

First Edition {March 1990)

This edition of the AIX Calls and Subroutines Reference for IBM RISC System/6000 applies to IBM AIX
Version 3 for RISC System/6000, Version 3 of IBM AIXwindows Environment/6000, IBM AIX System
Network Architecture Services/6000, IBM AIX 3270 Host Connection Program/6000, IBM AIX 3278/79
Emulation/6000, IBM AIX Network Management/6000, and IBM AIX Personal Computer Simulator/6000 and
to all subsequent releases of these products until otherwise indicated in new releases or technical
newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright Adobe Systems, Inc., 1984, 1987

© Copyright X/Open Company Limited, 1988. All Rights Reserved.

© Copyright IXI Limited, 1989. All rights reserved.

© Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

© Silicon Graphics, Inc., 1988. All rights reserved.

Use, duplication or disclosure of the SOFTWARE by the Government is subject to restrictions as set
forth in FAR 52.227-19(c)(2) or subparagraph (c)(1)(Ii) of the Rights in Technical Data and Computer
SOFTWARE clause at SFARS 252.227-7013, and/or in similar or successor clauses in the FAR, or
the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the
United States. Contractor/manufacturer is SILICON GRAPHICS, INC., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

© Copyright Carnegie Mellon, 1988. All rights reserved.

© Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation, the name of Carnegie Mellon and Stanford University not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission, and
notice be given in supporting documentation that copying and distribution is by permission of
Carnegie Mellon and Stanford University. Carnegie Mellon and Stanford University make no
representations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

© Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.

The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

© Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided "as is" without express or implied
warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

© Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.

© Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program and its documentation for any purpose
and without fee is hereby granted, provided that this copyright, permission, and disclaimer notice
appear on all copies and supporting documentation; the name of M.l.T. or Digital not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission.
M.l.T. and Digital makes no representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

© Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

© Copyright 1989, Open Software Foundation, Inc. All rights reserved.

© Copyright 1987, 1988, 1989, Hewlett-Packard Company. All rights reserved.

© Copyright 1988 Microsoft Corporation. All rights reserved.

© Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.

© Copyright Micro Focus, Ltd., 1987, 1990. All rights reserved.

© Copyright Paul Milazzo, 1984, 1985. All rights reserved.

© Copyright EG Pup User Process, Paul Kirton, and ISi, 1984. All rights reserved.

® Copyright Apollo Computer, Inc., 1987. All rights reserved.

© Copyright TITN, Inc., 1984, 1989. All rights reserved.

This software is derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The Northrup
Corporation and The Wollongong Group.

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

© Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

AIX is a trademark of International Business Machines Corporation.

AIXwindows is a trademark of International Business Machines Corporation.

Apollo is a trademark of Apollo Computer, Inc.

IBM is a registered trademark of International Business Machines Corporation.

NCK is a trademark of Apollo Computer, Inc.

NCS is a trademark of Apollo Computer, Inc.

Network Computing Kernel is a trademark of Apollo Computer, Inc.

Network Computing System is a trademark of Apollo Computer, Inc.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).

RISC System/6000 is a trademark of International Business Machines Corporation.

SNA 3270 is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

X/OPEN is a trademark of X/OPEN Company Limited.

Note to Users
The term "network information services (NIS)" is now used to refer to the service formerly
known as "Yellow Pages." The functionality remains the same; only the name has changed.
The name "Yellow Pages" is a registered trademark in the United Kingdom of British
Telecommunications pie, and may not be used without permission.

Legal Notice to Users Issued by Sun Microsystems, Inc.
"Yellow Pages" is a registered trademark in the United Kingdom of British
Telecommunications pie, and may also be a trademark of various telephone companies
around the world. Sun will be revising future versions of software and documentation to
remove references to "Yellow Pages."

Trademarks V

About This Book

AIX Calls and Subroutines Reference for IBM RISC System/6000, SC23-2198, is divided
into the following four major sections:

• Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AIX base operating system runtime services, communications
services, and device services.

• Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AIXwindows widget classes, subroutines, and resource sets; the
AIXwindows Desktop resource sets; the Enhanced X-Windows subroutines, macros,
protocols, extensions, and events; the X-Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

• Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

• Volumes 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AIXwindows Graphics
Support Library (XGSL) subroutines. These two application programming interfaces to the
Advanced ~nteractive Executive Operating System (referred to in this text as AIX) are
used on the IBM RISC System/6000.

Who Should Use This Book
This book is intended for experienced graphics programmers who want to write graphics
applications using either GL or XGSL. Readers of this book are expected to know the
C programming language and should be familiar with AIX commands, file formats, and
special files.

About This Book Vii

How to Use This Book

Overview of Contents
Chapters 1 and 2 respectively comprise the subroutines and example programs for GL,
arranged alphabetically. Likewise, Chapters 3 and 4 contain the subroutines and example
programs for XGSL. In addition, special terms used in GL are included at the end of the
book.

The examples given in this book are merely examples, provided for the sole purpose of
illustrating that the GL or XGSL basic subroutines can be used to create extended or
enhanced subroutines. The subroutines are provided "as is" without warranty of any kind,
either express or implied, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose. The entire risk as to the quality and
performance of each of the GL or XGSL subroutines is with you.

Before writing an application program that uses either of these interfaces, see Graphics
Programming Concepts, which describes the major concepts and functionality of both GL
and XGSL.

Note: XGSL parameters are passed by reference, making the subroutines compatible with
FORTRAN, in which parameters are always passed by reference. All parameters are
therefore passed as pointers in C programming language.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies subroutines, commands, keywords, files, directories, and other
items whose names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to programming graphics:

• AIX Graphics Programming Concepts for IBM RISC System/6000, Order Number
SC23-2208.

• AIX User Interface Programming Concepts for IBM RISC System/6000, Order Number
SC23-2209.

Ordering Additional Copies of This Book
To order additional copies of th•s book, use Order Number SC23-2198.

Viii Graphics Subroutines Reference

Contents

Part 1. Graphics Library Reference (GL)

Chapter 1. GL Subroutines . 1-1
addtopup Subroutine. 1-2
arc Subroutine . 1-4
arcf Subroutine . 1-6
backbuffer Subroutine . 1-8
backface Subroutine . 1-9
bbox2 Subroutine . 1-11
bgnclosedline Subroutine . 1-13
bgnline Subroutine . 1-15
bgnpoint Subroutine . 1-17
bgnpolygon Subroutine . 1-19
bgnsurface or endsurface Subroutine . 1-21
bgntmesh Subroutine . 1-23
bgntrim or endtrim Subroutine . 1-25
blankscreen Subroutine . 1-27
blanktime Subroutine . 1-28
blendfunction Subroutine . 1-29
blink Subroutine . 1-31
blkqread Subroutine . 1-33
c Subroutine . 1-34
callobj Subroutine . 1-36
charstr Subroutine . 1-37
chunksize Subroutine . 1-38
circ Subroutine . 1-39
circf Subroutine . 1-41
clear Subroutine . 1-43
clkoff or clkon Subroutine . 1-44
closeobj Subroutine . 1-45
cmode Subroutine . 1-46
cmov Subroutine . 1-4 7
color or colorf Subroutine . 1-49
compactify Subroutine . 1-51
concave Subroutine . 1-52
cpack Subroutine . 1-53
crv Subroutine . 1-55
crvn Subroutine . 1-56
curorigin Subroutine . 1-58
curson or cursoff Subroutine . 1-59
curstype Subroutine . 1-60
curvebasis Subroutine . 1-62
curveit Subroutine . 1-63
curveprecision Subroutine . 1-64

Contents ix

cyclemap Subroutine
czclear Subroutine .. .
defbasis Subroutine
defcursor Subroutine
deflinestyle Subroutine
defpattern Subroutine .. .
defpup Subroutine
defrasterfont Subroutine ·
delobj Subroutine
deltag Subroutine
depthcue Subroutine
dopup Subroutine
doublebuffer Subroutine .. .
draw Subroutine .. .
drawmode Subroutine .. .
editobj Subroutine
endclosedline Subroutine
endfullscrn Subroutine
endline Subroutine .. .
endpick Subroutine .. .
endpoint Subroutine
endpolygon Subroutine
endselect Subroutine
endtmesh Subroutine .. .
font Subroutine
freepup Subroutine .. .
frontbuffer Subroutine .. .
fudge Subroutine .. .
fullscrn Subroutine .. .
gammaramp Subroutine .. .
gbegin Subroutine
gconfig Subroutine .. .
genobj Subroutine
gentag Subroutine
getbackface Subroutine
getbuffer Subroutine
getbutton Subroutine
getcmmode Subroutine
getcolor Subroutine .. .
getcpos Subroutine .. .
getcursor Subroutine
getdcm Subroutine .. .
getdescender Subroutine
getdev Subroutine
getdisplaymode Subroutine .. .
getdrawmode Subroutine ·
getfont Subroutine
getgpos Subroutine .. .
getheight Subroutine
getlsrepeat Subroutine
getlstyle Subroutine .. .

X Graphics Subroutines Reference

1-65
1-66
1-68
1-70
1-72
1-74
1-76
1-78
1-81
1-82
1-83
1-85
1-86
1-87
1-89
1-92
1-93
1-94
1-95
1-96
1-98
1-99

1-100
1-102
1-103
1-104
1-105
1-106
1-107
1-108
1-110
1-111
1-112
1-113
1-114
1-115
1-116
1-118
1-119
1-120
1-121
1-122
1-123
1-124
1-125
1-126
1-127
1-128
1-129
1-130
1-131

getlwidth Subroutine
getmap Subroutine .. .
getmatrix Subroutine
getmcolor Subroutine .. .
getmcolors Subroutine
getmmode Subroutine .. .
getnurbsproperty Subroutine .. .
getopenobj Subroutine
getorigin Subroutine
getpattern Subroutine .. .
getplanes Subroutine .. .
getscrmask Subroutine
getsize Subroutine .. .
getsm Subroutine
getvaluator Subroutine
getviewport Subroutine
getwritemask Subroutine
getzbuffer Subroutine .. .
gexit Subroutine .. .
ginit Subroutine
greset Subroutine
gRGBcolor Subroutine
gRGBmask Subroutine
gselect Subroutine .. .
gsync Subroutine .. .
gversion Subroutine
iconsize Subroutine .. .
icontitle Subroutine .. .
initnames Subroutine .. .
isobj Subroutine .. .
isqueued Subroutine
istag Subroutine .. .
keepaspect Subroutine
lampoff or tampon Subroutine .. .
lgetdepth Subroutine
linesmooth Subroutine
linewidth Subroutine
lmbind Subroutine
lmcolor Subroutine .. .
lmdef Subroutine .. .
loadmatrix Subroutine .. .
loadname Subroutine .. .
loadXfont Subroutine .. .
logicop Subroutine .. .
lookat Subroutine .. .
IRGBrange Subroutine
lsetdepth Subroutine
lshaderange Subroutine .. .
lsrepeat Subroutine .. .
makeobj Subroutine
maketag Subroutine

1-132
1-133
1-134
1-135
1-137
1-139
1-140
1-142
1-143
1-144
1-145
1-146
1-148
1-150
1-151
1-152
1-153
1-154
1-155
1-156
1-157
1-160
1-161
1-162
1-164
1-165
1-166
1-167
1-168
1-169
1-170
1-171
1-172
1-173
1-174
1-175
1-177
1-178
1-180
1-182
1-186
1-187
1-188
1-190
1-192
1-194
1-196
1-198
1-200
1-201
1-203

Contents Xi

mapcolor Subroutine
mapcolors Subroutine .. .
mapw Subroutine
mapw2 Subroutine .. .
maxsize Subroutine .. .
minsize Subroutine .. .
mmode Subroutine .. .
move Subroutine
multimap Subroutine
multmatrix Subroutine .. .
n3f Subroutine .. .
newpup Subroutine .. .
newtag Subroutine . ·
noborder Subroutine
noise Subroutine .. .
noport Subroutine
normal Subroutine
nurbscurve Subroutine
nurbssurface Subroutine .. .
objdelete Subroutine
objinsert Subroutine
objreplace Subroutine .. .
onemap Subroutine .. .
ortho or ortho2 Subroutine .. .
overlay Subroutine .. .
patch Subroutine .. .
patchbasis Subroutine .. .
patchcurves Subroutine
patchprecision Subroutine
pclos Subroutine .. .
pdr Subroutine
perspective Subroutine
pick Subroutine
picksize Subroutine .. .
pmv Subroutine .. .
pnt Subroutine .. .
pntsmooth Subroutine .. .
polarview Subroutine
polf Subroutine
poly Subroutine
popattributes Subroutine .. .
popmatrix Subroutine .. .
popname Subroutine
popviewport Subroutine .. .
prefposition Subroutine
prefsize Subroutine .. .
pushattributes Subroutine•....
pushmatrix Subroutine
pushname Subroutine .. .
pushviewport Subroutine .. .
pwlcurve Subroutine

Xii Graphics Subroutines Reference

1-204
1-206
1-208
1-210
1-211
1-213
1-215
1-217
1-219
1-220
1-221
1-223
1-224
1-225
1-226
1-227
1-228
1-230
1-232
1-234
1-235
1-236
1-238
1-239
1-241
1-243
1-244
1-245
1-246
1-247
1-249
1-251
1-253
1-255
1-256
1-259
1-261
1-263
1-265
1-267
1-269
1-271
1-272
1-273
1-274
1-276
1-278
1-280
1-281
1-282
1-283

qdevice Subroutine .. .
qenter Subroutine
qread Subroutine
qreset Subroutine .. ·
qtest Subroutine .. .
rcrv Subroutine
rcrvn Subroutine .. .
rdr Subroutine
readpixels Subroutine .. .
readRGB Subroutine
readsource Subroutine
rect Subroutine
rectcopy Subroutine
rectf Subroutine .. .
rectread or lrectread Subroutine
rectwrite or lrectwrite Subroutine
rectzoom Subroutine
reshapeviewport Subroutine
RGBcolor Subroutine .. .
RGBmode Subroutine .. .
RGBwritemask Subroutine .. .
ringbell Subroutine .. .
rmv Subroutine .. .
rot Subroutine
rotate Subroutine
rpatch Subroutine
rpdr Subroutine
rpmv Subroutine .. .
sbox, sboxi, or sboxs Subroutine
sboxf, sboxfi, or sboxfs Subroutine
scale Subroutine .. .
screenspace Subroutine .. .
scrmask Subroutine
setbell Subroutine
setcursor Subroutine
setdblights Subroutine
setlinestyle Subroutine
setmap Subroutine .. .
setnurbsproperty Subroutine
setpattern Subroutine ·
setpup Subroutine
setvaluator Subroutine
shademodel Subroutine .. .
singlebuffer Subroutine
splf Subroutine
stepunit Subroutine .. .
strwidth Subroutine .. .
subpixel Subroutine
swapbuffers Subroutine .. .
swapinterval Subroutine .. .
swaptmesh Subroutine

1-285
1-286
1-287
1-288
1-289
1-290
1-291
1-293
1-295
1-297
1-299
1-301
1-303
1-305
1-307
1-309
1-311
1-312
1-313
1-314
1-315
1-317
1-318
1-320
1-322
1-324
1-325
1-327
1-329
1-331
1-333
1-335
1-336
1-338
1-339
1-340
1-341
1-342
1-343
1-345
1-346
1-347
1-348
1-349
1-350
1-353
1-354
1-355
1-357
1-358
1-359

Contents Xiii

swinopen Subroutine
textport Subroutine .. .
tie Subroutine .. .
tpoff Subroutine
tpon Subroutine
translate Subroutine
underlay Subroutine
unqdevice Subroutine .. .
v Subroutine
viewport Subroutine
winclose Subroutine
winconstraints Subroutine
windepth Subroutine
window Subroutine .. .
winget Subroutine
winmove Subroutine
winopen Subroutine
winpop Subroutine .. .
winposition Subroutine
winpush Subroutine .. .
winset Subroutine
wintitle Subroutine
wmpack Subroutine .. .
writemask Subroutine .. .
writepixels Subroutine .. .
writeRGB Subroutine .. .
zbuffer Subroutine
zclear Subroutine
zdraw Subroutine
zfunction Subroutine
zsource Subroutine .. .
zwritemask Subroutine

XIV Graphics Subroutines Reference

1-360
1-362
1-363
1-365
1-366
1-367
1-369
1-371
1-372
1-375
1-377
1-378
1-380
1-381
1-383
1-384
1-385
1-387
1-388
1-390
1-391
1-392
1-393
1-394
1-396
1-398
1-400
1-402
1-403
1-404
1-406
1-407

Chapter 2. GL Example Programs•.......
backface.c Example C Language Program for GL
boxcirc.c Example C Language Program for GL
colored.c Example C Language Program for GL
curve1 .c Example C Language Program for GL
curve2.c Example C Language Program for GL
curve3.c Example C Language Program for GL
curved.c Example C Language Program for GL
cylinder1 .c Example C Language Program for GL
cylinder2.c Example C Language Program for GL
db.c Example C Language Program for GL
depthcue.c Example C Language Program for GL
doily.c Example C Language Program for GL
draw.c Example C Language Program for GL
iobounce.c Example C Language Program for GL
localatten.c Example C Language Program for GL
octahedron.c Example C Language Program for GL
overlay.c Example C Language Program for GL
paint.c Example C Language Program for GL
patch1 .c Example C Language Program for GL
pick1 .c Example C Language Program for GL
platelocal.c Example C Language Program for GL
popup.c Example C Language Program for GL
prompt.c Example C Language Program for GL
scrn_rotate.c Example C Language Program for GL
select1 .c Example C Language Program for GL
setshade.c Example C Language Program for GL
sunflower.c Example C Language Program for GL
text.c Example C Language Program for GL
tpbig.c Example C Language Program for GL
vlsi.c Example C Language Program for GL
worms.c Example C Language Program for GL
xfonts.c Example C Language Programfor GL
zbuffer1 .c Example C Language Program for GL
zoing.c Example C Language Program for GL

2-1
2-2
2-5
2-6

2-11
2-13
2-15
2-17
2-25
2-29
2-34
2-36
2-38
2-40
2-42
2-44
2-47
2-50
2-54
2-61
2-64
2-66
2-69
2-74
2-78
2-89
2-92
2-94
2-96
2-97

2-100
2-102
2-110
2-112
2-114

Contents XV

Part 2. AIXwindows Graphics Support Library Reference (XGSL)

Chapter 3. XGSL Subroutines • . . . • . . . • . . • . . • . • . . • • • 3-1
gsbply Subroutine . 3-2
gscarc Subroutine . 3-4
gscatt Subroutine . 3-6
gsccnv Subroutine . 3-8
gscir Subroutine . 3-10
gsclrs Subroutine . 3-12
gscmap Subroutine . 3-13
gscrca Subroutine . 3-15
gsdjply Subroutine . 3-17
gsdpik Subroutine . 3-19
gseara Subroutine . 3-20
gsearc Subroutine . 3-22
gsecnv Subroutine . 3-24
gsecur Subroutine . 3-27
gsell Subroutine . 3-28
gsepik Subroutine . 3-30
gseply Subroutine . 3-31
gsevds Subroutine . 3-32
gseven Subroutine . 3-34
gsevwt Subroutine . 3-36
gsfatt Subroutine . 3-41
gsfci Subroutine . 3-43
gsfell Subroutine . 3-45
gsfply Subroutine . 3-47
gsfrec Subroutine . 3-49
gsgtat Subroutine . 3-51
gsgtxt Subroutine . 3-55
gsinit Subroutine . 3-57
gslatt Subroutine . 3-60
gslcat Subroutine . 3-62
gsline Subroutine . 3-63
gslock Subroutine . 3-65
gslop Subroutine . 3-66
gslpat Subroutine . 3-68
gsmask Subroutine . 3-69
gsmatt Subroutine . 3-70
gsmcat Subroutine . 3-72
gsmcur Subroutine . 3-75
gsmfld Subroutine . 3-77
gsmult Subroutine . 3-78
gspcls Subroutine . 3-80
gsplym Subroutine . 3-81
gspoly Subroutine . 3-83
gspp Subroutine . 3-85
gsqdsp Subroutine . 3-86
gsqfnt Subroutine . 3-88
gsqgtx Subroutine . 3-90

XVi Graphics Subroutines Reference

gsqlext Subroutine .. .
gsqloc Subroutine
gsrrst Subroutine .. .
gsrsav Subroutine
gssend Subroutine .. .
gstatt Subroutine .. .
gsterm Subroutine
gstext Subroutine
gsulns Subroutine
gsunlk Subroutine
gsvgrn Subroutine
gsxblt Subroutine
gsxcnv Subroutine .. .
gsxptr Subroutine
gsxtat Subroutine
gsxtxt Subroutine

Chapter 4. XGSL Example Programs
arc1 .c Example C Language Program
arc2.c Example C Language Program
arc3.c Example C Language Program
arc4.c Example C Language Program
arc5.c Example C Language Program
blit.c Example C Language Program
cir1 .c Example C Language Program
cir2.c Example C Language Program
curs.c Example C Language Program
djpoly.c Example C Language Program
ell1.c Example C Language Program
ell2.c Example C Language Program
fontld.for Example FORTRAN program
gtex.c Example C Language Program
mark.c Example C Language Program
pix.c Example C Language Program
xtex.c Example C Language Program

Special Terms Used in GL•.........

Index•......••............•.....•..•..•...••..•

3-92
3-94
3-96
3-98

3-100
3-101
3-104
3-105
3-107
3-108
3-109
3-110
3-116
3-118
3-119
3-123

4-1
4-2
4-4
4-6
4-9

4-12
4-14
4-17
4-19
4-21
4-29
4-32
4-34
4-36
4-38
4-41
4-44
4-49

X-1

X-9

Contents xvii

xviii Graphics Subroutines Reference

Part 1. Graphics Library Reference
(GL)

GL Reference

Graphics Subroutines Reference

Chapter 1. GL Subroutines

GL Subroutines 1-1

\

addtopup

addtopup Subroutine

Purpose

Library

C Syntax

Adds items to an existing pop-up menu.

Graphics Library (libgl.a)

void addtopup
(lnt32 popup,
Chara * string,
lnt32 argument)

FORTRAN Syntax
SUBROUTINE ADDTOP(popup, string, length, argument)
INTEGER*4 popup
CHARACTER*(*) string(*)
INTEGER*4 length
INTEGER*4 argument

Description
The addtopup subroutine adds items to the bottom of an existing pop-up menu. You can
build a menu by using a call to the newpup subroutine to create a menu, followed by a call
to the addtopup subroutine for each menu item that you want to add to the menu.

To activate and display the menu, submit the menu to the dopup subroutine.

Note: This subroutine cannot be used to add to a display list.

Parameters
popup

string

Specifies the identifier of the menu to which to add. The menu identifier is
the returned function value of the menu creation call to either the newpup
or defpup subroutines.

Specifies the pointer to the text to add as a menu item. There are seven
menu item type flags for optional pairing with each menu item:

%t Marks item text as the menu title string.

%F Invokes a routine for every selection from this menu except those
marked with a %n flag. You must specify the invoked routine in
the argument parameter. The value of the menu item is used as a
parameter of the executed routine. Thus, if you select the third
menu item, the system passes 3 as a parameter to the function
specified by the %F flag.

%f Invokes a routine when this particular menu item is selected. You
must specify the invoked routine in the argument parameter. The
value of the menu item is passed as a parameter of the routine.
Thus, if you select the third menu item, the system passes 3 as a
parameter to the routine specified by the %f flag. If you have also
used the %F flag within this menu, then the result of the %f flag
is passed as a parameter of the %F flag.

1-2 Graphics Subroutines Reference

length

argument

addtopup

%1 Adds a line under the current entry. This is useful in providing
visual clues for grouping like entries together.

%m Pops up a menu whenever this menu item is selected. You must
provide the menu identifier of the new menu in the argument
parameter.

o/on Like the %f flag, this flag invokes a routine when the user selects
this menu item. However, the °Ion flag differs from the %f flag in
that it ignores the routine (if any) specified by the %F flag. The
value of the menu item is passed as a parameter of the executed
routine. Thus, if you select the third menu item, the system
passes 3 as a parameter to the function specified by the %f flag.

o/oxn Assigns a numeric value to this menu item. This value overrides
the default position-based value assigned to this menu item (third
item=3). You must enter the numeric value as the part of the text
string specified by the n flag. Do not use the argument parameter
to specify the numeric value.

Note: With the I (vertical bar) delimiter, you can specify multiple
menu items in a text string. However, because there is
only one argument parameter, the text string can contain
no more than one item type that references the argument
parameter.

Specifies the length of the text string (for FORTRAN syntax).

Specifies the command or submenu to assign to the menu item. There can
be only one argument parameter for each call to the addtopup subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a pop-up menu with the defpup subroutine.

Displaying a pop-up menu with the dopup subroutine.

Deallocating a pop-up menu and its data structures with the freepup subroutine.

Allocating and initializing a structure for a new pop-up menu with the newpup subroutine.

Enabling or disabling a given pop-up entry with the setpup subroutine.

GL Introduction and Creating and Managing Pop-Up Menus in GL in Graphics Programming
Concepts.

GL Subroutines 1-3

arc

arc Subroutine

Purpose

Library

C Syntax

Draws a circular arc.

Graphics Library (libgl.a)

void arc
(Coord x, Coord y, Coord radius,
Angle startang, Angle endang)

void arci
(lcoord x, lcoord y, lcoord radius,
Angle startang, Angle endang)

void arcs
(Scoord x, Scoord y, Scoord radius,
Angle startang, Angle endang)

FORTRAN Syntax
SUBROUTINE ARC(x, y, radius, startang, endang)

REAL x, y, radius

INTEGER*2 startang, endang

SUBROUTINE ARCl(x, y, radius, startang, endang)

INTEGER*4 x, y, radius

INTEGER*2 startang, endang

SUBROUTINE ARCS{x, y, radius, startang, endang)

INTEGER*2 x, y, radius

INTEGER*2 startang, endang

Description
The arc subroutine draws a circular arc in the x-y plane (z = 0), using the current lihe
attributes: color, linestyle, linewidth and writemask. To draw an arc in a plane other than the
x-y plane, define the arc in the x-y plane and then rotate or translate the arc.

All of the routines listed in the syntax are functionally the same. They differ only in the type
declarations for the coordinates. After the arc subroutine executes, the graphics position is
left undefined.

The syntax for each of the subroutine forms is the same except for the first argument. They
differ only in that arc expects real coordinates, arci expects integer coordinates, and arcs
expects short integer coordinates.

1-4 Graphics Subroutines Reference

arc

Parameters

Example

x

y

radius

startang

endang

Specifies the x coordinate of the center of the arc, which is the center of the
circle that would contain the arc.

Specifies the y coordinate of the center of the arc, which is the center of the
circle that would contain the arc.

Specifies the length of the radius of the arc, which is the radius of the circle
that would contain the arc.

Specifies the measure of the start angle of the arc, which is measured in
tenths of a degree from the positive x-axis.

Specifies the measure of the end angle of the arc, which is measured in
tenths of a degree from the positive x-axis.

1. To draw two circular arcs in the default linestyle, the example C language program
tpbig.c uses the arc subroutine and the arci subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a filled circular arc with the arcf subroutine.

Drawing a circle with the circ subroutine.

Drawing a filled circle with the circf subroutine.

Drawing a curve with the crv subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

GL Subroutines 1-5

a ref

arcf Subroutine

Purpose

Library

C Syntax

Draws a filled, pie-slice-shaped, circular arc.

Graphics Library (libgl.a)

void arcf
(Coord x, Coord y, Coord radius,
Angle startang, Angle endang)

void arcfi
(lcoord x, lcoord y, lcoord radius,
Angle startang, Angle endang)

void arcfs
(Scoord x, Scoord y, Scoord radius,
Angle startang, Angle endang)

FORTRAN Syntax
SUBROUTINE ARCF{x, y, radius, startang, endang)

REAL x, y, radius

INTEGER*2 startang, endang

SUBROUTINE ARCFl{x, y, radius, startang, endang)

INTEGER*4 x, y, radius

INTEGER*2 startang, endang

SUBROUTINE ARCFS{x, y, radius, startang, endang)

INTEGER*2 x, y, radius

INTEGER*2 startang, endang

Description
The arcf subroutine draws a circular filled arc in the x-y plane (z = 0) and fills the arc with
the current pattern. The filled area is bounded by the arc and by the start and end radii. The
subroutine uses the current area attributes: texture, color, and writemask. To draw a filled
arc in a plane other than the x-y plane, define the filled arc in the x-y plane and then rotate or
translate the arc.

The syntax for each of the subroutine forms is the same except for the first argument. They
differ only in that the arcf subroutine expects real coordinates for the first argument, the
arcfi subroutine expects integer coordinates, and the arcfs subroutine expects short integer
coordinates. After the arcf subroutine executes, the graphics position is undefined.

1-6 Graphics, Subroutines Reference

arcf

Parameters
x Specifies the x coordinate of the center of the filled arc, which is the center

of the circle that would contain the arc.

Example

y

radius

startang

endang

Specifies the y coordinate of the center of the filled arc, which is the center
of the circle that would contain the arc.

Specifies the length of the radius of the filled arc, which is the radius of the
circle that would contain the arc.

Specifies the measure of the start angle of the filled arc, which is measured
from the positive x-axis.

Specifies the measure of the end angle of the filled arc, which is measured
from the positive x-axis.

1. To draw a scoop of ice cream, the example C language program tpbig.c uses the arcfi
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a circular arc with the arc subroutine.

Drawing a circle with the circ subroutine.

Drawing a filled circle with the circf subroutine.

Drawing a curve with the crv subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

GL Subroutines 1-7

backbuffer

backbuffer Subroutine

Purpose
Enables or disables drawing into the back buffer.

Library
Graphics Library (libgl.a)

C Syntax
void backbuffer(lnt32 boo/)

FORTRAN Syntax
SUBROUTINE BACKBU(boo~
LOGICAL boo/

Description

Parameter

The backbuffer subroutine enables or disables drawing into the back frame buffer. By
default, drawing into the back frame buffer is enabled. In common usage, drawing is done to
the back buffer, after which a call to the swapbuffers subroutine is made to exchange
buffers. The backbuffer subroutine can be used to override this default.

This routine is useful only in double buffer mode, and is ignored in single buffer mode.

boo/ Specifies a value for the state of the back frame buffer. The settings for the
boo/ parameter are:

TRUE= drawing into the back buffer is enabled.

FALSE= drawing into the back buffer is disabled.

The gconfig subroutine sets the back buffer to TRUE.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the display mode to double buffer mode with the doublebuffer subroutine.

Enabling drawing into the front buffer with the frontbuffer subroutine.

Finding out which buffers are enabled for writing with the getbuffer subroutine.

Exchanging the front and back buffers with the swapbuffers subroutine.

Configuring the Frame Buffer, Creating Animated Screens, and Understanding the Hardware
Used by GL in Graphics Programming Concepts.

1-8 Graphics Subroutines Reference

backface

backface Subroutine

Purpose
Enables and disables backfacing polygon removals.

Library
Graphics Library (libgl.a)

C Syntax
void backface(lnt32 boo/)

FORTRAN Syntax
SUBROUTINE BACKFA(boo~
LOGICAL boo/

Description

Parameter

Example

The backface subroutine allows or suppresses the display of backfacing filled polygons. It is
useful for drawing polygons that have different colors on each side. It can also be useful for
performing a primitive kind of hidden surface removal.

A backfacing polygon is defined as a polygon whose vertices are in clockwise order in
screen coordinates. When backfacing polygon removal is on, the system displays only
polygons whose vertices are in counterclockwise order.

For programs representing solid objects as collections of polygons, this subroutine can be
used to help remove hidden surfaces. The backface subroutine works best for simple
convex objects that do not obscure other objects.

For complicated objects, this routine alone may not remove all hidden surfaces. To remove
hidden surfaces for more complicated objects or groups of objects, use the zbuffer
subroutine. The zbuffer subroutine checks the relative distances of the figure from the
viewer (z values) and draws only the nearest figures.

Note: Matrices that negate coordinates, such as scale(-1.0, 1.0, 1.0), reverse the
directional order of a polygon's points and can cause the backface subroutine to do
the opposite of what is intended.

boo/ Specifies a value for the state of backfacing polygon removal. The settings
for the boo/ parameter are:

TRUE= backfacing polygon removal is enabled.

FALSE= backfacing polygon removal is disabled.

1. To demonstrate the difference between allowing or suppressing the display of backfacing
polygons, the example C language program backface.c uses the backface subroutine
draw a cube in both ways.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

GL Subroutines 1-9

backface

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Initiating z-buffer mode with the zbuffer subroutine.

GL Introduction, Removing Hidden Surfaces in Graphics Programming Concepts.

1-1 O Graphics Subroutines Reference

bbox2

bbox2 Subroutine

Purpose

Library

C Syntax

Specifies the bounding box and minimum pixel radius.

Graphics Library (libgl.a)

void bbox2
(Screencoord xmin, Screencoord ymin,
Coord x1, Coord y1,
Coord x2, Coord y2)

void bbox2i
(Screencoord xmin, Screencoord ymin,
lcoord x1, lcoord y1,
lcoord x2, lcoord y2)

void bbox2s
(Screencoord xmin, Screencoord ymin,
Scoord x1, Scoord y1,
Scoord x2, Scoord y2)

FORTRAN Syntax
SUBROUTINE BBOX2(xmin, ymin, x1, y1, x2, y2)
INTEGER*2 xmin, ymin
REAL x1, y1, x2, y2

SUBROUTINE BBOX21(xmin, ymin, x1, y1, x2, y2)
INTEGER*2 xmin, ymin
INTEGER*4 x1, y1, x2, y2

SUBROUTINE BBOX2S(xmin, ymin, x1, y1, x2, y2)
INTEGER*2 xmin, ymin, x1, y1, x2, y2

Description
The bbox2 subroutine controls the execution of routines in a GL object by performing the
graphical functions known as culling and pruning.

The bbox2 subroutine calculates the bounding box, transforms it to screen coordinates, and
compares it to the viewport. If the bounding box is completely outside the viewport, the
routines between the call to the bbox2 subroutine and the end of the object are ignored.

If the bounding box is within the viewport, the system compares it with the minimum feature
size. If the box is too small in both the x and y dimensions, the rest of the routines in the
object are ignored.

Overuse of the bbox2 subroutine can impair performance, so it is best reserved for
complicated object definitions.

Note: This subroutine can be used only to add to a display list.

GL Subroutines 1-11

bbox2

Parameters
xmin Specifies the width, in pixels, of the smallest displayable feature.

ymin Specifies the height, in pixels, of the smallest displayable feature.

x1 Specifies the x coordinate of a corner of the bounding box.

y1 Specifies the y coordinate of a corner of the bounding box.

x2 Specifies the x coordinate of a corner of the bounding box. This corner must
be diagonally opposite the corner (x1, y1).

y2 Specifies the y coordinate of a corner of the bounding box. This corner must
be diagonally opposite the corner (x1, y1).

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Creating an object with the makeobj subroutine.

GL Introduction, Creating Objects (Display Lists) in GL, and Using Viewports and
Screenmasks in GL in Graphics Programming Concepts.

1-12 Graphics Subroutines Reference

bgnclosedline

bgnclosedline Subroutine

Purpose
Begins interpretation of vertex routines as closed line vertices.

Library
Graphics Library (libgl.a)

C Syntax
void bgnclosedline{)

FORTRAN Syntax
SUBROUTINE BGNCLO

Description
The bgnclosedline subroutine marks the start of a group of vertex (begin-end style)
subroutines to be interpreted as points on a closed line. It is the same as the bgnline
subroutine, except that it connects the last vertex to the first. For example,

bgnclosedline();
v3f (vertl);
v3f(vert2);
v3f(vert3);
endclosedline();

draws the outline of a triangle.

The group of begin-end style subroutines terminates with the endclosedline subroutine.

Between calls to the bgnclosedline and endclosedline subroutines, you can issue calls to
the following GL subroutines only:

• c
• color
• cpack
• lmcolor
• lmbind
• lmdef
• n3f
• normal
• RGBcolor
• v

Use the lmdef and lmbind subroutines to respecify only materials and their properties.

You cannot specify more than 256 vertices between the bgnclosedline and endclosedline
subroutines ..

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-13

bgnclosedline

Related Information
Drawing vertex-based lines with the bgnline subroutine.

Ending a series of closed line vertices with the endclosedline subroutine.

Selecting a linestyle pattern with the setlinestyle subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.
I

Drawing with Begin-End Style Subroutines, Understanding the Hardware Used by GL, and
Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-14 Graphics Subroutines Reference

bgnline

bgnline Subroutine

Purpose
Begins interpretation of vertex routines as line vertices.

Library
Graphics Library (libgl.a)

C Syntax
void bgnline()

FORTRAN Syntax
SUBROUTINE BGNLIN

Description
The bgnline subroutine begins the interpretation of vertex (begin-end style) subroutines as
line vertices. It is like the bgnclosedline subroutine, except that the last vertex does not
connect to the first vertex.

Vertices specified after the bgnline subroutine and before the endline subroutine are
interpreted as endpoints of a series of line segments. Use the v subroutine to specify a
vertex. The first vertex connects to the second; the second connects to the third; and so on
until the next-to-last vertex connects to the last one. All segments use the current linestyle
and linewidth.

Between calls to the bgnline and endline subroutines, you can issue calls to the following
Graphics Library subroutines only:

• c
• color
• cpack
• lmcolor
• lmbind
• lmdef
• n3f
• normal
• RGBcolor
• v

Use the lmdef and lmbind subroutines to respecify only materials and their properties.

You cannot specify more than 256 vertices between the bgnline and endline subroutines ..

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-15

bgnline

Related Information
Drawing closed line vertices with the bgnclosedline subroutine.

Setting the current color in RGB mode with the c subroutine.

Ending a series of vertex-based lines with the endline subroutine.

Selecting the shading model with the shademodel subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Drawing with Begin-End Style Subroutines, Understanding the Hardware Used by GL, and
Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-16 Graphics Subroutines Reference

bgnpoint

bgnpoint Subroutine

Purpose
Begins interpretation of vertex subroutines as points.

Library
Graphics Library (libgl.a)

C Syntax
void bgnpoint()

FORTRAN Syntax
Description

The bgnpoint subroutine marks the beginning of a list of vertex (begin-end style)
subroutines to interpret as points. Use the endpoint subroutine to mark the end of the list.
For each vertex, the system draws a one-pixel point into the frame buffer. Use the v
subroutine to specify a vertex.

Between the bgnpoint and endpoint subroutines, you can issue only the following Graphics
Library subroutines:

• c
• color
• cpack
• lmcolor
• lmbind
• lmdef
• n3f
• normal
• RGBcolor
• v

Use the lmbind and lmdef subroutines to respecify only materials and their properties.

You cannot specify more than 256 vertices between the bgnpoint and endpoint
subroutines.

After the endpoint subroutine completes, the current graphics position is the most recent
vertex.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-17

Related Information
Setting the current color in RGB mode with the c subroutine.

Ending a series of vertex-based points with the endpoint subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

bgnpoint

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

1-18 Graphics Subroutines Reference

bgnpolygon

bgnpolygon Subroutine

Purpose
Begins interpretation of vertex subroutines as polygon vertices.

Library
Graphics Library (libgl.a)

C Syntax
void bgnpolygon()

FORTRAN Syntax
SUBROUTINE BGNPOL

Description
The bgnpolygon subroutine begins the interpretation of vertex (begin-end style)
subroutines as polygon vertices. Vertices specified after the bgnpolygon subroutine and
before the endpolygon subroutine form a single polygon.

Self-intersecting polygons (other than four-point bowties) may render incorrectly. To force the
system to render concave polygons correctly, call the concave subroutine with the
parameter set to TRUE.

Between the bgnpolygon and endpolygon subroutines, you can issue only the following
Graphics Library subroutines:

• c
• color
• cpack
• lmcolor
• lmbind
• lmdef
• n3f
• normal
• RGBcolor
• v

After the endpolygon subroutine, the current graphics position is undefined.

Use the lmbind and lmdef subroutines to respecify only materials and their properties.

Use the v subroutine to specify a vertex. You cannot specify more than 256 vertices between
the bgnpolygon and endpolygon subroutines.

Use the backface subroutine to eliminate backfacing polygons. Polygons with vertices
specified in clockwise order are not drawn.

Note: This subroutine cannot be used to add to a display list.

Warning: Calling concave(TRUE) guarantees that all polygons are drawn correctly, but may
cause degradation of performance.

GL Subroutines 1-19

bgnpolygon

Example
1. To define the beginning of a description of a polygon, the example C language program

cylinder2.c uses the bgnpolygon subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Allowing the system to draw concave polygons with the concave subroutine.

Ending a vertex-based polygon with the endpolygon subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

1-20 Graphics Subroutines Reference

bgnsurlace,endsurlace

bgnsurface or endsurface Subroutine

Purpose

Library

C Syntax

Delimit a NURBS surface definition.

Graphics Library (libgl.a)

void bgnsurface{)
void endsurface{)

FORTRAN Syntax
SUBROUTINE BGNSUR
SUBROUTINE ENDSUR

Description
The bgnsurface and endsurface subroutines mark the beginning and end, respectively, of
a Non-Uniform Rational B-Spline (NURBS) surface definition. Between calls to these two
subroutines, only those subroutines that define the surface and provide the trimming
information can be invoked. They are:

• bgntrim
• endtrim
• nurbscurve
• nurbssurface
• pwlcurve.

The NURBS surface definition must consist of exactly one call to the nurbssurface
subroutine (to define the shape of the surface), followed by a list of zero or more trimming
loop definitions (to define the boundaries of the surface). Each trimming loop definition
consists of one call to the bgntrim subroutine, one or more calls to the pwlcurve or
nurbscurve subroutines, and one call to the endtrim subroutine.

The system renders a NURBS surface as a polygonal mesh, and calculates normal vectors
at the corners of the polygons within the mesh. Therefore, your program should specify a
lighting model if it uses NURBS surfaces, otherwise much surface information is lost. When
using a lighting model, define or modify materials and their properties with the lmdef and
lmbind subroutines.

The following code fragment draws a NURBS surface trimmed by two closed loops. The first
closed loop is a single piecewise linear curve (defined by the pwlcurve subroutine), and the
second loop consists of two NURBS curves joined end to end:

bgnsurface(•••);
nurbssurface(•.•);
bgntrim();

pwlcurve (••.) ;
endtrim();
bgntrim();

nurbscurve(•••);
nurbscurve(•.•);

endtrim();
endsurface();

GL Subroutines 1-21

bgnsurlace,endsurlace

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Marking the beginning and end of a NURBS surface trimming loop with the bgntrim and
endtrim subroutines.

Returning the current value of a trimmed NURBS surface display property with the
getnurbsproperty subroutine.

Controlling the shape of a NURBS trimming curve with the nurbscurve subroutine.

Controlling the shape of a NURBS surface with the nurbssurface subroutine.

Describing a piecewise linear trimming curve for NURBS surfaces with the pwlcurve
subroutine.

Setting a property for the display of trimmed NU RBS with the setnurbsproperty subroutine.

GL Introduction, Creating Lighting Effects, and Drawing NURBS Curves and Surfaces in
Graphics Programming Concepts.

1-22 Graphics Subroutines Reference

bgntmesh

bgntmesh Subroutine

Purpose
Begins interpretation of vertex subroutines as triangle mesh vertices.

Library
Graphics Library (libgl.a)

C Syntax
void bgntmesh()

FORTRAN Syntax
SUBROUTINE BGNTME

Description
The bgntmesh subroutine begins the system interpretation of vertex (begin-end style)
subroutines as triangle mesh vertices, which are used to define a mesh of triangles.

The graphics pipeline maintains two vertex registers. The first and second vertices are
loaded into the registers. When the third vertex routine is executed, the system draws a
triangle through the vertices and replaces the older of the register vertices with the third
vertex.

For each new vertex subroutine, the system draws a triangle through the new vertex and the
stored vertices, then replaces the older stored vertex with the new vertex.

To replace the more recent of the stored vertices, call the swaptmesh subroutine. For
example, the code sequence:

bgntmesh () ;
v3f(zero);
v3f (one);
v3f (two);
v3f(three);

endtmesh () ;

draws two triangles, (zero,one,two) and (one,two,three), while the code sequence:

bgntmesh();
v3f(zero);
v3f (one);
swaptmesh();
v3f (two);
v3f(three);

endtmesh () ;

draws two triangles, (zero,one,two) and (zero,two,three). There is no limit to the number of
times that the swaptmesh subroutine can be called.

Gl Subroutines 1-23

bgntmesh

Between the bgntmesh and endtmesh subroutines, you can issue only the following
Graphics Library subroutines:

• c
• color
• cpack
• lmcolor
• lmbind
• lmdef
• n3f
• normal
• RGBcolor
• v

Use the lmbind and lmdef subroutines to respecify only materials and their properties.

You cannot specify more than 256 vertices between the bgntmesh and endtmesh
subroutines.

If you want to use the backface subroutine, specify the vertices of the first triangle in
counterclockwise order. All triangles in the mesh have the same rotation as the first triangle
in a mesh so that backfacing works correctly.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current color in RGB mode with the c subroutine.

Ending a series of triangle mesh vertices with the endtmesh subroutine.

Toggling the triangle mesh register pointer with the swaptmesh subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

1-24 Graphics Subroutines Reference

bgntrim, endtrim

bgntrim or endtrim Subroutine

Purpose

Library

C Syntax

Delimit a NURBS surface trimming loop.

Graphics Library (libgl.a)

void bgntrim()
void endtrim()

FORTRAN Syntax
SUBROUTINE BGNTRI
SUBROUTINE ENDTRI

Description
The bgntrim and endtrim subroutines mark the beginning and end of a definition for a
trimming loop. A trimming loop is a set of oriented curves (forming a closed curve) that
defines boundaries of a Non-Rational 8-Spline (NURBS) surface. Include these trimming
loop definitions in the definition of a NURBS surface.

The definition for a NURBS surface may contain many trimming loops. For example, in a
definition for NURBS surface that resembles a rectangle with a hole punched out, there are
two trimming loops. One loop defines the outer edge of the rectangle. The other trimming
loop defines the hole punched out of the rectangle. The definitions of each of these trimming
loops is bracketed by a bgntrim/endtrim pair.

The definition of a single closed trimming loop may consist of multiple curve segments, each
described as a piecewise linear curve (as defined by the pwlcurve subroutine), or as a
single NURBS curve (as defined by the nurbscurve subroutine), or as a combination of both
in any order. The only GL subroutines that can appear in a trimming loop definition (between
calls to the bgntrim and endtrim subroutines) are those to the pwlcurve and nurbscurve
subroutines.

The following code fragment defines a single trimming loop that consists of one piecewise
linear curve and two NURBS curves:

bgntrirn() ;
pwlcurve(•••);
nurbscurve(•••);
nurbscurve(•.•);

end tr irn () ;

The area of the NURBS surface that the system displays is the region in the domain to the
left of the trimming curve as the curve parameter increases. Thus, the resultant visible
region of the NURBS surface is inside for a counterclockwise trimming loop and outside for a
clockwise trimming loop. For the rectangle mentioned previously, the trimming loop for the
outer edge of the rectangle should run counterclockwise, and the trimming loop for the hole
punched out should run clockwise.

If you use more than one curve to define a single trimming loop, the curve segments must
form a closed loop. In other words, the endpoint of each curve must be the starting point of
the next curve, and the endpoint of the final curve must be the starting point of the first
curve.

GL Subroutines 1-25

bgntrim, endtrim

If the endpoints of the curve are sufficiently close together but not exactly coincident, the
system coerces the endpoints to match. If the endpoints are not sufficiently close, the
system generates an error message and ignores the entire trimming loop.

If a trimming loop definition contains multiple curves, the direction of the curves must be
consistent. In other words, the inside must be to the left of the curves. Nested trimming loops
are legal as long as the curve orientations alternate correctly. If no trimming information is
given for a NURBS surface, the entire surface is drawn.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Marking the beginning and end of a NURBS surface definition with the bgnsurface and
endsurface subroutines.

Returning the current value of a trimmed NURBS surfaces display property with the
getnurbsproperty subroutine.

Controlling the shape of a NURBS trimming curve with the nurbscurve subroutine.

Controlling the shape of a NURBS surface with the nurbssurface subroutine.

Describing a piecewise linear trimming curve for NURBS surfaces with the pwlcurve
subroutine.

Setting a property for the display of trimmed NURBS with the setnurbsproperty subroutine.

GL Introduction and Drawing NURBS Curves and Surfaces in Graphics Programming
Concepts.

1-26 Graphics Subroutines Reference

blankscreen

blankscreen Subroutine

Purpose
Turns screen refresh on and off.

Library
Graphics Library (libgl.a)

C Syntax
void blankscreen(lnt32 boo/)

FORTRAN Syntax
SUBROUTINE BLANKS(boo~
LOGICAL boo/

Description

Parameter

The blankscreen subroutine turns screen refresh on and off. Normally, the screen is
refreshed 60 times a second. If the screen is not regularly refreshed, it goes blank. The
screen refresh is turned on or off immediately upon invocation of this subroutine.

The action of this subroutine is not affected by the blanktime subroutine. The blankscreen
subroutine affects the entire screen, not just an individual window.

Note: This subroutine cannot be used to add to a display list.

boo/

This call is intended for use by a window manager. If a window manager is already
running it is possible that this call will be overridden by the window manager.

Specifies a value for the screen refresh. The settings for the boo/
parameter are:

TRUE stops display and turns screen black IMMEDIATELY.

FALSE restores the display.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the screen blanking timeout with the blanktime subroutine.

Creating and Managing Windows, Understanding the Hardware Used by GL, and Windows
and Input Control in Graphics Programming Concepts.

GL Subroutines 1-27

blanktime

blanktime Subroutine

Purpose
Sets the screen blanking timeout.

Library
Graphics Library (libgl.a)

C Syntax
void blanktime(lnt32 nframe)

FORTRAN Syntax
SUBROUTINE BLANKT(nframe)
INTEGER*4 nframe

Description

Parameter

The blanktime subroutine changes the amount of time the system waits before it blanks the
screen to protect the color display. The default delay before the screen turns black is 15
minutes after the last input. This subroutine can also disable the screen blanking feature.

To calculate the value of the nframe parameter, multiply the desired blanking delay period (in
seconds) by 60. For example, when nframe is 18000, the blanking delay period is 5 minutes.
If there are 60 frames per second, nframe is 60 times the number of seconds that the
system waits before blanking the screen. To disable screen blanking, use O (zero) as the
value for nframe.

Note: This subroutine cannot be used to add to a display list.

nframe

This call is intended for use by a window manager. If a window manager is already
running, it is possible that this call will be overridden by the window manager.

Specifies the number of frames after which to blank the screen. This
subroutine assumes 60 frames per second.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Creating and Managing Windows, Understanding the Hardware Used by GL, and Windows
and Input Control in Graphics Programming Concepts.

1-28 Graphics Subroutines Reference

blendfunction

blendfunction Subroutine

Purpose
Specifies the function to be used for alpha blending.

Library
Graphics Library (libgl.a)

C Syntax
void blendfunction(lnt32 sfactor, lnt32 dfactory

FORTRAN Syntax
SUBROUTINE BLENDF(sfactor, dfactol}
INTEGER*4 sfactor, dfactor

Description
In RGB mode, the system draws pixels using a function that blends the current (destination)
RGBA values of the pixel with the RGBA values to be superimposed on that pixel (the
source values).

Most often, blending is simple: the source RGBA values replace the destination RGBA
values of the pixel. However, if a colored transparent primitive is drawn on top of another
primitive, then the RGBA values of the new primitive must be blended with the RGBA values
of the underlying primitive. (The transparency or opacity of a primitive can be stored as an
alpha value.)

To determine the blended RGBA values of a pixel when drawing in RGB mode, the system
uses the following functions:

Rblended = (Rsource * sfactor) + (Rdestination * dfactor)
Gblended = (Gsource * sfactor) + (Gdestination * dfactor)
Bblended = (Bsource * sfactor) + (Bdestination * dfactor)
Ablended = (Asource * sfactor) + (Adestination * dfactor)

where Risa red value, G is a green value, Bis a blue value, and A is an alpha value.
Blending is available with or without z-buffer mode. Blending works properly only in RGB
mode. In color map mode, the results are unpredictable.

Blending is effectively deactivated by setting the sfactor parameter to BF _ONE and dfactor
to BF _ZERO (the default values). RGB mode fill rates are significantly higher when blending
is effectively deactivated.

By default, the destination RGBA values are read from the front buffer in single buffer mode
and from the back buffer in double buffer mode. If the front buffer is not enabled in single
buffer mode, the RGBA values are taken from the z-buffer. If the back buffer is not enabled
in double buffer mode, the RGBA values are taken from the front buffer (if possible) or from
the z-buffer. These default values can be changed with the readsource subroutine.

Blending factors use RGBA values converted to percentages of maximum value (255 in
current hardware). To improve performance, conversion calculations are approximate.
However, 0 converts exactly to 0.0, and maximum value converts exactly to 1.0.

Bf _ZERO

Bf _ONE

BF_SC

0

(source RGBA)/(maximum value)

GL Subroutines 1-29

blendfunction

BF_MSC

BF_SA

BF_MSA

BF_DA

BF_MDA

1 - (source RGBA)/(maximum value)

(source alpha)/(maximum value)

1 - (source alpha)/(maximum value)

(destination alpha)/(maximum value)

1 - (destination alpha)/(maximum value)

Note: This subroutine cannot be used to add to a display list.

Parameters
sf actor

dfactor

Specifies a symbolic constant that identifies the blending factor by which to
scale contributions from source (incoming) pixel RGBA (red, green, blue,
alpha) values.

Specifies a symbolic constant that identifies the blending factor by which to
scale contributions from destination (current) pixel RGBA values.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

The blending factors BF _DA and BF _MDA are supported on machines with alpha bitplanes.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying RGBA color with a single, packed 32-bit integer using the cpack subroutine.

Specifying the source for pixels to be read with the readsource subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, and
Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-30 Graphics Subroutines Reference

blink

blink Subroutine

Purpose
Changes a color map entry at a selectable rate.

Library
Graphics Library {libgl.a)

C Syntax
void blink(lnt16 rate, Colorindex color, lnt16 red, lnt16 green, lnt16 blue)

FORTRAN Syntax
SUBROUTINE BLINK(rate, color, red, green, blue)
INTEGER*2 rate, color, red, green, blue

Description
The blink subroutine alternates the color located at index color in the current color map with
the color defined by the parameters red, green, and blue. The rate at which the two colors
are alternated is set by the rate parameter.

Up to 20 colors can blink simultaneously, each at a different rate. The blink rate is changed
by calling the blink subroutine with the same color parameter and a different rate parameter.

For example, if the rate parameter is 3, the color changes {blinks) every third vertical
retrace. Its value alternates between the original value and the new value supplied by the
parameters red, green, and blue.

The length of time between retraces varies according to the monitor used. When using a
60Hz monitor, a rate of 60 would cause the color to change once every second.

To terminate blinking and restore the original color for a single color map entry, set the color
parameter to the colormap entry for which to stop blinking and call the blink subroutine with
the rate parameter set to 0.

To terminate all blinking colors simultaneously, call the blink subroutine with the rate
parameter set to -1. When rate is -1, the other parameters are ignored.

Note: This subroutine cannot be used to add to a display list.

Parameters
rate Specifies the number of vertical retraces per blink. On a standard 60Hz

monitor, there are 60 vertical retraces per second.

color Specifies the index into the current color map. The color defined at that
index is the color that is blinked (alternated).

red Specifies the red value of the alternate color that blinks against the color
selected from the color map by the color parameter.

green Specifies the green value of the alternate color that blinks against the color
selected from the color map by the color parameter.

blue Specifies the blue value of the alternate color that blinks against the color
selected from the color map by the color parameter.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

GL Subroutines 1-31

blink

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current color in color map mode with the color subroutine.

Changing a color map entry to a specified RGB value with the mapcolor subroutine.

Creating a Cursor, Creating Animated Screens, Working in Color Map and RGB Modes, and
Understanding the Hardware Used by GL in Graphics Programming Concepts.

1-32 Graphics Subroutines Reference

blkqread

blkqread Subroutine

Purpose
Reads multiple entries from the event queue.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 blkqread(lnt16 *data, lnt16 numbery

FORTRAN Syntax
INTEGER*4 FUNCTION BLKQRE(data, numbery
INTEGER*2 number
INTEGER*2 data(numbery

Description
The blkqread subroutine reads multiple entries from the event queue and stores them in the
buffer designated by the data parameter.

The returned value of the function is the number of queue entries actually read into the data
buffer. This function fills the data buffer alternatively with device numbers and device values.
Thus, the number of entries read is never more than the value or the number parameter
divided by two.

Note: This subroutine cannot be used to add to a display list.

Parameters
data

number

Specifies a pointer to the buffer that is to receive the queue information .

Specifies the length of the buffer.

Return Value
The number of 16-bit words of data actually read into the buffer pointed to by the data
parameter. This number is twice the number of complete queue entries read because each
queue entry consists of two 16-bit words.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h

/usr/include/gl/device.h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

Related Information
Enabling an input device for event queuing with the qdevice subroutine.

Reading the first entry in the event queue with the qread subroutine.

GL Introduction and Controlling Queues and Devices in GL in Graphics Programming

Concepts.

GL Subroutines 1-33

c

c Subroutine

Purpose

Library

C Syntax

Sets the current color in RGB mode.

Graphics Library (libgl.a)

lnt16

3-D

void c3s(lnt16 vec
tor[3])

4-D

void c4s(lnt16 vector[4])

lnt32 void c3i(lnt32 vector[3]) void c4i(lnt32 vector[4])

float void c3f(float vector[3]) void c4f(float vector[4])

FORTRAN Syntax

3-D

INTEGER*2 SUBROUTINE C3S(vector)
INTEGER*2 vector(3)

INTEGER*4 SUBROUTINE C31(vector)
INTEGER*4 vector(3)

FLOAT SUBROUTINE C3F(vector)
REAL vector(3)

Description

4-D

SUBROUTINE C4S(vector)
INTEGER*2 vector(4)

SUBROUTINE C41(vector)
INTEGER*4 vector(4)

SUBROUTINE C4F(vector)
REAL vector(4)

The c subroutine changes the current RGBA (red, green, blue, alpha) color. Array
components 0, 1, 2, and 3 are red, green, blue, and alpha, respectively. In the
three-component cases, alpha defaults to 1.0 (float) or 255 (integer).

Floating point components range from 0.0 through 1.0. Integer components range from 0
through 255.

Notes:

1. This subroutine is available only in RGB mode.

2. This subroutine cannot be used to add to a display list.

1-34 Graphics Subroutines Reference

Parameter

Example

File

vector

c

Specifies, for the c4 subroutines, a four-element array containing RGBA
(red, green, blue, and alpha) values. For c3 subroutines, a three-element
array containing RGB values.

Array components 0, 1, 2, and 3 are red, green, blue, and alpha
respectively. Floating point RGBA values range from 0.0 through 1.0.
Integer RGBA values range from 0 through 255.

1. To clear the screen to black, the example C language program cylinder1 .c calls the c3f
subroutine with a three element array initialized with all zeros as the vector parameter.

/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

If your system does not have alpha bitplanes, set the alpha values to zero.

Related Information
Setting the current color in color map mode with the color subroutine.

Specifying RGBA color with a single packed 32-bit integer using the cpack subroutine.

Returning the current color in RGB mode with the gRGBcolor subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

Setting Attributes, Understanding the Hardware Used by GL, and Working in Color Map and
RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-35

callobj

callobj Subroutine

Purpose
Draws an instance of an object (display list).

Library
Graphics Library (libgl.a)

C Syntax
void callobj(lnt32 objecn

FORTRAN Syntax
SUBROUTINE CALLOB(objecn
INTEGER*4 object

Description

Parameter

Example

The callobj subroutine draws an instance of a previously defined display list (object). If the
subroutine specifies an undefined object, the system ignores the routine.

Global state attributes are not saved before a call to the callobj subroutine. Thus, if you
change a variable within an object, such as color, the change can affect the caller as well.

Use the pushattributes and popattributes subroutines to preserve global state attributes
across calls. Also, the object may execute transformations that change the matrix stack. Use
the pushmatrix and popmatrix subroutines to restore the state of the matrix stack.

Note: This editing subroutine can be added to a display list.

object Specifies the identifier of the object to be drawn.

1. To rotate a graphical object (a cube), the example C language program depthcue.c uses
the callobj subroutine after specifying a rotation transformation.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Creating an object with the makeobj subroutine.

Popping the attribute stack with the popattributes subroutine.

Popping the transformation matrix stack with the popmatrix subroutine.

Saving the global state attributes with the pushattributes subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

GL Introduction, Creating Objects (Display Lists) in GL, Setting Attributes, and Working with

Coordinate Systems in Graphics Programming Concepts.

1-36 Graphics Subroutines Reference

charstr

charstr Subroutine

Purpose
Draws a string of raster characters on the screen.

Library
Graphics Library (libgl.a)

C Syntax
void charstr(Char8 *string)

FORTRAN Syntax
SUBROUTINE CHARST(string, length)
CHARACTER*(*) string
INTEGER*4 length;

Description
The charstr subroutine draws a string of text using a raster font. After each character is
drawn, the character's width is added to the current character position. The text string is
drawn in the current raster font and color, using the current writemask.

Characters that are not defined in the current raster font are treated as having zero size, and
are therefore ignored.

Parameters
string Specifies a pointer to the variable containing the string.

Specifies the length (number of characters) of the string.

Example

length

1. To draw a character string in the current raster font, the example C language program
curved.c uses the charstr subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

This subroutine is not available for Japanese Language Support.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Moving the current character position with the cmov subroutine.

Defining bitmaps for a raster font with the defrasterfont subroutine.

Selecting a raster font with the font subroutine.

Returning the width of the specified text string with the strwidth subroutine.

GL Introduction and Creating Text Characters in GL in Graphics Programming Concepts.

GL Subroutines 1-37

chunksize

chunksize Subroutine

Purpose
Specifies the amount of memory to be allocated for a display list.

Library
Graphics Library (libgl.a)

C Syntax
void chunksize(lnt32 chunk)

FORTRAN Syntax
SUBROUTINE CHUNKS(chunk)
INTEGER*4 chunk

Description

Parameter

The chunksize subroutine gives the system a hint about the appropriate amount of memory
to be allocated when compiling a display list. The system may, on occasion, override the
hint.

As you add primitives to a display list, the chunk parameter is the unit size (in bytes) by
which the memory allocated to the display list grows. The default chunk size is 1024 bytes. A
chunk size that is much smaller than the final size of the display list leads to inefficiencies
due to fragmentation. A chunk size that is larger than the final display list contains unused,
and therefore wasted, memory.

Most subroutines add from 4 to 28 bytes to the display list; subroutines that accept arrays as
parameters (for example, the poly subroutine and polf subroutine) typically add to the
display list in proportion to the length of the array. Some experimentation may be necessary
to determine the optimal chunk size for an application.

Note: This editing subroutine itself cannot be added to a display list.

chunk Specifies the minimum memory size to allocate for an object.

Implementation Specifics
This sulbFdutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Unfragmenting and compacting the memory storage of an object with the compactify
subroutine.

Initializing the system with the ginit subroutine.

Creating an object with the makeobj subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

1-38 Graphics Subroutines Reference

circ

circ Subroutine

Purpose

Library

C Syntax

Outlines a circle.

Graphics Library (libgl.a)

void circ(Coord x, Coord y, Coord radius)

void circi(lcoord x, lcoord y, lcoord radius)

void circs(Scoord x, Scoord y, Scoord radius)

FORTRAN Syntax
SUBROUTINE CIRC(x, y, radius)
REAL x, y, radius

SUBROUTINE CIRCl(x, y, radius)
INTEGER*4 x, y, radius

SUBROUTINE CIRCS(x, y, radius)
INTEGER*2 x, y, radius

Description
The circ subroutine draws an unfilled circle in the x-y plane (z = 0). The system draws the
circle using the current line attributes: color, linestyle, linewidth, repeat factor, and
writemask.

To create a circle thatdoes not lie in the x-yplane, draw the circle in the x-yplane, then
rotate or translate the .circle. Circles rotated outside the 2-D x-y plane appear as ellipses.

All of the routines listed in the syntax are functionally the same. They differ only in the type
declarations for the coordinates.

Parameters

Example

x

y

radius

Specifies the x coordinate of the center of the circle in modeling
coordinates.

Specifies the y coordinate of the center of the circte in modeling
coordinates.

Specifies the length of the radius of the circle.

1 . To draw a red circle, the example C language program boxcirc.c uses the circi
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-39

circ

Related Information
Drawing a circular arc with the arc subroutine.

Drawing a filled circular arc with the arcf subroutine.

Drawing a filled circle with the circf subroutine.

Drawing a curve with the crv subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

1-40 Graphics Subroutines Reference

circf

circf Subroutine

Purpose

Library

C Syntax

Draws a filled circle.

Graphics Library (libgl.a)

void circf(Coord x, Coord y, Coord radius)

void circfi(lcoord x, lcoord y, lcoord radius)

void circfs(Scoord x, Scoord y, Scoord radius)

FORTRAN Syntax
SUBROUTINE CIRCF(x, y, radius)
REAL x, y, radius

SUBROUTINE CIRCFl(x, y, radius)
INTEGER*4 x, y, radius

SUBROUTINE CIRCFS(x, y, radius)
INTEGER*2 x, y, radius

Description
The circf subroutine draws a filled circle in the x-yplane (z =zero). The system draws the
circle using the current area attributes: color, repeat factor, and writemask. To create a filled
circle that does not lie in the x-y plane, draw the circle in the x-y plane, then rotate or
translate the circle. Filled circles rotated outside the 2-D x-y plane appear as filled ellipses.

All of the routines listed in the syntax are functionally the same. They differ only in the type
declarations for the coordinates.

Parameters

Example

x

y

radius

Specifies the x coordinate of the center of the circle specified in modeling
coordinates.

Specifies the y coordinate of the center of the circle specified in modeling
coordinates.

Specifies the length of the radius of the circle.

1. To draw a scoop of cherry ice cream, the example C language program tpbig.c uses the
circf subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-41

circf

Related Information
Drawing a circular arc with the arc subroutine.

Drawing a filled circular arc with the arcf subroutine.

Drawing a circle with the circ subroutine.

Drawing a curve with the crv subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

1-42 Graphics Subroutines Reference

clear

clear Subroutine

Purpose
Clears to the screenmask.

Library
Graphics Library (libgl.a)

C Syntax
void clear()

FORTRAN Syntax
SUBROUTINE CLEAR

Description

Example

The clear subroutine sets the screen area inside the current screenmask to the current color
using the current writemask, and pattern. Only the portion of the current screenmask that is
inside the current window is actually cleared.

Note that by default the screenmask is exactly the same size as the window. The scrmsk
subroutine can be used to change the size of the screenmask. Note also that the viewport
subroutine resets the screenmask to be precisely the same size as the viewport.

1. To clear the viewport before drawing a box and a circle, the example C language
program boxcirc.c uses the clear subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Clearing the color bitplanes and the z-buffer simultaneously with the czclear subroutine.

Drawing a filled screen-aligned rectangle with the sboxf subroutine.

Clearing the z-buffer with the zclear subroutine.

GL Introduction, Getting Ready to Run GL, Starting GL Functions, Setting Attributes in GL,
and Using Viewports and Screenmasks in GL in Graphics Programming Concepts.

GL Subroutines 1-43

clkoff, clkon

clkoff or clkon Subroutine

Purpose

Library

C Syntax

Turns on or off the keyboard click.

Graphics Library (libgl.a)

void clkoff()

void clkon()

FORTRAN Syntax
SUBROUTINE CLKOFF

SUBROUTINE CLKON

Description
The clkoff subroutine turns off the keyboard click, and the clkon subroutine turns it on.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Turning off the keyboard display lights with the lampon or lampoff subroutine.

Ringing the keyboard bell with the ringbell subroutine;

Setting the duration of the keyboard bell sound with the setbell subroutine.

GL Introduction and Controlling the Keyboard in Graphics Programming Concepts.

1-44 Graphics Subroutines Reference

closeobj

closeobj Subroutine

Purpose
Closes an object.

Library
Graphics Library (libgl.a)

C Syntax
void closeobj()

FORTRAN Syntax
SUBROUTINE CLOSEO

Description

Example

The closeobj subroutine closes an open object definition. Use the makeobj subroutine to
open a definition for a new object. All display list routines between the makeobj subroutine
and the closeobj subroutine become part of the object definition.

Use the editobj subroutine to open an existing object for editing and the closeobj
subroutine to end the editing session.

If no object is open, the closeobj subroutine is ignored.

Note: This subroutine, itself, cannot be used to add to a display list.

1. To specify the end of a graphical object definition, the example C language program
depthcue.c uses the closeobj subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Opening an object for editing with the editobj subroutine.

Creating an object with the makeobj subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-45

cm ode

cmode Subroutine

Purpose
Sets color map mode as the current mode.

Library
Graphics Library (libgl.a)

C Syntax
void cmode()

FORTRAN Syntax
SUBROUTINE CMODE

Description
The cmode subroutine sets color map mode as the current mode. This mode is the default.

If your workstation has more than 12 standard bitplanes, you can write color indexes
between 0 and 4095 into the standard bitplanes. The drawing mode must be set to
NORMALDRAW to write into the standard bitplanes (NORMALDRAW is the default drawing
mode). The system must be in colormap mode in order to draw into the overlay or underlay
bitplanes.

You must call the gconfig subroutine after the cmode subroutine in order to have the
cmode subroutine take effect. The system does not enter colormap mode unti the gconfig
subroutine is called.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Choosing a set of bitplanes for drawing with the drawmode subroutine.

Configuring the system with the gconfig subroutine.

Setting a display mode that bypasses the color map with the RGBmode subroutine.

Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-46 Graphics Subroutines Reference

cmov

cmov Subroutine

Purpose

Library

C Syntax

Updates the current text character position.

Graphics Library (libgl.a)

void cmov(Coord x, Coord y, Coord z)

void cmovi(lcoord x, lcoord y, lcoord z)

void cmovs(Scoord x, Scoord y, Scoord z)

void cmov2(Coord x, Coord y)

void cmov2i(lcoord x, lcoord y)

void cmov2s(Scoord x, Scoord y)

FORTRAN Syntax
SUBROUTINE CMOV(x, y, z)
REAL x, y, z

SUBROUTINE CMOVl(x, y, z)
INTEGER*4 x, y, z

SUBROUTINE CMOVS(x, y, z)
INTEGER*2 x, y, z

SUBROUTINE CMOV2(x, y)
REAL x, y

SUBROUTINE CMOV21(x, y, z)
INTEGER*4 x, y

SUBROUTINE CMOV2S(x, y, z)
INTEGER*2 x, y

All of the functions are essentially the same except for the type declarations of the
parameters. In addition, the cmov2* routines assume a 2-D point instead of a 3-D point.

Description
The cmov subroutine moves the current character position to a specified point Uust as the
move subroutine sets the current graphics position). The cmov subroutine transforms the
specified modeling coordinates into screen coordinates, which become the new character
position. If the transformed point is outside the viewport, the character position is undefined.

The cmov subroutine does not affect the current graphics position.

GL Subroutines 1-47

cmov

Parameters

Example

x

y

z

Specifies the x location of the point (in modeling coordinates) to which to
move the current character position.

Specifies the y location of the point (in modeling coordinates) to which to
move the current character position.

Specifies the z location of the point (in modeling coordinates) to which to
move the current character position. (This parameter is not used by the 2-D
subroutines.)

1. To move the character position to a specific location before drawing text, the example C
language program curved.c uses the cmov2 subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

This subroutine is not available for Japanese Language Support.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a string of raster characters on the screen with the charstr subroutine.

Moving the current graphics position with the move subroutine.

GL Introduction, Creating Text Characters in GL, Using Viewports and Screenmasks in GL,

and Working with Coordinate Systems in GL in Graphics Programming Concepts .

. . : i

1-48 Graphics Subroutines Reference

color, colorf

color or colorf Subroutine

Purpose

Library

C Syntax

Sets the current color in color map mode.

Graphics Library (libgl.a)

void color(Colorindex colory

void colorf(Float32 colory

FORTRAN Syntax
SUBROUTINE COLOR(colory
INTEGER*4 color

SUBROUTINE COLORF(colory
REAL color

Description

Parameter

The color subroutine selects a color from the color map, and sets that color as the default in
the current drawing mode. For example, if the drawing mode is NORMALDRAW (the
default), the color index is written to the standard bitplanes during all drawing routines.

In NORMALDRAW mode, the color parameter allows you to access up to 12 bitplanes in
onemap mode and up to 8 bitplanes in multimap mode. However, since the 8-bit
High-Performance 3-D Color Graphics Processor has only one 8-bit main frame buffer, the
12-bit onemap mode is not available on this machine.

In OVERDRAW and UNDERDRAW modes, zero, two, or four bitplanes are accessible.

In alternate drawing modes such as OVERDRAW the color subroutine serves the same
function as in NORMALDRAW, except that different bitplanes are used, and a separate,
smaller map is indexed.

The colorf subroutine is identical to the color subroutine, except that it expects a floating
point color index. Before the color is written into display memory, it is rounded to the nearest
integer value. When drawing with the GOURAUD shading model, machines that iterate color
indexes with fractional precision yield more precise shading results using the colorf
subroutine than with the color subroutine. The results of these subroutines are
indistinguishable when drawing with FLAT shading.

The color and colorf subroutines serve no purpose in RGB mode because the RGB
components of the color are written directly to the bitplanes.

color Specifies a color index (0 to 4095 in onemap mode, 0 to 255 in multimap
mode).

GL Subroutines 1-49

color, colorf

Example
1. To set the color for subsequent drawing routines, the example C language program

boxcirc.c uses the color subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Choosing a set of bitplanes for drawing with the drawmode subroutine.

Returning the current color with the getcolor subroutine.

Getting a copy of the RGB values for a color map entry with the getmcolor subroutine.

Changing a colormap entry with the mapcolor subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

Setting a display mode that bypasses the color map with the RGBmode subroutine.

Gaining write access to a subset of available bitplanes with the RGBwritemask subroutine.

Gaining write access to the available bitplanes with the writemask subroutine.

Setting Attributes, Understanding the Hardware Used by GL, and Working in Color Map and
RGB Modes in Graphics Programming Concepts.

1-50 Graphics Subroutines Reference

compactify

compactify Subroutine

Purpose
Unfragments and compacts the memory storage of an object.

Library
Graphics Library (libgl.a)

C Syntax
void compactify(lnt32 objec~

FORTRAN Syntax
SUBROUTINE COMPAC(objec~
INTEGER*4 object

Description

Parameter

The compactify subroutine unfragments and compacts the memory storage of an object.

Using the object editing subroutines to modify an open object definition can fragment the
memory storage for the definition. The compactify subroutine eliminates wasted space, but
calling it is rarely necessary because the closeobj subroutine automatically compacts an
object definition that is too fragmented.

Because the compactify subroutine requires a significant amount of time to execute, calls to
it should be avoided unless storage space is critical.

Note: This editing subroutine itself cannot be added to a display list.

object Specifies the identifier for the object to be compacted.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying the minimum object size in memory with the chunksize subroutine.

Closing an object with the closeobj subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-51

concave

concave Subroutine

Purpose
Forces the system to draw accurate concave polygons.

Library
Graphics Library (libgl.a)

C Syntax
void concave(lnt32 boo/)

FORTRAN Syntax
SUBROUTINE CONCAV(boo~
LOGICAL boo/

Description

Parameter

The concave subroutine forces the system to draw accurate concave polygons. When the
boo/ parameter is TRUE (1), the system draws accurate concave polygons. When the value
of the boo/ parameter is FALSE (0) (the default), the results of drawing a concave polygon
are unpredictable.

The system draws polygons significantly faster if checking for concavity is turned off.
Therefore, unless you specifically want to draw concave polygons, you should generally
operate with the boo/ parameter set to FALSE.

boo/ Specifies the value for concave polygons. The settings for the boo/
parameter are:

TRUE forces the system to draw accurate concave and convex polygons.

FALSEtells the system to draw only accurate convex polygons. This is the
default.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL

Related Information
Drawing a vertex-based polygon with the bgnpolygon subroutine.

Specifying the next point in a polygon with the pdr subroutine.

Specifying the starting point for a polygon with the pmv subroutine.

Drawing a filled polygon with the polf subroutine.

Drawing a polygon with the poly subroutine.

Gllntroduction, Setting Pipeline Options, and Using the GL High-Level Drawing Library in
Graphics Programming Concepts.

1-52 Graphics Subroutines Reference

cpack

cpack Subroutine

Purpose
Specifies RGBA color with a single packed 32-bit integer.

Library
Graphics Library (libgl.a)

C Syntax
void cpack(unsigned lnt32 pack)

FORTRAN Syntax
SUBROUTINE CPACK(pack)
INTEGER*4 pack

Description

Parameter

Example

The cpack subroutine changes the current RGBA (red, green, blue, alpha) values. It is valid
only in RGB mode. Red is the least significant byte in the packed integer, then green, blue,
and alpha. Components must range from O through 255. For example,

cpack(OxFF004080);

sets red to Ox80, green to Ox40, blue to OxO, and alpha to OxFF. On systems without alpha
bitplanes, set the alpha bit values to zero.

The cpack subroutine produces unpredictable results if called while a lighting model is
active.

Note: This subroutine cannot be used to add to a display list.

pack Specifies a packed integer containing the RGBA (red, green, blue, alpha)
values to assign as the current color.

1. To clear the screen to black, then set the color to white, the example C language program
localatten.c calls the cpack subroutine with a value of O (black) before a clear
subroutine, then calls the cpack subroutine with a value of OxFFFFFF (white).

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-53

cpack

Related Information
Setting the current color in RGB mode with the c subroutine.

Setting the current color in color map mode with the color subroutine.

Returning the current color in color map mode with the getcolor subroutine.

Returning the current color in RGB mode with the gRGBcolor subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

Setting Attributes, Understanding the Hardware Used by GL, and Working in Color Map and
RGB Modes in Graphics Programming Concepts.

1-54 Graphics Subroutines Reference

crv

crv Subroutine

Purpose
Draws a cubic spline curve.

Library
Graphics Library (libgl.a)

C Syntax
void crv(Coord points[4][3])

FORTRAN Syntax
SUBROUTINE CRV(points)
REAL points(3,4)

Description

Parameter

Example

The crv subroutine draws a cubic spline curve segment (defined by the submitted points)
according to the current curve basis and precision.

points Array containing the four points that define the curve. These must be 3-D
points with x, y, and z coordinates for each point.

1. To draw three curves, the example C language program curve1 .c uses the crv
subroutine after changing the curve basis and precision for each curve.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a series of curve segments with the crvn subroutine.

Setting the current cubic spline curve basis matrix with the curvebasis subroutine.

Setting the number of line segments that draw a curve segment with the curveprecision
subroutine.

Defining a cubic spline basis matrix with the defbasis subroutine.

Drawing a rational curve with the rcrv subroutine.

Drawing a series of rational curve segments with the rcrvn subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in Graphics
Programming Concepts.

GL Subroutines 1-55

crvn

crvn Subroutine

Purpose
Draws a series of curve segments.

Library
Graphics Library (libgl.a)

C Syntax
void crvn(lnt32 n , Coord geom [][3])

FORTRAN Syntax
SUBROUTINE CRVN(n, geom)
INTEGER*4 n
REAL geom(3, n)

Description
The crvn subroutine draws a series of cubic spline segments using the current basis and
precision. The control points determine the shapes of the curve segments and are used
sequentially four at a time.

For example, if there are six control points, there are three possible sequential selections of
four control points. Thus, crvn draws three curve segments: the first using control points
0, 1,2,3; the second using control points 1,2,3,4; and the third using control points 2,3,4,5.

If the current basis is a 8-spline, a Cardinal spline, or a basis with similar properties, the
curve segments are joined end to end and appear as a single curve.

Parameters

Example

geom Specifies a matrix of 3-D points.

n Number of points in the matrix referenced by geom.

1. To draw a curve with six control points, the example C language program curve2.c uses
the crvn subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-56 Graphics Subroutines Reference

Related Information
Drawing a cubic spline curve with the crv subroutine.

Setting the current cubic spline curve basis matrix with the curvebasis subroutine.

Setting the number of line segments that compose a cubic spline curve with the
curveprecision subroutine.

Defining a cubic spline basis matrix with the defbasis subroutine.

Drawing a rational curve with the rcrv subroutine.

Drawing a series of rational curve segments with the rcrvn subroutine.

crvn

GL Introduction and Drawing Wire Frame Curves and Surface Patches in Graphics
Programming Concepts.

GL Subroutines 1-57

curorigin

curorigin Subroutine

Purpose
Sets the origin of a cursor.

Library
Graphics Library (libgl.a)

C Syntax
void curorigin
(lnt16 index, lnt16 xorigin, lnt16 yorigin)

FORTRAN Syntax
SUBROUTINE CURORl(index, xorigin, yorigin)
INTEGER*2 index, xorigin, yorigin

Description
The curorigin subroutine sets the origin of a cursor. Before calling this subroutine, the
cursor must be defined with the defcursor subroutine and set with the setcursor
subroutine. The lower left corner of the cursor has coordinates (0,0).

The default origin for a user-defined cursor is (0,0).

Note: This subroutine cannot be used to add to a display list.

Parameters
index Specifies an index into the cursor table.

xorigin

yorigin

Specifies the x distance of the origin relative to the lower left corner of the
cursor.

Specifies the y distance of the origin relative to the lower left corner of the
cursor.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining the type and size of a cursor with the curstype subroutine.

Defining a cursor with the defcursor subroutine.

Setting the drawing mode to CURSORDRAW with the drawmode subroutine.

Setting the cursor characteristics with the setcursor subroutine.

Creating a Cursor in GL and Creating and Managing Windows in GL in Graphics
Programming Concepts.

1-58 Graphics Subroutines Reference

curson, cursoff

curson or cursoff Subroutine

Purpose

Library

C Syntax

Controls cursor visibility by window.

Graphics Library (libgl.a)

void curson()

void cursoff()

FORTRAN Syntax
SUBROUTINE CURSON

SUBROUTINE CURSOF

Description

Example

The curson and cursoff subroutines control the visibility of the cursor in the current window.
These subroutines control only the visibility of the cursor and do not disable or enable the
cursor or mouse button click events inside the current window. The curson subroutine is the
default.

Use the getcursor subroutine to find out if the cursor is visible.

Note: These subroutines cannot be used to add to a display list.

1. To turn off the cursor while drawing, the example C language program text.c uses
cursoff subroutine. The program uses the curson subroutine to turn on the cursor after
drawing.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the origin of a cursor with the curorigin subroutine.

Defining the type and size of a cursor with the curstype subroutine.

Defining a cursor with the defcursor subroutine.

Returning the cursor characteristics with the getcursor subroutine.

Setting the cursor characteristics with the setcursor subroutine.

Creating a Cursor in GL and Creating and Managing Windows in GL in Graphics
Programming Concepts.

GL Subroutines 1-59

curstype

curstype Subroutine

Purpose
Defines the type and size of the cursor.

Library
Graphics Library (libgl.a)

C Syntax
void curstype(lnt32 type)

FORTRAN Syntax
SUBROUTINE CURSTY(type)
INTEGER*4 type

Description

Parameter

The curstype subroutine defines the type and size of the cursor. The system supports five
cursor types:

Type Size Description

C16X1 16x16 bit No more than one color (default)

C16X2 16x16 bit No more than three colors

C32X1 32x32 bits No more than one color

C32X2 32x32 bits No more than three colors

CC ROSS Full window Cross-hair

After calling the curstype subroutine, call the defcursor subroutine to assign a numeric
value to the cursor and specify the cursor bitmap.

The cross-hair cursor is formed with a horizontal line and a vertical line (each one pixel wide)
that extend completely across the window. Its origin (15, 15) is at the intersection of the two
lines. It is a one-color cursor that uses color number one.

type Specifies one of five values that describe the cursor.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-60 Graphics Subroutines Reference

Related Information
Setting the origin of a cursor with the curorigin subroutine.

Controlling cursor visibility by window with the curson or cursoff subroutine.

Defining a cursor with the defcursor subroutine.

curstype

Setting the drawing mode to CURSORDRAW with the drawmode subroutine.

Changing a color map entry with the mapcolor subroutine.

Setting the cursor characteristics with the setcursor subroutine.

Creating a Cursor in GL and Creating and Managing Windows in GL in Graphics
Programming Concepts.

GL Subroutines 1-61

curvebasis

curvebasis Subroutine

Purpose
Sets the current cubic spline curve basis matrix.

Library
Graphics Library (libgl.a)

C Syntax
void curvebasis{lnt32 basis_id)

FORTRAN Syntax
SUBROUTINE CURVEB{basis_id)
INTEGER*4 basis_id

Description

Parameter

Example

The curvebasis subroutine sets a basis matrix as defined by the defbasis subroutine as the
current basis matrix to draw curve segments. The basis matrix determines how the system
uses the control points when drawing a curve.

Depending on the basis matrix, the system draws Bezier curves, Cardinal spline curves,
8-spline curves, and others. The system does not restrict you to a limited set of basis
matrices. You can define basis matrices to match whatever constraints you want to place on
the curve.

basis_id Specifies the basis identifier of the basis matrix to use when drawing a
curve.

1. The example C language program curve1 .c uses the curvebasis subroutine to select
each of three previously defined basis matrices, then draws a curve using each basis
matrix.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a cubic spline curve with the crv subroutine.

Drawing a series of curve segments with the crvn subroutine.

Setting the number of line segments that compose a cubic spline curve with the
curveprecision subroutine.

Defining a cubic spline basis matrix with the defbasis subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in Graphics
Programming Concepts.

1-62 Graphics Subroutines Reference

curve it

curveit Subroutine

Purpose
Draws a curve segment by iterating the forward difference matrix.

Library
Graphics Library (libgl.a)

C Syntax
void curveit(lnt16 coun~

FORTRAN Syntax
SUBROUTINE CURVEl(coun~
INTEGER*2 count

Description

Parameter

Example

The curveit subroutine repeats the forward difference algorithm with the current matrix (the
one on top of the matrix stack) for the number of times assigned by the count parameter.
Each iteration draws one of the line segments that approximate the curve. The curveit
subroutine accesses low-level hardware capabilities for curve drawing.

count Specifies the number of times to repeat the current matrix.

1 . To draw a Bezier curve segment, the example C language program curve3.c uses the
curveit subroutine after building the correct transformation matrix.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a cubic spline curve with the crv subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in Graphics
Programming Concepts.

GL Subroutines 1-63

curveprecision

curveprecision Subroutine

Purpose
Sets the number of line segments that draw a curve segment.

Library
Graphics Library (libgl.a)

C Syntax
void curveprecision(lnt16 nsegments)

FORTRAN Syntax
SUBROUTINE CURVEP(nsegments)
INTEGER*2 nsegments

Description

Parameter

Example

The curveprecision subroutine sets the number of line segments used to draw a curve
segment. Whenever the crv, crvn, rcrv, or rcrvn subroutines execute, a number of straight
line segments, represented by the nsegments parameter, approximates each curve
segment. Increasing the value of nsegments makes a smoother curve, but also increases
the drawing time.

nsegments Specifies the number of line segments to use in drawing the curve segment.

1. To draw three curves, the example C language program curve1 .c uses the
curveprecision subroutine so that each curve will be approximated by 20 line segments.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a cubic spline curve with the crv subroutine.

Drawing a series of curve segments with the crvn subroutine.

Setting the current cubic spline curve basis matrix with the curvebasis subroutine.

Drawing a rational curve with the rcrv subroutine.

Drawing a series of rational curve segments with the rcrvn subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

1-64 Graphics Subroutines Reference

cyclemap

cyclemap Subroutine

Purpose
Cycles through color maps at a specified rate.

Library
Graphics Library (libgl.a)

C Syntax
void cyclemap(lnt16 duration , lnt16 map , lnt16 nextmap)

FORTRAN Syntax
SUBROUTINE CYCLEM(duration, map, nextmap)
INTEGER*2 duration, map, nextmap

Description
The cyclemap subroutine Initiates cycling between two small color maps. The system, when
using the current color map map, waits the number of vertical retraces specified by the
duration parameter before switching to the next map to be used (nextmap).

You can use the cyclemap subroutine used to chain together several color maps into a loop,
thus initiating a cycling or blinking that continues indefinitely. The system loops automatically
through the chain until cycling is disabled.

You can eliminate a cyclemap entry by calling the cyclemap subroutine with the duration
parameter set to 0.

This subroutine must be used in multimap mode.

Note: This subroutine cannot be used to add to a display list.

Parameters
duration Specifies duration for the current map in vertical retraces.

Specifies the number of the current map. map

nextmap Specifies the number of the next map to use.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Changing a color map entry at a selectable rate with the blink subroutine.

Reconfiguring the system with the gconfig subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Configuring the Frame Buffer, Creating Animated Screens, and Understanding the Hardware
Used by GL in Graphics Programming Concepts.

GL Subroutines 1-65

czclear

czclear Subroutine

Purpose
Clears the color bitplanes and the z-buffer simultaneously.

Library
Graphics Library (libgl.a)

C Syntax
void czclear(lnt32 cval, lnt32 zva~

FORTRAN Syntax
SUBROUTINE CZCLEA(cva/, zva~
INTEGER*4 cval, zval

Description
The czclear subroutine simultaneously clears the color bitplanes to the value of the cval
parameter and the z-buffer to the value of the zval parameter. The czclear subroutine clears
all active color bits (8 or 12 in color map mode, 24 in RGB mode), and all 24 z-buffer bits.
Pattern O (zero) is always used, regardless of the current pattern specification. The system
ignores the current writemask.

Only the screen area inside the current screenmask is cleared. The screenmask cannot be
made larger than the window. Note that by default the screenmask is exactly the same size
as the window. The scrmsk subroutine can be used to change the size of the screenmask.
Note also that the viewport subroutine resets the screenmask to be precisely the same size
as the viewport.

In RGB mode, the cval parameter requires a packed integer of the same format used by the
cpack subroutine, Oxaaggbbrr, where rr is the red value, gg is the green value, bb is the
blue value, and aa is the alpha value. In color map mode, the cval parameter requires an
index into the current color map, so that only the bottom 8 or 12 bits are significant.

Whenever you need to clear both the z-buffer and the color bitplanes to constant values at
the same time, use the czclear subroutine. The czclear subroutine executes as fast as, or
faster than, the clear and zclear subroutines called sequentially.

The czclear subroutine can be called whether z-buffer mode is on or off. The current color
does not change.

Note: This subroutine cannot be used to add to a display list.

Parameters
cval

zval

Specifies the color to which to clear the color bitplanes.

Specifies the depth to which to clear the z-buffer. The zva/parameter has
the following values:

Values for the zval parameter

Min Max

-Ox800000 Ox7FFFFF

1-66 Graphics Subroutines Reference

czclear

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Clearing to the screenmask with the clear subroutine.

Setting the current color as a packed 32-bit integer using the cpack subroutine.

Enabling and disabling the z-buffer for storing depth information with the zbuffer subroutine.

Clearing the z-buffer with the zclear subroutine.

Specifying the function used for depth comparison with the zfunction subroutine.

GL Introduction, Getting Ready to Run GL, Starting GL Functions, Configuring the Frame
Buffer for GL, Controlling Frame Buffer Update in GL, and Working in Color Map and RGB
Modes in GL in Graphics Programming Concepts.

GL Subroutines 1-S7

def basis

defbasis Subroutine

Purpose
Defines a cubic spline basis matrix.

Library
Graphics Library (libgl.a)

C Syntax
void defbasis(lnt32 id, Matrix mat)

FORTRAN Syntax
SUBROUTINE DEFBAS(id, mat)
INTEGER*4 id
REAL mat(4,4)

Description
The defbasis subroutine assigns a basis matrix identifier for use by subroutines that
generate curves and patches. Use the basis matrix identifier in subsequent calls to the
curvebasis and patchbasis subroutines.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

id

mat

Specifies the basis identifier to assign to the matrix.

Specifies the matrix to which to assign the basis identifier.

1. To define three basis matrices for drawing curves, the example C language program
curve1 .c uses the defbasis subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a cubic spline curve with the crv subroutine.

Drawing a series of curve segments with the crvn subroutine.

Setting the current cubic spline curve basis matrix with the curvebasis subroutine.

Setting the number of line segments that draw a curve segment with the curveprecision
subroutine.

Drawing surface patches with the patch subroutine.

Setting the current spline surface basis matrices with the patchbasis subroutine.

Setting the number of curves used to represent a patch with the patchcurves subroutine.

Setting the precision at which curves are drawn with the patchprecision subroutine.

1-68 Graphics Subroutines Reference

def basis

Drawing a rational curve with the rcrv subroutine.

Drawing a series of rational curve segments with the rcrvn subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

GL Subroutines 1-69

def cursor

defcursor Subroutine

Purpose
Defines a cursor glyph.

Library
Graphics Library (libgl.a)

C Syntax
void defcursor(lnt32 index, Uint16 *cursol)

FORTRAN Syntax
SUBROUTINE DEFCUR(index, cursol)
INTEGER*4 index
INTEGER*2 cursor(1);

Description
The defcursor subroutine defines a cursor glyph with the specified name and bitmap. Call
the curstype subroutine to set the type and size of cursor before calling the defcursor
subroutine.

The bitmap can be 16x16 or 32x32 and either one or two layers deep. If the cursor has been
defined by the curstype subroutine as type C16X2 or C32X2, the bitmap array is two layers
deep.

By default, the bitmap cursor origin is at (0,0), its lower-left corner. Use the curorigin
subroutine to reset the cursor origin (the position controlled by valuators attached to the
cursor and the position used for the picking region).

To replace the bitmap assigned to a cursor constant, call the defcursor subroutine again,
keeping the index parameter the same but changing the bitmap cursor parameter.

By default, a cross-hair cursor origin is at (15, 15), the intersection of its two lines.

By default, an arrow is defined as cursor 0 (zero) and cannot be redefined.

Note: This subroutine cannot be used to add to a display list.

Parameters
index Specifies a number to identify a cursor to other cursor routines.

Specifies the bitmap for the cursor. For the cross-hair cursor type, this
parameter is disregarded.

cursor

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-70 Graphics Subroutines Reference

def cursor

Related Information
Setting the origin of a cursor with the curorigin subroutine.

Controlling cursor visibility by window with the curson or cursoff subroutine.

Defining the type and size of a cursor with the curstype subroutine.

Returning the cursor characteristics with the getcursor subroutine.

Putting the system in picking mode with the pick subroutine.

Setting the cursor characteristics with the setcursor subroutine.

Creating a Cursor in GL and Creating and Managing Windows in GL in Graphics
Programming Concepts.

GL Subroutines 1-71

deflinestyle

def linestyle Subroutine

Purpose
Defines a linestyle.

Library
Graphics Library (libgl.a)

C Syntax
void deflinestyle(lnt32 index, Linestyle linestyle)

FORTRAN Syntax
SUBROUTINE DEFLIN(index, /inestyle)
INTEGER*4 index
INTEGER*2 /inesty/e

Description
The deflinestyle subroutine defines a linestyle, which is a write-enabled bit pattern that is
applied when lines are drawn. The least significant bit of the linestyle is applied first.

You can define up to 2(16) (65536) linestyles. By default, index O contains the pattern
OxFFFF, which draws solid lines. Index O cannot be redefined. A linestyle can be redefined
by reusing an index.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

index Specifies the index into a table of linestyles.

linestyle Specifies a 16-bit pattern stored in the linestyle table. at index.

1. To define a dashed line, the example C language program curved.c uses the
deflinestyle subroutine.

Implementation Specifics

File

This subroutine is part of GL in the AIXwindows environment.

On some display adapters, notably the High-Performance 3-D Graphics Processor, there is
a performance penalty for drawing non-solid lines.

/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a cursor with the defcursor subroutine.

Defining a pattern with the defp~ttern subroutine.

Defining bitmaps for a raster font with the defrasterfont subroutine.

1-72 Graphics Subroutines Reference

defl i nestyle

Returning the current linestyle with the getlstyle subroutine.

Setting the repeat factor for the current linestyle with the lsrepeat subroutine.

Selecting a linestyle with the setlinestyle subroutine.

Drawing Wire Frame Curves and Surface Patches, Drawing NURBS Curves and Surfaces,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Setting Attributes, Understanding the Hardware Used by GL, and Using the GL High-Level
Drawing Library in Graphics Programming Concepts.

GL Subroutines 1-73

def pattern

defpattern Subroutine

Purpose
Defines patterns used in area fills.

Library
Graphics Library (libgl.a)

C Syntax
void defpattern
{lnt32 index, lnt16 size, lnt16 *mask)

FORTRAN Syntax
SUBROUTINE DEFPAT(index, size, mask)
INTEGER*4 index,
INTEGER*2 size
INTEGER*2 mask{{size* size)/16)

Description
The defpattern subroutine defines patterns for filling areas such as polygons, rectangles,
and curves. By default, pattern 0 is a 16x16-bit solid pattern. Index O cannot be changed.
The system stores the pattern in a pattern table at index.

The pattern is described from left to right and bottom to top, just as characters are described
in a raster font. The defpattern subroutine allows you to define an arbitrary pattern and
assign it an index identifier. You can later reference this pattern with the setpattern
subroutine via this identifier. Patterns, cursors, and fonts are available to all windows when
using multiple windows.

Note: This sµbroutine cannot be used to add to a display list.

Parameters
index Specifies the constant to use as an identifier for the pattern described by the

mask parameter. This constant is used as an index into a table of patterns.

mask Specifies the array of short integers that form the actual bit pattern.

size Specifies the size of the pattern: 16, 32, or 64 for a 16x16-bit, 32x32-bit, or
64x64-bit pattern, respectively.

Implementation Specifics

File

This subroutine is part of GL in the AIXwindows environment.

On some display adapters, notably the High-Performance 3-D Graphics Processor, there is
a performance penalty for non-solid patterns. Also, the High-Performance 3-D Graphics
Processor allows only 16x16-bit, 32x32-bit, or 64x64-bit patterns.

/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-7 4 Graphics Subroutines Reference

def pattern

Related Information
Defining a cursor with the defcursor subroutine.

Defining bitmaps for a raster font with the defrasterfont subroutine.

Returning the index of the current fill pattern with the getpattern subroutine.

Selecting a pattern for filling polygons and rectangles with the setpattern subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Setting Attributes, Understanding the Hardware Used by GL, and Using the GL High-Level
Drawing Library in Graphics Programming Concepts.

GL Subroutines 1-75

def pup

defpup Subroutine

Purpose
Defines a pop-up menu.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 defpup(Char8 *string[, lnt32 arguments ...])

FORTRAN Syntax
None: available only in C.

Description
The defpup subroutine defines a pop-up menu and returns a menu identifier.

Note: This subroutine cannot be used to add to a display list.

Parameters
string Specifies the pointer to the text to add as a menu item. There are seven

menu item type flags for optional pairing with each menu item:

%t Marks item text as the menu title string.

%F Invokes a routine for every selection from this menu except those
marked with a %n flag. You must specify the invoked routine in
the arguments parameter. The value of the menu item is used as
a parameter of the executed routine. Thus, if you select the third
menu item, the system passes 3 as a parameter to the function
specified by the %F flag.

%f Invokes a routine when this particular menu item is selected. You
must specify the invoked routine in the arguments parameter.
The value of the menu item is passed as a parameter of the
routine. Thus, if you select the third menu item, the system
passes 3 as a parameter to the routine specified by the %f flag. If
you have also used the %F flag within this menu, then the result
of the %f flag is passed as a parameter of the %F flag.

%1 Adds a line under the current entry. This is useful in providing
visual clues for grouping like entries together.

%m Pops up a menu whenever this menu item is selected. You must
provide the menu identifier of the new menu in the arguments
parameter.

%n Like the %f flag, this flag invokes a routine when the user selects
this menu item. However, the %n flag differs from the %f flag in
that it ignores the routine (if any) specified by the %F flag. The
value of the menu item is passed as a parameter of the executed
routine. Thus, if you select the third menu item, the system
passes 3 as a parameter to the function specified by the %f flag.

1-76 Graphics Subroutines Reference

arguments

defpup

%xn Assigns a numeric value to this menu item. This value overrides
the default position-based value assigned to this menu item (third
item=3). You must enter the numeric value as the part of the text
string specified by the n parameter. Do not use the arguments
parameter to specify the numeric value.

Specifies an optional set of arguments. Each argument expects the
command or submenu to be assigned to this menu item. The arguments
parameter can be used as many times as necessary.

Return Value

Example

The menu identifier of the menu just defined.

1. To define a pop-up menu, the example C language program curved.c uses the defpup
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Adding an item to an existing pop-up menu with the addtopup subroutine.

Displaying a pop-up menu with the dopup subroutine.

Deallocating a pop-up menu and its data structures with the freepup subroutine.

Allocating and initializing a structure for a new pop-up menu with the newpup subroutine.

Enabling or disabling a given pop-up entry with the setpup subroutine.

GL Introduction and Creating and Managing Pop-Up Menus in GL in Graphics Programming
Concepts.

GL Subroutines 1-77

defrasterfont

defrasterfont Subroutine

Purpose

Library

C Syntax

Defines bitmaps for a raster font.

Graphics Library (libgl.a)

void defrasterfont
(lnt32 index, lnt16 height,
lnt16 numchars, Fontchar chars [],
lnt16 numraster, lnt16 raster [])

FORTRAN Syntax
SUBROUTINE DEFRAS(index, height, numchars, chars, numraster, rastet)
INTEGER *4 index
INTEGER*2 height, numchars, numraster
INTEGER*2 raster(numrastet), chars(4*numchars)

Description
The defrasterfont subroutine defines a raster font.

To replace a raster font, specify the index of the previous font as the index for the new font.
To delete a raster font, define a font with no characters. Patterns, cursors, and fonts are
available to all windows when using multiple windows. The ASCII code page table encoding
is assumed.

Notes:

1. This subroutine cannot be used to add to a display list.

2. The hardest part of creating a new raster font is generating a bitmap for each
character. You may want to write a graphically oriented tool for creating the
bitmaps expected by the raster parameter.

Parameters
index

height

numchars

chars

Specifies a constant to use as the identifier for this raster font. This constant
is used as an index into a font table. The default font, 0, is a fixed-pitch font
with a height of 16 and width of 9. Font 0 cannot be redefined.

Specifies the maximum height (in pixels) for a character.

Specifies the number of characters in this font.

Specifies an array of character description structures of type Fontchar. The
Fontchar structure is defined in the /usr/include/gl/gl.h file as:

typedef struct {
unsigned short offset;

Byte w, h;
signed char xoff, yoff;
short width;

} Fontchar;

offset Specifies the element of the raster array at which the bitmap for
this character starts.

1-78 Graphics Subroutines Reference

Example

numraster

raster

w

h

xoff

yoff

width

defrasterfont

Specifies the number of columns in the bitmap that contain set
bits (character width).

Specifies the number of rows in the bitmap of the character
(including ascender and descender).

Specifies the bitmap columns between the start of the character's
bitmap and the start of the character.

Specifies the number of rows between the character's baseline
and the bottom of the bitmap. For characters with descenders
(for example, g) this value is a negative number. For characters
that rest entirely on the baseline, this value is zero.

Specifies the pixel width for the character. This value tells the
system how far to space after drawing the character. (This value
is added to the character position.)

Specifies the length of the raster parameter array.

Specifies a one-dimensional array that contains all the bitmaps for the
characters in the font. Each element of the array is a 16-bit integer and the
elements are ordered left to right, bottom to top. When interpreting each
element, the bits are left justified within the character's bounding box.

Maximum row width for a single bitmap is not limited to the capacity of a
single 16-bit integer array element. The rows of a bitmap may span more
than one array element. However, each new row in the character bitmap
must start with its own array element. Likewise, each new character bitmap
must start with its own array element. The system reads the row width and
starting location for a character bitmap from the structures records in the
chars array.

1. To define a new raster font, the example C language program curved.c uses the
defrasterfont subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

This subroutine is not available for Japanese Language Support.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a string of raster characters on the screen with the charstr subroutine.

Updating the current character position with the cmov subroutine.

Selecting a raster font with the font subroutine.

Returning the current character position with the getcpos subroutine.

Returning the baseline extent of the longest character descender with the getdescender
subroutine.

Returning the current raster font number with the getfont subroutine.

Ret~rning the maximum character height in the current raster with the getheight subroutine.

GL Subroutines 1-79

defrasterf ont

Using an AIXwindows font to define a raster font with the loadXfont subroutine.

Returning the width of the specified text string with the strwidth subroutine.

GL Introduction and Creating Text Characters in GL in Graphics Programming Concepts.

1-80 Graphics Subroutines Reference

delobj Subroutine

Purpose
Deletes an object.

Library
Graphics Library (libgl.a)

C Syntax
void delobj(lnt32 object)

FORTRAN Syntax
SUBROUTINE DELOBJ(object)
INTEGER*4 object

Description

de I obj

The delobj subroutine deletes an entire object, freeing the entire display list and all
associated tags. The object identifier becomes undefined and unused.

Note: This subroutine cannot be used to add to a display list.

Parameter
object Specifies the identifier of the object to delete.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Deleting tags from a display list with the deltag subroutine.

Opening an object for editing with the editobj subroutine.

Creating an object with the makeobj subroutine.

Deleting a routine from an object with the objdelete subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-81

de I tag

deltag Subroutine

Purpose
Deletes tags from objects.

Library
Graphics Library (libgl.a)

C Syntax
void deltag(lnt32 tag)

FORTRAN Syntax
SUBROUTINE DELTAG(tag)
INTEGER*4 tag

Description

Parameter

The deltag subroutine removes the tag from the object currently open for editing. The
STARTTAG and ENDTAG special tags cannot be deleted.

Note: This editing subroutine itself cannot be used to add to a display list.

tag Specifies the tag to delete.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Opening an object for editing with the editobj subroutine.

Marking a location in a display list with the maketag subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

1-82 Graphics Subroutines Reference

depth cue

depthcue Subroutine

Purpose
Turns depth-cueing on and off.

Library
Graphics Library (libgl.a)

C Syntax
void depthcue(lnt32 mode)

FORTRAN Syntax
SUBROUTINE DEPTHC(mode)
LOGICAL mode;

Description

Parameter

Example

The depthcue subroutine turns depth-cueing on or off. If the value of the mode parameter is
TRUE, depth-cueing is enabled, and all lines, points, characters, and polygons drawn by the
system are depth-cued. This means that the color of the lines, points, characters, or
polygons are determined by the z values and the range of color indexes specified by the
lshaderange or IRGBrange subroutine determines the color of the lines, points, characters,
or polygons.

The z values, whose range is set by the lsetdepth subroutine, are mapped linearly into the
range of color indexes. In this mode, lines that vary greatly in z value span the range of
colors specified by the lshaderange subroutine.

For depth-cueing to work properly, the color map locations specified by the lshaderange
subroutine must be loaded with a series of colors that gradually increase or decrease in
intensity.

mode Specifies a value indicating OFF or ON state of depth-cueing. Values for the
mode parameter are as follows:

1 =TRUE (ON)

0 = FALSE (OFF)

1. To turn depth-cueing on, the example C language program depthcue.c uses the
depthcue subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-83

depthcue

Related Information
Indicating whether depth-cue mode is on or off with the getdcm subroutine.

Setting the range of RGB colors used for depth-cueing with the IRGBrange subroutine.

Setting the viewport depth range with the lsetdepth subroutine.

Setting the range of color indexes used for depth-cueing with the lshaderange subroutine.

GL Introduction, Performing Depth-Cueing, and Working in Color Map and RGB Modes in
Graphics Programming Concepts.

1-84 Graphics Subroutines Reference

dopup

dopup Subroutine

Purpose
Displays the specified pop-up menu.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 dopup(lnt32 popup)

FORTRAN Syntax
INTEGER*4 FUNCTION DOPUP(popup)
iNTEGER*4 popup

Description

Parameter

Example

The dopup subroutine displays the specified pop-up menu until the user makes a selection.
If the calling program has the input focus, the menu is displayed and the system returns the
value resulting from the item selection.

The value can be returned by a submenu, a function, or a number bound directly to an item.
If no selection is made, the dopup subroutine returns -1.

When the menu is defined, the defpup or addtopup subroutine specifies the list of menu
entries and their corresponding actions.

Note: This subroutine cannot be used to add to a display list.

po pup Specifies which the pop-up menu to display.

1. To display a popup menu, the example C language program curved.c uses the dopup
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Adding an item to an existing pop-up menu with the addtopup subroutine.

Defining a pop-up menu with the defpup subroutine.

Deallocating a pop-up menu and its data structures with the freepup subroutine.

Allocating and initializing a structure for a new pop-up menu with the newpup subroutine.

Enabling or disabling a given pop-up entry with the setpup subroutine.

GL Introduction and Creating and Managing Pop-Up Menus in GL in Graphics Programming
Concepts.

GL Subroutines 1-85

doublebuffer

doublebuffer Subroutine

Purpose
Sets the display mode to double buffer mode.

Library
Graphics Library (libgl.a)

C Syntax
void doublebuffer()

FORTRAN Syntax
SUBROUTINE DOUBLEBUFFER

Note: In using FORTRAN syntax, it is necessary to spell out DOUBLEBUFFER because
the word double is a reserved word.

Description

Example

The doublebuffer subroutine reorganizes the frame buffer bitplanes into a pair of frame
buffers, the front buffer and the back buffer. In double buffer mode, only the front buffer is
displayed. Drawing routines normally update only the back bitplanes; the frontbuffer and
backbuffer subroutines can override the default.

The actual repartitioning of the frame buffer into double buffer mode does not occur until the
gconfig subroutine is called. The gconfig subroutine sets frontbuffer = FALSE and
backbuffer =TRUE in double buffer mode.

Note: This subroutine cannot be used to add to a display list.

1 . To allow smooth motion when moving and redrawing a cube, the example C language
program backface.c sets the display mode for double buffering with the doublebuffer
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Enabling updating in the back buffer with the backbuffer subroutine.

Reconfiguring the system with the gconfig subroutine.

Finding out which buffers are enabled for writing with the getbuffer subroutine.

Returning the current display mode with the getdisplaymode subroutine.

Enabling updating in the front buffer with the frontbuffer subroutine.

Writing to and displaying all bitplanes with the singlebuffer subroutine.

Exchanging the font and back buffers with the swapbuffers subroutine.

Configuring the Frame Buffer, Creating Animated Screens, and Understanding the Hardware
Used by GL in Graphics Programming Concepts.

1-86 Graphics Subroutines Reference

draw

draw Subroutine

Purpose
Draws a line.

Library
Graphics Library (libgl.a)

C Syntax
void draw
(Coord x, Coord y, Coord z)

void drawi
(lcoord x, lcoord y, lcoord z)

void draws
(Scoord x, Scoord y, Scoord z)

void draw2
(Coord x, Coord y)

void draw2i
(lcoord x, lcoord y)

void draw2s
(Scoord x, Scoord y)

FORTRAN Syntax
SUBROUTINE DRAW{x, y, z)
REAL x, y, z

SUBROUTINE DRAWl{x, y, z)
INTEGER*4 x, y, z

SUBROUTINE DRAWS{x, y, z)
INTEGER*2 x, y, z

SUBROUTINE DRAW2{x, y)
REAL x, y

SUBROUTINE DRAW21{x, y)
INTEGER*4 x, y

SUBROUTINE DRAW2S{x, y)
INTEGER*2 x, y

Description
The draw subroutine connects the point specifies by the x, y, z parameters and the current
graphics position with a line segment. It uses the current line attributes: linestyle, linewidth,
color (if in depth-cue mode, the depth-cued color is used), and writemask.

The draw subroutine updates the current graphics position to the specified point.

Note: Do not place routines that invalidate the current graphics position within sequences
of moves and draws.

GL Subroutines 1-87

draw

The six different forms for the draw subroutine are as follows:

lnt16

lnt32

float

2-D 3-D

draw2s

draw2i

draw2

draws

drawi

draw

The syntax for each of the subroutine forms is the same except for the parameter type.
They differ only in that draw expects real coordinates, drawi expects integer coordinates,
and draws expects short integer coordinates. In addition, the draw2 routines assume a 2-D
point instead of a 3-D point.

Parameters

Example

x

y

z

Specifies the x coordinate of the point to which to draw a line segment.

Specifies the y coordinate of the point to which to draw a line segment.

Specifies the z coordinate of the point to which to draw a line segment (not
used by 2-D subroutines).

1. To draw the edges of a cube, the example C language program depthcue.c uses the
drawi subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Moving the current graphics position to a specified point with the move subroutine.

Drawing a point with the pnt subroutine.

Drawing a relative line with the rdr subroutine.

Moving the current graphics position to a point relative to the current point with the rmv
subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, Performing Depth-Cueing,
Setting Attributes, and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

1-88 Graphics Subroutines Reference

drawmode

drawmode Subroutine

Purpose
Specifies the target frame buffer for the drawing subroutines.

Library
Graphics Library (libgl.a)

C Syntax
void drawmode(lnt32 mode)

FORTRAN Syntax
SUBROUTINE DRAWMO(mode)
INTEGER*4 mode

Description

Parameter

The drawmode subroutine reconfigures the system and redirects the target of a number of
GL drawing and attribute subroutines. The affected routines depend on the mode that is
chosen. Calls to the color, getcolor, writemask, getwritemask, mapcolor, and getmcolor
subroutines affect only the current drawing mode. In cursor mode, only the getmcolor and
mapcolor subroutines perform a function.

Note: This subroutine cannot be used to add to a display list.

mode Specifies the drawing mode identifier. The modes and their functions appear in
the following table.

Mode Identifier

UNDERDRAW

NORMALDRAW

OVERDRAW

PUP DRAW

CURSOR DRAW

Function

Redirects drawing into the background (underlay)
bitplanes.

Redirects all drawing into the main frame buffer
bitplanes.

Redirects drawing into the foreground (overlay)
bitplanes.

Redirects mapcolor and getmcolor subroutines
to affect the pop-up menus only.

Redirects mapcolor and getmcolor subroutines
to affect the cursor only.

GL Subroutines 1-89

drawmode

UNDERDRAW The line drawing and polygon drawing routines (both
begin-end style and move-draw style) draw into the underlay
planes rather than the main frame buffer. The pixmap transfer
subroutines (the rectread, rectwrite, and rectcopy
subroutines) will also draw into the underlays. All of the current
attributes are used during drawing, except the color and the
writemask. Each drawing mode has a separate current color
and current writemask, which are saved and restored when
that drawing mode is exited and entered.

Drawing into the underlay planes can only be done in
colorindex mode. The system will automatically go into
colorindex mode when the UNDERDRAW mode is entered.
Lighting and NURBS subroutines do not work correctly in
UNDERDRAW mode. Because of the small number of
bitplanes, only flat shading is possible; Gouraud shading does
not work. The z-buffer is not updated when in UNDERDRAW
mode.

The system must have been configured to contain underlay
planes before the UNDERDRAW mode can be entered.
Underlay planes may be configured by calling the underlay
subroutine followed by the gconfig subroutine.

NORMALDRAW All drawing occurs in the main frame buffer. NORMALDRAW is
the default drawing mode.

OVERDRAW The line drawing and polygon drawing routines (both
begin ... end style and move ... draw style) draw into the overlay
planes rather than the main frame buffer. The pixmap transfer
subroutines (the rectread, rectwrite, and rectcopy
subroutines) will also draw into the overlays. All of the current
attributes are used during drawing, except the color and the
writemask. Each draw mode has a separate current color and
current writemask, which are saved and restored when that
draw mode is exited and entered.

Drawing into the overlay planes can only be done in colorindex
mode. The system will automaticatly go into colorindex mode
when the OVERDRAW mode is entered. Lighting and NURBS
subroutines do not work correctly in OVERDRAW mode.
Because of the small number of bitplanes, only flat shading is
possible; Gouraud shading does not work. The z-buffer is not
updated when in OVERDRAW mode.

The system must have been configured to contain overlay
planes before the OVERDRAW mode can be entered. Overlay
planes may be configured by calling the overlay subroutine
followed by the gconfig subroutine.

1-90 Graphics Subroutines Reference

Example

PUPDRAW

drawmode

Only the mapcolor subroutine and getmcolor subroutine are
affected. Drawing subroutines cannot be used to draw into the
pop-up menus. In particular, lines, polygons, and pixmaps
cannot be drawn into the pop-up menus. Only the pop-up
subroutines may be used to access the pop-up menus.

CURSORDRAW Only the mapcolor and getmcolor subroutine are affected.
Drawing subroutines cannot be used to draw into the cursor.
Only the cursor subroutines access the cursor.

1. To set the drawing mode for operations on the pop-up menus, the example C language
program prompt.c uses the drawmode subroutine with the PUPDRAW mode identifier.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Enabling drawing into the back buffer with the backbuffer subroutine.

Setting color map mode as the current mode with the cmode subroutine.

Setting the color index in the current mode with the color subroutine.

Setting the display mode to double buffer mode with the doublebuffer subroutine.

Enabling or disabling drawing into the front buffer with the frontbuffer subroutine.

Changing a color map entry to an RGB value with the mapcolor subroutine.

Setting the number of bitplanes used for overlay colors with the overlay subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

Setting a display mode that bypasses the color map with the RGBmode subroutine.

Granting write access to a subset of available bitplanes with the RGBwritemask subroutine.

Setting the display mode to single buffer mode with the singlebuffer subroutine.

Setting the number of bitplanes used for underlay colors with the underlay subroutine.

Granting write permission to a subset of available bitplanes with the writemask subroutine.

Turning z-buffer mode on and off with the zbuffer subroutine.

Enabling drawing to the z-buffer with the zdraw subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, Creating
Animated Screens, Removing Hidden Surfaces, and Working in Color Map and RGB Modes
in Graphics Programming Concepts.

GL Subroutines 1-91

editobj

editobj Subroutine

Purpose
Opens a display list for editing.

Library
Graphics Library (libgl.a)

C Syntax
void editobj(lnt32 object)

FORTRAN Syntax
SUBROUTINE EDITOB{object)
INTEGER*4 object

Description

Parameter

The editobj subroutine opens a display list for editing. The system initializes an editing
pointer to the end of the newly opened object. It appends all new routines at that pointer
location until there is a call to the closeobj subroutine or to one that repositions the editing
pointer, such as the objdelete, objinsert, or objreplace subroutines.

Usually it is not necessary to be concerned about memory allocation. Objects grow and
shrink automatically as routines are added and deleted.

A call for an undefined object identifier causes the system to display an error message.

Note: This editing subroutine itself cannot be added to a display list.

object Specifies identifier for object definition to edit.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying the amount of memory allocated for an object with the chunksize subroutine.

Closing an object with the closeobj subroutine.

Compacting the memory storage of an object with the compactify subroutine.

Creating an object with the makeobj subroutine.

Inserting a routine into an object with the objinsert subroutine.

Deleting a routine from an object with the objdelete subroutine.

Replacing an existing display list routine with a new one with the objreplace subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

1-92 Graphics Subroutines Reference

endclosedline

endclosedline Subroutine

Purpose
Ends the interpretation of vertex subroutines as closed line vertices.

Library
Graphics Library (libgl.a)

C Syntax
void endclosedline()

FORTRAN Syntax
SUBROUTINE ENDCLO

Description
The endclosedline subroutine ends the scope of a preceding bgnclosedline subroutine.
You cannot specify more than 256 vertices between the bgnclosedline and endclosedline
subroutines.

After the endclosedline subroutine, the system draws a line from the final vertex back to the
initial vertex, and the current graphics position is left undefined.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing closed line vertices with the bgnclosedline subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

GL Subroutines 1-93

endf u llscrn

endfullscrn Subroutine

Purpose
Ends full-screen mode.

Library
Graphics Library (libgl.a)

C Syntax
void endfullscrn()

FORTRAN Syntax
SUBROUTINE ENDFUL

Description
The endfullscrn subroutine ends full-screen mode and returns the screenmask and
viewport to the boundaries of the current window. This subroutine leaves the current
transformation unchanged.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Giving a program the entire screen as a window with the fullscrn subroutine.

Windows and Input Control Overview for GL in Graphics Programming Concepts.

1-94 Graphics Subroutines Reference

end line

endline Subroutine

Purpose
Ends interpretation of vertex subroutines as line vertices.

Library
Graphics Library (libgl.a)

C Syntax
void endline()

FORTRAN Syntax
SUBROUTINE ENDLIN

Description
The endline subroutine ends the scope of a preceding bgnline subroutine. You cannot
specify more than 256 vertices between the bgnline and endline subroutines.

After the endline subroutine executes, the current graphics position is undefined.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing vertex-based lines with the bgnline subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

GL Subroutines 1-95

end pick

endpick Subroutine

Purpose
Turns off picking mode.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 endpick(lnt16 buffet(])

FORTRAN Syntax
INTEGER*4 FUNCTION ENDPIC(buffe1'
INTEGER*2 buffer(1)

Description

Parameter

The endpick subroutine turns off picking mode and returns the number of hits.

When the system is in picking mode, and a subroutine draws in the picking region, the
contents of the name stack are stored in a buffer, along with the number of names in the
stack.

If a drawing primitive overlaps or intrudes upon the picking volume, a hit has occurred. The
hit is recorded only if the name stack has been touched since the last hit. Any of the
subroutines loadname, pushname, or popname touch the name stack. The first hit after
picking begins is always recorded.

A hit is recorded by placing the depth of the name stack into the next vacant slot in the
buffer, followed by the entire contents of the name stack. The bottom of the name stack is
transferred to the buffer first, followed by the second from the bottom entry of the name
stack, and so forth. In other words, from bottom to top is mapped to from left to right.

Note: This subroutine cannot be used to add to a display list.

buffer Specifies a buffer in which to write the number of hits.

Return Value

Example

The number of times the name stack was written to the buffer. If the returned function value
is negative, then the buffer was too small to contain all the readings from the name stack.
The absolute value is the number of stacks actually recorded.

1. To turn off picking mode, the example C language program pick1 .c calls the endpick
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-96 Graphics Subroutines Reference

Related Information
Turning off selecting mode with the endselect subroutine.

Putting the system in selecting mode with the gselect subroutine.

Initializing the name stack with the initnames subroutine.

Loading the name on top of the name stack with the loadname subroutine.

Putting the system in picking mode with the pick subroutine.

Popping a name off the name stack with the popname subroutine.

Pushing a new name onto the name stack with the pushname subroutine.

end pick

GL Introduction, Working with Coordinate Systems in GL, and Picking and Selecting
Overview for GL in Graphics Programming Concepts.

GL Subroutines 1-97

endpoint

endpoint Subroutine

Purpose
Ends interpretation of vertex routines as points.

Library
Graphics Library (libgl.a)

C Syntax
void endpoint()

FORTRAN Syntax
SUBROUTINE ENDPOI

Description
The endpoint subroutine ends the scope of a preceding bgnpoint subroutine. You cannot
specify more than 256 vertices between the preceding bgnpoint and endpoint subroutines.

After the endpoint subroutine executes, the current graphics position is the most recent
vertex.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

1-98 Graphics Subroutines Reference

end polygon

endpolygon Subroutine

Purpose
Ends interpretation of vertex routines as polygon vertices.

Library
Graphics Library (libgl.a)

C Syntax
void endpolygon()

FORTRAN Syntax
SUBROUTINE ENDPOL

Description

Example

The endpolygon subroutine ends the scope of a preceding bgnpolygon subroutine. You
cannot specify more than 256 vertices between the preceding bgnpolygon and
endpolygon subroutines.

After the endpolygon subroutine executes, the current graphics position is undefined.

Note: This subroutine cannot be used to add to a display list.

1. To end the description of a polygon, the example C language program cylinder2.c uses
the endpolygon subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing vertex-based polygons with the bgnpolygon subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

GL Subroutines 1-99

endselect

endselect Subroutine

Purpose
Turns off selecting mode.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 endselect{lnt16 buffelf.])

FORTRAN Syntax
INTEGER*4 FUNCTION ENDSEL{buffe1'
INTEGER*2 buffer(1)

Description

Parameter

The endselect subroutine turns off selecting mode and returns the number of hits.

When the system is in selecting mode, and a subroutine draws in the selecting region, the
contents of the name stack are stored in a buffer, along with the number of names in the
stack.

If a drawing primitive overlaps or intrudes upon the selecting volume, a hit has occurred. The
hit is recorded only if the name stack has been touched since the last hit. Any of the
subroutines loadname, pushname, or popname touch the name stack. The first hit after
selecting begins is always recorded.

A hit is recorded by placing the depth of the name stack into the next vacant slot in the
buffer, followed by the entire contents of the name stack. The bottom of the name stack is
transferred to the buffer first, followed by the second from the bottom entry of the name
stack, and so forth. In other words, from bottom to top is mapped to from left to right.

Note: This subroutine cannot be used to add to a display list.

buffer Specifies a buffer in which to write the number of hits.

Return Value

Example

The number of times the name stack was recorded into the buffer. If the returned function
value is negative, then the buffer was too small to contain all the readings from the name
stack. The absolute value is the number of stacks actually recorded.

1. To turn off selecting mode, the example C language program select1 .c uses the
endselect subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-1 00 Graphics Subroutines Reference

Related Information
Turning off picking mode with the endpick subroutine.

Putting the system in selecting mode with the gselect subroutine.

Initializing the name stack with the initnames subroutine.

Loading the name on top of the name stack with the loadname subroutine.

Putting the system in picking mode with the pick subroutine.

Popping a name off the name stack with the popname subroutine.

Pushing a new name onto the name stack with the pushname subroutine.

endselect

GL Introduction and Picking and Selecting Overview for GL in Graphics Programming
Concepts.

GL Subroutines 1-101

endtmesh

endtmesh Subroutine

Purpose
Ends interpretation of vertex subroutines as triangle mesh vertices.

Library
Graphics Library (libgl.a)

C Syntax
void endtmesh()

FORTRAN Syntax
SUBROUTINE ENDTME

Description
The endtmesh subroutine ends the system interpretation of vertex (begin-end style)
subroutines as triangle mesh vertices, which are used to define a mesh of triangles.

You cannot specify more than 256 vertices between the bgntmesh and endtmesh
subroutines.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing triangle mesh vertices with the bgntmesh subroutine.

Setting the current color vector in RGB mode with the c subroutine.

Toggling the triangle mesh register pointer with the swaptmesh subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

1-1 02 Graphics Subroutines Reference

font

font Subroutine

Purpose
Selects a raster font for drawing text strings.

Library
Graphics Library (libgl.a)

C Syntax
void font(lnt32 fontnum)

FORTRAN Syntax
SUBROUTINE FONT(fontnum)
INTEGER*4 fontnum

Description

Parameter

Example

The font subroutine selects the raster font that the charstr subroutine uses when it draws a
text string. This font remains in effect until you call the font subroutine again. Font o (zero)
is the default.

fontnum Specifies a font identifier, an index into the font table built by the
defrasterfont subroutine. If you specify a font number that is not defined,
the system selects font o (zero).

1. To select a raster font defined with the defrasterfont subroutine, the example C
language program curved.c uses the font subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

This subroutine is not available for Japanese Language Support.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a string of raster characters on the screen with the charstr subroutine.

Defining bitmaps for a raster font with the defrasterfont subroutine.

Returning the baseline extent of the longest character descender with the getdescender
subroutine.

Returning the current raster font number with the getfont subroutine.

Returning the maximum character height in the current raster with the getheight subroutine.

Returning the width of the specified text string with the strwidth subroutine.

GL Introduction and Creating Text Characters in GL in Graphics Programming Concepts.

GL Subroutines 1-1 03

freepup

freepup Subroutine

Purpose
Deallocates a menu.

Library
Graphics Library (libgl.a)

C Syntax
void freepup(lnt32 popup)

FORTRAN Syntax
SUBROUTINE FREEPU(popup)
INTEGER*4 popup

Description

Parameter

The freepup subroutine deallocates a pop-up menu, freeing the memory reserved for its
data structures.

Note: This subroutine cannot be used to add to a display list.

po pup Specifies the pop-up menu to deallocate.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Adding an item to an existing pop-up menu with the addtopup subroutine.

Defining a pop-up menu with the defpup subroutine.

Displaying a pop-up menu with the dopup subroutine.

Allocating and initializing a structure for a new pop-up menu with the newpup subroutine.

Enabling or disabling a given pop-up entry with the setpup subroutine.

GL Introduction and Creating and Managing Pop-Up Menus in GL in Graphics Programming
Concepts.

1-1 04 Graphics Subroutines Reference

frontbuffer

frontbuffer Subroutine

Purpose
Enables or disables drawing into the front buffer.

Library
Graphics Library (libgl.a)

C Syntax
void frontbuffer(lnt32 boo/)

FORTRAN Syntax
SUBROUTINE FRONTB(boo~
LOGICAL boo/

Description

Parameter

The frontbuffer subroutine enables drawing into the front frame buffer. In common usage,
drawing is done to the back buffer, after which a call to the swapbuffers subroutine is made
to exchange buffers. The frontbuffer subroutine can be used to override this default.

This routine is useful only in double buffer mode and is ignored in single buffer mode.

boo/ Specifies the value for the state of the front frame buffer.

The settings for the boo/ parameter are:

TRUE= drawing into the front buffer is enabled.

FALSE = drawing into the front buffer is disabled.

The gconfig subroutine sets the front buffer to FALSE.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Enabling drawing into the back buffer with the backbuffer subroutine.

Setting the display mode to double buffer mode with the doublebuffer subroutine.

Finding out which buffers are enabled for writing with the getbuffer subroutine.

Exchanging the front and back buffers with the swapbuffers subroutine.

Configuring the Frame Buffer, Creating Animated Screens, and Understanding the Hardware
Used by GL in Graphics Programming Concepts.

GL Subroutines 1-1 05

fudge

fudge Subroutine

Purpose
Specifies pixel values that are added to a window.

Library
Graphics Library (libgl.a)

C Syntax
void fudge(lnt32 xfudge, lnt32 yfudge)

FORTRAN Syntax
SUBROUTINE FUDGE(xfudge, yfudge)
INTEGER*4 xfudge, yfudge

Description
The fudge subroutine specifies pixel values that are added to the dimensions of a window
when it is sized. Typically, this subroutine is used to create interior window borders. Call the
fudge subroutine before calling the winopen subroutine.

The fudge subroutine is useful in conjunction with the stepunit and keepaspect
subroutines. With the stepunit subroutine, the window size for integers m and n is:

width = xunit • m + xfudge
height= yunit• n + yfudge

With the keepa~pect subroutine the window size is (width, heigh~, where:

(width- xfudge) • yaspect = (height-yfudge) • xaspect

Note: This subroutine cannot be used to add to a display list.

Parameters
xfudge Specifies the number of pixels added in the xdirection.

Specifies the number of pixels added in the ydirection. yfudge

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Obtaining the size of the window with the getsize subroutine.

Removing the border from a window with the noborder subroutine.

Specifying a window size change in discrete steps with the stepunit subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-106 Graphics Subroutines Reference

fullscrn Subroutine

Purpose
Gives a program the entire screen as a window.

Library
Graphics Library (libgl.a)

C Syntax
void fullscrn()

FORTRAN Syntax
SUBROUTINE FULLSC

Description

fullscrn

The fullscrn subroutine gives a program the entire screen as a window. The subroutine calls

viewport(O,XMAXSCREEN,0,YMAXSCREEN)

and sets up the default coordinate system to be defined by the winopen subroutine.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Ending fullscreen mode with the endfullscrn subroutine.

Initializing the graphics system without changing the color map with the gbegin subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-107

gammaramp

gammaramp Subroutine

Purpose
Defines a color map ramp for gamma correction.

Library
Graphics Library (libgl.a)

C Syntax
void gammaramp
(lnt16 rea1256], lnt16 green[256], lnt16 blue[256])

FORTRAN Syntax
SUBROUTINE GAMMAR(red, green, blue)
INTEGER*2 red(256), green(256), blue(256)

Description
The gammaramp subroutine supplies a level of indirection for all color map and RGB
values. It can provide gamma correction, equalize monitors with different color
characteristics, or modify the color warmth of the monitor. The default setting has
red[t]=green[t]=blue[t]=i.

When the system draws an object in RGB mode, it writes the actual red, green, and blue
values to the bitplanes. However, the values displayed on the screen are the indirect values:
red, green, blue (where red, green, blue are the arrays last specified by the gammaramp
subroutine).

In color map mode, objects written in color i are displayed as red, green, blue.

Note: This subroutine cannot be used to add to a display list.

Parameters
red Specifies an array of 256 elements, each containing a setting for the red

electron gun.

green Specifies an array of 256 elements, each containing a setting for the green
electron gun.

blue Specifies an array of 256 elements, each containing a setting for the blue
electron gun.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/incl ude/gl/gl.h Contains constant and variable type definitions for GL.

1-108 Graphics Subroutines Reference

gammaramp

Related Information
Setting color map mode as the current mode with the cmode subroutine.

Setting the current color in color map mode with the color subroutine.

Changing a color map entry to an RGB value with the mapcolor subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

Working in Color Map and RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-1 09

gbegin

gbegin Subroutine

Purpose
Initializes the graphics system without changing the color map.

Library
Graphics Library (libgl.a)

C Syntax
void gbegin()

FORTRAN Syntax
SUBROUTINE GBEGIN

Description
The gbegin subroutine initializes the graphics environment to its default values for global
state attributes and creates a window that covers the screen. The gbegin subroutine queues
the REDRAW window manager device, but does not change the color map or interfere with
other programs that use the current color map.

The recommendation is to use the winopen subroutine for initialization functions to take
advantage of the window manager.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Giving a program the entire screen as a window with the fullscrn subroutine.

Initializing the graphics system with the ginit subroutine.

Resetting all global state attributes to their initial values with the greset subroutine.

Creating a new window with the winopen subroutine.

GL Introduction, Getting Ready to Run GL, Starting GL Functions, Setting Attributes in GL,

and Windows and Input Control Overview for GL in Graphics Programming Concepts.

1-11 0 Graphics Subroutines Reference

gconfig

gconfig Subroutine

Purpose
Reconfigures the system.

Library
Graphics Library (libgl.a)

C Syntax
void gconfig()

FORTRAN Syntax
SUBROUTINE GCONFI

Description

Example

The gconfig subroutine reconfigures the system by setting the requested modes. This
subroutine must follow the overlay, underlay, doublebuffer, multimap, onemap,
RGBmode, cmode, and singlebuffer subroutines.

After a call to the gconfig subroutine, the current writemask and color are reset to their
default values. The contents of the color map do not change.

Note: This subroutine cannot be used to add to a display list.

1. To configure the system after calling the overlay subroutine and the doublebuffer
subroutine, the example C language program ovrlay.c uses the qconfig subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting color map mode as the current mode with the cmode subroutine.

Setting the display mode to double buffer mode with the doublebuffer subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Organizing the color map as one large map with the onemap subroutine.

Setting the number of bitplanes used for overlay with the overlay subroutine.

Setting a display mode that bypasses the color map with the RGBmode subroutine.

Setting the display mode to single buffer mode with the singlebuffer subroutine.

Setting the number of bitplanes used for underlay with the underlay subroutine.

GL Introduction, Getting Ready to Run GL, Starting GL Functions, Configuring the Frame
Buffer for GL, and Working in Color Map and RGB Modes in GL in Graphics Programming
Concepts.

GL Subroutines 1-111

genobj

genobj Subroutine

Purpose
Returns a unique integer for use as an object identifier.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 genobj()

FORTRAN Syntax
INTEGER*4 FUNCTION GENOBJ

Description
The genobj subroutine generates unique 31-bit integer numbers for use as object identifiers.

When using a combination of user-defined and genobj-defined numbers to generate object
numbers, ensure that each combination is unique because the genobj subroutine will not
generate an object name that is currently in use.

The isobj subroutine can affirm the uniqueness of an object number.

Note: This editing subroutine itself cannot be added to a display list.

Return Value
A unique 31-bit integer for use as an object identifier.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing an instance of an object with the callobj subroutine.

Opening an object for editing with the editobj subroutine.

Returning a unique integer for use as a tag with the gentag subroutine.

Establishing the uniqueness of an object number with the isobj subroutine.

Creating an object with the makeobj subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

1-112 Graphics Subroutines Reference

gen tag

gentag Subroutine

Purpose
Returns a unique integer for use as a tag.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 gentag{)

FORTRAN Syntax
INTEGER*4 FUNCTION GENTAG

Description
The gentag subroutine generates a unique 31-bit integer number for use as a tag. Tags
must be unique within an object. Although the gentag subroutine generates unique tags, if a
tag is defined later with the same value, the first tag is lost.

The istag subroutine can affirm the uniqueness of a tag number.

Note: This editing subroutine itself cannot be added to a display list.

Return Value
A unique 31-bit integer for use as a tag.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Deleting tags from a display list with the deltag subroutine.

Returning a unique integer for use as an object identifier with the genobj subroutine.

Establishing the uniqueness of a tag with the istag subroutine.

Marking a location in a display list with the maketag subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-113

getbackface

getbackface Subroutine

Purpose
Returns the state of backfacing filled polygon removal.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getbackface{)

FORTRAN Syntax
INTEGER*4 GETBAC

Description
The getbackface subroutine returns the state of backfacing filled polygon removal. If
backface removal is on, the system draws only those polygons that face the viewer.

Note: This subroutine cannot be used to add to a display list.

Return Values
0 Removal enabled.

Removal disabled. 1

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Allowing or suppressing the display of backfacing polygons with the backface subroutine.

GL Introduction, Querying the System, and Removing Hidden Surfaces in Graphics
Programming Concepts.

1-114 Graphics Subroutines Reference

getbuffer

getbuffer Subroutine

Purpose
Indicates which buffers are enabled for writing.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getbuffer()

FORTRAN Syntax
INTEGER*4 FUNCTION GETBUF

Description
The getbuffer subroutine indicates which buffers are enabled for writing in double buffer
mode.

Note: This subroutine cannot be used to add to a display list.

Return Values

Buffer Enabled

None

Back buffer (default)

Front buffer

Both buffers

z-buffer drawing

Symbolic Name

NOBUFFER

BCKBUFFER

FRNTBUFFER

BOTHBUFFERS

DRAWZBUFFER

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Enabling updating in the back buffer with the backbuffer subroutine.

Setting the display mode to double buffer mode with the doublebuffer subroutine.

Enabling updating in the front buffer with the frontbuffer subroutine.

Exchanging the front and back buffers with the swapbuffers subroutine.

Enabling drawing in the zbuffer with the zdraw subroutine.

Configuring the Frame Buffer, Creating Animated Screens, Querying the System, and
Understanding the Hardware Used by GL in Graphics Programming Concepts.

GL Subroutines 1-115

getbutton

getbutton Subroutine

Purpose
Returns the state (up or down) of a button.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getbutton(Device numbel}

FORTRAN Syntax
LOGICAL FUNCTION GETBUT(numbel}
INTEGER*2 number

Description

Parameter

The getbutton subroutine returns the state of the button specified in the number parameter.
A complete list of buttons can be found in the file /usr/include/gl/device.h.

Note: This subroutine cannot be used to add to a display list.

number Specifies the number of the button to test.

Return Values

Example

The return values and their corresponding states are as follows:

Value State

0 Up

1 Down

-1 Invalid device number

1. To check the state of various buttons, the example C language program scrn_rotate.c
uses the getbutton subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

Files
/usr/include/gl/gl.h

/usr/include/gl/device.h

1-116 Graphics Subroutines Reference

Contains constant and variable type definitions for GL.

Contains constant definitions for devices.

getbutton

Related Information
Returning the current state of a valuator with the getvaluator subroutine.

GL Introduction, Controlling Queues and Devices in GL, Controlling the Keyboard in GL, and
Querying the System in GL in Graphics Programming Concepts.

GL Subroutines 1-117

getcmmode

getcmmode Subroutine

Purpose
Returns the organization of the color map.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getcmmode{)

FORTRAN Syntax
LOGICAL FUNCTION GETCMM

Description
The getcmmode subroutine returns the organization of the current color map.

Note: This subroutine cannot be used to add to a display list.

Return Values
FALSE = multimap mode

TRUE = onemap mode

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the current display mode with the getdisplaymode subroutine

Returning the number of the current color map with the getmap subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Organizing the color map as one large map with the onemap subroutine.

Querying the System and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

1-118 Graphics Subroutines Reference

getcolor

getcolor Subroutine

Purpose
Returns the current color.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getcolor()

FORTRAN Syntax
INTEGER*4 FUNCTION GETCOL

Description
The getcolor subroutine returns the currentindex into the color map for the current drawing
mode. In NORMALDRAW, an index from Oto 4095 is returned. In OVERDRAW and
UNDERDRAW, an index from 0 to 15 is returned. The under/over planes have a color map
that is separate from the main color map.

Note: This subroutine cannot be used to add to a display list.

Return Value
An index into the color map for the current color.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the color index in the current mode with the color subroutine.

Specifying the target framebuffer of the drawing subroutines with the drawmode subroutine.

Returning a color map entry with the getmcolor subroutine.

Returning the current RGB value with the gRGBcolor subroutine.

Creating Animated Screens, Querying the System, Setting Attributes, Understanding the
Hardware Used by GL, and Working in Color Map and RGB Modes in Graphics
Programming Concepts.

GL Subroutines 1-119

getcpos

getcpos Subroutine

Purpose
Returns the current character position.

Library
Graphics Library (libgl.a)

C Syntax
void getcpos(Screencoord *ix, Screencoord * iy)

FORTRAN Syntax
SUBROUTINE GETCPO(ix, iy)
INTEGER*2 ix, iy

Description
The getcpos subroutine gets the current character position, in screen coordinates relative to
the lower left corner of the window, and writes it into the parameters.

Note: This subroutine cannot be used to add to a display list.

Parameters
ix Specifies a pointer to the location in which to write the x coordinate of the

current character position.

iy Specifies a pointer to the location in which to write the y coordinate of the
current character position.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

This subroutine is not available for Japanese Language Support.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a string of raster characters on the screen with the charstr subroutine.

Moving the current character position with the cmov subroutine.

Returning the current graphics position with the getgpos subroutine.

GL Introduction, Creating Text Characters in GL, and Querying the System in GL in Graphics
Programming Concepts.

1-120 Graphics Subroutines Reference

getcursor

getcursor Subroutine

Purpose

Library

C Syntax

Returns the cursor characteristics.

Graphics Library (libgl.a)

void getcursor
(lnt16 *index,
Colorindex *color, Colorindex *writemask,
lnt32 *boo~

FORTRAN Syntax
SUBROUTINE GETCUR(index, color, writemask, boo~
INTEGER*2 index, color, writemask
LOGICAL boo/

Description
The getcursor subroutine finds the index of the current cursor and returns it in the index
parameter. The cursor index is an index into a table of cursor bitmaps set by the defcursor
subroutine.

The default is the cursor at index O (zero) in the cursor bitmaps. This cursor is displayed in
red and is automatically updated on each vertical retrace.

Note: This subroutine cannot be used to add to a display list.

Parameters
index Specifies an index that was previously associated with a bitmap by the

defcursor subroutine.

color

writemask

boo/

Retained for compatibility, but disregarded.

Retained for compatibility, but disregarded.

Specifies a pointer to the location into which the system returns a boolean
indicating if the cursor is visible in the current window.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a cursor with the defcursor subroutine.

Setting the cursor characteristics with the setcursor subroutine.

Creating a Cursor in GL, Querying the System, and Creating and Managing Windows in GL
in Graphics Programming Concepts.

GL Subroutines 1-121

getdcm

getdcm Subroutine

Purpose
Indicates whether depth-cue mode is on or off.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getdcm()

FORTRAN Syntax
LOGICAL FUNCTION GETDCM

Description
The getdcm subroutine returns TRUE if the system is in depth-cue mode and FALSE if it is
not.

Note: This subroutine cannot be used to add to a display list.

Return Values
FALSE System not in depth-cue mode.

System in depth-cue mode. TRUE

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Turning depth-cueing on and off with the depthcue subroutine.

GL Introduction, Performing Depth-Cueing, and Querying the System in Graphics
Programming Concepts.

1-122 Graphics Subroutines Reference

getdescender

getdescender Subroutine

Purpose
Returns the baseline extent of the longest character descender.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getdescender() ;

FORTRAN Syntax
INTEGER*4 FUNCTION GETDES

Description
The getdescender subroutine returns the maximum distance (in pixels) between the
baseline of a character and the bottom of the bitmap for that character.

Each character in a font is defined using a bitmap that is displayed relative to the current
character position. Vertical placement of each character is done using the current character
position as the baseline or the line on the page.

The portion of a character that extends below the baseline is called a descender. The
lowercase characters g and p typically have descenders. The returned value of this function
is the length (in pixels) of the longest descender in the current font.

Note: This subroutine cannot be used to add to a display list.

Return Value
The length in pixels of the longest descender in the current font.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the current raster font number with the getfont subroutine.

Returning the maximum character height in the current raster with the getheight subroutine.

Returning the width of the specified text string with the strwidth subroutine.

GL Introduction, Creating Text Characters in GL, and Querying the System in GL in Graphics
Programming Concepts.

GL Subroutines 1-123

getdev

getdev Subroutine

Purpose

Library

C Syntax

Reads a list of valuators.

Graphics Library (libgl.a)

void getdev
(lnt32 number,
Device *devices,
lnt16 *values)

FORTRAN Syntax
SUBROUTINE GETDEV(number, devices, values)
INTEGER*4 number
INTEGER*2 devices(numbery, values(numbery

Description
The getdev subroutine allows you to read as many as 128 valuators and buttons (input
devices) at one time.

Parameters
number Specifies the number of devices pointed to by the devices parameter (no

more than 128).

devices

values

Specifies an array containing the identifiers (device number constants, such
as MOUSEX, BPADX, and LEFTMOUSE) of the devices to read. The array
pointed to by the devices parameter can contain up to 128 devices.

Specifies the array into which the system is to write the values read from the
devices listed in the devices array. Each member in the values array
corresponds to a member of the devices array and returns the state of each
device in the corresponding location.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h

/usr/include/gl/device.h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

Related Information
Returning the current state of a valuator with the getvaluator subroutine.

GL Introduction, Controlling Queues and Devices in GL, Controlling the Keyboard in GL, and
Querying the System in GL in Graphics Programming Concepts.

1-124 Graphics Subroutines Reference

getdisplaymode

getdisplaymode Subroutine

Purpose
Returns the current display mode.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getdisplaymode()

FORTRAN Syntax
INTEGER*4 FUNCTION GETDIS

Description
The getdisplaymode subroutine returns the current configuration of the frame buffer
bitplanes and color map.

Note: This subroutine cannot be used to add to a display list.

Return Values

Display Mode

RGB single buffer mode

color map single buffer mode

color map double buffer mode

RGB double buffer mode

Symbolic Name

DMRGB

DMSINGLE

DMDOUBLE

DMRGBDOUBLE

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting color mode as the current mode with the cmode subroutine.

Setting the display mode to double buffer mode with the doublebuffer subroutine.

Returning the organization of the current color map with the getcmmode subroutine.

Returning the current drawing mode with the getdrawmode subroutine.

Setting a display mode that bypasses the color map with the RGBmode subroutine.

Setting the display to single buffer mode with the singlebuffer subroutine.

Configuring the Frame Buffer, Creating Animated Screens, Understanding the Hardware
Used by GL, and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

GL Subroutines 1-125

getdrawmode

getdrawmode Subroutine

Purpose
Returns the current drawing mode.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getdrawmode()

FORTRAN Syntax
INTEGER*4 FUNCTION GETDRA

Description
The getdrawmode subroutine returns the current drawing mode specified by the
drawmode subroutine.

Note: This subroutine cannot be used to add to a display list.

Return Values

Example

Draw Mode

main frame buffer

overlay bitplanes

underlay (background) bitplanes

pop-up menus

cursor mode

Symbolic Name

NORMALDRAW

OVERDRAW

UNDERDRAW

PUP DRAW

CURSORDRAW

1. To get the current drawing mode so that it can be restored later, the example C language
program prompt.c uses the getdrawmode subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Rerated Information
Choosing a set of bitplanes for drawing with the drawmode subroutine.

Returning the current display mode with the getdisplaymode subroutine.

Popping the viewport stack with the popviewport subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, Creating a
Cursor, Querying the System, Removing Hidden Surfaces, and Working in Color Map and
RGB Mode in Graphics Programming Concepts.

1-126 Graphics Subroutines Reference

getfont Subroutine

Purpose
Returns the index of the current raster font.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getfont{)

FORTRAN Syntax
INTEGER*4 FUNCTION GETFON

Description

getfont

The getfont subroutine returns the index of the current raster font. The returned value is an
index into the raster font table.

Note: This subroutine cannot be used to add to a display list.

Return Value
The index of the current raster font.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

This subroutine is not available for Japanese Language Support.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Writing a text string with the charstr subroutine.

Defining bitmaps for a raster font with the defrasterfont subroutine.

Selecting a raster font with the font subroutine.

GL Introduction, Creating Text Characters in GL, and Querying the System in GL in Graphics
Programming Concepts.

GL Subroutines 1-127

getgpos

getgpos Subroutine

Purpose

Library

C Syntax

Returns the current graphics position.

Graphics Library (libgl.a)

void getgpos
(Coord *fx, Coord *fy,
Coo rd * fz, Coo rd * fw)

FORTRAN Syntax
SUBROUTINE GETGPO(fx, fy, fz, fw)
REAL fx, fy, fz, fw

Description
The getgpos subroutine returns the current graphics position after transformation by the
current matrix.

Note: This subroutine cannot be used to add to a display list.

Parameters
fx Specifies the pointer to the location into which to write the x coordinate of

the current graphics position.

fy

fz

fw

Specifies the pointer to the location into which to write the y coordinate of
the current graphics position.

Specifies the pointer to the location into which to write the z coordinate of
the current graphics position.

Specifies the pointer to the location into which to write the w coordinate of
the current graphics position. The wvalue is used when defining a 3-D
point in homogeneous coordinates.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/incl ude/g Ilg l.h Contains constant and variable type definitions for GL.

Related Information
Getting the current text character position with the getcpos subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, Querying the System, and
Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-128 Graphics Subroutines Reference

getheight

getheight Subroutine

Purpose
Returns the maximum character height in the current raster font.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getheight()

FORTRAN Syntax
INTEGER*4 FUNCTION GETHEI

Description
The getheight subroutine returns the maximum height of the characters, in the current
raster font. The height is defined as the number of pixels between the top of the tallest
ascender (in characters such as f and h) and the bottom of the lowest descender (in
characters such as y and p).

Note: This subroutine cannot be used to add to a display list.

Return Value
The maximum height (in pixels) of a character in the current font.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

This subroutine is not available for Japanese Language Support.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the baseline extent of the longest character descender with the getdescender
subroutine.

Returning the current raster font number with the getfont subroutine.

Returning the width of the specified text string with the strwidth subroutine.

GL Introduction, Creating Text Characters in GL, and Querying the System in GL in Graphics
Programming Concepts.

GL Subroutines 1-129

getlsrepeat

getlsrepeat Subroutine

Purpose
Returns the linestyle repeat count.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getlsrepeat()

FORTRAN Syntax
INTEGER*4 FUNCTION GETLSR

Description
The getlsrepeat subroutine returns the current linestyle repeat factor, which is set by the
lsrepeat subroutine.

Note: This subroutine cannot be used to add to a display list.

Return Value
The repeat factor for the current linestyle.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the repeat factor for the current linestyle with the lsrepeat subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Querying the System, Setting Attributes, Understanding the Hardware Used by GL, and
Using the GL High-Level Drawing Library in Graphics Programming Concepts.

1-130 Graphics Subroutines Reference

getlstyle Subroutine

Purpose
Returns the current linestyle.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getlstyle()

FORTRAN Syntax
INTEGER*4 FUNCTION GETLST

Description

getlstyle

The getlstyle subroutine returns the current linestyle. The returned value is an index into the
linestyle table.

Note: This subroutine cannot be used to add to a display list.

Return Value
An index into the linestyle table for the current linestyle.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a linestyle with the deflinestyle subroutine.

Selecting a linestyle with the setlinestyle subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Querying the System, Setting Attributes, Understanding the Hardware Used by GL, and
Using the GL High-Level Drawing Library in Graphics Programming Concepts.

GL Subroutines 1-131

getlwidth

getlwidth Subroutine

Purpose
Returns the current linewidth.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getlwidth()

FORTRAN Syntax
INTEGER*4 FUNCTION GETLWI

Description
The getlwidth subroutine returns the current linewidth in pixels.

Note: This subroutine cannot be used to add to a display list.

Return Value
The current linewidth in pixels.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying a linewidth with the linewidth subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Querying the System, Setting Attributes, Understanding the Hardware Used by GL, and
Using the GL High-Level Drawing Library in Graphics Programming Concepts.

1-132 Graphics Subroutines Reference

get map

getmap Subroutine

Purpose
Returns the number of the current color map.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getmap()

FORTRAN Syntax
INTEGER*4 FUNCTION GETMAP

Description
The getmap subroutine returns the identification number of the current color map. In
multimap mode, there are 16 small independent color maps; therefore, the getmap
subroutine returns a value in the range O to 15. In onemap mode, the getmap subroutine
returns O (zero).

Note: This subroutine cannot be used to add to a display list.

Return Value
The number of the current color map, a value from 0 to 15.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the organization of the current color map with the getcmmode subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Organizing the color map as one large map with the onemap subroutine.

Selecting one of 16 small color maps with the setmap subroutine.

Querying the System and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

GL Subroutines 1-133

getmatrix

getmatrix Subroutine

Purpose
Returns the current transformation matrix.

Library
Graphics Library (libgl.a)

C Syntax
void getmatrix(Matrix matrix)

FORTRAN Syntax
SUBROUTINE GETMAT(matrix)
REAL matrix{4,4)

Description

Parameter

Example

The getmatrix subroutine copies the matrix from the top of the stack to a user-specified
array. This routine does not alter the matrix stack. When the system is in projection matrix
mode, the matrix stack is not accessible. In projection mode, the matrix array receives a
copy of the projection matrix instead.

Note: This subroutine cannot be used to add to a display list.

matrix Specifies an array into which to copy a matrix.

1. To get the current transformation matrix after manipulating it, the example C language
program scrn_rotate.c uses the getmatrix subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Loading a transformation matrix with the loadmatrix subroutine.

Setting the current matrix mode with the mmode subroutine.

Premultiplying the current transformation matrix with the multmatrix subroutine.

Popping the transformation matrix stack with the popmatrix subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

GL Introduction, Querying the System, and Working with Coordinate Systems in Graphics
Programming Concepts.

1-134 Graphics Subroutines Reference

getmcolor

getmcolor Subroutine

Purpose

Library

C Syntax

Gets a copy of the RGB values for a color map entry.

Graphics Library (libgl.a)

void getmcolor
(Colorindex index,
lnt16 *red, lnt16 *green, lnt16 *blue)

FORTRAN Syntax
SUBROUTINE GETMCO(index, red, green, blue)
INTEGER*4 index
INTEGER*2 red, green, blue

Description
The getmcolor subroutine gets the red, green, and blue components of a color map entry
and copies them to the specified locations. This subroutine returns only the values
associated with a slot in the current color table. It does not return, nor does it set, the current
drawing color. For the current drawing color, use the getcolor subroutine in color map
mode, and the gRGBcolor subroutine in RGB mode.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

index Specifies the index into the color map.

red Specifies a pointer to the location into which to copy the red value of the
color specified by index.

green Specifies a pointer to the location into which to copy the green value of the
color specified by index.

blue Specifies a pointer to the location into which to copy the blue value of the
color specified by index.

1. To save the values in the color map before changing them with the mapcolor subroutine,
the example C language program ovrlay.c uses the getmcolor subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-135

getmcolor

Related Information
Choosing a set of bitplanes for drawing with the drawmode subroutine.

Returning the current color with the getcolor subroutine.

Returning the number of the current color map with the getmap subroutine.

Returning the current RGB color with the gRGBcolor subroutine.

Changing a colormap entry to an RGB value with the mapcolor subroutine.

Querying the System and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

1-136 Graphics Subroutines Reference

getmcolors

getmcolors Subroutine

Purpose
Returns a range of color map RGB values.

Library
Graphics Library (libgl.a)

C Syntax
void getmcolors(lnt16 start_idx, lnt16 end_idx, lnt16 *r, lnt16 *g, lnt16 *b)

FORTRAN Syntax
SUBROUTINE GETMCOLORS (start_idx, end_idx, r, g, b)
INTEGER*2 start_idx, end_idx,
INTEGER*2 r(1), g(1), b(1)

Description
The getmcolors subroutine returns a range of color map table entries. The range that is
returned begins with start_idx and ends with end_idx, inclusive. The length of the array must
be equal to end_idx- start_idx + 1. For instance, to return only one color map entry, set
start_idx and end_idx to the same number. To return two entries, set end_idx to start_idx +
1.

The getmcolors subroutine is functionally equivalent to the C code shown in the following
fragment, although it executes considerably faster:

{
int i;
do (i=O; i< (end_idx - start_idx + l); i++)

getrncolors (start_idx+i, &r[i], &g[l], &b[l]);
}

The getmcolors subroutine can be used to read the underlay, overlay, cursor, popup, or
main frame buffer color map. Which map is read depends on the current drawing mode (as
set by the drawmode subroutine).

Note: This subroutine cannot be used to add to a display list.

Parameters
start_idx Specifies the starting index in the color map to be returned.

Specifies the ending index in the color map to be returned.

Specifies an array containing the intensity of the red component.

Specifies an array containing the intensity of the green component.

Specifies an array containing the intensity of the blue component.

end_idx

r

g

b

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-137

getmcolors

Related Information
Choosing a set of bitplanes for drawing with the drawmode subroutine.

Returning the current RGB color with the gRGBcolor subroutine.

Loading a range of color map entries with the mapcolors subroutine

Querying the System and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

1-138 Graphics Subroutines Reference

getmmode Subroutine

Purpose
Returns the current matrix mode.

Library
Graphics Library {libgl.a)

C Syntax
lnt32 getmmode()

FORTRAN Syntax
INTEGER*4 FUNCTION GETMMO

Description
The getmmode subroutine returns the current matrix mode.

Note: This subroutine cannot be used to add to a display list.

Return Values
There are three possible return values for this function:

Mode Name Mode

MSINGLE

MPROJECTION

MVIEWING

Single matrix mode

Projection matrix mode

Viewing matrix mode.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File

getmmode

/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Making a material, light, or lighting model definition active with the lmbind subroutine.

Defining a new material, light, or lighting model with the lmdef subroutine.

Setting the current matrix mode with the mmode subroutine.

GL Introduction, Creating Lighting Effects, Querying the System, and Setting Pipeline
Options in Graphics Programming Concepts.

GL Subroutines 1-139

getnurbsproperty

getnurbsproperty Subroutine

Purpose
Returns the current value of a trimmed NURBS surfaces display property

Library
Graphics Library (libgl.a)

C Syntax
void getnurbsproperty(lnt32 property, Float32 *value)

FORTRAN Syntax
SUBROUTINE GETNUR(property, value)
INTEGER*4 property
REAL value

Description
The getnurbsproperty subroutine returns the current value of a trimmed Non-Uniform
Rational B-Spline (NURBS) surfaces display property. The display of NURBS surfaces can
be controlled in different ways. The following is a list of the display properties that can be
affected.

N_ERRORCHECKING If value is 1.0, some error checking is enabled. If error checking is
disabled, the system runs slightly faster. The default value is 0.0.

N_PIXEL_ TOLERANCEThe value is the maximum length, in pixels, of edges of polygons on
the screen used to render trimmed NURBS surfaces. The default
value is 50.0 pixels.

Note: This subroutine cannot be used to add to a display list.

Parameters
property Specifies the name of the property to be queried.

value Specifies a pointer to the location into which the system is to write the value
of the named property.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-140 Graphics Subroutines Reference

getnurbsproperty

Related Information
Marking the beginning and end of a NURBS surface definition with the bgnsurface and
endsurface subroutines.

Marking the beginning and end of a NURBS surface trimming loop with the bgntrim and
endtrim subroutines.

Controlling the shape of a NURBS trimming curve with the nurbscurve subroutine.

Controlling the shape of a NURBS surface with the nurbssurface subroutine.

Describing a piecewise linear trimming curve for NURBS surfaces with the pwlcurve
subroutine.

Setting a property for the display of trimmed NURBS with the setnurbsproperty subroutine.

GL Introduction, Drawing NURBS Curves and Surfaces, and Querying the System in
Graphics Programming Concepts.

GL Subroutines 1-141

getopenobj

getopenobj Subroutine

Purpose
Returns the current open object.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getopenobj()

FORTRAN Syntax
INTEGER*4 FUNCTION GETOPE

Description
The getopenobj subroutine returns the identifier of the object that is currently open for
editing. If no object is open, the subroutine returns -1.

Note: This editing subroutine itself cannot be added to a display list.

Return Value
The number of the object currently open for editing.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Closing an object with the closeobj subroutine.

Opening an object for editing with the editobj subroutine.

Creating an object with the makeobj subroutine.

GL Introduction, Creating Objects (Display Lists), and Querying the System in Graphics
Programming Concepts.

1-142 Graphics Subroutines Reference

getorigin

getorigin Subroutine

Purpose
Returns the position of a window.

Library
Graphics Library (libgl.a)

C Syntax
void getorigin(lnt32 *x, lnt32 *y)

FORTRAN Syntax
SUBROUTINE GETORl{x, y)
INTEGER*4 x, y

Description
The getorigin subroutine returns the position (in pixels) of the lower left corner of the current
window. A window must be open for this subroutine to work.

Call the winopen subroutine to open a window, or the winset subroutine to choose the
current window.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

x

y

Specifies a pointer to the location in which to return the x position (in pixels)
of the lower left corner of the window.

Specifies a pointer to the location in which to return they position (in pixels)
of the lower left corner of the window.

1 . To determine the origin of the window, the example C language program paint.c uses the
getorigin subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Obtaining the size of the window with the getsize subroutine.

Constraining the window position and size with the prefposition subroutine.

Moving the current window by its lower left corner with the winmove subroutine.

Creating a window with the winopen subroutine.

Changing the current location and size of a window with the winposition subroutine.

Setting the current window with the winset subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-143

get pattern

getpattern Subroutine

Purpose
Returns the index of the current fill pattern.

Library
Graphics Library (libgl.a)

C Syntax
long getpattern()

FORTRAN Syntax
INTEGER*4 FUNCTION GETPAT

Description
The getpattern subroutine returns the index of the current fill pattern. The returned value is
an index into the pattern table.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a pattern with the defpattern subroutine.

Selecting a fill pattern for polygons, rectangles, and curves with the setpattern subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Querying the System, Setting Attributes, Understanding the Hardware Used by GL, and
Using the GL High-Level Drawing Library in Graphics Programming Concepts.

1-144 Graphics Subroutines Reference

getplanes

getplanes Subroutine

Purpose
Returns the number of available bitplanes.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getplanes()

FORTRAN Syntax
INTEGER*4 GETPLA

Description
The getplanes subroutine returns the number of active bitplanes that are currently being
used for drawing. The number returned depends on how the frame buffer has been
configured. In particular, the returned value depends on the most recent setting of the
drawmode subroutine, whether the system is in single or double buffer mode, in color map
or RGB mode, and finally, on the capabilities of the installed adapter.

Note: This subroutine cannot be used to add to a display list.

Return Value

Example

The number of bitplanes available under the current drawmode.

1. To get the number of bit-planes available, the example C language program
scrn_rotate.c uses the getplanes subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting color map mode as the current mode with the cmode subroutine.

Setting the display mode to double buffer mode with the doublebuffer subroutine.

Choosing a set of bitplanes for drawing with the drawmode subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Organizing the color map as one large map with the onemap subroutine.

Setting a display mode that bypasses the color map with the RGBmode subroutine.

Setting the display mode to single buffer mode with the singlebuffer subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, and
Querying the System in Graphics Programming Concepts.

GL Subroutines 1-145

getscrmask

getscrmask Subroutine

Purpose

Library

C Syntax

Returns the current screenmask.

Graphics Library (libgl.a)

void getscrmask
(Screencoord *left, Screencoord *right,
Screencoord *bottom, Screencoord *top)

FORTRAN Syntax
SUBROUTINE GETSCR(left, right, bottom, top)
INTEGER*2 left, right, bottom, top

Description
The getscrmask subroutine returns the dimensions of the current screenmask (the top of
the screenmask stack) and copies these dimensions to the location variables specified as
parameters. The left, right, bottom, top parameters are the addresses of four memory
locations assigned the left, right bottom, and top coordinates of the screenmask.

Note: This subroutine cannot be used to add to a display list.

Parameters
left Specifies the memory location into which the system copies the x coordinate

(in pixels) of the left side of the screenmask.

Example

right

bottom

top

Specifies the memory location into which the system copies the x coordinate
(in pixels) of the right side of the screenmask.

Specifies the memory location into which the system copies the y coordinate
(in pixels) of the bottom side of the screenmask.

Specifies the memory location into which the system copies the y coordinate
(in pixels) of the top side of the screenmask.

1. To get the current screenmask so that it can be restored later, the example C language
program prompt.c uses the getscrmask subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-146 Graphics Subroutines Reference

getscrmask

Related Information
Pushing the viewport onto the viewport stack with the pushviewport subroutine.

Popping the viewport stack with the popviewport subroutine.

Defining a rectangular 2-D clipping mask with the scrmask subroutine.

GL Introduction, Querying the System in GL, and Using Viewports and Screenmasks in GL
in Graphics Programming Concepts.

GL Subroutines 1-147

getsize

getsize Subroutine

Purpose
Returns the size of a window.

Library
Graphics Library (libgl.a)

C Syntax
void getsize(lnt32 *x, lnt32 *y)

FORTRAN Syntax
SUBROUTINE GETSIZ{x, y)
INTEGER*4 x, y

Description
The getsize subroutine returns the size of the current window. A window must be open for
this subroutine to work.

Call the winopen subroutine to open a window, or the winset subroutine to choose the
current window.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

x

y

Specifies a pointer to the location into which to copy the width (in pixels) of
the window.

Specifies a pointer to the location into which to copy the height (in pixels) of
the window.

1. To determine the size of the window, the example C language program paint.c uses the
getsize subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-148 Graphics Subroutines Reference

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Obtaining the position of a window with the getorigin subroutine.

Specifying the maximum size of a window with the maxsize subroutine.

Specifying the minimum size of a window with the minsize subroutine.

Constraining the size of a window with the prefsize subroutine.

getsize

Specifying a window size change in discrete steps with the stepunit subroutine.

Creating a window with the winopen subroutine.

Setting the current window with the winset subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-149

getsm

getsm Subroutine

Purpose
Returns the shading model the system uses to draw filled polygons.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getsm()

FORTRAN Syntax
INTEGER*4 GETSM

Description
The getsm subroutine returns the shading model that the system uses to draw filled
polygons. The returned value of this function indicates which shading model is now active.

Return Values
There are two possible return values:

FLAT The system draws a filled polygon with a constant color across the entire
surface of the polygon.

GOURAUD The system draws a filled polygon with a color that varies as a linear
interpolation of the colors at the polygon's vertices.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Selecting the shading model used to draw polygons with the shademodel subroutine.

Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Querying the System, Setting Attributes, Understanding the Hardware Used by GL, and
Using the GL High-Level Drawing Library in Graphics Programming Concepts.

1-150 Graphics Subroutines Reference

getvaluator

getvaluator Subroutine

Purpose
Returns the current state of a valuator.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getvaluator(Device device)

FORTRAN Syntax
INTEGER*4 FUNCTION GETVAL(device)
INTEGER*4 device

Description

Parameter

The getvaluator subroutine returns the current value (an integer) of the valuator specified in
the device parameter.

Note: This subroutine cannot be used to add to a display list.

device Identifier of the valuator (such as MOUSEX or BPADX) to be read.

Return Value

Example

The value stored· at the device named by the device parameter.

1. To obtain the mouse coordinates whenever the left mouse button is pressed, the example
C language program select1 .c uses the getvaluator subroutine.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h
/usr/include/gl/device.h

Contains constant and variable type definitions for GL.
Contains constant and variable type definitions for devices.

Related Information
Reading a list of valuators with the getdev subroutine.

GL Introduction, Controlling Queues and Devices in GL, Controlling the Keyboard in GL, and
Querying the System in GL in Graphics Programming Concepts.

GL Subroutines 1-151

getviewport

getviewport Subroutine

Purpose

Library

C Syntax

Returns the dimensions of the current viewport.

Graphics Library (libgl.a)

void getviewport(Screencoord *left, Screencoord *right,
Screencoord *bottom, Screencoord *top)

FORTRAN Syntax
SUBROUTINE GETVIE(left, right, bottom, top)
INTEGER*2 left, right, bottom, top

Description
The getviewport subroutine returns the dimensions of the current viewport (the top of the
viewport stack) and copies these dimensions to the location variables specified as
parameters. The left, right, bottom, and top parameters are the addresses of four memory
locations assigned the left, right bottom, and top coordinates of the viewport.

Note: This subroutine cannot be used to add to a display list.

Parameters
left Specifies the memory location in which to return the x coordinate (in pixels)

of the left side of the viewport.

right

bottom

top

Specifies the memory location in which to return the x coordinate (in pixels)
of the right side of the viewport.

Specifies the memory location in which to return the y coordinate (in pixels)
of the bottom side of the viewport.

Specifies the memory location in which to return the y coordinate (in pixels)
of the top side of the viewport.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Popping the viewport stack with the popviewport subroutine.

Pushing the viewport onto the viewport stack with the pushviewport subroutine.

Setting the viewport to the dimensions of the current window with the reshapeviewport
subroutine.

Setting the area of the window used for all drawing with the viewport subroutine.

GL Introduction, Querying the System in GL, and Using Viewports and Screenmasks in GL
in Graphics Programming Concepts.

1-152 Graphics Subroutines Reference

getwritemask

getwritemask Subroutine

Purpose
Returns the current writemask.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getwritemask()

FORTRAN Syntax
INTEGER*4 FUNCTION GETWRI

Description
The getwritemask subroutine returns the color map mode writemask. Independently
settable writemasks exist for the overlay, underlay, and main frame buffers.

The returned value of this function is an integer with up to 12 significant bits, one for each
available bitplane. When a bit is set to zero in the writemask, the corresponding bitplane is
read only.

This subroutine is intended for user in color map mode only. To get the RGB mode
writemask, use the gRGBmask subroutine.

Note: This subroutine cannot be used to add to a display list.

Return Value
The writemask for the current drawing mode.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying the target frame buffer for the drawing subroutines with the drawmode
subroutine.

Returning the current RGB writemask with the gRGBmask subroutine.

Granting write access to a subset of available bitplanes with the RGBwritemask subroutine.

Granting write permission to a subset of available bitplanes with the writemask subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, Querying
the System, and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

GL Subroutines 1-153

getzbuffer

getzbuffer Subroutine

Purpose
Determines whether z-buffering is on or off.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 getzbuffer()

FORTRAN Syntax
INTEGER*4 FUNCTION GETZBU

Description
The getzbuffer subroutine returns the status of the z-buffer. The z-buffer option to the
High-Performance 3-D Color Graphics Processor must be installed before the z-buffer can
be turned on.

Note: This subroutine cannot be used to add to a display list.

Return Values
FALSE(O) Z-buffering off (the default value).

Z-buffering on. TRUE(1)

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h

Contains constant and variable type definitions for GL.

Related Information
Clearing the z-buffer with the zclear subroutine.

Initializing z-buffer mode with the zbuffer subroutine.

GL Introduction, Querying the System, and Removing Hidden Surfaces in Graphics
Programming Concepts.

1-154 Graphics Subroutines Reference

gexit

gexit Subroutine

Purpose
Terminates a graphics program.

Library
Graphics Library (libgl.a)

C Syntax
void gexit{)

FORTRAN Syntax

Description

Example

The gexit subroutine is the final graphics routine in a program. It waits for the graphics
pipeline to empty and then frees all GL data structures.

After the gexit subroutine, a process can no longer call any routines that require the
graphics to be initialized.

Note: This subroutine cannot be used to add to a display list.

1. To end graphics processing, the example C language program scrn_rotate.c uses the
gexit subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Resetting all global state attributes to their initial values with the greset subroutine.

GL Introduction, Getting Ready to Run GL, and Starting GL Functions in Graphics
Programming Concepts.

GL Subroutines 1-155

gin it

ginit Subroutine

Purpose
Initializes the graphics system.

Library
Graphics Library (libgl.a)

C Syntax
void ginit()

FORTRAN Syntax
SUBROUTINE GINIT

Description

Example

The ginit subroutine initializes the graphics environment to its default values for the global
state attributes and creates a window that covers the screen. The ginit subroutine queues
the REDRAW window manager device.

Call the ginit subroutine once, before any other GL subroutine.

The recommendation is to use the winopen subroutine for initialization functions to take
advantage of the window manager and to avoid unexpected events in the event queue.

Note: This subroutine cannot be used to add to a display list.

1. To do a basic graphics setup, the example C language program prompt.c uses the ginit
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Initializing the graphics system without changing the color map with the gbegin subroutine.

Terminating a graphics program with the gexit subroutine.

Resetting all global state attributes to their initial values with the greset subroutine.

Creating a new window with the winopen subroutine.

GL Introduction, Getting Ready to Run GL, Starting GL Functions, Setting Attributes in GL,

Controlling Queues and Devices in GL, and Windows and Input Control Overview for GL in
Graphics Programming Concepts.

1-156 Graphics Subroutines Reference

greset Subroutine

Purpose
Resets all global state attributes to their initial values.

Library
Graphics Library (libgl.a)

C Syntax
void greset{)

FORTRAN Syntax
SUBROUTINE GRESET

Description

greset

The greset subroutine resets all global state attributes to their initial values. This subroutine
can be called at any time to reset the attributes.

The following table lists the global state attributes.

Global State Attributes Part 1 of 2

Attribute Initial Value

backface mode off

blinking off

buffer mode single

color undefined

color map mode one map

concave off

cursor 0 (arrow)

depth range -Ox800000,+0x7FFFFF

depthcue mode off

display mode color map

drawmode NORMALDRAW

font 0

linestyle O (solid)

linewidth 1 pixel

logical operation LO_SRC

ls repeat 1

pattern O (solid)

picking size 1Ox10 pixels

RGB color undefined

RGB shaderange undefined

GL Subroutines 1-157

greset

Example

Global State Attributes Part 2 of 2

Attribute Initial Value

RGB writemask undefined

shade model GOURAUD

shaderange 0,7,-0x800000,+0x7FFFFF

viewport entire window

write mask all planes enabled

zbuffer mode off

Note: Font 0 (zero) is a Helvetica-like font.

The greset subroutine puts a 2-D orthographic projection transformation on the matrix stack
with left, right, bottom, and top set to the boundaries of the screen. The subroutine also turns
on the cursor and ties it to MOUSEX and MOUSEY.

The greset subroutine removes all button, valuator, and keyboard entries from the event
queue and discards them. Each button is set to FALSE and untied from valuators. Each
valuator (and in particular MOUSEX) is set to XMAXSCREEN/2 with range Oto
XMAXSCREEN. MOUSEY is set to YMAXSCREEN/2 and has range 0 to YMAXSCREEN.

The greset subroutine also defines certain entries in the color map, as follows:

Color Map Entries

RGB Value

Index Name Red Green Blue

0 BLACK 0 0 0

1 RED 255 0 0

2 GREEN 0 255 0

3 YELLOW 255 255 0

4 BLUE 0 0 255

5 MAGENTA 255 0 255

6 CYAN 0 255 255

7 WHITE 255 255 255

All others Unnamed Undefined

Note: This subroutine cannot be used to add to a display list.

1 . To reset all global attributes, the example C language program vlsi.c uses the greset
subroutine on any keyboard event.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

1-158 Graphics Subroutines Reference

greset

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Reconfiguring the graphics system with the gconfig subroutine.

Initializing the graphics system with the ginit subroutine.

Creating a new window with the winopen subroutine.

GL Introduction, Getting Ready to Run GL, Starting GL Functions, Setting Attributes in GL,
Configuring the Frame Buffer for GL, Controlling Queues and Devices in GL, Controlling the
Keyboard in GL, Creating a Cursor in GL, Windows and Input Control Overview for GL, and
Working with Coordinate Systems in GL in Graphics Programming Concepts.

GL Subroutines 1-159

gRGBcolor

gRGBcolor Subroutine

Purpose
Gets the current RGB color values.

Library
Graphics Library (libgl.a)

C Syntax
void gRGBcolor
(lnt16 *red, lnt16 *green, lnt16 *blue)

FORTRAN Syntax
SUBROUTINE GRGBCO(red, green, blue)
INTEGER*2 red, green, blue

Description
The gRGBcolor subroutine gets the current RGB color values and copies them into the
parameters.

Notes:

1 . This subroutine cannot be used to add to a display list.

2. This subroutine is available only in RGB mode. It will not function in color map
mode.

Parameters
red Specifies a pointer to the location into which to copy the current red value.

Specifies a pointer to the location into which to copy the current green
value.

green

blue Specifies a pointer to the location into which to copy the current blue value.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the current color with the getcolor subroutine.

Getting a copy of the RGB values for a color map entry with the getmcolor subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

Setting a display mode that bypasses the color map with the RGBmode subroutine.

Querying the System, Setting Attributes, Understanding the Hardware Used by GL, and
Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-160 Graphics Subroutines Reference

gRGBmask

gRGBmask Subroutine

Purpose
Returns the current RGB writemask.

Library
Graphics Library (libgl.a)

C Syntax
void gRGBmask
(lnt16 *redmask, lnt16 *greenmask, lnt16 *bluemask)

FORTRAN Syntax
SUBROUTINE GRGBMA(redmask, greenmask, bluemask)
INTEGER*2 redmask, greenmask, bluemask

Description
The gRGBmask subroutine gets the current RGB writemask as three 8-bit masks and
copies them into the parameters. The subroutine places masks in the low order 8-bits of the
locations redmask, greenmask, and bluemask. The system must be in RGB mode when this
routine executes.

This subroutine is intended for use in RGB mode only. To get the writemask when in color
map mode, use the getwritemask subroutine.

Note: This subroutine cannot be used to add to a display list.

Parameters
red mask

green mask

bluemask

Specifies the pointer to the location into which the system is to copy the
current red writemask value.

Specifies the pointer to the location into which the system is to copy the
current green writemask value.

Specifies the pointer to the location into which the system is to copy the
current blue writemask value.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the current writemask with the getwritemask subroutine.

Granting write access to a subset of available bitplanes with the RGBwritemask subroutine.

Specifying the RGBA writemask with a single packed integer with the wmpack subroutine.

Granting write permission to available bitplanes with the writemask subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, Querying
the System, and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

GL Subroutines 1-161

gselect

gselect Subroutine

Purpose
Puts the system in selecting mode.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 gselect(lnt16 buffer[], lnt32 numnames)

FORTRAN Syntax
SUBROUTINE GSELEC(buffer, numnames)
INTEGER*4 numnames
INTEGER*2 buffer(.numnames)

Description
The gselect subroutine puts the system in selecting mode. In this mode, the system notes
when a drawing routine intersects the selecting volume and writes the contents of the name
stack to the specified buffer.

If you push a name onto the name stack just before you call each drawing routine, you can
record which drawing routines intersected the selecting region. Use the current viewing
matrix to define the selecting region.

The gselect and pick subroutines differ only in the manner in which the pick/select volume
is specified. The pick subroutine uses a volume (default 1Ox10 pixels) centered on the
current cursor location, while the gselect subroutine uses the unit cube (1 x1 x1) in modeling
coordinates, thus employing the current viewing matrix in determining the selecting volume.

Nothing is drawn to the screen when the system is in selecting mode. Instead, drawing
commands are piped to the select mechanism and used to determine pick/select region hits.

To end selecting mode, call the endselect subroutine.

Note: This subroutine cannot be used to add to a display list.

Parameters
buffer Specifies the buffer into which the system is to save the contents of the

name stack.

Example

numnames Specifies the maximum number of names to be saved.

1. To enter selecting mode, the example C language program select1 .c uses the gselect
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-162 Graphics Subroutines Reference

Related Information
Turning off picking mode with the endpick subroutine.

Turning off selecting mode with the endselect subroutine.

Initializing the name stack with the initnames subroutine.

Loading the name on top of the name stack with the loadname subroutine.

Putting the system in picking mode with the pick subroutine.

Setting the dimensions of the picking region with the picksize subroutine.

Popping a name off the name stack with the popname subroutine.

Pushing a new name onto the name stack with the pushname subroutine.

gselect

GL Introduction, Working with Coordinate Systems in GL, and Picking and Selecting
Overview for GL in Graphics Programming Concepts.

GL Subroutines 1-163

gsync

gsync Subroutine

Purpose
Waits for a vertical retrace period.

Library
Graphics Library (libgl.a)

C Syntax
void gsync()

FORTRAN Syntax
SUBROUTINE GSVNC

Description

Example

The gsync subroutine waits for the next vertical retrace. Because this subroutine does not
return until vertical retrace begins, the calling process is effectively blocked until that time.

This subroutine is useful for pacing the drawing when in single buffer mode. If the amount of
drawing to be done is small, this subroutine can be used to achieve a limited amount of
smooth animation in single buffer mode. For high-quality, smooth animation, double buffer
mode should be used with the swapbuffers subroutine.

Note: This subroutine cannot be used to add to a display list.

1. To help smooth the display while it is changing the frame buffer, the worms.c example C
language program uses the gsync subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the display mode to double buffer mode with the doublebuffer subroutine.

Setting the display mode to single buffer mode with the singlebuffer subroutine.

Exchanging the front and back buffers in double buffer mode with the swapbuffers
subroutine.

Configuring the Frame Buffer, Creating Animated Screens, Understanding the Hardware
Used by GL, and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

1-164 Graphics Subroutines Reference

gversion

gversion Subroutine

Purpose
Returns graphics hardware and library version information.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 gversion(Char8 *v)

FORTRAN Syntax
INTEGER*4 GVERSl(v, length)
CHARACTER*(*) v
INTEGER*4 length

Description
The gversion subroutine fills the buffer, identified by the v parameter, with a null-terminated
string that specifies the graphics hardware type and the version number of GL.

The gversion subroutine can be called before the first call to the winopen subroutine.

Note: This subroutine cannot be used to add to a display list.

Return Value
The version of GL being used.

Parameters
v

length

Specifies a buffer into which to copy a string. Reserve at least a
12-character buffer.

Specifies the length of the string.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Creating a new window with the winopen subroutine.

GL Introduction, Getting Ready to Run GL, and Starting GL Functions in Graphics
Programming Concepts.

GL Subroutines 1-165

iconsize

iconsize Subroutine

Purpose
Specifies the icon size of a window.

Library
Graphics Library (libgl.a)

C Syntax
void iconsize{lnt32 x, lnt32 y)

FORTRAN Syntax
SUBROUTINE ICONSl{x, y)
integer*4 x, y

Description
The iconsize subroutine specifies the size of a window icon as x pixels by y pixels. If a
window has an icon size, the window manager reshapes the window to be that size and
sends a REDRAWICONIC token to the graphics queue when the user stores that window.
Windows without an icon size are handled by the window manager with the appropriate
default behavior.

To assign a new window an icon size, call the iconsize subroutine before opening the
window. To give an existing window an icon size, use the iconsize subroutine with the
winconstraints subroutine.

Any application using the iconsize subroutine should also call the qdevice subroutine to
queue the tokens WINFREEZE and WINTHAW after opening the window.

Note: This subroutine cannot be used to add to a display list.

Parameters
x

y

Specifies the width of the window icon in pixels.

Specifies the height of the window icon in pixels.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Obtaining the size of the window with the getsize subroutine.

Specifying the title of a window icon with the icontitle subroutine.

Specifying the maximum size of a window with the maxsize subroutine.

Specifying the minimum size of a window with the minsize subroutine.

Constraining the size of a window with the prefsize subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-166 Graphics Subroutines Reference

icontitle Subroutine

Purpose
Specifies the icon title for the current window.

Library
Graphics Library (libgl.a)

C Syntax
void icontitle(Char8 *name)

FORTRAN Syntax
SUBROUTINE ICONTl(name, length)
CHARACTER*r)name
INTEGER*4 length

Description

icontitle

The icontitle subroutine specifies the string displayed on an icon if the window manager
draws that window's icon.

Parameters
name Specifies a pointer to the string containing the icon title.

length Specifies the length of the string containing the icon title.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying the size of a window icon with the iconsize subroutine.

Adding a title bar to the current window with the wintitle subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-167

initnames

initnames Subroutine

Purpose
Initializes the name stack.

Library
Graphics Library (libgl.a}

C Syntax
void initnames{)

FORTRAN Syntax
SUBROUTINE INITNA

Description

Example

The initnames subroutines initializes the name stack for use during picking or selecting.

1 . To clear all of the names from the name stack, the example C language program pick1 .c
calls the initnames subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl .h Contains constant and variable type definitions for GL.

Related Information
Putting the system in selecting mode with the gselect subroutine.

Loading a name onto the top of the name stack with the loadname subroutine.

Putting the system in picking mode with the pick subroutine.

Popping a name off the name stack with the popname subroutine.

Pushing a new name onto the name stack with the pushname subroutine.

GL Introduction and Picking and Selecting Overview for GL in Graphics Programming
Concepts.

1-168 Graphics Subroutines Reference

isobj Subroutine

Purpose
Indicates whether a given object number actually identifies an object.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 isobj(lnt32 object)

FORTRAN Syntax
LOGICAL FUNCTION ISOBJ(object)
INTEGER*4 object

Description

isobj

The isobj subroutine indicates whether a given object number actually identifies an object.
The returned value is either TRUE, if the object number is already in use, or FALSE, if it is
not.

Note: This editing subroutine itself cannot be added to a display list.

Parameter
object Specifies the object identifier to test.

Return Values
TRUE or FALSE

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning a unique integer for use as an object identifier with the genobj subroutine.

Establishing the uniqueness of a tag number with the istag subroutine.

Creating an object with the makeobj subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-169

isqueued

isqueued Subroutine

Purpose
Indicates whether the specified device is enabled for queuing.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 isqueued(lnt16 device)

FORTRAN Syntax
LOGICAL FUNCTION ISQUEU(device)
INTEGER*2 device

Description

Parameter

The isqueued subroutine indicates whether the specified device is enabled for queuing.

device Specifies the identifier for the device you want to test (for example,
MOUSEX or BPADX).

Return Values
TRUE Enabled for queuing.

Not enabled for queuing.

Example

FALSE

1. To determine whether the keyboard is enabled, the example C language program
prompt.c uses the isqueued subroutine.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h
/usr/include/gl/device.h

Contains constant and variable type definitions for GL.
Contains constant definitions for devices.

Related Information
Enabling an input device for event queuing with the qdevice subroutine.

Reading the first entry in the event queue with the qread subroutine.

Disabling an input device for event queuing with the unqdevice subroutine.

GL Introduction, Controlling Queues and Devices in GL, and Controlling the Keyboard in GL
in Graphics Programming Concepts.

1-170 Graphics Subroutines Reference

istag Subroutine

Purpose
Indicates whether a given tag is used within the current open object.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 istag(lnt32 tag)

FORTRAN Syntax
LOGICAL FUNCTION ISTAG(tag)
INTEGER*4 tag

Description

istag

The istag subroutine indicates whether a given tag number actually identifies an existing
tag. The returned value is either TRUE (1), if the tag is already in use, or FALSE (0), if it is
not. If there is no current open object, the result is undefined.

Note: This editing subroutine, itself, cannot be used to add to a display list.

Parameter
tag Specifies the tag to test.

Return Values
TRUE or FALSE

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning a unique integer for use as a tag number with the gentag subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-171

keepaspect

keepaspect Subroutine

Purpose
Specifies the aspect ratio of a window.

Library
Graphics Library (libgl.a)

C Syntax
void keepaspect(lnt32 x, lnt32 y)

FORTRAN Syntax
SUBROUTINE KEEPAS(x, y)
INTEGER*4 x, y

Description
The keepaspect subroutine specifies the aspect ratio of a window. It is called at the
beginning of a graphics program, but only takes effect when the winopen subroutine is
called. The resulting window maintains the aspect ratio specified in the keepaspect
subroutine, even if the window changes size.

For example, keepaspect (1, 1) always results in a square window. The keepaspect
subroutine can also be called in conjunction with the winconstraints subroutine to modify
the enforced aspect ratio after the window is created.

With the keepaspect subroutine, the programmer can prevent the user from resizing a
window to an aspect ratio that is different from the specified ratio.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

x

y

Specifies the horizontal proportion of the aspect ratio.

Specifies the vertical proportion of the aspect ratio.

1. To restrict the window to a specific aspect ratio, the example C language program
colored.c uses the keepaspect subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Constraining the location and size of a window with the prefposition subroutine.

Constraining the size of a window with the prefsize subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-172 Graphics Subroutines Reference

lampoff, lampon

lampoff or lampon Subroutine

Purpose

Library

C Syntax

Turns the keyboard display lights off or on.

Graphics Library (libgl.a)

void lampoff{lntB lamps);

void lampon(lntB lamps);

FORTRAN Syntax
SUBROUTINE LAMPOF(lamps)
CHARACTER*1 lamps

SUBROUTINE LAMPON(lamps)
CHARACTER*1 lamps

Description

Parameter

The lampon subroutine turns on any combination of the four user-controlled lamps on the
keyboard. The lampoff subroutine turns them off. The four low-order bits of the lamps
parameter control lamps 1 through 4.

Note: This subroutine cannot be used to add to a display list.

lamps Indicates the mask that specifies which lamps to manipulate. If a bit is set,
then the corresponding keyboard lamp is either on or off.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Turning on or off the keyboard click with the clkon or clkoff subroutine.

Ringing the keyboard bell with the ringbell subroutine.

Setting the duration of the keyboard bell sound with the setbell subroutine.

GL Introduction and Controlling the Keyboard in Graphics Programming Concepts.

GL Subroutines 1-173

lgetdepth

lgetdepth Subroutine

Purpose
Gets the distance of the near and far clipping planes.

Library
Graphics Library (libgl.a)

C Syntax
void lgetdepth(lnt32 near, lnt32 far?

FORTRAN Syntax
SUBROUTINE LGETDE(near, far?
INTEGER*2 near, far

Description
The lgetdepth subroutine gets the distance of the near and far clipping planes and writes
them into the near and far parameters. Set these distances using the lsetdepth subroutine.

Note: This subroutine cannot be used to add to a display list.

Parameters
near Specifies a pointer to the location into which to write the distance of the near

clipping plane.

far Specifies a pointer to the location into which to write the distance of the far
clipping plane.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the viewport depth range with the lsetdepth subroutine.

GL Introduction, Querying the System in GL, Working with Coordinate Systems in GL, and
Using Viewports and Screenmasks in GL in Graphics Programming Concepts.

1-17 4 Graphics Subroutines Reference

linesmooth

linesmooth Subroutine

Purpose
Turns line antialiasing on and off.

Library
Graphics Library (libgl.a)

C Syntax
void linesmooth(lnt32 mode)

FORTRAN Syntax
SUBROUTINE LINESM(mode)
INTEGER*4 mode

Description

Parameter

The linesmooth subroutine allows the drawing of antialiased lines in color map mode. The
linesmooth hardware replaces the least significant 4 bits of the current color index with bits
that represent pixel coverage. Therefore, a 16-entry block of the color map (whose lowest
entry is a multiple of 16) must be initialized as a ramp between the background color (lowest
index) to the line color (highest index).

Before drawing the lines, clear the area to the background color using the poly or clear
subroutine. If you define many such ramps, you can draw antialiased lines with different
colors and intensities by changing the current color index (only the upper bits are
significant). You can draw depth-cued, antialiased lines in this manner. The following
conditions are required for antialiased lines to draw properly:

1. linewidth = 1

2. linestyle = OxFFFF

3. value of the lsrepeat subroutine = 1

The zsource and zfunction subroutines can be used with the linesmooth subroutine for
depth or color values. When the zsource subroutine is used with ZSRC_COLOR,
intersecting lines behave more correctly.

The linesmooth subroutine does not support subpixel positioning of line vertices.

Note: This subroutine cannot be used to add to a display list.

mode SML_ON enables smooth lines.
SML_OFF disables smooth lines.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-175

linesmooth

Related Information
Specifying antialiasing of points with the pntsmooth subroutine.

Controlling the placement of point, line, and polygon vertices with the subpixel subroutine.

Configuring the Frame Buffer, Setting Attributes, Smoothing Jagged Lines with Antialiasing,
and Understanding the Hardware Used by GL in Graphics Programming Concepts.

1-176 Graphics Subroutines Reference

linewidth

linewidth Subroutine

Purpose
Specifies the linewidth.

Library
Graphics Library (libgl.a)

C Syntax
void linewidth(lnt16 numbery

FORTRAN Syntax
SUBROUTINE LINEWl(numbery
INTEGER*2 number

Description

Parameter

Example

The linewidth subroutine specifies the width of a line. The default width is one pixel. Wide
lines are centered as nearly as possible on the infinitely thin mathematical line.

Note: This subroutine cannot be used to add to a display list.

number Width of the line in pixels.

1. To draw a two-pixel thick border around a prompt string, the example C language
program prompt.c uses the linewidth subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a linestyle with the deflinestyle subroutine.

Returning the current linewidth with the getlwidth subroutine.

Selecting a linestyle with the setlinestyle subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Setting Attributes, Understanding the Hardware Used by GL, and Using the GL High-Level
Drawing Library in Graphics Programming Concepts.

GL Subroutines 1-177

Im bind

lmbind Subroutine

Purpose
Makes a material, light, or lighting model definition active.

Library
Graphics Library (libgl.a)

C Syntax
void lmbind(lnt16 target, lnt32 index)

FORTRAN Syntax
SUBROUTINE LMBIND(target, index)
INTEGER*2 target
INTEGER*4 index

Description
The lmbind subroutine takes a previously defined material, light, or lighting model and
makes it active. Up to eight lights can be active (turned on) at the same time, but only one
lighting model or material can be turned on at any time. Therefore, binding a material or
lighting model automatically unbinds (deactivates) the previous lighting model or material.

The definition of a light, lighting model, or material (created previously with the lmdef
subroutine) is not destroyed when one of these is unbound. The definition remains and can
be rebound at a later time.

Notes:

Parameters

1. Some of the properties of the currently bound material can be changed on the fly
with the lmcolor subroutine, which provides a highly efficient path for temporarily
changing material properties. Using the lmcolor subroutine is much more efficient
than employing a combination of the lmdef and lmbind subroutines.

2. Lighting cannot be turned on and does not work if the matrix mode is not set to
MVIEWING. The matrix mode can be changed with the mmode subroutine.

3. This subroutine cannot be used to add to a display list.

index Specifies the index into the table of previously defined materials, lights, or
lighting models. Created with the lmdef subroutine.

target Specifies the target of the bind. There are 1 O valid constants tokens that can
be used for this parameter:

MATERIAL Indicates that the material definition passed by the index
parameter should become the currently active material.
Lighting can be turned off by binding index 0 to a material.

LIGHTO, LIGHT1, LIGHT2, LIGHT3, LIGHT 4, LIGHTS, LIGHT6, or LIGHT?

1-178 Graphics Subroutines Reference

Indicate that the light definition passed by the index parameter
should be bound to the respective light. Each light is distinct
from the others and can be on or off. A light can be turned off
by binding index O to it.

Example

Im bind

LMODEL Indicates that the lighting model definition passed by the index
parameter is the current lighting model. There can be only one
current lighting model.

1. To use the materials, lights, and lighting model defined with the lmdef subroutine, the
example C language program cylinder2.c uses the lmbind subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying RGBA colors with a single packed 32-bit integer using the cpack subroutine.

Changing the target of the color commands with the lmcolor sub~outine.

Making a new material, light source, or lighting model active with the lmdef subroutine.

Setting the current matrix mode with the mmode subroutine.

Specifying a normal vector with the n3f subroutine.

Updating the current normal vector with the normal subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

GL Introduction, Creating Lighting Effects, and Setting Pipeline Options in Graphics
Programming Concepts.

GL Subroutines 1-179

Im color

lmcolor Subroutine

Purpose
Changes the target of the color commands while lighting is active.

Library
Graphics Library (libgl.a)

C Syntax
void lmcolor(lnt32 mode)

FORTRAN Syntax
SUBROUTINE LMCOLO(mode)
INTEGER*4 mode

Description
The lmcolor subroutine changes the target of the RGB color subroutines while lighting is
active.

Properties of the currently bound material can be changed by calls to the lmdef subroutine,
but that subroutine is relatively slow to execute. The lmcolor subroutine is provided to
support fast and efficient changes to the current material as maintained in the graphics
hardware without changing the definition of the currently bound material. Changes made by
the lmcolor subroutine are lost when a new material is bound.

The standard RGB color subroutines (RGBcolor, c, cpack) are used to change material
properties efficiently. The lmcolor subroutine specifies which material property is to be
affected by these subroutines. Because the lmcolor subroutine is effective only when
lighting is active, the standard color subroutines are used to change the current color when
lighting is off.

Note: This subroutine cannot be used to add to a display list.

Parameters
mode Specifies the name of the mode to be used in conjunction with RGB color

subroutines. Possible modes are:

LMC_COLOR Color subroutines set the current color. If a color is the
last thing sent before a vertex, the vertex will be colored.
If a normal is the last thing sent before a vertex, the
vertex is lighted. LMC_COLOR is the default mode.

LMC_EMISSION Color subroutines set the current EMISSION color
property of the current material.

LMC_AMBIENT Color subroutines set the current AMBIENT color
property of the current material.

LMC_DIFFUSE Color subroutines set the current DIFFUSE color
property of the current material. Alpha, the fourth color
component specified by RGB color subroutines, sets the
ALPHA property of the current material.

LMC_SPECULAR Color subroutines set the current SPECULAR color
property of the current material.

1-180 Graphics Subroutines Reference

LMC_AD

LMC_NULL

lmcolor

Color subroutines set the current DIFFUSE and
AMBIENT color properties of the current material. Alpha,
the fourth color component specified by RGB color
subroutines, sets the ALPHA property of the current
material.

RGB subroutines are ignored.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/g I. h Contains constant and variable type definitions for GL.

Related Information
Specifying RGBA colors as vectors using the c subroutine.

Specifying RGBA colors with a single packed 32-bit integer using the cpack subroutine.

Making a new material, light, or lighting model definition active with the lmbind subroutine.

Defining a new material, light, or lighting model with the lmdef subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

GL Introduction, Creating Lighting Effects, Setting Pipeline Options, and Working in Color
Map and RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-181

Im def

lmdef Subroutine

Purpose
De.fines a new material, light, or lighting model.

Library
Graphics Library (libgl.a)

C Syntax
void lmdef
{lnt16 deftype, lnt32 index,
lnt16 numpoints, Float32 properties[])

FORTRAN Syntax
SUBROUTINE LMDEF(deftype, index, numpoints, properties)
INTEGER*2 deftype numpoints
INTEGER*4 index
REAL properties(numpoints)

Description
The lmdef subroutine defines a new material, light, or lighting model.

The type of definition (material, light, or lighting model) is specified by the deftype parameter.
The definition is read from the properties array and stored in the appropriate definition table
at the index specified by the index parameter.

You can make incremental changes to a material, light, or lighting model definition. Each call
to the lmdef subroutine changes only the properties specified in the properties array.

Any property of any definition can be changed regardless of whether that definition is
currently bound. Changes made to a definition that is currently bound by the lmbind
subroutine are effective immediately.

Index O (zero) of the material, light, and lighting model definition tables contain predefined
definitions. These predefined definitions have set all properties to their default values and
cannot be changed. Their values are as follows:

Definition/Value

DEFMATERIAL

DE FLIGHT

DEFLMODEL

Function

Turns off lighting. Most efficient way to disable calculations.
Equivalent to lighting model 0.

Turns off lighting. Binding light Oto a light turns off that light.

Turns off lighting.

To turn off lighting, bind material 0 as the current material. You can also turn off lighting by
binding lighting model O as the current lighting model, but this method is less efficient than
binding material O. To turn off a light, but not all lighting calculations, bind light definition O to
the light you want to turn off.

There is a unique properties table for each category of definition created by this routine
(materials, light sources, or lighting models). Indexes within each of these categories are
independent. Valid entries for this parameter range from 1 to 65535. In each category, index
O is reserved.

1-182 Graphics Subroutines Reference

lmdef

For the greatest efficiency, use the default values for all properties. Lighting model
performance is best if relatively few properties are changed from the default. A definition can
be reset to all default values by calling lmdef with the symbolic constant LMNULL as the first
command token in the properties array. The default material values are as follows:

EMISSION 0.0, 0.0, 0.0

AMBIENT 0.2, 0.2, 0.2

DIFFUSE 0.8, 0.8, 0.8

SPECULAR 0.0, 0.0, 0.0

SHININESS 0.0

ALPHA 1.0

The default light values are as follows:

AMBIENT 0.0, 0.0, 0.0

LCOLOR 1 .0, 1.0, 1.0

POSITION 0.0, 0.0, 1.0, 0.0

The default lighting model values are as follows:

AMBIENT 0.2, 0.2, 0.2

LOCALVIEWERO.O

ATTENUATION 1.0, 0.0

Note: This subroutine cannot be used to add to a display list.

Parameters
deftype

index

numpoints

properties

Category in which you want to create a new definition. There are three
categories:

DEFMATERIAL Indicates that this routine defines the properties of a
material.

DEFLIGHT Indicates that this routine defines the properties of a light
source.

DEFLMODEL Indicates that this routine defines the properties of a
lighting model.

Specifies the index into the table of stored definitions.

Specifies the number of floating-point values contained within the properties
array.

Specifies an array that contains the definition to store at the index
parameter. A definition is a grouping of properties and values ended by the
symbolic constant LMNULL. Altogether, there are 11 defined symbolic
constants (command tokens) that identify the properties of a definition. The
valid symbolic constants for the properties parameter are as follows:

EMISSION Assigns an emission color to a material. Following this
symbolic constant, enter the red, green, and blue color
component values for the desired emission color. Valid
color component values range from 0.0 to 1.0 inclusive.

GL Subroutines 1-183

Im def

AMBIENT

DIFFUSE

SPECULAR

SHININESS

ALPHA

LCOLOR

POSITION

1-184 Graphics Subroutines Reference

Can be a property of a material, a light, or a lighting
model. Following this symbolic constant, enter the red,
green, and blue color values for the desired ambient
color. Valid color component values range from 0.0 to 1.0
inclusive. Assignments are as follows:

If the definition type is... then AMBIENT assigns ...

DEFMATERIAL The ambient reflectance of the
material.

DE FLIGHT

DEFLMODEL

The ambient light associated
with the light source.

The ambient light present in the
scene.

The properties of a lighting model apply to an entire
scene.

Assigns the diffuse reflectance of a material. Following
this symbolic constant, enter the red, green, and blue
color component values for the desired diffuse
reflectance color. Valid color component values range
from 0.0 to 1.0 inclusive.

Assigns the specular reflectance of a material. Following
this symbolic constant, enter the red, green, and blue
color component values for the desired specular
reflectance color. Valid color component values range
from 0.0 to 1.0 inclusive.

Assigns the material specular scattering exponent of the
material. Following this symbolic constant, enter a whole
number between 0.0 and 128.0 inclusive. The higher the
value, the smoother the surface appearance and the
more focused the specular highlight.

Assigns the transparency of the material. Following the
ALPHA symbolic constant, enter a value between 0.0
and 1.0, inclusive. (Systems without alpha bitplanes
cannot use this property.)

Assigns that color of a light source. Following this
symbolic constant, enter the red, green, and blue color
component values for the desired color of the light. Valid
color component values range from 0.0 to 1.0 inclusive.

Assigns the position of a light source. Following this
symbolic constant, enter the x, y, z, and w coordinates of

. the light source. If w is zero, the light source is infinitely
distant and the x, y, and z values specify the direction of
the light. Locating all light sources at infinity w = O
improves performance.

Example

Im def

LOCALVIEWER Assigns the local viewer status for a lighting model. If you
want the viewer (eye position) to be local, enter 1.0 after
this constant, and the lighting calculations assume that
the viewer is located at (0,0,0). If you do not want the
viewer to be local, then enter 0.0 after this constant, and
the lighting calculations assume that the viewer is at
positive infinity along the z axis. There is a performance
penalty when you request a local viewer.

ATIENUATION Assigns the light attenuation factor for the lighting model
(scene). Following this symbolic constant, enter two
attenuation factor values to specify:

k-of Attenuation offset factor.

k-rate Attenuation rate factor.

1. To define the properties of two materials and two lights, and to define a lighting model,
the example C language program cylinder2.c uses the lmdef subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current color in RGB mode with the c subroutine.

Setting the current color as a single packed 32-bit integer with the cpack subroutine.

Making a new material, light, or lighting model definition active with the lmbind subroutine.

Changing the target of the color commands with the lmcolor subroutine.

Specifying a normal vector with the n3f subroutine.

Updating the current normal vector with the normal subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

GL Introduction, Creating Lighting Effects, Setting Pipeline Options, and Working in Color
Map and RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-185

load matrix

loadmatrix Subroutine

Purpose
Loads a transformation matrix.

Library
Graphics Library (libgl.a)

C Syntax
void loadmatrix(Matrix matrix)

FORTRAN Syntax
SUBROUTINE LOADMA(matrix)
REAL matrix(4,4)

Description

Parameter

Example

The loadmatrix subroutine loads a 4x4 floating point matrix onto the transformation stack,
replacing the current top matrix. If the system is in projection matrix mode
(mmode (MPROJ) ;) , the projection matrix is replaced.

Be sure to exit projection matrix mode before performing any drawing because drawing is
not enabled while in this mode.

matrix Specifies the matrix to be loaded onto the matrix stack.

1 . To load the modelling/viewing matrix with the identity matrix, the example C language
program localatten.c uses the loadmatrix subroutine after changing the matrix mode to
MVIEWING with the mmode subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current matrix mode with the mmode subroutine.

Getting a copy of the current transformation matrix with the getmatrix subroutine.

Premultiplying the current transformation matrix with the multmatrix subroutine.

Popping the transformation matrix stack with the popmatrix subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-186 Graphics Subroutines Reference

load name

loadname Subroutine

Purpose
Loads a name onto the name stack.

Library
Graphics Library (libgl.a)

C Syntax
void loadname(lnt16 name)

FORTRAN Syntax
SUBROUTINE LOADNA(name)
INTEGER*2 name

Description

Parameter

Example

The loadname subroutine replaces the top name in the name stack with a new 16-bit
integer.

If a hit has occurred since the last time the name stack was touched, the system stores the
contents of the name stack in a buffer. This enables the user to identify the part of an image
that appears near the cursor.

The name stack is used only in picking or selecting mode.

name Specifies the name to be loaded onto the name stack.

1. To place a name on the top of the name stack, the example C language program pick1 .c
calls the loadname subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Putting the system in selecting mode with the gselect subroutine.

Initializing the name stack with the initnames subroutine.

Putting the system in picking mode with the pick subroutine.

Popping a name off the name stack with the popname subroutine.

Pushing a new name onto the name stack with the pushname subroutine.

GL Introduction and Picking and Selecting Overview for GL in Graphics Programming
Concepts.

GL Subroutines 1-187

loadXfont

loadXfont Subroutine

Purpose
Loads an Enhanced X-Windows font into the font table.

Library
Graphics Library (libgl.a)

C Syntax
void loadXfont(lnt32 id_num, Chara *name)

FORTRAN Syntax
SUBROUTINE LOADXF (id_num, name, length)
INTEGER *4 id_num
CHARACTER *(*) name (*)
INTEGER *4 length

Description
The loadXfont subroutine adds the named font to the list of defined fonts for this process.
The id_num parameter identifies the font and may be used with the font subroutine to set
the current font.

The font name is a NULL-terminated string that is a valid font name. The list of available
fonts can be found with the XListFonts subroutine and XListFontsWithlnfo subroutine.
The example program on loading X fonts shows an example of the use of the XListFonts
subroutine.

Parameters
id_num Specifies the number to be assigned to an Enhanced X-Windows font

name. This parameter is a 32-bit integer.

Example

name

length

Specifies a NULL-terminated string identifying a valid AIXwindows font
name.

In FORTRAN, specifies the length of the string in the name parameter. This
parameter is a 32-bit integer.

1. To add a font to the fonts defined for a process, the example C language program
xfonts.c uses the loadXfont subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-188 Graphics Subroutines Reference

loadXfont

Related Information
Getting a list of available fonts with the Xlistfonts subroutine.

Getting a list of available fonts with information with the XlistFontsWithlnfo subroutine.

GL Introduction, Creating Text Characters, Getting Ready to Run GL, and Starting GL
Functions in Graphics Programming Concepts.

AIXwindows Overview and Enhanced X-Windows Introduction in User Interface
Programming Concepts.

GL Subroutines 1-189

logicop

logicop Subroutine

Purpose
Specifies a logical operation for pixel writes.

Library
Graphics Library (libgl.a)

C Syntax
void logicop(lnt32 opcode)

FORTRAN Syntax
SUBROUTINE LOGICO(opcode)
INTEGER*4 opcode

Description
The logicop subroutine specifies the bit-wise logical operation for pixel writes. The logical
operation is applied between the incoming (source) and existing (destination) values to
generate the final pixel value. In color map mode, all writemask-enabled index bits (up to 12)
are changed. In RGB mode, all enabled component bits (up to 32) are changed.

The logicop subroutine defaults to the value of LO_SRC, meaning that the incoming
(source) value replaces the existing (destination) value.

It is not possible to do logical and blending operations simultaneously. When the opcode
parameter is set to any value other than LO_SRC, the blendfunction subroutine values
sfactorand dfactorare forced to their default values, BF _ONE and BF _ZERO, respectively.
Likewise, calling the blendfunction subroutine with arguments other than BF _ONE and
BF _ZERO forces the logical opcode to a value of LO_SRC.

Unlike the blendfunction subroutine, the logicop subroutine is valid in all drawing modes
(NORMALDRAW, UNDERDRAW, OVERDRAW, PUPDRAW, CURSORDRAW) and in both
color map and RGB modes. Like the blendfunction subroutine, it affects all drawing
operations, including points, lines, polygons, and pixel area transfers. The logicop
subroutine does NOT affect pixel block transfers (blits) into the z-buffer.

The logicop subroutine functions in systems without alpha bitplanes. The blendfunction
subroutine does not function in systems without alpha bitplanes.

1-190 Graphics Subroutines Reference

Parameter
opcode

logicop

One of the 16 possible logical operations defined in the following table:

Value Operation

LO_ZERO 0

LO_AND src AND dst

LO_ANDR src AND (NOT dst)

LO_SRC src

LO_ANDI (NOT src) AND dst

LO_DST dst

LO_XOR src XOR dst

LO_OR src OR dst

LO_NOR NOT (src OR dst)

LO_XNOR NOT (src XOR dst)

LO_NDST NOT dst

LO_ORR src OR (NOT dst)

LO_NSRC NOT src

LO_ORI (NOT src) OR dst

LO_NAND NOT (src AND dst)

LO_ONE 1

Note: The numeric assignment of the 16 operation names were chosen to
be identical to those defined by the AIXwindows system.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying the alpha blending ratio with the blendfunction subroutine.

GL Introduction, Configuring the Frame Buffer, and Controlling Frame Buffer Update in
Graphics Programming Concepts.

GL Subroutines 1-191

lookat

lookat Subroutine

Purpose

Library

C Syntax

Defines a viewing transformation.

Graphics Library (libgl.a)

void lookat
(Coord viewx,
Coord viewy,
Coord viewz,
Coord pointx,
Coord pointy,
Coord pointz,
Angle twist)

FORTRAN Syntax
SUBROUTINE LOOKAT(viewx, viewy, viewz, pointx, pointy, pointz, twist)
INTEGER*4 viewx, viewy, viewz, pointx, pointy, pointz, twist

Description
The lookat subroutine defines the viewpoint and a reference point on the line of sight in
world coordinates. The viewpoint is at (viewx, viewy, viewz), and is the position from which
you are looking. The reference point is at (pointx, pointy, pointz), and is the location on
which the viewpoint is centered. If pointx, pointy, and pointz are 0, you are looking at the
origin of the world coordinate system. The viewpoint and reference point define the line of
sight. The twist parameter measures right-hand rotation about the line of sight.

Normally, lookat is used to set up the mapping from world coordinates to eye coordinates
(equivalently, to define the location of the viewer's eye in world coordinates). If the lookat
subroutine is the first transformation subroutine called after projection matrix is set up and
the matrix stack is initialized, it sets up such a mapping.

The lookat subroutine can also be used as a modeling transformation. Whether it behaves
as a viewing transformation or a modeling transformation depends entirely on the order in
which it is called with respect to the other transformation subroutines and with respect to the
drawing subroutines.

Parameters
viewx

viewy

viewz

pointx

pointy

pointz

twist

Specifies the x coordinate of the viewing point.

Specifies the y coordinate of the viewing point.

Specifies the z coordinate of the viewing point.

Specifies the x coordinate of the reference point.

Specifies the y coordinate of the reference point.

Specifies the z coordinate of the reference point.

Specifies the angle of rotation.

1-192 Graphics Subroutines Reference

Example

lookat

1. To define the point of view, the example C language program zbuffer1 .c uses the lookat
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining the viewer's position in polar coordinates with the polarview subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

GL Subroutines 1-193

IRGBrange

IRGBrange Subroutine

Purpose

Library

C Syntax

Sets the range of colors used for depth-cueing.

Graphics Library (libgl.a)

void IRGBrange
(lnt16 rmin, lnt16 gmin,
lnt16 bmin, lnt16 rmax,
lnt16 gmax, lnt16 bmax,
lnt32 znear, lnt32 zfary

FORTRAN Syntax
SUBROUTINE LRGBRA(rmin, gmin, bmin, rmax, gmax, bmax, znear, zfary

INTEGER*2 rmin, gmin, bmin, rmax, gmax, bmax

INTEGER*4 znear, zfar

Description
The IRGBrange subroutine sets the range of colors used in depth-cueing in RGB mode. The
range is mapped linearly into the RGB color range. Any z values less than the value of the
znear parameter are mapped to rmax, gmax, and bmax parameters. Any z values greater
than the value of the zfar parameter are mapped to rmin, gmin, and bmin parameters.

The valid range for znear and zfar is -Ox800000 to +Ox?FFFFF.

Parameters
rm in

gm in

bmin

rm ax

gm ax

bmax

znear

zfar

Specifies the minimum value to be stored in the red bitplanes.

Specifies the minimum value to be stored in the green bitplanes.

Specifies the minimum value to be stored in the blue bitplanes.

Specifies the maximum value to be stored in the red bitplanes.

Specifies the maximum value to be stored in the green bitplanes.

Specifies the maximum value to be stored in the blue bitplanes.

Specifies the minimum z value to be used as the criterion for linear
mapping.

Specifies the maximum z value to be used as the criterion for linear
mapping.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-194 Graphics Subroutines Reference

IRGBrange

Related Information
GL Introduction, Performing Depth-Cueing, and Working in Color Map and RGB Modes in
Graphics Programming Concepts.

GL Subroutines 1-195

lsetdepth

lsetdepth Subroutine

Purpose
Sets up a 3-D viewport.

Library
Graphics Library (libgl.a)

C Syntax
void lsetdepth(lnt32 near, lnt32 fat?

FORTRAN Syntax
SUBROUTINE LSETDE(near, fat?
INTEGER*4 near, far

Description
The lsetdepth subroutine takes the mapping furnished by the viewport subroutine and
completes this mapping for homogeneous coordinates. The viewport subroutine specifies
the mapping of the left, right, bottom, and top clipping planes into screen coordinates. The
lsetdepth subroutine then specifies the mapping of the near and far clipping planes into
values stored in the z-buffer. This subroutine is used in z-buffering and depth-cueing.

The valid values of the parameters range from -Ox800000 to +Ox7FFFFFF.

Acceptable mappings include all those where the values of the near and far parameters are
within the supported range, including mappings where near> far.

Note: Error accumulation in the iteration of the z coordinate can cause wrapping when the
full-depth range supported by the graphics hardware is used. (An iteration wraps
when it accidentally converts a large positive value into a negative value, or vice
versa.) The effects of wrapping, although typically not observed, can be eliminated
by reducing the depth range by a small percentage.

Parameters

Example

near Specifies the screen coordinate of the near clipping plane.

far Specifies the screen coordinate of the far clipping plane.

1 . To set the range of z-axis values to store in the bitplanes, the example C language
program depthcue.c uses the lsetdepth subroutine._

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-196 Graphics Subroutines Reference

lsetdepth

Related Information
Turning depth-cueing on and off with the depthcue subroutine.

Setting the viewport depth range with the lsetdepth subroutine.

GL Introduction, Configuring the Frame Buffer for GL, Performing Depth-Cueing in GL,
Working with Coordinate Systems in GL, and Using Viewports and Screenmasks in GL in
Graphics Programming Concepts.

GL Subroutines 1-197

lshaderange

lshaderange Subroutine

Purpose

Library

C Syntax

Sets the range of color indexes used in depth-cueing.

Graphics Library (libgl.a)

void lshaderange
(Colorindex lowindex, Colorindex highindex,
lnt32 znear, lnt32 zfary

FORTRAN Syntax
SUBROUTINE LSHADE(/owindex, highindex, znear, zfary
INTEGER*2 /owindex, highindex
INTEGER*4 znear, zfar

Description
The lshaderange subroutine sets the range of color indexes used for depth-cueing. The
range is mapped linearly into the color index range. Any z values less than the value of the
znear parameter map to the highindex parameter; z values greater than the zfar parameter
map to the lowindex parameter.

The valid values for the znear and zfar parameters range from -Ox800000 to +Ox7FFFFFF.
The default is lshaderange(O, 7, zmin, zmax) where the zmin parameter and zmax
parameter are the minimum and maximum z values listed previously.

Parameters
lowindex Specifies the low-intensity color map index.

Specifies the high-intensity color map index.

Specifies the low z value.

Example

highindex

znear

zfar Specifies the high z value.

1 . To map the z-axis values to a spread of colors in the color map, the example C language
program depthcue.c uses the lshaderange subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-198 Graphics Subroutines Reference

lshaderange

Related Information
Turning depth-cueing on and off with the depthcue subroutine.

Setting the range of RGB colors used for depth-cueing with the IRGBrange subroutine.

Setting the viewport depth range with the lsetdepth subroutine.

GL Introduction, Performing Depth-Cueing, and Working in Color Map and RGB Modes in
Graphics Programming Concepts.

GL Subroutines 1-199

ls repeat

lsrepeat Subroutine

Purpose
Sets the repeat factor for the current linestyle.

Library
Graphics Library (libgl.a)

C Syntax
void lsrepeat(lnt32 factory

FORTRAN Syntax
SUBROUTINE LSREPE(factory
INTEGER*4 factor

Description

Parameter

The lsrepeat subroutine sets the repeat factor for the current linestyle.

This subroutine is used to create linestyles that are longer than 16 bits by multiplying each
bit in the pattern by the value of the factor parameter.

Each bit in the pattern is multiplied successively. For example, if the line pattern is
o o o o o o o 111111111 and the factor parameter equals 3, the resulting linestyle is 2 7 bits on
followed by 21 bits off. Line patterns start from the least significant bit.

When a line is drawn, pixels are turned on if there is a 1 (one) in the corresponding position
of the linestyle mask and turned off if there is a O (zero) in the corresponding position. The
valid range of the repeat factor is from 1 to 255.

factor Multiplier of the linestyle pattern.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a linestyle with the deflinestyle subroutine.

Returning the linestyle repeat count with the getlsrepeat subroutine.

Selecting a linestyle with the setlinestyle subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Setting Attributes, Understanding the Hardware Used by GL, and Using the GL High-Level
Drawing Library in Graphics Programming Concepts.

1-200 Graphics Subroutines Reference

makeobj

makeobj Subroutine

Purpose
Creates an object (display list).

Library
Graphics Library (libgl.a)

C Syntax
void makeobj(lnt32 object)

FORTRAN Syntax
SUBROUTINE MAKEOB(object)
INTEGER*4 object

Description

Parameter

Example

The makeobj subroutine creates and names a new display list (object). If the object
parameter is the number of an existing object, the contents of that object are deleted.

When the makeobj subroutine executes, the object number is entered into a symbol table
and memory is allocated for a display list. Subsequent graphics routines are then compiled
into the display list instead of executing. Compilation continues until the closeobj subroutine
is called.

Notes:

object

1. This editing subroutine itself cannot be added to a display list.

2. The makeobj subroutine cannot be called within an object; that is, an existing
object cannot be used to create a new object.

Specifies the numeric identifier for the object being defined.

1. To specify the beginning of a display list defining a graphical object, the example C
language program depthcue.c uses the makeobj subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-201

makeobj

Related Information
Drawing an instance of an object with the callobj subroutine.

Specifying the amount of memory allocated for an object with the chunksize subroutine.

Closing an object with the closeobj subroutine.

Opening an object for editing with the editobj subroutine.

Returning a unique integer for use as an object identifier with the genobj subroutine.

Establishing the uniqueness of an object number with the isobj subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

1-202 Graphics Subroutines Reference

maketag

maketag Subroutine

Purpose
Inserts a marker tag into a display list.

Library
Graphics Library (libgl.a)

C Syntax
void maketag(lnt32 tag)

FORTRAN Syntax
SUBROUTINE MAKETA(tag)
INTEGER*4 tag

Description

Parameter

The maketag subroutine inserts a marker, or tag, at the current editing location of the
currently open display list. The current editing position is usually at the end of the display list,
if the display list was recently opened with the makeobj subroutine or editobj subroutine.

The current position can be maneuvered with the objdelete, objinsert, and objreplace
subroutines. Tags can be used to help in the maneuvering through and editing of display
lists.

There are two predefined tags, STARTTAG and ENDTAG, which mark the beginning and end
of the display list. Tags should be unique within a single object; however, there is no
restriction regarding uniqueness across different objects. Unique tags can be generated with
the gentag subroutine.

Note: This editing subroutine itself cannot be added to a display list.

tag Specifies a 31-bit numeric identifier assigned to a routine in the display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Deleting tags from a display list with the deltag subroutine.

Returning a unique integer for use as a tag number with the gentag subroutine.

Establishing the uniqueness of a tag number with the istag subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-203

mapcolor

mapcolor Subroutine

Purpose

Library

C Syntax

Changes a color map entry to a specified RGB value.

Graphics Library (libgl.a)

void mapcolor
(Colorindex index,
lnt16 red, lnt16 green, lnt16 blue)

FORTRAN Syntax
SUBROUTINE MAPCOL (index, red, green, blue)
INTEGER*2 index, red, green, blue

Description
The mapcolor subroutine changes a single color map entry for the current drawing mode to
a specified RGB value. The index parameter loads the color map entry that corresponds with
the specified RGB intensities. The valid range for the index parameter depends on the
drawing mode:

NORMALDRAW 0 to 4095, or 0 to 255 if the system has only eight color bitplanes or is in
multimap mode.

OVERDRAW 1 to 3 if the overlay(2) subroutine has been called, or 1 to 15 if the
overlay(4) has been called.

UNDERDRAW Oto 3 if the underlay(2) subroutine has been called, or Oto 15 if the
underlay(4) subroutine has been called.

PUPDRAW 1 to 3.

CURSORDRAW 1 to 3.

In multimap mode, the mapcolor subroutine updates only the small color map currently
selected by the setmap subroutine. The system ignores invalid indexes.

On most systems, this subroutine does not set the current drawing color, and so should not
be used for this purpose. To set the current drawing color, use the c, color, cpack, or
RGBcolor subroutine.

Instead of the mapcolor subroutine, it is suggested that you use the mapcolors subroutine
for new development, because of its significantly improved performance.

Note: This subroutine cannot be used to add to a display list.

Parameters
index

red

green

blue

Specifies the index into the color map.

Specifies the intensity of red associated with the index.

Specifies the intensity of green associated with the index.

Specifies the intensity of blue associated with the index.

1-204 Graphics Subroutines Reference

Example

mapcolor

1. To edit the color map, the example C language program colored.c uses the mapcolor
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Choosing a set of bitplanes for drawing with the drawmode subroutine.

Defining a color map ramp for gamma correction with the gammaramp subroutine.

Getting a copy of the RGB values for a color map entry with the getmcolor subroutine.

Organizing the color map as one large map with the onemap subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Setting the number of bitplanes used for overlay colors with the overlay subroutine.

Selecting one of 16 sm~ll color maps with the setmap subroutine.

Setting the number of bitplanes used for underlay colors with the underlay subroutine.

Working in Color Map and RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-205

mapcolors

mapcolors Subroutine

Purpose
Loads a range of the color map.

Library
Graphics Library (libgl.a)

C Syntax
void mapcolors(lnt16 start_idx, lnt16 end_idx, lnt16 r [], lnt16 g [], lnt16 b [])

FORTRAN Syntax
SUBROUTINE MAPCOLORS (start_idx, end_idx, r, g, b)
INTEGER*2 start_idx, end_idx
INTEGER*2 r(1 }, g(1), b(1)

Description
The mapcolors subroutine loads a range of color map table entries. The range that is
loaded begins with start_idx and ends with end_idx, inclusive. The length of the array must
be equal to end_idx - start_idx + 1 . For instance to load only one color map entry, set
start_idx and end_idx to the same number. To load two entries, set end_idx to start_idx + 1.

The mapcolors subroutine is functionally equivalent to the C code shown in the following
fragment, although it will execute considerably faster.

{

}

int i;
do (i=O; i< (end_idx - start_idx + l); i++)

mapcolor (start_idx+i, r[i],g[i],b[i]);

The mapcolors subroutine can be used to load the underlay, overlay, cursor, popup, or main
frame buffer color map. Which map is loaded depends on the current drawing mode (as set
by the drawmode subroutine).

NORMALDRAW O to 4095, or O to 255 if the system has only eight color bitplanes or is in
multimap mode.

OVERDRAW 1 to 3 if the overlay(2) subroutine has been called, or 1 to 15 if the
overlay(4) has been called.

UNDERDRAW Oto 3 if the underlay(2) subroutine has been called, or Oto 15 if the
underlay(4) subroutine has been called.

PUPDRAW 1 to 3.

CURSORDRAW 1to3.

In multimap mode, the mapcolors subroutine updates only the small color map currently
selected by the setmap subroutine. The system ignores invalid indexes.

Note: This subroutine cannot be used to add to a display list.

1-206 Graphics Subroutines Reference

mapcolors

Parameters
start_idx Specifies the starting index in the color map to be loaded.

Specifies the ending index in the color map to be loaded. end_idx

r

g

b

Specifies an array containing the intensity of the red component.

Specifies an array containing the intensity of the green component.

Specifies an array containing the intensity of the blue component.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Choosing a set of bitplanes for drawing with the drawmode subroutine.

Defining a color map ramp for gamma correction with the gammaramp subroutine.

Getting a range of color map RGB entries with the getmcolors subroutine.

Organizing the color map as one large map with the onemap subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Setting the number of bitplanes used for overlay colors with the overlay subroutine.

Selecting one of 16 small color maps with the setmap subroutine.

Setting the number of bitplanes used for underlay colors with the underlay subroutine.

Working in Color Map and RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-207

mapw

mapw Subroutine

Purpose

Library

C Syntax

Computes the inverse mapping from screen coordinates to modeling coordinates.

Graphics Library (libgl.a)

void mapw
{lnt32 viewobj,
Screencoord screenx, Screencoord screeny,
Coord *modelx1, Coord *modely1, Coord *modelz1,
Coord *modelx2, Coord *modely2, Coord * modelz2)

FORTRAN Syntax
SUBROUTINE MAPW{viewobj, screenx, screeny, modelx1, modely1, modelz1, modelx2,
modely2, modelz2)
INTEGER*4 viewobj
INTEGER*2 screenx, screeny
REAL modelx1, modely1, modelz1, modelx2, modely2, modelz2

Description
The mapw subroutine takes a pair of 2-D screen coordinates and maps them into 3-D
modeling coordinates. Because the z coordinate is missing from the screen coordinate
system, the point becomes a line in modeling space. The mapw subroutine computes the
inverse mapping from the viewing object.

The system returns a modeling coordinate line, which is computed from the (screenx,
screeny) parameters and the viewobj parameter as two points and stored in the locations
addressed by the modelx1, modely1, modelz1 parameters and the modelx2, modely2,
modelz2 parameters.

Note: This subroutine cannot be used to add to a display list.

Parameters
viewobj

screenx

screeny

modelx1

modely1

modelz1

modelx2

modely2

modelz2

Specifies a viewing object containing the transformations that map the
current displayed objects to the screen.

Specifies the x coordinate of the screen point to be mapped.

Specifies the y coordinate of the screen point to be mapped.

Specifies the x model coordinate of one endpoint of a line.

Specifies the y model coordinate of one endpoint of a line.

Specifies the z model coordinate of one endpoint of a line.

Specifies the x model coordinate of the remaining endpoint of a line.

Specifies the y model coordinate of the remaining endpoint of a line.

Specifies the z model coordinate of the remaining endpoint of a line.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

1-208 Graphics Subroutines Reference

mapw

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Creating a new object in the display list with the makeobj subroutine.

Computing the inverse mapping from screen coordinates to 2-D modeling coordinates with
the mapw2 subroutine.

GL Introduction, Working with Coordinate Systems in GL, and Picking and Selecting
Overview for GL in Graphics Programming Concepts.

GL Subroutines 1-209

mapw2

mapw2 Subroutine

Purpose

Library

C Syntax

Computes the inverse mapping from screen coordinates to 2-D modeling coordinates.

Graphics Library {libgl.a)

void mapw2
{lnt32 viewobj,
Screencoord screenx, Screencoord screeny,
Coo rd * modelx, Coord * modely)

FORTRAN Syntax
SUBROUTINE MAPW2{viewobj, screenx, screeny, modelx, modely)
INTEGER*4 viewobj
INTEGER*2 screenx, screeny
REAL modelx, mode/y

Description
The mapw2 subroutine maps a point on the screen into 2-D modeling coordinates. This
subroutine is the 2-D version of the mapw subroutine.

Note: This subroutine cannot be used to add to a display list.

Parameters
viewobj Specifies a primitive containing the viewport, projection, viewing, and

modeling transformations that define modeling space.

screenx

screeny

mode Ix

modely

Specifies a point in screen coordinates.

Specifies a point in screen coordinates.

Specifies the corresponding x model coordinate.

Specifies the corresponding y model coordinate.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Creating a new object in the display list with the makeobj subroutine.

Computing the inverse mapping from screen coordinates to 3-D modeling coordinates with
the mapw subroutine.

GL Introduction, Working with Coordinate Systems in GL, and Picking and Selecting
Overview for GL in Graphics Programming Concepts.

1-210 Graphics Subroutines Reference

maxsize

maxsize Subroutine

Purpose
Specifies the maximum size of a window.

Library
Graphics Library (libgl.a)

C Syntax
void maxsize(lnt32 x, lnt32 y)

FORTRAN Syntax
SUBROUTINE MAXSIZ(x, y)
INTEGER*4 x, y

Description
The maxsize subroutine specifies the maximum size (in pixels) of a window. It is called at
the beginning of a graphics program, but only takes effect when the winopen subroutine is
called.

The maxsize subroutine can also be called in conjunction with the winconstraints
subroutine to modify the enforced maximum size after the window is created. The default
maximum size is 1280 pixels wide and 1024 pixels high. The window can be reshaped, but
cannot become larger than the specified maximum size.

With the maxsize subroutine, the programmer can prevent the user from resizing a window
to a size larger than the specified size.

Note: This subroutine cannot be used to add to a display list.

Parameters
x

y

Specifies the maximum width in pixels of a window.

Specifies the maximum height in pixels of a window.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-211

maxsize

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Obtaining the size of the window with the getsize subroutine.

Specifying the size of a window icon with the iconsize subroutine.

Specifying the minimum size of a window with the minsize subroutine.

Constraining the size of a window with the prefsize subroutine.

Specifying a window size change in discrete steps with the stepunit subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-212 Graphics Subroutines Reference

minsize

minsize Subroutine

Purpose
Specifies the minimum size of a window.

Library
Graphics Library (libgl.a)

C Syntax
void minsize(lnt32 x, lnt32 y)

FORTRAN Syntax
SUBROUTINE MINSIZ(x, y)
INTEGER*4 x, y

Description
The minsize subroutine specifies the minimum size (in pixels) of a window. It is called at the
beginning of a graphics program, but only takes effect when the winopen subroutine is
called.

The minsize subroutine can also be called in conjunction with the winconstraints
subroutine to modify the enforced minimum size after the window is created. The default
minimum size is 40 pixels wide and 30 pixels high. The window can be reshaped, but cannot
become smaller than the specified minimum size.

With the minsize subroutine, the programmer can prevent the user from resizing a window
to a size smaller than the specified size.

Note: This subroutine cannot be used to add to a display list.

Parameters
x

y

Specifies the minimum width in pixels of a window. The lowest legal value
for this parameter is 21.

Specifies the minimum height in pixels of a window. The lowest legal value
for this parameter is 21.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

Files
/usr/include/g l/g I. h Contains constant and variable type definitions for GL.

GL Subroutines 1-213

minsize

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Obtaining the size of the window with the getsize subroutine.

Specifying the size of a window icon with the iconsize subroutine.

Specifying the maximum size of a window with the maxsize subroutine.

Constraining the size of a window with the prefsize subroutine.

Specifying a window size change in discrete steps with the stepunit subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-214 Graphics Subroutines Reference

mmode

mmode Subroutine

Purpose
Sets the current matrix mode.

Library
Graphics Library (libgl.a)

C Syntax
void mmode(lnt16 mode)

FORTRAN Syntax
SUBROUTINE MMODE(mode)
INTEGER*2 mode

Description

Parameter

The mmode subroutine sets the current matrix mode.

The system is in single matrix mode after a call to the winopen, ginit, or gbegin
subroutines. This mode is sufficient except for lighting calculations; when performing those,
use viewing matrix mode.

Because the projection matrix is not stored on the matrix stack, the projection matrix is not
normally accessible. However, if you want to define your own projection matrix, put the
system into projection matrix mode. You can then use the standard matrix manipulation
commands to alter the projection matrix. When in projection matrix mode, do not use the
subroutines pushmatrix and popmatrix.

When you have finished modifying the projection matrix, return to viewing matrix mode and
load a 4 by 4 identity matrix onto the matrix stack. (The standard transformation
subroutines, rotate, rot, translate, scale, lookat, and polarview, all use matrix
multiplication. Loading the identity matrix onto the matrix stack is a safe way to make sure
that there is a matrix by which to multiply.)

Notes:

1. This subroutine can be called within primitives.

2. This subroutine cannot be used to add to a display list.

mode Specifies the current matrix mode to be set. \

There are three possible values for this function: \

Mode Name Mode

MSINGLE Single matrix

MPROJECTION Projection matrix

MVIEWING Viewing matrix

GL Subroutines 1-215

mmode

Example
1. To specify that matrix operations manipulate only the modeling and viewing matrix (not

the projection matrix), the example C language program cylinder1 .c uses the mmode
subroutine with MVIEWING as the value of the mode parameter.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Making a new material, light, or lighting model definition active with the lmbind subroutine.

Defining a new material, light, or lighting model with the lmdef subroutine.

GL Introduction, Creating Lighting Effects, Setting Pipeline Options, and Working in Color
Map and RGB Modes in Graphics Programming Concepts.

1-216 Graphics Subroutines Reference

move Subroutine

Purpose
Moves the current graphics position to a specified point.

Library
Graphics Library (libgl.a)

C Syntax
void move
(Coord x, Coord y, Coord z)

void movei
(lcoord x, lcoord y, lcoord z)

void moves
(Scoord x, Scoord y, Scoord z)

void move2
(Coord x, Coord y)

void move2i
(lcoord x, lcoord y)

void move2s
(Scoord x, Scoord y)

FORTRAN Syntax
SUBROUTINE MOVE{x, y, z)
REALx, y, z
SUBROUTINE MOVEl(x, y, z)
INTEGER*4 x, y, z
SUBROUTINE MOVES{x, y, z)
INTEGER*2 x, y, z

SUBROUTINE MOVE2{x, y)
REAL x, y

SUBROUTINE MOVE21{x, y)
INTEGER*4 x, y

SUBROUTINE MOVE2S{x, y)
INTEGER*2 x, y

Description

move

The move subroutine changes (without drawing) the current graphics position to the point
specified by the x, y, and z parameters. The graphics position is the point from which the
next drawing routine starts drawing.

The value of move2{x, y) is equivalent to move{x, y, 0.0).

GL Subroutines 1-217

move

The six different forms for the move subroutine are as follows:

2-D 3-D

lnt16 move2s moves

lnt32 move2i movei

float move2 move

The syntax for each of the subroutine forms is the same except for the parameter types.
They differ only in that move expects real coordinates, movei expects integer coordinates,
and moves expects short integer coordinates. In addition, the move2* routines assume a
2-D point instead of a 3-D point.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

x

y

z

Specifies the new x coordinate for the current graphics position.

Specifies the new y coordinate for the current graphics position.

Specifies the new z coordinate for the current graphics position.

1. To move the graphics position without drawing any lines, the example C language
program depthcue.c uses the movei subroutine when defining a graphical object.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a ljne with the draw subroutine.

Specifying the starting point for a polygon with the pmv subroutine.

Drawing a point with the pnt subroutine.

Drawing a relative line with the rdr subroutine.

Moving the current graphics position to a point relative to the current point with the rmv
subroutine.

GL Introduction anti Drawing with Move-Draw Style Subroutines in Graphics Programming
Concepts.

1-218 Graphics Subroutines Reference

multi map

multimap Subroutine

Purpose
Organizes the color map as 16 small maps.

Library
Graphics Library (libgl.a)

C Syntax
void multimap()

FORTRAN Syntax
SUBROUTINE MULTIM

Description

File

The multimap subroutine reorganizes the color map as 16 small independent maps. Only
one of these small maps can be active, or current, at a time; and only the least significant
bits in the frame buffer are passed through the current map.

On the 24-bit High-Performance 3-D Color Graphics Processor, these small maps are each
8-bit color maps having 256 entries. On the 8-bit High-Performance 3-D Color Graphics
Processor, the maps are each 4-bit color maps having 16 entries.

The reorganization into multiple independent maps does not take effect until the gconfig
subroutine is called.

Note: This subroutine cannot be used to add to a display list.

/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Configuring the system with the gconfig subroutine.

Returning the organization of the current color map with the getcmmode subroutine.

Returning the number of the current color map with the getmap subroutine.

Organizing the color map as one large map with the onemap subroutine.

Selecting one of 16 small color maps with the setmap subroutine.

Working in Color Map and RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-219

multi matrix

multmatrix Subroutine

Purpose
Premultiplies the current transformation matrix.

Library
Graphics Library (libgl.a)

C Syntax
void multmatrix(Matrix matrix)

FORTRAN Syntax
SUBROUTINE MULTMA(matrix)
REAL matrix(4,4)

Description

Parameter

Example

The multmatrix subroutine premultiplies the current top of the transformation stack by the
given matrix. If Tis the current matrix, multmatrix(M) replaces Twith M*T. If the system is
in projection matrix mode (mmode (MPROJ) ;) , the projection matrix is premultiplied.

Be sure to exit projection matrix mode before performing any drawing because drawing is
not enabled while in this mode.

matrix Specifies the matrix that is to multiply the current top matrix of the matrix
stack.

1. To set up the transformation matrix to draw a Bezier curve, the example C language
program curve3.c calls the multmatrix subroutine with the control point matrix, the
Bezier basis matrix, and the precision matrix.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current matrix mode with the mmode subroutine.

Getting a copy of the current transformation matrix with the getmatrix subroutine.

Loading a transformation matrix with the loadmatrix subroutine.

Popping the transformation matrix stack with the popmatrix subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-220 Graphics Subroutines Reference

n3f

n3f Subroutine

Purpose
Specifies a normal vector for lighting calculations.

Library
Graphics Library (libgl.a)

C Syntax
void n3f(Float32 vector [3])

FORTRAN Syntax
SUBROUTINE N3F(vectot?
REAL vector (3)

Description

Parameter

The n3f subroutine specifies the normal vector to be used for lighting calculations.

The passed parameter (vectot) becomes the current normal and is used when the lighting
algorithm is rerun for all subsequent vertices. It is not necessary to respecify a normal if it is
unchanged. For example, a single call to the n3f subroutine is sufficient for a flat-shaded
polygon. However, the n3f subroutine must be called before the first vertex subroutine.

Lighting calculations assume that the specified normal is of unit length, as shown in the
following equation:

x2 + y2 + z2 = 1.0

If the normal does not equal 1.0, or if no lighting model is active, the results are
unpredictable.

When called with unequal arguments, the scale subroutine or any other nonorthonomial
transformation causes a matrix skew that is corrected by renormalizing every normal.
Lighting performance is reduced in this event.

The normal and n3f subroutines are the same in all respects except one: normal can be
used for display lists and n3f cannot.

Note: This subroutine cannot be used to add to a display list.

vector Specifies the address of an array containing three floating point numbers.
These numbers are used to set the value for the current vertex normal.

Vector components are:

Vector Component

Nx

Ny

Nz

Clndex

0

2

FORTRAN Index

1

2

3

GL Subroutines 1-221

n3f

Example
1. To specify the normal vectors of a polygon, the example C language program

cylinder2.c calls the n3f subroutine between the bgnpolygon subroutine and the
endpolygon subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Binding a new material, light, or lighting model definition with the lmbind subroutine.

Defining a new material, light, or lighting model with the lmdef subroutine.

Specifying a current normal vector for lighting calculations with the normal subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

1-222 Graphics Subroutines Reference

newpup Subroutine

Purpose
Allocates and initializes a structure for a new menu.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 newpup()

FORTRAN Syntax
INTEGER*4 FUNCTION NEWPUP

Description

newpup

The newpup subroutine allocates and initializes a structure for a new menu. The return
value is a positive menu identifier.

Use this subroutine with the addtopup subroutine to create pop-up menus.

Note: This subroutine cannot be used to add to a display list.

Return Value
An identifier for a new menu.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Adding an item to an existing pop-up menu with the addtopup subroutine.

Defining a pop-up menu with the defpup subroutine.

Displaying a pop-up menu with the dopup subroutine.

Deallocating a pop-up menu and its data structures with the freepup subroutine.

Enabling or disabling a given pop-up entry with the setpup subroutine.

GL Introduction and Creating and Managing Pop-Up Menus in GL in Graphics Programming
Concepts.

GL Subroutines 1-223

newtag

newtag Subroutine

Purpose
Inserts a tag at an offset from an existing tag.

Library
Graphics Library (libgl.a)

C Syntax
void newtag(lnt32 newt, lnt32 oldtag, lnt32 offset)

FORTRAN Syntax
SUBROUTINE NEWTAG(newt, oldtag, offset)
INTEGER*4 newtag, oldtag, offset

Description
The newtag subroutine inserts a tag at a specified offset from the position marked by the
oldtag parameter.

Note: This editing subroutine itself cannot be added to a display list.

Parameters
newt

oldtag

offset

Specifies a numeric identifier.

Specifies a pre-existing tag to be used as a reference point for inserting the
new tag.

Specifies the number of lines beyond the position of the old tag at which to
place the new tag.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Marking a location in a display list with the maketag subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

1-224 Graphics Subroutines Reference

no border

noborder Subroutine

Purpose
Specifies a window without any borders.

Library
Graphics Library (libgl.a)

C Syntax
void noborder()

FORTRAN Syntax
SUBROUTINE NOBORD

Description
The noborder subroutine specifies a window that has no borders around its drawable area.
Call this subroutine before opening the window.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Specifying a window size change in discrete steps with the stepunit subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-225

noise

noise Subroutine

Purpose
Filters valuator motion.

Library
Graphics Library (libgl.a)

C Syntax
void noise(Device valuator, lnt16 delta)

FORTRAN Syntax
SUBROUTINE NOISE(valuator, delta)
INTEGER*2 valuator, delta

Description
The noise subroutine provides squelch for noisy valuators. It prevents a valuator from
reporting small fluctuations in movement that are not meaningful. For example,
noise(valuator,5) means that the specified valuator must move at least 5 units before it
makes a new queue entry.

A valuator must be queued before the noise subroutine is called.

Note: This subroutine cannot be used to add to a display list.

Parameters
valuator Specifies a single-value input device.

delta Specifies the number of units of change required before the valuator can
make a new queue entry.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h

/usr/include/gl/device.h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

Related Information
Assigning an initial value to a valuator with the setvaluator subroutine.

GL Introduction, Controlling Queues and Devices in GL, and Controlling the Keyboard in GL
in Graphics Programming Concepts.

1-226 Graphics Subroutines Reference

noport Subroutine

Purpose
Specifies that a program does not require a window.

Library
Graphics Library (libgl.a)

C Syntax
void noport()

FORTRAN Syntax
SUBROUTINE NOPORT

Description

no port

The noport subroutine specifies that a graphics program does not need screen space, and
therefore does not require a window. This is useful for programs that only read or write the
color map. Call this subroutine at the beginning of a graphics program, then call the
winopen subroutine to initialize graphics.

The noport subroutine is ignored without a call to the winopen subroutine.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Binding window constraints to the current window with the winconstraints subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-227

normal

normal Subroutine

Purpose
Sets the current normal vector.

Library
Graphics Library (libgl.a)

C Syntax
void normal(Coord narray[3])

FORTRAN Syntax
SUBROUTINE NORMAL(narray)
REAL narra.Y(3)

Description

Parameter

The normal subroutine sets the current normal vector. The x, y, and z modeling coordinates
stored in the parameter narray are transformed into eye coordinates using the inverse
transpose of the current viewing matrix. These numbers are used to set the value for the
current vertex normal.

The passed parameter (narray) becomes the current normal and is used when the lighting
algorithm is rerun for all subsequent vertices. It is not necessary to respecify a normal if it is
unchanged. For example, a single call to the n3f subroutine is sufficient for a flat-shaded
polygon. However, the n3f subroutine must be called before the first vertex subroutine.

Lighting calculations assume that the specified normal is of unit length, as shown in the
following equation:

x2 + y2 + z2 = 1 . 0

If the normal does not equal 1.0, or if no lighting model is active, the results are
unpredictable.

The normal and n3f subroutines are the same in all respects except one: normal can be
used for display lists and n3f cannot.

Notes:

1. This subroutine can be called within primitives.

2. This subroutine cannot be used to add to a display list.

narray Specifies the address of an array containing three floating point numbers
representing the x, y, and z model coordinates. Corresponding indexes for
these coordinates are:

Model Coordinate

x
y

z

C Index

0

1

2

FORTRAN Index

1

2

3

1-228 Graphics Subroutines Reference

normal

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Binding a new material, light, or lighting model definition with the lmbind subroutine.

Defining a new material, light, or lighting model with the lmdef subroutine.

Specifying a normal for lighting calculations with the n3f subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

GL Subroutines 1-229

nurbscurve

nurbscurve Subroutine

Purpose

Library

C Syntax

Controls the shape of a NURBS trimming curve.

Graphics Library (libgl.a)

void nurbscurve
{lnt32 knot_count,
Float64 knot_/istf.],
lnt32 stride,
Float64 *ct/array,
lnt32 order,
lnt32 type)

FORTRAN Syntax
SUBROUTINE NURBSC{knot_count, knot_/ist,

stride, cl/array, order, type)
INTEGER*4 knot_count, stride, order, type
REAL *8 knot_/ist{knot_count), ct/array(_*)

Description
The nurbscurve subroutine describes a Non-Uniform Rational 8-Spline (NURBS) curve.
Use NURBS curves within trimming loop definitions. To mark the beginning and end of a
trimming loop definition, use the bgntrim and endtrim subroutines.

Use trimming loop definitions within NURBS surface definitions, as defined by the
bgnsurface subroutine. Describe a trimming loop by using a series of NURBS curves,
piecewise linear curves (as defined by the pwlcurve subroutine), or both.

The system displays the region of the NURBS surface that is to the left of the trimming
curves as the parameter increases. Thus, for a counterclockwise-oriented trimming curve,
the displayed region of the NURBS surface is the region inside the curve. For a
clockwise-oriented trimming curve, the displayed region of the NURBS surface is the region
outside the curve.

The stride parameter is used when the control points are part of an array of larger structure
elements. The nurbscurve subroutine searches for the nth control point pair or triple
beginning at byte address:

* (ct/array + n x stride)

Parameters
knot_ count

knot_/ist

stride

ct/array

Specifies the number of knots.

Specifies an array of knot_count nondecreasing knot values.

Specifies the offset (in bytes) between successive curve control points.

Specifies an array containing control points for the NURBS curve. The
coordinates must appear as either (x, y) pairs or as (x, y, w) triples. The
offset between successive control points is given by stride.

1-230 Graphics Subroutines Reference

nurbscurve

order Specifies the order of the NURBS curve. The order is one more than the
degree, hence, a cubic curve has an order of 4.

type Specifies a value indicating the control point type. Current options are N_ST
and N_STW, corresponding to two dimensional and three dimensional
(rational) control points.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Marking the beginning and end of a NURBS surface definition with the bgnsurface and
endsurface subroutines.

Marking the beginning and end of a NURBS surface trimming loop with the bgntrim and
endtrim subroutines.

Returning the current value of a trimmed NURBS surfaces display property with the
getnurbsproperty subroutine.

Controlling the shape of a untrimmed NURBS surface with the nurbssurface subroutine.

Describing a piecewise linear trimming curve for NURBS surfaces with the pwlcurve
subroutine.

Setting a property for the display of trimmed NURBS with the setnurbsproperty subroutine.

GL Introduction and Drawing NURBS Curves and Surfaces in Graphics Programming
Concepts.

GL Subroutines 1-231

nurbssurface

nurbssurface Subroutine

Purpose

Library

C Syntax

Controls the shape of a NURBS surface

Graphics Library (libgl.a)

void nurbssurface
(lnt32 s_knot_count,
Float64 s_knots[],
lnt32 t_knot_count,
Float64 t_knots[],
lnt32 s_stride,
lnt32 t_stride,
Float64 *ct/array,
lnt32 s_order,
lnt32 t_order,
lnt32 type)

FORTRAN Syntax
SUBROUTINE NURBSS(s_knot_count,
s_knots, t_knot_count, t_knots, s_stride,
t_stride, ct/array, s_order, t_order, type)
INTEGER*4 s_knot_count, t_knot_count
REAL *8 s_knots(s_knot_counf)
REAL *8 t_knots(t_knot_counf)
INTEGER*4 s_stride, t_stride
INTEGER*4 s_order, t_order, type
REAL *8 ct/array(*)

Description
The nurbssurface subroutine controls the shape of a Non-Uniform Rational 8-Spline
(NURBS) surface. Use this subroutine within a NURBS surface definition to describe the
shape of a NURBS surface before any trimming takes place. To mark the beginning and end
of a NURBS surface definition, use the bgnsurface and endsurface subroutines. Call the
nurbssurface subroutine only within a NURBS surface definition.

You can trim a NURBS surface by using the nurbscurve and pwlcurve subroutines
between calls to the bgntrim and endtrim subroutines.

The system renders a NURBS surface as a polygonal mesh and analytically calculates
normal vectors at the corners of the polygons within the mesh. Therefore, your program
should specify a lighting modelwhen it uses NURBS surfaces, otherwise much detailed
surface information is lost. Use the lmdef and lmbind subroutines to define or modify
materials and their properties.

Note: If backfacing is on, the system cannot correctly eliminate backfacing polygons on the
surface.

1-232 Graphics Subroutines Reference

nurbssurface

Parameters
s_knot_count Specifies the number of knots in the parametric s direction.

Specifies an array of s_knot_count nondecreasing knot values in the
parametric s direction.

s_knots

t_knot_count

t_knots

s_stride

t_stride

ct/array

s_order

t_order

type

Specifies the number of knots in the parametric t direction.

Specifies an array of t_knot_count nondecreasing knot values in the
parametric t direction.

Specifies the offset (in bytes) between successive control points in the
parametric s direction in ct/array.

Specifies the offset (in bytes) between successive control points in the
parametric t direction in ct/array.

Specifies an array containing control points for the NURBS surface. The
coordinates must appear as either (x, y, z) triples or as (x, y, z, w)
quadruples. The offsets between successive control points in the parametric
s and t directions are given by s_stride and t_stride.

Specifies the order of the NU RBS surface in the parametric s direction. The
order is one more than the degree, so a cubic surface has an order of 4.

Specifies the order of the NU RBS surface in the parametric t direction. The
order is one more than the degree, so a cubic surface has an order of 4.

Specifies a value indicating the control point type. Current options are
N_XYZ and N_XYZW, corresponding to three-dimensional and
four-dimensional (rational) control points.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl. h Contains constant and variable type definitions for GL.

Related Information
Marking the beginning and end·of a NURBS surface definition with the bgnsurface and
endsurface subroutines.

Marking the beginning and end of a NURBS surface trimming loop with the bgntrim and
endtrim subroutines.

Returning the current value of a trimmed NURBS surfaces display property with the
getnurbsproperty subroutine.

Controlling the shape of a NURBS trimming curve with the nurbscurve subroutine.

Describing a piecewise linear trimming curve for NURBS surfaces with the pwlcurve
subroutine.

Setting a property for the display of trimmed NU RBS with the setnurbsproperty subroutine.

GL Introduction and Drawing NURBS Curves and Surfaces in Graphics Programming
Concepts.

GL Subroutines 1-233

objdelete

objdelete Subroutine

Purpose
Deletes subroutines from a display list.

Library
Graphics Library (libgl.a)

C Syntax
void objdelete(lnt32 tag 1, lnt32 tag2)

FORTRAN Syntax
SUBROUTINE OBJDEL(tagt, tag2)
INTEGER*4 tagt, tag2

Description
The objdelete subroutine is an object (display list) editing routine. It deletes the routines
between the locations specified by the tagt and tag2 parameters from an object. It also
removes any tags defined between the locations specified by the tag 1 and tag2 parameters,
but the tagt and tag2 parameters remain in the text.

The objdelete subroutine leaves the editing pointer at TAGl location after it executes.

If no object is open for editing when the objdelete subroutine is called, the subroutine is
ignored.

Note: This editing subroutine itself cannot be added to a display list.

Parameters
tagt Specifies the tag indicating where the deletion should start.

Specifies the tag indicating where the deletion should stop. tag2

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Opening an object for editing with the editobj subroutine.

Inserting a routine into an object with the objinsert subroutine.

Replacing an existing display list routine with a new one with the objreplace subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

1-234 Graphics Subroutines Reference

obj insert

objinsert Subroutine

Purpose
Inserts routines in an object at a specified location.

Library
Graphics Library (libgl.a)

C Syntax
void objinsert(lnt32 tag)

FORTRAN Syntax
SUBROUTINE OBJINS(tag)
INTEGER*4 tag

Description

Parameter

The objinsert subroutine positions the editing pointer at the location specified by the tag
parameter. All subsequent graphics primitives are inserted into the display list at the current
location of the editing pointer. Each graphics primitive increments the editing pointer to point
immediately after the most recently inserted subroutine (in the same way that the cursor
advances in an ordinary text editing facility as letters are typed).

Use the closeobj to terminate insertion and close up the current display list or one of the
positioning subroutines (objdelete, objinsert, or objreplace) to reposition the editing
pointer.

Note: This editing subroutine itself cannot be added to a display list.

tag Specifies a tag within the object definition to be edited.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Closing an object with the closeobj subroutine.

Opening an object for editing with the editobj subroutine.

Marking a location in the display list with the maketag subroutine.

Deleting a routine from an object with the objdelete subroutine.

Replacing an existing display list routine with a new one with the objreplace subroutine.

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-235

obj replace

objreplace Subroutine

Purpose
Replaces existing display list routines with new ones.

Library
Graphics Library (libgl.a)

C Syntax
void objreplace{lnt32 tag)

FORTRAN Syntax
SUBROUTINE OBJREP{tag)
INTEGER*4 tag

Description

Parameter

The objreplace subroutine positions the editing pointer at the location specified by the tag
parameter. All subsequent graphics primitives overwrite the display list at the current location
of the editing pointer.

Each graphics primitive increments the editing pointer to point immediately after the most
recently inserted subroutine (in the same way that the cursor advances in an ordinary text
editing facility as letters are typed).

The objreplace subroutine requires that the new subroutine and the subroutine being
overwritten are the same length; otherwise, this or other subroutines in the display list may
be partially overwritten, resulting in unpredictable drawing when the object is executed. In
general, no two dissimilar GL subroutines are the same length.

The objreplace subroutine is best used for changing the parameter values of a subroutine
that has already been compiled into a display list. Use the objdelete and objinsert
subroutines for more general replacement.

Use the closeobj subroutine to terminate editing and close up the current display list, or one
of the positioning subroutines (objdelete, objinsert, or objreplace) to reposition the editing
pointer as a quick method of creating a new version of a routine.

Note: This editing subroutine itself cannot be added to a display list.

tag Specifies a tag within the object definition to be edited.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-236 Graphics Subroutines Reference

Related Information
Closing an object with the closeobj subroutine.

Opening an object for editing with the editobj subroutine.

Marking a location in the display list with the maketag subroutine.

Deleting a routine from an object with the objdelete subroutine.

Inserting a routine into an object with the objinsert subroutine.

obj replace

GL Introduction and Creating Objects (Display Lists) in Graphics Programming Concepts.

GL Subroutines 1-237

one map

onemap Subroutine

Purpose
Organizes the color map as one large map.

Library
Graphics Library (libgl.a)

C Syntax
void onemap()

FORTRAN Syntax
SUBROUTINE ONEMAP

Description
The onemap subroutine reorganizes the color map as a single large color map. On the
24-bit High-Performance 3-D Color Graphics Processor, this map is a 12-bit colormap
having 4096 entries. On the 8-bit High-Performance 3-D Color Graphics Processor, the map
is an 8-bit color map having 256 entries.

The reorganization of the color map into one large map does not take effect until the
gconfig subroutine is called. The system is initially in onemap mode.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Configuring the system with the gconfig subroutine.

Returning the organization of the current color map with the getcmmode subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Selecting one of 16 small color maps with the setmap subroutine.

Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-238 Graphics Subroutines Reference

ortho, ortho2

ortho or ortho2 Subroutine

Purpose

Library

C Syntax

Defines an orthographic transformation.

Graphics Library (libgl.a)

void ortho
(Coord left, Coord right,
Coord bottom, Coord top,
Coord near, Coord fal)

void ortho2
(Coord left, Coord right,
Coord bottom, Coord top)

FORTRAN Syntax
SUBROUTINE ORTHO(left, right, bottom, top, near, fal)
REAL left, right, bottom, top, near, far

SUBROUTINE ORTH02(1eft, right, bottom, top)
REAL left, right, bottom, top

The foregoing routines are functionally the same. They differ only in that the ortho
subroutine is used for 3-D applications and the ortho2 subroutine is used for 2-D
applications.

Description
The ortho and ortho2 subroutines set the current projection transformation to be an
orthographic perspective transformation. With an orthographic projection, figures do not get
smaller as they recede in relation to the viewer. Orthographic projections also preserve
angles.

The ortho subroutine specifies a box-shaped enclosure in the eye coordinate system that is
mapped to the viewport. The left, right, bottom, top parameters are the x and y clipping
planes. The near and far parameters are distances along the line of sight from the eye
screen origin, and can be negative. The z clipping planes are at -near and -far.

The ortho2 subroutine defines a 2-D clipping rectangle. When you use this subroutine with
3-D modeling coordinates, the z values are not transformed. Objects with z values outside
the range -1 s z s1 are clipped out.

When the system is in single matrix mode, both the ortho and ortho2 subroutines load a
matrix onto the matrix stack, thus replacing the current top matrix. When the system is in
viewing matrix mode or projection matrix mode, it replaces the current projection matrix
without changing the matrix stack.

To be more technically accurate, the ortho and ortho2 subroutines set the mapping from
eye coordinates to normalized device coordinates (NOC). Clipping occurs in NDC; all
drawing primitives (except for text and blits) are clipped to -w ~ x, y, z ~ +w. The map is
such that the clipping plane -w=x (in NDC) appears to be at +w*left = x in eye coordinates,
and so on for the other five sides. For most drawing primitives, w=1.

GL Subroutines 1-239

ortho, ortho2

After the ortho subroutine completes, the eye coordinate system is set up so that x is to the
right, y is up, and z is towards the viewer (out of the screen).

Parameters

Examples

left

right

bottom

top

near

far

Specifies the coordinate for the left vertical clipping plane.

Specifies the coordinate for the right vertical clipping plane.

Specifies the coordinate for the bottom horizontal clipping plane.

Specifies the coordinate for the top horizontal clipping plane.

Specifies the coordinate for the nearest depth clipping plane.

Specifies the coordinate for the farthest depth clipping plane.

1. To define the two-dimensional world coordinates that exactly fit the defined viewport, the
example C language program paint.c uses the ortho2 subroutine.

2. To map a rectangular volume of space to the viewport, the example C language program
backface.c uses the ortho subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current matrix mode with the mmode subroutine.

Defining a perspective projection transformation in terms of a field of view with the
perspective subroutine.

Defining a perspective projection transformation in terms of x and y coordinates with the
window subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-240 Graphics Subroutines Reference

overlay

overlay Subroutine

Purpose
Sets the number of user-defined bitplanes used for overlay drawing.

Library
Graphics Library (libgl.a)

C Syntax
void overlay(lnt32 planes)

FORTRAN Syntax
SUBROUTINE OVERLA(planes)
INTEGER*4 planes

Description

Parameter

Example

The overlay subroutine sets the number of user-defined bitplanes used for overlay colors, 0,
2, or 4, depending on the installed adapter. An overlay color is the color that is placed on top
of the standard pixel contents. The overlay color appears whenever any of its bits are
non-zero. The system has either two or four bitplanes that can be allocated as either
underlay or overlay. Call the overlay subroutine to set them as overlay bitplanes.

The High-Performance 8-bit 3-D Color Graphics Processor can be configured with either O
or 2 overlay planes. The 8-bit adapter has a total of 2 auxiliary planes, which can be
configured into 2/0 or 0/2 overlay/underlay. For example, setting the number of overlay
planes to 2 forces the number of underlay planes to 0.

The High~Performance 24-bit 3-D Color Graphics Processor can be configured with either 0,
2, or 4 overlay planes. The 24-bit adapter has a total of 4 auxiliary planes, which can be
configured into 4/0, 2/2, or 014 overlay/underlay. For example, setting the number of overlay
planes to 4 forces the number of underlay planes to 0.

Call the gconfig subroutine after the overlay subroutine to activate the overlay setting.

When the drawing mode is OVERDRAW, all drawing occurs in the overlay bitplanes. In
OVERDRAW mode, FLAT is the only available shading model.

Note: This subroutine cannot be used to add to a display list.

planes Specifies the number of bitplanes to use for overlay drawing.

1. To set the number of overlay bitplanes to two (2), the example C language program
ovrlay.c uses the overlay subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-241

overlay

Related Information
Specifying the target frame buffer for drawing subroutines with the drawmode subroutine.

Reconfiguring the system with the gconfig subroutine.

Setting the number of bitplanes used for underlay colors with the underlay subroutine.

GL Introduction, Configuring the Frame Buffer, and Controlling Frame Buffer Update in
Graphics Programming Concepts.

1-242 Graphics Subroutines Reference

patch

patch Subroutine

Purpose
Draws a surface patch.

Library
Graphics Library (libgl.a)

C Syntax
void patch(Matrix geomx, Matrix geomy, Matrix geomz)

FORTRAN Syntax
SUBROUTINE PATCH(geomx, geomy, geomz)
REAL geomx(4,4), geomy(4,4), geomz(4,4)

Description
The patch subroutine draws a surface patch using the current settings from the patchbasis,
patchprecision, and patchcurves subroutines. The control points geomx, geomy, and
geomz determine the shape of the patch. The rpatch subroutine is essentially the same
except that it draws a rational surface patch.

Parameters
geomx Specifies a 4x4 matrix containing the x coordinates of the 16 control points

of the patch.

Example

geomy

geomz

Specifies a 4x4 matrix containing the y coordinates of the 16 control points
of the patch.

Specifies a 4x4 matrix containing the z coordinates of the 16 control points
of the patch.

/.
1. To draw three surface patches, the example C language program patch1 .c uses the

patch subroutine after defining the settings for each patch.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a cubic spline basis matrix with the defbasis subroutine.

Setting the current spline surface basis matrices with the patchbasis subroutine.

Setting the number of curves used to represent a patch with the patchcurves subroutine.

Setting the precision at which curves are drawn with the patchprecision subroutine.

Drawing a rational surface patch with the rpatch subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

GL Subroutines 1-243

patch basis

patchbasis Subroutine

Purpose
Sets the current spline surface basis matrices.

Library
Graphics Library (libgl.a)

C Syntax
void patchbasis(lnt32 uid, lnt32 vid)

FORTRAN Syntax
SUBROUTINE PATCHB(uid, vid)
INTEGER*4 uid, vid

Description
The patchbasis subroutine sets the current basis matrices (defined by the defbasis
subroutine) for the uid and vid parametric directions of a surface patch. The patch
subroutine uses the current u and v bases when it executes.

Parameters
uid Specifies the basis that defines how the control points determine the shape

of the patch in the u direction.

Example

vid Specifies the basis that defines how the control points determine the shape
of the patch in the v direction.

1. To set the basis matrix for drawing the curves that represent each surface patch, the
example C language program patch1 .c calls the patch basis subroutine before calling
the patch subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a cubic spline basis matrix with the defbasis subroutine.

Drawing a surface patch with the patch subroutine.

Setting the number of curves used to represent a patch with the patchcurves subroutine.

Setting the precision at which curves are drawn with the patchprecision subroutine.

Drawing a rational surface patch with the rpatch subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

1-244 Graphics Subroutines Reference

patch curves

patchcurves Subroutine

Purpose
Sets the number of curves used to represent a patch.

Library
Graphics Library {libgl.a)

C Syntax
void patchcurves(lnt32 ucurves, lnt32 vcurves)

FORTRAN Syntax
SUBROUTINE PATCHC(ucurves, vcurves)
INTEGER*4 ucurves, vcurves

Description
The patchcurves subroutine sets the number of u and v curves that represents a patch as a
wire frame.

Parameters
ucurves Specifies the number of curve segments to be drawn in the u direction.

Specifies the number of curve segments to be drawn in the v direction.

Example

vcurves

1. To define to the patch subroutine the number of curves to use in drawing three surface
patches, the example C language program patch1 .c uses the patchcurves subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a surface patch with the patch subroutine.

Setting the current spline surface basis matrices with the patchbasis subroutine.

Setting the precision at which curves are drawn with the patchprecision subroutine.

Drawing a rational surface patch with the rpatch subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

GL Subroutines 1-245

patch precision

patchprecision Subroutine

Purpose
Sets the precision at which curves are drawn in a patch.

Library
Graphics Library (libgl.a)

C Syntax
void patchprecision(lnt32 usegments, lnt32 vsegments)

FORTRAN Syntax
PATCHP(usegments, vsegments)
INTEGER*4 usegments, vsegments

Description
The patchprecision subroutine sets the precision with which the system draws curves to
make up a wire frame patch. Patch precisions are similar to curve precisions; they specify
the minimum number of line segments used to draw a patch.

Parameters
usegments Specifies the number of line segments used to draw a curve in the u

direction.

Example

vsegments Specifies the number of line segments used to draw a curve in the v
direction.

1. To set the precision for drawing the curves that represent surface patches, the example C
language program patch1 .c calls the patchprecision subroutine before calling the
patch subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the number of line segments that draw a curve segment with the curveprecision
subroutine.

Drawing a surface patch with the patch subroutine.

Setting the current spline surface basis matrices with the patchbasis subroutine.

Setting the number of curves used to represent a patch with the patchcurves subroutine.

Drawing a rational surface patch with the rpatch subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

1-246 Graphics Subroutines Reference

pclos

pclos Subroutine

Purpose
Closes a filled polygon.

Library
Graphics Library (libgl.a)

C Syntax
void pclos()

FORTRAN Syntax
SUBROUTINE PCLOS

Description

Example

The pclos subroutine closes a filled polygon that has been created by using the pmv
subroutine and a sequence of calls to the pdr, rpmv, or rpdr subroutines. It is not needed
when using the poly or polf subroutines because these procedures close the polygon within
their own routines.

The pclos subroutine closes the polygon by connecting the last point with the first. The
polygon so defined is filled using the current fill area attributes: pattern, current color, and
write mask.

There can be no more than 256 vertices in a polygon. Therefore, there can be no more than
255 calls to the pdr subroutine between calls to the pmv and pclos subroutines.

Note: Be careful not to confuse pclos with the AIX subroutine pclose, which closes an AIX
pipe, in the libc.a library.

1. To specify the end of a filled polygon definition, the example C language program
zbuffer1 .c uses the pclos subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-247

pclos

Related Information
Specifying the starting point for a polygon with the pmv subroutine.

Drawing a filled polygon with the polf subroutine.

Drawing a polygon with the poly subroutine.

Drawing a relative polygon with the rpdr subroutine.

Moving the current graphics position to a starting point for a filled polygon relative to the
current point with the rpmv subroutine.

Drawing a shaded filled polygon with the splf subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, and Setting Attributes in
Graphics Programming Concepts.

1-248 Graphics Subroutines Reference

pdr

pdr Subroutine

Purpose
Specifies the next point in a filled polygon.

Library
Graphics Library (libgl.a)

C Syntax
void pdr
(Coord x, Coord y, Coord z)

void pdri
(lcoord x, lcoord y, lcoord z)

void pdrs
(Scoord x, Scoord y, Scoord z)

void pdr2
(Coord x, Coord y)

void pdr2i
(lcoord x, lcoord y)

void pdr2s
(Scoord x, Scoord y)

FORTRAN Syntax
SUBROUTINE PDR(x, y, z)
REALx,y,z

SUBROUTINE PDRl(x, y, z)
INTEGER*4 x, y, z
SUBROUTINE PDRS(x, y, z)
INTEGER*2 x, y, z

SUBROUTINE PDR2(x, y)
REALx,y

SUBROUTINE PDR21(x, y)
INTEGER*4 x, y

SUBROUTINE PDR2S(x, y)
INTEGER*2 x, y

Description
The pdr subroutine specifies the next point of a polygon. When the subroutine is executed, it
draws a line to the specified point (x, y, z), which then becomes the current graphics
position. The next call to the pdr subroutine starts drawing from that point.

To draw a typical polygon, start with a call to the pmv subroutine, follow it with a sequence
of calls to the pdr subroutine, and end it with a call to the pclos subroutine.

There can be no more than 256 vertices in a polygon. Therefore, there can be no more than
255 calls to the pdr subroutine between calls to the pmv and pclos subroutines.

GL Subroutines 1-249

pdr

The six different forms for the pdr subroutine are as follows:

2-D 3-D

lnt16 pdr2s pd rs

lnt32 pdr2i pdri

float pdr2 pdr

The syntax for each of the subroutine forms is the same except for the parameter type.
They differ only in that pdr expects real coordinates, pdri expects integer coordinates, and
pdrs expects short integer coordinates. In addition, the pdr2 routines assume a 2-D point
instead of a 3-D point.

Parameters

Example

x

y

z

Specifies the x coordinate of the next defining point for the polygon.

Specifies the the y coordinate of the next defining point for the polygon.

Specifies the z coordinate of the next defining point for the polygon.

1. To draw the edges of a filled polygon, the example C language program zbuffer1 .c uses
the pdr subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Moving the current graphics position to a point relative to the current point with the rmv
subroutine.

Drawing a relative polygon with the rpdr subroutine.

Moving the current graphics position to a starting point for a filled polygon relative to the
current point with the rpmv subroutine.

Specifying the starting point for a polygon with the pmv subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, and Setting Attributes in
Graphics Programming Concepts.

1-250 Graphics Subroutines Reference

perspective

perspective Subroutine

Purpose

Library

C Syntax

Defines a perspective projection transformation.

Graphics Library (libgl.a)

void perspective
(Angle fovy,
Float32 aspect,
Coard near, Coard fa!)

FORTRAN Syntax
SUBROUTINE PERSPE(fovy, aspect, near, fa!)
INTEGER*4 fovy
REAL aspect, near, far

Description
The perspective subroutine defines a perspective projection transformation by specifying a
viewing pyramid in the eye coordinate system. The pyramid comprises:

• The field-of-view angle in the y direction of the eye coordinate system

• The aspect ratio that determines the field-of-view in the x direction

• The distance to the near and far clipping planes in the z direction.

The field of view is the range of the area that is being viewed. The aspect ratio is the ratio of
x (width) toy (height), and should match the aspect ratio of the associated viewport. For
example, Aspect= 2.0 means the viewer's angle of view is twice as wide in x as it is in y. If
the viewport has the same aspect ratio as the frustum, it displays the image without
distortion.

The perspective subroutine is very similar to the window subroutine. The only difference
between these two is the manner in which the parameters specify the viewing frustum.

After the perspective subroutine completes, the eye coordinate system is set up so that x is
to the right, y is up, and z is towards the viewer (out of the screen).

When the system is in single matrix mode, the perspective subroutine loads a matrix onto
the transformation stack, replacing the current top matrix. When the system is in viewing
matrix mode or projection matrix mode, the perspective subroutine replaces the current
projection matrix and leaves the matrix stack unchanged.

Parameters
fovy

aspect

Specifies the field-of-view angle in the y direction. The field of view is the
range of the area that is being viewed. It is measured in tenths of a degree.
The value of fovy must be~ 2 (two-tenths of one degree) or an error results.

Specifies the aspect ratio which determines the field of view in the x
direction. The aspect ratio is the ratio of x (width) toy (height).

GL Subroutines 1-251

perspective

Example

near Specifies the distance from the viewer to the closest clipping plane (always
positive).

far Specifies the distance from the viewer to the farthest clipping plane (always
positive).

1. To load a projection transformation as the current transformation matrix, the example C
language program zbuffer1 .c uses the perspective subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a 3-D orthographic transformation with the ortho subroutine.

Defining a 2-D orthographic transformation with the ortho2 subroutine.

Defining a perspective projection transformation in terms of x and y coordinates with the
window subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-252 Graphics Subroutines Reference

pick

pick Subroutine

Purpose
Places the system in picking mode.

Library
Graphics Library (libgl.a)

C Syntax
void pick(lnt16 buffer [], lnt32 buffer/en)

FORTRAN Syntax
SUBROUTINE PICK(buffer, buffer/en)
INTEGER*4 buffer/en
INTEG ER*2 buffer(buffer/en)

Description
The pick subroutine places the system in picking mode. When in picking mode, the extent of
all subsequent drawing primitives are compared to a picking volume. The picking volume is
defined by the location of the cursor when the pick subroutine was called, and the picking
volume size.

If a drawing primitive overlaps or intrudes upon the picking volume, a hit has occurred. The
hit is recorded only if the name stack has been touched since the last hit. Any of the
subroutines loadname, pushname, or popname touch the name stack. The first hit after
picking begins is always recorded.

A hit is recorded by placing the depth of the name stack into the next vacant slot in the
buffer, followed by the entire contents of the name stack. The bottom of the name stack is
transferred to the buffer first, followed by the second from the bottom entry of the name
stack, and so forth. In other words, the data from bottom to top is mapped from left to right.

Picking does not work if you issue a new viewport in picking mode.

Nothing is drawn to the screen when the system is in picking mode. Instead, drawing
commands are piped to the picking mechanism and used to determine pick/select region
hits. On most systems, nothing is actually placed in the pick buffer until the endpick
subroutine is called.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

buffer Specifies the array to use for storing names.

buffer/en Specifies the length of the array specified in the buffer parameter.

1 . To pick objects, the example C language program pick1 .c calls the pick subroutine when
the left mouse button is pressed.

Implementation Specifics
·This subroutine is part of GL in the AIXwindows environment.

GL Subroutines 1-253

pick

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Turning off picking mode with the endpick subroutine.

Putting the system in selecting mode with the gselect subroutine.

Initializing the name stack with the initnames subroutine.

Loading the name on top of the name stack with the loadname subroutine.

Setting the dimensions of the picking region with the picksize subroutine.

Popping a name off the name stack with the popname subroutine.

Pushing a new name onto the name stack with the pushname subroutine.

GL Introduction, Using Viewports and Screenmasks in GL, and Picking and Selecting
Overview for GL in Graphics Programming Concepts.

1-254 Graphics Subroutines Reference

picksize

picksize Subroutine

Purpose
Sets the dimensions of the picking region.

Library
Graphics Library (libgl.a)

C Syntax
void picksize(lnt16 de/tax, lnt16 deltay)

FORTRAN Syntax
SUBROUTINE PICKSl(de/tax, deltay)
INTEGER*2 de/tax, deltay

Description
The picksize subroutine sets the dimensions of the picking region. The default setting is
1Ox10 pixels. In picking mode, any drawing primitives that intersect the picking region are
reported as hits.

If a drawing primitive overlaps or intrudes upon the picking volume, a hit is recorded. The hit
is recorded by placing the depth of the name stack into the next vacant slot in the buffer,
followed by the entire contents of the name stack.

The bottom of the name stack is transferred to the buffer first, followed by the second from
the bottom entry of the name stack, and so forth. In other words, the data from bottom to top
is mapped from left to right.

Note: This subroutine cannot be used to add to a display list.

Parameters
de/tax Specifies the new width of the picking region.

Specifies the new height of the picking region. deltay

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Putting the system in picking mode with the pick subroutine.

GL Introduction and Picking and Selecting Overview for GL in Graphics Programming
Concepts.

GL Subroutines 1-255

pmv

pmv Subroutine

Purpose
Moves to the starting point for a filled polygon.

Library
Graphics Library (libgl.a)

C Syntax
void pmv
(Coord x, Coard y, Coard z)

void pmvi
(lcoord x, lcoord y, lcoord z)

void pmvs
(Scoord x, Scoord y, Scoord z)

void pmv2
(Coard x, Coord y)

void pmv2i
(lcoord x, lcoord y)

void pmv2s
(Scoord x, Scoord y)

FORTRAN Syntax
SUBROUTINE PMV(x, y, z)
REAL x, y, z

SUBROUTINE PMVl(x, y, z)
INTEGER*4 x, y, z

SUBROUTINE PMVS(x, y, z)
INTEGER*2 x, y, z

SUBROUTINE PMV2(x, y)
REAL x, y

SUBROUTINE PMV21(x, y)
INTEGER*4 x, y

SUBROUTINE PMV2S(x, y)
INTEGER*2 x, y

Description
The pmv subroutine specifies the starting point of a filled polygon. To draw a typical polygon,
start with a call to the pmv subroutine, follow it with a sequence of calls to the pdr
subroutine, and end it with a call to the pclos subroutine.

There can be no more than 256 vertices in a polygon. Therefore, there can be no more than
255 calls to the pdr subroutine between calls to the pmv and pclos subroutines.

1-256 Graphics Subroutines Reference

pmv

Between calls to the pmv and pclos subroutines, you can issue calls only to the following
GL subroutines:

• c

• color

• cpack

• lmbind

• lmcolor

• lmdef

• n3f

• normal

• pdr

• RGBcolor

• v.

Use the lmdef and lmbind subroutines to respecify only materials and their properties.

The six different forms for the pmv subroutine are as follows:

2-D 3-D

lnt16 pmv2s pm vs

lnt32 pmv2i pm vi

float pmv2 pmv

The syntax for each of the subroutine forms is the same except for the parameter type.
They differ only in that pmv expects real coordinates, pmvi expects integer coordinates, and
pmvs expects short integer coordinates. In addition, the pmv2 routines assume a 2-D point
instead of a 3-D point.

Parameters

Example

x

y

z

Specifies the x coordinate of the starting point for the polygon.

Specifies the y coordinate of the starting point for the polygon.

Specifies the z coordinate of the starting point for the polygon.

1. To move to the beginning position for drawing a filled polygon, the example C language
program zbuffer1 .c uses the pmv subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-257

pmv

Related Information
Forcing the system to draw concave polygons correctly with the concave subroutine.

Closing a filled polygon with the pclos subroutine.

Drawing a polygon with the poly subroutine.

Drawing a relative polygon with the rpdr subroutine.

Moving the current graphics position to a starting point for a filled polygon relative to the
current point with the rpmv subroutine.

Selecting the shading model used to draw a polygon with the shademodel subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, Performing Depth-Cueing,
Setting Attributes, and Working in Color Map and RGB Modes in Graphics Programming
Concepts.

1-258 Graphics Subroutines Reference

pnt

pnt Subroutine

Purpose
Draws a point in modeling coordinates.

Library
Graphics Library (libgl.a)

C Syntax
void pnt
(Coord x, Coord y, Coord z)

void pnti
(lcoord x, lcoord y, lcoord z)

void pnts
(Scoord x, Scoord y, Scoord z)

void pnt2
(Coord x, Coord y)

void pnt2i
(lcoord x, lcoord y)

void pnt2s
(Scoord x, Scoord y)

FORTRAN Syntax
SUBROUTINE PNT{x, y, z)
REAL x, y, z

SUBROUTINE PNTl{x, y, z)
INTEGER*4 x, y, z

SUBROUTINE PNTS(x, y, z)
INTEGER*2 x, y, z

SUBROUTINE PNT2(x, y)
REAL x, y

SUBROUTINE PNT21{x, y)
INTEGER*4 x, y

SUBROUTINE PNT2S{x, y)
INTEGER*2 x, y

Description
The pnt subroutine draws a point in modeling coordinates. If the point is visible in the
current viewport, it is shown as one pixel. The pixel is drawn in the current point attributes:
color (if in depth-cue mode, the depth-cued color is used) and writemask. The pnt
subroutine updates the current graphics position after it executes. A drawing routine
immediately following the pnt subroutine will start drawing from the point specified.

GL Subroutines 1-259

pnt

The six different forms for the pnt subroutine are as follows:

lnt16

lnt32

float

2-D

pnt2s

pnt2i

pnt2

3-D

pnts

pnti

pnt

The syntax for each of the subroutine forms is the same except for the parameter type. They
differ only in that pnt expects real coordinates, pnti expects integer coordinates, and pnts
expects short integer coordinates. In addition, the pnt2 routines assume a 2-D point instead
of a 3-D point.

Parameters

Example

x

y

z

Specifies the x coordinate of the point.

Specifies the y coordinate of the point.

Specifies the z coordinate of the point.

1. To draw random points, the example C language program depthcue.c uses the pnt
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a line with the draw subroutine.

Moving the current graphics position to a specified point with the move subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, Performing Depth-Cueing,
Setting Attributes, and Working with Coordinate Systems in Graphics Programming
Concepts.

1-260 Graphics Subroutines Reference

pntsmooth

pntsmooth Subroutine

Purpose
Turns point antialiasing on and off.

Library
Graphics Library (libgl.a)

C Syntax
void pntsmooth(lnt32 mode)

FORTRAN Syntax
SUBROUTINE PNTSMO(mode)
INTEGER*4 mode

Description

Parameter

The pntsmooth subroutine allows the drawing of antialiased points in color map mode. The
pntsmooth hardware replaces the least significant 4 bits of the current color index with bits
that represent pixel coverage. Therefore, a 16-entry block of the color map (whose lowest
entry is a multiple of 16) must be initialized as a ramp between the background color (lowest
index) to the line color (highest index).

Before drawing the points, clear the area to the background color using the poly or clear
subroutine. If you define many such ramps, you can draw antialiased points with different
colors and intensities by changing the current color index (only the upper bits are
significant). You can draw depth-cued, antialiased points in this manner.

The zsource and zfunction subroutines can be used with the pntsmooth subroutine for
depth or color values. When the zsource subroutine is used with ZSRC_COLOR,
intersecting points behave more correctly.

The pntsmooth subroutine does not support subpixel positioning of line vertices.

Note: This subroutine cannot be used to add to a display list.

mode SMP _ON Turn on point-antialiasing capabilities.
SMP _OFF Turn off point-antialiasing capabilities.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-261

pntsmooth

Related Information
Drawing vertex-based points with the bgnpoint subroutine.

Specifying the alpha blending ratio with the blendfunction subroutine.

Ending a series of vertex-based points with the endpoint subroutine.

Drawing a point with the pnt subroutine.

Controlling the placement of point, line, and polygon vertices with the subpixel subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Configuring the Frame Buffer, Smoothing Jagged Lines with Antialiasing, and Understanding
the Hardware Used by GL in Graphics Programming Concepts.

1-262 Graphics Subroutines Reference

polarview

polarview Subroutine

Purpose

Library

C Syntax

Defines the viewer's position in polar coordinates.

Graphics Library (libgl.a)

void polarview
(Coord distance,
Angle azimuth,
Angle incidence,
Angle twist)

FORTRAN Syntax
VOID POLARV(distance, azimuth, incidence, twist)
REAL distance
INTEGER*4 azimuth, incidence, twist

Description
The polarview subroutine defines the viewer's position in polar coordinates. Normally, the
polarview subroutine is used to set up the mapping from world coordinates to eye
coordinates (equivalently, to define the location of the viewer's eye in world coordinates).

If the polarview subroutine is the first transformation subroutine called after projection
matrix is set up and the matrix stack is initialized, it sets up such a mapping. The eye is
located a distance, given in the distance parameter, from the world space origin. The line of
sight extends from the eye through the world space origin (that is, the viewer is looking
squarely upon the origin). The incidence and azimuth are measured with respect to the
world coordinate system.

The polarview subroutine can also be used as a modeling transformation. Whether it
behaves as a viewing transformation or a modeling transformation depends entirely on the
order in which it is called with respect to the drawing subroutines.

Parameters
distance

azimuth

incidence

twist

Specifies the distance from the eye to the world space origin.

Specifies the azimuthal angle in the x-y plane, measured clockwise from
the positive y axis. The angle must be specified as an integer, in tenths of a
degree.

Specifies the angle of incidence in the y-z plane, measured from the z axis.
The incidence angle is the angle of the line from origin to eye with respect to
the z axis (the angle away from direct vertical, if you think of standing on the
x-y plane. The angle must be specified as an integer, in tenths of a degree.

Specifies the amount that the viewpoint is to be rotated around the line of
sight using the right-hand rule. The angle must be specified as an integer,
in tenths of a degree.

GL Subroutines 1-263

polarview

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a viewing transformation with the lookat subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-264 Graphics Subroutines Reference

polf

polf Subroutine

Purpose

Library

C Syntax

Draws a filled polygon.

Graphics Library (libgl.a)

void polf(lnt32 n, Coord parray[][3))

void polfi(lnt32 n, lcoord parray[][3))

void polfs(lnt32 n, Scoord parray[][3))

void polf2(1nt32 n, Coord parray[][2))

void polf2i(lnt32 n, lcoord parray[][2))

void polf2s(lnt32 n, Scoord parray[][2))

FORTRAN Syntax
SUBROUTINE POLF(n, parray)
INTEGER*4 n
REAL parray(3,n)

SUBROUTINE POLFl(n, parray)
INTEGER*4 n
INTEGER*4 parray(3,n)

SUBROUTINE POLFS(n, parray)
INTEGER*4 n
INTEGER*2 parray(3,n)

SUBROUTINE POLF2(n, parray)
INTEGER*4 n
REAL parray(2,n)

SUBROUTINE POLF21(n, parray)
INTEGER*4 n
INTEGER*4 parray(2,n)

SUBROUTINE POLF2S(n, parray)
INTEGER*4 n
INTEGER*2 parray(2,n)

Description
The polf subroutine draws filled polygons using the current area attributes: pattern, color,
and writemask. Polygons are represented as arrays of points. The first and last points
automatically connect to close a polygon. After the polygon is filled, the current graphics
position is set to the first point in the array.

GL Subroutines 1-265

polf

Polygons in 2-D are drawn with z = 0.

The six different forms for the polf subroutine are as follows:

lnt16

lnt32

float

2-D

polf2s

polf2i

polf2

3-D

po Ifs

polfi

polf

The syntax for each of the subroutine forms is the same except for the first argument. They
differ only in that polf expects real coordinates, polfi expects integer coordinates, and polfs
expects short integer coordinates. In addition, the polf2 routines assume a 2-D point
instead of a 3-D point.

There can be no more than 256 vertices in a polygon. In addition, the polf subroutine cannot
correctly draw polygons that intersect themselves.

Parameters

Example

n Specifies the number of points in the polygon.

pwray Specifies an array containing the vertices of the polygon.

1. To draw an ice cream cone, the example C language program tpbig.c uses the polf2i
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Allowing the system to draw concave polygons with the concave subroutine.

Specifying the next point in a polygon with the pdr subroutine.

Specifying the starting point for a polygon with the pmv subroutine.

Drawing a filled polygon with the polf subroutine.

Drawing a polygon with the poly subroutine.

Drawing a filled rectangle with the rectf subroutine.

Drawing a rectangle with the rect subroutine.

Drawing a relative polygon with the rpdr subroutine.

Moving the current graphics position to a starting point for a filled polygon relative to the
current point with the rpmv subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

1-266 Graphics Subroutines Reference

poly Subroutine

Purpose

Library

C Syntax

Draws a polygon.

Graphics Library (libgl.a)

void poly(lnt32 n, Coord parray[][3])

void polyi(lnt32 n, lcoord parray[][3])

void polys(lnt32 n, Scoord parray[][3])

void poly2(1nt32 n, Coord parray[][2])

void poly2i(lnt32 n, lcoord parray[][2])

void poly2s(lnt32 n, Scoord parray[][2])

FORTRAN Syntax
SUBROUTINE POLY(n, parray)
INTEGER*4 n
REAL parray(3,n)

SUBROUTINE POLYl(n, parray)
INTEGER*4 n
INTEGER*4 parray(3,n)

SUBROUTINE POLYS(n, parray)
INTEGER*4 n
INTEGER*2 parray(3,n)

SUBROUTINE POLY2(n, parray)
INTEGER*4 n
REAL parray(2,n)

SUBROUTINE POLY21(n, parray)
INTEGER*4 n
INTEGER*4 parray(2,n)

SUBROUTINE POLY2S(n, parray)
INTEGER*4 n
INTEGER*2 parray(2,n)

Description

poly

The poly subroutine draws polygons using the current line attributes: linestyle, linewidth,
color, and writemask. Polygons are represented as arrays of points. The first and last points
automatically connect to close a polygon.

GL Subroutines 1-267

poly

Polygons in 2-D are drawn with z = 0.

The six different forms for the poly subroutine are as follows:

lnt16

lnt32

float

2-D

poly2s

poly2i

poly2

3-D

polys

polyi

poly

The syntax for each of the subroutine forms is the same except for the first argument. They
differ only in that poly expects real coordinates, polyi expects integer coordinates, and
polys expects short integer coordinates. In addition, the poly2 routines assume a 2-D point
instead of a 3-D point.

There can be no more than 256 vertices in a polygon.

Parameters
n Specifies the number of points in the polygon.

Example

parray Specifies an array containing the vertices of the polygon.

1. To outline an ice cream cone in black, the example C language program tpbig.c uses the
poly2i subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Allowing the system to draw concave polygons with the concave subroutine.

Specifying the n.ext point in a polygon with the pdr subroutine.

Specifying the starting point for a polygon with the pmv subroutine.

Drawing a filled polygon with the polf subroutine.

Drawing a rectangle with the rect subroutine.

Drawing a filled rectangle with the rectf subroutine.

Drawing a relative polygon with the rpdr subroutine.

Moving the current graphics position to a starting point for a filled polygon relative to the
current point with the rpmv subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

1-268 Graphics Subroutines Reference

popattributes

popattributes Subroutine

Purpose
Pops the attribute stack.

Library
Graphics Library (libgl.a)

C Syntax
void popattributes()

FORTRAN Syntax
SUBROUTINE POPATT

Description
The popattributes subroutine pops the attributes stack, restoring the values of the global
state attributes most recently saved with the pushattributes subroutine:

• backbuffer enable (T or F)
• color map number (one of 16 small maps)
• colormode (Colormap or RGB)
• current color
• current font
• current linestyle
• current linestyle repeat factor
• current linewidth
• current pattern
• current writemask
• drawmode (overlay, underlay, or main buffers)
• draw_to_z_buffer enable (Tor F)
• frontbuffer enable (T or F)
• logicop function
• shademodel (Flat or Gouraud)

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Enabling drawing in the back buffer with the backbuffer subroutine.

Setting color map mode as the current mode with the cmode subroutine.

Setting the color index in the current mode with the color subroutine.

Specifying the target framebuffer of the drawing subroutines with the drawmode subroutine.

Enabling drawing in the front buffer with the frontbuffer subroutine.

Specifying the line width with the linewidth subroutine.

Setting the repeat factor for the current linestyle with the lsrepeat subroutine.

GL Subroutines 1-269

popattributes

Pushing down the attribute stack with the pushattributes subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

Granting write access to a subset of available bitplanes in RGB mode with the
RGBwritemask subroutine.

Selecting a linestyle pattern with the setlinestyle subroutine.

Selecting a pattern for filling polygons and rectangles with the setpattern subroutine.

Selecting the shading model used to draw a polygon with the shademodel subroutine.

Granting write permission to a subset of available bitplanes in color map mode with the
writemask subroutine.

Setting Attributes and Understanding the Hardware Used by GL in Graphics Programming
Concepts.

1-270 Graphics Subroutines Reference

popmatrix

popmatrix Subroutine

Purpose
Pops the transformation matrix stack.

Library
Graphics Library (libgl.a)

C Syntax
void popmatrix()

FORTRAN Syntax
SUBROUTINE POPMAT

Description

Example

The popmatrix subroutine pops the viewing transformation matrix stack.

This subroutine is not valid when the system is in projection matrix mode
(mmode (MPROJ) ;) , because the matrix stack is not accessible in this mode.

1. To restore the previous transformation matrix after altering it with the translate modeling
subroutine, the example C language program backface.c uses the popmatrix
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current matrix mode with the mmode subroutine.

Getting a copy of the current transformation matrix with the getmatrix subroutine.

Loading a transformation matrix with the loadmatrix subroutine.

Premultiplying the current transformation matrix with the multmatrix subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

GL Subroutines 1-271

popname

popname Subroutine

Purpose
Pops a name off the name stack.

Library
Graphics Library (libgl.a)

C Syntax
void popname()

FORTRAN Syntax
SUBROUTINE POPNAM

Description
The popname subroutine removes the top name from the name stack. It is used in both
picking and selecting.

This subroutine is ignored outside of picking and selecting modes.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Putting the system in selecting mode with the gselect subroutine.

Initializing the name stack with the initnames subroutine.

Loading the name on top of the name stack with the loadname subroutine.

Putting the system in picking mode with the pick subroutine.

Pushing a new name onto the name stack with the pushname subroutine.

GL Introduction and Picking and Selecting Overview for GL in Graphics Programming
Concepts.

1-272 Graphics Subroutines Reference

popviewport

popviewport Subroutine

Purpose
Pops the viewport stack.

Library
Graphics Library (libgl.a)

C Syntax
void popviewport()

FORTRAN Syntax
SUBROUTINE POPVIE()

Description
The popviewport subroutine pops the viewport stack, restoring the values of the viewport,
screenmask, and depth range most recently saved with the pushviewport subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the viewport depth range with the lsetdepth subroutine.

Pushing the viewport onto the viewport stack with the pushviewport subroutine.

Defining a rectangular 2-D clipping mask with the scrmask subroutine.

Setting the area of the window used for all drawing with the viewport subroutine.

GL Introduction and Using Viewports and Screenmasks in GL in Graphics Programming
Concepts.

GL Subroutines 1-.273

pref position

prefposition Subroutine

Purpose

Library

C Syntax

Constrains the location and size of a window.

Graphics Library (libgl.a)

void prefposition
{lnt32 x1, lnt32 x2,
lnt32 y1, lnt32 y2)

FORTRAN Syntax
SUBROUTINE PREFPO{x1, x2, y1, y2)
INTEGER*4 x1, x2, y1, y2

Description
The prefposition subroutine constrains the location and size, in pixels, of a window. With
the prefposition subroutine, the applications programmer can prevent the user from moving
or resizing a window.

To remove constraints from a window, call the winconstraints subroutine immediately after
calling the winopen subroutine. Calling winconstraints twice in a row also removes the
constraints from the window. Note that doing this nullifies all constraints, not just those of
position and size.

If the prefposition subroutine call is followed by a call to the winopen subroutine, the
window manager creates and maps the window immediately. A rubber band outline is not
shown.

If the prefposition subroutine call is followed by a call to the winconstraints subroutine, the
current window is resized and repositioned. The repositioning occurs at the time of the
winconstraints call; the prefposition subroutine has no effect on the current window until
that time.

Constraining the position of a window is heavily discouraged in a multi-application
windowing environment because it creates conflicts with other applications. This statement
applies only to position; constraining the size of a window is acceptable.

Note: This subroutine cannot be used to add to a display list.

Parameters
x1

y1

x2

y2

Specifies the x coordinate position (in pixels) of one corner of the window.

Specifies they coordinate position (in pixels) of the point of one corner of
the window.

Specifies the x coordinate position (in pixels) of the opposite corner of the
window.

Specifies they coordinate position (in pixels) of the opposite corner of the
window.

1-27 4 Graphics Subroutines Reference

Example

pref position

1. To specify the window's original location and size, the example C language program
colored.c uses the prefposition subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/g Ilg I. h Contains constant and variable type definitions for GL.

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Obtaining the position of a window with the getorigin subroutine.

Obtaining the size of the window with the getsize subroutine.

Constraining the size of a window with the prefsize subroutine.

Specifying a window size change in discrete steps with the stepunit subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-275

pref size

prefsize Subroutine

Purpose
Constrains the size of a window.

Library
Graphics Library (libgl.a)

C Syntax
void prefsize(lnt32 x, lnt32 y)

FORTRAN Syntax
SUBROUTINE PREFSl(x, y)
INTEGER*4 x, y

Description
The prefsize subroutine constrains the size, in pixels, of a window. With the prefsize
subroutine, the applications programmer can prevent the user from resizing a window.

To remove constraints from a window, call the winconstraints subroutine immediately after
calling the winopen subroutine. Calling winconstraints twice in a row also removes
constraints from the window. Note that doing this nullifies all constraints, not just that of size.

If the prefsize subroutine call is followed by a call to the winopen subroutine, the window
manager displays a window outline of the suggested size, allowing the user to position the
window with the cursor.

If the prefsize subroutine call is followed by a call to the winconstraints subroutine, the
current window is resized. The resizing occurs at the time of the winconstraints call; the
prefsize subroutine has no effect on the current window until that time.

Note: This subroutine cannot be used to add to a display list.

Parameters
x

y

Specifies the width of the window in pixels.

Specifies the height of the window in pixels.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-276 Graphics Subroutines Reference

pref size

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Obtaining the size of the window with the getsize subroutine.

Specifying the maximum size of a window with the maxsize subroutine.

Specifying the minimum size of a window with the minsize subroutine.

Constraining the window position and size with the prefposition subroutine.

Specifying a window size change in discrete steps with the stepunit subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-277

pushattributes

pushattributes Subroutine

Purpose
Pushes down the attribute stack.

Library
Graphics Library (libgl.a)

C Syntax
void pushattributes()

FORTRAN Syntax
SUBROUTINE PUSHAT

Description
The pushattributes subroutine pushes down the attribute stack. That is, the record at the
top of the stack is duplicated and pushed onto the stack. The following attributes reside on
the stack and are thus pushable and popable:

• backbuffer enable (T or F)
• color map number (one of 16 small maps)
• colormode (Colormap or RGB)
• current color
• current font
• current linestyle
• current linestyle repeat factor
• current linewidth
• current pattern
• current writemask
• drawmode (overlay, underlay, or main buffers)
• draw_to_z_buffer enable (T or F)
• frontbuffer enable (T or F)
• logicop function
• shademodel (Flat or Gouraud)

The saved values can be restored using the popattributes subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-278 Graphics Subroutines Reference

pushattributes

Related Information
Enabling drawing in the back buffer with the backbuffer subroutine.

Setting color map mode as the current mode with the cmode subroutine.

Setting the color index in the current mode with the color subroutine.

Specifying the target framebuffer of the drawing subroutines with the drawmode subroutine.

Enabling drawing in the front buffer with the frontbuffer subroutine.

Specifying the line width with the linewidth subroutine.

Setting the repeat factor for the current linestyle with the lsrepeat subroutine.

Popping the attribute stack with the popattributes subroutine.

Setting the current color in RGB mode with the RGBcolor subroutine.

Granting write access to a subset of available bitplanes in RGB mode with the
RGBwritemask subroutine.

Selecting a linestyle pattern with the setlinestyle subroutine.

Selecting one of 16 small color maps with the setmap subroutine.

Selecting a pattern for filling polygons and rectangles with the setpattern subroutine.

Selecting the shading model used to draw a polygon with the shademodel subroutine.

Granting write permission to a subset of available bitplanes in color map mode with the
writemask subroutine.

Setting Attributes and Understanding the Hardware Used by GL in Graphics Programming
Concepts.

GL Subroutines 1-279

push matrix

pushmatrix Subroutine

Purpose
Pushes down the transformation matrix stack.

Library
Graphics Library {libgl.a)

C Syntax
void pushmatrix{)

FORTRAN Syntax
SUBROUTINE PUSHMA

Description

Example

The pushmatrix subroutine pushes down the transformation matrix stack, duplicating the
current matrix. For example, if the stack contains one matrix, M, after a call to the
pushmatrix subroutine, the matrix contains two copies of M. The top copy can be modified.

This subroutine is not valid when the system is in projection matrix mode
{mmode (MPROJ) ;) , because the matrix stack is not accessible in this mode.

1. To save the current transformation matrix before altering it with the translate modeling
subroutine, the example C language program backface.c uses the pushmatrix
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Changing the matrix mode with the mmode subroutine.

Getting a copy of the current transformation matrix with the getmatrix subroutine.

Loading a transformation matrix with the loadmatrix subroutine.

Premultiplying the current transformation matrix with the multmatrix subroutine.

Popping the transformation matrix stack with the popmatrix subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-280 Graphics Subroutines Reference

pushname

pushname Subroutine

Purpose
Pushes a new name on the name stack.

Library
Graphics Library {libgl.a)

C Syntax
void pushname{lnt16 name)

FORTRAN Syntax
SUBROUTINE PUSHNA{name)
INTEGER*2 name

Description

Parameter

Example

The pushname subroutine pushes the name stack down one level and puts a new 16-bit
name on top.

The name stack must first have been initialized with the initnames subroutine. At least one
name must have been loaded onto the stack with the loadname subroutine. The system
stores the contents of the name stack in a buffer if a hit has occurred since the late time that
the name stack was touched.

This subroutine is ignored outside of picking or selecting mode.

name Specifies the name to add to the name stack.

1 . To push the name stack and put a new name on the top, the example C language
program pick1 .c calls the pushname subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Putting the system in selecting mode with the gselect subroutine.

Initializing the name stack with the initnames subroutine.

Loading the name on top of the name stack with the loadname subroutine.

Putting the system in picking mode with the pick subroutine.

Popping a name off name stack with the popname subroutine.

GL Introduction and Picking and Selecting Overview for GL in Graphics Programming
Concepts.

GL Subroutines 1-281

pushviewport

pushviewport Subroutine

Purpose
Duplicates the current viewport.

Library
Graphics Library (libgl.a)

C Syntax
void pushviewport()

FORTRAN Syntax
SUBROUTINE PUSHVI()

Description
The pushviewport subroutine pushes down the viewport stack, duplicating the current
viewport, screenmask, and depth range. These saved values can be restored using the
popviewport subroutine.

The viewport stack is VPSTACKDEPTH levels deep. The pushviewport subroutine is
ignored if the stack is full. The VPSTACKDEPTH symbol is defined in the
/usr/include/gl/gl.h file.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the viewport depth range with the lsetdepth subroutine.

Popping the viewport stack with the popviewport subroutine.

Defining a rectangular 2-D clipping mask with the scrmask subroutine.

Setting the area of the window used for all drawing with the viewport subroutine.

GL Introduction and Using Viewports and Screenmasks in GL in Graphics Programming
Concepts.

1-282 Graphics Subroutines Reference

pwlcurve

pwlcurve Subroutine

Purpose

Library

C Syntax

Describes a piecewise linear trimming curve for NURBS surfaces.

Graphics Library (libgl.a)

void pwlcurve
(lnt32 count,
Float64 *data_array,
lnt32 stride,
lnt32 type)

FORTRAN Syntax
SUBROUTINE PWLCUR(count, data_array, stride, type)
INTEGER*4 count, stride, type
REAL *8 data_arrar(.*)

Description
The pwlcurve subroutine describes a piecewise linear curve, which consists of a list of
coordinate pairs in the parameter space for a Non-Uniform Rational B-Spline (NURBS)
surface. A piecewise linear curve can be used to describe a trimming loop. Use trimming
loop definitions within surface definitions, as defined by the bgnsurface subroutine.

The trimming loops are closed curves that the system uses to set the boundaries of a
NURBS surface. Describe a trimming loop by using a series of NURBS curves (as defined
by the nurbscurve subroutine), piecewise linear curves, or both. These points are
connected together with straight lines to form a path.

If a piecewise linear curve is an approximation to a real curve, the points should be close
enough together that the resulting path will appear curved at the resolution used in the
application.

Use piecewise linear curves within trimming loop definitions. A trimming loop definition is a
set of oriented curve commands that describe a closed loop. To mark the beginning of a
trimming loop definition, use the bgntrim subroutine. To mark the end of a trimming loop
definition, use an endtrim subroutine.

The system displays the region of the NURBS surface that is to the left of the trimming
curves as the parameter increases. Thus, for a counterclockwise-oriented trimming curve,
the displayed region of the NURBS surface is the region inside the curve. For a
clockwise-oriented trimming curve, the displayed region of the NURBS surface is the region
outside the curve.

GL Subroutines 1-283

pwlcurve

Parameters
count

data_ array

stride

type

Specifies the number of points on the curve.

Specifies an array containing the curve points.

Specifies the offset (in bytes) between points on the curve.

Specifies a value indicating the point type. Currently, the only data type
supported is N_ST, corresponding to pairs of s-t coordinates. The stride
parameter is used in case the curve points are part of an array of larger
structure elements. The pwlcurve subroutine searches for the count-th
coordinate pair beginning at data_array + count* stride.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Marking the beginning and end of a NURBS surface trimming loop with the bgntrim and
endtrim subroutines.

Marking the beginning and end of a NURBS surface definition with the bgnsurface and
endsurface subroutines.

Returning the current value of a trimmed NURBS surfaces display property with the
getnurbsproperty subroutine.

Controlling the shape of a NURBS trimming curve with the nurbscurve subroutine.

Controlling the shape of a NURBS surface with the nurbssurface subroutine.

Setting a property for the display of trimmed NURBS with the setnurbsproperty subroutine.

GL Introduction and Drawing NURBS Curves and Surfaces in Graphics Programming
Concepts.

1-284 Graphics Subroutines Reference

qdevice

qdevice Subroutine

Purpose
Enables a input device (keyboard, button, or valuator) for event queuing.

Library
Graphics Library (libgl.a)

C Syntax
void qdevice(Device device)

FORTRAN Syntax
SUBROUTINE QDEVIC(device)
INTEGER*4 device

Description

Parameter

Example

The qdevice subroutine changes the state of the specified device so that events occurring
within the device are entered in the event queue. The device can be the keyboard, a button,
a valuator, or certain other pseudo-devices. The maximum number of queue entries is 50.

Note: This subroutine cannot be used to add to a display list.

device Specifies the device whose state is to be changed so that it enters events
into the event queue.

1 . To enable input from various devices, the example C language program scrn_rotate.c
uses the qdevice subroutine.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h

/usr/include/gl/device.h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

Related Information
Filtering valuator motion with the noise subroutine.

Tying two valuators to a button with the tie subroutine.

Disabling an input device for event queuing with the unqdevice subroutine.

GL Introduction, Controlling Queues and Devices in GL, and Controlling the Keyboard in GL
in Graphics Programming Concepts.

GL Subroutines 1-285

qenter

qenter Subroutine

Purpose
Creates an event queue entry.

Library
Graphics Library (libgl.a)

C Syntax
void qenter(lnt16 qtype, lnt16 value)

FORTRAN Syntax
SUBROUTINE QENTER(qtype, value)
INTEGER*2 qtype, value

Description
The qenter subroutine takes two 16-bit integers, the qtype and value parameters, and
enters them into the event queue. There is no way to distinguish user-defined from
system-defined entries unless disjointed sets of device numbers are used.

Note: This subroutine cannot be used to add to a display list.

Parameters
qtype Specifies a number indicating the device making the queue entry.

Specifies the value to be entered into the event queue.

Example

value

1. To enter a REDRAW device event into the queue, the example C language program
scrn_rotate.c uses the qenter subroutine.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h

/usr/include/gl/device.h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

Related Information
Reading the first entry in the event queue with the qread subroutine.

Emptying the event queue with the qreset subroutine.

Checking the contents of the event queue with the qtest subroutine.

GL Introduction and Controlling Queues and Devices in GL in Graphics Programming
Concepts.

1-286 Graphics Subroutines Reference

qread ·

qread Subroutine

Purpose
Reads the first entry in the event queue.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 qread(lnt16 data)

FORTRAN Syntax
INTEGER*4 FUNCTION QREAD(data)
INTEGER*2 data

Description

Parameter

The qread subroutine, when there is an entry in the event queue, returns the device number
of the queue entry, writes the data of the entry into the data parameter, and removes the
entry from the queue. If there is not an entry in the queue, the qread subroutine executes
when an entry is made.

Note: This subroutine cannot be used to add to a display list.

data Specifies a pointer to the variable that is to receive the data in the event
queue.

Return Value

Example

The identifier for the device read.

1. To read input from the event queue, the example C language program scrn_rotate.c
uses the qread subroutine.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h

/usr/include/gl/device.h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

Related Information
Enabling an input device for event queuing with the qdevice subroutine.

Reading the first entry in the event queue with the qread subroutine.

Disabling an input device for event queuing with the unqdevice subroutine.

GL Introduction and Controlling Queues and Devices in GL in Graphics Programming
Concepts.

GL Subroutines 1.;..287

qreset

qreset Subroutine

Purpose
Empties the event queue.

Library
Graphics Library (libgl.a)

C Syntax
void qreset()

FORTRAN Syntax
SUBROUTINE QRESET

Description

Example

The qreset subroutine removes all entries from the event queue and discards them.

Note: This subroutine cannot be used to add to a display list.

1. To delete all input events from any devices, the example C language program
scrn_rotate.c uses the qreset subroutine.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h

/usr/include/gl/device.h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

Related Information
Creating an event queue entry with the qenter subroutine.

Reading the first entry in the event queue with the qread subroutine.

Check the content of the event queue with the qtest subroutine.

GL Introduction and Controlling Queues and Devices in GL in Graphics Programming
Concepts.

1-288 Graphics Subroutines Reference

qtest

qtest Subroutine

Purpose
Checks the contents of the event queue.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 qtest()

FORTRAN Syntax
INTEGER*4 FUNCTION QTEST

Description
The qtest subroutine returns zero if the event queue is empty. Otherwise, it returns the
device number of the first entry. The queue remains unchanged.

Note: This subroutine cannot be used to add to a display list.

Return Value

Example

The device number of the first entry (0 if the event queue is empty).

1. To check if there is any input from the queued devices, the example C language program
scrn_rotate.c uses the qtest subroutine.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h .

/usr/i ncl ude/g I/device. h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

Related Information
Creating an event queue entry with the qenter subroutine.

Reading the first entry in the event queue with the qread subroutine.

Emptying the event queue with the qreset subroutine.

GL Introduction and Controlling Queues and Devices in GL in Graphics Programming
Concepts.

GL Subroutines 1-289

rcrv

rcrv Subroutine

Purpose
Draws a rational cubic spline curve.

Library
Graphics Library (libgl.a)

C Syntax
void rcrv{Coord geom[4][4])

FORTRAN Syntax
SUBROUTINE RCRV{geom)
REAL geom(4,4)

Description

Parameter

The rcrv subroutine draws a rational cubic spline curve segment using the current curve
basis and precision.

The geom parameter specifies the four control points of the curve segment.

geom Specifies an array containing the four control points of the curve segment.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a cubic spline curve with the crv subroutine.

Drawing a series of curve segments with the crvn subroutine.

Setting the current cubic spline curve basis matrix for drawing curves with the curvebasis
subroutine.

Setting the number of line segments that compose a cubic spline curve with the
curveprecision subroutine.

Defining a cubic spline basis matrix with the defbasis subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

1-290 Graphics Subroutines Reference

rcrvn

rcrvn Subroutine

Purpose
Draws a series of rational curve segments.

Library
Graphics Library (libgl.a)

C Syntax
void rcrvn(lnt32 n, Coord geom [][4])

FORTRAN Syntax
SUBROUTINE RCRVN(n, geom)
INTEGER*4 n
REAL geom(4,n)

Description
The rcrvn subroutine draws a series of rational cubic spline curve segments using the
current basis and precision.

The control points specified in the geom parameter determine the shapes of the curve
segments and are used four at a time. The n parameter specifies the number of control
points to be used in drawing the curve. For example, if n is 6, three curve segments are
drawn:

1. Using points 0, 1,2,3 as control points.

2. Using points 1,2,3,4 as control points.

3. Using points 2,3,4,5 as control points.

If the current basis is a B-spline, Cardinal spline, or basis with similar properties, the curve
segments are joined end to end and appear as a single curve.

Parameters
n Specifies the number of control points to be used in drawing the curve.

geom Specifies the matrix containing the control points of the curve segments.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a cubic spline curve with the crv subroutine.

Drawing a series of curve segments with the crvn subroutine.

Setting the current cubic spline curve basis matrix with the curvebasis subroutine.

Setting the number of line segments that compose a cubic spline curve with the
curveprecision subroutine.

GL Subroutines 1-291

rcrvn

Defining a cubic spline basis matrix with the defbasis subroutine.

Drawing a rational curve with the rcrv subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

1-292 Graphics Subroutines Reference

rdr

rdr Subroutine

Purpose
Draws a line relative to the current graphics point.

Library
Graphics Library (libgl.a)

C Syntax
void rdr
(Coord dx, Coord dy, Coord dz)

void rdri
(lcoord dx, lcoord dy, lcoord dz)

void rdrs
(Scoord dx, Scoord dy, Scoord dz)

void rdr2
(Coord dx, Coord dy)

void rdr2i
(lcoord dx, lcoord dy)

void rdr2s
(Scoord dx, Scoord dy)

FORTRAN Syntax
SUBROUTINE RDR(dx, dy, dz)
REAL dx, dy, dz

SUBROUTINE RDRl(dx, dy, dz)
INTEGER*4 dx, dy, dz

SUBROUTINE RDRS(dx, dy, dz)
INTEGER*2 dx, dy, dz

SUBROUTINE RDR2(dx, dy)
REAL dx, dy

SUBROUTINE RDR21(dx, dy)
INTEGER*4 dx, dy

SUBROUTINE RDR2S(dx, dy)
INTEGER*2 dx, dy

Description
The rdr subroutine is the relative version of the draw subroutine. It connects the point dx,
dy, dz and the current graphics position with a line segment, using the current line
attributes: linestyle, linewidth, color (if in depth-cue mode, the depth-cued color is used),
and writemask.

The rdr subroutine updates the current graphics position to the specified point.

Note: Do not place routines that invalidate the current graphics position within sequences
of moves and draws.

GL Subroutines 1-293

rdr

The six different forms for the rdr subroutine are as follows:

lnt16

lnt32

float

2-D 3-D

rdr2s

rdr2i

rdr2

rd rs

rdri

rdr

The syntax for each of the subroutine forms is the same except for the parameter type. They
differ only in that rdr expects real coordinates, rdri expects integer coordinates, and rdrs
expects short integer coordinates. In addition, the rdr2* routines assume a 2-D point instead
of a 3-D point.

Parameters
dx Specifies the distance from the x coordinate of the current graphics position

to the x coordinate of the new point.

dy

dz

Specifies the distance from the y coordinate of the current graphics position
to the y coordinate of the new point.

Specifies the distance from the z coordinate of the current graphics position
to the z coordinate of the new point.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
mawing a line with the draw subroutine.

Moving the current graphics position to a specified point with the move subroutine.

Drawing a point with the pnt subroutine.

Moving the current graphics position to a point relative to the current point with the rmv
subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, Performing Depth-Cueing,
Setting Attributes, and Working with Coordinate Systems in Graphics Programming
Concepts.

1-294 Graphics Subroutines Reference

read pixels

readpixels Subroutine

Purpose
Returns values of specific pixels in color map mode.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 readpixels(lnt16 number, Colorindex colors[])

FORTRAN Syntax
INTEGER*4 FUNCTION READPl(number, colors)
INTEGER*4 number
INTEGER*2 colors(numbet)

Description
The readpixels subroutine returns values of specific pixels from the frame buffer in color
map mode. It reads them into the array starting from the current character position along a
single scan line (constant y) in the direction of increasing x.

The number parameter returns the number of pixels read, which is the number requested if
the starting point is a valid character position (inside the current viewport).

The system must be in color map mode for the readpixels subroutine to function. Use the
readRGB subroutine to read pixels in RGB mode.

The readpixels subroutine returns zero if the starting point is not a valid character position.
The values of pixels read outside the viewport or the screen are undefined. The subroutine
updates the current character position to one pixel to the right of the last one read. The
current character position is undefined if the new position is outside the viewport.

In double buffer mode, only the back buffer is read by default. Use the readsource
subroutine to specify which buffer is read.

When the system is in SINGLEMAP mode, only the lowest 12 bits contain valid data, and
the 4 upper bits of a color value (an element of the array in the colors parameter) are
undefined. When the system is in MULTIMAP mode, only the lowest 8 bits contain valid
data, and the upper 8 bits of a color value are undefined.

The rectread subroutine provides significantly better performance for pixel block transfers.
Even when only one row of pixels needs to be read, use the rectread subroutine. Do not use
the readpixels subroutine in new development.

Notes:

1. This subroutine is available only in color map mode.

2. This subroutine cannot be used to add to a display list.

Parameters
number

colors

Specifies the number of pixels to be read by the function.

Specifies the array in which the pixel values are to be stored.

GL Subroutines 1-295

read pixels

Return Values
The number of pixels actually read. A returned function value of 0 (zero) indicates that the
starting point is not a valid character position.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the value of specific pixels in RGB mode with the readRGB subroutine.

Specifying the source for pixels to be read with the readsource subroutine.

Copying a rectangle of pixels with an optional zoom with the rectcopy subroutine.

Reading a rectangular array of pixels into host memory with the rectread subroutine.

Drawing a rectangular array of pixels into the frame buffer with the rectwrite subroutine.

Painting a row of pixels on the screen in color map mode with the writepixels subroutine.

GL Introduction, Reading and Writing Pixels in GL, Using Viewports and Screenmasks in
GL, and Working in Color Map and RGB Modes in GL in Graphics Programming Concepts.

1-296 Graphics Subroutines Reference

readRGB

readRGB Subroutine

Purpose

Library

C Syntax

Returns values of specific pixels in RGB mode.

Graphics Library (libgl.a)

lnt32 readRGB
(lnt16 number,
RGBvalue real:], RGBvalue green[], RGBvalue blue[])

FORTRAN Syntax
INTEGER*4 FUNCTION READRG(number, red, green, blue)
INTEGER*2 number
CHARACTER*(*) red, green, blue;

Description
The readRGB subroutine attempts to read specific pixel values from the frame buffer in
RGB mode. The returned value of this function is the number of pixels actually read. A
returned function value of 0 (zero) indicates that the starting point is not a valid character
position.

The readRGB subroutine reads the pixel values into the arrays specified by the red, green,
and blue parameters starting from the current character position along a single scan line
(constant y) in the direction of increasing x.

The readRGB subroutine returns the number of pixels read, which is the number requested
if the starting point is a valid character position (inside the current viewport). The subroutine
returns 0 (zero) if the starting point is not a valid character position. The values of pixels read
outside of the viewport or screenmask are undefined.

The readRGB subroutine updates the current character position to one pixel to the right of
the last one read. The current character position is undefined if the new position is outside
the viewport.

Use the readsource subroutine to specify which buffer is read. In RGB double buffer mode,
by default the back buffer is read.

The rectread subroutine provides significantly better performance for pixel block transfers.
Even when only one row of pixels needs to be read, use the rectread subroutine. Do not use
the readRGB subroutine in new development.

Notes:

1. This subroutine is available only in RGB mode. For new development, use the lrectread
subroutine.

2. This subroutine cannot be used to add to a display list.

GL Subroutines 1-297

readRGB

Parameters
number Specifies the number of pixels read by the function.

red

green

blue

Specifies the array in which the red pixel values will be stored.

Specifies the array in which the green pixel values will be stored.

Specifies the array in which the blue pixel values will be stored.

Return Value
The returned value of this function is the number of pixels that the system actually reads.
The returned function value is O (zero) if any part of the specified rectangle is off the screen.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the value of specific pixels in color map mode with the readpixels subroutine.

Specifying the source for pixels to be read with the readsource subroutine.

Copying a rectangle of pixels with an optional zoom with the rectcopy subroutine.

Reading a rectangular array of pixels into host memory with the rectread subroutine.

Drawing a rectangular array of pixels into the frame buffer with the rectwrite subroutine.

Painting a row of pixels on the screen in RGB mode with the writeRGB subroutine.

GL Introduction, Reading and Writing Pixels in GL, Using Viewports and Screenmasks in
GL, Configuring the Frame Buffer for GL, Creating Animated Screens in GL, and Working in
Color Map and RGB Modes in GL in Graphics Programming Concepts.

1-298 Graphics Subroutines Reference

read source

readsource Subroutine

Purpose
Specifies the source for pixels to be read by various subroutines.

Library
Graphics Library (libgl.a)

C Syntax
void readsource(lnt32 source)

FORTRAN Syntax
SUBROUTINE READSO(source)
INTEGER*4 source

Description

Parameter

The readsource subroutine specifies the exact pixel source (front buffer, back buffer, or
z-buffer) that the rectcopy, readpixels, readRGB, and rectread subroutines use.

Note: This subroutine cannot be used to add to a display list.

source The four defined values for this parameter are listed in the following table:

Values for the source Parameter

Value Function

SRC_AUTO Selects the front buffer in single buffer mode and
the back buffer in double buffer mode.

SRC_FRONT Front color buffer. Valid for both single and double
buffer operation.

SRC_BACK Back color buffer. Valid during double buffer opera-
tion only.

SRC_ZBUFFER Z-buffer. Valid during both single and double buffer
operation.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-299

read source

Related Information
Copying a rectangle of pixels with an optional zoom with the rectcopy subroutine.

Reading a rectangular array of pixels into host memory with the rectread. subroutine.

GL Introduction, Reading and Writing Pixels in GL, and Configuring the Frame Buffer for GL
in Graphics Programming Concepts.

1-300 Graphics Subroutines Reference

re ct

rect Subroutine

Purpose

Library

C Syntax

Draws an unfilled rectangle.

Graphics Library (libgl.a)

void reet
(Coord x1, Coord y1,
Coord x2, Coord y2)

void reeti
(leoord x1, lcoord y1,
leoord x2, leoord y2)

void rects
(Scoord x1, Seoord y1,
Secord x2, Secord y2)

FORTRAN Syntax
SUBROUTINE RECT(x1, y1, x2, y2)
REAL x1, y1, x2, y2

SUBROUTINE RECTl(x1, y1, x2, y2)
INTEGER*4 x1, y1, x2, y2

SUBROUTINE RECTS(x1, y1, x2, y2)
INTEGER*2 x1, y1, x2, y2

Description
The reet subroutine draws a rectangle using the current line attributes: linestyle, linewidth,
color, and writemask. The sides of the rectangle are parallel to the x and y axes. Since a
rectangle is a 2-D shape, the rect subroutine takes only 2-D arguments, and sets the z
coordinate to zero. The current graphics position is set to (x1, y1) after the rectangle is
drawn.

The syntax for each of the subroutine forms is the same except for the first argument. They
differ only in that reet expects real coordinates, recti expects integer coordinates, and rects
expects short integer coordinates.

Parameters
x1

y1

x2

y2

Specifies the x coordinate of one corner of the rectangle.

Specifies the y coordinate of one corner of the rectangle.

Specifies the x coordinate of the opposite corner of the rectangle.

Specifies the y coordinate of the opposite corner of the rectangle.

GL Subroutines 1-301

re ct

Example
1. To draw the outline of a rectangle in green, the example C language program tpbig.c

uses the recti subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a polygon with the poly subroutine.

Drawing a filled rectangle with the rectf subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

1-302 Graphics Subroutines Reference

rectcopy

rectcopy Subroutine

Purpose

Library

C Syntax

Copies a rectangle of pixels with an optional zoom.

Graphics Library (libgl.a)

void rectcopy
(Screencoord xii, Screencoord yll,
Screencoord xur, Screencoord yur,
Screencoord newx, Screencoord newy)

FORTRAN Syntax
SUBROUTINE RECTCO(xll, yll, xur, yur, newx, newy)
INTEGER*2 xii, yll, xur, yur, newx, newy

Description
The rectcopy subroutine copies a rectangular array of pixels to another position on the
screen. The current viewport and screenmask mask the drawing of the copied region.
Self-intersecting copies work correctly in all cases.

Use the rectzoom subroutine to zoom the destination independently in both the x and y
directions. Self-intersecting copies also work correctly with zooming.

Use the readsource subroutine to specify the front buffer, the back buffer, or the z-buffer as
the source.

On machines that support it, you can use the rectzoom subroutine to zoom the destination
independently in both the x and y directions. Self-intersecting copies also work correctly with
zooming.

Pixel format is not considered during the copy. For example, if you copy pixels that contain
color index data into an RGB window, the display controller cannot correctly interpret it.

Use the frontbuffer, backbuffer, and zdraw subroutines to specify the destination.

All coordinates are relative to the lower left corner of the window, not the screen or viewport.

The rectcopy subroutine leaves the current character position unpredictable. The result of
the rectcopy subroutine is undefined if the value of the boo/ parameter in the zbuffer
subroutine is TRUE.

Note: This subroutine cannot be used to add to a display list.

GL Subroutines 1-303

rectcopy

Parameters
xii Specifies the x coordinate of one corner of the rectangle.

yll

xur

yur

newx

newy

Specifies they coordinate of one corner of the rectangle.

Specifies the x coordinate of the opposite corner of the rectangle.

Specifies they coordinate of the opposite corner of the rectangle.

Specifies the x coordinate of the lower left corner of the new position of the
rectangle.

Specifies the y coordinate of the lower left corner of the new position of the
rectangle.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying the source for pixels to be read with the readsource subroutine.

Reading a rectangular array of pixels into host memory with the rectread or lrectread
subroutine.

Drawing a rectangular array of pixels into the frame buffer with the rectwrite subroutine.

Specifying a zoom factor for rectangle copies and writes with the rectzoom subroutine.

GL Introduction and Reading and Writing Pixels in GL in Graphics Programming Concepts.

1-304 Graphics Subroutines Reference

rectf

rectf Subroutine

Purpose

Library

C Syntax

Draws a filled rectangle.

Graphics Library (libgl.a)

void rectf
(Coord x1, Coord y1,
Coord x2, Coord y2)

void rectfi
(lcoord x1, lcoord y1,
lcoord x2, lcoord y2)

void rectfs
(Scoord x1, Scoord y1,
Scoord x2, Scoord y2)

FORTRAN Syntax
SUBROUTINE RECTF(x1, y1, x2, y2)
REAL x1, y1, x2, y2

SUBROUTINE RECTFl(x1, y1, x2, y2)
INTEGER*4 x1, y1, x2, y2

SUBROUTINE RECTFS(x1, y1, x2, y2)
INTEGER*2 x1, y1, x2, y2

Description
The rectf subroutine produces a filled rectangular region, using the current area attributes:
pattern, color, and writemask. The sides of the rectangle are parallel to the x and y axes of
the object coordinate system.

Since a rectangle is a 2-D shape, the rectf subroutine takes only 2-D arguments and sets
the coordinate to zero. The current graphics position is set to (x1, y1) after the region is
drawn. Backfacing polygon removal works correctly if (x1, y1) specifies the lower left corner
and (x2, y2) the upper right corner of the rectangle.

The syntax for each of the subroutine forms is the same except for the first argument. They
differ only in that rectf expects real coordinates, rectfi expects integer coordinates, and
rectfs expects short integer coordinates.

Parameters
xt

yt

x2

y2

Specifies the x coordinate of one corner of the rectangle that is to be drawn.

Specifies the y coordinate of one corner of the rectangle that is to be drawn.

Specifies the x coordinate of the opposite corner of the rectangle that is to
be drawn.

Specifies the y coordinate of the opposite corner of the rectangle that is to
be drawn.

GL Subroutines 1-305

rectf

Example
1. To draw a filled, red rectangle, the example C language program tpbig.c uses the rectfi

subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a filled polygon with the polf subroutine.

Drawing a rectangle with the rect subroutine.

GL Introduction, Setting Attributes, and Using the GL High-Level Drawing Library in
Graphics Programming Concepts.

1-306 Graphics Subroutines Reference

rectread, lrectread

rectread or lrectread Subroutine

Purpose

Library

C Syntax

Reads a rectangular array of pixels into host memory.

Graphics Library (libgl.a)

lnt32 rectread
(Screencoord xii, Screencoord yll,
Screencoord xur, Screencoord yur,
lnt16 * parray)

lnt32 lrectread
(Screencoord xii, Screencoord yll,
Screencoord xur, Screencoord yur,
lnt32 * parray)

FORTRAN Syntax
INTEGER*4 RECTRE(x//, yl/, xur, yur, parray)
INTEGER*2 xii, yll, xur, yur, parray(1)

INTEGER*4 LRECTR(xll, yll, xur, yur, parray)
INTEGER*2 xii, yl/, xur, yur
INTEGER*4 parray(1)

Description
The rectread and lrectread subroutines each return a rectangular array of 16- and 32-bit
pixels, respectively, to the host array specified in the parray parameter. For the lrectread
subroutine, the parray parameter contains 32-bit packed RGB, RGBA, or z values. The
returned value of this function is the number of pixels that the system actually reads, left to
right, then bottom to top. The returned function value is O (zero) if any part of the specified
rectangle is off the screen.

The returned data is undefined if the xii and yll parameters do not specify the lower left
corner of a rectangle that appears completely on the screen. All coordinates are relative to
the lower left corner of the window, not the screen or viewport.

The readsource subroutine specifies the pixel source from which the pixels are read.

Notes:

1. Both the rectread and lrectread subroutines leave the current character position
unpredictable.

2. This subroutine cannot be used to add to a display list.

GL Subroutines 1-307

rectread, lrectread

Parameters
xii Specifies the x coordinate of the lower-left corner of the rectangle to be

yll

xur

yur

parray

read.

Specifies the y coordinate of the lower-left corner of the rectangle to be
read.

Specifies the x coordinate of the upper-right corner of the rectangle to be
read.

Specifies the y coordinate of the upper-right corner of the rectangle to be
read.

Specifies the array to receive the pixels that are read. The returned data in
the parray parameter are undefined if the xii and yll parameters do not
specify the lower left corner of a rectangle that appears completely on the
screen.

All coordinates are relative to the lower left corner of the window, not the screen or viewport.

Return Value

Example

The returned value of this function is the number of pixels that the system actually reads.
The returned function value is O (zero) if any part of the specified rectangle is off the screen.

1. To get the color index value for a single pixel, the example C language program paint.c
uses the rectread subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying the source for pixels to be read with the readsource subroutine.

Copying a rectangle of pixels with an optional zoom with the rectcopy subroutine.

Drawing a rectangular array of pixels into the frame buffer with the rectwrite or lrectwrite
subroutine.

GL Introduction, Reading and Writing Pixels in GL, Using Viewports and Screenmasks in
GL, and Working in Color Map and RGB Modes in GL in Graphics Programming Concepts.

1-308 Graphics Subroutines Reference

rectwrite, lrectwrite

rectwrite or lrectwrite Subroutine

Purpose

Library

C Syntax

Draws a rectangular array of pixels into the frame buffer.

Graphics Library (libgl.a)

void rectwrite
{Screencoord xii, Screencoord yll,
Screencoord xur, Screencoord yur,
lnt16 * parray)

void lrectwrite
{Screencoord xii, Screencoord yll,
Screencoord xur, Screencoord yur,
lnt32 * parray)

FORTRAN Syntax
SUBROUTINE RECTWR{xll, yll, xur, yur, parray)
INTEGER*2 xii, yll, xur, yur, parray(1)

SUBROUTINE LRECTW(xll, yll, xur, yur, parray)
INTEGER*2 xii, yll, xur, yur
INTEGER*4 parray(1)

Description
The rectwrite and lrectwrite subroutines draw pixels taken from the host array specified in
the parray parameter into the specified rectangular framebuffer region. Both procedures are
functionally the same. They differ only in that the rectwrite subroutine expects 16-bit values,
and the lrectwrite subroutine expects 32-bit values. The system draws pixels left to right,
then bottom to top. All normal drawing modes apply.

When the frame buffer is configured to be 8 bits deep, only the lowest 8 bits of the parray
parameter are used to fill the frame buffer. If the frame buffer has been configured to be 12
bits deep (for example, if the system is in colormap, singlemap, doublebuffer mode), only the
lowest 12 bits are written. If the frame buffer has been configured to be 24 bits deep (for
instance, in singlebuffer RGB mode), only the lowest 24 bits are written.

Note that because of the foregoing reasons, using the rectwrite subroutine in 24-bit mode is
not logical. Use the lrectwrite subroutine instead. Likewise, do not use the rectwrite
subroutine to write into the z-buffer.

In a similar manner, these subroutines can be used to write into the overlay or underlay
planes. Note that not all supported graphics adapters have 24-bit deep frame buffers or haye
z-buffers.

Note: Both the rectwrite and lrectwrite subroutines leave the current character position
unpredictable.

If the zoom factors set by the rectzoom subroutine are both 1.0, the screen region xii
through xur, yll through yur, are filled. Other zoom factors result in filling past xur and/or past
yur (xii, yll is always the lower left corner of the filled region).

Note: This subroutine cannot be used to add to a display list.

GL Subroutines 1-309

rectwrite, lrectwrite

Parameters
xii Specifies the x coordinate of the lower-left corner of the rectangular

frame-buffer region.

yll

xur

yur

parray

Specifies the y coordinate of the lower-left corner of the rectangular
frame-buffer region.

Specifies the x coordinate of the upper right corner of the rectangular
frame-buffer region.

Specifies the y coordinate of the upper right corner of the rectangular
frame-buffer region.

Specifies the array containing the values of the pixels to be drawn. The size
of parray is always (xur-xll+ 1) • (yur-yll+ 1). For RGBA values, pack the bits
in the form OxAABBGGRR, where:

AA Contains the alpha value.

BB Contains the blue value.

GG Contains the green value.

RR Contains the red value.

The returned data is undefined if the xii and yll parameters do not specify
the lower left corner of a rectangle that appears completely on the screen.
All coordinates are relative to the lower left corner of the window, not the
screen or viewport.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Copying a rectangle of pixels with an optional zoom with the rectcopy subroutine.

Reading a rectangular array of pixels into host memory with the rectread or lrectread
subroutine.

Specifying a zoom factor for rectangle copies and writes with the rectzoom subroutine.

GL Introduction, Reading and Writing Pixels in GL, Configuring the Frame Buffer for G, and
Working in Color Map and RGB Modes in GL in Graphics Programming Concepts.

1-310 Graphics Subroutines Reference

rectzoom Subroutine

Purpose
Specifies a zoom factor for rectangle copies and writes.

Library
Graphics Library (libgl.a)

C Syntax
void rectzoom(Float32 xfactor, Float32 yfactol)

FORTRAN Syntax
SUBROUTINE RECTZO(xfactor, yfactol)
REAL xfactor, yfactor

Description

rectzoom

The rectzoom subroutine specifies independent x and y zoom factors that the rectcopy and
rectwrite subroutines use. Float values are rounded to the nearest integer.

The default value for the xfactor and yfactor parameters is 1.0.

Note: This subroutine cannot be used to add to a display list.

Parameters
xfactor Specifies the multiplier of the rectangle in the x direction.

Specifies the multiplier of the rectangle in they direction. yfactor

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Copying a rectangle of pixels with an optional zoom with the rectcopy subroutine.

Drawing a rectangular array of pixels into the frame buffer with the rectwrite subroutine.

GL Introduction and Reading and Writing Pixels in GL in Graphics Programming Concepts.

GL Subroutines 1-311

reshapeviewport

reshapeviewport Subroutine

Purpose
Sets the viewport to the dimensions of the current window.

Library
Graphics Library (libgl.a)

C Syntax
void reshapeviewport()

FORTRAN Syntax
SUBROUTINE RESHAP()

Description

Example

The reshapeviewport subroutine sets the viewport to the dimensions of the current window.

The reshapeviewport subroutine is equivalent to:

long xsize, ysize;
getsize(&xsize, &ysize);
viewport(O, xsize-1, O, ysize-1);

Use the reshapeviewport subroutine when REDRAW events are received. It is most useful
in programs that are independent of the size and shape of the viewport.

Note: This subroutine cannot be used to add to a display list.

1. To reshape the viewport on a REDRAW event, the example C language program
scrn_rotate.c uses the reshapeviewport subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Clearing the viewport. with the clear subroutine.

Returning the position of a window with the getorigin subroutine.

Returning the size of a window with the getsize subroutine.

GL Introduction and Using Viewports and Screenmasks in GL in Graphics Programming
Concepts.

1-312 Graphics Subroutines Reference

RGBcolor

RGBcolor Subroutine

Purpose
Sets the current color in RGB mode.

Library
Graphics Library (libgl.a)

C Syntax
RGBcolor
{short red, short green, short blue)

FORTRAN Syntax
SUBROUTINE RGBCOL{red, green, blue)
INTEGER*4 red, green, blue

Description
The RGBcolor subroutine sets the current color when the system is in RGB mode. The
lower-order 8 bits of the three arguments control the intensity of red, green, and blue colors
displayed on the screen. The system writes these numbers directly into the bitplanes
whenever it draws a pixel.

Note: This subroutine is available only in RGB mode.

Parameters
red Specifies a value indicating the intensity of the color red to be displayed on

the screen.

green

blue

Specifies a value indicating the intensity of the color green to be displayed
on the screen.

Specifies a value indicating the intensity of the color blue to be displayed on
the screen.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current color in RGB mode with the c subroutine.

Setting the current color in color map mode with the color subroutine.

Setting the current color as a packed 32-bit integer with the cpack subroutine.

Returning the current RGB value with the gRGBcolor subroutine.

Setting Attributes, Understanding the Hardware Used by GL, and Working in Color Map and
RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-313

RGBmode

RGBmode Subroutine

Purpose
Sets a display mode that bypasses the color map.

Library
Graphics Library (libgl.a)

C Syntax
void RGBmode()

FORTRAN Syntax
SUBROUTINE RGBMOD

Description .
The RGBmode subroutine makes the system interpret the contents of the main frame buffer
as RGB values. All drawing subroutines write values of red, green, and blue directly into the
bitplanes; the contents of the frame buffer, in turn, directly controls the intensity of the color
displayed on the monitor.

When the frame buffer is 24 bits deep, 8 bits each of red, green, and blue are stored. When
the frame buffer is 12 bits deep, the 4 most significant bits of each of the red, green, and
blue are stored. When the frame buffer is 8 bits deep, the 3 most significant bits of each of
the red and green, and the 2 most significant bits of blue are stored. To improve the visual
quality of the displayed image, dithering is automatically turned on whenever the frame
buffer is 8 bits deep.

The depth of the frame buffer depends on the installed adapter, and on how it has been
configured. In particular, the doublebuffer and singlebuffer subroutines affect the
configuration of the main frame buffer.

The system will not enter into RGB mode until the gconfig subroutine is called.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics

Example

File

The RGBmode subroutine is useful for monitors with 12 or more bitplanes.

1. To perform lighting calculations, the example C language program localatten.c puts the
system in RGB mode with the RGBmode subroutine. This lets the system calculate the
correct colors for realistic shading.

/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting color map mode as the current mode with the cmode subroutine.

Reconfiguring the system with the gconfig subroutine.

Returning the current display mode with the getdisplaymode subroutine.

Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-314 Graphics Subroutines Reference

RGBwritemask

RGBwritemask Subroutine

Purpose

Library

C Syntax

Grants write access to a subset of available bitplanes.

Graphics Library (libgl.a)

void RGBwritemask
(lnt16 red,
lnt16 green,
lnt16 blue)

FORTRAN Syntax
SUBROUTINE RGBWRl(red, green, blue)
INTEGER*2 red, green, blue

Description
The RGBwritemask subroutine sets the bitplane writemask in RGB mode. Writemasks are
used to shield portions of the frame buffer from being written into. A writemask is a small set
of bits (3 masks of 8 bits each in RGB mode), one bit for each bitplane of the frame buffer.

If a bit is set (1), the corresponding bitplane is enabled for writing, and any routine that draws
into the frame buffer will be able to write into that bitplane. If a bit is reset (0), the
corresponding bitplane is marked as read only, and the values stored in that bitplane are not
changed.

Note that the writemask protects planes in the color frame buffer. Thus, writemasks
essentially prevent certain colors from being written into the frame buffer. Colors that are
drawn while a writemask is enabled appear different, depending on the color, the writemask,
and the color value currently stored in the frame buffer (at a given pixel).

Writemasks are useful for emulating overlay/underlay planes.

The RGBwritemask subroutine is intended for use in RGB mode only. To set the writemask
in color map mode, use the writemask or wmpack subroutine.

Parameters
red Specifies the mask for the corresponding red bitplanes.

green Specifies the mask for the corresponding green bitplanes.

blue Specifies the mask for the corresponding blue bitplanes.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-315

RGBwritemask

Related Information
Returning the current RGB value with the gRGBcolor subroutine.

Returning the current RGB writemask with the gRGBmask subroutine.

Specifying the RGBA writemask with a single packed integer with the wmpack subroutine.

Granting write permission to available bitplanes with the writemask subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, and
Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-316 Graphics Subroutines Reference

ringbell Subroutine

Purpose
Rings the keyboard bell.

Library
Graphics Library (libgl.a)

C Syntax
void ringbell()

FORTRAN Syntax
SUBROUTINE RINGBE

Description

ring bell

The ringbell subroutine rings the keyboard bell for the length of time set by the setbell
subroutine.

Example

Note: This subroutine cannot be used to add to a display list.

1. To ring the bell as a ball moves, the example C language program ovrlay.c uses the
ringbell subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Turning off the keyboard click with the clkoff subroutine.

Turning on the keyboard click with the clkon subroutine.

Turning on the keyboard display lights with the lampon subroutine.

Setting the duration of the keyboard bell sound with the setbell subroutine.

GL Introduction and Controlling the Keyboard in Graphics Programming Concepts.

GL Subroutines 1-317

rmv

rmv Subroutine

Purpose
Moves the graphics position relative to the current point.

Library
Graphics Library (libgl.a)

C Syntax
void rmv
(Coord dx, Coord dy, Coord dz)

void rmvi
(lcoord dx, lcoord dy, lcoord dz)

void rmvs
(Scoord dx, Scoord dy, Scoord dz)

void rmv2
(Coord dx, Coord dy)

void rmv2i
(lcoord dx, lcoord dy)

void rmv2s
(Scoord dx, Scoord dy)

FORTRAN Syntax
SUBROUTINE RMV(dx, dy, dz)
REAL dx, dy, dz

SUBROUTINE RMVl(dx, dy, dz)
INTEGER*4 dx, dy, dz

SUBROUTINE RMVS(dx, dy, dz)
INTEGER*2 dx, dy, dz

SUBROUTINE RMV2(dx, dy)
REAL dx, dy

SUBROUTINE RMV21(dx, dy)
INTEGER*4 dx, dy

SUBROUTINE RMV2S(dx, dy)
INTEGER*2 dx, dy

Description
The rmv subroutine is the relative version of the move subroutine. It moves the graphics
position (without drawing) the specified amount relative to its current value. The value of
rmv2(x, y) is equivalent to rmv(x, y, 0.0).

The six different forms for the rmv subroutine are as follows:

lnt16

lnt32

float

1-318 Graphics Subroutines Reference

2-D

rmv2s

rmv2i

rmv2

3-D

rm vs

rm vi

rmv

rmv

The syntax for each of the subroutine forms is the same except for the parameter type. They
differ only in that rmv expects real coordinates, rmvi expects integer coordinates, and rmvs
expects short integer coordinates. In addition, the rmv2* routines assume a 2-D point ·
instead of a 3-D point.

Parameters
dx Specifies the distance from the x coordinate of the current graphics position

to the x coordinate of the new point.

dy

dz

Specifies the distance from the y coordinate of the current graphics position
to the y coordinate of the new point.

Specifies the distance from the z coordinate of the current graphics position
to the z coordinate of the new point.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a line with the draw subroutine.

Moving the current graphics position to a specified point with the move subroutine.

Drawing a relative line with the rdr subroutine.

GL Introduction and Drawing with Move-Draw Style Subroutines in Graphics Programming
Concepts.

GL Subroutines 1-319

rot

rot Subroutine

Purpose
Rotates graphical primitives (floating-point version).

Library
Graphics Library (libgl.a)

C Syntax
void rot(Float 32 angle, Chars axis)

FORTRAN Syntax
SUBROUTINE ROT(angle, axis)
REAL angle
CHARACTER*1 axis

Description
The rot subroutine specifies an angle (angle) and an axis of rotation (axis). The floating
point angle is given in degrees according to the right-hand rule.

The rot subroutine is a modeling routine; it changes the current transformation matrix. All
objects drawn after the rot subroutine executes are rotated. Use the pushmatrix and
popmatrix subroutines to preserve and restore unrotated modeling coordinates.

Parameters
angle Specifies the angle of rotation of an object.

Example

axis Specifies the relative axis of rotation. There are three values defined for this
parameter (the character may be upper- or lowercase):

x, X indicates the x-axis.

y, Y indicates the y-axis.

z, Z indicates the z-axis.

1. To rotate a cylinder about the y- and z-axes, the example C language program
cylinder1 .c uses the rot subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-320 Graphics Subroutines Reference

Related Information
Popping the transformation matrix stack with the popmatrix subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

Rotating a graphical primitive (fixed-point version) with the rotate subroutine.

Scaling and mirroring objects with the scale subroutine.

Translating a graphical primitive with the translate subroutine.

rot

GL Introduction and Working with Coordinate Systems in Graphics ProgrammingConcepts.

GL Subroutines 1-321

rotate

rotate Subroutine

Purpose
Rotates graphical primitives (fixed-point version).

Library
Graphics Library (libgl.a)

C Syntax
void rotate(Angle angle, Chars axis)

FORTRAN Syntax
SUBROUTINE ROTATE(angle, axis)
INTEGER*4 angle
CHARACTER*1 axis

Description
The rotate subroutine specifies an angle (angle) and an axis of rotation (axis). The fixed
point angle is given in tenths of a degree according to the right-hand rule.

The rotate subroutine is a modeling routine; it changes the current transformation matrix. All
objects drawn after the rotate subroutine executes are rotated. Use the pushmatrix and
popmatrix subroutines to preserve and restore unrotated modeling coordinates.

Parameters
angle Specifies the angle of rotation of an object.

Example

axis Specifies the relative axis of rotation. There are six values defined for this
parameter (the character may be upper- or lowercase):

x, X indicates the x-axis.

y, Y indicates the y-axis.

z, Z indicates the z-axis.

1. To model the sides of a cube using a square, the example C language program
backface.c uses the rotate modeling subroutine to alter the current transformation
matrix.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-322 Graphics Subroutines Reference

Related Information
Popping the transformation matrix stack with the popmatrix subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

Rotating a graphical primitive (floating point version) with the rot subroutine.

Scaling and mirroring objects with the scale subroutine.

Translating a graphical primitive with the translate subroutine.

rotate

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

GL Subroutines 1-323

rpatch

rpatch Subroutine

Purpose

Library

C Syntax

Draws a rational surface patch.

Graphics Library (libgl.a)

void rpatch
(Matrix geomx, Matrix geomy,
Matrix geomz, Matrix geomw)

FORTRAN Syntax
SUBROUTINE RPATCH(geomx, geomy, geomz, geomw)
REAL geomx(4,4), geomy(4,4), geomz(4,4), geomw(4,4)

Description
The rpatch subroutine draws a rational surface patch using the current settings from the
patchbasis, patchprecision, and patchcurves subroutines. The control points geomx,
geomy, geomz, and geomwdetermine the shape of the patch.

Parameters
geomx Specifies a 4x4 matrix containing the x coordinates of the 16 control points

of the patch.

geomy

geomz

geomw

Specifies a 4x4 matrix containing the y coordinates of the 16 control points
of the patch.

Specifies a 4x4 matrix containing the z coordinates of the 16 control points
of the patch.

Specifies a 4x4 matrix containing the w coordinates of the 16 control points
of the patch.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constaht and variable type definitions for GL.

Related Information
Defining a cubic spline basis matrix with the defbasis subroutine.

Drawing a surface patch with the patch subroutine.

Setting the current spline surface basis matrices with the patchbasis subroutine.

Setting the number of curves used to represent a patch with the patchcurves subroutine.

Setting the precision at which curves are drawn with the patchprecision subroutine.

GL Introduction and Drawing Wire Frame Curves and Surface Patches in GL in Graphics
Programming Concepts.

1-324 Graphics Subroutines Reference

rpdr

rpdr Subroutine

Purpose
Performs a relative polygon draw.

Library
Graphics Library (libgl.a)

C Syntax
void rpdr
(Coord dx, Coord dy, Coord dz)

void rpdri
(lcoord dx, lcoord dy, lcoord dz)

void rpdrs
(Scoord dx, Scoord dy, Scoord dz)

void rpdr2
(Coord dx, Coord dy)

void rpdr2i
(lcoord dx, lcoord dy)

void rpdr2s
(Scoord dx, Scoord dy)

FORTRAN Syntax
SUBROUTINE RPDR(dx, dy, dz)
REAL dx, dy, dz

SUBROUTINE RPDRl(dx, dy, dz)
INTEGER*4 dx, dy, dz

SUBROUTINE RPDRS(dx, dy, dz)
INTEGER*2 dx, dy, dz

SUBROUTINE RPDR2(dx, dy)
REAL dx, dy

SUBROUTINE RPDR21(dx, dy)
INTEGER*4 dx, dy

SUBROUTINE RPDR2S(dx, dy)
INTEGER*2 dx, dy

Description
The rpdr subroutine is the relative version of the pdr subroutine. It specifies the next point in
a filled polygon, using the previous point (the current graphics position) as the origin.

There can be no more than 256 vertices in a polygon. Therefore, there can be no more than
255 calls to the rpdr subroutine between calls to the rpmv and pclos subroutines.

The rpdr subroutine updates the current graphics position. The next routine starts drawing
from that point.

Note: Do not place routines that invalidate the current graphics position within sequences
of moves and draws.

GL Subroutines 1-325

rpdr

The six different forms for the rpdr subroutine are as follows:

lnt16

lnt32

float

2-D

rpdr2s

rpdr2i

rpdr2

3-D

rpdrs

rpdri

rpdr

The syntax for each of the subroutine forms is the same except for the parameter type. They
differ only in that rpdr expects real coordinates, rpdri expects integer coordinates, and
rpdrs expects short integer coordinates. In addition, the rpdr2 routines assume a 2-D point
instead of a 3-D point.

Parameters
dx Specifies the distance from the x coordinate of the current graphics position

to the x coordinate of the next corner of the polygon.

dy

dz

Specifies the distance from the y coordinate of the current graphics position
to the y coordinate of the next corner of the polygon.

Specifies the distance from the z coordinate of the current graphics position
to the z coordinate of the next corner of the polygon.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Allowing the system to draw concave polygons with the concave subroutine.

Closing a filled polygon with the pclos subroutine.

Specifying the next point in a polygon with the pdr subroutine.

Specifying the starting point for a polygon with the pmv subroutine.

Moving the current graphics position to a starting point for a filled polygon relative to the
current point with the rpmv subroutine.

Selecting the shading model used to draw a polygon with the shademodel subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, and Setting Attributes in
Graphics Programming Concepts.

1-326 Graphics Subroutines Reference

rpmv

rpmv Subroutine

Purpose
Performs a relative move to the starting point of a filled polygon.

Library
Graphics Library {libgl.a)

C Syntax
void rpmv·
(Coord dx, Coord dy, Coord dz)

void rpmvi
(lcoord dx, lcoord dy, lcoord dz)

void rpmvs
(Scoord dx, Scoord dy, Scoord dz)

void rpmv2
(Coord dx, Coord dy)

void rpmv2i
(lcoord dx, lcoord dy)

void rpmv2s
(Scoord dx, Scoord dy)

FORTRAN Syntax
SUBROUTINE RPMV(dx, dy, dz)
REAL dx, dy, dz

SUBROUTINE RPMVl(dx, dy, dz)
INTEGER*4 dx, dy, dz

SUBROUTINE RPMVS(dx, dy, dz)
INTEGER*2 dx, dy, dz

SUBROUTINE RPMV2(dx, dy)
REAL dx, dy

SUBROUTINE RPMV21(dx, dy)
INTEGER*4 dx, dy

SUBROUTINE RPMV2S(dx, dy)
INTEGER*2 dx, dy

Description
The rpmv subroutine is the relative version of the pmv subroutine. It specifies a relative
move to the starting point in a filled polygon, using the current graphics position as the
origin. The rpmv subroutine updates the current graphics position to the new point.

Between calls to the rpmv and pclos subroutines, you can issue calls to the following
Graphics Library subroutines only:

• c
• color
• cpack
• lmbind
• lmcolor

GL Subroutines 1-327

rpmv

• lmdef
• n3f
• normal
• RGBcolor
• v

Use the lmdef and lmbind subroutines to respecify only materials and their properties.

The six different forms for the rpmv subroutine are as follows:

lnt16

lnt32

float

2-D

rpmv2s

rpmv2i

rpmv2

3-D

rpm vs

rpm vi

rpmv

The syntax for each of the subroutine forms is the same except for the parameter type. They
differ only in that rpmv expects real coordinates, rpmvi expects integer coordinates, and
rpmvs expects short integer coordinates. In addition, the rpmv2 routines assume a 2-D
point instead of a 3-D point.

Parameters
dx Specifies the distance from the x coordinate of the current graphics position

to the x coordinate of the first corner of the polygon.

dy

dz

Specifies the distance from the y coordinate of the current graphics position
to the y coordinate of the first corner of the polygon.

Specifies the distance from the z coordinate of the current graphics position
to the z coordinate of the first corner of the polygon.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Allowing the system to draw concave polygons with the concave subroutine.

Closing a filled polygon with the pclos subroutine.

Specifying the next point in a polygon with the pdr subroutine.

Specifying the starting point for a polygon with the pmv subroutine.

Drawing a relative polygon with the rpdr subroutine.

Selecting the shading model used to draw a polygon with the shademodel subroutine.

GL Introduction, Drawing with Move-Draw Style Subroutines, and Setting Attributes in
Graphics Programming Concepts.

1-328 Graphics Subroutines Reference

sbox ...

sbox, sboxi, or sboxs Subroutine

Purpose

Library

C Syntax

Draw a screen-aligned rectangle.

Graphics Library (libgl.a)

void sbox
(Coord x1, Coord y1,
Coord x2, Coord y2)

void sboxi
(lcoord x1, lcoord y1,
lcoord x2, lcoord y2)

void sboxs
(Scoord x1, Scoord y1,
Scoord x2, Scoord y2)

FORTRAN Syntax
SUBROUTINE SBOX(x1, y1, x2, y2)
REAL x1, y1, x2, y2

SUBROUTINE SBOXl(x1, y1, x2, y2)
INTEGER*4 x1, y1, x2, y2

SUBROUTINE SBOXS(x1, y1, x2, y2)
INTEGER*2 x1, y1, x2, y2

All of the foregoing functions are essentially the same except for the type declarations of the
parameters.

Description
The sbox subroutine draws a two-dimensional, screen-aligned rectangle using the current
color, writemask, linestyle, and linestyle repeat. Only these attributes, not the normal line
attributes, are used. Most of the lighting/shading/viewing pipeline is bypassed.

The sides of the rectangle are parallel to the screen x and y axes. This rectangle cannot be
rotated. The z coordinate is set to zero.

When you use the sbox subroutine, you must not use lighting, backfacing, depth-cueing,
z-buffering, Gouraud shading, or alphablending.

This subroutine may be faster than the rect subroutine. It is useful for drawing a large
number of rectangles that do not require rotating.

Parameters
x1

y1

x2

y2

Specifies the x coordinate of a corner of the box.

Specifies the y coordinate of a corner of the box.

Specifies the x coordinate of the opposite corner of the box.

Specifies the y coordinate of the opposite corner of the box.

GL Subroutines 1-329

sbox ...

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing a rectangle with the rect subroutine.

Drawing a filled screen-aligned rectangle with the sboxf subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

1-330 Graphics Subroutines Reference

sboxf ...

sboxf, sboxfi, or sboxfs Subroutine

Purpose

Library

C Syntax

Draw a filled screen-aligned rectangle.

Graphics Library (libgl.a)

void sboxf
(Coord x1, Coord y1,
Coord x2, Coord y2)

void sboxfi
(lcoord x1, lcoord y1,
lcoord x2, lcoord y2)

void sboxfs
(Scoord x1, Scoord y1,
Scoord x2, Scoord y2)

FORTRAN Syntax
SUBROUTINE SBOXF(x1, y1, x2, y2)
REAL x1, y1, x2, y2

SUBROUTINE SBOXFl(x1, y1, x2, y2)
INTEGER*4 x1, y1, x2, y2

SUBROUTINE SBOXFS(x1, y1, x2, y2)
INTEGER*2 x1, y1, x2, y2

All of the foregoing functions are essentially the same except for the type declarations of the
parameters.

Description
The sboxf subroutine draws a filled, two-dimensional, screen-aligned rectangle using the
current color, writemask, and pattern. Only these attributes, not the normal area-fill
attributes, are used. Most of the lighting/shading/viewing pipeline is bypassed.

The sides of the rectangle are parallel to the screen x and y axes. This rectangle cannot be
rotated. The z coordinate is set to zero.

The sboxf subroutine performs the same function as the clear subroutine. A function
equivalent to the sboxf subroutine can be obtained by setting the screenmask to the desired
size, calling the clear subroutine, and then resetting the screenmask. Note that when you
use the clear subroutine, the lighting, backfacing, depth-cueing, z-buffering, or Gouraud
shading do not need to be turned off.

When you use the sboxf subroutine, you must not use lighting, backfacing, depth-cueing,
z-buffering, Gouraud shading, or alpha blending.

GL Subroutines 1-331

sboxf ...

Parameters
x1 Specifies the x screen coordinate of a corner of the filled box.

Specifies the y screen coordinate of a corner of the filled box. y1

x2

y2

Specifies the x screen coordinate of the opposite corner of the filled box.

Specifies the y screen coordinate of the opposite corner of the filled box.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Clearing to the screenmask with the clear subroutine.

Drawing a filled rectangle with the rectf subroutine.

Drawing a screen-aligned rectangle with the sbox subroutine.

Gllntroduction, Setting Attributes, and Using the GL High-Level Drawing Library in Graphics
Programming Concepts.

1-332 Graphics Subroutines Reference

scale

scale Subroutine

Purpose
Scales and mirrors drawing primitives.

Library
Graphics Library (libgl.a)

C Syntax
void scale(Float32 x , Float32 y , Float32 z)

FORTRAN Syntax
SUBROUTINE SCALE{x, y, z)
REAL x, y, z

Description
The scale subroutine shrinks, expands, and mirrors drawing primitives. Values with a
magnitude greater than 1 expand the drawing primitive; values with a magnitude less than 1
shrink it. Negative values mirror the primitive. Mirroring will left-right reverse, up-down
reverse, or front-back reverse a drawing primitive, depending on which of the three
directions is given a negative value.

The scale subroutine is a modeling routine; it changes the current transformation matrix. All
drawing primitives drawn after the scale subroutine executes are affected.

Use the pushmatrix and popmatrix subroutines to limit the scope of the scale subroutine.

Parameters

Example

x

y

z

Specifies scaling of the drawing primitive in the x direction.

Specifies scaling of the drawing primitive in the y direction.

Specifies scaling of the drawing primitive in the z direction.

1. To draw two differently sized cylinders, the example C language program cylinder2.c
draws one cylinder, then uses the scale subroutine before drawing the second cylinder.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-333

scale

Related Information
Popping the transformation matrix stack with the popmatrix subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

Rotating a graphical primitive (floating-point version) with the rot subroutine.

Rotating a graphical primitive (fixed-point version) with the rotate subroutine.

Translating a graphical primitive with the translate subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-334 Graphics Subroutines Reference

screenspace

screenspace Subroutine

Purpose
Makes a program interpret graphics positions as absolute screen coordinates.

Library
Graphics Library (libgl.a)

C Syntax
void screenspace{)

FORTRAN Syntax
SUBROUTINE SCREEN

Description
The screenspace subroutine makes a program interpret graphics positions as absolute
screen coordinates. This allows pixels and locations outside a program's window to be read.
The origin, in screen coordinates, is at the lower left corner of the screen. In window
coordinates the origin is at the lower left corner of the user-defined window.

The screenspace subroutine is equivalent to:

int xmin, ymin;

getorigin(&xmin, &ymin);
viewport(-xmin, XMAXSCREEN-xmin,-ymin,YMAXSCREEN-ymin);
ortho2(-0.5,1279.5,-0.5,1023.5);

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the position of a window with the getorigin subroutine.

Defining a 2-D orthographic transformation with the ortho2 subroutine.

Setting the area of the window used for all drawing with the viewport subroutine.

GL Introduction, Working with Coordinate Systems in GL, and Using Viewports and
Screenmasks in GL in Graphics Programming Concepts.

GL Subroutines 1-335

scrmask

scrmask Subroutine

Purpose

Library

C Syntax

Defines a a rectangular 2-D clipping mask.

Graphics Library (libgl.a)

void scrmask
(Screencoord *left,
Screencoord *right,
Screencoord *bottom,
Screencoord *top)

FORTRAN Syntax
SUBROUTINE SCRMAS(left, right, bottom, top)
INTEGER*2 left, right, bottom, top

Description
The scrmask subroutine defines a rectangular, two-dimensional clipping mask. It is intended
to be used primarily for fine character clipping, although it clips all drawing primitives,
including clear.

By default, the viewport subroutine sets the same area for both the viewport and
screenmask, which the parameters left, right, bottom, top define. Strings that begin outside
the viewport are clipped out; this is called gross clipping. Strings that begin inside the
viewport, but outside the screenmask, are clipped to the pixel boundaries of the
screenmask; this is called fine clipping.

All drawing routines are also clipped to the viewport, but the scrmask subroutine is useful
only for characters. Gross clipping is sufficient for all other primitives.

Parameters

Example

left

right

bottom

Specifies the coordinate of the left clipping plane of the screenmask.

Specifies the coordinate of the right clipping plane of the screenmask.

Specifies the coordinate of the bottom clipping plane of the screenmask.

top Specifies the coordinate of the top clipping plane of the screenmask.

Note: The left parameter must not be greater than the right parameter, nor the bottom
parameter greater than the top parameter, otherwise no text can appear on the
screen.

1. To define a new screenmask, the example C language program prompt.c uses the
scrmask subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

1-336 Graphics Subroutines Reference

scrmask

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the current screenmask with the getscrmask subroutine.

Setting the area of the window used for all drawing with the viewport subroutine.

GL Introduction, Working with Coordinate Systems in GL, and Using Viewports and
Screenmasks in GL in Graphics Programming Concepts.

GL Subroutines 1-337

setbell

setbell Subroutine

Purpose
Sets the duration of the keyboard bell sound.

Library
Graphics Library (libgl.a)

C Syntax
void setbell(Char8 duraf)

FORTRAN Syntax
SUBROUTINE SETBEL(duraf)
CHARACTER*1 durat

Description

Parameter

Example

The setbell subroutine sets the duration of the keyboard bell sound. The keyboard bell is
activated by the ringbell subroutine. Settings for the durat parameter are as follows:

Value Meaning

0 Off

1 Short beep

2 Long beep

Note: This subroutine cannot be used to add to a display list.

du rat Specifies the duration of the keyboard bell.

1. To set the duration of the bell sound for a short beep, the example C language program
ovrlay.c uses the setbell subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Turning off the keyboard click with the clkoff subroutine.

Turning on the keyboard click with the clkon subroutine.

Turning on the keyboard display lights with the lampon subroutine.

Ringing the keyboard bell with the ringbell subroutine.

GL Introduction and Controlling the Keyboard in Graphics Programming Concepts.

1-338 Graphics Subroutines Reference

setcursor

setcursor Subroutine

Purpose
Sets the cursor characteristics.

Library
Graphics Library (libgl.a)

C Syntax
void setcursor
(lnt16 index, Colorindex color, Colorindex writemask)

FORTRAN Syntax
SUBROUTINE SETCUR(index, color, writemask)
INTEGER*2 index, color, writemask

Description
The setcursor subroutine selects a cursor from among those defined with the defcursor
subroutine. To set the color for the cursor, use the mapcolor and drawmode subroutines.

Note: This subroutine cannot be used to add to a display list.

Parameters
index Specifies an index that was previously associated with a bitmap by the

defcursor subroutine.

color

writemask

Retained for compatibility, but disregarded.

Retained for compatibility, but disregarded.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the origin of a cursor with the curorigin subroutine.

Controlling cursor visibility by window with the curson or cursoff subroutine.

Defining the type and size of a cursor with the curstype subroutine.

Defining a cursor with the defcursor subroutine.

Setting the drawing mode to CURSORDRAW with the drawmode subroutine.

Returning the cursor characteristics with the getcursor subroutine.

Changing a color map entry with the mapcolor subroutine.

Putting the system in picking mode with the pick subroutine.

Creating a Cursor in GL and Creating and Managing Windows in GL in Graphics
Programming Concepts.

GL Subroutines 1-339

setdblights Subroutine

Purpose
Sets the lights on the dial and switch box.

Library
Graphics Library (libgl.a)

C Syntax
void setdblights(lnt32 mask)

FORTRAN Syntax
SUBROUTINE SETDBL(mask)
INTEGER*4 mask

Description

setdblights

The setdblights subroutine turns on a combination of the lights on the dial and switch box.
Each bit in the mask corresponds to a light. For example, to turn on lights 4, 7, and 22 (and
leave all the others off), set the mask to (1«4) I (1<<7) I (1<<22) = Ox400090.

Note: This subroutine cannot be used to add to a display list.

Parameter
mask Specifies 32 packed bits indicating which lights to turn on.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
GL Introduction and Controlling the Keyboard in Graphics Programming Concepts.

1-340 Graphics Subroutines Reference

setl i nestyle

setlinestyle Subroutine

Purpose
Selects a linestyle.

Library
Graphics Library (libgl.a)

C Syntax
void setlinestyle(lnt32 index)

FORTRAN Syntax
SUBROUTINE SETLIN(index)
INTEGER*4 index

Description

Parameter

Example

The setlinestyle subroutine selects a linestyle. The linestyle, a line attribute, is used
whenever a line-drawing primitive is invoked. These include lines, curves, rectangles,
polygons, circles, and arcs.

The default linestyle is 0 (zero), which is a solid line. It cannot be redefined.

index Specifies an index into the table of linestyles built by the deflinestyle
subroutine

1. To use a linestyle previously defined by the deflinestyle subroutine, the example C
language program colored.c uses the setlinestyle subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/incl ude/g Ilg I. h Contains constant and variable type definitions for GL.

Related Information
Defining a linestyle with the deflinestyle subroutine.

Returning the current linestyle with the getlstyle subroutine.

Specifying the linewidth with the linewidth subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Setting Attributes, Understanding the Hardware Used by GL, and Using the GL High-Level
Drawing Library in Graphics Programming Concepts.

GL Subroutines 1-341

set map

setmap Subroutine

Purpose
Selects one of 16 small color maps in multimap mode.

Library
Graphics Library (libgl.a)

C Syntax
void setmap(lnt16 mapnum)

FORTRAN Syntax
subroutine setmap{mapnum)
integer*2 mapnum

Description

Parameter

File

The setmap subroutine selects one of the 16 small independent maps to be the current
color map. Whenever the system is in color map mode, the contents of the frame buffer is
interpreted throught a color map to arrive at the color displayed on the screen. When the
system is in multimap mode, there are 16 small independent color maps; this subroutine
chooses which of these is to be active. Note that only the least significant bits in the frame
buffer are used to look up entries in the current color map.

The 16 small color maps are numbered O to 15.

This subroutine is valid only in multimap mode, and is ignored in onemap mode. It will not
function in RGB mode.

Note: This subroutine cannot be used to add to a display list.

mapnum Number of the color map selected, O to 15.

/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the number of the current color map with the getmap subroutine.

Organizing the color map as 16 small maps with the multimap subroutine.

Working in Color Map and RGB Modes in Graphics Programming Concepts.

1-342 Graphics Subroutines Reference

setnurbsproperty

setnurbsproperty Subroutine

Purpose
Sets a property for the display of trimmed NURBS surfaces.

Library
Graphics Library (libgl.a)

C Syntax
void setnurbsproperty(lnt32 property, Float32 value)

FORTRAN Syntax
SUBROUTINE SETNUR(property, value)
INTEGER*4 property
REAL value

Description
The setnurbsproperty subroutine sets a property for the display of a trimmed Non-Uniform
Rational B-Spline (NURBS) surfaces. The display of NURBS surfaces can be controlled in
different ways. The following is a list of the display properties that can be affected.

N_ERRORCHECKING

N_PIXEL_ TOLERANCE

If value is 1.0, some error checking is enabled. If error
checking is disabled, the system runs slightly faster. The
default value is 0.0.

The value is the maximum length, in pixels, of edges of
polygons on the screen used to render trimmed NU RBS
surfaces. The default value is 50.0 pixels.

Parameters
property Specifies the name of the property to be set.

value Specifies the value to which the named property is to be set.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-343

setnurbsproperty

Related Information
Marking the beginning and end of a NURBS surface definition with the bgnsurface and
endsurface subroutines.

Marking the beginning and end of a NURBS surface trimming loop with the bgntrim and
endtrim subroutines.

Returning the current value of a trimmed NURBS surfaces display property with the
getnurbsproperty subroutine.

Controlling the shape of a NURBS trimming curve with the nurbscurve subroutine.

Controlling the shape of a NURBS surface with the nurbssurface subroutine.

Describing a piecewise linear trimming curve for NURBS surfaces with the pwlcurve
subroutine.

GL Introduction and Drawing NURBS Curves and Surfaces in Graphics Programming
Concepts.

1-344 Graphics Subroutines Reference

set pattern

setpattern Subroutine

Purpose
Selects a pattern for filling polygons and rectangles.

Library
Graphics Library (libgl.a)

C Syntax
void setpattern(lnt32 index)

FORTRAN Syntax
SUBROUTINE SETPAT(index)
INTEGER*4 index

Description

Parameter

The setpattern subroutine selects a pattern from a table of patterns previously defined by
the defpattern subroutine. The pattern, an area-fill attribute, is used whenever an area-fill
primitive is invoked. These primitives include filled polygons, rectangles, circles, and arcs.

The default pattern is O (zero), which is solid. If you specify an undefined pattern, the default
pattern is selected.

index Specifies the index into the table of defined patterns.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current color index in color map mode with the color subroutine.

Defining a pattern with the defpattern subroutine.

Returning the index of the current fill pattern with the getpattern subroutine.

Granting write permission to a subset of available bitplanes in color map mode with the
writemask subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Setting Attributes, Understanding the Hardware Used by GL, and Using the GL High-Level
Drawing Library in Graphics Programming Concepts.

GL Subroutines 1-345

set pup

setpup Subroutine

Purpose
Enables or disables a given pop-up menu entry.

Library
Graphics Library (libgl.a)

C Syntax
void setpup (lnt32 pup, Int 32 entry, lnt32 mode)

FORTRAN Syntax
SUBROUTINE SETPUP (pup, entry, mode)
INTEGER*4 pup, entry, mode

Description
The setpup subroutine enables or disables a given pop-up menu entry. Disabled pop-up
menu entries are greyed out and cannot be chosen or selected. When an entry is disabled,
the dopup subroutine does not return the value of the disabled entry. If the setpup
subroutine is used properly, submenus associated with the disabled entry are also not
accessible.

Enabled entries operate as normal.

Note: This subroutine cannot be added to a display list.

Parameters
pup Specifies the pop-up menu containing the entry to be enabled or disabled.

entry Specifies the cardinal number of the entry to be disabled (use 1 for the first
entry, 2 for the second entry, and so on).

mode Sets the mode for the specified menu entry:

PUP _NONE enables a menu entry.

PUP _GREY disables a menu entry.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Adding an item to an existing pop-up menu with the addtopup subroutine.

Defining a pop-up menu with the defpup subroutine.

Displaying a pop-up menu with the dopup subroutine.

Allocating and initializing a structure for a new pop-up menu with the newpup subroutine.

GL Introduction and Creating and Managing Pop-Up Menus in GL in Graphics Programming
Concepts.

1 ~46 Graphics Subroutines Reference

setvaluator

setvaluator Subroutine

Purpose

Library

C Syntax

Assigns an initial value to a valuator.

Graphics Library (libgl.a)

void setvaluator
(Device val,
lnt16 init, lnt16 min, lnt16 max)

FORTRAN Syntax
SUBROUTINE SETVAL(val, init, min, max)
INTEGER*2 val, init, min, max

Description
The setvaluator subroutine sets the initial value and the minimum and maximum values the
device can assume.

Notes:

1. Some devices, such as tablets, report values fixed to a grid. In such a case, the
device defines an initial position and is ignored.

2. This subroutine cannot be used to add to a display list.

Parameters
val Specifies the device number for the valuator being set.

init Specifies the initial value to be assigned to the valuator.

min Specifies the minimum value that the device can assume.

max Specifies the maximum value that the device can assume.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/g Ilg I. h Contains constant and variable type definitions for GL.

Related Information
Returning the current state of a valuator with the getvaluator subroutine.

GL Introduction, Controlling the Keyboard in GL, and Controlling Queues and Devices in GL
in Graphics Programming Concepts.

GL Subroutines 1-347

shademodel

shademodel Subroutine

Purpose
Selects the shading style used to draw filled polygons.

Library
Graphics Library (libgl.a)

C Syntax
void shademodel(lnt32 mode)

FORTRAN Syntax
SUBROUTINE SHADEM(mode)
INTEGER*4 mode

Description

Parameter

Example

The shademodel subroutine determines the shading style that the system uses to render
lines and draw filled polygons. When the system uses Gouraud shading, the colors along a
line segment or in the interior of a polygon are a linear interpolation of the colors at the
vertices.

mode Specifies one of two possible flags:

FLAT Instructs the system to draw filled polygons in a constant color.

GOURAUD Instructs the system to draw filled polygons with Gouraud
shading. (This is the default shading model.)

1. To render the cube faster, the example C language program backface.c calls the
shademodel subroutine with the value of the mode parameter set to FLAT. This shades
each side of the cube in a constant color.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the shading model used to draw polygons with the getsm subroutine.

Drawing NURBS Curves and Surfaces, Drawing Wire Frame Curves and Surface Patches,
Drawing with Begin-End Style Subroutines, Drawing with Move-Draw Style Subroutines,
Setting Attributes, Understanding the Hardware Used by GL, and Using the GL High-Level
Drawing Library in Graphics Programming Concepts.

1-348 Graphics Subroutines Reference

singlebuffer

singlebuffer Subroutine

Purpose
Invokes single buffer mode.

Library
Graphics Library (libgl.a)

C Syntax
void singlebuffer()

FORTRAN Syntax
SUBROUTINE SINGLE

Description
The singlebuffer subroutine invokes single buffer mode, in which the system
simultaneously updates and displays the image data in the active bitplanes. Consequently
incomplete or changing pictures can appear on the screen. The actual repartitioning of the
frame buffer into single buffer mode does not occur until the gconfig subroutine is called.

Smooth animation, in which all drawing is hidden until it is complete, can be achieved in
double buffer mode.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the display mode to double buffer mode with the doublebuffer subroutine.

Returning the current display mode with the getdisplaymode subroutine.

Reconfiguring the system with the gconfig subroutine.

Waiting for a vertical retrace with the gsync subroutine.

Configuring the Frame Buffer, Creating Animated Screens, and Understanding the Hardware
Used by GL in Graphics Programming Concepts.

GL Subroutines 1-349

splf

splf Subroutine

Purpose

Library

C Syntax

Draws a shaded filled polygon.

Graphics Library (libgl.a)

void splf
(lnt32 n,
Coord parray[][3],
Colorindex iarray[])

void splfi
(lnt32 n,
lcoord parray[][3],
Colorindex iarray[])

void splfs
(lnt32 n,
Scoord parray[][3],
Colorindex iarray[])

void splf2
(lnt32 n,
Coord parray[][2],
Colorindex iarray[])

void splf2i
(lnt32 n,
lcoord parray[)[2],
Colorindex iarray[])

void splf2s
(lnt32 n,
Scoord parray[][2],
Colorindex iarray[])

FORTRAN Syntax
SUBROUTINE SPLF(n, parray, iarray)
INTEGER*4 n
REAL parray(3,n)
INTEGER*2 iarray(n)

SUBROUTINE SPLFl(n, parray, iarray)
INTEGER*4 n .
INTEGER*4 parray(3,n)
INTEGER*2 iarray(n)

SUBROUTINE SPLFS(n, parray, iarray)
INTEGER*4n
INTEGER*2 parray(3,n)
INTEGER*2 iarray(n)

SUBROUTINE SPLF2(n, parray, iarray)
INTEGER*4 n
REAL parray(2,n)
INTEGER*2 iarray(n)

1-350 Graphics Subroutines Reference

SUBROUTINE SPLF21(n, parray9 iarray)
INTEGER*4 n
INTEGER*4 parray(2,n)
INTEGER*2 iarray(n)

SUBROUTINE SPLF2S(n, parray, iarray)
INTEGER*4 n
INTEGER*2 parray(2,n)
INTEGER*2 iarray(n)

splf

All of the preceding routines are functionally the same. They differ only in the type
declarations of their parameters and in whether they assume a two- or three-dimensional
screen.

Description
The splf subroutine draws Gouraud-shaded polygons using the current pattern and
writemask. Polygons are represented as arrays of points. The first and last points
automatically connect to close a polygon. After the polygon is drawn, the current graphics
position is set to the first point in the array.

The six different forms for the splf subroutine are as follows:

lnt16

lnt32

float

2-D 3-D

splf2s

splf2i

splf2

splfs

splfi

splf

The syntax for each of the subroutine forms is the same except for the parameter type. They
differ only in that splf expects real coordinates, splfi expects integer coordinates, and spits
expects short integer coordinates. In addition, the splf2* routines assume a 2-D point
instead of a 3-D point.

Notes:

1. This subroutine must be used in color map mode.

2. This subroutine cannot be used to add to a display list.

Parameters
n Specifies the number of vertices in the polygon. There can be no more than

256 vertices in a single polygon.

parray

iarray

Specifies an array containing the vertices of a polygon.

Specifies an array containing the color map indexes that determine the
intensities of the vertices of the polygon.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-351

splf

Related Information
Setting color map mode as the current mode with the cmode subroutine.

Allowing the system to draw concave polygons with the concave subroutine.

Specifying the next point in a polygon with the pdr subroutine.

Specifying the starting point for a polygon with the pmv subroutine.

Drawing a polygon with the poly subroutine.

Drawing a filled rectangle with the rectf subroutine.

Drawing a relative polygon with the rpdr subroutine.

Moving the current graphics position to a starting point for a filled polygon relative to the
current point with the rpmv subroutine.

GL Introduction, Setting Attributes, and Using the GL High-Level Drawing Library in
Graphics Programming Concepts.

1-352 Graphics Subroutines Reference

step unit

stepunit Subroutine

Purpose
Specifies that a window change size in discrete steps.

Library
Graphics Library (libgl.a)

C Syntax
void stepunit(lnt32 xunit, lnt32 yunm

FORTRAN Syntax
SUBROUTINE STEPUN(xunit, yunif)
INTEGER*4 xunit, yunit

Description
The stepunit subroutine specifies the smallest steps (in pixels) by which a window can be
resized. This subroutine is called at the beginning of a subroutine, but takes effect only when
the winopen subroutine is called.

The stepunit subroutine can also be called in conjunction with the winconstraints
subroutine to modify the enforced step size after the window is created. The default step unit
is one pixel by one pixel. In other words, by default, the window can be resized arbitrarily.

With the stepunit subroutine, the programmer can prevent the user from resizing a window
except in discrete jumps. If the step unit is large, this subroutine essentially limits the sizes
and shapes of a window.

Note: This subroutine cannot be used to add to a display list.

Parameters
xunit Specifies the amount of change per unit in the x direction, measured in

pixels.

yunit Specifies the amount of change per unit in the ydirection, measured in
pixels.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-353

strwidth

strwidth Subroutine

Purpose
Returns the width of the specified text string.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 strwidth(Char8 * string)

FORTRAN Syntax
INTEGER*4 FUNCTION STRWID(string, length)
CHARACTER*(*) string
INTEGER*4 length

Description
The strwidth subroutine returns the width of a text string in pixels, using the
character-spacing parameters of the current raster font. This subroutine is useful when you
do a simple mapping from screen space to modeling space.

Undefined characters have zero width.

Note: This subroutine cannot be used to add to a display list.

Parameters
string Specifies the name of the string.

Example

length Specifies the number of characters in the string.

1. To get the number of pixels needed to draw a prompt string, the example C language
program prompt.c uses the strwidth subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

This subroutine is not available for Japanese Language Support.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Mapping a point on the screen into a line in 3-D modeling coordinates with the mapw
subroutine.

Mapping a point on the screen into a line in 2-D modeling coordinates with the mapw2
subroutine.

GL Introduction, Creating Text Characters in GL, Picking and Selecting Overview for GL,
Working with Coordinate Systems in GL, and Querying the System in GL in Graphics
Programming Concepts.

1-354 Graphics Subroutines Reference

subpixel

subpixel Subroutine

Purpose
Controls the placement of point, line, and polygon vertices

Library
Graphics Library (libgl.a)

C Syntax
void subpixel(lnt32 boo/)

FORTRAN Syntax
SUBROUTINE SUBPIX(boo~
LOGICAL boo/

Description

Parameter

The subpixel subroutine controls the placement of point, line, and poygon vertices in screen
coordinates. The default value of the boo/ parameter is FALSE, causing vertices to be
snapped to the center of the nearest pixel after they have been transformed to screen
coordinates.

Vertex snapping introduces artifacts into the scan conversion of lines and polygons. It is
especially noticeable when points or lines are drawn smooth (see the pntsmooth and
linesmooth subroutines). The subpixel subroutine is typically set to TRUE while smooth
points or smooth lines are being drawn.

In addition to its effect on vertex position, the subpixel subroutine also modifies the scan
conversion of lines. Specifically, non-subpixel-positioned lines are drawn closed, meaning
that connected line segments draw the pixel at their shared vertex, while subpixel positioned
lines are drawn half open, meaning that connected lines segments share no pixels. (Smooth
lines are always drawn half open, regardless of the state of the subpixel subroutine.)

Subpixel-positioned lines produce better results when you use the logicop or
blendfunction subroutines, but will produce different, possibly undesirable results in 2-D
applications where the endpoints of lines have been carefully placed.

For example, using the standard 2-D projection:

ortho2(1eft-0.5,right+0.5,bottom-0.5,top+0.5);
viewport(left,right,bottom,top);

Subpixel-positioned lines match non-subpixel-positioned lines pixel for pixel, except that they
omit either the right-most or top-most pixel. Thus, the non-subpixel-positioned line drawn
from (0,0) to (0,2) fills pixels (0,0), (0, 1), and (0,2), while the subpixel-positioned line drawn
between the same coordinates fills only pixels (0,0) and (0, 1).

boo/ Specifies a value for the screen coordinates. The settings for the boo/
paramter are:

FALSE = forces screen vertices to the centers of pixels (default).

TRUE= positions screen vertices exactly.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

GL Subroutines 1-355

subpixel

File

On the High-Performance 3-D Graphics Processor polygons are always subpixel positioned,
regardless of the value of the subpixel subroutine. Subpixel-positioned nonsmooth lines are
not implemented.

/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying antialiasing of lines with the linesmooth subroutine.

Specifying antialiasing of points with the pntsmooth subroutine.

Configuring the Frame Buffer, Smoothing Jagged Lines with Antialiasing, and Understanding
the Hardware Used by GL in Graphics Programming Concepts.

1-356 Graphics Subroutines Reference

swapbuffers

swapbuffers Subroutine

Purpose
Exchanges the front and back buffers in double buffer mode.

Library
Graphics Library (libgl.a)

C Syntax
void swapbuffers()

FORTRAN Syntax
SUBROUTINE SWAPBU

Description

Example

The swapbuffers subroutine exchanges the front and back buffers in double buffer mode.
Once an image is fully drawn in the back buffer, the swapbuffers subroutine displays that
image.

The swapping of buffers occurs only during a vertical retrace. A minimum of the number of
vertical retraces specified by the swapinterval subroutine must have elapsed since the last
call to swapbuffers before the current request is honored. After this call is made, all drawing
to the front and back buffers is disabled until the swap occurs.

This subroutine is ignored in single buffer mode.

1. To display a cube after drawing it in the back buffer, the example C language program
backface.c uses the swapbuffers subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Enabling drawing in the back buffer with the backbuffer subroutine.

Setting the display mode to double buffer mode with the doublebuffer subroutine.

Enabling drawing in the front buffer with the frontbuffer subroutine.

Defining a minimum time between buffer swaps with the swapinterval subroutine.

Configuring the Frame Buffer, Creating Animated Screens, and Understanding the Hardware
Used by GL in Graphics Programming Concepts.

GL Subroutines 1-357

swapinterval

swapinterval Subroutine

Purpose
Defines a minimum time between buffer swaps.

Library
Graphics Library (libgl.a)

C Syntax
void swapinterval(lnt16 interval)

FORTRAN Syntax
SUBROUTINE SWAPINT(interva~
INTEGER*2 interval

Description

Parameter

The swapinterval subroutine defines a minimum time between buffer swaps. The time is
measured in units of vertical retraces, with the default interval being 1. For example, for a
swap interval of 5, the system refreshes the screen at least five times between successive
buffer swaps.

The swapinterval subroutine changes frames at a steady rate if a new image can be
created within one swap interval. This subroutine is valid only in double buffer mode and is
ignored in single buffer mode.

Note: This subroutine cannot be used to add to a display list.

interval Specifies the number of retraces to wait before swapping the front and back
buffers.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the display mode to double buffer mode with the doublebuffer subroutine.

Exchanging the front and back buffers with the swapbuffer subroutine.

Configuring the Frame Buffer, Creating Animated Screens, and Understanding the Hardware
Used by GL in Graphics Programming Concepts.

1-358 Graphics Subroutines Reference

swaptmesh

swaptmesh Subroutine

Purpose
Toggles the triangle mesh register pointer.

Library
Graphics Library (libgl.a)

C Syntax
void swaptmesh()

FORTRAN Syntax
SUBROUTINE SWAPTM

Description
The swaptmesh subroutine toggles the triangle mesh register pointer.

The triangle mesh hardware stores two vertices. After each new vertex is specified (and a
triangle comprising the new vertex and the two stored vertices is drawn), one of the stored
vertices is replaced by the new vertex. The value of a two-value pointer determines which
vertex is replaced. This pointer is toggled after each vertex, replacing the alternate stored
vertices. The swaptmesh subroutine toggles the pointer without specification of a new
vertex (and no triangle is drawn).

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing triangle mesh vertices with the bgntmesh subroutine.

Ending a series of triangle mesh vertices with the endtmesh subroutine.

Transferring a vertex to the graphics pipe with the v subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

GL Subroutines 1-359

swinopen

swinopen Subroutine

Purpose
Creates a restricted subwindow.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 swinopen(lnt32 *parentid)

FORTRAN Syntax
INTEGER*4 FUNCTION SWINOP(parentid)
INTEGER*4 parentid

Description
The swinopen subroutine creates a subwindow inside a parent window. The subwindow is
mapped (created and displayed) immediately upon receipt of this call. The subwindow then
becomes the current window.

Subwindows have no border and therefore cannot be moved by the applications user. Other
than this, subwindows behave very much like windows created with the winopen
subroutine.

When a subwindow is created, a completely independent graphics context is also created for
it. That is, subwindows have their own current color linestyle, pattern, matrix stack, viewport
stack, attribute stack, name stack, and so on. These attributes are not shared with the
parent. The attributes are initialized to their default values (for example, empty stack). See
the greset subroutine for the list of default values.

The position of a subwindow is measured relative to the origin of the parent window.
Subwindows move with the parent window. If a parent window is moved, all of its
subwindows move with it.

Subwindows are clipped to the boundaries of the parent window. That is, by drawing inside a
subwindow, one can never draw outside of the boundaries of the parent window. Otherwise,
subwindows can be positioned arbitrarily inside a parent window, even if such positioning
means that the subwindow is completely clipped. If a subwindow is exposed or otherwise
needs redrawing, both the parent and the subwindow receive redraw events.

Because subwindows cannot be moved or resized by the user, none of the window
constraint subroutines have any meaning and therefore do not affect the state of a
subwindow. Window constraint subroutines include the minsize, maxsize, and stepunit
subroutines. Because subwindows have no border, they cannot be given a title. Subwindows
also cannot be iconified.

Subwindows can be pushed and popped. Subwindows can be positioned or moved with
either the prefposition or prefsize subroutine followed by a call to the winconstraints
subroutine, or by using the winposition or winmove subroutine.

Subwindows can have sub-subwindows. The origin of a sub-subwindow is measured relative
to the origin of the subwindow (its parent).

Note: This subroutine cannot be used to add to a display list.

1-360 Graphics Subroutines Reference

swinopen

Parameter
parentid Specifies the identifier, or handle, of the parent window.

Return Value
The identifier, or handle, for the subwindow.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Creating a new window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-361

text port

textport Subroutine

Purpose

Library

C Syntax

Allocates an area of the screen for the textport.

Graphics Library (libgl.a)

void textport
(Screencoord left, Screencoord right,
Screencoord bottom, Screencoord top)

FORTRAN Syntax
SUBROUTINE TEXTPO(left, right, bottom, top)
INTEGER*2 left, right, bottom, top

Description
The textport subroutine allocates an area on the screen for the textport window.

Note: This subroutine cannot be used to add to a display list.

Parameters

Example

left

right

bottom

top

Specifies the x screen coordinate for the left side of the textport.

Specifies the x screen coordinate for the right side of the textport.

Specifies the y screen coordinate for the bottom of the textport.

Specifies the y screen coordinate for the top of the textport.

1. To define a textport, the example C language program tpbig.c uses the textport
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Turning off the textport with the tpoff subroutine.

Turning on the textport with the tpon subroutine.

GL Introduction and Working with the Textport in GL in Graphics Programming Concepts.

1-362 Graphics Subroutines Reference

tie

tie Subroutine

Purpose
Ties two valuators to a button.

Library
Graphics Library (libgl.a)

C Syntax
void tie(Device button, Device val1, Device va/2)

FORTRAN Syntax
SUBROUTINE TIE(button, va/1, va/2)
INTEGER*4 button, va/1, va/2

Description
The tie subroutine requires a button and two valuators, specified by the va/1 and va/2
parameters. When a queued button changes state, three entries are made in the queue: one
records the current state of the button, and two record the current positions of each valuator.

Tie one valuator to a button by making the va/2 parameter = 0. Untie a button by making
both the va/1 and va/2 parameters = 0. The button parameter precedes both the va/1 and
va/2 parameters in the event queue. The va/1 parameter appears before the va/2 parameter.

Note: This subroutine cannot be used to add to a display list.

Parameters
button Specifies the current state of a button.

Example

va/1

va/2

Specifies the current position of the first valuator.

Specifies the current position of the second valuator.

1. To enter the current mouse coordinates into the event queue whenever the left or middle
mouse buttons are pressed, the example C language program vlsi.c uses the tie
subroutine.

Implementation Specifics

Files

This subroutine is part of GL in the AIXwindows environment.

/usr/include/gl/gl.h

/usr/include/gl/device.h

Contains constant and variable type definitions for GL.

Contains constant and variable type definitions for devices.

GL Subroutines 1-363

tie

Related Information
Returning the current state of a button with the getbutton subroutine.

GL Introduction, Controlling the Keyboard in GL, and Controlling Queues and Devices in GL
in Graphics Programming Concepts.

1-364 Graphics Subroutines Reference

tpoff Subroutine

Purpose
Turns off the textport.

Library
Graphics Library (libgl.a)

C Syntax
void tpoff()

FORTRAN Syntax
SUBROUTINE TPOFF

Description

tpoff

The tpoff subroutine pushes the textport, the window associated with the shell that invoked
the graphics program, behind all other windows.

When the textport is off, characte·rs are not written to it, nor does it appear on the screen.
The textport automatically turns on when a program completes execution.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Allocating an area of the screen for the textport with the textport subroutine.

Turning on the textport with the tpon subroutine.

GL Introduction and Working with the Textport in GL in Graphics Programming Concepts.

GL Subroutines 1-365

tpon

tpon Subroutine

Purpose
Turns on the textport.

Library
Graphics Library (libgl.a)

C Syntax
void tpon()

FORTRAN Syntax
SUBROUTINE TPON

Description

Example

The tpon subroutine brings the textport, the window associated with the shell that invoked
the graphics program, to the front of any windows that conceal it.

Note: This subroutine cannot be used to add to a display list.

1. To enable a textport for drawing character strings into, the example C language program
tpbig.c uses the tpon subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Allocating an area of the screen for the textport with the textport subroutine.

Turning off the textport with the tpoff subroutine.

GL Introduction and Working with the Textport in GL in Graphics Programming Concepts.

1-366 Graphics Subroutines Reference

translate

translate Subroutine

Purpose
Translates graphical primitives.

Library
Graphics Library (libgl.a)

C Syntax
void translate(Coord x, Coord y, Coord z)

FORTRAN Syntax
SUBROUTINE TRANSL{x, y, z)
REAL x,y, z

Description
The translate subroutine moves the modeling space origin to a new point relative to the
current origin. The point (x, y, z) specified by the parameters becomes the new modeling
space origin. Because all drawing primitives draw relative to the origin of the current
modeling coordinate system, all primitives called after this subroutine will appear to have
been translated.

The translate subroutine is a modeling routine that changes the current transformation
matrix. All primitives drawn after this subroutine executes are translated. Use the
pushmatrix and popmatrix subroutines to preserve an untranslated modeling space.

Parameters

Example

x

y

z

Specifies the x coordinate of a point in modeling coordinates.

Specifies the y coordinate of a point in modeling coordinates.

Specifies the z coordinate of a point in modeling coordinates.

1. To model the sides of a cube using a square, the example C language program
backface.c uses the translate modeling subroutine and alters the current transformation
matrix.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-367

translate

Related Information
Popping the transformation matrix stack with the popmatrix subroutine.

Pushing down the transformation matrix stack with the pushmatrix subroutine.

Rotating a graphical primitive (floating-point version) with the rot subroutine.

Rotating a graphical primitive (fixed-point version) with the rotate subroutine.

Scaling and mirroring objects with the scale subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-368 Graphics Subroutines Reference

underlay

underlay Subroutine

Purpose
Sets the number of user-defined bitplanes used for underlay drawing.

Library
Graphics Library (libgl.a)

C Syntax
void underlay(lnt32 planes)

FORTRAN Syntax
SUBROUTINE UNDERL(planes)
INTEGER*4 planes

Description

Parameter

The underlay subroutine sets the number of user-defined bitplanes used for underlay
colors, 0, 2, or 4, depending on the adapter. The underlay color appears whenever all the
bits in the color bitplanes are O (zero). The system has either two or four bitplanes that can
be allocated as either underlay or overlay. Call the underlay subroutine to set them as
underlay bitplanes.

The High-Performance 8-bit 3-D Color Graphics Processor can be configured with either 0
or 2 underlay planes. The 8-bit adapter has a total of 2 auxiliary planes, which can be
configured into 2/0 or 012 overlay/underlay. For example, setting the number of underlay
planes to 2 forces the number of overlay planes to 0.

The High-Performance 24-bit 3-D Color Graphics Processor can be configured with either 0,
2, or 4 underlay planes. The 24-bit adapter has a total of 4 auxiliary planes, which can be
configured into 4/0, 2/2, or 014 overlay/underlay. For example, setting the number of
underlay planes to 4 forces the number of overlay planes to 0.

Call the gconfig subroutine after the underlay subroutine to activate the underlay setting.

When the drawing mode is UNDERDRAW, all drawing occurs in the underlay bitplanes. In
UNDERDRAW mode, FLAT is the only available shading model.

Note: This subroutine cannot be used to add to a display list.

planes Specifies the number of bitplanes to use for underlay drawing.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

GL Subroutines 1-369

underlay

Related Information
Specifying the target frame buffer for drawing subroutines with the drawmode subroutine.

Reconfiguring the system with the gconfig subroutine.

Setting the number of bitplanes used for overlay colors with the overlay subroutine.

GL Introduction, Configuring the Frame Buffer, and Controlling Frame Buffer Update in
Graphics Programming Concepts.

1-370 Graphics Subroutines Reference

unqdevice

unqdevice Subroutine

Purpose
Disables an input device for event queuing

Library
Graphics Library (libgl.a)

C Syntax
void unqdevice(Device dev)

FORTRAN Syntax
SUBROUTINE UNQDEV(dev)
INTEGER*4 dev

Description

Parameter

Example

The unqdevice subroutine removes the specified device from the list of devices whose
changes are recorded in the event queue. If a device has recorded events that have not
been read, they remain in the queue.

Use the qreset subroutine to flush the event queue.

Note: This subroutine cannot be used to add to a display list.

dev Specifies an identifier for the device to be disabled.

1. To disable input from the keyboard, the example C language program prompt.c uses the
unqdevice subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

Files
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

/usr/include/gl/device.h Contains constant and variable type definitions for devices.

Related Information
Enabling an input device for event queuing with the qdevice subroutine.

Emptying the event queue with the qreset subroutine.

GL Introduction and Controlling Queues and Devices in GL in Graphics Programming
Concepts.

- GL Subroutines 1-371

v

v Subroutine

Purpose
Transfers a 2-D, 3-D, or 4-D vertex to the graphics pipe.

Library

C Syntax

Graphics Library (libgl.a)

void V2$(1nt16 vector[2])

void v2i(lnt32 vector[2])

void v3s(lnt16 vector[3])

void v3i(lnt32 vectol{3])

void v4s(lnt16 vector[4])

void v4i(lnt32 vectol{4])

FORTRAN Syntax
SUBROUTINE V2S(vectol)
INTEGER*2 vector(2)

SUBROUTINE V21(vectol)
INTEGER*4 vector(2)

SUBROUTINE V2F(vectol)
REAL vector(2)

SUBROUTINE V2D(vectol)
REAL *8 vector(2)

SUBROUTINE V3S(vectol)
INTEGER*2 vector(3)

SUBROUTINE V31(vectol)
INTEGER*4 vector(3)

SUBROUTINE V3F(vectol)
REAL vector(3)

SUBROUTINE V3D(vectol)
REAL *8 vector(3)

SUBROUTINE V4S(vectol)
INTEGER*2 vector(4)

SUBROUTINE V41{vectol)
INTEGER*4 vector(4)

SUBROUTINE V4F{vectol)
REAL vector(4)

SUBROUTINE V4D{vectol)
DOUBLE vector(4)

1-372 Graphics Subroutines Reference

void v2f{Float32 vector[2])

void v2d{Float64 vecto/{2])

void v3f{Float32 vector[3])

void v3d{Float64 vector[3])

void v4f{Float32 vector[4])

void v4d{Float64 vector[4])

v

Description

Parameter

Example

The v subroutine transfers a single 2-D (v2}, 3-D (v3), or 4-D (v4) vertex to the graphics
pipeline. The coordinates are passed to v as an array. Separate subroutines are provided for
16-bit integers (s}, 32-bit integers limited to a signed 24-bit range (i), 32-bit IEEE single
precision floats (f}, and 64-bit IEEE double precision floats (d). The z coordinate defaults to
0.0 if not specified. The w coordinate defaults to 1.0.

The Graphics Library subroutines bgnpoint, endpoint, bgnline, endline, bgnclosedline,
endclosedline, bgnpolygon, endpolygon, bgntmesh, and endtmesh determine how the
vertex is interpreted. For example, vertices specified between the bgnpoint and endpoint
subroutines draw single pixels (points) on the screen. Likewise, those specified between the
bgnline and endline subroutines draw a sequence of lines (with the line stipple continued
through internal vertices). Closed lines return to the first vertex specified, producing the
equivalent of an outlined polygon.

Vertices specified when none of the bgnpoint, bgnline, bgnclosedline, bgnpolygon, and
bgntmesh subroutines are active set the current graphics position. They do not have any
effect on the frame buffer contents. The endpoint, endline, endclosedline, endpolygon,
and endtmesh subroutines have varied effects on the current graphics position.

Note: This subroutine cannot be used to add to a display list.

vector Specifies 2-, 3-, or 4-element array, depending on whether you call the v2,
v3, or v4 version of the routine. The elements of the array are the
coordinates of the vertex (point) to transfer to the graphics pipe. Put the x
coordinate in element 0, they coordinate in element 1, the z coordinate in
element 2 (for v3 and v4), and the w coordinate in element 3 (for v4).

The nine different forms for the v subroutine are as follows:

lnt16

lnt32

Float32

Float64

2-D

v2s

v2i

v2f

v2d

3-D

v3s

v3i

v3f

v3d

4-D

v4s

v4i

v4f

v4d

The syntax for each of the subroutine forms is the same except for the first argument. They
differ only in that vi expects long integer coordinates, vs expects short integer coordinates,
vf expects single-precision floating point coordinates, and vd expects double-precision
floating point coordinates. In addition, the v2* routines assume a 2-D point, the v3* routines
assume a 3-D point, and the v4* routines assume a 4-D point. (in homogeneous
coordinates).

1. To specify the vertices of a polygon, the example C language program cylinder2.c calls
the v3f subroutine between the bgnpolygon subroutine and the endpolygon
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

GL Subroutines 1-373

v

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Drawing closed line vertices with the bgnclosedline subroutine.

Drawing vertex-based lines with the bgnline subroutine.

Drawing vertex-based points with the bgnpoint subroutine.

Drawing vertex-based polygons with the bgnpolygon subroutine.

Drawing triangle mesh vertices with the bgntmesh subroutine.

Ending a series of closed line vertices with the endclosedline subroutine.

Ending a series of vertex-based lines with the endline subroutine.

Ending a series of vertex-based points with the endpoint subroutine.

Ending a vertex-based polygon with the endpolygon subroutine.

Ending a series of triangle mesh vertices with the endtmesh subroutine.

Drawing with Begin-End Style Subroutines and Understanding the Hardware Used by GL in
Graphics Programming Concepts.

1-37 4 Graphics Subroutines Reference

viewport

viewport Subroutine

Purpose

Library

C Syntax

Sets the area of the window used for all drawing.

Graphics Library (libgl.a)

void viewport
(Screencoord left, Screencoord right,
Screencoord bottom, Screencoord top)

FORTRAN Syntax
SUBROUTINE VIEWPO(left, right, bottom, top)
INTEGER*2 left, right, bottom, top

Description
The viewport subroutine specifies, in pixels, the area of the window in which all drawing
occurs. The viewport locations are specified relative to the lower left corner of the window.
Specifying the viewport is the last step in mapping modeling coordinates to screen
coordinates.

The portion of world space that the window, ortho, or perspective subroutines describe is
mapped into the viewport. The left, right, bottom, top coordinates define a rectangular area
on the screen.

The viewport is set to the size of the window when the window is first opened (thus, a
getviewport would return the size of the window). However, if the window is resized, the
viewport dimensions are not automatically updated (use the reshapeviewport subroutine).
The viewport may be muGh larger or much smaller than the window size. All drawing occurs
inside the current viewport, but is clipped to the window.

If the left parameter is greater than the right parameter, the displayed image will be left-right
reversed. If the bottom parameter is greater than the top parameter, the displayed image will
be up-down reversed.

The viewport is the mapping from normalized device coordinates (NOC) to device
coordinates (DC). The same function is provided for the z-direction with the lsetdepth
subroutine.

The viewport subroutine also resets the screenmask. The screenmask is set to be exactly
the same size as the viewport.

Parameters
left

right

bottom

top

Specifies the x location (in pixels) of left side of viewport.

Specifies the x location (in pixels) of right side of viewport.

Specifies the y location (in pixels) of bottom of viewport.

Specifies they location (in pixels) of top of viewport.

GL Subroutines 1 _.375

viewport

Example
1. To define a viewport for displaying an image, the example C language program paint.c

uses the viewport subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining the viewport depth with the lsetdepth subroutine.

Popping the viewport off the viewport stack with the popviewport subroutine.

Pushing the viewport onto the viewport stack with the pushviewport subroutine.

Changing the viewport shape with the reshapeviewport subroutine.

Defining a rectangular 2-D clipping mask with the scrmask subroutine.

GL Introduction, Working with Coordinate Systems in GL, and Using Viewports and
Screenmasks in GL in Graphics Programming Concepts.

1-376 Graphics Subroutines Reference

winclose Subroutine

Purpose
Closes the identified window.

Library
Graphics Library (libgl.a)

C Syntax
void winclose(lnt32 windowid)

FORTRAN Syntax
SUBROUTINE WINCLO(windowid)
INTEGER*4 windowid;

Description

winclose

The winclose subroutine closes the window associated with the windowid parameter. The
identifier for a window is the function return value from the call to the winopen subroutine
that created the window.

Note: This subroutine cannot be used to add to a display list.

Parameter
windowid Specifies which window to close.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-377

winconstraints

winconstraints Subroutine

Purpose
Binds window constraints to the current window.

Library
Graphics Library (libgl.a)

C Syntax
void winconstraints()

FORTRAN Syntax
SUBROUTINE WINCON

Description

Example

The winconstraints subroutine binds the specified constraints to the current window.
Because this subroutine assumes the existence of a current window, the winopen
subroutine must be called before the winconstraints subroutine.

The values of the window constraints are set by using the following subroutines:

• fudge
• iconsize
• keepaspect
• maxsize
• minsize
• noborder
• noport
• prefposition
• prefsize
• stepunit.

After binding these constraints to a window, the winconstraints subroutine resets the
specified window constraints to their default values. Thus, to reset and bind the current
constraints, call the winconstraints subroutine twice in a row.

The changes made to window attributes (whether actual constraints imposed by the
maxsize and minsize subroutines, or limits only suggested by the prefsize and
prefposition subroutines) are bound to the window and take effect immediately.

Note: This subroutine cannot be used to .add to a display list.

1. To set the current window's aspect ratio, the example C language program colored.c
calls the winconstraints subroutine after calling the keepaspect subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1..;.a79 Graphics Subroutines Reference

winconstraints

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Specifying the size of a window icon with the iconsize subroutine.

Specifying the aspect ratio of a window with the keepaspect subroutine.

Specifying the maximum size of a window with the maxsize subroutine.

Specifying the minimum size of a window with the minsize subroutine.

Removing the border from a window with the noborder subroutine.

Specifying that a program does not require a window with the noport subroutine.

Constraining the size of a window with the prefsize subroutine.

Specifying a window size change in discrete steps with the stepunit subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-379

windepth

windepth Subroutine

Purpose
Indicates the stacking order of windows on the screen.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 windepth(lnt32 windowid)

FORTRAN Syntax
SUBROUTINE WINDEP(windowid)
INTEGER*4 windowid

Description

Parameter

The windepth subroutine returns a number that can be compared against the same return
value for other windows to indicate the stacking order of a program's windows on the screen.

windowid Specifies which window to test.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Raising the current window on top of all other windows with the winpop subroutine.

Lowering the current window beneath all other windows with the winpush subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-380 Graphics Subroutines Reference

window

window Subroutine

Purpose

Library

C Syntax

Defines a perspective projection transformation in terms of x and y coordinates.

Graphics Library (libgl.a)

void window
(Coord left, Coord right,
Coord bottom, Coord top,
Coord near, Coord far)

FORTRAN Syntax
SUBROUTINE WINDOW(left, right, bottom, top, near, far)
REAL left, right, bottom, top, near, far

Description
The window subroutine set the current projection transformation to be a perspective
transformation. With a perspective transformation, figures do not get smaller as they recede
in relation to the viewer.

The window subroutine defines a frustum in eye coordinates. All figures outside this frustum
are clipped and not drawn on the screen. All objects contained within this frustum are drawn
on the screen in perspective.

The front and back of the frustum are the near and far clipping planes, respectively, located
at near and far. The sides of the frustum are the projection of a rectangle in the near clipping
plane. That is, given a rectangle in the near clipping plane, the sides of the frustum are given
by extending from the eye (the origin) through the near clipping plane to the far clipping
plane. The sides of the frustum are the left, right, bottom, and top clipping planes. The size
of the rectangle on the near clipping plane is given by the parameters left, right, bottom, and
top.

The window subroutine is very similar to the perspective subroutine. The only difference
between these two is the manner in which the arguments specify the viewing frustum.

After the window subroutine completes, the eye coordinate system is set up so that x is to
the right, y is up, and z is towards the viewer (out of the screen).

In single matrix mode, the window subroutine loads a matrix onto the matrix stack,
replacing the current top matrix. In viewing matrix mode and projection matrix mode, the
system replaces the current projection matrix.

Note: Do not confuse the window subroutine and its functions with the GL windowing
subroutines, and the Enhanced X-Windows subroutines, which control the placement
and size of rectangular windows on the screen.

GL Subroutines 1-381

window

Parameters
left

right

bottom

top

near

far

Specifies the ·x coordinate of left side of frustum.

Specifies the x coordinate of right side of frustum.

Specifies the ycoordinate of bottom of frustum.

Specifies the ycoordinate of top of frustum.

Specifies the z coordinate of the near clipping plane.

Specifies the z coordinate of the far clipping plane.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Defining a 3-D orthographic transformation with the ortho subroutine.

Defining a perspective projection transformation in terms of a field of view with the
perspective subroutine.

Setting the area of the window used for all drawing with the viewport subroutine.

GL Introduction and Working with Coordinate Systems in Graphics Programming Concepts.

1-382 Graphics Subroutines Reference

winget Subroutine

Purpose
Returns the identifier of the current window.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 winget()

FORTRAN Syntax
INTEGER*4 FUNCTION WINGET

Description
The winget subroutine returns the identifier of the current window.

Note: This subroutine cannot be used to add to a display list.

Return Value
The identifier of the current window.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Setting the current window with the winset subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

winget

GL Subroutines 1-383

win move

winmove Subroutine

Purpose
Moves the current window by its lower left corner.

Library
Graphics Library (libgl.a)

C Syntax
void winmove(lnt32 originx, lnt32 originy)

FORTRAN Syntax
SUBROUTINE WINMOV(originx, originy)
INTEGER*4 originx, originy

Description
The winmove subroutine moves the current window so that its origin, the lower left corner,
is at the screen coordinates specified in pixels by the originx and originy parameters. The
winmove subroutine does not change the size and shape of the window.

If the current window position is constrained, it continues to be constrained after the
winmove subroutine is called, but the new position applies.

If the current window is not constrained, the winmove subroutine does not introduce a
constraint. The applications user can still pick up and move the window.

Note: This subroutine cannot be used to add to a display list.

Parameters
originx Specifies the x coordinate of the lower left corner of the new location for the

current window.

originy Specifies the y coordinate of the lower left corner of the new location for the
current window.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Binding window constraints to the current window with the winconstraints subroutine.

Raising the current window on top of all other windows with the winpop subroutine.

Changing the current location and size of a window with the winposition subroutine.

Lowering the current window beneath all other windows with the winpush subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-384 Graphics Subroutines Reference

wino pen

winopen Subroutine

Purpose
Creates a window.

Library
Graphics Library (libgl.a)

C Syntax
lnt32 winopen(Char8 *name)

FORTRAN Syntax
INTEGER*4 FUNCTION WINOPE(name, length)
CHARACTER*(*) name
INTEGER*4 length

Description
The winopen subroutine creates a window as defined by the current values of the window
constraints. This new window becomes the current window. If this is the first time that a
program has called the winopen subroutine, the system also initializes the graphics system.

The returned value for this function is the window identifier (gwid) for the window just
created. Use this value to identify the window to other graphics functions. If no additional
windows are available, this function returns -1 (negative one).

If called before the winopen subroutine, the following subroutines change the default
window constraints:

• fudge
• iconsize
• keepaspect
• maxsize
• minsize
• noborder
• noport
• prefposition
• prefsize
• stepunit

If a window's size and location are left unconstrained, the system allows the user to place
and size the window.

All drawing (lines, polygons, and NURBS) is done in the current window. Lighting,
depth-cueing, and z-buffering all apply to the current window. Every window has an
independent set of stacks: matrix stack, name stack, attribute stack, and viewport stack, and
all stack manipulation routines such as matrix multiplies are directed at the current window.

The only attributes that are shared across windows are those defined with the defcursor,
deflinestyle, defpattern, defrasterfont, lmdef, loadXfont, and makeobj subroutines.

The winopen subroutine examines the environment variable DISPLAY to determine to
. which AIXwindows server to make a connection. The default DISPLAY value is unix: o.
Only local sessions are currently supported. A GL session can only run on an AIXwindows
server that has extensions to support GL. Not all AIXwindows servers support GL.

\ GL Subroutines 1-385

win open

The winopen subroutine queues the INPUTCHANGE and REDRAW pseudo devices.

Note: This subroutine cannot be used to add to a display list.

Parameters
name Specifies the window title displayed on the left hand side of the title bar. A

zero-length string displays no title.

Example

length Specifies the length of the string in the name parameter.

1. To create a window with the previously defined characteristics, the example C language
program colored.c uses the winopen subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying pixel values to be added to a window with the fudge subroutine.

Giving a program the entire screen as a window with the fullscrn subroutine.

Obtaining the position of a window with the getorigin subroutine.

Obtaining the size of the window with the getsize subroutine.

Specifying the size of a window icon with the iconsize subroutine.

Specifying the title of a window icon with the icontitle subroutine.

Specifying the aspect ratio of a window with the keepaspect subroutine.

Specifying the maximum size of a window with the maxsize subroutine.

Specifying the minimum size of a window with the minsize subroutine.

Removing the border from a window with the noborder subroutine.

Specifying that a program does not require a window with the noport subroutine.

Constraining the window position and size with the prefposition subroutine.

Constraining the size of a window with the prefsize subroutine.

Specifying a window size change in discrete steps with the stepunit subroutine.

Creating a restricted subwindow with the swinopen subroutines.

Closing the identified window with the winclose subroutine.

Binding window constraints to the current window with the winconstraints subroutine.

Adding a title bar to the current window with the wintitle subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1 ":"""386 Graphics Subroutines Reference

winpop Subroutine

Purpose
Raises the current window on top of all other windows.

Library
Graphics Library (libgl.a)

C Syntax
void winpop()

FORTRAN Syntax
SUBROUTINE WINPOP

Description

win pop

The winpop subroutine raises the current window from anywhere in the stack of windows to
the top position.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Lowering the current window beneath all other windows with the winpush subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-387

win position

winposition Subroutine

Purpose

Library

C Syntax

Changes the size and position of the current window.

Graphics Library (libgl.a)

void winposition
{lnt32 xt, lnt32 x2,
lnt32 yt, lnt32 y2)

FORTRAN Syntax
SUBROUTINE WINPOS{xt, x2, yt, y2)
INTEGER*4 xt, x2, yt, y2;

Description
The winposition subroutine repositions and resizes the current window. The window is
positioned at the new location as soon as the system receives the winposition subroutine
call; the reposition is not deferred to a later time. If no window is open, this subroutine has
no effect.

If the current window position and/or size is constrained, it continues to be constrained after
the winposition subroutine is called, but the new position and size apply.

If the current window is not constrained, the winposition subroutine does not introduce a
constraint. The applications user can still pick up and move the window.

Note: This subroutine cannot be used to add to a display list.

Parameters
xt Specifies the x pixel screen coordinate of the first corner of the new location

for the current window. The first corner is diagonally opposite the second
corner.

x2

yt

y2

Specifies the x pixel screen coordinate of the second corner of the new
location for the current window. The second corner is diagonally opposite
the first corner.

Specifies the y pixel screen coordinate of the first corner of the new location
for the current window.

Specifies the y pixel screen coordinate of the second corner of the new
location for the current window.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Constraining the window position and size with the prefposition subroutine.

1-388 Graphics Subroutines Reference

win position

Constraining the window size with the prefsize subroutine.

Moving the current window by its lower left corner with the winmove subroutine.

Raising the current window on top of all other windows with the winpop subroutine.

Lowering the current window beneath all other windows with the winpush subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-389

winpush

winpush Subroutine

Purpose
Lowers the current window beneath all other windows.

Library
Graphics Library (libgl.a)

C Syntax
void winpush()

FORTRAN Syntax
SUBROUTINE WINPUS

Description
The winpush subroutine lowers the current window from anywhere in the stack of windows
to the bottom position.

Note: This subroutine cannot be used to add to a display list.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Raising the current window on top of all other windows with the winpop subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-390 Graphics Subroutines Reference

winset

winset Subroutine

Purpose
Sets the current window.

Library
Graphics Library (libgt.a)

C Syntax
void winset(lnt32 windowid}

FORTRAN Syntax
SUBROUTINE WINSET{windowid}
INTEGER*4 windowid

Description

Parameter

Example

The winset subroutine takes the window associated with the windowid parameter and
makes it the current window.

All drawing (lines, polygons, and NURBS) is done in the current window. Lighting,
depth-cueing, and z-buffering all apply to the current window. Every window has an
independent set of stacks: matrix stack, name stack, attribute stack, and viewport stack, and
all stack manipulation routines such as matrix multiplies are directed at the current window.

The only attributes that are shared across windows are those defined with the defcursor,
deflinestyle, defpattern, defrasterfont, lmdef, loadXfont, and makeobj subroutines.

The winset subroutine is the only subroutine that switches graphics servers.

Note: This subroutine cannot be used to add to a display list.

windowid Specifies which window to set as current.

1. To make the newly opened window the current window, the example C language program
colored.c uses the winset subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the identifier of the current window with the winget subroutine.

Creating a new window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

GL Subroutines 1-391

wintitle

wintitle Subroutine

Purpose
Adds a title bar to the current window.

Library
Graphics Library (libgl.a)

C Syntax
void wintitle(Char8 *name)

FORTRAN Syntax
SUBROUTINE WINTIT(name, length)
CHARACTER*(*) name
INTEGER*4 length

Description
The wintitle subroutine adds a title to the current window. Use win title ("") to clear the
title.

Note: This subroutine cannot be used to add to a display list.

Parameters
name Specifies title to display in the title bar of the current window.

length Specifies the number of characters in the name string.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Specifying the title of a window icon with the icontitle subroutine.

Creating a window with the winopen subroutine.

Creating and Managing Windows in GL in Graphics Programming Concepts.

1-392 Graphics Subroutines Reference

wmpack

wmpack Subroutine

Purpose
Specifies RGBA writemask with a single packed integer.

Library
Graphics Library (libgl.a)

C Syntax
void wmpack(Uint32 pack)

FORTRAN Syntax
SUBROUTINE WMPACK(pack)
INTEGER*4 pack

Description

Parameter

The wmpack subroutine changes the current RGBA writemask. Bytes 0, 1, 2, and 3 are
alpha, blue, green, and red, respectively (red is the least significant byte in the packed
integer, then green, blue, and alpha). Components must range from 0 through 255.

For example,

wmpack(OxFF004080);

sets red mask to Ox80, green mask to Ox40, blue mask to 0, and alpha mask to OxFF.

Note: You can load alpha values only if the graphics adapter has alpha bitplanes.

You can also use the wmpack subroutine in color map mode to specify writemasks of more
than 12 bits. This is useful for certain z-buffer and smoothline applications.

Note: This subroutine cannot be used to add to a display list.

pack Specifies a packed integer containing the RGBA writemask.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the current writemask with the getwritemask subroutine.

Returning the current RGB writemask with the gRGBmask subroutine.

Granting write access to a subset of available bitplanes with the RGBwritemask subroutine.

Granting write permission to a subset of available bitplanes with the writemask subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, Removing
Hidden Surfaces, and Smoothing Jagged Lines with Antialiasing in Graphics Programming
Concepts.

GL Subroutines 1-393

writemask

writemask Subroutine

Purpose
Grants write permission to available bitplanes.

Library
Graphics Library (libgl.a}

C Syntax
void writemask{Colorindex writem)

FORTRAN Syntax
SUBROUTINE WRITEM{writem)
INTEGER*4 writem

Description

Parameter

Example

The writemask subroutine sets the bitplane writemask in color map mode. Writemasks are
used to shield portions of the frame buffer from being written into. A writemask is a small set
of bits (8 bits or 12 bits, depending on the frame buffer configuration}, one bit for each
bitplane of the frame buffer.

If a bit is set (1 }, the corresponding bitplane is enabled for writing, and any routine that draws
into the frame buffer will be able to write into that bitplane. If a bit is reset (0), the
corresponding bitplane is marked as read only, and the values stored in that bitplane are not
changed.

Note that the writemask protects planes in the color frame buffer. Thus, writemasks
essentially prevent certain colors from being written into the frame buffer. Colors that are
drawn while a writemask is enabled appear different, depending on the color, the writemask,
and the color value currently stored in the frame buffer (at a given pixel}.

Writemasks are useful for emulating overlay/underlay planes.

Notes:

1. This subroutine is intended for use only in color map mode. To set the writemask
in RGB mode, use the RGBwritemask subroutine.

2. This subroutine cannot be used to add to a display list.

writem Specifies the mask that controls which bitplanes are available for drawing
and which are read only. The mask contains one bit per available bitplane.

1. To draw a rectangle in one of four colors, the example C language program vlsi.c uses
the writemask subroutine to enable writing into only one of four bitplanes.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-394 Graphics Subroutines Reference

writemask

Related Information
Specifying the target frame buffer for drawing subroutines with the drawmode subroutine.

Returning the current writemask with the getwritemask subroutine.

Granting write access to a subset of available bitplanes with the RGBwritemask subroutine.

Specifying the RGBA writemask with a single packed integer with the wmpack subroutine.

GL Introduction, Configuring the Frame Buffer, Controlling Frame Buffer Update, and
Working in Color Map and RGB Modes in Graphics Programming Concepts.

GL Subroutines 1-395

writepixels

writepixels Subroutine

Purpose
Paints a row of pixels on the screen in color map mode.

Library
Graphics Library (libgl.a)

C Syntax
void writepixels(lnt16 number, Colorindex colors[])

FORTRAN Syntax
SUBROUTINE WRITEP(number, colors)
INTEGER*2 number
INTEGER*2 colors(numbel)

Description
The writepixels subroutine paints a row of pixels on the screen in color map mode.The
system reads elements from the colors array and writes a pixel of the appropriate color for
each.

The starting location for the row of pixels is the current character position. The system
updates the current character position to one pixel to the right of the last painted pixel. The
system paints pixels from left to right, and clips to the current screenmask. The current
character position becomes undefined if the new position is outside the viewport.

The writepixels subroutine does not automatically wrap from one line to the next. It can be
used in both single and double buffer modes.

The rectwrite subroutine provides significantly better performance for pixel block transfers.
Even when only one row of pixels needs to be read, use the rectwrite subroutine. Do not
use the writepixels subroutine in new development.

Note: This subroutine cannot be used to add to a display list.

Parameters
number Specifies the number of pixels to paint.

Specifies an array of color indexes. colors

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/g l/gl.h Contains constant and variable type definitions for GL.

1-396 Graphics Subroutines Reference

writepixels

Related Information
Returning the value of specific pixels in color map mode with the readpixels subroutine.

Copying a rectangle of pixels with an optional zoom with the rectcopy subroutine.

Reading a rectangular array of pixels into host memory with the rectread subroutine.

Drawing a rectangular array of pixels into the frame buffer with the rectwrite subroutine.

Painting a row of pixels on the screen in RGB mode with the writeRGB subroutine.

GL Introduction, Reading and Writing Pixels in GL, Using Viewports and Screenmasks in
GL, Configuring the Frame Buffer for GL, Creating Animated Screens in GL, and Working in
Color Map and RGB Modes in GL in Graphics Programming Concepts.

GL Subroutines 1-397

writeRGB

writeRGB Subroutine

Purpose

Library

C Syntax

Paints a row of pixels on the screen in RGB mode.

Graphics Library (libgl.a)

void writeRGB
(lnt16 number,
RGBvalue rea{], RGBvalue green[], RGBvalue blue[])

FORTRAN Syntax
SUBROUTINE WRITER(number, red, green, blue)
INTEGER*2 number
CHARACTER*(*) red, green, blue

Description
The writeRGB subroutine paints a row of pixels on the screen in RGB mode.The system
reads elements from the arrays specified in the red, green, and blue parameters and writes
a pixel of the appropriate color for each.

The starting location for the row of pixels is the current character position. The system
updates the current character position to one pixel to the right of the last painted pixel. The
system paints pixels from left to right and clips to the current screenmask. The current
character position becomes undefined if the new position is outside the viewport.

The writeRGB subroutine does not automatically wrap from one line to the next. It supplies
a 24-bit RGB value (8 bits for each color) for each pixel. This value is written directly into the
bitplanes.

Note: When there are only 12 color bitplanes available, the lower 4 bits of each color are
ignored.

The rectwrite subroutine provides significantly better performance for pixel block transfers.
Even when only one row of pixels needs to be read, use the rectwrite subroutine. Do not
use the writeRGB subroutine in new development.

Notes:

1. This subroutine is available only in RGB mode.

2. This subroutine cannot be used to add to a display list.

Parameters
number

red

green

blue

Specifies the number of pixels to paint.

Specifies an array containing red values for each pixel to paint.

Specifies an array containing green values for pixel to paint.

Specifies an array containing blue values for each pixel to paint.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

1-398 Graphics Subroutines Reference

writeRGB

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Returning the value of specific pixels in RGB mode with the readRGB subroutine.

Copying a rectangle of pixels with an optional zoom with the rectcopy subroutine.

Reading a rectangular array of pixels into host memory with the rectread subroutine.

Drawing a rectangular array of pixels into the frame buffer with the rectwrite subroutine.

Painting a row of pixels on the screen in color map mode with the writepixels subroutine.

GL Introduction, Reading and Writing Pixels in GL, Using Viewports and Screenmasks in
GL, and Working in Color Map and RGB Modes in GL in Graphics Programming Concepts.

GL Subroutines 1-399

zbuffer

zbuffer Subroutine

Purpose
Enables or disables the z-buffer for storing depth information.

Library
Graphics Library (libgl.a)

C Syntax
void zbuffer(lnt32 boo/)

FORTRAN Syntax
SUBROUTINE ZBUFFE(boo~
LOGICAL boo/

Description

Parameter

Example

The zbuffer subroutine enables or disables the z-buffer for storing depth information. Each
pixel has an associated z value. To draw a pixel, the system compares the new z value with
the existing one. If the new value is less than or equal to the existing value, the zbuffer
subroutine stores a new color and z value in the bitplanes.

Drawing to the z-buffer with the zdraw subroutine must be disabled in order for the z-buffer
to be enabled.

boo/ TRUE enables the z-buffer.
FALSE disables the z-buffer.

1. To disable the display of hidden surfaces, the example C language program zbuf.c
enables z-buffering with the zbuffer subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

1-400 Graphics Subroutines Reference

zbuffer

Related Information
Determining whether z-buffering is on or off with the getzbuffer subroutine.

Setting a depth range with the lsetdepth subroutine.

Clearing the z-buffer with the zclear subroutine.

Enabling drawing to the z-buffer with the zdraw subroutine.

Specifying the function used for depth comparison with the zfunction subroutine.

Selecting depth or color as the source for z comparisons with the zsource subroutine.

Specifying which bits of the z-buffer are written during normal z-buffer operation with the
zwritemask subroutine.

GL Introduction, Configuring the Frame Buffer, and Removing Hidden Surfaces in Graphics
Programming Concepts.

GL Subroutines 1-401

zclear

zclear Subroutine

Purpose
Initializes the z-buffer.

Library
Graphics Library (libgl.a)

C Syntax
void zclear()

FORTRAN Syntax
SUBROUTINE ZCLEAR

Description

Example

The zclear subroutine loads the z-buffer with the largest possible positive integer. If the
default value of the z comparison function is used (set by the zfunction subroutine), the
zbuffer, when cleared to the largest possible value, can be used for basic z-buffering.

Only the z-buffer behind the area inside the current screenmask is cleared. The screenmask
cannot be made larger than the window. Note that by default the screenmask is exactly the
same size as the window.

The scrmsk subroutine can be used to change the size of the screenmask. Note also that
the viewport subroutine resets the screenmask to be precisely the same size as the
viewport.

1. To initialize the z-buffer, the example C language program zbuf.c uses the zclear
subroutine.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Clearing the z-buffer and the color bitplanes simultaneously with the czclear subroutine.

GL Introduction, Getting Ready to Run GL, Starting GL Functions, and Configuring the
Frame Buffer for GL in Graphics Programming Concepts.

1-402 Graphics Subroutines Reference

zdraw

zdraw Subroutine

Purpose
Enables or prohibits drawing to the z-buffer.

Library
Graphics Library (libgl.a)

C Syntax
void zdraw(lnt32 boo/)

FORTRAN Syntax
SUBROUTINE ZDRAW(boo/)
LOGICAL boo/

Description

Parameter

The zdraw subroutine allows or prohibits drawing into the z-buffer. The current color mode
(either color map or RGB) applies. All current drawing attributes apply as well (color or
RGBcolor, writemask or RGBwritemask, pattern, linestyle). However, if you enable drawing
to the z-buffer with the zdraw subroutine, you must turn z-buffer mode off with the zbuffer
subroutine. By default, drawing into the z-buffer is prohibited.

Calling the gconfig subroutine prohibits drawing to the z-buffer. Calling the frontbuffer
subroutine with a value of TRUE also prohibits drawing to the z-buffer.

Calling the zdraw subroutine with a value of TRUE affects only the pixel writing subroutines:
writepixels, writeRGB, rectwrite, lrectwrite, and rectcopy. If drawing into the z-buffer is
enabled when other drawing subroutines (such as those for polygons or lines) are issued,.
the drawing subroutines draw as normal into the color bitplanes and write depth values into
the z-buffer.

Note: This subroutine cannot be used to add to a display list.

boo/ TRUE allows drawing into the z buffer.
FALSE makes the z buffer read only.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Enabling drawing to the back buffer with the backbuffer subroutine.

Enabling drawing to the front buffer with the frontbuffer subroutine.

GL Introduction, Configuring the Frame Buffer, and Removing Hidden Surfaces in Graphics
Programming Concepts.

GL Subroutines 1-403

zfunction

zfunction Subroutine

Purpose
Specifies the function used for depth comparison.

Library
Graphics Library (libgl.a)

C Syntax
void zfunction(lnt32 tune)

FORTRAN Syntax
SUBROUTINE ZFUNCT(func)
INTEGER*4 tune

Description

Parameter

The zfunction subroutine compares the z value of the current contents (destination value) of
a pixel against the z value for the contents that you want to write to that pixel (source, or
incoming, value).

For example, if the tune parameter is ZF _LESS and if the source z is less than the
destination z, the system overwrites the destination pixel value with the source pixel value.

Usually, the comparison between the source and destination z value is a comparison of
depth values (this is what is normally referred to as z-buffering). Use the zsource subroutine
to compare color values.

Note: This subroutine cannot be used to add to a display list.

tune Expects one of eight possible flags used when comparing z values. The
available flags are:

ZF _NEVER, never overwrite the destination pixel value.

ZF _LESS, overwrite the destination pixel value if the z of the source pixel
value is less than the z of destination value.

ZF _EQUAL, overwrite the destination pixel value if the z of the source pixel
value is equal to the z of destination value.

ZF _LEQUAL, overwrite the destination pixel value if the z of the source
pixel value is less than or equal to the z of destination value. (This is the
default value.)

ZF _GREATER, overwrite the destination pixel value if the z of the source
pixel value is greater than the z of destination value.

ZF _NOTEQUAL, overwrite the destination pixel value if the z of the source
pixel value is not equal to the z of destination value.

ZF _GEQUAL, overwrite the destination pixel value if the z of the source
pixel value is greater than or equal to the z of destination value.

ZF _ALWAYS, always overwrite the destination pixel value.

1-404 Graphics Subroutines Reference

zfunction

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/g l/g I. h Contains constant and variable type definitions for GL.

Related Information
Clearing the color bitplanes and the z-buffer simultaneously with the czclear subroutine.

Initiating z-buffer mode with the zbuffer subroutine.

Selecting depth or color as the source for z comparisons with the zsource subroutine.

GL Introduction, Controlling Frame Buffer Update, and Removing Hidden Surfaces in
Graphics Programming Concepts.

GL Subroutines 1-405

zsource

zsource Subroutine

Purpose
Selects either depth or color as the source for z comparisons.

Library
Graphics Library (libgl.a)

C Syntax
void zsource(lnt32 source)

FORTRAN Syntax
SUBROUTINE ZSOURC(source)
INTEGER*4 source

Description

Parameter

The zsource subroutine selects either depth or color as the source for z comparisons. After
a call to the gbegin, ginit, greset, or winopen subroutine, the default z-buffering is done
with depth (z) values. In certain cases, it is desirable to buffer with respect to color values,
especially the color index values generated by the smoothline hardware.

When the source parameter is ZSRC_DEPTH, the z-buffer operation is normal. When the
source parameter is ZSRC_COLOR, however, source and destination color values are
compared to determine which pixels the system draws.

The High-Performance 3-D Color Graphics Processors currently support only the
ZSRC_DEPTH setting. The ZSRC_COLOR setting has no effect and is ignored.

Note: This subroutine cannot l:>e used to add to a display list.

source Specifies one of two possible flags:

ZSRC_ COLOR - buffering done by color value.

ZSRC_DEPTH - buffering done by zvalue.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Initiating z-buffer mode with the zbuffer subroutine.

Enabling or disabling drawing to the z-buffer with the zdraw subroutine.

Specifying the function used for depth comparison with the zfunction subroutine.

GL Introduction, Controlling Frame Buffer Update, and Removing Hidden Surfaces in
Graphics Programming Concepts.

1-406 Graphics Subroutines Reference

zwritemask

zwritemask Subroutine

Purpose
Specifies the z-buffer writemask.

Library
Graphics Library (libgl.a)

C Syntax
void zwritemask(lnt32 mask)

FORTRAN Syntax
SUBROUTINE ZWRITE(mask)
INTEGER*4 mask

Description

Parameter

The zwritemask subroutine specifies which bits of the z-buffer are written during normal
z-buffer operation (not by zdraw). This subroutine is significant only while drawing in z-buffer
mode. When the z compare is TRUE, the current destination z is replaced by the new
source z. The zwritemask subroutine controls which bits of the destination z are actually
replaced, and which retain their previous values.

The zwritemask subroutine is ignored while drawing directly to the z-buffer, as when the
value of the boo/ parameter in the zdraw subroutine is TRUE. During the zdraw subroutine,
the current writemask applies to the z-buffer as well as to the color bitplanes.

Note: This subroutine cannot be used to add to a display list.

mask Specifies the mask indicating which z-buffer bits are read only and which
can be overwritten. The following rules apply:

If a bit of the mask is set to 0, the corresponding bits are read-only.

If a bit of the mask is set to 1, the corresponding z-buffer bits can be
overwritten.

Implementation Specifics
This subroutine is part of GL in the AIXwindows environment.

File
/usr/include/gl/gl.h Contains constant and variable type definitions for GL.

Related Information
Granting write access to a subset of available bitplanes with the RGBwritemask subroutine.

Enabling drawing to the z-buffer with the zdraw subroutine.

Specifying an RGBA writemask with a single, packed integer with the wmpack subroutine.

Granting write permission to available bitplanes with the writemask subroutine.

GL Introduction, Controlling Frame Buffer Update, and Removing Hidden Surfaces in
Graphics Programming Concepts.

GL Subroutines 1-407

1-408 Graphics Subroutines Reference

Chapter 2. GL Example Programs

GL Example Programs 2-1

backface.c

backface.c Example C Language Program
/*
backface.c

Draw a cube that can run with backface() turned on or
off. Turn backface() on with with the F key.
Turn backface() off with with the B key. Cube is moved
when LEFTMOUSE is pressed and mouse itself is moved.
*/

#include <gl/gl.h>
#include <gl/device.h>

#define CUBE SIZE 200
#define CUBE_OBJ 1

main () {

Device dev;
int moveit;
short val, x

initialize () ;
while (TRUE) {

30,y

while (qtest()) {

30;

dev = qread(&val);

if (dev == ESCKEY) {
backface(FALSE);
gexit ();
exit ();

} else if (dev == REDRAW) {
reshapeviewport();
drawcube(x,y);

} else if (dev == LEFTMOUSE)
moveit = val; /* left mouse is down */

else if (dev == BKEY) {
backface(TRUE); /* turn back facing

}
}

}

drawcube(x,y);
} else if (dev == FKEY) {

backface(FALSE);

drawcube(x,y);
}

if (moveit) {

}

x = getvaluator(MOUSEX);
y = getvaluator(MOUSEY);
drawcube(x,y);

2-2 Graphics Subroutines Reference

off */

/* turn back facing
on */

initialize () {

int gid;

}

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4,
YMAXSCREEN/4, YMAXSCREEN*3/4);

gid = winopen("backface");

doublebuffer();
gconfig();
shademodel(FLAT);

ortho((float)-XMAXSCREEN, (float)XMAXSCREEN,
(float)-YMAXSCREEN, (float)YMAXSCREEN,
(float)-YMAXSCREEN, (float)YMAXSCREEN);

qdevice(ESCKEY);
qdevice(REDRAW);
qdevice(LEFTMOUSE);
qdevice(BKEY);
qdevice(FKEY);
qenter(REDRAW,gid);

backface(TRUE); /* turn on back facing polygon
removal */

/* define a cube */
cube() {

/* front face */
pushmatrix () ;
translate(O.O,O.O,CUBE_SIZE.O);
color(RED);
rectfi(-CUBE_SIZE,-CUBE_SIZE,CUBE_SIZE,CUBE_SIZE);
popmatrix();

/* right face */
pushmatrix();
translate(CUBE_SIZE.O, 0.0, 0.0);
rotate(900, 'y');
color(GREEN);
rectfi(-CUBE_SIZE,-CUBE_SIZE,CUBE_SIZE,CUBE_SIZE);
popmatrix ();

/* back face */
pushmatrix();
translate(O.O, 0.0, -CUBE_SIZE.0);
rotate (18 0 0 , 'y ') ;
color(BLUE);
rectfi(-CUBE_SIZE,-CUBE_SIZE,CUBE_SIZE,CUBE_SIZE);
popmatrix();

/* left face */
pushmatrix();
translate(-CUBE_SIZE.O, 0.0, 0.0);
rotate (-9 O O , ' y ') ;
color(CYAN);
rectfi(-CUBE_SIZE,-CUBE_SIZE,CUBE_SIZE,CUBE_SIZE);
popmatrix();

backface.c

GL Example Programs 2-3

backface.c

}

/* top face */
pushmatrix();
translate(O.O, CUBE_SIZE.O, 0.0);
rotate(-900, 'x');
color (MAGENTA);
rectfi(-CUBE_SIZE,-CUBE_SIZE,CUBE_SIZE,CUBE_SIZE);
popmatrix();

/* bottom face */
pushmatr ix () ;
translate(O.O, -CUBE_SIZE.O, 0.0);
rotate (9 0 0, 'x') ;
color (YELLOW) ;
rectfi(-CUBE_SIZE,-CUBE_SIZE,CUBE_SIZE,CUBE_SIZE);
popmatrix () ;

drawcube(x,y)
short x,y;
{

}

pushmatrix();
rotate(2*x, 'x');
rotate (2 *y, 'y') ;
color(BLACK);
clear ();
cube ();
popmatrix ();
swapbuffers();

2-4 Graphics Subroutines Reference

boxcirc.c Example C Language Program
/*
boxcirc.c:

boxcirc.c

A simple example which draws a 2d box and circle, press ESCape key
to exit.
*/

#include <gl/gl.h>
#include <gl/device.h>

main() {

}

int dev,val;

initialize () ;

while (TRUE) {

}

if (qtest()) {

}

dev = qread(&val);

if (dev == ESCKEY) {
gexit();
exit () ;

} else if (dev == REDRAW) {
reshapeviewport();
drawboxcirc();

}

initialize () {

int gid;

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4, YMAXSCREEN/4,
YMAXSCREEN*3/4);

}

gid = winopen("boxcirc");

qdevice(ESCKEY);
qdevice(REDRAW);
qenter(REDRAW,gid);

drawboxcirc() {

}

pushmatrix();
translate(200.0, 200.0, 0.0);
color(BLACK);
clear ();
color(BLUE);
re ct i (0 , 0 , 10 0 , 10 0) ;
color (RED) ;
circi(SO, SO, SO);
popmatrix();

GL Example Programs 2-5

~olored.c

colored.c Example C Language Program
/*
colored.c

Edit the color map and display the results in the graphics window.

This program requires a 24-bit adapter.
*/

#include <gl/gl.h>
#include <gl/device.h>

#define CURRENTCOLOR 253
#define BARWIDTH 67
#define RED BAR 934
#define GREENBAR 800
#define BLUE BAR 666
#define STARTBAR 250
#define END BAR 1082
#define indextovalue(index) (4*index + 3)

short redindex = O, greenindex = O, blueindex O;
short whichbar();
long xorg,yorg,xsize,ysize;
long redbar,greenbar,bluebar;
long startbar,endbar;

main() {

short index, val;
Device xpos, ypos;

2-6 Graphics Subroutines Reference

}

initialize ();
while (TRUE) {

switch (qread(&val)) {
case ESCKEY:

greset();
gexit ();
exit(O);

case REDRAW:
reshapeviewport();
getwindowsize();
buildmap();
displaymap();
break;

case LEFTMOUSE:
if (val){

qread(&xpos);
qread (&ypos) ;
qread (&val) ;
qread(&val);
qread (&val) ;
if (insideport(xpos,ypos)) {

index = -1;

colored.c

switch (whichbar(xpos,ypos,&index)) {
case 0:

}
}
break;

}
}

}

redindex = index;
break;

case 1:
greenindex = index;
break;

case 2:
blueindex = index;
break;

default:
break;

if (index != -1) {
buildmap () ;
displaymap();

}

initialize() {

int gid;

prefposition(lO, XMAXSCREEN-10, 10, YMAXSCREEN-20);
keepaspect(S,4);
gid = winopen("colored");

ortho2(-0.S, (float)XMAXSCREEN-0.S, -0.S,
(float)YMAXSCREEN-0.5);

color(O);
clear();

mapcolor(CURRENTCOLOR, O, 0, 0);

GL Example Programs 2-7

colored.c

}

qdevice(LEFTMOUSE);
tie(LEFTMOUSE, MOUSEX, MOUSEY);
qdevice(ESCKEY);
qdevice(REDRAW);
qenter(REDRAW,gid);

getwindowsize() {

getorigin(&xorg,&yorg);
getsize(&xsize,&ysize);

}

redbar = ((REDBAR * ysize) / YMAXSCREEN) + yorg;
greenbar = ((GREENBAR * ysize) / YMAXSCREEN) + yorg;
bluebar = ((BLUEBAR * ysize) / YMAXSCREEN) + yorg;
startbar = ((STARTBAR * xsize) / XMAXSCREEN) + xorg;
endbar ((ENDBAR * xsize) / XMAXSCREEN) + xorg;

buildmap () {

}

register i, j;

for (i = O; i < 3; i++) {

}

for (j = O; j < 64; j++) {
switch (i) {

}
}

case 0: /* red */
mapcolor(512+i*64+j, indextovalue(j),

indextovalue(greenindex),
indextovalue(blueindex));

break;
case 1: /* green */

mapcolor(512+i*64+j, indextovalue(redindex),
indextovalue(j),
indextovalue(blueindex));

break;
case 2: /* blue */

mapcolor(512+i*64+j, indextovalue(redindex),
indextovalue(greenindex),
indextovalue(j));

break;

mapcolor(CURRENTCOLOR, indextovalue(redindex),
indextovalue(greenindex),
indextovalue(blueindex));

displaymap() {

register i, j;
char redstr[lO], greenstr[lO], bluestr[lO];

color(BLACK);
clear ();

2-8 Graphics Subroutines Reference

}

for (i = O; i < 3; i++)
for (j = 0 ; j < 6 4 ; j ++) {

color(512+i*64 + j);

}

rectfi(250 + 13*j, 934 - i*l33, 263 + 13*j,
867 - i*l33);

color(WHITE);
recti(250 + 13*j, 934 - i*l33, 263 + 13*j,

867 - i*l33);

color(CURRENTCOLOR);
rectfi(500, 267, 750, 400);
color(WHITE);
recti(500, 267, 750, 400);
cmov2i(l86, 894);
charstr("RED");
cmov2i(l86, 760);
charstr("GREEN");
cmov2i(186, 627);
charstr("BLUE");
cmov2i(343, 327);
charstr("CURRENT COLOR");
cmov2i(475, 133);
charstr("Left mouse button: choose a color");
cmov2i(475, 112);
charstr("Escape key : exit");

move2i(startbar + 13*redindex, 934);
draw2i(startbar + 13*redindex, 960);
cmov2i(startbar + 6 + 13*redindex, 940);
sprintf(redstr, "%d", indextovalue(redindex));
charstr(redstr);
move2i(startbar + 13*greenindex, 800);
draw2i(startbar + 13*greenindex, 827);
cmov2i(startbar + 6 + 13*greenindex, 806);
sprintf(greenstr, "%d", indextovalue(greenindex));
charstr(greenstr);
move2i(startbar + 13*blueindex, 666);
draw2i(startbar + 13*blueindex, 694);
cmov2i(startbar + 6 + 13*blueindex, 674);
sprintf(bluestr, "%d", indextovalue(blueindex));
charstr(bluestr);

cmov2i(563, 414);
charstr("(");
charstr(redstr);
charstr(", ");
charstr(greenstr);
chars tr (" , ") ;
charstr(bluestr);
charstr(")");

colored.c

GL Example Programs 2-9

colored.c

/* return 1 if the position of the cursor is within the window */
insideport(x,y)
int x, y;
{

}

/*

if (x<xorg)
return O;

if(x>(xorg+xsize))
return O;

if (y<yorg)
return O;

if(y>(yorg+ysize))
return O;

return 1;

returns 0 if in the redbar, 1 if in the greenbar and 2 if in the
blue bar
*/
short whichbar(xpos,ypos,index)
long xpos,ypos;
short *index;
{

}

short i;

i = -1;
if (redbar BARWIDTH <= ypos && ypos <= redbar) /* red color

bar */
i = O;

else if (greenbar-BARWIDTH <= ypos &&
ypos <= greenbar) /* green color bar */

i = 1;
else if (bluebar - BARWIDTH <= ypos &&

ypos <= bluebar) /* blue color bar */
i = 2;

if (i ! = -1) {

}

if (startbar <= xpos && xpos < endbar) {
*index = (xpos startbar)/13;
return(i);

}

return(-1);

2-10 Graphics Subroutines Reference

curve1 .c Example C Language Program
/* Example C Language Program curvel.c */

/*

curve1 .c

This program draws 3 curve segments. The "horizontal" one is drawn
with a Bezier basis matrix, the "vertical" one with a Cardinal
basis matrix, and the "diagonal" one with a B-spline basis matrix.
All use the same set of 4 control points, contained in the array
geoml.

Before crv (or rcrv) is called, a basis and precision matrix must be
defined.

*/

#include <gl/gl.h>
#include <gl/device.h>

Matrix beziermatrix = { { -1, 3, -3, 1 },
{ 3 ' -6 ' 3 ' 0 } '
{ -3 I 3 f 0 f 0 } f
{ 1, o, 0, 0 } };

Matrix cardinalmatrix { { -0.5, 1.5, -1.5, 0.5 },
{ 1.0, -2.5, 2.0, -0.5 },
{ -0.5, 0, 0.5, 0 },
{ 0, 1, 0, 0 } };

Matrix bsplinematrix { { -1.0/6.0, 3.0/6.0, -3.0/6.0, 1.0/6.0 },
{ 3.0/6.0, -6.0/6.0, 3.0/6.0, 0 },
{ -3.0/6.0, 0, 3.0/6.0, 0 },
{ 1.0/6.0, 4.0/6.0, 1.0/6.0, 0 } };

#define BEZIER 1
#define CARDINAL 2
#define BSPLINE 3

Coord geoml[4][3] = { { 100.0, 100.0, 0.0},
{ 200.0, 200.0, 0.0},
{ 200.0, 0.0, 0.0},
{ 300.0, 100.0, 0.0} };

main() {

}

int dev,val;

initialize () ;

while (TRUE) {

if (qtest()) {

dev = qread(&val);

if (dev == ESCKEY)
gexit();
exit ();

{

} else if (dev == REDRAW)
reshapeviewport();
drawcurve();

}
}

}

{

GL Example Programs 2-11

curve1 .c

initialize () {

int gid;

}

prefposition(200, 500, 100, 400);
gid = winopen("curvel");

qdevice(ESCKEY);
qdevice(REDRAW);
qenter(REDRAW,gid);

drawcurve() {

color(BLACK);
clear();
translate(l50.0, 150.0, 0.0);

defbasis(BEZIER,beziermatrix);

curvebasis(BEZIER);

curveprecision(20);

color(RED);
crv(geoml);

/* define a basis matrix
called BEZIER */

/* identify the BEZIER
matrix as the current
basis matrix */

/* set the current
precisionto 20
(the curve segment will
be drawn using 20 line
segments) */

/* draw the curve based on
four control points in
geoml */

defbasis(CARDINAL,cardinalmatrix);/* a new basis is defined*/

}

curvebasis(CARDINAL); /* the current basis is

color(BLUE);
crv(geoml); /*

defbasis(BSPLINE,bsplinematrix); /*
curvebasis(BSPLINE); I*

color (GREEN) ;
crv(geoml); I*

reset. note that the
curveprecision does not
have to be restated
unless it is to be
changed */

a new curve segment is
drawn */

a new basis is defined
the current basis is
reset */

a new curv.e segment is
drawn */

*/

2-12 Graphics Subroutines Reference

curve2.c Example C Language Program
/* Example C Language Program curve2.c */

/*

curve2.c

This program demonstrates the use of joined curve segments. It
draws three curves. One with a Bezier basis, one with a Cardinal
spline basis, and one with a B-spline basis.

The array geom2 contains 6 control points. With the Bezier basis
matrix, 3 sets of overlapping control points result in 3 separate
curve segments. With the Cardinal spline and B-spline matrices,
the same overlapping sets of control points result in 3 joined
curve segments.
*/

#include <gl/gl.h>
#include <gl/device.h>

Matrix beziermatrix = { { -1, 3, -3, 1 },
{ 3 I -6 I 3 I 0 } I
{ -3 I 3 I 0 I 0 } I
{ 1, o, 0, 0 } };

Matrix cardinalmatrix = { { -0.5, 1.5, -1.5, 0.5 },
{ 1.0, -2.5, 2.0, -0.5 },
{ -0.5, o, 0.5, 0 },
{ 0, 1, 0, 0 } };

Matrix bsplinematrix = { { -1.0/6.0, 3.0/6.0, -3.0/6.0, 1.0/6.0 },
{ 3.0/6.0, -6.0/6.0, 3.0/6.0, 0 },
{ -3.0/6.0, o, 3.0/6.0, 0 },
{ 1.0/6.0, 4.0/6.0, 1.0/6.0, 0 } };

#define BEZIER 1
#define CARDINAL 2
#define BSPLINE 3

Coord geom2[6][3] = { { 150.0, 400.0, 0.0},
{ 350.0, 100.0, 0.0},
{ 200.0, 350.0, 0.0},
{ 50.0, o.o, 0.0},

main() {

int dev,val;

initialize();

while (TRUE) {
if (qtest()) {

{ o.o, 200.0, 0.0},
{ 100.0, 300.0, 0.0}, };

dev = qread(&val);

GL Example Programs 2-13

curve2.c

}
}

}

if (dev == ESCKEY) {
gexit();
exit ();

} else if (dev == REDRAW) {
reshapeviewport();
drawcurve ();

}

initialize() {

int gid;

}

prefposition(200, 650, 200, 800);
gid = winopen("curve2");

qdevice(ESCKEY);
qdevice(REDRAW);
qenter(REDRAW,gid);

drawcurve() {

}

color(aLACK);
clear();

defbasis(aEZIER,beziermatrix); /* define a basis matrix
called aEZIER */

defbasis(CARDINAL,cardinalmatrix); /* a new basis is
defined */

defbasis(aSPLINE,bsplinematrix); /* a new basis is
defined */

curvebasis(aEZIER);

curveprecision(20);
color (RED) ;
crvn(6, geom2);

curvebasis(CARDINAL);

color(GREEN);
crvn(6, geom2);

curvebasis(aSPLINE);

color(aLUE);
crvn(6, geom2);

/* the aezier matrix becomes the
current basis */

/* the precision is set to 20 */

/* the curvs command called with a
aezier basis causes 3 separate
curve segments to be drawn */

/* the Cardinal basis becomes the
current basis */

/* the crvs command called with a
Cardinal spline basis causes a
smooth curve to be drawn */

/* the a-spline basis becomes the
current basis */

/* the curvs command called with a
a-spline basis causes the
smoothest curve to be drawn */

2-14 Graphics Subroutines Reference

curve3.c Example C Language Program
/* Example C Language Program curve3.c */

/*

curve3.c

This program draws a Bezier curve segment using curveit(). The
Cardianl spline and B-spline curve segments could be drawn in a
similar manner (only the basis matrix would be different).
*/

#include <gl/gl.h>
#include <gl/device.h>

Matrix beziermatrix = { { -1, 3, -3, 1 },
{ 3 , -6 , 3 , 0 } ,
{ -3 , 3 , 0 , 0 } ,
{ 1, 0, O, 0 } };

#define BEZIER 1

Matrix geoml = { { 100.0, 100.0, 0.0, 1.0},
{ 200.0, 200.0, o.o, 1.0},
{ 200.0, o.o, o.o, 1.0},
{ 300.0, 100.0, o.o, 1.0} };

Matrix precisionmatrix = { { 6.0/8000.0, 0, O, O},
{ 6.0/8000.0, 2.0/400.0, 0, O},
{ 1.0/8000.0, 1.0/400.0, 1/20.0, O},
{ o, o, 0, 1} };

main() {

}

int dev,val;

initialize () ;

while (TRUE) {

}

if (qte st ()) {

}

dev = qread(&val);

if (dev == ESCKEY) {
gexit();
exit ();

} else if (dev == REDRAW) {
reshapeviewport();
drawcurve();

}

initialize() {

int gid;

}

prefposition(200, 500, 100, 400);
gid = winopen("curve3");

qdevice(ESCKEY);
qdevice (REDRAW) ;
qenter(REDRAW,gid);

GL Example Programs 2-15

curve3.c

drawcurve() {

color(BLACK);
clear ();
pushmatrix();

multmatrix(geoml);

multmatrix(beziermatrix);

/* the current transformation
matrix on the matrix stack is
saved */

/* the product of the current
transformation matrix and the
matrix containing the
control points becomes the new
current transformation matrix */

/* the product of the basis
matrix and the current
transformation matrix becomes
the new current transformation
matrix */

multmatrix(precisionmatrix); /* the product of the precision
matrix and the current

}

move(0.0,0.0,0.0);

color (RED);
curveit (20);

popmatr ix () ;

transformation matrix
becomes the new current
transformation matrix */

/* this command must be issued
so that the correct first
point is generated by the
curveit command */

/* a curve consisting of 20 line
segments is drawn */

/* the original transformation
matrix is restored */

2-16 Graphics Subroutines Reference

curved.c

curved.c Example C Language Program
/*
curved.c -
A minimal curve editor.*

*/

#include <gl/gl.h>
#include <gl/device.h>

float endgeom[4][3];
float geom[l00][3];
int pt[lOO];

#define ADDPOINT
#define MOVEPOINT
#define INSERTPOINT
#define DELETEPOINT
#define CHANGEPOINT

#define BACKGROUND
#define LINE

#define ROUND
#define SQUARE

#define MOUSEXMAP(x)
#define MOUSEYMAP(y)

Paul Haeerli - 1985

1
2
3
4
5

7
0

1
2

(100.0*((x)-xorg))/xsize
(100.0*((y)-yorg))/ysize

short raster[] = { OxfBOO, Ox8800, Ox8800, Ox8800, Oxf800,
Ox7000, Ox8800, Ox8800, Ox8800, Ox7000, };

Fontchar chars[] { {0,0,0, 0, 0,0},
{0,5,5,-2,-2,5},
{5,5,5,-2,-2,5}, } ;

Matrix b_spline { {-1.0/6.0, 1.0/2.0, -1.0/2.0, 1.0/6.0},
{ 1.0/2.0, -1.0' 1.0/2.0, 0. 0}'
{-1. 0/2. 0' o.o, 1.0/2.0, 0.0},
{ 1.0/6.0, 2.0/3.0, 1.0/6.0, 0.0} } ;

Matrix lob_spline { { o.o, 0. 0' 0. 0' 0.0},
{ 1.0/3.0, -2.0/3.0, 1.0/3.0, 0.0},
{-7.0/6.0, 4.0/3.0, -1. 0/6. 0' 0.0},
{ 1. 0' o.o, o.o, 0.0}, } ;

Matrix hib_spline { {O.O, o.o, 0. 0' 0. 0},
{O.O, 1.0/3.0, -2.0/3.0, 1.0/3.0},
{O.O, -1.0/2.0, 0. 0' 1.0/2.0},
{O.O, 1.0/6.0, 2.0/3.0, 1.0/6.0}, } ;

Matrix c_spline { {-0.5, 1. 5' -1.5, 0. 5},
{ 1. 0' -2.5, 2.0, -0.5},
{-0.5, o.o, 0.5, 0. O},
{ o.o, 1. 0' o.o, 0.0} } ;

Matrix loc_spline { { o.o, o.o, o.o, 0.0},
{ 0.5, -1.0, 0.5, 0.0},
{-1. 5' 2.0, -0.5, 0.0},
{ 1. 0' o.o, o.o, 0.0} } ;

GL Example Programs 2-17

curved.c

Matrix hic_spline

#define BSPLINE
#define LOBSPLINE
#define HIBSPLINE

int xsize, ysize;
int xorg, yorg;
float mx, my;

{ {O.O,
{O.O,
{O.O,
{O.O,

100
101
102

int curmode = ADDPOINT;
int points;
int menu;

main(argc,argv)
int argc;
char **argv;
{

o.o, o.o, 0.0},
0.5, -1. 0, 0.5},

-0.5, o.o, 0.5},
o.o, 1. 0 I 0.0} } ;

prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,

}

YMAXSCREEN*3/4);
winopen("curved");
menu = defpup("curved %tjaddlmovelinsertjdeletejchange");
defrasterfont(l,7,3,chars,10,raster);
font(l);
deflinestyle(l,OxfOfO);
if (argc == 1) {

defbasis(BSPLINE,b_spline);
defbasis(LOBSPLINE,lob_spline);
defbasis(HIBSPLINE,hib_spline);

} else {
defbasis(BSPLINE,c_spline);
defbasis(LOBSPLINE,loc_spline);
defbasis(HIBSPLINE,hic_spline);

}
curveprecision(6);
make£ rame () ;
initdevices();
points = O;
while (1)

getinput ();

initdevices() {

qdevice(MOUSEX);
qdevice(MOUSEY);
qdevice(LEFTMOUSE);
qdevice(MENUBUTTON);
qdevice(KEYBD);

}

getinput() {

Device dev;
short val;
int sel;

2-18 Graphics Subroutines Reference

do {
if (!qtest())

mouseevent(2,mx,my);
dev = qread(&val);
switch (dev) {

case MENUBUTTON:
if (val) {

sel = dopup(menu);
if (sel>O)

curved.c

curmode = sel;

}

}
font (1) ;
break;

case LEFTMOUSE:
mouseevent(val,mx,my);
break;

case MOUSEX:
mx = MOUSEXMAP(val);
break;

case MOUSEY:
my= MOUSEYMAP(val);
break;

case KEYBD:
switch (val) {

}

case 'a':
break;

case 'i':
curmode
break;

case 'm':
curmode
break;

case 'd':
curmode
break;

case 'c':
curmode
break;

break;
case REDRAW:

reshapeviewport();
make frame ();
break;

INSERTPOINT;

MOVEPOINT;

DELETEPOINT;

CHANGEPOINT;

} while (qtest());
}

int curpoint;
int moving;

mouseevent(state,x,y)
int state;
float x, y;
{

int nextpoint;

GL Example Programs 2-19

curved.c

switch (curmode) {
case ADDPOINT:

if (state == 1) {

}

curpoint = duppoint(points);
geom[curpoint][O] = x;
geom[curpoint][l] = y;
pt[curpoint] = SQUARE;
drawline(LINE);

break;
case MOVEPOINT:

if (state == 1) {
curpoint = findpoint(x,y);
moving = 1;

} else if (state == 2) {
if (moving) {

drawline(BACKGROUND);
geom[curpoint][O] = x;
geom[curpoint][l] = y;
draw line (LINE) ;

}
} else if (state == 0)

moving = O;
break;

case INSERTPOINT:
if (state == 1) {

}

curpoint = findpoint(x,y);
if (curpoint < 0)

curpoint duppoint(points);
else

curpoint = duppoint(curpoint);
drawline(BACKGROUND);
geom[curpoint][O] = x;
geom[curpoint][l] = y;
pt[curpoint] = SQUARE;
drawline(LINE);

break;
case DELETEPOINT:

if (state == 1) {
curpoint = findpoint(x,y);
if (curpoint >= 0) {

drawline(BACKGROUND);
delpoint(curpoint);
drawline (LINE);

}

}
break;

2-20 Graphics Subroutines Reference

}
}

case CHANGEPOINT:
if (state == l) {

}

curpoint = findpoint(x,y);
if (curpoint >= 0) {

drawline(BACKGROUND);

}

if (pt[curpoint] == ROUND)
pt[curpoint] SQUARE;

else
pt[curpoint] ROUND;

drawline(LINE);

break;

makeframe() {

getorigin(&xorg,&yorg);
getsize(&xsize,&ysize);
ortho2(0.0,100.0,0.0,100.0);
color(BACKGROUND);
clear();
drawline(LINE);

}

float ppdist(xl,yl,x2,y2)
float xl,yl,x2,y2;
{

}

register float dx, dy;

dx = x2-xl;
if (dx<O) dx -dx;
dy = y2-yl;
if (dy<O) dy -dy;
return dx+dy;

float pldist(x,y,xl,yl,x2,y2)
float x, y, xl, yl, x2, y2;
{

}

register float dx, dy, c;

dx = x2-xl;
dy = y2-yl;
c = dy*xl-dx*yl;

findpoint(x,y)
float x, y;
{

register float mindist;
register int minpnt;
register int i;
float dist;

curved.c

GL Example Programs 2-21

curved.c

}

mindist = 100000.0;
minpnt = -1;
for (i=O; i<points; i++) {

}

dist= ppdist(geom[i][O],geom[i][l],x,y);
if (dist<mindist) {

mindist = dist;
minpnt = i;

}

return minpnt;

findedge(x,y)
float x, y;
{

}

register float mindist;
register int minpnt;
register int i;
float dist;

mindist = 100000.0;
minpnt = -1;
for (i=O; i<points; i++) {

}

dist= ppdist(geom[i][O],geom[i][l],x,y);
if (dist<mindist) {

mindist = dist;
minpnt = i;

}

return minpnt;

duppoint(pnt)
int pnt;
{

register int i;

for (i=points; i>pnt; i-) {
geom[i][O] = geom[i-1][0];
geom[i][l] = geom[i-1][1];
pt[i] = pt[i-1];

}
points++;
return pnt;

}

delpoint(pnt)
int pnt;
{

}

register int i;

for (i=pnt; i<points; i++) {
geom[i][O] = geom[i+l][O];
geom[i][l] = geom[i+l][l];
pt[i] = pt[i+l];

}
points-;

2-22 Graphics Subroutines Reference

drawline(c)
int c;
{

}

register int i, j;

pt[O] = SQUARE;
pt[points-1] = SQUARE;
color(c);
if (c == BACKGROUND)

clear();
else {

}

setlinestyle(l);
move2(geom[O][O],geom[O][l]);
for (i=O; i<points; i++) {

}

draw2(geom[i][O],geom[i][l]);
putsym(i);

setlinestyle(O);
move2(geom[O][O],geom[O][l]);
for (i=l; i<points; i++) {

}

if (pt[i] == SQUARE) {
if (pt[i-1] == ROUND) {

for (j=O; j<4; j++) {

}

endgeom[j][O] = geom[i-2+j][O];
endgeom[j][l] = geom[i-2+j][l];

endgeom[3][0] = endgeom[2][0];
endgeom[3][1] = endgeom[2][1];
curvebasis(BSPLINE);
crv (endgeom) ;
draw2(geom[i][O],geom[i][l]);

} else {
draw2(geom[i][O],geom[i][l]);

}
} else {

}

if (pt[i-1] == SQUARE) {
for (j=O; j<4; j++) {

}

endgeom[j][O] = geom[i-2+j][O];
endgeom[j][l] = geom[i-2+j][l];

endgeom[O][O] = endgeom[l][O];
endgeom[O][l] = endgeom[l][l];
curvebasis(BSPLINE);
crv (end geom) ;

} else {
curvebasis(BSPLINE);
crv(&geom[i-2][0]);

}

curved.c

GL Example Programs 2-23

curved.c

putsym(i)
register int i;
{

}

char buf[2];

cmov2(geom[i][O],geom[i][l]);
if (pt[i] == SQUARE)

buf[O] = 1;
else

buf[O] = 2;
buf[l] = O;
charstr(buf);

2-24 Graphics Subroutines Reference

cylinder1 .c Example C Language Program
/* Example C Language Program cylinderl.c */

/*

cylinder1 .c

The following program illustrates how to use the Graphics
Library to perform lighting. It draws a cylinder and rotates
it.

This program requires the 24-bit adapter and the z-buffer option.
*/

#include <gl/gl.h>
#include <math.h>
#include <stdio.h>

#define RADIUS 0.9
#define TWOPI 6.28318530
#define PI 3.14159265

/* define black RGB color */
float blackvec[3] = {O.O, 0.0, 0.0};
Matrix idmat = {1.0,0.0,0.0,0.0, /* identity matrix */

0.0,1.0,0.0,0.0,
o.o,o.o,i.o,o.o,
0.0,o.o,o.o,1.o};

/*define a polygon with some structures
* ~ for code readability*/

typedef struct { /* structure for a 3-D vertex */
Coord x;
Coord y;
Coord z;

} POINT;

typedef struct { /* 4 vertex lighted polygon struct */
POINT vertex[4];
POINT normal[4];

} POLYGON;

int number_of_polys;
POLYGON *polygon;

/* cylinder polygon count */
/* pointer to polygon list */

/*
** def_simple_light_calc()
** Tell the Graphics Library to DEFINE a simple
** lighting calculation that accounts for diffuse
** and ambient reflection. This simple
** lighting calculation happens to use the default
** lighting parameters in the Graphics Library.
*/

def_simple_light_calc() {

}

lmdef(DEFMATERIAL, 1, 0, NULL);
lmdef(DEFLIGHT, 1, 0, NULL);
lmdef(DEFLMODEL, 1, 0, NULL);

GL Example Programs 2-25

cylinder1 .c

/*
** use_simple_light_calc()
** Tell the Graphics Library to USE the
** simple lighting calculation that we
** defined earlier.
*/
use_simple_light_calc()
{

}

/*

lmbind(MATERIAL, 1):
lmbind(LIGHTO, 1):
lmbind(LMODEL, 1):

** make_cylinder()
** Draw a cylinder using (2 * n) polygons
** to approximate the curvature and n
** polygons to describe the length.
** This requires (2 * nA2) polygons to
** describe the cylinder. Compute the
** surface normal at each vertex so we
** can use the Graphics Library to perform
** lighting calculations.
*/
make_cylinder(n)
int n:
{

POLYGON *p:
float theta,

x, dx:

int vertex_i:

/* pointer into polygon list */
dtheta, /* current angle and angle */

/* increment around section */
/* current position and */
/* increment along cylinder side */
/* vertex counter */

/* allocate and point to enough */
/* memory for all the polygons */
number_of_polys = 2 * n * n:
p = polygon = (POLYGON *)

malloc(number_of_polys * sizeof(POLYGON)):

dx = 3.0/n: /* n polygons for 3.0 units of length */
dtheta = PI/n: /* length of polygon along curvature */

/* for each layer of polygons along */
/* length of cylinder ••• */
for (x = -l.5: x < l.5: x = x+dx) {

/* ••• and for each polygon describing*/
/* the circumference */
for (theta = O.O: theta < TWOPI: theta += dtheta) {

2-26 Graphics Subroutines Reference

/* calculate the four points */
/* describing the polygon */
p->vertex[O].x =

p->vertex[l].x = x;
p->vertex[O].y = p->vertex[3].y

RADIUS * cos(theta);
p->vertex[O].z = p->vertex[3].z

RADIUS* sin(theta);
p->vertex[l].y = p->vertex[2).y

RADIUS * cos(theta + dtheta);
p->vertex[l].z = p->vertex[2].z =

RADIUS* sin(theta + dtheta);
p->vertex[2].x = p->vertex[3].x = x + dx;

cylinder1 .c

/* calculate the four normals of unit length */
for (vertex_i = O; vertex_i < 4; vertex_i++) {

p->normal[vertex_i].x = O;
p->normal[vertex_i].y =

p->vertex[vertex_i].y I RADIUS;
p->normal[vertex_i].z =

p->vertex(vertex_i).z I RADIUS;

}
}

/*

}

}
p++;

** draw_cylinder()
** This subroutine increments through the 4
** vertices describing each polygon of
** the cylinder defined in make_cylinder.
** Note how a normal is sent down the
** graphics pipeline before each vertex
** so that the Graphics Library will
** compute the color for each vertex
** based on the lighting parameters that we
** are using.
*/
draw_cylinder()
{

POLYGON *p; /* pointer into polygon list */
int poly_i; /* polygon counter */

GL Example Programs 2-27

cylinder1 .c

}

/*

/* start at first polygon and */
/* increment through all of them */
p = polygon;
for (poly_i = O; poly_i < number_of_polys; poly_i++) {

}

bgnpolygon(); /*describe the polygon*/
n3f(&p->normal[O]);
v3f(&p->vertex[O]);
n3f(&p->normal[l]);
v3f(&p->vertex[l]);
n3f(&p->normal[2]);
v3f(&p->vertex[2]);
n3f(&p->normal[3]);
v3f(&p->vertex[3]);

endpolygon () ;
p++; /* go to the next polygon */

** main ()
*I
main()
{

}

int i;

/* set up graphics environment */
prefposition(lOO, 600, 100, 600);
winopen("cylinder");
RGBmode ();
doublebuf fer () ;
gconfig();
lsetdepth(O, Ox7FFFFF);
zbuffer(TRUE);

/*Use mmode() to set up projection*/
/* and viewing matrices for lighting */
mmode (MVIEWING) ;
perspective(400, 1.0, 4.0, 12.0);
loadmatrix(idmat);
lookat(0.0,0.0,8.0,0.0,0.0,0.0,0);

/*let there be light !!!! */
def_simple_light_calc();
use_simple_light_calc();

/* Rotate cylinder in 2 deg. increments */
/* about Y and z axis for 180 frames */
make_cylinder(25);
for (i = O; i < 180; i++) {

c3f(blackvec); /*clear the frame*/
clear();
zclear ();
pushmatrix(); /*make a frame*/

rot (i * 2 . 0 , ' Z ') ;
rot(i * 2.0, 'Y');
draw_cylinder () ;

popmatrix () ;
swapbuffers();

}
sleep(3);

2-28 Graphics Subroutines Reference

cylinder2.c Example C Language Program
/* Example C Language Program cylinder2.c */

/*

cylinder2.c

This program displays two intersecting cylinders, using a
different surface material for each cylinder. In addition, each
cylinder is lit by two light sources.

This program requires the 24-bit adapter and the z-buffer option.
*/
#include <gl/gl.h>
#include <math.h>
#include <stdio.h>

#define RADIUS 0.9
#define TWOPI 6.28318530
#define PI 3.14159265

/* define black RGB color */
float blackvec[3] = {O.O, 0.0, 0.0};
Matrix idmat = {l.O,O.O,O.O,O.O, /* identity matrix */

0.0,1.0,0.0,0.0,
o.o,o.o, 1.0,0.0,
o.o,o.o,o.0,1.o};

/* define a polygon with some structures */
typedef struct { /* 3-D vertex structure */

Coord x;
Coord y;
Coord z;

} POINT;

typedef struct {
POINT vertex[4];
POINT normal[4];

} POLYGON;

/* lighted polygon struct */

int number_of_polys;
POLYGON *polygon;

/* cylinder polygon count */
/* polygon list pointer */

/* define property arrays */
float shiny_material[] =

{SPECULAR, 0.8, 0.8,
DIFFUSE, 0.4, 0.4,
SHININESS, 30.0,
LMNULL};

0.8, /* light gray reflectance */
0.4, /* gray reflectance */

/* focused highlight */

float purple_material[]
0.3, /* gray reflectance */
0.8, /* purple reflectance */

{SPECULAR, 0.3, 0.3,
DIFFUSE, 0.8, 0.0,
SHININESS, 3.0,
AMBIENT, 0.2,0.o,o.2,
LMNULL};

float blue_light[] =

/* unfocused highlight */
/* purple reflectance */

{LCOLOR, o.o,o.o,o.6, /* blue light */
POSITION, 0.0,0.1,0.0,0.0, /* Y axis at infinity */
LMNULL};

GL Example Programs 2-29

cylinder2.c

/*
** def_light_calc()
** Tell the Graphics Library to DEFINE a
** lighting calculation that accounts for
** ambient, diffuse, and specular reflection.
** This lighting calculation defines a second
** material and light source.
*/
def_light_calc() {

}

/*

, lmdef(DEFMATERIAL, 1, 11, shiny_material);
lmdef(DEFMATERIAL, 2, 15, purple_material);
lmdef(DEFLIGHT, 1, 0, NULL);
lmdef(DEFLIGHT, 2, 10, blue_light);
lmdef(DEFLMODEL, 1, 0, NULL);

** use_light_calc()
** Tell the Graphics Library to USE
** the lighting calculation that we
** defined earlier.
*/
use_light_calc ()
{

}

I*

lmbind(LIGHTO, l);
lmbind(LIGHTl, 2);
lmbind(LMODEL, l);

/* use light source description 1 */
/* use light source description 2 */
/* use lighting model 1 */

** make_cylinder()
** Draw a cylinder using (2 * n) polygons
** to approximate the curvature and n polygons
** to describe the length. This requires (2 * nA2)
** polygons to describe the cylinder. Compute
** the surface normal at each vertex so we can
** use the hardware lighting facility to perform
** lighting calculations.
*/
make_cylinder(n)
int n;
{

POLYGON *p;
float theta,

x, dx;

int vertex_i;

/*
dtheta,/*

/*
/*
/*
/*

polygon list pointer */
current angle and angle */
increment around section */
current position and */
increment along cylinder side */
vertex counter */

/* allocate and point to enough */
/* memory for all the polygons */
number_of_polys = 2 * n * n;
p = polygon = (POLYGON *)

malloc(number_of_polys * sizeof(POLYGON));

dx = 3.0/n; /* n polygons for 3.0 units of length */
dtheta = PI/n; /* length of polygon along curvature */

2-30 Graphics Subroutines Reference

/* for each layer of polygons */
/*along length of cylinder .•• */
for (x = -1.S; x < 1.5; x = x+dx) {

/* ••• and for each polygon*/
/* describing the circumference */

cylinder2.c

for (theta = 0.0; theta < TWOPI; theta += dtheta) {
/* calculate the four points */

}
}

}

/*

/* describing the polygon */
p->vertex[O].x = p->vertex[l].x = x;
p->vertex[O].y = p->vertex[3].y =

RADIUS* cos(theta);
p->vertex[O].z = p->vertex[3].z =

RADIUS * sin(theta);
p->vertex[l].y = p->vertex[2].y

RADIUS* cos(theta + dtheta);
p->vertex[l].z = p->vertex[2].z =

RADIUS* sin(theta + dtheta);
p->vertex[2].x = p->vertex[3].x = x + dx;

/* calculate the four normals of unit length */
for (vertex_i = O; vertex_i < 4; vertex_i++) {

}
p++;

p->normal[vertex_i].x = O;
p->normal[vertex_i].y =

p->vertex[vertex_i].y I RADIUS;
p->normal[vertex_i].z =

p->vertex[vertex_i].z I RADIUS;

** draw_cylinder()
** This subroutine increments through the 4
** vertices describing each polygon of the
** cylinder defined in make_cylinder. Note
** how a normal is sent to the graphics
** hardware before each vertex so that the
** lighting facility will compute the color
** for each vertex based on the lighting
** parameters that we are using.
*/
draw_cylinder ()
{

POLYGON *p; /* pointer into polygon list */
int poly_i; /* polygon counter */

/* start at first polygon and */
/* increment through all of them */
p = polygon;
for (poly_i = O; poly_i < number_of_polys; poly_i++) {

GL Example Programs 2-31

cylinder2.c

}

/*

}

bgnpolygon(); /*describe the polygon*/
n3f(&p->normal[O]);
v3f(&p->vertex[O]);
n3f(&p->normal[l]);
v3f(&p->vertex[l]);
n3f(&p->normal[2]);
v3f(&p->vertex[2]);
n3f(&p->normal[3]);
v3f(&p->vertex[3]);

endpolygon();
p++; /* go to the next polygon */

** Main Program
*/
main ()
{

int i;

/* set up graphics environment */
prefposition(lOO, 600, 100, 600);
winopen("cylinder");
RGBmode ();
doublebuffer();
gconfig ();
lsetdepth(O, Ox7FFFFF);
zbuffer(TRUE);

/*Use mmode() to set up projection*/
/* and viewing matrices for lighting */
mmode(MVIEWING);
perspective(400, 1.0, 4.0, 12.0);
loadmatrix(idmat);
lookat(0.0,0.0,8.0,0.0,0.0,0.0,0);

/*let there be light!!!! */
def_light_calc();
use_light_calc();

/* Rotate cylinders in 2 deg. increments */
/* about Y and Z axis for 180 frames */
make_cylinder(25);
for (i = O; i < 180; i++) {

c3f(blackvec);
clear();
zclear ();

2-32 Graphics Subroutines Reference

}

pushmatrix();
rot(i * 2.0, 'Z');
rot (i * 2 • 0 , ' Y ') ;
/* use white shiny material for cyl l*/
lmbind(MATERIAL, l);
draw_cylinder ();
pushmatrix();

rot (9 0 . 0 , ' Y ') ;
scale(0.9,0.9,0.9);

cylinder2.c

/* use purple rough material for cyl 2 */
lmbind(MATERIAL, 2);
draw_cylinder ();

popmatrix();
popmatrix();
swapbuffers();

}
sleep(3);

GL Example Programs 2-33

db.c

db.c Example C Language Program
/*
db.c:

A double buffered window manager program. Draws a cube which is
rotated by movements of the mouse.
*/

#include <gl/gl.h>
#include <gl/device.h>

main ()
{

}

int moveit, x, y;
Device dev;

/* current rotation of object */

short val;

x = O;
y = O;
initialize () ;

while(TRUE) {

}

while (qtest()) { /* process queued tokens */

}

dev = qread(&val);

switch(dev) {

}

case ESCKEY: /* exit program with ESC */
exit(O);
break;

case REDRAW:
reshapeviewport();
drawcube(x,y);
break;

default:
break;

x = getvaluator(MOUSEX);
y = getvaluator(MOUSEY);
drawcube(x,y);

initialize ()
{

int gid;

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4, YMAXSCREEN/4,
YMAXSCREEN*3/4);

gid = winopen("db");

doublebuffer();
gconfig();
shademodel(FLAT);

qdevice(REDRAW);
qdevice(ESCKEY);
qenter(REDRAW,gid);

2-34 Graphics Subroutines Reference

}

perspective(400, 3.0/2.0, 0.001, 100000.0);
translate(O.O, 0.0, -3.0);

drawcube(rotx,roty)
int rotx, roty;
{

}

color(BLACK);
clear();
color(WHITE);
pushmatrix();
rotate(rotx,'x');
rotate(roty,'y');
cube ();
scale(0.3,0.3,0.3);
cube ();
popmatrix () ;
swapbuffers();

cube() /*make a cube out of 4 squares*/
{

}

pushmatrix();
side();
rotate(900, 'x');
side();
rotate(900,'x');
side();
rotate(900,'x');
side();
popmatr ix () ;

side() /*make a square translated 0.5 in the z direction*/
{

}

pushmatrix();
translate(0.0,0.0,0.5);
rect(-0.5,-0.5,0.5,0.5);
popmatr ix () ;

db.c

GL Example Programs 2-35

depthcue.c

depthcue.c Example C Language Program
/*
depthcue.c:

Draws a depthcue'd 3-d wireframe cube with lots of little points
inside. Moving the mouse rotates the cube. NEAR and FAR (Z)
clipplanes are currently set to 350.0 and 1000.0, respectively.
Give the command line 2 extra arguements as floating point near
and far values to change where Z gets clipped, which will also
alter the distribution of brightness to darkness of the visual
depth cues. Press the middle mouse button to quit.

This program requires the 24-bit adapter and the z-buffer option.
*/

#include <gl/gl.h>
#include <gl/device.h>
#include <math.h>

float hrand () ;

main (argc,argv)
int argc;
char **argv;
{

int val, i;
float near, far;

prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,
YMAXSCREEN*3/4);

winopen("depthcue");
doublebuffer();
gconfig();
if (argc == 3) {

}

near= atof(argv[l]);
far= atof(argv[2]);

else {

}

near = 350.0;
far = 1000.0;

reshapeviewport();
perspective(600, 1.0, near, far);
lookat (0. O, O. O, 7 0 0. 0, 0. O, O. O, O. O, O) ;
qdevice(KEYBD);

makeobj(l);

/* generate a bunch of random points */
for (i = O; i < 100; i++)

pnt(hrand(-200.0,200.0), hrand(-200.0,200.0),
hrand(-200.0,200.0));

2-36 Graphics Subroutines Reference

/* and a cube */
movei(-200, -200,
drawi(200, -200,
drawi(200, 200,
drawi(-200, 200,
drawi(-200, -200,
drawi(-200, -200,
drawi(-200, 200,
drawi(-200, 200,
movei(-200, 200,
drawi(200, 200,
drawi(200, -200,
drawi(-200, -200,
movei(200, 200,
drawi(200, 200,
movei(200, -200,
drawi(200, -200,
closeobj();

-200);
-200);
-200);
-200);
-200);

200);
2 00);

-200);
200);
200);
200);
200);
200);

-200);
-200);

200);

/* load the color map with a cyan ramp */
for (i = O; i <= 127; i++)

mapcolor(128+i, O, 2*i, 2*i);

/* set the range of z values that will be stored
in the bitplanes */
lsetdepth(OxCOOO, Ox3FFF);

/* set up the mapping of z values to color map indexes:

depthcue.c

z value OxCOOO is mapped to index 128 and z value Ox3FFF is
mapped to index 255 */
lshaderange(l28,255,0xCOOO,Ox3FFF);

/* turn on depthcue mode: the color index of each pixel in points
and lines is determined from the z value of the pixel */
depthcue(l);

/* until a key is pressed, rotate cube according to movement of
the mouse */

}

while (!getbutton(MIDDLEMOUSE)) {
pushmatrix();
rotate(3*getvaluator(MOUSEY), 'x');
rotate(3*getvaluator(MOUSEX), 'y');
color(BLACK);
clear();
callobj(l);
popmatrix();
swapbuffers();

}
gexit ();

/* this routine returns random numbers in the specified range */
float hrand(low,high)
float low,high;
{

}

float val;

val= ((float)((short)rand(O) & Oxffff)) I ((float)Oxffff);
return((2.0 *val* (high-low)) +low);

GL Example Programs 2-37

doily.c

doily.c Example C Language Program
/*
doily.c:

Draws a doily depending on how many points you give it (range is
currently set between 3 •. 100). Point count is equivalent to how
many line segments make up the circle's edge.
*/
#include <gl/gl.h>
#include <gl/device.h>
#include <math.h>

#define PI 3.1415926535
float points[l00][2];

main(argc, argv)
int argc;
char *argv [] ;
{

}

int val,dev;
long numpts;

/* First figure out how many points there are. */
if (argc ! = 2) {

}

printf("Usage: %s <point_count>\n", argv[O]);
exit(O);

numpts = atoi(argv[l]); /* convert argument to internal
format */

if (numpts > 100) {
printf("Too many points\n");
exit(O);

} else if (numpts < 3) {
printf("Too few points\n");
exit(O);

}
initialize(numpts);

while (TRUE) {

}

if (qtest()) {

}

dev = qread(&val);

if (dev == ESCKEY) {
gexit();
exit ();

} else if (dev == REDRAW) {
reshapeviewport();
drawdoily(numpts);

}

initialize(numpts)
long numpts;
{

int gid;
long i;

2-38 Graphics Subroutines Reference

}

/* Now get the x and y coordinates of numpts equally
* spaced points around the unit circle.
*/

for (i = O; i < numpts; i++) {
points[i][O] cos((i*2.0*PI)/numpts);
points[i][l] = sin((i*2.0*PI)/numpts);

}

keepaspect(l,l);
prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,

YMAXSCREEN*3/4);
gid = winopen("doily");

qdevice(ESCKEY);
qdevice (REDRAW) ;
qenter(REDRAW,gid);

ortho2(-1.2, 1.2, -1.2, 1.2);

drawdoily(numpts)
long numpts;
{

}

long i,j;

color(BLACK);
clear();
color (RED) ;

for (i = O; i < numpts; i++)
for (j = i+l; j < numpts; j++) {

move2(points[i][O], points[i][l]);
draw2(points[j][O], points[j][l]);

}

doily.c

GL Example Programs 2-39

draw.c

draw.c Example C Language Program
/*
draw.c:

An absolutely minimal line drawing program.
*/

#include <gl/gl.h>
#include <gl/device.h>

main()
{

Device dev;
short val;
unsigned short xpos, ypos;

initialize () ;

while(TRUE) {

dev = qread(&val);

switch(dev) {
case ESCKEY:

gexit ();
exit(O);

case REDRAW:
reshapeviewport();
color (BLACK) ;
clear();
color(RED);
break;

/* wait for mouse down */
/* quit */

case MIDDLEMOUSE: /* move */

}
}

}

initialize ()
{

int gid;

qread (&xpos) ;
qread(&ypos);
move2i(xpos, ypos);
qread(&val); /*
qread (&val);
qread (&val) ;
break;

case LEFTMOUSE:
qread(&xpos);
qread(&ypos);
draw2i(xpos, ypos);
qread(&val);
qread (&val) ;
qread(&val);
break;

float xmax,ymax;

these three reads clear out */
/* the queue */

/* draw */

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4, YMAXSCREEN/4,
YMAXSCREEN*3/4);

gid = winopen("draw");

2-40 Graphics Subroutines Reference

}

xmax = .5 + (float) XMAXSCREEN;
ymax = .5 + (float) YMAXSCREEN;
ortho2(xmax/4.0,xmax*3.0/4.0,ymax/4.0,ymax*3.0/4.0);

qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
tie(LEFTMOUSE, MOUSEX, MOUSEY);
tie(MIDDLEMOUSE, MOUSEX, MOUSEY);

color(BLACK);
clear () ;
color(RED);

draw.c

GL Example Programs 2-41

iobounce.c

iobounce.c Example C Language Program
/*
iobounce.c:

A "pool" ball that "bounces" around a 2-d "surface".

*I

RIGHTMOUSE stops ball
MIDDLEMOUSE increases y velocity
LEFTMOUSE increases x velocity

#include <gl/gl.h>
#include <gl/device.h>

#define XMIN 100
#define YMIN 100
#define XMAX 900
#define YMAX 700

long xvelocity

main ()
{

Device dev;
short val;

O, yvelocity O;

initialize () ;

while (TRUE) {

}
}

while (qtest()) {

dev = qread(&val);

switch (dev) {
case LEFTMOUSE: /* increase xvelocity */

if (xvelocity >= 0)
xvelocity++;

else
xvelocity-;

break;
case MIDDLEMOUSE: · /* increase yvelocity */

if (yvelocity >= 0)
yvelocity++;

else
yvelocity-;

break;
case RIGHTMOUSE: /* stop ball */

xvelocity = yvelocity = O;
break;

case ESCKEY:
gexit ();
exit (0);

}
}
drawball () ;

2-42 Graphics Subroutines Reference

initialize ()
{

int gid;

iobounce.c

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4, YMAXSCREEN/4,
YMAXSCREEN*3/4);

gid = winopen("iobounce");

doublebuffer () ;
gconf ig () ;
shademodel(FLAT);

ortho2(XMIN - 0.5, XMAX + 0.5, YMIN - 0.5, YMAX + 0.5);

qdevice(ESCKEY);
qdevice(REDRAW);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
qdevice(RIGHTMOUSE);
qenter(REDRAW,gid);

}

drawball()
{

}

static xpos = 500,ypos 500;
long radius = 10;

color(BLACK);
clear () ;
xpos += xvelocity;
ypos += yvelocity;
if (xpos > XMAX - radius I I

xpos < XMIN + radius) {
xpos -= xvelocity;
xvelocity = -xvelocity;

}
if (ypos > YMAX - radius I I

ypos < YMIN + radius) {
ypos -= yvelocity;
yvelocity = -yvelocity;

}
color (YELLOW) ;
circfi(xpos, ypos, radius);
swapbuffers();

GL Example Programs 2-43

localatten.c

localatten.c Example C Language Program
/* Example C Language Program localatten.c */

/*
This program demonstrates the effect of light attenuation
by continuously moving a local light toward a flat plate.
It draws a flat green plate at z = O; -1.0
x, y 1.0. The eye is 6 units above, looking down. A
light bounces up and down in the range 0.1 z 1.5, and
x = y = 0. The lighting model attenuates intensity with
distance, so the center of the plate gets brighter as
the light moves closer. The character string printed at
the lower left of the plate shows the height of the
light. Note that the color is set after the cmov()
command~ the cmov() actually sends a vertex through the
transformation, and it will set the current color. If
you move the cpack() command just above the cmov()
command, the character string will be lighted and will
appear in varying shades of green.
*/

#include <gl/gl.h>
#include <stdio.h>
Matrix idmat = {l.O,O.O,O.O,O.O,

0.0,1.0,0.0,0.0,
o.o,o.o,i.o,o.o,
o.o,o.o,o.0,1.0};

float green_material(] ={DIFFUSE, 0.0, 1.0, 0.0,
LMNULL};

float local_white_light[] = {LCOLOR, 1.0, 1.0, 1.0,
POSITION, 0.0, 0.0, 1.0, 1.0,
LMNULL};

float light_model[]

/*

{AMBIENT, 0.0, 0.0, 0.0,
LOCALVIEWER, 0.0,
ATTENUATION, 1.0, 1.0,
LMNULL};

** draw_plate draws a flat plate covering the
** range -1.0 <= x, y <= 1.0 and z = 0. using
** nA2 rectangles. All the normal vectors are
** perpendicular to the plate.
*/

draw_plate(n)
long n;
{

long i, j;
float p0[3], pl[3], p2[3], p3[3];
float n0(3];

nO(O]
n0[2]
p0[2]

nO[l]
1. 0;
pl[2]

2-44 Graphics Subroutines Reference

0.0;

p2[2] p3[2] o.o;

}

/*

for (i = O; i < n; i++) {

}

pO[O] = pl[O] = -1.0 + 2.0*i/n;
p2[0] = p3[0] = -1.0 + 2.0*(i+l)/n;
for (j = 0 ; j < n; j ++) {

}

pO[l] = p3[1] -1.0 + 2.0*j/n;
pl[l] = p2[1] = -1.0 + 2.0*(j+l)/n;
bgnpolygon();
n3f(n0); v3f(p0);
n3f(n0); v3f(pl);
n3f(n0); v3f(p2);
n3f(n0); v3f(p3);
endpolygon();

** Tell the Graphics Library to DEFINE a
** lighting calculation that accounts for
** diffuse and ambient reflection. In
** addition, this lighting calculation
** includes a local light whose emitted
** light is attenuated as a function of
** distance from the object.
*/
def_light_calc()
{

}

/*

lmdef(DEFLMOOEL, 1, 10, light_model);
lmdef(DEFMATERIAL, 1, 5, green_material);
lmdef(DEFLIGHT, 1, 10, local_white_light);

** Tell the Graphics Library to USE the lighting
** calculation that we defined earlier.
*/
use_light_calc()
{

}

lmbind(LMOOEL, l);
lmbind(LIGHTl, 1);
lmbind(MATERIAL, 1);

main()
{

float dist;
long flag = 1 ;
char str[32];

localatten.c

keepaspect(l, 1);
prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,

YMAXSCREEN*3/4);
winopen("local");
RGBmode();
doublebuffer();
gconfig();

GL Example Programs 2-45

localatten.c

}

/*
**Use mmode() to set up projection and
** viewing matrices for lighting.
*I
mmode(MVIEWING);
perspective(400, 1.0, 0.5, 10.0);
loadmatrix(idmat);
lookat(0.0,0.0,6.0,0.0,0.0,0.0,0);

def_light_calc();
use_light_calc();

dist = 1. O;

while (TRUE) {

}

if (flag) {
dist += .01;
if (dist > 1.5) flag = 1 - flag;

} else {
dist -= .01;
if (dist< 0.1) flag= 1 - flag;

}
cpack(O);
clear ();
sprintf(str, "Light Distance: %1.2f", dist);
cmov2(-l.5, -1.5);
cpack(Oxffffff);
charstr(str);
pushmatrix();

/*
** Change the position of the local light
** by REDEFINING and REBINDING the light.
** Repositioning the light changes the
** illumination of the plate for two reasons:
** l) the affect of attenuation, and
** 2) the light direction vector from a
** vertex on the plate to the repositioned
** light source has changed.
*/
local_white_light[7] =dist;
lmdef(DEFLIGHT, 1, 10, local_white_light);
lmbind(LIGHTl, l);
draw_plate(20);

popmatrix ();
swapbuffers();

2-46 Graphics Subroutines Reference

octahedron.c Example C Language Program
/*
octahedron.c

octahedron.c

This program defines a drawing subroutine called drawoctahedron
that uses the mesh subroutines. (The drawoctahedron subroutine
is not part of the Graphics Library.)

The cpack subroutine sets vertex colors, so ignore them if you
are studying the program to understand the logic of mesh drawing.
All the rotation and hidden surf ace removal are handled in the
main() routine. The calculations of rotation angles simply cause
the octahedron to tumble in an interesting way.

This program requires a 24-bit adapter and the z-buffer option.
/*

#include <gl/gl.h>

float octdata[6][3] {

} ;

{1.0, o.o, 0.0},
{O.O, 1.0, 0.0},
{O.O, 0.0, 1.0},
{-1.0, o.o, 0.0},
{0.0, -1.0, 0.0},
{ 0. 0' 0. 0' -1. 0}

GL Example Programs 2-47

octahedron.c

drawoctahedron()
{

}

bgntmesh () ;
cpack(OxffOOOO);
v3f(octdata[O]);
cpack(OxOOffOO);
v3f(octdata[l]);
swaptmesh () ;
cpack(OxOOOOff);
v3f(octdata(2]);
swaptmesh () ;
cpack(OxffffOO;
v3f(octdata[4]);
swaptmesh () ;
cpack (Oxffff ff) ;
v3f(octdata(5]);
swaptmesh () ;
cpack(OxOOffOO);
v3f(octdata(l]);
cpack(OxffOOff);
v3f(octdata[3]);
cpack(OxOOOOff);
v3f(octdata(2]);
swaptmesh () ;
cpack(OxffffOO);
v3f(octdata(4]);
swaptmesh () ;
cpack(Oxffffff);
v3f(octdata[5]);
swaptmesh();
cpack(OxOOffOO);
v3f(octdata(l]);

endtmesh();

main ()
{

long iang, jang, kang;
long exitcounter = O;

2-48 Graphics Subroutines Reference

/* color blue */

/* color green */

/* color red */

/* color cyan */

/* color white */

/* color green */

/* color magenta */

/* color red */

/* color cyan */

/* color white */

/* color green */

}

prefposition(lOO, 500, 100, 500);
winopen("octahedron");
ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zbuffer(TRUE); /*hidden surfaces removed
doublebuffer(); /*for smooth motion*/
RGBmode(); /*direct color mode*/
gconfig(); /*reconfigure for RGBmode
while(1) {

octahedron.c

with z buffer*/

and doublebuffer */

pushmatrix();
rotate(iang, 'x');
rotate(jang, 'y');
rotate (kang, 'z') ;
iang += 10;

/*save viewing transformation*/
/*rotate by iang about x axis*/
/*rotate by jang about y axis*/
/*rotate by kang about z axis*/

}

jang += 13;
if (iang + jang > 3000) kang += 17;
if (iang > 3600) iang 3600;
if (jang > 3600) jang -= 3600;
if (kang > 3600) kang -= 3600;
cpack(O); /*color black*/
clear();
zclear ();
drawoctahedron();
swapbuffers();
popmatrix();
exitcounter += 1;

/* clear the z buffer */

/* show completed drawing */
/* restore viewing transformation */

if (exitcounter == 1000) return;

GL Example Programs 2-49

overlay.c

overlay.c Example C Language Program
/*
overlay.c

This program demonstrates how to use overlay bitplanes.
*/

#include <gl/gl.h>
#include <gl/device.h>

main () {
Colorindex heat;
inti, xpos = 1013, ypos = 1013, rampup();
float xspd = o.o, yspd = 0.0, yaccel = -1.0;
float yacc = -.4, yreflect = -0.6;

prefposition(O, XMAXSCREEN,
winopen ("overlay");
doublebuffer ();
overlay (2);
gconfig ();
get_crnap();

drawmode (OVERDRAW);

mapcolor (1, 255, 0, 0);
mapcolor (2, 0, 255, O);
mapcolor (3, 0, 255, 255);
color (l);
rectfi (200~ 200, 300, 300);

color (2);
rectfi (500, 500, 600, 600);
color (3);
rectfi (800, 800, 900, 900);
rectfi (850, 500, 950, 600);
rectfi (750, 400, 850, 500);
rectfi (650, 300, 750, 400);
drawmode (NORMALDRAW);
mapcolor (0, 0, O, O);
mapcolor (1, 255, 255, O);

0, YMAXSCREEN);

/* Get into the overlay
bitplanes */

/* Draw some rectangles
for a ball to roll
under. */

mapcolor (10, 255, 255; 255);
rampup(l2, 82, 255, 255, O, 255, O, O);
setbell (1);

2-50 Graphics Subroutines Reference

}

overlay.c

while (!getbutton (MIDDLEMOUSE)) {

}

for (i = O; i < 1013 && !getbutton(MIDDLEMOUSE); i
{

i + 3)

}

color (BLUE) ;

clear ();
if ((i==210> I I (i==s10>

ringbell () ;
if ((i>250) && (i<550))

color (2);

/* Roll the ball up and
to the right */

11 (i==a10>>
/* Ring the bell everytime */
/* the ball gets to the */
/* next rectangle. */

else if ((i>550) &&
color (5);

(i<850))

else if (i>850)
color (10);

else
color (l);

circfi (i, i, 10);
swapbuffers ();

/* change the ball's color */

yspd = 0.0;
for (heat=82, ypos=l013; ypos>=S && !getbutton(MIDDLEMOUSE);

ypos+=yspd)
{

color (BLUE); /*drop the ball back to the bottom*/
clear ();
color (heat~); /*change the ball's color */
yspd += yacc; /* as it falls. */
circfi (1013, ypos, 10);
swapbuffers ();

}
yspd = -60.0;
for (xpos=1013, ypos=lO; xpos>=-0&& !getbutton(MIDDLEMOUSE);

xpos -= 5)
{

}

if (ypos <= 10)

yspd *= yref lect;
color (BLUE);
clear ();
color (l);
ypos += yspd;
yspd += yaccel;
circfi (xpos, ypos, 10);
swapbuf fers () ;

/* roll the ball back to the
beginning, */

/* and keep updating its' */
/* bounce-ability per frame */

drawmode (OVERDRAW); /* clean up the overlay
bitplanes */

color (0);
clear();
drawmode(NORMALDRAW);
restore_cmap();
greset();
gexit ();

/* restore the color map */

~L Examole Proarams 2-51

overlay.c

/*
Make a color ramp. Make an interpolated ramp from the 1st
arguement's index to the second one. The 3rd, and 4th are red's
low and hi indexes (5&6 green's, 7&8 are blue's).
*/
#define round(n) ((int) (n + 0.5))

rampup(first_lutv,last_lutv,minR,maxR,minG,maxG,minB,maxB)
unsigned short first_lutv, last_lutv, /* Start & end ramp

{

minR, maxR,
minG, maxG,
minB, maxB;

values. */
/* Low and high red, */
/* green, *I
/* and blue values */

unsigned short len_red, len_green, len_blue, /* Length of
each color */

}

i· ,

short red, gre, blu;
float rdx, gdx, bdx,

r, g, b,
steps;

/* lut values */

/* Counter for
number of

steps */

/* Sizes of rgb increments */
/* A position on the ramp */
/* No. of steps along the ramp

at which intensity
assignments will be made */

/* Determine length of ramp*/
steps= (float) (last_lutv-first_lutv + l);

len_red (maxR minR); /*determine length of red*/
len_green = (maxG - minG); /*determine length of green */
len_blue = (maxB - minB); /*determine length of blue */

rdx (float) len red I steps; /* compute step */
gdx = (float) len_green I steps; /* sizes of r, g, */
bdx = (float) len_blue I steps; /* and b values */
r = minR; /* Assign starting */
g = minG; /* indexes for each */
b = minB; /* color value */

for (i = f irst_lutv; i <= last _lutv; i++) {
red = (short) round (r); /* Round off the
gre = (short) round(g); /* given r, g,
blu = (short) round(b); /* and b values
mapcolor(i, red, gre, blu); I* assign next color

map index */
r += rdx; /* Increment the
g += gdx; /* color indexes
b += bdx;

}

*/
*/
*/

*/
*/

#define MAXCOLI 255

static short CarrayR[MAXCOLI+l],
CarrayG[MAXCOLI+l],
CarrayB[MAXCOLI+l];

unsigned short index;

get_cmap() {

}

short rcomp, gcomp, bcomp;

for (index=O; index<=MAXCOLI; index++) {
getmcolor(index,&rcomp, &gcomp, &bcomp);
CarrayR[index] rcomp;
CarrayG[index] gcomp;
CarrayB[index] bcomp;

}

restore_cmap() {

}

for (index=O; index<=MAXCOLI; index++)
mapcolor(index,CarrayR[index],

CarrayG[index], CarrayB[index]);

overlay.c

GL Example Programs 2-53

paint.c

paint.c Example C Language Program

paint
/*

*
*
*
*
*

A minimal object space paint program.

*/
#include <gl/gl.h>
#include <gl/device.h>
#include <math.h>

Paul Haeberli - 1985

#define ABS(a

#define MOUSE

(((a)> 0)? (a)

12

-(a))

#define TABLET
#define DRAWLINE
#define NEWCOLOR
#define CLEAR
#define NEWSIZE

#define MOUSEXMAP(x)
#define MOUSEYMAP(y)
#define BPSCALE 16.0

struct event {

} ;

struct event *next;
int func;
float argl;
float arg2;
float arg3;
float arg4;

int xsize, ysize;
int xorg, yorg;
int mx, my;
int bpx, bpy;
int mmiddle, mleft;
int curcolor = 7;
int lastcurcolor = 7;
float curx, cury, cursize;
int curdev = MOUSE;
struct event *histstart = O;
struct event *histend O;
float xpos, ypos;
int pendown;
int brushsides;
float brushcoords[30][2];
int menu;

2-54 Graphics Subroutines Reference

13
2
3
4
5

((100.0*((x)-xorg))/(xsize)
((100.0*((y)-yorg))/(ysize)

main ()
{

cursize = 1. 0;
prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,

YMAXSCREEN*3/4);
winopen("paint");
menu= defpup("paint %tlmouseltablet");
makebrush();
make frame () ;
getinput();

}

getinput()
{

Device dev;
short val;
float x, y;

while(TRUE) {
do {

dev qread(&val);
switch (dev) {

case MOUSEX:
mx = val;
if (curdev == MOUSE)

xpos MOUSEXMAP(val);
break;

case MOUSEY:
my = val;
if (curdev

ypos
break;

case BPADX:
bpx = val;

== MOUSE)
MOUSEYMAP(val);

if (curdev == TABLET)
xpos = val/BPSCALE;

break;
case BPADY:

bpy = val;
if (curdev == TABLET)

ypos val/BPSCALE;
break;

case BPADO:
if (curdev == TABLET)

pendown val;
if (val) {

}

curx
cury

break;

xpos
ypos

bpx/BPSCALE;
bpy/BPSCALE;

paint.c

GL Example Programs 2-55

paint.c

}
}

case MENUBUTTON:

}

if (val) {
switch (dopup(menu)) {

case 1:
curdev = MOUSE;
break;

case 2:

}
}
break;

curdev
break;

case MIDDLEMOUSE:
mmiddle = val;
if (mmiddle) {

clearscreen ();
history(CLEAR);

}
break;

case LEFTMOUSE:
mleft = val;
if (mleft) {

TABLET;

if (!inside(mx-xorg, my-yorg,

}
}

0, xsize, 0, ysize, 0)) {
newcolor(getapixel(mx,my));
history(NEWCOLOR,(float)curcolor);

if (curdev == MOUSE) {
pendown = val;

}

curx xpos MOUSEXMAP(mx);
cury = ypos = MOUSEYMAP(my);

break;
case REDRAW:

makeframe();
replay();
break;

case ESCKEY:
gexit ();
exit(O);
break;

} while (qtest());
if (pendown) {

}

x = xpos;
y = ypos;
drawbrush (x, y, curx, c.ury);
history(DRAWLINE,x,y,curx,cury);
curx x;
cury = y;

2-56 Graphics Subroutines Reference

c learscreen ()
{

}

color(curcolor);
clear();

newcolor(c)
int c;
{

}

lastcurcolor
curcolor = c;
paintport();

curcolor;

makeframe ()
{

}

qdevice(ESCKEY);
qdevice(MOUSEX);
qdevice(MOUSEY);
qdevice(MENUBUTTON);
qdevice(MIDDLEMOUSE);
qdevice(LEFTMOUSE);
qdevice(BPADX);
qdevice(BPADY);
qdevice(BPADO);
getsize(&xsize,&ysize);
getorigin(&xorg,&yorg);
paint port () ;
newcolor(O);
clearscreen();
newcolor(255);
newcolor(l28+32);

paintport()
{

}

viewport(O,xsize-1,0,ysize);
ortho2(-0.5,99.5,-0.5,99.5);

inside(x,y,xmin,xmax,ymin,ymax,fudge)
int x, y, xmin, xmax, ymin, ymax, fudge;
{

}

if (x>xmin-fudge && x<xmax+fudge &&
y>ymin-fudge && y<ymax+fudge)

return 1;
else

return O;

makebrush()
{

int i;

paint.c

GL Example Programs 2-57

paint.c

}

brushsides = 4;
brushcoords[O][O] -0.6;
brushcoords[O][l] -0.2;
brushcoords[l][O] -0.6;
brushcoords[l][l] -0.4;
brushcoords[2][0] 0.6;
brushcoords[2][l] 0.2;
brushcoords[3][0] 0.6;
brushcoords[3][l] 0.4;
for (i=O; i<brushsides; i++) {

brushcoords[i][O] = O.S*brushcoords[i][O];
brushcoords[i][l] = O.S*brushcoords[i][l];

}

drawbrush(x,y,ox,oy)
float x, y, ox, oy;
{

}

register int i, n;
register float dx, dy;
float quad[4][2];
float delta;
int c;

dx = ox-x;
dy = oy-y;
if (lastcurcolor != curcolor) {

delta= sqrt(dx*dx+dy*dy);
if (delta<0.001)

return;
c = (int) (curcolor + (lastcurcolor-curcolor) *

(ABS(dx)/delta));
color(c);

} else
color(curcolor);
pushmatrix();
translate(x,y,O.O);
for (i=O; i<brushsides; i++) {

n = (i+l) % brushsides;
quad[O][O] = brushcoords[i][O];
quad[O][l] brushcoords[i][l];
quad[l][O] brushcoords[n][O];
quad[l][l] brushcoords[n][l];
quad[2][0] quad[l][O]+dx;
quad[2][1] quad[l][l]+dy;
quad[3][0] quad[O][O]+dx;
quad[3][1] quad[O][l]+dy;
polf2 (4 ,quad);

}
polf2(brushsides,brushcoords);
popmatrix();

history(func,argl,arg2,arg3,arg4)
int func;
float argl, arg2, arg3, arg4;
{

register struct event *e, *n;

2-58 Graphics Subroutines Reference

}

e = (struct event *)malloc(sizeof(struct event));
switch (func) {

}

case CLEAR:
zaphistory();
history(NEWCOLOR,(float)curcolor);
break;

case NEWCOLOR:
case DRAWLINE:

e->func func;
e->argl argl;
e->arg2 = arg2;
e->arg3 = arg3;
e->arg4 arg4;
e->next = O;
if (!histstart) {

histstart = histend = e;
} else {

}

histend->next = e;
histend = e;

break;

zaphistory()
{

register struct event *e, *n;

e = histstart;
while (e) {

}

n = e->next;
free (e);
e = n;

histstart = histend = O;
}

replay()
{

}

register struct event *e;
register int i;

i = O;
e = histstart;
while (e) {

}

switch (e->func) {

}

case NEWCOLOR:
newcolor((int)e->argl);
break;

case DRAWLINE:
drawbrush(e->argl,e->arg2,e->arg3,e->arg4);
break;

case CLEAR:
clearscreen();
break;

e = e->next;
i++;

paint.c

GL Example Programs 2-59

paint.c

/*

*
*
*
*/

getapixel -
Read a pixel from a specific screen location.

getapixel(mousex, mousey)
short mousex, mousey;
{

}

short pixel;
int xmin, ymin;

/* Convert position to window relative coordinates */
getorigin(&xmin, &ymin);
mousex xmin;
mousey -= ymin;

rectread(mousex, mousey, mousex+l, mousey+!, &pixel);

return(pixel);

2-60 Graphics Subroutines Reference

patch1 .c Example C Language Program
/* Example C Language Program patchl.c */

/*

patch1 .c

This program draws three surface patches. First, one based on
Bezier curves, then one based on B-Spline curves, and finally one ba
sed on Cardinal curves.
*/

#include <gl/gl.h>
#include <gl/device.h>

Matrix beziermatrix = { { -1, 3, -3, 1 } '
{ 3, -6, 3, 0 } '
{ -3, 3, 0, 0 } '
{ 1, 0, o, 0 } } ;

Matrix cardinalmatrix { { -0.5, 1. 5' -1.5, 0.5 } '
{ 1. 0' -2.5, 2.0, -0.5 } '
{ -0.5, 0.0, 0.5, o.o } '
{ o.o, 1. 0' o.o, o.o } } ;

Matrix bsplinematrix {
{ -1.0/6.0, 3.0/6.0, -3.0/6.0, 1.0/6.0 } '
{ 3.0/6.0, -6.0/6.0, 3.0/6.0, o.o } '
{ -3.0/6.0, o.o, 3.0/6.0, o.o } '
{ 1.0/6.0, 4.0/6.0, 1.0/6.0, o.o }

} ;

#define BEZIER 1
#define CARDINAL 2
#define BSPLINE 3

Coord geomx[4][4] = { { o.o, 100.0, 200.0, 300.0},
{ o.o, 100.0, 200.0, 300.0},
{ 700.0, 600.0, 500.0, 400.0},
{ 700.0, 600.0, 500.0, 400.0} } ;

Coord geomy[4][4] { { 400.0, 500.0, 600.0, 700.0},
{ o.o, 100.0, 200.0, 300.0},
{ o.o, 100.0, 200.0, 300.0},
{ 400.0, 500.0, 600.0, 700.0} } ;

Coord geomz[4][4] = { { 100.0, 200.0, 300.0, 400.0 } ,
{ 100.0, 200.0, 300.0, 400.0 } '
{ 100.0, 200.0, 300.0, 400.0 } '
{ 100.0, 200.0, 300.0, 400.0 } } ;

GL Example Programs 2-61

patch1 .c

main()
{

}

Device dev;
short val;

initialize () ;

while (TRUE) {

}

if (qtest()) {

}

dev = qread(&val);

if (dev == ESCKEY) {
gexit ();
exit();

} else if (dev == REDRAW) {
reshapeviewport();
drawpatch();

}

initialize ()
{

}

int gid;

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4, YMAXSCREEN/4,
YMAXSCREEN*3/4);

gid = winopen("patchl");

qdevice(ESCKEY);
qdevice(REDRAW);
qenter(REDRAW,gid);

ortho(0.0-20.0, (float)(XMAXSCREEN*3/4),
0.0-20.0, (float)(YMAXSCREEN*3/4),
(float)XMAXSCREEN, -(float)XMAXSCREEN);

2-62 Graphics Subroutines Reference

patch1 .c

drawpatch()
{

}

color(BLACK);
clear();

defbasis(BEZIER, beziermatrix); /*define a basis matrix
called BEZIER */

defbasis(CARDINAL,cardinalmatrix); /* define a basis matrix
called CARDINAL */

defbasis(BSPLINE,bsplinematrix); /*define a basis matrix
called BSPLINE */

patchbasis(BEZIER,BEZIER);

patchcurves(4,7);

patchprecision(20,20);

color (RED) ;
patch(geomx,geomy,geomz);

/* a Bezier basis will be used
for both directions in the
first patch */

/* seven curve segments will be
drawn in the u direction and
four in the v direction */

/* the curve segments in u
direction will consist of 20
line segments (the lowest
multiple of vcurves greater
than usegments) and the curve
segments in the v direction
will consist of 21 line
segments (the lowest multiple
of ucurves greater than
vsegments) */

/* the patch is drawn based on
the sixteen specified control
points */

patchbasis(CARDINAL,CARDINAL); /* the bases for both directions
are reset */

color(GREEN);
patch(geomx,geomy,geomz);

patchbasis(BSPLINE,BSPLINE);

color(BLUE);
patch(geomx,geomy,geomz);

/* another patch is drawn using
the same control points but a
different basis */

/* the bases for both directions
are reset again */

/* a third patch is drawn */

GL Example Programs 2-63

pick1 .c

pick1 .c Example C Language Program
/*

* pickl. c:

*
*A sample picking program. Use LEFTMOUSE to "pick" the
*background, a circle, or the square.
*/

#include <gl/gl.h>
#include <gl/device.h>

#define PICKS 1

main ()
{

}

short namebuffer[50];
long numpicked;
short val, i, j, k;
Device dev;

initialize () ;

while (TRUE) {

}

dev = qread(&val);

if (val == 0)
continue;

switch (dev) {
case ESCKEY:

gexit();
exit(O);

}

case REDRAW:
color(BLACK);
clear ();
callobj (PICKS) ;
break;

case LEFTMOUSE:
pick(namebuffer, 50);
ortho2(-0.5, XMAXSCREEN + 0.5, -0.5,

YMAXSCREEN + 0.5);
callobj(PICKS);
numpicked = endpick(namebuffer);
printf("hits: %d; ",numpicked);
j = O;
for (i = O; i < numpicked; i++) {

printf(" ");

}

k = namebuffer[j++];
printf("%d ", k);
for (;k; k-)

printf("%d" namebuffer[j++]);
printf(" I">;

printf("\n");
break;

default:
break;

2-64 Graphics Subroutines Reference

initialize ()
{

}

int gid;

prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,
YMAXSCREEN/4,YMAXSCREEN*3/4);

gid = winopen("pickl");

ortho2(-0.5, XMAXSCREEN + 0.5, -0.5, YMAXSCREEN + 0.5);

qdevice(ESCKEY);
qdevice(REDRAW);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
qenter(REDRAW,gid);

initnames();
makeobj(PICKS);

color (RED) ;
loadname(l);
rectfi(20,20,100,100);
loadname(2);
pushname(3);
circi(50,500,50);
loadname(4);
circi(50,530,60);
loadname(5);
move2i(30,30);
draw2i(32,32);

closeobj();

pick1 .c

GL Example Programs 2-65

platelocal.c

platelocal.c Example C Language Program
/* Example C Language Program platelocal.c */

/* This example program uses a blue local light to illuminate a
white flat plate. By removing the definition of FIXED_LIGHT in the
first line of the program, the light source will maintain its
position relative to the plate. This demonstrates an important
concept: the position of a light source (or direction if using an
infinite light source) is transformed by the current transformation
matrix at the time it is bound. */

/* Try changing the local light to an infinite light and run the
program again. Notice how the color across the plate is now
constant at any given instant. Since the plate surface material has
no specular reflectance, we did not use a local viewer (remember
diffuse reflection is independent of viewer position). */

/*
This program draws a flat plate with a simple local
light. If the line at the top of the file is left in, the
light is fixed, and the plate moves. Thus the bright spot
on the plate will appear to move around (on the plate).
Sometimes, the plate gets in front of the light, and almost
disappears, since only the back is lit. It does not quite
disappear, since there is a small ambient component for the
default material.

If the statement "#define FIXED_LIGHT" is deleted, the
light is effectively attached to the moving plate, so the
lighted portion of the plate moves with the plate.

This program requires the 24-bit adapter.
*/

#define FIXED LIGHT

#include <gl/gl.h>
#include <stdio.h>

Matrix idmat = {1.0,0.0,0.0,0.0,
0.0,1.0,0.0,0.0,
o.o,o.o,i.o,o.o,
o.o,o.o,o.0,1.0};

float white_material[] =

float local_blue_light[]

/*

{DIFFUSE, 1.0, 1.0, 1.0,
SPECULAR, 0.0, 0.0, 0.0,
LMNULL};

{LCOLOR, 0.0, 0.0, 1.0,
POSITION, 0.5, 0.5, 0.1, 1.0,
LMNULL};

** draw_plate draws a flat plate covering
** the range -1.0 <= x, y <= 1.0 and z = 0.0
** using nA2 rectangles. All the normal vectors are
** perpendicular to the plate.
*/

2-66 Graphics Subroutines Reference

draw_plate(n)
long n;
{

}

/*

long i, j;
float p0[3], pl[3], p2[3], p3[3];
float n0[3];

no [01 = no [11
p0[2] = pl[2]

0.0; n0[2] = 1.0;
p2[2] = p3[2] = 0.0;

for (i = O; i < n; i++) {

}

pO[O] = pl[O] = -1.0 + 2.0*i/n;
p2[0] = p3[0] = -1.0 + 2.0*(i+l)/n;
for (j = O; j < n; j++) {

}

pO[l] = p3[1] = -1.0 + 2.0*j/n;
pl[l] = p2[1] = -1.0 + 2.0*(j+l)/n;
bgnpolygon();
n3f(n0); v3f(p0);
n3f(n0); v3f(pl);
n3f(n0); v3f(p2);
n3f(n0); v3f(p3);
endpolygon();

** Tell the Graphics Library to DEFINE a
** lighting calculation that accounts for
** diffuse and ambient reflection. In addition,
** the lighting calculation includes a LOCAL light.
*/
def _light_calc ()
{

}

/*

lmdef(DEFLMODEL, 1, 0, NULL);
lmdef(DEFMATERIAL, 1, 9, white_material);
lmdef(DEFLIGHT, 1, 10, local_blue_light);

** Tell the Graphics Library to USE the lighting
** calculation that we defined earlier.
*I
use_light_calc()
{

}

lmbind(LMODEL, l);
lmbind(LIGHTO, l);
lmbind(MATERIAL, l);

platelocal.c

GL Example Programs 2-67

platelocal.c

main()
{

int i;

keepaspect(l, l);
prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,

YMAXSCREEN*3/4);
winopen("local");
RGBmode ();
doublebuffer();
gconfig ();

/*
**Use mmode() to set up projection and viewing
** matrices for lighting.
*/
mmode (MVIEWING) ;
perspective(400, 1.0, 0.5, 10.0);
loadmatrix(idmat);
lookat(0.0,0.0,6.0,0.0,0.0,0.0,0);

def_light_calc();
use_light_calc();

for (i = O; i < 1800; i++) {
cpack(O);
clear();
pushmatrix () ;

rot (i * 0 • 5 , ' Z ') ;
rot (i * 0 • 5 , ' Y ') ;

#ifndef FIXED LIGHT
lmbind(LIGHTO, l);

#endif FIXED_LIGHT

}
}

draw_plate (10);
popmatrix ();
swapbuffers();

2-68 Graphics Subroutines Reference

popup.c Example C Language Program
/*
popup.c:
Demonstrates "how to write your own popup menu" routines.
Use LEFTMOUSE instead of RIGHTMOUSE to pop up the menus.
*/

#include <gl/gl.h>
#include <gl/device.h>

#define LINE 1
#define POINTS 2
#define CIRCLE 3
#define RECT 4
#define RECTF 5
#define QUIT 6

typedef struct {
short type;
char *text;

} popupentry;

popupentry mainmenu[] = {
{LINE, "Line"},
{POINTS, "100 points"},
{CIRCLE, "Filled circle"},
{RECT, "Outlined rectangle"},
{RECTF, "Filled rectangle"},
{QUIT, "Quit"},
{O, O} /* mark end of menu */

} ;

main()
{

long win;
short val, command;

prefposition(O,XMAXSCREEN,O,YMAXSCREEN);
win= winopen("popup");

ortho2(-l.O, 1.0, -1.0, 1.0);

overlay(2);
gconfig();

drawmode(OVERDRAW);
mapcolor(O, O, 0, O);
mapcolor(l, 120, 120, 120);
mapcolor(2, 255, 255, 255);
drawmode(NORMALDRAW);

/* background only */
/* popup background */
/* popup text only */

qdevice(RIGHTMOUSE);
qdevice(LEFTMOUSE);
tie(LEFTMOUSE, MOUSEX, MOUSEY);

color(O);
clear ();

popup.c

GL Example Programs 2-69

popup.c

}

while (TRUE) {
switch(qread(&val)) {

}
}

case REDRAW:
reshapeviewport();
drawstuff(command);
break;

case LEFTMOUSE:
drawstuff (command

default:
break;

popup(mainmenu));

drawstuff (command)
short command;
{

}

register i, j;

color(O);
clear();
color (GREEN) ;
switch(command) {

}

case LINE:
move2(-1.0, -1.0);
dr aw2 (1 • 0 , 1 . 0) ;
break;

case POINTS:
for (i = O; i < 10; i++)

for (j = O; j < 10; j++)
pnt2(i/20.0, j/20.0);

break;
case CIRCLE:

circf(O.O, 0.0, 0.5);
break;

case RECT:
rect(-0.5, -0.5, 0.5, 0.5);
break;

case RECTF:
rectf(-0.5, -0.5, 0.5, 0.5);
break;

case QUIT:
greset();
gexit ();
exit(O);

default:
break;

2-70 Graphics Subroutines Reference

popup(narnes)
popupentry names[];
{

register short i, rnenucount;
short rnenutop, menubottom, menuleft, menuright;
short lasthighlight = -1, highlight;
short dummy, x, y;

rnenucount = O;
qread(&x);
qread(&y);
pushrnatrix();
drawmode(OVERDRAW);
ortho2(-0.5, 1279.5, -0.5, 1023.5);

while (names[rnenucount].type)
menucount++;

menutop = y + menucount*8;
menubottom = y - menucount*8;
if (menutop > YMAXSCREEN) {

menutop = YMAXSCREEN;
menubottorn menutop - menucount*l6;

}
if (menubottorn < 0) {

menubottom O;
menutop = menubottom + menucount*l6;

}
rnenuleft = x - 100;
rnenuright = x + 100;
if (menuleft < 0) {

menuleft = O;
menuright menuleft + 200;

}
if (menuright > XMAXSCREEN) {

menuright XMAXSCREEN;
menuleft = menuright - 200;

}

color(O);
clear();

color(l); /*menu background*/
rectfi(menuleft, menubottom, menuright, menutop);

color(2); /*menu text*/
rnove2i(menuleft, menubottom);
draw2i(menuleft, menutop);
draw2i(menuright, menutop);
draw2i(menuright, rnenubottom);

popup.c.

GL Example Programs 2-71

popup.c

for (i = O; i < menucount; i++) {
move2i(menuleft, menutop - (i+l)*l6);
draw2i(menuright, menutop - (i+l)*l6);
cmov2i(menuleft + 10, menutop - 14 - i*l6);
charstr(names[i].text);

}
while (!qtest()) {

}

x = getvaluator(MOUSEX);
y = getvaluator(MOUSEY);
if (menuleft < x && x < menuright &&

menubottom < y && y < menutop)
{

}

}

{

highlight = (menutop - y)/16;
if (lasthighlight != -1 && lasthighlight != highlight)

}

color(l);
rectfi(menuleft+l,

menutop - lasthighlight*l6 15,
menuright-1,
menutop - lasthighlight*l6 1);

color(2);
cmov2i(menuleft + 10,

menutop - 14 - lasthighlight*l6);
charstr(names[lasthighlight].text);

if (lasthighlight != highlight) {
color(2);

}

rectfi(menuleft+l, menutop - highlight*l6 - 15,
menuright-1, menutop - highlight*l6 - l);

color(l);
cmov2i(menuleft + 10,

menutop - 14 - highlight*l6);
charstr(names[highlight].text);

lasthighlight = highlight;

else /* the cursor is outside the menu */
{

if (lasthighlight != -1)
{

}

color(l);
rectfi(menuleft+l,

menutop - lasthighlight*l6 15,
menur ight-1,
menutop - lasthighlight*l6 l);

color(2);
cmov2i(menuleft + 10,

menutop - 14 - lasthighlight*l6);
charstr(names[lasthighlight].text);
lasthighlight = -1;

2-72 Graphics Subroutines Reference

}

qread (&dummy) ;
qread(&x);
qread(&y);
color(O);

popup.c

rectfi(menuleft, menubottom, menuright, menutop);
if (menuleft<x && x<menuright && menubottom<y && y<menutop)

x (menutop - y)/16;
else

x O;
drawmode(NORMALDRAW);
popmatrix ();
return names[x].type;

GL Example Programs 2-73

prompt.c

prompt.c Example C Language Program
/*
prompt.c:

This program demonstrates a standard GL prompt and a user-defined
prompt. If you choose the user-defined prompt, mouse events are
ignored until you press the Enter key.

Peter Broadwell & Dave Ratcliffe 1989
*/
#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define PROMPT 1
#define EXIT 2

long menu; /* The user-defined prompt's identifier */
char aString[40];

main() {

Device dev;
short val;
long menuval;

ini t ();

2-7 4 Graphics Subroutines Reference

}

prompt.c

/* process events forever */
while(TRUE) {

}

dev=qread (&val) ;
switch(dev) {

}

case ESCKEY:
exit ();
break;

case REDRAW:
reshapeviewport();
color(BLUE);
clear ();
break;

case RIGHTMOUSE:
if (val) {

menuval = dopup(menu);
switch (menuval) {

case PROMPT:

}
}
break;

default:
break;

/* prompt to get file name */
getUserString("File: ", aString,

sizeof(aString));
printf("The user entered \"%s\"\n",

aString);
break;

case EXIT:
exit ();
break;

default:
break;

init() /*do all the basic graphics setup*
I
{

long sx, sy;

ginit(); /*Open a full size window*/
overlay(2);
drawmode(OVERDRAW);
mapcolor(BLACK,0,0,0);
mapcolor(RED,255,0,0);
drawmode(NORMALDRAW);
gconfig();
qdevice(ESCKEY);
qdevice(RIGHTMOUSE);
qenter(REDRAW, l);
menu= defpup("GL-style prompt %t1My PromptlExit");

}

GL Example Programs 2-75

prompt.c

/*
Clear prompt, move to start of prompt box, and output requested
prompt
*/
getUserString(prompt,userStr,maxlen) /* get name of file */

char *prompt, *userStr;
int maxlen;

{

/* lower left corner of prompt box */
#define FILEX 5
#define FILEY 15
#define FILEYHI (30+FILEY) /* 30 pixels hi */
#define TEXTX (FILEX+5)
#define TEXTY (FILEY+lO)

#define clearprompt(aprmpt) \
color(RED); clear(); color(BLACK); linewidth(2);\
recti(FILEX+2, FILEY+2, wxsize-8, FILEYHI-1);\
linewidth(l); cmov2i(TEXTX, TEXTY); charstr(aprmpt);

int cur_str_len;
short c;
Device dev;
long maxwidth, maxxval;

char *str;

/* max length of window's width
in pixels */

char *prmpt = prompt, keyBoardWasQueued;
long oldmode, xorig, yorig, wxsize, wysize;
Screencoord maskl, mask2, mask3, mask4;

/* Save old state to restore latter */
pushmatrix();
oldmode = getdrawmode();
getscrmask(&maskl, &mask2, &mask3, &mask4);
keyBoardWasQueued = isqueued(KEYBD);
drawmode(OVERDRAW); /*Enable overlay*/

/* Set viewport to fill window */
getorigin(&xorig,&yorig);
getsize(&wxsize,&wysize);
ortho2(-0.5,(float)wxsize, -0.5, (float)wysize);
maxxval = wxsize + xorig;

userStr[O] = '\0';
maxwidth = (wxsize-11) - (FILEX + strwidth(prompt));
scrmask(FILEX, (Screencoord)(wxsize-6), FILEY, FILEYHI);
cur_str_len = strlen(userStr);
clearprompt(prmpt); /*Display my prompt */

2-76 Graphics Subroutines Reference

qdevice(KEYBD);
/*read till eof ('\n' or '\r') */
while(dev = qread(&c)) {

if (dev != KEYBD)
continue; /* don't care */

switch(c) {

prompt.c

case '\027': /*Aw sets cursor back to start*/

}
}

cur_str_len = O;
clearprompt(prmpt);
break;

case '\n':
case '\r':

goto done;
case '\b':

if (cur_str_len) {
userStr[--cur_str_len] = '\0';
clearprompt(prmpt);

}

/* display rightmost portion */
for(str=userStr; *str && strwidth(str) >

maxwidth; str++);
charstr(str);

break;
default:

if(cur_str_len < (maxlen -1)) {
str = &userStr(cur_str_len];
userStr[cur_str_len++] = c;
userStr[cur_str_len] = '\0';
charstr(str);

}
else {

ringbell ();
}
break;

done:

}

if(!keyBoardWasQueued) unqdevice(KEYBD);
scrmask(maskl, mask2, mask3, mask4);
drawmode(OVERDRAW);
color(O);
clear();
drawmode(oldmode);
popmatrix();
userStr[maxlen] = '\0';

/* restore old */

GL Example Programs 2;.;;.77

scrn_rotate.c

scrn_rotate.c Example C Language Program
/*
scrn_rotate.c

This program illustrates a technique for rotating an object about
a fixed set of axes (screen axes x, y, and z). Use the numeric
keypad to rotate the image.

It also demonstrates a technique for doing backf ace elimination
depending upon the visual relationship between the eye point and
a six-sided cube.

NOTE: If compiled with the "define" flag as "-DBACKFACE" the
graphics library function backface() will replace the code
ensuing from the function norm_dot and beyond.

Paul Mlyniec and David Ratcliffe - 1986
*/
#include <gl/gl.h>
#include <gl/device.h>
#include <math.h>

Coord ident [4][4] = { 1. 0, o.o, o.o, o.o, /* identity
matrix */

o.o, 1. QI o.o, o.o,
o.o, o.o, 1. QI o.o,
o.o, o.o, o.o, 1. O}:

static Coord cm [4][4] = { 1. O, o.o, o.o, o.o, /* cumulative
matrix */

o.o, 1. QI o.o, o.o,
o.o, o.o, 1. QI o.o,
0.0, o.o, o.o, 1. O}:

2-78 Graphics Subroutines Reference

scrn_rotate.c

/* Define the sides of the cube in world coordinates. */

static Coard pfrnt[4][3] = {{
{
{
{

static Coard pback[4][3] {{
{
{
{

static Coard ptop[4][3] = {{
{
{
{

static Coard pbot[4][3] = {{
{
{
{

static Coard prsid[4][3] = {{
{
{
{

static Coard plsid[4][3]

Coard x, y, z;
Angle rx, ry, rz;
float norm_dot();

main() {

int i, j;
long dev;
short data;

{{
{
{
{

o.o,
100.0,
100.0,

o.o,

o.o,
o.o,

100.0,
100.0,

o.o,
100.0,
100.0,

0. 0'

o.o,
o.o,

100.0,
100.0,

100.0,
100.0,
100.0,
100.0,

o.o,
o.o,
o.o,
o.o,

o.o,
o.o,

100.0,
100.0,

0.0},
0.0},
0.0},
0.0}};

o.o, -100.0},
100.0, -100.0},
100.0, -100.0},

0.0, -100.0}};

100.0, 0.0},
100.0, 0.0},
100.0, -100.0},
100.0, -100.0}};

o.o, 0.0},
o.o, -100.0},
0. 0, -10 0. 0},
0.0, 0.0}};

o.o, 0.0},
o.o, -100.0},

100.0, -100.0},
100.0, 0.0}};

o.o, 0.0},
100.0, 0.0},
100.0, -100.0},

0. 0, -10 0. 0}};

/* initialize and set the display to double buffer mode */

prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,
YMAXSCREEN*3/4);

winopen("screeen rotation");
doublebuffer();
gconfig();
writemask((l<<getplanes())-1);

GL Example Programs 2-79

scrn_rotate.c

qdevice (PADl); /* translate (in Z) toward the eyepoint */
qdevice(PAD2); /* rotate about the X axis in a negative

direction */
qdevice(PAD3); I* translate (in Z) away from the

eyepoint */
qdevice (PAD4); /* rotate about the Y axis in a positive

direction */
qdevice (PADS) ; /* reset rotations and translations to

default */
qdevice (PAD6) ; /* rotate about the y axis in a negative

direction */
qdevice(PAD7); /* rotate about the z axis in a positive

direction */
qdevice (PADS) ; I* rotate about the x axis in a positive

direction */
qdevice (PAD9) ; /* rotate about the z axis in a negative

direction */
qdevice(FKEY); /* translate (in z) toward the eyepoint */
qdevice(BKEY); /* translate (in z) away from the

eyepoint */
qdevice(ESCKEY); /* exit program */

#if def BACKFACE /* compile with "-DBACKFACE" if you desire
to use GL's */

backface(TRUE);
#end if

perspective(470,l.25,1.0,10000.0);

/* initialize the modeling transformation values */
rx 0; ry 0; rz 0;

x = -50.0; y = -50.0; z = -400.0;

2-80 Graphics Subroutines Reference

scrn_rotate.c

/* set up the loop for reading input and drawing the cube */

while(TRUE) {
color(BLACK);
clear ();
viewcube();

/* read the input for moving the box around the eye
point */

while (qtest()) {

dev = qread(&data);
switch (dev) {

case REDRAW: /* redraw event */
reshapeviewport();
v iewcube (' t ') ;
break;

case (ESCKEY) : I* exit program *I
gexit ();
exit(O);
break;

case(FKEY): /*translate toward the
eyepoint */

case (PADl):
while(getbutton(FKEY) I I getbutton(PADl)) {

z = z + 20.0;
viewcube('t');

}
break;

case (BKEY) :

case(PAD3):

/* translate away from
the eyepoint */

while(getbutton(BKEY) I I getbutton(PAD3)) {
z = z - 20.0;
viewcube('t');

}
break;

case(PAD2):
while(getbutton(PAD2)) { /*rotate about the

X axis */

}

rx = rx - 100;
viewcube('x');

updatemat ('x');

rx = O;

break;

/* incorporate this
rotation into */

/* cumulative rotation
matrix */

GL Example Programs 2-81

scrn_rotate.c

case(PAD4):
while(getbutton(PAD4)) { /*rotate about the

Y axis */

}

ry = ry + 100;
viewcube('Y');

updatemat ('y');

ry = O;

break;

case (PAD6) :

/* incorporate this
rotation into */

/* cumulative rotation
matrix */

while(getbutton(PAD6)) { /*rotate about the
Y axis */

}

ry = ry - 100;
viewcube('y');

updatemat ('y');

ry = O;

break;

case(PAD7):

/* incorporate this
rotation into */

/* cumulative rotation
matrix */

while(getbutton(PAD7)) { /*rotate about the
Z axis */

}

rz = rz + 100;
viewcube('z');

updatemat ('z') ;

rz = O;

break;

case(PAD8):

/* incorporate this
rotation into */

/* cumulative rotation
matrix */

while(getbutton(PAD8)) { /*rotate about the
X axis */

}

rx = rx + 100;
v iewcube (' x') ;

updatemat ('x') ;

rx = O;

break;

/* incorporate this
rotation into */

/* cumulative rotation
matrix */

2-82 Graphics Subroutines Reference

scrn_rotate.c

case(PAD9):
while(getbutton(PAD9)) { /*rotate about the

Z axis */

}

rz = rz - 100;
viewcube('z');

updatemat ('z') ;

rz = O;

break;

case(PAD5):

x -50.0;
y -50.0;
z -400.0;
rx O;
ry O;
rz = O;

for(i=O;i<4;i++) {
for(j=O;j<4;j++)

/* incorporate this
rotation into */

/* cumulative rotation
matrix */

/* reset rotations &
translations */

cm[i][j] = ident[i][j];
}

viewcube('t');
break;

} /* end switch */

qreset();

} /*end while(qtest()) */

} /* end while(l) */

} /* end of main */

GL Example Programs 2-83

scrn_rotate.c

viewcube(axis)
char axis;
{

/* Transform the cube in world space and (if BACKFACE not
defined, in software,) check each face for back face
elimination

*/

color (BLACK) ;
clear();

pushmatrix();
translate(x,y,z);
pushmatrix () ;
translate(50.0,50.0,-50.0);

/* apply rotation about a single axis */
switch(axis) {

}

case ('x'):
rotate(rx, 'x');
break;

case ('y'):
rotate(ry, 'y');
break;

case ('z') :
rotate(rz,'z');
break;

default:
break;

/* apply all prior rotations */
multmatrix(cm);

translate(-50.0,-50.0,50.0);

2-84 Graphics Subroutines Reference

scrn_rotate.c

#ifdef BACKFACE /* compile with "-DBACKFACE" if you desire to
use GL's version */

color(!);
pelf (4, pfrnt) ;
color(2);
pelf (4, pback) ;
color(3);
pelf (4, ptop);
color(4);
pelf (4, pbot) ;
color(S);
polf(4,prsid);
color(6);
pelf (4, plsid) ;

#else
color(!);
if (norm_dot(pfrnt)
color(2);
if (norm_dot(pback)
color(3);
if (norm_dot(ptop)
color(4);
if (norm_dot(pbot)
color(S);
if (norm_dot(prsid)
color(6);
if (norm_dot(plsid)

#endif

}

popmatrix();
popmatrix();
swapbuffers();

>= 0.0) po lf (4 , p frn t) ;

>= 0.0) polf(4,pback);

>= 0.0) polf(4,ptop);

>= 0.0) pelf (4, pbot);

>= 0.0) polf(4,prsid);

>= 0.0) polf(4,plsid);

GL Example Programs 2-85

scrn_rotate.c

/*
* Function to postmultiply cumulative rotations
* by rotation about a single axis
*/

updatemat(axis)
char axis;
{

}

/*

pushmatrix();
loadmatrix(ident);

switch (axis) {

}

case ('x'):
rotate(rx, 'x');
break;

case ('y'):
rotate(ry, 'y');
break;

case ('z') :
rotate(rz,'z');
break;

default:
break;

mul tmatr ix (cm) ;
getmatrix (cm);
popmatrix();

The function norm_dot takes as input an array of points in
homogeneous coordinates which make up a surface or plane. The
unit normal of the surface and the eyepoint to surface unit
vector are computed and the dot product is calculated. This
function returns the dot product floating point value and the
transformed points for the surface.
*/

float norm_dot(passpoly)
Coard passpoly[][3];
{

int i;
float a[3],b[3],c[3],d,abs;
Coard postrans [4][3];

/* Apply the current transformation to the surface points. */
transform(4,passpoly,postrans);

2-86 Graphics Subroutines Reference

}

scrn_rotate.c

/* Determine two vectors which lie in the specified plane.
The first three points are taken from the surface array.
These points are ordered by the right-hand rule in the
right-hand coordinate system: i.e. points ordered counter-

clockwise when on the positive side of the plane or surface
are visible, not backfacing, surfaces.

a[] gets the xyz coords of row 2
b[] gets the xyz coords of row O.

*/
/* Determine two vectors. Note that this routine assumes they
are not in-line */

for(i = O; i < 3; i++)
a[i] = postrans[2][i] postrans[l][i];

for(i = O; i < 3; i++)
b[i] = postrans[O][i] postrans[l][i];

/* Find the cross product of the two vectors */

c[O] a[l] * b[2] a[2] * b[l];
c[l] = a[2] * b[O] - a[O] * b[2];
c[2] = a[O] * b[l] - a[l] * b[O];

/* Calculate the unit normal vector for the plane or poly
using the square root of the sum of the squares of x, y,
and z to determine length of vector, then dividing each
axis by that length (x/l, y/l, z/l). */

abs = o.o;

for (i = O; i < 3; i++)
abs+= (c[i]*c[i]);

d = sqrt(abs);

if (fabs(d) > 0.000001) {
for (i = O; i < 3; i++)

a[i] = c[i]/d;

/* Calculate the unit vector pointing from the eyepoint to
the normal of the plane or poly */

}
else

abs = 0.0;

for (i = O; i < 3; i++)
c[i] = postrans[l][i];

for (i = O; i < 3; i++)
abs= abs+ (c[i]*c[i]);

d = sqrt(abs);
if (fabs(d) > 0.000001) {

for (i = O; i < 3; i++)
b[i] = c[i]/d;

/* Return the dot product between the eye vector and the
plane normal */

}
else

for (i = 0, d=O.O; i < 3; i++)
d = d + a[i]*b[i];

printf("\n Magnitude of surface vector is zero!");

printf("\n Magnitude of eye vector is zero!");
return(d);

GL Example Programs 2-87

scrn_rotate.c

/*The function transform() simply multiplies each vertex point
with the current transformtion matrix without any clipping,
scaling, etc. to derive transformed world coordinate values.

*/

transform(n,passpoly,postrans)
long n;
Coard passpoly[][3], postrans[][3];
{

Matrix ctm;

pushmatrix();
getmatrix (ctm);

postrans[O][O] passpoly[O][O)*ctm[O][O] +
passpoly[O][l]*ctm[l][O] +
passpoly[0][2]*ctm[2][0] + ctm[3] [O];

postrans[O][l] passpoly[O][O]*ctm[O][l] +
passpoly[O][l]*ctm[l][l] +
passpoly[0][2)*ctm[2][1] + ctm[3] [1];

postrans[0][2] passpoly[O][O]*ctm[0][2] +
passpoly[O][l]*ctm[l][2] +
passpoly[0][2]*ctm[2][2] + c tm [3] [2] ;

postrans[l][O] = passpoly[l][O]*ctm[O][O] +
passpoly[l][l]*ctm[l][O] +
passpoly[l][2]*ctm[2][0] + ctm [3] [0] ;

postrans[l][l] passpoly[l][O]*ctm[O][l] +
passpoly[l][l]*ctm[l][l] +
passpoly[l][2]*ctm[2][l] + ctm[3][l];

postrans[l][2] passpoly[l][O]*ctm[0][2] +
passpoly[l][l]*ctm[l][2] +
passpoly[l][2]*ctm[2][2] + ctm [3] [2 1 ;

postrans[2][0] = passpoly[2][0]*ctm[O][O] +
passpoly[2][l]*ctm[l][O] +
passpoly[2][2]*ctm[2][0] + ctm [3] [0 1 ;

postrans[2][1] passpoly[2][0]*ctm[O][l] +
passpoly[2][l]*ctm[l][l] +
passpoly[2][2]*ctm[2][1] + ctm[3][1];

postrans[2][2] passpoly[2][0]*ctm[0][2] +
passpoly[2][l]*ctm[l][2] +
passpoly[2][2]*ctm[2][2] + c tm [3] [2 1 ;

postrans[3][0] passpoly[3][0]*ctm[O][O] +
passpoly[3][l]*ctm[l][O] +
passpoly[3][2]*ctm[2][0] + ctm[3][0];

postrans[3][l] = passpoly[3][0]*ctm[O][l] +
passpoly[3][l]*ctm[l][l] +
passpoly[3][2]*ctm[2][1] + ctm [3] [1] ;

postrans[3][2] passpoly[3][0]*ctm[0][2] +
passpoly[3][l]*ctm[l][2] +
passpoly[3][2]*ctm[2][2] + ctm [3] [2 1 ;

popmatrix();
}

2-88 Graphics Subroutines Reference

select1 .c Example C Language Program
/*
selectl.c:

select1 .c

Select demo program. the "ship" is the blue rectangle. The
"planet" is the red circle. move the ship so it intersects the
planet and the ship will crash.
*/

#include <gl/gl.h>
#include <gl/device.h>

#define PLANET 1

main ()
{

short type, val;
register short buffer[50], cnt, i;
float shipx, shipy, shipz;

for (i = O; i < 50; i++)
buffer[i] = O;

initialize () ;

while (TRUE) {
type= qread(&val);
if (val==O)

continue;
switch (type) {

case REDRAW:
reshapeviewport();
drawplanet();
break;

case ESCKEY:
gexi t ();
exit ();

case LEFTMOUSE:
/* set ship location to cursor location */
shipz=O;
shipx=getvaluator(MOUSEX);
shipy=getvaluator(MOUSEY);
/* draw the ship */
color(BLUE);
rect(shipx, shipy, shipx+20, shipy+lO);

/* specify the selecting region to be a box
surrounding the ship */

pushmatrix();
ortho(shipx, shipx+.05, shipy, shipy+.05,

shipz-0.5, shipz+.05);
/* clear the name stack */
initnames();

gselect(buffer, 50); /* enter selecting mode */

GL Example Programs 2-89

select1 .c

}
}

}

/* put "1" on the name stack to be saved if
PLANET draws into the selecting region */

loadname(l);
pushname(2);

/* draw the planet */
callobj (PLANET) ;

/* exit selecting mode */
cnt = endselect(buffer);
popmatrix();

/* check to see if PLANET was selected */
printf("cnt = %d\n",cnt);
for (i = O;i<4;i++)

printf("buffer[%d] = %d\n",i,buffer[i]);
if (buffer[l]==l) {

printf("CRASH\n");
gexit ();
exit ();

}
break;

default:
break;

initialize()
{

}

int gid;
float xmax,ymax;

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4, YMAXSCREEN/4,
YMAXSCREEN*3/4);

keepaspect(l,l);
gid = winopen("selectl");

qdevice(ESCKEY);
qdevice(REDRAW);
qdevice(LEFTMOUSE);
qenter(REDRAW,gid);

xmax = .5 + (float) XMAXSCREEN;
ymax = .5 + (float) YMAXSCREEN;
ortho(xmax/4.0, xmax*3.0/4.0, ymax/4.0, ymax*3.0/4.0, 0.0,

-xmax/2.0);

createplanet(PLANET);

2-90 Graphics Subroutines Reference

drawplanet()
{

}

color(BLACK):
clear():
color(RED):
/* create the planet object */
callobj (PLANET) :

createplanet(x)
{

}

makeobj (x) :
circfi(G00,600,20):
closeobj();

select1 .c

GL Example Programs 2-91

setshade.c

setshade.c Example C Language Program
/*
setshade.c:

Moves a smooth-shaded polygon in and out of the graphics port.
Press LEFTMOUSE to exit.
*/

#include <gl/gl.h>
#include <gl/device.h>

main () {

unsigned short i;
Coard x;

prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,
YMAXSCREEN*3/4);

winopen("setshade/clip test");
doublebuffer();
gconfig();
get_cmap();

for (i=O; i<l28; i++)
mapcolor(128+i, 2*i, 0, 2*i);

makeobj(l);
color(l28+127);
pmv2i(l00,-100);
color(l28+0);
pdr2i(l00,100);
color(l28+127);
pdr2i(-100,100);
color(l28+0);
pdr2i(-100,-100);

closeobj();

2-92 Graphics Subroutines Reference

}

while (!getbutton(LEFTMOUSE)) {

}

for (x = -150.0; x < 150.0; x++) {
color(CYAN);

}

clear ();
pushmatrix();
translate(x,150.0,0.0);
rotate(300,'z');
callobj (1) ;
popmatrix () ;
swapbuffers();
if (getbutton(LEFTMOUSE))

break;

for (x=150.0; x>-150.0; x~) {
color (CYAN) ;

}

clear();
pushmatrix () ;
translate(x,150.0,0.0);
rotate(300,'z');
callobj(l);
popmatrix();
swapbuffers();
if (getbutton(LEFTMOUSE))

break;

restore_cmap();
gexi t();

#define lo end 128
#define hi=end 255
static short CarrayR[hi_end+l], CarrayG[hi_end+l],

CarrayB[hi_end+l];
unsigned short index;

get_cmap()
{

}

short rcomp, gcomp, bcomp;

for (index=lo_end; index<=hi_end; index++) {
getmcolor(index,&rcomp, &gcomp, &bcomp);
CarrayR[index] = rcomp;
CarrayG[index] gcomp;
CarrayB[index] bcomp;

}

restore_cmap()
{

}

for (index=lo end; index<=hi end; index++)
mapcolor(index, CarrayR[index], CarrayG[index],

CarrayB[index]);

setshade.c

GL Example Programs 2-93

sunflower.c

sunflower.c Example C Language Program
/*
sunflower.c

Make a sunflower-like pattern out of circles.
Usage: sunflower <nseeds> <seedsize> <growth>

Try "sunflower 400.05 1.1"

*/
#include <gl/gl.h>
#include <gl/device.h>
#include <stdio.h>
#include <math.h>

int seeds = O;

main(argc,argv)
int argc;
char **argv;
{

int nseeds;
float seedsize, grow;
short val;

if (argc<4) {
fprintf (stderr,

Paul Haeberli - 1984

"Usage: sunflower <nseeds> <seedsize> <growth>\n");
exit(l);

}

}
nseeds = atoi(argv[l]);
seedsize = atof(argv[2]);
grow= atof(argv[3]);

prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,
YMAXSCREEN*3/4);

winopen("sunflower");
makeframe();
sunflower(nseeds,seedsize,grow);
while (1) {

}

if (qread(&val) == REDRAW) {

}

make frame () ;
sunflower(nseeds,seedsize,grow);

sunflower(nseeds,seedsize,grow)
int nseeds;
float seedsize, grow;
{

float rad = 20.0;
int parity = O;

2-94 Graphics Subroutines Reference

}

scale(l0.0,10.0,0.0);
pushmatrix();
while (rad < 100.0) {

rotate(l800/nseeds,'z');
scale(grow,grow,0.0);
makering(nseeds,seedsize);
rad = rad * grow;

}
popmatrix();

makering(nseeds,seedsize)
int nseeds;
float seedsize;
{

}

int i;

for (i=O; i<nseeds; i++) {
pushmatrix();

rotate((i*3600)/nseeds,'z');
drawseed(seedsize);

popmatrix();
}

drawseed(seedsize)
float seedsize;
{

}

seeds++;
circ(l.O,O.O,seedsize);

makeframe()
{

}

int xsize, ysize;
float aspect;

reshapeviewport();
getsize(&xsize,&ysize);
color(?);
clear ();
color(O);
aspect = xsize/(float)ysize;
ortho2(-50.0,50.0,-50.0/aspect,50.0/aspect);

sunflower.c

GL Example Programs 2-95

text.c

text.c Example C Language Program
I*
text.c:

A text drawing sample program using the charstr() subroutine.
*I

#include <gl/gl.h>
#include <gl/device.h>

main()
{

}

Device dev;
short val;

initialize () ;

while (TRUE) {

}

if (qtest()) {

}

dev = qread(&val);

if (dev == ESCKEY) {
gexit ();
exit () ;

} else if (dev == REDRAW) {
reshapeviewport();
drawtext () ;

}

initialize ()
{

int gid;

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4, YMAXSCREEN/4,
YMAXSCREEN*3/4);

gid = winopen("text");
winconstraints();

qdevice(ESCKEY);
qdevice(REDRAW);
qenter(REDRAW,gid);

}

drawtext()
{

}

color(BLACK);
clear();
color (RED) ;
cmov2i(300,380);
charstr("The first line is drawn");
charstr("in two parts. ");
cmov2i(300, 368);
charstr("This line is 12 pixels lower. ");

2-96 Graphics Subroutines Reference

tpbig.c Example C Language Program
/*
tpbig.c:

tpbig.c

Basic graphics program demonstrating arcs, polygons, character
strings, and use of a textport.
*/

#include <gl/gl.h>
#include <gl/device.h>
#include <stdio.h>

long cone[][2] = {100, 300,
150, 100,
200, 300};

char *singlechar;

main ()
{

int gid;
short val;

singlechar = malloc(2); /* Space for a character and a Null */
memcopy(singlechar, "X", 2);
prefposition(O,XMAXSCREEN,0,YMAXSCREEN);
gid = winopen("tpbig");
qdevice(ESCKEY);
qdevice(REDRAW);
qenter(REDRAW,gid);
textport(S0,300,750,900);
tpon();

while(TRUE) {
switch(qread(val)) {

}
}

}

drawstuff()
{

case ESCKEY:
textinit();
gexit ();
exit();

case REDRAW:
reshapeviewport();
drawstuff();

register long i, j;

/* draw an ice-cream cone */

GL Example Programs 2-97

tpbig.c

color(WHITE);
clear();
color (YELLOW) ;
polf 2i (3, cone);
color(GREEN);
arcfi(150, 300, 50,
color (RED) ;
circf(l50.0, 400.0,
color (BLACK) ;
poly2i(3, cone);

/* draw the ice-cream cone */
/* first scoop is mint */

O, 1800); /*only half of it shows */
/* second scoop is cherry */

50.0);

/* outline the cone in black */

/* Next, draw a few filled and unfilled arcs in the upper
* left corner of the screen.
*/

arcf(lOO.O, 650.0, 40.0, 450, 2700);
arci(lOO, 500, 40, 450, 2700);

arcfi(250, 650, 80, 2700, 450);
arc(250.0, 500.0, 80.0, 2700, 450);

/* Now, put up a series of filled and unfilled rectangles with
* the names of their colors printed inside of them across the
* rest of the top of the screen.
*/

color(GREEN);
recti(400, 600, 550, 700);
cmov2i(420, 640);
charstr("Green");

color(RED);
rectfi(600, 600, 800, 650);
color(BLACK);
cmov2(690.0, 620.0);
chars tr ("Red") ;

color(BLUE);
rect(810.0, 700.0, 1000.0, 20.0);
cmov2i(900, 300);
charstr("Blue");

/* Now draw some text with a ruler on top to measure it by. */

/* First the ruler: */

color(BLACK);

move2i(300, 400);
draw2i(650, 400);
for (i = 300; i <= 650; i += 10) {

move2i(i, 400);
draw2i(i, 410);

}

/* Then some text: */

cmov2i(300, 380);
charstr("The first line is drawn");
charstr("in two parts.");

cmov2i(300, 368);
charstr("This line is only 12 pixels lower.");

cmov2i(300, 354);
charstr("Now move down 14 pixels ••• ");

2-98 Graphics Subroutines Reference

}

tpbig.c

cmov2i(300, 338);
charstr("And now down 16 ••• ");

cmov2i(300, 320);
charstr("Now 18 ••• ");

cmov2i(300, 300);
charstr("And finally, 20 pixels.");

/*Finally, show off the entire font. The cmov2i() before
each character is necessary in case that character is not
defined.

*/

for (i = O; i < 4; i++)
for (j = O; j < 32; j++) {

cmov2i(300 + 9*j, 200 - 18*i);
*singlechar = (char)(32*i + j);
charstr(singlechar);

}

for (i = O; i < 4; i++) {

}

cmov2i(300, 100 - 18*i);
for (j = 0 ; j < 3 2 ; j ++) {

*singlechar = (char)(32*i + j);
charstr(singlechar);

}

GL Example Programs 2-99

vlsi.c

vlsi.c Example C Language Program
I*
vlsi.c

A simple vlsi graphical editor. RIGHTMOUSE clears the screen.
LEFTMOUSE picks the current color from one of 4 in the bottom
left-hand corner, and draws the rectangles. To draw, hold down
LEFTMOUSE on the point where you want one of the four
corners of the rectangle to be, and then move the mouse to the
opposite corner of the rectangle you want to specify, BEFORE you
let go of the LEFTMOUSE.
*/

#include <gl/gl.h>
#include <gl/device.h>

main ()
{

register i;
Device dummy, xend, yend, xstart, ystart, type;
short wrn;

prefposition(O, XMAXSCREEN-50, 0, YMAXSCREEN-50);
winopen("vlsi");
mapcolor(O, 255, 255, 255); /*WHITE */
mapcolor(l, O, O, 255); /* BLUE */
mapcolor(2, 0, 255, O); /*RED*/
mapcolor(3, 0, 150, 255); /* PURPLE */
mapcolor(4, 255, 0, O); /* GREEN */
mapcolor(5, 150, 0, 255); /*LIGHT BLUE */
mapcolor(6, 255, 255, 0); /*YELLOW*/
mapcolor(7, 150, 100, O); /* BROWN */
for (i = 8; i < 24; i++)

rnapcolor(i, 0, 0, O); /* BLACK */
for (i = 24; i < 32; i++)

rnapcolor(i, 255, 255, 255); /*WHITE */
qdevice(LEFTMOUSE);
tie(LEFTMOUSE, MOUSEX, MOUSEY);
qdevice(MIDDLEMOUSE);
tie(MIDDLEMOUSE, MOUSEX, MOUSEY);
qdevice(RIGHTMOUSE);
qdevice(KEYBD);
setcursor(O, 16, 16);
restart();
while (TRUE)

switch (type= qread(&dummy)) {
case KEYBD:

greset ();
gexit ();
exit(O);

case RIGHTMOUSE:
qread (&dummy) ;
restart ();
break;

case MIDDLEMOUSE:
case LEFTMOUSE:

qread(&xstart);
qread(&ystart);

2-1 00 Graphics Subroutines Reference

}
}

vlsi.c

if (xstart < 60) {
if (10 <= xstart && xstart <= 50) {

if (10 <= ystart && ystart <= 50)
wm = 1;

}

else if (60 <= ystart && ystart <= 100)
wm = 2;

else if (110 <= ystart && ystart <= 150)
wm = 4;

else if (160 <= ystart && ystart <= 200)
wm = 8;

wr i ternask (wm) ;
qread(&dummy);
qread (&dummy) ;
qread(&dummy);

} else {

}

qread (&dummy);
qread (&xend) ;
qread (¥d);
if (xend > 60) {

}

if (type == LEFTMOUSE)
color(31); /* draw*/

else
color(O); /*erase*/

rectfi(xstart, ystart, xend, yend);

restart()
{

}

writernask(Oxfff);
color(O);
clear();
color(l);
rectfi(lO, 10, 50, 50);
color(2);
rectfi(lO, 60, 50, 100);
color(4);
rectfi(lO, 110, 50, 150);
color(8);
rectfi(lO, 160, 50, 200);
move 2 i (6 O , O) ;
draw2i(60, 767);
color(31);
writernask(O);

GL Example Programs 2-101

worms.c

worms.c Example C Language Program
/*

@@@ @@@
@@@ @@@
@@@ @@@
@@@ @@ @@@
@@@ @@@@ @@@
@@@@ @@@@ @@@@

@@@@@@@@@@@@
@@@@ @@@@

@@ @@

@@@@@@@@@@
@@@@@@@@@@@@

@@@@ @@@@
@@@ @@@
@@@ @@@
@@@ @@@
@@@@ @@@@

@@@@@@@@@@@@
@@@@@@@@@@

@@@@@@@@@@@
@@@@@@@@@@@@
@@@@
@@@
@@@
@@@
@@@
@@@
@@@

@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@ @@@ @@@@
@@@ @@@ @@@
@@@ @@@ @@@
@@@ @@@ @@@
@@@ @@@ @@@
@@@ @@@ @@@
@@@ @@@ @@@

Eric P. Scott
Caltech High Energy Physics

October, 1980

*/
#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define INCREMENT 1.0

#define MAXCOLS 100
#define MAXROWS 75

#define SEGO 20
#define SEGl 21
#define TRAIL_OBJ 22

int Wrap;
short *ref[MAXROWS];

static int flavor[]={
1, 2, 3, 4, 5, 6

} ;

static int segobj[]={
SEGl, SEGO, SEGO, SEGO, SEGO, SEGO

} ;

static short

xinc []= {
1, 1, 1, 0, -1, -1,

} I

yinc [)= {
-1, 0, 1, 1, 1, 0,

};

static struct worm {
int orientation, head;
short *xpos, *ypos;

} worm[40];

static char *field;

-1, 0

-1, -1

static int length=16, number=3, trail=' ';

2-1 02 Graphics Subroutines Reference

worms.c

static struct options {
int nopts;
int opts[3];

} nrmal[B]={
{ 3, { 7, 0, 1 } } '
{ 3, { o, 1, 2 } } '
{ 3, { 1, 2, 3 } } '
{ 3, { 2, 3, 4 } } '
{ 3, { 3, 4, 5 } } '
{ 3, { 4, 5, 6 } } '
{ 3, { 5, 6, 7 } } '
{ 3, { 6, 7, 0 } }

} ' upper[B]={
{ 1, { 1, 0, 0 } } '
{ 2, { 1, 2, 0 } } ' { o, { 0, o, 0 } } ' { o, { 0, o, 0 } } '
{ O, { O, 0, 0 } } '
{ 2, { 4, 5, 0 } } '
{ 1, { 5, 0, 0 } } '
{ 2, { 1, 5, 0 } }

} ' left[B]={
{ 0, { 0, o, 0 } } '
{ O, { o, o, 0 } } '
{ o, { O, O, 0 } } '
{ 2, { 2, 3, 0 } } '
{ 1, { 3, 0, 0 } } '
{ 2, { 3, 7, 0 } } '
{ 1, { 7, o, 0 } } '
{ 2, { 7, o, 0 } }

} ' right[B]={
{ 1, { 7, O, 0 } } '
{ 2, { 3, 7, 0 } },
{ 1, { 3, o, 0 } } '
{ 2, { 3, 4, 0 } } ' { o, { 0, 0, 0 } } ' { o, { O, O, 0 } } '
{ 0, { o, o, 0 } } '
{ 2, { 6, 7, 0 } }

} ' lower[B]={
{ 0, { o, o, 0 } } '
{ 2, { o, 1, 0 } } '
{ 1, { 1, o, 0 } } '
{ 2, { 1, 5, 0 } } '
{ 1, { 5, O, 0 } } '
{ 2, { 5, 6, 0 } } '
{ o, { o, o, 0 } } ' { o, { O, O, 0 } }

} ' upleft[B]={
{ O, { O, O, 0 } } '
{ O, { o, O, 0 } } ' { o, { O, 0, 0 } } ' { o, { O, O, 0 } } ' { o, { o, o, 0 } },
{ 1, { 3, o, 0 } } '
{ 2, { 1, 3, 0 } } '
{ 1, { 1, o, 0 } }

GL Example Programs 2-103

worms.c

} , upright[8]={
{ 2, { 3, 5, 0 } } ,
{ 1, { 3, 0, 0 } },
{ 0, { 0, 0, 0 } } ,
{ 0, { 0, o, 0 } } ,
{ 0, { 0, 0, 0 } } ,
{ 0, { 0, 0, 0 } } ,
{ 0, { 0, o, 0 } } ,
{ 1, { 5, o, 0 } }

} , lowleft[8]={
{ 3, { 7, o, 1 } } ,
{ 0, { O, 0, 0 } } ,
{ 0, { 0, o, 0 } } ,
{ 1, { 1, o, 0 } } ,
{ 2, { 1, 7, 0 } } ,
{ 1, { 7, 0, 0 } } ,
{ O, { 0, 0, 0 } } ,
{ 0, { 0, 0, 0 } }

} , lowright[8]={
{ 0, { O, o, 0 } } ,
{ 1, { 7, o, 0 } } ,
{ 2, { 5, 7, 0 } } ,
{ 1, { 5, o, 0 } } ,
{ O, { 0, o, 0 } } ,
{ 0, { 0, 0, 0 } } ,
{ 0, { 0, O, 0 } } ,
{ 0, { O, o, 0 } }

} ;

int ml, m2, m3;
int coffset;
int slowmode;
int bigblox;
int CO, LI;

main(argc,argv)
int argc;
char *argv[];
{

float ranf();
register int x, y;
register int n;
register struct worm *w;
register struct options *op;
register int h;
register short *ip;
int last, bottom;
char *tcp;
register char *term;
char tcb[lOO];

srand(getpid());
co = MAXCOLS;
LI MAXROWS;
co = 60;
LI 45;
bottom LI-1;
last = C0-1;

2-104 Graphics Subroutines Reference

/* make a work area */

keepaspect(400,300);
prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,

YMAXSCREEN*3/4);
winopen("worms");
makef rame () ;

makeobjects();
qdevice(RIGHTMOUSE);
qdevice(MIDDLEMOUSE);
qdevice(LEFTMOUSE);

for (x=l;x<argc;x++) {
register char *p;
p=argv[x];
if (*p=='-') p++;
switch {*p) {
case 'f':

field="WORM";
break;

case 'l':
if (++x==argc) goto usage;

worms.c

if ((length=atoi(argv[x]))<21 llength>1024) {
fprintf(stderr,"%s: Invalid length\n",*argv);
exit (1);

}

}
break;

case 'n':
if (++x==argc) goto usage;
if ((number=atoi(argv[x]))<ll lnumber>40) {

fprintf(stderr,"%s: Invalid number of worms\n",*argv);
exit(l);

}
break;

case 't':
trail='.';
break;

default:
usage:

}

fprintf (stderr,
"Usage: %s [-field] [-length#] [-number#] [-trail]\n",
*argv);

exit(l);
break;

ip=(short *)malloc(LI*CO*sizeof (short));
for (n=O;n<LI;) {

ref [n++]=ip; ip+=CO;
}

for (ip=ref[O],n=LI*CO;~n>=O;)
*ip++=O;

if (Wrap) ref[bottom][last]=l;

GL Example Programs 2-105

worms.c

for (n=number, w= &worm[O];~n>=O;w++) {
w->orientation=w->head=O;

}

if (!(ip=(short *)malloc(length*sizeof (short)))) {
fprintf(stderr,"%s: out of memory\n",*argv);
exit(l);

}
w->xpos=ip;
for (x=length;~x>=O;) *ip++ = -1;
if (!(ip=(short *)malloc(length*sizeof (short)))) {

fprintf (stderr, "%s·: out of memory\n", *argv);
exit(l);

}
w->ypos=ip;
for (y=length;~y>=O;) *ip++ = -1;

if (field) {

}

register char *p;
pushmatrix () ;

p=f ield;
for (y=bottom;~y>=O;) {

pushmatrix();
for (x=CO;~x>=O;) {

}

putfield();
translate(INCREMENT,0.0,0.0);

popmatrix ();
translate(O.O,INCREMENT,0.0);

}
popmatrix();

2-106 Graphics Subroutines Reference

}

worms.c

for (; ;) {
checkmouse();

}

for (n=O,w= &worm[O];n<number;n++,w++) {

}

if ((x=w->xpos[h=w->head])<O) {
x=w->xpos[h]=O;
y=w->ypos[h]=bottom;
pushmatrix();

translate((float)x,(float)y,0.0);
if (bigblox)

scale(2.0,2.0,l.O);
putsegment(flavor[n%6],segobj[n%6]);

popmatrix();
ref [y] [x] ++;

}
else y=w->ypos[h];
if (++h==length) h=O;
if (w->xpos[w->head=h]>=O) {

register int xl, yl;
xl=w->xpos[h]; yl=w->ypos[h];
if (~ref[yl][xl]==O) {

pushmatrix();
translate((float)xl,(float)yl,0.0);
put trail () ;

popmatrix();
}

}
op= &(x==O ? (y==O ? upleft : (y==bottom ? lowleft

left)) : (x==last? (y==O ? upright :
(y==bottom? lowright : right)) :
(y==O ? upper : (y==bottom ? lower :
nrmal))))[w->orientation];

switch (op->nopts) {
case 0:

fflush(stdout);
abort();
return;

case 1:
w->orientation=op->opts[O];
break;

default:
w->orientation=op->opts[

(int)(ranf()*(float)op->nopts)];
}
x+=xinc[w->orientation];
y+=yinc[w->orientation];
if (!Wrapj lx!=lastl ly!=bottom) {

pushmatrix ();
translate((float)x,(float)y,O.O);
if (bigblox)

}

scale(2.0,2.0,l.O);
putsegment(flavor[n%6],segobj[n%6]);

popmatrix();

ref [w->ypos [h] =y] [w->xpos [h] =x] ++;

GL Example Programs 2-107

worms.c

checkmouse()
{

short dev, val;
static int upcount;

if(upcount++ != 20)
return;

if (slowmode)
sleep(2);

upcount = O;
gsync();
while(qtest()) {

dev = qread(&val);
switch(dev) {

case RIGHTMOUSE: ml = val;
coffset++;
break;

case MIDDLEMOUSE: m2 = val;
if (val)

slowmode = 1-slowmode;
break;

case LEFTMOUSE: m3 = val;
if (val)

}
}

case REDRAW:

}
if(ml && m3) {

color(O);
clear();

}

float ranf() {

bigblox = 1-bigblox;
break;

reshapeviewport();
makeframe();
break;

return ((rand()>>l) % 10000)/10000.0;

}

putfield()
{

}

color(3);
callobj (SEGO) ;

putsegment(col,obj)
int col;
int obj;
{

color((col+coffset)%8);
callobj (obj);

}

puttrail()
{

callobj(TRAIL_OBJ);
}

2-108 Graphics Subroutines Reference

worms.c

makeobjects()
{

}

makeobj(SEGO);
rectf(-INCREMENT/3.0, -INCREMENT/3.0, INCREMENT/3.0,

INCREMENT/3.0);
closeobj();

makeobj (SEGl) ;
rectf(-INCREMENT/3.0, -INCREMENT/3.0, INCREMENT/3.0,

INCREMENT/3.0);
closeobj();

makeobj(TRAIL_OBJ);
color(?);
rectf(-INCREMENT/3.0, -INCREMENT/3.0, INCREMENT/3.0,

INCREMENT/3.0);
closeobj();

makeframe()
{

}

color(O);
clear ();
ortho2(-l.5,C0+0.5,-1.5,LI+0.5);
color(?);
recti(-1,-1,CO,LI);

GL Example Programs 2-109

xfonts.c

xfonts.c Example C Language Program
/*
xfonts.c

This program demonstrates how to use Enhanced X-Windows fonts in a
GL application

*/

#include <gl/gl.h>
#include <Xll/Xlib.h>

main ()
{

Int32 wid;
Display *dpy;
int num_fonts;
char **fontlist;

wid = winopen "xfonts");
color (BLACK);
clear ();

/* get the connection to X */

/* the GL window ID */
/* structure describing X session*/
/* number of fonts X server found */
/* array of strings

(available font names) */

/* Normally, the default display is unix:O */
dpy = XOpenDisplay ("unix:O");

/* Get the names of all fonts that might be Helvetica fonts */
/* (have "helv" appearing in their font name) */
fontlist = XListFonts (dpy, "helv", 1000, &num_fonts);

/* other useful X font subroutines are:
* XListFonts
* XListFontsWithinfo
* XFreeFontNames
* XFreeFontinf o
* XSetFontPath
* XGetFontPath
* XFreeFontPath
*/

/* We have decided, by some criteria, to use the fifth
* available Helvetica font (assuming that at least five
*Helvetica fonts are found). We will give it an id of 433.
*/

loadXfont (433, fontlist[4]);

/* get rid of the font name list */
XFreeFontNames (fontlist)

2-110 Graphics Subroutines Reference

}

/* we want to use this font to draw a string */
font (433);

/* do it */
cmov2 (43.0, 56.0);
color (RED);
charstr ("Hello, World\n");

sleep (5);

xfonts.c

GL Example Programs 2-111

zbuffer1 .c

zbuffer1 .c Example C Language Program
/*
zbufferl.c:

A zbuffer() demo program that draws two intersecting planes.

This program requires the z-buffer option.
*/

#include <gl/gl.h>
#include <gl/device.h>

main ()
{

}

Device dev;
short val;

initialize () ;
while (TRUE)
{

}

if (qtest())
{

}

dev = qread(&val);
if (dev == ESCKEY)
{

}

zbuffer(FALSE);
gexi t ();
exit (0);

else if (dev == REDRAW)
{

}

reshapeviewport();
drawpolys();

initialize ()
{

}

int gid;
float xmax,ymax;

prefposition(XMAXSCREEN/4, XMAXSCREEN*3/4, YMAXSCREEN/4,
YMAXSCREEN*3/4);

gid = winopen("zbufferl");
winset (gid) ;
winconstraints();

perspective(900, 1.34, 1.01, 500.0);
lookat(-150.0, 90.0, 250.0, 50.0, 50.0, 0.0, O);

lsetdepth(OxCOOOOO,Ox3FFFFF);

qdevice(ESCKEY);
qdevice(REDRAW);
qenter(REDRAW,gid);

zbuffer(TRUE);

2-112 Graphics Subroutines Reference

drawpolys ()
{

}

zclear () ;
color(BLACK);
clear();

color (YELLOW);
pmv (0 • 0 , 0 • 0 , 1 0 0 • 0) ;
pdr(lOO.O, O.O, 100.0);
pdr(lOO.O, 100.0, 100.0);
pdr(O.O, 100.0, 100.0);
pclos ();

color(RED);
pmv(O.O, 0.0, 50.0);
pdr(lOO.O, 0.0, 50.0);
pdr(lOO.O, 100.0, 200.0);
pdr(O.O, 100.0, 200.0);
pclos();

zbuffer1 .c

GL Example Programs 2-113

zoing.c

zoing.c Example C Language Program
/*
zoing.c
Make a spiral out of circles.

Paul Haeberli - 1984
*I
#include <gl/device.h>
#include <gl/gl.h>

main ()
{

short dev,val;

keepaspect(l,1);
prefposition(XMAXSCREEN/4,XMAXSCREEN*3/4,YMAXSCREEN/4,

YMAXSCREEN*3/4);
winopen("zoing");
qdevice(ESCKEY);
drawit();
while (1) {

}

if((dev = qread(&val)) -- REDRAW)
drawit();

else if (dev == ESCKEY) {
gexit ();
exit ();

}

}

drawit()
{

}

register int i;

reshapeviewport();
color(?);
clear();
ortho2(-l.0,1.0,-1.0,1.0);
color(O);
translate(-0.1,0.0,0.0);
pushrnatrix();

for(i=O; i<200; i++) {
rotate(l70,'z');
scale(0.96,0.96,0.0);
pushrnatrix ();

translate(0.10,0.0,0.0);
circ(0.0,0.0,1.0);

poprnatrix ();
}

poprnatrix();

2-114 Graphics Subroutines Reference

Part 2. AIXwindows Graphics Support Library Reference
(XGSL)

XGSL Reference

Graphics Subroutines Reference

Chapter 3. XGSL Subroutines

XGSL Subroutines 3-1

gsbply

gsbply Subroutine

Purpose
Defines the beginning of an area to fill.

Library
The AIXwindows Graphics Support Library (libxgsl.a).

C Syntax
int gsbply_ ()

FORTRAN Syntax
INTEGER function gsbply

Pascal Syntax
FUNCTION gsbply_: INTEGER [PUBLIC];

Description
The gsbply subroutine defines the beginning of a two-dimensional shape or set of shapes to
be filled.

The following output routines are valid between a call to the gsbply subroutine and a call to
the gseply subroutine:

gspoly Draws a polyline.

gscir

gsell

gscarc

gscrca

gsearc

Draws a circle.

Draws an ellipse.

Draws a circular arc between two points.

Draws a circular arc between two angles.

Draws an elliptical arc between two points.

gseara Draws an elliptical arc between two angles.

Note: Any other subroutines used before the gseply subroutine is called do not become
part of the shape or set of shapes to be filled and can produce unpredictable results.

Before the fill occurs, the shapes drawn by each routine called between the gsbply and
gseply subroutines are connected. The first point of each shape is linked to the last point of
the previous shape, and the last point of the last shape is linked to the first point of the first
shape. The shapes may overlap to any degree but must share at least one common point
betWeen adjacent shapes.

Processing of the SIGRETRACT signal is postponed until the call to the gseply subroutine,
which defines the end of an area to fill.

3-2 Graphics Subroutines Reference

gsbply

The relevant attributes are:

• Color map

• Plane mask

• Fill color index

• Fill pattern

• Logical operation.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_USUC

Successful

U nsuccessfu I.

1. To define the beginning of an area to fill, the blit.c C language program uses the gsbply
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gseply subroutine, gspcls subroutine, gsell subroutine, gscarc subroutine, gscrca
subroutine, gsearc subroutine, gseara subroutine, gspoly subroutine, gscir subroutine.

XGSL Subroutines 3-3

gscarc

gscarc Subroutine

Purpose

Library

C Syntax

Draws a circular arc between two points.

The AIXwindows Graphics Support Library (libxgsl.a).

int gscarc_ (ex, ey, er, bx, by, ex, ey)
int *ex, *ey, *er, *bx, *by, *ex, *ey;

FORTRAN Syntax
INTEGER function gscarc_(ex, ey, er, bx, by, ex, ey)
INTEGER ex, ey, er, bx, by, ex, ey

Pascal Syntax
FUNCTION gscarc_ (
VAR ex, ey, er, bx, by, ex, ey: INTEGER
): INTEGER [PUBLIC];

Description
The gscarc subroutine draws a counterclockwise circular arc of a specified radius from
beginning point to ending point. The radius is expressed in number of pixels.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Line style

• Logical operation.

Parameters
ex, ey Define the coordinates of the center of a circle.

For displays, the center is restricted to a range from -2048 to 2048.

er Defines the radius of a circle.

bx, by

ex, ey

Notes:

Define the coordinates of the beginning point on a circle.

Define the coordinates of the ending point on a circle.

1. If the beginning and ending points are identical, a full circle is drawn.

2. The application must control the accuracy of the end points (bx, by and ex, ey)
when drawing circular arcs. If the start point of the arc and end point of the arc lie
within one pixel of the true circle, the arc is drawn successfully. Other values can
cause the subroutine to fail. If the gscarc subroutine fails because of an
inaccurate starting point, the GS_ASTR value is returned. For an inaccurate
ending point, the GS_AEND value is returned.

3-4 Graphics Subroutines Reference

gscarc

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_RDUS

GS_INAC

GS_AEND

GS_ASTR

Successful

Coordinate not valid

Radius specification not valid

Virtual terminal inactive

Ending point not valid

Beginning point not valid.

1. To draw a circular between two points, the arc3.c C language program uses the gscarc
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gscrca subroutine, gseara subroutine, gsearc subroutine.

XGSL Subroutines 3-5

gscatt

gscatt Subroutine

Purpose

Library

C Syntax

Sets the attributes of the single-color cursor.

The AIXwindows Graphics Support Library (libxgsl.a).

int gscatt_ (Color, Width, Height, Pattern, Ox, Oy)
int *Color, *Width, *Height",
int Pattern, *Ox, Oy;

FORTRAN Syntax
INTEGER function gscatt_ (Color, Width, Height, Pattern, Ox, Oy)
INTEGER Color, Width, Height, Pattern, Ox, Oy

Pascal Syntax
FUNCTION gscatt_ (
VAR Color, Width, Height. INTEGER;
Pattern: ARRAY [1 .. k] of INTEGER;
Ox, Oy: INTEGER
): INTEGER [PUBLIC];

Description
The gscatt subroutine defines the single-color cursor for the AIXwindows Graphics Support
Library (XGSL). The gscmap subroutine must initialize the color map before the gscatt
subroutine can be called.

Only one cursor, either the single-color cursor or the multicolor cursor, can be active in the
XGSL at any one time. The gscatt subroutine forces all subsequent calls to the gsmcur and
gsecur subroutines to operate on the single-color version of the cursor. To change from the
multicolor cursor to the single-color cursor, erase the cursor with the gsecur subroutine, and
then call the gscatt subroutine.

Parameters
Color

Width, Height

Pattern

3-6 Graphics Subroutines Reference

Refers to an entry in the color map. If the index value is -1 (negative
one), the attribute is unchanged.

Define, in pixels, the width and height of the bit pattern to be used as
the cursor. If either the Width or Height parameter equals -1 (negative
one), the pattern remains unchanged.

Defines the image used as a cursor.

Dividing the value of the Width parameter by 32 and rounding the
result to the next highest integer give the ceiling of the calculation.
This ceiling indicates the number of words per row.

The Height parameter indicates the number of rows. The cursor data
must be supplied in row (scan line) major order.

To define the cursor pattern fully, calculate the size, in words, of the
Pattern array by multiplying the previously calculated ceiling by the

Ox, Oy

gscatt

value of the Height parameter. If the Width parameter implies partial
use of a word, the rest of the word is unused.

For Pascal syntax, the application must declare that the passed array
is fixed-length and that the routine accepts an array of that length; that
is, the kin the routine declaration must be a constant.

Note: The maximum size of the cursor is device-dependent and can
be determined by using the gsqdsp subroutine.

Indicate the origin of the cursor relative to the lower leftmost corner (0,
0) of the cursor pattern. The origin must be placed within the cursor
pattern: Ox< Width and Oy < Height. When the application moves the
cursor using the gsmcur subroutine, the origin of the cursor is placed
at the position indicated. If x equals -1 (negative one), the origin
remains unchanged.

Notes:

1. The cursor attributes cannot be changed while the cursor is visible.

2. No default cursor is defined. All cursor parameters must be set before the cursor is
displayed.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_COLI

GS_CURS

GS_CURO

GS_CURV

Successful

Color index not valid

Cursor size not valid

Cursor origin not valid

Cursor visible.

1. To set the attributes for a single-color cursor, the curs.c C language program uses the
gscatt subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsecur subroutine, gsmcur subroutine, gsqdsp subroutine.

XGSL Subroutines 3-7

gsccnv

gsccnv Subroutine

Purpose

Library

C Syntax

Converts a circular arc or full circle into a polyline.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsccnv_ (ex, ey, er, bx, by, ex, ey, Len, x, y, Pre)
int *ex, *ey, *er;
int *bx, *by;
int *ex, *ey, *Len;
int *x[], *y[], *Pre;

FORTRAN Syntax
INTEGER function gsccnv (ex, ey, er, bx, by, ex, ey, Len, x, y, Pre)
INTEGER ex, ey, er, bx, by, ex, ey, Len, x(*), y(*), Pre

Pascal Syntax
FUNCTION gsccnv _ (
VAR ex, ey, er, bx, by, ex, ey, Len: INTEGER;
VAR x, y: ARRAY [1 .. k] of INTEGER;
VAR Pre: INTEGER
): INTEGER [PUBLIC];

Description
The gsccnv subroutine converts a counterclockwise circular arc definition into a set of
vertices. The returned vertices can then be used to draw a circular arc with the gspoly
subroutine or to fill a circular arc with the gsfply subroutine. In general, it can be
concatenated with other lists of vertices to draw or fill more complex shapes, such as chord
arcs, pie arcs, and rectangles with rounded corners.

When beginning and ending points are identical, the list of vertices contains the full circle,
which can then be drawn or filled.

Parameters
ex, ey

er

bx, by

Define the coordinates of the center of the circle. These are input
parameters, specified by the application.

Defines the radius of the circle. It must not equal O. This is an input
parameter, specified by the application.

Note: If the er parameter is negative, it is automatically converted to a
positive value for use by this subroutine.

Define the coordinates of the beginning point of the arc. These are input
parameters specified by the application.

3-8 Graphics Subroutines Reference

ex, ey

Len

x,y

Pre

Return Values

gsccnv

Define the coordinates of the ending point of the arc. These are input
parameters specified by the application.

Note: The subroutine allows ample leniency toward the accuracy of the
specification of the beginning and ending points. The arc of the
specified radius will always start and end exactly at the specified
points. If the beginning and ending points are identical, the vertices
for a full circle of the specified radius is generated.

Specifies, on return, the number of points (vertices) in the x and y
coordinate arrays. If error conditions arise, Len is set to a value of O. Before
you call the gsccnv subroutine, you must set the value of the Len
parameter to at least one greater than the value of the Pre {precision)
parameter.

Define, as coordinate arrays, the vertices that represent the circular arc
specified by the application. These parameters are generated and returned
by the gsccnv subroutine.

For Pascal syntax, the application must declare that the x and y arrays are
fixed-length and that the gsccnv subroutine accepts arrays of that length;
that is, the kin the subroutine declaration must be a constant.

Defines precision level, which specifies the maximum number of line
segments that can be generated for a full circle. The number of line
segments actually generated depends on the arc length defined by the
binning point (bx,by) and ending point (ex,ey).

The Pre parameter must be one of the following four values which specify
the corresponding number of vertices:

• 64 (65 vertices)

• 128 (129 vertices)

• 256 (257 vertices)

• 512 (513 vertices).

All other precision values are reserved and must not be used because their
results are unpredictable. The default value for the Pre parameter is 64.

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_NCOR

Successful

Coordinate not valid

Number of coordinates not valid.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsfply subroutine, gspoly subroutine.

XGSL Subroutines 3-9

gscir

gscir Subroutine

Purpose

Library

C Syntax

Draws a circle.

The AIXwindows Graphics Support Library (libxgsl.a).

int gscir _ (Cx, Cy, Cr)
int *Cx, *Cy, *Cr,

FORTRAN Syntax
INTEGER function gscir (Cx, Cy, Cr)
INTEGER Cx, Cy, Cr

Pascal Syntax
FUNCTION gscir_ (
VAR Cx, Cy, Cr. INTEGER
): INTEGER [PUBLIC];

Description
The gscir subroutine draws a circle of the specified radius. The radius is expressed in
number of pixels.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Line style

• Logical operation.

Parameters
Cx, Cy

Cr

Return Values

Define the coordinates of the center of the circle.

Defines the radius of the circle. If the radius is zero, a single point is drawn
at the center.

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_RDUS

GS_INAC

Successful

Coordinate not valid

Radius specification not valid

Virtual terminal inactive.

3-1 0 Graphics Subroutines Reference

gscir

Example
1. To draw a circle, the cir1 .c C language program uses the gscir subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsccnv subroutine.

XGSL Subroutines 3-11

gsclrs

gsclrs Subroutine

Purpose
Clears the screen and fills it with the background color.

Library
The AIXwindows Graphics Support Library (libxgsl.a).

C Syntax
int gsclrs_ ()

FORTRAN Syntax
INTEGER function gsclrs_

Pascal Syntax
FUNCTION gsclrs_: INTEGER [PUBLIC];

Description
The gsclrs subroutine fills the frame buffer with the background color (color index zero) as
defined by the color map attribute.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_INAC

Successful

Virtual terminal inactive.

1. To clear the screen and fill it with the background color, the arc4.c C language program
uses the gsclrs subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

3-12 Graphics Subroutines Reference

gscmap

gscmap Subroutine

Purpose

Library

C Syntax

Specifies the color mapping.

The AIXwindows Graphics Support Library (libxgsl.a).

int gscmap_ (Number, Red, Green, Blue)
int *Number, *Red, *Green, *Blue;

FORTRAN Syntax
INTEGER function gscmap (Number, Red, Green, Blue)
INTEGER Number, Red(*), Green(*), Blue(*)

Pascal Syntax
FUNCTION gscmap_ (
VAR Number INTEGER;
VAR Red, Green, Blue: ARRAY [O .. k] of INTEGER
): INTEGER [PUBLIC];

Description
The gscmap subroutine specifies the mapping between the color index attribute and the
color it produces on the display.

The default color table mapping for the first 16 colors is the same as the default color map
attributes in KSR mode. The remaining color values are initialized in a hardware-dependent
manner.

Parameters
Number Indicates how many colors the input-intensity arrays contain.

Red, Green, Blue Define arrays that contain the intensity levels of the corresponding
color. Each entry in an array specifies the intensity value for the
corresponding color index.

The value in each entry for the Red, Green, and Blue intensity arrays
is between OxOOOO (zero intensity) and Ox3FFF (full intensity). The
following additional increments of intensity are possible, depending on
the adapter hardware in use:

Ox2000 1 /2 intensity

Ox1000 1 /4 intensity

Ox0800 1 /8 intensity

Ox0400 1 /16 intensity

Ox0200 1 /32 intensity

Ox0100 1 /64 intensity.

XGSL Subroutines 3-13

gscmap

Combinations of these values can be used to create intermediate
levels of intensity. For example, OxOCOO gives 3/16 intensity, while
Ox3000 gives 3/4 intensity.

For Pascal syntax, the application must declare that the Red, Green,
and Blue arrays are fixed-length and that the gscmap subroutine
accepts an array of that length. That is, the kin the routine declaration
must be a constant and it should be greater than or equal to the
largest value for the Number parameter.

Notes:

1. The actual number of bits from bit 13 to bit O that affect the
color on the display depends on the number of bits in the
digital-to-analog converter of the adapter hardware in use.
This size information is available by using the gsqdsp
subroutine.

2. An application cannot change a single arbitrary color entry in.
the color map (or in the VLT). It must change all the entries
for all the colors up to and including the desired entry.

Return Values

Examples

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_TABL

GS_INAC

Successful

Table length not valid

Virtual terminal inactive.

1 . To set the mapping between a four-color index and the color produced on the display of
an arc, the arc4.c C language program uses the gscmap subroutine.

2. To set the mapping between a color index and the color produced on the display, the
curs.c C language program uses the gscmap subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsqdsp subroutine.

3-14 Graphics Subroutines Reference

gscrca

gscrca Subroutine

Purpose

Library

C Syntax

Draws a circular arc between two angles.

The AIXwindows Graphics Support Library (libxgsl.a).

int gscrca_ {ex, ey, er, ba, ea)
int *ex, *ey, *er;
int *ba, *ea;

FORTRAN Syntax
INTEGER function gscrca_ {ex, ey, er, ba, ea)
INTEGER ex, ey, er, ba, ea

Pascal Syntax
FUNCTION gscrca_ {
VAR ex, ey, er, ba, ea : INTEGER
): INTEGER [PUBLIC];

Description
The gscrca subroutine draws a counterclockwise circular arc of a specified radius from the
beginning point as defined by an angle specification to the ending point as defined by an
angle specification.

The angle specifications are given in tenths of degrees, from Oto 3600. Values outside this
range cause the gscrca subroutine to fail.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Line style

• Logical operation.

Parameters
ex, ey Define the coordinates of the center of a circle.

er

ba

ea

The center is restricted to a range of values from -2048 to 2048.

Defines the radius of the circle in device coordinates.

Defines the start point of the circular arc as an angle in tenths of degrees,
from O to 3600.

Defines the end point of the circular arc as an angle in tenths of degrees,
from O to 3600.

Note: If the beginning and ending angles are identical, a full circle is
drawn.

XGSL Subroutines 3-15

gscrca

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_ANGL

GS_RDUS

GS_CORD

GS_INAC

Successful

Angle not valid

Radius specification not valid

Coordinate not valid

Virtual terminal inactive.

1 . To draw a circular arc between two angles, the arc4.c C language program uses the
gscrca subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gscarc subroutine, gseara subroutine, gsearc subroutine.

3-16 Graphics Subroutines Reference

gsdjply

gsdjply Subroutine

Purpose

Library

C Syntax

Draws one or more sets of lines.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsdjply_ {Polylines, Points, x, y)
int * Polylines;
int Points[], x[], y[];

FORTRAN Syntax
INTEGER function gsdjply_ {Polylines, Points, x, y)
INTEGER Polylines, Points{*), x(*), y(*)

Pascal Syntax
FUNCTION gsdjply_ {
VAR Polylines: INTEGER;
VAR Points: ARRAY [1 .. k] of INTEGER;
VAR x, y: ARRAY [1 •. ~ of INTEGER
): INTEGER [PUBLIC];

Description
The gsdjply subroutine draws one or more polylines. A polyline is a series of straight lines
that are connected end-to-end. A polyline is specified by a series of points. If more than one
polyline is specified, the individual polylines are not connected (disjoint polylines). All lines
are drawn as defined by the current relevant attributes.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Line style

• Logical operation.

Parameters
Polylines

Points

Defines the number of polylines to draw. This value must be greater than or
equal to 1.

An array of integers having for each polyline an integer that defines the
number of points in the polyline. The value of the integer for each polyline
must be greater than or equal to 2.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant, and it should be greater than
or equal to the value of the Polylines parameter.

XGSL Subroutines 3-17

gsdjply

x,y Define, as arrays, the points for line drawing.

For Pascal syntax, the application must declare that the passed arrays are
fixed-length and that the routine accepts arrays of that length. That is, the I
in the routine declaration must be a constant and should be greater than or
equal to the sum of the values in the Points array.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_NCOR

GS_INAC

Successful

Coordinate not valid

Number of coordinates not valid

Virtual terminal inactive.

1. To draw two sets of polylines, the djpoly.c C language program uses the gsdjply
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gspoly subroutine, gsplym subroutine, gsmatt subroutine.

3-18 Graphics Subroutines Reference

gsdpik Subroutine

Purpose

gsdpik

Provides compatibility for GSL applications that use the gsdpik subroutine.

Library
The AIXwindows Graphics Support Library (libxgsl.a).

C Syntax
int gsdpik_ {)

FORTRAN Syntax
INTEGER function gsdpik

Pascal Syntax
FUNCTION gsdpik_: INTEGER [PUBLIC];

Description
The gsdpik subroutine is provided for compatibility with existing GSL applications. It is
ignored by the current implementation of XGSL.

Return Value
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
value:

GS_SUCC Successful.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-19

gseara

gseara Subroutine

Purpose

Library

C Syntax

Draws an elliptical arc between two angles.

The AIXwindows Graphics Support Library (libxgsl.a).

int gseara_ (Cx, Cy, Major, Minor, Ang, Sa, Ea)
int *Cx, *Cy, *Major, *Minor;
int *Ang, *Sa, *Ea;

FORTRAN Syntax
INTEGER function gseara_ (Cx, Cy, Major, Minor, Ang, Sa, Ea)
INTEGER Cx, Cy, Major, Minor, Ang, Sa, Ea

Pascal Syntax
FUNCTION gseara_ (
VAR Cx, Cy, Major, Minor, Ang, Sa, Ea : INTEGER
): INTEGER [PUBLIC];

Description
The gseara subroutine draws a counterclockwise elliptical arc of the specified axes and
angle from the beginning point defined by an angle specification to the ending point defined
by an angle specification. The axes are expressed in number of pixels.

The angle specifications are given in tenths of degrees, from O (zero) to 3600. Values
outside this range cause the gseara subroutine to fail.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Line style

• Logical operation.

Parameters
Cx,Cy Define the coordinates of the center of the ellipse.

The center is restricted to values ranging from -2048 to 2048.

Major, Minor Define half of the nonzero major and minor axes of the ellipse.

Ang Defines the angle between the major axis and the X axis. If the value of the
Ang parameter is 0, the major axis is on the X axis and the minor axis is on
the Y axis. The angle is expressed in tenths of degrees, from Oto 3600.

Sa Defines the angle of the starting point of the elliptical arc, measured
counterclockwise from the major axis. The angle is expressed in tenths of
degrees, from Oto 3600.

3-20 Graphics Subroutines Reference

Ea

gseara

Defines the angle of the ending point of the elliptical arc, measured
counterclockwise from the major axis. The angle is expressed in tenths of
degrees, from Oto 3600.

If the beginning and ending points are identical, a full ellipse is drawn.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_ELMM

GS_INAC

GS_ANGL

GS_NMEM

Successful

Coordinate not valid

Major or minor axis not valid

Virtual terminal inactive

Angle not valid

Insufficient memory.

1. To draw several ellipses at different angles around a common center, the arc1 .c C
language program uses the gseara subroutine in a loop.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsearc subroutine.

XGSL Subroutines 3-21

gsearc

gsearc Subroutine

Purpose

Library

C Syntax

Draws an elliptical arc between two points.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsearc_ (ex, ey, Major, Minor, Ang, bx, by, ex, ey, Rot)
int *ex, *ey, *Major, *Minor, *Ang;
int *bx, *by, *ex, *ey, *Rot;

FORTRAN Syntax
INTEGER function gsearc_ (ex, ey, Major, Minor, Ang, bx, by, ex, ey, Rot)
INTEGER ex, ey, Major, Minor, Ang, bx, by, ex, ey, Rot

Pascal Syntax
FUNCTION gsearc_ (
VAR ex, ey, Major, Minor, Ang, bx, by, ex, ey, Rot: INTEGER
): INTEGER [PUBLIC];

Description
The gsearc subroutine draws a counterclockwise elliptical arc of specified axes and angle
from beginning point to ending point. The axes are expressed in number of pixels.

The angle specifications are given in tenths of degrees, from Oto 3600. Values outside this
range cause the gsearc subroutine to fail.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Linestyle

• Logical operation.

Parameters
ex, ey

Major, Minor

Ang

bx, by

ex,ey

Define the coordinates of the center of the ellipse.

The center is restricted to a range of values from -2048 to 2048.

Define half of the nonzero major and minor axes of the ellipse.

Defines the angle between the major axis and the X axis. If the value of the
Ang parameter is 0 (zero), the major axis is on the X axis and the minor axis
is on the Y axis. The angle is expressed in tenths of degrees, from O to
3600.

Define the coordinates of the beginning point on the ellipse.

Define the coordinates of the ending point on the ellipse.

3-22 Graphics Subroutines Reference

Rot

gsearc

Specifies whether the application must perform rotational transformation.
Possible settings are:

0 The coordinates of the beginning and ending points passed by the
application correspond to an arc of an orthogonal ellipse. No
rotational transformation is performed, thus improving performance.

1 The beginning and ending points are transformed by the application
and lie on the off-axis ellipse.

All other values are reserved and must not be used, as they can produce
unpredictable results.

If the beginning and ending points are identical, regardless of whether they
are on the ellipse, a full ellipse is drawn.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC Successful

GS_CORD Coordinate not valid

GS_ELMM Major or minor axis not valid

GS_INAC Virtual terminal inactive

GS_ANGL Angle not valid

GS_NMEM Insufficient resources

GS_AEND End point not valid

GS_ASTR Start point not valid.

1. To draw several ellipses at different angles around a center point, the arc2.c C language
program uses the gsearc subroutine in a loop.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gscrca subroutine, gscarc subroutine, gseara subroutine.

XGSL Subroutines 3-23

gsecnv

gsecnv Subroutine

Purpose

Library

C Syntax

Converts an ellipse to a polyline.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsecnv_ (ex, ey, Major, Minor, Ang, bx, by, ex, ey, Rot, Len, x, y, Pre)
int *ex, *ey, *Major, *Minor,
int *Ang, *bx, *by, *ex, *ey;
int *Rot, *Len, x[], y[], *Pre;

FORTRAN Syntax
INTEGER function gsecnv (ex, ey, Major, Minor, Ang, bx, by, ex, ey, Rot, Len, x, y, Pre)
INTEGER ex, ey, Major, Minor, Ang, bx, by, ex, ey, Rot, Len, x(*), y(*), Pre

Pascal Syntax
FUNCTION gsecnv_ (
VAR ex, ey, Major, Minor, Ang, bx, by, ex, ey, Rot, Len: INTEGER;
VAR x, y: ARRAY [1 .. k] of INTEGER;
VAR Pre: INTEGER
): INTEGER [PUBLIC];

Description
The gsecnv subroutine converts a counterclockwise elliptical arc definition into an array of
vertices. The list of vertices can then be used to draw an elliptical arc with the gspoly
subroutine or to fill an elliptical arc with the gsfply subroutine. In general, it can be
concatenated with other lists of vertices to draw or fill more complex shapes, such as chord
arcs, pie arcs, or rectangles with round corners.

When the beginning and ending points are identical, the list of vertices contains the full
ellipse, which can then be drawn or filled.

Parameters
ex, ey Define the coordinates of the center of an ellipse.

Major, Minor Define the semi-major and semi-minor axes of an ellipse.

Ang Defines the off-axis angle of an ellipse. If the value of the Ang parameter is
O (zero), the major axis is the X axis and the minor axis is the Y axis. A
positive value rotates the ellipse counterclockwise; a negative value rotates
it clockwise. All values are in degrees and modulo 360.

bx, by Define the coordinates of the beginning point of an arc.

ex, ey Define the coordinates of the ending point of an arc.

Note: The subroutine allows ample leniency toward the accuracy of the
specification of beginning and ending points. The arc of the specified
angle always starts and ends exactly at the specified points. If the
beginning and ending points are identical, a full ellipse of the
specified angle is generated.

3-24 Graphics Subroutines Reference

Rot

Len

x,y

Pre

gsecnv

Specifies whether the application must perform rotational transformation.
Possible settings are:

0 The coordinates of the beginning and ending points passed by the
application correspond to an arc of an orthogonal ellipse. No
rotational transformation is performed, thus improving performance.

1 The beginning and ending points are transformed by the application
and lie on the off-axis ellipse.

Specifies, on return, the number of points (vertices) in the x and y
coordinate arrays. If error conditions arise, the Len parameter is set to a
value of 0. Before you call the gsecnv subroutine, you must set the value of
the Len parameter to at least one greater than the value of the Pre
(precision) parameter.

Define, as coordinate arrays, the vertices that represent the elliptical shape
when drawn or filled.

For Pascal syntax, the application must declare that the x and y arrays are
fixed-length and that the gsecnv subroutine accepts arrays of that length.
That is, the k in the subroutine declaration must be a constant.

Defines the precision level, which specifies the maximum number of line
segments that can be generated for a full ellipse. The number of line
segments actually generated depends on the arc length defined by the
beginning point (bx,by) and the ending point (ex,ey).

The Pre parameter must be one of the following four values, which specify
the corresponding number of vertices:

• 64 (65 vertices)

• 128 (129 vertices)

• 256 (257 vertices)

• 512 (513 vertices).

All other precision values are reserved and must not be used, as their
results are unpredictable. The default value for the Pre parameter is 64.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_NCOR

Successful

Coordinate not valid

Number of coordinates not valid.

1. To convert an elliptical arc to a polyline, the arc5.c C language program uses the gsecnv
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-25

gsecnv

Related Information
The gspoly subroutine, gsfply subroutine.

3-26 Graphics Subroutines Reference

gsecur Subroutine

Purpose
Erases the enabled cursor and makes it invisible.

Library
The AIXwindows Graphics Support Library (libxgsl.a).

C Syntax
int gsecur_ ()

FORTRAN Syntax
INTEGER function gsecur_

Pascal Syntax
FUNCTION gsecur_: INTEGER [PUBLIC];

Description
The gsecur subroutine makes the enabled cursors invisible.

gsecur

For adapters with hardware cursor support, the gsecur subroutine turns off the cursor.
Otherwise, this subroutine reverses the actions that placed the cursor in the frame buffer.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_INAC

Successful

Virtual terminal inactive.

1. To make the enabled cursor invisible before changing the cursor pattern, the curs.c C
language program uses the gsecur subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsmcur subroutine.

XGSL Subroutines 3-27

gsell

gsell Subroutine

Purpose

Library

C Syntax

Draws an ellipse.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsell_ (ex, ey, Major, Minor, Ang)
int *ex, *ey, *Major, *Minor, *Ang;

FORTRAN Syntax
INTEGER function gsell_ (ex, ey, Major, Minor, Ang)
INTEGER ex, ey, Major, Minor, Ang

Pascal Syntax
FUNCTION gsell_ (
VAR ex, ey, Major, Minor, Ang: INTEGER
): INTEGER [PUBLIC];

Description
The gsell subroutine draws an ellipse of the specified axes and angle. The axes are
expressed in number of pixels.

The angle specifications are given in tenths of degrees, from O to 3600. Values outside this
range cause the gsell subroutine to fail.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Linestyle

• Logical operation.

Parameters
ex, ey Define the coordinates of the center of an ellipse.

Major, Minor Define half of the nonzero major and minor axes of an ellipse.

Ang Defines the angle between the major axis and the X axis. If this angle is O
(zero), the major axis is on the X axis and the minor axis is on the Y axis.
The angle is expressed in tenths of degrees, from Oto 3600.

3-28 Graphics Subroutines Reference

gsell

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_ELMM

GS_INAC

GS_ANGL

GS_NMEM

Successful

Coordinate not valid

Major or minor axis not valid

Virtual terminal inactive

Angle not valid

Insufficient memory.

1. To draw an ellipse, the ell1.c C language program uses the gsell subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-29

gsepik

gsepik Subroutine

Purpose

Library

C Syntax

Provides compatibility for GSL applications that use the gsepik subroutine.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsepik_ (Pickwind'J
int * Pickwind;

FORTRAN Syntax
INTEGER function gsepik_ (Pickwind'J
INTEGER Pickwind

Pascal Syntax
FUNCTION gsepik_ (
VAR Pickwind: INTEGER
): INTEGER [PUBLIC];

Description

Parameter

The gsepik subroutine is provided for compatibility with existing GSL applications. It is
ignored by the current implementation of XGSL.

The parameter is ignored. It is provided for compatibility.

Return Value
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
value:

GS_SUCC Successful.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

3-30 Graphics Subroutines Reference

gseply

gseply Subroutine

Purpose
Defines the end of an area to fill.

Library
The AIXwindows Graphics Support Library (libxgsl.a)

C Syntax
int gseply _ ()

FORTRAN Syntax
INTEGER function gseply

Pascal Syntax
FUNCTION gseply_: INTEGER [PUBLIC];

Description
The gseply subroutine defines the end of a two-dimensional shape or set of shapes to be
filled. The subroutine then fills each of the valid primitives, or basic graphic elements, drawn
since the last gspcls or gsbply subroutine was called.

The relevant attributes are:

• Color map

• Plane mask

• Fill color index

• Fill pattern

• Logical operation.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_USUC

Successful

Unsuccessful.

1 . To define the end of an area to be filled, the blit.c C language program uses the gseply
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsbply subroutine, gspcls subroutine.

XGSL Subroutines 3-31

gsevds

gsevds Subroutine

Purpose

Library

C Syntax

Disables the reporting of events.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsevds_ (Event)
int *Event,

FORTRAN Syntax
INTEGER function gsevds_ (Event)
INTEGER Event

Pascal Syntax
FUNCTION gsevds_ (
VAR Event: INTEGER
): INTEGER [PUBLIC];

Description

Parameter

The gsevds subroutine disables the reporting of events of a given type. When the keyboard
event is disabled, the keyboard is locked and no keystroke input is placed in the input ring
buffer. Similarly, for all other devices, if an event is disabled, the device producing the event
is inhibited from placing input into the ring.

A valid input ring must be defined during the XGSL initialization.

Event Specifies the event to disable.

The recognized events and their values are as follows:

Value Event

1 Keystroke

3 Locator movement or button

4 Lighted programmable function key (LPFK)

5 Valuator.

The user can enable the keyboard by pressing the Esc-B key sequence
(ANSI enable manual input). After this sequence, keystroke events are
again reported.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_EVNT

GS_SUCC

GS_UNSC

Event type not valid

Successful

Unsuccessful.

3-32 Graphics Subroutines Reference

gsevds

Example
1. To disable mouse input, the curs.c C language program uses the gsevds subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gseven subroutine, gsinit subroutine, gsevwt subroutine.

XGSL Subroutines 3-33

gseven

gseven Subroutine

Purpose

Library

C Syntax

Enables the reporting of events.

The AIXwindows Graphics Support Library (libxgsl.a)

int gseven_ (Event)
int *Event,

FORTRAN Syntax
INTEGER function gseven (Event)
INTEGER Event

Pascal Syntax
FUNCTION gseven_ (
VAR Event INTEGER
): INTEGER [PUBLIC];

Description

Parameter

The gseven subroutine enables the reporting of events of a given type. If the device
producing the event is enabled, the gseven subroutine allows it to put data into the ring
buffer. If the event type is not recognized, no action is taken.

A valid input ring must be defined during the XGSL initialization.

Event Specifies the event to disable.

The recognized events and their values are as follows:

Value Event

1 Keystroke

3 Locator movement or button

4 Lighted programmable function key (LPFK)

5 Valuator.

After XGSL initialization, only the keyboard is enabled. If the application
requires the other input devices to be enabled, it must explicitly enable them
with this command.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values.

GS_EVNT

GS_SUCC

GS_UNSC

Event type not valid

Successful

Unsuccessful.

3-34 Graphics Subroutines Reference

gseven

Example
1. To enable keystroke events to put data into the ring buffer, the curs.c C language

program uses the gseven subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsevds subroutine, gsinit subroutine, gsevwt subroutine.

XGSL Subroutines 3-35

gsevwt

gsevwt Subroutine

Purpose

Library

C Syntax

Waits for an input event.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsevwt_ (Wait, Data)
int *Wait, Data[13];

FORTRAN Syntax
INTEGER function gsevwt_ (Wait, Data)
INTEGER Wait, Data (13)

Pascal Syntax
FUNCTION gsevwt_ (
VAR Wait: INTEGER;
VAR Data: ARRAY (0 •. 12] of INTEGER
): INTEGER [PUBLIC];

Description
The gsevwt subroutine returns the relevant information for the oldest input event in the ring
buffer.

If an event is in the ring buffer, then the gsevwt subroutine parses the oldest event in the
ring buffer. It returns the event type and its data in the buffer provided by the application. If
the return code indicates overflow, the most recent input events from enabled devices are
lost.

If no event is in the ring and the application does not request a wait, the gsevwt subroutine
returns immediately. If the application requested a wait, the process execution is suspended
until an enabled input event occurs. Then the gsevwt subroutine returns the event type and
its data in the buffer specified by the Data parameter.

Note: The gsevwt subroutine uses the application buffer passed to it for temporary
storage. If the user has explicitly keyed part of an ANSI control sequence when the
application calls the gsevwt subroutine with no wait request, then the gsevwt
subroutine finds a partial event in the ring and leaves part of the parsed data for the
event in the application buffer. However, the gsevwt subroutine returns a time-out
event class. Unless the application returns the same unmodified buffer, or a different
buffer containing identical information, the results of the next call to the gsevwt
subroutine will be incorrect.

A valid input ring must be defined during the XGSL initialization.

Parameters
Wait Determines whether to wait for an event. If the Wait parameter has a value

of 0, then the gsevwt subroutine does not wait for an event if no event is
available.

Data Specifies the location where XGSL is to store the input data (up to 13
words). The Data parameter must be word-aligned.

3-36 Graphics Subroutines Reference

gsevwt

The possible events are:

• Keystroke

This event type occurs when the user types a single graphic character or
a single-byte control character. For these two events, the gsevwt
subroutine returns a null-terminated byte string of ASCII codes
representing the graphic or control characters that were typed. This event
may also occur if the user has explicitly keyed an ANSI escape
sequence. If so, the gsevwt subroutine returns 2 bytes: the Esc
character and the next character in the sequence.

The Data parameter consists of a null-terminated ASCII string and is
structured as shown in Figure 1 .

Byte 0 Byte 1 Byte 2 Byte 3

Data[O] Event Type = 1

Data[1] reserved

Data[2] code J code J code I code

...

Data[n] code J code J NULL (0) J unused

Figure 42. Structure of the Data Parameter for a Keystroke Event

It is important to note that the gsevwt subroutine does not detect ANSI
escape sequences. However, with the default virtual-terminal keyboard
mapping, it is not possible to generate an escape sequence by pressing a
single key. Because the gsevwt subroutine does parse ANSI control
sequences, the routine cannot consider the press of the Esc key an
event, so the routine waits for the next character to decide if the escape
implies the start of a control sequence. Only if the next character is not
the left bracket does the gsevwt subroutine return the Esc character and
the next character.

• Control sequence

This event type indicates an ANSI control sequence, which is of the form:

Esc [p ; p ; • • • p f

where Esc is the ASCII escape character, p represents any parameters
(one or more ASCII digits), the ••• (ellipses) represent additional
parameters separated by semicolons, and f represents the final
character that terminates the sequence (ASCII a to z or A to Z).

The ANSI control sequence occurs when the user either presses a
programmable function key on the keyboard or enters an explicit control
sequence.

XGSL Subroutines 3-37

gsevwt

The Data parameter is structured as shown in Figure 2.

Data[O]

Data[1]

Data[2]

Data[3]

Data[n]

Event Type = 2

Final Character

Count

Parameter[1]

...

Parameter[Count]

Figure 43. Structure of the Data Parameter for a Control Sequence Event

The data consists of the parsed control-sequence information. The Final
Character field is the valid or invalid final character. The Count field
indicates the number of parameters in the control sequence, with a
maximum count of 10. These fields are followed by the Parameter fields.

• Locator

This event indicates that the user has moved the locator or pressed a
button on the locator.

The Data parameter consists of locator position and status information as
shown in Figure 3.

Data[O]

Data[1]

Data[2]

Data[3]

Data[4]

Data[5]

Event Type = 3

X Value

YValue

Type

Buttons

Time Stamp

Figure 44. Structure of the Data Parameter for a Locator Event

The X Value and Y Value fields contain an absolute position (x, y) for a
tablet. The Type field contains a 1 if the locator is a tablet.

3-38 Graphics Subroutines Reference

gsevwt

The Buttons field contains the locator button status. A bit set to 1
indicates that the corresponding button is pressed. For a tablet, the
following bits, when set, indicate that the corresponding buttons are
pressed (bit O is the most significant bit):

Btt Button

0

1

2

3

None pressed

Cursor upper left, stylus tip

Cursor upper right

Cursor lower left

4 Cursor lower right.

The sixth most significant bit of the Buttons field (bit 5) indicates that the
tablet sensor is on (bit set) or off (bit not set).

• LPFK

This event type occurs when the user presses a key on the LPFK. The
Data parameter consists of the LPFK information as shown in Figure 4.

Data[O]

Data[1]

Data[2]

Event Type = 4

LPFK

Time Stamp

Figure 45. Structure of the Data Parameter for a LPFK Event

The LPFK field contains the decimal number of the LPFK pressed by the
user, that is, O through 31. The Time Stamp field is elapsed time in
sixtieths of a second.

• Valuator

This event type occurs when the user turns a valuator dial. The Data
parameter consists of the valuator information as shown in Figure 5.

Data[O]

Data[1]

Data[2]

Data[3]

Event Type = 5

Valuator

Valuator Delta

Time Stamp

Figure 46. Structure of the Data Parameter for a Valuator Event

The Valuator field contains the decimal number, O through 7, of the
valuator turned by the user. The Valuator Delta field contains the
difference between the current valuator value and the last valuator value.
The delta for a full turn is 256 for the IBM Valuator. The delta is positive
for clockwise rotation and negative for counterclockwise rotation. The
Time Stamp field is elapsed time in sixtieths of a second.

XGSL Subroutines 3-39

gsevwt

• Key code

This event type occurs when the virtual terminal is in nontranslated mode
and a keyboard key is pressed, held down, or released. The Data
parameter is structured as shown in Figure 6.

Data[O]

Data[1]

Data[2]

Data[3]

Event Type = 6

Key Position Code

Key Scan Code

Status

Figure 47. Structure of the Data Parameter for a Key Code Event

Information on key position codes is contained in the workstation
keyboard mapping table.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_ICTL

GS_PARM

GS_ROVR

GS_SUCC

GS_UDRG

Final character not valid

Too many control sequence parameters

Ring buffer overflow

Successful

Ring buffer undefined.

If the return code indicates overflow, the most recent input events from enabled devices are
lost.

1. To instruct the process to wait for an input event, the curs.c C language program uses
the gsevwt subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsevds subroutine, gseven subroutine, gsinit subroutine.

3-40 Graphics Subroutines Reference

gsfatt Subroutine

Purpose

Library

C Syntax

Sets the fill attributes.

The AIXwindows Graphics Support Library (libxgsl.a)

Int gsfatt_ (Color, Pattern, Reserved)
int *Color, *Pattern, *Reserved;

FORTRAN Syntax
INTEGER function gsfatt_ (Color, Pattern, Reserved)
INTEGER Color, Pattern, Reserved

Pascal Syntax
FUNCTION gsfatt_ (
VAR Color, Pattern, Reserved: INTEGER
): INTEGER [PUBLIC];

Description

gsfatt

The gsfatt subroutine defines the attributes for the class of fill functions, which includes the
gsfci, gsfell, gsfrec, and gsfply subroutines.

Parameters
Color

Pattern

Reserved

Specifies the fill color. This refers to an entry in the color map. If the color
parameter has a value of -1, the attribute is unchanged. The default color
after initialization is 15.

Specifies the fill pattern. Use the following values to specify the
corresponding fill patterns:

Value Display

-1 No change

0 Solid

1 Horizontal lines

2 Vertical lines

3 135-degree lines

4 45-degree lines

5 Cross-hatched (horizontal and vertical lines)

6 Cross-hatched (45- and 135-degree lines)

The default fill pattern is solid (0).

Represents a parameter that the gsfatt subroutine ignores.

XGSL Subroutines 3-41

gsfatt

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values.

GS_SUCC

GS_COLI

GS_SYLI

Successful

Color index not valid

Style index not valid.

1. To set the fill attributes for a text box, the C language program curs.c uses the gsfatt
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsfply subroutine, gsfrec subroutine, gsfci subroutine, gsfell subroutine.

3-42 Graphics Subroutines Reference

gsfci

gsfci Subroutine

Purpose

Library

C Syntax

Fills a circle.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsfci_ (ex, ey, e,,
int *ex, *ey, *er;

FORTRAN Syntax
INTEGER function gsfci_ (ex, ey, e1'
INTEGER ex, ey, er

Pascal Syntax
FUNCTION gsfci_ (
VAR ex, ey, er: INTEGER
): INTEGER [PUBLIC];

Description
The gsfci subroutine fills a circle of a specified radius. The radius is expressed in number of
pixels.

The relevant attributes are:

• Color map

• Plane mask

• Fill color index

• Fill pattern

• Logical operation.

Parameters
ex, ey Define the coordinates of the center of a circle.

er Defines the radius of a circle. If the radius is O (zero), a single point is filled
at the center.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_RDUS

GS_INAC

Successful

Coordinate not valid

Radius specification not valid

Virtual terminal inactive.

XGSL Subroutines 3-43

gsfci

Example
1. To fill the defined circle, the cir2.c C language program uses the gsfci subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gscir subroutine, gsfatt subroutine.

3-44 Graphics Subroutines Reference

gsfell

gsfell Subroutine

Purpose

Library

C Syntax

Fills an ellipse.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsfell_ {ex, ey, Major, Minor, Ang)
int *ex, *ey, *Major, *Minor, *Ang;

FORTRAN Syntax
INTEGER function gsfell_{ex, ey, Major, Minor, Ang)
INTEGER ex, ey, Major, Minor, Ang

Pascal Syntax
FUNCTION gsfell_ {
VAR ex, ey, Major, Minor, Ang: INTEGER
): INTEGER [PUBLIC];

Description
The gsfell subroutine fills an ellipse of the specified axes and angle. The axes are
expressed in number of pixels.

The angle specifications are given in tenths of degrees, from Oto 3600. Values outside this
range cause the gsfell subroutine to fail.

The relevant attributes are:

• Color map

• Plane mask

• Fill color index

• Fill pattern

• Logical operation.

Parameters
ex, ey

Major, Minor

Ang

· Define the coordinates of the center of an ellipse.

Define half of the nonzero major and minor axes of an ellipse.

Defines the angle between the major axis and the X axis. If it is zero, the
major axis is on the X axis and the minor axis is on the Y axis. The angle is
defined in tenths of degrees, from Oto 3600, specified in a counterclockwise
direction.

XGSL Subroutines 3-45

gsfell

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_ELMM

GS_INAC

GS_ANGL

GS_NMEM

Successful

Coordinate not valid

Major or minor axis not valid

Virtual terminal inactive

Angle not valid

Insufficient memory.

1. To fill the defined ellipse, the ell2.c C language program uses the gsfell subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsell subroutine, gsfatt subroutine.

3-46 Graphics Subroutines Reference

gsfply

gsfply Subroutine

Purpose

Library

C Syntax

Draws a filled polygon.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsfply_ (Number, x, y)
int *Number, x[], y[];

FORTRAN Syntax
INTEGER function gsfply_ (Number, x, y)
INTEGER Number
INTEGER x (*), y (*)

Pascal Syntax
FUNCTION gsfply_ (
VAR Number: INTEGER;
VAR x, y: ARRAY [1 .. k] of INTEGER
): INTEGER [PUBLIC];

Description
The gsfply subroutine fills an area that is described by the points defined in the Number and
x and y parameters. The last call to the gsfatt subroutine determines the fill color.

The relevant attributes are:

• Color map

• Plane mask

• Fill color index

• Fill pattern

• Logical operation.

The edges are treated as part of the area to be filled.

Parameters
Number

x,y

Defines the number of points in the coordinate arrays. This value must be 3
or more.

Define the points surrounding the polygon to fill. The points are defined as
coordinate arrays.

For Pascal syntax, the application must declare that the x and y arrays are
fixed-length and that the gsfply subroutine accepts an array of that length.
That is, the k in the routine declaration must be a constant and should be
greater than or equal to the largest value of the Number parameter.

XGSL Subroutines 3-47

gsfply

The gsfply subroutine fills a closed polygon with a pattern. If the polygon is not already
closed (if the first and last points are not equal), the gsfply subroutine generates the
polygon by creating an edge between the first and last points. The first and last points
described by the parameters can be equal, but this condition is not required and is actually
less efficient.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_NCOR

GS_NMEM

GS_INAC

Successful

Coordinate not valid

Number of coordinates not valid

Insufficient memory

Virtual terminal inactive.

1. To fill a defined closed polygon, the blit.c C language program uses the gsfply
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsfatt subroutine, gsfrec subroutine.

3-48 Graphics Subroutines Reference

gsfrec

gsfrec Subroutine

Purpose

Library

C Syntax

Draws a filled rectangle.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsfrec_ (x1, y1, x2, y2)
int *x1, *y1, *x2, *y2;

FORTRAN Syntax
INTEGER function gsfrec_ (x1, y1, x2, y2)
INTEGER x1, y1, x2, y2

Pascal Syntax
FUNCTION gsfrec_ (
VAR x1, y1, x2, y2: INTEGER
): INTEGER [PUBLIC];

Description
The gsfrec subroutine fills the rectangular area defined by the lower left and upper right
coordinate parameters. The last call to the gsfatt subroutine determines the fill color.

The relevant attributes are:

• Color map

• Plane mask

• Fill color index

• Fill pattern

• Logical operation.

Parameters
x1, y1

x2,y2

Return Values

Define the lower left corner of the rectangular area to fill.

Define the upper right corner of the rectangular area to fill.

The edges of the rectangle are treated as part of the area to be filled.

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to ttle following return
values.

GS_SUCC

GS_CORD

GS_INAC

Successful

Coordinate not valid

Virtual terminal inactive.

XGSL Subroutines 3-49

gsfrec

Example
1. To draw a filled rectangle, the curs.c C language program uses the gsfrec subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsfatt subroutine, gsfply subroutine.

3-50 Graphics Subroutines Reference

gsgtat

gsgtat Subroutine

Purpose

Library

C Syntax

Sets the attributes for the geometric text-drawing functions.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsgtat_ (Color, Baseline, Pre, Expan, Spac, Height, Upvectx, Upvecty,
Alignhz, Alignvt, FontlD, Font)

int *Color, *Baseline, *Pre;
int * Expan, * Spac, *Height;
int * Upvectx, * Upvecty;
int * Alignhz, * Alignvt, * Font/D;
char *Font;

FORTRAN Syntax
INTEGER function gsgtat {Co/or, Baseline, Pre, Expan, Spac, Height,

Upvectx, Upvecty, Alignhz, Alignvt, FontlD, Font)
INTEGER Color, Baseline, Pre
INTEGER Expan, Spac, Height
INTEGER Upvectx, Upvecty
INTEGER Alignhz, Alignvt, Font/D
CHARACTER* n Font

Pascal Syntax
FUNCTION gsgtat_ {
VAR Color, Baseline, Pre, Expan, Spac, Height INTEGER;
VAR Upvectx, Upvecty, Alignhz, Alignvt, Font/D: INTEGER;
VAR Font ARRAY [O •• k] of CHAR
): INTEGER [PUBLIC];

Description
The gsgtat subroutine defines the attributes and fonts for the geometric text-drawing
functions.

Notes:

Parameters
Color

1. This subroutine must be called before the gsgtxt subroutine, or an error results.

2. The attributes defined by this command are applicable only to geometric text.

3. Attributes are valid only for the currently active font.

Specifies an entry in the color map for text color. If the value is-1 {negative
one), the attribute is unchanged.

Baseline Determines the direction of the geometric text drawing. The valid values
are:

-1 Attribute remains unchanged

O Specifies O degrees, or left to right in the viewer's terms

XGSL Subroutines 3-51

gsgtat

Pre

Ex pan

1 Specifies 90 degrees, or up in the viewer's terms

2 Specifies 180 degrees, or right to left in the viewer's terms

Note: The characters appear upside down.

3 Specifies 270 degrees, or down in the viewer's terms.

Note: The Baseline parameter does not change character rotation. Use the
Upvectx and Upvecty parameters to rotate text.

Specifies the desired text precision used in drawing text primitives. The valid
values are:

-1 Attribute remains unchanged

1 Character precision

2 Stroke precision.

Defines as a 32-bit fractional integer the deviation of the width/height ratio of
the character from the ratio defined in the font. The expansion factor
changes only the width of the character.

In the following figure, the most significant 16 bits contain zeros, S
represents the sign bit, INTEGER represents the integer portion of the
width/height ratio, and FRACTION represents the fractional portion of the
ratio.

16 1 7 8

I 0--------- 0 Is I 1NTEGE~ FRACTION I
A 32-bit integer value of Ox8000000 indicates that this attribute is
unchanged.

Spac Specifies the character spacing, or additional number of pixels to be
inserted between characters. The value is a 16-bit signed integer. The
preferred value for this parameter varies, based on the display in use. The
maximum value that is allowed is equal to the display width in pixels. A
value of Ox8000000 for this parameter indicates that the attribute is
unchanged.

Height Specifies the current character height for geometric text in pixels. This value
is defined as a 16-bit signed integer, with the maximum value equal to the
height of the display in pixels. A value of Ox8000000 for this parameter
indicates that the attribute is unchanged.

Upvectx, Upvecty
Specifes the x and y coordinates for the up direction of a character or text
string. The valid range for these values is plus or minus the display's
dimensions in pixels. A value of OxBOOOOOO for this parameter indicates that
the attribute is unchanged.

The up vector is a two-dimensional vector on the text plane, specified by the
current text draw. (The origin of the vector is defined by the gsgtxt
subroutine.) Only the direction, not the length, of the vector is relevant.

3-52 Graphics Subroutines Reference

Alignhz

Alignvt

FontlD

gsgtat

Specifies the horizontal alignment of the text for subsequent text drawing.
Values are as follows:

-1 Attribute is unchanged

1 Normal

2 Left

3 Center

4 Right.

Specifies the vertical alignment of the text for subsequent text drawing.
Values are as follows:

-1 Attribute is unchanged

1 Normal

2 Top

3 Cap

4 Half

5 Base

6 Bottom.

Selects a new active geometric font. The specified font ID is a 32-bit integer
that also indicates the type of font (either one- or two-byte). The font ID is
assigned when the geometric font is designed. Possible values are:

-1 Leaves the active font unchanged. To use this value, a font ID must
be selected in a previous call to the gsgtat subroutine.

1025 to 32767
These values are used to specify one-byte geometric fonts, and
refer to a value defined in each geometric font file.

32768 to 65535
These values are used to specify two-byte geometric fonts, and
refer to a value defined in each geometric font file.

Only one geometric font is active at any time. To change the font, the gsgtat
subroutine must be called again with new Font/D and Font parameters.
When a new font is specified, the previous font is purged from the font table.

For two-byte geometric text, up to 128 segment IDs can be used per font ID.

The font ID is associated with the selected font and determines if the font is
a one- or two-byte font.

Font Contains the null-terminated, full path name of the file used when the font
attribute is specified by the user. If a nonzero value for the Font/D
parameter is specified, this parameter must also be specified.

For Fortran syntax, the application must declare that the Font parameter is·
fixed-length. That is, the value for the n variable in the routine declaration
must be a constant

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
value of the k variable in the routine declaration must be a constant.

XGSL Subroutines 3-53

gsgtat

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC Successful

GS_COLI Color index not valid

GS_PREC Text precision value not valid

GS_EXPN Character expansion factor not valid

GS_FNTN File name not valid

GS_INSV Spacing value not valid

GS_BASL Baseline direction not valid

GS_HIGH Height value not valid

GS_UPVT Up vector value not valid

GS_ALGN Alignment value not valid.

1. To set the attributes and fonts for geometric text-drawing, the gtex.c C language program
uses the gsgtat subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsgtxt subroutine.

3-54 Graphics Subroutines Reference

gsgtxt

gsgtxt Subroutine

Purpose

Library

C Syntax

Writes geometric text.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsgtxt_ (x, y, Number, Text)
int * x, * y, *Number,
char Text[] ;

FORTRAN Syntax
INTEGER function gsgtxt (x, y, Number, Text)
INTEGER x, y, Number
CHARACTER* n Text

Pascal Syntax
FUNCTION gsgtxt_ (
VAR x, y, Number: INTEGER;
VAR Text: ARRAY [1 .. k] of CHAR
): INTEGER [PUBLIC];

Description
The gsgtxt subroutine writes geometric characters starting at the baseline position defined
by the x and y parameters. It writes the number of characters indicated by the Number
parameter according to the relevant attributes.

The relevant attributes in the following list must first be set by the gsgtat subroutine:

• Color map

• Plane mask

• Geometric text font

• Geometric text color index

• Character expansion factor

• Character spacing

• Character height

• Character up vector

• Character alignment

• Baseline direction.

Note: If the gsgtat subroutine is not called before the gsgtxt subroutine, an error results.

Parameters
x,y

Number

Define the coordinates of the baseline position for writing geometric text.

Indicates the number of bytes to write from the text string. The maximum
number of characters allowed, which is determined by the display and font
in use, is 1024 for single-byte fonts and 512 for double-byte fonts.

XGSL Subroutines 3-55

gsgtxt

Text An array that contains the N-bit ASCII codes for the characters to write.

For FORTRAN syntax, the application must declare that the Text parameter
is fixed-length. That is, the value for then variable in the routine declaration
must be a constant The value for the n variable should be at least as large
as the Number parameter.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
value for the k variable in the routine declaration must be a constant The
value for the k variable should be at least as large as the Number
parameter.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_FBUF

GS_INAC

GS_NOFT

Successful

Coordinate not valid

Frame buffer overflow

Virtual terminal inactive

Font not loaded.

1. To write geometric text characters, the gtex.c C language program uses the gsgtxt
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsqgtx subroutine, gsgtat subroutine.

3-56 Graphics Subroutines Reference

gsinit

gsinit Subroutine

Purpose

Library

C Syntax

Initializes the XGSL subroutines.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsinit_ (Buffer, Size, SaveRestore, FGrant, FRetract, OutDev)
int *Buffer, *Size, *SaveRestore;
int (* FGrant) (), (* FRetract) ();
int *OutDev;

FORTRAN Syntax
INTEGER function gsinit_ (Buffer, Size, SaveRestore, FGrant, FRetract, OutDev)
INTEGER Buffer(*), Size, SaveRestore, OutDev
EXTERNAL FGrant, FRetract

Pascal Syntax
FUNCTION gsinit_ (
VAR Buffer. ARRAY [O .. k]k of INTEGER;
VAR Size, SaveRestore, FGrant, FRetract, OutDev. INTEGER
): INTEGER [PUBLIC];

Description
The gsinit subroutine initializes the XGSL. It allocates any private storage required and sets
attributes to the default values, where necessary. It also forces the virtual terminal of the
application into Monitor mode and sets up the signal-processing routines for the
SIGRETRACT, SIGGRANT, and SIGMSG signals.

Parameters
Buffer Defines the Monitor mode input ring buffer to be used by the XGSL input

functions. The Buffer parameter must be word-aligned and at least 128
bytes long.

For Pascal syntax, the application must declare that the Buffer array is
fixed-length and that the gsinit subroutine accepts an array of that length.
That is, the value of the k variable in the routine declaration must be a
constant.

Pascal cannot directly provide the address of a routine. An assembler
function can be used to derive the address of a routine passed to the XGSL.

Size Defines the length of the Buffer parameter in bytes. Depending on the value
of the Size parameter, the gsinit subroutine performs the following actions:

Size <128 The gsinit subroutine does not initialize the XGSL.

Size >=128 The XGSL establishes the virtual terminal linkage to the
input ring buffer provided by the application, provides input
support, and sets up a SIGMSG signal catcher.

XGSL Subroutines 3-57

gsinit

SaveRestore Determines whether to save the display frame buffer and adapter state.

FGrant

FRetract

Out Dev

If the SaveRestore parameter is nonzero, the XGSL saves the current
contents of the display frame buffer as well as the current adapter state
when the virtual terminal becomes inactive, and then restores both the
frame buffer contents and adapter state when it becomes active.

If the SaveRestore Parameter is zero, the XGSL saves only the adapter
state and assumes that the application either saves the frame buffer or
reconstructs it in some fashion.

Sets up processing of the SIGG RANT signal. If FGrant is nonzero, it is
assumed to be the address of an application-supplied function, and the
XGSL calls the function as part of the SIGGRANT signal handling. If the
SaveRestore parameter is nonzero, this function is called before the XGSL
restores the frame buffer. This routine might be called before the gsinit
subroutine returns to the application.

Sets up processing of the SIG RETRACT signal. If the FRetract parameter is
nonzero, it is assumed to be the address of an application-supplied function,
and the XGSL calls the function as part of the SIGRETRACT signal
handling.

This parameter is ignored by XGSL. It is provided for compatibility.

If the initialization process is unsuccessful, the virtual terminal is not placed
in monitor mode and invocation of any other XGSL routines will cause
unpredictable results.

The FGrant and FRetract routines supplied by the application are called on
the signal level and must return. These application routines must not use
either the setjmp or longjmp subroutines.

Return Values
If you use the preprocessor include statement to incorporate the gslerrno.h header file in
your program, you can compare the integer returned by this subroutine to the following
return values:

GS_SUCC

GS_HBUS

GS_ADPT

GS_FONT

GS_ RING

GS_HDCP

GS_HDLK

GS_HDIM

GS_HDDB

GS_HDNA

GS_HDMG

GS_HDIF

Successful

Cannot access hardware bus

Display type not valid

Cannot access default font

Ring Buffer too small

File descriptor for hard-copy output not valid

Unable to create lock file

Insufficient memory

Device is busy

Physical device not attached

Maximum number of graphics devices open

No system interprocess communication buffers left

3-58 Graphics Subroutines Reference

Example

GS_HDSF

GS_HDGO

GS_HDGN

GS_HDGU

The fork system call failed

Specified graphics device already open

Specified graphics device does not exist

Specified graphics device driver is unknown.

gsinit

1. To initialize the XGSL and set up a ring buffer for input, the arc1 .c C language program
uses the gsinit subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsterm subroutine.

XGSL Subroutines 3-59

gslatt

gslatt Subroutine

Purpose

Library

C Syntax

Sets the line attributes.

The AIXwindows Graphics Support Library (libxgsl.a)

int gslatt_ (Color, Style)
int *Color, *Style;

FORTRAN Syntax
INTEGER function gslatt_ (Color, Style)
INTEGER Color, Style

Pascal Syntax
FUNCTION gslatt_ (
VAR Color, Style: INTEGER
): INTEGER [PUBLIC];

Description
The gslatt subroutine defines the attributes for the class of line-drawing functions.

Parameters
Color

Style

Specifies the line color. This refers to a line color entry in the color map. If
this entry is -1, the attribute is unchanged. The default color is 15.

Specifies the line style. Use the following values to specify the
corresponding line style:

Value Display

-1 No change

0 Solid

1 Dash

2 Dot

3 Dash-dot

4 Dash-dot-dot

100 Continuous solid

101 Continuous dash

102 Continuous dot

103 Continuous dash-dot

104 Continuous dash-dot-dot

105 Continuous user-supplied.

The default style is solid (0).

3-60 Graphics Subroutines Reference

gslatt

The line style patterns supplied by the AIXwindows Graphics Support
Library (XGSL) are implemented in a device-dependent fashion. All line
style indices not described above are reserved.

For line styles 1 to 99, the XGSL line-drawing functions ensure that a line or
line segment starts and ends with a run of the line color. For example, the
XGSL does not continue the pattern from one polyline segment to another.

For line styles 100 to 150, the XGSL continues the pattern across multiple
lines or line segments until the application makes another call to the gslatt
subroutine to reset the line pattern. In this case, unlike for styles 1 to 99,
the XGSL continues the pattern from one polyline segment to another.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_COLI

GS_SVLI

Successful

Color index not valid

Style index not valid.

1. To set the line color to a specific color map entry, but leave the line style unchanged, the
arc1 .c C language program uses the gslatt subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gslop subroutine, gsline subroutine, gsmult subroutine, gsdjply subroutine, gspoly
subroutine.

XGSL Subroutines 3-61

gs I cat

gslcat Subroutine

Purpose

Library

C Syntax

Sets the locator attributes.

The AIXwindows Graphics Support Library (libxgsl.a)

int gslcat_ (hg, vg)
int * hg, * vg;

FORTRAN Syntax
INTEGER function gslcat (hg, vg)
INTEGER hg, vg

Pascal Syntax
FUNCTION gslcat_ (
VAR hg, vg: INTEGER
): INTEGER [PUBLIC];

Description
The gslcat subroutine sets the locator dead zone.

The tablet dead zone is an area of the tablet in which no event reports occur, even if the
tablet sensor is present. This dead zone allows the application to make the tablet aspect
ratio compatible with the display, and allows tablets of different sizes to appear the same
size to an application. The dead zone acts as a border around the tablet. The device driver
reports movement only when the x value is greater than or equal to the value of the hg
parameter, or less than or equal to the maximum tablet value minus the value of the hg
parameter and the y value is greater than or equal to the value of the vg parameter or less
than or equal to the maximum tablet value minus the value of the vg parameter.

An attempt to set the locator attributes may fail for a variety of reasons, the most likely of
which is that the device is not attached.

Note: The gslcat subroutine allows an application to set the tablet dead zone so that no
events occur even if the device is enabled.

Parameters
hg, vg

Return Values

Define the horizontal and vertical values for the locator dead zone, in units
of 0.25 millimeter.

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values.

GS_SUCC

GS_USUC

Successful

Unsuccessful.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

3-62 Graphics Subroutines Reference

gsline

gsline Subroutine

Purpose

Library

C Syntax

Draws a line between two points.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsline_ (x1, y1, x2, y2)
int *x1, *y1, *x2, *y2;

FORTRAN Syntax
INTEGER function gsline (x1, y1, x2, y2)
INTEGER x1, y1, x2, y2

Pascal Syntax
FUNCTION gsline_ (
VAR x1, y1, x2, y2: INTEGER
): INTEGER [PUBLIC];

Description
The gsline subroutine draws a line, as defined by the current relevant attributes, from the
first point to the second point defined by the parameters.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Line style

• Logical operation.

Parameters
x1, y1

x2,y2

Return Values

Define the coordinates of the first end point of the line drawn by the gsline
subroutine.

Define the coordinates of the second point of the line drawn by the gsline
subroutine.

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values.

GS_SUCC

GS_CORD

GS_INAC

Successful

Coordinate not valid

Virtual terminal inactive.

XGSL Subroutines 3-63

gsline

Example
1. To draw the intersecting lines through the center of a series of ellipses, the arc1 .c C

language program uses the gsline subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsdjply subroutine, gslop subroutine, gsmult subroutine, gspoly subroutine, gsulns
subroutine.

3-64 Graphics Subroutines Reference

gslock Subroutine

Purpose

gs lock

Provides compatibility for GSL applications that use the gslock subroutine.

Library
The AIXwindows Graphics Support Library (libxgsl.a)

C Syntax
int gslock_()

FORTRAN Syntax
INTEGER function gslock ()

Pascal Syntax
FUNCTION gslock_(): INTEGER [PUBLIC];

Description
The gslock subroutine is provided for compatibility with existing GSL applications. Under the
current implementation of XGSL, the gslock subroutine always returns a value of GS_INAC,
indicating that you cannot write to the display adapter.

Return Value
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
value:

GS_INAC Virtual terminal inactive.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-65

gslop

gslop Subroutine

Purpose

Library

C Syntax

Specifies the logical operation used when drawing lines.

The AIXwindows Graphics Support Library (libxgsl.a)

int gslop_ (Operation)
int *Operation;

FORTRAN Syntax
INTEGER function gslop_ (Operation)
INTEGER Operation

Pascal Syntax
FUNCTION gslop_ (
VAR Operation INTEGER;
): INTEGER [PUBLIC];

Description

Parameter

The gslop subroutine specifies the logical operation used for drawing the AIXwindows
Graphics Support Library (XGSL) line-oriented, fill, save/restore, and polymarker primitives.
The gslop subroutine does not apply to the text primitives.

Operation Indicates the logical operation to perform between the primitive being drawn
and the current contents of the frame buffer.

The following list of values for the Operation parameter specify the
operations you can perform. The source represent bits of data to be merged
in some way with the corresponding bits of data in the frame buffer (the
destination).

Value Operation

0 Clear destination

15 Set destination

5 No operation

10 Logical inverse of destination

3 REPLACE destination with source

1 AND source with destination

2 AND .source with inverse of destination

6 Exclusive-OR source with destination

7 OR source with destination

11 OR source with inverse of destination

12 REPLACE destination with inverse of source

3-66 Graphics Subroutines Reference

gs lop

4 AND inverse of source with destination

8 AND inverse of source with inverse of destination

9 Exclusive-OR inverse of source with destination

13 OR inverse of source with destination

Notes:

1. REPLACE (3) is the default logical operation.

2. The XGSL provides the REPLACE and Exclusive-OR logical
operations (codes 3 and 6 respectively) for all drawing routines.
The gsxblt subroutine supports the full set of logical operations.

3. The XGSL performs each of the Boolean operations for each bit
of the source and destination color values enabled by the plane
mask. The destination receives the color value that results from
the operation.

4. The logical operations are performed on the color index rather
than the color itself. Therefore, the same operations on different
color displays produce different results on each display.

Return Values

Examples

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_LONS

Successful

Logical operation not supported.

1. To make the gsline subroutine draw lines and the gseara subroutine draw ellipses by
replacing the contents of the frame buffer, the arc1 .c C language program uses the
gslop subroutine.

2. To make the gsearc subroutine first draw and then erase an ellipse, the arc2.c C
language program uses the gslop subroutine to set the logical operation to
Exel usive-0 R.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gseara subroutine, gsearc subroutine, gsfatt subroutine, gslatt subroutine, gsline
subroutine.

XGSL Subroutines 3-67

gs I pat

gslpat Subroutine

Purpose

Library

C Syntax

Sets the lighted program function key (LPFK) indicators.

The AIXwindows Graphics Support Library (libxgsl.a)

int gslpat_ (Indicators)
int *Indicators;

FORTRAN Syntax
INTEGER function gslpat (Indicators)
INTEGER Indicators

Pascal Syntax
FUNCTION gslpat_ (
VAR Indicators: INTEGER
): INTEGER [PUBLIC];

Description

Parameter

The gslpat subroutine turns on or off the indicators on the Lighted Program Function
Keyboard.

Indicators Specifies the state of the LPFK indicators. Each bit of the Indicators
parameter corresponds to an indicator on the LPFK, with the most
significant bit setting the desired state (1 =on, 0 =off) for the indicator for
LPFK 0, the next most significant bit setting the state for the indicator for
LPFK 1, and so on.

The default state for all indicators is 0, or off.

If an attempt to set the LPFK indicators is unsuccessful, it may be that the
device is not attached.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_USUC

Successful

Unsuccessful.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsevwt subroutine.

3-68 Graphics Subroutines Reference

gsmask

gsmask Subroutine

Purpose

Library

C Syntax

Defines planes to be modified.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsmask_ (Mask)
int *Mask;

FORTRAN Syntax
INTEGER function gsmask (Mask)
INTEGER Mask

Pascal Syntax
FUNCTION gsmask_ (
VAR Mask: INTEGER
): INTEGER [PUBLIC];

Description

Parameter

The gsmask subroutine defines the planes actually modified by the line, text, and fill
functions.

Mask Indicates which planes of the display adapter frame buffer can be modified
by the output functions. The most significant bits of the input are used to set
the plane mask.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_INAC

Successful

Virtual terminal inactive.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-69

gs matt

gsmatt Subroutine

Purpose

Library

C Syntax

Sets the polymarker attribute.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsmatt_ (Color, Style, Width, Height, Pattern, Ox, Oy)
int *Color, *Style, *Width, *Height,
int *Pattern, *Ox, *Oy;

FORTRAN Syntax
INTEGER function gsmatt (Color, Style, Width, Height, Pattern, Ox, Oy)
INTEGER Color, Width, Height, Pattern, Ox, Oy

Pascal Syntax
FUNCTION gsmatt_ (
VAR Color, Style, Width, Height: INTEGER;
Pattern: ARRAY [1 .. k] of INTEGER;
Ox, Oy: INTEGER
): INTEGER [PUBLIC];

Description
The gsmatt subroutine defines the marker for the AIXwindows Graphics Support Library
(XGSL).

Parameters
Color

Style

Refers to a marker color entry in the color map. If the value is-1, the
attribute is unchanged. The default value for color is 7, white.

Defines the polymarker Style as one of the following:

Value Display

-1 No change

O User-defined (by the Width, Height, Pattern, Ox, Oy parameters)

1 Dot (filled circle)

2 Plus(+)

3 Asterisk (*)

4 Circular shape

5 Cross (x)

6 Unfilled box

Width, Height Define, in pixels, the width and height of the bit pattern to be used as the
marker. If either the Width or Height parameter equals-1, then the pattern
remains unchanged.

Dividing the value of the Width parameter by 32 and rounding the result to
the next highest integer gives the ceiling of the calculation. This ceiling
indicates the number of words per row.

3-70 Graphics Subroutines Reference

Pattern

gs matt

The Height parameter indicates the number of rows. The marker data must
be supplied in row (scan line) major order.

Defines the image used as a marker.

To define the marker pattern fully, calculate the value of the Pattern
parameter by multiplying the previously calculated ceiling by the value of the
Height parameter. The Pattern parameter is expressed in words in length. If
the Width parameter implies partial use of a word, the rest of the word is
unused.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

Ox, Oy Indicate the coordinates of the origin of the marker relative to the lower
leftmost corner (0,0) of the marker pattern. The origin must be placed inside
the marker pattern, so that Ox< Width and Oy <Height. The origin of the
marker is placed at the position indicated when the application places a
marker with the gsplym subroutine. If the Ox parameter equals -1, the
origin remains unchanged.

The maximum size of the marker is device dependent. The maximum size equals the height
and width of the display, which can be determined by calling the gsqdsp subroutine.

Note: The XGSL subroutines do not make a copy of a user-defined polymarker, a marker
drawn for a sequence of points. Any changes or reuse of the storage where a
user-defined shape is in use can cause unpredictable results.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_COLI

GS_PMSZ

GS_PMOR

GS_PMSY

Successful

Color index not valid

Marker size not valid

Marker origin not valid

Marker style not valid.

1. To set the polymarker attributes, the mark.c C language program uses the gsmatt
subroutine several times.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsplym subroutine, gsqdsp subroutine.

XGSL Subroutines 3-71

gsmcat

gsmcat Subroutine

Purpose

Library

C Syntax

Sets the multicolor cursor attributes.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsmcat_ (Foregrnd, Backgrnd, Width, Height, Pattrn, Mask, Ox, Oy, LogOp)
int * Foregrnd, * Backgrnd, *Width, *Height,
int * Pattrn, *Mask, *Ox, * Oy, * LogOp;

FORTRAN Syntax
INTEGER function gsmcat_ (Foregrnd, Backgrnd, Width, Height, Pattrn, Mask, Ox,

Oy, LogOp)
INTEGER Foregrnd, Backgrnd, Width, Height
INTEGER Pattrn, Mask, Ox, Oy, LogOp

Pascal Syntax
FUNCTION gsmcat_ (
VAR Foregrnd, Backgrnd, Width, Height INTEGER;
VAR Pattrn: ARRAY [1 .. k] of INTEGER;
VAR Mask: ARRAY [1 •. k] of INTEGER;
VAR Ox, Oy, LogOp: INTEGER
): INTEGER [PUBLIC];

Description
The gsmcat subroutine defines and enables the multicolor cursor for the AIXwindows
Graphics Support Library (XGSL). The gscmap subroutine must initialize the color map
before the gsmcat subroutine can be called.

Only one cursor of the raster-style cursor, either the multicolor cursor or the single-color
cursor, can be active in the XGSL at any one time. The gsmcat subroutine forces all
subsequent calls to the gsmcur and gsecur subroutines to operate on the multicolor version
of the raster cursor. To change from the single-color cursor to the multicolor cursor, erase the
cursor with the gsecur subroutine and call the gsmcat subroutine.

The multicolor cursor is a two-color, clipped cursor with logical operations. Its largest size is
32 bits in width and 32 bits in height. Although the cursor origin cannot be moved outside the
frame buffer boundaries, any portion beyond the origin that falls outside the frame buffer is
clipped. In addition, a mask is provided that can be used to allow portions of the frame buffer
to show through the cursor. Any bits set to O (zero) in the mask indicate that the matching
bits in the cursor pattern do not affect the underlying frame buffer.

Parameters
Foregrnd

Backgrnd

Defines a color entry in the color map. This color is used for the foreground
color (bits set to 1) in the multicolor cursor raster. A value of -1 indicates no
change to this attribute.

Defines a color entry in the color map. This color is used for the background
color (bits set to 0) in the multicolor cursor raster. A value of -1 indicates no
change to this attribute.

3-72 Graphics Subroutines Reference

gs meat

Width, Height Define, in pixels, the width and height of the bit pattern and mask to be used
as the cursor. The maximum value for width and height of the cursor is 32
bits. If the Width or Height parameter equals -1, then the pattern and the
mask remain unchanged.

Pattrn Defines the raster image used as a cursor. The image must be specified in
32-bit integers, and there must be the number of rows specified by the
Height parameter. The XGSL uses for each integer only the number of bits
specified by the Width parameter.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

Mask Defines the mask pattern of the cursor. Each bit in the Mask parameter
corresponds with a bit in the multicolor cursor specified by the Pattrn
parameter. If a bit is set (has a value of 1 }, the matching bit in the pattern is
applied to the underlying display raster. If a bit is not set (has a value of 0),
the matching bit in the pattern is masked and does not affect the underlying
display raster. The size of the Mask parameter must match the size of the
Pattrn parameter exactly.

Ox, Oy

LogOp

Return Values

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length; that is, the k
in the routine declaration must be a constant.

Indicate the origin of the cursor relative to the lower leftmost corner (0,0) of
the cursor pattern. The origin must be placed within the cursor pattern, so
that Ox< Width and Oy < Height. The origin of the cursor is placed at the
position indicated when the application moves the cursor using the gsmcur
subroutine. If Ox equals -1, then the origin remains unchanged.

Defines the logical operation to perform between the cursor pattern that is
being drawn and the contents of the frame buffer. The following logical
operations are supported:

3 REPLACE

6 Exclusive-OR.

The cursor attributes cannot be changed while the cursor is visible.

No default cursor is defined. All cursor parameters must be set before the
cursor is displayed.

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_COLI

GS_CURS

GS_CURO

GS_CURV

GS_LONS

Successful

Color index not valid

Cursor size not valid

Cursor origin not valid

Cursor visible

Logical operation not valid.

XGSL Subroutines 3-73

gsmcat

Example
1. To set the multicolor cursor attributes, the curs.c C language program uses the gsmcat

subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gscatt subroutine, gsecur subroutine, gsmcur subroutine.

3-7 4 Graphics Subroutines Reference

gsmcur

gsmcur Subroutine

Purpose

Library

C Syntax

Makes the cursor visible.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsmcur _ {x, y)
int *x, *y;

FORTRAN Syntax
INTEGER function gsmcur {x, y)
INTEGER x,y

Pascal Syntax
FUNCTION gsmcur_ (
VAR x, y: INTEGER
): INTEGER [PUBLIC];

Description
The gsmcur subroutine makes the cursor visible if it is not already visible. Because
AIXwindows controls the cursor placement, the x and y parameters are not used.

This subroutine operates on either the single-color cursor or the multicolor cursor. The
relevant attributes are different, depending on which cursor style is currently defined and
enabled.

For the single-color cursor, the relevant attributes are:

• Color map

• Plane mask

• Cursor pattern

• Cursor color index

• Cursor origin.

For the multicolor cursor, the relevant attributes are:

• Color map

• Plane mask

• Multicolor cursor pattern

• Multicolor cursor mask

• Multicolor cursor foreground color

• Multicolor cursor background color

• Multicolor cursor origin

• Multicolor cursor logical operation.

XGSL Subroutines 3-75

gsmcur

Set the cursor attributes with the gscatt or gsmcat subroutine before calling the gsmcur
subroutine.

The cursor is nondestructive. This property is achieved in a device-dependent manner.

Parameters
x,y These parameters are not used under the AIX window manager.

Return Values

Example

Using the preprocessor include statement to incorporate gslerrno.h in your program, you
can compare the integer returned by this subroutine to the following return values:

GS_SUCC

GS_CORD

GS_UCUR

GS_INAC

Successful

Coordinate not valid

Undefined cursor

Virtual terminal inactive.

1. To display the cursor, the curs.c C language program uses the gsmcur subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gscatt subroutine, gsmcat subroutine, gsecur subroutine.

3-76 Graphics Subroutines Reference

gsmfld Subroutine

Purpose

gsmfld

Provides compatibility for GSL applications that use the gsmfld subroutine.

Library

C Syntax

The AIXwindows Graphics Support Library (libxgsl.a)

int gsmfld_ (NumFonts, FontTable)
int * NumFonts;
struct Fontinfo FontTable[];

FORTRAN Syntax
INTEGER gsmfld (NumFonts, FontTable)
INTEGER NumFonts, FontTable(2,*)

Pascal Syntax
FUNCTION gsmfld_ (
VAR NumFonts: integer;
VAR FontTable: FontArray): integer[PUBLIC];

Description
The gsmfld subroutine is provided for compatibility with existing GSL applications. Under
the current implementation of XGSL, the gsmfld subroutine always returns GS_USUC,
indicating that the subroutine was unsuccessful.

Parameters
The parameters are ignored. They are provided for compatibility.

Return Value
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following .return
value:

GS_USUC Unsuccessful.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-77

gsmult

gsmult Subroutine

Purpose

Library

C Syntax

Draws a multiline, a set of lines that connect alternate pairs of points in a sequence.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsmult_ (Number, x, y)
int *Number, x[], y[];

FORTRAN Syntax
INTEGER function gsmult (Number, x, y)
INTEGER Number, x (*), y (*)

Pascal Syntax
FUNCTION gsmult_ (
VAR Number: INTEGER;
VAR x, y: ARRAY [1 .. k] of INTEGER
): INTEGER [PUBLIC];

Description
The gsmult subroutine draws lines, as defined by the current relevant attributes, between
alternate pairs of points defined by the parameters.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Line style

• Logical operation.

Parameters
Number

x,y

Defines the number of points in the coordinate arrays. The parameter value
must be a multiple of 2, with 2 as the minimum value.

Define the points for line drawing.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

3-78 Graphics Subroutines Reference

gsmult

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_NCOR

GS_INAC

Successful

Coordinate not valid

Number of coordinates not valid

Virtual terminal inactive.

1. To draw a multiline, the pix.c C language program uses the gsmult subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gspoly subroutine, gsdjply subroutine, gsline subroutine, gslop subroutine, gsulns
subroutine.

XGSL Subroutines 3-79

gspcls

gspcls Subroutine

Purpose
Defines the end of a shape to fill.

Library
The AIXwindows Graphics Support Library (libxgsl.a)

C Syntax
int gspcls_ ()

FORTRAN Syntax
INTEGER function gspcls

Pascal Syntax
FUNCTION gspcls_: INTEGER [PUBLIC];

Description
The gspcls subroutine defines the end of a particular two-dimensional shape to be filled.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_USUC

Successful

Unsuccessful.

1. To define the end of a 2-D shape to be filled, the blit.c C language program uses the
gspcls subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsbply subroutine, gseply subroutine, gsfply subroutine.

3-80 Graphics Subroutines Reference

gsplym

gsplym Subroutine

Purpose

Library

C Syntax

Draws a polymarker, a marker at each point of a set of specified points.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsplym_ (Number, x, y)
int *Number, * x, *y;

FORTRAN Syntax
INTEGER function gsplym (Number, x, y)
INTEGER Number, x (*), y (*)

Pascal Syntax
FUNCTION gsplym_ (
VAR Number: INTEGER;
VAR x, y: ARRAY [1 .. k] of INTEGER
): INTEGER [PUBLIC];

Description
The gsplym subroutine places a marker, defined by the current relevant attributes, at each
point defined by the parameters.

The relevant attributes are:

• Color map

• Plane mask

• Logical operation

• Polymarker color index

• Polymarker style.

Parameters
Number

x,y

Defines the number of points in the coordinate arrays. This value must be
greater than or equal to 1.

Define, as coordinate arrays, the location where the origin of each
polymarker is placed.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

XGSL Subroutines 3-81

gsplym

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_NCOR

Successful

Coordinate not valid

Number of coordinates not valid.

1. To draw a polymarker, the mark.c C language program uses the gsplym subroutine
several times.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsdjply subroutine, gspoly subroutine, gsmatt subroutine.

3-82 Graphics Subroutines Reference

gspoly Subroutine

Purpose

Library

C Syntax

Draws a polyline, a set of lines that connects a sequence of points.

The AIXwindows Graphics Support Library (libxgsl.a)

int gspoly_ (Number, x, y)
int *Number, x[], y[];

FORTRAN Syntax
INTEGER function gspoly (Number, x, y)
INTEGER Number, x (*), y (*)

Pascal Syntax
FUNCTION gspoly_ (
VAR Number. INTEGER;
VAR x, y: ARRAY [1 .. k] of INTEGER
): INTEGER [PUBLIC];

Description

gspoly

The gspoly subroutine draws lines, as defined by the current relevant attributes, between
each pair of points defined by the parameters.

The relevant attributes are:

• Color map

• Plane mask

• Line color index

• Line style

• Logical operation.

Parameters
Number

x,y

Defines the number of points in the coordinate arrays. The parameter value
must be greater than or equal to 2.

Define the points for line drawing.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

XGSL Subroutines 3-83

gspoly

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_NCOR

GS_INAC

Successful

Coordinate not valid

Number of coordinates not valid

Virtual terminal inactive.

1. To draw a polyline, the arc5.c C language program uses the gspoly subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsdjply subroutine, gsline subroutine, gslop subroutine, gsmult subroutine, gsunls
subroutine.

3-84 Graphics Subroutines Reference

gs pp

gspp Subroutine

Purpose

Library

C Syntax

Provides compatibility for GSL applications that use the gspp subroutine.

The AIXwindows Graphics Support Library (libxgsl.a)

int gspp_ (Penspeec/J
int * Penspeed;

FORTRAN Syntax
INTEGER function gspp_ (PenspeecfJ
INTEGER Penspeed

Pascal Syntax
FUNCTION gspp_ (
VAR Penspeed: INTEGER;
): INTEGER [PUBLIC];

Description

Parameter

The gspp subroutine is provided for compatibility with existing GSL applications. Under the
current implementation of XGSL, the gspp subroutine has no effect, but always returns a
value of GS_SUCC, indicating that the subroutine was successful.

The parameter is ignored. It is provided for compatibility.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_USUC

Successful

Parameter value not valid.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-85

gsqdsp

gsqdsp Subroutine

Purpose

Library

C Syntax

Returns characteristics of the display monitor and adapter.

The AIXwindows Graphics Support Library (libxgsl.a)

void gsqdsp_ (Display)
int *Display,

FORTRAN Syntax
subroutine gsqdsp_ (Display)
INTEGER Display (32)

Pascal Syntax
PROCEDURE gsqdsp_ (
VAR Display: ARRAY [1 .. 32] of INTEGER
): INTEGER [PUBLIC];

Description

Parameter

The gsqdsp subroutine returns an array containing the display adapter and monitor
characteristics.

Display Contains, on return, the relevant display and monitor characteristics. The
following table describes the information in the array. Each entry is a word.

Entry Description

1 Display and monitor ID.

2 Displayed width in pixels of the frame buffer.

3 Displayed height in pixels of the frame buffer.

4 Physical width in millimeters of display.

5 Physical height in millimeters of display.

6 Number of bit planes or number of bits per pixel.

7 Adapter characteristic flags. The following bits set these
characteristics (bit O is the most significant bit):

Bit Description

O Color or monochrome:
O =Color
1 =Monochrome.

1 By plane or by pixel:
O =By plane
1 =By pixel.

3-86 Graphics Subroutines Reference

Example

2 Software or hardware cursor:
0 =Software
1 = Hardware.

3 -31 Reserved bits.

8 Number of bits for red digital-to-analog converter.

9 Number of bits for green digital-to-analog converter.

10 Number of bits for blue digital-to-analog converter.

11 Minimum cursor width in pixels.

12 Minimum cursor height in pixels.

13 Maximum cursor width in pixels.

14 Maximum cursor height in pixels.

15 Color table size.

16 Font class:

1 = Compressed

2 =Uncompressed.

17 Logical operation capability.

gsqdsp

If the value is 0, the adapter supports all two-operand logical
operations and all 256 three-operand operations.

If the value is nonzero, the most significant bits represent the
two-operand logical operations supported. Bit O corresponds to
logical operation 0, bit 1 to logical operation 1, and so forth.

18 to 32 Reserved.

Information from this query can be used to scale application coordinates to those of the
frame buffer.

Even if the adapter supports no logical operations, the results of the query indicate that the
adapter supports REPLACE and Exclusive-OR (logical operations 3 and 6, respectively).
The XGSL emulates the latter, if necessary.

1. To obtain information about the display for further calculations, the cir1 .c C language
program uses the gsqdsp subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gslop subroutine.

XGSL Subroutines 3-87

gsqfnt

gsqfnt Subroutine

Purpose

Library

C Syntax

Returns information about the active annotated text font.

The AIXwindows Graphics Support Library (libxgsl.a)

void gsqfnt_ (Font)
int Font[32];

FORTRAN Syntax
subroutine gsqfnt_ (Font)
INTEGER Font(32)

Pascal Syntax
PROCEDURE gsqfnt_ (
VAR Font: ARRAY (1 .. 32) of INTEGER
): INTEGER [PUBLIC];

Description

Parameter

The gsqfnt subroutine returns information about the active annotated text font.

Font An array that contains, on return, the characteristics of the current
annotated text font. The following table describes the information in the
array. Each entry is a word. Dimensions are in pixels and the origin is at the
lower left corner of the character box.

Entry Description

1 Class:
1 = Compressed
2 =Uncompressed.

2 Annotated font ID

3 Reserved

4 Attribute flags. The following bits are set to 1 to indicate the
corresponding attribute:

Bit Attribute

O Proportionally spaced

30 Italic

31 Bold.

5 Number of characters

6 Character baseline

7 Character capsline

3-88 Graphics Subroutines Reference

Example

gsqfnt

8 Character width. For a proportionally spaced font, the width value
represents the maximum width allowed

9 Character height

10 Underscore top line

11 Underscore bottom line

12 to 32 Reserved.

1 . To obtain information about the active annotated text font, the curs.c C language
program uses the gsqfnt subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gstatt subroutine, gsqgtx subroutine.

XGSL Subroutines 3-89

gsqgtx

gsqgtx Subroutine

Purpose

Library

C Syntax

Returns information about the current geometric font.

The AIXwindows Graphics Support Library (libxgsl.a)

void gsqgtx_ (Font, Select)
int Font[32];
int *Select,

FORTRAN Syntax
subroutine gsqgtx (Font, Select)
INTEGER Font (32), Select

Pascal Syntax
PROCEDURE gsqgtx_ (
VAR Font: ARRAY [1 .. 32] of INTEGER;
Select: INTEGER
): INTEGER [PUBLIC];

Description
The gsqgtx subroutine returns information about the active geometric font.

Parameters
Font An array that contains, on return, characteristics of the geometric font

specified by the Select parameter. Geometric font characteristics are
described in the programmable character set (PCS) header of a geometric
text file. The following list describes the header information returned in the
array. Each entry is a word. Dimensions are in pixels and the origin is at the
lower left corner of the character box.

Entry Description

1 Font ID.

2 Segment ID.

3 Character set:
1 =ASCII
2 =EBCDIC.

4 Range of X between O and the right edge of the character box.

5 Range of Y between O and the top edge of the character box.

6 Starting character code (from Ox21 to OxFE).

7 Ending character code {from Ox21 to OxFE).

8 Font baseline (pixels in the Y direction).

3-90 Graphics Subroutines Reference

Select

gsqgtx

9 Font capsline (pixels in the X direction).

10 Default error code.

11to32 Reserved.

Specifies the geometric font ID whose header information you want returned
in the Font parameter.

A value of -1 for the Select parameter returns the following information in
the Font parameter:

Entry Description

1 The current active font ID.

2 The number of PCS descriptor headers (segments, for 2-byte
character sets) loaded at the time of the call to the gsqgtx
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsgtat subroutine, gsgtxt subroutine.

XGSL Subroutines 3-91

gsqlext

gsqlext Subroutine

Purpose

Library

C Syntax

Returns expanded information about the locator attributes.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsqlext_ (Results)
int Results[16];

FORTRAN Syntax
INTEGER function gsqlext (Results)
INTEGER Results(16)

Pascal Syntax
FUNCTION gsqlext_ (
VAR Results: ARRAV[1 .. 16] of INTEGER;
): INTEGER [PUBLIC];

Description

Parameter

The gsqlext subroutine returns an array containing expanded information about the locator
device.

Results A 16 integer array that, on return, contains information about the locator.
The following table describes the information in the array.

Entry Description

O Locator resolution in millimeters per 100 counts.

1 Locator device type. If the most significant bit is a 1 (one), the
locator type is a tablet. For a tablet, the next two most significant
bits (bits 1 and 2) indicate the sensor type. The following bit
patterns for bits 1 and 2 indicate the corresponding sensor type:

Bit Pattern Sensor Type

00

01

10

Sensor type is undefined or no sensor is
attached.

A stylus is attached.

A four-button puck is attached.

2 Maximum horizontal count.

3 Maximum vertical count.

4 The horizontal locator dead zone in units of 0.25 millimeter.

5 The vertical locator dead zone in units of 0.25 millimeter.

6 to 15 Reserved.

3-92 Graphics Subroutines Reference

gsqlext

If an attempt to obtain the locator attributes is unsuccessful, the device may not be attached.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_USUC
Successful

Unsuccessful.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsqloc subroutine, gslcat subroutine.

XGSL Subroutines 3-93

gsqloc

gsqloc Subroutine

Purpose

Library

C Syntax

Returns information about the locator.

The AIXwindows Graphics Support Library (libxgsl.a).

void gsqloc_ (LocatorType, xRes, yRes, Hg, Vg)
int * LocatorType, * xRes, * yRes, *Hg, * Vg;

FORTRAN Syntax
subroutine gsqloc (LocatorType, xRes, yRes, Hg, Vg)
INTEGER LocatorType, xRes, yRes, Hg, Vg

Pascal Syntax
PROCEDURE gsqloc_ (
VAR LocatorType, xRes, yRes, Hg, Vg: INTEGER
): INTEGER [PUBLIC];

Description
The gsqloc subroutine returns the resolution of the locator device. The current setting for an
absolute device dead zone is also returned.

Parameters
Locator Type

xRes,yRes

Hg, Vg

Indicates the type of locator. If the most significant bit is a O (zero), the
locator is a mouse. If the most significant bit is a 1 (one), the locator is a
tablet. For a tablet, the next most significant 2 bits are:

00 Sensor type is undefined or no sensor is attached.

01 A stylus is attached.

10 A four-button puck is attached.

Indicate the horizontal and vertical resolution of the pointer device in
millimeters per 100 counts.

Indicate the horizontal and vertical values for the locator dead zone in units
of 0.25 millimeters.

If an attempt to get the locator attributes is unsuccessful, the device may not be attached.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_UNSC

Successful

Unsuccessful.

3-94 Graphics Subroutines Reference

gsqloc

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsqlext subroutine, gslcat subroutine.

XGSL Subroutines 3-95

gsrrst

gsrrst Subroutine

Purpose

Library

C Syntax

Restores a rectangular block of pixels.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsrrst_ (Buffer, x1, y1, x2, y2)
int *Buffer, *x1, *y1, *x2, *y2;

FORTRAN Syntax
INTEGER function gsrrst (Buffer, x1, y1, x2, y2)
INTEGER Buffer{*), x1, y1, x2, y2

Pascal Syntax
FUNCTION gsrrst_ {
VAR Buffer: ARRAY [1 .. k] of INTEGER;
VAR x1,y1, x2,y2: INTEGER
): INTEGER [PUBLIC];

Description
The gsrrst subroutine restores a block of pixels from memory to the frame buffer. Use the
gsrsav subroutine to save a block of pixels.

The relevant attributes are:

• Plane mask

• Logical operation.

Parameters
Buffer

x1, y1

x2,y2

Note:

Indicates where the block of pixels is stored in memory.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

Define the coordinates of the lower left corner of the rectangular area to
restore.

Define the coordinates of the upper right corner of the rectangular area to
restore.

The intended purpose of the gsrsav and gsrrst subroutines is efficient saving and
restoring of pixel blocks displayed temporarily at a fixed location in the frame buffer.
Because the AIXwindows Graphics Support Library (XGSL) saves the frame buffer
contents in a device-dependent fashion, it is generally not possible to move blocks of
pixels correctly from one position to another in a plane-oriented adapter by using the
gsrsav and gsrrst subroutines. Use the display parameter entries in the gsqdsp
subroutine to determine whether the display adapter is plane-oriented or
pixel-oriented. In addition, careful consideration must be given to the adapter
characteristics, block size, and position of the block in the frame buffer before
attempting to manipulate the Buffer parameter.

3-96 Graphics Subroutines Reference

gsrrst

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_INAC

Successful

Coordinate not valid

Virtual terminal inactive.

1. To restore a block of pixels previously stored in the frame buffer, the pix.c C language
program uses the gsrrst subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsrsav subroutine, gsxblt subroutine, gsqdsp subroutine.

XGSL Subroutines 3-97

gsrsav

gsrsav Subroutine

Purpose

Library

C Syntax

Saves a rectangular block of pixels.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsrsav_ (Buffer, x1, y1, x2, y2)
int *Buffer, *x1, *y1, *x2, *y2;

FORTRAN Syntax
INTEGER function gsrsav (Buffer, x1, y1, x2, y2)
INTEGER Buffer(*), x1, y1, x2, y2

Pascal Syntax
FUNCTION gsrsav_ (
VAR Buffer. ARRAY [1 .. k] of INTEGER;
VAR x1,y1, x2,y2: INTEGER
): INTEGER [PUBLIC];

Description
The gsrsav subroutine saves a block of pixels from the frame buffer, to memory storage
starting at the indicated address. The x1, y1 and x2, y2 parameters define the block of
pixels. The saved block can be restored with the gsrrst subroutine. The relevant attributes
are:

• Plane mask

• Logical operation.

Parameters
Buffer Indicates where the gsrsav subroutine should save the block of pixels.

Note: The size of the Buffer parameter depends on the size of the
rectangle and on the device organization. For devices organized by
plane, the plane mask attribute determines the number of planes
saved for each pixel. For devices organized by pixel, the entire pixel
is always saved. For both organizations, the unit of access to the
frame buffer also plays a role in calculating the size of the Buffer
parameter. The gsxblt subroutine provides more details. The
gsrsav subroutine does not check whether the Buffer parameter is
too small to contain the pixel block. A memory fault can result if the
Buffer parameter is too small. To specify a size for the Buffer
parameter that will hold all images, use the following equation:

(((y2-yl+l)/32+2)* (x2-xl+l))

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

3-98 Graphics Subroutines Reference

x1, y1

x2,y2

gsrsav

Define the lower left corner of the rectangular area in the frame buffer to
save.

Define the upper right corner of the rectangular area in the tram buffer to
save.

Note: The intended purpose of the gsrsav and gsrrst subroutines is efficient saving and
restoring of pixel blocks displayed temporarily at a fixed location in the frame buffer.
Because the AIXwindows Graphics Support Library (XGSL) saves the frame buffer
contents in a device-dependent fashion, it is generally not possible to move blocks of
pixels correctly from one position to another in a plane-oriented adapter by using the
gsrsav and gsrrst subroutines. Use the Display parameter entries in the gsqdsp
subroutine to determine whether the display adapter is plane-oriented or
pixel-oriented. In addition, careful consideration must be given to the adapter
characteristics, block size, and position of the block in the frame buffer before
attempting to manipulate the Buffer parameter.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_CORD

GS_INAC

Successful

Coordinate not valid

Virtual terminal inactive.

1. To save a block of pixels in storage, the pix.c C language program uses the gsrsav
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsrrst subroutine, gsxblt subroutine.

XGSL Subroutines 3-99

gssend

gssend Subroutine

Purpose

Library

C Syntax

Provides compatibility for GSL applications that use the gssend subroutine.

The AIXwindows Graphics Support Library (libxgsl.a).

int gssend_ (Count, SizeBytes, Buffer)
int *Count;
int * SizeBytes;
int *Buffer,

FORTRAN Syntax
INTEGER gssend (Count, SizeBytes, Buffer)

Pascal Syntax
FUNCTION gssend_ {
VAR Count: INTEGER;
VAR SizeBytes: ARRAY [1 •. k] of INTEGER;
VAR Buffer: ARRAY [1 .. k] of INTEGER;
) : INTEGER [PUBLIC];

Description
The gssend subroutine is provided for compatibility with existing GSL applications. Under
the current implementation of XGSL, the gssend subroutine always returns GS_USUC,
indicating that the subroutine was unsuccessful.

Parameters
The parameters are ignored. They are provided for compatibility.

Return Value
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
value:

GS_USUC Unsuccessful.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

3-1 00 Graphics Subroutines Reference

gstatt

gstatt Subroutine

Purpose

Library

C Syntax

Sets the text attributes for annotated text.

The AIXwindows Graphics Support Library (libxgsl.a).

int gstatt_ (color, page, baseline, font, name)
int *color, *page, *baseline, *font,
char *name;

FORTRAN Syntax
INTEGER function gstatt_ (Color, Page, Baseline, Font, Name)
INTEGER Color, Page, Baseline, Font
CHARACTER*n name

Pascal Syntax
FUNCTION gstatt_ (
VAR Color, Page, Baseline, Font INTEGER;
VAR name: ARRAY [O .. k] of CHAR
): INTEGER [PUBLIC];

Description
The gstatt subroutine defines the attributes for the class of text drawing functions.

Parameters
Color

Page

Baseline

Specifies a text color entry in the color map. If this is -1 , the attribute is
unchanged.

Specifies the code page of a font for the display to use. The only valid value
for IBM-supplied fonts is O for code page PO. The value -1 indicates no
change.

Determines the direction of the text drawing. The valid values are:

-1 Attribute remains unchanged.

0 Specifies 0 degrees, or left to right in the viewer's terms.

1 Specifies 90 degrees, or up in the viewer's terms.

2 Specifies 180 degrees, or right to left in the viewer's terms.

Note: The characters appear upside down.

3 Specifies 270 degrees, or down in the viewer's terms.

If the baseline is other than 0 degrees and the font index is 0, then the font
named by the Name parameter must be a pre-rotated font. When a baseline
change is made, another font path name is required.

XGSL Subroutines 3-101

gstatt

Font

Name

Specifies, for displays, the font to use for text output operations.

If the font index is -1, no change is made. If the font index is 0, then the
gstatt subroutine uses the font specified by the Name parameter. If the font
index is a value from 1 to 14, the XGSL uses one of the following predefined
fonts:

Font Index Width x Height Style
(in pixels)

1 9 x 20 Normal

2 9 x 20 Italic

3 9 x 20 Bold

4 8x14 Normal

5 4x8 Normal

6 18 x 40 Normal

7 12 x 30 Normal

8 9 x 20 Normal

9 6x9 Normal

10 6 x 11 Normal

11 7x15 Normal

12 7x22 Normal

13 11x23 Normal

14 11x23 Bold

Contains the null-terminated full path name of the font file used when the
font attribute is specified as user.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_COLI

GS_CPID

GS_BASL

GS_FNTI

GS_FNTN

Successful

Color index not valid

Code page identifier not valid

Baseline direction not valid

Font index not valid

File name not valid.

3-1 02 Graphics Subroutines Reference

Example

gstatt

1. To set the text attributes for annotated text, the curs.c C language example program
uses the gstatt subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-103

gsterm

gsterm Subroutine

Purpose
Terminates use of the XGSL.

Library
The AIXwindows Graphics Support Library (libxgsl.a).

C Syntax
void gsterm_ ()

FORTRAN Syntax
subroutine gsterm ()

Pascal Syntax
PROCEDURE gsterm_ () [PUBLIC];

Description

Example

The gsterm subroutine terminates the XGSL. It deallocates any private storage, returns the
virtual terminal to KSR mode, and causes the monitor mode signals to be ignored.

1. To deallocate memory reserved by the XGSL and to return the virtual terminal to the
normal KSR mode, the arc1 .c C language program uses the gsterm subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsinit subroutine.

3-1 04 Graphics Subroutines Reference

gstext Subroutine

Purpose

Library

C Syntax

Writes annotated text.

The AIXwindows Graphics Support Library (libxgsl.a).

int gstext_ (x, y, Number, Text)
int * x, * y, *Number,
char *Text;

FORTRAN Syntax
INTEGER function gstext (x, y, Number, Text)
INTEGER x, y, Number
CHARACTER*n Text

Pascal Syntax
FUNCTION gstext_ (
VAR x, y, Number: INTEGER;
VAR Text: ARRAY [1 .. k] of CHAR
): INTEGER [PUBLIC];

Description

gstext

The gstext subroutine writes the number of characters indicated by the parameters, starting
at the specified baseline position and according to the relevant attributes. This subroutine is
to be used only with annotated text.

The relevant attributes are:

• Color map

• Plane mask

• Text font

• Code page

• Baseline direction

• Text color index.

Parameters
x,y Define the baseline position for writing the text.

Number Indicates the number of bytes to write from the Text string.

XGSL Subroutines 3-105

gstext

Text Contains as an array the ASCII codes for the characters to write.

For any ASCII value between 0 and 31 (decimal), no graphic is written. For
any other ASCII value combination that does not result in a valid graphic, a
dash is written.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length; that is, the k
in the routine declaration must be a constant.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_CORD

GS_FBUF

GS_INAC

GS_SUCC

Coordinate not valid

Frame buffer overflow

Virtual terminal inactive

Successful.

1. To write annotated text, the curs.c C language program uses the gstext subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gstatt subroutine.

3-1 06 Graphics Subroutines Reference

gsulns

gsulns Subroutine

Purpose

Library

C Syntax

Sets the user line style.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsulns_ (Pattern, Length, Begin)
int *Pattern, *Length, *Begin;

FORTRAN Syntax
INTEGER function gsulns (Pattern, Length, Begin)
INTEGER Pattern, Length, Begin

Pascal Syntax
FUNCTION gsulns_ (
VAR Pattern, Length, Begin: INTEGER
): INTEGER [PUBLIC];

Description
The gsulns subroutine establishes the user line style.

Parameters
Pattern Defines the pixel pattern used for the line style. A 1 bit indicates that the

XGSL draws a pixel; a O bit means that it does not.

Length Defines the number of bits (starting with the most significant) of the Pattern
parameter used for line drawing. The bits are repeated for the Length of the
line.

The Length parameter is a value not less than 2 or greater than 32.

Begin Indicates the length of the starting run of bits set to 1 in the pattern. It is
used to adjust the beginning and ending runs of the noncontinuous line
styles.

Return Values

For proper appearance, the application-supplied line pattern begins with a
run of bits set to 1 and ends with a run of bits set to 0.

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_LENG

Successful

Length not valid.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-107

gsunlk

gsunlk Subroutine

Purpose
Provides compatibility for GSL applications that use the gsunlk subroutine.

Library
The AIXwindows Graphics Support Library (libxgsl.a).

C Syntax
void gsunlk_ ()

FORTRAN Syntax
subroutine gsunlk ()

Pascal Syntax
PROCEDURE gsunlk_ () [PUBLIC];

Description
The gsunlk subroutine is provided for compatibility with existing GSL applications. Under
the current implementation of XGSL, the gsunlk subroutine always returns GS_USUC,
indicating that the subroutine was unsuccessful.

Return Value
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
value:

GS_USUC Unsuccessful.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

3-o 1 08 Graphics Subroutines Reference

gsvgrn

gsvgrn Subroutine

Purpose

Library

C Syntax

Sets the valuator granularity.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsvgrn_ (Valuators, Granularity)
char *Valuators, *Granularity;

FORTRAN Syntax
INTEGER function gsvgrn (Valuators, Granularity)
CHARACTER Valuators, Granularity

Pascal Syntax
FUNCTION gsvgrn_ (
VAR Valuators, Granularity: CHAR
): INTEGER [PUBLIC];

Description
The gsvgrn subroutine sets the resolution of input events generated by the valuators, that
is, the number of events per turn of the valuator dial.

Parameters
Valuators

Granularity

Return Values

Specifies which valuators to set to the indicated granularity. Each bit in the
Valuators parameter corresponds to one of the valuator dials, with the most
significant bit indicating that valuator O (zero) is to be set, the next most
significant bit indicating that valuator 1 (one) is to be set, and so on.

Specifies the desired resolution for the valuators indicated. The Granularity
parameter must have a value of 2 through 8 and indicates a resolution of 4,
8, 16, 32, 64, 128, or 256 points per revolution, respectively. The default
value is 4, for a resolution of 16.

If an attempt to set the valuator granularity is unsuccessful, the device may
not be attached.

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_USUC

GS_VALG

Successful

Unsuccessful

Granularity not valid.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

XGSL Subroutines 3-109

gsxblt

gsxblt Subroutine

Purpose

Library

C Syntax

Moves a rectangular block of pixels in system or display adapter memory from one location
to another.

The AIXwindows Graphics Support Library (libxgsl.a).

int gsxblt_ (SrcPix, DstPix, MskPix, Width, Height, Logop)
int * SrcPix, * DstPix, * MskPix;
int *Width, *Height, * Logop;

FORTRAN Syntax
INTEGER function gsxblt_ (SrcPix, DstPix MskPix, Width, Height, Logop)
INTEGER SrcPix (*), DstPix(*), MskPix(*)
INTEGER Width, Height, Logop

Pascal Syntax
FUNCTION gsxblt_ (
VAR SrcPix, DstPix, MskPix: ARRAY [32] of INTEGER;
VAR Width, Height, Logop: INTEGER
): INTEGER [PUBLIC];

Description
The gsxblt subroutine moves a rectangular block of pixels from one memory location to
another, either in system memory or in the frame buffer.

For FORTRAN-specific address information, see the gsxptr subroutine.

The gsxblt subroutine is used to support windowing operations, such as overlays and
movement around the screen. The source rectangle and the destination rectangle can be in
either system or adapter pixel memory. The gsxblt subroutine is also used for user-defined
cursors and for the save and restore of a pixel map for applications such as pop-up menus.

The mask operation provided by the gsxblt subroutine controls which pixels in the
destination rectangle can be modified.

The relevant attributes are:

• Plane mask

• Color map.

Parameters
SrcPix

DstPix

Contains the address of the source pixel map.

Contains the address of the destination pixel map.

3-11 0 Graphics Subroutines Reference

MskPix

Width

Height

Logop

gsxblt

Contains the address of the mask operation pixel map. This parameter
should equal O if there is no bit mask operator to apply. For FORTRAN
applications, a valid MskPix array must always be defined. If no masking is
required, the address field of the array, MskPix[9), must be initialized to 0.

The MskPix pixel map consists of only 1 bit per pixel, and the mask
rectangle is the same size as the source and destination rectangles. In the
mask rectangle, a 1 bit means that the corresponding pixel in the destination
rectangle can be modified, while a 0 bit means the destination pixel is not to
be modified.

Defines the width of the rectangular area to be transferred.

Defines the height of the rectangular area to be transferred.

Indicates the logical operation to perform between the source pixel map and
the destination pixel map.

In the following table, please note:

• The source or tile (a special type of source) pixels represent bits of data
to be merged in some way with the corresponding bits of data in the
destination rectangle.

• The first three columns of the table specify the operations you can
perform, and the Code column contains the corresponding value you
should specify for the Logop parameter.

• There are two unique codes for each logical operation, to be used
depending on how the tiling bit in the source pixel map is set. Codes 0 to
15 are used when the tiling bit is not set, while codes 16 to 31 are used
when the tiling bit is set.

• A - (tilde) represents the logical INVERSE.

Logical Operation Table Part 1 of 2

Type of Source Logical Operation Destination Type Code

Destination clear 0

Set destination 15

No operation Destination 5

-Destination 10

Source REPLACE Destination 3

Source AND Destination 1

Source AND -Destination 2

Source Exclusive-OR Destination 6

Source OR Destination 7

Source OR -Destination 11

-Source REPLACE Destination 12

-Source AND Destination 4

-Source AND -Destination 8

-Source Exclusive-OR Destination 9

XGSL Subroutines 3-111

gsxblt

Logical Operation Table Part 2 of 2

Type of Source Logical Operation Destination Type Code

-Source OR Destination 13

.... source OR - Destination 14

Destination clear 16

No operation Destination 21

- Destination 26

Tile REPLACE Destination 19

Tile AND Destination 17

Tile AND -Destination 18

Tile Exclusive-OR Destination 22

Tile OR Destination 23

Tile OR Destination 27

-Tile REPLACE Destination 28

-Tile AND Destination 20

-Tile AND -Destination 24

-Tile Exclusive-OR Destination 25

.... Tile OR Destination 29

-Tile OR - Destination 30

A pixel map is a 32-bit array of integers that contains the following bit fields:

0 Device ID (0 for memory).

1 Flags.

2

3

4

5

6

7

In the following explanations, bit O is the low-order bit:

• Plane (XY) format is selected when bit O is set and bits 1 and 2 are not
set. Pixel (Z) format is selected when bits 0, 1, and 2 are not set.

• A repetitive tile is specified when bit 3 is set, while no tile is specified
when bit 3 is not set.

If the repetitive tile bit is set in the SrcPix, pixel map, then the Device ID
field in that pixel map must be set to 0. The tile data must be in memory.

• Bit 4 selects the lower left coordinate system when it is set and the upper
left coordinate system when it is not set.

Height (in pixels).

Width (in pixels).

This value must be an even multiple of 16 pixels for all pixel maps, which
means that all pixel maps must be at least 16 pixels wide.

Number of bits per pixel.

Pixels per byte, right-justified.

Bytes per pixel.

x offset.

3-112 Graphics Subroutines Reference

8

9

10

11

12 to 31

y offset.

Address of upper left corner of data.

Foreground color index.

Background color index.

Reserved.

gsxblt

Definitions of pixel map terms include:

Device ID This is a required parameter for all pixel map definitions. If the pixel map
being defined is a display adapter, this field must contain the Device ID of
that display adapter. If the pixel map resides in system memory, then this
field must equal 0.

Pixel format Data stored in this format has all bits for a pixel stored together. The data
starts with the origin and increases first in the x direction, then in the y
direction.

As an example using the upper left coordinate system, a pixel map with 4
bits per pixel and 1 pixel per byte stores the 4 bits for the pixel at location
(0,0) in the first byte of the data area, right-justified in the byte. The 4 bits for
the pixel at location (1,0) are stored in the second byte, followed by the rest
of the pixel values in that row. When the end of the row is reached, the next
byte contains the 4 bits for the pixel at location (0, 1), followed by the rest of
the pixel values in that row, and so on for the entire image.

Plane format Plane format indicates that each of the bits that make up a pixel is stored in
a separate, consecutive plane in memory. The most significant bit is first,
followed by the next significant, and so on to the least significant bit, which
is last. The bits within a plane are packed together 8 bits per byte.
Therefore, using the upper-left coordinate system as an example, a pixel
map with 4 bits per pixel would consist of four separate planes of data with
the first bit value being the one for location (0,0) and increasing first in the x
direction, then in they direction.

Repetitive tiling operation
This operation consists of repeatedly copying a 16-pixel-wide by
16-pixel-high tile rectangle pointed to by the tile pixel map data address to
fill a rectangular area of a size specified by the Height and Weight
parameters of this call. The format of the tile data is determined by the
format defined in the flags field of the tile pixel map structure.

Upper left coordinate system
This indicates that the upper left corner of the pixel map is used as the
origin of the coordinate system, with increasing values of x moving to the
right and increasing values of y moving down. The x offset and y offset are
set to the upper left corner of the rectangle when using this coordinate
system.

Lower left coordinate system
This indicates that the lower left corner of the pixel map is used as the origin
of the coordinate system, with increasing values of x moving to the right and
increasing values of y moving up. The x offset and the y offset are set to the
lower-left corner of the rectangle when using this coordinate system.
However, the data address specified in the pixel map structure must always
point to the upper-left corner of the data area no matter which coordinate
system is defined.

XGSL Subroutines 3-113

gsxblt

Number of bits per pixel
This field identifies the number of data bits required to define a pixel value.
For example, a simple monochrome display requires only 1 bit per pixel,
while a color display may require 4 bits of information to define a pixel.

Number of pixels per byte

Bytes per pixel

If the number of bits per pixel is fewer than 8, this field defines how many
pixels are stored in each byte of pixel map data. A pixel map with only 1 bit
per pixel must always store 8 pixels per byte. It is strongly recommended
that for 2 through 7 bits per pixel, you store data with only 1 pixel per byte.

If the number of bits per pixel is greater than 8, this field defines how many
bytes are used to store each pixel. It is strongly recommended that for 9
through 16 bits per pixel, you store data 2 bytes per pixel. For 17 through 32
bits per pixel, data should be stored 4 bytes per pixel.

Foreground color index
This specifies the color index value to use for a value of 1 in the source pixel
map during a color expansion operation.

Background color index
This specifies the color index value to use for a value of O in the source pixel
map during a color expansion operation.

A color expansion operation takes place automatically when the source pixel map data area
contains only 1 bit per pixel and the destination pixel map data area is a color display
adapter frame buffer defined to have more than 1 bit per pixel. In this case, when a 1 is
specified in the source pixel map data area, the foreground color index value specified in the
destination pixel map (DstPix) is written to the destination data area. When a 0 is specified in
the source pixel map data area, the background color index value specified in the DstPix
parameter is written to the destination data area.

The foreground color index and the background color index must be initialized in the
destination pixel map before calling this operation, but do not need to be initialized in the
source or mask pixel maps.

Not all logical operations are supported for a color expansion operation. The following table
shows which operations are supported. In this table, a (tilde) represents the logical
INVERSE.

Source Pixel Maps Tile Pixel Maps

Type of Operation Code Type of Operation Code

Destination clear 0 Destination clear 16

Set destination 15 Set destination 31

Destination 5 Destination 21

-Destination 10 Destination 26

Source 3 Source 19

-Source 12 -Source 28

If a source or destination pixel map structure defines the active display adapter, you do not
need to initialize all the fields of that pixel map structure. Device-dependent information,
such as height, width, pixels per byte, bytes per pixel, and address of data, is supplied
automatically. You must initialize the fields for device ID, bits per pixel, flags (except for the

3-114 Graphics Subroutines Reference

gsxblt

data format bits), x offset, and y offset. Also, the foreground color index and the background
color index must be initialized if appropriate for this adapter.

When initializing a pixel map structure to use as the MskPix parameter:

1. The flags field equals a value of Ox01 if the upper left coordinate system is used or Ox11
if the lower left coordinate system is used.

2. The number of bits per pixel equals 1.

3. The number of pixels per byte equals 8.

The XGSL plane mask attribute applies to all gsxblt subroutine operations that use the
display adapter as the source or destination pixel map.

The XGSL color map attribute applies to all gsxblt subroutine operations that use the
display adapter as the destination pixel map.

Return Values

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_IWID

GS_IHEI

GS_NPLF

GS_INAC

GS_CORD

GS_IBP

GS_CEX

GS_PWID

Successful.

Width specification not valid. The x offset plus the Width parameter of one of
the pixel maps exceeds the total width of that pixel map.

Height specification not valid. The y offset plus the Height parameter of one
of the pixel maps exceeds the total height of that pixel map.

Source and destination data formats do not match.

Virtual terminal inactive.

Coordinate not valid. Coordinate specified placed the origin of the source,
destination, or mask rectangle outside its pixel map.

Value not valid for bits per pixel in the source pixel map.

Color expansion operation attempted, but the destination pixel map was not
a display adapter.

The width of one of the pixel maps is not an even multiple of 16 pixels.

1 . To move a block of pixels from a memory storage area, the blit.c C language program
uses the gsxblt subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsxptr subroutine.

XGSL Subroutines ~ 115

gsxcnv

gsxcnv Subroutine

Purpose

Library

C Syntax

Converts pixel map data organization.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsxcnv_ (lnppix, Outpix)
int *lnppix, *Outpix;

FORTRAN Syntax
INTEGER function gsxcnv (lnppix, Outpix)
INTEGER lnppix (*), Outpix (*)

Pascal Syntax
FUNCTION gsxcnv_ (
VAR lnppix, Outpix: INTEGER
): INTEGER [PUBLIC];

Description
The gsxcnv subroutine converts pixel map data to and from planes. That is, the gsxcnv
subroutine converts XV form to and from pixels (Z form).

Both the lnppix and Outpix parameters contain the address of a pixel map. The fields of
each pixel map must be completely initialized before calling this subroutine. Both pixel maps
must point to data areas that reside in system memory, not in a display adapter frame buffer.

The lnppix and Outpix pixel maps do not have to specify the same number of bits per pixel.
If there are more input bits per pixel, the least significant bits are truncated. If there are fewer
input bits per pixel than required to fill out the destination, the most significant bits are filled
with zeros.

The gsxcnv subroutine only supports pixel maps defined to have 8 bits per pixel or less. If a
pixel-format pixel map is defined with less than 8 bits per pixel, the data must be arranged 1
(one) byte per pixel, right-justified in that byte.

The widths of the two data areas must be identical. The heights of the two data areas must
also be identical.

Parameters
lnppix

Outpix

Points to the address of the pixel map whose data area is to be converted.

Points to the address of the pixel map that contains the address of where to
put the converted data.

Note: The calling process must allocate enough storage in the area
pointed to by the Outpix pixel map to contain all of the converted
data.

3-116 Graphics Subroutines Reference

gsxcnv

Return Values
Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_INPF

GS_OUTF

GS_BMAX

Successful

Data format specified in lnppix pixel map structure not valid

Data format specified in Outpix pixel map structure not valid

Pixel map defines data of more than 8 bits per pixel.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The gsxblt subroutine.

XGSL Subroutines 3-117

gsxptr

gsxptr Subroutine

Purpose
Creates FORTRAN pointer-type variables for addressing data.

Library
The AIXwindows Graphics Support Library (libxgsl.a).

C Syntax
None

FORTRAN Syntax
INTEGER function gsxptr (lntptr, Datptr)
INTEGER lntptr(*), Datptr(*)

Pascal Syntax
None

Description
The gsxptr subroutine is used in FORTRAN applications to place the address of a variable
into another variable so that the data can be addressed with a pointer-type addressing.

You must call the gsxptr subroutine before the gsxblt subroutine so that the data address
field of a pixel map structure can be initialized.

Parameters
lntptr Contains the data that must be addressed by a pointer.

Datptr Contains, on return, the address of the data area. This variable can then be
used as a pointer.

Return Value

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
value:

GS_SUCC Successful.

1. To specify the path of a user-defined font file as a pointer in the gsmfld subroutine, the
fontld.for example FORTRAN program uses the gsxptr subroutine.

Related Information
The gsxblt subroutine.

3-118 Graphics Subroutines Reference

gsxtat

gsxtat Subroutine

Purpose

Library

C Syntax

Sets the text attributes for Xtext.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsxtat_ (Foregrnd, Backgrnd, Logop, Font, Clipbox)
int * Foregrnd, * Backgrnd,
int *Logop, *Font, *Clipbox;

FORTRAN Syntax
INTEGER function gsxtat (Foregrnd, Backgrnd, Logop, Font, Clipbox)
INTEGER Foregrnd, Backgrnd, Logop, Font, Clipbox

Pascal Syntax
FUNCTION gsxtat_ (
VAR Foregrnd, Backgrnd, Logop,: INTEGER;
VAR Font: ARRAY [1 •• k] of INTEGER;
VAR Clipbox: ARRAY [1 .• ~ of INTEGER;
): INTEGER [PUBLIC];

Description
The gsxtat subroutine defines the attributes to be used when drawing text with a font in the
Xtext format.

Parameters
Foregrnd

Backgrnd

Log op

Defines an entry in the color map to use for the foreground color (bits set
to 1) in the font raster for each character. A value of -1 indicates no change
for this attribute.

Defines an entry in the color map to use for the background color (bits set
to 0) in the font raster for each character. A value of -1 indicates no change
for this attribute.

Indicates the logical operation to perform between the font raster and the
display destination.

In the following table, please note:

• The source pixels represent bits of data from the font raster to be merged
in some way with the corresponding bits of data in the destination
rectangle.

• The first three columns of the table specify the operations you can
perform, and the Code column contains the corresponding value you
should specify for the logop parameter.

• A - (tilde) represents the logical INVERSE.

XGSL Subroutines 3-119

gsxtat

Font

Logical Operation Table

Type of Source Logical Operation Destination Type Code

Destination clear 0

Set destination 15

No operation Destination 5

-Destination 10

Source REPLACE Destination 3

Source AND Destination 1

Source AND -Destination 2

Source Exclusive-OR Destination 6

Source OR Destination 7

Source OR -Destination 11

... source REPLACE Destination 12

... source AND Destination 4

... source AND "'Destination 8

... source Exclusive-OR Destination 9

... source OR Destination 13

... source OR ... Destination 14

A value of -1 for this parameter indicates no change in the current logical
operation.

Points to an Xtext font file that contains the font header and raster
definitions for all characters defined in the font. The calling process is
responsible for either mapping the font file or copying it into a memory area
in order to obtain a pointer to the data area.

Setting the value of this pointer to O indicates no change to the current font
file.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is,
the kin the routine declaration must be a constant.

The XGSL supports only a subset of the different forms that the Xtext
format allows. Specifically, the XGSL supports any combination of the
following font formats:

• Fixed width and height

• Variable width or height, or both

• Halfword alignment or fullword alignment

• Glyphs in raster format only

• Index character array width of 4 bytes

• All individual glyph character bounds for variable width and height fonts,
except negative left or right bearings.

3-120 Graphics Subroutines Reference

Clipbox

gsxtat

The XGSL does not support any formats for Xtext files other than those
listed above. If the font file specified is not in a supported format, then the
XGSL returns the GS_FFMT return code.

Specifies an array of integers that correspond to a rectangular area on the
display screen. When the gsxtxt subroutine is used to draw text, any full or
partial characters that fall outside this area are clipped. The elements of the
area to clip are as follows:

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
I in the routine declaration must be a constant.

First element

Second element

Third element

Fourth element

Fifth element

Reserved. This value is always 1 .

Specifies, in pixels, the x coordinate of the lower left
corner of the clip box.

Specifies, in pixels, the y coordinate of the lower left
corner of the clip box.

Specifies, in pixels, the height of the clip box.

Specifies, in pixels, the width of the clip box.

The bottom and left edges of the clip box are inclusive, while the top and
right edges are exclusive.

This parameter is a pointer to the clip box array, which is not copied into any
XGSL data structure, allowing the calling process to modify the elements of
the array without calling the gsxtat subroutine. If the values for the clip box
are changed between calls to the gsxtxt subroutine, the new clip box is
used for all text drawing until another change is made.

Setting the value of this pointer to O indicates no change.

Note:

1. Since the XGSL subroutines that use the Xtext format are designed for
high-performance text drawing, no verification is made of the validity of
the clip box. The calling process must ensure that the entire clip box
resides inside the physical size of the display. Using a clip box that is not
entirely within the screen produces unpredictable results.

2. When the XGSL is installed from diskette, an attempt is made to convert
the 14 precompiled annotated text fonts into Xtext format. The
vrm2rtfont command is used on the 14 annotated text fonts in the
/etc/vtm directory, and the resulting Xtext fonts are stored in the
/usr/lpp/fonts directory. The following list shows the Xtext format files
stored in /usr/lpp/fonts:

All of these fonts have fixed width and height and are halfword aligned.

XGSL Subroutines 3-121

gsxtat

Return Values

Example

Files

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
values:

GS_SUCC

GS_FFMT

GS_LONS

Successful

Font format not valid

Logical operation not valid.

1. To set the text attributes for Xtext, the xtex.c C language program uses the gsxtat
subroutine.

/usr/include/rtfont.h Header file for the Xtext format.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Related Information
The vrm2rtfont command.

The gsxtxt subroutine.

3-122 Graphics Subroutines Reference

gsxtxt

gsxtxt Subroutine

Purpose

Library

C Syntax

Writes Xtext.

The AIXwindows Graphics Support Library (libxgsl.a)

int gsxtxt_ (x, y, Number, Text)
int *x, *y, *Number,
char Text[) ;

FORTRAN Syntax
INTEGER function gsxtxt (x, y, Number, Text)
INTEGER x, y, Number
CHARACTER* n Text

Pascal Syntax
FUNCTION gsxtxt_ (
VAR x, y, Number. INTEGER;
VAR Text: ARRAY [1 •. k) of CHAR
): INTEGER [PUBLIC];

Description
The gsxtxt subroutine displays the specified text string by using the Xtext format. Only
those full or partial characters within the clip box specified by the gsxtat subroutine are
displayed. Because there is no default Xtext defined for use by the AIXwindows Graphics
Support Library (XGSL), the gsxtat subroutine must be called to set all relevant attributes
before the first call to the gsxtxt subroutine.

The relevant attributes are:

• Xtext foreground color

• Xtext background color

• Xtext logical operation

• Xtext clip box

• Current Xtext font

• Plane mask

• Color map.

XGSL Subroutines 3-123

gsxtxt

Parameters
x,y

Number

Text

Define the baseline position for writing the text.

Indicates the number of bytes to write from the Text string.

Contains the ASCII codes for the characters to write.

For FORTRAN syntax, the n in the routine declaration must be a constant.

For Pascal syntax, the application must declare that the passed array is
fixed-length and that the routine accepts an array of that length. That is, the
kin the routine declaration must be a constant.

Return Value

Example

Using the preprocessor include statement to incorporate the gslerrno.h header file in your
program, you can compare the integer returned by this subroutine to the following return
value:

GS_SUCC Successful.

Note: Because the text is either displayed or clipped in any case, the gsxtxt subroutine
always completes execution with a successful return value.

1. To write text using the Xtext font format, the xtex.c C language program uses the gsxtxt
subroutine.

Implementation Specifics
This subroutine is part of XGSL in the AIXwindows environment.

Files
/usr/include/rtfont.h Header file for the Xtext format.

3-124 Graphics Subroutines Reference

Chapter 4. XGSL Example Programs

XGSL Example Programs 4-1

arc1.c

arc1 .c Example C Language Program
/*
arcl.c

This program uses the gsline subroutine to draw two intersecting
lines. It then uses the gseara subroutine to draw several ellipses
around the point where the lines intersect.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_ () ;
kill(getpid(), sig);
exit(O);

main ()
{

int ring[l28], save, outdev;
int ring_size, re, lcolor, lstyle, lop;
int ex, cy, start_ang, end_ang;
int major, minor, ang;
int xl, yl, x2, y2;
int one=l, three=3;
int data[33];

sync();
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev = -1; /* Send output to a

new window */
gsinit_(&ring[O], &ring_size, &save, O, 0, &outdev);

gsevds _ (& three) ;
gsevwt_(&zero, data);

gsclrs_();

lcolor = 1;
lstyle = -1;
gslatt_(&lcolor, &lstyle);

lop = 3;
gslop_(&lop) ;

4-2 Graphics Subroutines Reference

/* Disable mouse input */
/* Flush ring buffer data,

if any */

/* Clear screen to color zero */

/* Use color number one */
/* Leave line style alone */

/* Set operation to Replace */

/* Draw intersecting lines at (xl,yl) */
xl 360;
yl 256;
x2 xl - 200;
y2 yl + 200;
gsline_(&xl, &yl, &x2, &y2);
x2 = xl + 200;
y2 = yl +200;
gsline_(&xl, &yl, &x2, &y2);
x2 = xl - 200;
y2 = yl - 200;
gsline_(&xl, &yl, &x2, &y2);
x2 = xl + 200;
y2 = yl - 200;
gsline_(&xl, &yl, &x2, &y2);

/* Draw several
ex = 360;
cy = 256;
major = 200;
minor = 100;
for (ang = O;
{
end_ang = 450;

ellipses around center point (cx,cy) */

/* Semi-major axis */
/* Semi-minor axis */

ang <= 1800; ang += 200)

arc1 .c

for(start_ang = O; start_ang <= 2700+450; start_ang += 450)
{
re = gseara_(&ex, &cy, &major, &minor,

&ang, &start_ang, &end_ang);
ck_rc ("gseara", re) ; /* Check return code *I
end_ang += 450;

}
}

/* Wait for keystroke event, then exit */
gs even_ (&one) ;
gsevwt_(&one, data);

gsterm_();
} /* end of main */

/* ck_rc */
/*
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere != 0)
{
sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));

}

sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

} /* end ck re */

XGSL Example Programs_ 4-3

arc2.c

arc2.c Example C Language Program
/*
arc2.c

This program uses the gsearc subroutine to draw several ellipses
at different angles around a center point. Before each new
ellipse is drawn, the last ellipse is drawn a second time. The
program uses the gslop subroutine to set the logical operation to
Exclusive OR so that when each ellipse is drawn the second time,
it erases the ellipse from the frame buffer. This gives the
illusion that a single ellipse is spinning around the center
point.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill(getpid(), sig);
exit(O);

main ()
{

int ring[l28], save, outdev;
int ring_size, re, lcolor, lstyle, lop;
int ex, cy, start_x, start_y, end_x, end_y, ang;
int major, minor, rot;
int one=l, three=3;
int data[33];

sync () ;
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev = -1; /* Send output to a new window */
gsinit_(&ring[O], &ring_size, &save, O, O, &outdev);

gsevds_(&three);

gsclrs_();

lcolor = 2;
lstyle = -1;
gslatt_(&lcolor, &lstyle);

lop = 6;

gslop_(&lop) ;

4-4 Graphics Subroutines Reference

/* Use color number two */
/* Leave line style alone */

/* Set logical operation to
Exclusive OR */

/* Draw several ellipses around center point (cx,cy) */
ex = 360;
cy = 256;
major 200;
minor = 100;
start x = ex + major;
start_y = cy;
end x start_x;

/* Semi-major axis */
/* Semi-minor axis */

arc2.c

end_y cy;
rot = O; /* No rotational transformation */

/* Rotate the semi-major axis for the ellipses 360 degrees */
for(ang = O; ang <=3600; ang += 100)
{ re = gsearc_(&ex, &cy, &major, &minor, &ang,

&start_x, &start_y, &end_x, &end_y, &rot);
ck_rc("gsearc", re); /*Check return code*/

/* If this is not the last ellipse, redraw the ellipse.
Since the logical operation is set to Exclusive OR,
redrawing the ellipse will erase it.*/

if (ang < 3 6 0 0)
{

}
}

re = gsearc_(&ex, &cy, &major, &minor, &ang,
&start_x, &start_y, &end_x, &end_y, &rot);

ck_rc("gsearc", re); /*Check return code*/

gsevds_(&three);

gseven_(&one);

gsevwt_(&one, data);

gsterm_();
} /* end mainline */

/* ck_rc */
/*
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere != 0)
{
sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));
sprintf(buff,"\tSee gslerrno.h for definitions

}

of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

} /* end ck re */

XGSL Example Programs 4-5

arc3.c

arc3.c Example C Language Program
/*
arc3.c

This program uses the gscarc subroutine to draw several quarter
circles. It then uses the gslop subroutine to set the logical
operation to Exclusive OR and redraws the same circles.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill (getpid () , sig) ;
exit(O);

main ()
{

extern int errno;
int ring[l28],dummy;
int ring_size, initrc, trrc, re, lcolor, lstyle, lop;
int tcolor,tpage,tbase,tfont;
int *bit, n,m,h,w,xo,yo,per,loopcnt, fd;
int arcx, arcy, start_x, start_y, end_x, end_y, r;
int major, minor, rot;
int x2,y2,x3,y3;
char buf[lOO];
int x[l28],y[l28];
int one=l, three=3;
int data[33];
int ncolors, redtab[l6], greentab[l6], bluetab[l6];

sync () ;
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 256; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev = -1; /* Send output to a new window */
gsinit_(&ring[O], &ring_size, &save, 0, 0, &outdev);

gsevds_(&three);
gsevwt_(&zero, data);

gsclrs_();

lop = 3;
gslop_(&lop) ;

4-6 Graphics Subroutines Reference

/* Disable mouse input */
/* Flush ring buffer data, if any */

/* Clear screen to color zero */

/* Set operation to Replace */

arc3.c

/* Draw several arcs in different colors */
lcolor = 5; /* Start with color five */
lstyle = -1; /* Leave line style at default */
arcx 719;
arcy 511;
for(r = 1; r < 511; r += 2)
{
if (lcolor > 16)
lcolor = 1;

gslatt_(&lcolor, &lstyle);
lcolor++;
start x = arcx - r;
start_y = arcy;
end x = arcx;
end_y = arcy - r;
re = gscarc_(&arcx, &arcy, &r, &start_x, &start_y,

&end_x, &end_y);
ck_rc ("gscarc", re) ; /* Check return code *I

}

/* Wait for keystroke event */
gseven_ (&one);
gsevwt_(&one, data);

lop = 6; /* Set operation to Exclusive OR */
gslop_(&lop) ;

/* Draw the same
lcolor 5;
lstyle -1;

arcs with the Exclusive OR operation */
/* Start with color five */

for(r 1; r < 511; r += 2)
{
if (lcolor > 16)
!color = 1;

gslatt_(&lcolor, &lstyle);
!color++;
start x = arcx - r;
start_y = arcy;
end x = arcx;
end_y = arcy - r;

/* Leave line style at default */

re = gscarc_(&arcx, &arcy, &r, &start_x, &start_y,
&end_x, &end_y);

ck_rc("gscarc", re); /* Check return code */
}

/* Wait for keystroke event, then exit */
gseven_(&one);
gsevwt_(&one, data);

gsterm_ () ;
} /* end of main */

XGSL Example Programs 4-7

arc3.c

/* ck_rc */
/*
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere != 0)
{

}

sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));
sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

} /* end ck re */

4-8 Graphics Subroutines Reference

arc4.c Example C Language Program
/*
arc4.c

arc4.c

This program uses the gscmap subroutine to make a color table with
four colors. The gsclrs subroutine clears the screen and changes
it to the background color (color 0). It then draws several
circular arcs in different colors with the gscrca subroutine.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill(getpid(), sig);
exit(O);

main()
{

extern int errno;
int ring[l28],dummy;
int ring_size, initrc, trrc, re, !color, !style, lop;
int tcolor,tpage,tbase,tfont;
int *bit, n,m,h,w,xo,yo,per,loopcnt, fd;
int arcx, arcy, start_x, start_y, end_x, end_y, r;
int major, minor, rot;
int x2,y2,x3,y3;
char buf[lOO];
int x[l28],y[l28];
int one=l, three=3;
int data[33];
int ncolors, redtab[l6], greentab[l6], bluetab[l6];

sync ();
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 256; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev = -1; /* Send output to a new window */
gsinit_(&ring[O], &ring_size, &save, O, 0, &outdev);

gsevds_ (&three);
gsevwt_(&zero, data);

/* Disable mouse input */
/* Flush ring buffer data, if any */

XGSL Example Programs 4-9

arc4.c

/* Set up a color table with the gscmap subroutine */
ncolors = 4; /* Define 4 colors */
redtab[O] O; /* color 0 is blue,

greentab[O] = O;
bluetab[O] = Ox3fff;
redtab[l] = Ox3fff;
greentab[l] = O;
bluetab[l] = O;
redtab[2] = Ox3fff;
greentab[2] = Ox3fff;
bluetab[2] = Ox3fff;
redtab[3] = Ox3fff;
greentab[3] = Ox3fff;
bluetab[3] = O;

/*

/*

/*

(the background color) */

color 1 is red */

color 2 is white */

color 3 is yellow */

gscmap_(&ncolors, redtab, greentab, bluetab) ;

gsclrs_();

lop = 6;
gslop_(&lop) ;

/* Draw a full circle
arcs in different

lcolor = 1;
lstyle = -1;
arcx = 360;
arcy = 256;
r = 250;

/* Clear screen to color zero

/* Set operation to Exclusive

by drawing several circular
colors using the gscrca subroutine */

/* Start with color one */
/* Use default line style */
/* Center of circle */

/* Radius of circle */

/* Loop through 360 degrees in ten degree arcs */
for(start_x O; start_x <= 3600; start_x += 100
{
if (lcolor > 3) /* If new color is greater

*/

OR

lcolor = 1;
gslatt_(&lcolor,
lcolor++;

than color table defined, */
/* go back to first color */

end x = 1800;
/* Draw the arc */

&lstyle); /* Set new color */
/* Change color for next arc */
/* Define the end angle */

re= gscrca_(&arcx, &arcy, &r, &start_x, &end_x);
ck_rc("gscrca", re); /*Check return code*/

}

/* Wait for keystroke event, then exit */
gseven_(&one);
gsevwt_(&one, data);

gsterm ();
} /* end of main */

4-1 0 Graphics Subroutines Reference

*I

/* ck re */
/* -
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere != 0)
{
sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));

arc4.c

sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

}
} /* end ck_rc */

XGSL Example Programs 4-11

arc5.c

arc5.c Example C Language Program
/*
arc5.c

This program defines an elliptical arc in terms of its center,
semi-major and semi-minor axes, and beginning and ending points.
It uses the gsecnv subroutine to convert the arc definition into a
set of points that are then used by the gspoly subroutine to draw
the arc.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill (getpid () , sig) ;
exit (0);

main()
{

extern int errno;
int ring[l28], dummy;
int indat(l3];
int one=l, three=3;
int ring_size, re, lcolor, lstyle;
int *display;
int w, h, ex, cy;
int start_x, start_y, end_x, end_y, r, rot, pre, len;
int major,minor;
int x(600],y[600];

sync();
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev = -1; /* Send output to a new window */
gsinit_(&ring(O], &ring_size, &save, O, 0, &outdev);

gsevds_(&three);
gsevwt_(&zero, data);

gsclrs_();

4-12 Graphics Subroutines Reference

/* Disable mouse input */
/* Flush ring buffer data, if any */

/* Clear screen to color zero */

/* Retrieve information about the display */
display= (int *)malloc(sizeof(int)*32);
gsqdsp_(display);

arcS.c

display += 1;
w = *display++;
h = *display++;
ex = w I 2;

/* Display width in pixels */
/* Display height in pixels */
/* Center of display */

cy = h I 2;

/* Define an elliptical arc */
major = ex 10;
minor = cy - 20;

/* Semi-major axis */
/* Semi-minor axis */

r = O;
start x ex + major; /* Specify a quarter of

an ellipse */
start_y = cy;
end_x ex;
end_y cy + minor;
rot O;
len = 599;
pre = 512;

/* Convert the arc into a set of points */
re = gsecnv_(&ex, &cy, &major, &minor, &r,
&start_x, &start_y, &end_x, &end_y,
&rot, &len, x, y, &pre);

ck_rc("gsecnv", re); /* Check return code */

re= gspoly_(&len, x, y);
ck_rc("gspoly", re); /* Check return code */

/* Wait for keystroke event, then exit */
gseven_(&one);
gsevwt_(&one, data);

gsterm_();
} /* end of main */

/* ck re */
/* -
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere ! = 0)
{
sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));

}

sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

} /* end ck re */

XGSL Example Programs 4-13

blit.c

blit.c Example C Language Program
I*
blit.c

This program uses the gsbply subroutine and the gseply subroutine to
designate groups of shapes to fill. It draws shapes with other

(non-fill) XGSL subroutines. The program then uses the gsblit
subroutine to draw 15 colored rectangles.
*/
#include <stdio.h>

#define dim 4
int xptsl[dim]
int yptsl[dim]
main()

{ 400, 100, 100, 400 };
{ 100, 100, 400, 400 };

{
int (*routine)() =
int buffer[512]
int *display;
int outdev;
int sav_res = O;
int rsvd = O;
int colr;
int hatch;
int numvtx 4· I

int err;
int plmask;
int zero = 3;
int size = 512;
int devid;
int i,j;
int one=l, three=3;
int data[33];
int srcpix[32];
int dstpix[32];
int wid;
int hgt;
FILE *fl_ptr ;

NULL

unsigned char pixdata[l024];
unsigned char pixaray[l024];

display= (int *)malloc(sizeof(int)*32); /*Reserve memory
for display
characteristics */

fl_ptr fopen("out.file","w") /*Open a file to save

outdev = -1;
/* Initialize XGSL */
if ((err= gsinit_(buffer, &size, &sav_res,
routine, routine, &outdev)) == 0)

{

4-14 Graphics Subroutines Reference

the display
characteristics */

gsqdsp_(display);
devid = *display;

blit.c

fprintf(fl_ptr,"Display ID= %d\n",*display++)
fprintf(fl_ptr,"Viewable width of frame buffer (pixels) = %d\n",
*display++) ;

fprintf(fl_ptr,"Viewable height of frame buffer (pixels) = %d\n",
*display++) ;
fprintf(fl_ptr,"Physical width of display (mm) = %d\n",
*display++) ;

fprintf(fl_ptr,"Physical height of display (mm) = %d\n",
*display++) ;

fprintf(fl_ptr,"Number of bitplanes = %d\n",*display++) ;
fprintf(fl_ptr,
"Frame buffer orginization (0 =plane, 1 =pixel) = %X\n",
*display++) ;

fprintf(fl_ptr,"Number of bits for Red DAC = %d\n",
*display++) ;

fprintf(fl_ptr,"Number of bits for Green DAC = %d\n",
*display++) ;

fprintf(fl_ptr,"Number of bits for Blue DAC = %d\n",
*display++) ;

fprintf(fl_ptr,"Minimum cursor width(pixels) = %d\n",
*display++) ;

fprintf(fl_ptr,"Minimum cursor height(pixels) = %d\n",
*display++) ;

fprintf(fl_ptr,"Maximum cursor width(pixels) = %d\n",
*display++) ;

fprintf(fl_ptr,"Maximum cursor height(pixels) = %d\n",
*display++) ;

fprintf(fl_ptr,"Color table size= %d\n",*display++) ;
fprintf(fl_ptr,"Font class (1 =compressed , 2 =not) = %d\n",
*display++);

/* Set the fill characteristics */
colr = 1;
hatch = 3;
gsfatt_(&colr,&hatch,&rsvd);

/* Draw a filled polygon */
gsbply_(); /*Define beginning of polygon*/
gspoly_(&numvtx,xptsl,yptsl); /* Draw a shape */
ex 400;
cy = 250;
er 150;
bx 400;
by 400;
ex = 400;
ey 100;
gscarc_(&cx,&cy,&cr,&bx,&by,&ex,&ey);
gseply_(); /*Complete the polygon,

/* Set new fill characteristics */
colr = 3;
hatch = 2;
gsfatt_(&colr,&hatch,&rsvd);

and fill it *I

XGSL Example Programs 4-15

blit.c

filled polygon */ /* Draw another
gsbply_();
ex 400;

/* Define beginning of polygon */
/* Draw a circle */

cy 250;
er 140;
bx 400;
by = 110;
ex = 400;
ey 110;
gscarc_(&cx,&cy,&cr,&bx,&by,&ex,&ey);
gseply_();; /*Complete the

/* Wait for keystroke event */
gseven_ (&one) ;
gsevwt_(&one, data);
gsclrs_();

and fill it
polygon,
*/

/* Do a block transfer from memory to the frame buffer */
/* Set up source & destination pixel maps */
srcpix[O] O; /* From memory */
dstpix[O] devid; /* To frame buffer */
srcpix[l] 16; /* Pixel format, lower-left

dstpix[l]
srcpix[2]
srcpix[3] =
srcpix[4]
srcpix[9] =
dstpix[7]
dstpix[8]
wid = 31;
hgt = 32;

16;
32;
32;
8;
(int)pixaray;
10;
20;

coordinate system */

/* Draw 15 rectangles */
for(i=l;i<16;i++)

}

{
for (j=O;j<l024;j++)
pixaray[j] = i; /* Set the bit-planes for each

pixel of each rectangle */

/* Do a block transfer from memory (pixaray),

}

to the frame buffer */
err= gsxblt_(srcpix,dstpix,NULL,&wid,&hgt,&zero);
dstpix[7] += 32;
dstpix[8] += 32;

/* Wait for keystroke event */
gseven_ (&one);
gsevwt_(&one, data);

gsterm_();
fclose(fl_ptr);

else
{

}

fprintf(fl_ptr,"error = %d\n",err);
fclose(fl_ptr)

} /* end of main */

4-16 Graphics Subroutines Reference

cir1 .c Example C Language Program
/*
cirl.c

cir1 .c

This program uses the gscir subroutine to draw several concentric
circles in the center of the screen. It uses the gsqdsp
subroutine to get the display's screen size for calculating the
center of the screen.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill(getpid(), sig);
exit(O);

main ()
{

extern int errno;
int ring[l28], save, outdev;
int one=l, three=3;
int ring_size, re, lcolor, lstyle;
int *display;
int w, h, ex, cy, n;

sync ();
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Initialize the XGSL and
ring_size = 128;
save = -1;

/* Catch QUIT signal */
/* Catch INTERUPT signal */

open a new window */
/* Input ring buffer size */
/* Save and restore the

frame buffer */
outdev = -1; /* Send output to a new window */
gsinit_(&ring[O], &ring_size, &save, 0, 0, &outdev);

display= (int *)malloc(sizeof(int)*32);
gsqdsp_(display);

display += 1;
w = *display++;
h = *display++;

ex = w I 2;
cy = h I 2;

lcolor =
lstyle

1· ,
-1;

XGSL Example Programs 4-17

cir1 .c

for(n = 1; n < 255; n = n + 10)
{

}

if (lcolor > 16)
!color = 1;

gslatt_(&!color, &!style);
!color++;

re= gscir_(&ex, &cy, &n);
ck_rc ("gscir", re) ;
while (1 <= 0) ;

/* Wait for keystroke event, then exit */
gseven_(&one);
gsevwt_(&one, data);

gsterm_();
} /* end of main */

/* ck re */
/* -
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere != 0)
{

}

sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));
sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

} /* end ck_rc */

4-18 Graphics Subroutines Reference

cir2.c Example C Language Program
/*
cir2.c

This program uses the gsfci subroutine to draw several filled
circles in the center of the screen. The program uses the
gsevds subroutine to disable mouse input and the gsevwt
subroutine to flush the input ring buffer. The program also
uses the gsevwt subroutine to wait for a keystroke after it
enables the keyboard with the gseven subroutine.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill(getpid(), sig);
exit(O);

main()
{

extern int errno;
int ring[lOO], save, outdev;
int ring_size, re, lcolor, lstyle, lop;
int *display;
int n, ex, cy;

sync ();
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */

cir2.c

outdev = -1; /* Send output to a new window */
gsinit_(&ring[O], &ring_size, save, O, 0, &outdev);

gsevds_{&three);
gsevwt_(&zero, data);

gsclrs_();

/* Disable mouse input */
/* Flush ring buffer data, if any */

display= (int *)malloc(sizeof(int)*32);
gsqdsp_(display);

display += 1;
w = *display++;
h = *display++;

ex = w I 2;
cy = h I 2;

XGSL Example Programs 4-19

cir2.c

lcolor = 2;
lstyle = O;

for(n = 1; n < 255; n = n + 10)
{

}

if (lcolor > 15)
lcolor = 1;

if (lstyle > 5)
lstyle = O;

gsfatt_(&lcolor, &!style);
!color++;
lstyle++;

re= gsfci_(&ex, &cy, &n);
ck_rc("gsfci", re);

/* Wait for keystroke event, then exit */
gseven_(&one);
gsevwt_(&one, data);

gsterm_();
} /* end of main */

/* ck_rc */
/*
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere != 0)
{

}

sprintf(buff,"qsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));
sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

} /* end ck re */

4-20 Graphics Subroutines Reference

curs.c Example C Language Program
/*
curs.c

curs.c

This program uses the gscatt subroutine to set the attributes for
the single-colored cursor and to select the single-colored cursor
for subsequent cursor operations. The cursor operations include
making the cursor visable with the gsmcur subroutine, and making
the cursor invisible with the gsecur subroutine.

Then the program uses the gsmcat subroutine to set the attributes
for the multicolored cursor and to select the multicolored cursor
for subsequent cursor operations. The colors for the multicolored
cursor are initialized with the gscmap subroutine.

The program also uses the gstatt subroutine to set the attributes
for annotated text and the gstext subroutine to draw the text
characters. The program then uses the gsqfnt subroutine to get
the character size which it uses to calculate the size of a box
to draw the text in.
*/

#include <stdio.h>
#include <gslerrno.h>
#include <fcntl.h>

#define
#define

TRUE
FALSE

1
0

XGSL Example Programs 4-21

curs.c

/* Cursor pattern 1 is a cross */
int patternl[32] =

{

} ;

OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO

4-22 Graphics Subroutines Reference

/* Cursor pattern 2 is a diarnonq-shaped crosshair pattern */
int pattern2[32] =

{

};

OxOOOffOOO,
Ox001ff800,
Ox003dbc00,
Ox00799e00,
Ox00f18f00,
Ox01e18780,
Ox03c183c0,
Ox078181e0,
Ox0£0180f0,
Oxle018078,
Ox3c01803c,
Ox7801801e,
Oxf001800f,
Oxe0018007,
Oxc0018003,
Oxffffffff,
Oxffffffff,
Oxc0018003,
Oxe0018007,
Oxf001800f,
Ox780180le,
Ox3c01803c,
Oxle018078,
Ox0f0180f0,
Ox078181e0,
Ox03c183c0,
Ox01e18780,
Ox00f18f00,
Ox00799e00,
Ox003dbc00,
Ox001ff800,
OxOOOffOOO

curs.c

XGSL Example Programs 4-23

curs.c

/* Cursor pattern 3 is a checkerboard */
int pattern3[32] =

{

} ;

OxfOfOfOfl,
OxfOfOfOfO,
OxfOfOfOfO,
OxfOfOfOfO,
OxOfOfOfOf,
OxOfOfOfOf,
OxOfOfOfOf,
OxOfOfOfOf,
OxfOfOfOfO,
OxfOfOfOfO,
OxfOfOfOfO,
OxfOfOfOfO,
OxOfOfOfOf,
OxOfOfOfOf,
OxOfOfOfOf,
OxOfOfOfOf,
OxfOfOfOfO,
OxfOfOfOfO,
OxfOfOfOfO,
OxfOfOfOfO,
OxOfOfOfOf,
OxOfOfOfOf,
OxOfOfOfOf,
OxOfOfOfOf,
OxfOfOfOfO,
OxfOfOfOfO,
OxfOfOfOfO,
OxfOfOfOfO,
OxOfOfOfOf,
OxOfOfOfOf,
OxOfOfOfOf,
Ox9f0f0f0f

4-24 Graphics Subroutines Reference

/* Cursor pattern 4 is multicolored */
int pattern4[32] =

{

};

Oxe007f0f0,
Ox9009f0f0,
Ox8811f0f0,
Ox4422f0f0,
Ox2244f0f0,
Ox1188f0f0,
Ox0990f0f0,
Ox0660f0f0,
Ox0660f0f0,
Ox0990f0f0,
Ox1188f0f0,
Ox2244f0f0,
Ox4422f0f0,
Ox8811f0f0,
Ox9009f0f0,
Oxe007f0f0,
Oxe007f0f0,
Ox9009f0f0,
Ox8811f0f0,
Ox4422f0f0,
Ox2244f0f0,
Ox1188f0f0,
Ox0990f0f0,
Ox0660f0f0,
Ox0660f0f0,
Ox0990f0f0,
Ox1188f0f0,
Ox2244f0f0,
Ox4422f0f0,
Ox88llf0f0,
Ox9009f0f0,
Oxe007f0f0

curs.c

XGSL Example Programs 4-25

curs.c

/* This is a mask for cursor pattern 4 */
int p4mask[32] =

main()
{

{

} ;

Oxe007ffff,
OxfOOfffff,
Oxf81fffff,
Ox7c3effff,
Ox3e7cffff,
Oxlff8ffff,
OxOffOffff,
Ox07e0ffff,
Ox07e0ffff,
OxOffOffff,
Oxlff8ffff,
Ox3e7cffff,
Ox7c3effff,
Oxf81fffff,
OxfOOfffff,
Oxe007ffff,
Oxe007ffff,
OxfOOfffff,
Oxf81fffff,
Ox7c3effff,
Ox3e7cffff,
Oxlff8ffff,
OxOffOffff,
Ox07e0ffff,
Ox07e0ffff,
OxOffOffff,
Oxlff8ffff,
Ox3e7cffff,
Ox7c3effff,
Oxf 8 lf ff ff,
OxfOOfffff,
Oxe007ffff

int ring[l28];
int
int
int
int

ring_size, save, outdev;
zero = O, one = 1, m one
i, j, k;
data[33];

int ex, cy, xmax, ymax;

-1, three 3;

int ncolors, redtab[l6], greentab[l6], bluetab[l6];
int xbl, ybl, xtr, ytr;
int fildes;
int x, Yi
int wid, ht;
int fg, bg, xo, yo, lop;

/* Initialize the
ring_size = 128;
save = -1;

XGSL and open a new window */
/* Input ring buffer size */
/* Save and restore the frame buffer */
/* Send output to a new window */ outdev = -1;

gsinit_(&ring[O], &ring_size, &save, O, 0, &outdev);

gsevds_(&three);
gsevwt_(&zero, data);

/* Disable mouse input */
/* Flush ring buffer data, if any */

4-26 Graphics Subroutines Reference

ncolors = 4; /* Set up a 4 color table:
redtab[O] = O; /* color 0 is blue, */
greentab[O] = O;
bluetab[O] = Ox3fff;
redtab[l] = Ox3fff; /* color 1 is red, */
greentab[l] = O;
bluetab[l] = O;
redtab[2] = Ox3fff; /* color 2 is white, */
greentab[2] = Ox3fff;
bluetab[2] = Ox3fff;
redtab[3] = Ox3fff; /* color 3 is yellow. */
greentab[3] = Ox3fff;
bluetab[3] = O;

gscmap_(&ncolors, redtab, greentab, bluetab);

gsclrs_();

/* Establish first font */
i = 1;
j = 6;
gstatt_(&i, &m_one,

gsqfnt_(data);

ex
cy

data[?];
data[B];

/* red text */
/* large font */

&m_one, &j, "") ;

/* Get current font
characteristics: */

/* char width */
/* char height */

*/

curs.c

*/

/* Draw a color filled
gsqdsp_(data) ;
xmax = data[l];

box
/*
/*
/*
/*

Get display characteristics: */
screen width */

ymax = data[2];
xbl xmax/2 17*cx/2;

ybl
xtr

ymax/2 S*cy/2;
xbl + 17*cx;

ytr ybl + S*cy;

i = 3;

screen height */
Coordinates of lower left
corner of box */

/* Coordinatess of top right
corner of box */

gsfatt_(&i, &m_one, &zero); /*Set up for yellow box*/
gsfrec_(&xbl, &ybl, &xtr, &ytr); /* Draw filled box */

/* Write "HELLO" in the box */
i xbl + 6*cx; /* Coordinates for beginning

j ybl + 2*cy;
k = 5;

of text */

gstext_(&i, &j, &k, "HELLO");

/* Write prompting message */
i = 2; /* White text */
j = 1; /* Normal font */
gstatt_(&i, &m_one, &m_one, &j, '"') ;
gsqfnt_(data); /*Get current font

ex= data[?];
cy = data[8];
xbl xmax/2 ll*cx;

ybl = 4*cy;

characteristics: */
/* char width */
/* char height */
/* Coordinates for beginning

of text */

k = 26; /* Text length */
gstext_(&xbl, &ybl, &k, "Press any key to continue.");

XGSL Example Programs 4-27

curs.c

/* Set cursor attributes */
i = 1; wid = 32; ht = 32;
gscatt_(&i, &wid, &ht, pattern!, &zero, &zero);

/* Display first cursor */
gsmcur_();

/* Wait for keystroke event */
gs even_ (&one) ;
gsevwt_(&one, data);

/* Hide the cursor */
gsecur_();

/* Change to new cursor pattern */
i = 2; wid = 32; ht = 32;
gscatt_(&i, &wid, &ht, pattern2, &zero, &zero);
gsmcur_();

/* Wait for keystroke event */
gseven_(&one);
gsevwt_(&one, data);

/* Hide the cursor */
gsecur_();

/* Change to new cursor pattern */
i = 3; wid = 32; ht = 32;
gscatt_(&i, &wid, &ht, pattern3, &zero, &zero);
gsmcur_();

/* Wait for keystroke event */
gseven_(&one);
gsevwt_(&one, data);

/* Hide the cursor */
gsecur_();

/* Change to multicolored cursor */
fg = 1; bg = 2;
wid = 32; ht = 32;
xo = O; yo = O;
lop = 6;
gsmcat_(&fg, &bg, &wid, &ht, pattern4, p4mask, &xo, &yo, &lop);

gsmcur_();

/* Wait for keystroke event, then exit */
gseven_ (&one);
gsevwt_(&one, data);

gsterm ();
} /* end of main */

4-28 Graphics Subroutines Reference

djpoly.c Example C Language Program
/*
djpoly.c

This program uses the gsdjply subroutine to draw several
disjointed polylines on the screen.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"
#include <math.h>;

struct
{

int fclass;
int fid;
int fstyle;
int fattb;
int fchar;
int fbase;
int fcaps;
int fwidth;
int fheight;
int fustop;
int fusbot;
int fresv[21];

} q_font;

djpoly.c

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill (getpid () , sig) ;
exit(O);

main(argc, argv)

int
char

argc;
*argv[];

{
extern int errno;
int ring[200], dummy;
char stng[lOO];
int zero, ml, re, count, wt;
int ring_size, initrc, color, !style, lop, x, y;
int npoly, kpoly[SO];
int xs[SO], ys[SO];
int q_disp[200], width, height, w2, h2;
int ii, jj, kk, 11;
int xmin, xmax, ymin, ymax, index;
unsigned int nn;
int one=l, three=3;
int data[33];

XGSL Example Programs 4-29

djpoly.c

sync();
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev -1; /* Send output to a

new window */
gsinit_(&ring[O], &ring_size, &save, O, O, &outdev);

gsevds_(&three);
gsevwt_(&zero, data);

/* Disable mouse input */
/* Flush ring buffer data,

if any */

gsclrs_(); /* Clear screen to color zero */

/* display test name */
gsqdsp_(q_disp);
width= q_disp[l];
w2 = width >> 1;
height= q_disp[2];
h2 = height >> 1;

/* Get font size */
if ((re= gsqfnt_(&q_font.fclass)) != 0)
perror("gsqfnt: ",re);

sprintf(stng,"Disjoint Polylines \n");
count= strlen(stng);
write(2,stng,count);
x = w2 - ((count>> l) * q_font.fwidth);
y = h2;

if ((re= gstext_(&x, &y, &count, stng) != 0)
perror("gstext: ",re);

npoly = 2;
kpoly[O] = 5;
xs[O] O;
xs[l] width
xs[2] width
xs[3] O;
xs[4] O;
kpoly[l] = 5;
xs[S] 10;
xs[6] width
xs[7] width
XS [8] 10 i
xs[9] 10;

1;
1;

10;
10;

/* Draw the polylines */

ys[O]
ys[l]
ys[2]
ys[3]
ys[4]

ys[S]
ys[6]
ys[7]
ys[8]
ys[9]

O;
O;
height
height
O;

10;
10;
height
height
10;

1;
1;

10;
10;

if ((re= gsdjply_(&npoly, kpoly, xs, ys)) != GS_succ
perror("gsdjpoly: ",re);

/* Wait for keystroke event */
gseven_(&one);
gsevwt_(&one, data);

gsclrs_();

4-30 Graphics Subroutines Reference

/* draw lots of polylines */
count = O;
index = O;
xrnin = yrnin = O;
xrnax = width - 1;
yrnax = height 1;
for(11=0; 11 < 5; 11++)
{
jj = yrnax;
kk = xrnax;
kpoly [11] 0;
ii = 11 * 10;
while(ii < w2
{
kpoly(11] += 4;
xs(index] = ii;
xs[index+l] kk;
xs(index+2] = kk;
xs[index+3] = ii+200;

ys[index] = ii;
ys[index+l] = ii;
ys[index+2] jj;
ys[index+3] jj;

ii += 200; jj -= 200; kk -= 200;
index +=4;

}
xrnax-= (ll * 10); yrnax (11 * 10);

}
npoly = 5;

/* line patterns operations */
11 = -1;
for(nn = O; nn < 3; nn++)
{

}

if ((re= gslatt_(&11, &nn)) != GS_SUCC)
perror("gslatt: ",re);

if ((re= gsdjply_(&npoly, kpoly, xs, ys)) !=GS SUCC
perror("gsdjpoly: ",re);

sleep(25);

/* Wait for keystroke event, then exit */
gs even_ (&one) ;
gsevwt_(&one, data);

gsterrn_ () ;
} /* end of main */

perror(text, re
char *text;
int re;
{

}

char buff[lOO];

sprintf(buff,"gsl: %s gslerrno
write(2,buff,strlen(buff));
return(O);

%d \n",text,rc);

djpoly.c

XGSL Example Programs 4-31

ell1.c

ell1.c Example C Language Program
/*
elll.c

This program uses the gsell subroutine to draw several ellipses
on the screen.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill (getpid () , sig) ;
exit(O);

main ()
{

extern int errno;
int ring[l28], save, outdev;
int ring_size, re, !color, !style;
int n, m, h, w, ex, cy;
int *display;

sync () ;
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev -1; /* Send output to a

new window */
gsinit_(&ring[O], &ring_size, &save, O, O, &outdev);

gsclrs_();

display= (int *)malloc(sizeof(int)*32);
gsqdsp_(display);

display += 1;
w = *display++;
h = *display++;

ex = w I 2;
cy = h I 2;

m = 60;
n = 15;
!style = 6;
gslop_(&!style);
!color = 1;
!style = -1;

4-32 Graphics Subroutines Reference

for h = O; h <= 3600; h h + 100)
{

}

if (lcolor > 15
lcolor = 1;

gslatt_(&lcolor, &lstyle);

re= gsell_(&ex, &cy, &m, &n, &h);
ck_rc("gsell", re);

gsclrs_();
m += 7;
n += 4;
lcolor++;

/* end for h */

/* Wait for keystroke event, then exit */
gseven_(&one);
gsevwt_(&one, data);

gsterm ();
} /* end of main */

/* ck re */
/* -
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere != 0)
{
sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));

ell1.c

sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

}
} /* end ck re */

XGSL Example Programs 4-33

ell2.c

ell2.c Example C Language Program
/*
ell2.c

This program uses the gsfell subroutine to draw several filled
ellipses on the screen.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill (getpid () , sig) ;
exit(O);

main()
{

extern int errno;
int ring[l28], save, outdev;
int ring_size, re, lcolor, lstyle;
int n, m, h, w, ex, cy;
int *display;

sync ();
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev = -1; /* Send output to a

new window */
gsinit_(&ring[O], &ring_size, &save, 0, 0, &outdev);

gsclrs_();

display= (int *)malloc(sizeof(int)*32);
gsqdsp_(display);

display += 1;
w = *display++;
h = *display++;

ex = w I 2;
cy = h I 2;

m = 75;
n = 30;
lstyle = 6;
gslop_(&lstyle);
lcolor = 1;
lstyle = -1;

4-34 Graphics Subroutines Reference

for h = O; h <= 15; h++)
{
if lcolor > 16
lcolor = 1;

gsfatt_(&lcolor, &lstyle);

re= gsfell_(&xo, &yo, &m, &n, &h, &per);
ck_rc("gsfell", re);

if (h < 20)
{

/* Wait for keystroke event */
gseven_(&one);

}

gsevwt_(&one, data);
}

gsclrs_();
m += 8;
lcolor++;

/* end for h */

/* Wait for keystroke event, then exit */
gseven_(&one);
gsevwt_(&one, data);

gsterm_();
} /* end of main */

/* ck_rc */
/*
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere ! = 0)
{
sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));

ell2.c

sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

}
} /* end ck re */

XGSL Example Programs 4-35

fontld.for

fontld.for Example FORTRAN program
C The FORTRAN program fontld.for loads 2 fonts using the gstatt
C subroutine. First a user-defined font and then a ~ystem font.
C After loading each font, the program displaye a text string
C with the gstext subroutine.
c
C The program uses the gsxptr subroutine to put the pathname of
C the user-defined font into an integer array. The array
C contains two integers for each font to be loaded. The first
C integer contains the font ID; the second contains the address
c of the font's path. In addition, each character string that
c specifies a font path is terminated with a null (0) character.
c

program fontld.for
integer buffer(128)
integer count, size, len, savres, fildes, x, y, re
character*25 a
character*80 msg
integer fontray(2,2)
external gsinit_, gsxptr_, gstatt_, gstext_, gsterm_
msg = 'XGSL Font Demonstration'

C Initialize the XGSL
size = 0
savres = -1
f ildes = -1
call gsinit_ (buffer,size,savres,O,O,fildes)

C Define the number of fonts to be loaded.
count = 2

C Use 0 as the font ID for any user-defined fonts.
fontray (l,l) = 0

C Define the path of the user-defined font.
C Put a 0 at the end of the string.

a= '/yourpath/fontl\0'

C Put the path of the user-defined font into the array.
call gsxptr_ (a,fontray (2,1))

C Specify the font ID of the desired precompiled font.
fontray (1,2) = 12

C Ensure that the path for the predefined font is NULL
fontray (2,2) = 0

C Display each of the 2 fonts.
y = 30
len = 23
count = 1
do 11 x = 50, 110, 20

y = y + 20
if (count .eq. 1) then

C Load the user-defined font.
re= gstatt_ (savres,savres,savres,fontray(l,l,),a)

else if (count .eq. 2) then
C Load the predefined system font.

re = gstatt_ (savres,savres,savres,
+ fontray(l,2),fontray(2,2))

endif

4-36 Graphics Subroutines Reference

C Dsiplay the text in the current font.
re = gstext_ (x,y,len,rnsg)
count = count + 1
if (count .eq. 3) then
count = 1

end if
11 continue
C Terminate the XGSL and exit.

re = gsterrn_ ()
stop
end

fontld.for

XGSL Example Programs 4-37

gtex.c

gtex.c Example C Language Program
/*
gtex.c

This program uses the gsgtat subroutine to specify a geometric
text font and the relevant attributes, and the gsgtxt subroutine
to draw several geometric-text characters.
*/
#include <signal.h>
#include <stdio.h>
#include <fcntl.h>
#include <termio.h>

#define GSPFONTl 0

#define GSPFONT2 0 -

#define GSPFONT3 0

#define GSPFONT4 0

#define GSPFONTS 0

#define GSPFONT6 0

#define GSPFONT7_0

#define GSPFONT8 0

#define GSPGEOM 01

#include "gslerrno.h"

"/etc/vtm/nrrnMP1.9x20" /*

"/etc/vtm/itlMP1.9x20" /*

"/etc/vtm/bldMP1.9x20" /*

"/etc/vtm/nrrnMP1.8x14" /*

"/etc/vtm/nrrnMP1.4x8" /*

"/etc/vtm/nrrnMP1.18x40" /*

"/etc/vtm/nrrnMP1.12x30" /*

"/etc/vtm/ergMP1.9x20" /*

"/etc/vtm/geofont.mp" /*

Normal font
9 x 20 pels*/
Italic font
9 x 20 pels*/
Bold font
9 x 20 pels */
Normal font
8 x 14 pels*/
Normal font
4 x 8 pels*/
Normal font
18 x 40 pels*/
Normal font
12 x 30 pels*/
Ergon font
9 x 20 pels*/
Geometric font
for test */

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill (getpid () , sig) ;
exit (0);

main()
{

int ring[lOO];
int ring_size, txrc, re, lncolor, lnpatrn;
int *bit, cmap, n,m, loopcnt;
char buf[lOO];
int ml = -1;
int zero = O;

4-38 Graphics Subroutines Reference

int txt_col; /* TEXT ATTRIBUTES
int txt_dir;
int txt pre•

- I

int txt _expan;
int txt _spac;
int txt _tran;
int txt_2byte;
int txt_high;
int txt _upvx;
int txt _upvy;
int txt_algnhz;
int txt_algnvt;
int font_id;

#define fonttmp "/etc/vtm/geofont.mp"
int reds[256],greens[256],blues[256];
int xl,x2,yl,y2, i, j;
short xs[lOO],ys[lOO];

sync () ;
/* Catch QUIT signal */

*/

signal(SIGQUIT, die);
signal(SIGINT , die); /* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev -1; /* Send output to a

new window */
gsinit_(&ring[O], &ring_size, &save, O, 0, &outdev);

/* Disable mouse input */

gtex.c

gsevds_(&three);
gsevwt_(&zero, data); /* Flush ring buffer data, if any */

gsclrs_();

/* Paint text in a loop */
xl = 50;
yl 800;
x2 30;

txt col 14;
txt dir -1;
txt_pre = 2;
txt_expan = Ox80000000;
txt_spac = Ox80000000;
txt_high -1;

txt_upvx Ox80000000;
txt_upvy = Ox80000000;
txt_algnhz = -1;
txt _ algnvt = -1;

font_id = Ox0409;

/* Clear screen to color zero */

txrc = gsgtat_(&txt_col, &txt_dir, &txt_pre, &txt_expan,
&txt_spac, &txt_high, &txt_upvx, &txt_upvy, &txt_algnhz,
&txt_algnvt, &font_id,"/u/beau/lpp/geofont.mp");

ck_rc("gsgtat",txrc);

for(yl = 400; yl >= 300; yl -= 30)
{

XGSL Example Programs 4-39

gtex.c

}

txrc = gsgtxt_(&xl,&yl,&x2,"1234567890123456789 1234567890");
ck_rc("gsgtxt",txrc);

txt_col ++;
if (txt_col > 15)
txt_col = 1;

font_id = -1;
txrc = gsgtat_(&txt_col, &txt_dir, &txt_pre, &txt_expan,

&txt_spac, &txt_high, &txt_upvx, &txt_upvy, &txt_algnhz,
&txt_algnvt, &font_id, "/u/beau/lpp/geofont.mp");

ck_rc("gsgtat",txrc);

/* Wait for keystroke event, then exit */
gseven_ (&one);
gsevwt_(&one, data);

gsterm_();
} /* end of main */

/* ck_rc */
/*
Display non-zero XGSL return codes.
ertext Name of XGSL subroutine
ere Return code from XGSL subroutine

*/
ck_rc(ertext,erc)
int ere;
char *ertext;
{

char buff[256];
if (ere != 0)
{

}

sprintf(buff,"gsl: %s: gslerrno = %d\n", ertext, ere);
write(2,buff,strlen(buff));
sprintf(buff,"\tSee gslerrno.h for definitions of gslerrno.\n");
write(2,buff,strlen(buff));
return(O);

} /* end ck re */

4-40 Graphics Subroutines Reference

mark.c Example C Language Program
/*
mark.c

mark.c

This program uses the gsmatt subroutine to set marker attributes,
and the gsplym subroutine to draw markers at several points.
*/
#include <signal.h>
#include <stdio.h>
#include <math.h>
#include <fcntl.h>;
#include "gslerrno.h"

/* Marker is a cross */
int marker[32] =

{

} ;

OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
Oxffffffff,
Oxf f ffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxff ffff ff,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO,
OxOOOffOOO

XGSL Example Programs 4-41

mark.c

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill(getpid(), sig);
exit(O);

main()
{

extern int errno;
int ring[l28], save, outdev;
int ring_size, re, color, style, n;
int w, h, xo, yo;
int x[lO], y[lO];
int zero=O, one=l, three=3;
int data[33];

sync () ;
/* Catch QUIT signal */ signal(SIGQUIT, die);

signal(SIGINT , die); /* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev = -1; /* Send output to a

new window */
gsinit_(&ring[O], &ring_size, &save, 0, 0, &outdev);

/* Disable mouse input */ gsevds_(&three);
gsevwt_(&zero, data); /* Flush ring buffer data,

gsclrs_();

color = 3;
style = 5;
gsmatt_(&color, &style);

for (n = O; n < 10; n++)
{
x[n] = n * 50 + 10 y[n]

}
n = 10;
gsplym_(&n, x, y);

color = 5;

if any */

/* Clear screen to color zero

/* Color of first line */
/* Style 5 is an X */

/* Plot 10 points */

x[n] I 2 + 5;

/* Color of second line */

*/

style = 4;
gsmatt_(&color, &style);
for (n = O; n < 10; n++)
{

/* Style 4 is a small circle */

x[n] = n * 50 + 10 y[n]
}
n = 10;
gsplym_(&n, x, y);

/* Plot 10 points */

x[n] * x[n] I 1020 + 5

4-42 Graphics Subroutines Reference

color
style

7;
1;

gsmatt_(&color, &style);
for (n = O; n < 10; n++)
{

/* Color of third line */
/* Style 1 is a small

solid circle */

/* Plot 10 points */

mark.c

x[n] = n * 50 + 10 y[n] sqrt((float) x[n]) * 12 - 5;
}
n = 10;
gsplym_(&n, x, y);

color = 15;
style = O;
w = 32; h = 32;
XO = 15; yo = 15;
gsmatt_(&color, &style,
n = 1; x[O] = 496; y[O]
gsplym_(&n, x, y);

/* Color of end-marker */
/* Style 0 is user-defined */
/* Marker size */

&w, &h, marker, &xo, &yo);
= 240; /* Mark last point */

/* Wait for keystroke event, then exit */
gseven_ (&one);
gsevwt_(&one, data);

gsterm_();
} /* end of main */

XGSL Example Programs 4-43

pix.c

pix.c Example C Language Program
/*
pix.c

This program uses the gsrsav subroutine to save a block of
pixels on the screen (actually from the frame buffer) as a bitmap
in memory. Then it uses the gsrrst subroutine to restore the
block of pixels. The program uses the gsfatt subroutine to set
the fill attributes for the gsfrec subroutine, which draws filled
rectangles, and the gsfply subroutine, which draws filled
polygons. The program also uses the gsmult subroutine to draw
several line segments.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>;
#include "gslerrno.h"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill(getpid(), sig);
exit(O);

main()
{

int ring[l28], save, outdev;
int ring_size, re, lcolor, lstyle, lop;
int zero=O, one=l, three=3;
int data[33];
int pil, pi2, pi3, pi4;
int arl[256], ar2[256], ar3[256];
char bitmap[50000];
int ncolors, redtab[l6], greentab[l6], bluetab[l6];

sync ();
signal(SIGQUIT, die);
signal(SIGINT ' die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

outdev = -1;
frame buffer */

/* Send output to a
new window */

gsinit_(&ring[O], &ring_size, &save, 0, 0, &outdev);

gsevds_(&three);
gsevwt_(&zero, data);

gsclrs_();

4-44 Graphics Subroutines Reference

/* Disable mouse input */
/* Flush ring buffer data,

if any */

/* Clear screen to color zero */

ncolors = 4; /* set up a 4 color table
redtab[O] = O; /* color 0 is blue */
greentab[O] = O;
bluetab[O] = Ox3fff;
redtab[l] = Ox3fff; /* color 1 is red */
greentab[l] = O;
bluetab[l] = O;
redtab[2] = Ox3fff; /* color 2 is white */
greentab[2] = Ox3fff;
bluetab[2] = Ox3fff;
redtab[3] = Ox3fff; /* color 3 is yellow */
greentab[3] = Ox3fff;
bluetab[3] = O;
gscmap_(&ncolors, redtab, greentab, bluetab) ;

gsclrs_(); /* Clear to blue */

/* Draw a background for the clock face */
pi1=2; pi2=0; pi3=0; /* Solid, white */
gsfatt_(&pil,&pi2,&pi3); /*Set fill attribute*/

/* Lower left corner */
/* Upper right corner */

pix.c

*/

pil= 558; pi2= O;
pi3= 719; pi4= 161;
gsfrec_(&pil, &pi2, &pi3, &pi4); /*Draw a filled rectangle */

/* Draw a clock face */
lcolor = 1; lstyle = O;
gslatt_(&lcolor, &lstyle);
arl[O]= 639; ar2[0]= 145;
arl[l]= 639; ar2[1]= 153;
ar1[2]= 646; ar2[2]= 150;
arl[3]= 646; ar2[3]= 152;
arl[4]= 653; ar2[4]= 149;
arl[5]= 654; ar2[5]= 151;
arl[6]= 660; ar2[6]= 147;
arl[7]= 661; ar2[7]= 149;
arl[8]= 667; ar2[8]= 144;
arl[9]= 668; ar2[9]= 146;
arl[lO]= 671; ar2[10]= 136;
arl[ll]= 675; ar2[11]= 143;
arl[l2]= 680; ar2[12]= 137;
arl[l3]= 681; ar2[13]= 139;
arl[l4]= 686; ar2[14]= 132;
arl[l5]= 687; ar2[15]= 134;
arl[l6]= 691; ar2[16]= 127;
arl[l7]= 693; ar2[17]= 128;
arl[l8]= 696; ar2[18]= 121;
arl[l9]= 698; ar2[19]= 122;
arl[20]= 695; ar2[20]= 112;
arl[21]= 702; ar2[21]= 116;
arl[22]= 703; ar2[22]= 108;
arl[23]= 705; ar2[23]= 109;
arl[24]= 706; ar2[24]= 101;
arl[25]= 708; ar2[25]= 102;
arl[26]= 708; ar2[26]= 94;
arl[27]= 710; ar2[27]= 95;
arl[28]= 709; ar2[28]= 87;
arl[29]= 711; ar2[29]= 87;
arl[30]= 704; ar2[30]= 80;
arl[31]= 712; ar2[31]= 80;
arl[32]= 709; ar2[32]= 73;

/* Red, solid lines */

/* Define tic marks */

XGSL Example Programs 4-45

pix.c

arl[33]= 711; ar2[33]= 73;
arl[34]= 708; ar2[34]= 66;
arl[35]= 710; ar2[35]= 65;
arl[36]= 706; ar2[36]= 59;
arl[37]= 708; ar2[37]= 58;
arl[38]= 703; ar2[38]= 52;
arl[39]= 705; ar2[39]= 51;
arl[40]= 695; ar2[40]= 48;
arl[41]= 702; ar2[41]= 44;
arl[42]= 696; ar2[42]= 39;
arl[43]= 698; ar2[43]= 38;
arl[44]= 691; ar2[44]= 33;
arl[45]= 693; ar2[45]= 32;
arl[46]= 686; ar2[46]= 28;
arl(47]= 687; ar2[47]= 26;
arl[48]= 680; ar2[48]= 23;
arl[49]= 681; ar2[49]= 21;
arl[50]= 671; ar2[50]= 24;
arl[51]= 675; ar2[51]= 17;
arl[52]= 667; ar2[52]= 16;
arl[53]= 668; ar2[53]= 14;
arl[54]= 660; ar2[54]= 13;
arl[55]= 661; ar2[55]= 11;
arl[56]= 653; ar2[56]= 11;
arl[57]= 654; ar2[57]= 9;
arl[58]= 646; ar2[58]= 10;
arl[59]= 646; ar2[59]= 8;
arl[60]= 639; ar2[60]= 15;
arl[61]= 639; ar2[61]= 7;
arl[62]= 632; ar2[62]= 10;
arl[63]= 632; ar2[63]= 8;
arl[64]= 625; ar2[64]= 11;
arl[65]= 624; ar2[65]= 9;
arl[66]= 618; ar2[66]= 13;
arl[67]= 617; ar2[67]= 11;
arl[68]= 611; ar2[68]= 16;
arl[69]= 610; ar2[69]= 14;
arl[70]= 607; ar2[70]= 24;
arl[71]= 603; ar2[7l]= 17;
arl[72]= 598; ar2 [72]= 23;
arl[73]= 597; ar2[73]= 21;
arl[74]= 592; ar2[74]= 28;
arl[75]= 591; ar2[75]= 26;
arl[76]= 587; ar2[76]= 33;
arl[77]= 585; ar2[77]= 32;
arl[78]= 582; ar2[78]= 39;
arl[79]= 580; ar2[79]= 38;
arl[80]= 583; ar2(80]= 48;
arl[81]= 576; ar2[81]= 44;
arl[82]= 575; ar2[82]= 52;
arl[83]= 573; ar2[83]= 51;
arl[84]= 572; ar2[84]= 59;
arl[85]= 570; ar2[85]= 58;
arl[86]= 570; ar2[86]= 66;
arl[87]= 568; ar2[87]= 65;
arl[88]= 569; ar2[88]= 73;
arl[89]= 567; ar2[89]= 73;
arl[90]= 574; ar2[90]= 80;
arl[91]= 566; ar2[9l]= 80;

4-46 Graphics Subroutines Reference

pix.c

arl[92]= 569; ar2[92]= 87;
arl[93]= 567; ar2[93]= 87;
arl[94]= 570; ar2[94]= 94;
arl[95]= 568; ar2[95]= 95;
arl[96]= 572; ar2[96]= 101;
arl[97]= 570; ar2[97]= 102;
arl[98]= 575; ar2[98]= 108;
arl[99]= 573; ar2[99]= 109;
arl[lOO]= 583; ar2[100]= 112;
arl[lOl]= 576; ar2[101]= 116;
arl[l02]= 582; ar2[102]= 121;
arl[l03]= 580; ar2[103]= 122;
arl[l04]= 587; ar2[104]= 127;
arl[l05]= 585; ar2[105]= 128;
arl[l06]= 592; ar2[106]= 132;
arl[l07]= 591; ar2[107]= 134;
arl[l08]= 598; ar2[108]= 137;
arl[l09]= 597; ar2[109]= 139;
arl [110]= 607; ar2 [110) = 136;
arl [111]= 603; ar2 [111] = 143;
arl [112] = 611; ar2 [112]= 144;
arl [113] = 610; ar2 [113]= 146;
arl [114] = 618; ar2[114]= 147;
arl [115] = 617; ar2 [115) = 149;
arl [116] = 625; ar2[116]= 149;
arl[ll7]= 624; ar2 [117]= 151;
arl [118]= 632; ar2[118]= 150;
arl[ll9]= 632; ar2 [119] = 152;
pil= 120; gsmult_(&pil, arl, ar2) ; /* Draw clock face */

/* Save clock face */
pil= 558; pi2= O; pi3= 719; pi4= 161;
gsrsav_(bitmap, &pil, &pi2, &pi3, &pi4);

/* Draw a minute hand */
arl[O]= 592; ar2[0]= 59;
arl[l]= 646; ar2[1]= 77;
arl[2]= 646; ar2[2]= 77;
arl[3]= 642; ar2[3]= 87;
arl[4]= 642; ar2[4]= 87;
arl[5]= 592; ar2[5]= 59;
pil= 6; gsmult_(&pil, arl, ar2);

/* Erase lines for the hour hand */
pi1=2; pi2=0; pi3=0;
gsfatt_(&pil,&pi2,&pi3);

arl[0]=666; ar2[0]=70;
arl[l]=636; ar2[1]=86;
arl[2]=633; ar2[2]=77;
arl[3]=666; ar2[3]=70;
pil=Ox4; gsfply_(&pil,arl,ar2);

/* Draw an hour hand */
arl[O]= 666; ar2[0]= 70;
arl[l]= 636; ar2[1]= 86;
arl[2]= 636; ar2[2]= 86;
arl[3]= 633; ar2[3]= 77;
arl[4]= 633; ar2[4]= 77;
arl[5]= 666; ar2[5]= 70;
pil= 6; gsmult_(&pil, arl, ar2);

/* Erase to white */

/* Fill hour hand area */

XGSL Example Programs 4-47

pix.c

/* Wait for keystroke event */
gseven_(&one);
gsevwt_(&one, data);

pil= 558; pi2= O; pi3= 719; pi4= 161; /* Restore clock face */
gsrrst_(bitmap,&pil,&pi2,&pi3,&pi4);

pil=l; pi2=0;
gslatt_(&pil,&pi2);

arl[O]= 589; ar2[0]= 69;
arl[l]= 645; ar2[1]= 76;
arl[2]= 645; ar2[2]= 76;
arl[3]= 643; ar2[3]= 86;
arl[4]= 643; ar2[4]= 86;
arl[5]= 589; ar2[5]= 69;
pil= 6; gsmult_(&pil,arl,ar2);

pi1=2; pi2=0; pi3=0;
gsfatt_(&pil,&pi2,&pi3);

arl[0]=666; ar2[0]=69;
arl[l]=636; ar2[1]=86;
arl[2]=633; ar2[2]=77;
arl[3]=666; ar2[3]=69;
pil=Ox4; gsfply_(&pil,arl,ar2);

arl[O]= 666; ar2[0]= 69;
arl[l]= 636; ar2[1]= 86;
arl[2]= 636; ar2[2]= 86;
arl[3]= 633; ar2[3]= 77;
arl[4]= 633; ar2[4]= 77;
arl[5]= 666; ar2[5]= 69;
pil= 6; gsmult_(&pil,arl,ar2);

/* Wait for keystroke event, then exit */
gseven_(&one);
gsevwt_(&one, data);

gsterm_();
} /* end of main */

4-48 Graphics Subroutines Reference

xtex.c Example C Language Program
/*
xtex.c

xtex.c

This program uses the gsxtat subroutine to specify an xtext font
and the relevant attributes, and the gsxtxt subroutine to draw
several xtext characters.
*/

#include <signal.h>
#include <stdio.h>
#include <fcntl.h>

#include <sys/types.h>;
#include <sys/ipc.h>;
#include <sys/shm.h>;

#define FONT FILE

extern int gsp_new_xtxt;

#include "gslerrno.h"

"/usr/lpp/fonts/Rom14.500"

/* die - Stop XGSL and this process on receipt of signals */
die(sig)
int sig;
{

}

gsterm_();
kill (getpid () , sig) ;
exit(O);

main()
{

extern int errno;
int ring[lOO],dummy;
int ring_size, initrc, trrc, re, lcolor, lstyle, lop;
int tcolor,tpage,tbase,tfont;
int *bit, n,m,h,w,xo,yo,per,loopcnt, fd;
int xfg,xbg,xlop,*rtxfont;
int xl,yl,x2,y2,x3,y3;
char buff[lOO];
char *str;
int x[l28],y[l28];
int new_fdes;
int clipbox [5] ;

sync () ;
signal(SIGQUIT, die);
signal(SIGINT , die);

/* Catch QUIT signal */
/* Catch INTERUPT signal */

/* Initialize the XGSL and open a new window */
ring_size = 128; /* Input ring buffer size */
save = -1; /* Save and restore the

frame buffer */
outdev -1; /* Send output to a new window */
gsinit_(&ring[O], &ring_size, &save, O, O, &outdev);

XGSL Example Programs 4-49

xtex.c

gsp_new_xtxt = 1;
new_fdes = open(FONT_FILE,O_RDONLY);
/* Convert font file to a mapped file */

rtxfont = (int*) shmat(new_fdes,O,SHM_MAP I SHM_RDONLY);

xfg = 3;
xbg = 5;
xlop = 3;
elipbox[l]
elipbox[2] =
elipbox[3] =
elipbox[4] =

O;
O;
1024;
1024;

re= gsxtat_(&xfg, &xbg, &xlop, rtxfont, elipbox);
xl = O;
str = "This is sample xtext output";
n = 27;
for (m = O; m < 20; m++)
{
yl 1023 - 20;
for (h = O; h < 25; h++
{

re gsxtxt_(&xl, &yl, &n, &str[O]);
yl -= 20;

}
}

/* Wait for keystroke event */
gseven_(&one);
gsevwt_(&one, data);

gsterm_();
} /* end mainline */

4-50 Graphics Subroutines Reference

Special Terms Used in GL

ambient light. Light that reflects off of one or more
surfaces in the scene before arriving at the target
surface. Ambient light is assumed to be
non-directional, and is reflected uniformly in all
directions by the reflecting surface. In the GL,
ambient light is mocked up by use of ambient terms
in the lighting equation, rather than actually
computing the reflections.

aspect ratio. The ratio of the height of a primitive
to its width. A rectangle of width ten inches and
height five inches has an aspect ratio of 10/5 or 2.

asynchronous. Not synchronized in time. For
example, input events occur at the whim of the
user; the program may read them later.

attribute. A parameter that can affect the
appearance of a drawing primitive. For instance,
color is an attribute. If the color is set to 11RED", it
will remain red until changed, and everything that is
drawn will be drawn in red. Color is an attribute.
Other attributes include linestyle, linewidth, pattern,
and font. For a list of attributes and pipeline
options, see the greset subroutine. See also
pipeline option.

azimuthal angle. If a primitive is sitting on the
ground, with its z coordinate straight up, the
azimuthal viewing angle is the angle the observer
makes with the y axis in the x-y plane. If the
observer walks in a circle with the primitive at the
center, the azimuthal angle is the only thing that
varies.

B-spline cubic curve. A cubic spline
approximation to a set of four control points having
the property that slope and curvature are
continuous across sets of control points. See also
parametric rational cubic curve.

backfacing polygon. A polygon whose vertices
appear in clockwise order in screen space. If
backface culling is enabled, such polygons are not
drawn.

basis. In the GL, a curve or patch basis is a 4x4
matrix that controls the relationship between control
points and the approximating spline. B-splines,
Bezier curves, and Cardinal splines all differ in that
they have different bases.

Bezier cubic curve. A cubic spline approximation
to a set of four control points that passes through
the first and fourth control points, and has a
continuous slope where two spline segments meet.
See also parametric rational cubic curve.

bitplanes. A bitplane supplies one bit of color
information per pixel on the display. Thus, an eight
bitplane system allows 2 to the eighth power
different colors to be displayed at each pixel.

blit. Bit block transfer.

Boolean. A value of TRUE or FALSE. TRUE=1
and FALSE=O.

bounding box. A rectangle (20) that bounds a
primitive. A bounding box can be used to determine
whether the primitive lies inside a clipping region.
See clipping.

button. Buttons include those on the keyboard,
mouse, lightpen, or buttons on the dial and button
box.

Cardinal cubic spline curve. A cubic spline
whose endpoints are the second and third of four
control points. A series of cardinal splines will have
a continuous slope, and will pass through all but the
first and last control points. See also parametric
rational cubic curve.

clipping. If a primitive overlaps the boundaries of a
window, it is clipped. The part of a primitive that
appears in the window is displayed and the rest is
ignored. There are several types of clipping that
occur in the system. Three-D drawing primitives are
clipped to the boundaries of a frustum (for
perspective transformations) or to a rhombohedron
(for orthographic projections). This 3-D clipping
applies as well to the origin of character strings, but
not to the characters themselves. A 2-D clipping is
also performed; all drawing is clipped to the
boundaries of the AIXwindow. The area of 2-D
clipping can be controlled with the screenmask.
See clipping planes, fine clipping, gross
clipping, screenmask, transformation, window.

GL Glossary X-1

clipping planes. Before clipping occurs, primitive
space is mapped to normalized device coordinates.
The clipping planes x=±w; Y=±w; or Z=±w
correspond to the left, right, top, bottom, near, and
far planes bounding the viewing frustum. See
frustum.

color map. A lookup table that translates color
indexes into RGB triplets. The lookup table is
sandwiched between the frame buffer and the
digital-to-analog converters (DACs) and serves to
translate the color index value stored in the frame
buffer into the red, green, and blue values required
by the DACs. On most hardware configurations, the
color map is either 8 or 12 bits deep, allowing the
simultaneous display of 256 or 4096 colors. On
most hardware configurations, the DACs have an
8-bit per color accuracy, allowing the user to
choose among 16,777,216 colors.

color map mode. A configuration of the hardware
that passes the values stored in the frame buffer
through a color lookup table (color map), from
which the red, green, and blue values are obtained
for display. Entries in the color map are referred to
as color indexes. In color map mode, the values
stored in the frame buffer are treated as color map
indexes. See RGB mode.

color ramp. A progression of colors in a color map.
Most color ramps are smooth, and have only a
small number, if any, of dixcontinuities. For
instance, if the full set of colors of the rainbow were
loaded into the color map, that would constitute a
color ramp.

concatenation. In the GL, concatenation refers to
combining a series of geometric transformations;
rotations, translations, and scaling. Concatenation
of transformations corresponds to matrix
multiplication.

concave and convex polygons. A polygon is
convex if the line segment joining any two points in
the figure is completely contained within the figure.
Nonconvex polygons are sometimes called
concave. Algorithms that render only convex
polygons are much simpler than those that can
render both convex and concave polygons.

control points. Points in real space that control the
shape of a spline curve. The system provides
hardware support for wire frame rational cubic
splines, and for NURBS surfaces, the specifications
of which require four control points.

X-2 Graphics Subroutines Reference

culling. If a primitive is smaller than the minimum
size specified in the command, it is culled: no
further commands in the primitive are interpreted.
See clipping, pruning.

current character position. The two-dimensional
screen coordinates where the next character string
or pixel read/write will occur.

current color. The color that is employed to color
all subsequent drawing primitives. All drawing
primitives are drawn with this color until it is
changed.

current graphics position. The homogeneous
three-dimensional point from which geometric
drawing commands will draw. The current graphics
position is not necessarily visible.

current window. The window to which the system
directs the output from graphics routines. See also
window.

current transformation matrix. The
transformation matrix on top of the matrix stack. All
points passed through the graphics pipeline are
multiplied by the current transformation matrix
before being passed on. The current transformation
matrix is a concatenation of the current modeling
and viewing matrices. See transformation.

cursor. A primitive such as an arrowhead which
can be moved about the screen by means of an
input device (typically a mouse).

cursor glyph. A 16x16 or 32x32 raster pattern
(bitmap that determines the shape of the cursor. A
GL cursor glyph can be one or two bits deep; thus,
a GL cursor can use up to three colors. Color 0 is
always transparent.

depth-cueing. Varying the intensity of a line with
z-depth. Typically, the points on the line further
from the eye are darker, so the line seems to fade
into the distance.

device. A valuator, button, or the keyboard.
Buttons have values O or 1 (up or down); valuators
(mouse, dials) return values in a range, and the
keyboard returns ASCII values.

dial and switch box. An 1/0 device with 8 dials
(valuators) and 32 switches. The switch box is also
called a "button box" or the "lighted programmable
function keys (LPFKs)."

digital-to-analog converter (DAC). A highly
specialized chip that converts the digital values
coming out of the fram buffer into the rapidly
varying analog voltage levels that are required by
the monitor.

display list (object). Also called an object. It is a
sequence of drawing commands that have been
compiled into a unit. Conceptually, a display list is
like a macro: it can be invoked multiple times
simply by referring to its name. The object can be
instantiated at different locations, sizes, and
orientations by appropriate use of the
transformation matrices. For instance, series of
polygons arranged in the shape of a bolt can be
compiled into an object. The bolt can then be drawn
multiple times by invoking its display list.

dithering. A technique of interleaving dark and
light pixels so that the resulting image looks
smoothly shaded when viewed from a distance.

double buffer mode. A mode in which two buffers
are alternately displayed and updated. A new
image can be drawn into the back buffer while the
front buffer (containing the previous image) is
displayed. See single buffer mode.

event queue. A queue that records changes in
input devices: buttons, valuators, and the keyboard.
The event queue provides a time-ordered list of
input events.

eye coordinates, eye space. The coordinate
system in which the viewer's eye is located at the
origin, and thus all distances are measured with
respect to the eye. Viewing transformations map
from world coordinates into eye coordinates, and
projection transformations map from eye
coordinates to normalized device coordinates. Also
called viewing coordinates or viewer coordinates.
See modeling coordinates, world coordinates,
screen coordinates, transformation.

field of view. The extent of the area which is under
view. The field of view is defined by the viewing
matrix in use.

fine clipping. Fine clipping masks all drawing
commands to a rectangular region of the screen. It
would be unnecessary except for the case of
character strings. The origin of a character string
after transformation may be clipped out by gross, or
3-D, clipping, and the string would not be drawn. By
doing gross clipping with the viewport and fine
clipping with the screen masks, strings can be
moved smoothly off the screen to the left or bottom.
See gross clipping.

font. A set of characters in a particular style. See
raster font, primitive font.

forward difference matrix. A 4x4 matrix that is
iterated by adding each row to the next and the
bottom row is output as the next point. Points so
generated generally fall on a rational cubic curve.

frame buffer. A quantity of video RAM (VRAM) that
is used to store the image displayed on the monitor.

The frame buffer is the electronic canvas on which
every drawing primitive is drawn. It is one of the
last stops in the graphics pipeline, where the final
image resides in the form of digitally coded
intensities and brightnesses. These are converted
into analog voltage signals 60 times a second and
sent to the electron guns of the mo,nitor.

The dimensions of the frame buffer can be changed
with GL; typically, the main frame buffer might be
1024 vertical by 1280 horizontal by 8 color bits. The
overlay planes might by 1024x1280x2. The z-buffer
is considered a frame buffer, although it is not
directly visible from the monitor. (There is no direct
means of displaying the contents of the z-buffer,
although this can be done indirectly.) The size of
the z-buffer is typically 1024x1280x24. The cursor
is a very specialized form of a frame buffer; one
which can move around. The typical cursor is
32x32x2 in size.

front and back buffers. In double buffer mode, the
main frame buffer bitplanes are separated into two
sets: the front and back buffers. Bits in the front
buffer planes are visible and those in the back
buffer are not. Typically, an application draws into
the back buffer and views the front buffer for
dynamic graphics.

frustum. A truncated, four-sided pyramid; that is, a
pyramid with the point cut off. In a perspective
projection, the shape of the clipping volume is a
frustum. The bottom of the frustum is referred to as
the far clipping plane, the top of the frustum is the
near clipping plane, and the sides are respectively
the top, left, bottom, and right clipping planes. In an
orthographic projection, the clipping volume is a
parallelepiped.

GL Glossary X-3

gamma correction. A logarithmic assignment of
intensities to lookup table entries for shading
applications. This is required since the human eye
perceives intensities logarithmically rather than
linearly.

gamma ramp. A set of three lookup tables, one for
each of the colors red, green, and blue, attached to
the electron guns of the monitor. Entries in the
gamma lookup table can be set to adjust for
variations in the phosphor quality between different
brands of monitors. Usually, a logarithmic curve is
loaded into the gamma lookup tables. (See gamma
correction.) The gamma lookup tables are not a
subset of the color map tables, but a separate
entity.

Gouraud shading. A method of shading polygons
smoothly based on the intensities at their vertices.
The color is uniformly interpolated along each
edge, and then the edge values are uniformly
interpolated along each scan line. For realistic
shading, colors should be gamma corrected.

graphics pipeline. The sequence of steps that a
graphics primitive goes through before it becomes
visible on the screen:

• transformation from model coordinates to NOC
coordinates

• 3-0 clipping (if out of bounds)
• perspective division
• determination of color through lighting equations

or depth-cueing
• transformation NOC coordinates to screen

coordinates
• 2-0 clipping (by the screenmask)
• rasterization (drawing into the frame buffer)
• display of frame buffer.

gross clipping. Also known as 3-0 clipping. This is
the clipping that occurs in normalized device
coordinates, against the sides of the perspective
frustum. All 3-0 primitives undergo this clipping; in
particular, the origin of text strings (but not
inidvidual letters) are clipped in this way. See
clipping planes, fine clipping.

hidden surface. A surface of a geometric primitive
that is not visible because it is obscured by other
surfaces. See z-buffering.

X-4 Graphics Subroutines Reference

hit. Also called pick hit or select hit. A hit occurs
whenever a drawing primitive draws within the
picking or selecting region. A hit is reported back to
the user only if the name stack has changed since
the last hit. In other words, multiple hits may occur
although only one pick/select even is reported. See
name stack, picking, selecting.

homogeneous coordinates. A four-dimensional
method of representing three-dimensional space. A
point (x, y, z, w) in homogeneous coordinates is
used to represent a point (X, Y, Z) in
three-dimensional space by taking X=x/w, Y =y/w,
Z=Z/W.

immediate mode. In this mode, graphics
commands are executed immediately rather than
being compiled into a display list.

instantiate. To make an instance of. To replicate.

linear interpolation. A method of approximating
data values by assuming that they lie along a
straight line. Typically, the two end data points are
known. For example, if A is the value at a, and B is
the value at b, and a<kb, then the value C at t is
(from the two-point formula):

(B-A)
C(t) = (b _ a) x (t - d) + A

linestyle. The pattern used to draw a line. A
linestyle might be solid or broken into a pattern of
dashes.

linewidth. The width of a line in pixels.

matrix stack. A stack of matrices with hardware
and software support. The top matrix on the stack
is the current transformation matrix, and all points
passed through the graphics pipeline are multiplied
by that matrix. It is a concatenation of the current
modeling and viewing transformations. See
current transformation matrix.

mirroring. The creation of a mirror image of a
primitive.

modeling coordinates, modeling space. The
coordinate system in which all drawing primitives
do their drawing. The user can select the position
and orientation of the modeling space with regard
to the world space by means of translations,
rotations, scales, or generalized transformations.
The relation between modeling coordinates and
world coordinates is determined by the modeling
matrix. Modeling coordinates are a useful
conceptual device when drawing complex or
repetitive scenes. For instance, a paper clip can be
defined once in modeling coordinates, and then
drawn hundreds of times by moving the modeling
coordinates around in world space. See eye
coordinates, screen coordinates, world
coordinates, transformation.

name stack. A stack of 16-bit integers, controllable
by the user, used to establish what drawing
primitive caused a pick or select event. The name
stack is written into the pick/select event buffer
every time a pick or select event occurs. The entire
event buffer is returned to the user at the end of the
pick/select episode.

normalized device coordinates (NOC).
Coordinates in the range from -1 to 1. All primitives
that draw within the unit cube are visible on the
screen (unless masked by the screenmask). See
transformation, unit cube.

NTSC. A video display and timing format that is the
American broadcast standard. Most video tape
recorders record and play back NTSC signals.
Specialized hardware is required to convert from
RGB monitor outputs to an NTSC signal.

null-terminated. Having a zero byte at the end. In
the C language, character strings are stored this
way internally.

NURBS. (Non-Uniform Rational B-spline). A
parametric surface that can be trimmed with
non-uniform rational B-spline curves and piecewise
linear curves.

object. Also called a display list. It is a sequence of
drawing commands that have been compiled into a
unit. Conceptually, a display list is like a macro: it
can be invoked multiple times simply by referring to
its name. The object can be instantiated at different
locations, sizes, and orientations by appropriate
use of the transformation matrices. For instance,
series of polygons arranged in the shape of a bolt
can be compiled into an object. The bolt can then
be drawn multiple times by invoking its display list.

object space. The space in which a graphics
object is defined. A convenient point is chosen as
the origin and the object is defined relative to this
point. When an object is rendered by a call to the
callobj subroutine, it is rendered in modeling
coordinates, and the object space becomes (for
that moment) the same as the modeling space.

orthographic projection. A representation in
which the lines of a projection are parallel.
Orthographic projections lack perspective
foreshortening and its accompanying sense of
depth realism. Because they are simple to draw,
orthographic projections are often used by
draftsmen. See perspective projection.

parametric bicubic surface. A surface defined by
the equation:

x(u,v) = a11u3v3 + a12u3v3 + a13u3v + a14u3

+ a21 u2v3 + a22u2v2 + a23u2v + a24u2

+ a41 v3 + a42v2 + a43v + a44

The equations for y and z are similar.

The points on a bicubic patch are defined by
varying the parameters u and v from 0 to 1. If one
parameter is held constant and the other is varied
from Oto 1, the result is a cubic curve. If x(u,v)=1
for all U, V, the bicubic surface is called "ordinary,"
but if x(u, v) varies as a function of u, v, then the
surface is called "rational." See also
homogeneous coordinates.

parametric rational cubic curve. A curve defined
by the equation:

x(t) = axt3 + bxt2 + Cxt + dx

y(t) = ayt3 + byt2 + Cyt + dy

z(t) = azt3 + bzt2 + Czt + dz

w(t) = awt3 + bwt2 + Cwt + dw

where x, y, z, and ware cubic polynomials. The
parameter t typically varies between O and 1 . Such
a curve is considered rational only if a(w), b(w), or
c(w) is not equal to O; otherwise, it is simply an
ordinary parametric curve.

patch. A parametric bicubic surface.

GL Glossary X-5

pattern. A 16x16, 32x32, or 64x64 array of bits
defining the texturing of polygons on the system
display.

perspective projection. Perspective projection is
a technique used to achieve realism when drawing
primitives. In a perspective projection, the lines of
projection meet at the viewpoint; thus the size of a
primitive varies inversely with its distance from the
source projection. The farther a primitive or part of
a primitive is from the viewer, the smaller it will be
drawn. This effect, known as perspective
foreshortening, is similar to the effect achieved by
photography and by the human visual system. See
orthographic projection.

picking. A method for finding out what primitives
are being drawn near the cursor on the display
screen. See picking region, selecting, selecting
region, name stack.

picking region. A rectangular volume around the
cursor that is sensitive to picking events. If a
drawing primitive draws within this volume, a pick
event is reported. The width and height of the
region can be set by the user. If the z-buffer is
enabled, the depth of the region is the entire
z-buffer. See hit, picking, selecting region.

piecewise linear curve. A list of coordinate pairs
in the parameter space for the non-uniform rational
B-spline (NURBS) surface. These points are
connected with straight lines to form a path.

pipeline options. Variables that control the flow of
processing in the graphics pipeline. For instance,
lighting is a pipeline option: if lighting is turned on,
the color of a primitive is obtained by evaluating the
lighting equations, and if lighting is turned off, the
last color specified is used. Other pipeline options
are the backfacing flag, the shademodel flag, the
depthcueing flag, the picking flag, the colormode
(color index or RGB) flag, the z-buffer flag (enables
or disables drawing to the z-buffer), and so on. See
attributes.

pixel. A rectangular picture element. A display
screen is composed of an array of pixels. In a
black-and-white system, pixels are turned on and
off to form images. In a color system, each pixel
has three components: red, green, and blue. The
intensity of each component can be controlled.

polar coordinates. A coordinate system in which
positions are measured as a distance from the
origin and an angle from some reference direction
(usually, counterclockwise from the x-axis).

X-6 Graphics Subroutines Reference

polled 1/0 devices. Devices (keyboard, mouse,
button, dials) whose current values are read by the
user process.

pre-multiplication. Matrix multiplication on the left.
If a matrix Mis pre-multiplied by a matrix T, the
result is TM.

precision. The number of straight line segments
used to approximate one segment of a spline.

primitive. A drawing command, such as arc, line,
circle, polygon, or charstr. Such commands are
called primitives because they are not made up of
smaller parts, and because they are they basic
pieces out of which more complex scenes can be
composed. Also used to describe the figures
created by drawing commands.

primitive font. A font in which characters are
defined as primitives. Like all other primitives,
primitive font characters can be scaled and rotated.
See font, raster font.

pruning. Eliminating the drawing of parts of the
display list because a bounding box test shows that
the y are not visible.

queued 1/0 devices. Devices (keyboard, mouse,
button, dials) whose changes are recorded in the
event queue.

raster font. A font in which the characters are
defined directly by the raster bit map. See font,
primitive font.

refresh rate. The rate at which the monitor is
refreshed. A 60 Hz monitor is redrawn 60 times per
second.

relative drawing commands. Commands that
draw relative to the current graphics position as
opposed to being drawn at absolute locations.

repeat factor. The magnification with which the
linestyle pattern is used.

RGB mode. A configuration of the hardware which
allows values stored in the frame buffer to be
interpreted as packed RGB values. The values
found in the frame buffer are passed directly to the
red, green, and blue guns of the display monitor.
The values are not passed through the color map
first. (However, each color is sent individually
through the gamma ramp to make a final correction
to its intensity.) See color map mode.

RGB value. The set of red, green, and blue
intensities that compose a color is that color's RGB
value.

RGBA value. The set of red, green, blue, and
alpha intensities that compose a color is that color's
RGBA value. Alpha values are available only on
machines having alpha bitplanes.

right-hand rule. If the right hand is wrapped
around the axis of rotation, the fingers curl in the
same direction as positive rotation, and the thumb
points in the same direction as the axis of rotation ..
A right-handed rotation is counter-clockwise.

rotation. The transformation of a primitive by
rotating it about an axis. See transformation.

scaling. Uniform stretching of a primitive along an
axis.

screen coordinates, screen space. The
coordinate system that defines the display screen.
Distances are measured in units of pixels, and the
origin is in the lower left-hand corner. On most
systems the screen size is 1024 pixels high by
1280 pixels wide. The viewport defines the
mapping from normalized device coordinates to
screen coordinates. See eye coordinates,
modeling coordinates, world coordinates,
transformation.

screenmask. A rectangular area of the screen to
which all drawing operations are clipped. It is
normally set equal to the viewport and to the
window. A screenmask is useful for character
clipping.

selecting. A method for finding what primitives are
being drawn in a given volume in 3-D space. See
picking, picking region, name stack, selecting
region.

selecting region. A rhomboid-shaped volume in
world coordinates that is sensitive to selecting
events. If a drawing primitive draws within this
region, a select event is reported. See hit, picking
region, selecting, transformation.

single buffer mode. A mode in which the frame
buffer bitplanes are organized into a single large
frame buffer. This frame buffer is the one currently
displayed and is also the one in which all drawing
occurs. See double buffer mode.

swap interval. The amount of elapsed time
between frame buffer swaps. The system waits at
least the amount of time specified by the
swapinterval subroutine before honoring a request

to exchange the front and back buffers. The swap
interval is measured in units of vertical retraces,
which occur every 30th of a second on most
systems. The swap interval is useful in achieving
smooth-flowing animation.

tag. A marker in the display list used as the
location for display list editing.

textport. A region on the display screen used to
present textual output from graphical or
non-graphical programs.

texture. A pattern used to fill rectangles, convex
polygons, arcs, and circles.

transformation. A four-by-four matrix that helps
determine the location where 30 drawing will occur,
the position of the viewpoint (the viewer's eye), and
the amount of the scene encompassed and visible.
Transformations occur at four points within the
graphics pipeline:

• Modeling transformation, which maps modeling
coordinates into world coordinates. All drawing
primitives specify positions that are presumed to
be positions in modeling coordinates. Modeling
transformation can be used to move the thing
being drawn.

• Viewing transformation, which maps from world
coordinates to viewer coordinates. The origin of
the viewer coordinate system can be thought of
as the location of the viewer's "eye," and viewing
transformations can be used to move the eye
around in world coordinates.

• Projection transformation, which defines the
boundaries of the clipping region. A projection
transformation maps viewer coordinates to
normalized device coordinates, and the clipping
plane boundaries are at x = ±w, y = ±w, z = ±w.
Projection transformations are used to define
what region of the world is visible on the screen.

• Viewport, or NDC to DC transformation. The
viewport transformation is not a full-fledged
four-by-four transformation matrix; only three of
the diagonal elements in the matrix can be
changed. The viewport determines the mapping
from normalized device coordinates to screen
(device) coordinates. By default viewports are
the same size as the window, although this can
be adjusted.

translation. The moving of a display image in a
straight line from one location to another. See
transformation.

GL Glossary X-7

trimming loops. A set of oriented closed curves
used to set the boundaries of a NURBS surface.
See NURBS.

twist. A rotation around the line of sight.

unit cube. A volume defined by the following
planes: x = -1, x = 1, y = -1, y = 1, z = -1, z = 1.
See normalized device coordinates.

valuator. An input/output device that returns a
value in a range. For example, a mouse is logically
two valuators: the x position and they position.

vector product. Another term for the vector cross
product. If a=(a1, a2, a3) and b=(b1, b2, b3) are
two 3D vectors, the vector product ax b =
(a2b3-b2a3, a3b1-b3a1, a1b2-b1a2).

vertical retrace. The rate at which the monitor is
refreshed. A 60 Hz monitor is redrawn 60 times per
second. Same as refresh rate.

vertical retrace period. The amount of elapsed
time between retraces of the screen. All video
monitors use an electron beam to sweep the
phosphors at the face of the monitor. Because the
phosphors glow for only a brief period of time, the
entire screen must be reswept periodically by the
electron beam. On most monitors, this is done 30
times per second (30 Hz). Thus, the vertical retrace
period is 1 /30 second.

viewing matrix. A matrix used to describe the
location of the viewer (the virtual eye looking upon
a scene) in relation to the world. See
transformation, world coordinates.

viewport. The mapping from normalized device
coordinates to device coordinates. The viewport
maps the unit cube x/w = ±1, y/w = ±1, z/w = ±1 to
the screen space, as measured in pixels. The
viewport is the last transformation in the graphics
pipeline. The viewport can be smaller or larger than
the window, smaller or larger than the screenmask,
although in most applications, it is the same size.

window. An AtXwindow. A rectangular area of the
screen that can be moved about or placed on top of
or pulled under other windows, or iconized by the
user. All drawing inside the window is done by the

X-8 Graphics Subroutines Reference

GL process that created that window, and is totally
under the control of that process. The drawing of
the window borders, however, together with the
window placement/iconization, is under the control
of the window manager; for example, the
AIXwindows Window Manager.

Note that for most simple GL programs, the
viewport and screenmask are set to the same size
as the window. Do not confuse an AIXwindow with
the GL window subroutine, which defines a frustum
in world space.

wire frame. A graphics surface-drawing technique
in which the edges and contours of a primitive are
represented by simple lines.

world coordinates, world space. The
user-defined coordinate system in which an image
is described. Modeling commands are used to
position primitives in world space. Viewing and
projection transformations define the mapping of
the world space to screen space. See modeling
coordinates, screen space, transformations.

writemask. A set of 8 or 12 bits (depending on the
frame buffer configuration), one bit for each
bitplane of the frame buffer. During any drawing
operation, only those planes enabled by a 1 (one)
in the bit mask can be altered. Planes set to 0
(zero) are marked read only.

z-buffer, z-buffering. Applies both to the device
and the techniques commonly used as an aid in
removing hidden lines and hidden surfaces. If
z-buffering is enabled, each pixel will store a depth
value as well as a color value. In simple terms, the
depth can be thought of as the distance from the
viewer's eye to the pixel. Whenever a drawing
routine tries to update a pixel, it will first check the
current pixel's "depth" or "z-value" and will only
update that pixel with new values if the new pixel is
closer than the current pixel. The region of memory
that stores the z-values is also referred to as the
z-buffer.

zoom factor. a multiplier to determine the amount
of enlargement of a specified screen rectangle. The
x zoom factor determines the enlargement in the x
direction; the y zoom factor, in the y direction.

Index

A
addtopup subroutine, GL, 1-2
AIXwindows Graphics Support Library. See XGSL
arc subroutine, GL, 1-4
arc1 .c example program, XGSL, 4-2
arc2.c example program, XGSL, 4-4
arc3.c example program, XGSL, 4-6
arc4.c example program, XGSL, 4-9
arc5.c example program, XGSL, 4-12
arcf subroutine, GL, 1-6

B
backbuffer subroutine, GL, 1-8
backface subroutine, GL, 1-9
backface.c example program, GL, 2-2
bbox2 subroutine, GL, 1-11
bgnclosedline subroutine, GL, 1-13
bgnline subroutine, GL, 1-15
bgnpoint subroutine, GL, 1-19
bgnpolygon subroutine, GL, 1-17
bgnsurface subroutine, GL, 1-21
bgntmesh subroutine, GL, 1-23
bgntrim subroutine, GL, 1-25
blankscreen subroutine, GL, 1-31
blanktime subroutine, GL, 1-32
blendfunction subroutine, GL, 1-27
blink subroutine, GL, 1-29
blit.c example program, XGSL, 4-14
blqread subroutine, GL, 1-33
boxcirc.c example program, GL, 2-5

c
c subroutine, GL, 1-34
callobj subroutine, GL, 1-36
charstr subroutine, GL, 1-37
chunksize subroutine, GL, 1-38
cir1 .c example program, XGSL, 4-17
cir2.c example program, XGSL, 4-19
circ subroutine, GL, 1-39
circf subroutine, GL, 1-41
clear screen and fill background, XGSL, 3-12
clear subroutine, GL, 1-43
clkoff subroutine, GL, 1-44
clkon subroutine, GL, 1-44
closeobj subroutine, GL, 1-45
cmode subroutine, GL, 1-46
cmov subroutine, GL, 1-47
color subroutine, GL, 1-49
colored.c example program, GL, 2-6
compactify subroutine, GL, 1-51
concave subroutine, GL, 1-52
cpack subroutine, GL, 1-53

crv subroutine, GL, 1-55
crvn subroutine, GL, 1-57
curorigin subroutine, GL, 1-60
curs.c example program, XGSL, 4-21
cursoff subroutine, GL, 1-61
curson subroutine, GL, 1-61
curstype subroutine, GL, 1-62
curve1 .c example program, GL, 2-11
curve2.c example program, GL, 2-13
curve3.c example program, GL, 2-15
curvebasis subroutine, GL, 1-56
curved.c example program, GL, 2-17
curveit subroutine, GL, 1-64
curveprecision subroutine, GL, 1-59
cyclemap subroutine, GL, 1-65
cylinder1 .c example program, GL, 2-25
cylinder2.c example program, GL, 2-29
czclear subroutine, GL, 1-66

D
db.c example program, GL, 2-34
defbasis subroutine, GL, 1-68
defcursor subroutine, GL, 1-70
deflinestyle subroutine, GL, 1-72
defpattern subroutine, GL, 1-74
defpup subroutine, GL, 1-76
defrasterfont subroutine, GL, 1-78
delobj subroutine, GL, 1-81
deltag subroutine, GL, 1-82
depthcue subroutine, GL, 1-83
depthcue.c example program, GL, 2-36
djpoly.c example program, XGSL, 4-29
doily.c example program, GL, 2-38
dopup subroutine, GL, 1-85
doublebuffer subroutine, GL, 1-91
draw subroutine, GL, 1-89
draw.c example program, GL, 2-40
drawmode subroutine, GL, 1-86

E
editobj subroutine, GL, 1-92
ell1.c example program, XGSL, 4-32
ell2.c example program, XGSL, 4-34
endclosedline subroutine, GL, 1-93
endfullscrn subroutine, GL, 1-94
endline subroutine, GL, 1-95
endpick subroutine, GL, 1-96
endpoint subroutine, GL, 1-99
endpolygon subroutine, GL, 1-98
endselect subroutine, GL, 1-100
endsurface subroutine, GL, 1-21
endtmesh subroutine, GL, 1-102
endtrim subroutine, GL, 1-25

Index X-9

F
font subroutine, GL, 1-103
fontld.for example program, XGSL, 4-36
freepup subroutine, GL, 1-104
frontbuffer subroutine, GL, 1-105
fudge subroutine, GL, 1-106
fullscrn subroutine, GL, 1-107

G
gammaramp subroutine, GL, 1-110
gbegin subroutine, GL, 1-113
gconfig subroutine, GL, 1-114
genobj subroutine, GL, 1-115
gentag subroutine, GL, 1-116
getbackface subroutine, GL, 1-112
getbuffer subroutine, G L, 1-117
getbutton subroutine, GL, 1-118
getcmmode subroutine, GL, 1-120
getcolor subroutine, GL, 1-121
getcpos subroutine, G L, 1-122
getcursor subroutine, GL, 1-123
getdcm subroutine, GL, 1-124
getdescender subroutine, GL, 1-125
getdev, G L, 1-126
getdisplaymode subroutine, GL, 1-127
getdrawmode subroutine, GL, 1-128
getfont subroutine, GL, 1-129
getgpos subroutine, GL, 1-130
getheight subroutine, GL, 1-131
getlsrepeat subroutine, GL, 1-159
getlstyle subroutine, GL, 1-160
getlwidth subroutine, GL, 1-161
getmap, GL, 1-132
getmatrix subroutine, GL, 1-133
getmcolor subroutine, GL, 1-134
getmcolors, GL, 1-162
getmmode subroutine, GL, 1-136
getnurbsproperty subroutine, GL, 1-137
getopenobj subroutine, GL, 1-164
getorigin subroutine, GL, 1-139
getpattern subroutine, GL, 1-140
getplanes subroutine, GL, 1-141
getscrmask subroutine, GL, 1-154
getsize subroutine, GL, 1-142
getsm subroutine, GL, 1-144
getvaluator subroutine, GL, 1-145
getviewport subroutine, GL, 1-146
getwritemask subroutine, GL, 1-147
getzbuffer subroutine, GL, 1-148
gexit subroutine, GL, 1-149
ginit subroutine, GL, 1-150
GL

alpha blending ratio, specifying, 1-27
antialiasing

of lines, 1-186
of points, 1-261

X-1 0 Graphics Subroutines Reference

arc
circular, drawing, 1-4
drawing, example program, 2-97
filled circular, drawing, 1-6

attribute stack
popping, 1-269
pushing down, 1-278

back buffer, drawing into, 1-8
backfacing polygons, display

allowing or suppressing, 1-9
indicating whether on or off, 1-112

bitplanes
choosing a set for drawing, 1-86
granting write permission to in color map

mode, 1-394
granting write permission to in RGB mode,

1-315
returning the number of available, 1-141
setting number used for overlay drawing,

1-241
setting number used for underlay drawing,

1-369
buffers

enabled for drawing, 1-117
exchanging front and back, 1-357
setting time interval between swaps, 1-358

circle
drawing, 1-39

example program, 2-114
filled, drawing, 1-41

color, current
returning, 1-121
returning in RGB mode, 1-108
setting as packed 32-bit integer, 1-53
setting in color map mode, 1-49
setting in RGB mode, 1-34, 1-313, 1-345

color commands, changing target of, 1-180
color correction, defining a color map ramp for,

1-110
color map

changing, 1-29
organizing as 16 small maps, 1-219
organizing as one large map, 1-238
returning number of current, 1-132
returning range of RGB values, 1-162
returning the organization of, 1-120
setting display mode to bypass, 1-314

color map editor, example program, 2-6
color map entries, loading a range of, 1-217
color map entry

changing to RGB value, 1-204
getting a copy of RGB values for, 1-134

color map mode, setting current color in, 1-46
color maps

cycling between, 1-65
selecting one of 16 small, 1-342

cube, drawing, example program, 2-2

cubic spline curve
drawing, 1-55
rational, drawing, 1-290
segments, drawing, 1-57

cubic spline curve basis matrix, setting, 1-56
cubic spline curve segments, rational, drawing,

1-291
cublic spline basis matrix

defining, 1-68
setting, 1-244

cursor
defining, 1-70
defining type and size of, 1-62
returning characteristics, 1-123
setting characteristics, 1-339
setting origin of, 1-60, 1-61

curve
editor, example program, 2-17
piecewise linear trimming, describing,

1-283
curve and surface patch, wire frame, curve

editor, example program, 2-17
cylinder, drawing, example program, 2-25,

2-29
depth comparison, specifying function used for,

1-404
depth-cueing

indicating whether on or off, 1-124
turning on and off, 1-83

depth-cueing in color map mode, setting range
of colors used for, 1-198

depth-cueing in RGB mode, setting range of
colors used for, 1-173

device
assigning valuator initial value, 1-347
disabling input device for event queuing,

1-371
enabling input device for event queuing,

1-285
indicating whether enabled, 1-170
returning button state, 1-118
returning valuator list, 1-126
returning valuator state, 1-145
squelching noisy valuators, 1-226
tying two valuators to a button, 1-363

dial and switch box lights, setting, 1-340
display list, specifying the amount of memory

for, 1-38
display mode

returning current, 1-127
setting to double buffer mode, 1-91
setting to RGB mode, 1-314
setting to single buffer mode, 1-349

doily, drawing, example program, 2-38
drawing

arc, example program, 2-97
circle, example program, 2-114
cube, example program, 2-2, 2-36
cylinder, example program, 2-25, 2-29

doily, example program, 2-38
into back buffer, 1-8
into front buffer, 1-105
line, example program, 2-40
octahedron, example program, 2-47
polygon, example program, 2-97
sphere, example program, 2-42
spiral, example program, 2-114
sunflower, example program, 2-94
surface patch, wire frame, example

program, 2-11, 2-13, 2-15, 2-61
worms, example prograqm, 2-102

drawing mode, returning the current, 1-128
editor

color map, example program, 2-6
vlsi graphical, example program, 2-100

example programs
color map editor, colored.c, 2-6
curve and surface patch

depthcue.c, 2-36
wire frame

drawing

curve1 .c, 2-11
curve2.c, 2-13
curve3.c, 2-15
curved.c, 2-17
patch1 .c, 2-61

backface.c, 2-2
boxcirc.c, 2-5
doily.c, 2-38
draw.c, 2-40
iobounce.c, 2-42
octahedron.c, 2-47
sunflower.c, 2-94
tpbig.c, 2-97
zoing .c, 2-114

frame buffer
db.c, 2-34
zbuffer1 .c, 2-112

hidden surface removal
backface.c, 2-2
octahedron.c, 2-47
overlay.c, 2-50
scrn_rotate.c, 2-78

lighting
cylinder1 .c, 2-25
cylinder2.c, 2-29
localatten.c, 2-44
platelocal.c, 2-66

move-draw style
scrn_rotate.c, 2-78
setshade.c, 2-92
worms.c, 2-102

picking and selecting
pick1 .c, 2-64
select1 .c, 2-89

pixel
paint.c, 2-54
vlsi.c, 2-100

Index X-11

pop-up menu, prompt.c, 2-74
pop-up menu, popup.c, 2-69
text

text.c, 2-96
tpbig.c, 2-97
xfonts.c, 2-11 O

textport, tpbig.c, 2-97
fill pattern, current, returning, 1-140
fonts, Enhanced X-Windows, example

program, 2-110
forward difference matrix, iterating, 1-64
frame buffer

example program, 2-112
window manager, example program, 2-34

front buffer, drawing into, 1-105
full-screen mode

beginning, 1-107
ending, 1-94

graphical primitive
rotating (fixed point version), 1-322
scaling and mirroring, 1-333

graphical primitives
rotating (floating point version), 1-320
translating, 1-367

graphics position
moving, 1-215
moving relative to current point, 1-318
returning, 1-130

hidden surface removal, example program,
2-2,2-47,2-50,2-78

initializing
clearing color bitplanes and z buffer, 1-66
clearing the screenmask, 1-43
graphics system, 1-150
graphics system without color map change,

1-113
reconfiguring the system, 1-114
resetting all global state attribute_s, 1-151
returning graphics hardware, library

information, 1-165
terminating a graphics program, 1-149
z buffer, 1-402

keyboard bell
ringing, 1-317
setting duration of, 1-338

keyboard click, turning off or on, 1-44
keyboard display lights, turning off or on, 1-175
lighting, example program, 2-25, 2-29, 2-44,

2-66
lighting model, light source, or material,

defining, 1-182
lighting model, light source, or material

definition, binding, 1-178
line

drawing, 1-89
example program, 2-40

drawing relative to current point, 1-293

X-12 Graphics Subroutines Reference

vertex-based
drawing, 1-15
ending, 1-95

line segments, setting number used to draw a
curve segment, 1-59

linestyle
defining, 1-72
returning, 1-160
selecting, 1-341

linestyle repeat, setting, 1-200
linestyle repeat count, returning, 1-159
linewidth

returning, 1-161
specifying, 1-177

matrix, transformation
getting a copy of, 1-133
loading, 1-191
premultiplying, 1-220

matrix mode
current, returning, 1-136
setting current, 1-213

move-draw style, example program, 2-78,
2-92,2-102

normal vector, setting, 1-221, 1-228
object (display list)

checking number for accuracy, 1-169
checking tag presence in current open

object, 1-171
closing, 1-45
compacting memory storage of, 1-51
controlling subroutine execution, 1-11
creating, 1-201
culling and pruning, 1-11
deleting, 1-81
deleting tags from, 1-82
drawing an instance of, 1-36
inserting marker tag into, 1-203
inserting tag into at offset from existing tag,

1-224
opening for editing, 1-92
returning a unique integer for use as

identifier, 1-115
returning a unique integer for use as tag,

1-116
returning current, 1-164
specifying bounding box, 1-11

octahedron, drawing, example program, 2-47
overlay drawing, setting bitplanes for, 1-241
pattern, defining, 1-74
picking and selecting

example program, 2-89
pick1 .c, 2-64

initializing name stack, 1-168
loading name onto name stack, 1-188
placing system in picking mode, 1-253
popping name off name stack, 1-272

pushing new name onto name stack,
1-281

putting system in selecting mode, 1-156
screen coordinates to 2-D modeling

coordinates, computing inverse mapping,
1-208

screen coordinates to modeling
coordinates, computing inverse mapping,
1-206

setting picking region dimensions, 1-255
turning off picking mode, 1-96
turning off selecting mode, 1-100

pixel block transfer
copying pixel rectangle with zoom, 1-303
drawing rectangular pixel array into frame

buffer, 1-309
painting pixel row on screen in color map

mode, 1-396
painting pixel row on screen in RGB mode,

1-398
reading rectangular pixel array to host

memory, 1-307
returning color map mode pixel values,

1-295
returning RGB mode pixel values, 1-297
specifying source for pixel read, 1-299
specifying zoom factor for rectangular

copies, 1-311
pixel writes, specifying a logical operation for,

1-192
points

drawing, 1-259
vertex-based

drawing, 1-19
ending, 1-99

polygon
drawing, 1-267

example program, 2-97
drawing relative, 1-325
filled

closing, 1-247
drawing, 1-265
moving relative to starting point, 1-327
moving to starting point, 1-256
specifying next point, 1-249

filled, shaded, drawing, 1-350
vertex-based, ending, 1-98

polygons
concave, drawing, 1-52
vertex-based, drawing, 1-17

pop-up menu, example program, 2-74
pop-up menu

adding items to existing, 1-2
allocating and initializing structure for,

1-223
deallocating, 1-1 04
defining, 1-76
displaying, 1-85
enabling or disabling menu entry, 1-346

example program, 2-69
queue

checking event queue contents, 1-289
creating event queue entry, 1-286
disabling input device for event queuing,

1-371
emptying event queue, 1-288
enabling input device for event queuing,

1-285
reading event queue entries, 1-33
reading first entry in event queue, 1-287

rectangle
drawing, 1-301
filled, drawing, 1-305
filled, screen-aligned, drawing, 1-331
screen-aligned, drawing, 1-329

RGB mode, setting display mode to, 1-314
RGB writemask, returning current, 1-109
screen mask

clearing, 1-43
defining 2-D rectangular, 1-336
returning, 1-154

shading model, returning, 1-144
shading style, selecting, 1-348
sphere, drawing, example program, 2-42
spiral, drawing, example program, 2-114
subroutines

animation
backbuffer, 1-8
blink, 1-29
cyclemap, 1-65
doublebuffer, 1-91
frontbuffer, 1-105
getbuffer, 1-117
getdisplaymode, 1-127
gsync, 1-158
singlebuffer, 1-349
swapbuffers, 1-357
swapinterval, 1-358

antialiasing
linesmooth, 1-186
pntsmooth, 1-261
subpixel, 1-355

attribute
C, 1-34
color, 1-49
cpack, 1-53
deflinestyle, 1-72
defpattern, 1-74
getcolor, 1-121
getlsrepeat, 1-159
getlstyle, 1-160
getlwidth, 1-161
getpattern, 1-140
getsm, 1-144
gRGBcolor, 1-108
linewidth, 1-177
lsrepeat, 1-200
popattributes, 1-269

Index X-13

pushattributes, 1-278
RGBcolor, 1-313, 1-345
setlinestyle, 1-341
shademodel, 1-348

begin-end style
bgnclosedline, 1-13
bgnline, 1-15
bgnpoint, 1-19
bgnpolygon, 1-17
bgntmesh, 1-23
endclosedline, 1-93
endline, 1-95
endpoint, 1-99
endpolygon, 1-98
endtmesh, 1-102
n3f, 1-221
normal, 1-228
swaptmesh, 1-359
v, 1-372

color map and RGB mode
cmode, 1-46
gammaramp, 1-11 O
getcmmode, 1-120
getmap, 1-132
getmcolor, 1-134
getmcolors, 1-162
mapcolor, 1-204
mapcolors, 1-217
multimap, 1-219
onemap, 1-238
RGBmode, 1-314
setmap, 1-342

coordinate transformation
getmatrix, 1-133
loadmatrix, 1-191
lookat, 1-194
mapw, 1-206
mapw2, 1-208
multmatrix, 1-220
ortho,ortho2, 1-239
perspective, 1-251
polarview, 1-263
popmatrix, 1-271
pushmatrix, 1-280
rot, 1-320
rotate, 1-322
scale, 1-333
translate, 1-367
window, 1-381

cursor
curorigin, 1-60
cursoff, 1-61
curson, 1-61
cu rstype, 1-62
defcursor, 1-70
getcursor, 1-123
setcursor, 1-339

deleting from display list, 1-234

X-14 Graphics Subroutines Reference

depth-cue
depthcue, 1-83
getdcm, 1-124
IRGBrange, 1-173
lshaderange, 1-198

device. See queue and device
display list. See object
frame buffer configuration

backbuffer, 1-8
doublebuffer, 1-91
drawmode, 1-86
frontbuffer, 1-105
getdrawmode, 1-128
getplanes, 1-141
overlay, 1-241
singlebuffer, 1-349
swapbuffers, 1-357
swapinterval, 1-358
underlay, 1-369
zbuffer, 1-148, 1-400
zdraw, 1-403

frame buffer update control
blendfunction, 1-27
color, 1-192
getwritemask, 1-14 7
gRGBmask, 1-109
RGBwritemask, 1-315
wmpack, 1-393
writemask, 1-394
zfunction, 1-404
zsource, 1-406
zwritemask, 1-407

hidden surface
backface, 1-9
getbackface, 1-112
getzbuffer, 1-148
zbuffer, 1-400
zdraw, 1-403
zfunction, 1-404
zsource, 1-406
zwritemask, 1-407

high-level drawing
arc, 1-4
arcf, 1-6
circ, 1-39
circf, 1-41
concave, 1-52
polf, 1-265
poly, 1-267
rect, 1-301
rectf, 1-305
sbox, 1-329
sboxf, 1-331
splf, 1-350

initializing
clear, 1-43
czclear, 1-66
gbegin,1-113

gconfig, 1-114
gexit, 1-149
ginit, 1-150
greset, 1-151
gversion, 1-165
zclear, 1-402

inserting into display list, 1-235
keyboard control

clkoff, 1-44
clkon, 1-44
lampoff, 1-175
lampon, 1-175
ringbell, 1-317
setbell, 1-338
setdblights, 1-340

lighting
getmmode, 1-136
lmbind, 1-178
lmcolor, 1-180
lmdef, 1-182

move-draw style
draw, 1-89
getgpos, 1-130
move, 1-215
pclos, 1-24 7
pdr, 1-249
pmv, 1-256
pnt, 1-259
rdr, 1-293
rmv, 1-318
rpdr, 1-325
rpmv, 1-327

NURBS curves and surfaces
bgnsurface, 1-21
bgntrim, 1-25
endsurface, 1.:...21
endtrim, 1-25
getnurbsproperty, 1-137
nurbscurve, 1-230
nurbssurface, 1-232
pwlcurve, 1-283
setnurbsproperty, 1-343

object (display list)
bbox2, 1-11
callobj, 1-36
chunksize, 1-38
closeobj, 1-45
compactify, 1-51
delobj, 1-81
deltag, 1-82
editobj, 1-92
genobj, 1-115
gentag, 1-116
getopenobj, 1-164
isobj, 1-169
istag, 1-171
makeobj, 1-201
maketag, 1-203
newtag, 1-224

objdelete, 1-234
objinsert, 1-235
objreplace, 1-236
replacing existing with new, 1-236

picking and selecting
endpick, 1-96
endselect, 1-100
gselect, 1-156
initnames, 1-168
loadname, 1-188
mapw, 1-206
mapw2, 1-208
pick, 1-253
picksize, 1-255
popname, 1-272
pushname, 1-281

pipeline option-setting
concave, 1-52
mmode, 1-213

pixel block transfer
lrectread, 1-307
lrectwrite, 1-309
readpixels, 1-295
readRGB, 1-297
readsource, 1-299
rectcopy, 1-303
rectread, 1-307
rectwrite, 1-309
rectzoom, 1-311
writepixels, 1-396
writeRGB, 1-398

pop-up menu
addtopup, 1-2
defpup, 1-76
dopup, 1-85
freepup, 1-104
newpup, 1-223
setpup, 1-346

query
blqread, 1-33
doublebuffer, 1-127
getbuffer, 1-117
getbutton, 1-11 8
getcolor, 1-121
getdev, 1-126
getgpos, 1-130
getlsrepeat, 1-159
getlstyle, 1-160
getlwidth, 1-161
getmmode, 1-136
getnurbsproperty, 1-137
getorigin, 1-139
getpattern, 1-140
getscrmask, 1-154
getsize, 1-142
getsm, 1-144
getvaluator, 1-145
getviewport, 1-146
gRGBcolor, 1-108

Index X-15

gversion, 1-165
lgetdepth, 1-176
qenter, 1-286
qread, 1-287
returning current character position,

1-122
returning longest character baseline

extent, 1-1 25
returning maximum character height,

1-131
returning raster font index, 1-129
returning text string width, 1-354
winget, 1-383

queue and device
blqread, 1-33
getbutton, 1-118, 1-126
getvaluator, 1-145
isqueued, 1-170
noise, 1-226
qdevice, 1-285
qenter, 1-286
qread, 1-287
qreset, 1-288
qtest, 1-289
setvaluator, 1-34 7
tie, 1-363
unqdevice, 1-371

selecting. See picking and selecting
text

charstr, 1-37
cmov, 1-47
defrasterfont, 1-78
font, 1-103
getcpos, 1-122
getdescender, 1-125
getfont, 1-129
getheight, 1-131
loadXfont, 1-189
strwidth, 1-354

textport
textport, 1-362
tpoff, 1-365
tpon, 1-366

viewport
getscrmask, 1-154
getviewport, 1-146
lgetdepth, 1-176
lsetdepth, 1-196
popviewport, 1-273
pushviewport, 1-282
reshapeviewport, 1-312
screenspace, 1-335
scrmask, 1-336
viewport, 1-375

window
blankscreen, 1-31
blanktime, 1-32
endfullscrn, 1-94
fudge, 1-106

X-16 Graphics Subroutines Reference

fullscrn, 1-107
getorigin, 1-139
getsize, 1-142
iconsize, 1-166
icontitle, 1-167
keepaspect, 1-1 72
maxsize, 1-209
minsize, 1-211
noborder, 1-225
noport subroutine, 1-227
prefposition, 1-27 4
prefsize, 1-276
stepunit, 1-353
swinopen, 1-360
winclose, 1-377
winconstraints, 1-378
windepth, 1-380
winget, 1-383
winmove, 1-384
winopen, 1-385
winpop, 1-387
winposition, 1-388
winpush, 1-390
winset, 1-391
wintitle, 1-392

wire frame curve and surface patch
crv, 1-55
crvn, 1-57
curvebasis, 1-56
curveit, 1-64
curveprecision, 1-59
defbasis, 1-68
patch, 1-243
patchbasis, 1-244
patchcurves, 1-245
patchprecision, 1-246
rcrv, 1-290
rcrvn, 1-291
rpatch, 1-324

subwindow, creating restricted, 1-360
sunflower, drawing, example program, 2-94
surface, NURBS

.controlling shape of, 1-232
delimiting definition, 1-21
returning value of display property, 1-137
setting property for display of, 1-343
trimming loop, delimiting, 1-25

surface patch, wire frame
drawing, 1-243

text

example program, 2-11, 2-13, 2-15,
2-61

rational, drawing, 1-324
setting number of curves used to draw,

1-245
setting precision at which curves are

drawn, 1-246

defining raster font bitmaps, 1-78
drawing raster character string, 1-37

Enhanced X-Windows fonts, example
program, 2-110

example program, 2-96, 2-97
loading Enhanced X-windows font, 1-189
returning current character position, 1-122
returning longest character baseline extent,

1-125
returning maximum character height,

1-131
returning raster font index, 1-129
returning text string width, 1-354
selecting a raster font, 1-103
updating text character position, 1-47

textport
allocating screen area, 1-362
example program, 2-97
turning off, 1-365
turning on, 1-366

transformation
orthographic, defining, 1-239
perspective projection

defining in terms of field of view, 1-251
defining in terms of x and y

coordinates, 1-381
viewing, defining, 1-194

transformation matrix stack
popping, 1-271
pushing down, 1-280

triangle mesh register, toggling, 1-359
trimming curve, NURBS, controlling shape of,

1-230
underlay drawing, setting bitplanes for, 1-369
vertex

closed line
drawing, 1-13
ending, 1-93

placement control, 1-355
transferring to graphics pipe, 1-372
triangle mesh

drawing, 1-23
ending, 1-102

vertical retrace, waiting for next, 1-158
viewer's position, defining in polar coordinates,

1-263
viewport

absolute screen coordinates, 1-335
defining 2-D rectangular clipping mask,

1-336
duplicating, 1-282
getting clipping plane distances, 1-176
popping the stack, 1-273
returning dimensions, 1-146
setting 3-D, 1-196
setting area, 1-375
setting dimensions to window, 1-312

window
adding title bar, 1-392
binding constraints, 1-378
closing, 1-377

controlling screen refresh, 1-31
creating, 1-385
creating restricted subwindow, 1-360
identifying current, 1-383
indicating stack order, 1-380
lowering to bottom, 1-390
managing, exampe program, 2-34
moving, 1-384
raising to top, 1-387
returning position of, 1-139
setting current, 1-391
setting screen blanking timeout, 1-32
specifying aspect ratio, 1-172
specifying no border, 1-225
specifying program with no requirement,

1-227
window icon

specifying size, 1-166
specifying title, 1-167

window location
changing, 1-388
constraining, 1-274

window size
changing, 1-388
constraining, 1-274, 1-276
returning, 1-142
specifying added pixel values, 1-106
specifying changes by steps, 1-353
specifying maximum, 1-209
specifying minimum, 1-211

worms, drawing, example program, 2-102
write mask

returning current, 1-147
RGBA, specifying with single pack integer,

1-393
z buffer

enabling or disabling, 1-400
enabling or disabling drawing into, 1-403

z buffer operation, specifying which bits are
drawn during, 1-407

z buffering, finding out whether off or on, 1-148
z comparisons, specifying depth or color for,

1-406
Graphics Library. See GL
Graphics Support Library. See XGSL
greset subroutine, GL, 1-151
gRGBcolor subroutine, GL, 1-108
gRGBmask subroutine, GL, 1-109
gsbply subroutine, XGSL, 3-2
gscarc subroutine, XGSL, 3-4
gscatt subroutine, XGSL, 3-6
gsccnv subroutine, XGSL, 3-8
gscir subroutine, XGSL, 3-10
gsclrs subroutine, XGSL, 3-12
gscmap subroutine, XGSL, 3-13
gscrca subroutine, XGSL, 3-15
gsdjply subroutine, XGSL, 3-17
gsdpik subroutine, XGSL, 3-19
gseara subroutine, XGSL, 3-20

Index X-17

gsearc subroutine, XGSL, 3-22
gsecnv subroutine, XGSL, 3-24
gsecur subroutine, XGSL, 3-27
gselect subroutine, GL, 1-156
gsell subroutine, XGSL, 3-28
gsepik subroutine, XGSL, 3-30
gseply subroutine, XGSL, 3-31
gsevds subroutine, XGSL, 3-32
gseven subroutine, XGSL, 3-34
gsevwt subroutine, XGSL, 3-36
gsfatt subroutine, XGSL, 3-41
gsfci subroutine, XGSL, 3-43
gsfell subroutine, XGSL, 3-45
gsfply subroutine, XGSL, 3-47
gsfrec subroutine, XGSL, 3-49
gsgtat subroutine, XGSL, 3-51
gsgtxt subroutine, XGSL, 3-55
gsinit subroutine, XGSL, 3-57
gslatt subroutine, XGSL, 3-60
gslcat subroutine, XGSL, 3-62
gsline subroutine, XGSL, 3-63
gslock subroutine, XGSL, 3-65
gslop subroutine, XGSL, 3-66
gslpat subroutine, XGSL, 3-68
gsmask subroutine, XGSL, 3-69
gsmatt subroutine, XGSL, 3-70
gsmcat subrouitne, XGSL, 3-72
gsmcur subroutine, XGSL, 3-75
gsmfld subroutine, XGSL, 3-77
gsmult subroutine, XGSL, 3-78
gspcls subroutine, XGSL, 3-80
gsplym subroutine, XGSL, 3-81
gspoly subroutine, XGSL, 3-83
gspp subroutine, XGSL, 3-85
gsqdsp subroutine, XGSL, 3-86
gsqfnt subroutine, XGSL, 3-88
gsqgtx subroutine, XGSL, 3-90
gsqlext subroutine, XGSL, 3-92
gsqloc subroutine, XGSL, 3-94
gsrrst subroutine, XGSL, 3-96
gsrsav subroutine, XGSL, 3-98
gssend subroutine, XGSL, 3-100
gstatt subroutine, XGSL, 3-101
gsterm subroutine, XGSL, 3-104
gstext subroutine, XGSL, 3-105
gsulns subroutine, XGSL, 3-107
gsunlk subroutine, XGSL, 3-108
gsvgrn subroutine, XGSL, 3-109
gsxblt subroutine, XGSL, 3-11 o
gsxcnv subroutine, XGSL, 3-116
gsxptr subroutine, XGSL, 3-118
gsxtat subroutine, XGSL, 3-119
gsxtxt subroutine, XGSL, 3-123
gsync subroutine, GL, 1-158
gtex.~ example program, XGSL, 4-38
gvers1on subroutine, GL, 1-165

X-18 Graphics Subroutines Reference

iconsize subroutine, GL, 1-166
icontitle subroutine, GL, 1-167
initnames subroutine, GL, 1-168
~obounce.c example program, GL, 2-42
1sobj subroutine, GL, 1-169
isqueued subroutine, G L, 1-170
istag subroutine, GL, 1-171

K
keepaspect subroutine, GL, 1-172

L
lampoff subroutine, GL, 1-175
lampon subroutine, GL, 1-175
lgetdepth subroutine, GL, 1-176
linesmooth subroutine, GL, 1-186
linewidth subroutine, GL, 1-177
lmbind subroutine, GL, 1-178
lmcolor subroutine, GL, 1-180
lmdef subroutine, GL, 1-182
loadmatrix subroutine, GL, 1-191
loadname subroutine, GL, 1-188
loadXfont subroutine, GL, 1-189
loc~latten.c example program, GL, 2-44
log1cop subroutine, GL, 1-192
lookat subroutine, GL, 1-194
LPFK. See lighted program function key
lrectread, GL, 1-307
lrectwrite subroutine, GL, 1-309
IRGBrange subroutine, GL, 1-173
lsetdepth subroutine, GL, 1-196
lshaderange subroutine, GL, 1-198
lsrepeat subroutine, GL, 1-200

M
makeobj subroutine, GL, 1-201
maketag subroutine, GL, 1-203
mapcolor, GL, 1-204
mapcolors, GL, 1-217
mapw subroutine, GL, 1-206
mapw2 subroutine, GL, 1-208
mark.c example program, XGSL 4-41
maxsize subroutine, GL, 1-209 '
minsize subroutine, GL, 1-211
mmode subroutine, GL, 1-213
move subroutine, GL, 1-215
multimap, GL, 1-219
multmatrix subroutine, GL, 1-220

N
n3f subroutine, GL, 1-221
newpup subroutine, GL, 1-223
newtag subroutine, GL, 1-224

noborder subroutine, GL, 1-225
noise subroutine, GL, 1-226
noport subroutine, GL, 1-227
normal subroutine, GL, 1-228
nurbscurve subroutine, GL, 1-230
nurbssurface subroutine, GL, 1-232

0
obdelete subroutine, GL, 1-234
objinsert subroutine, GL, 1-235
objreplace subroutine, GL, 1-236
octahedron.c example program, GL, 2-47
onemap, GL, 1-238
ortho, ortho2 subroutine, GL, 1-239
overlay subroutine, GL, 1-241
overlay.c example program, GL, 2-50
p

paint.c example program, GL, 2-54
patch subroutine, GL, 1-243
patch1 .c example program, GL, 2-61
patchbasis subroutine, GL, 1-244
patchcurves subroutine, GL, 1-245
patchprecision subroutine, GL, 1-246
pclos subroutine, GL, 1-247
pdr subroutine, GL, 1-249
perspective subroutine, GL, 1-251
pick subroutine, GL, 1-253
pick1 .c example program, GL, 2-64
picksize subroutine, GL, 1-255
pix.c example program, XGSL, 4-44
platelocal.c example program, GL, 2-66
pmv subroutine, GL, 1-256
pnt subroutine, GL, 1-259
pntsmooth subroutine, GL, 1-261
polarview subroutine, GL, 1-263
polf subroutine, GL, 1-265
poly subroutine, GL, 1-267
popattributes subroutine, GL, 1-269
popmatrix subroutine, GL, 1-271
popname subroutine, GL, 1-272
popup.c example program, GL, 2-69
popviewport subroutine, GL, 1-273
prefposition subroutine, GL, 1-274
prefsize subroutine, GL, 1-276
prompt.c example program, GL, 2-74
pushattributes subroutine, GL, 1-278
pushmatrix subroutine, GL, 1-280
pushname subroutine, GL, 1-281
pushviewport subroutine, GL, 1-282
pwlcurve subroutine, GL, 1-283

Q
qdevice subroutine, GL, 1-285
qenter subroutine, GL, 1-286
qread subroutine, GL, 1-287

qreset subroutine, GL, 1-288
qtest subroutine, GL, 1-289

R
rcrv subroutine, GL, 1-290
rcrvn subroutine, GL, 1-291
rdr subroutine, GL, 1-293
readpixels subroutine, GL, 1-295
readRGB subroutine, GL, 1-297
readsource subroutine, GL, 1-299
rect subroutine, GL, 1-301
rectcopy subroutine, GL, 1-303
rectf subroutine, GL, 1-305
rectread, GL, 1-307
rectwrite subroutine, GL, 1-309
rectzoom subroutine, GL, 1-311
reshapeviewport subroutine, GL, 1-312
RGBcolor subroutine, GL, 1-313, 1-345
RGBmode, GL, 1-314
RGBwritemask subroutine, GL, 1-315
ringbell subroutine, GL, 1-317
rmv subroutine, GL, 1-318
rot subroutine, GL, 1-320
rotate subroutine, GL, 1-322
rpatch subroutine, GL, 1-324
rpdr subroutine, GL, 1-325
rpmv subroutine, GL, 1-327

s
sbox subroutine, GL, 1-329
sboxf subroutine, GL, 1-331
scale subroutine, GL, 1-333
screenspace subroutine, GL, 1-335
scrmask subroutine, GL, 1-336
scrn_rotate.c example program, GL, 2-78
select1 .c example program, GL, 2-89
setbell subroutine, GL, 1-338
setcursor subroutine, GL, 1-339
setdblights subroutine, GL, 1-340
setlinestyle subroutine, GL, 1-341
setmap, GL, 1-342
setnurbsproperty subroutine, GL, 1-343
setpup subroutine, GL, 1-346
setshade.c example program, GL, 2-92
setvaluator subroutine, GL, 1-347
shademodel subroutine, GL, 1-348
singlebuffer subroutine, GL, 1-349
splf subroutine, GL, 1-350
stepunit subroutine, GL, 1-353
strwidth subroutine, GL, 1-354
subpixel subroutine, GL, 1-355
sunflower.c example program, GL, 2-94
swapbuffers subroutine, GL, 1-357
swapinterval subroutine, GL, 1-358
swaptmesh subroutine, GL, 1-359
swinopen subroutine, GL, 1-360

Index X-19

T
text.c example program, GL, 2-96
textport subroutine, GL, 1-362
tie subroutine, GL, 1-363
tpbig.c example program, GL, 2-97
tpoff subroutine, GL, 1-365
tpon subroutine, GL, 1-366
translate subroutine, GL, 1-367

u
underlay subroutine, GL, 1-369
unqdevice subroutine, GL, 1-371

v
v subroutine, GL, 1-372
viewport subroutine, GL, 1-375
vlsi.c example program, GL, 2-100

w
winclose subroutine, GL, 1-377
winconstraints subroutine, GL, 1-378
windepth subroutine, GL, 1-380
window subroutine, GL, 1-381
winget, GL, 1-383
winmove subroutine, GL, 1-384
winopen subroutine, GL, 1-385
winpop subroutine, GL, 1-387
winposition subroutine, GL, 1-388
winpush subroutine, GL, 1-390
winset subroutine, GL, 1-391
wintitle subroutine, GL, 1-392
wmpack subroutine, GL, 1-393
worms.c example programs, GL, 2-102
writemask subroutine, GL, 1-394
writepixels subroutine, GL, 1-396
writeRGB subroutine, GL, 1-398

x
xfonts.c example program, GL, 2-110
XGSL

adapter, querying, 3-86
addressing data, FORTRAN pointer-type

variables, 3-118
example program, 4-39

annotated text
setting attributes, 3-101

example program, 4-21, 4-39
writing, 3-105

example program, 4-21 , 4-39
annotated text font, querying, 3-88

example program, 4-21
arc

circular
between two angles, 3-15

example program, 4-9
between two points, 3-4

example program, 4-6

X-20 Graphics Subroutines Reference

elliptical

circle

between two angles, 3-20
example program, 4-2

between two points, 3-22
example program, 4-4

converting to a polyline, 3-8
drawing, 3-10

example program, 4-17
filling, 3-43

example program, 4-19
clear screen and fill background, example

program, 4-9
color mapping, specifying, 3-13

example program, 4-9, 4-21
cursor

erasing, 3-27
example program, 4-21

making visible, 3-75
example program, 4-21

multicolor attributes, 3-72
example program, 4-21

single-color attributes, 3-6
example program, 4-21

display monitor, querying, 3-86
drawing primitives

arc
circular

between two angles, 3-15
example program, 4-9

between two points, 3-4
example program, 4-6

elliptical
between two angles, 3-20

example program, 4-2
between two points, 3-22

example program, 4-4
circle, 3-1 O

example program, 4-17
filled, 3-43

example program, 4-19
ellipse, 3-28

example program, 4-32
filled,3-45

example program, 4-34
example program, 4-14
lines

between two points, 3-63
example program, 4-2

logical operation specifications, 3-66
example program, 4-4, 4-6

one or more sets of, 3-17
multiline, 3-78

example program, 4-44
polygon, filled, 3-47

example program, 4-44
polyline, 3-83

example program, 4-12, 4-29

polymarker, 3-81
rectangle, filled, 3-49

example program, 4-44
drawing text, geometric, 3-51
ellipse

converting to a polyline, 3-24
example program, 4-12

drawing, 3-28
example program, 4-32

filling, 3-45
example program, 4-34

erasing enabled cursor, 3-27
event reporting

disabling, 3-32
example program, 4-19

enabling, 3-34
example program, 4-19

example programs
addressing, fontld.for, 4-36
attribute setting

curs.c, 4-21
fontld.for, 4-36
gtex.c, 4-38
mark.c, 4-41
pix.c, 4-44
xtex.c, 4-49

color mapping
arc4.c, 4-9
curs.c, 4-21

cursor, curs.c, 4-21
drawing priimitives, cir2.c, 4-19
drawing primitives

fill

arc1 .c, 4-2
arc2.c, 4-4
arc3.c, 4-6
arc4.c, 4-9
arc5.c, 4-12
blit.c, 4-14
cir1 .c, 4-17
djpoly.c, 4-29
ell1.c, 4-32
ell2.c, 4-34

arc4.c, 4-9
blit.c, 4-14
cir2.c, 4-19
ell2.c, 4-34
pix.c, 4-44

pixel block, pix.c, 4-44
polyline conversion, arc5.c, 4-12
query

text

cir1 .c, 4-17
cir2.c, 4-19
curs.c, 4-21

curs.c, 4-21
fontld. for, 4-36
gtex.c, 4-38
xtex.c, 4-49

fill areas
circle, 3-43

example program, 4-19
defining a shape, 3-80
defining the beginning of, 3-2

example program, 4-14
defining the end of, 3-31

example program, 4-14
ellipse,3-45

example program, 4-34
polygon, 3-47

example program, 4-44
rectangle, 3-49

example program, 4-44
screen, 3-12

example program, 4-9
setting attributes, 3-41

font
annotated text, querying, 3-88

example program, 4-21
geometric, querying, 3-90

geometric font, querying, 3-90
geometric text

setting attributes, 3-51
example programs, 4-36

writing, 3-55
example programs, 4-36

initializing XGSL subroutines, 3-57
input event, waiting for, 3-36

example program, 4-19
lighted program function key, setting attributes,

3-68
lines

drawing
between two points, 3-63

example program, 4-2
multiline, 3-78

example program, 4-44
one or more sets, 3-17
polyline, 3-83

example program, 4-12, 4-29
logical operation specifications, 3-66

example program, 4-4, 4-6
setting attributes, 3-60
setting style, 3-107

locator
attributes

querying, 3-92
setting, 3-62

querying, 3-94
multiline, drawing, 3-78

example program, 4-44
pixel block

moving, 3-110
restoring, 3-96
saving, 3-98

pixel map conversion, 3-116
plane, setting attributes, 3-69

Index X-21

polygon, filling, 3-47
example program, 4-44

polyline, drawing, 3-83
example program, 4-12, 4-29

polyline conversion
circle, 3-8
circular arc, 3-8
ellipse, 3-24

example program, 4-12
polymarker

drawing, 3-81
example program, 4-41

setting attributes, 3-70
example program, 4-41

rectangle, filling, 3-49
example program, 4-44

report events
disabling, 3-32

example program, 4-19
enabling, 3-34

example program, 4-19
setting attributes

annotated text, 3-101
example program, 4-21, 4-39

cursor
multicolor, 3-72

example program, 4-21
single-color, 3-6

example program, 4-21
fill, 3-41

example program, 4-44
geometric text, 3-51

example program, 4-36
lighted program function key, 3-68
line, 3-60
locator, 3-62
plane, 3-69
polymarker, 3-70

example program, 4-41
user line style, 3-107
valuator granularity, 3-109
Xtext, 3-119

example program, 4-49
subroutine, attribute setting, gsulns, 3-107
subroutines

addressing, gsxptr, 3-118
attribute setting

gscatt, 3-6
gsfatt, 3-41
gsgtat, 3-51
gslatt, 3-60
gslcat, 3-62
gslpat, 3-68
gsmatt, 3-69, 3-70
gsmcat, 3-72
gstatt, 3-1 O 1
gsvgrn, 3-109
gsxtat, 3-119

color mapping, gscmap, 3-13

X-22 Graphics Subroutines Reference

compatibility
gsdpik, 3-19
gsepik, 3-30
gslock, 3-65
gsmfld, 3-77
gspp,3-85
gssend,3-100
gsunlk, 3-108

control
gsinit, 3-57
gsterm, 3-104

conversion, gsxcnv, 3_;116
cursor

gsecur, 3-27
gsmcat, 3-72
gsmcur, 3-75

drawing primitives
gscarc, 3-4
gscir, 3-10
gscrca, 3-15
gsdjply, 3-17
gseara, 3-20
gsearc, 3-22
gsell,3-28
gsfci, 3-43
gsfell, 3-45
gsfply, 3-47
gsfrec,3-49
gsline, 3-63
gslop, 3-66
gsmult, 3-78
gsplym, 3-81

fill
gspoly, 3-83

gsbply, 3-2
gsclrs, 3-12
gseply, 3-31
gsfatt, 3-41
gsfci, 3-43
gsfell, 3-45
gsfply, 3-4 7
gsfrec, 3-49
gspcls, 3-80

pixel block
gsrrst, 3-96
gsrsav, 3-98
gsxbly, 3-11 O

polyline conversion
gsccnv,3-8
gsecnv,3-24

query
gsevds,3-32
gseven,3-34
gsevwt, 3-36
gsqdsp,3-86
gsqfnt, 3-88
gsqgtx, 3-90
gsqlext, 3-92
gsqloc, 3-94

text
gsgtat, 3-51
gsgtxt, 3-55
gsqfnt, 3-88
gsqgtx, 3-90
gstatt, 3-101
gstext, 3-1 05
gsxtat, 3-119
gsxtxt, 3-123

terminating, 3-104
text

annotated
setting attributes, 3-101

example program, 4-21, 4-39
writing, 3-105

example program, 4-21, 4-39
geometric

setting attributes, 3-51
example program, 4-36

writing, 3-55
example program, 4-36

Xtext
setting attributes, 3-119

example program, 4-49
writing, 3-123

example program, 4-49

valuator granularity, setting, 3-109
wait for input event, 3-36

example program, 4-19
writing

annotated text, 3-105
example program, 4-21, 4-39

geometric text, 3-55
example program, 4-36

Xtext, 3-123
example program, 4-49

Xtext
setting attributes, 3-119

example programs, 4-49
writing, 3-123

example programs, 4-49
xtex.c example program, XGSL, 4-49

z
zbuffer subroutine, GL, 1-400
zbuffer1 .c example program, GL, 2-112
zclear subroutine, GL, 1-402
zdraw subroutine, GL, 1-403
zfunction subroutine, GL, 1-404
zoing.c example program, GL, 2-114
zsource subroutine, GL, 1-406
zwritemask subroutine, GL, 1-407

Index X-23

X-24 Graphics Subroutines Reference

Reader's Comment Form

AIX Calls and Subroutines Reference for IBM RISC System/6000
SC23-2198-00

Please use this form only to identify publication errors or to request changes in
publications. Your comments assist us in improving our publications. Direct any requests for
additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may
use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error), check this
box and do not include your name and address below. If your comment is applicable, we
will include it in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved
remarketer to request additional publications.

Please print

Date-----

Your Name--
Company Name------------------------------------

Mailing Address -----------------------------

Phone No.------------------------
Area Code

No postage necessary if mailed in the U.S.A

Ill II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

--r---·
1 PIO:I PIO:I
I
I
I
I

~
:.:::;
C> c
.2
c(
'tJ

;f
0
'S
0

--r---·
edel. pue PIO:I a1de1s lON oo asea1d adel. pue p10:1

--------- ----- - -- - ---- - ------- · ---- ·-
:C: IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2198-00

'
5[23-2 198- 00

