroutine, 1-391-1-395

login name, getting, using getlogin subroutine, 1-193
longjmp subroutine, 1-617-1-618
lookup_addr subroutine, 6-42
lookup_host subroutine, 6-43
100kup_SNMP _group subroutine, 6-44
100kup_SNMP _name subroutine, 6-46
Irand48 subroutine, 1-111-1-113
Isearch subroutine, 1-339
Iseek subroutine, 1-341
Itol3 subroutine, 1-299
luOapi subroutine, SNA, 7-17
luOclosep subroutine, SNA, 7-20
luOcloses subroutine, SNA, 7-21
luOctlp subroutine, SNA, 7-22
luOctls subroutine, SNA, 7-24
luOopenp subroutine, SNA, 7-26

Index X-13

luOopens subroutine, SNA, 7-27
luOreadp subroutine, SNA, 7-28
luOreads subroutine, SNA, 7-29
luOwritep subroutine, SNA, 7-30
luOwrites subroutine, SNA, 7-32
Ivm_changelv subroutine, 1-343-1-345
Ivm_changepv subroutine, 1-346-1-348
Ivm_createlv subroutine, 1-349-1-351
Ivm_createvg subroutine, 1-352-1-354
Ivm_deletelv subroutine, 1-355-1-356
Ivm_deletepv subroutine, 1-357-1-358
Ivm_extendlv subroutine, 1-359-1-362
Ivm_installpv subroutine, 1-363-1-365
Ivm_migratepp subroutine, 1-366-1-367
Ivm_querylv subroutine, 1-368-1-371
Ivm_querypv subroutine, 1-372-1-374
Ivm_queryvg subroutine, 1-375-1-377
Ivm_queryvgs subroutine, 1-378-1-379
Ivm_reducelv subroutine, 1-380-1-382
Ivm_resynclp subroutine, 1-383-1-384
Ivm_resynclv subroutine, 1-385-1-386
Ivm_resyncpv subroutine, 1-387-1-388
Ivm_varyoffvg subroutine, 1-389-1-390
Ivm_varyonvg subroutine, 1-391-1-395

M
mjn subroutine, 1-396
m_out subroutine, 1-396
madd subroutine, 1-396
make an Internet address, 8-66
make query messages for name servers, Sockets,

8-93
make storage space available, xgmon, 6-4
make_dep function, xgmon, 6-47
make_link function, xgmon, 6-48
make_SNMP _request subroutine, 6-49
mallinfo subroutine, 1-399-1-402
maliOC subroutine, 1-399-1-402
mallopt subroutine, 1-399-1-402
manage socket descriptors for processes,

yp_unbind, 5-143
map node or host to topology display window,

xgmon, 6-32
MATCH LAF statement, HCON programming, 2-84
MATCHAT LAF statement, HCON programming,

2-85
Math Library

class subroutine, 1-82-1-83
drem subroutine, 1-114
finite subroutine, 1-82-1-83
isnan subroutine, 1-82-1-83
unordered subroutine, 1-82-1-83

matherr subroutine, 1-403
mblen subroutine, 1-405
mbscat subroutine, 1-406
mbschr subroutine, 1-407
mbscmp subroutine, 1-406
mbscpy subroutine, 1-406

X-14 Base Operating System Reference

mbslen subroutine, 1-408
mbsncat subroutine, 1-409
mbsncmp subroutine, 1-409
mbsncpy subroutine, 1-409
mbspbrk subroutine, 1-410
mbsrchr subroutine, 1-411
mbstoint subroutine, 1-412
mbstowcs subroutine, 1-413
mbtowc subroutine, 1-414
mcmp subroutine, 1-396
mdiv subroutine, 1-396
memccpy subroutine, 1-415-1-416
memchr subroutine, 1-415-1-416
memcmp subroutine, 1-415-1-416
memcpy subroutine, 1-415-1-416
memmove subroutine, 1-415-1-416
memory block

changing size, using imrealloc subroutine,
1-274

freeing, using imfree subroutine, 1-260
returning number of bytes, using immalloc

subroutine, 1-268
memory management

allocate memory, 1-399-1-402
attach mapped file, 1-641-1-643
attach shared memory segment,

1-641-1-643
change data segment allocation, 1-52-1-53
detach shared memory segment, 1-647
get paging device status, 1-726
get shared memory segments, 1-648-1-650
get system page size, 1-196
mark unneeded memory, 1-110
memory operations, 1-415
paging and swapping, 1-725
shared memory operations, 1-644-1-646

memset subroutine, 1-415-1-416
message

interprocess communication identifiers,
1-170-1-171

send to queue, using msgsnd subroutine,
1-448

message control, using msgctl subroutine,
1-440-1-442

message facility
close catalog, 1-56
copy message to buffer, 1-57
initial catalog access, 1-462
open catalog, 1-59-1-60
open catalog, get message, close catalog,

1-468
retrieve message, 1-58·

message queue, reading a message, using msgrcv
subroutine, 1-445-1-447

message queue identifier, get, using msgget
subroutine, 1-443-1-444

message queues, checking liD status, using poll
subroutine, 1-535-1-536

mid function, xgmon, 6-51
min subroutine, 1-396
mkdir subroutine, 1-417-1-418
mkfifo subroutine, 1-419-1-420
mknod subroutine, 1-419-1-420
mkstemp subroutine, 1-421-1-422
mktemp subroutine, 1-421-1-422
mktime subroutine, 1-101-1-103
mntctl subroutine, 1-423-1-424
modf subroutine, 1-163-1-164
moncontrol subroutine, 1-425-1-426
monitor subroutine, 1-427-1-435
monstartup subroutine, 1-436-1-439
mount a file system, using vmount subroutine, 1-790
mount subroutine, 1-790-1-793
mounted file system, get mount status, using mntctl

subroutine, 1-423
mout subroutine, 1-396
move subroutine, 1-396
move_dep function, xgmon, 6-52
mrand48 subroutine, 1-111-1-113
msgctl subroutine, 1-440-1-442
msgget subroutine, 1-443-1-444
msgrcv subroutine, 1-445-1-447
msgsnd subroutine, 1-448-1-449
msgxrcv subroutine, 1-450-1-452
msqrt subroutine, 1-396
msub subroutine, 1-396
mtlaf command, HCON programming, 2-86
mult subroutine, 1-396
multibyte character string

appending code pOints, using mbscat
subroutine, 1-406

comparing characters, using mbscmp
subroutine, 1-406

copying characters, using mbscpy subroutine,
1-406

determining code points, using mbslen
subroutine, 1-408

extracting multibyte character, using mbstoint
subroutine, 1-412

locating a code point, using mbsrchr
subroutine, 1-411

locating code pOint, using mbschr subroutine,
1-407

locating first code points, using mbspbrk
subroutine, 1-410

multibyte characters, null-terminated
appending value, using mbsncat subroutine,

1-409
comparing values, using mbsncmp subroutine,

1-409
copying values, using mbsncpy subroutine,

1-409
multiple alternative test for conditional execution of

LAF statements, HCON programming, 2-91

N
name list, get entries from, 1-469-1-470
national language, returning information on, using

nl_langinfor subroutine, 1-471
NCchrlen subroutine, 1-463
NCdecode subroutine, 1-463
NCdecstr subroutine, 1-463
NCencode subroutine, 1-463
NCencstr subroutine, 1-463
NCisalnum subroutine, 1-453
NCisalpha subroutine, 1-453
NCiscntrl subroutine, 1-453
NCisdigit subroutine, 1-453
NCisgraph subroutine, 1-453
NCislower subroutine, 1-453
NCisNLchar subroutine, 1-453
NCisprint subroutine, 1-453
NCispunct subroutine, 1-453
NCisspace subroutine, 1-453
NCisupper subroutine, 1-453
NCisxdigit subroutine, 1-453
NCS library routines

Ib_$lookup_interface, 4-3
Ib_$lookup_object, 4-5
Ib_$lookup_object_local, 4-7
Ib_$lookup_range, 4-9
Ib_$lookup_type, 4-12
Ib_$register, 4-14
Ib_$unregister, 4-16
pfm_$cleanup, 4-17
pfm_$enable, 4-19
pfm_$enable_faults, 4-20
pfm_$inhibit, 4-21
pfm_$inhibit_faults, 4-22
pfm_$init, 4-23
pfm_$reset_cleanup, 4-24
pfm_$rls_cleanup, 4-25
pfm_$signal, 4-26
rpc_$alloc_handle, 4-27
rpc_$bind, 4-28
rpc_$clear_binding, 4-29
rpc_$clear_server_binding, 4-30
rpc_$dup_handle, 4-31
rpc_$free_handle, 4-32
rpc_$inq_binding, 4-33
rpc_$inq_object, 4-34
rpc_$listen, 4-35
rpc_$name_to_sockaddr, 4-36
rpc_$register, 4-38
rpc_$set_binding, 4-40
rpc_$sockaddr_to_name, 4-41
rpc_$unregister, 4-42
rpc_$use_family, 4-43
rpc_$use_family_wk, 4-45
uuid_$decode, 4-47

Index X-15

uuid $encode, 4-48
uuid=)gen, 4-49

NCstrcat subroutine, 1-456
NCstrchr subroutine, 1-456
NCstrcpy subroutine, 1-456
NCstrcspn subroutine, 1-456
NCstrdup subroutine, 1-457
NCstrlen subroutine, 1-456
NCstrncat subroutine, 1-456
NCstrncmp subroutine, 1-456
NCstrncpy subroutine, 1-456
NCstrpbrk subroutine, 1-456
NCstrrchr subroutine, 1-456
NCstrspn subroutine, 1-456
NCstrtok subroutine, 1-456
NCwunesc subroutine, 1-285
NOBM

dbm_close subroutine, 5-34
dbm_delete subroutine, 5-35
dbm_fetch subroutine, 5-36
dbm_firstkey subroutine, 5-37
dbm_nextkey subroutine, 5-38
dbm_open subroutine, 5-39
dbm_store subroutine, 5-40

nearest subroutine, 1-141-1-143
netname2host subroutine, RPC, 5-53
netname2user subroutine, RPC, 5-54
network data received routine, OLC, 3-66
new_deps function, xgmon, 6-53
newpass subroutine, 1-460-1-461
next_alternate function, xgmon, 6-54
nextafter subroutine, 1-94-1-95
nextgroup subroutine, 1-184-1-187
nextkey subroutine, 5-55
nice subroutine, 1-204-1-205
NIS

yp_all subroutine, 5-131
yp_bind subroutine, 5-133
yp_first subroutine, 5-135
yp_get_default_domain subroutine, 5-137
yp_master subroutine, 5-138
yp_match subroutine, 5-139
yp_next subroutine, 5-140
yp_order subroutine, 5-142
yp_unbind subroutine, 5-143
yp_unpdate subroutine, 5-144
yperr_string subroutine, 5-146
ypproCerr subroutine, 5-147

nlJanginfo subroutine, 1-471
NLcatgets subroutine, 1-462
NLcatopen subroutine, 1-59-1-60
NLchar data type, handling using NLchar

subroutines, 1-463-1-464
NLchrlen subroutine, 1-463
NLcplen subroutine, 1-465
NLescstr subroutine, 1-466-1-467
NUlatstr subroutine, 1-466-1-467
NUprintf subroutine, 1-538-1-543
NLfscanf subroutine, 1-593-1-597

X-16 Base Operating System Reference

NLgetamsg subroutine, 1-468
NLgetenv subroutine, 1-178
NLisNLcp subroutine, 1-463
nlist subroutine, 1-469-1-470
NLprintf subroutine, 1-538-1-543
NLscanf subroutine, 1-593-1-597
NLsprintf subroutine, 1-538-1-543
NLsscanf subroutine, 1-593-1-597
NLstrcat subroutine, 1-472, 1-473
NLstrchr subroutine, 1-472, 1-474
NLstrcmp subroutine, 1-456, 1-472, 1-473
NLstrcpy subroutine, 1-472, 1-473
NLstrcspn subroutine, 1-472, 1-474
NLstrdlen subroutine, 1-472, 1-474
NLstrien subroutine, 1-473
NLstrlen subroutine, 1-472
NLstrncat subroutine, 1-472, 1-473
NLstrncmp subroutine, 1-472, 1-473
NLstrncpy subroutine, 1-472, 1-473
NLstrpbrk subroutine, 1-472, 1-474
NLstrrchr subroutine, 1-472, 1-474
NLstrspn subroutine, 1-472, 1-474
NLstrtime subroutine, 1-475-1-477
NLstrtok subroutine, 1-472, 1-474
NLtmtime subroutine, 1-478-1-480
NLunescstr subroutine, 1-466-1-467
NLvfprintf subroutine, 1-481
NLvprintf subroutine, 1-481
NLvsprintf subroutine, 1-481
NLxin subroutine, 1-482-1-483
NLxout subroutine, 1-484
NLxstart subroutine, 1-485
NLyesno subroutine, 1-486
nm_close subroutine, SNA, 7-34
nm_open subroutine, SNA, 7-35
nm_receive subroutine, SNA, 7-36
nm_send subroutine, SNA, 7-38
nm_status subroutine, SNA, 7-40
normal sequenced data packet received call, OLC,

3-65
nrand48 subroutine, 1-111-1-113
nsleep subroutine, 1-487-1-488
ntohl subroutine, Sockets, 8-76
ntohs subroutine, Sockets, 8-77
num function, xgmon, 6-55
numeric data, machine-independent access, 1-640
numerical data, generating pseudo-random

numbers, 1-111-1-113
numerical data

absolute value, division, and double-precision
multiplication, 1-5-1-6

ASCII string to float or double floating-point
number, 1-28-1-29

Bessel functions, 1-50-1-51
binary floating-point arithmetic, 1-94-1-95
classification of floating-point numbers,

1-82-1-83
convert 3-byte integers and long integers,

1-299

o

convert floating-point number to string,
1-11 5-1-11 6

convert long integers and base-64 ASCII
strings, 1-3

convert NLchar string to double-precision
floating-point, 1-819-1-820

convert string to integer, 1-721-1-722
converting NLchar string to integer,

1-821-1-822
error and complementary error functions, 1-118
Euclidean distance function and complex

absolute value, 1-248-1-249
exponential, logarithm, and power functions,

1-129-1-131
floating-point absolute value, 1-141-1-143
generating better pseudo-random numbers,

1-566-1-567
generating pseudo-random numbers,

1-564-1-565
handling math errors, 1-403-1-404
hyperbolic functions, 1-675
IEEE floating-point rounding mode,
1-157-1-158

IEEE remainder, 1-114
inverse hyperbolic functions, 1-26
manipulating floating-point numbers,

1-163-1-164
modulo remainder, 1-141-1-143
multiple precision integer arithmetic, 1-396
natural logarithm of the gamma function,

1-322-1-323
operations on floating-point exception flags,

1-152-1-154
operations on floating-point trap control,

1-150-1-151
rounding floating-point numbers to integers,

1-141-1-143
square root and cube root functions, 1-676
testing for floating-point exceptions,

1-155-1-156
trigonometric and inverse trigonometric

functions, 1-673

object, setting locale dependent conventions,
localeconv subroutine, 1-333-1-335

Object Data Manager
adding a new object, using

odm_add_obLsubroutine, 1-489-1-490
changing an object, using odm_change_obj

subroutine, 1-491-1-492
closing an object class, using odm_close_class

subroutine, 1-493
creating an object class, using

odm_create_class subroutine, 1-494
freeing memory, using odm_freeJist

subroutine, 1-496

locking access to object class, using odmJock
subroutine, 1-504-1-505

opening object class, using odm_open_class
subroutine, 1-507

preparing for application use, using
odm_initialize subroutine, 1-503

releasing a lock on a path name, using
odm_unlock subroutine, 1-516

removing object class from the filesystem,
using odm_rm_class subroutine, 1-509

removing objects, using odm_rm_obj
subroutine, 1-510

removing objects specified by their 10, using
odm_rm_byjd subroutine, 1-508

retrieving objects
using odm_get_first subroutine,

1-501-1-502
using odm_get_next ssubroutine,

1-501-1-502
using odm_get_obj subroutine,

1-501-1-502
retrieving objects matching criteria, using

odm_get_list subroutine, 1-499
retrieving objects specified by their 10, using

odm_get_by_id subroutine, 1-497-1-498
retrieving the class symbol structure, using

odm_mount_class subroutine, 1-506
returning error message string, using

odm_err_msg subroutine, 1-495
running a method, using odm_run_method

subroutine, 1-511
setting default permissions for object class,

using odm_set_perms subroutine, 1-514
setting the object class location default path,

using odm_set_path subroutine, 1-513
terminating session, using odm_terminate

subroutine, 1-515
object file

close file, 1-301-1-302
compute symbol table entry index, 1-319
manipulate line number entries, 1-306-1-307
open file, 1-311-1-312
read archive header, 1-300
read file header, 1-303
read section header, 1-315-1-316
read symbol table entry, 1-320
retrieve symbol name, 1-304-1-305
seek to line number entries, 1-308-1-309
seek to optional file header, 1-310
seek to relocation entries, 1-313-1-314
seek to section, 1-317-1-318
seek to symbol table, 1-321

Object File Access Routine Library
Idaclose subroutine, 1-301
Idaopen subroutine, 1-311
Idclose subroutine, 1-301
Idfhread subroutine, 1-303

Index X-17

Idgetname subroutine, 1-304
Idlinit subroutine, 1-306
Idlitem subroutine, 1-306
Idlread subroutine, 1-306
Idlseek subroutine, 1-308
Idnlseek subroutine, 1-308
Idnrseek subroutine, 1-313
Idnshread subroutine, 1-315
Idnsseek subroutine, 1-317
Idohseek subroutine, 1-310
Idopen subroutine, 1-311
Idrseek subroutine, 1-313
Idshread subroutine, 1-315
Idsseek subroutine, 1-317
Idtbindex subroutine, 1-319
Idtbread subroutine, 1-320
Idtbseek subroutine, 1-321
sgetl subroutine, 1-640
sputl subroutine, 1-640

object file access routine library, Idahread
subroutine, 1-300

object files, list loaded for current process,
1-331-1-332

obtain current specified display data from the
presentation space, HCON programming, 2-40

obtain value of user-defined variable for host,
xgmon, 6-31

odm, free list subroutine, 1-496
odmjtdd_obj subroutine, 1-489-1-490
odm_change_obj subroutine, 1-491-1-492
odm close class subroutine, 1-493
odm -create class subroutine, 1-494
odm=err_msg subroutine, 1-495
odm_get_byjd subroutine, 1-497-1-498
odm_get_first subroutine, 1-501-1-502
odm_getJist subroutine, 1-499
odm_get_next subroutine, 1-501-1-502
odm_get_obj subroutine, 1-501-1-502
odm initialize subroutine, 1-503
odm -lock subroutine, 1-504-1-505
odm -mount class subroutine, 1-506
odm=open_class subroutine, 1-507
odm_rm_by_id subroutine, 1-508
odm rm class subroutine, 1-509
odm=rm=obj subroutine, 1-510
odm run method subroutine, 1-511
odm=set=path subroutine, 1-513
odm_set_pers subroutine, 1-514
odm terminate subroutine, 1-515
odm -unlock subroutine, 1-516
omin-subroutine, 1-396
omout subroutine, 1-396
open a file for reading or writing, 1-517-1-521
open a GOLC device manager, 3-59
open a stream, 1-144-1-146
open and rewind the network file, Sockets, 8-117
open and rewind the protocols file, Sockets, 8-118
open communications device handler, OLC, 3-12

X-18 Base Operating System Reference

open database for access, dbminit, 5-42
open file, xgmon, 6-21
open network host file, Sockets, 8-112
open subroutine, 1-517-1-521

OLC, 3-59
extended parameters for, OLC, 3-61

open subroutine for generic SNA, SNA, 7-43
open subroutine for SNA Services/6000, SNA, 7-41
opendir subroutine, 1-522-1-524
openlog subroutine, 1-734
opens database for access, dbm_open, 5-39
openx subroutine, 1-517-1-521
output, binary, using fwrite subroutine,

1-159-1-160
output stream

writing a string

p

using fputws subroutine, 1-561
using putws subroutine, 1-561

writing null-terminated string
using fputs subroutine, 1-558
using puts subroutine, 1-558

packet for X.25
indicating the type of, using x25_receive

subroutine, 9-33-9-34
receiving, using x25_receive subroutine,
9-33-9-34

paging space, find available, 1-547
parameter blocks by ioctl operation, OLC, 3-32
parameter list, variable-length parameter list, using

varargs macros, 1-788-1-789
parse_SNMP _packet subroutine, 6-56
password

generating, using newpass subroutine,
1-460-1-461

getting file entry
using endpwent subroutine, 1-206-1-207
using getpwent subroutine, 1-206-1-207
using getpwnam subroutine,

1-206-1-207
using getpwuid subroutine, 1-206-1-207
using setpwent subroutine, 1-206-1-207
using setpwfile subroutine, 1-206-1-207

reading, using getpass subroutine, 1-197
reading information, using getuserpw

subroutine, 1-235-1-236
writing information, using setuserpw

subroutine, 1-235-1-236
password function, xgmon, 6-57
passwords, encrypting .

using crypt subroutine, 1-96-1-97
using encrypt subroutine, 1-96-1-97
using setkey subroutine, 1-96-1-97

pathconf subroutine, 1-525-1-526
pattern matching, compile a string into internal form,

using re_comp subroutine, 1-568

pause subroutine, 1-527
pbrunnableprogram, 1-300, 1-301,1-303, 1-304,

1-306,1-308,1-310,1-311,1-313,1-315,
1-317,1-319,1-320,1-321

pclose subroutine, 1-528
permit VGM to temporarily highlight display element,

xgmon, 6-37
perror subroutine, 1-529
pfm_$c1eanup library routine, NCS, 4-17
pfm_$enable library routine, NCS, 4-19
pfm_$enable_faults library routine, NCS, 4-20
pfm_$inhibit library routine, NCS, 4-21
pfm_$inhibit_faults library routine, NCS, 4-22
pfm_$init library routine, NCS, 4-23
pfm_$reset_cleanup library routine, NCS, 4-24
pfm_$rls_cleanup library routine, NCS, 4-25
pfm_$signallibrary routine, NCS, 4-26
phonic language, checking for support, using

IMQueryLanguage subroutine, 1-273
physical volume, querying for pertinent information,

using Ivm_querypv subroutine, 1-372-1-374
ping function, xgmon, 6-58
pipe subroutine, 1-530
place data under a key, dbm_store, 5-40
place data under a key, store, 5-65
place long byte quantities in the byte stream,

Sockets, 8-78
place short byte quantities into the byte stream,

Sockets, 8-80
plock subroutine, 1-531-1-532
plot subroutine family, 1-533
pmap_getmaps subroutine, RPC, 5-56
pmap_getport subroutine, RPC, 5-57
pmap_rmtcall subroutine, RPC, 5-58
pmap_set subroutine, RPC, 5-60
pmap_unset subroutine, RPC, 5-61
poll subroutine, 1-535-1-536
popen subroutine, 1-537
pow subroutine, 1-129-1-131, 1-396
presentation space, HCON programming

obtain current specified display data, 2-40
searching for character pattern in, 2-69
searching for pattern in specified position after

receiving host data, 2-89
searching for pattern match in after receiving

host data, 2-87
searching for patterns in. See MATCHAT

Statement
searching for patterns in specified positon. See

MATCH Statement
setting g32_api structure to current cursor

position in, 2-37
print formatted output

using printf subroutine, 1-538-1-543
using wsprintf subroutine, 1-813

printf subroutine, 1-538-1-543
process

cleaning up the run-time environment, using
kleenup subroutine, 1-296

close a pipe, using pclose subroutine, 1-528
control limits, using ulimit subroutine,

1-772-1-773
controlling system resources, 1-208-1-210
create a session and set group 10, using setsid

subroutine, 1-633
create new, using fork, vfork subroutines,

1-147-1-149
credentials, setting using setpcred subroutine,

1-621-1-622
execute a new program in the calling process,

using exec subroutines, 1-120-1-126
generate SIGIOT signal to terminate, using

abort subroutine, 1-4
get and set owner information, using usrinfo

subroutine, 1-784-1-785
getting alphanumeric user name, using cuserid

subroutine, 1-106
getting group IDs, using getgidx subroutine,

1-181
getting the audit state, using auditproc

subroutine, 1-44-1-46
initiate pipe, using popen subroutine, 1-537
nice value, get or set, 1-204
reading security credentials, using getpcred

subroutine, 1-198-1-199
return scheduling priority, with getpri

subroutine, 1-203
sending a signal to, using kill, killpg subroutine,
1-294-1-295

setting credentials, using getpenv subroutine,
1-200-1-201

setting group IDs
using setgid subroutine, 1-612-1-613
using setgidx subroutine, 1-614-1-615
using setrgid subroutine, 1-612-1-613

setting scheduling priority to a constant, using
setpri subroutine, 1-629-1-630

setting the audit state, using auditproc
subroutine, 1-44-1-46

setting the environment, using setpenv
subroutine, 1-623-1-626

suspend the calling process, 1-796-1-798
suspending

using nsleep subroutine, 1-487-1-488
using sleep subroutine, 1-487-1-488
using usleep subroutine, 1-487-1-488

tracing execution of another, using ptrace
subroutine, 1-549-1-554

process accounting, enable and disable, using acct
subroutine, 1-9-1-10

process group, setting 10
using setpgid subroutine, 1-627-1-628
using setpgrp subroutine, 1-627-1-628

processing keyboard event, using the IMProcess
subroutine, 1-269-1-270

processor, time used, reporting with clock
subroutine, 1-84

profil subroutine, 1-544-1-546

Index X-19

program address sampling, starting or stopping,
using profil subroutine, 1-544-1-546

Programmers Workbench Library
regcmp subroutine, 1-578
reg ex subroutine, 1-578

provide SAP and link station correlators, OLC, 3-75
psdanger subroutine, 1-547
psignal subroutine, 1-548
ptrace subroutine, 1-549-1-554
putc subroutine, 1-555-1-556
putchar subroutine, 1-555-1-556
putenv subroutine, 1-557
putgrent subroutine, 1-182-1-183
putgroupattr subroutine, 1-184-1-187
_putlong subroutine, Sockets, 8-78
putpwent subroutine, 1-206-1-207
puts subroutine, 1-558
_putshort subroutine, Sockets, 8-80
putuserattr subroutine, 1-229-1-234
putw subroutine, 1-555-1-556
putwc subroutine, 1-559-1-560
putwchar subroutine, 1-559-1-560
putws subroutine, 1-561
PVC for X.25

Q

allocating for use by application, using
x25_pvc_alloc subroutine, 9-31

freeing, using x25_pvc_free subroutine, 9-32

qsort subroutine, 1-562
query link station statistics, OLe, 3-48
query operations, using IMloctl subroutine,

1-266-1-267
query service access pOint statstics, OLC, 3-47
queue

R

insert or remove an element, 1-282
reading a message from, using msgxrcv

subroutine, 1-450-1-452

raise graphics window associated with VGM running
program, xgmon, 6-59

raise subroutine, 1-563
raise_window function, xgmon, 6-59
rand subroutine, 1-564-1-565
random subroutine, 1-566-1-567
rcmd subroutine, Sockets, 8-82
re_comp subroutine, 1-568-1-569
re_exec subroutine, 1-568-1-569
read from a file, 1-570-1-573
read function, xgmon, 6-60
read next line in open file, xgmon, 6-60
read pending data, OLC, 3-71
read subroutine, 1-570-1-573

extended parameters for, OLC, 3-68
read subroutine for generic SNA, SNA, 7-47
read subroutine for SNA Services/6000, SNA, 7-45
readdir subroutine, 1-522-1-524

X-20 Base Operatinq System Reference

readlink subroutine, 1-574-1-575
readv subroutine, 1-570-1-573
readvx subroutine, 1-570-1-573
readx subroutine, 1-570-1-573

OLC, 3-71
readx subroutine for SNA Services/6000, SNA, 7-49
real_type function, xgmon, 6-61
realloc subroutine, 1-399-1-402
reboot subroutine, 1-576-1-577
receive a message from any socket, Sockets, 8-89
receive host data, HCON programming

locating beginning of pattern match in
presentation space. See RECEIVE Statement

searching presentation space for pattern
match. See RECVAT Statement

RECEIVE LAF statement, HCON programming,
2-87

receive message from AIX API application, HCON
programming, 2-62

receive message from connected sockets, Sockets,
8-84

receive message from host application, HCON
programming, 2-65

receive message from sockets, Sockets, 8-86
receive network-specific data call, OLC, 3-66
recv subroutine, Sockets, 8-84
RECVAT LAF statement, HCON programming, 2-89
recvfrom subroutine, Sockets, 8-86
recvmsg subroutine, Sockets, 8-89
registering interfaces with servers, 4-38
registering objects and interfaces with Location

Broker, 4-14
registerrpc subroutine, RPC, 5-62
regular-expression pattern matching, performing

using advance subroutine, 1-87-1-90
using compile subroutine, 1-87-1-90
using NLregexp subroutine, 1-87-1-90
using regexp subroutine, 1-87-1-90
using step subroutine, 1-87-1-90

reltimerid subroutine, 1-582
remove a directory, 1-589-1-590
remove subroutine, 1-583
removing entries from Location Broker database,

4-16
remque subroutine, 1-282
rename display element, xgmon, 6-62
rename subroutine, 1-584-1-586
rename_dep function, xgmon, 6-62
REPEAT-UNTIL LAF statement, HCON

programming, 2-90
report NIS protocol error, ypprot_err, 5-147
res_init subroutine, Sockets, 8-91
res_mkquery subroutine, Sockets, 8-93
res_send subroutine, Sockets, 8-96
resabs subroutine, 1-190-1-192
reset-indication packet for X.25, confirming receipt

of, using x25_reset_confirm subroutine, 9-36
resinc subroutine, 1-190-1-192

resource, get utilization information, 1-211-1-213
resources, freeing, using IMFreeKeymap subroutine,

1-261
responses

affirmative, NLyesno subroutine, 1-486
negative, NLyesno subroutine, 1-486

restart system, using reboot subroutine,
1-576-1-577

restimer subroutine, 1-220-1-221
retrieve a socket with a priviledged address,

Sockets, 8-100
retrieves a network host entry, Sockets, 8-28
retrieves long byte quantities, Sockets, 8-31
retrieves short byte quantities, Sockets, 8-52
return a device descriptor structure, OLC, 3-57
return a pointer to an error string, yperr_string,

5-146
return asynchronous exception noticifications, OLC,

3-52
return current address of host, xgmon, 6-30
return current system time, xgmon, 6-80
return first key in database, firstkey, 5-45
return first key value pair, yp_first, 5-135
return font height in graphics window associated with

VGM, xgmon, 6-19
return font width in graphics window associated with

VGM, xgmon, 6-20
return height of graphics window associated with

VGM, xgmon, 6-82
return information about display element, xgmon,

6-10
return integer ASCII value of first character of string,

xgmon, 6-5
return integer value represented by text characters in

string, xgmon, 6-36, 6-81
return IP address of host, xgmon, 6-40
return length of string, xgmon, 6-78
return list of display elements grouped under node,

xgmon,6-23
return machine name of NIS master server,

yp_master, 5-138
return MIS numeric-format variable name of MIS

text-format variable name, xgmon, 6-76
return name of MIS variable, SNMP, 6-46
return next key in database, nextkey, 5-55
return number indicating actual MIS type of MIS

variable name or instance 10, xgmon, 6-61
return number indicating base type of MIS variable

name or instance 10, xgmon, 6-6
return number of free words in data segment of

VGM, xgmon, 6-84
return of data and correlators structure, OLC, 3-68
return order number of NIS map, yp_order, 5-142
return pointer to array of strings representing display

element names, xgmon, 6-53
return receive data, OLC, 3-14
return SNMP community name of host, xgmon, 6-57
return status information of the logical path, HCON

programming, 2-43

return string of text characters representing decimal
value of integer, xgmon, 6-55

return string representing IP address, xgmon, 6-12
return text name of host, SNMP, 6-42
return text name of host, xgmon, 6-39
return text name of MIS variable, SNMP, 6-27
return the Internet address of host, SNMP, 6-43
return value indicating base type of MIS variable,

SNMP, 6-24
return value indicating variable type of MIS variable,

SNMP, 6-28
return values found in NIS map, 5-140
return width of graphics window associated with

VGM, xgmon, 6-83
retu rns first key in database, dbm_firstkey, 5-37
returns next key in database, dbm_next, 5-38
reuse_mem function, xgmon, 6-63
revoke subroutine, 1-587-1-588
revoking file access, using frevoke subroutine,

1-161-1-162
rewind subroutine, 1-167-1-168
rewinddir subroutine, 1-522-1-524
rexec subroutine, Sockets, 8-98
right function, xgmon, 6-64
rindex subroutine, 1-717
rint subroutine, 1-141-1-143
rmdir subroutine, 1-589-1-590
root directory, changing, using chroot subroutine,
1-74-1-75

RPC macros
auth_destroy, 5-6
clnt_call, 5-14
clnt_control, 5-16
clnt_destroy, 5-19
clnt_freeres,5-20
clnt_geterr, 5-21
svc_destroy, 5-66
svc_freeargs, 5-67
svc_getargs, 5-68
svc_getcaller, 5-69

RPC subroutines
authdes_create,5-3
authdes_getucred,5-5
authnone_create, 5-7
authunix_create, 5-8
authunix_create_default, 5-9
callrpc, 5-10
clnt_broadcast, 5-12
clnt_create, 5-18
clnt_pcreateerror,5-22
clnt_perrno, 5-23
clnt_perror, 5-24
clnt_spcreateerror, 5-25
clnt_sperrno, 5-26
clnt_sperror, 5-28
clntraw_create, 5-29
clnttcp_create, 5-30
clntudp_create, 5-32
get_myaddress, 5-46

Index X-21

getnetname, 5-47
host2netname, 5-48
key_decryptsession, 5-49
key_encryptsession, 5-50
key_gendes, 5-51
key _setsecret, 5-52
netname2host, 5-53
netname2user, 5-54
pmap_getmaps, 5-56
pmap_getport, 5-57
pmap_rmtcall,5-58
pmap_set, 5-60
pmap_unset, 5-61
registerrpc, 5-62
rtime, 5-64
svc_getreqset, 5-70
svc_register, 5-71
svc run, 5-73
svc=sendreply, 5-74
svc_unregister, 5-75
svcerr_auth, 5-76
svcerr_decode, 5-77
svcerr_noproc, 5-78
svcerr_noprog, 5-79
svcerr _progvers, 5-80
svcerr_systemerr, 5-81
svcerr_weakauth,5-82
svcfd_create, 5-83
svcraw_create, 5-84
svctcp_create, 5-85
svcudp_create, 5-86
user2netname, 5-87
xdr_accepted_reply, 5-88
xdr_authunix_parms, 5-90
xdr_callhdr, 5-92
xdr_callmsg, 5-93
xdr_opaque_auth, 5-105
xdr_pmap, 5-106
xdr_pmaplist, 5-107
xdr_rejected_reply, 5-110
xdr_replymsg, 5-111
xprt_register, 5-129
xprt_unregister, 5-130

rpc_$alloc_handle library routine, NCS, 4-27
rpc_$bind library routine, NCS, 4-28
rpc_$clear_binding library routine, NCS, 4-29
rpc_$clear_server_binding library routine, NCS,

4-30
rpc_$dup_handle library routine, NCS, 4-31
rpc_$free_handle library routine, NCS, 4-32
rpc_$inq_binding library routine, NCS, 4-33
rpc_$inq_object library routine, NCS, 4-34
rpc_$listen library routine, NCS, 4-35
rpc_$name_to_sockaddr library routine, NCS, 4-36
rpc_$register library routine, NCS, 4-38
rpc_$set_binding library routine, NCS, 4-40
rpc_$sockaddr_to_name library routine, NCS, 4-41
rpc_$unregister library routine, NCS, 4-42
rpc_$use_family library routine, NCS, 4-43

X-22 Base Operating SysterT' RefArence

rpc_$use_family_wk library routine, NCS, 4-45
rpow subroutine, 1-396
rresvport subroutine, Sockets, 8-100
rtime subroutine, RPC, 5-64
Run-time Services Library

trcon subroutine, 1-761
trcstart subroutine, 1-762
trcstop subroutine, 1-763

runtime resolution of deferred symbols, 1-329
ruserok subroutine, Sockets, 8-102

S
SAP enable a result extension, DLC, 3-55
save and restore execution context, 1-617-1-618
save_SNMP _trap subroutine, 6-65
save SNMP var subroutine, 6-67
sbrk subroutine, 1-52-1-53
scalb subroutine, 1-94-1-95
scan directory contents, 1-591
scandir subroutine, 1-591-1-592
scanf subroutine, 1-593-1-597
sdiv subroutine, 1-396
search

binary search, 1-54
binary tree search, 1-766
linear search and update, 1-339
manage hash tables, 1-246
walk a file tree, 1-172

search for a default domain name and Internet
address, Sockets, 8-91

search for character pattern in presentation space,
HCON programming, 2-69

search for pattern match, HCON programming
in presentation space, 2-84
in specified position of presentation space,

2-85
search for value associated with key, yp_match,

5-139
search source string for substring, xgmon, 6-79
searches for an expanded domain name, Sockets,

8-15
Security Library

acl_chg subroutine, 1-11-1-13
acl_fchg subroutine, 1-11-1-13
acl_fget subroutine, 1-14-1-15
acl_fput subroutine, 1-16-1-18
acl fset subroutine, 1-19-1-21
acCget subroutine, 1-14-1-15
acl_put subroutine, 1-16-1-18
acl set subroutine, 1-19-1-21
audltpack subroutine, 1-42-1-43
auditread subroutine, 1-47
auditwrite subroutine, 1-48
ckuseracct subroutine, 1-80-1-81
ckuserlD subroutine, 1-78-1-79
endpwdb subroutine, 1-631-1-632
enduserdb subroutine, 1-638-1-639
getgroupattr subroutine, 1-184-1-187

getpcred subroutine, 1-198
getpenv Subroutine, 1-200
getuserattr subroutine, 1-229-1-234
getuserpw subroutine, 1-235-1-236
IOtogroup subroutine, 1-184-1-187
IOtouser subroutine, 1-229-1-234
newpass subroutine, 1-460-1-461
nextgroup subroutine, 1-184-1-187
nextuser subroutine, 1-229-1-234
putuser subroutine, 1-229-1-234
setpcred subroutine, 1-621
setpenv subroutine, 1-623
setpwdb subroutine, 1-631-1-632
setuserdb subroutine, 1-638-1-639
setuserpw subroutine, 1-235-1-236

seed48 subroutine, 1-111-1-113
seekdir subroutine, 1-522-1-524
SELECT LAF statement, HCON programming, 2-91
select receive data or exception conditions, OLC,

3-16
select subroutine, 1-598-1-600

OLC, 3-73
select subroutine for generic SNA, SNA, 7-56
select subroutine for SNA Services/6000, SNA, 7-53
semaphore, returning semaphore identifier, using

semget subroutine, 1-605-1-607
semaphore operations, controlling, using semctl

subroutine, 1-601-1-604
semapore operations, using semop subroutine,

1-608-1-609
semctl subroutine, 1-601-1-604
semget subroutine, 1-605-1-607
semop subroutine, 1-608-1-609
send a message to a host application, HCON

programming, 2-80
send a message using a socket message structure,

Sockets, 8-106
send a query to a name server, Sockets, 8-96
send an ICMP ECHO request to host, xgmon, 6-58
send application data, OLC, 3-77
send kernel data, OLC, 3-26
SEND LAF statement, HCON programming, 2-93
send message from a connected socket, Sockets,

8-104
send message to AIX API application, HCON

programming, 2-78
send messages through a socket, Sockets, 8-108
send query to and await response from SNMP agent,

SNMP, 6-69
send string of keys to emulator and host, HCON

programming, 2-93
send subroutine, Sockets, 8-104
send_recv_SNMP _packet subroutine, 6-69
sendmsg subroutine, Sockets, 8-106
sends key strokes to the terminal emulator, HCON

programming, 2-74
sendto subroutine, Sockets, 8-108
separate local Internet addresses, Sockets, 8-64

separate network Internet addresses into network
number and local address, Sockets, 8-68

servers
clearing handle bindings, 4-30
registering interfaces, 4-38

session, HCON programming
attach to, 2-49
attaching to (extended open), 2-55
detach AIX API program from, 2-21

set file access times, 1-786-1-787
set file modification times, 1-786-1-787
set g32_api structure to the current cursor position,

HCON programming, 2-37
set socket options, Sockets, 8-120
set the name of the current domain, Sockets, 8-111 .
set the name of the current host, Sockets, 8-115
set the unique identifier of the current host, Sockets,

8-114
set user-defined environment variable for host,

xgmon, 6-73
set_element_mask function, xgmon, 6-71
setbuf subroutrine, 1-610-1-611
setbuffer subroutine, 1-610-1-611
setdomainname subroutine, Sockets, 8-111
setegid subroutine, 1-612-1-613
setenv function, xgmon, 6-73
seteuid subroutine, 1-634-1-635
setgid subroutine, 1-612-1-613
setgidx subroutine, 1-614-1-615
setgrent subroutine, 1-182-1-183
setgroups subroutine, 1-616
sethostent subroutine, Sockets, 8-112
sethostid subroutine, Sockets, 8-114
sethostname subroutine, Sockets, 8-115
setitimer subroutine, 1-190-1-192
setjmp subroutine, 1-617-1-618
setkey subroutine, 1-96-1-97
setlinebuf subroutine, 1-610-1-611
setlocale subroutine, 1-619-1-620
setlogmask subroutine, 1-734
setnetent subroutine, Sockets, 8-117
setpcred subroutine, 1-621-1-622
setpenv subroutine, 1-623-1-626
setpgid subroutine, 1-627-1-628
setpgrp subroutine, 1-627-1-628
setpri subroutine, 1-629-1-630
setpriority subroutine, 1-204-1-205
setprotoent subroutine, Sockets, 8-118
setpwdb subroutine,1-631
setpwent subroutine, 1-206-1-207
setregid subroutine, 1-612-1-613
setreuid subroutine, 1-634-1-635
setrgid subroutine, 1-612-1-613
setrlimit subroutine, 1-208-1-210
setruid subroutine, 1-634-1-635
setservent subroutine, Sockets, 8-119
setsid subroutine, 1-633
setsockopt subroutine, Sockets, 8-120

Index X-23

setstate subroutine, 1-566-1-567
settimeofday subroutine, 1-218-1-219
settimer subroutine, 1-220-1-221
settyent subroutine, 1-224-1-225
setuid subroutine, 1-634-1-635
setuidx subroutine, 1-636-1-637
setuserdb subroutine, 1-638-1-639
setuserpw subroutine, 1-235-1-236
setutent subroutine, 1-237-1-239
setvbuf subroutine, 1-610-1-611
setvfsent subroutine, 1-240-1-241
setwdb subroutine, 1-631-1-632
sgetl subroutine, 1-640
shell command, running, using system subroutine,

1-737
shmat subroutine, 1-641-1-643
shmctl subroutine, 1-644-1-646
shmdt subroutine, 1-647
shmget subroutine, 1-648-1-650
shorten a file, using truncate, ftruncate subroutines,

1-764-1-765
shut down socket send and receive operations,

Sockets, 8-124
shutdown subroutine, Sockets, 8-124
sigaction subroutine, 1-651-1-657
sigaddset subroutine, 1-658-1-659
sigblock subroutine, 1-662-1-664
sigdelset subroutine, 1-658-1-659
sigemptyset subroutine, 1-658-1-659
sigfillset subroutine, 1-658-1-659
sighold subroutine, 1-665-1-667
sigignore subroutine, 1-665-1-667
siginterrupt subroutine, 1-660
sigismember subroutine, 1-658-1-659
siglongjmp subroutine, 1-668
signal

change restart behavior, using siginterrupt
subroutine, 1-660

enhance signal facility and provide signal
management, 1-665

get and set stack context, using the sigstack
subroutine, 1-669-1-670

print system signal messages, using psignal
subroutine, 1-548

restore saved signal mask, using siglongjmp
subroutine, 1-668

save current signal mask, using sigsetjmp
subroutine, 1-668

save current stack context, using sigsetjmp
subroutine, 1-668

send to the executing program, using raise
subroutine, 1-563

store set of signals blocked from delivery, using
sigpending subroutine, 1-661

signal facility, implementing
using gsignal subroutine, 1-704-1-705
using ssignal subroutine, 1-704-1-705

signal handling, specify action to be taken,
1-651-1-657

X-24 Base Operating System Reference

signal mask
examine or change, using sigprocmask

subroutine, 1-662
setting current, using sigprocmask subroutine,

1-662
signal masks, manipulating

using sigaddset subroutine, 1-658-1-659
using sigdelset subroutine, 1-658-1-659
using sigemptyset subroutine, 1-658-1-659
using sigfillset subroutine, 1-658-1-659
using sigismember subroutine, 1-658-1-659

signal subroutine, 1-651-1-657
signals

adding individual signal, using sigaddset
subroutine, 1-658

deleting individual signals, sigdelset subroutine,
1-658

initializing signal set
using sigemptyset, 1-658
using sigfillset, 1-658

specifying member of signal set, using
sigismember subroutine, 1-658

suspending execution of process, using
sigsuspend subroutine, 1-671

sigpause subroutine, 1-671-1-672
sigpending subroutine, 1-661
sigpromask subroutine, 1-662-1-664
sigrelse subroutine, 1-665-1-667
sigset subroutine, 1-665-1-667
sigsetjmp subroutine, 1-668
sigsetmask subroutine, 1-662-1-664
sigsuspend subroutine, 1-671-1-672
sigtack subroutine, 1-669-1-670
sigvec subroutine, 1-651-1-657
sin subroutine, 1-673-1-674
sinh subroutine, 1-675
sjtojis subroutine, 1-292-1-293
sjtouj subroutine, 1-292-1-293
skips over a compressed domain name, Sockets,

8-17
sleep subroutine, 1-487-1-488
SNA subroutines

generic
close, 7-5
ioctl,7-15
open, 7-43
read,7-47
select, 7-56
write, 7-83

luOapi, 7-17
luOclosep, 7-20
luOcloses, 7-21
luOctlp, 7-22
luOctls, 7-24
luOopenp, 7-26
luOopens, 7-27
luOreadp, 7-28
luOreads, 7-29
luOwritep, 7-30

luOwrites, 7-32
nm_close, 7-34
nm_open, 7-35
nm_receive, 7-36
nm_send, 7-38
nm_status, 7-40
SNA Services/6000

close, 7-3
ioctl, 7-6
open, 7-41
read,7-45
readx, 7-49
select, 7-53
write, 7-81
writex, 7-85

snaclse, 7-59
snactl, 7-60
snadeal,7-67
snalloc, 7-70
snaopen, 7-73
snaread,7-75
snawrit, 7-78

snaclse subroutine, SNA, 7-59
snactl subroutine, SNA, 7-60
snadeal subroutine, SNA, 7-67
snalloc subroutine, SNA, 7-70
snaopen subroutine, SNA, 7-73
snaread subroutine, SNA, 7-75
snawrit subroutine, SNA, 7-78
SNMP, SNMP Manager, intrinsic functions

database operations
base_type, 6-6
getenv, 6-31
get_MIB_group, 6-25
gw_var, 6-34
reaLtype, 6-61
setenv, 6-73
snmp_var, 6-76

file I/O
close, 6-7
fopen, 6-21
read,6-60

formatted output
num, 6-55
sprintf, 6-77

graphics functions
dep_info, 6-10
draw_line, 6-13
draw_string, 6-14
font_height, 6-19
font_width, 6-20
get_deps, 6-23
group_dep, 6-32
highlight_dep, 6-37
make_dep, 6-47
make_link, 6-48
move_dep, 6-52
new_deps, 6-53
raise_window, 6-59

rename_dep, 6-62
set_element_mask, 6-71
window_height, 6-82
window_width, 6-83

host information
dotaddr, 6-12
get_primary, 6-30
hostname, 6-39
ipaddr, 6-40
nexCalternate, 6-54
password,6-57
ping, 6-58

string manipulation
ascii, 6-5
hexval,6-36
left, 6-41
mid,6-51
right, 6-64
strlen, 6-78
substr, 6-79
val,6-81

virtual G machine (VGM) control
aix_exec, 6-3
alloc, 6-4
ctime, 6-9
exec, 6-16
flush_trap, 6-18
reuse_mem, 6-63
time, 6-80
words_free, 6-84

SNMP API
create_SNMP _port subroutine, 6-8
extract_SNMP _name subroutine, 6-17
get_MIB_base_type subroutine, 6-24
get_MIB_name subroutine, 6-27
get_MIB_variable_type subroutine, 6-28
lookup_addr subroutine, 6-42
lookup_host subroutine, 6-43
100kup_SNMP _group subroutine, 6-44
100kup_SNMP _name subroutine, 6-46
make_SNMP _request subroutine, 6-49
parse_SNMP _packet subroutine, 6-56
save_SNMP _trap subroutine, 6-65
save_SNMP _var subroutine, 6-67
send_recv_SNMP _packet subroutine, 6-69
SNMP _errormsg array, 6-75

SNMP _errormsg array, 6-75
snmp_var function, xgmon, 6-76
socket subroutine, Sockets, 8-126
socketpair subroutine, Sockets, 8-129
sockets

converting address to host name, 4-41
converting host name to address, 4-36
creating specific address family sockets, 4-43
creating with well-known port, 4-45

Sockets subroutines
accept, 8-3
bind,8-5
connect, 8-8

Index X-25

dn_comp, 8-11
dn_expand,8-13
dn_find,8-15
dn_skipname, 8-17
endhostent, 8-19
endnetent, 8-20
endprotoent, 8-21
endservent, 8-22
getdomainname, 8-23
gethostbyaddr, 8-24
gethostbyname, 8-26
gethostent, 8-28
gethostid,8-29
gethostname, 8-30
_getlong, 8-31
getnetbyaddr, 8-33
getnetbyname, 8-35
getnetent, 8-37
getpeername, 8-38
getprotobyname, 8-40
getprotobynumber, 8-42
getprotoent, 8-44
getservbyname, 8-46
getservbyport, 8-48
getservent, 8-50
_getshort, 8-52
getsockname, 8-54
getsockopt, 8-56
htonl,8-60
htons, 8-61
inet_addr, 8-62
inet_lnaof, 8-64
inet_makeaddr, 8-66
inet_netof, 8-68
inet_network,8-70
inet_ntoa, 8-72
listen, 8-74
ntohl,8-76
ntohs, 8-77
_putlong, 8-78
_putshort, 8-80
rcmd,8-82
recv, 8-84
recvfrom, 8-86
recvmsg, 8-89
res_init, 8-91
res_mkquery, 8-93
res_send, 8-96
rexec, 8-98
rresvport, 8-1 00
ruserok, 8-102
send,8-104
sendmsg, 8-106
sendto, 8-108
setdomainname, 8-111
sethostent, 8-112
sethostid,8-114
sethostname, 8-115
setnetent, 8-117

X-26 Base Operating System Reference

setprotoent, 8-118
setservent, 8-119
setsockopt, 8-120
shutdown, 8-124
socket, 8-126
socketpair, 8-129

sort a table of data in place, 1-562
sort directory contents, 1-591
specify data sent, OLC, 3-18
specify special file names, OLC, 3-24
sprintf function, xgmon, 6-77
sprintf subroutine, 1-538-1-543
sputl subroutine, 1-640
sqrt subroutine, 1-676

error code listed, 1-676
srand subroutine, 1-564-1-565
srand48 subroutine, 1-111-1-113
srandom subroutine, 1-566-1-567
SRC error message, retrieve, using src_err_msg

subroutine, 1-677
SRC status, get line header, using srcstathdr

subroutine, 1-696
SRC status code, get text representation, using

srcstattxt subroutine, 1-697
SRC subsystem, replying to the client process, using

srcsrpy subroutine, 1-684-1-688
srcrrqs subroutine, 1-678-1-679
srcsbuf subroutine, 1-680-1-683
srcsrpy subroutine, 1-684-1-688
srcsrqt subroutine, 1-689-1-692
srcstat subroutine, 1-693-1-695
srcstathdr subroutine, 1-696
srcstattxt subroutine, 1-697
srcstop subroutine, 1-698-1-700
srcstrt subroutine, 1-701-1-703
sscanf subroutine, 1-593-1-597
ssignal subroutine, 1-704-1-705
Security Library, getgroupattr subroutine, 1-616
start a link station, OLC, 3-36
start a link station's result extension, OLC, 3-55
start interaction with AIX API, HCON programming,

2-15
START LAF statement, HCON programming, 2-94
stat subroutine, 1-711-1-714
statacl subroutine, 1-706-1-708
statts subroutine, 1-709-1-710
status, file, 1-711
statx subroutine, 1-711-1-714
step subroutine, 1-87-1-90
stime subroutine, 1-220-1-221
store retrieved SNMP data, SNMP, 6-67
store SNMP error messages,SNMP, 6-75
store SNMP trap data, SNMP, 6-65
store subroutine, 5-65
strcat subroutine, 1-716
strchr subroutine, 1-716
strcmp subroutine, 1-716
strcoll subroutine, 1-716
strcpy subroutine, 1-716

strcspn subroutine, 1-716
strdup subroutine, 1-717
stream

write buffered data and close, using fclose
subroutine, 1-134

write buffered data and leave open, using fflush
subroutine, 1-134

writing a character
using fput subroutine, 1-555-1-556
using fputwc subroutine, 1-559-1-560
using putc subroutine, 1-555-1-556
using putchar subroutine, 1-555-1-556
using putwc subroutine, 1-559-1-560
using putwchar subroutine, 1-559-1-560

writing a word, using putw subroutine,
1-555-1-556

strerror subroutine, 1-715
strftime subroutine, 1-475-1-477
string

checking the argument, using re_exec
subroutine, 1-568

collation value, using the strncollen subroutine,
1-720

converting on 8-bit processing codes,
1-292-1-293

locating first occurence of a character, using
wcspbrk subroutine, 1-803

performing operations on type wchar, using
wstring subroutines, 1-816-1-818

rebinding to specified KeySymbol and State
pair, using the IMRebindCode subroutine,
1-275

variable length

strings

comparing, bcmp subroutine, 1-49
copying values, bcopy subroutine, 1-49
returning index of bit, ffs subroutine, 1-49
zeroing out string, bzero subroutine, 1-49

containing code points, using NLstring
subroutines, 1-472

perform operations, using string subroutines,
1-716

performing operations on type NLchar, using
NCstring subroutines, 1-456-1-459

strlen function, xgmon, 6-78
strlen subroutine, 1-716
strncat subroutine, 1-716
strncmp subroutine, 1-716
strncollen subroutine, 1-720
strncpy subroutine, 1-716
strpbrk subroutine, 1-716
strrchr subroutine, 1-716
strspn subroutine, 1-716
strstr subroutine, 1-717
strtod subroutine, 1-28-1-29
strtof subroutine, 1-28-1-29
strtok subroutine, 1-717
strtol subroutine, 1-721-1-722
strtoul subroutine, 1-721-1-722

strtows subroutine, 1-463
strxfrm subroutine, 1-716
stty subroutine, 1-723
subroutine, semctl subroutine, 1-601-1-604
substr function, xgmon, 6-79
subsystem

adding a record to object class, using addssys
subroutine, 1-22-1-23

getting short status, using srcstat subroutine,
1-693-1-695

getting status, using srcsbuf subroutine,
1-680-1-683

initialize SRCsubsys structure, using defssys
subroutine, 1-107-1-108

read a record, using getsubsvr subroutine,
1-216-1-217

reading record, using chssys subroutine,
1-76-1-77

reading the record, using getssys subroutine,
1-215

removing subsystem objects, using delssys
subroutine, 1-109

sending a request to, using srcsrqt subroutine,
1-689-1-692

starting, using srcstrt subroutine,
1-701-1-703

stopping, using srcstop subroutine,
1-698-1-700

subsystem reply information, using srcrrqs
subroutine, 1-678-1-679

svc_destroy macro, RPC, 5-66
svc_freeargs macro, RPC, 5-67
svc_getargs macro, RPC, 5-68
svc_getcaller macro, RPC, 5-69
svc_getreqset subroutine, RPC, 5-70
svc_register subroutine, RPC, 5-71
svc_run subroutine, RPC, 5-73
svc.:....sendreply subroutine, RPC, 5-74
svc_unregister subroutine, RPC, 5-75
svcerr_auth subroutine, RPC, 5-76
svcerr_decode subroutine, RPC, 5-77
svcerr_noproc subroutine, RPC, 5-78
svcerr_noprog subroutine, RPC, 5-79
svcerr_progvers subroutine, RPC, 5-80
svcerr_systemerr subroutine, RPC, 5-81
svcerr_weakauth subroutine, RPC, 5-82
svcfd_create subroutine, RPC, 5-83
svcraw_create subroutine, RPC, 5-84
svctcp_create subroutine, RPC, 5-85
svcudp_create subroutine, RPC, 5-86
swab subroutine, 1-724
swapon command, 1-725
swapqry subroutine, 1-726
symbolic link, reading contents of, with readlink

subroutine, 1-574
symlink subroutine, 1-728
sync subroutine, 1-731
SYS_CFGDD operation, 10-3
SYS_CFGKMOD operation, 10-5

Index X-27

SYS_GETPARMS operation, 10-9
SYS_KLOAD operation, 10-10
SYS_KULOAD operation, 10-13
SYS QDVSW operation, 10-15
SYS=QUERYLOAD operation, 10-18
SYS_SETPARMS operation, 10-20
sys_siglist vector, 1-548
SYS_SINGLELOAD operation, 10-22
sysconf subroutine, 1-732-1-733
sysconfig subroutine, 10-7

operations
SYS_CFGDD, 10-3
SYS_CFGKMOD, 10-5
SYS_GETPARMS, 10-9
SYS_KLOAD, 10-10
SYS_KULOAD,10-13
SYS_QDVSW, 10-15
SYS_QUERYLOAD, 10-18
SYS_SETPARMS, 10-20
SYS_SINGLELOAD, 10-22

syslog subroutine, 1-734
system, getting the name, using the uname, unamex

subroutine, 1-777-1-778
system data object, setting the auditing mode,

1-39-1-41
system limit, find current value, 1-732-1-733
System Resource Controller Library

addssys subroutine, 1-22-1-23
chssys subroutine, 1-76-1-77
defssys subroutine, 1-107-1-108
delssys subroutine, 1-109
getssys subroutine, 1-215
getsubsvr subroutine, 1-216-1-217
src_err_msg subroutine, 1-677
srcrrqs subroutine, 1-678-1-679
srcsbuf subroutine, 1-680-1-683
srcsrpy subroutine, 1-684-1-688
srcsrqt subroutine, 1-689-1-692
srcstat subroutine, 1-693-1-695
srcstathdr subroutine, 1-696
srcstattxt subrolltine, 1-697
srcstop subroutine, 1-698-1-700
srcstrt subroutine, 1-701-1-703

system subroutine, 1-737
System V Math Library

acos subroutine, 1-673-1-674
acosh subroutine, 1-26
asin subroutine, 1-673-1-674
asinh subroutine, 1-26
atan subroutine, 1-673-1-674
atan2 subroutine, 1-673-1-674
atanh subroutine, 1-26
cabs subroutine, 1-248-1-249
cbrt subroutine, 1-676
ceil subroutine, 1-141-1-143
class subroutine, 1-82
copysign subroutine, 1-94-1-95
cos subroutine, 1-673-1-674
cosh subroutine, 1-675

X-28 Base Ooeratina Svstem Reference

T

drem subroutine, 1-114
erf subroutine, 1-118
erfc subroutine, 1-118
exp subroutine, 1-129-1-131
expm1 subroutine, 1-129-1-131
fabs subroutine, 1-141-1-143
finite subroutine, 1-82
floor subroutine, 1-141-1-143
fmod subroutine, 1-141-1-143
gamma subroutine, 1-322-1-323
hypot subroutine, 1-248-1-249
ilogb subroutine, 1-94-1-95
isnan subroutine, 1-82
itrunc subroutine, 1-141-1-143
jO subroutine, 1-50-1-51
j1 subroutine, 1-50-1-51
jn subroutine, 1-50-1-51
Igamma subroutine, 1-322-1-323
log subroutine, 1-129-1-131
log10 subroutine, 1-129-1-131
log1p subroutine, 1-129-1-131
10gb subroutine, 1-94-1-95
matherr subroutine, 1-403-1-404
nearest subroutine, 1-141-1-143
nextafter subroutine, 1-94-1-95
pow subroutine, 1-129-1-131
rint subroutine, 1-141-1-143
scalb subroutine, 1-94-1-95
sin subroutine, 1-673-1-674
sinh subroutine, 1-675
sqrt subroutine, 1-676
tan subroutine, 1-673-1-674
tanh subroutine, 1-675
trunc subroutine, 1-141-1-143
uitrunc subroutine, 1-141-1-143
unordered subroutine, 1-82
yO subroutine, 1-50-1-51
y1 subroutine, 1-50-1-51
yn subroutine, 1-50-1-51

tahn subroutine, 1-675
tan subroutine, 1-673-1-674
tcdrain subroutine, 1-740
tcflow subroutine, 1-741
tcflush subroutine, 1-742
tcgetattr subroutine, 1-744
tcgetpgrp subroutine, 1-745
tcsendbreak subroutine, 1-746
tcsetattr subroutine, 1-748-1-749
tcsetpgrp subroutine, 1-750
telldir subroutine, 1-522-1-524
tempnam subroutine, 1-754-1-755
temporary file, generate file name, 1-754-1-755
termdef subroutine, 1-751-1-752
terminal

determine if a device is a terminal, using isatty
subroutine, 1-770

getting foreground group 10, using tcgetpgrp
subroutine, 1-745

getting the name, using ttyname subroutine,
1-770

line control functions
using tcdrain subroutine, 1-740
using tcflow subroutine, 1-741
using tcflush subroutine, 1-742
using tcgetattr subroutine, 1-744
using tcsendbreak subroutine, 1-746
using tcsetattr subroutine, 1-748

query terminal characteristics, using termdef
subroutine, 1-751.

setting foreground group 10, using tcsetpgrp
subroutine, 1-750

terminate a process, using exit, _exit, atexit
subroutines, 1-127-1-128

terminate execution of LAF script, HCON
programming, 2-9

terminate interaction with an AIX API, HCON
programming, 2-27

test a remote station link for a link station, DLC, 3-41
test fpr conditional execution of LAF script, HCON

programming, two-way alternative test, 2-83
time

formatting, using NLstrtime subroutine,
1-475-1-477

getting, using gettimeofday subroutine,
1-218-1-219

setting, using settimeofday subroutine,
1-218-1-219

time function, xgmon, 6-80
time structure, setting from string data, using

NLtmtime subroutine, 1-478-1-480
time subroutine, 1-220-1-221
timer, system-wide

getting using gettimer subroutine,
1-220-1-221

obtaining resolution, using restimer subroutine,
1-220-1-221

setting using settimer subroutine,
1-220-1-221

times subroutine, 1-211-1-213
timezone subroutine, 1-101-1-103
tmpfile subroutine, 1-753
tmpnam subroutine, 1-754-1-755
tojhira subroutine, 1-285
tojkata subroutine, 1-285
tojlower subroutine, 1-285
tojupper subroutine, 1-285
toujis subroutine, 1-285
trace channel, stopping a trace session for, using

trcstop subroutine, 1-763
trace data

halting collection of, using trcoff subroutine,
1-760

starting the collection of, using trcon
subroutine, 1-761

trace link station activity, OLC, 3-40

trace session
recording 5 user-defined words, using trchkgt

subroutine, 1-758-1-759
recording a data word

using trcgen subroutine, 1-756
using trcgent subroutine, 1-756-1-757

recording a data word trace event, using trchklt
subroutine, 1-758-1-759

recording a hook word
using trcgen subroutine, 1-756-1-757
using trcgent subroutine, 1-756-1-757
using trchkgt subroutine, 1-758-1-759
using trchkl subroutine, 1-758-1-759
using trchklt subroutine, 1-758-1-759
using trchkt subroutine, 1-758

recording a hook word plus 5 words, using
trchkg subroutine, 1-758-1-759

recording a timestamp
using trcgent subroutine, 1-756-1-757
using trchkgt subroutine, 1-758-1-759
using trchklt subroutine, 1-758-1-759
using trchkt subroutine, 1-758

recording a variable number of bytes of trace
data

using trcgen subroutine, 1-756
using trcgent subroutine, 1-756-1-757

recording data word trace event, using trchkl
subroutine, 1-758-1-759

starting, using trcstart subroutine, 1-762 .
transfer key-value pair from server to client, yp_all,

5-131
translate names to addresses, using knlist

subroutine, 1-297-1-298
translation

AIX to EBCDIC, using NLxout subroutine,
1-484

character strings
NLescstr subroutine, 1-466-1-467
NLflatstr subroutine, 1-466-1-467
NLunescstr subroutine, 1-466-1-467

EBCDIC to AIX, using NLxin subroutine,
1-482-1-483

keysymbol to string, using IMAIXMapping
subroutine, 1-250

pair of keysymbol and state, using
IMSimpleMapping subroutine, 1-276

state to string, using IMAIXMapping subroutine,
1-250

translation table, initializing, using NLxstart
subroutine, 1-485

trcgen subroutine, 1-756-1-757
trcgent subroutine, 1-756-1-757
trchk subroutine, 1-758-1-759
trchkg subroutine, 1-758-1-759
trchkgt subroutine, 1-758-1-759
trchkl subroutine, 1-758-1-759
trchklt subroutine, 1-758-1-759
trchkt subroutine, 1-758
trcoff subroutine, 1-760

Index X-29

trcon subroutine, 1-761
trcstart subroutine, 1-762
trcstop subroutine, 1-763
trunc subroutine, 1-141-1-143
truncate subroutine, 1-764-1-765
tty locking functions, controlling, 1-768
ttylock subroutine, 1-768-1-769
ttylocked subroutine, 1-768-1-769
ttyname subroutine, 1-770
ttyslot subroutine, 1-771
ttyunlock subroutine, 1-768-1-769
ttywait subroutine, 1-768-1-769
turn data notification on or off, HCON programming,

2-46
tzset subroutine, 1-101-1-103

U
ualarm subroutine, 1-190-1-192
uitrunc subroutine, 1-141-1-143
ujtojis subroutine, 1-292-1-293
ujtosj subroutine, 1-292-1-293
ulimit subroutine, 1-772-1-773
umask subroutine, 1-774
umount subroutine, 1-775-1-776
umul_dbl subroutine, 1-5-1-6
uname subroutine, 1-777-1-778
unamex subroutine, 1-777-1-778
ungetc subroutine, 1-779-1-780
ungetwc subroutine, 1-779
unlink subroutine, 1-781-1-782
unload object file, 1-783
unload subroutine, 1-783
unordered subroutine, 1-82-1-83
update file systems, using sync subroutine, 1-731
update NIS map, yp_update, 5-144
user

accessing group information
using getgroupattr subroutine,

1-184-1-187
using IDtogroup subroutine, 1-184-1-187
using nextgroup subroutine, 1-184-1-187
using putgroupattr subroutine,

1-184-1-187
authenticating, using ckuserlD subroutine,

1-78-1-79
checking account validity, using ckuseracct

subroutine, 1-80-1-81
closing the database, using enduserdb

subroutine, 1-638-1-639
gets process user ID, using getuidx subroutine,

1-227
getting effective ID, using geteuid subroutine,

1-226
getting real ID, using getuid subroutine, 1-226
opens the database, using setuserdb

subroutine, 1-638-1-639
returning information

using getuserattr subroutine,
1-229-1-234

X-30 Base Operating System Reference

using IDtouser subroutine, 1-229-1-234
using nextuser subroutine, 1-229-1-234
using putuserattr subroutine,

1-229-1-234
accessing group information, using

putgroupattr subroutine, 1-616
sets process IDs, using setuidx subroutine,

1-636-1-637
setting process IDs

using seteuid subroutine, 1-634-1-635
using setreuid subroutine, 1-634-1-635
using setruid subroutine, 1-634-1-635
using setuid subroutine, 1-634-1-635

user information buffer, search, using getuinfo
subroutine, 1-228

user2netname subroutine, RPC, 5-87
usleep subroutine, 1-487-1-488
usrinfo subroutine, 1-784-1-785
ustat subroutine, 1-709-1-710
utime subroutine, 1-786-1-787
utimes subroutine, 1-786-1-787
utmp file, finding slot for current user, using ttyslot

subroutine, 1-771
utmpname subroutine, 1-237-1-239
uuid_$decode library routine, NCS, 4-47
uuid_$encode library routine, NCS, 4-48
uuid_$gen library routine, NCS, 4-49
uvmount subroutine, 1-775-1-776

V
val function, xgmon, 6-81
valloc subroutine, 1-399-1-402
varargs macros, 1-788-1-789
varargs parameter list

format and print, 1-481
formatting for output, 1-794-1-795

vfork subroutine, 1-147-1-149
vfprint subroutine, 1-794-1-795
virtual circuit for X.25

resynchronizing communications on, using
x25_reset subroutine, 9-35

returning configuration on a, using
x25_circuit_query subroutine, 9-9-9-10

virtual file system
get mount status, using mntctl subroutine,

1-423-1-424
remove from file tree,.1-775

vlimit subroutine, 1-208-1-210
vmount subroutine, 1-790-1-793
vprint subroutine, 1-794-1-795
vsprint subroutine, 1-794-1-795
vtimes subroutine, 1-211-1~213

W
WAIT LAF statement, HCON programming, 2-95
wait subroutine, 1-796-1-798
wait3 subroutine, 1-796-1-798
waitpid subroutine, 1-796-1-798

watof subroutine, 1-819-1-820
watol subroutine, 1-821-1-822
wchar t character, locating in a wide-character

string, using wcsrchr subroutine, 1-804
wcscat subroutine, 1-799
wcschr subroutine, 1-799
wcscpm subroutine, 1-799
wcscpy subroutine, 1-799-1-800
wcslen subroutine, 1-801
wcsncat subroutine, 1-802
wcsncmp subroutine, 1-802
wcsncpy subroutine, 1-802
wcspbrk subroutine, 1-803
wcsrchr subroutine, 1-804
wcsspn subroutine, 1-805
wcstombs subroutine, 1-806
wcswcs subroutine, 1-807
wctomb subroutine, 1-808
WHILE LAF statement, HCON programming, 2-97
wide-character string, determining the number of

characters, using wcslen subroutine, 1-801
wide-characte rs

appending, using wcsncat subroutine, 1-802
appending copy, wcscat subroutine,

1-799-1-800
comparing, using wcsncmp subroutine, 1-802
comparing two wchar_t strings, wcscmp

subroutine, 1-799
computing number of wchar_t characters,

wcscspn subrouti ne, 1-799
copying, using wcsncpy subroutine, 1-802
copying contents of parameter, wcscpy

subroutine, 1-799
locating in a string, wcswcs subroutine, 1-807
returning a pointer, wcschr subroutine, 1-799
returning number, using wcsspn subroutine,

1-805
window_height function, xgmon, 6-82
window width function, xgmon, 6-83
words_tree function, xgmon, 6-84
write subroutine, 1-809-1-812

extended parameters for, OLC, 3-75
write subroutine for generic SNA, SNA, 7-83
write subroutine for SNA Services/6000, SNA, 7-81
write to a file, 1-809-1~812
writev subroutine, 1-809-1-812
writevx subroutine, 1-809-1-812
writex subroutine, 1-809-1-812

OLC, 3-77
writex subroutine for SNA Services/6000, SNA, 7-85
wsprintfsubroutine, 1-813-1-814
wsscanf subroutine, 1-815
wstrcat subroutine, 1-816
wstrchr subroutine, 1-816
wstrcmp subroutine, 1-816
wstrcpy subroutine, 1-816
wstrcspn subroutine, 1-816
wstrdup subroutine, 1-817
wstrlen subroutine, 1-816

wstrncat subroutine, 1-816
wstrncmp subroutine, 1-816
wstrncpy subroutine, 1-816
wstrpbrk subroutine, 1-816
wstrrchr subroutine, 1-816
wstrspn subroutine, 1-816
wstrtod subroutine, 1-819-1-820
wstrtok subroutine, 1-816
wstrtol subroutine, 1-821-1-822
wstrtos subroutine, 1-463

X
X.25 adapter, returning configuration information on,

using x25_device_query subroutine, 9-17-9-18
X.25 Communications Library

x25 ack subroutine, 9-3
x25 -call subroutine, 9-4-9-5
x25=call_accept subroutine, 9-6
x25 call clear subroutine, 9-7
x25=circuit_query subroutine, 9-9-9-10
x25_ctr_get subroutine, 9-11
x25 ctr remove subroutine, 9-12
x25 - ctr-test subroutine, 9-13
x25 - ctr-wait subroutine, 9-14-9-15
x25 -deafen subroutine, 9-16
x25=device_query subroutine, 9-17-9-18
x25_init subroutine, 9-19
x25_interrupt subroutine, 9-20
x25 link connect subroutine, 9-21
x25 -link-disconnect subroutine, 9-22-9-23
x25 -link-monitor subroutine, 9-24-9-25
x25=link=query subroutine, 9-26-9-27
x25_link_statistics subroutine, 9-28-9-29
x25_listen subroutine, 9-30
x25_pvc_alloc subroutine, 9-31
x25_pvc_free subroutine, 9-32
x25_receive subroutine, 9-33-9-34
x25 reset subroutine, 9-35
x25 -reset confirm subroutine, 9-36
x25=send subroutine, 9-37
x25_term subroutine, 9-38

X.25 port
connecting to the X.25 network, using

x25 link connect subroutine, 9-21
controlling-the monitoring of, using

x25 link monitor subroutine, 9-24-9-25
disconnecting, using x25_link_disconnect

subroutine, 9-22-9-23
requesting statistics for, using

x25 link statistics subroutine, 9-28-9-29
returning the current status of, using

x25_link_query subroutine, 9-26-9-27
terminating the X.25 API for a, using x25_term

subroutine, 9-38
x25 ack subroutine for X.25, 9-3
x25 -call subroutine for X.25, 9-4-9-5
x25=calLaccept subroutine for X.25, 9-6
x25_call_clear subroutine for X.25, 9-7-9-8

Index X-31

x25_circuit_query subroutine for X.25, 9-9-9-10
x25_ctr_get subroutine for X.25, 9-11
x25_ctr_remove subroutine for X.25, 9-12
x25 ctr test subroutine for X.25, 9-13
x25=ctr=wait subroutine for X.25, 9-14-9-15
x25_deafen subroutine for X.25, 9-16
x25_device_query subroutine for X.25, 9-17-9-18
x25_init subroutine for X.25, 9-19
x25jnterrupt subroutine for X.25, 9-20
x25_link_connect subroutine for X.25, 9-21
x25_link_disconnect subroutine for X.25,
9-22-9-23

x25_link_monitor subroutine for X.25, 9-24-9-25
x25_link_query subroutine for X.25, 9-26-9-27
x25Jink_statistics subroutine for X.25, 9-28-9-29
x25_listen subroutine for X.25, 9-30
x25_pvc_alloc subroutine for X.25, 9-31
x25_pvc_free subroutine for X.25, 9-32
x25_receive subroutine for X.25, 9-33-9-34
x25_reset subroutine for X.25, 9-35
x25_reseCconfirm subroutine for X.25, 9-36
x25_send subroutine for X.25, 9-37
x25_term subroutine for X.25, 9-38
XDR macros

xdr_destroy, 5-95
xdr_inline, 5-101
xdr_setpos, 5-112

XDR subroutines
xdr_array, 5-89
xdr_bytes, 5-91
xdr_char, 5-94
xdr_double, 5-96
xdr_enum, 5-97
xdr_float, 5-98
xdr_free, 5-99
xdr_int, 5-102
xdrJong, 5-103
xdr_opaque, 5-104
xdr_pointer, 5-108
xdr_reference, 5-109
xdr_short, 5-113
xdr_string, 5-114
xdr_u_char, 5-115
xdr_u_int, 5-116
xdr_uJong, 5-117
xdr_u_short, 5-118
xdr_union, 5-119
xdr_vector, 5-120
xdr_void,5-121
xdr_wrapstring, 5-122
xdrmem_create, 5-123
xdrrec_create, 5-124
xdrrec_endofrecord,5-125
xdrrec_eof, 5-126
xdrrec_skiprecord,5-127
xdrstdio_create, 5-128

xdr_accepted_reply subroutine, RPe, 5-88
xdr_array subroutine, XDR, 5-89

X-32 Base Operating System Reference

xdr_authunix_parms subroutine, RPe, 5-90
xdr_bytes subroutine, XDR, 5-91
xdr_callhdr subroutine, RPe, 5-92
xdr_callmsg subroutine, RPe, 5-93
xdr_char subroutine, XDR, 5-94
xdr_destroy macro, XDR, 5-95
xdr_double subroutine, XDR, 5-96
xdr_enum subroutine, XDR, 5-97
xdr_float subroutine, XDR, 5-98
xdr_free subroutine, XDR, 5-99
xdr_inline macro, XDR, 5-101
xdr_int subroutine, XDR, 5-102
xdr_long subroutine, XDR, 5-103
xdr_opaque subroutine, XDR, 5-104
xdr_opaque_auth subroutine, RPe, 5-105
xdr_pmap subroutine, RPe, 5-106
xdr_pmaplist subroutine, RPe, 5-107
xdr_pointer subroutine, XDR, 5-108
xdr_reference subroutine, XDR, 5-109
xdr_rejected_reply subroutine, RPe, 5-110
xdr_replymsg subroutine, RPe, 5-111
xdr_setpos macro, XDR, 5-112
xdr_short subroutine, XDR, 5-113
xdr_string subroutine, XDR, 5-114
xdr_u_char subroutine, XDR, 5-115
xdr_u_int subroutine, XDR, 5-116
xdr_u_long subroutine, XDR, 5-117
xdr_u_short subroutine, XDR, 5-118
xdr_union subroutine, XDR, 5-119
xdr_vector subroutine, XDR, 5-120
xdr_void subroutine, XDR, 5-121
xdr_wrapstring subroutine, XDR, 5-122
xdrmem_create subroutine, XDR, 5-123
xdrrec_create subroutine, XDR, 5-124
xdrrec_endofrecord subroutine, XDR, 5-125
xdrrec_eof subroutine, XDR, 5-126
xdrrec_skiprecord subroutine, XDR, 5-127
xdrstdio_create subroutine, XDR, 5-128
xid data received routine, 3-67
xprt_register subroutine, RPe, 5-129
xprCunregister subroutine, RPe, 5-130

y
yO subroutine, 1-50-1-51
y1 subroutine, 1-50-1-51
yn subroutine, 1-50-1-51
yp _master subroutine, 5-138
yp_all subroutine, 5-131
yp_bind subroutine, 5-133
yp_first subroutine, 5-135
yp_get_default_domain subroutine, 5-137
yp_match subroutine, 5-139
yp_next subroutine, 5-140
yp_order subroutine, 5-142
yp_unbind subroutine, 5-143
yp_update subroutine, 5-144
yperr_string subroutine, 5-146
ypprot_err subroutine, 5-147

Reader's Comment Form

AIX Calls and Subroutines Reference for IBM RISC System/6000:
Volumes 1 and 2
SC23-2198-00

Please use this form only to identify publication errors or to request changes in
publications. Your comments assist us in improving our publications. Direct any requests for
additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may
use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error), check this
box and do not include your name and address below. If your comment is applicable, we
will include it in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved remarketer to request
additional publications.

Please print

Date -----
Your Name --____________________________________ __

Company Name ______________________________________ __

Mailing Address --------______________________________ __

Phone No. ~--~~ _________ _
Area Code

No postage necessary if mailed in the U.S.A

1

1

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

1--
I Plo:! Plo:!

I
I
I
I
b
c:
::J
Cl
c: o

<C
"C

~
5
s
C,,)

I
I
I
I
I
I
I
I
I
I
I
I
.~--
I adBl PUB PIO:! aldBlS lON 00 aSBald adBl PUB PIO:!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

I

---------- - ---- ---- - ---- - - ------- - ---_ .-
:s IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2198-00

5[23-2198-00

