

First Edition (March 1990)

This edition of the AIX Files Reference for IBM RISC System/6000 applies to IBM AIX Version 3 for RISC
System/6000 and the following Licensed Programs:

IBM AIX Network Management/6000
IBM AIX System Network Architecture Services/6000
IBM AIX 3278/79 Emulation/6000
IBM AIX 3270 Host Connection Program/6000
IBM AIX Personal Computer Simulator/6000

This edition applies to all subsequent releases of these products until otherwise indicated in new releases or
technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL 11AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
. accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements or changes to the products and the programs described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided 11as is" without express or implied
warranty.

© Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

Permission to use, copy, modify, and distribute this program and its documentation for any
purpose and without fee is hereby granted, provided that this copyright, permission, and
disclaimer notice appear on all copies and supporting documentation; the name of M.l.T. or Digital
not be used in advertising or publicity pertaining to distribution of the program without specific
prior permission. M.l.T. and Digital makes no representations about the suitability of this software
for any purpose. It is provided Has is" without express or implied warranty.

However, the following copyright notice protects this documentation under the Copyright laws of
the United States and other countries which prohibit such actions as, but not limited to, copying,
distributing, modifying, and making derivative works.

© Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.

© Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear on all copies and supporting
documentation, the name of Carnegie Mellon and Stanford University not be used in advertising or publicity
pertaining to distribution of the program without specific prior permission, and notice be given in supporting
documentation that copying and distribution is by permission of Carnegie Mellon and Stanford University.
Carnegie Mellon and Stanford University make no representations about the suitability of this software for
any purpose. It is provided Has is" without express or implied warranty.

© Copyright Carnegie Mellon, 1988. All rights reserved.

© Copyright Stanford University, 1988. All rights reserved.

© Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

The Network File System (NFS) was developed by Sun Microsystems, Inc.

© Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.

IBM is a registered trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or
disclosure is subjectto restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

ADM is a trademark of Lear Siegler, Inc.

AIX is a trademark of International Business Machines Corporation.

AIX/RT is a trademark of International Business Machines Corporation.

AIXwindows is a trademark of International Business Machines Corporation.

BSC is a trademark of BusiSoft Corporation.

Connect is a trademark of INTERACTIVE Systems Corporation.

DEC is a trademark of Digital Equipment Corporation.

DEC VT100, VT220, VT320, and VT330 are trademarks of Digital Equipment Corporation.

Emacs is a trademark of Unipress Software, Inc.

GL is a trademark of Iris Graphics Library.

IBM is a registered trademark of International Business Machines Corporation.

IN/ix is a trademark of INTERACTIVE Systems Corporation.

Sun OS and NFS are trademarks of Sun Microsystems, Inc.

OSF and OSF/Motif are trademarks of Open Software Foundation, Inc.

PAL is a trademark of International Business Machines Corporation.

PC XT is a trademark of International Business Machines Corporation.

Personal Computer AT and AT are trademarks of International Business Machines
Corporation.

POSIX is a trad~mark of the Institute of Electrical and Electronic Engineers (IEEE).

RISC System/6000 is a trademark of International Business Machines Corporation.

RT is a trademark of International Business Machines Corporation.

SNA 3270 is a trademark of International Business Machines Corporation.

Systems Application Architecture is a trademark of International Business Machines
Corporation.

The Source is a service mark of Source Telecomputing Corp., a subsidiary of The Reader's
Digest Assn., Inc.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

VAX is a trademark of Digital Equipment Corporation.

WYSE is a trademark of the WYSE Corporation.

WY-50 is a trademark of the WYSE Corporation.

X/OPEN is a trademark of X/OPEN Company Limited.

3270 Personal Computer AT is a trademark of International Business Machines Corporation.

Trademarks and Acknowledgements V

3270 Personal Computer AT/G is a trademark of International Business Machines
Corporation.

3270 Personal Computer AT/GX Personal Telephone Manager is a trademark of
International Business Machines Corporation.

Note to Users
The term 11network information service (NIS)" is now used to refer to the service formerly
known as 11Yellow Pages." The functionality remains the same; only the name has changed.
The name 11Yellow Pages" is a registered trademark in the United Kingdom of British
Telecommunications pie, and may not be used without permission.

Legal Notice to Users Issued by Sun Microsystems, Inc.
11Yellow Pages" is a registered trademark in the United Kingdom of British
Telecommunications pie, and may also be a trademark of various telephone companies
around the world. Sun will be revising future versions of software and documentation to
remove references to 11Yellow Pages."

Vi AIX Files Reference

About This Book

This book, AIX Files Reference for IBM RISC System/6000, describes the files used by the
Advanced Interactive Executive Operating System (AIX) for use on the RISC System/6000.
The various system files, file formats, special files, header files, and directories used by AIX,
its subsystems, and certain optional program products are covered in the Files Reference.

Who Should Use This Book
This book is intended for system managers and experienced C programmers as well as end
users with some knowledge of the AIX operating system. Readers of this book should have
a basic understanding of the workings of the AIX operating system, its components, and any
related subsystems for which file information is provided.

How to Use This Book

Overview of Contents
This book contains sections on the system files, special files, header files, and directories
that are provided with the operating system and optional program products. File formats
required for certain files that are generated by the system or an optional program are also
presented in a section of this book.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories,
and other items whose names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to the AIX files:

• IBM RISC System/6000 Quick Start Kit, Order Number SC23-2195.

• AIX General Concepts and Procedures for IBM RISC System/6000, Order Number
SC23-2202.

• AIX Editing Concepts and Procedures for IBM RISC System/6000, Order Number
SC23-2212-0.

About This Book Vii

• AIX Communication Concepts and Procedures for IBM RISC System/6000, Order
Number SC23-2203.

• AIX Commands Reference for IBM RISC System/6000, Order Number SC23-2199.

• AIX Calls and Subroutines Reference for IBM RISC System/6000, Order Number
SC23-2198.

• AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

• AIX User Interface Programming Concepts for IBM RISC System/6000, Order Number
SC23-2209.

• AIX Communications Programming Concepts for IBM RISC System/6000, Order Number
SC23-2206.

• AIX Graphics Programming Concepts for IBM RISC System/6000, Order Number
SC23-2208.

• IBM 3270 Connection Technical Reference, Order Number GA23-0339.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2200.

Viii AIX Files Reference

Contents

Chapter 1. AIX System Flies • • • • . • • . . • . • • • • • • • • • • • • • • • • . • • . • • • . • • . • . 1-1
backup File . 1-2
bincmds File . 1-5
config File . 1-7
dir File . 1-11
distfile File . 1-12
dumpdates File . 1-15
emaltdefs.p File . 1-16
emdefs.p File . 1-17
environ File . 1-18
environment File . • 1-20
eqnchar File . 1-22
events File . 1-23
filesystems File . 1-25
fs File . 1-28
gps File . 1-32
/etc/group File . 1-35
/etc/security/group File . 1-37
inittab File . 1-39
inode File . 1-42
limits File . 1-46
login. cfg File . 1-48
mkuser.default File . 1-51
objects File . 1-52
/etc/passwd File . 1-53
/etc/security/passwd File . 1-55
PC Simulator ttylog File . 1-57
plot File . 1-64
qconfig File . 1-66
streamcmds File . 1-69
sysck.cfg File ·.. 1-71
terminfo File . 1-73

Types of Capabilities . 1-74
List of Capabilities . 1-7 4
Preparing Descriptions . 1-80
Basic Capabilities . 1-81
Parameterized Strings . 1-82
Cursor Motions . 1-83
Area Clears . 1-84
Insert/Delete Line . 1-84
Highlighting, Underlining, and Visual Bells . 1-85
Keypad . 1-86

user File . 1-91
vfs File . 1-95
vgrindefs File . 1-97

Contents ix

BNU audit File .. .
BNU Command (C. *) Files .. .
BNU Data (D.*) Files
BNU errors File .. .
BNU Execute (X.*) Files .. .
BNU Foreign File•............................
BNU remote.unknown File .. .
BNU Temporary (TM.*) Files
BNU xferstats File
HCON e789_ctbl File .. .
HCON e789_ktbl File .. .
Mail aliases File
Mail sendmail.cf File
MH .maildelivery File
MH .mh_profile File .. .
MH mhl.format File .. .
MH mtstailor File .. .
NFS bootparams File .. .
NFS exports File .. .
NFS networks File ... · .. .
NFS rpc File
NFS xtab File .. .
NIS ethers File
NIS netgroup File
NIS netmasks File
NIS publickey File
NIS updaters File
SNMP smpl.pwinput File .. .
SNMP snmptrap.dest File
TCP/IP rc.tcpip File .. .

Chapter 2. File Formats•............. · .•......•
File Formats Overview
acct File Format ~
a.out File Format .. .

Access Routines for the a.out File
File Header Section of the a.out File
Optional Auxiliary Header for the a.out File
Section Headers for the a.out File
Raw Data Sections for the a.out File
Relocation Information for the a.out File
Line Number Information for the a.out File
Special Data Sections for the a.out File

Loader Section
Debug Section
Typchk Section
Exception Section

X AIX Files Reference

1-99
1-100
1-103
1-104
1-105
1-108
1-109
1-110
1-111
1-112
1-113
1-114
1-115
1-122
1-126
1-131
1-134
1-136
1-137
1-139
1-140
1-141
1-142
1-143
1-144
1-145
1-146
1-147
1-150
1-152

2-1
2-2
2-5
2-7
2-8
2-9

2-10
2-11
2-12
2-13
2-15
2-15
2-16
2-18
2-18
2-19

Symbol Table for the a.out File
Symbol Table Storage Classes (n_sclass)
Storage Classes by Usage and Symbol Value Classification
Symbol Values (n_value)
Section Numbers (n_scnum)
Section Numbers and Storage Classes
Symbol Table Implementation Specifics

Symbol Table Auxiliary Entry Formats for the a.out File
Csect (External) Auxiliary Entry
Function Auxiliary Entry .. .
File Name Auxiliary Entry

dbx Stabstring Grammar (C, COBOL, Pascal, FORTRAN, and Modula-2)
String Table for the a.out File

ar File Format .. .
audit File Format .. .
core File Format .. .
cpio File Format .. .
nterm File Format
profile File Format
sccsfile File Format .. .
troff File Format .. .
troff Font File Format .. .
utmp, wtmp, failedlogin File Format
ATE ate.def File Format .. .
ATE Dialing Directory File Format
BNU Devices File Format
BNU Dialcodes File Format
BNU Dialers File Format .. .
BNU Maxuuscheds File Format
BNU Maxuuxqts File Format
BNU Permissions File Format

LOGNAME and MACHINE Entries
Combined LOGNAME and MACHINE Entries
Format of OptionNalue Pairs
LOGNAME Entry
MACHINE Entry .. .
CALLBACK Option .. .
COMMANDS Option
NOREAD and NOWRITE Options
READ and WRITE Options .. .
REQUEST Option·
SENDFILES Option
VALIDATE Option
Providing Default Access to Remote Systems
Providing Less Restricted Access to Remote Systems
Combining LOGNAME and MACHINE Entries
Allowing Access to Unnamed Systems

BNU Poll File Format .. .
BNU Systems File Format .. .

Contents

2-20
2-21
2-22
2-24
2-25
2-25
2-26
2-27
2-27
2-28
2-28
2-29
2-38
2-39
2-42
2-44
2-46
2-48
2-52
2-53
2-57
2-60
2-63
2-65
2-71
2-73
2-80
2-82
2--87
2-88
2-89
2-90
2-91
2-91
2-93
2-94
2-96
2-96
2-97
2-97
2-98
2-99
2-99

2-100
2-100
2-101
2-101
2-104
2-106

xi

EM78 Customization File Format
HCON e789_ctbl.p File Format
HCON e789_ktbl.p File Format
HCON func_names File Format
HCON keynames File Format .. .
HCON nls_names File Format
MH Alias File Format
PC Simulator Startup File Format
TCP/IP .3270keys File Format
TCP/IP Domain Cache File Format
TCP/IP Domain Data File Format
TCP/IP Domain Local Data File Format
TCP/IP Domain Reverse Data File Format
TCP/IP ftpusers File Format
TCP/IP gated.cont File Format

Controlling Trace Output .. .
Specifying the Level of Trace Output

Selecting Routing Protocols
Using the gated Daemon with the RIP Protocol
Using the gated Daemon with the HELLO Protocol
Using the gated Daemon with the EGP Protocol

Managing Routing Information
Specifying RIP or HELLO Gateways to Which the gated Daemon Listens ..
Specifying Gateways for the gated Daemon to Send RIP or

HELLO Information
Turning Routing Protocols On and Off by Interface
Stopping the gated Daemon from Timing Out Interfaces
Specifying an Interface Metric
Providing Hooks for Fallback Routing
Specifying Information to Be Ignored
Specifying Network or Host Information to Which the gated Daemon Listens
Restricting Announcements of Networks and Hosts
Defining a Default EGP Metric
Defining a Default Gateway
Installing a Static Route .. .
Restricting EGP Announcements
Specifying Invalid Networks

Managing Autonomous System Routing
Validating Networks from an Independent (Autonomous) System
Controlling Exchange of Routing Information Between Autonomous Systems

Setting Up a gated.cont File for EGP Routing
TCP/IP gateways File Format .. .
TCP/IP hosts File Format
TCP/IP hosts.equiv File Format
TCP/IP hosts.lpd File Format .. .
TCP/IP inetd.conf File Format .. .
TCP/IP named.boot File Format

Xii AIX Files Reference

2-114
2-119
2-123
2-125
2-127
2-129
2-131
2-134
2-136
2-138
2-140
2-144
2-147
2-150
2-151
2-151
2-151
2-152
2-152
2-152
2-153
2-156
2-156

2-156
2-156
2-156
2-157
2-157
2-157
2-158
2-158
2-159
2-160
2-160
2-160
2-161
2-161
2-161
2-162
2-162
2-164
2-167
2-169
2-170
2-171
2-174

TCP/IP .netrc File Format
TCP/IP networks File Format .. .
TCP/IP protocols File Format .. .
TCP/IP re.net File Format
TCP/IP resolv.conf File Format
TCP/IP .rhosts File Format .. .
TCP/IP services File Format
TCP/IP Standard Resource Record Format

Field Definitions .. .
Special Characters .. .
Special Types of Lines
Resource Record Types .. .

Start of Authority Record
Name Server Record .. .
Address Record .. .
Host Information Record
Well-Known Services Record
Canonical Name Record
IN-ADDA.ARPA Record
Domain Name Pointer Record
Gateway PTR Record
Mailbox Record .. .
Mail Rename Name Record
Mailbox Information Record
Mail Group Member Record
Mail Exchanger Record .. .

tip phones File Format
tip remote File Format .. .
tip .tiprc File Format

Chapter 3. Special Files •.•••••••••••••.••••••••••••.••••••••.••.•.•
Special Files Overview
3270cn Special File .. .
bus Special File .. .
cd Special File
console Special File
dump Special Files .. .
entn Special File .. .
error Special File .. .
fd Special File .. .
hft Special File

HFT Physical and Virtual Terminals
HFT Initial State .. .
HFT Virtual Terminal Modes
H FT Operations .. .
HFT Query ioctl Operations

Get Virtual Terminal ID (HFTGETID)
Query 1/0 Error (HFQERROR)
Query Device (HFTQDEV)

Contents

2-178
2-180
2-181
2-182
2-185
2-187
2-188
2-190
2-190
2-191
2-191
2-192
2-192
2-193
2-193
2-194
2-194
2-195
2-195
2-196
2-196
2-197
2-197
2-197
2-198
2-198
2-200
2-202
2-206

3-1
3-2
3-4

3-11
3-12
3-14
3-17
3-18
3-21
3-22
3-25
3-25
3-25
3-26
3-26
3-26
3-27
3-27
3-27

xiii

Query (HFQUERY) . 3-28
Query Physical Display IDs Command . 3-28
Query Physical Device Command . 3-29
Query Mouse Command, Query Tablet Command 3-31
Query Lighted Programmable Function Keys (LPFKs) Command 3-32
Query Dials Command . 3-32
Query Presentation Space Command . 3-32
Query Software Keyboards Command............................ 3-33
Query HFT Device Command . 3-34
Query Keyboard Status Command . 3-34
Query Retract Device ID Command . 3-35

Query Screen Manager (HFTQSMGR) . 3-35
HFT Special ioctl Operations . 3-36

Reconfigure (HFRCONF) . 3-36
Set Echo (HFTSECHO) and Break Maps (HFTSBREAK) 3-37
Set Keyboard Map (HFSKBD) . 3-37

HFMAPCHAR and HFMAPNONSP . 3-38
HFMAPSTR . 3-38
HFMAPFUNC . 3-39

Enable and Disable Sound Signal (HFESOUND and HFDSOUND) 3-40
Enter and Exit Monitor Mode (HFSMON and HFCMON) 3-40
Control Screen Manager (HFTCSMGR)............................. 3-40
Enable Software Keyboard (HFESWKBD) . 3-41
Change Locator (HFCHGLOC) . 3-41

HFT read Operations . 3-42
Untranslated Keyboard Input . 3-43
Input Device Report . 3-43

HFT General write Operations . 3-45
Set Protocol Modes . 3-45
Set Keyboard LEDs . 3-47
Set LPFKs and Set Dial Granularities . 3-47
Write Sound ·................ 3-47
Cancel Sound . 3-48
Change Physical Display . 3-48

HFT KSR write Operations . 3-49
Set KSR Color Map . 3-49
Change Fonts ~ . 3-49
Redefine Cursor Representation . 3-49

HFT MOM write Operations . 3-50
Screen Request . 3-50
Input Ring Buffer Definition . 3-51
Screen Release . 3-51

hiaO Special File . 3-53
Ip Special File . 3-57
lvdd Special File . 3-61
mem Special File and kmem Special File . 3-65
mpqn Special File . 3-68
null Special File . 3-71
nvram Special File . 3-72

XiV AIX Files Reference

pty Special File . 3-75
rhdisk Special File . 3-78
rmt Special File . 3-81
scsi Special File . 3-85
tokn Special File . 3-86
trace Special File . 3-89
tty Special File . 3-90

Chapter 4. Header Files • • • . 4-1
Header Files Overview . 4-2
dirent.h File . 4-5
fcntl. h File · . 4-6
flock.h File.. 4-8
fullstat.h File . 4-1 O
limits.h File . 4-12
math.h File . 4-15
mode.h File . 4-17
param.h File . 4-20
poll.h File . 4-21
sem.h File . 4-23
sgtty.h File . 4-27

Basic sgtty.h Modes . 4-27
Basic ioctls . 4-29
Uppercase Terminals . 4-31
Special Characters . 4-31
Local Mode . 4-32
Local Special Characters . 4-32

srcobj.h File . 4-34
stat.h File ·. 4-36
statfs.h File . 4-39
termio.h File . 4-41
termios.h File . 4-50

Modem Control Operations . 4-59
types.h File . 4-61
unistd.h File . 4-63
utmp.h File . 4-65
values.h File . 4-67
vmount.h File . 4-69
HCON fxconst.inc File... 4-71
HCON fxfer.h File . 4-72
HCON fxfer.inc File . 4-74
HCON fxhfile.inc File . 4-75
HCON g32_api.h File .. 4-76
HCON g32const.inc File . 4-80
HCON g32hfile.inc File . 4-82
HCON g32_keys.h File . 4-84
HCON g32keys.inc File . 4-86
HCON g32types.inc File . 4-88

Contents XV

SNA luxsna.h File
Structures
Constant Definitions
Request Code Constants

Sockets in.h File .. .
Sockets nameser.h File
Sockets netdb.h File
Sockets resolv. h File
Sockets socket.h File .. .
Sockets socketvar.h File .. .
Sockets un.h File
X.25 x25sdefs.h File

Chapter 5. Directories ...•..
BNU /etc/locks Directory .. .
BNU /usr/spool/uucp Directory
BNU /usr/spool/uucp/.Admin Directory
BNU /usr/spool/uucp/.Corrupt Directory
BNU /usr/spool/uucp/.Log Directories
BNU /usr/spool/uucp/.Old Directory
BNU /usr/spool/uucp/.Status Directory
BNU /usr/spool/uucp/SystemName Directories
BNU /usr/spool/uucp/.Workspace Directory
BNU /usr/spool/uucp/.Xqtdir Directory
BNU /usr/spool/uucppublic Directory
HCON /usr/lib/hcon Directory .. .
Mail /usr/spool/mqueue Directory

XVi AIX Files Reference

4-90
4-90

4-112
4-115
4-116
4-118
4-121
4-124
4-126
4-128
4-132
4-133

5-1
5-2
5-3
5-4
5-5
5-6
5-8
5-9

5-10
5-11
5-12
5-13
5-14
5-17

Chapter 1. AIX System Files

Chapter 1. AIX System Files 1-1

backup

backup File

Purpose
Copies the file system onto temporary storage media.

Description
A backup of the file system provides protection against substantial data loss due to
accidents or error. The backup command writes file system backups, and conversely, the
restore command reads file system backups. The backup contains several different tY,pes of
header records along with the data in each file that is backed up.

Header Records
The different types of header records for the AIX Version 3 by name backups are:

FS_VOLUME

FS_NAME_X

FS_END

Exists on every volume and holds the volume label.

Holds a description of a file backed up by name.

Indicates the end of the backup. This header appears at the end of
the last volume.

The different types of header records for the AIX Version 3 by i-node and name backups are:

TS_ TAPE

TS_BITS

TS_CLRI

TS_INODE

TS_ADDR

TS_END

Exists on every volume and holds the volume label.

Describes the directory structure.

Describes the unused i-node numbers on the backup system.

Describes the file.

A continuation of the preceding file.

Indicates the end of the backup.

The descriptions of the fields of the header structure for by i-node backups are:

c_type The header type.

c_date The current dump date.

c_ddate The file system dump date.

c_volume The volume number.

c_tapea The number of the current header record.

c_inumber The inode number on this record.

c_magic The magic number.

c_checksum The value that would make the record sum to the CHECKSUM value.

bsd_c_dinode A copy of the bsd inode as it appears on the bsd filesystem.

c_count The number of characters in the c_addr field.

1-2 AIX Files Reference

backup

c_addr

xix_flag

A character array that describes the blocks being dumped for the file.

Set to the XIX_MAGIC value if doing the backup of an AIX Version 3 file
system.

xix_dinode The real dinode from the AIX Version 3 file system.

Each volume except the last ends with a tapemark (read as an end of file). The last volume
ends with a TS_END record and then the tapemark.

For more information on AIX Version 2 by name and by i-node header formats please
consult your Version 2 documentation.

By Name Format
The format of an AIX Version 3 by name backup is:

FS_VOLUME
FS_NAME_X (before each file)
File Data
FS_END

The AIX Version 3 header formats for by name backups are not the same as the Version 2
header formats.

By i-node Format
The format of an AIX Version 3 by i-node backup follows:

TS_ VOLUME
TS_BITS
TS_CLRI
TS_INODE
TS_END

A detailed description of the by i-node header file follows:
union u_spcl {

char dummy[TP_BSIZE];
struct s_spcl {

int c_type;
time t c_date;
time t c_ddate;
int c_volume;
daddr t c_tapea;
ino_t c_inumber;
int c_magic;
int c_checksum;

/* 4 */
/* 8 * I
/* 12 */
/* 16 */
/* 20 */
/* 24 */
/* 28 */
/* 32 */

struct bsd_dinode bsd_c_dinode; /* 160 */
int c_count; /* 164 */
char c_addr[TP_NINDIR]; /* 676 */
int xix_flag; I* 680 */
struct di node xix_dinode; /* 800 */

} s_spcl;
} u_spcl;

Chapter 1 . AIX System Files 1-3

backup

Constants
Constants used to distinguish these different types.of headers and define other variables
are:

#define OSF_MAGIC
#define NFS_MAGIC
#define XIX_MAGIC
#define BYNAME MAGIC
#define PACKED MAGIC

#define CHECKSUM
#define TP_BSIZE
#define TP_NINDIR

#define FS_VOLUME
#define FS END 7
#define FS_NAME_X
#define SIZSTR 16
#define DUMNAME 4

#define FXLEN

(int)60011
(int)60012
(int)60013
(int)60011
(int)60012

/* New File System Magic */
/* Magic number for AIXv3 */
/* 2.x magic number */2.x
/* 2.x magic number for
Huffman packed format*/

(int)84446 /* checksum magic number */
1024 /* tape block size */
(TP BSIZE/2)/* number of indirect pointers

- in an inode record */
0

10

80

/* denotes a volume header
/* denotes an end of backup */
/* denotes file header */
/*string size in volume header
/* dummy name length for
FS NAME X */
/*-length of file index */

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

Related Information
The filesystems file format.

The backup command, pack command, restore command.

The Backup Overview in General Concepts and Procedures provides information on
different methods of backing up, restoring process, different types of backup media, and
guidelines for backup policies.

The File Systems Overview in General Concepts and Procedures explains file system types,
management, structure, and maintenance.

1-4 AIX Files Reference

bincmds

bincmds File

Purpose
Contains the shell commands that process audit bin data.

Description

Security

Examples

The /etc/security/audit/bincmds file is an ASCII template file that contains the backend
commands that process audit bin file records. The path name of this file is defined in the bin
stanza of the /etc/security/audit/config file.

This file contains command lines each composed of one or more commands with input and
output that can be piped together or redirected. Although the commands usually are one or
more of the audit system commands (the auditcat command, the auditpr command, the
auditselect command), this is not a requirement.

As each bin file is filled by the kernel, the auditbin daemon invokes each command to
process the bin records, substituting the names of the current bin file and the audit trail file
for any $trail and $bin strings in the commands.

The commands are executed by the trusted shell (TSH). This means that the path names in
the commands must be absolute, and that environment variable substitution may be limited.
See the discussion of the tsh command for more information.

Access Control: This file should grant read (r) access to the root user and members of the
audit group and grant write (w) access only to the root user.

1 . To compress audit bin records and append them to the system audit trail file, include the
following line in the /etc/security/audit/bincmds file:

/etc/auditcat -p -o $trail $bin

When the command runs, the names of the current bin file and the system audit trail file
are substituted for the $bin and $trail strings. Records are compressed and appended to
the /audit/trail file.

2. To select the audit events from each bin file that are unsuccessful because of
authentication or privilege reasons, pack the audit events in a bin, and append the events
to the /audit/trail. violations file, you must include the following line in the
/etc/security/audit/bincmds file:

/etc/auditselect -e "result == fail auth I I \
result == fail priv" $bin I I \
/etc/auditcat =p -o \
/audit/trail.violations

3. To create a hard copy audit log of all local user authentication audit events, include the
following line in the /etc/security/audit/bincmds file:

/etc/auditselect -e "event == USER Login I I \
event = USER_SU" $bin I I \ -
/etc/auditpr -t2 -v >/dev/lpr3

Adjust the printer name to fit your requirements.

Chapter 1. AIX System Files 1-5

bincmds

Implementation Specifics

Files

This file is part of AIX Base Operating System (BOS) Runtime.

/etc/security laud it/bi ncmds

/etc/security laud it/confi g

/etc/security/audit/events

/etc/security/audit/objects

/etc/security/audit/streamcmds

Specified the path to the file.

Contains audit system configuration information.

Contains the audit events of the system.

Contains information about audited objects ·
(files).

Contains auditstream commands.

Related Information
The audit command, auditbin daemon, auditcat command, auditpr command, auditselect
command, tsh command.

To see the steps you must take to establish an Auditing System, refer to How to Set Up an
Auditing System in General Concepts and Procedures.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-6 AIX Files Reference

config

config File

Purpose
Contains audit system configuration information.

Description

start Stanza

bin Stanza

The /etc/security/audit/config file is an ASCII stanza file that contains audit system
configuration information. This file contains five stanzas: start, bin, stream, classes, and
users.

The start stanza contains the attributes used by the audit start command to initialize the
audit system. The format follows:

start:
binmode = off I on I panic
streammode = off I on

The attributes are defined as follows:

bin mode Controls whether bin collection is used.

off Bin collection is not used. This is the default value.

on Bin collection is used. This value starts the auditbin daemon.

panic Bin collection is used. This value starts the auditbin daemon. If
an audit record cannot be written to a bin, the kernel shuts down
the operating system. This mode should be specified for
conditions during which the system must be working properly.

streammode Controls whether stream data collection, as defined in the
/etc/security/streamcmds file, is configured at the start up of the audit
system.

off Stream data collection is not enabled.

on Stream data collection is enabled. This is the default value.

If neither collection mode is defined or if both modes are in the off state, subsystem
configuration is done.

The bin stanza contains the attributes used by the auditbin daemon to set up bin mode
auditing. The format follows:

bin:
trail = PathName
binl = PathName
bin2 = PathName
binsize = DecimalString
cmds = PathName

Chapter 1. AIX System Files 1-7

config

Bin mode parameters are defined as follows:

trail

bin1

bin2

binsize

cmds

Specifies the path name of the audit trail file. When this is defined, the
auditbin daemon can substitute the path name of the audit trail file for the
$trail string in the backend commands that it calls.

Specifies the path name that the auditbin daemon uses for its primary bin file.
If the $bin string is the parameter value, the auditbin daemon substitutes the
name of the current bin file.

Specifies the path name that the auditbin daemon uses for its secondary bin
file. If the $bin string is the parameter value, the auditbin daemon substitutes
the name of the current bin file.

Specifies a decimal integer string that defines the threshold size (in bytes) of
each audit bin.

Specifies the path name of the file that contains the audit backend commands
called by the auditbin daemon. The file contains command lines, each
composed of one or more backend commands with input and output that can
be piped together or redirected. See the description of the
/etc/security/audit/bincmds file for more information.

stream Stanza
The stream stanza contains the attributes that the audit start command uses to set up initial
stream mode auditing. The format follows:

crnds = PathName

The PathName parameter identifies the file that contains the stream commands that are
started at the initialization of the audit system. These commands can use shell piping and
redirection, but no substitution of path names is performed on $trail or $bin strings.

classes Stanza
The classes stanza defines audit classes (sets of audit events) to the system.

Each audit class name must be less than 16 characters and be unique on the system. The
system supports up to 32 audit classes, with ALL as the last class. The audit events in the
class must be defined in the /etc/security/audit/events file.

classes:
auditclass = auditevent, .•. auditevent

See Examples for an illustration.

users Stanza
The users stanza defines audit classes (sets of events) for each user. The classes are
defined to the operating system kernel.

The format is as follows:

users:
UserName = auditclass, •.• auditclass

1-8 AIX Files Reference

Security

Examples

con fig

Each UserName attribute must be the login name of a system user, and each auditclass
parameter should be defined in the classes stanza.

To establish the audit activities for a user, use the chuser command with the auditclasses
attribute.

Access Control: This file should grant read (r) access to the root user and members of the
audit group and write (w) access only to the root user.

Event

AUD_CONFIG_WR

Information

filename

1. To define audit classes, add a line to the classes stanza of the
/etc/security/audit/config file for each set of events that you want to assign to a class:

classes:
general = USER_SU,PASSWORD_Change,FILE_Unlink,

FILE_Link,FILE_Remove
system= USER_Change,GROUP_Change,USER_Create,

GROUP Create
init = login, USER_Logout

These specific audit events and audit classes are described in How to Set Up an Audit
System.

2. To establish the audit activities for each user, use the chuser command with the
auditclasses attribute for each user for whom you want to define audit classes (sets of
audit events):

chuser "auditclasses=general,init,system" dave

chuser "auditclasses=general,init" mary

These chuser commands create the following lines in the users stanza of the
/etc/security/audit/config file:

users:
dave=general,init,system
mary=general,init

This configuration includes dave, the administrator of the system, and mary, an
employee who updates information.

3. To enable the auditing system, turn on bin data collection, and turn off initial stream data
collection, add the following to the start stanza of the /etc/security/audit/config file:

start:
binmode = on
streammode = off

Chapter 1 . AIX System Files 1-9

config

4. To enable the auditbin daemon to set up bin collection, add attributes to the
bin stanza of the /etc/security/audit/config file:

start:
binmode = on

bin:
trail = /audit/trail
binl = /audit/binl
bin2 = /audit/bin2
binsize = 25000
cmds = /etc/security/audit/bincmds

The attribute values in the preceding stanza enable the audit system to collect bin files of
data and store the records in a long-term audit trail.

5. To enable the auditbin daemon to set up stream collection, add lines to the start stanza
and the stream stanza of the /etc/security/audit/config file:

start:
streammode = on

stream:
cmds = /etc/security/audit/streamcmds

Implementation Specifics

Files

This command is part of AIX Base Operating System (BOS) Runtime.

/etc/security/audit/config

/etc/security/audit/objects

/etc/security laud it/events

/etc/security/audit/bincmds

/etc/security/audit/streamcmds

Specifies the path to the file.

Contains information about audited objects.

Contains the audit events of the system.

Contains auditbin backend commands.

Contains auditstream commands.

Related Information
The audit command, auditbin daemon, chuser command.

The auditproc subroutine.

To see the steps you must take to establish an Auditing System, refer to How to Set Up an
Auditing System in General Concepts and Procedures.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-10 AIX Files Reference

dir

dir File

Purpose
Describes the format of a directory.

Description
A directory is a file that contains information and structures necessary to define a file
hierarchy. A file is interpreted as a directory by the system if it has the S_IFDIR file mode. All
modifications to the structure of a directory must be performed under control of the operating
system.

The AIX directory file format accommodates component names of up to 256 characters. This
is accomplished through the use of a variable-length structure to describe individual
directory entries. The structure of a directory entry is:

Note: This structure is an AIX file system specific data structure. It is recommended that file
system independent application programs use the file system independent direct
structure and its associated library support routines.

struct direct {
inc t
ushort
us ho rt
char

} ;

d_ino;
d_reclen;
d_namelen;
d_name[256];

By convention, the first two entries in each directory are. (dot) and .. (dot dot). The. (dot) is
an entry for the directory itself. The .. (dot dot) entry is for the parent directory. Within the
root (I) directory the meaning of .. (dot dot) is modified; because there is no parent
directory, the .. (dot dot) entry has the same meaning as the. (dot) entry.

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/usr/include/sys/dir.h The path to the dir.h header file.

Related Information
The fs file format, inode file format, dirent.h file format.

The stat command.

The opendir directory subroutines, readdir directory subroutines, telldir directory
subroutines, seekdir directory subroutines, closedir directory subroutines.

The File Systems Overview in General Concepts and Procedures explains file system types,
management, structure, and maintenance.

The Directories Overview in General Concepts and Procedures explains working with
directories and path names.

The Files Overview in General Concepts and Procedures provides information on working
with files.

Chapter 1 . AIX System Files 1-11

distfile

distfile File

Purpose
Contains directions for the rdist command.

Description
The distfile file contains commands for the rdist command. The rdist command maintains
identical copies of files on multiple hosts. The entries in the distfile file specify the files to be
copied, destination hosts to distribute files to, and operations to perform for updating files to
be distributed with the rdist command.

Each entry in the distfile file has one of the following formats:

VariableName = NameList

[Label:] SourceList -> DestinationList CommandList

[Label:] SourceList :: TimeStampFile CommandList

Define variables with the first format. Use the second format to distribute files to other hosts.
Use the third format to make lists of those files that have changed since a given date. The
Sourcelist variable specifies a list of files and directories on the local host for the rdist
command to use as the master copy for distribution. The Destinationlistvariable is the list of
hosts to receive copies of the files.

Each file in the list specified by the Sourcelist variable, indicated with the second format, is
updated if the file is out-of-date on the host being updated. Each file specified with the
Sourcelist variable, indicated with the third format, is updated if the file is newer than the
timestamp file. The third format is useful for restoring files.

Labels are optional and are used to identify a command for partial updates.

The rdist command treats new-line characters, tabs, and blanks as separators. Variables for
expansion begin with a$ (dollar sign) followed by a single character or a name enclosed in
{}(braces). Comments begin with a# (pound sign) and end with a new-line character.

Source and Destination List Format
The source and destination lists have the following format:

Name

or

(Zero or more names separated by blanks)

The shell metacharacters [,], {, }, (,), *, and ? (8 different characters) are recognized and
expanded on the local host in the same way as for the csh command. Keep them from being
expanded with a\ (backslash). The rdist command also expands the...,, (tilde) n the same
way as for the csh command, but does so separately on the local and destination hosts.

When the rdist command flag -w is used with a file name that begins with a tilde, everything
except the home directory is appended to the destination name. File names that do not
begin with a\ (backslash) or a (tilde) use the destination user's home directory as the root
directory for the rest of the file name.

1-12 AIX Files Reference

distfile

Command List

Examples

The command list consists of zero or more of the following commands:

install Options [Optiona/DestName];
The install command copies out-of-date files and directories. The rdist
command copies each source file or directory to each host in the destination
list. The available options as specified by the Options variable are the rdist
command flags-b, -h, -i, -R, -v, -w, and-y. These options only apply to
the files in the SourceList. When you use the -R flag, non-empty directories
are removed if they are symbolic links. The Optiona/DestName variable
renames files.

If no install command appears in the command list or the destination name
is not specified, the source file name is used. Directories in the path name
are created if they do no exist on the remote host. The login name used on
the destination host is the same as the local host unless the destination
name is of the format login@host.

notify NameList ;
The notify command mails the list of updated files to the listed names (the
NameList variable). If no @ (at sign) appears in the name, the destination
host is appended to the name (narne@host).

except NameList ;
The except NameList command causes the rdist command to update all
the files in the Sourcelist except for the files listed in the Namelist.

except PatternList ;
The except Pattern list command prevents the rdist command from
updating any files that contain a string that matches a member of the list
specified by the Pattern list variable.

special NameList "String" ;
The special command specifies shell commands (the "String' variable) to
be executed on the remote host after the file in the NameList variable is
updated or installed. If the Namelist variable is omitted, the shell
commands are executed for every file updated or installed. The shell
variable File is set to the current file name before the rdist command
executes the "String" variable. The 11 String'' variable can cross multiple
lines in the distribution file.

Multiple commands to the shell must be separated by a; (semicolon). Commands are
executed in the user's home directory on the host being updated. The special command
can be used to rebuild private databases after a program has been updated.

Examples of the format VariableNarne = NarneList
1. To indicate which hosts' files to update, enter a line similar to the following:

HOSTS =(rnatisse root@arpa)

In this example the variable name is HOSTS, defined to be rnatisse and root@arpa.
The rdist command will update files on the hosts rnatisse and root@arpa. This
variable could be used as a destination list.

Chapter 1. AIX System Files 1-13

distfile

2. To indicate a name to use as a value for a SourceList variable, enter a line similar to the
following:

FILES = (/bin /lib/usr/bin /usr/games
/usr/include/{*.h{stand,sys,vax*,pascal,machine}/*.h}

/usr/lib /usr/man/man? /usr/ucb /usr/local/rdist)

In this example, the varable name is FILES, defined as the files to be used for either the
SourceList varable.

3. To indicate which files to exclude from the updating process, enter a line similar to the
folowing:

EXLIB = (Mail.re aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sendmail.fc sendmail.hf sendmail.st uucp vfont)

In this example, the variable is EXLIB, defined as a list of files to exclude from the
updating process.

Examples of the format [label: 1 SourceList -> DestinationList CommandList

Files

4. To copy a source list of files to a destination list of hosts, enter a line similar to the
following:

${FILES} ->${HOSTS}
install -R
except /usr/lib/${EXLIB}
except /usr/games/lib ;
special /usr/lib/sendmail "/usr/lib/sendmail.bz"

The [label:] portion of the line is optional and is not shown here. The$ (dollar sign) and
the{} (braces) cause the names FILES, HOSTS, and EXLIB to be expanded into the
lists designated for them in the previous examples. The rest of the example comprises
the command list.

5. To use the [label:] portion, enter the line as follows:

srcsL:
/usr/src/bin -> arpa

except_pat (\e\e.o\e$ /SCCS\e$) ;

The label is srcsL: and and can be used to identify this entry for updating. The
/usr I src/bin file is the source to be copied and the host arpa is the destination of the
copy. The third line contains a command from the command list.

6. To use a timestamp file, enter a line similar to the following:

${FILES} :: stamp.Cory
notify root@cory

The$ (dollar sign) and {} (braces) cause the name FILES to be expanded into the list
designated for it in example 2. The time stamp file is stamp. cory. The last line is a
command from the command list.

$HOME/distfile
/tmp/rdist

Contains commands for the rdist command.
Temporary file for update lists.

Related Information
The csh command, rdist command, stat command.

1-14 AIX Files Reference

dumpdates

dumpdates File

Purpose
Describes the format of the dumpdates file.

Description
The dumpdates file holds date information for the backup command and rdump command.
The following is the dumpdates file structure:

struct idates
char
char
time t

{
id_name[MAXNAMLEN+3];
id_incno;
id_ddate;

The struct idates describes an entry in the /etc/dumpdates file where the backup
history is kept. The fields of the structure are:

id_name

id_incno

id_ddate

MAXNAMLEN

The name of the file system (referred to as the /dev/id_nam file).

The level number of the backup tape.

The date of the incremental backup in system format.

The maximum is 255.

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/etc/dumpdates Specifies the location of the command.

Related Information
The backup command, rdump command.

The Backup Overview in General Concepts and Procedures provides information on
different methods of backing up, restoring process, different types of backup media, and
guidelines for backup policies.

Chapter 1 . AIX System Files 1-15

emaltdefs.p

emaltdefs.p File

Purpose
Contains alternate default keyboard layout, screen colors, and field attribute modes used in
3278/79 Terminal Emu~ation.

Description
The /usr/lib/em78/emaltdefs.p file contains the alternate default settings used by the EM78
Emulation .program. (The standard default settings are defined in the
/usr/lib/em78/emdefs.p file.) The settings in the emaltdefs.p file affect the following
aspects of the emulation:

• Key Definitions

• Screen Colors

• Field Attribute Colors and Modes.

A copy of the emaltdefs.p file can be modified to change the key, color, or attribute settings.
The modified file is then installed using the emkey command. The emaltdefs.p file is an
example of an EM78 customization file.

Note: It is recommended that you edit a copy of the emaltdefs.p file and keep the original
intact in case you want to return the emulator settings to the original alternate
settings.

Implementation Specifics
This file is part of 3278/79 Emulation in AIX 3278/79 Emulation/6000.

File
/usr/lib/em78/emdefs.p Contains default keyboard settings for EM78.

Related Information
The em78 command, emkey command.

EM78 Customization File Format.

EM78 Overview for Managers in Communication Concepts and Procedures.

EM78 Field Attribute Codes in Communication Concepts and Procedures.

1-16 AIX Files Reference

emdefs.p

emdefs.p File

Purpose
Contains the default keyboard layout, screen colors, and field attribute modes used in
3278179 Terminal Emulation.

Description
The /usr/lib/em78/emdefs.p file contains the default settings used by the EM78 Emulation
program. These settings affect the following aspects of the emulation:

• Key Definitions

• Screen Colors

• Field Attribute Colors and Modes.

A copy of the emdefs.p file can be modified to change the key, color, or attribute settings.
The modified file is then installed using the emkey command. The emdefs.p file is an
example of an EM78 customization file.

Note: It is recommended that you edit a copy of the emdefs.p file and keep the original
intact in case you want to return the emulator settings to the default settings.

Implementation Specifics

File

This file is part of 3278/79 Emulation in AIX 3278/79 Emulation/6000.

/usr/lib/em78/emaltdefs.p Contains alternate configuration settings for EM78 which
can be used in place of the default settings in the
emdefs.p file.

Related Information
The em78 command, emkey command.

EM78 Customization file format.

EM78 Overview for Managers in Communication Concepts and Procedures.

Chapter 1 . AIX System Files 1-17

environ

environ File

Purpose
Defines the environment attributes for users.

Description

Security

Example

The /etc/security/environ file is an ASCII file that contains stanzas with the environment
attributes for users. Each stanza is identified by a user name and contains attributes in the
Attribute= Value form, with a comma separating the attributes. Each attribute is ended by a
new line character, and each stanza is ended by an additional new line character. For an
example of a stanza, see the Examples section.

If environment attributes are not defined, the system uses default values. Each user stanza
can have the following attributes:

usrenv Defines variables to be placed in the user's environment when the initial login
command is given or when the su command resets the environment. The value is
a list of comma-separated attributes. The default value is an empty string.

sysenv Defines variables to be placed in the user's protected state environment when the
initial login command is given or when the su command resets the environment.
These variables are protected from access by unprivileged programs so other
programs can depend on their values. The default value is an empty string.

For a description of environment variables, refer to the environment File.

Access to all the user database files should be through the system commands and
subroutines defined for this purpose. Access through other commands or subroutines may
not be supported in future releases.

The mkuser command creates a user stanza in this file. The initialization of the attributes
depends upon their values in the /etc/security/mkuser.default file. The chuser command
can reset these attributes, and the lsuser command can display them. The rmuser
command removes the entire record for a user. For programming information, see the
system calls in the Related Information section.

Access Control: This command should grant read (r) access to the root user, members of
the security group, and others consistent with the security policy for the system. Only the
root user should have write (w) access.

Auditing Events:

Event

S_ENVIRON_WRITE

Information

filename

1. A typical stanza looks like the following example for user dhs:

dhs:
usrenv = "MAIL =/u/spool/mail/dhs"
sysenv = "NAME = dhs@delos"

1-18 AIX Files Reference

environ

Implementation Specifics

Files

This command is part of AIX Base Operating System (BOS) Runtime.

/etc/security /environ

/etc/environment

/etc/group

/etc/security/group

/etc/passwd

etc/security /passwd

etc/security/user

etc/security/limits

/etc/security/mkuser.default

Specifies the path to the file.

Specifies the basic environment for all processes.

Contains the basic attributes of groups.

Contains the extended attributes of groups.

Contains the basic attributes of users.

Contains password information.

Contains the extended attributes of users.

Contains the process resource limits of users.

Contains the default values for user accounts.

Related Information
The chuser command, login command, lsuser command, mkuser command, rmuser
command, setsenv command, su command.

The getpenv subroutine, getuserattr subroutine, putuserattr subroutine, setpenv
subroutine.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

Chapter 1. AIX System Files 1-19

environment

environment File

Purpose
Sets up the user environment.

Description
When a new process begins, the exec subroutine makes an array of strings available that
have the form name=value. This array of strings is called the environment. Each name
defined by one of the strings is called an environment variable or shell variable.

The exec subroutine allows the entire environment to be set at one time. Ensure newly
created environment variables do not conflict with standard variables such as MAIL, PS1,
PS2, and IFS.

The Basic Environment
When you log in, a number of environment variables are automatically set by the system
before your login profile, .profile, is read. The following variables make up the basic
environment:

HOME

LANG

NLSPATH

LOCPATH

PATH

TZ

1-20 AIX Files Reference

The full path name of the users login or HOME directory. The login program
sets this to the name specified in the /etc/passwd file.

The locale name currently in effect. The LANG variable is set in the
/etc/profile file at installation time. The default value is
LANG=EN_US.pc850.

The full path name for message catalogs. The default is
/usr/lpp/msg/%L/%N: /usr/lpp/msg/prime/%N where %L is the value of
the LANG variable and %N is the catalog file name.

The full path name of the location of National Language Support tables. The
default is /usr/lib/nls and is set in the /etc/profile file. If the LOCPATH
variable is null, it assumes that the current directory contains the locale files.

The sequence of directories that commands such as the sh, time, nice and
nohup commands search when looking for a command whose path name is
incomplete. The directory names are separated by colons.

The time zone information. The TZ environment variable is set by the
/etc/profile file, the system login profile. The TZ environment variable has
the following format:

std off set dst offset , rule

std and dst Only std is required. If dst is not specified, summer time does
not apply. Uppercase and lowercase letters are allowed in the
designation. Any characters except a: (colon), digits,,
(comma), - (minus), + (plus) and ASCII NULL are allowed.
Three or more bytes are the designation for std (standard time
zone) and for dst (summer time zone).

offset Indicates the value added to local time to equal Coordinated
Universal Time. The offset variable has the following format:
hh[:mm[:ss]]

environment

The offset variable following the std variable is required. If the
offset variable does not follow the dst variable, summer time is
assumed to be one hour ahead of standard time. One or more
digits can be used; interpret as a decimal number. The hour
must be specified between O through 24. The mm (minutes)
variable and ss (seconds) variable are optional. If these
variables are present, they must be specified between O and
59. If the variable is preceded by a - (minus), the time zone is
east of the Prime Meridian. If the time zone variable is not
preceded by a - (minus), the time zone is assumed to be west
of the Prime Meridian. The time zone can be preceded by a +
(plus) to indicate it is west of the Prime Meridian.

rule The rule variable has the following format:

date/time,date/time

The date variable describes when the change from standard to
summer time occurs. The second date variable describes
when the change back to standard occurs. Each time variable
describes, in current local time, when the change is made.

The date variable has the following format:

Jn or Mm.n.d

Jn where J is the Julian day of the year. The n variable has
the value of 1 through 365. Leap days are not counted.

Mm.n.d where the m variable is the month, the n variable is
the week, and the d variable is the day of the month. Week
one is the first week when the d day occurs. Day zero is
Sunday.

The time variable has the same format as the offset variable
except no leading sign - (minus) or+ (plus) is allowed. The
default of the time variable is 02:00:00.

Implementation Specifics

Files

This command is part of AIX Base Operating System (BOS) Runtime.

/etc/profile

/etc/environment

$HOME/ .profile

/etc/passwd

Specifies variables to be added to the environment by the
shell.
Specifies the basic environment for all processes.

Specifies the environment for a specific users needs.

Specifies user I Os.

Related Information
The ctab command, env command, export command, login command, sh command, at
command, getty command.

The exec subroutine, getenv subroutine.

Chapter 1 . AIX System Files 1-21

eqnchar

eqnchar File

Purpose
Contains special character definitions for the eqn command and neqn command.

Description
The /usr/pub/eqnchar file contains the following troff command and nroff command
character definitions that are not ordinarily available on a phototypesetter or printer. These
definitions are primarily intended for use with the eqn command and neqn command. The
eqnchar file contains definitions for these characters.

The /usr/pub/cateqnchar file is device-independent and should produce output that looks
reasonable on any device supported by the troff command. You may link the
/usr/pub/eqnchar file to the /usr/pub/cateqnchar file.

The eqnchar file format can be used with the eqn command or neqn command and piped
to the troff command or nroff command. For example:

eqn /usr/pub/eqnchar [Flag(s) J [- J [File(s) J I troff [Flag(s) J

eqn /usr/pub/cateqnchar [Flag(s)] [-] [File(s)] I troff [Flag(s))

neqn /usr/pub/eqnchar [Flag(s)] [-] [File(s)] I nroff [Flag(s)]

Implementation Specifics

Files

This file is part of Formatting Tools in the Text Formatting System of AIX for RISC
System/6000.

/usr/pub/eqnchar

/usr/pub/cateqnchar

nroff and troff character definitions file.

Character definitions for troff-supported device.

Related Information
The eqn command, neqn command, nroff command, troff command, mm command, mmt
command, and mvt command.

1-22 AIX Files Reference

events

events File

Purpose
Contains information about system audit events.

Description

Security

Example

The /etc/security/audit/events file is an ASCII stanza file that contains information about
audit events. The file contains just one stanza, auditpr, which lists all the audit events in the
system. The stanza also contains formatting information that the auditpr command needs to
write an audit tail for each event.

Each attribute in the stanza is the name of an audit event, with the following format:

AuditEvent = FormatCommand

The format command can have the following parameters:

(empty)

printf Format

Program -i n Arg

The event has no tail.

The tail is formatted according to the string supplied for the
Format parameter. The %x symbols within the string indicate
places for the audit trail to supply data. See Example for an
illustration.

The tail is formatted by the program specified by the Program
parameter. The -i n parameter is passed to the program as its
first parameter, indicating that the output is to be indented by n
spaces. Other formatting information can be specified with the
Arg parameter. The audit event name is passed as the last
parameter. The tail is written to the standard input of the
program.

Access Control: This file should grant read (r) access to the root user and members of the
audit group, and grant write (w) access only to the root user.

To format the tail of an audit record for new audit events, such as FILE_Open,
PROC_create, and login, add format specifications like the following to the auditpr stanza
in the /etc/security/audit/events file:

auditpr:
FILE_Open = print£ "flags: %d mode: %d \

fd: %d name: %s"
PROC_Create = printf "child: %d"
login = print£ "name: %s"

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

Chapter 1. AIX System Files 1-23

events

Files
/etc/security /audit/events

/etc/security/audit/config

/etc/security/audit/objects

/etc/security laud it/bi ncmds

/etc/security/audit/streamcmds

Specifies the path to the file.

Contains audit system configuration information.

Contains information about audited objects.

Contains auditbin backend commands.

Contains auditstream commands.

Related Information
The auditpr command.

To see the steps you must take to establish an Auditing System, refer to How to Set Up an
Auditing System in General Concepts and Procedures.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-24 AIX Files Reference

filesystems File

Purpose

filesystems

Centralizes file system characteristics.

Description
A file system is a complete directory structure, including a root (I) directory and any
directories and files beneath it. A file system is confined to a logical volume. All of the
information about the file system is centralized in the filesystems file. Most of the file
system maintenance commands take their defaults from this file. The file is organized into
stanza names that are file system names and contents that are attribute-value pairs
specifying characteristics of the file system.

The fifesystems file serves two purposes:

• It documents the layout characteristics of the file systems.

• It frees the person who sets up the file system from having to enter and remember items
such as the device where the file system resides, because this information is defined in
the file.

File System Attributes
Each stanza names the directory where the file system is normally mounted. The file system
attributes specify all the parameters of the file system. The attributes currently used are:

account

boot

check

dev

mount

Used by the dodisk command to determine the file systems to be
processed by the accounting system. This value can be either the true or
false value.

Used by the mkfs command to initialize the boot block of a new file system.
This specifies the name of the load module to be placed into the first block
of the file system.

Used by the fsck command to determine the default file systems to be
checked. The true value enables checking while the false value disables
checking. If a number, rather than the true value is specified, the file system
is checked in the specified pass of checking. Multiple pass checking,
described in the fsck command, permits file systems on different drives to
be checked in parallel.

Identifies, for local mounts, either the block special file where the file system
resides or the file or directory to be mounted. System management utilities
use this attribute to map file system names to the corresponding device
names. For remote mounts, it identifies the file or directory to be mounted.

Used by the mount command to determine whether this file system should
be mounted by default. The possible values of the mount attribute are:

automatic Automatically mounts a file system when the system is
started. For example, in the sample file, the root file system
line is the mount=automatic attribute. This means that the
root file system mounts automatically when the system is
started. The true value is not used so that mount all does
not try to mount it, and umount all doesn't try to unmount

Chapter 1. AIX System Files 1-25

filesystems

Example

false

read only

true

it. Also, it is not the false value because certain utilities,
such as the ncheck command, normally avoid file systems
with a value of the mount=false attribute.

This file system is not mounted by default.

This file system is mounted as read-only.

This file system is mounted by the mount all command. It
is unmounted by the umount all command. The mount all
command is issued during system initialization to
automatically mount all such file systems.

nodename Used by the mount command to determine which node contains the remote
file system. If this attribute is not present, the mount is a local mount. The
value of the nodename attribute should be a valid node nickname. This
value can be overridden with the mount -n command.

size

type

vol

log

Used by the mkfs command for reference and for building the file system.
The value is the number of 512-byte blocks in the file system.

Used to group related mounts. When the mount -t String command is
issued, all of the currently unmounted file systems with a type attribute
equal to the String parameter are mounted.

Used by the mkfs command when initializing the label on a new file system.
The value is a volume or pack label using a maximum of 6 characters.

The device to which log data is written as this file system is modified. This is
only valid for journaled file systems.

The following is an example of a typical /etc/filesystems file:

Warning: Modifying this file can cause several effects to file systems.

*
* File system information
*
default:

vol = "AIX"
mount = false
check = false

/:
dev = /dev/hd4
vol = "root"
mount automatic
check = true
log = /dev/hd8

/u:
dev = /dev/hdl
vol = "u"
mount = true
check = true
log = /dev/hd8

1-26 AIX Files Reference

filesystems

/u/joe/1:
dev = /u/joe/1
nodename = vance
vf s = nf s

/usr:
dev = /dev/hd2
vol "usr"
mount true
check = true
log = /dev/hd8

/tmp:
dev = /dev/hd3
vol "tmp"
mount = true
check = true
log = /dev/hd8

Implementation Specifics

File

This file is part of AIX Base Operating System (BOS} Runtime.

/etc/filesystems

/etc/vfs

Lists the known file systems and defines their characteristics.

Contains descriptions of virtual file system types.

Related Information
The fs file format.

The backup command, df command, fsck command, mkfs command, mount command,
restore command, umount command, dodisk command.

The File Systems Overview in General Concepts and Procedures explains file system types,
management, structure, and maintenance.

The Mounting Overview in General Concepts and Procedures explains mounting files and
directories, mount points, and automatic mounts.

The Directories Overview in General Concepts and Procedures explains working with
directories and path names.

The Files Overview in General Concepts and Procedures provides information on working
with files.

The Logical Volume Storage Overview in General Concepts and Procedures explains the
Logical Volume Manager, physical volumes, logical volumes, volume groups, organization,
ensuring data integrity, and understanding the allocation characteristics.

Chapter 1. AIX System Files 1-27

f s

fs File

Purpose
Contains the format of a file system logical volume.

Description
A file system storage volume has a common format for vital information. The file system is
comprised of a number of 4096-byte logical blocks, however, the superblock contains a size
field that is maintained in 512 byte blocks.

A unique feature of the journaled file system is the implementation of file system meta-data,
as unnamed files that reside in that file system. For example, the disk i-nodes for any file
system are contained in the blocks allocated to the file described by the INODES_I i-node
number. The i-node number for the boot file is i-node O. Each of the following reserved
i-node numbers corresponds to a file system meta-data file and serves the purpose given:

SUPER_I

INODES_I

INDIR_I

INOMAP_I

ROOTDIR_I

DISKMAP_I

INODEX_I

INODEXMAP _I

Superblock file.

Disk i-nodes.

Indirect file blocks, double and single.

I-node allocation bit map.

Root directory i-node.

Block allocation bit map.

I-node extensions.

Allocation map for i-node extensions.

A volume is divided into a number of 4096-byte logical blocks. The 512-byte unit term refers
to a cluster of one or more such units.

The logical block O is unused and available to contain a bootstrap program or other
information. The logical block 1 is the file system superblock. The structure of a
native-format file system superblock follows:

/* The
*
*
*
*
*

*
*
*
*

following disk-blocks are formatted or reserved:

ipl block O - not changed by f ilesystem.

superblocks at block 1 (primary superblock)
and block 31 (secondary superblock)
the secondary super-block location is
likely to be on a different disk-surf ace
than the primary super-block. both blocks
are allocated as blocks in ".superblock".

1-28 AIX Files Reference

*
*
*
*
*
*
*
*
*
*

*
*
*
*

blocks for .inodes according to BSD layout.
the first allocation group uses disk-blocks
number 32 and the next consecutive blocks
sufficient for one inode per disk-block in
the allocation group. the inode blocks
for all other allocation groups start in the
first block of the allocation group and continue
in consecutive blocks sufficient for one inode
per disk block of the allocation group.

other disk-blocks are allocated for .indirect,
.diskmap, .inodemap, and their indirect blocks
starting in the first allocation-group.

f s

/*

*

*The special f s inodes formatted and their usage is as follows:
*
* in ode 0 never allocated - reserved by setting n link 1 -
* in ode 1 in ode for .superblock
* in ode 2 in ode for root directory
* in ode 3 in ode for .inodes
* in ode 4 in ode for .indirect
* in ode 5 in ode for .inodemap - allocation map for .inodes
* in ode 6 in ode for .diskmap - disk allocation map
* in ode 7 inode for .inodex - inode extensions
* in ode 8 inode for .inodexmap - allocation map for .inodex
* in ode 9 16 - reserved for future extensions

*except for the root directory, the special inodes are not in any
*directory.
*

*/#define IPL_B 0
#define SUPER B 1
#define SUPER-Bl 31
#define INODES_B 32
#define NON B 0
#define SUPER I 1
#define ROOTDIR I 2
#define INODES_I 3
#define INDIR I 4
#define INOMAP_I 5
#define DISKMAP I 6
#define INODEX I 7
#define INDOESMAP I 8

/*
* super block format. primary superblock is located in block
* (page) one •
* the secondary super-block is not used e~cept for disaster
* recovery.

Chapter 1. AIX System Files 1-29

f s

*/
struct superblock
{

char s_magic[4];
char s_flag [4] ;
int s_agsize;
int s_logserial;
daddr t s_fsize;

/*magic number: fsv3magic = Ox43218765 */
/*flag word (see below)
/*size of allocation group in pages */

/*serial number of log when fs mounted */
/*size (in 512 bytes) of ~ntire file system

*/

short s_bsize; /*block size (in bytes) for this system */
short s _spare; /* unused. */
char s_fname[6]; /* name of this file system */
char s_fpack[6]; /* name of this volume */
dev t s_logdev; /* device address of log *I

/* current file system state information, values change over time */
char s_fmod; /* flag: set when file system is mounted */
char s_ronly; /*flag: file system is read only */
time t s_time; /* time of last superblock update */
} ;

This file actually lives in /usr/include/jfs/filsys.h. But, if /usr/include/sys/filsys.h is
included, you will get the jfs/filsys.h file included by default.

The superblock's magic number is encoded as a 4-byte character string to make it possible
to validate the superblock without knowing the byte order of the remaining fields. To check
for a valid superblock, enter something like:

if (strncmp(sp->s_magic,FSv3magic,4) == 0)

The last byte of the s_flag field gives the blocksize-dependent information. The first byte of
the s_flag field gives the CPU code for the host system with the byte order encoded in the
low-order bits.

#define fsv3magic "\102\041\207\145"
#define s cpu s flag[O] /* Target cpu type code */
#define s=type s_flag[3] /* File system type code */

The fields of the AIX superblock structure follow:

The s_fname field is the name of the ·me system and the s_fpack field is the name of the
device on which it resides.

The s_fmod field is a flag to indicate the cleanliness of the file system. Whenever a file
system is mounted, this flag is checked and a warning message is printed if the s_fmod field
is nonzero. A file system whose s_fmod field is O is very likely to be clean, and a file system
whose s_fmod field is 2 is likely to have problems. The s_fmod field is intended to be a
three-state flag with the third state being a sticky state. The three states are:

• 0 = File system is clean and unmounted.

• 1 = File system is clean and mounted.

• 2 = File system was mounted when dirty.

If you merely mount and unmount the file system, the flag toggles back and forth between
states O and 1. If you mount the file system while the flag is in state 1 , it goes to state 2 and
stays there until you run the fsck command. The only way to clean up a corrupted file
system (change the flag from state 2 back to state 0) is to run the fsck command.

1-30 AIX Files Reference

The s_ronly field is a flag indicating that the file system is mounted read-only. This flag is
maintained in memory only; its value on disk is not valid.

f s

The value of the s_time field is the last time the superblock of the file system was changed
(in seconds since 00:00 Jan. 1, 1970 (GMT)).

The i-node numbers begin at 1, and the storage for the i-node number 1 begins in the first
byte of block 2.

Implementation Specifics

File

This file is part of AIX Base Operating System (BOS) Runtime.

/usr/include/jfs/filsys.h The path to the jfs/filsys.h header file.
/usr/include/sys/filsys.h The path to the filsys.h header file, which contains an #include

statement for the jfs/filsys.h header file.

Related Information
The param.h file format, i-node file format.

The fsck command, fsdb command, mkfs command.

The File Systems Overview in General Concepts and Procedures explains file system types,
management, structure,

The Mounting Overview in General Concepts and Procedures explains mounting files and
directories, mount points, and automatic mounts.

The Logical Volume Storage Overview in General Concepts and Procedures explains the
Logical Volume Manager, physical volumes, logical volumes, volume groups, organization,
ensuring data integrity, and understanding the allocation characteristics.

Chapter 1. AIX System Files 1-31

gps

gps File

Purpose
Used as the format for storing graphic file data as a graphic primitive string (GPS).

Description
The gps file format is used as the format for storing graphic file data as a graphic primitive
string (GPS). The plot and vtoc commands produce GPS output files. Several commands
edit and display GPS files on various devices.

Types of Graphic Data or Primitives
A GPS is composed of as many as five types of graphic data or primitives. Graphic primitive
strings are given as 16-bit units called command words. The first command word determines
the primitive type and sets the length of the string. Subsequent command words contain
information in multiples of 4 bits of data.

The following are the types of primitive strings and their parameters:

Comment Primitives
A Comment primitive does not cause anything to be displayed. The Comment primitive is an
integer string. All GPS files begin with a comment of zero length.

Comment

Lines Primitives

Contro/Word [String):
The Contro/Word parameter is the control word. The first 4 bits identify the
Comment primitive and have the value OxF. The following bits give the
command word count for the primitive.

The [String) parameter is a string of characters terminated by a null
character. If the string does not end on a command word boundary, another
null character is added to align the string with the command word boundary.

The Lines primitive contains a variable number of points from which zero or more connected
line segments are produced. The first point relocates the graphics cursor to that point,
without drawing. Successive points produce line segments starting at the initial point.

Lines Contro/Word Points StyleWord:

1-32 AIX Files Reference

The Contro/Word parameter is the control word. The first 4 bits identify the
Lines primitive and have the value OxO. The remaining bits give the
command word count for the primitive.

The Points parameter consists of one or more pairs of integer coordinates
having values within a Cartesian plane or universe of 65,536 points on each
axis (-32,767 to +32,768).

The StyleWordparameter is the style command word. The first 8 bits hold
an integer value for color information. The next 4 bits contain an integer
value for weight to indicate line thickness:

0
1
2

Narrow
Bold
Medium.

Arc Primitives

gps

The last 4 bits of the Style Word parameter specify an integer value giving
linestyle information:

0 Solid
1 Dotted
2 Dot-dashed
3 Dashed
4 Long-dashed.

The Arc primitive contains a variable number of points to which a curve is fit. The first point
produces a move to that point. If only two points are given, a line connecting the points
results. If three points are given, a circular arc through the points is drawn. If more than
three points are given, splines are fitted to connect the points.

Arc

Text Primitives

Contro/Word Points Style Word:
The Contro/Word parameter is the control word. The first 4 bits identify the
Text primitive and have the value Ox2. The remaining 12 bits contain the
command word count for the primitive.

The Points parameter is a pair of integer coordinates that are a value within
a Cartesian plane or universe of 65,536 points on each axis (-32, 767 to
+32,768).

The Style Word parameter is the style command word. The first 8 bits hold
an integer value for color information. The next 4 bits contain an integer
value for weight to indicate line thickness:

0
1
2

Narrow
Bold
Medium.

The last 4 bits of the StyleWordparameter specify an integer value giving
linestyle information:

0 Solid
1 Dotted
2 Dot-dashed
3 Dashed
4 Long-dashed.

The Text primitive draws characters beginning at a given point, with the first character
centered on that point.

Text Control Word Point FontCommandWord SizeOrientation Word [string]:

The Contro/Word parameter is the control word. The first 4 bits identify the
Text primitive and have the value Ox2. The remaining 12 bits contain the
command word count for the primitive.

The Points parameter is a pair of integer coordinates that are a value within
a Cartesian plane or universe of 65,536 points on each axis (-32, 767 to
+32,768).

Chapter 1. AIX System Files 1-33

gps

The FontCommandWord parameter is a font command word. The first 8 bits
contain an integer value for color information. The next 8 bits contain an
integer value for font information, with 4 bits giving the weight (density)
value for the font, and 4 bits giving the style (typeface) value for the font.

The SizeOrientationWord parameter indicates the size or orientation of a
command word. Eight bits specify text size as an integer value that indicates
the size of characters drawn. Text size represents character height in
absolute universe units.

The actual character height is five times the text size value. The next 8 bits
are a signed integer value for text angle, and express the angle and
direction of rotation of the character string around the beginning point. The
text angle is expressed in degrees from the positive X axis. The text angle
value is 256/360 of its absolute value.

The Hardware Primitive

File

The Hardware primitive draws hardware characters or gives control commands to a
hardware device. A single point locates the beginning location of the hardware string.

Hardware Contra/Word Point [String] :
The Contra/Word parameter is the control word. The first 4 bits identify the
hardware primitive and have the value Ox4. The next 12 bits indicate the
command word count for the primitive.

The Point parameter is a pair of integer coordinates that are values within a
Cartesian plane or universe of 65,536 points on each axis (-32, 767 to
+32,768). The specified point becomes the starting point for the String
parameter, which is a string of hardware characters or control commands to
a hardware device.

/usr/include/sys/stat.h
The path to the stat.h header file, which defines the data structure used by
the status subroutines.

Related Information
The stat command and ttoc commands.

1-34 AIX Files Reference

/etc/group

/etc/group File

Purpose
Contains basic group attributes.

Description

Security

Example

The /etc/group file is an ASCII file that contains the basic group attributes. Each record is
identified by a group name, and contains the following colon-separated attributes:

Name The unique name by which a group is known on the system. The name
specified by the Name parameter must be an alphanumeric string of 8
characters or less that begins with an alphabetic character, and cannot be
the ALL or default keywords.

Password Not used. Group administrators are provided instead of group passwords.

The ID of the group. The value is a unique decimal integer string. ID

Users The members of the group, specified as a list of comma-separated user
names. Each user must be defined in the local database configuration files
or by a credentials server.

Note: Since the colon character is a field separator, it may not be used as part of an
attribute.

For an example of a record, see the Example section below.

Additional attributes are defined in the /etc/security/group file.

To change the Name parameter, you need to add a new entry (with the mkgroup command)
and remove the old one (with the rmgroup command). To display all the attributes in the file,
use the lsgroup command.

Users can be changed with the chgroup command, the chgrpmem command, and the
chuser command. The mkuser command adds a user whose primary group is defined in
the /etc/security/mkuser.default file and the rmuser command removes a user. Although
the group ID can be ct:langed with the chgroup command, this is not recommended.

Access Control: This file should grant read (r) access to all users and grant write (w) access
only to the root user and members of the security group.

1. A typical record looks like the following example for the staff group:

staff::l:shadow,cjf

In this example, the Group/Dis 1 and shadow and cjf are Users. The Passwordfield is
not used.

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

Chapter 1. AIX System Files 1-35

/etc/group

Files
/etc/group

/etc/security/group

/etc/passwd

/etc/security/passwd

/etc/security/user

/etc/security/environ

/etc/security/limits

/etc/security/audit/config

The path to the file.

Contains the extended attributes of groups.

Contains the basic attributes of users.

Contains password information.

Contains the extended attributes of users.

Contains the environment attributes of users.

Contains the process resource limits of users.

Contains audit system configuration information.

Related Information
The chfn command, chgrpmem command, chsh command, chgroup command, chuser
command, lsgroup command, lsuser command, mkgroup command, mkuser command,
passwd command, pwdadm command, rmgroup command, rmuser command,
setgroups command, setsenv command.

The getgroupattr subroutine, putgroupattr subroutine, IDtogroup subroutine, nextgroup
subroutine, setuserdb subroutine, enduserdb subroutine.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-36 AIX Files Reference

/etc/security/group

/etc/security/group File

Purpose
Contains extended group attributes.

Description
The /etc/security/group file is an ASCII file that contains stanzas with extended group
attributes. Each stanza is identified by a group name from the /etc/group file followed by a
colon, and contains attributes in the form Attribute= Value. Each attribute is ended with a new
line character and each stanza is ended with an additional new line character. For a typical
stanza, refer to the Example section below.

Each stanza can have either or both of the following attributes:

adms Defines the users who can perform administrative tasks for the group, such as
setting the members and administrators of the group. This attribute is ignored if
admin = true, since only the root user can alter a group defined as
administrative. The value is a list of comma-separated user login-names. The
default value is an empty string.

admin Defines the administrative status of the group. Possible values are:

true Defines the group as administrative. Only the root user can change the
attributes of groups defined as administrative.

false Defines a standard group. The attributes of these groups can be changed
by the root user or a member of the security group. This is the default
value.

Access to this file should be through the system commands and subroutines defined for this
purpose.

The mkgroup command adds new groups to the /etc/group file and the
/etc/security/group file. This command can identify the group as administrative and set the
invoker of the command as the administrator, initializing the adms attribute.

Use the chgroup command to change all the attributes. If you are defined as an
administrator of a specified standard group, you can change the adms attribute for that
group with the chgrpmem command.

The lsgroup command displays both the adms and the admin attributes, and the rmgroup
command removes the entry from both the /etc/group file and the /etc/security/group file.

To write shell scripts that affect attributes in the /etc/security/group file, use the subroutines
listed in Related Information.

Chapter 1. AIX System Files 1-37

/etc/security/group

Security

Example

Access Control: This file should grant read (r) access to the root user and members of the
security group, and to others as permitted by the security policy for the system. Only the root
user should have write (w) access.

Auditing Events:

Event

S_GROUP _WRITE

Information

filename

A typical stanza looks like the following example for the finance group:

finance:
adrns = cjf
admin = false

Implementation Specifics

Files

This command is part of AIX Base Operating System (BOS) Runtime.

/etc/security/group

/etc/group

/etc/passwd

/etc/secu rity/passwd

/etc/security/user

/etc/security/environ

/etc/security/limits

/etc/security/audit/config

The path to the file.

Contains the basic attributes of groups.

Contains the basic attributes of users.

Contains password information.

Contains the extended attributes of users.

Contains the environment attributes of users.

Contains the process resource limits of users.

Contains audit system configuration information.

Related Information
The chgroup command, chgrpmem command, lsgroup command, mkgroup command,
rmgroup command, setgroups command.

The enduserdb subroutine, getgroupattr subroutine, IDtogroup subroutine, nextgroup
subroutine, putgroupattr subroutine, setuserdb subroutine.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-38 AIX Files Reference

inittab

inittab File

Purpose
Controls the initialization process.

Description
The inittab file supplies information for the init command to dispatch general processes.
The init command reads the inittab file each time the init command is invoked. The
process that constitutes the majority of the init commands process dispatching activities is
the line process /etc/getty that initiates individual terminal lines. Other processes typically
dispatched by the init command are daemons and the shell.

The /etc/inittab file is composed of lines, each with its own fields, separated by colons.
Each line of the /etc/initab file looks like the following:

Identifier:Runlevel:Action:Command

There is no limit to the number of lines in the inittab file. The fields are:

Identifier

Run/eve/

This is a fourteen character field used to uniquely identify an object. This
field is also used in conjunction with other programs to identify certain
objects that are modified by them. Terminal devices might be a six character
field rsnnnn or ptsnnn: where n is the number of the device. The device
/dev/tty01 would be denoted by tty01, the device /dev/ptsOOO by ptsOOO.
The /dev/console device is denoted by console.

Run/eve/ is a twenty character field which defines the run levels in which this
object is to be processed. Run/eve/ corresponds to a configuration of
processes in a system. Each process spawned by the init command is
assigned one or more runlevels in which it is allowed to exist. The runlevels
are represented by characters ranging from Oto 9, S, s, M or m.

As an example, if the system is in runlevel 1, only those objects having a 1
in the run/eve/ field are processed. When the in it command is requested to
change runlevels, all processes which do not have an object in the run/eve/
field for the target runlevels are sent a SIGTERM signal and allowed a
twenty second grace period before being forcibly stopped by a SIGKILL
signal. The run/eve/ field can define multiple run levels for a process by
selecting more than one runlevel in any combination of run/eve/ characters.
If no runlevel is specified, then the process is assumed to be valid at all
runlevels.

Three other values, a, b, and c can appear in this field, even though they
are not true runlevels. Entries which have these characters in the run/eve/
field are processed only when the telinit command requests them to be run
(regardless of the current runlevel of the system). They differ from runlevels
in that the init command can never enter runlevels a, b, or c. A request to
enter of any of these runlevels does not change the current runlevel. A
process started by an a, b, or c command is not stopped when the init
command changes levels. They are only stopped if their Action field is
marked off, their objects deleted entirely, or the in it command goes into the
maintenance state. The maintenance state is selected by the run/eve/
characters S, s, M or m.

Chapter 1 . AIX System Files 1-39

inittab

Action

1-40 AIX Files Reference

The default inittab file is set up so that the default runlevel is 2, which is
used as the multiuser level. The console device driver is also set to run at all
runlevels so the system can be operated with only the console active.

A twenty character field that informs the init command how to treat the
process specified in the command field. The actions recognized by the init
command are:

res pawn

wait

once

boot

bootwait

powerfail

powerwait

off

ondemand

initdefault

If the process does not exist, start the process. If the
process currently exists, then do nothing and continue
scanning the inittab file.

Upon the init command entering the runlevel that matches
the line's runlevel, start the process and wait for the process
to stop. All subsequent reads of the inittab file while the init
command is in the same runlevel will ignore this object.

Upon the init command entering a runlevel that matches
this line's runlevel, start the process, do not wait for its
termination and when it stops, do not restart the process. If
entering a new runlevel, where the process is still running
from a previous runlevel change, the program will not be
restarted.

Process only at the init command Initial Program Load
(IPL) time read of the inittab file. The init command starts
the process, and does not wait for it to stop. When the
process stops, it is not restarted. The runlevel should be the
default or it must match the init command runlevel at boot
time.

Process only at the init command IPL time read of the
inittab file. The init command starts the process and waits
for it to stop. When it stops, the process is not restarted.

Execute the process associated with this line only when the
init command receives a SIGPWR signal .

Execute the process associated with this line only when the
init command receives a SIGPWR signal and wait until it
stops before continuing any processing of the inittab file.

If the process associated with this line is currently running,
send the SIGTERM warning signal and wait 20 seconds
before sending the SIGKILL signal. If the process is
nonexistent, ignore the line.

This action is really a synonym for respawn. It is
functionally identical to respawn but it is given a different
keyword in order to separate its association with runlevels.
This is used only with the a, b, or c values described in the
run level field.

A line with this action is only processed when the init
command is originally invoked. The init command uses this
line to determine which runlevel to enter originally. The init

Examples

Command

sysinit

inittab

command does this by taking the highest runlevel specified
in the run/eve/ field and using that as its initial state. If the
run/eve/ field is empty, this is interpreted as the 0123456789
value, so the in it command enters run/eve/ 9. If the in it
command does not find an initdefault line in the inittab file,
it requests an initial run/eve/ from the operator at IPL time.

Entries of this type are executed before the init command
tries to access the console. It is expected that this line is
only used to initialize devices on which the init command
might try to ask the run/eve/ question. These lines are
executed before the init command continues.

This is a 1024 character field which holds the sh command to be executed.
The entry in the command field is prefixed with exec. Any valid sh syntax
can appear in the command field. Comments can be inserted with the #
comment syntax. The line continuation character \ can be placed at the
end of a line.

1. To work at all runlevels, enter:

ident:0123456789:Action:Command

2. To work only at runlevel 2, enter:

ident:2:Action:Command

3. To disable runlevels 0, 3, 6-9, enter:

ident:l245:Action:Command

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/etc/getty

Related Information

Indicates terminal lines.

The init command, telinit command.

The kill subroutine.

Chapter 1 . AIX System Files 1-41

in ode

inode File

Purpose
Describes a file system file or directory entry as it is listed on a disk.

Description
The inode file for an ordinary file or directory in a file system has the following structure
defined by the sys/ino.h file format:

struct dinode
{

/* generation number */
ulong di_gen;
/*the mode_t returned by stat () */
/* format, attributes and permission bits */

mode t di_mode;

/* number of links to file (if 0, inode is available) */
ushort di_nlink;

/* accounting ID */
ushort di_acct;

/* user id of owner */
uid_t di_uid;

/* group id of owner */
gid_t di_gid;

/* size of file */
off_t di_gid;

/* number of blocks actually used by file */
ulong di_nblocks;

/* the need for nano-second time stamps is questionable.
* there is room, but for now the space is just reserved.

*/
/* time last modified */
time_t di_mtime;
ulong di rsvdl;
/* time last accessed */
time_t di_atime;
ulong di_rsrvd2;
/* time last changed inode */
time_t di_ctime;
ulong di_rsrvd3;

/* extended access control information*/
long di_acl; /* acl pointer */
define ACL_INCORE (1 << 31)
ulong di_sec; /*reserved */

/* spares */
ulong di_rsrvd[S];

· 1-42 AIX Files Reference

/***** file type-dependent information ****/
/*

* size of private data in disk inode is D PRIVATE.
* location and size of fields depend on object type.
*/

define D PRIVATE 48

union di inf or
{

/* all types must fit within d_private */
chard private[D PRIVATE];
/* jfs-regular file or directory. */
struct regdir
{

inode

/* privilege vector - only for non-directory */
struct
{

ulong _di_offset;
ulong _di_flags;
define PCL_ENABLED (1<<31)
define PCL_EXTENDED (1<<30)
define PCL FLAGS \

(PCL_ENABLEDIPCL_EXTENDED)
}_di_privingo;
priv_t _di_priv;
/* ACL templates - only for directory */
struct
{

ulong _di_aclf;
ulong _di_acld;
{ _di_aclingo;

} _di_sec;
} di_file;

/* offsets of regular file or directory private data. */
define di rdaddr _di_info._di_file._di_rdaddr

define di vindirect _di_info._di_file._di_vinderect
define di rinderect di info. di file. di rinderect
define di_privinfo _di_i~fo._di_file._di_sec._di_privinfo
define di_privoffset _di_privinfo._di_privoffset
define di_privflags _di_privinfo._di_privflags
define di_priv _di_info._di_file._di_sec._di_pri-,
def ine di aclf

di info. di file. di sec. di aclinfo. di aclf - -- -- -- --
define di acld

di info. di file. di sec. di aclinfo. di acld - -- -- -- --
/* special file (device) */
struct
}

dev t _di_rdev: /*device major and minor*/
ulong di bnlastr; /*read-ahead .. last block*/
ino t _di_pino; /*Parent inode for mpx channels*/

} _di_dev;

/* offsets of special file private data */
define di rdev di infor. di dev. di rdev
define di-bnlast~ - di i~fo. di dev. di bnlastr - -- -- --
define di_dgp _di_info._di_dev._di_dgp
define di_pino _di_info._di_dev._di_pino

Chapter 1 . AIX System Files 1-43

in ode

/*
* symbolic link. link is stored in inode if its
* length is less than D_PRIVATE. Otherwise like
* a regular file.
*/

union
{

char _s_private[D_PRIVATE];
struct regdir _s_symfile;

}_di_sym;
/* offset of symbolic link private data */
define di_symlink _di_info._di_sym._s_private

/* fifo . this info need not be on disk. */
struct f ifonode
{
struct fifo bufhdr *fn_buf; /*ptr to first buf */
struct fifo_bufhdr *fn bufend; /*ptr to last buf */
ulong fn size /*bytes in fifo */
off t fn_wptr; /* write offset */
off t fn_rptr; /*read offset */
ushort fn_poll; /*requested events */
short fn_rcnt; /* # waiting readers*/
short fn_wcnt; /* waiting writers */
short fn_flag; /* (see below) */
short fn_nbuf; /* # bufs allocated */
}_di_fifo;

/* offsets of FIFO data */
define di ifn buf
define di_ifn_bufend
define di_ifn_poll
define di_ifn_size
define di ifn went
define di_ifn_rcnt
define di_ifn_wptr
define di_ifn_rptr
define di_ifn_f lag
define di ifn nbuf

/*

_di_info._di_fifo.fn_buf
di info. di fifo.fn bufend - - - - -

_di_info._di_fifo.fn_poll
di info. di fifo.fn size

=di=info.=di=fifo.fn=wcnt
di info. di fifo.fn rent - - - - -

_di_info._di_fifo.fn_wptr
_di_info._di_fifo.fn_rptr
_di_info._di_fifo.fn_flag
_di_info._di_fifo.fn_nbuf

* data for mounted filesystem. kept in inode = 0
* and dev = devt of mounted filesystem in inode table. */

struct mountnode
{

struct inode *_iplog; /*itab of log*/
struct in ode *_ipinode; /*itab of .inodes*/
struct in ode *_ipind; /*itab of .indirect*/
struct in ode *_ipinomap; /*itab of inode map*/
struct in ode *_ipdmap; /*itab of disk map*/
struct in ode *_ipsuper; /*itab of super blk*/
struct in ode *_ipinodex; /*itab of .inodex*/

}_mt_info;

1-44 AIX Files Reference

inode

/* offsets of MOUNT data */
define di_iplog _di_info._mt_info._iplog
define di ipinode di info. mt info. ipinode
define di ipind -di-info.-mt-info.-ipind
define di_ipinomap =di=info.=mt=info.=ipinomap
define di_ipdmap _di_info._mt_info._ipdmap
define di ipsuper di info. mt info. ipsuper
define di=ipinodex =di=info.=mt=info.=ipinodex

/*
* log info. kept in inode = 0 and dev = devt of log device
filesystem in inode table.

*/
struct lognode
{
int _logptr /* page number end of log */
int _logsize /* log size in pages */
int _legend /* ear in page _logptr */
int _logsync /* addr in last syncpt record */
int _nextsync /* bytes to next logsyncpt */
struct gnode * _logdgp; /* pointer to device
}_di_log;

gnode*/

/* offsets of LOG data */
define di_logptr
define di_logsize
define di_logend
def itte di_logsync
define di_nextsync
define di_logdgp

}_di_info;
} ;

_di_info._di_log._logptr
_di_info._di_log._logsize
_di_info._di_log._logend
_di_info._di_log._logsync
_di_info._di_log._nextsync
_di_info._di_log._logdgp

Implementation Specifics

Files

This file is part of AIX Base Operating System (BOS) Runtime.

/usr/include/sys/ino.h The path to the ino.h header file, which defines the structure of
an inode file.

/usr/include/sys/types.h The path to the types.h header file.

Related Information
The fs file format, stat file format, types.h file format.

The File Systems Overview in General Concepts and Procedures explains file system types,
management, structure, and maintenance.

The Directories Overview in General Concepts and Procedures explains working with
directories and path names.

The Files Overview in General Concepts and Procedures provides information on working
with files.

Chapter 1. AIX System Files 1-45

limits

limits File

Purpose
Defines process resource limits for each user.

Description

Security

The /etc/security/limits file is an ASCII file that contains stanzas with the process resource
limits for each user. Each stanza is identified by a user name followed by a colon, and
contains attributes in the Attribute: Value form. Each attribute is ended by a new line
character, and each stanza is ended by an additional new line character. For an example of
a stanza, see the Examples section.

If an attribute is not defined in the /etc/security/limits file, the values for the default user are
applied. The attributes in the stanzas are as follows:

fsize The largest file a user's process can create or extend. The value is a decimal
integer string.

core The largest core file a user's process can create. Must be in units of 512-byte
blocks. The value is a decimal integer string. Not used.

cpu The largest amount of system unit time (in seconds) that a user's process can use.
The value is a decimal integer string. Not used.

data The largest process data segment for a user's process. Must be in units of
512-byte blocks. The value is a decimal integer string. Not used.

stack The largest process stack segment for a user's process. Must be in units of
512-byte blocks. The value is a decimal integer string. Not used.

rss The largest amount of physical memory a user's process can allocate. Must be in
units of 512-byte blocks. The value is a decimal integer string. Not used.

The mkuser command creates a user stanza in this file, using the attribute values defined in
the /etc/security/mkuser.default file. An administrator can reset the attributes with the
chuser command. To display the values, use the lsuser command. To remove a stanza, use
the rmuser command.

Access to the user database files should be through the system commands and subroutines
defined for this purpose. Access through other commands or subroutines may not be
supported in future releases.

Access Control: This file should grant read (r) access to the root user and members of the
security group, and write (w) access only to the root user. Access for other users and groups
depends upon the security policy for the system.

Auditing Events:

Event

S_LIMITS_WRITE

Information

filename

1-46 AIX Files Reference

Example
A typical record looks like the following example for user dhs:

dhs:
£size = 8192
core = 4096
cpu = 3600
data = 1024
stack = 1024
rss = 1024

limits

Implementation Specifics

Files

This command is part of AIX Base Operating System (BOS) Runtime.

/etc/security /limits

/etc/group

/etc/security/group

/etc/passwd

/etc/security /passwd

/etc/security/user

/etc/security/environ

/etc/security/audit/config

/etc/security/mkuser.default

Specifies the path to the file.

Contains the basic group attributes.

Contains the extended attributes of groups.

Contains the basic user attributes.

Contains password information.

Contains the extended attributes of users.

Contains the environment attributes of users.

Contains audit system configuration information.

Contains the default values for user accounts.

Related Information
The chuser command, lsuser command, mkuser command, rmuser command.

The enduserdb subroutine, getuserattr subroutine, IDtouser subroutine, nextuser
subroutine, putuserattr subroutine, setuserdb subroutine.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

Chapter 1. AIX System Files 1-47

login.cfg

login.cfg File

Purpose
Contains configuration information for log in and user authentication.

Description
The /etc/security/login.cfg file is an ASCII file with stanzas of configuration information for
log in and user authentication. Each stanza has a name, followed by a: (colon), that defines
its purpose. Attributes are in the form Attribute: Value. Each attribute is ended with a new
line character, and each stanza is ended with an additional new line character. For an
example of a stanza, see the Examples section.

There are three types of stanzas:

port Defines the login characteristics of ports.

authentication method Defines the authentication methods for users.

user configuration Defines programs that change user attributes.

Each of these types of stanzas is described below.

Port Stanzas
Port stanzas define the login characteristics of ports and are named with the full path name
of the port. Each stanza has the following attributes:

sak_enabled Defines whether the secure attention key (SAK) is enabled for the port.

herald

synonym

The SAK key is the Control-x, Control-r key sequence. Possible values for
the sak_enabled attribute are:

true SAK processing is enabled, so the key sequence establishes a
trusted path for the port.

false SAK processing is not enabled, so a trusted path cannot be
established. This is the default value.

Defines the login message that is printed when the getty process opens
the port. The default herald is the log in prompt. The value is a character
string.

Defines other path names for the terminal. This attribute revokes access to
the port and is used only for trusted-path processing. The path names
should be device special files with the same major and minor number and
should not include hard or symbolic links. The value is a list of
comma-separated path names.

Authentication Method Stanzas
These stanzas define the authentication methods for users that are assigned in the
/etc/security/user file. The name of each stanza must be identical to one of the methods
defined by the auth1 or the auth2 attribute in the /etc/security/user file.

1-48 AIX Files Reference

login.cfg

Each stanza has one attribute:

program Contains the full path name of a program that provides primary or
secondary authentication for a user. Program flags and parameters
may be included.

Since the SYSTEM authentication method is supported directly by the login command and
the su command, and the NONE method does not provide any authentication, neither
requires definition. However, all other authentication methods must be defined in this file.
Different authentication methods can be defined for each user.

User Configuration
User configuration stanzas provide configuration information for programs that change user
attributes. There are two stanzas of this type: pw_restrictions and usw.

The pw_restrictions stanza includes the restrictions for user-defined passwords that are
applied by the passwd command and the pwdadm command. Valid restrictions follow:

maxage

max repeats

minage

minalpha

mindiff

minother

Defines the maximum age (in weeks) of a password. The password must
be changed by this time. The value is a decimal integer string. The default
is a value of 0, indicating no maximum age.

Defines the maximum number of times a character can be repeated in a
new password. Since a value of O is meaningless, the PASS_MAX=8 value
is used to indicate that there is no maximum number; this is the default
value. The value is a decimal integer string.

Defines the minimum age (in weeks) a password must be before it can be
changed. The value is a decimal integer string. The default is a value of 0,
indicating no minimum age.

Defines the minimum number of alphabetic characters that must be in a
new password. The value is a decimal integer string. The default is a value
of 0, indicating no minimum number.

Defines the minimum number of characters required in a new password
that must were not in the old password. The value is a decimal integer
string. The default is a value of 0, indicating no minimum number.

Defines the minimum number of non-alphabetic characters that must be in
a new password. The value is a decimal integer string. The default is a
value of 0, indicating no minimum number.

The usw stanza defines the configuration of miscellaneous facilities. The following attributes
can be included:

maxlogins

shells

Defines the maximum number of simultaneous local logins to the system.
The format is a decimal integer string. The default is 0, indicating that there
is no limit on simultaneous local login attempts.

Defines the valid shells on the system. This attribute is used by the chsh
command to determine which shells a user can select. The value is a list of
comma-separated full path names. The default is /bin/sh, /bin/bsh,
/bin/csh, /bin/ksh.

Chapter 1. AIX System Files 1-49

1ogin.cfg

Security

Examples

Access Control: This command should grant read (r) and write (w) access to the root user
and members of the security group.

Auditing Events:

Event

S_LOGIN_WRITE

Information

filename

1. A typical pw_restrictions stanza looks like the following:

pw restrictions:
maxage = 12
minother = 1
minalpha = 4

This example configures a maximum age of 12 weeks and a minimum of 1
non-alphabetic and 4 alphabetic characters for a new password.

2. A typical authentication_method stanza looks like the following:

methl:
program = /bin/auth_methl

Implementation Specifics

Files

This command is part of AIX Base Operating System (BOS) Runtime.

/etc/security/login.cfg

/etc/group

/etc/security/group

/etc/passwd

/etc/security /passwd

/etc/security/user

/etc/security/environ

/etc/security/limits

/etc/security/audit/config

Specifies the path to the file.

Contains the basic attributes of groups.

Contains the extended attributes of groups.

Contains the basic attributes of users.

Contains password information.

Contains the extended attributes of users.

Contains the environment attributes of users.

Contains the process resource limits of users.

Contains audit system configuration information.

Related Information
The chfn command, chsh command, login command, passwd command, pwdadm
command, su command.

The newpass subroutine.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-50 AIX Files Reference

mkuser.default

mkuser.default File

Purpose
Contains the default attributes for new users.

Description

Security

Example

The /etc/security/mkuser.default file is an ASCII file that contains stanzas with attribute
default values for users created by the mkuser command. Each attribute has the
Attribute= Value form. If an attribute has a value of $USER, the mkuser command
substitutes the name of the user. For a list of possible attributes, see the chuser command.

Each attribute is ended by a new line character, and each stanza is ended by an additional
new line character.

There are two stanzas, user and admin, that can contain all defined attributes except the
auditclasses, id, and admin attributes. The mkuser command generates a unique id
attribute. The admin attribute depends on whether the -a flag is used with the mkuser
command. The auditclasses attribute must be set explicitly by the root user or a member of
the audit group.

For an example of a stanza, see the Example section.

Access Control: If read (r) access is not granted to all users, members of the security group
should be given read (r) access. This command should grant write (w) access only to the
root user.

A typical user stanza looks like the following:

user:
pgrp = staff
home = /u/$USER
shell = /bin/sh
authl = SYSTEM;$USER

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

File
/etc/security /mkuser. def au It Specifies the path to the file.

Related Information
The chuser command, mkuser command.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

Chapter 1. AIX System Files 1-51

objects

objects File

Purpose
Contains information about audited objects (files).

Description

Security

Example

The /etc/security/audit/objects file is an ASCII stanza file that contains information about
audited objects (files). This file contains one stanza for each audited file. The stanza has a
name equal to the path name of the file. Each file attribute has the following format:

access_mode = audit_event

An audit-event name can be up to 15 bytes long; longer names are rejected. Valid access
modes are read (r), write (w), and execute (x) modes. For directories, search mode is
substituted for execute mode.

Access Control: This file should grant read (r) access to the root user and members of the
audit group and grant write (w) access only to the root user.

To define the audit events for the /bin/passwd file, add a stanza to the objects file:

/bin/passwd:
x = PASSWD_Execute
w = TCBAUTH_Modify

These attributes generate a PASSWD _Execute audit event each time the bin/passwd
file executes and a TCBAUTH_Modify audit event each time the file is opened for writing.

Implementation Specifics

Files

This command is part of AIX Base Operating System (BOS) Runtime.

/etc/security /audit/objects

/etc/security /audit/config

/etc/security/audit/events

/etc/security/audit/bincmds

/etc/security/audit/streamcmds

Specifies the path to the file.

Contains audit system configuration information.

Contains the audit events of the system.

Contains auditbin backend commands.

Contains auditstream commands.

Related Information
The audit command.

The auditobj subroutine.

To see the steps you must take to establish an Auditing System, refer to How to Set Up an
Auditing System in General Concepts and Procedures. For more information about the
identification and authentication of users, discretionary access control, the trusted computing
base, and auditing, refer to Security Introduction in General Concepts and.Procedures.

1-52 AIX Files Reference

/etc/passwd File

Purpose
Contains basic user attributes.

Description

/etc/passwd

The /etc/passwd file is an ASCII file that contains basic user attributes. The entry for each
user has the following attributes, each separated by a colon:

Name The login name of a user. The user name must be a unique
alphanumeric string of 8 characters or less that begins with an alphabet
character, and cannot be the ALL keyword or the default keyword. If
there are duplicate login names in the file, the first entry is used.

Password This field can contain a valid encrypted password, an* (asterisk)
indicating an invalid password, or an I (exclamation point) indicating that
the password is in the /etc/security/passwd file. Under normal
conditions, the field contains an I. If the field has an * and a password is
required for user authentication, the user cannot log in.

User/D The user's unique numeric ID that is used for discretionary access
control. The value is a decimal numeric string.

PrincipleGroup The user's principle group ID. This must be the numeric ID of a group in
the user database or a group defined by a network information service.
The value is a decimal numeric string.

Gecos General information about the user that is not needed by the system,
such as ~n office or phone number. The value is a character string.

HomeDirectory The full path name of the user's home directory. If the user does not have
a defined home directory, the home directory of the guest user is used.
The value is a character string.

Shell The initial program or shell that is executed after a user invokes the login
command or su command. If a user does not have a defined shell,
/bin/sh, the system shell, is used. The value is a character string that
may contain arguments to pass to the initial program.

Note: Since the colon character is a field separator, it cannot be used in any attribute.

Users can have additional attributes in other system files. See the Files section for
additional information.

Access to all of these user database files should be through the system commands and
subroutines defined for this purpose. Access through othe.r commands or subroutines may
not be supported in future releases.

The mkuser command adds new entries to the /etc/passwd file and fills in the attribute
values as defined in the /etc/security/mkuser.default file.

The Password attribute is always initialized to an * (asterisk), an invalid password. The
password must be set with the passwd command or the pwdadm command. When the
password is changed, an I (exclamation point) is added to the /etc/passwd file, indicating
that the encrypted password is in the /etc/security/passwd file.

Chapter 1. AIX System Files 1-53

/etc/passwd

Security

Examples

Use the chuser command to change all user attributes except Password. The chfn
command and the chsh command change the Gecos attribute and Shell attribute,
respectively. To display all the attributes in this file, use the lsuser command. To remove a
user and all the user's attributes, use the rmuser command. To write programs that affect
attributes in the /etc/passwd file, use the subroutines listed in Related Information.

Access Control: This file should grant read (r) access to all users and write (w) access only
to the root user and members of the security group.

1. Typical records that show an invalid password for smith and guest follow:

smith:*:l00:100:8A-74(office):/u/smith:/bin/sh
guest:*:200:0::/u/guest:/bin/sh

The fields are in the following order: user name, password, user ID, primary group,
general (gecos) information, home directory, and initial program (login shell). The *
(asterisk) ih the password field indicates that the password is invalid. For an explanation
of each field, see the Description section.

2. If the password for smith in the previous example is changed to a valid password, the
record will change to the following:

smith:!:100:100:8A-74(office):/u/smith:/bin/sh

The ! (exclamation point) indicates that an encrypted password is stored in the
/etc/security/passwd file.

Implementation Specifics

Files

This file is part of AIX Base Operating System (BOS) Runtime.

/etc/passwd

/etc/group

/etc/security/group

/etc/security /passwd

/etc/security /user

/etc/security/environ
/etc/security /Ii m its

Specifies the path to the file.

Contains the basic attributes of groups.

Contains the extended attributes of groups.

Contains password information.

Contains the extended attributes of users.

Contains the environment attributes of users.
Contains the process resource limits of users.

Related Information
The chfn command, chsh command, the chuser command, the lsuser command,
mkuser command, passwd command, pwdadm command, rmuser command.

The endpwent subroutine, enduserdb subroutine, getpwent subroutine, getpwnam
subroutine, getpwuid subroutine, getuserattr subroutine, IDtouser subroutine, nextuser
subroutine, putpwent subroutine, putuserattr subroutine, setuserdb subroutine.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-54 AIX Files Reference

/etc/security/passwd

/etc/security/passwd File

Purpose
Contains password information.

Description
The /etc/security/passwd file is an ASCII file that contains stanzas with password
information. Each stanza is identified by a user name followed by a: (colon) and contains
attributes in the form Attribute= Value. Each attribute is ended with a new line character, and
each stanza is ended with an additional new line characher. For a typical stanza, see the
Examples section below.

Each stanza can have the following attributes:

passwd The encrypted password. The system encrypts the password created with the
passwd command or the pwdadm command. If the password is NULL or
empty, the user does not have a password. If the password is an* (askerisk),
the user cannot log in. The value is a character string. The default value is*.

lastupdate The time (in seconds) since the epoch (00:00:00 GMT, January 1, 1970)
when the password was last changed. If password aging (the minage
attribute or the maxage attribute) is in effect, the lastupdate attribute forces
a password change when the time limit expires. (See the
/etc/security/login.cfg file for information on password aging.) The passwd
command and the pwdadm command normally set this attribute when a
password is changed. The value is a decimal integer.

flags The restrictions applied by the login command and the su command. The
value is a list of comma-separated attributes. The flags attribute can be be
left blank or can be one or more of the following:

ADMIN Defines the administrative status of the password
information. If the ADMIN attribute is set, only the root user
can change this password information.

ADMCHG Indicates that the password was last changed by a member
of the security group. Normally this flag is set only implicitly
when the pwdadm command or the passwd command
change another user's password. When this flag is set
explicitly, it forces the password to be updated the next time
a user gives the login command or the su command.

NO_ CHECK None of the system password restrictions defined in the
/etc/security/login.cfg file are enforced for this password.

When the passwd command or the pwdadm command updates a password, the command
adds values for the passwd and lastupdate attributes and, if used to change another user's
password, for the flags ADMCHG attribute.

Access to this file should be through the system commands and subroutines defined for this
purpose. Other accesses may not be supported in future releases. Users can update their
own passwords with the passwd command, administrators can set passwords and
password flags with the pwdadm command, and the root user is able to use the passwd

Chapter 1. AIX System Files 1-55

/etc/security/passwd

Security

Examples

command to set the passwords of other users. For information on access through programs,
see the subroutines in the Related Information section below.

Refer to the Files section below for information on where attributes and other information on
users and groups are stored.

Although each user name must be in the /etc/passwd file, it is not necessary to have each
user name listed in the /etc/security/passwd file. If the authentication attributes AUTH1 and
AUTH2 are so defined in the /etc/security/user file, a user may use the authentication
name of another user. For example, the authentication attributes for user tom can allow him
to use the entry in the /etc/security/passwd file for user carol for authentication.

Access Control: This file should grant read (r) and write (w) access only to the root user.

Auditing Events:

Event

S_PASSWD_READ

S_PASSWD_WRITE

Information

filename

filename

The following line indicates that the password information in the /etc/security/passwd file is
available only to the root user, who has no restrictions on updating a password for the
specified user:

flags = ADMIN,NOCHECK

An example of this line in a typical stanza for user smith follows:

smith:
passwd = MGURSj.F056Dj
lastupdate = 623078865
flags = ADMIN,NOCHECK

The passwd line shows an encrypted password. The lastupdate line shows the number of
seconds since the epoch that the password was last changed. The flags line shows two
flags; the ADMIN flag indicates that the information is available only to the root user, and the
NOCHECK flag indicates that the root user has no restrictions on updating a password for
the specified user.

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

File
/etc/security/passwd Specifies the path to the file.

Related Information
The login command, ftpd command, passwd command, pwdadm command, rlogind
command, su command.

The endpwdb subroutine, getuserpw subroutine, putuserpw subroutine, setpwdb
subroutine.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-56 AIX Files Reference

PC Simulator ttylog

PC Simulator ttylog File

Purpose
Serves as an aid in identifying problems in the interaction (keystrokes and display data)
between PC Simulator and an application program.

Note: This file can be used only on a terminal running in monochrome mode, whether the
terminal is ASCII or not.

Description

Example

The ttylog file is generated by adding the TRACE option to an ASCII terminal configuration
file before running the application. The ttylog file is a log of the keystroke input and display
data passed by PC Simulator to the application program.

The example shown here is a partial ttylog file processed with the od command.

The left-most column gives the byte offset into the file, expressed as an octal number. The
rest of each numbered row consists of groups of four hexadecimal digits representing either
display characters or characters entered from the keyboard. Display characters are
expressed as their ASCII character codes. Keystrokes are represented by their scan codes.
Immediately below each numbered row is a row of printable ASCII characters. Most of these
are characters displayed on the screen.

Asterisks represent repeating rows of blank spaces (hexadecimal 20).

Off set
(octal) Synchronous display-output/keyboard-input

0000000

0000020

0000040

*
0000120

0000140

0000160

*
0000240

0000260

0000300

*
0000360

ff 43
c u

2054
T h

2020

7572
r r

6875
u

2020

2045 6e74
E n t e

286d 6d2d
(m m -
2020 2020

2043
c u

2031
1 4

2020

7572
r r

343a
4

2020

7265 6e74
e n t

2031 312d
1 1 - 0

2020 2020

2064
d a

3033
3

2020

6572 206e 6577
r n e w

6464 2d79 7929
d d - y y)
2020 2020 2020

7265
e n

3433
3

2020

6e74
t

3a21
1 8

2020

2074
t i

382e
3

2020

2045 6e74 6572 206e 6577

6174
t e

2d31
1 9

2020

2064
d a

3a20

2020

696d
m e

3337
7

2020

6520
i

3938
8 8

2020

6174
t e

2020

2020

6520
i

2020

2020

E n t e r n e w t
2074 696d

i m e
2020 2020 0000400 2020 202-0 2020 2020 2020

*
0000740 2054 6865 2049 424d 2050

T h e I B M p e
0000760 6c20 436f 6d70 7574 6572

1 C o m p u t e r

6572 736f
r s o n

2044 4£53
D 0 S

6973
s

3820

2020

6520

2020

2020

6973
s

2020

2020

653a

2020

6e61
a

2020

Chapter 1. AIX System Files 1-57

PC Simulator ttylog

0001000 2020 2020 2020 2020 2020 2020 2020 2020

*
0001060 2056 6572 7369 6f 6e 2033 2e33 3020 2843

v e r s i 0 n 3 3 0 (c
0001100 2943 6£70 7972 6967 6874 2049 6e74 6572

) c 0 p y r i g h t I n t e r
0001120 6e61 7469 6f 6e 616c 2042 7573 696e 6573

n a t i 0 n a 1 B u s i n e s
0001140 7320 4d61 6368 696e 6573 2043 6£72 7020

s M a c h i n e s c 0 r p
0001160 3139 3831 2c20 3139 3837 2020 2020 2020

1 9 8 1
'

1 9 8 7
0001200 2020 2020 2020 2020 2020 2020 2020 2843

(c
0001220 2943 6£70 7972 6967 6874 204d 6963 726£

) c 0 p y r i g h t M i c r 0

0001240 736£ 6674 2043 6£72 7020 3139 3831 2c20
s 0 f t c 0 r p 1 9 8 1

0001260 3139 3836 2020 2020 2020 2020 2020 2020
1 9 8 6

0001300 2020 2020 2020 2020 2020 2020 2020 2020

*
0001440 2043 3e20 2020 2020 2020 2020 2020 2020

c >
0001460 2020 2020 2020 2020 2020 2020 2020 2020

*
0003600 20ff 2eae ff 63 20ff 20a0 ff 63 64ff 39b9

c c d 9
0003620 2bab ff20 Scf f lf9f ff73 20ff 25a5 ff73

+ \ \sl 237 s % s
0003640 6bf f lc9c ff 43 3ef f 20a0 ff 64 20ff 1797

k \s4 c > d 027
0003660 ff 64 69ff 1393 ff72 20ff lc9c ff20 566£

d i 023 0 r \s4 v 0

0003700 6c75 6d65 2069 6e20 6472 6976 6520 4320
1 u m e i n d r i v e c

0003720 6861 7320 6e6f 206c 6162 656c 2020 4469
0003720 6861 7320 6e6f 206c 6162 656c 2020 4469

j a s n 0 1 a b e 1 D i
0003740 7265 6374 6£72 7920 6£66 20~0 433a 5c53

r e c t 0 r y 0 f c \ s

Using the ttylog File
If you suspect that problems in executing your program on an ASCII terminal are a result of
the keystrokes being passed by PC Simulator to the application program, use the TRACE
option and the ttylog file to determine exactly what keystrokes the program is receiving.

A few application programs handle keyboard input in a way that makes them vulnerable to
problems caused by differences between an ASCII terminal and a IBM Personal Computer.
The differences lie in the handling of the characters ESC, TAB, ENTER (Return), and BACK
(Backspace). These characters can be generated on the terminal by pressing a key with the
proper label or by pressing CTRL-[, CTRL-i, CTRL-m, and CTRL-h, respectively.

1-58 AIX Files Reference

PC Simulator ttylog

On the IBM Personal Computer, however, while CTRL-h and Backspace both move the
cursor back one character, each generates a different scan code. (Scan codes sent by
PC Simulator to the IBM Personal Computer are listed in PC Key Names and Corresponding
Make Scan Codes.) If your DOS application expects a Backspace character, pressing either
the Backspace key or the CTRL-h terminal keys generates the expected character. But If
the application really expects CTRL-h, you must define a terminal key sequence that
translates to CTRL + h in the #ACTION stanza. This generates the correct scan code for the
DOS application.

The example log file shown above records a simulator session in which the following
sequence of events occurs:

1 . DOS starts up.
2. DOS displays the date prompt.
3. The user presses the Enter key, accepting the date shown.
4. DOS displays the time prompt.
5. The user presses the Enter key, accepting the time shown.
6. DOS displays the system prompt: C>.
7. The user enters the CD command: CD \sk.
8. The user presses the Enter key.
9. The user enters the DIR command: DIR.
10. The user presses the Enter key.
11. The user enters the DIR command: DIR.
12. DOS displays the following messages:

Volume in drive C has no label

Directory of C:\SK

(directory listing not shown)

Format of the ttylog File
When using the ttylog file to solve a problem in the interaction between a simulator session
on the ASCII terminal and a DOS application, you are usually concerned with the keystrokes
being sent to the application rather than the display characters. PC Simulator encodes
keyboard scan-code sequences sent to the DOS application as follows:

FF 2EAE FF

The format of the sequence is: an initial hexadecimal FF, the make scan code for the primary
keystroke(s), the break scan code for the primary keystroke(s), and a terminating FF. PC
Key Names and Corresponding Make Scan Codes lists the make scan codes for the IBM
Personal Computer keys. In the example just shown, 2E is the make scan code for the
character C. You form the break scan code for any character by turning on the most
significant bit of its make scan code. You can also think of it as adding Ox80 to the make
scan code (for example, AE is the break scan code for the character C). A terminating
hexadecimal FF follows the break scan code.

Chapter 1. AIX System Files 1-59

PC Simulator ttylog

The addition of a "state" key-such as CTRL, LSHFT, RSHFT, and ALT-changes the
encoding format slightly. For example, the following diagram shows how PC Simulator
encodes the DIR command entered in uppercase (shifted):

OOFF 002A 0020 OOAO 0017 0097 0013 0093 OOAA OOFF

I I I I I I
make & break make & break make & break
scan ford scan for i scan for r

make & break
scan for LSHFT

....__ _________ initial and terminating FFs---------

PC Simulator brackets the makes and breaks of the primary key(s) between the makes and
breaks of any state keys. The same encoding format is used when multiple state keys are
sent to a DOS application, an in the following example of CTRL-ALT-UP (cursor-up).

OOFF 0010 0038 0048 ooc8
I I

make & break
scan for UP

0088 0090 OOFF

initial and terminating FFs -------

There are two aspects of the data in ttylog files that appear anomalous:

1. Because the AIX od command treats any two adjacent hexadecimal digits as a printable
character, extraneous characters may appear in the printable character line. They are not
entered from the keyboard or displayed on the screen.

2. The ttylog file often contains bytes that do not seem to fit the flow of events. A common
example is two sets of hexadecimal FFs with no digits between them. These are not
keystroke delimiters. PC Simulator produces them as a response to an internal event and
they can be ignored. The file may also contain extra "blank" (Ox20) characters. The
explanation for their presence is that PC Simulator refreshes the terminal display in
groups of four characters. If you type a character on a blank line, PC Simulator echoes
the character on the display together with three "blank" characters following it.

1-60 AIX Files Reference

PC Simulator ttylog

Decoding PC Simulator Events
At offset 1440 in the example ttylog file, DOS displays the C> prompt, and the remainder of
the screen is filled with blanks. This accounts for the many missing rows, designated by
asterisks. The first keyboard input is at offset 3600 in the file. The keys encoded there are
the representation of event 7 in the session. The entry CD \sk is decoded as shown in the
following diagram. Large 11brackets" have been added to make the data more readable.

0003600 20FF 2EAE FF63 20FF 20AO FF63 64FF 3989

make&
break of
space

make&
break of c

extraneous - > •

interpretation of the
002E scan code

0003620 2BAB

make &
break of\

+ < - extraneous

interpretation of the
002E scan code

FF20

c Ox63 and" c
" are echoes of
key entered

5CFF 1F9F

make&
break of
s

\ 005C and " \ "
are echoes of
key entered

make&
break of
d

c Ox63 and
Ox64 are
echoes of
key stokes

FF73 20FF 25A5

make&
break of k

s Ox73 and" s
" are echoes of
key entered

FF73

s echo

At offsett Ox3540 DOS has executed the change directory command and event 9 begins as
shown in the following example.

0003640 6BFF 1C9C

make&
break of
Enter

k Ox6B and"
k " are echo of
key entered

FF43 3EFF 20AO

c >

Ox43, "C ", Ox3E,
and">" are
redisplay of
prompt after DOS
executes "cd \ sk"

make&
break of
d

FF64 20FF

d Ox64 and" d
" are echoes of
keystokes

1797

make &
break of

Chapter 1. AIX System Files 1-61

PC Simulator ttylog

PC Key Names and Corresponding Make Scan Codes
PC Key Name Hex Scan-Code PC Key Name Hex Scan-code

ESC 01 LSHFT 2A
1 02 BSLSH 2B
2 03 z 2C
3 04 x 2D
4 05 c 2E
5 06 v 2F
6 07 B 30
7 08 N 31
8 09 M 32
9 OA COMMA 33
0 OB DOT 34

DASH oc SLASH 35
EQUAL OD RSHFT 36
BACK OE ASTR 37
TAB OF ALT 38

Q 10 SPACE 39
w 11 CAPS 3A
E 12 Fl 3B
R 13 F2 3C
T 14 F3 3D
y 15 F4 3E
u 16 FS 3F
I 17 F6 40
0 18 F7 41
p 19 F8 42

LBRAK lA F9 43
RBRAK lB FlO 44
ENTER le NUM 45
CTRL lD SCROL 46

A lE HOME 47
s lF UP 48
D 20 PGUP 49
F 21 MINUS 4A
G 22 LEFT 4B
H 23 NS 4C
J 24 RIGHT 4D
K 25 PLUS 4E
L 26 END 4F

SEMIC 27 DOWN 50
QUOTE 28 PG DOWN 51
AC ENT 29 INS 52

DEL 53

How to Generate a ttylog
1. PC Simulator must be running in PC monochrome mode.

2. Add the TRACE option to the terminal configuration file {in the #DEFINE stanza), using
the following format:

TRACE=nonzero_ value

Note: The TRACE option must be uppercase, as shown. Also make sure that no
comment designator {;) precedes it on the line.

This option creates a log file of the keystrokes sent to the application being run on
PC Simulator. The file is called /usr/lpp/pcsim/tty/ttylog.

1-62 AIX Files Reference

Files

PC Simulator ttylog

3. To examine the contents of the log file, enter the AIX od command, using the following
format:

od -ex /usr/lpp/pcsim/tty/ttylog > file-name

Issuing this command at the AIX prompt writes the ttylog contents into file-name in
hexadecimal format with an ASCII character equivalent for each byte.

Note: The file-name file should be inspected on a IBM RISC System/6000 display
screen rather than your ASCII terminal display screen, because the file may
contain characters that are interpreted as line-control characters by an ASCII
terminal.

/usr/lpp/pcsim/tty/ascii

/usr/lpp/pcsim/tty/ibm3151-11

/usr/lpp/pcsim/tty /ibm3151-31

/usr/lpp/pcsim/tty/ibm3151-51

/usr/lpp/pcsim/tty/ibm3161

lusr/lpp/pcsim/tty/ibm3162

/usr/lpp/pcsim/tty/ibm3163

/usr/lpp/pcsim/tty/ibm3164

/usr/lpp/pcsim/tty/ibmhft

/usr/lpp/pcsim/tty/ibmxterm

/usr/lpp/pcsim/tty/keyboard.sys

/usr/lpp/pcsim/tty/ttyxlat

/usr/lpp/pcsim/tty/vt100
/usr/lpp/pcsi m/tty /vt220
/usr/lpp/pcsim/tty/vt320
/usr/lpp/pcsim/tty/vt330
/usr/lpp/pcsim/tty/wy30
/usr/lpp/pcsim/tty/wy50
/usr/lpp/pcsim/tty/wy60
/usr/lpp/pcsim/tty/wy350

Default terminal configuration file.

Terminal configuration file for the IBM 3151 terminal.

Terminal configuration file for the IBM 3151 terminal.

Terminal configuration file for the IBM 3151 terminal.

Terminal configuration file for the IBM 3161 terminal.

Terminal configuration file for the IBM 3162 terminal.

Terminal configuration file for the IBM 3163 terminal.

Terminal configuration file for the IBM 3164 terminal.

Terminal configuration file for PC monochrome mode
on the IBM AIX local display.

Terminal configuration file for PC monochrome mode
on the IBM AIXwindows display.

Terminal configuration file for world trade 102-key
keyboard for UK, France, Italy, Sweden in AIXwindows.

Keyboard mapping file.

Terminal configuration file for the DEC VT100 terminal.
Terminal configuration file for the DEC VT220 terminal.
Terminal configuration file for the DEC VT320 terminal.
Terminal configuration file for the DEC VT330 terminal.
Terminal configuration file for the Wyse WY30 terminal.
Terminal configuration file for the Wyse WY50 terminal.
Terminal configuration file for the Wyse WY60 terminal.
Terminal configuration file for the Wyse WY350
terminal.

Related Information
PC Simulator Overview and PC Key Names and Corresponding Make Scan Codesin
General Concepts and Procedures.

The od command and the pcsim command.

Chapter 1 . AIX System Files 1-63

plot

plot File

Purpose
Provides the graphics interface.

Description
The plot subroutines in the following list produce output files in the format outlined in this
section. The tplot commands then interpret these graphics files for various devices,
performing the plotting instructions in the order in which they appear.

A graphics file consists of a stream of plotting instructions. Each instruction consists of an
ASCII letter usually followed by bytes of binary information. A point is designated by 4 bytes
representing the x and y values: Each value is a 2-byte signed integer. The last designated
point in an I, m, n, or p instruction becomes the current point for the next instruction.

The following lists each plot instruction with its corresponding plot subroutines:

Instr Subroutine Description

a
arc Draws the arc described by the following 12 bytes. The first 4 bytes describe

the center point (x, y) of the arc or circle. The second 4 bytes describe the
beginning point of the arc. The third 4 bytes describe the ending point of the
arc. Arcs are drawn counterclockwise. The results are unpredictable if the
three points do not really form an arc.

c
circle Draws a circle whose center point is defined by the first 4 bytes, and whose

radius is given as an integer in the following 2 bytes.

e
erase Starts another frame of output.

f
line mod

line

m
move

n
cont

p
point

s
space

1-64 AIX Files Reference

Uses the string that follows it, terminated by a new-line character, as the
style for drawing further lines. The styles are dotted, solid, long-dashed,
short-dashed, and dot-dashed.

Draws a line from the point designated by the next 4 bytes to the point
designated by the following 4 bytes.

The next 4 bytes designate a new current point.

Draws a line from the current point to the point designated by the next 4
bytes.

Plots the point designated by the next 4 bytes.

The next 4 bytes designate the lower left corner of the plotting area,
followed by 4 bytes for the upper right corner. The plot is magnified or
reduced to fit the device as closely as possible.

File

t
label Places the following ASCII string so that its first character falls on the

current point. A new-line character terminates the string.

The following space setting is as follows:

space(O, O, 480, 432);

plot

This exactly fills the plotting area with unity scaling for the IBM Personal Computer Graphics
Printer. The upper limit is immediately outside the plotting area, which is taken to be square.
Points outside the plotting area can be displayed on devices that do not have square
displays.

TERM

Related Information
The plot subroutine.

The graph command and tplot command.

Chapter 1 . AIX System Files 1-65

qconfig

qconfig File

Purpose
Configures a printer queueing system.

Description
The qconfig file describes the queues and devices available for use by the enq command,
which places requests on a queue, and the qdaemon command, which removes requests
from the queue and processes them. The qconfig file is an attribute file.

Some stanzas in this file describe queues, and other stanzas describe devices. Every queue
stanza requires that one or more device stanzas immediately follow it in the file. The first
queue stanza describes the default queue. Unless the PRINTER environment variable is set,
the enq command uses this queue when it receives no queue parameter.

The name of a queue stanza must be 1 to 7 characters long. The following table shows
some of the field names along with some of the possible values that appear in this file:

acctfile

device

discipline

up

Identifies the file used to save print accounting information. FALSE, the
default, indicates suppress accounting. If the named file does not exist, no
accounting is done.

Identifies the symbolic name that refers to the device stanza.

Defines the queue serving algorithm. The default, fcfs, means
first-come-first-served. sjn means shortest job next.

Defines the state of the queue. TRUE, the default, indicates that it is
running. FALSE indicates that it is not running.

The following list shows some of the field names along with some of the possible values that
appear in the qconfig file for remote queues:

host

s_statfilter

l_statfilter

rq

1-66 AIX Files Reference

Remote< host where the remote queue is found.

Short version filter used to translate remote queue status format. The
default, /usr/lpd/aixshort, indicates that the remote print server is an IBM
AIX Version 3 for RISC System/6000 machine and status information will be
represented in short format. Other choices are /usr/lpd/bsdshort for BSD
remote and /usr/lpd/aixv2short for the RT system.

Long version filter used to translate remote queue status format. The
default, /usr/lpd/aixlong, indicates that the remote print server is an AIX for
RISC System/6000 machine and status information will be represented in
long format. Other choices are /usr/lpd/bsdlong for BSD remote, and
/usr/lpd/aixv21ong for the RT system.

Remote queue name.

qconfig

If a field is omitted, its default value is assumed. The default values for a queue stanza are:

discipline
up
acctf ile

fcf s
TRUE
FALSE

The device field cannot be omitted.

The name of a device stanza is arbitrary and can be 1 to 7 characters long. The fields that
can appear in the stanza are:

access

align

backend

feed

file

header

trailer

Specifies the type of access the backend has to the file specified by the file
field. The value of access is write if the backend has write access to the file
or both if it has both read and write access. This field is ignored if the file
field has the value FALSE.

Specifies whether the backend sends a form-feed control before starting the
job if the printer was idle. The default is TRUE.

Specifies the full path name of the backend, optionally followed by flags and
parameters to be passed to it. The path names most commonly used are
/usr/lpd/piobe for local print and /usr/lpd/rembak for remote print.

Specifies the number of separator pages to print when the device becomes
idle or the value never, the default, which indicates that the backend is not
to print separator pages.

Identifies the special file where the output of backend is to be redirected.
FALSE, the default, indicates no redirection and that the file name is
/dev/null. In this case, the backend opens the output file.

Specifies whether a header page prints before each job or group of jobs.
NEVER, the default, indicates no header page at all. ALWAYS means a
header page before each job. GROUP means a header before each group
of jobs for the same user.

Specifies whether a trailer page prints after each job or group of jobs.
NEVER, the default, means no trailer page at all. ALWAYS means a trailer
page after each job. GROUP means a trailer page after each group of jobs
for the same user.

The qdaemon program places the information contained in the feed, header, trailer, and
align fields into a status file that is sent to the backend. Backends that do not update the
status file do not use the information it contains.

If a field is omitted, its default value is assumed. The backend field cannot be omitted. The
default values in a device stanza are:

file = FALSE
access write
feed never
header never
trailer= never
align TRUE

The enq command automatically converts the ASCII qconfig file to binary when the binary
version is missing or older than the ASCII version. The binary version is found in the
/etc/qconfig.bin file.

Chapter 1. AIX System Files 1-67

qconfig

Examples

Files

1. The batch queue supplied with the AIX for RISC System/6000 might contain these
stanzas:

bsh:

bshdev:

discipline = fcf s
device = bshdev

backend = /bin/ksh

To run a shell procedure called myproc using this batch queue, enter:

qprt -Pbsh myproc

The queuing system runs the files one at a time, in the order submitted. The qdaemon
process redirects standard input, standard output, and standard error to the /dev/null file.

2. To allow two batch jobs to run at once, enter:

bsh:

bshl:

bsh2:

discipline = f cf s
device = bshl,bsh2

backend = /bin/ksh

backend = /bin/ksh

3. To set up a remote queue bsh, enter:

remh:

rdO:

/etc/qconfig

/etc/qconfig.bin

/usr/lpd/digest

device = rdO
host = pluto
rq = bsh

backend = /usr/lpd/rembak

Configuration file.

Digested, binary version of the /etc/qconig file.

Program that converts the qconfig file to binary.

Related Information
The Ip command, qdaemon command, enq command.

1-68 AIX Files Reference

streamcmds

streamcmds File

Purpose
Contains auditstream commands.

Description

Security

Examples

The /etc/security/audit/streamcmds file is an ASCII template file that contains the stream
mode commands that are invoked when the audit system is initialized. The path name of this
file is defined in the stream stanza of the /etc/security/audit/config file.

This file contains command lines, each of which is composed of one or more commands
with input and output that may be piped together or redirected. Although the commands
usually are one or more of the audit system commands (the auditcat command, the auditpr
command, the auditselect command), this is not a requirement. The first command,
however, should be the auditstream command.

When the audit system is initialized, the audit start command runs each command. No path
name substitution is performed on $trail or $bin strings in the commands.

Access Control: This file should grant read (r) access to the root user and members of the
audit group and grant write (w) access only to the root user.

1. To read all records from the audit device, select and format those that involve
unsuccessful events, and print them on a line printer, include the following in the
/etc/security /audit/streamcmds file:

/etc/auditstream I /etc/auditselect -e \
"result= fail" l/etc/auditpr -v > /dev/lprO

This command is useful for creating a hard copy trail of system security violations.

2. To read all records from the audit device that have audit events in the authentication
class, format them, and display them on the system console, include the following in the
/etc/security/audit/streamcmds file:

/etc/auditstream -c authentication I \
/etc/auditpr -to -v > /dev/console

This command allows timely auditing of user authentication events.

Implementation Specifics

Files

This command is part of AIX Base Operating System (BOS) Runtime.

/etc/security/audit/streamcmds

/etc/security/audit/config

/etc/security/audit/events

/etc/security laud it/objects

/etc/security/audit/bincmds

Specifies the path to the file.

Contains audit system configuration information.

Contains the audit events of the system.

Contains information about audited objects (files).

Contains auditbin backend commands.

Chapter 1. AIX System Files 1-69

streamcmds

Related Information
The audit command, auditcat command, auditpr command, auditselect command.

To see the steps you must take to establish an Auditing System, refer to How to Set Up an
Auditing System in General Concepts and Procedures.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-70 AIX Files Reference

sysck.cfg File

Purpose
Contains file definitions for the trusted computing base

Description

sysck.cfg

The /etc/security/sysck.cfg file is a stanza file that contains definitions of file attributes for
the trusted computing base. The name of each stanza is the pathname of a file, followed by
a : (colon). Attributes are in the form Attribute= Value. Each attribute is ended with a new
line character, and each stanza is ended with an additional new line character. For an
example of a stanza, see the Examples section below.

Each stanza can have one or more of the following attributes, and must have the type
attribute:

acl Defines the access control list of the file, including the SUID, SGID, and
SVTX bits. The value is the Access Control List, in the format described in
Access Control Lists.

class Defines a group of files for checking, deleting, or updating. A file can be in
more than one class. The value is the ClassName [ClassName]parameter.

checksum Defines the checksum, as computed with the sysck checksum program. This
attribute is valid only for regular files. The value is the output of the sum -r
command, including spaces.

group Defines the group name or numeric group ID, expressed as the GroupName
or GrouplD parameter.

links Defines the absolute paths that have hard links to this object. The value must
be an absolute pathname, expressed as the Path, [Path ...] parameter.

mode Defines the file mode, expressed as Flag, Flag ... , PBits. The Flag parameter
can contain the SUID, SGID, SVTX, and tcb mode attributes. The PB/TS
parameter contains the base file permissions, expressed either in octal form,
such as 640, or symbolic form, such as rw-,r-, r-. The order of the
attributes in the Flag parameter is not important, but base permissions must
be the last entry in the list. The symbolic form may include only read (r), write
(w), and execute (x) access. If the acl attribute is defined in the stanza, the
SUID, SGID, and SVTX mode attributes are ignored. For a typical mode
specification, see the Examples section below.

owner Defines the name or numeric ID of the file owner, expressed as the
OwnerName or the OwnerlD parameter.

program Defines an associated checking program. When the sysck command is in
check mode (given with the -n, -p, -t or-y flag), the associated program is
invoked as part of the check, with the flag as its first argument. The value
must be an absolute pathname. If flags are specified, the value should be
expressed as Path [,Flag].

size Defines the size of the file in bytes. This attribute is valid only for regular files.
The value is a decimal number.

Chapter 1 . AIX System Files 1-71

sysck.cfg

Security

Examples

source

symlinks

type

Defines the source file. In check mode, the source file is copied to the file
being checked to initialize it. If this attribute is blank or empty (source =) an
empty file (regular file, directory, or named pipe) is created. This attribute
requires a value if the object is a device file. The value must be an absolute
pathname.

Defines the absolute paths that have symbolic links to this object. The value is
Path, [Path ...]

The type of object. Select one of the following: the FILE, DIRECTORY, FIFO,
BLK_DEV, CHAR_DEV, or MPX_DEV keyword.

Stanzas in this file can be created and altered with the sysck command. Direct alteration by
other means should be avoided, since other accesses may not be supported in future
releases.

Attributes that span multiple lines must be enclosed in double quotes and have new line
characters entered as \n.

Access Control: This file should grant read (r) access to the root user and members of the
security group, and write (w) access only to the root user. General users do not need read (r)
access.

1. A typical stanza looks like the following example for the /etc/passwd file:

/etc/passwd:
type = file
owner = root
group = passwd
mode = TCB,640
program = /bin/pwdck ,ALL

2. A typical mode specification looks like the following example for a program that is part of
the Trusted Computing Base, is a Trusted Process, and which has the setuid attribute
enabled:

mode SUID,TP,TCB,rwxr-x--
Or
mode SUID,TP,TCB,750

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

Files
/etc/security/sysck.cfg Specifies the path to the system configuration data base.

Related Information
The grpck command, installp command, pwdck command, sum command, sysck
command, updatep command, usrck command.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-72 AIX Files Reference

term info

terminfo File

Purpose
Describes terminal by capability.

Description
A terminfo file is a data base that describes terminals, defining their capabilities and their
methods of operation. It is used by various programs, including the Extended Curses Library
(libcur.a) and the vi editor. The information defined includes initialization sequences,
padding requirements, cursor positioning, and other command sequences that control
specific terminals.

This article explains the terminfo source file format. Before a terminfo source file can be
used, it must be compiled using the tic command. You can edit and modify these source
files, such as the /usr/lib/terminfo/ibm.ti file, which describes IBM terminals, and the
/usr/lib/terminfo/dec.ti file, which describes DEC terminals.

See TERM for a list of some terminals supported by predefined terminfo data base files and
the corresponding values for the TERM environment variable.

Each terminfo entry consists of a number of fields separated by commas, ignoring any
white space between commas. The first field for each terminal gives the various names the
terminal is known separated by I (vertical bar) characters. The first name given should be
the most common abbreviation for the terminal, the last name given should be a long name
fully identifying the terminal, and all others are understood as synonyms for the terminal
name. All names except the last should be in lowercase and not contain blanks. The last
name can contain uppercase characters for readability.

Terminal names (except the last) should be chosen using the following conventions. A root
name should be chosen to represent the particular hardware class of the terminal. This
name should not contain hyphens, except to avoid synonyms that conflict with other names.
Possible modes for the hardware or user preferences are indicated by appending a -
(hyphen) and an indicator of the mode to the root name. Thus, a terminal in 132 column
mode would be Terminal-w. The following suffixes should be used where possible:

Suffix Meaning Example

-am With automatic margins (usually default) Terminal-am

-m Monochrome mode Terminal-m

-w Wide mode (more than 80 columns) Terminal-w

-nam Without automatic margins Terminal-nam

-n Number of lines on the screen Terminal-60

-na No arrow keys (leave them in local) Terminal-na

-np Number of pages of memory Terminal-4p

-rv Reverse video Terminal-rv

Chapter 1 . AIX System Files 1-73

term info

Types of Capabilities
Capabilities in terminfo are of three types: boolean, numeric, and string. Boolean capabilities
indicate that the terminal has some particular feature. Boolean capabilities are true if the
corresponding name is in the terminal description. Numeric capabilities give the size of the
terminal or the size of particular delays. String capabilities give a sequence that can be used
to perform particular terminal operations.

Entries can continue onto multiple lines by placing white space at the beginning of each
subsequent line. Comments are included in lines beginning with the# (pound sign)
character.

List of Capabilities
The following listing shows VARIABLE, which is the name the programmer uses to access
the terminfo capability. The CAP NAME (capability name) is the short name used in the text
of the data base, and is used by a person updating the data base. The I.CODE is the 2-letter
internal code used in the compiled data base, and always corresponds to a termcap
capability name.

Capability names have no absolute length limit. An informal limit of five characters is
adopted to keep them short and to allow the tabs in the caps source file to be aligned.
Whenever possible, names are chosen to be the same as or similar to the ANSI X3.64
standard of 1979.

(P)
(G)

Indicates that padding can be specified.

Indicates that the string is passed through tparm with parameters as given
(#1).

(*)
(#1)

Indicates that padding can be based on the number of lines affected.
Indicates the ith parameter.

CAP I.
VARIABLE NAME CODE DESCRIPTION

auto-left-margin bw bw Indicates cub1 wraps from column O to last
column.

auto_right_margin am am Indicates terminal has automatic margins.
beehive _glitch xsb XS Indicates a terminal with f1 =escape and

f2=Ctrl-C.

ceol-standout-glitch shp XS Indicates standout not erased by overwriting
eat_newline_glitch xenl xn Ignores new-line character after 80 columns.
erase_overstrike eo eo Erases overstrikes with a blank.
generic-type gn gn Indicates generic line type (such as, dialup,

switch)

hard-copy he he Indicates hardcopy terminal.
has_ meta_ key km km Indicates terminal has a meta key (shift, sets

parity bit).
has status line hs hs Indicates terminal has extra "status line".
insert_null_=91itch in in Indicates insert mode distinguishes nulls.

memory _above da da Retains information above display in memory.
memory _below db db Retains information below display in memory.
move_insert_mode mir mi Indicates safe to move while in insert mode.
move_standout_mode msgr ms Indicates safe to move in standout modes.
over_strike OS OS Indicates terminal overstrikes.
status_line_esc_ok eslok es Indicates escape can be used on the status line.

1-7 4 AIX Files Reference

term info

CAP I.
VARIABLE NAME CODE DESCRIPTION

teleray _glitch xt xt Indicates destructive tabs and blanks inserted
while entering standout mode.

tilde _glitch hz hz Indicates terminal cannot print - (tilde)
characters.

transparent_underline
ul ul Overstrikes with underline character.

xon_xoff xon XO Indicates terminal uses xon/xoff handshaking.

Numbers

CAP I.
VARIABLE NAME CODE DESCRIPTION

columns cols co Specifies th,e number of columns in a
line.init_tabs it it Provides tabs initially every # spaces.
lines lines Ii Specifies the number of lines on screen or page.
lines_of _memory Im Im Specifies the number of lines of memory if >

lines. A value of O (zero) indicates variable.

magic_cookie_glitch xmc sg Indicates number of blank characters left by
smso or rmso.

padding_baud_rate pb pb Indicates lowest baud where carriage return and
line return padding is needed.

virtual_terminal vt vt Indicates virtual terminal number.
width_status_lines wsl ws Specifies the number of columns in status line.

Strings

CAP I.
VARIABLE NAME CODE DESCRIPTION

appl_ defined_str apstr za Application defined terminal string.
back_tab cbt bt Back tab. (P)
bell bel bl Produces an audible signal (bell). (P)
box_chars_ 1 box1 bx Box characters primary set.
box chars 2 box2 by Box characters alternate set.
box:=attr_ 1- batt1 Bx Attributes for box_chars_ 1.
box_attr_2 batt2 Byx Attributes for box_chars_2.

carriage _return er er Indicates carriage return. (P*)
change_scroll_regioncsr cs Changes scroll region to lines #1 through #2.

(PG)
clear_all_tabs tbc ct Clears all tab stops.
clear_screen clear cl Clears screen and puts cursor in home position.

(P*)
clr_eol el ce Clears to end of line. (P)
clr_eos ed ed Clears to end of the display. (P*)

color_bg_O colbO dO Background color O black.
color_bg_1 colb1 d1 Background color 1 red.
color_bg_2 colb2 d2 Background color 2 green.
color_bg_3 colb3 d3 Background color 3 brown.

color_bg_4 colb4 d4 Background color 4 blue.
color_bg_5 colb5 d5 Background color 5 magenta.
color_bg_6 colb6 d6 Background color 6 cyan.
color_bg_7 colb7 d7 Background color 7 white.

Chapter 1. AIX System Files 1-75

term info

Strings (continued)

CAP I.
VARIABLE NAME CODE

color_fg_O colfO 0
color_fg_1 colf1 c1
color_fg_2 colf2 c2
color_fg_3 colf3 c3

color_fg_ 4 colf4 c4
color_fg_S coifs cs
color_fg_6 colf6 c6
color_fg_7 colf7 c7

column_address hpa ch
command_character cmdch cc
cursor_address cup cm

cursor_down cud1 do

cursor_home home ho
cursor_invisible civis vi
cursor_left cub1 le
cursor_mem_address mrcup CM
cursor_normal cnorm ve

cursor_right cuf1 nd
cursor_to_ll II II

cursor_up cuu1 up
cursor_ visible cvvis vs

delete_ character dch1 de
delete_line dl1 di
dis_status_line dsl ds
down_half _line hd hd

enter_alt_charset_mode smacs as
enter_bold_mode blink mb
enter_blink_mode bold md
enter_ca_mode smcup ti
enter_delete_mode smdc dm
enter_dim_mode dim mh

enter_insert_mode smir im
enter_protected_mode prot mp
enter_reserse_mode rev mr
enter_secure_mode invis mk
enter_standout_mode smso so
enter_underline_mode smul us

erase_chars ech ec
exit_alt_charset_mode rmacs ae
exit_attribute_mode sgrO me
exit_ ca_ mode rm cup te
exit_delete_mode rmdc ed
exit_insert_mode rmir ei
exit_standout_mode rmso se
exit_underline_mode rmul ue

1-76 AIX Files Reference

DESCRIPTION

Foreground color O white.
Foreground color 1 red.
Foreground color 2 green.
Foreground color 3 brown.

Foreground color 4 blue.
Foreground color S magenta.
Foreground color 6 cyan.
Foreground color 7 black.

Sets cursor column. (PG)
Indicates terminal command prototype character
can be set.
Indicates screen relative cursor motion row #1
col #2. (PG)
Moves cursor down one line.

Moves cursor to home position (if no cup).
Makes cursor invisible.
Moves cursor left one space.
Indicates memory relative cursor addressing.
Makes cursor appear normal (undo vs or vi).

Indicates nondestructive space (cursor right).
Moves cursor to first column of last line (if no
cup).
Moves cursor up one line. (cursor up).
Makes cursor very visible.

Deletes character. (P*)
Deletes line. (P*)
Disables status line.
Indicates subscript (forward 1/2 line feed).

Starts alternate character set. (P)
Enables blinking.
Enables bold (extra bright) mode.
Begins programs that use cup.
Starts delete mode.
Enables half-bright mode.

Starts insert mode.
Enables protected mode.
Enables reverse video mode.
Enables blank mode (characters invisible).
Begins standout mode.
Starts underscore mode.

Erases #1 characters. (PG)
Ends alternate character set. (P)
Disables all attributes.
Ends programs that use cup.
Ends delete mode.
Ends insert mode.
Ends stand out mode.
Ends underscore mode.

term info

Strings (continued)

CAP I.
VARIABLE NAME CODE DESCRIPTION

flash_screen flash vb Indicates visual bell (may not move cursor).
font_O fontO f O Select font 0.
font_1 font1 f 1 Select font 1 .
font 2 font2 f 2 Select font 2.
fon() font3 f 3 Select font 3.

font_ 4 font4 f 4 Select font 4.
font 5 fonts f 5 Select font 5.
fon(6 fonts f 6 Select font 6.
font_7 font7 f 7 Select font 7.

form_feed ff ff Ejects page (hardcopy terminal). (P*)
from_status_line f sl f s Returns from status line.
init_ 1 string is1 i1 Initializes terminal.
init_2string is2 i2 Initializes terminal.
init_3string is3 i3 Initializes terminal.
in it_ file if if Identifies file containing is.

insert_ character ich1 ic Inserts character. (P)
insert line il1 al Adds new blank line. (P*)
insertJ,adding ip ip Inserts pad after character inserted. (P*)
key_backspace kbs kb Sent by backspace key.
key _back_tab kbtab kO Sent by backtab key.

key_catab ktbc ka Sent by clear-all-tabs key.
key_clear kclr kC Sent by clear-screen or erase key.
key_ctab kctab kt Sent by clear-tab key.
key_command kcmd kc Command request key.
key_command_pane kcpn kW Command pane key.

key_dc kdch1 kD Sent by delete-character key.
key_dl kdl1 kl Sent by delete-line key.
key_do kdo ki Do request key.
key_down kcud1 kd Sent by terminal down arrow key.
key_eic krmir kM Sent by rmir or smir in insert mode.

key_end kend kw End key.
key_eol ke1 kE Sent by clear-to-end-of-line key.
key_eos ked kS Sent by clear-to-end-of-screen key.
key_fO kfO kO Sent by function key FO.
key_f1 kf1 k1 Sent by function key F1.

key_f2 kf 2 k2 Sent by function key F2.
key_f3 kf 3 k3 Sent by function key F3.
key_f4 kf 4 k4 Sent by function key F4.
key_f5 kf 5 k5 Sent by function ~ey F5.
key_f6 kf 6 k6 Sent by function key FS.

key_f7 kf7 k7 Sent by function key F7.
key_f8 kf 8 k8 Sent by function key F8.
key_f9 kf 9 k9 Sent by function key F9.
key_f10 kf10 ka Sent by function key F10.
key_f11 kf11 k< Sent by function key F11.

Chapter 1. AIX System Files 1-77

term info

Strings (continued)

CAP I.
VARIABLE NAME CODE DESCRIPTION

key_f12 kf12 k> Sent by function key F12.
key_help khlp kq Help key.
key_ home khome kh Sent by home key.
key_ic kich1 kl Sent by insert character/enter insert mode key.
key_il kil1 kA Sent by insert line key.

key_left kcub1 kl Sent by terminal left arrow key.
key_ll kll kH Sent by home-down key.
key_ new-line knl kn New-line key.
key _next_pane knpn kv Next-pane key.
key_n_page knp kN Sent by next-page key.

key_ppage kpp kP Sent by previous-page key.
key_prev_cmd kpcmd kp Sent by previous-command key.
key_quit kquit kQ Quit key.
key_right kcuf1 kr Sent by terminal right arrow key.
key _scroll_left kscl kz Scroll left.

key _scroll_right kscr kZ Scroll right.
key_select ksel kU Select key.
key_sf kind kF Sent by scroll-forward/down key.
key_smap_in1 kmpf1 Kv Input for special mapped key 1.
key_smap_out1 kmpt1 KV Output for mapped key 1.

key_smap_in2 kmpf2 Kw Input for special mapped key 2.
key_smap_out2 kmpt2 KW Output for mapped key 2.
key_smap_in3 kmpf3 Kx Input for special mapped key 3.
key_smap_out3 kmpt3 KX Output for mapped key 3.
key_smap_in4 kmpf4 Ky Input for special mapped key 4.

key_smap_out4 kmpt4 KY Output for mapped key 4.
key_smap_in5 kmpf5 Kz Input for special mapped key 5.
key_smap_out5 kmpt5 KZ Output for mapped key 5.
key_sr kri kR Sent by scroll-backward key.
key_stab khts kT Sent by set-tab key.

key_tab ktab ko Tab key.
key_up kcuu1 ku Sent by terminal up arrow key.
keypad_local rmkx ke Ends keypad transmit mode.
keypad_xmit smkx ks Puts terminal in keypad transmit mode.

lab_fO lfO 10 Labels function key FO if not FO.
lab_f1 lf1 11 Labels function key F1 if not F1.
lab_f2 lf2 12 Labels function key F2 if not F2.
lab_f3 lf3 13 abels function key F3 if not F3.
lab_f4 lf4 14 Labels function key F4 if not F4.

lab_f5 lf5 15 Labels function key F5 if not F5.
lab_f6 lf6 16 Labels function key F6 if not F6.
lab_f7 If? 17 Labels function key F7 if not F7.
lab_f8 lf8 18 Labels function key Fa if not FOB
lab_f9 f 9 19 Labels function key F9 if not F9.
lab_f10 lf10 la Labels function key F1 O if not F10.

1-78 AIX Files Reference

term info

Strings (continued)

CAP I.
VARIABLE NAME CODE DESCRIPTION

meta_ on smm mm Enables "meta mode" (8th bit).
meta_off rmm mo Disables "meta mode".
newline nel nw Performs new-line function (behaves like CR

followed by LF).
pad_char pad pc Pads character (instead of NUL).

parm_dch dch DC Deletes #1 characters. (PG*)
parm_delete_line di DL Deletes #1 lines. (PG*)
parm_down_cursor cud DO Moves cursor down #1 lines. (PG*)
parm_ich ich IC Inserts #1 blank characters. (PG*)
parm_index indn SF Scrolls forward #1 lines. (PG*)

parm_insert_line ii AL Adds #1 new blank lines. (PG*)
parm_left_cursor cub LE Moves cursor left #1 spaces. (PG*)
parm_right_cursor cuf RI Moves cursor right #1 spaces. (PG*)
parm_rindex rin SR Scrolls backward #1 lines. (PG*)
parm_up_cursor cuu UP Moves cursor up #1 lines. (PG*)

pkey_key pf key pk Programs function key #1 to type string #2.
pkey_local pfloc pl Programs function key #1 to execute string #2.
pkey_xmit pf x px Programs function key #1 to xmit string #2.
print_ screen mcO ps Prints contents of the screen.
prtr_off mc4 pf Disables the printer.
prtr_on mes po Enables the printer.

repeat_ char rep rp Repeats character #1 #2 times. (PG*)
reset_ 1 string rs1 r1 Resets terminal to known modes.
reset_2string rs2 r2 Resets terminal to known modes.
reset_3string rs3 r3 Resets terminal to known modes.
reset_ file rf rf Identifies the file containing reset string.

restore_ cursor re re Restores cursor to position of last sc.
row_address vpa CV Positions cursor to an absolute vertical position

(set row). (PG)
save_cursor SC SC Saves cursor position. (P)
scroll_forward ind sf Scrolls text up. (P)
scroll_reverse ri sr Scrolls text down. (P)

set_ attributes sgr sa Defines the video attributes. (PG9)
set_ tab hts st Sets a tab in all rows, current column.
set_ window wind wi Indicates current window is lines #1-#2 cols

#3-#4.
tab ht ta Tabs to next 8-space hardware tab stop.

to_status_line tsl ts Moves to status line, column #1.
underline_char UC UC Underscores one character and moves beyond

it.
up_half_line hu hu Indicates superscript (reverse 1/2 line-feed).
init_prog iprog iP Locates the program for init.

Chapter 1. AIX System Files 1-79

term info

Strings (continued)

CAP I.
VARIABLE NAME CODE

key_a1
key_a3
key_b2
key_c1
key_c3
prtr_non

ka1
ka3
kb2
kc1
kc3
mc5p

K1
K3
K2
K4
K5
po

DESCRIPTION-

Specifies upper left of keypad.
pacifies upper right of keypad.
Specifies center of keypad.
Specifies lower left of keypad.
Specifies lower right of keypad.
Enables the printer for #1 bytes.

Terminal capabilities have names. For instance, the fact that a terminal has automatic
margins (such as, an automatic new-line when the end of a line is reached) is indicated by
the am capability. Hence the description of the terminal includes the am capability. Numeric
capabilities are followed by the# (pound sign) character and then the value. Thus the
cols#80 capability, which indicates the number of columns the terminal has, gives the value
80 for the terminal.

Finally, string-valued capabilities, such as the el capability (clear to end of line sequence)
are given by the 2-character code, an = (equal sign), and then a string ending at the
following, (comma). A delay in milliseconds may appear anywhere in a string capability,
enclosed between a$< and a> as in el+\EK$<3>, and padding characters are supplied by
tputs to provide this delay. The delay can be either a number, such as 20, or a number
followed by an * (asterisk), such as 3 *. An asterisk indicates that the padding required is
proportional to the number of lines affected by the operation, and the amount given is the
per-affected-unit padding required. (In the case of insert character, the factor is still the
number of lines affected. This is always 1, unless the terminal has the xenl and the software
uses it). When an asterisk is specified, it is sometimes useful to give a delay of the form a.b,
such as, 3.5, to specify a delay per unit to tenths of milliseconds. (Only a decimal place is
allowed.)

A number of escape sequences are provided in the string-valued capabilities for easy
encoding of characters there. Both \E and \e map to an Escape character, Ax maps to a
Ctrl-xfor any appropriate x, and the sequences, \n, \I, \r, \t, \b, \f, \s give a new_line,
line-feed, return, tab, backspace, form-feed, and space. Other escape sequences include \A
(backslash caret) for a A (caret),\\ (backslash backslash) for a\ (backslash),\, (backslash
comma) for a, (comma),\: (backslash colon) for a : (colon), and \0 (backslash zero) for the
null character. (\0 will produce \200, which does not end a string but behaves as a null
character on most terminals.) Finally, characters can be given as 3 octal digits after a\
(backslash).

Sometimes, individual terminal capabilities must be commented out. To do this, put a period
before the capability name.

Preparing Descriptions
An effective way to prepare a terminal description is to imitate the description of a similar
terminal in the terminfo file and add to the description gradually, using partial descriptions
with the vi editor to check that they are correct. Be aware that a very unusual terminal may
expose deficiencies in the ability of this file to describe it or bugs in the vi editor. To test a
new terminal description, set the environment variable TERMINFO to a path name of a
directory containing the compiled description you are working on and programs will look
there rather than in the /usr/lib/terminfo file. A test to get the correct padding (if known) is
to edit the /etc/passwd file at 9600 baud, delete about 16 lines from the middle of the
screen, then press the u key several times quickly. If the terminal fails to display the result
properly, more padding is usually needed. A similar test can be used for insert character.

1-80 AIX Files Reference

term info

Basic Capabilities
The following describe basic terminal capabilities:

am Indicates that the cursor moves to the beginning of the next line when it
reaches the right margin. This capability also indicates whether the cursor
can move beyond the bottom right corner of the screen.

bel Produces an audible signal (such as a bell or a beep).

bw Indicates that a backspace from the left edge of the terminal moves the
cursor to the last column of the previous row.

clear Clears the screen leaving the cursor in the home position.

cols Specifies the number of columns on each line for the terminal.

er Moves the cursor to the left edge of the current row. This code is usually
carriage return (Ctrl-M).

cub1 Moves the cursor one space to the left, such as backspace.

cuf1, cuu1, and cud1
Moves the cursor to the right, up, and down, respectively.

he Specifies a printing terminal. Theos capability should also be specified.

lines Specifies the number of lines on a cathode ray tube (CRT) terminal.

os Indicates that when a character is displayed or printed in a position already
occupied by another character, the terminal overstrikes the existing
character, rather than replacing it with the new character. Theos capability
applies to storage scope, printing, and APL terminals.

The terminfo file's initialization subroutine, setupterm, calls the termdef command to
determine the number of lines and columns on the display. If the termdef command cannot
supply this information, then the setupterm subroutine uses the lines and cols values in the
data base.

A point to note here is that the local cursor motions encoded in the terminfo file are
undefined at the left and top edges of a CRT terminal. Programs should never attempt to
backspace around the left edge, unless the bw string is given, and never attempt to go up
locally off the top. In order to scroll text up, a program should go to the bottom left corner of
the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri
(reverse index) string. The ind string and the ri string are undefined when not on their
respective corners of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is
output, but this does not necessarily apply to a cuf1 from the last column. The only local
motion that is defined from the left edge is if the bw is given, then a cub1 from the left edge
will move to the right edge of the previous row. If the bw is not given, the effect is undefined.
This is useful for drawing a box around the edge of the screen, for example. If the terminal
has switch-selectable automatic margins, the terminfo file usually assumes that it is on by
specifying the am capability. If the terminal has a command that moves to the first column of
the next line, that command can be given as the nel (new-line). It does not matter if the
command clears the remainder of the current line, so if the terminal has no er and If, it may
still be possible to craft a working nel out of one or both of them.

Chapter 1. AIX System Files 1-81

term info

These capabilities suffice to describe printing terminals and simple CRT terminals. Thus, the
Model 33 Teletype is described as:

33 I tty3~ \ tty \ Model 33 Teletype,
bel+AG, cols#72, cr=AM, cudl=AJ, he, ind=AJ, os,

And another terminal is described as:

xxxx I x I xxxxxxxx,
am, bel=AG, clear=AZ, cols#80, cr=AM, cubl=AH, cudl=AJ,
ind=AJ, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in the terminal are described by a
parameterized string capability, with escape sequences similar to printf %x in it. For
example, to address the cursor, the cup capability is given using two parameters: the row
and column to address to. (Rows and columns are numbered starting with 0 and refer to the
physical screen visible to the user, not to any unseen memory.) If the terminal has memeory
relative cursor addressing, that can be indicated by the mrcup capability.

The parameterized capabilities and their descriptions are:

cub1 Backspaces the cursor one space.

cup Addresses the cursor using two parameters: the row and column to
address. Rows and columns are numbered starting with 0 and refer to the
physical screen visible to the user, not to memory.

hpa and vpa Indicates the cursor has row or column absolute cursor addressing,
horizontal position absolute (hpa) and vertical absolute (vpa).

Sometimes the hpa and vpa capabilities are shorter than the more general
two parameter sequence and can be used in preference to cup. If there are
parameterized local motions (such as, move n spaces to the right) these
can be given as cud, cub, cuf, and cuu with a single parameter indicating
how many spaces to move. These are primarily useful if the terminal does
not have cup.

indn and rin Scrolls text. These are parameterized versions of the basic ind capability,
and ri capability. n is the number of lines.

mrcup Indicates the terminal has memory-relative cursor addressing.

The parameter mechanism uses a stack and special % codes to manipulate it. Typically a
sequence pushes one of the parameters onto the stack and then prints it in some format.
Often more complex operations are necessary.

The encodings have the following meanings:

%%

%d

%2d

%3d

%02d

%03d

%c

1-82 AIX Files Reference

Outputs a% (percent sign).

Print pop() as in the printf command (numeric string from stack).

Print pop() like %2d (minimum 2 digits output from stack).

Print pop{) like %3d {minimum 3 digits output from stack).

Prints as in the printf command (2 digits output).

Prints as in the printf command (3 digits output).

Print pop() give %c (character output from stack).

%s

%p[1]

%P[a·z)

%g[a-z)

%'c'

%{nn}

Print pop() gives %s (string output from stack).

Pushes the ith parameter onto the stack.

Sets variable [a-z] to pop() (variable output from stack).

Gets variable [a-z] and pushes it onto the stack.

Character constant c.
Integer constant nn.

term info

%+ %-%* %/%m
Arithmetic (%m is modulus): push(pop() operation pop()).

%& %1 %" Bit operations: push (pop() operation pop()).

%=%>%<

%!%-

%i

Logical operations: push(pop() operation pop()).

Unary operations push(operation pop()).

Add 1 to first two parameters (for ANSI terminals).

% expr%t thenpart%e elsepart%;
If-then-else. The o/oe elsepart is optional. You can make an else-if construct
as with Algol 68:

%? cl %t bl %e c2 %t b2 %e c3 %t b3 %e b4 %;

In this example, the ci denotes conditions, and the bi denotes bodies.

Binary operations are in postifx form with the operands in the usual order. That is, to get
x - s one would use %gx% { s} %-.

Consider a terminal, which, to get to row 3 and column 12, needs to be sent \E&al2c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and
that the row and column are printed as two digits. Thus its cup capability is
cup:6\E&a%p2%zdco/op1 %2dV.

Some terminals need the current row and column sent preceded by a "T with the row and
column simply encoded in binary, cup="T%pl%c%p2%c. Terminals which use %c need to be
able to backspace the cursor (cub1), and to move the cursor up one line on the screen
(cuu1). This is necessary because it is not always safe to transmit \n, "0, and \r as the
system may change or discard them. (The library routines dealing with the terminfo file set
terminal modes so that tabs are not expanded by the operating system; thus \tis safe to
send).

A final example is a terminal that uses row and column offset by a blank character, thus
cup=\E=%pl%' '%+%c%p2%' '%+%c. After sending \E=, this pushes the first parameter,
pushes the ASCII value for a space (32), adds them (pushing the sum on the stack in place
of the two previous values) and outputs that value as a character. Then the same is done for
the second parameter. More complex arithmetic is possible using the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to the very. upper left corner of the screen)
then this can be given as home. Similarly a fast way of getting to the lower left-hand corner
can be given as II; this may involve going up with cuu1 from the home position, but a
program should never do this itself (unless II does) because it can make no assumption
about the effect of moving up from the home position. Note that the home position is the
same as addressing (0,0) to the top left corner of the screen, not of memory. (Thus, the \EH
sequence on some terminals cannot be used for home.)

Chapter 1 . AIX System Files 1-83

term info

Area Clears
The following areas are used to clear large areas of the terminal:

ed

el

Clears from the current position to the end of the display. This is defined
only from the first column of a line. (Thus, it can be simulated by a request
to delete a large number of lines, if a true ed is not available.)

Clears from the current cursor position to the end of the line without moving
the cursor.

Insert/Delete Line
The following describes the insert and delete line capabilities:

csr Indicates the terminal has a scrolling region that can be set. This capability
takes two parameters: the top and bottom lines of the scrolling region.

da Indicates the terminal can retain display memory above what is visible.

db Indicates the display memory can be retained below what is visible.

dl1 Indicates the line the cursor is on can be deleted. This is done only from the
first position on the line to be deleted. Additionally, the di capability takes a
single parameter indicating the number of lines to be deleted.

il1 Creates a new blank line before the line where the cursor is currently
located and scrolls the rest of the screen down. This is done only from the
first position of a line. The cursor then appears on the newly blank line.
Additionally, the ii capability can take a single parameter indicating the
number of lines to insert.

re Restores the cursor. When used after the csr capability, it gives an effect
similar to delete line.

sc Saves the cursor. When used after the csr capability, it gives an effect
similar to insert line.

wind Indicates the terminal has the ability to define a window as part of memory.
This is a parameterized string with 4 parameters: the starting and ending
lines in memory and the starting and ending of columns in memory, in that
order.

Insert/Delete Line Character
Generally, there are two kinds of programmable terminals with respect to insert/delete
character operations which can be described using the terminfo file. The most common
insert/delete character operations affect only the characters on the current line and shift
characters to the right and off the line. Other terminals make a distinction between typed and
untyped blanks on the screen, shifting data displayed to insert or delete at a position on the
screen occupied by an untyped blank, which is either eliminated or expanded to two untyped
blanks. Clearing the screen and then typing text separated by cursor motions differentiates
between the terminal types. You can determine the kind of terminal you have by doing the
following:

1. Type abc def using local cursor movements, not spaces, between the abc and the def.
2. Position the cursor before the abc and place the terminal in insert mode. If typing

characters causes the characters on the line to the right of the cursor to shift and exit the
right side of the display, the terminal does not distinguish between blanks and untyped
positions. If the abc moves to positions to the immediate left of the def and the
characters move to the right on the line, around the end, and to the next line, the terminal
is the second type. This is described by the in capability, which signifies insert null.

1-84 AIX Files Reference

term info

While these are two logically separate attributes (one line versus multiline insert mode,
and special treatment of untyped spaces) there are no known terminals whose insert
mode cannot be described with the single attribute.

The terminfo file can describe both terminals having an insert mode and terminals that send
a simple sequence to open a blank position on the current line. The following are used to
describe insert or delete character capabilities:

dch1

ech

ich1

ip

mir

rmdc

rmir

smdc

smir

Deletes a single character. dch with one parameter, n deletes n characters.

Erases n characters (equivalent to typing n blanks without moving the
cursor) with one parameter.

Precedes the character to be inserted. This is given as a number of
milliseconds. Any other sequence that may need to be sent after inserting a
single character can be given in this capability.

Indicates post padding needed. This is given as a number of milliseconds.
Any other sequence that may need to be sent after inserting a single
character can be given in this capability.

Allows cursor movement while in insert mode. It is sometimes necessary to
move the cursor while in insert mode to delete characters on the same line.
Some terminals may not have this capability due to their handling of insert
mode.

Exits delete mode.

Ends insert mode.

Enters delete mode.

Begins insert mode.

Note that if your terminal needs both to be placed into an insert mode and a special code to
precede each inserted character, then both the smir/rmir capabilities and the ich1 capability
can be given, and both will be used. The ich capability, with one parameter, n, will repeat the
effects of ich1 n times.

Highlighting, Underlining, and Visual Bells
If your terminal has one or more kinds of display attributes such as highlighting, underlining,
and visual bells, these can be presented in a number of ways. Highlighting, such as standout
mode, presents a good, high contrast, easy-on-the-eyes format to add emphasis to error
messages, and other attention getters. Underlining is another method to focus attention to a
particular portion of the terminal. Visual bells include methods such as flashing the screen.
The following capabilities describe highlighting, underlining, and visual bells for a terminal:

blink

bold

civis

cnorm

cvvis

dim

eo

flash

Indicates terminal has blink highlighting mode.

Indicates terminal has extra bright highlighting mode.

Causes the cursor to be invisible.

Causes the cursor to display normal. This capability reverses the effects of
the civis and cvvis capabilities.

Causes the cursor to be more visible than normal when it is not on the
bottom line.

Indicates the terminal has half-bright highlighting modes.

Indicates blanks erase overstrikes.

Indicates the terminal has a way of flashing the screen (a bell replacement)
for errors without moving the cursor.

Chapter 1 . AIX System Files 1-85

term info

Keypad

invis Indicates the terminal has blanking or invisible text highlighting modes.

msgr Indicates it is safe to move the cursor in standout mode. Otherwise,
programs using standout mode should exit standout mode before moving
the cursor or sending a new-line. Some terminals automatically leave
standout mode when they move to a new line or the cursor is addressed.

prot Indicates the terminal has protected highlighting mode.

rev Indicates the terminal has reverse video mode.

rmso Exits standout mode.

rmul Ends underlining.

sgr Sets attributes, the sgrO turns off all attributes. Otherwise, if the terminal
allows a sequence to set arbitrary combinations of modes, the sgr takes 9
parameters. Each parameter is either O or 1, as the corresponding attribute
is on or off. The 9 parameters are in this order: standout, underline, reverse,
blink, dim, bold, blank, protect, and alternate character set. (The sgr can
only support those modes for which separate attributes exist on a particular
terminal.)

smcup and rmcup

smso

smul

UC

ul

xmc

Indicates the terminal needs to be in a special mode when running a
program that uses any of the highlighting, underlining or visual bell
capabilities. The smcup enters this mode, while the rmcup exits this mode.
This need arises, for example, from terminals with more than one page of
memory. If the terminal has only memory relative cursor addressing, and not
screen relative cursor addressing, a screen-sized window must be fixed into
the terminal for cursor addressing to work properly. This is also used when
the smcup sets the command character to be used by the terminfo file.

Enters standout mode.

Begins underlining.

Underlines the current character and moves the cursor one space to the
right.

Indicates the terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike.

Indicates the number of blanks left if the capability to enter or exit standout
mode leaves blank spaces on the screen.

If the terminal has a keypad that transmits codes when the keys are pressed, this
information can be given. Note that it is not possible to handle terminals where the keypad
only works in local mode. If the keypad can be set to transmit or not transmit, give these
codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit. The codes
sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be given as
kcub1, kcuf1 , kcud1, and khome, respectively. If there are function keys such as FO, F1 , ..
• , F10, the codes they send can be given as kfO, kf1, ... , kf10. If these keys have labels
other than the default FO through F10, the labels can be given as lfO, lf1, ... , lf10. The
codes transmitted by certain other special keys can be given as:

kbs

kclr

kctab

kdch1

Indicates the backspace key.

Indicates the clear screen or erase key.

Indicates clear the tab stop in this column.

Indicates the delete character key.

1-86 AIX Files Reference

term info

kdl1 Indicates the delete line key.

ked Indicates clear to end of screen.

kel Indicates clear to end of line.

khts Indicates set a tab stop in this column.

kich1 Indicates insert character or enter insert mode.

kil1 Indicates insert line.

kind Indicates scroll forward and/or down.

kll Indicates home down key (home is the lower left corner of the display, in this
instance).

kmir Indicates exit insert mode.

knp Indicates next page.

kpp Indicates previous page.

ktbc Indicates the clear all tabs key.

ri Indicates scroll backward and/or up.

In addittion, if the keypad has a 3-by-3 array of keys including the 4 arrow keys, the other 5
keys can be given as ka1, ka3, kc1, and kc3. These keys are useful when the effects of a
3-by-3 directional pad are needed.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to the next tab stop can be
given as the ht (usually Ctrl-1). A "backtab" command which moves left toward the previous
tab stop can be given as the cbt. By convention, if the terminal modes indicate that tabs are
being expanded by the operating system rather than being sent to the terminal, programs
should not be use the ht or the cbt even if they are present, since the user may not have the
tab stops properly set. If the terminal has hardware tabs that are initially set every n spaces
when the terminal is powered up, the numeric parameter it is given, showing the number of
spaces the tabs are set to. This is normally used by the tset command to determine whether
to set the mode for hardware tab expansion, and whether to set the tabs stops. If the
terminal has tab stops that can be saved in nonvolatile memory, the terminfo description
can assume that they are properly set.

Other capabilities include the is1, is2, and is3 initialization strings for the terminal, iprog,
the path name of a program to be run to initialize the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to set the terminal into
codes consistent with the rest of the terminfo file description. They are normally sent to the
terminal, by the tset program, each time the user logs in. They are printed in the following
order: is1, is2, setting tabs using tbc and hts; if; running the program iprog; and finally is3.
Most initialization is done with is2. Special terminal modes can be set up without duplicating
strings by putting the common sequences in is2 and special cases in is1 and is3. A pair of
sequences that does a harder reset from a totally unknown state can be analagously given
as rs1, rs2, rf, and rs3, analagous to is2 and if. These strings are output by the reset
program, which is used when the terminal starts behaving strangely, or not responding at all.
Commands are normally placed in rs2 and rf only if they produce annoying effects on the
screen and are not necessary when loggin in. For example, the command to set the terminal
into 80-column mode would normally be part of is2, but it causes an annoying screen
behavior and is not normally needed since the terminal is usually already in 80-column
mode.

Chapter 1. AIX System Files 1-87

term info

If there are commands to set and clear tab stops, they can be given as the tbc (clear all tab
stops) and the hts (set a tab stop in the current column of every row). If a more complex
sequence is needed to set the tabs than can be described by this, the sequence can be
placed in- the is2 or the if.

Certain capabilities control padding in the terminal driver. These are primarily needed by
hard copy terminals, and are used by the tset program to set terminal modes appropriately.
Delays embedded in the er, ind, cub1, ff, and tab capabilities cause the appropriate delay
bits to be set in the terminal driver. If the pb (padding baud rate) is given, these values can
be ignored at baud rates below the value of the pb.

Miscellaneous Strings
If the terminal requires other than a null (zero) character as a pad, then this can be given as
the pad string. Only the first character of the pad string is used.

If the terminal has an extra "status line" that is not normally used by software, this fact can
be indicated. If the status line is viewed as an extra line below the bottom line, into which
one can cursor address normally, the hs capability should be given. Special strings to go to
the beginning of the status line and to return from the status line can be given as the tsl and
the fsl. (The fsl must leave the cursor position in the same place it was before the tsl. If
necessary, the sc string and the re string can be included in tsl and fsl to get this effect.)
The tsl parameter takes one parameter, which is the column number of the status line the
cursor is to be moved to. If escape sequences and other special commands, such as tab,
work while in the status line, the eslok flag can be given. A string that turns off the status
line (or otherwise erases its contents) should be given as dsl. If the terminal has commands
to save and restore the position of the cursor, give them as sc and re. The status line is
normally assumed to be the same width as the rest of the screen, such as cols. If the status
line is a different width (possibley because the terminal does not allow an entire line to be
loaded) the width, in columns, can be indicated with the wsl numeric parameter.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up)
and hd (half-line down). This is primarily useful for superscripts and subscripts on hardcopy
terminals. If a hardcopy terminal can eject to the next page (form feed), give this as ff
(usually Ctrl-L).

If there is a command to repeat a given character a given number of times (to save time
transmitting a large number of identical characters) this can be indicated with the rep
parameterized string. The first parameter is the character to be repeated and the second is
the number of times to repeat it. Thus, t parrn (repeat_ char, 'x' , 1 o) is the same as
xxxxxxxxxx.

If the terminal has a 11meta key" which acts as a shift key, setting the eighth bit of any
character transmitted, this fact can be indicated with the km. Otherwise, software will
assume that the eighth bit is parity and it will usually be cleared. If strings exist to turn this
"meta mode" on and off, they can be given as the smm and the rmm. ·

If the terminal has more lines of memory than will filt on the screen at once, the number of
lines of memory can be indicated with the Im. A value of lm#O indicates that the number of
lines is not fixed, but that there is still more memory than fits on the screen.

Media copy strings that control an auxiliary printer connected to the terminal can be given in
the following ways: the mcO prints the contents of the screen, the mc4 turns off the printer,
and the mc5 turns on the printer. When the printer is on, all text sent to the terminal is sent
to the printer. When the printer is on, all text sent to the terminal is sent to the printer. It is
undefined whether the text is also displayed on the terminal screen when the printer is on. A
variation of the mc5p takes one parameter, and leaves the printer on for as many characters

1-88 AIX Files Reference

term info

as the value of the parameter, then turns the printer off. The parameter should not exceed
255. All text, including the mc4, is transparently passed to the printer while an mc5p is in
effect.

Strings to program function keys can be given as the pfkey, pfloc, and pfx. Each of these
strings takes two parameters: the function key number to program (from O to 10) and the
string to program it with. Function key numbers out of this range can program undefined
keys in a terminal-dependent manner. The difference between the capabilities is that the
pfkey causes pressing the given key to be the same as the user typing the given string; the
pfloc causes the string to be executed by the terminal in local mode; and the pfx causes the
string to be transmitted to the computer.

Indicating Terminal Problems
Terminals that do not allow - (tilde) characters to be displayed should indicate the hz.

Terminals that ignore a line-feed character immediately after an am wrap should indicate the
xenl.

If the el is required to get rid of standout (instead of merely writing normal text on top of it),
the xhp should be given.

Terminals for which tabs turn all characters moved to blanks should indicate the xt
(destructive tabs). This capability is interpreted to mean that it is not possible to position the
cursor on top of the pads inserted for standout mode. Instead, it is necessary to erase
standout mode using delete and insert line.

The terminal that is unable to correctly transmit the ESC (escape) or Ctrl-C characters has
the xsb, indicating that the F1 key is used for ESC and the F2 key is used for Ctrl-C.

Other specific terminal problems can be corrected by adding more capabilities of the form
xx.

Similar Terminals
If two terminals are very similar, one can be defined as being just like the other with certain
exceptions. The use string capability can be given with the name of the similar terminal. The
capabilities given before the use capability overrides those in the terminal type called by the
use capability. A capability can be cancelled by placing xx@ to the left of the capability
definition, where xx is the capability. For example, the entry:

term-nl, smkx@, rmkx@, use=term,

defines a terminal that does not have the smkx capability or the rmkx capability, and hence
does not turn on the function key lables when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

Data Base File Names
Compiled terminfo file descriptions are placed in subdirectories under the /usr/lib/terminfo
file in order to avoid performing linear searches through a single directory containing all of
the terminfo file description files. A given description file is stored in the
/usr/lib/terminfo/c/name file, where name is the name of the terminal, and c is the first
letter of the terminal name. For example, the compiled descripton for the terminal term4-nl
can be found in the file /usr/lib/terminfo/t/term4-nl. You can create synonyms for
the same terminal by making multiple links to the same compiled file. (See the In command
on how to create multiple links to a file.)

Chapter 1 . AIX System Files 1-89

term info

Example
The following entry, which describes a terminal, is among the entries in the terminfo file.

hftlHigh Function Terminal,
cr=AM, cudl=\E[B, ind=\E[S, bel=AG, ill=\E[L, am,
cubl=AH, ed=\E[J, el=\E[K, clear=\E[H\E[J,
cup=\E[%ipl%d;%p2%dH, cols#80, lines=#25,
dchl=\E[P, dll=\E[M, home=\E[H,
ich=\E[%p1%d@, ichl=\E[@, smir=\E[6, rmir=\E6,
bold=\E[lm, rev=\E[7m, blink=\E[Sm, invis=\E[8m, sgrO=\E[Om,
sgr=\E[%?%pl%t7;%;%?%p2%t4;%;%?%p3%t7;%;%?%p4%t5;%;%?%p6tl;%;m,
kcuul=\E[A, kcudl=\E[B, kcubl=\E[D,
kcufl=\E[C, khome=\E[H, kbs=AH,
cufl=\E[C, ht=AI, cuul=\E[A, xon,
rmull=\E[m, smul=\E[4m, rmso=\E[m, smso=\E[7m,
kpp=\E[lSOq, knp=\E[l54q,
kfl=\E[OOlq, kf2=\E[002q, kf3=\E[003q, kf4=\E[004q,
kfS=\E[OOSq, kf6=\E[006q, kf7=\E[007q, kf8=\E[008q,
kf9=\E[009q, kflO=\E[OlOq,
bw, eo, it#8, ms,
ch=\E%i%pl%dG, ech=\E[%p15dx,
kdchl=\E[P, kind=\E[lSlq, kichl=\E[139q, kimr=\E[41,
kn=AM, ko=AI, ktab=\E[Z, kri=\E[lSSq,
cub=\E[%pl%dD, cuf=\E(%pl%dC, indn=\E[%pldS, rin=\E[%p1%dT,
ri=\E[T, cuu=\E[%p1%dA,
box1=332\304\277\263\331\300\302\264\301\303\305,
box2=311\315\273\272\274\310\313\271\312\314\316,
batt2=md,
colf0=\E[30m, colfl=\E[3lm, colf2=\E[32m, colf3=\E[33m,
colf4=\E[34m, colf5=\E[35m, colf6=\E[36m, colf7=\E[37m,
colb0=\E[40m, colbl=\E[4lm, colb2=\E[42m, colb3=\E[43m,
colb4=\E[44m, colb5=\E[45m, colb6=\E[46m, colb7=\E[47m,

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

Files
/usr/lib/terminfo/?/* Compiled terminal capability data base.

Related Information
The curses subroutine library, extended curses subroutine library, printf, fprintf,
sprintf, Nlprintf, Nlfprintf, or Nlsprintf subroutines.
The termdef command, tic command.

1-90 AIX Files Reference

user

user File

Purpose
Contains extended user attributes.

Description
The /etc/security/user file is an ASCII file that contains stanzas with extended user
attributes. Each stanza is identified by a user name, followed by a: (colon), and contains
comma-separated attributes in the Attribute= Value form. If an attribute is not defined for a
user, either the default stanza or the default value for the attribute is used. For an example of
a stanza, see the Examples section.

Each attribute is ended by a new line character, and each stanza is ended by an additional
new line character.

Each stanza can have the following attributes:

ad min

auth1

auth2

daemon

Indicates whether the user is an administrator. Possible values are:

yes The user is an administrator. Only the root user can change the
attributes of this user. You can substitute the true keyword or the
always keyword for the yes keyword.

no The user is not an administrator. You can substitute the false
keyword or the never keyword for the no keyword. This is the default
value.

Defines the primary methods used to authenticate the user. The value is a list
of comma-separated Method; Name pairs, with Method specifying the name of
the authentication method, and Name specifying the user to be authenticated.
The SYSTEM method, local password authentication, is the default value. The
NONE method indicates that no primary authentication check is made. Any
other Method must be the name of a stanza in the /etc/security/login.cfg file.
If no principle Name is specified, the name of the invoker of the process is
used.

Defines the secondary authentication methods for the user. These methods
are invoked by the login command if primary authentication is successful. The
value is a list of comma-separated Method; Name pairs, with Method specifying
the name of the authentication method, and Name specifying the user to be
authenticated. The NONE method indicates that no secondary authentication
check is made; this is the default value. If the Name parameter is not specified,
the name of the invoker of the process is used. The log in will not fail if a
secondary authentication method is not successful.

Defines whether the user can execute programs using the cron daemon or the
src (system resource controller) daemon. Possible values are:

yes The user can execute programs using the cron or src daemon. You
can substitute the true keyword or the always keyword for the yes
keyword.

Chapter 1 . AIX System Files 1-91

user

expires

login

rlogin

no The user cannot execute programs using the cron or src daemon.
You can substitute the false keyword or the never keyword for the no
keyword.

Defines the expiration date for the user account, using the MMDDhhmmyy
format, where MM= month, DD= day, hh = hour, mm= minute, and yy = last 2
digits of the year. All characters are numeric. See the date command for more
information. If the value is 0, the account does not expire. The default value is
0.

Defines whether local log ins are enabled for the user. Possible values are:

yes Local log ins are defined. You can substitute the true keyword or the
always keyword for the yes keyword. This is the default value.

no Local log ins are not defined. You can substitute the false keyword or
the never keyword for the no keyword.

Defines whether the user account can be accessed by remote log ins with the
rlogin command. Possible values are:

yes The user account can be accessed remotely. You can substitute the
true keyword or the always keyword for the yes keyword. This is the
default value.

no The user cannot be accessed remotely. You can substitute the false
keyword or the never keyword for the no keyword.

su Defines whether other users can switch to this user account with the su
command. Possible values are:

yes Other users can switch to this account. You can substitute the true
keyword or the always keyword for the yes keyword. This is the
default value.

no Other users cannot switch to this account. You can substitute the
false keyword or the never keyword for the no keyword.

sugroups Defines which groups can switch to this user account with the su command.
The value is a comma separated list of valid group names on the system. If a
group has no access, the name is prefixed by an ! (exclamation point). The
keyword ALL means that all groups have access. The default value is ALL.

tpath Defines the user's trusted path characteristics. Possible values are:

nosak The secure attention key (SAK) is disabled for all processes run by
this user. This value should be used for accounts that transfer binary
data that may contain· the SAK sequence.

notsh The user cannot invoke the trusted shell on the trusted path. If the
secure attention key (SAK) sequence is given after a user logs in, the
login session ends.

always The user can execute only trusted processes. This implies that the
user's initial program is in the trusted shell or some other trusted
process.

1-92 AIX Files Reference

Security

Example

user

on The user has standard trusted path characteristics and can invoke a
trusted shell in the trusted path with the secure access key (SAK)
sequence. This is the default value.

ttys Defines which terminals can access the user account. The format is a list of
comma-separated terminal-device path names. If a terminal cannot access the
account, the name is prefixed by an ! (exclamation point). The keyword ALL
means that access is allowed from all terminals. The default value is ALL.

umask The permissions a file has when the user creates it. The value is a three-digit
octal number (nnn) that represents the read (r), write (w), and execute (x)
permissions for the file owner, file grqup, and other users.

Access to this file should be through the commands and subroutines defined for this
purpose.

The mkuser command creates an entry for each new user in the /etc/security/user file,
initializing the attributes defined in the /etc/security/mkuser.default file. To change attribute
values, use the chuser command. To display the attributes and their values, use the lsuser
command. To remove an attribute, use the rmuser command.

To write programs that affect attributes in the /etc/security/user file, use the subroutines
listed in Related Information.

Access Control: This file should grant read (r) access only to the root user and members of
the security group. Access for other users and groups depends upon the security policy for
the system. Only the root user should have write (w) access.

Auditing Events:

Event

S_USER_WRITE

Information

filename

A typical stanza looks like the following example for user dhs:

dhs:
login = true
rlogin = false
ttys = /dev/console
sugroups = security,!staff
expires = 0531010090
tpath on
admin true
authl = SYSTEM,METH2;dhs

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

Chapter 1. AIX System Files 1-93

user

Files
/etc/security/user

/etc/grou.P

/etc/security/group

/etc/passwd

/etc/security /passwd

/etc/security/environ

/etc/security/limits

/etc/security/audit/config

Specifies the path to the file.

Contains the basic group attributes.

Contains the extended attributes of groups.

Contains the basic user attributes.

Contains password information.

Contains the environment attributes of users.

Contains the process resource limits of users.

Contains audit system configuration information.

Related Information
The chuser command, lsuser command, mkuser command, rmuser command.

The getuserattr subroutine, putuserattr subroutine, setuserdb subroutine, enduserdb
subroutine.

For more information about the identification and authentication of users, discretionary
access control, the trusted computing base, and auditing, refer to Security Introduction in
General Concepts and Procedures.

1-94 AIX Files Reference

vf s

vfs File

Purpose
Describes the virtual file systems (VFS) installed on the system.

Description
The vfs file describes the virtual file systems (VFS) installed on the system. The name, type
number, and file system helper program are among the types of information listed in the file.
Commands, such as the mount command, the fsck command (file system check), and the
mkfs command (make file system), use this information.

The vfs file is an ASCII file, with one record per line. The following examples are three types
of lines in the vfs file:

• Comments

#This is a comment.

#Comments begin with a pound sign symbol (#).

Blank lines are ignored.

#The following only locally defines the default vfs file.

• General control

%defaultvfs jfs nfs

The fields for the %defaul tvf s control line are:

%def au ltvfs Identifies the control line.

jfs

nf s

Indicates the default local virtual file system.

Indicates the remote virtual file system (optional).

• Entries

#Name Type Mount Helper Fs. helper

jfs 3 none /etc/helpers/v3fshelper
nfs 2 /etc/nfsmnthelp none
cdrf s 5 none none

The comments, which are designated by a# (comment character), are in text for explanatory
purposes. The general control lines, which are designated by a % (percent) character,
configure the actions of the mount command, umount command, mkfs command, fsck
command, fsdb command, df command, ff command. For example, a line like
%defaultvfs indicates the default local virtual file system is used if no virtual file system is
specified on the mount command or in the /etc/filesystems file. The entry is the name of
the virtual file system as it is in the file. If a second entry is listed on the same line, it is taken
to be the default remote virtual file system. The %defaultvfs control line may leave off the
remote virtual file system specification.

Chapter 1. AIX System Files 1-95

vf s

The virtual file system entries take the following form:

name Canonical name of this type of virtual file system.

type Decimal representation of the virtual file system type number for the virtual
file system.

mnt_helper Path name of the mount helper program of this virtual file system. If a mount
helper is not required, the entry should be displayed as none. If this path
name does not begin with a slash, it is relative to the /etc/helpers directory.

fs_helper Path name of the file system helper program of this virtual file system. If a
file system helper is not required, the entry should be none. If this path
name does not begin with a slash, it is relative to the /etc/helpers directory.

Implementation Specifics

Files

This file is part of AIX Base Operating System (BOS) Runtime.

/etc/filesystems

/etc/vfs

Lists the known file systems and defines their characteristics.

Contains descriptions of virtual file system types.

Related Information
The filesystems file format.

The mount command, umount command, mkfs command, fsck command,df command, ff
command, fsdb command, lsvfs command, chvfs command, rmvfs command, crvfs
command.

The File Systems Overview in General Concepts and Procedures explains file system types,
management, structure, and maintenance.

1-96 AIX Files Reference

vgrindefs

vgrindefs File

Purpose
Contains the language definition database for the vgrlnd command.

Description
The vgrlndefs file contains all the language definitions for the vgrind command.

Fields
The following table contains the name and description of each field:

Name Type Description

pb str Regular expression for the start of a procedure

bb str Regular expression for the start of a lexical block

be str Regular expression for the end of a lexical block

Cb str Regular expression for the start of a comment

ce str Regular expression for the end of a comment

sb str Regular expression for the start of a string

se str Regular expression for the end of a string

lb str Regular expression for the start of a character constant

le str Regular expression for the end of a character constant

ti boo I Present means procedures are only defined at the top lexical level

oc boo I Present means upper and lowercase are equivalent

kw str A list of keywords separated by spaces

Regular Expressions
The vgrlndefs file uses regular expressions which are very similar to those of the ex
command and the lex command. The characters,,..,,'$',':', and'\' are reserved characters
and must be "quoted" with a preceding \ if they are to be included as normal characters. The
metasymbols and their meanings are:

$
/\

\d

\a

\p

()

I
?

The end of a line

The beginning of a line

A delimiter (space, tab, newline, start of line)

Matches any string of symbols (like . * in the lex command)

Matches any alphanumeric name. In a procedure definition (pb), the string that
matches this symbol is used as the procedure name.
Grouping

Alternation

Last item is optional

Chapter 1. AIX System Files 1-97

vgrindefs

\e Preceding any string, means that the string does not match an input string if the
input string is preceded by an escape character(\). Typically used for languages
(like C) which can include the string delimiter in a string by escaping it.

Unlike other regular expressions in the system, these match words and not characters.
Hence something like "(trampjsteamer)flies?" would match ''tramp", "steamer", ''trampflies",
or "steamerflies".

Keyword List

Example

The keyword list is just a list of keywords in the language separated by spaces. If the "oc"
boolean is specified, indicating that upper and lowercase are equivalent, then all the
keywords should be specified in lowercase.

The following entry, which describes the C language, is typical of a language entry:

Cle: :pb=A\d?*?\d?\p\d??) :bb={:be=}:cb=/*:ce=*/:sb=":se=\e":\
:lb=' :le=\e' :tl:\
:kw=asm auto break case char continue default do
double else enum\

extern float for fortran goto if int long register
return short\

sizeof static struct switch typedef union unsigned
while :lfdefine\

:lfelse :tendif :lfif :lfifdef :lfifndef :lfinclude :lfundef * define
else endif\

if ifdef ifndef include undef:

Note that the first field is just the language name (and any variants of it.) Thus the C
language could be specified to the vgrlnd command as "c" or "C".

Entries can continue onto multiple lines by giving a \ (backslash) as the last character of a
line. Capabilities in the vgrlndefs file are of two types: Boolean capabilities which indicate
that the language has some particular feature and string capabilities which give a regular
expression or keyword list.

Implementation Specifics

File

This file is part of Formatting Tools in the Text Formatting System of AIX for RISC
System/6000.

/usr/Ub/vgrlndefs File containing terminal descriptions.

Related Information
The ex command, lex command, vgrlnd command, and troff command.

1-98 AIX Files Reference

BNU audit

BNU audit File

Purpose
Contains debug messages from the uucico daemon.

Description
The /usr/spool/uucp/.Admin/audit file contains debug messages from the uucico daemon
when it is invoked as a result of a call from another system. If the uucico daemon is
invoked from the local system, the debug messages are sent to either the
/usr/spool/uucp/.Admin/errors file or to standard output.

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/spool/uucp/.Admin directory. Contains the audit file and other BNU administrative
files.

Related Information
Working with BNU Log Files in Communication Concepts and Procedures.

The cron daemon, uucico daemon.

The uudemon.cleanu command.

Chapter 1. AIX System Files 1-99

BNU Command

BNU Command (C.*) Files

Purpose
Contain file transfer directions for the uucico daemon.

Description
Command (C. *) files contain the directions that the Basic Networking Utilities (BNU) uucico
daemon follows when transferring files. The full path name of a command file is a form of the
following:

/usr/spool/uucp/ SystemName!C.SystemNameNxxxx

The SystemName indicates the name of the remote system. The N character represents the
grade of the work, and the xxxx notation is the four-digit hexadecimal transfer-sequence
number: for example, c.rnerlinC3119.

The grade of the work specifies when the file is to be transmitted during a particular
connection. The grade notation has the following characteristics:

• It is a single number (0-9) or letter (A-Z, a-z).

• Lower sequence characters cause the file to be transmitted earlier in the connection than
do higher sequence characters. Sequence is established using ASCII order, beginning
with 0 (zero) and ending with z.

• The number 0 is the highest grade (that is, the lowest character in the sequence),
signifying the earliest transmittal; z is the lowest grade, specifying the latest transmittal.

• The default grade is N.

A command file consists of a single line that includes the following kinds of information in the
following order:

1. An S (send) or R (receive) notation.

Note: A send command file is created by the uucp or uuto commands; a receive
command file is created by the uux command.

2. The full path name of the source file being transferred. A receive command file, does not
include this entry.

3. The full path name of the destination file, or a path name preceded by -user, where user
is a login name on the specified system. Here, the (tilde) is shorthand for the name of
the user's home directory.

4. The sender's login name.

5. A list of the options, if any, included with the uucp, uuto, or uux command.

6. The name of the data file associated with the command file in the spooling directory. This
field must contain an entry. If one of the data-transfer commands (such as the uucp
command with the default-c flag) does not create a data file the BNU program instead
creates a placeholder with the name D.O for send files, or dummy for receive files.

7. The source file permissions code, specified as a three-digit octal number (for example,
777).

8. The login name of the user on the remote system who is to be notified when the transfer
is complete.

1-100 AIX Files Reference

BNU Command

Examples
Examples of Two Send Command Files

1. The send command file /usr I spool/uucp/venus/C. heraN1133, created with the
uucp command, contains the following fields:

S /u/amy/fl /usr/spool/uucppublic/f2 amy -de D.herale73655 777 lg
h

where:

a. s denotes that the uucp command is sending the file.

b. The full path name of the source file is /u/ amy /f 1.

c. The full path name of the destination is /usr/spool/uucppublic/f2, where
/usr/spool/uucppublic is the name of the BNU public spooling directory on the
remote computer and f 2 is the new name of the file.

Note: The destination name may be abbreviated as -uucp/f2. Here, the (tilde) is
a shorthand way of designating the public directory.

d. The person sending the file is amy.

e. The sender entered the uucp command with the -C flag, specifying that the uucp
command program should transfer the file to the local spooling directory and create a
data file for it. (The -d flag, which specifies that the command should create any
intermediate directories needed to copy the source file to the destination, is a default.)

f. The name of the data (D.*) file is o. herale7 3655, which the uucp command
assigns.

g. The octal permissions code is 7 7 7.

h. The lgh login name of the user on system hera, who is to be notified of the file
arrival.

2. The /usr I spool/uucp/hera/C. zeusN3130 send command file, produced by the
uuto command, is as follows:

S /u/amy/out -/receive/msg/zeus amy -den D.O 777 msg

The s denotes that the /u/amy/out source file was sent to the receive/msg
subdirectory in the public spooling directory on system zeus by user amy.

Note: The uuto command creates the receive/msg directory if it does not already exist.

The uuto command used the default flags -d (create directories), -c (transfer directly, no
spooling directory or data file), and -n (notify recipient). The o. o notation is a
placeholder, 7 7 7 is the permissions code, and msg is the recipient.

Example of a Receive Command File
3. The format of a receive command file is somewhat different from that of a send command

file. When files required to run a specified command on a remote system are not present
on that system, the uux command creates a receive command file.

For example, the following command:

uux - "diff /u/amy/out hera!/u/amy/out2 > -uucp/OF"

produces the /usr/spool/uucp/zeus/C.heraRle94 receive command file.

Note: The command in this example invokes the uux command to run a diff command
on the local system, comparing file /u/amy/out with file /u/amy/out2, which

Chapter 1. AIX System Files 1-1 01

BNU Command

is stored on remote system hera. The output of the comparison is placed in the
DF file in the public directory on the local system.

The actual receive command file looks like this:

R /u/amy/out2 D.herale954fd amy - dummy 0666 amy

The R denotes a receive file. The uucico daemon, called by the uux command, gets the
/u/amy/out2 file from system hera and places it in a data file called D.herale954fd
for the transfer. Once the files are transferred, the uuxqt daemon executes the command
on the specified system.

User amy issued the uux command with the - (minus sign) flag, which makes the
standard input to the uux command the standard input to the actual command string. No
data file was created in the local spooling directory, so the BNU program uses dummy as
a placeholder. The permissions code is 6 6 6 (the BNU program prefixes the three-digit
octal code with a o), and user amy is to be notified when the command has finished
executing.

Implementation Specifics

Files

These files are part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

/usr/lib/uucp/Permissions file

/usr/lib/uucp/Systems file
/usr/spool/uucp/ SystemName directory

/usr/spool/uucp/ SystemName!D. * files

/usr/spool/uucppublic/* directories

Describes access permissions for remote
systems.
Describes accessible remote systems.
Contains BNU command, data, and execute
files.
Contain data to be transferred.

Contain transferred files.

Related Information
The cron daemon, uucico daemon, uusched daemon, uuxqt daemon.

The uucp command, uudemon.cleanu command, uupick command, uuto command, uux
command.

1-102 AIX Files Reference

BNU Data

BNU Data (D.*) Files

Purpose
Contain data to be sent to remote systems.

Description
Data (D. *) files contain the data to be sent to remote systems by the Basic Networking
Utilities (BNU) uucico daemon. The full path name of a data file is a form of the following:

/usr/spool/uucp/ SystemName/D. SystemNamexxxx###

where the SystemName directory and the SystemName portion of the file name indicate the
name of the remote system. The xxxx### notation is the hexadecimal sequence number of
the command (C.*) file associated with that data file, for example: o. venus4 7 lafd8.

After a set period of time (specified by the uusched daemon), the uucico daemon transfers
the data file to the designated system. It places the original data file in a subdirectory of the
BNU spooling directory named lusr/spoolluucp/SystemName, where the SystemName
directory is named for the computer that is transmitting the file, and creates a temporary
(TM.*) file to hold the original data file.

After receiving the entire file, the BNU program takes one of the three following actions:

• If the file was sent with the uucp command and there were no transfer problems, the
program immediately renames the TM.* file with the appropriate data file name, such as
o. venus4 7 lafdB, and sends it to the specified destination.

• If the file was sent with the uuto command, the BNU program also renames the
temporary data file with the appropriate D.* file name. The program then places the data
file in the /usr/spool/uucppublic public directory, where the user receives the data file
and handles it with one of the uupick command options.

• If there were transfer problems (such as a failed login or an unavailable device), the
temporary data file remains in the spooling subdirectory. The uudemon.cleanu
command, a shell procedure, removes these files automatically at specified intervals.
They can also be removed manually.

Implementation Specifics

Files

These files are part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

/usr/lib/uucp/Systems file
/usr/spool/uucp/ SystemName directory
/usr/spool/uucp/ SystemName!C. * files
/usr/spool/uucp/ System Name/TM.* files

/usr/spool/uucppublic/* directories

Describes accessible remote systems.
Contains BNU command, data, execute files.
Contain instructions for file transfers.
Store data files temporarily after they have been
transferred to a remote system.
Contain files that BNU program has transferred.

Related Information
The uucico daemon, uusched daemon, uuxqt daemon.

The uucp command, uudemon.cleanu command, uupick command, uuto command, uux
command.

Chapter 1 . AIX System Files 1-1 03

BNU errors

BNU errors File

Purpose
Contains a record of uucico daemon errors.

Description

Example

The /usr/spool/uucp/.Admin/errors file contains a record of uucico daemon errors that the
Basic Networking Utilities (BNU) program cannot correct. For example, if the uucico
daemon is unable to access a directory that is needed for a file transfer, the BNU program
records this in the errors file.

If debugging is enabled for the uucico daemon, the BNU program sends the error
messages to standard output instead of to the errors file.

Following is the text of an error which might appear in the errors file:

ASSERT ERROR (uucico) pid: 303 (7/18-8:25:09) SYSTAT OPEN FAIL /usr/
spool/uucp/.Status/ (21) (SCCSID: @(#)systat.c 7.2 87/07/08 16:43:
37, FILE: systat.c, LINE:lOO]

This error occurred on July 18 at 8:25:09 a.m. [(7I18-8: 2 s: o 9)] when the uucico
daemon, running as process 303 [(uucico) pid: 303], could not open the .Status
directory [SYSTAT OPEN FAIL /usr/spool/uucp/. Status/]. To prevent this error
from occurring again, you should make sure the AIX permissions for the .Status directory
are correct. It should be owned by the uucp login ID and group uucp, with permissions of
777 (read, write, and execute for owner, group, and all others).

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/spool/uucp/.Admin directory Contains the errors file and other BN U
administrative files.

/usr/spool/uucp/.Status/SystemName file Lists the last time a remote system was
contacted and the minimum time until the next
retry.

Related Information
The uucico daemon.

The uudemon.cleanu command.

1-104 AIX Files Reference

BNU Execute (X.*) Files

Purpose

BNU Execute

Contain instructions for running commands that require the resources of a remote system.

Description
The Basic Networking Utilities execute (X.*) files contain instructions for running commands
that require the resources of a remote system. They are created by the uux command.

The full path name of a uux command execute file is a form of the following:

/usr/spool/uucp/ SystemName/1.. RemoteSystemNxxxx

where the SystemName directory is named for the local computer and the RemoteSystem
directory is named for the remote system. The N character represents the grade of the work,
and the xxxx notation is the four-digit hexadecimal transfer-sequence number; for example,
X. zeusN212 l.

Note: The grade of the work specifies when the file is to be transmitted during a particular
connection. The grade notation is a single number (0-9) or letter (A-Z, a-z). Lower
sequence characters cause the file to be transmitted earlier in the connection than do
higher sequence characters. The number O is the highest grade, signifying the
earliest transmittal; z is the lowest grade, specifying the latest transmittal. The default
grade is N.

Standard Entries in an Execute File
An execute file consists of several lines, each with an identification character and one or
more entries:

Line

User Line

Error Status Line

Requester's Name

Required File Line

Format and Description

U UserName SystemName

Specifies the login name of the user issuing the uux command and
the name of the system from which the command was issued.

Nor Z

Indicates the error status.

N Indicates that a failure message is not sent to the user issuing
the uux command if the specified command does not execute
successfully on the remote system.

Z Indicates that a failure message is sent to the user issuing the
uux command if the specified command does not execute
successfully on the remote system.

R UserName

Specifies the login ID of the user requesting the remote command
execution.

F FileName

Contains the names of the files required to execute the specified
command on the remote system. The FileName parameter can be
either the complete path name of the file, including the unique

Chapter 1 . AIX System Files 1-1 05

BNU Execute

Examples

Standard Input Line

transmission name assigned by the BNU program, or simply the
transmission name without any path information.

The Required File Line can contain zero or more file names. The
uuxqt daemon checks for the existence of all listed files before
running the specified command.

I FileName

Specifies the standard input to be used.

The standard input is either specified by a< (less than) symbol in
the command string, or inherited from the standard input of the uux
command if that command was issued with the - (minus sign) flag.

If standard input is specified, the input source is also listed in an F
(Required File) line. If standard input is not specified, the BNU
program uses the /dev/null device file.

Standard Output Line 0 FileName SystemName

Command Line

Specifies the names of the file and system that are to receive
standard output from the command execution. Standard output is
specified by a > (greater than) symbol within the command string.
(The» sequence is not valid in uux commands.) As is the case
with standard input, if standard output is not specified, the BNU
program uses the /dev/null device file.

C CommandString

Gives the command string that the user requests to be run on the
specified system. The BNU program checks the
/usr/lib/uucp/Permissions file on the designated computer to see
whether the login ID can run the command on that system.

All required files go to the execute file directory, usually
/usr/spool/uucp/.Xqtdir. After execution, the standard output is
sent to the requested location.

1. User amy on local system zeus issued the following command:

uux - "diff /u/amy/out hera!/u/amy/out2 > -uucp/OF"

The command in this example invokes the uux command to run a diff command on the

local system, comparing file /u/amy/out with file /u/amy/out2, which is stored on
remote system hera. The output of the comparison is placed in the OF file in the public
directory on the local system.

The preceding command produces the /usr I spool/uucp/hera/X. zeusN212F
execute file; which contains the following information:

U amy zeus
return status on failure
z
return address for status or input return
R amy
F /usr/spool/uucp/hera/O.herale954fd out2
O -uucp/OF zeus
C diff /u/amy/out out2

1-106 AIX Files Reference

BNU Execute

The user line identifies user amy on system zeus. The error-status line indicates that
amy will receive a failure status message if the diff command fails to execute. The
requester is amy, and the file required to execute the command is the following data file:

/usr/spool/uucp/hera/D.herale954fd out2

The output of the command is to be written to the public directory on system zeus with
the file name DF. (Remember that -uucp is the shorthand way of specifying the public
directory.) The final line is the command string that user amy entered with the uux
command.

2. Following is another example of an execute file:

U uucp hera
don't return status on failure
N
return address for status or input return
R uucp
F D.hera5eb7f7b
I D.hera5eb7f7b
C rmail amy

This indicates that user uucp on system hera is sending mail to user amy, who is also
working on system hera.

Implementation Specifics

Files

These files are part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

/usr/lib/uucp/Permissions file

/usr/lib/uucp/Systems file
/usr/spool/uucp/ System Name directory

/usr/spool/uucp/ SystemName!C. * files
/usr/spool/uucp/.Xqtdir directory

/usr/spool/uucppublic/* directories

Describes access permissions for remote
systems.
Describes accessible remote systems.
Contains BNU command, data, and execute
files.
Contain instructions for transfers.
Contains lists of commands that remote systems
are permitted to execute.
Contain files that have been transferred.

Related Information
The uuxqt daemon.

The diff command, uux command.

Chapter 1 . AIX System Files 1-1 07

BNU Foreign

BNU Foreign File

Purpose
Logs contact attempts from unknown systems.

Description

Example

The /usr/lib/uucp/.Admin/Foreign file lists access attempts by unknown systems. The
/usr/lib/uucp/remote.unknown shell script appends an entry to the Foreign file each time
a remote computer that is not listed in the local /usr/lib/uucp/Systems file attempts to
communicate with that local system.

Someone with root user authority can customize entries in the Foreign file to fit the needs of
a specific site by modifying the remote.unknown shell script.

1. Following is a sample entry in the Foreign file:

Wed Sep 20 20:38:22 CDT 1989: call from the system merlin

System merlin, which is not listed in the /usr/lib/uucp/Systems file, attempted to log in
on September 20 at 20:38 hours (10:38 p.m.). BNU did not allow the unknown system to
log in.

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/lib/uucp/Permissions file

/usr/lib/uucp/Systems file

/usr/lib/uucp/remote.unknown file

/usr/spool/uucp/.Admin directory

Describes access permissions for remote
systems.

Describes accessible remote systems.

Records contacts from unknown systems in
the Foreign file.

Contains the Foreign file and other BNU
administrative files.

Related Information
The cron daemon, uucico daemon, uuxqt daemon.

The uucp command, uudemon.cleanu command, uux command.

1-108 AIX Files Reference

BNU remote.unknown

BNU remote.unknown File

Purpose
Logs access attempts by unknown remote systems.

Description
The /usr/lib/uucp/remote.unknown file is a shell script. It is executed by the Basic
Networking Utilities (BNU) program when a remote computer that is not listed in the local
/usr/lib/uucp/Permissions file attempts to communicate with that local system. The BNU
program does not permit the unknown remote system to connect with the local system.
Instead, the remote.unknown shell procedure appends an entry to the
/usr/spool/uucp/.Admin/Foreign file.

Modify the remote.unknown file to fit the needs of your site. For example, to allow unknown
systems to contact your system, remove the execute permissions for the remote.unknown
file. You can also modify the shell script to send mail to the BNU administrator or to
recognize certain systems and reject others.

Note: Only someone with root user authority can edit the remote.unknown file, which is
owned by the uucp program login ID.

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/lib/uucp directory

/usr/lib/uucp/Permissions file

/usr/spool/uucp/.Admin/Foreign file

Contains all the configuration files for BNU,
including the remote.unknown file.

Describes access permissions for remote systems.

Lists access attempts by unknown systems.

Related Information
How to Configure BNU and Understanding BNU Security in Communication Concepts and
Procedures.

Chapter 1 . AIX System Files 1-1 09

BNU Temporary

BNU Temporary (TM.*) Files

Purpose
Store data files during transfers to remote systems.

Description
The Basic Networking Utilities Temporary (TM.*) files store data files during transfers to
remote systems.

After a data (D.*) file is transferred to a remote system by the uucico daemon, the BNU
program places the file in a subdirectory of the BNU spooling directory named
/usr/spool/uucp/SystemName. Here the SystemName directory is named for the computer
that is transmitting the file. The BNU program creates a temporary data file to hold the
original data file.

The full path name of the temporary data file is a form of the following:

/usr/spool/uucp/ SystemName!TM.xxPID.000

where the SystemName directory is named for the computer that is sending the file, and
TM .xxPID.000 is the name of the file; for example, TM. o o 4 51 • o o o. The PIO variable is the
process ID of the job.

The uucico daemon normally deletes all temporary files when they are no longer needed.
However, temporary files can also be removed using the uucleanup command with the -T
flag.

Implementation Specifics

Files

These files are part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

/usr/lib/uucp/Systems file Describes accessible remote systems.

/usr/spool/uucp/SystemName directory Contains BNU command, data, and execute
files.

/usr/spool/uucppublic/* directories Contain files that BNU has transferred.

/usr/spool/uucp/SystemName/D.* files Contain data to be transferred.

Related Information
The uucico daemon.

The uucp command, uucleanup command, uudemon.cleanu command, uupick
command, uuto command, uux command.

1-110 AIX Files Reference

BNU xferstats

BNU xferstats File

Purpose
Contains information about the status of file transfer requests.

Description

Example

The /usr/spool/uucp/.Admin/xferstats file contains information about the status of each
Basic Networking Utilities (BNU) file transfer request. The xferstats file contains the
following information:

• System name

• Name of the user requesting the transfer

• Date and time of the transfer

• Name of the device used in the transfer

• Size of the transferred file

• . Length of time the transfer took.

1. Following is a typical entry in the xferstats file:

zeus!jim M (10/11-16:10:33) (C,9234,1) [-] -> 1167 I 0.100 secs

A file was transferred by user j im to system zeus at 4:10 p.m. on the 11th of October.
The file size was 116 7 bytes and the transfer took o • 1 o o seconds to complete.

Implementation Specifics

File

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/spool/uucp/.Admin directory Contains the xferstats file and other BNU
administrative files.

Related Information
The cron daemon, uucico daemon, uuxqt daemon.

The uucp command, uudemon.cleanu command, uux command.

Chapter 1 . AIX System Files 1-111

HCON e789_ctbl

HCON e789 ctbl File

Purpose
Contains the default binary color definition table for HCON.

Description
The /usr/lib/hcon/e789_ctbl file contains the default color definition table for the AIX 3270
Host Connection Program/6000 (HCON) in binary form. The /usr/lib/hcon/e789_ctbl.p file
contains the source mappings that were used to create the binary /usr/lib/hcon/e789_ctbl
file.

Instances of the e789_ctbl file can also occur in users' $HOME directories. The color
definition table can be customized using the e789cdef command. If the user issuing the
e789cdef command does not specify a name for the new table, the command names the
table e789_ctbl and places it in the user's $HOME directory. To use a customized table, an
HCON user must specify the file name of the table in an HCON session profile.

Implementation Specifics

Files

This file is part of the AIX 3270 Host Connection Program/6000 (HCON).

/usr/lib/hcon directory

/usr/lib/hcon/e789_ctbl.p file

/usr/lib/hcon/nls_names file

Contains HCON files, including the e789_ctbl file.

Contains the source for the /usr/lib/hcon/e789_ctbl
file.

Contains the HCON highlighting, attribute, and color
name definitions.

Related Information
Use the e789cdef command to customize your color definition file.

How to Customize the HCON Color Definition Table in Communication Concepts and
Procedures discusses creating customized color tables.

To start SMIT for use with HCON, use the smit hcon command.

To set up a session profile for HCON, use SMIT or the mkhcons command. To modify an
existing profile, use SMIT or the chhcons command.

1-112 AIX Files Reference

HCON e789_ktbl

HCON e789 ktbl File

Purpose
Contains the default binary keyboard definition table used by HCON.

Description
The /usr/lib/hcon/e789_ktbl file contains the default keyboard definition table used by the
AIX 3270 Host Connection Program/6000 (HCON) in binary form. The
/usr/lib/hcon/e789_ktbl.p file contains the source mappings that were used to create the
binary e789_ktbl file.

HCON key names are mapped to specific keys on each supported keyboard. The HCON
emulator program uses these key mappings to generate the correct key function on all the
supported keyboards. HCON key mappings can be customized using the e789kdef
command.

Instances of the e789_ktbl file can also occur in users' $HOME directories. The keyboard
definition table can be customized using the e789kdef command. If the user issuing the
e789kdef command does not specify a name for the new table, the command names the
table e789_ktbl and places it in the user's $HOME directory. To use a customized table, an
HCON user must specify the file name of the table in an HCON session profile.

Implementation Specifics

Files

This file is part of the AIX 3270 Host Connection Program/6000 (HCON).

/usr/lib/hcon directory

/usr/lib/hcon/e789_ktbl.p file

/usr/lib/hcon/func_names file

/usr/lib/hcon/keynames file

Contains HCON files, including the e789_ktbl file.

Contains the source for the default binary keyboard
definition table.

Contains HCON function names.

Contains HCON keynames.

Related Information
Use the e789kdef command to customize your keyboard definition file.

How to Customize the HCON Keyboard Definition Table in Communication Concepts and
Procedures discusses creating customized keyboard tables.

To start SMIT for use with HCON, use the smit hcon command.

To set up a session profile for HCON, use SMIT or the mkhcons command. To modify an
existing profile, use SMIT or the chhcons command.

Chapter 1 . AIX System Files 1-113

Mail aliases

Mail aliases File

Purpose
Contains alias definitions for the sendmail command.

Description
This file contains the required aliases for the sendmail command. Do not change these
defaults, as they are needed by the system. It is formatted as a series of lines in the form:

name: name_l, name_2, name_3, •••

The name is the name to alias, and the name_n are the aliases for that name. Lines
beginning with white space are continuation lines. Lines beginning with # (pound signs) are
comments.

Aliasing occurs only on local names.

System-wide aliases are always used to redirect mail. For example, if you receive mail at
three different systems, you can use the /usr/lib/aliases file and redirect your mail to one of
the systems.

Aliases can be defined to send mail to a distribution list. For example, you can send mail to
all of the members of a project by sending mail to just a single name.

Normally the sender of a message is not included when the sendmail command expands an
alias address. For example, if amy sends a message to alias D9 9 a and she is defined as a
member of that alias, the sendmail command does not send a copy of the message to amy.

This is only the raw data file; the actual aliasing information is placed into a binary format in
the files /usr/lib/aliasesDB/DB.dir and /usr/lib/aliasesDB/DB.pag using the newaliases
command. For the change to take effect, the newaliases command must be executed each
time the aliases file is changed.

Implementation Specifics

Files

This /usr/lib/aliases file is part of AIX Base Operating System (BOS) Runtime.

/usr/lib/aliases

/usr/lib/aliasesDB

Contains system-wide aliases.

Contains the binary files created by the newaliases command.

Related Information
The newaliases command, sendmail command.

Understanding· Mail Aliases, How to Build the Alias Database, and How to Create a Local
System Alias in Communication Concepts and Procedures.

1-114 AIX Files Reference

Mail sendmail.cf

Mail sendmail.cf File

Purpose
Contains sendmail configuration file data.

Description
The configuration file contains the configuration information for the sendmail command. The
configuration information includes such items as the host name and domain and the
sendmail rule sets.

The configuration file has three major purposes:

• Initialize the environment for the sendmail command by setting the options.

• Define how the sendmail command rewrites addresses in messages.

·• Define the set of instructions needed to deliver a message.

The configuration file entries consist of control lines, each of which begins with a single
character command. Entries can continue onto multiple lines by placing a white space at the
beginning of each subsequent line. Comment lines begin with the# (pound) character.

Commands and Operands
CXWord1 Word2 ...

DXValue

Defines the class (X) of words that can be used to match on the left hand
side of rewriting rules. Class specifiers may be any of the uppercase letters
from the ASCII character set. Lowercase letters and special characters are
reserved for system use.

Defines the macro (X) and its associated Value. Macros specifiers may be
any of the uppercase letters from the ASCII character set. Lowercase letters
and special characters are reserved for system use.

F XFileName [Forma~
Reads the elements of the class (X) from FileName using an optional scanf
format specifier. The format specifier can contain only one conversion
specification. Only one class number is read for each line in FileName.

H[?MF/ags'?jHeaderName: HeaderTemplate
Defines the header format the sendmail command inserts into a message.
Continuation lines are a part of the definition. The HeaderTemplate is
macro-expanded before insertion into the message. If the MFlags are
specified, and at least one of the specified flags is included in the mailer
definition, then this header is automatically written to the output message. If
the header appears in the input message, it is written to the output message
regardless of the MFlags field.

MName, [Field= Value]

Ox[Value]

Defines a mailer program where Name is the name of the mailer program
and Field=Value defines the attributes of the mailer.

Sets option to x. If the option is a valued option, you must also specify
Value. Options may also be selected from the command line.

Chapter 1. AIX System Files 1-115

Mail sendmail.cf

PName=Number
Defines values for the Precedence: header field. When Name is found in
a message's Precedence: field, the message's precedence is set to
Number. Higher numbers indicate higher precedences. Negative numbers
indicate that error messages are not returned. The default Number is 0.

RLeftHandSide RightHandSide Comments

Sx

Defines a rewriting rule. One or more tab characters separate the three
fields of this command. If space characters are used as field separators, the
configuration option J must be set. The fields may contain embedded
spaces, unless the J option is set. If the J option is set, the embedded
spaces must be represented by the character defined in J. After the fields
are separated, the character representing the space is changed to an actual
space.

Sets the rule set currently defined to number x. If a rule set definition is
begun more than once, the new definition overwrites the old.

T User1 User2 ... Defines the system-administrative user IDs. These IDs have permission to
override the sender address using the -f flag. There can be more than one
ID specified per line.

Special Macros
Macros are interpolated using $x, where xis the name of the macro to be interpolated.
Lowercase letters are reserved by the sendmail command.

Required Macros
Warning: Altering required macros may render the Mail Program unusable.

If you create a new /usr/lib/sendmail configuration file, be sure to include definitions for
these macros which the sendmail daemon requires:

e macro

j macro

I macro

n macro

o macro

q macro

Other Macros

Denotes the Simple Mail Transfer Protocol (SMTP) entry message.

Denotes the official domain name for this site.

Denotes the format of the From line (not the From: line).

Denotes the name of the daemon (for error messages).

Denotes the set of operators in addresses.

Denotes the default format of sender address.

The sendmail command defines some macros for interpolation into argument variables for
mailer programs or for other contexts. These macros are:

a macro

b macro

1-116 AIX Files Reference

The origination date in ARPANET form. The $a macro contains the time
extracted from the Date: line of the message. If the incoming message has
no Date: line, the $a macro contains the current time.

The current date in ARPANET form. The $b macro equals the current date
and time. This macro is used for postmarks.

c macro

d macro

f macro

g macro

h macro

i macro

p macro

s macro

t macro

u macro

v macro

w macro

x macro

y macro

z macro

Mail sendmail.cf

The hop count. The hop count is the number of times the message has
been processed.

The date in AIX (ctime) format.

The sender address. The $f macro is the sender address as seen from the
host.

The sender address relative to the receiver. When mailing to a specific host,
the $g macro contains the address of the sender relative to the receiver. For
example, if the user, newton, at system, appletree, sends a message to
chopin@piano, the $f macro equals newton and the $g macro equals
newton@appletree.

The receiving host.

The queue ID of the host. The $i is useful for tracking messages if put into
the message ID line.

The process ID of the sendmail command. The $p macro and the $t macro
are used to create unique strings for the Message_ID field.

The host name of the sender.

A numeric representation of the current time. The $p macro and the $t
macro are used to create unique strings for the Message_ID field.

The receiving user.

The version number of AIX. The $v macro is printed in the Received:
header message and is useful for debugging.

The host name of the local site.

The full name of the sender. The name is determined by one of the the
following:

• Full name passed as a flag to the sendmail command
• Value found in the Full_Narrie line of the header

• Value found in the comment field of a From: line
• Full name found in the /etc/passwd file if the message originates locally.

The terminal ID of the sender.

The home directory of the receiver.

MName, [Field:Value] Attributes for Sendmail.cf
Name is the name of the mailer and Field= Value defines the attributes of the mailer
program. Allowable Fields and Values are:

A=Argument Specifies information to be passed to the mailer. This field can be any string
of words with embedded spaces allowed. Any or all of the words can be
symbols. If you do not include this field, or the field does not contain the $u
symbol, the sendmail command uses the SMTP to send messages to the
mailer.

E=EndOfline Defines the end of line. The default is newline.

Chapter 1. AIX System Files 1-117

Mail sendmail.cf

F=Flags

P=Path

1-118 AIX Files Reference

Defines the meaning for the flags that the sendmail command recognizes.
The valid flags are:

C Appends the sender domain. The sender domain ID is defined as
everything from the first@ (at) character to the end of the sender
address. This string is appended to header addresses which contain
no @ symbols whenever mail is received from this mailer. This also
applies to calculation of the $g macro and everything dependent on
it.

D Requires a Date header line.
e This mailer is expensive to connect to. Avoid normal connection

and, when necessary, connect during a queue run.
E Changes From: lines to >From in message bodies.
f Calls the mailer program with an -f flag followed by the expression

of $g, if the following requirements are met:

• Specified mailer program is legitimate
• User ID is a system administrative or root ID
• Group ID is system.

F Requires a From: header line.
h Preserves uppercase in host names for this mailer program.
I Uses SMTP to communicate with another sendmail command and

can use special protocol features.
I Performs final delivery on the local system.
L Limits the line length of a text line to less than 1000 characters. Any

leading dot duplicated due to the X flag is not included in the count.
Only allows 7-bit data to pass either way through the mailer
program.

m Sends to multiple users on the same host in one transaction. when
a $u macro occurs in the A part of the mailer program definition,
that field will be repeated as necessary for all qualifying users.

M Requires a Message-ID header line.
n AIX-style From: lines on the front of the message are not inserted.
N Uses International Character Support. Only has meaning when

used with the L flag. Allows 8-bit data to pass.
p Uses the return-path in the SMTP MAIL FROM: command rather

than just the return address.
r Same as option f except a -r flag is generated.
s Strips quotation marks off of the address before calling the mailer.
S Does not reset user ID before calling the mailer.
u Preserves uppercase in users names for this mailer.
U Requires From: lines with UUCP-style remote from host on the

end.
x Requires a Full-Name header line.
X Uses the hidden-dot algorithm. (Any line starting with a dot has an

extra dot added at the beginning.) This ensures that the lines in the
message containing a leading dot will not terminate the message
prematurely.

Defines the maximum size of messages in bytes that the mailer handles.

Defines the full path name of the mailer on the local system. If the mailer
uses the Simple Mail Transfer Protocol (SMTP), use the [IPC] string as the
path.

Mail sendmail.cf

R=Recipient Defines the rewrite rule set to be used on recipient addresses for this mailer.

S=Sender Defines the rewrite rule set to be used on sender addresses for this mailer.

Ox[Value] Attributes for Sendmail.cf
If the option is a valued option, you must also specify Value. The options and the possible
values are described as follows:

AFile Uses the named File as the alias file.

Be Sets the blank substitution character to the character specified in the
parameter c. The sendmail command replaces spaces which are not
quoted in addresses with this character. The supplied configuration file uses
the . (period) for this character.

c Causes the sendmail command to queue messages for that mailer program
without sending them if an outgoing mailer program is marked as expensive
to use. The queue can run later when costs are lowest or when the queue is
large enough to send the message efficiently.

dx Sets the delivery mode to x. Valid modes are:

b Delivers in the background (asynchronously). This is the default
setting.
Delivers interactively (synchronously).

q Queues only the message and delivers it during queue run.

ex Sets error processing to mode x. Valid modes are:

e Mails the error message to the user's mailbox, but always exits with
a zero exit status (normal return).

m Mails the error message to the user's mailbox.
p Disi:;>lays the error message on the terminal (default).
q Discards the error message and returns the exit status only.
w Writes the error message to the terminal if delivering in interactive

mode; otherwise it mails the error message to the user's mail box.

f Saves From lines at the front of the messages. These lines are normally
discarded. Causes all other headers to be regarded as part of the message
body.

gN Sets the default group ID to use when calling mailers to the value specified
by Number.

Hfile Specifies the name of the SMTP help file.

Does not interpret a . {period) on a line by itself as a message terminator.
Removes the excess period inserted at the beginning of a line by a remote
mailer program, if mail is received through SMTP. In addition, if receiving
mail through SMTP, any period at the front of a line followed by another
period is removed. This is opposite of the action performed by the X mailer
flag.

Chapter 1. AIX System Files 1-119

Mail sendmail.cf

Jx

Lnumber

m

Mx Value

n

Allows spaces as well as tabs to separate the Left Hand Side (LSH) and
Right Hand Side (RHS) of rewrite rules. In both the LHS and RHS, x must
be used in place of embedded spaces. The default for xis_ (underscore).
All instances of x are changed to spaces after the LHS and RHS are
separated by the sendmail command. This option allows rewrite rules to be
modified using an editor that replaces tabs with spaces.

Specifies the log level to be the value supplied in the n parameter. Each
m~mber in the following list includes the activities of all numbers of lesser
value and adds the activity that it represents. Valid levels and the activities
they represent are:

0

1

2

3

4

5

6

9

12

22

No logging

Major problems only

Message collections and failed deliveries

Successful deliveries

Messages being deferred

Placing messages in the queue

Unusual but benign incidents

Log internal queue ID to external message ID mappings

Several messages of interest when debugging

Verbose information regarding the queue.

Includes the sender when sending a m.ail message to an alias that also lists
the sender.

Defines macro x to have Value. This option is normally used only from the
sendmail command line.

Validates the Right Hand Side of aliases when performing the newaliases
command.

NNetworkNameSets the name of the host network. The sendmail command compares the
argument of an SMTP HELO command to HostName.NetName (value of
HostName comes from the kernel). If these values do not match, it adds the
HostName.NetName string to the Received: line in the message so that
messages can be traced accurately.

0

Paddress

Qdir

rtime

s

1-120 AIX Files Reference

Indicates that this message can have headers with spaces between
addresses. Without this option, the message has commas between
addresses. If this option is set, an adaptive algorithm determines the header
format in most cases.

Identifies the person who is to receive a copy of all returned mail.

Sets the directory in which to queue messages. The directory will be created
if it does not exist.

Sets the time out for reads from a mailer program to the value specified by
time. If no time out value is set, the sendmail command waits indefinitely
for a mailer program to respond.

Enqueues before delivery, even when in immediate delivery mode.

Mail sendmail.cf

SFile Sets the mail statistics file to the File. Statistics are only collected if the file
exists. This file must be created by the user.

Ttime Sets the time out on messages in the queue to the specified time. After this
interval, the sendmail command returns the message to the sender. The
default is three days.

uN Sets the default user ID to use when calling mailers to the value specified by
N.

v Runs in verbose mode.

Y Delivers each message in the mail queue from a separate process. This
option is not required and can, if used, increase overhead in the AIX
environment.

Implementation Specifics

Files

This sendmail.cf file is part of AIX Base Operating System (BOS) Runtime.

/usr/lib/sendmail.cf
/usr/lib/send mail .cf DB

The configuration file for the sendmail command.
The compiled version of the sendmail configuration file.

Related Information
The edconfig command, newaliases command, sendmail command.

The /etc/passwd file.

Understanding Sendmail and Understanding the sendmail.cf File in Communication
Concepts and Procedures.

Chapter 1. AIX System Files 1-121

MH .maildelivery

MH .maildelivery File

Purpose
Specifies actions to be taken when mail is received.

Description
The $HOME/ .maildelivery file contains a list of actions that the slocal command performs
on received mail. The slocal command reads the $HOME/.maildelivery file and performs
the actions specified. To activate the slocal command:

1. Create a file called .forward in your home directory.

2. Place the following line in the $HOME/.forward file:

I /usr/lib/mh/slocal

Specify your own mail delivery instructions in the $HOME/.maildelivery file. Each line in the
$HOME/.maildelivery file describes an action and the conditions under which the action
should be performed. All of the five following parameters must be present in each line of the
file. These parameters are separated by either commas or space characters:

Field Pattern Action Result "String"

Blank lines in the .maildelivery file are ignored. Put a # (pound) sign in the first column to
indicate a comment. The file is always read completely, so several matches can be made
with several actions. The .maildelivery file should be owned by the user, and the owner can
be the only one with write access.

If the .maildelivery file cannot be found or does not deliver the message, the
/usr/lib/mh/maildelivery file is used in the same manner. If the message has still not been
delivered, it is delivered to the user's mail drop. The default mail drop is the
/usr/mail/$USER file.

The MH package contains four standard programs that can be run as receive-mail hooks:
the rcvdist command, rcvpack command, rcvstore command, and rcvtty command.

Parameters
The following list describes each parameter:

Field Specifies a header component to be searched to find a pattern to match the
Pattern parameter. Specify one of the following values for the Field
parameter:

1-122 AIX Files Reference

Component Specify the header component you want to be searched; for
example, From or cc.

*

addr

default

Source

Matches everything.

Searches whatever field was used to deliver the message
to you.

Matches only if the message has not been delivered yet.

Specifies the out-of-band sender information.

Pattern

Action

MH .maildelivery

Specifies the character string to search for in the header component given
by the Field parameter. For example, if you specified From in the Field
parameter, the Pattern parameter might contain an address like
sarah@mephisto.

The Pattern parameter is not case-sensitive. Thus, the character string
matches any combination of uppercase and lowercase characters. Specify a
dummy pattern if you use an* (asterisk) or specify default in the Field
parameter.

Specifies an action to take with the message if it contains the pattern
specified in the Pattern parameter. Specify the following values:

file or>

pipe or I

Appends the message to the file specified with the "String"
parameter. If the message can be written to the file, the
action is considered successful. The Delivery-o·ate:
header component is added to the message to indicate
when the message was appended to the file.

Pipes the message as standard input to the command
specified with the "String" parameter. The shell interprets
the string. If the exit status from the command is O (zero),
the action is considered successful. Prior to being given to
the shell, the string is expanded with the following built-in
variables:

$(Sendel}

$(Address}

$(Size}

$(Reply To}

$(Information}

The return address for the message.

The address that was used to deliver the
message.

The size of the message in bytes.

Either the Reply-To: or From: header
component of the message.

Miscellaneous out-of-band information.

When a process is invoked with the pipe mechanism, the
environment of the process is set as follows:

• User and group IDs are set to the recipient's IDs.

• Working directory is the recipient's directory.

• The value of the umask variable is 0077.

• Process has no /dev/tty special file.

• Standard input is set to the message.

• Standard output and diagnostic output are set to the
/dev/NULL special file. All other file descriptors are
closed. The $USER, $HOME, and $SHELL
environmental variables are set appropriately; no other
environment variables exist.

Chapter 1 . AIX System Files 1-123

MH .maildelivery

Examples

Result

"String''

qpipe or"

destroy

The amount of time the process is given to execute is:

(<bytes in message> x 60) + 300 seconds).

After that time, the process is terminated.

If the exit status of the program is 0 (zero), it is assumed
that the action succeeded. Otherwise, failure is assumed.

Similar to pipe, but executes the command directly after
built-in variable expansion without assistance from the shell.
If the exit status from the command is O (zero), the action is
successful.

Destroys the message. This action always succeeds.

Indicates how the action should be performed. You can specify one of the
following values for this parameter:

A

R

?

Performs the action. If the action succeeds, the message is
considered delivered.

Performs the action. Even if the action succeeds, the
message is not considered delivered.

Performs the action only if the message has not been
delivered. If the action succeeds, the message is
considered delivered.

If you use the file value for the Action parameter, the "String'' parameter
specifies the file to which the message can be appended.

If you use the pipe or the qpipe value, the "String" parameter specifies the
command to execute.

If you use the destroy value as the Action parameter, the "String"
parameter is not used, but you must still include a dummy "String''
parameter.

Note: To be notified that you have mail, you must specify the rcvtty command in the
.maildelivery file.

The following are example lines in the $HOME/.maildelivery file:

1. To save a message in a particular file, use a line similar to the following line:

From george file A george.mail

This line directs the slocal command to search the From header line in messages. When
the slocal command finds a message from george, it files the message in a file called
george .mail.

2. To save a copy of a message in a file, use a line similar to the following:

addr manager > R proj_X/statlog

1-124 AIX Files Reference

MH .maildelivery

This line directs the slocal command to search the address fields in messages. When it
finds a message to the project manager, the slocal command files a copy of the
message in a file called proj_X/statlog. The original message is not considered
delivered (the R value), so the message is still treated as mail and you will be notified as
usual.

3. To be notified that you have received mail, enter a line similar to the following:

* - I R "/usr/lib/mh/rcvtty /u/sarah/allmail"

In this example, the /u/ sarah/ allmail file contains the line:

echo "You have mail\n"

The /u/sarah/allmail file must have execute permission. When you have mail, the
words You have mail will be displayed on your console.

4. To forward a copy of a message, enter a line similar to the following:

addr manager I A "/usr/lib/mh/rcvdist amy"

This line directs the slocal command to search the address fields in messages. When it
finds a message to the project manager, the slocal command sends a copy of the
message to amy. The original message is not affected. The action is always performed
(the A value). The command that the slocal command reads to distribute the copy to
another user is the rcvdist command.

5. To save any undelivered messages, enter a line similar to the following:

default - > ? mailbox

This line directs the slocal command to find all undelivered messages. The - (dash) is a
placeholder for the Pattern parameter. The > (file symbol) instructs the slocal command
to file the messages it finds. The ? (question mark) instructs the sloca.1 command to
respond only to undeli~ered messages. The name of the file to store undelivered
messages is mailbox.

Implementation Specifics

Files

This file is part of Message Handler in BOS Extensions 1.

$HOME/ .forward

/usr/mail/$USER
/usr/lib/mh/slocal

/usr/lib/mh/maildelivery

$HOME/ .maildelivery

Searched by the sendmail command when mail is
received.This file can contain either a path of a machine to
which to forward mail or a line to start the slocal command.
Provides the default mail drop.
Contains the slocal command that reads the .maildelivery
file.
Contains the mail delivery instructions that the slocal
command reads if none are specified in the
$HOME/.maildelivery file.

Specifies mail-related actions for the slocal command to
perform.

Related Information
The rcvdist command, rcvpack command, rcvstore command, rcvtty command, sendmail
command, slocal command.

The mtstailor file.

Chapter 1. AIX System Files 1-125

MH .mh_profile

MH .mh_profile File

Purpose
Customizes the Message Handler (MH) package.

Description
Each user of the MH package is expected to have a $HOME/.mh_profile file in the home
directory. This file contains a set of user parameters used by some or all of the MH
programs. Each line of the file has the following format:

Profile-Entry: Value

Profile Entries
Some entries have default values if they are not specified. The only required entry is Path:.

Path:

context:

Current-Folder:

Previous-Sequence:

Sequence-Negation:

Unseen-Sequence:

1-126 AIX Files Reference

Specifies the directory path for the user's MH directory,
UserMHDirectory. The usual location is the $HOME/Mail
directory. This information is stored in the MH profile. No
default value is set.

Declares the location of the MH context file. This
information is stored in the MH profile. The default value
is the UserMHDirectorylcontext file.

Keeps track of the current open folder. This information is
stored in the context file. The default value for this entry
is inbox.

Names the sequences that should be defined as the
Messages or Message parameter given to the program.
If not present or empty, no sequences are defined.
Otherwise, for each name given, the sequence is first set
to 0 (zero), and then each message is added to the
sequence. This information is stored in the MH profile.
No default value is set.

Defines the string that negates a sequence when
prefixed to the name of that sequence. For example, if
the Sequence-Negation: entry is set to not, then
not seen refers to all the messages that are not a
member of the sequence seen. This information is
stored in the MH profile. No default value is set.

Names the sequences that are defined as those
messages recently incorporated by the inc command.
The show command removes messages from this
sequence after they have been seen. If not present, or
empty, no sequences are defined. Otherwise, for each
name given, the sequence is first set to O (zero), and
then each message is added to the sequence. This
information is stored in the MH profile. No default value is
set

.mh_sequences:

a tr-SequenceFo/der:

Editor:

Msg-Protect:

Folder-Protect:

Program:

LastEditor-next:

Folder-Stack:

MH .mh_profile

Names in each folder the file that defines public
sequences. To disable the use of public sequences,
leave the value of this entry blank. This information is
stored in the MH profile. The default value is
.mh_sequences.

Keeps track of the private sequence named Sequence in
the specified Folder. (This information is stored in the
context file. No default value is set.)

Defines the editor to be used by the comp, dist, forw,
and repl commands. This information is stored in the MH
profile. The default value is prompter.

Defines octal protection bits for message files. This
information is stored in the MH profile. The default value
is 0644.

The chmod command explains the default values.

Defines protection bits for folder directories. This
information is stored in the MH profile. The default value
is 0711.

The chmod command explains the default values.

Sets default flags to be used whenever the MH program
specified by the MH program field is invoked. For
example, you can override the Edi tor: profile
component, when replying to messages, by entering the
following profile entry:

repl: -editor /bin/ed

This information is stored in the MH profile. No default
value is set.

Specifies the editor that is the default editor after the
editor specified by the Edi tor: field has been used.
This takes effect at the What now? level of the comp,
dist, forw, and repl commands. After the draft has been
edited with the editor specified by the Edi tor: field, the
default editor is set to be the editor specified by the
LastEditor-next: field.

If you enter the edit command without a parameter to the
What now? prompt, the editor specified by the
LastEditor-next: field is used. This information is stored
in the MH profile. No default value is set.

Defines the contents of the folder stack of the folder
command. This information is stored in the context file.
No default value is set.

Chapter 1. AIX System Files 1-127

MH .mh_profile

Alternate-Mailboxes:

Draft-Folder:

digest-issue-List:

digest-volume-List:

MailDrop:

Signature:

Profile Elements

Indicates to the repl and scan commands which
addresses are really yours. In this way, the repl
command knows which addresses should be included in
the reply, and the scan command knows if the message
really originated from you. Addresses must be separated
by a comma.

The host names listed should be the official host names
for the mailboxes you indicate. Local nicknames for hosts
are not replaced with their official site names. If a host is
not given for a particular address, that address on any
host is considered to be your current address.

In addition, an * (asterisk) can be displayed at either end
or both ends of the host mailbox to indicate pattern
matching.

This information is stored in the MH profile. The default
value is $LOGNAME.

Indicates a default draft folder for the comp, dist, forw,
and repl commands. This information is stored in the
MH profile. No default value is set.

Indicates to the forw command the last issue of the last
volume sent for the digest List. This information is stored
in the context file. No default value is set.

Indicates to the forw command the last volume sent for
the digest List. This information is stored in the context
file. No default value is set.

Indicates to the inc command your mail drop, if different
from the default. This is superseded by the $MAILDROP
environment variable. This information is stored in the
MH profile. The default value is the /usr/mail/$USER file.

Indicates to the inc command your mail signature. This is
superseded by the $SIGNATURE environment variable.
This information is stored in the MH profile. No default
value is set.

The following profile elements are used whenever an MH program invokes another program.
You can use the .mh_profile file to select alternate programs. The following list gives the
default values:

fileproc:

incproc:

installproc:

lproc:

mailproc:

mhlproc:

1-128 AIX Files Reference

/usr/bin/refile

/usr/bin/inc

/usr/lib/mh/install-mh

/usr/ucb/more

/usr/bin/mhmail

/usr/lib/mh/mhl

moreproc:

mshproc:

packproc:

postproc:

rmmproc:

rmfproc:

sendproc:

showproc:

whatnowproc:

whomproc:

Environment Variables

/usr/ucb/more

/usr/bin/msh

/usr/bin/packf

/usr/lib/mh/spost

None

/usr/bin/rmf

/usr/bin/send

/usr/ucb/more

/usr/bin/whatnow

/usr/bin/whom

MH .mh_profile

Message Handler (MH) programs support the following environment variables:

$MH

$MHCONTEXT

$MAIL DROP

$SIGNATURE

$HOME

$TERM, $TERMCAP

$editalt

$mhdraft

Specifies a profile for an MH program to read. When you
invoke an MH program, it reads the .mh_profile file by
default. If you define the $MH environment variable, you
can specify a different profile.

If the file of the $MH environment variable is not absolute
(that is, it does not begin with a I (slash)), it is presumed to
start in the current directory.

Specifies a context file that is different from the normal
context file specified in the MH profile. If the value of the
$MHCONTEXT environment variable is not absolute, it is
presumed to start from your MH directory.

Indicates to the inc command the default mail drop. This
supersedes the MailDrop: profile entry.

Specifies your mail signature to the send and post
commands. This supersedes the Signature: profile entry.

Specifies your home directory to all MH programs.

Specify your terminal type to the MH package. In particular,
these environment variables tell the scan and mhl
commands how to clear your terminal, and give the width
and the length of your terminal in columns and lines
respectively.

Specifies an alternate message. This is set by the dist and
repl commands during edit sessions so that you can read
the distributed message or the answered message. This
message is also available through a link called @ (at) sign
in the current directory, if your current directory and the
message folder are on the same AIX file system.

Specifies the path of the working draft.

Chapter 1 . AIX System Files 1-129

MH .mh_profile

Example

$mhfolder Specifies the folder containing the alternate message. This
is set by the dist and repl commands during edit sessions,
so you can read other messages in the current folder
besides the one being distributed. The $mhfolder
environment variable is also set by the show, prev, and
next commands for use by the mhl command.

The following example has the mandatory entry for Path:. The option -alias aliases is
used when both the send command and the ali command are invoked. The aliases file
resides in the mail directory. The message protection is set to 600, which means that only
the user has permission to read the message files. The signature is set to Dan Carpenter,
and the default editor is /usr/bin/vi.

Path: Mail
send: -alias aliases
ali: -alias aliases
Msg-Progtect: 600
Signature: Dan Carpenter
Editor: /usr/bin/vi

Implementation Specifics

Files

This file is part of Message Handler in BOS Extensions 1.

$HOME/.mh_profile

UserMHDirectorylc_ontext

Fo/der/.mh_sequences

Contains the user profile.

Contains the user context file.

Contains the public sequences for the folder
specified by the Folder variable.

Related Information
The chmod command, comp comrryand, dist command, edit command, env command,
folder command, forw command, inc command, install_mh command, mhl command,
next command, post command, prev command, repl command, scan command, send
command, show command, whatnow command.

1-130 AIX Files Reference

MH mhl.format

MH mhl.format File

Purpose
Controls the format of output for the mhl command.

Description
The mhl.format file controls the format of output when the mhl command is the message
listing program. The full path of the mhl.format file is /usr/lib/mh/mhl.format. This file is the
default file. The other files that must be specified if they are going to be used are:

• mhl.digest file
• mhl.forward file
• mhl.reply file.

Each line of the mhl.format file must have one of the following forms:

• ;Comment

• : Clear Text

• Component[Variable, ...]

• Variable[Variable, ...]

The content of these lines is described as follows:

; (semicolon)

: (colon)

Component

Variable

A line beginning with a ; (semicolon) contains the comments specified by
the Comment field that are ignored.

A line beginning with a : (colon) contains text for output (ClearTex~. A line
that contai.ns a: (colon) only produces a blank output line.

A line beginning with the Component field defines the format of the
specified component.

If the value specified by the Variable field follows a component, the
variable applies only to that component. Lines having other formats
define the global environment.

The entire mhl.format file is parsed before output processing begins.
Thus, if the global setting of a variable setting is defined in multiple
places, the last global definition for that variable describes the current
global setting.

Chapter 1. AIX System Files 1-131

MH mhl.format

The following table lists the mhl.format file variables and their parameters:

File Variables for the mhl.format File

Parameter Variable Description

Width integer Sets the screen width or component width.

Length integer Sets the screen length or component length.

Off Set integer Indents Component the specified number of
columns.

OverflowText string Outputs String at the beginning of each overflow
line.

OverflowOffset integer Indents overflow lines the specified number of
columns.

Com.pWidth integer Indents component text the specified number of
columns after the first line of output.

Uppercase flag Outputs text of Component in all uppercase
characters.

No Uppercase flag Outputs text of Component in the case entered.

ClearScreen flagtG Clears the screen before each page.

NoClearScreen flagtG Does not clear the screen before each page.

Bell flagtG Produces an audible indicator at the end of each
page.

No Bell flagtG Does not produce an audible indicator at the end of
each page.

Component stringA- Uses String as the name for the specified
Component instead of the string Component.

NoComponent flag Does not output the string Component for the
specified Component.

Center flag Centers Componenton line. This variable works for
one-line components only.

No Center flag Does not center Component.

LeftAdjust flag Strips off the leading whitespace characters from
each line of text.

NoleftAdjust flag Does not strip off the leading whitespace
characters from each line of text.

Compress flag Changes new-line characters in text to space
characters.

NoCompress flag Does not change new-line characters in text to
space characters.

FormatField string Uses String as the format string for the specified
component.

rAddrField flag The specified Component contains addresses.

DateField flag The specified Component contains dates.

Ignore unquoted string Does not output component specified by String.

1-132 AIX Files Reference

Example

MH mhl.format

Variables that have integer or string values as parameters must be followed by an= (equal)
sign and the integer or string value (for example, overflowoffset=S). String values must
also be enclosed in double quotation marks (for example, overflowtext="***"). A
parameter specified with the /G suffix has global scope. A parameter specified with the /L
suffix has local scope.

The following is an example of a line that could be displayed in the mhl.format file:

width=80,length=40,clearscreen,overflowtext="***".,overflowoffset=5

This format line defines the screen size to be a o columns by 4 o rows and specifies that the
screen should be cleared before each page (clearscreen), that the overflow text should
be flagged with the ***string, and that the overflow indentation should bes columns.

Implementation Specifics
This file is part of Message Handler in BOS Extensions 1.

Related Information
The ap command, dp command, mhl command, scan command.

Understanding the Message Handler (MH) Command Output Format in Communication
Concepts and Procedures.

Chapter 1. AIX System Files 1-133

MH mtstailor

MH mtstailor File

Purpose
Tailors the Message Handler (MH) environment to the local environment.

Description
The entries located in the mtstailor file specify how MH commands work. The following list
describes the mtstailor file entries and their default values. All of the file entries are
optional.

localname:

systemname:

mmdfldir:

mmdflfil:

mmdeliml:

mmdelim2:

mmailid:

lockstyle:

lockldir:

sendmail:

1-134 AIX Files Reference

Specifies the host name of the local system. If this entry is not defined,
MH queries the system for the default value.

Specifies the host name of the local system in the UUCP domain. If
this entry is not defined, MH queries the system for the default value.

Specifies the location of mail drops. If this entry is present and empty,
mail drops are located in the user's $HOME directory. If this entry does
not exist, mail drops are located in the /usr/mail directory.

Specifies the name of the file used as the mail drop. If this entry is not
defined, the default file name is the same as the user name.

Specifies the beginning-of-message delimiter for mail drops. The
default value is the Ctrl + A key sequence four times followed by a
new-line character(. 001. 001. 001. 001. 012). A Ctrl +A key
sequence is a nonprintable character not displayed on the screen.

Specifies the end-of-message delimiter for mail drops. The default
value is the Ctrl +A key sequence four times followed by a new-line
character(. 001. 001. 001. 001. 012). A Ctrl +A key sequence is a
nonprintable character not displayed on the screen.

Specifies whether support for the MMaillD variable in the /etc/passwd
file is enabled. If the mmailid: entry is set to a nonzero value,
support is enabled. The pw_gecos: field in the /etc/passwd file has
the following form:

My Full Name Mai/ID

When support for the MMai/ID variable is enabled, the internal MH
routine~ that deal with user and full names return the Mai/ID variable
and the My Full Name respectively. The default value is 0.

Specifies the locking discipline. A value of 1 (one) creates lock names

by appending • lock to the name of the file being locked. The default
value is 1.

Specifies the directory for locked files. The default value is the
/etc/locks file.

Specifies the path name of the sendmail command. The default value
is the /usr/lib/sendmail file.

MH mtstailor

mail deli very: Specifies the path name of the file containing the system default mail
delivery instructions. The default value is the /usr/lib/mh/maildelivery
file.

everyone: Specifies the users to receive messages addressed to everyone. All
users having UIDs greater than the specified number (not inclusive)
receive messages addressed to everyone. The default value is 200.

Implementation Specifics
This file is part of Message Handler in BOS Extensions 1 .

File
/usr/lib/mh/mtstailor Contains MH command definitions.

Related Information
The .maildelivery file.

Chapter 1. AIX System Files 1-135

NFS bootparams

NFS bootparams File

Purpose
Contains the list of client entries that diskless clients use for booting.

Description

Examples

Contains a list of client entries that diskless clients use for booting. The first item of each
entry is the name of the diskless client. Each entry should contain the following information:

• Name of client

• List of keys, names of servers, and path names

Items are separated by tab characters.

The following is an example of a /etc/bootparams file:

myclient root=myserver:/nfsroot/myclient \

swap=myserver:/nfsswar/myclient \

dump=myserver:/nfsdurnp/myclient

Implementation Specifics
This file is part of NFS in Network Support Facilities in Base Operating System Runtime.

1-136 AIX Files Reference

NFS exports File

Purpose

NFS exports

Contains a list of directories that can be exported to Network File System (NFS) clients.

Description
The /etc/exports file contains an entry for each directory that can be exported to NFS
clients. This file is read automatically by the exportfs command. If you change this file, you
must run the exportfs command before the changes can affect the way the daemon
operates.

Only when this file is present during system startup does the rc.nfs script execute the
exportfs command and start the nfsd and mountd daemon.

Note: You cannot export either a parent directory or a subdirectory of an exported directory
that is within the same file system.

Entries in the file are formatted as follows:

Directory -Option [, Option] ...

These fields are defined as follows:

Directory

Option

Pathname of the directory

Specifies optional characteristics for the directory being exported. You can
enter more than one option by separating them with commas. Choose from
the following options:

ro Exports the directory with read-only permission. Otherwise,
if not specified, the directory is exported with read-write
permission.

rw = Client [:Clien~

anon= UID

Exports the directory with read-write permission to the
machines specified by the Client parameter and read-only
to all others. The Client parameter can be either the
hostname or the network name. If a rw host name is not
specified, the directory is exported with read-wrjte
permission to all.

If a request comes from a root user, use the UID value as
the effective user ID.

The default value for this option is -2. Setting the value of
the anon option to -1 disables anonymous access. Note
that, by default, secure NFS accepts nonsecure requests as
anonymous, and users who want more security can disable
this feature by setting anon to a value of -1.

root= HostName[:HostName, ...]
Gives root access only to the root users from the specified
HostName. The default is for no hosts to be granted root
access.

Chapter 1 . AIX System Files 1-137

NFS exports

Examples

access= Clien~:Client, ...)

secure

Gives mount access to each client listed. A client can be
either a host name or a netgroup name. Each client in the
list is first checked for in the /etc/netgroup database and
then in the /etc/hosts database. The default value allows
any machine to mount the given directory.

Requires clients to use a more secure protocol when
accessing the directory.

A# (pound sign) anywhere in the file indicates a comment that extends to the end of the
line.

1. Export to netgroup clients:

/usr -access=clients

2. Export to the world:

/usr/local

3. Export to only these machines:

/usr2 -access=herrnes:zip:tutorial

4. Give Root access only to these:

/usr/tps -root=herrnes:zip

5. Convert client root users to guest UID=100:

/usr/new -anon=lOO

6. Export read-only to everyone:

/usr/bin -ro

7. Allow several options on one line:

/usr/stuff -access=zip,anon=-3,ro

Implementation Specifics

Files

This file is part of NFS in Network Support Facilities in Base Operating System Runtime.

/etc/xtab

/etc/hosts

/etc/netgroup

Lists currently exported directories.

Contains an entry for each host on the network.

Contains information about each user group on the network.

Related Information
The exportfs command.

The nfsd daemon.

How to Export a Directory Using NFS in Communication Concepts and Procedures.

1-138 AIX Files Reference

NFS networks

NFS networks File

Purpose
Contains information about networks on the Internet network.

Description
The /etc/networks file contains information regarding the known networks that make up the
Internet. The file has an entry for each network. Each entry consists of a single line with the
following information:

• Official network name

• Network number

• Aliases.

Items are separated by any number of blanks and/or tab characters. A# ~pound sign)
indicates the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file.

Implementation Specifics
This file is not supported by AIX. However, if this file resides on your system, the network
information service (NIS) software will create a map for it.

Chapter 1. AIX System Files 1-139

NFS rpc

NFS rpc File

Purpose
A database for rpc program numbers

Description

Example

The /etc/rpc file contains user-readable names that can be used in place of rpc program
numbers. Each line of the file contains the following fields:

Name of Server for the RPG Program RPG Program Number Aliases

These fields are defined as follows:

Name of Server for the RPG Program
This field lists the name of the server daemon that provides the RPC
program.

RPG Program Number
The number assigned to the program by the RPC protocol.

Aliases This is a list of alternate names by which the service might be requested.

The fields are separated by any number of blanks or tab characters. A# (pound sign)
indicates the beginning of a comment. Characters up to the end of the commented line are
not interpreted by routines which search the file.

Here is an example of an /etc/rpc file:

portmapper
rstatd
rusersd
nf s
ypserv
mountd

100000
100001
100002
100003
100004
100005

portmap sunrpc
rstat rup perfmeter
rusers
nfs·prog
ypprog
mount showmount

Implementation Specifics
This file is part of NFS in Network Support Facilities in Base Operating System Runtime.

1-140 AIX Files Reference

NFS ·xtab

NFS xtab File

Purpose
Contains entries for directories that are currently exported.

Description
The /etc/xtab file contains entries for directories that are currently exported. This file should
only be accessed by programs using the getexportent subroutine. To remove entries from
this file, use the -u option of the exportfs command.

Implementation Specifics

Files

This file is part of NFS in Network Support Facilities in Base Operating System Runtime.

/etc/exports

/etc/hosts

/etc/netgroup

Lists the directories that the server can export.

Contains an entry for each host on the network.

Contains information about each user group on the network.

Related Information
The exportfs command.

How to Export a Directory Using NFS in Communication Concepts and Procedures.

Chapter 1 . AIX System Files 1-141

NIS ethers

NIS ethers File

Purpose
Contains the Ethernet addresses of hosts on the Internet network.

Description
The /etc/ethers file contains information regarding the known (48-bit) Ethernet addresses of
hosts on the Internet. The file contains an entry for each host. Each entry consists of the
following information:

• Ethernet address

• Official host name

Items are separated by any number of blanks and/or tab characters. A# (pound sign)
indicates the beginning of a comment that extends to the end of the line.

The standard form for Ethernet addresses is x: x: x: x: x: x: where x is a hexadecimal
number between O and ff, representing one byte. The address bytes are always in network
order. Host names may contain any printable character other than a space, tab, newline, or
comment character. It is intended that host names in the /etc/ethers file correspond to the
host names in the /etc/hosts file.

Implementation Specifics
This file is part of NFS in Network Support Facilities in Base Operating System Runtime.

Related Information
The /etc/hosts file.

1-142 AIX Files Reference

NIS netgroup

NIS netgroup File

Purpose
Lists the groups of users on the network.

Description

Example

The /etc/netgroup file defines network-wide groups. This file is used for checking
permissions when doing remote mounts, remote logins, and remote shells. For remote
mounts, the information in the netgroup file is used to classify machines. For remote logins
and remote shells, the file is used to classify users. Each line of the netgroup file defines a
group and is formatted as follows:

Groupname Member1 Member2 ...

where Member is either another group name, or consists of three entries as follows:

hostname, username, domainname

Any of these three fields can be empty, in which case it signifies a wild card. Thus universal (
, ,) defines a group to which everyone belongs.

Field names that begin with something other than a letter, digit or underscore (such as -)
work in precisely the opposite fashion. For example, consider the following entries:

justmachines
justpeople

(analytica,-,ibm)
(-,babbage,ibm)

The machine analytica belongs to the group justmachines in the domain ibm, but no
users belong to it. Similarly, the user babbage belongs to the group justpeople in the
domain ibm, but no machines belong to it.

A gateway machine should be listed under all possible host-names by which it may be
recognized: wan (gateway, ,) (gateway-ebb , ,)

The domainname field refers to the domain n in which the triple is valid, not the name
containing the trusted host.

The following is an excerpt from a netgroup file:

machines
people

(venus, -, star)
(-, bob, star)

In this example, the machine named venus belongs to the group machines in the star
domain. Similarly, the user bob belongs to the group people in the star domain.

Implementation Specifics
This file is part of NFS in Network Support Facilities in Base Operating System Runtime.

Related Information
The makedbm command.

The ypserv daemon.

How to Mount a File System Using NFS and Maintaining an NFS Client in Communication
Concepts and Procedures.

Chapter 1. AIX System Files 1-143

NIS netmasks

NIS netmasks File

Purpose
Contains network masks used to implement Internet Protocol (IP) standard subnetting.

Description
The /etc/netmasks file contains network masks used to implement IP standard subnetting.
This file contains a line for each network that is subnetted. Each line consists of the network
number, any number of spaces or tabs, and the network mask to use on that network.
Network numbers and masks may be specified in the conventional IP'.' (dot) notation
(similar to IP host addresses, but with zeroes for the host part). The following number is a
line from a netmask file:

128.32.0.0 255.255.255.0

This number specifies that the Class B network 12 8 • 3 2 • o • o has 8 bits of subnet field and
eight bits of host field, in addition to the standard 16 bits in the network field. When running
network information service, this file on the master is used for the netmasks.byaddr map.

Implementation Specifics
This file is not supported by AIX. However, if this file resides on your system, NIS will create
a map for it.

1-144 AIX Files Reference

NIS publickey File

Purpose
Contains public or secret keys for NIS maps.

Description

NIS publickey

The /etc/publickey file is the public key file used for secure networking. Each entry in the
file consists of a network user name (which may either refer to a user or a host name),
followed by the user's public key (in hex notation), a colon, and then the user's secret key
encrypted with its login password (also in hex notation).

This file is altered either by the user through the chkey command or by the person who
administers the system through the newkey command. The /etc/publickey file should only
contain data on the NIS master server, where it is converted into the publickey.byname NIS
map.

Implementation Specifics
This file is part of NFS in Network Support Facilities in Base Operating System Runtime.

Related Information
The chkey command, keylogin command, newkey command.

The keyserv daemon, ypupdated daemon.

How to Use the NFS S.ecure Option When Exporting a Directory and How to Use the NFS
Secure Option When Mounting a File System in Communication Concepts and Procedures.

Chapter 1. AIX System Files 1-145

NIS updaters

NIS updaters File

Purpose
A makefile for updating NIS maps.

Description
The /etc/yp/updaters file is a makefile used for updating NIS maps. NIS maps can only be
updated in a secure network; that is, one that has a publickey file. Each entry in the file is a
make target for a particular NIS map. For example, if there is an NIS map named
pas swd. byname that can be updated, there should be a make target named
pas swd. byname in the update rs file with the command to update the file.

The information necessary to make the update is passed to the update command through
standard input. The information passed is described below (all items are followed by a
newline except for actual bytes of key and actual bytes of data.)

• Network name of client wishing to make the update (a string)
• Kind of update (an integer)
• Number of bytes in key (an integer)
• Actual bytes of key
• Number of bytes in data (an integer)
• Actual bytes of data.

After getting this information through standard input, the command to update the map
decides whether the user is allowed to make the change. If the user is not allowed, the
command exits with the YPERR_ACCESS status. If the user is allowed to make the change,
the command should make the change and exit with a status of zero. If there are any errors
that may prevent the updaters file from making the change, it should exit with the status that
matches a valid NIS error code described in the <rpcsvc/ypclnt.h> file.

Implementation Specifics
This file is part of NFS in Network Support Facilities in Base Operating System Runtime.

Related Information
The update command.

The ypupdated daemon.

Administering Secure NFS in Communication Concepts and Procedures.

Network Information Service (NIS) Overview for System Management in Communication
Concepts and Procedures.

1-146 AIX Files Reference

SNMP smpl.pwinput

SNMP smpl.pwinput File

Purpose
Provides sample input to the mksnmppw command.

Description

Attributes

The smpl.pwinput file is a sample input file to the mksnmppw command, which creates the
/etc/snmpd.pw file. The snmp.pw file may be changed while the snmpd daemon is
running. The changes will take effect immediately.

This file contains records in the following format:

Community IP_address Address_mask XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

where:

Community

lp_address

Is a 1-to-8 character community name.

Is an IP address in the dotted decimal format.

Address_mask Is a mask in dotted decimal format.

xx. .. xx Is a 32-character sequence of attributes. An attribute is enabled by the
character s, and is disabled by the character-.

Each SNMP request submitted to the SNMP daemon contains the IP address of the
originator and a community name. The records from the /etc/snmpd.pw file are checked
until the first record is found whose IP address and community name match those of the
request. The request is assigned the attributes enabled in the 32-character attribute array.
The address mask determines which part of the IP addresses are compared.

The 32-character attribute array is used as follows (characters are numbered left to right):

Character 1 : s Enables tracing.

Character 2: s Enables reply tracing, if character 1 is s.

Character 3: s Enables request tracing, if character 1 is s.

Characters 4 through 30
Unused. They must be-, except for the special entry (snmpdprivate) as
illustrated below.

Character 31: s Enables set request processing.

Character 32: s Enables request processing.

Character 32: - Rejects all requests from the IP address, under the given community
name.

Chapter 1. AIX System Files 1-147

SNMP smpl.pwinput

Special Entry

Examples

The /etc/snmpd.pw file allows one special entry:

snmpdprivate o.o.o.o 255.255.255.255
-xx--------------

where:

Character 4: s Enables tracing of all external changes, such as MIB traps.

Character 5: s Enables tracing of internal errors.

Other character positions must be -.

All tracing attributes may be changed while the SNMP daemon is running by modifying the
snmp.pwinput file and running the mksnmppw command. For each request processed,
the /etc/snmpd.pw file is checked to see if it has changed. At this time, the new trace
attributes will be processed.

Note: The snmp.pwinput file should not be generally accessible since it is not encrypted
and contains information for authentication. It is recommended that read permission
be granted only to members of the system group.

1. Example of entries in the smpl.pwinput file:

monitor 128.0.0.4 255.255.255.255
s-s---------------------------ss

monitor 129.1.2.5 255.255.255.0
ss-----------------------------s

monitor 127.0.0.1 255.255.255.255
ss----------------------------s-

In this example, the first entry will have tracing enabled and will generate trace
information for all replies sent to IP address 128. o. o. 4. The agent will also process
SET requests sent to it from this address if the community name specified for this
address is monitor.

The second entry will have tracing enabled and will trace information for all requests from
all IP addresses that start with 129 .1. 2., as indicated by the mask. GET and
GET-NEXT requests from network 129 .1. 2 will be accepted, but SET requests will not.

The third entry causes all requests from host 12 7. o. o. 1 to be ignored because
character 32 is not -.

2. In the following example, all requests under community name monitor will be accepted
regardless of the IP address.

monitor o.o.o.o o.o.o.o
sss----------------------------s

3. Example of a special entry in the smpl.pwinput file:

snmpdprivate o.o.o.o 255.255.255.255
---ss---------------------------

1-148 AIX Files Reference

SNMP smpl.pwinput

Implementation Specifics
This file is part of Simple Network Management Protocol Agent Applications in Network
Support Facilities in AIX Base Operating System (BOS) Runtime.

Related Information
The mksnmppw command.

The snmpd command.

Understanding the Simple Network Management Protocol (SNMP), Understanding the
SNMP Daemon in Communications Programming Concepts.

Chapter 1. AIX System Files 1-149

SNMPsnmptrap.dest

SNMP snmptrap.dest File

Purpose
Lists the hosts and community names that are to receive trap messages.

Description
The /etc/snmptrap.dest file is required if SNMP trap messages are to be sent. The SNMP
daemon will run if the /etc/snmptrap.dest file does not exist, and trap events will be logged
if tracing is enabled, but trap messages will not be transmitted.

The /etc/snmptrap.dest file contains a record for each host that receives trap data. The
record has the format indicated by the following examples:

HOST PROTOCOL COMMUNITY FLAGS
hostl udp monitor
host2 udp test fcwud

The first field is the host name to which the trap message should be sent. The second field is
the protocol. Only UDP is currently supported; TCP is accepted but ignored. The third field is
the community name to use in the message. The last field specifies which trap types the
corresponding hosts wish to receive. The flags are specified as single characters:

a

c

d

e

f

n

u

w

authentication Failure trap

coldStart trap

linkDown trap

enterpriseSpecific (unsupported, but may be specified)

force coldStart after linkUp

egpNeighborLoss trap

linkUp trap

warmStart trap.

If no flags are specified, 11acdenuw" is assumed.

Lines that begin with # are treated as comments.

In the example above, hostl receives all traps except the forced coldStart trap
accompanying a linkUp trap. A forced coldStart trap will be sent to host2, but the
authenticationFailure and egpNeighborloss traps will not be sent. The forced coldStart trap
may be used to force a host to reset the time intervals for its statistical calculations, in case it
does not do so in response to the linkUp trap. A linkUp trap may indicate that MIB variable
values associated with the interface have been reset.

Since the /etc/snmptrap.dest file contains community names in an unencrypted format,
read permission should be granted only to users with root user privileges and to members of
the system group.

1-150 AIX Flies Reference

SNMP snmptrap.dest

Implementation Specifics
This file is part of Simple Network Management Protocol Agent Applications in Network
Support Facilities in AIX Base Operating System (BOS) Runtime.

Related Information
The snmpd command.

Understanding the Simple Network Management Protocol (SNMP), Understanding the
SNMP Daemon in Communications Programming Concepts.

Chapter 1. AIX System Files 1-151

TCP/IP rc.tcpip

TCP/IP rc.tcpip File

Purpose
Initializes daemons at each system restart.

Description

Examples

The /etc/rc.tcpip file is a shell script that, when executed, uses SAC commands to initialize
selected daemons. The rc.tcpip shell script is automatically executed with each system
restart. It can also be executed at any time from the command line.

Most of the daemons that can be initialized by the rc.tcpip file are specific to TCP/IP. These
daemons are:

• inetd (started by default)

• gated

• routed

• named

• timed

• rwhod

Note: Running the gated and routed daemons at the same time on a host may cause
unpredictable results.

There are also daemons specific to the base operating system or to other applications that
can be started through the rc.tcpip file. These daemons are:

• lpd

• portmap

• sendmail

• syslogd

The syslogd daemon is started by default.

1. The following stanza starts the syslogd daemon.

#Start up syslog daemon (for error and event logging)
if [-f /etc/syslogd]; then
startsrc -f syslogd

2. The following stanza starts the routed daemon, but not the gated daemon.

#Start up routing daemons (only start one)
if [-f /etc/routed]; then

startsrc -s routed -a "-q"
#f i
#ip [-f /etc/gated); then
startsrc -s gated
#f i

1-152 AIX Files Reference

TCP/IP rc.tcpip

Implementation Specifics
This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

Related Information
The startsrc command, stopsrc command.

The inetd daemon, gated daemon, lpd daemon, named daemon, portmap daemon,
routed daemon, rwhod daemon, sendmail daemon, syslogd daemon, timed daemon.

Chapter 1. AIX System Files 1-153

1-154 AIX Files Reference

Chapter 2. File Formats

Chapter 2. File Formats 2-1

File Formats Overview
Certain files in the AIX operating system are required to have a specific format. The formats
of the files that are provided with the operating system are discussed in the documentation
for those files. If a file is generated by either the system or a user rather than provided on the
distribution medium, it is discussed as a file format in this documentation. File formats often
are also associated with header files that contain C-language definitions and structures for
the files.

More information about the following file formats is provided in this documentation:

acct Describes the format of the records in the system accounting files.

a.out Describes the structure of the standard a.out file and its associated header
files.

ar Describes the format of an archive file.

audit Describes values used by the auditing system as well as the structure of a
bin.

core Describes the structures created in a core file as a result of a core dump.

cpio Describes the cpio (copy in/out) archive file

EM78 Customization
Specifies the keyboard layout, screen colors, and field attribute modes to be
used in 3278/79 Terminal Emulation.

MH Alias Defines aliases for the Message Handler (MH).

nterm Describes the format of the terminal driver tables for the nroff command.

PC Simulator Startup

profile

sccsfile

troff

troff Font

Specifies options when starting PC Simulator.

Describes the format of the profile and .profile files, which set the user
environment at login time.

Describes the format of a Source Code Control System (SCCS) file.

Describes the output language of the troff command.

Describes the format of the troff command font files.

utmp, wtmp, failedlogin

ATE File Formats

Describes the format of the user and accounting information in the utmp,
wtmp, and failedlogin files.

ate.def Determines default settings for use in asynchronous connections and file
transfers.

ATE Dialing Directory

BNU File Formats
Devices

Dialcodes

2-2 AIX Files Reference

Lists phone numbers that the ATE program uses to establish modem
connections.

Contains information about devices on the local system that can establish a
connection to a remote computer using the Basic Networking Utilities (BNU)
program.

Contains the initial digits of telephone numbers used to establish remote
connections over a phone line.

Dialers Lists modems used for Basic Networking Utilities (BNU) remote
communications links.

Maxuuscheds Limits the number of instances of the uusched and uucico daemons that
can run simultaneously.

Maxuuxqts Limits the number of instances of the BNU uuxqt daemon that can run
simultaneously on the local system.

Permissions Specifies BNU permissions for remote systems that call or are called by the
local system.

Poll Specifies when the BNU program should poll remote systems.

Systems Lists remote computers with which users of the local system can
communicate using the Basic Networking Utilities (BNU) program.

HCON File Formats
e789_ctbl.p

e789_ktbl.p

func_names

keynames

nls_names

tip File Formats
phones

remote

.tiprc

Source for the default binary color definition table

Source for the default binary keyboard definition table

Keyboard function names

Key names

Color and attribute names.

Describes connections used by the tip command to contact remote
systems.

Describes remote systems contacted by the tip command.

Provides initial settings of variables for the tip command.

TCP/IP System Management File Formats
.3270keys Defines a user keyboard mapping and colors for TELNET (3270).

Domain Cache Defines the root name server or servers for a DOMAIN name server host.

Domain Data file format
Stores name resolution information for the named daemon.

Domain Local Data
Defines the local loopback information for named on the name server host.

Domain Reverse Data

ftp users

gated.conf

gateways

hosts

hosts.equiv

hosts.lpd

inetd.conf

named.boot

• netrc

Stores reverse name resolution information for the named daemon.

Specifies local user names that cannot be used by remote FTP clients.

Contains configuration information for the gated daemon.

Specifies Internet routing information to the routed and gated daemons on
a network.

Defines the Internet Protocol (IP) name and address of the local host and
specifies the names and addresses of remote hosts.

Specifies remote systems that can execute commands on the local system.

Specifies remote hosts that can print on the local host.

Defines how the inetd daemon handles Internet service requests.

Defines how named initializes the DOMAIN name server file.

Specifies automatic login information for the ftp and rexec commands .

Chapter 2. File Formats 2-3

networks

protocols

re.net

resolv.conf

. rhosts

Contains the network name file.

Defines the Internet protocols used on the local host;

Defines host configuration for the following areas: network interfaces, host
name, default gateway, and any static routes.

Defines DOMAIN name server information for local resolver routines .

Specifies remote users that can use a local user account on a network.

services Defines the sockets and protocols used for Internet services.

Standard Resource Record Format
Defines the format of lines in the DOMAIN data files.

Related Information
The Header Files Overview, which describes header files in general and lists header files
discussed in this documentation.

The Special Files Overview, which defines and describes special files in general and lists
special files discussed in this documentation.

2-4 AIX Files Reference

acct

acct File Format

Purpose
Provides the accounting file format for each process.

Description
The accounting files provide a means to monitor the use of the system. These files also
serve as a method for billing each process for processor usage, materials, and services. The
acct system call produces accounting files. The acct.h file defines the records in these files,
which are written when a process exits.

acct Structure
The acct structure in the acct.h header file contains the following fields:

ac_flag

ac_stat

ac_uid

ac_gid

ac_tty

ac_btime

ac_utime

ac_stime

ac_etime

ac_mem

ac_io

ac_rw

ac_comm

An accounting flag for the process for which the accounting record is
written:

AF ORK

ASU

The process was created using a fork command but an
exec subroutine has not yet followed. The exec subroutine
turns off the AFORK flag.

The process used root user authority.

Exit status. A flag that indicates how the process terminated.

The user ID of the process for which the accounting record is written.

The group ID of the process for which the accounting record is written.

The terminal from which the process was started.

Beginning time. The time at which the process started.

The amount of user time (in clock ticks) used by the process.

The amount of system time (in clock ticks) used by the process.

The amount of time (in clock ticks) elapsed since the command ran.

The average amount of memory used by the process. For each clock tick,
the system updates this field with the current process size and charges
usage time to the process. This is computed as (data size plus text size)
divided by the number of in-memory processes using text.

The number of characters transferred by the process.

The number of blocks read or written by the process.

The name of the command that started the process. A child process created
by a fork subroutine receives this information from the parent process. An
exec subroutine resets this field.

Chapter 2. File Formats 2-5

acct

tacct Structure
The tacct structure, which is not part of the acct.h header file, represents the total
accounting format used by the various accounting commands:

struct tacct {

*/

mins */

*/

} ;

uid_t ta_uid;
char ta_name[8];
float ta_cpu (2];

float ta_kcore(2];
float ta_io (2] ;
float ta_rw[2];
float ta_ con (2];

float ta_du;
long ta_qsys;

float ta_fee;
long ta_pc;
unsigned short ta_sc;
unsigned short ta_dc;

/* user-ID */
/* login name */
/* cum. CPU time, p/np (mins)

/* cum. kcore-mins, p/np */
/* cum. chars xferred (512s) */
/* cum. blocks read/written */

/* cum. connect time, p/np,

/* cum. disk usage */
/* queuing sys charges (pgs)

/* fee for special services */
/* count of processes */

/* count of login sessions */
/* count of disk samples */

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/usr/include/sys/acct.h The path to the acct.h header file.

Related Information
The acct subroutine, fork subroutine, exec subroutine.

The utmp.h file.

The acct/* command, acctcms command, acctcom command, acctcon command,
acctdisk command, acctmerg command, acctprc command, runacct command.

2-6 AIX Files Reference

a.out File Format

Purpose
Provides common assembler and link editor output.

Description

a.out

The as (assembler), compilers, and Id (link editor) programs produce an output file (the
a.out file by default) in the following format. The a.out file, which is runnable if no
unresolved external references or errors are found in the source, can contain the following
sections:

• A file header

• An auxiliary header

• Section headers for each of the file's raw data sections

• Raw data sections

• Relocation information for each raw data section

• Line number information for each raw data section

• Special data sections

• A symbol table section

• A string table (if long symbols are used).

Not every a.out file contains every section. In particular, the line number, symbol table, and
string table sections are omitted if the program was linked with the -s flag of the Id
command or if these sections were removed by the strip command.

Additionally, a loader section is required in order to load dynamically an a.out file into
memory for operation. Loading an a.out file fnto memory creates three logical segments: the
text segment, the data segment (initialized data followed by data that is initialized to all
zeros), and a stack segment. The figure on the following page shows the format of an a.out
file.

The a.out.h header file defines the structure of the standard a.out file. The a.out.h header
file includes the following header files as object file components:

• /usr/include/xcoff.h

• /usr/include/filehdr.h

• /usr/include/aouthdr.h

• /usr/include/scnhdr.h

• /usr/include/loader.h

• /usr/include/typchk.h

• /usr/include/exceptab.h

• /usr/include/dbug.h

• /usr/include/reloc.h

• /usr/include/linenum.h

Chapter 2. File Formats 2-7

a.out

• /usr/include/syms.h

• /usr/include/storclass.h

• /usr/include/dbxstclass.h.

Composite Header

File header (fixed part)
Optional auxilliary header (extension)
Section headers:

.text, .data, .bss, .pad

.loader

.debug, .typchk, .except

Sections

Raw Data

Executables and alignment padding: .text, .data, .pad sections
Loader section: .loader Import file IDs

Import and export symbols
Loader and export symbols

Symbolic debugger (stab) section
Linkage editor (type check) section
Traceback (exception) section

Relocation Data

Linkage editor relocation data for .text and .data sections

Line Number Data

Symbolic debugger (dbx) line number data for .text and .data sections

Symbol Table

Master symbol table for linkage editor and symbolic debugger symbols
Contains .file, external, and local symbol definitions

String Table

String table for long symbol names

Figure 2-1 . a.out File Format

Access Routines for the a.out File
To ease program access to the XCOFF file sections, use the access routines in the libld
library. This library contains routines to open, close, and access sections of an XCOFF file.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

2-8 AIX Files Reference

a.out

File Header Section of the a.out File
f_magic

f_nscns

f_timdat

f_symptr

f_nsyms

f_opthdr

f_flags

Magic number. Target machine and environment on which the object file is
executable. The value equals Ox01 DF (0737).

Targets are defined in the filehdr.h header file as well as in standard COFF
definitions.

The number of section headers (and sections) contained in the file. The first
section is section number one.

The time and date stamp that indicates when the file was created (number
of elapsed seconds since 00:00:00 GMT, January1, 1970).

A file pointer (offset from the beginning of the file) to the start of the symbol
table.

The number of entries in the symbol table. Each entry is 18 bytes in length.

The size (in bytes) of the optional auxiliary header.

Flags that describe the type of object file:

F _RELFLG Ox0001

F_EXEC Ox0002

F_LNNO Ox0004

F _LSYMS Ox0008

F _MINMAL Ox0010

F_UPDATE Ox0020

F_SWABD Ox0040

F_AR16WR Ox0080

F_AR32WR Ox0100

F_AR32W Ox0200

F_PATCH Ox0400

F_DYNLOAD Ox1000

F_SHROBJ Ox2000

The relocation information is stripped from the
file.
This flag is not set if the relocation information
is not required.

The file is executable; there are no unresolved
external references.

The line numbers are stripped from the file.

The local symbols are stripped from the file.

Reserved.

Reserved.

Reserved.

The byte ordering of a 16-bit reversed
(Personal Computer AT) architecture.
The byte ordering of a 32-bit reversed (PS/2)
architecture.

The byte ordering of a 32-bit word (RISC
System/6000) architecture.
Reserved.

The file ID is dynamically loadable and
executable.
The external references are resolved by way
of imports and might contain exports and
loader relocation.

The file ID is a shared object (shared library).
The file is separately loadable, it is not
normally bound with other objects, and loader
symbols are used as automatic exports
symbols.

Chapter 2. File Formats 2-9

a.out

Optional Auxiliary Header for the a.out File
The optional header contains system-dependent information. By convention, the first 28
bytes of this section contain standard a.out header information. In this use, the
system-dependent information follows the standard information and serves to minimize how
much of the file must be processed by the system loader when it performs a relocating load
operation. The link editor always produces an optional header; however, this is not required
of the compilers and assemblers. The aouthdr.h file, which defines the optional header,
contains the following fields:

o_mflag (magic) Indicates to the operating system how the file should be executed.
A value of Ox01 OB in this field indicates that the text and the data are
aligned in the file and can be paged.

o_vstamp (vstamp) The format version identifier for this option header. The value
Ox0001 is the current value assigned.

o_tsize (tsize) The size (in bytes) of the .text raw data section. This field typically
contains the read-only executable instructions of the program. Some
implementations require the .text to be padded to a fullword in length.

o_dsize (dsize) The size (in bytes) of the .data raw data section. This field contains
the initialized data of the program and is classified as read or write. Some
implementations require the .data to be padded to a fullword in length.

o_bsize (bsize) The size (in bytes) of the .bss data, which defines the length of
uninitialized data of the program and is classified as read or write.

o_entry (entry) The entry point function descriptor address as assigned by the
linkage editor. The function descriptor contains the address of both the entry
point and the TOC for the object file.

o_text_start (text_start) Base address of .text raw data. This represents the linkage
editor origin address value assigned (used) for the first byte of the .text raw
data. This is the same value as contained in the s_ vaddr field of the section
header for the .text section.

o_data_start (data_start) Base address of .data raw data. This represents the linkage
editor origin address value assigned (used) for the first byte of the .data raw
data. This is the same value as contained in the s_vaddr field of the section
header for the .data section.

The uninitialized data (.bss) is considered to be contiguous to the .data.

The following set of definitions are the extensions for AIX Version 3:

o_toc

o_snentry

o_sntext

o_sndata

o_sntoc

o_snloader

o_snbss

o_algntext

2-10 AIX Files Reference

The TOC address as assigned by the linkage editor. This field is not used by
the AIX Version 3 loader. It is determined from the entry point descriptor.

The number of the file section that contains the entry point descriptor.

The number of the file section that contains the text.

The number of the file section that contains the data.

The number of the file section that contains the TOC.

The number of the file section that contains the dynamic loader information.

The number of the file section that contains the .bss data.

Log 2 of the max alignment relocation factor for the .text section.

o_algndata

o_modtype

o_resv1

o_maxstack

o_resv2

a.out

Log 2 of the max alignment relocation factor for the .data section.

Module type field. One of the following 2-byte ASCII character strings:

1 L Single use. The module requires distinct copies of the data section
for each load.

RE Reusable. The module requires a private copy of the data area for
each process that is dependent on the module.

RO Read-only. The module is read-only and can be used by multiple
processes at the same time.

Reserved.

The maximum stack size allowed for this object. If this field is zero, then the
system default maximum stack size is used.

Reserved.

Section Headers for the a.out File
Each raw data section of the XCOFF file has a corresponding section header. The size and
format is that of a standard GOFF file. The scnhdr.h file, which defines the section headers,
contains the following fields:

s_name

s_paddr

s_vaddr

s_size

s_scnptr

s_relptr

s_lnnoptr

s_nreloc

s_nlnno

s_flags

An a-character, null-padded section name.

The physical address of the section. This is the address used by the
compiler or the linkage editor to represent the address of the first byte in the
section.

The virtual address of the section. This value is the same as the s_paddr
field.

The size (in bytes) of the raw data.

A file pointer to the raw data for the section. The file pointer is relative to the
first byte of the file header.

A file pointer to the relocation entries for the section. The file pointer is
relative to the first byte of the file header.

A file pointer to the line number entries for the section. The file pointer is
relative to the first byte of the file header.

The number of relocation entries for the section.

The number of line number entries for the section.

The COFF flags that define the section type. The low-order pair of bytes
are used. Valid AIX GOFF bit values are:

OxOOOO STYP_REG Regular section.

Ox0001 STYP_DSECT Reserved.

Ox0002 STYP_NOLOAD Reserved.

Ox0004 STYP_GROUP Reserved.

Ox0008 STYP_PAD Pad section.

Ox0010 STYP_COPY Reserved.

Ox0020 STYP_TEXT Executable text (code).

Chapter 2. File Formats 2-11

a.out

Ox0040 STYP_DATA Initialized data or TOC.

oxooao STYP_BSS Uninitialized data.

Ox0100 STYP_EXCEPT Exception section (for exception reason
decode).

Ox0200 STYP_INFO Reserved.

Ox0400 STYP_OVER Reserved.

Ox0800 STYP _LIB Reserved.

Ox1000 STYP _LOADER Loader section (imports, exports,
relocation).

Ox2000 STYP_DEBUG Debug section (symbolic debugger stab
string section).

Ox4000 STYP _TYPCHK Type check section (parameter type check
string section).

Ox8000 STYP_OVRFLO Relocation or line number field overflow
section.

Programming Usage Notes

• Use the s_flags field instead of the s_name field to determine a section type.

• The following conventions are used if there are more than 65,534 relocation or line
number entries in a section.

• A section header that has its s_flags field set to STYP _TEXT or STYP _DATA puts the
value of OxFFFF in both the s_nreloc and s_nlnno fields to indicate that an auxiliary
section header contains the relocation and line number count information in the
s_paddr and s_vaddr fields, respectively.

• A section header that has its s_flags field set to STYP _OVRFLO is regarded as an
auxiliary section header to be used in conjunction with another primary section header.
The auxiliary section header is used to handle a section that requires more than 65,534
relocation entries or line number entries. The following fields take on special meanings
in an auxiliary section header:

s_paddr

s_vaddr

s_nreloc

s_nlnno

The number of relocation entries actually required by the primary section.
This field is used as a replacement for the s_nreloc field.

The number of line number entries actually required by the primary
section. This field is used as a replacement for the s_nlnno field.

The file section number of the primary section header.

The file section number of the primary section header.

The s_size and s_scnptr fields are not used in an auxiliary section header; the s_name,
s_relptr, s_lnnoptr, and s_flags fields have the same meanings as in a primary section
header.

Raw Data Sections for the a.out File
The data sections of an XCOFF file follow the composite header portion of the file. A data
section has three independent parts:

• A raw data part

• An optional relocation data part

• An optional line number table part.

2-12 AIX Files Reference

a.out

Each section header provides the file position information for its associated section.

An XCOFF file has the following sections defined:

• The .text, .data, and .bss sections contain the executable object code. The relocation
parts associated with the .text and .data sections contain the full linkage editor relocation
information so it can be used for replacement link editing. Only the .text section contains a
line number part. The ·parts associated with the executable code are produced by the
compilers and assemblers.

• The .pad section is a null-filled raw data section that is used to align a subsequent section
in the file on some defined boundary such as a file block boundary or a system page
boundary.

• The .loader section contains the dynamic loader information in its raw data portion. This
section is generated by the linkage editor and has its own self-contained symbol table
and relocation table.

• The .debug section is defined to contain the stab (symbol table) or dictionary information
required by the symbolic debugger.

• The .typchk section is defined to contain parameter and argument type-checking strings.

• The .except section is defined to contain the exception tables used to identify the reasons
for an exception in program execution.

All of the information for the .loader, .debug, .typchk, and .except sections is contained in the
raw data part. There is no relocation part or line number part in these sections. The .debug,
.typchk, and .except sections are produced by compilers and assemblers. References to
items in these sections are made from the symbol table.

Relocation Information for the a.out File
For AIX Version 3, only the .text and .data sections have relocation requirements. The
linkage editor will generate any necessary relocation entries in the .loader section that will be
required by the system dynamic loader.

The reloc.h file, which defines the structure for a relocation data entry, contains the following
fields:

r_vaddr

r_symndx

r_type

The virtual address of the relocatable reference (adcon) in the raw data that
requires modification by the linkage editor.

A zero-based index into the symbol table of the referenced symbol.

Relocation type. The structures that define the types of relocation to be
performed on the relocation entry are as follows:

r_sign A 1-bit field that indicates whether the relocatable reference
is signed (1) or unsigned (0).
A 2-bit field that is reserved.

r_len A 5-bit field that contains the bit length minus 1 of the
relocatable reference.

Chapter 2. File Formats 2-13

a.out

r_rtype An 8-bit relocation type field that indicates to the linkage
editor which relocation algorithm to use for the relocatable
reference. The following relocation types are defined:

OxOO R_POS A(sym) Positive relocation.
Ox01 R_NEG -A(sym) Negative relocation.

Ox02 R_REL A(sym-*) Relative to self.

Ox03 R_TOC A(sym-TOC) Relative to TOC.

Ox12 R_TRL A(sym-TOC) TOC Relative indirect
load (modifiable L to LA).

Ox13 R_TRLA A(sym-TOC) TOC Relative load
address (modifiable LA to L).

Ox05 R_GL A(External TOC of sym) Global
linkage - external TOC address.

Ox06 R_TCL A(Local TOC of sym) Local object
TOC address.

OxOC R_RL A(sym) Positive indirect load
(modifiable L to LA).

OxOD R_RLA A(sym) Positive load address
(modifiable LA to L).

OxOF R_REF ALO(sym) Non-relocating reference to
prevent garbage collection of a
symbol.

Ox16 R_CAI A(sym) Call absolute indirect
(modifiable to call PC relative).

Ox17 R_CREL A(sym-*) Call PC relative modifiable
to call absolute indirect.

Ox08 R_BA A(sym) Branch absolute
(non-modifiable).

Ox18 R_RBA A(sym) Branch absolute (modifiable
BA sym to BA fixed address).

Ox19 R_RBAC A(sym) Branch absolute constant
(modifiable BA fixed address to BA
sym).

OxOA R_BR A(sym-*) Branch relative to self
(non-modifiable).

Ox1A R_RBR A(sym-*) Branch relative to self
(modifiable BR sym-* to BA fixed
address).

Ox1B R_RBRC A(sym) Branch absolute constant
(modifiable BA fixed address to BR
sym-*).

Ox04 R_RTB A((sym-*)/2) IAR relative branch
(non-modifiable).

Ox14 R_RRTBI
A((sym-*)/2) IAR relative branch
(modifiable BALI to BA).

Ox15 R_RRTBA
A(sym) Absolute branch (modifiable
BA to BALI).

2-14 AIX Files Reference

a.out

Implementation Specifics for the Relocation Information

Standard UNIX and AIX Version 2 practice is to retain relocation information only for
unresolved references or references between distinct sections; once a reference is resolved
(by link editing GOFF files together), the relocation information is discarded. This is sufficient
for an incremental bind and a fixed address space model. For the XCOFF file to provide
rebind and a relocatable address space model, the following changes are incorporated:

• The relocation types are extended to provide the rebind capability.

• Resolved relocation items (RLDs) are not discarded.

• The relocation information for the .text and .data sections is used by the linkage editor
and ignored by the loader.

• A special loader section is defined that contains any relocation data required by a
dynamic relocating system loader.

Line Number Information for the a.out File
Line number entries are used by the symbolic debugger to debug code at the source level.
When present, there is one line number entry for every source line that can have a
breakpoint. The line numbers are grouped by function; the first entry for each function is
l_lnno= 0, and the entry has a symbol table index of the function name in place of the
physical address.

The line{lum.h file, which defines the structure for line number entries, contains the
following fields:

l_symndx The symbol table index of the function name only if the value of the l_lnno
field is 0.

l_paddr The physical address of the line number if the value of the l_lnno field is not
0.

l_lnno The line number relative to the start of the function(zero).

Special Data Sections for the a.out File
The following special sections are defined for an XCOFF file:

• Loader Section

• Debug Section

• Typchk Section

• Exception Section.

Chapter 2. File Formats 2-15

a.out

Loader Section

The loader data is produced by the linkage editor and contains the information required by
the dynamic loader. All of the loader data is contained in the raw data portion of the .loader
section.The loader section consists of the following parts:

• Header fields

• External symbol table

• Relocation table

• Import file IDs

• String table.

The loader.h file defines the structure for the .loader section.

Loader Header Fields

I_ version

l_nsyms

l_nreloc

l_istlen

l_nimpid

l_impoff

l_stlen

The .loader section version number. This value is currently 1.

The number of symbol table entries in the .loader section.

The number of relocation table entries in the .loader section.

The length of the .loader import file ID name string table.

The number of import file IDs in the .loader import file ID name string table.

The offset from the beginning of the .loader section to the .loader import file
ID name string table. Points to the length field of the first file ID.

The length of the .loader string table.

l_stoff The offset from the beginning of the .loader section to the .loader string
table. This field points to the length field of the first entry in the string table.

Loader External Symbol Table Fields
The loader.h file also contains external symbol table fields. Each entry in the .loader
external symbol table is 24 bytes long. There are three implicit external symbols for the .text,
.data,and .bss sections. These are referenced by way of symbol table index values of 0
through 2, respectively. The first symbol contained in the .loader external symbol table is
referenced with an index value of 3. The external symbol table fields are as follows:

I_ name

I_ zeros

I_ offset

I_ value

l_scnum

The null-padded symbol name if it is 8 characters or less in length.

A value of O indicates that the symbol name is in the .loader string table.
This field overlays the l_name field.

The offset from the beginning of the .loader string table to the first character
of the symbol name (not the length field).This field overlays the second word
of the l_name field.

The address value assigned by the binder to the symbol.

The number of the section that contains the symbol.If it is defined, the
symbol will be in the .text, .data, or .bss sections. If the symbol is undefined,
the section number field will be a value of 0.

2-16 AIX Files Reference

l_smtype

l_smclas

l_ifile

l_parm

a.out

The symbol type, import flag, export flag, and entry flag.

1 Imported symbol.

2 Entry point descriptor symbol.

3 Exported symbol.

4 Reserved.

5-7 Symbol type as defined by the XTY _xx #define statements in the
syms.h header file.

The storage class of the symbol as defined by the XMC_xx #define
statements in the syms.h header file.

The import file ID; the ordinal value of the import file name in the .loader
import file ID name string table.

The parameter type check field; the offset from the beginning of the .loader
string table. This offset points to the first character of the parameter hash
field (not to its length field).

Loader Relocation Table Fields
The loader.h file also contains the following relocation table fields. Each entry in the .loader
relocation table is 12 bytes long. The structure for the first 1 o bytes of each relocation entry
is the same as 'the structure for a regular XCOFF relocation entry, which is defined in the
reloc.h header file.

l_vaddr

l_symndx

l_rtype

The virtual address of the relocatable reference.

The loader symbol table index (nth entry) of the symbol that is being
referenced. This field is zero-based where 0, 1, and 2 are implicit symbols
for the the .text, .data, and .bss·sections, respectively. Symbol index 3 is the
index for the first symbol actually contained in the .loader symbol table.

The relocation type (The value of this field is same as the r_type field in the
reloc.h header file.)

l_rsecnm The number of the .text, .data, or .bss section being relocated (associated
with l_vaddr field). This is a one-based index into the section header table.

Loader Import File ID Name String Fields
Each file ID string consists of a length field and a 3-part file name field consisting of the file
path, base name, and archive member name. Each part of the file name field is
null-delimited.The first import file ID is LIBPATH information to use in default search by the
exec subroutine. The LIBPATH information consists of file paths separated by colons. There
is no base name or archive member name, so the file path is followed by three null
delimiters.

l_impidpath The import file ID file path string, which is null-delimited.

l_impidbase The import file ID file base name string, which is null-delimited.

l_impidmem The import file ID archive file member name string,which is null-delimited.

Chapter 2. File Formats 2-17

a.out

Loader String Table Fields
The string table consists of the names of long symbols (greater than 8 characters in length)
and the parameter type checking strings.

l_parmstlen

l_parmst

Debug Section

The length of the string (parameter type-checking or long name) including
the null, if present.

The parameter type string (not null-delimited)or symbol name string (null
delimited).

The debug data is the dbx stabstrings (symbol table strings) and is produced by the
compilers and assemblers. This data is referenced from the symbol table. A stabstring is a
C-language character string that is null-terminated. Each string is preceded by a 2-byte field
that indicates the length of the string to facilitate deletion. The .debug section contains only a
raw data portion.

The following two fields are repeated for each dbx stabstring:

d_stabstlen

d_stabst

The length of the string.

The dbx stabstring.

Also refer to the discussion of dbx stabstring grammar.

Typchk Section

The type check data is the parameter type-checking hash strings that are produced by
compilers and assemblers. The type check data is referenced from the symbol table. The
.typchk section contains only a raw data portion.

The following two fields are repeated for each parameter type-checking string:

t_parmstlen The length of the string.

t_parmst The parameter type-checking hash string.

Type Encoding and Checking Format for Data
The type encoding and checking scheme provided facilitates detection of errors prior to
execution of a program. Information about all external symbols (data and programs) is
encoded and then checked for consistency at bind or load time. It is important to enforce the
maximum checking required by the semantics of each particular language supported by AIX,
yet still provide protection to applications written in more than one language.

The type encoding and checking mechanism features 4-part hash encoding that provides
some flexibility in checking. The mechanism also incorporates a unique value, called
UNIVERSAL, that matches any code. The UNIVERSAL hash can be used as an escape
mechanism for assembly programs or for programs where type information or subroutine
interfaces might not be known. The UNIVERSAL hash is 4 blank ASCII characters or a null
pointer into the hash section.

2-18 AIX Files Reference

a.out

The following 4 fields are associated with the type encoding and checking mechanism:

code length

language identifier

general hash

language hash

Exception Section

A 2-byte field containing the length of the hash. This field has a
value of 10.

A 2-byte predefined code representing each language. These codes
are the same as those defined for the TRACEBACK table defined
by the e_lang field.

A 4-byte field representing the most general form by which a data
symbol, or program, can be described. It is the greatest common
denominator among languages supported by AIX. If incomplete or if
no information is available, a universal hash should be generated.
The general hash is language-independent, and must match in
order for the binding to succeed.

A 4-byte field containing a more detailed, language-specific
representation of what is in the general hash. It allows for the
strictest type-checking desired by a given language. This part is
used in intra-language binding and is not checked unless both
symbols have the same language identifier.

The exception table contains trap instruction addresses, compiler language-identification
codes, and trap reason codes produced by compilers and assemblers. The exception table
is referenced from the symbol table. The .except section contains only a raw data portion.

The exception table has a similar organization as the line number table. Within the exception
table there is one group of exception table entries per function.

An exception table entry with a reason code value of zero contains the symbol table index to
the function (C_EXT or C_HIDEXT) symbol table entry. Reference from the symbol table to
an entry in the exception table is via the function auxiliary symbol table entry. The x_tagndx
field is a file pointer to the exception table for the function. This same auxiliary entry also has
a file pointer to the line number table.

The exceptab.h file, which defines the structure for exception table entries, contains the
following fields:

e_symndx The symbol table index of the function name, if e_reason is zero.

e_paddr The physical address of the trap instruction, if e_reason is not zero.

Chapter 2. File Formats 2-19

a.out

e_lang

e_reason

An 8-bit field that contains the compiler language identifier.

OxOO c
Ox01 Fortran

Ox02 Pascal

Ox03 Ada

Ox04 PL/I

Ox05 Basic

Ox06 Lisp

Ox07 Cobol

Ox08 Modula2

Ox09 C++

OxOA RPG

Ox OB PL8, PLIX

OxOC Assembly

The compiler-dependent trap-exception reason code. Zero is not a valid
trap-exception reason code.

Symbol Table for the a.out File
One composite symbol table is defined for the module. An XCOFF symbol table consists of
a COFF symbol table as a base and includes the extensions for XCOFF. The symbol table
contains information used by the linkage editor (external symbols) and by the symbolic
debugger (function definitions and internal and external symbols).

For each external symbol, one or more auxiliary entries are defined that provide additional
information about or for the external symbol.There are two major types of external symbols:
those that represent replaceable units (csects) and those that represent externally invoked
functions. For symbols that represent a replaceable unit (csect), an auxiliary entry contains
the length and storage mapping class. For symbols that represent external invoked
functions, an auxiliary entry contains references to: the csect in which they are contained,
the parameter type checking information for the function, and the symbolic debugger
information for the function.

The ordering of the symbol table must be arranged to accommodate both the symbolic
debugger requirements and to permit effective management by the linkage editor of the
different sections of the object file as a result of linkage edit actions such as garbage
collection or rebinding.

The symbol table consists of at least one fixed length entry per symbol with some symbols
followed by auxiliary entries of the same size.

There are .file symbol table entries used to bracket all the symbols of a source file. Any
symbolic debugger information of file scope immediately follows the .file entry before the first
csect entry. All symbolic debugger information between csect entries are associated with its
containing csect. This ordering is required by the linkage editor so that if a csect is deleted or
replaced, all symbolic debugger symbols associated with the csect can also be deleted or
replaced.

All symbols, regardless of storage class and type, have the same primary format for their
entries in the symbol table. Each entry in the symbol table is 18 bytes in length with the
index for the first symbol table entry being zero.

2-20 · AIX Files Reference

a.out

The syms.h file, which defines the structure for the symbol table primary and auxiliary
entries, contains the following fields:

n_name

n_zeroes

n_offset

n_value

n_scnum

n_type

n_sclass

n_numaux

The null-padded symbol name or symbolic debugger stab string if it is less
than 8 characters in length. The n_sclass field is used to determine if the
field is a symbol name or symbolic debugger stab string. By convention, an
n_sclass value with the high order bit on indicates that this field is a
symbolic debugger stab string.

A value of zero indicates that the symbol name is in the string table or
.debug section. This field overlays the n_name field.

The offset into the string table or .debug section of the symbol name. The
offset is relative to the start of the string table or .debug section. An offset
value of zero indicates a null or zero-length symbol name. This field
overlays the second word of the n_name field.

The symbol value. The symbol values are storage-class dependent.

The section number of the symbol.

The basic type and derived type. This is part of the original COFF definition
used by the sdb symbolic debugger.

The storage class of the symbol. The storclass.h and dbxstclass.h header
files contain the definitions for the storage classes.

The number of auxiliary entries for the symbol.

Symbol Table Storage Classes (n_sclass)

As defined for COFF plus the extensions for XCOFF, the n_sclass storage class field in the
symbol table is defined to have one of the following values.

C_EFCN -1 Physical end of form.
C_NULL 0 Null.
C_AUTO 1 Automatic variable.
C_EXT 2 External symbol.
C_STAT 3 Static.
C_REG 4 Register variable.
C EXTDEF 5 External definition.
C-LABEL 6 Label.
C-ULABEL 7 Undefined label.
C=MOS 8 Member of a structure.
C_ARG 9 Function argument.

C_STRTAG 10 Structure tag.
C_MOU 11 Member of a union.
C_UNTAG 12 Union tag.
C_TPDEF 13 Type definition.
C_USTATIC 14 Uninitialized static.
C_ENTAG 15 Enumeration tag.
C_MOE 16 Member of enumeration.
C_REGPARM 17 Register parameter.
C_FIELD 18 Bit field.

Chapter 2. File Formats 2-21

a.out

C_BLOCK
C_FCN
C_EOS
C_FILE
C_LINE
C_ALIAS
C_HIDDEN
C_HIDEXT
C_BINCL
C_EINCL

C_GSYM
C_LSYM
C_PSYM
C_RSYM
C_RPSYM
C_STSYM
C_BCOMM
C_ECOML
C_ECOMM

C_DECL
C_ENTRY
C_FUN
C_BSTAT
C_ESTAT

100
101
102
103
104
105
106
107
108
109

128
129
130
131
132
133
135
136
137

140
141
142
143
144

Beginning or end of block.
Beginning or end of function.
End of structure.
File name.
Used only by utility programs.
Duplicate tag.
Like static (used to avoid name conflicts).
Unnamed external symbol (used to avoid name conflicts).
Beginning of header file.
End of header file.

Global variable.
Automatic variable allocated on stack.
Argument to subroutine allocated on stack.
Register variable.
Argument to function or procedure stored in the register.
Statically allocated symbol.
Beginning of common block.
Local member of common block.
End of common block.

Declaration of object.
Alternate entry.
Function or procedure.
Beginning of static block.
End of static block.

Storage Classes by Usage and Symbol Value Classification

Symbol classes that are used and relocated by the Id command and symbol values are
addresses:

C_EXT

C_HIDEXT

External symbol.

Unnamed external symbol.

Symbol classes that are relocated by the Id command (symbol values are addresses):

C_BLOCK

C_FCN

C_HIDDEN

C_LABEL

C_STAT

Beginning or end of an inner block (.bb or .eb).

Beginning or end of a function (.bf or .ef only).

Unnamed symbol.

Label (contained in csect).

Static symbol (contained in statics csect).

Symbol classes that are used by the Id command and dbx for file scoping and accessing
purposes:

C_FILE

C_BINCL

C_EINCL

The source file name. The n_value field holds the symbol index of the next
file entry. The n_name field is the name of the file. For COFF compatibility, if
there is an auxiliary entry, then the name of the file is in the auxiliary entry.

The beginning of the header file. The n_value field is the line number offset
in the object file to first line number from the header file.

The end of the header file. The n_value field is the line number offset in the
object file to last line number from the header file.

2-22 AIX Files Reference

a.out

Symbol classes that exist only for dbx symbolic debugging purposes and are not relocated:

C_BCOMM

C_ECOML

C_ECOMM

C_BSTAT

C_ESTAT

C_DECL

The beginning of the common block. The value of this field is not important,
and the name is the name of the common block.

The local member of the common block. The value is offset within the
common block.

The end of the common block. The value of this field is not important.

The beginning of the static block. The value is the symbol table index of the
csect that contains the static symbols. The name is .bs.

The end of the static block. The value of this field is not important. The
name is .es.

The declaration of the object (type declarations). The value of this field is
undefined.

Storage Classes by Usage and Symbol Value Classification {continued)

C_ENTRY

C_FUN

C_GSYM

C_LSYM

C_PSYM

C_RSYM

C_RPSYM

C_STSYM

An alternate Fortran entry, which has a corresponding C_EXT symbol. The
value of this field is undefined.

A function or procedure. This field might have a corresponding C_EXT
symbol. The value of this field is offset within the csect in which it is
contained.

A global variable, which has a corresponding C_EXT symbol. The
value of this field is undefined.

An automatic variable allocated on the stack. The value of this field is offset
relative to the stack frame (platform-dependent).

An argument to a subroutine allocated on the stack. The value of this field is
offset relative to the stack frame (platform-dependent).

A register variable. The value of this field is the register number.

An argument to a function or procedure stored in a register. The value is this
field is the number of the register where the argument is stored.

A statically-allocated symbol. The value of this field is offset within the csect
that is pointed to by the C_BSTAT entry in which it is contained.

Symbol classes that belong to COFF, but that are ignored by the Id command and dbx.
These symbol classes are not relocated.

C_ARG

C_AUTO

C_REG

An argument to a function or procedure. This is replaced by C_PSYM.

An automatic variable allocated on the stack. This is replaced by C_LSYM.

A register variable. This is replaced by C_RSYM.

C_REGPARM A register argument to a function or procedure. This is replaced by
C_RPSYM.

COFF symbol storage classes that are superseded by the C_DECL storage class:

C_ENTAG

C_EOS

C_FIELD

C_MOE

C_MOS

The enumeration tag.

The end of the structure.

A field in the structure.

A member of the enumeration type.

A member of the structure.

Chapter 2. File Formats 2-23

a.out

C_MOU

C_STRTAG

C_TPDEF

C_UNTAG

A member of the union.

A structure tag.

A user-defined type declaration.

A union tag.

Also refer to the discussion of dbx stabstring grammar.

Symbol Values {n_value)

The definition of the n_value field of a symbol table is dependent on the storage class of the
symbol.

C_AUTO A stack offset.

C_EXT A relocatable address.

C_STAT A relocatable address.

C_REG A register number.

C_LABEL A relocatable address.

C_MOS An offset.

C_ARG A stack offset.

C_STRTAG Zero.

C_MOU An offset.

C_UNTAG Zero.

C_TPDEF Zero.

C;....ENTAG Zero.

C_MOE An enumeration value.

Symbol Values {n_value) {continued)

C_REGPARM

C_FIELD

C_BLOCK

C_FCN

C_EOS

C_FILE

C_ALIAS

C_HIDDEN

C_BINCL

C_EINCL

C_GSYM

C_LSYM

C_PSYM

C_RSYM

C_RPSYM

C_STSYM

A register number.

A bit displacement.

A relocatable address.

A relocatable address.

A size.

A symbol table index to the next C_FILE (minus one for the last file). This is
a one-way linked list in the symbol table.

A tag index.

A relocatable address.

An offset in the object file.

An offset in the object file.

Zero (undefined).

An offset.

An offset.

A register number.

A register number.

An offset.

2--24 AIX Files Reference

C_BCOMM

C_ECOML

C_ECOMM

C_DECL

C_ENTRY

C_FUN

C_BSTAT

C_ESTAT

Zero (undefined).

An offset.

Zero (undefined).

Zero (undefined).

Zero (undefined).

An offset.

A symbol table index to the csect containing static symbols.

Zero (undefined).

a.out

The value of a relocatable symbol is equal to the virtual address of that symbol. When a
section is relocated by the linkage editor, the values of these symbols change.

Section Numbers (n_scnum)

The definition of the n_scnum field of a symbol table is defined to have one of the following
values:

N_DEBUG

N_ABS

N_UNDEF

N_SCNUM

-2
-1

0

x

A special symbolic debugging symbol.

An absolute symbol. The symbol is not relocatable.

An undefined or uninitialized external symbol. The symbol is
undefined if the n_value field is zero.
A relocatable external symbol that is not defined in the
current file. The symbol is defined but uninitialized if the
n_value field is non-zero. Then_value field provides the size
of the symbol. The symbol is a relocatable external symbol.

All other values. The section number where the symbol was
defined.

Section Numbers and Storage Classes

Symbols of certain storage classes are defined· in the standard COFF to be restricted to
certain section numbers. These are as follows:

C_AUTO N_ABS.

C_EXT N_ABS, N_UNDEF, N_SCNUM.

C_STAT N_SCNUM.

C_REG N_ABS.

C_LABEL N_UNDEF, N_SCNUM.

C_MOS N_ABS.

C_ARG N_ABS.

C_STRTAG N_DEBUG.

C_MOU N_ABS.

C_UNTAG N_DEBUG.

C_TPDEF N_DEBUG.

C_ENTAG N_DEBUG.

C_MOE N_ABS.

C_REGPARM N_ABS.

C_FIELD N_ABS.

Chapter 2. File Formats 2-25

a.out

C_BLOCK N_SCNUM.

C_FCN N_SCNUM.

C_EOS N_ABS.

C_FILE N_DEBUG.

C_ALIAS N_DEBUG.

C_HIDEXT N_SCNUM.

C_BINCL N_DEBUG.

C_EINCL N_DEBUG.

C_GSYM N_DEBUG.

C_LSYM N_ABS.

C_PSYM N_ABS.

C_RSYM N_ABS.

C_RPSYM N_ABS.

C_STSYM N_ABS.

C_BCOMM N_DEBUG.

C_ECOML N_ABS.

C_ECOMM N_DEBUG.

C_DECL N_DEBUG.

C_ENTRY N_DEBUG.

C_FUN N_ABS.

·C_BSTAT N_DEBUG.

C_ESTAT N_DEBUG.

Symbol Table Implementation Specifics

For AIX Version 3, the symbolic debugger to be supported is dbx (although other debuggers
can be accommodated). Some items for symbolic debuggers that appeared in the COFF
symbol table of previous versions are now in the .debug section and are referenced from the
symbol table.

Also refer to the discussion of dbx stabstring grammar.

2-26 AIX Files Reference

a.out

Symbol Table Auxiliary Entry Formats for the a.out File
The symbol table contains auxiliary entries to provide supplemental information for a symbol.
The auxiliary entries for a symbol are adjacent to its symbol table entry. The size of each
auxiliary entry is the same as a symbol table entry (18 bytes in length). The quantity and
format of auxiliary entries depends on its type and storage class.

For XCOFF, the convention is that for external symbols that have more than one auxiliary
entry, the last auxiliary entry will be the .csect auxiliary entry.

The following list summarizes the selection of the various auxiliary entry formats.

n_name Storage Class Auxiliary entry format

.file C_FILE File name

.text C_STAT Section

.data C_STAT Section

.bss C_STAT Section
symbol C_EXT, C_HIDEXT Function, csect

Auxiliary entries that relate to the symbolic debugger and all entries that are defined for the
standard COFF are not included in this list.

Csect (External) Auxiliary Entry

The auxiliary entry to identify csects and entry points is one of the primary additions for the
COFF extended definition. There is one csect (external) auxiliary entry for each external
symbol. The convention is that the csect auxiliary entry will be the last auxiliary entry for a
symbol that has more than one auxiliary entry.

x_scnlen The meaning of this field is dependent on the x_symtype field, as follows:

If x_smtype is XTY _SD, then this is the csect length.

If x_smtype is XTY _LD, then this is the symbol table index of the containing
csect.

If x_smtype is XTY _CM, then this is the csect length.

If x_smtype is XTY _ER, then this contains zero.

x_parmhash An index to the parameter type-check hash in the .typchk section.

x_snhash The .typchk section number.

x_smalgn A 5-bit symbol (csect) alignment value (log 2).

x_smtype A 3-bit symbol type field:

XTY _ER O External reference.
XTY _SD 1 Csect section definition.
XTY _LD 2 Entry point (label definition).
XTY _CM 3 Common (.bss).
XTY _EM 4 Error message (linkage editor use).
XTY _US 5 Reserved for internal use.

Chapter 2. File Formats 2-27

a.out

x_smclas Storage mapping class used by the linkage editor for arranging csects.

XMC_PR 0 Read-only program code.
XMC_RO 1 Read-only constant.
XMC_DB 2 Read-only debug dictionary table.
XMC_GL 6 Read-only global linkage (Interfile interface code).
XMC_XO 7 Read-only extended operation (psuedo-machine

instruction).

XMC_SV 8 Read-only supervisor call.
XMC_TI 12 Read-only traceback index csect.
XMC_TB 13 Read-only traceback table csect.
XMC_RW 5 Read or write data.
XMC_TCO 15 Read or write TOC anchor for (TOC addressability).

XMC_TC 3 Read or write general TOC entry.
XMC_DS 10 Read or write descriptor csect.
XMC_UA 4 Unclassified (treated as read or write).
XMC_BS 9 BSS class (uninitialized static internal).
XMC_UC 11 Unnamed Fortran common.

x_stab Reserved.

x_snstab Reserved.

Function Auxiliary Entry

The auxiliary table entry for a function is defined in standard COFF as follows:

x_tagndx

x_fsize

x_lnnoptr

x_endndx

x_tvndx

The tag index; a file pointer to the exception table.

The size (in bytes) of the function.

A file pointer to the line number.

An index to the next entry beyond this function.

Reserved.

File Name Auxiliary Entry

The auxiliary table entry for a file name is defined in standard COFF to contain a
14-character file name in bytes O through 13.The remaining bytes are zero. If a file name is
longer than 14 characters, it is contained in the string table and the auxiliary entry contains
an offset to the name in the string table. For XCOFF, the file name is placed in the name
field of the C_FILE symbol table entry.

x_fname

x_zeroes

x_offset

The source file name.

A value of zero indicates that the file name is in the string table. (This field
overlays the x_fname field.)

An offset from the beginning of the string table to the first character of the
file name. (This field overlays the second word of x_fname.)

2-28 AIX Files Reference

a.out

dbx Stabstring Grammar (C, COBOL, Pascal, FORTRAN, and Modula-2)
In the following grammar, there are 5 types of terminal symbols denoted by all CAPS. These
types are NAME, STRING, INTEGER, HEXINTEGER, and REAL. These are described by
the regular expressions below:

NAME Any set of characters excluding ; : ' "

STRING '*'or"*" where\" and\' can be used inside the string

INTEGER (-)[0-9]+

HEXINTEGER [0-9A-F]+

REAL: [+-][0-9]+(.)[0-9]*([eE](+-)[0-9]+) I (+-)INF I QNAN I SNAN

Notation: []implies one instance, []*implies zero or more instances, []+implies one
or more instances, and () implies zero or one instances.

What follows is a the grammar for a stabstring. Except in the case of a constant whose value
is a string, there are no blanks in a stabstring. This is very much like the 4.3 BSD stabstring
grammar, with the notable exception being that stabstrings that exceed 8 characters in
length are placed in a .debug section rather than in the string section.

Stabstring:

Class:

Constant:

OrdValue:

Basic structure of stabstring

NAME: Class

: Class

Name of object followed by object classification

Unnamed object classification

Object classifications

c = Constant ;

NamedType

Parameter

Procedure

Variable

Label

Constant object

User-defined types and tags

Argument to subprogram

Subprogram declaration

Variable in program

Label object

Constant declarations

b OrdValue Boolean constant

c OrdValue Character constant

e Typeld, OrdValue
Enumeration constant

i INTEGER Integer constant

r REAL Floating point constant

s STRING String constant

S Typeld, NumElements , NumBits , BitPattern
Set constant

Associated numeric value

INTEGER

Chapter 2. File Formats 2-29

a.out

dbx Stabstring Grammar (continued)
NumElements: Number of elements in the set

INTEGER

NumBits: Number of bits in item

INTEGER

NumBytes: Number of bytes in item

INTEGER

BitPattern: Hexadecimal representation, up to 32 bytes

HEXINTEGER

NamedType: User-defined types and tags

Parameter:

Procedure:

Variable:

Label:

2-30 AIX Files Reference

t Typeld

T Typeld

User-defined type (TYPE or typedef)

Struct, union, or enumeration tag

Argument to procedure or function

a Typeld

p Typeld

v Typeld

C Typeld

D Typeld

R Typeld

Passed by reference in general register

Passed by value on stack

Passed by reference on stack

Constant passed by value on stack

Passed by value in floating point register

Passed by value in general register

Procedure or function declaration

Proc Procedure at current scoping level

Proc, NAME, NAME
Procedure named 1st NAME, local to 2nd NAME, where
2nd NAME is different than the current scope

Variable in program

Type Id

d Typeld

r Typeld

G Typeld

S Typeld

V Typeld

Label

L

Local (automatic) variable of type Typeld

Floating register variable of type Typeld

Register variable of type Typeld

Global (external) variable of type Typeld

Module variable of type Typeld (C static global)

Own variable of type Typeld (C static local)

Label name

a.out

dbx Stabstring Grammar (continued)
Proc: Different types of functions and procedures

Type Id:

TypeAttrs:

f Typeld

m Typeld

J Typeld

F Typeld

I
p

Q

Private function of type Typeld

Module (Modula-2, ext. Pascal)

Internal function of type Typeld

External function of type Typeld

Internal procedure

External procedure

Private procedure

Type declarations and identifiers

INTEGER Type number of previously-defined type

INTEGER = TypeDef
New type number described by TypeDef

INTEGER= TypeAttrs TypeDef
New type with special type attributes

Note: Type attributes (TypeAttrs) are extra information associated with a
type, such as alignment constraints or pointer checking semantics.
dbx recognizes only the size attribute and the packed attribute. The
size attribute denotes the total size of a padded element within an
array. The packed attribute indicates that a type is a packed type.
Any other attributes are ignored by dbx.

Any additional information, ignored by dbx

@ TypeAttrlist ;

TypeAttrList: List of special type attributes

TypeAttr:

TypeAttrList;@ TypeAttr

TypeAttr

Special type attributes

a INTEGER

s INTEGER

p INTEGER

p

Align boundary

Size in bits

Pointer class (for checking)

Packed type

Other Anything not covered is skipped entirely

Chapter 2. File Formats 2-31

a.out

dbx Stabstring Grammar (continued)
TypeDef: Basic descriptions of objects

EnumList:

Enum:

2-32 AIX Files Reference

INTEGER The type number of a previously defined type

b Typeld ; NumBytes
Pas cal space type

c Typeld ; NumBits
Complex type Typeld

d Typeld File of type Typeld

e EnumList; Enumerated type (default size is 32 bits)

g Typeld ; NumBits
Floating-point type of size NumBits

For i types, ModuleName refers to the Modula-2 module from which it is
imported.

i NAME : NAME ; Imported type ModuleName:Name

i NAME : NAME , Typeld;
Imported type ModuleName:Name of type Typeld

n Typeld; NumBytes
String type with max string length Bytesize

o NAME; Opaque type

o NAME , Typeld Opaque type with definition of Typeld

w Wide character

z Typeld; NumBytes
Pascal gstring type

C Usage COBOL Picture

K Cobo/FileDesc COBOL File Descriptor

M Typeld; Bound Multiple instance type of Typeldwith length Bound
(character*3 = M-2;3)

N

S Typeld

* Typeld

Array

Subrange

Procedure Type

Record

Pascal Stringptr

Set of type Typeld

Pointer of type Typeld

For function types rather than declarations

Record, structure, union, or group types

List of enumerated scalars

En um

EnumList Enum

Enumerated scalar description

NAME : OrdValue,

a.out

dbx Stabstring Grammar (continued)
Array:

Subrange:

Bound:

Boundtype:

Array descriptions

a TypeDef; Typeld
Array

A Typeld Open array of Typeld

D INTEGER ; Typeld
N-dimensional dynamic array of Typeld

E INTEGER ; Typeld
N-dimensional subarray of Typeld

P TypeDef ; Typeld
Packed Array

Subrange descriptions

r Typeld ; Bound ; Bound
Subrange type (char, int, ...), lower and upper bounds

Upper and Lower Bound descriptions

INTEGER Constant bound

Boundtype INTEGER

J

Variable or dynamic bound, value is address of or offset
to bound

Bound is indeterminable (no bounds)

Adjustable subrange descriptions

A
T

a
t

Bound passed by reference on stack

Bound passed by value on stack

Bound passed by reference in register

Bound passed by value in register

ProcedureType:Function variables (1st type Conly; others Modula-2 & Pascal)

NumParams:

f Typeld; Function returning type Typeld

f Typeld, NumParams ; TParamList;
Function of N parameters returning type Typeld

p NumParams ; TParamList;
Procedure of N parameters

R NumParams ; NamedTParamList;
Pascal subroutine parameter

F Typeld, NumParams ; NamedTParamlist;
Pascal function parameter

Number of parameters in routine

INTEGER

Chapter 2. File Formats 2-33

a.out

dbx Stabstring Grammar (continued)
TParamList: Types of parms in Modula-2 func variable

TParam Type of parameter and passing method

TParamList TParam

TParam: Type and passing method

Typeld, PassBy ;

NamedTParamlist:

NamedTParam:

Record:

Field list:

Types of parms in Pascal routine variable

NamedTParam
Type of parameter and passing method

NamedTParamlist NamedTParam

Named type and passing method

Name : Typeld, PassBy;

Types of structure declarations

s NumBytes FieldList ;
Structure or record definition

u NumBytes Fieldlist ;
Union

v NumBytes Fieldlist VariantPart ;
Variant Record

G Redefinition , n NumBits Fieldlist ;
COBOL.Group without conditionals

Gn NumBits Fieldlist ;

G Redefinition , c NumBits Condition Fieldlist ;
COBOL Group with conditionals

Ge NumBits Condition Fieldlist ;

Structure content descriptions

Field

Fieldlist Field

Member of record or union

Field: Structure member type description

NAME : Typeld, BitOffset, NumBits ;

VariantPart: Variant portion of variant record

[Vtag VFieldList)
Variant description

2-34 AIX Files Reference

dbx Stabstring Grammar (continued)
VTag: Variant record tag

VFieldList:

(Field

(NAME:;

Member of variant record

Variant key name

Variant record content descriptions

VList Member of variant record

VFieldList VList

VList: Variant record fields

VField:

VField Member of variant record

VField VariantPart

Variant record member type description

(VRangeList :
Variant with no field list

(VRangelist : Fieldlist
Variant with field list

VRangelist: List of variant field labels

VRange:

BitOffset:

Usage:

VRange Member of variant record

VRangelist, VRange

Variant field descriptions

b OrdValue Boolean variant

c OrdValue Character variant

e Typeld, OrdValue
Enumeration variant

i INTEGER Integer variant

r Typeld ; Bound ; Bound
Subrange variant

Offset in bits from beginning of structure

INTEGER

Cobol usage description

PICStorageType NumBits, EditDescription, PicSize;

Redefinition , PICStorage Type NumBits , EditDescription , PicSize ;

PICStorage Type NumBits , EditDescription , PicSize , Condition ;

Redefinition , PICStorage Type NumBits , EditDescription , PicSize ,
Condition;

a.out

Chapter 2. File Formats 2-35

a.out

dbx Stabstring Grammar (continued)
Redefinition: Cobol redefinition

rNAME

PICStorage Type:
Cobol PICTURE types

a
b

c
d

e
f

g

h

k

I

m
n

0

p

q

s
t

Alphabetic

Alphabetic edited

Alphanumeric

Alphanumeric edited

Numeric signed trailing included

Numeric signed trailing separate

Numeric signed leading included

Numeric signed leading separate

Numeric signed default comp

Numeric unsigned default comp

Numeric packed decimal signed

Numeric packed decimal unsigned

Numeric unsigned comp-x

Numeric unsigned comp-5

Numeric signed comp-5

Numeric edited

Numeric unsigned

Indexed item

Pointer

EditDescription: Cobol edit description

PicSize:

Condition:

STRING

INT.EGER

Edit characters in an alpha PIC

Decimal point position in a numeric PIC

Cobol description length

INTEGER Number of repeated '9's in numeric clause or length of
edit format for edited numeric

Conditional variable descriptions

NAME: INTEGER= q ConditionType, Valuelist;

ConditionType: Condition descriptions

ConditionPrimitive , KanjiChar

2~6 AIX Files Reference

dbx Stabstring Grammar (continued)
Condition Primitive:

Primitive type of Condition

n Sign DecimalSite
Numeric conditional

a Alphanumeric conditional

f Figurative conditional

Sign: For types which have explicit sign

+

0

Positive

Negative

No explicit sign value

DecimalSite: Number of places from left for implied decimal point

INTEGER

KanjiChar: O only if Kanji character in value

INTEGER

Value List Values associated with condition names

Value

ValueList Value

Value Values associated with condition names

INTEGER : STRING
Integer indicates length of string

CobolFileDesc: COBOL file description

Organization AccessMethod NumBytes

Organization: COBOL file description organization

r

s

Indexed

Line Sequential

Relative

Sequential

AccessMethod: COBOL file description access method

d Dynamic

0 Sort

r Random

s Sequential

a.out

Chapter 2. File Formats 2~37

a.out

dbx Stabstring Grammar (continued)
PassBy:

Export:

Exportlnfo:

Paramlist:

Param:

Parameter passing method

INTEGER O = passed-by reference; 1 = passed-by value

Modula-2 export description

INTEGER Exportlnfo
Identifier and type description

Modula-2 only

c =Constant Constant

f Typeld, NumParams ; Paramlist ;
Function

p NumParams ; Paramlist ;
Procedure

t Typeld

v Typeld

Func/Proc parameter declarations

Pa ram

Paramlist Param

Parameter name, type, and passing method

NAME : Typeld, PassBy;

Note: It might become necessary to split a stabstring among multiple symbol table entries
for ease of handling long stabstrings. A ? or\ indicates that the symbol information is
continued in the next stab entry. This continuation can occur after the separator
(usually ; , for a Enumlis~ in List entries (Paramlist, Enumlist, Fieldlist, ...). Also,
continuation is allowed after the ; in Array and Subrange grammar entries.

String Table for the a.out File

File

The string table contains the names of symbols that are longer than 8 characters. If present,
the first 4 bytes contain the length (in bytes) of the string table, including the length bytes.
Thus, offsets into the string table are greater than or equal to 4. The remainder of the table is
a sequence of null-terminated ASCII strings. If the n_zeroes field in a symbol table entry is
zero, then_offset field gives the offset into the string table of the name for the symbol.

/usr/i ncl ude/a.o ut.h The path to the a.out.h header file.

Related Information
The as command, dbx command, dump command, Id command,nmcommand, size
command, strip command, and what command.

2-38 AIX Files Reference

ar

ar File Format

Purpose
Describes the AIX indexed-archive file format.

Description
The ar (archive) command is used to combine several files into one. The ar command
creates an archive file. The Id (link editor) command searches archive files to resolve
program linkage. The ar.h header file describes the archive file format.

Fixed-Length Header
Each archive begins with a fixed-length header that contains offsets to special archive file
members. The fixed-length header also contains the magic number, which identifies the
archive file. The fixed-length header has the following format:

#define AIAMAG "<aiaff>\n" /* Magic string */

#define SAIAMAG 8 /* Length of magic string */

struct fl hdr /* Fixed-length header */

{
char fl_magic[SAIAMAG]; /* Archive magic string */
char fl_memoff [12]; /* Off set to member table */
char fl_gstoff [12]; /* Offset to global symbol table */
char fl _fstmoff[l2]; /* Off set to first archive member */
char fl _lstmoff[l2]; /* Off set to last archive member */
char fl _freeoff [12]; /* Off set to first mem on free list */

} ;

The AIX indexed-archive file format uses a double-linked list within the archive file to order
the file members; therefore, file members may not be sequentially ordered within the
archive. The offsets contained in the fixed-length header are used to locate the first and last
file members of the archive. Member order is determined by the linked list.

The fixed-length header also contains the offsets to the member table, global symbol table,
and the free list. Both the member table and the global symbol table exist as members of the
archive and are kept at the end of the archive file. The free list contains file members that
have been deleted from the archive. When adding new file members to the archive, this area
is used before the archive file size is expanded. A zero offset in the fixed-length header
indicates that the member is not present in the archive file.

Chapter 2. File Formats 2-39

ar

File Member Header
Each archive file member is preceded by a file member header, which contains the following
information about the file member:

#define AIAFMAG "'\n"
struct ar hdr
{

*/

char ar_size[l2];
char ar_nxtmem[l2];
char ar _prvmem [12] ; ·
char ar_date[l2];
char ar_uid [12];
char ar_gid [12];
char ar_mode[l2];
char ar_namlen[4];

union
{
char ar_name[2];
char ar_fmag[2];
} ;

_ar_name;

/* Header trailer string */
/* File member header */

/* File member size - decimal */
/* Next member offset - decimal*/
/* Previous member offset -dee */
/* File member date - decimal */
/* File member user id-decimal */
/* File member group id - dee */
/* File member mode - octal */
/* File member name length - dee

/* Start of member name */
/* AIAFMAG - string to end */

/* Header and member name */};

The member header provides support for member names up to 255 characters long. The
ar_namlen field contains the length of the member name. The character string containing the
member name begins at the_ar_name field. The AIAFMAG string is cosmetic only.

Each archive member header begins on an even-byte boundary.The total length of a
member header is (sizeof (struct ar_hdr) plus ar_namlen). The actual data for a file member
begins at the first even-byte boundary beyond the member header and continues for the
number of bytes specified by the ar_size field. The ar command inserts null bytes for
padding where necessary.

All information in the fixed-length header and archive members is in printable ASCII.
Numeric information, with the exception of the ar_mode field, is stored as decimal numbers;
the ar_mode field is stored in octal. Thus, if the archive file contains only printable files, you
can print the archive.

Member Table
A member table is always present in an indexed archive file. This table is used to quickly
locate members of the archive. The fl_memoff field in the fixed-length header contains the
offset to the member table. The member table member has a zero length name. The ar
command automatically creates and updates (but does not list) the member table. A
member table contains the following information:

• The number of members. This is .12 bytes long and stored in ASCII as a decimal number.

• The array of offsets into the archive file. The length is 12 times the number of members.
Each offset is 12 bytes long and stored in ASCII as a decimal number.

• The name string table. The size is (ar_size minus (12 times (the number of members plus
1))). That is, the total length of the member minus the length of the offsets minus the
length of the number of members.

The string table contains the same number of strings as there are offsets. All strings are
null-terminated. Each offset from the array corresponds sequentially to a name in the string
table.

2-40 AIX Files Reference

ar

Global Symbol Table
If an archive file contains XCOFF object-file members that are not stripped, the archive file
will contain a global symbol table member. This global symbol table is used to locate file
members that define global symbols. The strip command can be used to delete the global
symbol table from the archive. The fl_gstoff field in the fixed-length header contains the
offset to the global symbol table. The global symbol table member has a zero length name.
The ar command automatically creates and updates (but does not list) the global symbol
table. A global symbol table contains the following information:

• The number of symbols. This is 4 bytes long and can be accessed with the sgetl
command and the sputl command.

• The array of offsets into the archive file. The length is 4 times the number of symbols.
Each offset is 4 bytes long and can be accessed with the sgetl command and the sputl
command.

• The name string table. The size is (ar_size minus (4 times (the number of symbols plus
1))), that is, the total length of the member minus the length of the offsets minus the
length of the number of symbols.

The string table contains the same number of strings as there are offsets. All strings are
null-terminated. Each offset from the array corresponds sequentially to a name in the string
table.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/usr/include/ar.h The path to the ar.h header file.

Related Information
The sgetl, sputl subroutine.

The a.out file format.

The ar command, Id command, strip command.

Chapter 2. File Formats 2-41

audit

audit File Format

Purpose
Describes the auditing data structures.

Description
The audit.h header file contains definitions for the auditing system, including commands and
structures for the following subroutines and daemons:

audit
auditbin
auditevents
auditlog
auditobj
auditproc

The audit.h header file defines the arguments for these subroutines. This header file also
defines the structure of a bin as generated by the kernel.

Audit Bin Format
The format of the audit bin is described by the aud_bin structure. An audit trail consists of a
sequence of bins, each of which must start with a bin head and end with a bin tail. The
aud_bin structure contains the following fields:

bin_ magic

bin_version

bin_tail

The magic number for the bin {OxfOfO).

The version number for the bin (0).

Indicates whether the bin describes the audit trail head or tail:

O Identifies the bin header.

Identifies the bin end {tail).

2 Identifies the trail end.

bin_len The {unpacked) length of the bin's records. A non-zero value indicates that
the bin has a tail record.

bin_plen The current length of the bin's record {might be packed).

bin_time The time at which the head or tail was written.

bin_reserved1 Not currently used.

bin_reserved2 Not currently used.

Audit Record Format
Each audit record consists of a list of fixed-length event identifiers, each of which can be
followed by a variable-length tail. The format of the audit record is described by the aud_rec
structure, which contains the following fields to identify the 'lvent:

ah_event[16] The name of the event and a null terminator.

ah_length The length of the tail portion of the audit record.

2-42 AIX Files Reference

File

audit

ah_result An indication of whether the event describes a successful operation. The
values for this field are:

0 Indicates sucessful completion.

Indicates a failure.

> 1 An errno describing the failure.

ah_prepend Indicates whether or not this is a prepend record.

The aud_rec structure also contains the following fields to identify the user and the process:

ah_ruid The real user id; that is, the id number of the user who created the process
that wrote this record.

ah_luid The login id of the user who created the process that wrote this record.

ah_name[16] The program name of the process, along with a null terminator.

ah_pid The process id of the process that wrote this record.

ah_ppid The process id of the parent of this process.

ah_time The time at which this audit record was written.

The record tail follows this header information.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

/usr/include/sys/audit.h The path to the audit.h header file.

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine,
auditobj subroutine, auditproc subroutine, auditwrite subroutine.

The audit command, auditcat command, auditbin command, auditpr command,
auditselect command, auditstream command.

Chapter 2. File Formats 2-43

core

core File Format

Purpose
Contains an image of a process at the time of an error.

Description
A core file is created in the current directory when various errors occur. Errors such as
memory-address violations, illegal instructions, bus errors, and user-generated quit signals
commonly cause this core dump. The core file that is created contains a memory image of
the terminated process. A process with an effective user ID that is different from the real
user ID does not produce a memory image. The contents of a core dump are organized as
follows:

core_dump c_signo
c_flag
c_entries
*c_tab
c_stack
c_size

c_u (the actual u_block)

ld_info

user mode stack

user data (optional)

The core_dump structure, defined by the core.h header file, occurs at the beginning of a
core file. The core_dump structure includes the following fields:

c_signo

c_flag

c_entries

*c_tab

c_stack

c_size

The number of the error signal, which indicates the error that caused the
core dump.

One of the following flags, which describe the core dump type:

FULL_ CORE

UBLOCK_ VALID

USTACK_ VALID

LE_ VALID

CORE_TRUNC

The core contains the data sections (Ox01).

The u_block has been dumped (Ox10).

The user stack has been dumped (Ox20).

The core contains at least one module (Ox40).

The core was truncated (Ox80).

The number of core dump modules.

A pointer to the ld_info structure, which defines the core table (loader
modules).

A pointer to the user mode stack.

The size of the user stack.

The c_u field follows this information in the core dump. The c_u field contains the user
structure (a copy of the actual u_block), which includes the registers as they existed at the
time of the fault.

2-44 AIX Files Reference .

Files

core

The ld_info structure and then the user mode stack follow the u_block in the core dump.

By default, the user data is not included in a core dump. This partial core dump includes the
current process's stack and user structure and the state of the registers at the time of the
fault. A partial core dump contains sufficient information for a stack traceback. The size of a
core dump can also be limited by the setrlimit subroutine.

To enable a full core dump, set the SA_FULLDUMP flag in the sigaction subroutine for the
signal that is to generate a full core dump. If this flag is set when the core is dumped, the
data section is included in the core dump.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

/usr/include/sys/core.h

/usr/include/sys/param.h

/usr/include/sys/reg.h

/usr/include/sys/user.h

The path to the core.h header file.

The path to the param.h header file, which describes AIX
operating system parameters used by the hardware.

The path to the reg.h header file, which defines user
registers used by the AIX operating system.

The path to the user.h header file, which describes the user
structure and contains process information that is not
needed unless a process is running.

Related Information
The raise subroutine, setgid subroutine, setrlimit subroutine, setuid subroutine, sigaction
subroutine.

The adb command, dbx command.

The param.h header file.

Chapter 2. File Formats 2-45

cpio

cpio File Format

Purpose
Describes the copy in/out (cpio) archive file.

Description
The cpio utility is used to back up and recover files. The files are saved on the backup
medium in the cpio format.

When the cpio command is used with the -c flag, the header for the cpio structure can be
read as follows:

sscanf(Chdr,u%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%11lo%6ho%11lo%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize, &Longfile, &Hdr.h_name);

Longtime and Longfile are equivalent to Hdr. h_mtime and Hdr. h_f ilesize,
respectively. The contents of each file together with other items describing the file are
recorded in an element of the array of varying length structures.

When the -c flag of the cpio command is not used, the header structure contains the
following fields:

h_magic

h_dev

h_ino

h_mode

h_uid

h_gid

Contains the constant octal 070707 (or Ox71 c7).

The device that contains a directory entry for this file.

The i-node number that identifies the input file to the file system.

The mode of the input file, as defined in the mode.h header file.

The user ID of the owner of the input file.

The group ID of the owner of the input file.

For remote files, these fields contain the ID after reverse translation.

h_nlink The number of links that are connected to the input file.

h_rdev The ID of the remote device from which the input file is taken.

h_mtime The time when data was last modified. For remote files, this field contains
the time at the server. This time is changed by the creat, fclearf, truncate,
mknod, openx, pipe, utime, and writex subroutines.

h_namesize The length of the path name, including the terminating null byte.

h_filesize The length of the file in bytes. This is the length of the data section that
follows the header structure.

h_name The null-terminated path name. The length of the path name, including the
null byte, is indicated by then variable, where n equals ((h_namesize % 2)
+ h_namesize). In other words, the n variable is equal to the h_namesize
field if the h_namesize field is even. If the h_namesize field is odd, the n
variable is equal to the h_namesize field + 1 .

2-46 AIX Files Reference

Files

cpio

The last record of the archive always contains the name TRAILER!!! Special files,
directories, and the trailer are recorded with the h_filesize field equal to 0.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

/usr/include/sys/mode.h

/usr/include/sys/stat.h

The path to the mode.h header file, which defines the
interpretation of a file mode.

The path to the stat.h header file, which defines the data
structure returned by the status subroutines.

Related Information
The creat subroutine, fclear subroutine, ftruncate subroutine, mknod subroutine, openx
subroutine, pipe subroutine, scanf subroutine, utime subroutine, writex subroutine.

The mode.h file, stat.h file.

The cpio command, find command.

Chapter 2. File Formats 2-47

nterm

nterm File Format

Purpose
Terminal driving tables for the nroff command.

Description
The nroff command uses driving tables to customize its output for various types of output
devices, such as printing terminals, special word-processing terminals (such as Diablo,
Qume, or NEC Spinwriter mechanisms), or special output filter programs. These driving
tables are written as ASCII files, and are installed in the /usr/lib/nterm/tab.Name file, where
the Name parameter is the name for a terminal type.

The first line of a driving table should contain the name of the terminal: simply a string with
no imbedded white space (any combination of spaces, tabs, and newlines). The next part of
the driver table is structured as follows:

• bset [lntegefj
• breset [lntegefj
• hor [lntegefj
• vert [lntegefj
• newline [lntegefj
• char [lntegefj
• em [lntegefj
• halfline [lntegefj
• adj [lntegeij
• twinit [Character String)
• twrest [Character String)
• twnl [Character String)
• hlr [Character String]
• hlf [Character String]
• fir [Character String)
• bdon [Character String)
• bdoff [Character String)
• iton [Character String]
• itoff [Character String]
• ploton [Character String]
• plotoff [Character String]
• up [Character String]
• down [Character String)
• right [Character String]
• left [Character String]
The meanings of these fields are as follows:

bset

breset

hor

vert

2-48 AIX Files Reference

Bits to set in the c_oflag field of the termio structure before output.

Bits to reset in the c_oflag field of the termio structure before output.

Horizontal resolution in units of 1/240 of an inch.

Vertical resolution in units of 1 /240 of an inch.

newline

char

em

halfline

adj

twin it

twrest

twnl

hlr

hlf

fir

bdon

bdoff

iton

itoff

ploton

plotoff

up

down

right

left

nterm

Space moved by a newline (linefeed) character in units of 1 /240 of an inch.

Quantum of character sizes, in units of 1 /240 of an inch (that is, a character
is a multiple of char units wide).

Size of an em in units of 1/240 of an inch.

Space moved by a half-linefeed (or half-reverse-linefeed) character in
units of 1/240 of an inch.

Quantum of white space, in 1/240 of an inch, (that is, white spaces are a
multiple of adj units wide).
Note: If this is less than the size of the space character, the nroff command
outputs fractional spaces using plot mode. Also, if the -e switch to the nroff
command is used, the adj variable is set equal to the hor variable by the
nroff command.

Sequence of characters used to initialize the terminal in a mode suitable for
the nroff command.

Sequence of characters used to restore the terminal to normal mode.

Sequence of characters used to move down one line.

Sequence of characters used to move up one-half line.

Sequence of characters used to move down one-half line.

Sequence of characters used to move up one line.

Sequence of characters used to turn on hardware boldface mode, if any.

Sequence of characters used to turn off hardware boldface mode, if any.

Sequence of characters used to turn on hardware italics mode, if any.

Sequence of characters used to turn off hardware italics mode, if any.

Sequence of characters used to turn on hardware plot mode (for
Diablo-type mechanisms), if any.

Sequence of characters used to turn off hardware plot mode (for
Diablo-type mechanisms), if any.

Sequence of characters used to move up one resolution unit (vert) in plot
mode, if any.

Sequence of characters used to move down one resolution unit (vert) in plot
mode, if any.

Sequence of characters used to move right one resolution unit (hor) in plot
mode, if any.

Sequence of characters used to move left one resolution unit (hor) in plot
mode, if any.

Chapter 2. File Formats 2-49

nterm

This part of the driving table is fixed-format, and you cannot change the order of entries.
You should put entries on separate lines, and these lines should contain exactly two fields
{no comments allowed) separated by white space. For example,

bset 0
breset 0
Hor 24

Follow this first part of the driving table with a line containing the word charset, and then
specify a table of special characters that you want to include. That is, specify all the
non-ASCII characters that the nroff command knows by two-character names, such as
\ (hy. If the nroff command does not find the word charset where it expects to, it terminates
processing with an error message.

Each definition in the part after charset occupies one line, and has the following format:

chnarne width output

where chnarne is the {two-letter) name of the special character, width is its width in
ems, and output is the string of characters and escape sequences to send to the
terminal to produce the special character.

For nls fonts, chname can also be an Nlesc sequence, for instance, \ <c, >.

International Character Support:
For NLS printers using NLS fonts, the characters XX is required in the
charset. XX provides the width of single-width NLS characters, respectively,
in the "width" columns. The "output" columns for this character must contain
a single question mark, ?.

Japanese Language Support:
For SJIS printers using kanji fonts, the characters X1 and X2 are required

in the charset. X1 and X2 provide the width of single-width and
double-width SJIS characters, respectively, in their "width" columns. The
"output" columns for these characters must contain a single question mark,
?.

If any field in the charset part of the driving table does not pertain to the output device, you
can give that particular sequence as a null string or leave out the entry. Special characters
that do not have a definition in this file are ignored on output by the nroff command.

You can put the charset definitions in any order, so it is possible to speed up the nroff
command by putting the most used characters first. For example,

chars et
em 1-
hy 1-
\-1-
bu 1 +\bo

The best way to create a terminal table for a new device is to take an existing terminal table
and edit it to suit your needs. Once you create such a file, put it in the /usr/lib/nterm
directory, and give it the name tab.xyz where xyz is the name of the terminal and the name
that you pass the nroff command by way of the -T flag (for example, nroff -Txyz).

2-50 AIX Files Reference

nterm

Implementation Specifics
This command is part of Formatting Tools in the Text Formatting System of AIX for RISC
System/6000.

File
/usr/lib/nterm/tab.Name Terminal files.

Related Information
The nroff command.

Chapter 2. File Formats 2-51

profile

profile File Format

Purpose
Sets the user environment at login time.

Description

Example

The profile file contains commands to be executed at login and variable profile assignments
to be set and exported into the environment. The /etc/profile file contains commands
executed by all users at login.

After the login program adds the LOGNAME (login name) and HOME (login directory)
parameters to the environment, the commands in $HOME/.profile are executed, if it is
present. The .profile file is the individual user profile that overrides the variables set in the
profile file and is used to tailor the user environment profile variables set in /etc/profile. The
.profile file is often used to set exported environment variables and terminal modes. The
person who customizes the system can use the mkuser command to set default .profile
files in each user home directory. Users can tailor their environment as desired by modifying
their .profile file.

The following example is typical of a /etc/profile file:

#Set file creation mask
unmask 022
#Tell me when new mail arrives
MAIL=/usr/mail/$LOGNAME
#Add my /bin directory to the shell search sequence
PATH=/bin:/usr/bin:/etc::
#Set terminal type
TERM=hf t
#Make some environment variables global
export MAIL PATH TERM

Implementation Specifics

Files

This file is part of AIX Base Operating System (BOS) Runtime.

/etc/profile

$HOM El.profile

Profile file.

Individual user profile file.

Related Information
The bsh command, csh command, env command, login command, mail command,
mkuser command, ksh command, stty command, and su command.

2-52 AIX Files Reference

sccsfile

sccsfile File Format

Purpose
Describes the format of a Source Code Control System (SCCS) file.

Description

Checksum

Delta Table

The SCCS file is an ASCII file consisting of the following six logical parts:

checksum

delta table

user names

flags

comments

body

The sum value of all characters except the characters in the first line.

Information about each delta including type, SCCS identification (SID) date
and time of creation, and comments.

Login names and numerical group IDs, or both, of users who are allowed to
add or remove deltas from the secs file.

Definitions of internal keywords.

Descriptive information about the file.

The actual text lines intermixed with control lines.

Several lines in an SCCS file begin with the ASCII SOH (start of heading) character (octal
001). This character is called the control character and is represented graphically as@ (at
sign) in the following text. Any line described in the following text that does not begin with the
control character contains text from the source file and cannot begin with the control
character.

The following paragraphs describe each logical part of an SCCS file.

The checksum is the first line of an SCCS file. This line has the following format

@hNumber

The control character and variables in the checksum line have the following meanings:

@h

Number

Designates a magic number of 064001 octal (or Ox6801).

Represents the sum of all characters in the SCCS file (not including the
characters in this line).

The delta table consists of a variable number of entries such as:

@sNumber/Number/Number
@d Type SID Date Time UID Number Number
@i Number .
@x Number .
@g Number .
@m Number
@c Comments .
@e

Chapter 2. File Formats 2-53

sccsfile

User Names

The control characters and variables in the delta table entries have the following meanings:

@s

@d

@i

@x

@g

@m

@c

@e

Designates the first line of each entry, which contains the number of lines
.inserted, deleted, and unchanged (respectively).

Designates the second line of each entry, which contains:

Type

SID

Date

Time

UID

Number

The type of delta. D designates a normal delta; R
designates a removed delta.

The SCCS ID (SID) of the delta.

The date, in the yy/mm/ddformat, at which the delta was
created.

The time, in the hh:mm:ss format, at which the delta was
created.

The login name that corresponds to the real user ID at the
time the delta was created.

The serial numbers of the delta and its predecessor,
respectively.

Indicates the serial numberS\«)f the deltas that are included in this file. This
line may contain several delta numbers. This line is optional.

Indicates the serial numbers of the deltas that are excluded from this file.
This line can contain several delta numbers. This line is optional.

Indicates the serial numbers of the deltas that are ignored. This line can
contain several delta numbers. This line is optional.

Indicates a modification request (MR) number associated with the delta.
There can be several MR lines in an SCCS file, each one containing a
different MR number. These lines are optional.

Comment lines associated with the delta. There can be several comment
lines in an SCCS file. These lines are optional.

Ends the delta table entry.

The list of login names and numerical group IDs of users who can add deltas to the file. The
names and IDs are separated by new-line characters. This section uses the following control
characters:

@u

@U

A bracketing line that indicates the beginning of a user name list. This line
appears before the first line in the list.

A bracketing line that indicates the end of a user name list. This line
appears after the last line in the list.

An empty list allows any user to make a delta.

2-54 AIX Files Reference

Flags

sccsfile

Flags are keywords that are used internally in the SCCS system. The format of each line is:

@£Flag Text

The control character and variables in the checksum line have the following meanings:

@fF/ag Designates one of the following defined flags:

@ft Type of program. Defines the replacement for the %Y%

identification keyword.

@fv Program name. Controls prompting for MR numbers in
addition to comments upon delta creation. If a value is
assigned, it defines an MR number validity-checking
program.

@fi ID keywords. Controls the No ID keywords error
warning message. When this flag is not set, the message is
only a warning. When this flag is set, the absence of ID
keywords will cause an error and the delta will fail.

@f b Branch. Allows the use of the -b option of the get
command to cause a branch in the delta tree.

@f m Module name. Defines the replacement module name for
the %M% identification keyword. This value is used to
override the default.

@ff Floor. Defines the lowest release number from 0 through
9999 that can be retrieved by a get command for editing.
This release number is called the floor release number.

@f c Ceiling. Defines the highest release number from O through
9999 that can be retrieved by a get command for editing.
This release number is called the ceiling release number.

@f d Default SCCS ID. Defines the default SID to be used when
one is not specified with a get command. When this flag is
not set, the get command uses the most recently created
delta.

@f n No changes. Causes the delta command to insert null
deltas (delta entries with no changes) for any skipped
releases when a delta for a new release is made. For
example, delta 5.1 is made after delta 2.1, skipping
releases 3 and 4. When this flag is omitted, skipped
releases will be omitted from the delta table.

@fj Joint edit. Causes the get command to allow concurrent
edits of the same base SID.

@fl Lock releases. Defines a list of releases that cannot be
edited with get using th~ -e flag.

@fq User defined flag. Defines the replacement for the %Q%

identification keyword.

Text Indicates optional text.

Chapter 2. File Formats 2-55

sccsfile

Comments

Body

File

When rthe comments are taken from a file containing descriptive text using the admin
command with the -t option, the contents of that file are displayed in this section. Typically,
the comments section contains a description of the purpose of the delta. This section uses
the following control characters:

@t

@T

A bracketing line that indicates the beginning of the comments section. This
line appears before the first comment line.

A bracketing line that indicates the end of the comments section. This line
appears after the last comment line.

The body section consists of control and text lines. Control lines begin with the control
character; text lines do not. This section contains the following types of control lines:

@INumber Indicates an insert control line. The serial number that corresponds to the
delta for the control line is indicated by the Number parameter.

@DNumber Indicates a delete control line. The serial number that corresponds to the
delta for the control line is indicated by the Number parameter.

@ENumber Indicates an end control line. The serial number that corresponds to the
delta for the control line is indicated by the Number parameter.

/usr/bin/sccs The path to the sccs command, which is the administration program for
the SCCS commands.

Related Information
The admin command, delta command, get command, prs command.

2-56 AIX Files Reference

troff

troff File Format

Purpose
Describes the output language from the troff command.

Description
The device-independent troff file format outputs a pure ASCII description of a typeset
document. The description specifies the typesetting device, the fonts, and the point sizes of
characters to be used as well as the position of each character on the page. A list of all the
legal commands follows. Most numbers are denoted by the Numberparameter and are
ASCII strings. Strings inside of [] (brackets) are optional. The troff command can produce
them, but they are not required for the specification of the language. The \n character has
the standard meaning of newline character. Between commands, white space has no
meaning. Whitespace characters are spaces and new lines.

The following are the legal commands:

sNumber Specifies the point size of the characters to be generated.

fNumber The font mounted in the specified position is to be used. The Number
parameter value ranges from O to the highest font presently mounted.
O is a special position, called by the troff command, but not directly
accessible to the troff command user. Normally fonts are mounted
starting at position 1 .

cCharacter Generates the specified character at the current location on the page;
the value specified by the Character parameter is a single ASCII
character.

CXYZ Generates the XYZ special character. The name of the character is
delimited by white space. The name is one of the special characters
legal for the typesetting device as specified by the device specification
found in the DESC file. This file resides in a directory specific for the
typesetting device. (See the troff font file format and the
/usr/lib/font/dev* directory.)

HNumber Changes the horizontal position on the page to the number specified.
The number is in basic units of motions as specified by the DESC file.
This is an absolute goto statement.

hNumber Adds the number specified to the current horizontal position. This is a
relative goto statement.

V Number Changes the vertical position on the page to the number specified
(down is positive).

vNumber Adds the number specified to the current vertical position.

NumberCharacter This is a two-digit number followed by an ASCII character. The
meaning is a combination of the hNumber command followed by the
cCharacter command. The specified number is added to the current
horizontal position and then the ASCII character, specified by the
Character parameter, is produced. This is the most common form of
character specification.

Chapter 2. File Formats 2-57

troff

nBA

w

pNumber

... \n

DIXY

De O..n

DeDXDY\n

Indicates that the end of a line has been reached. No action is
required, though by convention the horizontal position is set to O. The
troff command specifies a resetting of the x,y coordinates on the page
before printing more characters. The first number, B, is the amount of
space before the line and the second number, A, the amount of space
after the line. The second number is delimited by white space.

A w command appears between words of the input document. No
action is required. It is included so that one device can be emulated
more easily on another device.

Begins a new page. The new page number is included in this
command. The vertical position on the page should be set to 0.

A line beginning with a# (pound sign) is a comment.

Draws a line from the current location to X, Y.

Draws a circle of the diameter specified by the D parameter with the
leftmost edge being at the current location (X, Y). The current location
after drawing the circle is X+D, Y, the rightmost edge of the circle.

Draws an ellipse with the specified axes. The DX parameter is the axis
in the X direction and the DY parameter is the axis in the Y direction.
The leftmost edge of the ellipse is at the current location. After drawing
the ellipse the current location is X+DX, Y.

Da DH1 DV1 DH2 DV2'n

D- X Y X Y ... \n

x i[nit]\n

x T Device\n

x r[es) NH \t\n

x p[ause)\n

2-58 AIX Files Reference

Draws a counterclockwise arc from the current position to the
DH11+DH2, DV1+DV2 parameter that has a center of DH1, DV1 from
the current position. The current location after drawing the arc is at its
end.

Draws a spline curvE~ (wiggly line) between each of the X, Y coordinate
pairs starting at the current location. The final location is the final X, Y
pair of the list.

Initializes the typesetting device. The actions required are dependent
on the device. An init command always occurs before any output
generation is attempted.

The name of the typesetter is specified by the Device parameter. This
is the same as the parameter to the -T flag. The information about the
typesetter is found in the /usr/lib/font/devDevice directory.

The resolution of the typesetting device in increments per inch is
specified by the N parameter. Motion in the horizontal direction can
take place in units of basic increments specified by the H parameter.
Motion in the vertical direction can take place in units of basic
increments specified by the V parameter.

Pause. Causes the current page to finish but does not relinquish the
typesetter.

Files

x s[top]\n

x t[railer]\n

x f[ont] N Fonf\n

x H[eight] Mn

x S[lant] Mn

troff

Stop. Causes the current page to finish and then relinquishes the
typesetter. Performs any shutdown and bookkeeping procedures
required.

Generates a trailer. On some devices no operation is performed.

Loads the specified font into position N.

Sets the character height to N points. This causes the letters to be
elongated or shortened. It does not affect the width of a letter. Not all
typesetters can do this.

Sets the slant to N degrees. Only some typesetters can do this and not
all angles are supported.

The following commands are effective on the international extended characters:

QC1C2

qC

Outputs the character specified by the two bytes specified by the Ct
and C2 parameters. The high-order bits can be set in these bytes.

Outputs the character C parameter ORed with Ox80.

KDigit1 Digit2Digit3Digit4

kDigit1 Digit2

Outputs the character specified by the four hex digits Digit1, Digit2,
Digit3, and Digit4. (Digit1 is the high digit of the first byte; Digit4 is the
low digit of the second byte.)

Outputs the byte specified by the two hex digits Digit1 and Digit2.
(Digit1 is the high byte.)

Japanese Language Support: The preceding commands listed for international extended
characters are also effective on SJ IS extended characters.

/usr/lib/font/dev Name/ DESC.out Description file for phototypesetter specified by Name.
/usr/lib/font/dev Name/ Font.out Font description files for phototypesetter specified by

Name.

Related Information
The troff command.

The troff Font file format.

Chapter 2. File Formats 2-59

~roff Font

troff Font File Format

Purpose
Description files for the troff command.

Description
For each phototypesetter that the troff command supports and that is available on your
system, there is a directory that contains files describing the phototypesetter and its fonts.
This directory is named /usr/lib/font/devName, where Name is the name of the
phototypesetter. For a list of supported devices, see "Terminal Names for Phototypesetter
and Comparable Devices".

For a particular phototypesetter Name, the ASCII DESC file in the /usr/lib/font/devName
directory within the troff command source directory describes its characteristics. A binary
version of this file is found in the /usr/lib/font/devName/DESC.out file. Each line of this
ASCII file starts with a word that identifies a characteristic, followed by appropriate
specifiers .. Blank lines and lines beginning with the # character are ignored.

The legal lines for the DESC file are:

res Number Resolution of device in basic increments per inch.

unitwidth Number
Point size in which all width tables in the font description files are given. The
troff command automatically scales the widths from the unitwidth size to
the point size with which it is working.

sizescale Number
Scaling for fractional point sizes. Number is 1. The sizescale line is not
currently used.

paperwidth Number
Width of paper in basic increments.

paperlength Number
Length of paper in basic increments.

biggestfont Number
The maximum number of characters in a font.

sizes Number1 Number2 ...
List of point sizes available on typesetter, ended by 0.

fonts Number Name ...
Number of initial fonts, followed by the ASCII names of the fonts. For
example:
fonts 4 R I B S

charset This is last keyword in the file and is on a line by itself. Following it is the list
of special character names for this device. Names are separated by a space
or a newline. The list can be as long as necessary. Names not in this list are
not allowed in the font description files.

hor Number Smallest unit of horizontal motion.

vert Number Smallest unit of vertical motion.

2-60 AIX Files Reference

troff Font

The hor and vert lines describe the relationships between motions in the horizontal and
vertical directions. For example, if the device moves in single basic increments in both
directions, both the hor and vert lines have values of 1. If vertical motion only occurs in
multiples of two basic units and horizontal motion only in one, vert is 2 and hor is 1.

For each font supported by the phototypesetter, there is also an ASCII file with the same
name as the font (for instance, R, I, CW) that describes it. The format for a font description
file is:

name Name Name of the font, such as R or CW.

internalname Name
Internal name of the font.

special Sets the flag indicating that the font is special.

ligatures Name ... o
Sets the flag indicating that the font has ligatures. The list of ligatures
follows and is ended by a zero. Accepted ligatures are ff fi fl ffi ffl.

spacewidth Number

nls

kanji

charset

Specifies width of space if something other than default (1 /3 of an em) is
desired.

The font contains international extended characters. See the charset line
for a description of the character set in an nls font.

The font contains SJIS extended characters. See Japanese Language
Support for a description of the character set in a kanji font.

The character set must come at the end. Each line following the charset
word describes one character in the font. Each line has one of two formats:

Name Width Kerning Code
Name "

where Name is either a single ASCII character or a special character name
from the list found in the DESC file. For an nls font, Name can also be an
Nlesc sequence, for instance, \<c, >.The Width is in basic increments.
The Kerning field is 1 if the character descends below the line, 2 if it rises
above the letter ' a ' , and 3 if it both rises and descends. The Code field is
the number sent to the typesetter to produce the character. For an nls font,
Code can be a multi-byte sequence.

For fonts for extended-character output devices, Code can be a multi-byte
sequence that begins and ends with a double quotation mark. In the
sequence, control or non-printing characters can be represented by the
following escape sequences: \n for newline; \r for return; \t for tab; \b for
backspace;\" for double quote; \xdd for a hexadecimal number, where dd is
two hexadecimal digits; and \ooo for an octal number, where ooo is three
octal digits.

The second format, (Name"), is used to show that the character has more
than one name. The double quotation marks shows that this name has the
same values as the preceding line. The Kerning and Code fields are not
used if the Width field is a double quotation mark character. The total
number of different characters in this list should not be greater than the
value of the biggestfont line in the DESC file.

Chapter 2. File Formats 2-61

troff Font

Implementation Specifics

Files

Japanese Language Support: For fonts for Japanese-language output devices, Code is a
multi-byte sequence, as previously described.

For a kanji font, the only valid characters are the following:

X1 Represents all single-width SJIS characters

X2 Represents all double-width SJIS characters

All single-width SJIS characters are the same size as the X1 character, and all double-width
SJIS characters are the same size as the X2 character. The Code field is not provided for
kanji fonts; SJIS code is assumed to be the normal code of the printer. If the output printer
does not use the SJIS code set, the postprocessor translates the character codes.

/usr/lib/font/dev Name! DESC.out Description file for phototypesetter specified by Name.
/usr/lib/font/devName/Font.out Font description files for phototypesetter specified by

Name.

Related Information
The troff command.

The troff file format.

2-62 AIX Files Reference

utmp, wtmp, failedlogin

utmp, wtmp, failedlogin File Format

Purpose
Describes formats for user and accounting information.

Description

Example

The utmp file, the wtmp file, and the failedlogin file contain records with user and
accounting information. ·

When a user logs in successfully, the login program writes entries in two files:

• The /etc/utmp file, which contains a record of users logged into the system.

• The /usr/adm/wtmp file (if it exists), which contains connect-time accounting records.

On an invalid login attempt, due to an incorrect login name or password, the login program
makes an entry in:

• The /etc/security/failedlogin file, which contains a record of unsuccessful login attempts.

When you login as the root user, if there are any entries in the /etc/security/failedlogin file,
you see a message advising you to check the file.

The records in these files follow the utmp format, defined in the utmp.h header file. An
example of the utmp file format follows:

#define UTMP FILE "/etc/utmp"
#define WTMP FILE "/usr/adm/wtmp"
#define FAILEDLOGIN_FILE "/etc/security/failedlogin"

#define ut name
#define ut id

struct utmp {

ut user
ut line

char ut_user[8];
char ut_line[l2];
short ut_pid;
short ut_type;
struct exit status {

short e_termination;
short e_exit;
{ut_exit;

time t ut_time;

stnet termio ut_termio;
} ;

/* User login name */
/* Device name (console,lnxx) */
/* Process id */
/* Type of entry */

/* Process termination status */
/* Process exit status */
/* The exit status of a process */
/* marked as #/ DEAD PROCESS */
/* Time entry was made */

/* Save login termio parameters */

Chapter 2. File Formats 2-63

utmp, wtmp, failedlogin

/* Definitions for ut_type */
#define EMPTY 0
#define RUN LVL 1
#define BOOT TIME 2
#define OLD TIME 3
#define NEW TIME 4
#define INIT PROCESS 5 /* Process spawned by "init"
#define LOGIN_ PROCESS 6 /* A "getty" process waiting
#define USER PROCESS 7 /* A user process */
#define DEAD_ PROCESS. 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING /* Largest legal
#define TSH PROCESS 10
#define UTMAXTYPE TSH_PROCESS I* Largest legal

/* Special strings or formats used in the */
/* "ut_line" field when accounting for
/# something other than a process. */

value

value

/* No string for the ut line field can be more */
/* than 11 chars + a NULL in length. */

#define RUNLVL_MSG "run-level?"
#define BOOT_MSG "system boot"
#define OTIME MSG "old time"
#define TIME MSG "new time"

of

of

*/
for login */

ut_type */

ut_type */

Implementation Specifics

Files

This file format is part of Accounting Services in AIX BOS Extensions 2.

/etc/utmp

/usr/adm/wtmp

/etc/security/failedlogin

Contains a record of users logged into the system.

Contains connect accounting information.

Contains a record of invalid login attempts.

Related Information
The init command, login command, su command.

The utmp.h file.

To see the steps you must take to establish an Accounting System, refer to How to Set Up
an Accounting System in General Concepts and Procedures.

For more information about the Accounting System, the preparation of daily and monthly
reports, and the accounting files, refer to Accounting Overview in General Concepts and
Procedures.

2-64 AIX Files Reference

ATE ate.def File Format

Purpose

ATE ate.def

Determines default settings for use in asynchronous connections and file transfers.

Description
The ate.def file sets the defaults for use in asynchronous connections and file transfers. It is
created in the current directory the first time a user runs the Asynchronous Terminal
Emulation (ATE) program. The ate.def file contains the default values the ATE program uses
for the following:

• Data transmission characteristics

• Local system features

• Dialing directory file

• Control keys.

The first time the ATE program runs from a particular directory, it creates the ate.def file in
that directory, with settings as follows:

LENGTH 8
STOP 1
PARITY 0
RATE 1200
DEVICE ttyO
INITIAL ATDT
FINAL
WAIT 0
ATTEMPTS 0
TRANSFER p
CHARACTER 0
NAME kapture
LINEFEEDS 0
ECHO 0
VTlOO 0
WRITE 0
XON/XOFF 1
DIRECTORY /usr/lib/dir
CAPTURE KEY 002
MAINMENU KEY 026
PREVIOUS KEY 022

The system user can edit the ate.def file with any ASCII text editor to permanently change
the values of these characteristics. The values of these characteristics can also be
temporarily changed with the ATE alter and modify subcommands, which can be accessed
from either ATE Main Menu.

When you start the ATE program, it looks for a file named ate.def in the current directory. If
the program finds the ate.def file, it changes the system's defaults to the values in the file.

Chapter 2. File Formats 2-65

ATE ate.def

Note: Type parameter names in uppercase letters. Spell them exactly as they appear in the
original default file.

D.efine only one parameter per line.

If you define an incorrect value for a parameter in the ate.def file, you receive a
system message while running the ATE program. However, the program continues to
run using the default value.

Parameters in the ate.def File
LENGTH Specifies the number of bits in a data character. This length must match the

length expected by the remote system.

STOP

PARITY

Options: 7 or 8.

Default: 8.

Specifies the number of stop bits appended to a character to signal that
character's end during data transmission. This number must match the
number of stop bits used by the remote system.

Options: 1 or 2.

Default: 1.

Checks whether a character is successfully transmitted to or from a remote
system. Must match the parity of the remote system.

For example, if you select even parity, when the number of 1 bits in the
character is odd, the parity bit is turned on to make an even number of 1
bits.

Options: O=none, 1 =Odd, or 2=even.

Default: 0.

RATE Determines the number of bits transmitted per second (baud rate). The
speed must match the speed of your modem and that of the remote system.

DEVICE

INITIAL

2-66 AIX Files Reference

Options: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400, 4800, 9600, or
19200.

Default: 1200.

Specifies the name of the asynchronous port used to make a connection to
a remote system.

Options: Locally created port names.

Default: ttyO.

Defines the dial prefix, a string that must precede the telephone number
when you autodial with a modem. For the proper dial commands, consult
the user's guide for your modem.

Options: ATDT, ATOP, or other values, depending on the type of modem
used.

Default: ATDT.

FINAL

ATE ate.def

Defines the dial suffix, a string that must follow the telephone number when
you autodial with a modem. For the proper dial commands, consult the
user's guide for your modem.

Options: Blank (none) or a valid modem suffix.

Default: no default.

WAIT Specifies the time to wait between redialing attempts. The wait period does
not begin until the connection attempt times out or until you interrupt it. If the
ATTEMPTS parameter is set to O (zero), no redial attempt occurs.

ATTEMPTS

Options: 0 (none) or a positive integer designating the number of seconds to
wait.

Default: 0.

Specifies the maximum number of times the ATE program tries to redial to
make a connection. If the ATTEMPTS parameter is set to O (zero), no redial
attempt occurs.

Options: O (none) or a positive integer designating the number of attempts.

Default: 0.

TRANSFER Defines the type of asynchronous protocol that transfers files during a
connection.

p pacing:
A file transfer protocol that controls the data transmission rate by
waiting for a specified character o-r for a certain number of seconds
between line transmissions. This helps prevent loss of data when
the transmission blocks are either too large or sent too quickly for
the sy~tem to process.

x xmodem:
An 8-bit file transfer protocol that detects data transmission errors
and retransmits the data.

Options: p for pacing, x for xmodem.

Default: p.

CHARACTER Specifies the type of pacing protocol to be used.

Character Signal to transmit a line. Select one character.

When the send subcommand encounters a linefeed
character while transmitting data, the subcommand waits to
receive the pacing character before sending the next line.

When the receive subcommand is ready to receive data, it
sends the pacing character, then waits 30 seconds to
receive data. The receive subcommand sends a pacing
character again whenever it finds a carriage return
character in the data. The receive subcommand ends when
it receives no data for 30 seconds.

Chapter 2. File Formats 2--67

ATE ate.def

NAME

Interval

Default: 0.

Number of seconds the system waits between each line it
transmits. The value of the Interval variable must be an
integer. The default value is 0, indicating a pacing delay of 0
seconds.

File name for incoming data (capture file).

Options: A valid AIX file name that is less than 40 characters long.

Default: kapture

LINEFEEDS Adds a line feed character after every carriage return character in the
incoming data stream.

ECHO

VT100

WRITE

XON/XOFF

2.;...68 AIX Files Reference

Options: 1 (on) or O (off).

Default: 0.

Displays the user's typed input.

For a remote computer that supports echoing, each character you send
returns and is displayed on your screen. When the ECHO parameter is on,
each character is displayed twice: first when it is entered, then when it
returns over a connection. When the ECHO parameter is off, each character
is displayed only once: when it returns over the connection.

Options: 1 (on) or O (off).

Default: 0.

The local console emulates a DEC VT100 terminal so DEC VT100 codes
can be used with the remote system. With the VT100 parameter off, the
local console functions like a workstation.

Options: 1 (on) or 0 (off).

Default: 0.

Captures incoming data and routes it to the file specified in the NAME
parameter as well as to the display. Carriage return or line feed
combinations are converted to line feed characters before they are written to
the capture file. In an existing file, data is appended to the end of the file.

Note: The CAPTURE_KEY key sequence can be used to toggle capture
mode on or off during a connection.

Options: 1 (on) or 0 (off).

Default: 0.

Controls data transmission at a port as follows:

• When an Xoff signal is received, transmission stops.

• When an Xon signal is received, transmission resumes.

ATE ate.def

• An Xoff .signal is sent when the receive buffer is nearly full.

• An Xon signal is sent when the buffer is no longer full.

Options: 1 {On), or O {Off).

Default: 1.

DIRECTORY Names the file that contains the user's dialing directory.

Default: the /usr/lib/dir file.

CAPTURE_KEY
Defines the control key sequence that toggles capture mode. When
pressed, the CAPTURE_KEY key sequence starts or stops capturing
{saving) the data that is displayed on the screen during an active
connection.

MAINMENU_KEY

Options: Any ASCII control character.

Default: ASCII octal 002 {STX). This is the Ctrl-B key sequence on
the workstation keyboard.

Defines the control key sequence that returns the Connected Main Menu so
you can issue a command during an active connection. The
MAINMENU_KEY control key sequence functions only from the connected
state.

Options: Any ASCII control character.

Default: ASCII octal 026 {SYN). This is the Ctrl-V key sequence on the
workstation keyboard.

PREVIOUS_KEY
Defines the control key sequence that displays the previous screen anytime
during the program. The screen that is displayed varies, depending on the
screen in use when you press the PREVIOUS_KEY key sequence.

Options: Any ASCII control character.

Default: ASCII octal 022 {DC2). The ASCII control character is mapped to
the AIX interrupt signal. This is the Ctrl-R key sequence on the workstation
keyboard.

Note: Changing or remapping the control keys may be necessary if you have two
applications in which control keys conflict. For example, if the control keys mapped
for the ATE program conflict with those in your text editor, you may want to remap
the ATE control keys.

The ASCII control character you select may be in octal, decimal, or hexadecimal
format, as follows:

octal

decimal

hexadecimal

000 through 037. The leading zero is required.

O through 31 .

OxOO through Ox1 F. The leading Ox is required. The x may be
uppercase or lowercase.

Chapter 2. File Formats 2-69

ATE ate.def

Example
To change characteristics of ATE emulation, create an ate.def file that defines those
characteristics.

For·example, to change the RATE to 300 bps, the DEVICE to tty3, the TRANSFER
mode to x (xmodem protocol), and the DIRECTORY to my. dir, create the following
ate.def file in the directory from which you run the ATE program:

RATE
DEVICE
TRANSFER
DIRECTORY

300
tty3
x
my.dir

Next time you start the ATE program from that directory, it uses the values you have defined
in place of the defaults.

Implementation Specifics
This file is part of Asynchronous Terminal Emulation in BOS Extensions 2.

File
/usr/lib/dir Contains the default dialing directory file.

Related Information
How to Edit the ATE Default File in in Communication Concepts and Procedures explains
the steps to follow to change the ate.def file. How to Set Up an ATE Dialing Directory in in
Communication Concepts and Procedures explains how to create a dialing directory file.

The ate command starts ATE and creates the ate.def file. The subcommands of ate include
the alter subcommand, connect subcommand, directory subcommand, modify
subcommand, send subcommand, and receive subcommand.

ATE Overview in Communication Concepts and Procedures introduces the ATE program.

ATE Overview for System Management in Communication Concepts and Procedures
discusses tasks involved in managing ATE and lists the aspects of ATE that can be
customized.

Using Control Keys with ATE in Communication Concepts and Procedures explains how the
control keys are used.

Using the ATE Unconnected Main Menu and Using the ATE Connected Main Menu in
Communication Concepts and Procedures explain how the menus work and which
commands are accessible from each menu.

2-70 AIX Files Reference

ATE Dialing Directory

ATE Dialing Directory File Format

Purpose
Lists phone numbers that the ATE program uses to establish modem connections.

Description
The ATE dialing directory file lists phone numbers that the Asynchronous Terminal Emulation
(ATE) system uses to establish remote connections over modems.

The dialing directory file can be named with any valid AIX name and established in any AIX
directory to which the user has read and write access. The dialing directory file can be edited
with any ASCII text editor. The default dialing directory is the /usr/lib/dir file.

The connect and directory subcommands of ATE access the dialing directory file. Use the
directory subcommand to view the dialing directory.

You can have more than one dialing directory. To change the directory file the ATE program
will use, modify the ate.def file in your current directory. (You can also enter phone numbers
with the connect command if they are not in your dialing directory.)

Note: The dialing directory file can contain up to 20 lines (one entry per line); ATE ignores
subsequent lines.

Format of Dialing Directory File entries
The dialing directory is similar to a page in a telephone book. It contains entries for the
remote systems you call with the ATE program. The format of a dialing directory entry is:

Name Phone Rate Length StopBit Parity Echo Linefeed

The fields must be separated by at least one space. More spaces can be used to make the
entry easier to read. The fields are:

Name

Phone

Rate

Length

StopBit

Name that identifies a telephone number. The name can be any
combination of 20 or fewer characters. Use the_ (underscore) instead of a
blank between words in a name; for example, data_bank.

The telephone number to be dialed. The number can be 40 characters or
fewer. Consult the user's guide for your modem for a list of acceptable digits
and characters. For example, if you must dial a 9 to access an outside line,
include a 9 and a , (comma) before the telephone number as follows:
9' 1112222.

Note: Although the telephone number can be up to 40 characters long, the
directory subcommand displays only the first 26 characters.

Transmission or baud rate (bits per second). Determines the number of
characters transmitted per second. Select a baud rate that is compatible
with the communication line you are using. The following are acceptable
rates: SO, 75, 110, 134, 150,300,600, 1200, 1800,2400,4800,9600,or
19200.

Number of bits that make up a character. The entry for the Length field can
be 7 or 8.

Stop bits that signal the end of a character. The entry for the StopBitfield
can be 1 or 2.

Chapter 2. File Formats 2-71

ATE Dialing Directory

Example

Parity

Echo

Linefeed

Checks whether a character was successfully transmitted to or from a
remote system. The entry for the Parity field can be 0 (none), 1 (odd), or 2
(even).

Determines whether typed characters display locally. The entry for the Echo
field can be 0 (echo off) or 1 (echo on).

Adds a linefeed character at the end of each line of data coming in from a
remote system. The linefeed character is similar in function to the carriage
return and newline characters. The entry for the Linefeedfield can be 0
(linefeed off) or 1 (linefeed on).

Following is a sample dialing directory entry:

CompuAid 111-0000 1200 7 1 2 0 0

In this example, compuAid is the Name, 111-0000 is the Phone, 1200 is the Rate, 7 is the
Length, 1 is the StopBit, 2 is the Parity, the first o (zero) is the Echo, and the second o
(zero) is the Linefeed.

Implementation Specifics

Files

This file is part of Asynchronous Terminal Emulation in BOS Extensions 2.

ate.def
/usr/lib/dir

Contains ATE default values.
Contains the default dialing directory listing.

Related Information
How to Set Up a Dialing Directory File for ATE in Communication Concepts and Procedures
explains the steps to follow in creating a customized dialing directory file and instructing ATE
to use it instead of the default listing.

How to Edit the ATE Default File in Communication Concepts and Procedures explains how
to set up the ate.def file for your defaults.

The ate command starts the ATE program. The ATE connect subcommand and directory
subcommand read the dialing directory file.

ATE Overview in Communication Concepts and Procedures introduces the ATE program.

ATE Overview for System Management in Communication Concepts and Procedures
discusses tasks involved in managing ATE and lists the aspects of ATE that can be
customized.

2-72 AIX Files Reference

BNU Devices

BNU Devices File Format

Purpose
Contains information about devices on the local system that can establish a connection to a
remote computer using the Basic Networking Utilities {BNU) program.

Description
The /usr/lib/uucp/Devices file contains information about the devices on the local system
that can establish a connection to a remote computer using the Basic Networking Utilities
{BNU) program. This file includes information for hardwired, telephone, and TCP/IP
communication links.

Note: Only someone with root user authority can edit the Devices file, which is owned by
the uucp login ID.

Fields in the Devices File
The Devices file must contain a description of each device on the local system that can
establish a remote connection using the BNU program. Each line in the Devices file includes
the following fields:

Type Typically specifies the type of hardwired or automatic calling unit {ACU)
device.

Line Specifies the device name for the port.

Line2 Specifies the dialer name if the Line entry specifies an 801 dialer.

Class Typically specifies the transmission speed.

Dialer-Token Pairs
Specifies a particular type of autodialer {modem) and the token {a defined
string of characters) that is passed to the dialer. Valid entries for this field
are defined in the /usr/lib/uucp/Dialers file.

The fields appear on the line as follows:

Type Line Line2 Class Dialer-Token Pairs

There must be an entry in every field of a line in the Devices file. If a field does not apply to
the particular type of device, system, use a- {hyphen) as a placeholder.

Lines in the Devices file cannot wrap. Each entry must be on only one line in the file.
However, the Devices file can contain blank lines and comment lines. Comment lines begin
with a# {pound sign). Blank lines are ignored.

Type Field

Enter one of the following keywords in this field:

Keyword Explanation

ACU Use this keyword, entered in uppercase letters, if your site connects multiple
systems over the telephone network using automatic calling units
{autodialers or modems).

Direct Use this keyword, beginning with an uppercase D, if your site uses
hardwired lines to connect multiple systems.

Chapter 2. File Formats 2-73

BNU Devices

TCP. Use this keyword, in uppercase letters, if your site uses TCP/IP.

SystemName Enter the name of a particular remote system hardwired to the local system.
The SystemName keyword is the name assigned to each individual system,
such as hera, zeus, or merlin.

This field corresponds to the Type field in the /usr/lib/uucp/Systems file.

Line Field

Type the device name for the line, or port, used in the communication link. For example, use
the appropriate device name for a hardwired line, such as ttyl. For a line connected to an
ACU (a modem), use a device name appropriate to the dialer, such as ttyl or tty2. For a
TCP cor:mection, enter a hyphen as a placeholder.

Une2Field

Unless you are using an 801 dialer, type a - (hyphen) in this field as a placeholder. If you are
using an 801 dialer, put the device name of the 801 ACU in this field. For example, if the
entry in the Type field is ACU and the Line field entry (specifying the modem) is ttyl, the
Line2field entry (specifying the 801 dialer for the modem) might be tty3 or tty4.

Note: The Line2 field is used only to support older modems that require 801-type dialers.
The modem is plugged into one serial port, and the 801 dialer is plugged into a
separate serial port.

Class Field

For an ACU or a hardwired line, the Class field can be the speed of the device. In this case,
for a hardwired line, type the transmission rate of the device connecting the two systems.
For a telephone connection, type the speed at which the ACU transmits data, such as 3 o o
or 1200 bps.

This field can also contain a letter with a speed (for example, c1200, 01200) to differentiate
between classes of dialers. For example, some offices have more than one telephone
network, one for internal use and one for external communications. In such a case, it is
necessary to distinguish which lines should be used for each connection.

The Class field in the Devices file is matched against the Class field in the
/usr/lib/uucp/Systems file. For example, if the Systems file entry for system hera is:

I
hera Any ACU 1200 3-3-5-2 ogin: nuucp ssword: oldoaktree

BNU searches for an entry in the Devices file with a Type of ACU and a Class of 1200.

Some devices can be used at several specific speeds. In this case, make multiple entries for
the device, specifying each speed on a separate line in the Devices file. If BNU cannot
connect at the first speed, it will try the following speeds successively.

If a device can be used at any speed, type the word Any in the Class field. Note that the A in
Any must be uppercase.

For a TCP/IP connection, enter a - (hyphen) as a placeholder.

Dialer-Token Pair Field

The Dialer-Token Pair field specifies a particular type of autodialer (modem) and the token (a
defined string of characters) that is passed to the dialer. Valid entries for this field are defined
in the /usr/lib/uucp/Dialers file.

2-7 4 AIX Files Reference

BNU Devices

For a hardwired connection, enter the word direct (note the lowercase d) as the Dialer
entry and leave the Token entry blank.

For a telephone connection, enter the type of dialer and the token that is passed on to that
modem. The Token field entry is either a telephone number or a predefined string used to
reach the dialer.

For a telephone connection, enter one of the following as the Dialerfield entry:

Entry Definition

hayes A Hayes dialer.

Other Dialers Other dialers that you can specify by including the relevant information in
the /usr/lib/uucp/Dialers file.

TCP A TCP/IP connection. Enter TCP in the Dialerfield entry if you have also
entered TCP in the Type field.

Each Dialerfield entry included as part of a Dialer-Token Pairfield in the Devices file has a
corresponding entry in the Dialers file.

If the Token field entry represents a telephone number, enter one of the following in the
Token field to specify how the BNU program should use the telephone number listed in the
/usr/lib/uucp/Systems file:

Entry Definition

\D The default token in a Dialer-Token Pairfield. The \D token specifies that
the BNU program should take the phone number listed in the
/usr/lib/uucp/Systems file and pass it to the appropriate dialer script (entry)
in the /usr/lib/uucp/Dialers file without including a dial-code abbreviation.

\ T This token instructs the BNU program to process the phone number by
including the data specified in the /usr/lib/uucp/Dialcodes file.

Note: If you are using dial-code abbreviations specified in the Dialcodes
file for certain telephone numbers, you must enter the \ T string as
the token in those entries in the Dialers file.

blank Leaving the Token field blank is the same as entering \D, so a blank is
usually sufficient as a token if you have included complete telephone
numbers in the /usr/lib/uucp/Systems file.

If the Token field does not represent a telephone number, enter the predefined string
necessary to reach the dialer.

Entries for Hardwired Connections
In general, each entry for a hardwired connection consists of two lines. The first line
specifies the port (line) that the BNU command uses to connect to the remote system. The
second line specifies the remote system. However, if the two systems use a permanent
virtual circuit connection, the entry is a single line in the Devices file.

To set up a hardwired connection specifying a port and a remote system, make a two-line
entry as follows:

1. Enter the keyword Direct, with an uppercase D, in the Type field in the first line of the
entry.

2. Enter the name of the remote system to which you want to connect the local computer
over the hardwired line in the Type field in the second line of the entry.

Chapter 2. File Formats 2-75

BNU Devices

3. Enter the device name appropriate for the hardwired connection used at your site in the
Line field in both lines of the entry.

4. Enter a - (hyphen) for a placeholder in the Line2 field in both lines of the entry.

5. Enter the transmission rate appropriate for the hardwired connection used at your site in
the Class field in both lines of the entry.

6. Enter direct (all lowercase) in the Dialer-Token Pairs field in both lines of the entry.

To set up a hardwired connection between two systems that use a permanent virtual circuit
connection, make a one-line entry as follows:

1. Enter the name of the remote system in the Type field.

2. Enter the name of the permanent virtual circuit connection in the Line field.

3. Enter a - (hyphen) for a placeholder in the Line2 field.

4. Enter the transmission rate appropriate for the hardwired connection used at your site in
the Class field.

5. Enter direct (all lowercase) in the Dialer-Token Pairs field.

Continue adding entries to the Devices file until you have listed each hardwired device
connecting the local system to a remote system.

Entries for Autodialer Connections
In telephone-connection entries, the Type field is specified as an ACU. You should type ACU
as the Type field entry in all remote connections established over a phone line. To set up
Device file entries for autodialer connections, make a one-line entry for each modem as
follows:

1. Enter Acu in the Type field.

2. The Line field contains the name of the device that is attached to the modem. Enter the
device name appropriate for your site.

3. Enter a - (hyphen) as a placeholder in the Line2 field, unless the autodialer is a standard
801 dialer. If the autodialer is a standard 801 dialer, enter 8o1.

4. In the Class field, enter the baud rate appropriate for your modem and line (this can be
300, 1200, 2400, or higher, depending on the modem) or the class of your modem (for
example, 02400).

Note: If the modem can be used at more than one specific rate, make a separate entry
in the Devices file for each rate. If the modem can be used at any rate, enter the
word Any in the Class field.

5. Enter the name of the modem as the Dialer field entry in the Dialer-Token Pair field. If
you are planning to include complete phone numbers in the /usr/lib/uucp/Systems file,
leave the Token field blank. (A blank instructs the BNU program to use the default \D
token.) If you are planning to use dialing-code abbreviations specified in the
/usr/lib/uucp/Dialcodes file, enter the token \ T .

Continue adding entries to the Devices file until you have listed each connection between
the local system and a remote system that uses a telephone line and a modem.

2-76 AIX Files Reference

BNU Devices

Entry for Use with TCP/IP

Examples

If your site is using the TCP/IP system, include the relevant TCP/IP entry in the Devices file.
To set up the file for use with the TCP/IP system, enter a line in the Devices file as follows:

1. Enter TCP in the Type field.

2. Enter hyphens in the Line, Line2, and Class fields.

3. Enter TCP as the Dialer field entry and leave the Token field blank.

Setting Up Entries for Hardwired Connections
1. To set up a Device file entry specifying a port and a remote system, make an entry as

follows:

Direct ttyl - 1200 direct

zeus ttyl - 1200 direct

The Type field lists Direct (for a direct connection) in the first part and zeus (the name
of the remote system) in the second part. The local system is connected to system zeus
by way of device ttyl, which is listed in the Line field in both parts of the example.

The Line2 field contains actual data only when the entry specifies a certain type of
telephone connection. A - (hyphen) is used as a placeholder in other types of
connections, as is the case in this example. This device transmits at a rate of 1200 bps,
which is listed in the Class field in both parts of the example. The word direct in the
Dialer field portion of the Dialer-Token Pair field indicates that this is a direct connection.

Setting Up Entries for Autodialer Connections
2. For a standard Hayes modem that can be used at only one baud rate, make an entry as

follows:

ACU tty2 - 1200 hayes

The Type field is specified as ACU. The Line field is specified with the device name tty2.

Because this modem is not an 801 dialer, a - (hyphen) is used as a placeholder in the
Line2 field. The Class field entry is a transmission rate of 12 o o baud. The Dialer field
part of the Dialer-Token Pair field is specified as a hayes modem, and the Token field
part is left blank.

3. To specify a standard Hayes modem that can be used at different baud rates, make an
entry as follows:

ACU tty3 - 1200 hayes
ACU tty3 - 300 hayes

These two lines specify the same modem, a hayes, which can be used at either 1200 or
3 o o baud, as specified in the Class field. The modem is connected to a device named
tty3 {the Line field), and the Line2 field contains the - {hyphen} placeholder. The Dialer
field part of the Dialer-Token Pairfield is specified as a hayes modem, and the Token
field is left blank.

4. To specify a standard Hayes modem that can be used at any baud rate, make an entry as
follows:

ACU tty2 - Any hayes

Chapter 2. File Formats 2-77

BNU Devices

These two lines specify a hayes modem that can be used at any baud rate, as specified
by the word Any entered in the Class field. Note that the word Any must be in with an
uppercase A.

5. To specify a connection using a standard 801 dialer, make an entry as follows:

ACU tty4 ttyS 1200 801
ACU tty6 tty? 300 801

In these entries, the ACU entries are connected to devices named tty4 and tty6,
specified in the Line field. In both cases, there is an entry in the Line2 field because a
standard 801 autodialer is specified in the Dialer-Token Pair field. Because 801 is
specified as the dialer in these two examples, the Line2 field must contain the device
names of the 801 AC Us. The Class field entry specifies a transmission rate of 12 o o baud
for the first example and 3 o o for the second. The Token field part of the
Dialer-Token Pair field is blank.

Setting up the Entry for Use with TCP/IP
6. If your site is using the TCP/IP system, enter the following in the Devices file:

TCP - - - TCP

TCP is specified in the Type field. Hyphens are used as placeholders in the Line, Line2,
and Class fields. TCP is specified as the Dialer field entry, with the Token entry left blank.

Setting Up Entries for Both Local and Remote Systems
The following examples illustrate the entries needed in the Devices file for both local and
remote systems in order for the two systems to communicate using the BNU program.

7. To configure a hardwired connection, note the following information.

The following entries configure local and remote Devices files for a hardwired connection
between systems zeus and hera, where zeus is considered the local system and hera
remote system. The hardwired device on system zeus is ttyl; on system hera it is
tty2.

The Devices file on system zeus contains the following entry in order to connect to the
remote system hera:

Direct ttyl - 1200 direct
hera ttyl - 1200 direct

The Devices file on system hera contains the following entry for communications with
system zeus:

Direct tty2 - 1200 direct
zeus tty2 ~ 1200 direct

8. To configure a telephone connection, note the following information.

These files are set up to connect systems venus and merlin over a telephone line
using modems. System venus is considered the local system, and system merlin is
considered the remote system.

On both systems, the device ttyl is hooked to a hayes modem at 1200 baud. Both
computers include partial phone numbers in their /usr/lib/uucp/Systems files and dialing
codes in their /usr/lib/uucp/Dialcodes files.

2-78 AIX Files Reference

BNU Devices

The Devices file on system venus contains the following entry for the connection to
system merlin:

ACU ttyl - 1200 hayes \T

The Devices file on system merlin contains the following entry for the connection to
system venus:

ACU ttyl - 1200 hayes \T

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/lib/uucp directory

/usr/lib/uucp/Dialcodes file

/usr/lib/uucp/Dialers file

/usr/lib/uucp/Systems file

Contains all the configuration files for BNU, including
the Devices file.

Contains dialing code abbreviations.

Specifies initial handshaking on a connection.

Describes accessible remote systems.

Related Information
The uucpadm command can be used to make entries in the Devices file.

The uucico daemon is used to establish and debug remote connections.

The uuxqt daemon is used to execute remote commands.

Commands used to establish remote connections are the cu command, uucp command,
uuto command, and uux cornmand.

How to Configure BNU and How to Configure BNU for Use with TCP/IP Communication
Concepts and Procedures.

Understanding the BNU Configuration Files and Configuring BNUCommunication Concepts
and Procedures.

Chapter 2. File Formats 2-79

BNU Dialcodes

BNU Dialcodes File Format

Purpose
Contains the initial digits of telephone numbers used to establish remote connections over a
phone line.

Description
The /usr/lib/uucp/Dialcodes file contains the initial digits of telephone numbers used by the
Basic Networking Utilities (BNU) program to establish remote connections over a phone line.
The Dialcodes file simplifies entries in the /usr/lib/uucp/Systems file for sites where a
number of device phone numbers have the same prefix.

If users at your site communicate regularly by way of telephone lines and modems to
multiple systems all located at the same remote site, or to multiple systems located at
different remote sites, use the dial-code abbreviations in the /usr/lib/uucp/Systems file
rather than entering the complete phone number of each remote modem in that file.

The Dialcodes file contains dial-code abbreviations and partial phone numbers that
complete the telephone entries in the /usr/lib/uucp/Systems file. Entries in the Dialcodes
file contain an alphabetic prefix attached to a partial phone number that may include the
following information in the order listed:

• Codes for an outside line

• Long-distance access codes

• A 1 (one) plus the area code (if the modem is out of the local area)

• The three-digit exchange number.

The relevant alphabetic prefix (representing the partial phone number), together with the
remaining four digits of that number, is then entered in the Phone field in the
/usr/lib/uucp/Systems file.

Following is the form of an entry in a Dialcodes file:

Dia/CodeAbbre viation DialingSequence
I

The Dia/CodeAhbreviation part of the entry is an alphabetic prefix containing up to 8 letters,
established when setting up the dialing-code listing. The DialingSequence is composed of all
the digits in the number that precede the actual four-digit phone number.

Note: If your site uses only a relatively small number of telephone connections to remote
systems, include the complete phone numbers of the remote modems in the
/usr/lib/uucp/Systems file rather than use dial-code abbreviations.

Enter each prefix only once in the Dialcodes file. When you have set up a dial-code
abbreviation, use that prefix in all relevant entries in the /usr/lib/uucp/Systems file.

Only someone with root user authority can edit the Dialcodes file, which is owned by
the uucp program login ID.

2-80 AIX Files Reference

Example

BNU Dialcodes

1 . The Dialcodes file on system venus contains the following dial-code prefix for use with a
number in the /usr/lib/uucp/Systems file:

local 9=445

The Systems file on system venus contains the following entry for system zeus,
including a phone number and a dialing prefix:

zeus Any ACU 1200 local8784 in:~in: uzeus word: thunder

When BNU on system venus dials system zeus, BNU uses the expanded telephone
number 9=4458784.

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/lib/uucp directory

/usr/lib/uucp/Devices file

/usr/lib/uucp/Dialers file

/usr/lib/uucp/Systems file

Contains all the configuration files for BNU, including the
Dialcodes file.

Contains information about available devices.

Specifies initial handshaking on a connection.

Describes accessible remote systems.

Related Information
Understanding the BNU Configuration Files and Configuring BNU in Communication
Concepts and Procedures.

How to Configure BNU in Communication Concepts and Procedures.

The uucpadm command can be used to make entries in the Dialcodes file.

Commands used to establish remote connections are the cu command, tip command, uucp
command, uuto command, and uux command.

Chapter 2. File Formats 2-81

BNU Dialers

BNU Dialers File Format

Purpose
Lists modems used for Basic Networking Utilities (BNU) remote communications links.

Description
The /usr/lib/uucp/Dialers file lists the modems used by the Basic Networking Utilities (BNU)
program and specifies the initial handshaking necessary to establish remote
communications links. Handshaking is a series of expect-send sequences that specify the
initial communications that occur on a link before it is ready to send or receive data. Using
the handshaking, the local and remote systems confirm that they are compatible and
configured to transfer data.

The Dialers file contains an entry for each autodialer that is included in the
/usr/lib/uucp/Devices file. It also contains entries specifying no handshaking for direct
hardware links (the direct entry) and TCP/IP links (the TCP entry). The first field of the
Dialers file, which specifies the dialer, is matched to the fifth field of the Devices file, the
Dialer-Token Pairfield, to determine handshaking when making a connection.

Note: Only someone with root user authority can edit the Dialers file, which is owned by
the uucp login ID.

Fields in the Dialers File
Every modem is listed on a line by itself in the Dialers file. Each line consists of three groups
of information: the Dialer Name field, the Dial Tone and Wait Characters field, and the
Handshaking field.

Dialer Name Field

The first field in the Dialers file, the Dialer Name field, specifies the type of autodialer
(modem) used in the connection. It matches the fifth field, the Dialer-Token Pairfield, in the
/usr/lib/uucp/Devices file. When a particular device is used to make a connection, BNU
uses the Dialer-Token Pair field in the Devices file to find the handshaking entry in the
Dialers file.

If your system has direct hardware connections to one or more remote systems, include an
entry with a Dialer Name of direct. Similarly, if your system uses TCP/IP to connect to one
or more other systems, include an entry with a DialerName of TCP. These entries
correspond, respectively, to the word direct and the word TCP in the Dialer-Token Pairs
field of entries in the /usr/lib/uucp/Devices file. Omit the Dial Tone and Wait Characters
field and the Handshaking field, since no handshaking is needed on these connections.

Dial Tone and Wait Characters Field

The second field, the Dial Tone and Wait Characters field, consists of two sets of two
characters, for a total of four entries. These characters comprise a translation string. In the
actual phone number of the remote modem, the first character in each string is mapped to
the second character in that set.

Entry Action

-,-, Translate the telephone number. Any= (equal sign) represents wait for dial
tone and any - (hyphen) represents pause.

2-82 AIX Files Reference

Examples

BNU Dialers

"" Wait for nothing; continue with the rest of the string.

This field generally translates the = and - characters into whatever the dialer uses for wait
for dial tone and pause.

For direct and TCP entries, omit this field.

Handshaking Field

The handshaking, or dialer negotiations, is an expect-send sequence of ASCII strings. This
sequence is given in the Handshaking field, which comprises the remainder of the entry. This
string is generally used to pass telephone numbers to a modem, or to make a connection to
another system on the same data switch as the local system. The string tells the cu or ct
program or the uucico daemon the sequence of characters to use to dial out on a particular
type of modem. If the connection succeeds, the line in the Dialers file is interpreted to
perform the dialer negotiations.

The handshaking characters include entries such as \d to specify a delay, \p for a pause,
\r for a carriage return, and \c for a new line. To determine the appropriate entries in the
handshaking string, refer to the documentation that accompanied the modems that you are
including in the Dialers file and to the list of expect-send sequences given in the
/usr/lib/uucp/Systems file format.

For direct and TCP entries, omit this field.

Setting Up Entries in the Dialers File
1. The following example lists several entries in a typical Dialers file:

hayes =,-, ,,,, \dAT\r\c OK \pATDT\T\r\c CONNECT
penril =W-P "" \d > s\p9\c)-W\p\r\ds\p9\c-) y/c : \E\TP > 9\c OK
ventel =&-% "" \r\p \r\p-\r\p-$ <K\D%%\r>\c ONLINE!
vadic =K-K "" \005\p *-\005\p-* D\p BER? \E\D\e \r\c LINE
direct
TCP

Note: In the Dialers file, each entry must be entirely on one line.

Notice that the next-to-last entry in the preceding example consists only of the word
·direct. This entry indicates that hardwired connections do not require any handshaking.
Similarly, the last entry, TCP, indicates that TCP/IP connections require no handshaking.

2. The following example interprets the first line in the preceding Dialers file. This is a
standard entry that may be included in your Dialers file with modifications for use at your
site.

hayes =,-, "" \dAT\r\c OK \pATDT\T\r\c CONNECT

The first two sequences(=,- and'"') comprise the Dial Tone and Wait Characters field.
The remaining strings comprise the Handshaking field. Following is an explanation of
how each entry affects the action of the dialer.

Entry

-,-,

""
\dAT

Action

Translate the telephone number. Any= (equal sign) represents wait
for dial tone and any- (hyphen) represents pause.

Wait for nothing; continue with the rest of the string.

Delay, then send AT (the Hayes Attention prefix).

Chapter 2. File Formats 2-83

BNU Dialers

\r\c

OK

\pATDT

\T

\r\c

CONNECT

Send a carriage return {r) followed by a new line {c).

Wait for OK from the remote modem, signaling that the first part of the
string has executed.

Pause {p), then send ATDT. AT is again the Hayes Attention prefix, D
represents a dialing signal, and T represents a touch-tone dial tone.

Send the telephone number, which is specified in the
/usr/lib/uucp/Systems file, with dial-code translation from the
/usr/lib/uucp/Dialcodes file.

Send a carriage return and a new line following the number.

Wait for CONNECT from the remote modem, signaling that the modems
are connected at the baud rate specified in the /usr/lib/uucp/Devices
file.

Note: If you need to modify this example for use at your site and are unsure about the
appropriate entries in the handshaking string, refer to the documentation that
accompanied the modems you are including in the Dialers file.

Setting Up the Direct Entry
3. If your BNU configuration includes hardwired connections, the Dialers file must contain a

direct entry, as follows:

direct

This entry indicates that hardwired connections do not require any handshaking. It
corresponds to the word direct in the Dialer-Token Pairs field of entries for hardwired
devices in the /usr/lib/uucp/Devices file.

Setting Up the TCP/IP Entry
4. If your BNU configuration includes TCP/IP connections, the Dialers file must contain a

TCP entry, as follows:

TCP

This entry indicates that TCP/IP connections do not require any handshaking. It
corresponds to the word TCP in the Dialer-Token Pairs field of entries for TCP/IP
connections in the /usr/lib/uucp/Devices file.

Setting Up Entries for Both Local and Remote Systems
5. The following example illustrates the entries needed in the Dialers file to correspond to

entries in the /usr/lib/uucp/Devices file for both local and remote systems so that the
two systems can communicate using the BNU program.

These files are set up to connect systems venus and merlin over a telephone line
using modems. System venus is considered the local system, and system merlin is
considered the remote system. On both systems, the device ttyl is hooked to a hayes
modem at 1200 baud.

• The /usr/lib/uucp/Devices file on system venus contains the following entry for the
connection to remote system merlin:

ACU ttyl - 1200 hayes

• The Dialers file on system venus contains the following entry for its modem:

hayes =,-, uu \dAT\r\c OK \pATDT\T\r\c CONNECT

2-84 AIX Files Reference

BNU Dialers

• The /usr/lib/uucp/Devices file on system merlin contains the following entry for the
connection to system venus:

ACU ttyl - 1200 hayes

• The Dialers file on system merlin contains the following entry for its modem:

hayes =,-, "" \dAT\r\c OK \pATDT\T\r\c CONNECT

Troubleshooting Connection Problems
6. When establishing a connection between a local and a remote system using a telephone

line and modem, the BNU program consults the Dialers file. (The BNU program also
checks the /usr/lib/uucp/Systems file to make sure it contains a listing for the specified
remote computer.) If users report a faulty connection, use the uucico command to
debug the connection problem. For example, if users are experiencing difficulties
connecting to remote system venus, issue the following command:

/usr/lib/uucp/uucico -rl -svenus -x9

where -r 1 specifies the server mode, -svenus the name of the remote system to which
you are trying to connect, and -x9 the debug level that produces the most detailed
debugging information.

Expect-send debugging output produced by the uucico command can come either from
information in the Dialers file or from information in the /usr/lib/uucp/Systems file. If the
relevant line in the Dialers file is not set up correctly for the specified modem, the BNU
program will probably display the following error message:

DIALER SCRIPT FAILED

If the dialer script fails, verify the following:

• Make sure that both the local and the remote modems are turned on, that they are
both set up correctly, and that the telephone number of the remote modem is correct.

• Check the Dialers file and make sure the information is correctly specified for the local
modem. If possible, also check the Dialers file on the remote system.

• Check the documentation that came with your modem to make sure you have used
the correct expect-send sequence characters in the Dialers file.

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/lib/uucp directory

/usr/lib/uucp/Devices file

/usr/lib/uucp/Dialcodes file

/usr/lib/uucp/Systems file

Contains all the configuration files for BNU, including the
Dialers file.

Contains information about available devices.

Contains dialing code abbreviations.

Describes accessible remote systems.

Chapter 2. File Formats 2-85

BNU Dialers

Related Information
How to Configure BNU in Communication Concepts and Procedures.

The daemon used to establish and debug remote connections is the uucico daemon. The
procedures How to Monitor a BNU Remote Connection and How to Use the uucico Daemon
to Debug BNU Login Failures in Communication Concepts and Procedures suggest steps to
follow when using the uucico daemon for debugging.

Commands used to establish remote connections are the ct command and cu command.

Commands used to debug remote connections are the uutry command, Uutry command,
and uukick command.

Understanding the BNU Configuration Files and Configuring BNU in Communication
Concepts and Procedures.

2-86 AIX Files Reference

BNU Maxuuscheds

BNU Maxuuscheds File Format

Purpose
Limits the number of instances of the uusched and uucico daemons that can run
simultaneously.

Description
The /usr/lib/uucp/Maxuuscheds file limits the number of instances of the Basic Networking
Utilities (BNU) uusched daemons that can run simultaneously. Since each instance of the
uusched daemon is associated with one instance of the uucico daemon, the file limits the
instances of the uucico daemon in a similar way. This file is used in conjunction with the
lock files in the /etc/locks directory to determine the number of systems currently being
polled. Use this file to help manage system resources and load averages.

The Maxuuscheds file contains an ASCII number that can be changed in order to meet the
needs of your installation; the default is 2. The larger the number, the greater the potential
load on the local system. In any case, the limit should always be less than the number of
outgoing lines used by BNU.

The Maxuuscheds file requires neither configuration nor maintenance, unless the system
on which it is installed is contacted frequently and heavily by users on remote systems.

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/etc/locks directory

/usr/lib/uucp directory

Contains lock files that prevent multiple uses of devices and
multiple calls to systems.

Contains all the configuration files for BNU, including the
Maxuuscheds file.

Related Information
Understanding the BNU Configuration Files and Configuring BNU in Communication
Concepts and Procedures.

The uucico daemon contacts remote systems. The uusched daemon schedules contacts
with remote systems.

Chapter 2. File Formats 2-87

BNU Maxuuxqts

BNU Maxuuxqts File Format

Purpose
Limits the number of instances of the BNU uuxqt daemon that can run simultaneously on
the local system.

Description
The /usr/lib/uucp/Maxuuxqts file limits the number of instances of the Basic Networking
Utilities (BNU) uuxqt daemon that can run simultaneously on the local system, thus limiting
the number of commands from remote systems that can be running at any one time.

This file contains an ASCII number that can be changed in order to meet the needs of your
installation; the default value is 2. In general, the larger the number, the greater the potential
load on the local system.

The Maxuuxqts file requires neither configuration nor maintenance, unless the system on
which it is installed is used frequently and heavily by users on remote systems.

Implementation Specifics

File

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/lib/uucp directory Contains all the configuration files for BNU, including the
Maxuuxqts file.

Related Information
Understanding the BNU Configuration Files and Configuring BNU in Communication
Concepts and Procedures.

The uuxqt daemon executes commands from remote systems.

2-88 AIX Files Reference

BNU Permissions

BNU Permissions File Format

Purpose
Specifies BNU permissions for remote systems that call or are called by the local system.

Description
The /usr/lib/uucp/Permissions file specifies access for remote systems that use the Basic
Networking Utilities (BNU) program to communicate with the local system. The Permissions
file contains an entry for each system that the local system contacts using BNU. These
entries correspond to entries in the /usr/lib/uucp/Systems file. The Permissions file also
contains an entry for each login ID that remote systems are permitted to use when using
BNU to log into the local system.

Entries in the Permissions file specify the following:

• The login ID for a remote system

• The circumstances under which a remote system is allowed to send files to and receive
files from the local system

• The commands a remote system is permitted to execute on the local system.

The access permissions that you set in a Permissions file affect remote systems as a
whole. They do not pertain to individual users who work on those remote systems.
Permissions limiting uucico and uuxqt daemon activities restrict the BNU access to a local
system by all users on a specified remote system. Restricted access includes the BNU or
UUCP administrator of that remote system and individuals with root user privileges (unless
you have set up a special login and password for such users). Conversely, less restrictive
permissions allow more generous BNU access to all users on the specified remote system.

The default permissions for sending and receiving files and executing commands are very
restrictive. However, the file also provides options that enable you to change these defaults if
you want to allow remote systems to have less restricted access to the local system.

Warning: Any access permissions set in the Permissions file affect all BNU
communications, including those made through the mail facility or over a TCP/IP connection.

Warning: Entries in a Permissions file do not affect a remote-system user with a valid login
on a specified local system. Such users can use remote login commands (such as cu, ct, tn,
or tip) to connect to, log in on, and use a system regardless of the restrictions you set up in
the local Permissions file. A user with a valid login ID is subject only to the permission
codes established for that user's user ID (UID) and group ID (GID).

Each entry in a Permissions file is a logical line. If an entry is too long to fit on the screen,
make the last character in that physical line a\ (backslash), which indicates continuation,
and then type the remainder of the entry on the next physical line.

Each logical line contains a required entry specifying a login ID (LOGNAME entry) or the
name of a remote system (MACHINE entry), followed by optional Option/Value pairs
separated by either spaces or tabs. Both the LOGNAME and MACHINE entries and the
Option/Value pairs are composed of name/value pairs. Name/value pairs consist of the
name of the entry or option followed by= (an equal sign) and the value of the entry or
option, with no spaces allowed within the pair.

Chapter 2. File Formats 2-89

BNU Per.missions

The Permissions file can also contain comment lines and blank lines. Comment lines begin
with a# (pound sign) and occupy the entire physical line. Blank lines are ignored.

Note: Only someone with root user authority can edit the Permissions file, which is owned
by the uucp login ID.

LOGNAME and MACHINE Entries

2-90

The Permissions file contains two types of required entries, the LOGNAME entry and the
MACHINE entry. The LOGNAME entry specifies the login IDs and access permissions for
remote systems that are allowed to contact the local system. The MACHINE entry specifies
the names and access permissions for the remote systems that the local system can
contact.

Both LOGNAME and MACHINE entries specify what the remote system can do on the local
system. However, LOGNAME entries take effect when a remote system contacts the local
system, while MACHINE entries take effect when the local system contacts a remote
system. The permissions given to the remote system in the two types of entries can be the
same or different. For example, since it is relatively easy for an unknown system to call you
and Jog in on your system, you may want to restrict permissions in LOGNAME entries.

If system hera contacts system zeus and logs i!1 as uhera, the LOGNAME=uhera entry in
the Permissions file on zeus controls what actions system hera can take on system zeus.
If system zeus contacts system hera, the MACHINE=hera entry in the Permissions file on
zeus controls what actions system hera can take on system zeus.

The formats for the Permissions file entries are:

Entry

LOG NAME

MACHINE

AIX Files Reference

Description

Specifies the login IDs that remote systems can use when calling the
local system.

LOGNAME:LoginlDf.:LoginlD . ..] [Option= Value ...]

Remote systems log in with one of the IDs listed in the
LoginlD list. While logged in with that ID, the remote system
has the permissions specified in the Option= Value list. The
remote system that is calling must be listed in the
/usr/lib/uucp/Systems file on the local system.

Note: All login IDs used by calling remote systems must be in a
LOGNAME entry in the Permissions file. There can be only one
LOGNAME entry in the Permissions file for each login ID.

Specifies the systems that the local system can contact

MACHINE:SystemName[:SystemName . ..] [Option= Value . ..)

The local system can contact the systems listed. When
contacted, the remote systems will be able to carry out
operations on the local system according to the permissions
specified in the Option= Value list.

BNU Permissions

MACHINE:OTHER [Option= Value . ..]

Systems not specifically listed in another MACHINE entry
can contact the local system with the permissions specified
in the Option= Value list.

Note: The local system cannot call any remote system that is not listed
by name in a MACHINE entry, unless there is a
MACHINE:OTHER entry in the Permissions file on the local
system.

Combined LOGNAME and MACHINE Entries
A LOGNAME and a MACHINE entry can be combined into a single entry when both parts
include the same options.

Format of OptionNalue Pairs
Several option/value pairs can be used with the LOGNAME and MACHINE entries. The
default permissions are restrictive, but can be changed with one or more of the option/value
pairs. These options allow different remote systems different types of access to the local
system when using the BNU file transport and command execution programs. The
option/value pairs and their formats are:

Option Description

REQUEST Specifies when a remote system can request file transfers. The default is
REQUEST =no.

REQUEST:yesWhen it contacts the local system the remote system can
request that files be transferred.

REQUEST:no The remote system must wait for a contact from the local
system before the files can be transferred.

SENDFILES Specifies when files can be transferred to a remote system. Used only in the
LOGNAME entry. The default is SENDFILES=call.

READ

SENDFILES:yes
Files can be sent to the remote system immediately after
the remote system finishes its operations on the local
system.

SENDFILES:call
Files cannot be sent to the remote system until the local
system initiates a contact to the remote system.

Designates the directories in which reside files that the remote system can
read.

READ=PathName[:PathName . ..]
The remote system can read any file residing in the
PathName directory (or subdirectories of the PathName
directory) if the file permissions include read rights for the
others group.

Chapter 2. File Formats 2-91

BNU Permissions

2-92

WRITE Designates the directories containing files to which the remote system can
write.

WRITE:PathName[:PathName ...]
The remote system can write to any file residing in the
PathName directory (or subdirectories of the PathName
directory) if the file permissions include write rights for the
others group.

NOREAD Specifies exceptions to the READ option.

NOREAD:PathName[:PathName . ..]
The remote system cannot read any file residing in the
PathName directory (or subdirectories of the PathName
directory), even if the parent directory of the PathName
directory is accessible to the remote system.

NOWRITE Specifies exceptions to the WRITE option.

NOWRITE:PathName[:PathName .. .]
The remote system cannot write to any file residing in the
PathName directory (or subdirectories of the PathName
directory), even if the parent directory of the PathName
directory is accessible to the remote system.

COMMANDS Specifies commands that remote systems can execute. Used only in the
MACHINE entry. The default is the rmail command. Can include the path
name of the command.

VALIDATE

AIX Files Reference

COMMANDS:CommandName[:CommandName . ..]
The BNU program allows the remote system to execute
only the commands specified in the CommandName list.

COMMANDS:ALL
The BNU program allows the remote system to execute all
AIX commands available on the local system.

Warning: The COMMANDS=ALL option/value pair can jeopardize the
security of your system. Use it with extreme care.

Requires a unique login and password from a remote system. Used only in
a LOGNAME entry. If a LOGNAME entry contains the VALIDATE option, the
remote systems listed in the VALIDATE option cannot log into the remote
system with any other login ID.

The VALIDATE option is usually used in conjunction with the
COMMANDS=ALL option, or when the permissions granted with the
LOGNAME entry include potentially dangerous access. The format for the
VALIDATE option is as follows:

VALIDATE:SystemName[:SystemName . ..]
Validation applies to each system listed in the SystemName
list.

BNU Permissions

CALLBACK Specifies whether the remote system can initiate file transfers to the local
system. Used only in a LOGNAME entry. The default is CALLBACK=no.

CALLBACK:yes
The local system must contact the remote system before
the remote system can begin file transfers to the local
system.

CALLBACK:no
The BNU program allows the remote system to contact the
local system and transfer files without waiting for the local
system to initiate the transaction.

If two systems both include the CALLBACK=yes option in their respective Permissions
files, they cannot communicate with each other using BNU.

LOGNAME Entry
The /usr/lib/uucp/Permissions file specifies access for remote systems that communicate
with the local system using the Basic Networking Utilities (BNU} program. The Permissions
file contains a LOGNAME entry for each login ID that remote systems are permitted to use
to log into the local system.

A LOGNAME entry specifies one or more login IDs for remote systems permitted to log into
the local system to conduct uucico and uuxqt daemon transactions, plus the access
permissions for those remote systems. The login ID can be any valid login name. The
LOGNAME entry specifies permissions for the remote system when it contacts the local
system. To specify permissions for the remote system when it is called by the local system,
use a MACHINE entry.

Following is the format of a LOGNAME entry:

LOGNAME=LoginlDf.:LoginlD . ..] [Option= Value . ..]

To specify more than one login ID with the same option/value pairs, list them in the same
LOGNAME entry, separated by colons but without spaces. To specify multiple login IDs with
different option/value pairs, list them in separate LOGNAME entries.

The most restrictive LOGNAME entry is an entry without any option/value pairs, which
means that the remote system's access to the local system is defined by the following
default permissions:

• The remote system cannot ask to receive any queued files from the local system.

• The local system cannot send queued work to the calling remote system when the remote
system has completed its current operations. Instead, the queued work can be sent only
when the local system contacts the remote system.

• The remote system cannot send files to (write) or transfer files from (read} any location
except the BNU public directory (/usr/spool/uucppublic/SystemName) on the local
system.

• Users on the remote system can execute only the default commands on the local system.
(The default command set includes only the rmail command, which users implicitly
execute by issuing the mail command.)

Chapter 2. File Formats 2-93

BNU Permissions

To override these defaults, include option/value pairs in the LOGNAME entry. The available
options are:

REQUEST

SENDFILES

READ, WRITE

NOREAD, NOWRITE

COMMANDS

VALIDATE

CALLBACK

These options allow different remote systems different types of access to the local system
when using the BNU file transport and command execution programs.

Note: A login ID can appear in only one LOGNAME entry. If there is a single entry for a
login ID, that entry alone is sufficient for all remote systems using that login ID.

A LOGNAME entry that contains a restricted login ID is generally sufficient for uucico and
uuxqt daemon transactions between local and remote systems at most sites. However,
alternate login IDs should be used if certain remote systems require different types of
permissions when accessing the local system.

Warning: Allowing remote systems to login to the local system with the uucp login ID
seriously jeopardizes the security of your system. Remote systems logged in with the uucp
ID can display and possibly modify (depending on the other permissions specified in the
LOGNAME entry) the local Systems and Permissions files. It is strongly recommended that
you create other BNU login IDs for remote systems and reserve the uucp login ID for the
person responsible for administering BNU on the local system. For the best security, each
remote system that contacts the local system should a have unique login ID with a unique
UID.

MACHINE Entry

2-94

The /usr/lib/uucp/Permissions file specifies access for remote systems that the local
system communicates with using the Basic Networking Utilities (BNU) program. Typically,
the Permissions file contains a MACHINE entry for each remote system that the local
system is permitted to contact.

The MACHINE entry contains the names of the remote systems that the local system is
permitted to call and the access permissions for those remote systems. The access
permissions specified in the MACHINE entry affect the remote system's access to the local
system when the local system contacts the remote system. To specify access permissions
when the remote system contacts the local system, use a LOGNAME entry.

Following is the format of a MACHINE entry:

MACHINE:SystemName[:SystemName . ..] [Option= Value . ..]

Or

MACHINE:OTHER [Option= Value . ..]

The most restrictive type of MACHINE entry, which uses the default permissions, is as
follows:

MACHINE:SystemName[:SystemName . ..]

AIX Files Reference

BNU Permissions

Notice that the system names are separated by a colon, and that the entry includes no
spaces or tab characters. In this entry, there are no option/value pairs, indicating that remote
system access to the local system is defined by the following default permissions:

• The remote system cannot ask to receive any local system files queued to run on the
calling remote system.

• The remote system cannot access (read) any files except those in the public directory on
the local system.

• The remote system can send (write) files only to the local public directory.

• The remote system can execute only those commands in the default command set on the
local system.

To override these defaults, include option/value pairs in the MACHINE entry. The available
options are:

REQUEST COMMANDS
SENDFILES VALIDATE
READ, WRITE CALLBACK
NOREAD, NOWRITE
These options allow different remote systems different types of access to the local system
when using the BNU file transport and command execution programs.

The SystemName list in a MACHINE entry may include a number of different remote
systems.

A MACHINE entry can also be in the following format:

MACHINE:OTHER [Option= Value ...]

The MACHINE=OTHER format, in which the word OTHER represents a system name, sets
up access permissions for remote systems not explicitly specified in the existing MACHINE
entries in a Permissions file.

The MACHINE=OTHER entry is useful in the following circumstances:

• When your installation includes a large number of remote systems that the local system
regularly contacts to conduct uucico and uuxqt daemon transactions

• When it is occasionally necessary to change the default command set specified in the
COMMANDS option in the MACHINE entry.

Rather than creating separate MACHINE entries for each of a large group of remote
systems, set up one MACHINE=OTHER entry that includes the appropriate commands
specified in a COMMANDS option entry. Then, when it becomes necessary to change the
default command set, change the list of commands in only one entry rather than in
numerous entries. Usually, a MACHINE=OTHER entry also specifies more restrictive option
values for the unidentified remote systems.

Chapter 2. File Formats 2-95

BNU Permissions

CALLBACK Option
The /usr/lib/uucp/Permissions file specifies access for remote systems that communicate
with the local system using the Basic Networking Utilities (BNU) program. LOGNAME entries
specify permissions in effect when a remote system contacts the local system.

The CALLBACK option, which can be included in LOGNAME entries, specifies that no file
transfer transactions will occur until the local system contacts the remote system that is
attempting to establish a connection.

The format of the CALLBACK option is either

CALLBACK:no

Or

CALLBACK:yes

Warning: If two systems both include the CALLBACK=yes option in their respective
Permissions files, they cannot communicate with each other using BNU.

The default value, CALLBACK=no, specifies that the remote system may contact the local
system and begin transferring files without the local system initiating the operations.

For tighter security, specify that the local system must contact the remote system before that
remote system may transfer any files to the local system. The CALLBACK=yes option
implements this restriction.

If you include the CALLBACK=yes option in the LOGNAME entry for a login ID used by a
particular remote system, you must also have a MACHINE entry for that system so that your
system can call it back. Alternatively, you can have a MACHINE=OTHER entry to allow your
system to call any remote system, including the one for which the CALLBACK=yes option is
specified.

The default value, CALLBACK=no, is generally sufficient for most sites.

COMMANDS Option

2-96

The /usr/lib/uucp/Permissions file specifies access for remote systems that communicate
with the local system using the Basic Networking Utilities (BNU) program. MACHINE entries
in the Permissions file specify permissions in effect when the local system contacts a
remote system.

The COMMANDS option, which can be included only in a MACHINE entry, specifies the
commands that the remote systems listed in that MACHINE entry can execute on the local
system.

Warning: The COMMANDS option can jeopardize the security of your system. Use it with
extreme care.

Following are the formats for this option:

COMMANDS:CommandNamef.:CommandName ...]

OR

COMMANDS:ALL

AIX Files Reference

BNU Permissions

The default for this option is COMMANDS=rmail: uucp. Under the default, remote systems
can run only the rmail command and the uucp command on the local system. (Users enter
the mail command, which then calls the rmail command.)

The commands listed in the COMMANDS option in the MACHINE part of an entry in the
Permissions file override the default.

You can also specify path names to those locations on the local system where commands
issued by users on remote systems are stored. Specifying path names is useful when the
default path of the uuxqt daemon does not include the directory where a command resides.

Note: The default path of the uuxqt daemon includes only the /bin and /usr/bin
directories.

To allow a certain remote system to execute all available commands on the local system,
use the COMMANDS=ALL format. This specifies that the command set available to the
designated remote system includes all commands available to users on the local system.

Warning: The COMMANDS=ALL option/value pair can jeopardize the security of your
system. Use it with extreme care.

NOREAD and NOWRITE Options
The /usr/lib/uucp/Permissions file specifies access for remote systems that communicate
with the local system using the Basic Networking Utilities (BNU) program. LOGNAME entries
specify permissions in effect when a remote system contacts the local system. MACHINE
entries specify permissions in effect when the local system contacts a remote system.

The NOREAD and NOWRITE options, which can be used in both LOGNAME and MACHINE
entries, delineate exceptions to the READ and WRITE options by explicitly forbidding access
by the remote system to directories and files on the local system.

The formats of these options follow:

NOREAD:PathName[:PathName ...]

NOWRITE:PathName[:PathName . ..]

Note: The specifications you enter with the READ, WRITE, NOREAD, and NOWRITE
options affect the security of your local system in terms of BNU transactions.

READ and WRITE Options
The /usr/lib/uucp/Permissions file specifies access for remote systems that communicate
with the local system using the Basic Networking Utilities (BNU) program. LOGNAME entries
specify permissions in effect when a remote system contacts the local system. MACHINE
entries specify permissions in effect when the local system contacts a remote system.

The READ and WRITE options, which can be used in both LOGNAME and MACHINE
entries, specify the path names of directories that the uucico daemon can access when
transferring files to or from the local system. The default location for both the READ and
WRITE options is the /usr/spool/uucppublic directory (the BNU public directory) on the
local system. The formats for these options follow:

READ:PathName[: PathName . ..]

WRITE:PathName[: PathName ...]

Chapter 2. File Formats 2-97

BNU Permissions

The source file, destination file, or directory must be readable or writable for the other group
for the BNU program to access it. Set these permissions with the chmod command. A user
without root user authority can take away permissions granted by the READ and WRITE
options, but that user cannot grant permissions that are denied by these options.

You can specify more than one path for uucico daemon activities.

If the READ and WRITE options are not present in the Permissions file, the BNU program
transfers files only to the /usr/spool/uucppublic directory. However, if you specify path
names in these options, enter the path name for every source and destination, including the
/usr/spool/uucppublic directory if the remote system is to be permitted access to it.

Warning: The specifications you enter with the READ, WRITE, NOREAD, and NOWRITE
options affect the security of your local system in terms of'BNU transactions.

Warning: The subdirectories of directories specified in the READ and WRITE options can
also be accessed by the remote system unless these subdirectories are forbidden with the
NOREAD or NOWRITE options.

REQUEST Option

2-98

The /usr/lib/uucp/Permissions file specifies access for remote systems that communicate
with the local system using the Basic Networking Utilities (BNU) program. LOGNAME entries
specify the permissions that are in effect when a remote system contacts the local system.
MACHINE entries specify the permissions that are in effect when the local system contacts a
remote system.

The REQUEST option can be used in both LOGNAME and MACHINE entries to enable a
remote system to ask to receive any queued files containing work that users on the local
system have requested to be executed on that remote system. The default is not to allow
such requests.

When a remote system contacts the local system to transfer files or execute commands, that
remote system might also request permission to receive any files queued on the local
system for transfer to or execution on that remote system. The following format of the
REQUEST option permits such requests:

REQUEST:yes

The defaul~hich does not have to be entered, is REQUEST =no. This specifies that the
remote system cannot ask to receive any work queued for it on the local system. In this
case, the local system must contact the remote system before files and execute commands
queued on the local system can be transmitted to the remote system.

Use the REQUEST =yes option in both LOGNAME and MACHINE entries in the
Permissions file to allow remote-system users to transfer files to and execute commands a
local system on demand. If security is a consideration at your site, restrict this access with
the REQUEST =no ,option so that the local system retains control of file transfers and
command executions initiated by remote systems.

Note: Entries in the Permissions file affect only BNU transactions. They do not affect
remote-system users with valid logins on a local system.

AIX Files Reference

BNU Permissions

SENDFILES Option
The /usr/lib/uucp/Permissions file specifies access for remote systems that communicate
with the local system using the Basic Networking Utilities (BNU) program. LOGNAME entries
specify permissions in effect when a remote system contacts the local system. The
Permissions file SENDFILES option can be used in a LOGNAME entry to specify when the
local system can send queued work to the calling remote system.

The default is to allow the local system to transfer queued work to the remote system only
when the local system contacts the remote system. However, when a remote system
finishes transferring files to or executing commands on a local system, that local system may
try to send queued work to the calling remote system immediately. To enable an immediate
transfer, use the SENDFILES option as follows:

SENDFILES:yes

The SENDFILES=yes option allows the transfer of queued work from the local to the remote
system once the remote system has completed its operations.

The default value, SENDFILES=call, specifies that local files queued to run on the remote
system are sent only when the local system contacts the remote system. Security
considerations at your site may require limiting access to the local system by a remote
system by using the default value for this option.

Note: The SENDFILES option is ignored when it is included in a MACHINE entry.

Entries in the Permissions file affect only BNU transactions. They do not affect
remote-system users with valid logins on a local system.

VALIDATE Option
The /usr/lib/uucp/Permissions file specifies access for remote systems that communicate
with the local system using the Basic Networking Utilities (BNU) program. LOGNAME entries
specify permissions in effect when a remote system contacts the local system. MACHINE
entries specify permissions in effect when the local system contacts a remote system.

The VALIDATE option provides more security when it is necessary to include commands in
the default command set that could potentially cause damage when executed by a remote
system on a local system. Use this option, which can be specified only in a LOGNAME entry,
in conjunction with a COMMANDS option in a related MACHINE entry.

Following is the format of the VALIDATE option:

VALIDATE:SystemNamef.:SystemName . ..]

The VALIDATE option verifies the identity of the calling remote system. Including this option
in a LOGNAME entry means that the calling remote system must have a unique login ID and
password for file transfers and command executions.

Note: This option is meaningful only when the login ID and password are protected. Giving
a remote system a special login and password that provide unlimited file access and
remote command-execution ability is equivalent to giving any user on that remote
system a normal login and password on the local system, unless the special login
and password are well-protected.

The VALIDATE option links a MACHINE entry, which includes a specified COMMANDS
option, to a LOGNAME entry associated with a privileged login. The uuxqt daemon, which
executes commands on the local system on behalf of users on a remote system, is not
running while the remote system is logged in and therefore does not know which remote
system sent the execution request.

Chapter 2. File Formats 2-99

BNU Permissions

Examples

Each remote system permitted to log in to a local system has its own spooling directory on
that local system. Only the BNU file transport and command execution programs are allowed
to write to these directories. For example, when the uucico daemon transfers execution files
from the remote system hera to the local system zeus, it places these files in the
/usr /spool/uucppublic/hera directory on system zeus.

Then, when the uuxqt daemon attempts to execute the specified commands, it determines
the name of the calling remote system (hera) from the path name of the remote-system
spooling directory (/usr I spool /uucppublic /hera). The daemon then checks for that
name in~ MACHINE entry in the Permissions file. The daemon also checks for the
commands specified in the COMMANDS option in a MACHINE entry to determine whether
the requested command can be executed on the local system.

Providing Default Access to Remote Systems
1. The following entry provides the default permissions to any system logging in as uucpl:

LOGNAME=uucpl

2. The following entry provides the default permissions to systems venus, apollo, and
athena when called by the local system:

MACHINE=venus:apollo:athena

Providing Less Restricted Access to Remote Systems
3. The following LOGNAME entry allows remote system merlin to read and write to more

directories than just the spool directory:

LOGNAME=umerlin VALIDATE=merlin \
READ=/ NOREAD=/etc:/usr/lib/uucp \
WRITE=/u/merlin:/usr/spool/uucppublic

A system logging in as user umer lin can read all directories except the /usr/lib/uucp
and /etc directories, but can write only to the /u/merlin and public directories. Because
the login name umerlin has access to more information than is standard, BNU validates
the system before allowing merlin to log in.

4. The following example allows remote system hera unrestricted access to system zeus,
and shows the relationship between the LOGNAME and MACHINE entries in a
Permissions file:

LOGNAME=uhera VALIDATE=hera REQUEST=yes SENDFILES=yes \
READ=/ WRITE=/
MACHINE=hera REQUEST=yes COMMANDS=ALL READ=/ WRITE=/

The remote system hera may engage in the following uucico and uuxqt transactions
with the local system zeus:

• System hera may request that files be sent from system zeus, regardless of which
system placed the call (REQUEST=yes appears in both entries);

• System zeus may send files to system hera when system hera contacts system
zeus (SENDFILES=yes in the LOGNAME entry);

2-100 AIX Files Reference

BNU Permissions

• System hera may execute all available AIX commands on system zeus
(COMMANDS=ALL in the MACHINE entry);

• System her a may read from and write to all directories and files under the root
directory on system zeus, regardless of which system placed the call
(READ=/ WRITE=/ in both.entries).

Because the entries provide system hera with relatively unrestricted access to system
zeus, BNU validates the log name before permitting system hera to log in.

Warning: An entry like the one in the preceding example allows unrestricted access to
the local system by the remote system listed in the MACHINE entry. Such an entry can
jeopardize the security of your system. If security is a concern at your site, use such
entries with extreme care.

Combining LOGNAME and MACHINE Entries
5. Following are LOGNAME and a MACHINE entries for system hera:

LOGNAME=uhera VALIDATE=hera REQUEST=yes SENDFILES=yes
MACHINE=hera REQUEST=yes COMMANDS=rrnail:news:uucp

Since they have the same permissions and apply to the same remote system, these
entries can be combined as follows:

LOGNAME=uhera VALIDATE=hera SENDFILES=yes REQUEST=yes \
MACHINE=hera COMMANDS=rrnail:news:uucp

6. Similarly, LOGNAME and MACHINE entries used for more than one remote system can
be combined if they have the same permissions. For example:

LOGNAME=uucpl REQUEST=yes SENDFILES=yes
MACHINE=zeus:apollo:rnerlin REQUEST=yes COMMANDS=rrnail:uucp

can be combined as:

LOGNAME=uucpl REQUEST=yes SENDFILES=yes \
MACHINE=zeus:apollo:rnerlin COMMANDS=rrnail:uucp

Either form of the entries allows systems zeus, apollo, and merlin the same
permissions. They can:

• Log into the local system as uucp 1

• Execute the rmail and uucp commands

• Request files from the local system, regardless of which system placed the call.

Allowing Access to Unnamed Systems
7. To allow your system to call systems which are not specified by name in a MACHINE

entry, use a MACHINE=OTHER entry as follows:

MACHINE=OTHER COMMANDS=rrnail

This entry allows your system to call any machine. The machine called will be able to
request execution of the rmail command. Otherwise, the default permissions apply.

Chapter 2. File Formats 2-101

BNU Permissions

Permissions File Entries for Three Systems
8. The following examples show the Permissions files for three connected systems.

On system venus:

LOGNAME=uhera MACHINE=hera \
READ=/ WRITE=/ COMMANDS=ALL \
NOREAD=/usr/secure:/usr/lib/uucp \
NOWRITE=/usr/secure:/usr/lib/uucp
SENDFILES=yes REQUEST=yes VALIDATE=hera

On system hera:

LOGNAME=uvenus MACHINE=venus \
READ=/ WRITE=/ COMMANDS=rmail:who:lp:uucp \
SENDFILES=yes REQUEST=yes

LOGNAME=uucpl MACHINE=OTHER \
REQUEST=yes SENDFILES=yes

On system apollo:

LOGNAME=uhera MACHINE=hera \
READ=/usr/spool/uucppublic:/u/hera \
REQUEST=no SENDFILES=call

Given these permissions, system hera logs into system venus as uhera. It can request
or send files regardless of who initiated the call, and can read or write to all directories
except /usr/secure and /usr/lib/uucp. It can execute any command. However, before
system venus allows any system to log in as uhera, it checks to make sure that system
is hera.

System venus logs into system hera as uvenus. After it logs in, it can read or write to
all directories on system hera and can request or send commands regardless of who
initiated the call. It can execute the rmail, who, Ip, and uucp commands only.

System hera logs into system apollo as uhera. After it logs in, it can send files, but
requests to receive files will be denied. It can read and write only from the public directory
and the /u/hera directory, and can execute only the default list of commands.

System apollo logs into system hera as uucpl, since it does not have a unique login
ID on system hera. It can request and send files, regardless of who initiated the call. It
can read and write only from the public directory (the default) and execute only the
default list of commands.

Note: The uucpl login ID defined on system hera can be used by any remote system,
not just by system apollo. In addition, the presence of the MACHINE=OTHER
entry in this entry allows system hera to call machines not specified elsewhere in
the Permissions file. If system hera calls an unknown machine, the permissions
in the MACHINE=OTHER entry take effect.

2-102 AIX Files Reference

BNU Permissions

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/lib/uucp directory

/usr/lib/uucp/Systems file
/usr/spool/uucppublic directory

Contains all the configuration files for BNU, including
the Permissions file.
Describes accessible remote systems.
Contains files that have been transferred.

Related Information
The Permissions file LOGNAME and MACHINE entries can be used to specify permissions
for remote systems.

The following Permissions file options can be used to modify default permissions specified
with the LOGNAME and MACHINE options: the REQUEST option, COMMANDS option,
SENDFILES option, VALIDATE option, READ and WRITE options, NOREAD and NOWRITE
options, CALLBACK option.

The uucico daemon and uuxqt daemon read the Permissions file.

The uucheck command, rmail command, mail command, and chmod command.

The uucpadm command can be used to make entries in the Permissions file.

How to Configure BNU and How to Configure BNU for use with TCP/IP in Communication
Concepts and Procedures discuss entries in the Permissions file.

Understanding BNU Security and Understanding the BNU Configuration File in
Communication Concepts and Procedures.

Configuring BNU in Communication Concepts and Procedures.

Chapter 2. File Formats 2-1 03

BNU Poll

BNU Poll File Format

Purpose
Specifies when the BNU program should poll remote systems.

Description

Example

The /usr/lib/uucp/Poll file specifies when the Basic Networking Utilities (BNU) program
should poll (initiate automatic calls to) designated remote computers. This file is used in
conjunction with the /usr/spool/cron/crontabs/uucp file, the uudemon.hour command,
and the uudemon.poll command. Together, these files are responsible for initiating
automatic calls to certain remote systems. Modify the times specified in the Poll file based
on how the systems at your site are used.

Each entry in the Poll file contains the name of the remote computer followed by a sequence
of times when the BNU program should poll that system. Specify times as digits between 0
and 23. The format of the entry is as follows:

SystemName Time [Time ...]

The fields in the Poll file entry must be separated by at least one space. More spaces can
be used for readability. A tab character between the SystemName field and the first Time
field is optional.

Note: Only someone with root user authority can edit the Poll file, which is owned by the
uucp program login ID.

Following is a standard entry in the Poll file:

hera <TAB> 0 4 8 12 16 20

This entry specifies that the local system will poll the remote system hera every 4 hours.

The tab character can be replaced by one or more spaces. Thus the preceding entry is
equivalent to the following one:

hera 0 4 8 12 16 20

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

Most versions of UUCP require a tab character between the SystemName field and the first
Time field. In AIX BNU, either a tab or spaces will work.

/etc/locks directory

/usr/spool/cron/crontabs/uucp file

Contains lock files that prevent multiple uses of
devices and multiple calls to systems.

Schedules BNU jobs for the cron daemon.

2-104 AIX Files Reference

BNU Poll

Related Information
Configuring BNU and Understanding the BNU Configuration Files in Communication
Concepts and Procedures.

The cron daemon runs the commands that poll remote systems.

The uucpadm command can be used to make entries in the Poll file.

The uudemon.hour command and uudemon.poll command poll remote systems.

How to Set Up BNU Polling of Remote Systems in Communication Concepts and
Procedures.

Chapter 2. File Formats 2-1 05

BNU Systems

BNU Systems File Format

Purpose
Lists remote computers with which users of the local system can communicate using the
Basic Networking Utilities (BNU) program.

Description
The /usr/lib/uucp/Systems file lists the remote computers with which users of the local
system can communicate using the Basic Networking Utilities (BNU) program. Each entry in
the Systems file represents a remote system, and users on the local system cannot
communicate with a remote system unless that system is listed in the local Systems file. A
Systems file must be present on every computer at your site that uses the BNU facility.

Each entry in the Systems file contains the following items:

• The name of the remote system

• The times when users can connect to the remote system

• The type of link (direct line or modem link)

• The speed of transmission over the link

• The information needed to log in to the remote system.

Note: When a remote system not listed in the Systems file attempts to contact the remote
system, the BNU program calls the /usr/lib/uucp/remote.unknown shell procedure.

Only someone with root user authority can edit the Systems file, which is owned by
the uucp program login ID.

Fields in the Systems File
Each entry in the Systems file is a logical line containing fields and optional subfields. These
fields appear in the following order:

SystemName Time[;RetryTime] Type[,ConversationProtoco~ Class Phone Login

SystemName Lists the name of the remote system.

Time Lists the times when the local system can contact the remote system.

RetryTime Specifies the minimum time afterwhich the BNU program
will attempt to contact the remote system again, when the
first contact was unsuccessful. This field is optional.

Type Defines the type of connection used to contact the remote system.

Class

Phone

Login

Conversation Protocol
Defines the conversation protocol used over a TCP/IP
connection. Use only when the Type field entry is TCP.

Defines the speed of transmission over the connection.

Specifies the phone number of the modem at the remote system.

Defines the login sequence, or chat script, for the remote system.

There must be an entry in every field of a line in the Systems file. If a field does not apply to
the particular remote system (for example, a hardwired connection would not need a
telephone number in the Phone field), use a- (hyphen) as a placeholder.

2-106 AIX Files Reference

BNU Systems

Lines in the Systems file cannot wrap. Each entry must be on only one line in the file.
However, the Systems file can contain blank lines and comment lines. Comment lines begin
with a# (pound sign). Blank lines are ignored.

SystemName Field

Time Field

The SystemName field contains the name of the remote system. You can list an individual
remote system in the Systems file more than once. Each additional entry for a system
represents an alternate communication path that the BNU program uses in sequential order
when trying to establish a connection between the local and the remote system.

The Time field contains a string that indicates the days of the week and the times of day
during which users on the local system can communicate with the specified remote system.
For example, the MoTuTh0800-1730 string indicates that local users can contact the
specified remote system on Mondays, Tuesdays, and Thursdays from 8 a.m. until 5:30 p.m.

The day part of the entry can be a list including any day or days represented by Mo, Tu, we,
Th, Fr, Sa, or Su. The day entry may also be wk if users can contact the remote system on
any weekday, or Any if they can use the remote system on any day of the week including

· Saturday and Sunday.

Enter the time at which users can contact the remote system as a range of times, using the
24-hour clock notation. For example, if users can communicate with the specified remote
system only during the morning hours, type a range such as 0800-1200. If users can
contact the remote computer at any time of day or night, simply leave the time range blank.

It is also possible to specify times during which users cannot communicate with the remote
system by specifying a time range that spans 0000. For example, typing 0800-0600 means
that users can contact the specified system at any time except between 6 a.m and 8 a.m.
This is useful if a free line is needed at a certain time of day in order to use the remote
system for administrative purposes.

If the remote system calls the local system, but users on the local system cannot call the
remote system, the time entry may be Never.

To include multiple Time fields, separate them with a , (comma). For example,
WklS00-0600, Sa, su means that users can contact the remote system on any weekday at
any time except between the hours of 6 p.m. and 6 a.m., and at any time on Saturday and
Sunday.

RetryTime Subfield

The RetryTime subfield is an optional subfield that specifies the minimum time in minutes
between an unsuccessful attempt to reach the remote system and the retry time when the
BNU program again attempts to communicate with that system. This subfield is separated
from the rest of the string by a; (semicolon). For example, Wkl800-0600, Sa, su; 2
indicates that if the first attempt to establish communications fails, BNU should continue to
attempt to contact the remote system at no less than 2-minute intervals.

Note: This subfield, when present, overrides the default retry time of 5 minutes.

The retry time does not cause BNU to attempt contact with the system once the time
has elapsed. It specifies the minimum time BNU must wait before attempting to
contact the remote system.

Chapter 2. File Formats 2-1 07

BNU Systems

Type Field

Class Field

The Type field identified the type of connection used to communicate with the remote
system. The available types of connections are Acu for a telephone connection using a
modem, the remote system name (as in the SystemName field) for a hardwired connection,
and TCP for a connection using TCP/IP. There must be a corresponding entry for the type of
connection in the /usr/lib/uucp/Devices file.

ConversationProtocol Subfield

If you use the TCP entry in the Type field, the ConversationProtocol subfield, associated with
the caller, specifies a conversation protocol. The default is the g protocol. To use a different
subfield, enter it with a , (comma) and the letter representing one of the other conversation
protocols, either the t or e protocol. These protocols are faster and more efficient than the g
protocol.

Protocol

g

e

Explanation

This is the default. The g protocol is preferred for modem connections, but it
involves a large overhead in running BNU commands because it uses the
checksumming and packetizing functions.

The t protocol presumes an error-free channel, and is essentially the g
protocol without the checksumming and packetizing functions. Use the t
protocol:

• To communicate with a site running the AIX version of the BNU program

• To communicate with a site running the Berkeley version of the
UNIX-to-UNIX Copy Program (UUCP).

The t protocol is not reliable for modem connections.

Use thee protocol:

• To communicate with a site running the AIX version of the BNU program

• To communicate with a site running a non-AIX version of the BNU
program.

The e protocol is not reliable for modem connections.

Use either the t or e protocol to communicate with a site running the AIX version of the BNU
program. Use thee protocol for a site running a non-AIX version of the BNU program. Use
the t protocol for sites running the Berkeley version of the UNIX-to-UNIX Copy Program
(UUCP).

The Class field typically specifies the speed at which the specified hardwired or telephone
line transmits data. It is generally 3 o o , 12 o o, 2 4 o o or higher for a hardwired device, and
300, 1200, or 2400 for a telephone connection.

This field can also contain a letter with a speed (for example, c 12 o o, o 12 o o) to differentiate
between classes of dialers. For example, some offices have more than one telephone
network, one for internal use and one for external communications. In such a case, it is
necessary to distinguish which lines should be used for each connection.

2-108 AIX Files Reference

Phone Field

BNU Systems

If the entry in the Type field is ACU, the Class field in the Systems file is matched against the
Class field in the /usr/lib/uucp/Devices file to find the device to use for connections. For
example, if the Systems file entry for system hera is:

hera Any ACU 1200 3-3-5-2 ogin: nuucp ssword: oldoaktree

BNU searches for an entry in the Devices file with a Type of ACU and a Class of 12 o o and
connects to system hera using the first available device that meets these specifications.

If the device can match any speed, enter the word Any in the Class field. Note that the word
Any begins with an uppercase A.

Do not include a transmission rate for a TCP/IP connection. If you do not type a transmission
rate in the Class field, use a - (hyphen) as a placeholder.

For a telephone connection over a modem, the Phone field specifies the telephone number
used to reach the remote modem. If this entry represents a hardwired connection, type a
hyphen as a placeholder. If this entry represents a telephone connection using a modem,
type the remote modem's phone number.

The Phone field for a telephone connection must include all of the following items that apply,
in the following order:

• The code for an outside line

• Any long-distance access codes

• A 1 (one) plus the area code (if the modem is out of the local area)

• The three-digit exchange number

• The four-digit modem number.

Entering the entire phone number is the most efficient method of including phone numbers if
your site uses only a relatively small number of telephone connections. However, if your site
includes a large number of remote connections established using a phone line and a
modem, you may prefer to use the /usr/lib/uucp/Dialcodes file to set up dial-code
abbreviations.

For example, if your site communicates regularly using modems to many other systems all
located at the same remote site, it is more efficient to use a dial-code abbreviation in the
Systems file than to type the complete phone number of each remote modem.

The dial-code entry in the /usr/lib/uucp/Dialcodes file defines an alphabetic abbreviation
that represents the following portions of the phone number:

• The code for an outside line

• Any long-distance access codes

• A 1 (one) plus the area code (if the modem is out of the 1.ocal area)

• The three-digit exchange number.

In the Phone field in the Systems file entry, type the alphabetic abbreviation followed by the
four-digit modem number.

Note: Enter the alphabetic abbreviation in the /usr/lib/uucp/Dialcodes file only once for all
the remote modems listed in the Systems file. Then use the same abbreviation for
all entries in the Systems file for modems at that site.

Chapter 2. File Formats 2-109

BNU Systems

Login Field

For callers that are actually switches, the Phone field is the token the switch requires to get
to the particular computer. The token you enter here is used by the functions specified in the
Type field of the /usr/lib/uucp/Devices file.

The Login field specifies login information that the remote system must receive before
allowing the calling local system to establish a connection. The Login field is a series of
fields and subfields called expect-send characters.

Expect-Send Characters in Login Fields

Enter the required login information in the following form:

[Expect Send] ...

The Expect subfield contains characters that the local system expects to receive from the
remote system. Once the local system receives those characters, it sends another string of
characters that comprise the Send subfield.

For example, the first Expect subfield generally contains the remote system's login prompt,
and the first Send subfield generally contains the login ID of the remote system. The second
Expect subfield contains the remote password prompt, and the second Send subfield
contains the remote system password.

The Expect subfield may include subfields entered in the following form:

Expec~ -Send-Expec~ ...

In this case, the first Expect subfield still represents the string that the local system expects
to receive from the remote system. However, if the local system does not receive (or cannot
read) that first Expect string, it sends its own string (the Send string within the brackets) to
the remote system. The local system then expects to receive another Expect string from the
remote system.

For example, the Expect string may contain the following characters:

login:-login:

The local system expects to receive the login: string. If the remote system sends that
string and the local system receives it correctly, the BNU program goes on to the next field in
the expect-send sequence. However, if the local system does not receive the log in:
string, it sends a null character followed by a new line, and then expects to receive a second
login: string from the remote computer.

If the remote system does not send an Expect string to the local system, type "" (two
double quotation marks), representing a null string, in the first Expect subfield.

Every time the local system sends a field, it automatically transmits a new line following that
Send subfield. To disable this automatic new line, type \c (a backslash and the letter c) as
the last two characters in the Send string.

Two special strings can be included in the login sequence. The EOT string sends an ASCII
EOT (end of transmission) character, and the BREAK string attempts to send an ASCII
BREAK character.

2-110 AIX Files Reference

BNU Systems

Valid Expect-Send Sequences

Following are the valid expect-send strings for the Login field:

String

\N

\b

\c

\d

\p

\E

\e

\K

\n

\r

\s

\t

\\

EOT

BREAK

\ddd

Explanation

Null character.

Backspace character.

At the end of a field, suppress the new line that normally follows the
characters in a Send subfield. Otherwise, ignore this string.

Delay 2 seconds before sending or reading more characters.

Pause for approximately 1 /4 to 1 /2 second.

Turn on the echo check.

Turn off the echo check.

Send a BREAK character. This is the same as entering BREAK. This
character can be used to cycle a modem's speed.

New-line character.

Carriage return.

Space character.

Tab character.

Backslash character.

EQT character. When you enter this string, the system sends two EQT
new-line characters.

BREAK character. This character can be used to cycle a modem's speed.

Collapse the octal digits (ddd) into a single character and send that
character.

Using the BREAK Character to Cycle a Modem

A BREAK or \K character is usually sent to cycle the line speed on computers that have a
multi-speed modem. For example, if you are using a 2400 baud modem to contact a remote
system with a multi-speed modem that normally answers the phone at 9600 baud, you can
begin the chat script for that system with a \K character to cause the remote system's
modem to cycle down to 2400 baud.

Entries for Use with TCP/IP
If your site is using TCP/IP, include the relevant TCP/IP entries in the Systems file. For a
remote system connected to the local system using TCP/IP, the entries in the SystemName,
Time, and Login fields are the same as for a remote system using any other type of
connection. For the Type field, decide on the appropriate TCP/IP conversation protocol to
enter in the TCP ConversationProtocol subfield. Enter TCP followed by a , (comma) followed
by the letter representing the protocol. In the Class and Phone fields, enter a - (hyphen) as
a placeholder.

Chapter 2. File Formats 2-111

BNU Systems

Examples
Setting Up Entries Using Modems

1. A standard entry for a telephone connection using a modem looks like this:

merlin 0830-1730 ACU 1200 123-4567 in:~in: uucpl word: rainday

This entry allows users to contact system merlin daily between 8:30 a.m. and 5:30 p.m.
using an ACU at 12 o o bps. The telephone number is 12 3-4 5 6 7. The login name on
merlin is uucpl and the password is rainday. The local system expects the phrase
in: before it sends the login name. If the local system does not receive the phrase in:,
it sends a null character and a new-line character and expects the phrase again.

2. To use a 1200 baud modem to contact a system with a multi-speed modem, make an
entry similar to the following:

athena Any ACU 1200 123-7654 \K\K in:~in: uucpa word: shield

The \K prefacing the login script instructs the remote modem to cycle down one speed. If
the modem has three speeds, 9600, 2400, and 1200, the first \K character causes it to
cycle to the 2400 baud setting, and the second \K character causes it to use the 1200
baud setting. (A third \K causes the modem to start the cycle over by returning to 9 6 o o
baud.)

Setting Up Entries Using Direct Connections
3. A standard entry for a hardwired connection between a local and a remote system looks

like this:

hera Any hera 1200 login:~login: uzeus word: thunder

The remote system is hera, which can be called at any time. The entry in the Type field
is also her a, indicating a directory connection at 12 o o bps (the Class field). There is a
placeholder in the Phone field since no telephone number is necessary.

Setting Up Entries Using TCP/IP Connections
4. In order to make the appropriate entries in the Systems file, decide on the appropriate

TCP/IP conversation protocol to enter in the TCP Caller subfield. For example, Enter the
following in the Systems file to use TCP/IP to connect to system venus with the default
g protocol:

venus Any TCP - - in:~in: uzeus word: lamplight

Replace the send and expect characters in the sample login field with the login prompt,
login, password prompt, and password appropriate to the remote system for which you
are establishing a connection.

Using Dialcode Abbreviations
5. To use a dialcode abbreviation defined in the /usr/lib/uucp/Dialcodes file, enter the

following in the Systems file:

merlin Any ACU 1200 local8784 in:~in: uucpl word: magic

This assumes that an entry for the dial code local exists in the Dialcodes file. For
example, the following entry

local 9=445

in the Dialcodes file would cause BNU to expand the telephone number as 9=4458784.

2-112 AIX Files Reference

BNU Systems

Setting Up Entries for Both Local and Remote Systems
6. For a direct connection between two systems, the Systems file on system zeus contains

the following entry for the remote system hera:

hera Any hera 1200 - "" \r\d\r\d\r in:-in: uzeus word: thunder

The Systems file on system hera contains the following entry for system zeus:

zeus Any zeus 1200 - "" \r\d\r\d\r in:-in: uhera word: lostleaf

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/usr/lib/uucp directory

/usr/lib/uucp/Devices file
/usr/lib/uucp/Dialcodes file
/usr/lib/uucp/Permissions file
/usr/lib/uucp/remote.unknown file

Contains all the configuration files for BNU, including
the Systems file.
Contains information about available devices.
Contains dialing code abbreviations.
Describes access permissions for remote systems.
Records contacts from unknown systems.

Related Information
Understanding the BNU Configuration Files and Configuring BNU in Communication
Concepts and Procedures.

How to Configure BNU, How to Configure BNU for Use with TCP/IP, How to Monitor a BNU
Remote Connection, and How to Use the uucico Daemon to Debug BNU Login Failures in
Communication Concepts and Procedures.

The uucpadm command can be used to make entries in the Systems file.

The uucico daemon, uusched daemon, uucpd daemon, uuxqt daemon.

The mail command, sendmail command, uucp command, uuname command, uuto
command, uutry command, Uutry command, uukick command, uux command.

Chapter 2. File Formats 2-113

EM78 Customization

EM78 Customization File Format

Purpose
Specifies the keyboard layout, screen colors, and field attribute modes to be used in 3278/79
Terminal Emulation.

Description
An EM78 Customization file contains the settings used by the EM78 Emulation program.
These settings affect the following aspects of the emulation:

• Key Definitions

• Screen Colors

• Field Attribute Colors and Modes.

EM78 is delivered with two customization files, the /usr/lib/em78/emdefs.p file and the
/usr/lib/em78/emaltdefs.p file. These files can be used as delivered. You can also copy
one of the files to customize to change the key, color, or field attribute settings, or you can
create a new customization file. The selected customization file is then installed using the
emkey command.

The edited customization file can be stored in any directory and have any name. The user
must specify the path name and name of the file to the emkey command using the -i flag.

Any text to the right of the required parts of a line in the customization file is interpreted as a
comment. Should the comment overflow the line, the next line must begin with an*
(asterisk).

Any line beginning with an asterisk is interpreted as a comment.

Warning: In the emdefs.p and emaltdefs.p file, the quit function is assigned to the Ctrl + D
workstation key combination. If you reassign the Ctrl + D key combination to a different
function, you must assign the quit function to another key combination. Otherwise, you will
not be able to leave the emulator.

Note: It is recommended that you edit a copy of the emdefs.p or emaltdefs.p file and keep
the originals intact in case you want to return the emulator settings to the default
settings.

Key Definitions
The customization file maps keys on the local workstation to keys on the 3278/79 keyboard.
The file contains a list of key numbers and mnemonic key names that refer to local
workstation keys, mapped to key numbers that refer to 3278/79 keys.

Key Number Mappings

The format of a key definition entry is as follows:

WorkstationKeyName 3278179KeyName I none [Comments]

The fields in the key definition entries must be separated by at least one space. More
spaces may be used to make the entry easier to read.

2-114 AIX Files Reference

EM78 Customization

The fields in the key definition entry are:

WorkstationKeyName Specifies a valid workstation key name to be mapped to a 3278/79
key or emulator function.

3278179KeyName Specifies a valid 3278/79 key name or one of the EM78 functions
such as asciitoggle.

none Removes the assignment for a key.

Warning: You must assign the quit function to a workstation key combination in the
configuration file. Otherwise, you will not be able to leave the emulator.

Mnemonic Key Mappings

Some keys on the workstation are defined with mnemonic key names. These keys must
usually be mapped to a combination of 3278/79 keys. The format of a mnemonic key
definition entry is:

MnemonicKeyName 3278179KeyName 1 + 3278!79KeyName2 [Com men~

where MnemonicKeyName is a valid workstation mnemonic key name, and
3278179KeyName1 and 3278/79KeyName2 are valid 3278/79 key names.

The fields in the Mnemonic Key Mapping entries must be separated by at least one space.
The+ (plus sign) must have at least one space preceding and at least one following. More
spaces may be used to make the entries easier to read.

Screen Colors
Screen colors are defined in the customization file by defining four color combinations and
then specifying which of the four color combinations is to be used for the default color and
status line color.

Color Definitions

The format of the color definition entries is as follows:

ColorName Background+ Foreground [Comments]

OR

ColorName Foreground+ Background [Comments]

The fields in the Screen Colors entries must be separated by at least one space. The + (plus
sign) must have at least one space preceding and at least one following. More spaces may
be used to make the entries easier to read.

The fields in the color definition lines are:

ColorName Specifies the color combination being defined. Up to four color
combinations, COLOR1, COLOR2, COLOR3, and COLOR4, may be
defined.

Background Names the background color, indicated by using b_ followed by the color,
as in b_black.

Foreground Names the foreground color, indicated by using f_ followed by the color, as
in f_ltgreen.

Chapter 2. File Formats 2-115

EM78 Customization

Default Color

The format of the default color entry is as follows:

default ColorName [Comments]

where the ColorName variable specifies any of the previously defined color combinations,
COLOR1, COLOR2, COLOR3, or COLOR4.

Status Color

The status color line defines the colors used on the status line, also called the operator
information area. The format of the status color entry is as follows:

status ColorName I default [Comments]

The status color may be defined, using the ColorName variable, as any of the previously
defined color combinations, or it may be defined as default.

Note: The default color may not be defined as status.

Field Attribute Colors and Modes
The field attributes section assigns colors and modes to 3278/79 field attribute combinations.
The format of an entry in the field attributes section is as follows:

FieldAttributeName ColorName I default[+ Mode] [Comments]

The fields in the Field Attribute entries must be separated by at least one space. The + (plus
sign) must have at least one space preceding and at least one following. More spaces may
be used to make the entries easier to read.

The fields in the Field Attribute definition lines are:

FieldAttributeName

ColorName

Mode

Specifies one of the recognized 3278/79 field attribute codes.

Specifies one of the previously defined color combinations (for
example, COLOR1) or the word default. The color or default color
used must be defined in the Screen Colors section of the
customization file.

Specifies one of the four recognized modes. They are:

blink Causes the field to blink.

bold Causes the field to appear in bold type.

underline Causes the contents of the field to be underlined.

revideo Causes the field to appear in reverse video.

The Mode entry is optional.

Note: Whether your system supports all four modes depends on the hardware. If you
specify a mode that your display does not support, no change will take place.

2-116 AIX Files Reference

Examples
Defining Keys

EM78 Customization

1. To map a workstation key to a 3278/79 key, edit the configuration file and enter a line
similar to the following:

k126 c k32 1 attn (attention)

This line maps the workstation Ctrl + Pause key combination to the 3278/79 Attn
(attention) key.

2. To map a workstation key to an EM78 function, enter:

k125 c screenrepl

This line maps the workstation Ctrl + Scroll Lock key combination to the emulator
screenrepl function.

3. To reassign a key using the none statement, edit the configuration file and enter a line
similar to the following:

k48 c shell

k48 c none /*Remove the previous definition shell.*/

k31 c shell /* The control state of key 31 is shell.*/

These lines assign the shell function to the workstation key k31 _ c instead of to key
k48 c.

4. To define a mnemonic key, edit the configuration file and enter a line similar to the
following:

e umlaut k32 9 s + k32 24 - - -
This line assigns the e _umlaut character to the 3278/79 key combination of k3 2 _ 9 _ s
followed by k32_24.

Defining Screen Colors
1. To define the color combinations, enter combinations similar to the following:

COLORl
COLOR2
COLOR3
COLOR4

f _cyan + b_black
f_ltgreen + b_black
f red + b black - -
f white + b black - -

The first line defines color combination one (COLORl) as a foreground of cyan against a
background of black. Similarly, using color combination three (COLOR3) will cause a
foreground of red to be displayed against a black background.

2. To define the default color edit the configuration file and enter a line similar to the
following:

default COLOR2

If the colors are defined as in example 1, this line will cause the screen to be displayed in
light green against a black background.

Chapter 2. File Formats 2-117

EM78 Customization

3. To define the status color as the default color, edit the configuration file and enter a line
similar to the following:

status default

If the default color is defined as in examples 1 and 2, this line will cause the status line to
be displayed in light green against a black background.

4. To define the status color as a previously defined color combination, edit the
configuration file and enter a line similar to the following:

status COLOR3

If the colors are defined as in example 1, this line will cause the status line to be
displayed in red against a black background.

Defining Field Attribute Colors and Modes
1. To define an attribute color and a mode, edit the configuration file and enter a line similar

to the following:

uahd COLOR3 + bold

This line causes any field which is unprotected, alphanumeric, intensified display, and
detectable with a light pen (uahd) to be displayed in bold type using the previously
defined COLOR3 combination.

2. To define a color without a mode, edit the configuration file and enter a line similar to the
following:

unlx COLOR2

This line causes any fi~ld which is unprotected, numeric, normal intensity, and
non-detectable with a light pen (unlx) to be displayed using the previously defined
COLOR2 color combination.

3. To define an attribute color as the default color, edit the configuration file and enter a line
similar to the following:

uaix default

This line causes any field which is unprotected, alphanumeric, non-display, and
non-detectable with a light pen (uaix) to be displayed using the previously defined
default color combination.

Implementation Specifics

Files

This file is part of 3278/79 Emulation in AIX 3278/79 Emulation/6000.

/usr/lib/em78/emdefs.p

/usr/lib/em78/emaltdefs.p

Contains default customization settings for EM78.

Contains alternate customization settings for EM78.

Related Information
The emkey command, em78 command.

EM78 Emulator Colors, EM78 Field Attribute Codes, EM78 Functions, How to Customize
EM 78, and Mapping Keys for EM78 in Communications Concepts and Procedures.

2-118 AIX Files Reference

HCON e789_ctbl.p

HCON e789_ctbl.p File Format

Purpose
Contains the source for the HCON default color definition table.

Description
The /usr/lib/hcon/e789_ctbl.p file contains the source for the AIX 3270 Host Connection
Program/6000 (HCON) default color definition table (the /usr/lib/hcon/e789_ctbl file). A
copy of the e789_ctbl.p file can be modified and used as input to the e789cdef command in
order to customize the color definition table.

The e789_ctbl.p file specifies the colors, attributes, and highlights to be displayed for each
3270 field on the screen. HCON supports the 3270 extended data stream, seven host colors,
and extended highlighting. The 3270 data stream may contain color and highlighting
information supplied by a host application.

The colors, attributes, and highlights displayed on the terminal are based on the value of the
host color and highlighting. The foreground and background colors and the highlighting to be
used on the terminal must be specified in the color definition file. The colors and highlighting
supported depend on the type of display in use.

The HCON color utility (the e789cdef command) uses color definition lines to map the color
and highlighting attributes of the 3270 terminals to the characteristics of the terminal
displays. The e789_ctbl.p file contains the color definition lines.

The general format of a color definition line is as follows:

3270Display = Foreground Background Highlight

Each line consists of a host color or attribute followed by a host highlight, followed
successively by a terminal foreground color name, a background color name, and a highlight
name. Leading and trailing blanks on the definition line are ignored. However, the names
must be separated by at least one space or tab character.

Everything that follows an * (asterisk) on a line is considered a comment.

The 3270Display portion of the color definition line may be any of the following:

3270Color 3270Highlight
Indicates 3270 color and highlight information supplied by the host
application, and is referred to as seven color mode.

3270Attribute 3270Highlight

status

unfrmt

Indicates 3270 attribute and highlight information supplied by host
applications that do not use 3270 colors, and is referred to as four color
mode.

Defines the status line (Operator Information Area).

Defines an unformatted screen, where the host application does not supply
any field attributes or color information.

Chapter 2. File Formats 2-119

HCON e789_ctbl.p

Following are the possible values for the variables that can be used in the 3270Display
portion of the color definition line:

3270Color The name of one of the colors provided on 3270 displays, which are:

blue
red
green
yellow
turquoise
pink
white
defnorm No color specified; normal brightness.
defint No color specified; intensified brightness.

Note: The names of these colors are defined in the
/usr/lib/hcon/nls_names file and can be changed.

3270Highlight One of the extended highlighting characteristics provided on 3270 displays,
which are:

none
underline
blink
reverse

Note: The names used to designate extended highlighting characteristics
are defined in the /usr/lib/hcon/nls_names file and can be
changed.

3270Attribute One of the following keywords, specifying certain characteristics of 3270
fields:

unorm
uint
pnorm
pint

Unprotected normal
Unprotected intense
Protected normal
Protected intense.

Note: The names used to designate field characteristics are defined in the
/usr/lib/hcon/nls_names file and can be changed.

Following are the possible values for the variables that define the terminal display:

Foreground The name of the color to be used for the foreground

Background The name of the color to be used for the background.

2-120 AIX Files Reference

The names of the terminal colors are:

black
red
green
yellow
blue
magenta
cyan
white

Examples

Highlight

HCON e789_ctbl.p

Note: The color names used for the Foreground and Background colors
are defined in the /usr/lib/hcon/nls_names file and can be
changed.

Even if a color definition table is used for printer-emulation sessions,
the background color is always white.

One of the following terminal highlighting attributes:

none
bright
reverse

blink
underline

Turn brightness on, regardless of field attribute.
Use reverse video, regardless of 3270 extended
highlighting attribute.
Blink field.
Underline field.

Note: The highlighting available depends on the type of highlighting
supported on your terminal.

The names used to designate the types of terminal highlighting are
defined the /usr/lib/hcon/nls_names file and can be changed.

1. To map a field by its host attributes, use a line similar to the following:

unorrn underline = green black underline

This color definition line will cause an unprotected, normal field (unorrn attribute)
underlined on the host computer to be displayed on the emulating terminal in green on a
black background, and underlined.

2. To map a field by its host color, use a line similar to the following:

pink blink = magenta black bright

This color definition line causes a field that is pink and blinking on the host computer to
be displayed on the emulating terminal in magenta on a black background, with bright
highlighting.

3. To define the display of the status line, use a line similar to the following:

status = green black none

This color definition line causes the status line (status) on the emulating terminal to be
displayed in green on a black background, without highlighting (none).

4. To define the display of an unformatted screen, use a line similar to the following:

unf rrnt = green black none

This color definition line causes an unformatted host screen (unfrrnt) to be displayed on
the emulating terminal in green on a black background,_ without highlighting (none).

Implementation Specifics
This file is part of the AIX 3270 Host Connection Program/6000 (HCON).

Chapter 2. File Formats 2-121

t1l;ON e789_ctbl.p

Files
/usr/lib/hcon directory

/usr/lib/hcon/e789_ctbl file

/usr/lib/hcon/nls_names file

Contains HCON files, including the e789_ctbl.p file.

Contains the default binary color definition table.

Contains color, highlighting, and attribute names used
in color definitions.

Related Information
The e789cdef command creates a binary color definition table based on color definition
lines.

How to Customize the HCON Color Definition Table in Communication Concepts and
Procedures discusses creating customized tables.

To start SMIT for use with HCON, use the smit hcon command.

To set up a session profile for HCON, use SMIT or the mkhcons command. To modify an
existing profile, use SMIT or the chhcons command.

Customizing HCON in Communication Concepts and Procedures discusses the options
available to you for customizing HCON colors, keyboard definitions, and key and color
names.

2-122 AIX Files Reference

HCON e789_ktbl.p

HCON e789_ktbl.p File Format

Purpose
Contains the source for the HCON default keyboard definition table.

Description

Examples

The /usr/lib/hcon/e789_ktbl.p file contains the default keyboard mappings source for the
AIX 3270 Host Connection Program/6000 (HCON). The source mappings in the e789_ktbl.p
file correspond to those in the binary /usr/lib/hcon/e789_ktbl file. A copy of the e789_ktbl.p
file can be modified and used as input to the e789kdef command in order to customize the
keyboard definition table.

The e789_ktbl.p file consists of a series of key definition lines in the following format:

KeyName HCONFunctionName [*Comments]

The KeyName must be separated from the HCONFunctionName by at least one space.
More spaces can be used to increase readability. Everything that follows an * (asterisk) on a
line is considered a comment. Comments are optional.

KeyName Corresponds to a key sequence on an HCON-supported
keyboard. The possible values for the KeyName variable are defined
in the /usr/lib/hcon/keynames file.

HCONFunctionName Corresponds to a character or function supported by the HCON
emulator. The valid values for the HCONFunctionName variable are
defined in the /usr/lib/hcon/func_names file.

1. To map alphanumeric symbols to key sequences, create lines similar to the following:

a. Map the l (inverted question mark} to the@ (at sign) key on the HCON supported
keyboard with the following entry:

@ inverted_question

When the user presses the @ key, an inverted question mark appears.

b. Map the£ (pound sterling sign) to the$ (dollar sign) key on the HCON supported
keyboard with the following entry:

$ english_pound

When the user presses the$ key, a pound sterling sign appears.

2. To map HCON functions to key sequences, create lines similar to the following:

a. Map the DELWORD emulator function to the Ctrl-W key sequence on any HCON
supported keyboard using the following entry:

cntrl w DELWORD

b. Map the REFRESH function to the Ctrl-G key sequence using the following entry:

cntrl_g REFRESH

Chapter 2. File Formats 2-123

HCON e789_ktbl.p

c. Map the NEXT function to the key sequence corresponding to the key _pa2 key name
using the following entry:

key_pa2 NEXT

d. Map the ENTER function to the key sequence corresponding to the key_ new line key
name using the following:

key_newline ENTER

Implementation Specifics

Files

This file is part of the AIX 3270 Host Connection Program/6000 (HCON).

/usr/lib/hcon directory
/usr/lib/hcon/e789_ktbl file
/usr/lib/hcon/func_names file

/usr/lib/hcon/keynames file

Contains HCON files, including the e789_ktbl.p file.
Contains the default binary keyboard definition table.
Contains HCON function names used in keyboard definition
lines.
Contains HCON keynames used in keyboard definition
lines.

Related Information
Use the e789kdef command creates a binary keyboard definition table based on keyboard
definition lines.

How to Customize the HCON Keyboard Definition Table in Communication Concepts and
Procedures discusses creating a customized keyboard table.

To start SMIT for use with HCON, use the smit hcon command.

To set up a session profile for HCON, use SMIT or the mkhcons command. To modify an
existing profile, use SMIT or the chhcons command.

2-124 AIX Files Reference

HCON func_names

HCON func_names File Format

Purpose
Contains function names for HCON.

Description

Examples

The /usr/lib/hcon/func_names file contains the function names for the AIX 3270 Host
Connection Program/6000 (HCON). These names are used as input to the e789kdef
(keyboard redefinition) command.

The func_names file allows function names to be translated into their equivalent in any
language. Thus the character string that signifies a function name may change, but the
internal identifier HCON uses for the function name remains constant.

The func_names file lists emulator special keys that can be used as input when redefining a
keyboard with the HCON e789kdef command. Emulator special keys include functions that
appear on IBM 3278/79 keyboards (such as PF1 and ENTER) and functions special to the
HCON emulator program (such as DELWORD and FTABW) that move the cursor, add and
delete text, and switch active emulator screens.

Entries in the func_names file are in the following format:

Name=lnternal/D [*Comments]

The mapping string Name=lnternal/D must not contain any spaces.

The Name variable can be translated into any equivalent form of the function or key name.
However, the length of the Name variable cannot be more than 36 characters.

The lnternal/D variable must not be changed.

Any line that starts with an * (asterisk) and any part of a line following an * are interpreted as
comments by the e789kdef command.

Note: Changes to names in the func_names file affect the entire keyboard customization
process. All users must use the new names as input to the e789kdef command.

Following are sample entries from the func_names file:

1. Example of a function key mapping:

NEWLINE=Ox09 * the function "newline" has an id of 9

2. Example of a non-U.S. English key mapping:

e acute=Ox82

3. Example of a mapping for the no-function function:

NOFUNC=Ox400 *the function "nofunction" has an id of 1024

Implementation Specifics
This file is part of the AIX 3270 Host Connection Program/6000 (HCON).

Chapter 2. File Formats 2-125

HCON func_names

Files
/usr/lib/hcon directory
/usr/lib/hcon/e789_ktbl file
/usr/lib/hcon/e789_ktbl.p file

/usr/lib/hcon/keynames file

Contains HCON files, including the func_names file.
Contains the default binary keyboard definition table.
Contains the source for the default binary keyboard
definition table.
Contains HCON keynames.

Related Information
Names defined in the func_names file are used as input to the e789kdef command and
also to customize the e789_ktbl.p file.

Customizing HCON in Communication Concepts and Procedures discusses the options
available to you for customizing HCON keyboard definitions as well as function and key
names.

2-126 AIX Files Reference

HCON keynames

HCON keynames File Format

Purpose
Identifies HCON key names.

Description

Examples

The /usr/lib/hcon/keynames file lists all of the AIX 3270 Host Connection Program/6000
(HCON) defined key names. In HCON, a key name is an identifier that corresponds to a
non-U.S. English character or to specific keys on keyboards supported by HCON. Use the
key names listed in the keynames file when redefining keys with the e789kdef command.

The keynames file allows key names to be translated into their equivalent in any language.
Thus the character string that signifies a key name may change, but the internal identifier
HCON uses for the key remains constant.

Key name mappings are in the following format:

Name=lnterna/10 [*Comments]

The key mapping Name=lnterna/10 string must not contain any spaces.

The Name variable can be translated into its equivalent in any language. However, the
length of the Name variable cannot be more than 36 characters.

The lnternal/D variable must not be changed.

Any line beginning with an* (asterisk) and any part of a line following an* are interpreted as
comments by the e789kdef command.

Note: Changes to key names in the keynames file affect the entire keyboard customization
process. All users must use the new names as input to the e789kdef command.

Key names may be either alphanumeric or non-alphanumeric. Alphanumeric names
describe a letter, number, symbol, or a non-U.S. English character.

Some alphanumeric keys have special functions when pressed in combination with the Ctrl
key. This type of key name is denoted by cntrl_n, where n is any lowercase alphabetic
character (a through z).

Nonalphanumeric, noncontrol-key names (such as key_home, key_pf1, and key_left) are
prefixed with the characters key_. These key names are mapped to emulator functions in
the default e789_ktbl.p file.

Due to NLS support requirements and the different placement and number of keys on the
keyboards supported by HCON, some key names must be mapped to different physical
keys. However, the e789kdef command is not affected by the physical mapping.

Following are sample entries from the keynames file:

1 .. Examples of control key mappings:

cntrl a=OxOl
cntrl b=Ox02

Chapter 2. File Formats 2-127

HCON keynames

2. Examples of symbol key mappings:

%=0x25
&=Ox26

3. Examples of non-U.S. English character mappings:

a_circumflex=Ox83
a_umlaut=Ox84

4. Examples of nonalphanumeric, noncontrol-key names mappings:

key_tab=OxlOO
key_btab=OxlOl

Implementation Specifics
This file is part of the AIX 3270 Host Connection Program/6000 (HCON).

Files
/usr/lib/hcon directory Contains HCON files, including the keynames file.

/usr/lib/hcon/e789_ktbl file Contains the default binary keyboard definition table.

/usr/lib/hcon/e789_ktbl.p file Contains the source for the default binary keyboard
definition table.

/usr/lib/hcon/func_names file Contains HCON function names.

Related Information
Names defined in the keynames file are used as input to the e789kdef command and to
customize the e789_ktbl.p file.

Customizing HCON in Communication Concepts and Procedures discusses the options
available to you for customizing HCON keyboard definitions as well as key and function
names.

2-128 AIX Files Reference

HCON nls_names

HCON nls_names File Format

Purpose
Contains color and attribute name mappings used by HCON.

Description

Examples

The /usr/lib/hcon/nls_names file contains color and attribute name mappings used by the
AIX 3270 Host Connection Program/6000 (HCON). The nls_names file maps color and
attribute names to internal identifiers used by the e789cdef command. This command allows
users to customize the 3270 field display attributes on their terminals for use by HCON
emulation sessions.

The nls_names file allows color and attribute names to be translated into their equivalent in
any language. Thus the character string that signifies a color or attribute name may change,
but the internal identifier that the e789cdef command uses for the color or attribute remains
constant.

The nls_names file contains mappings for:

• Terminal colors

• Terminal highlighting

• 3270 extended highlighting

• 3270 extended colors

• Status line

• Unformatted screen (with no field attributes)

• 3270 base field attributes.

Color and attribute name mappings are in the following format:

Name=lnternal/D [*Comments]

The mapping string Name=lnternal/D must not contain any spaces.

The Name variable can be translated into its equivalent form in any language. However, the
length of the Name variable cannot be more than 36 characters.

The lnternal/D variable must not be changed.

Any line that starts with an* (asterisk) and any part of a line following an* are interpreted as
comments by HCON.

Note: Changes to color and attribute names in the nls_names file affect the entire color
customization process. All users must use the new names as input to the e789cdef
command.

Following are examples of each type of entry in the nls_names file.

1. Examples of terminal color entries:

red=l
green=2

* The terminal color "red" has an id of 1
* The terminal color "green" has an id of 2

Chapter 2. File Formats 2-129

HCON nls_names

2. Example of a terminal highlighting entry:

blink=l * The terminal hilite "blink" has an id of 1

3. Example of a 3270 extended highlighting entry:

underline=l * The 3270 hilite "underline" has an id of 1

4. Examples of 3270 extended color entries:

defnorm=O
red=2

* The 3270 color "defnorm" has an id of 0
* The 3270 color "red" has an id of 2

5. Example of a 3270 base field attribute entry:

unorm=O * The 3270 field attribute "unorm"
* has an id of 0

6. Example of a status line entry:

status=O * The attribute "status" has an id of 0

7. Example of an unformatted screen entry:

unfrmt=l * The attribute "unfrmt" has an id of 1

Following is an example of changing an entry to the equivalent name in another language:

8. To change the name of the terminal color red to the French name, rouge, replace red
with rouge in the terminal color entries section of the nls_names file:

rouge=l * The terminal color "rouge" has an id of 1

To cause text to be displayed in red on the terminal screen, the user will now specify
rouge as input to the e789cdef command.

Implementation Specifics

Files

This file is part of the AIX 3270 Host Connection Program/6000 (HCON).

/usr/lib/hcon directory

/usr/lib/hcon/e789_ctbl file

/usr/lib/hcon/e789_ctbl.p file

Contains HCON files, including the nls_names file.

Contains the default binary color definition table.

Contains the source for the default binary color
definition table.

Related Information
Names defined in the nls_names file are used as input to the e789cdef command and to
customize the e789_ctbl.p file.

Customizing HCON in Communication Concepts and Procedures discusses the options
available to you for customizing HCON colors, keyboard definitions, and key and color
names.

2-130 AIX Files Reference

MH Alias

MH Alias File Format

Purpose
Defines aliases.

Description
An alias file contains lines that associate an alias name with an address or group of
addresses. The Message Handler (MH) package reads both personal alias files and a
systemwide alias file, the /usr/lib/mh/MailAliases file. Depending on the MH configuration,
aliases may also be defined in the /usr/lib/aliases file (see the sendmail command).

The alias file name is an argument to several MH commands. These commands can be set
automatically by entries in the .mh_profile file. Personal alias files can have any name, but
must follow the format described here. The /usr/lib/mh/MailAliases file is the default alias
file for systemwide aliases. This file is set up by a user with root user authority.

Specify your personal alias file in your .mh_profile file. If you do not do so, you must use
the -alias flag each time you use an MH command that takes this flag.

Each line of an .mh_alias file has one of the following formats:

• Alias : Address-Group

• Alias ; Address-Group

• <Alias-File

The variables are described as follows:

Alias

Address

Group

Alias-File

The Alias string is a simple address.

The Address variable must be a simple Internet-style address.

The Group variable must be a group name (or number) from the /etc/group
file.

The File variable must be an AIX file name. The MH package treats alias file
names as case-sensitive. Alias expansion is case-sensitive as well.

The Address-Group variable can be either of the following:

Addresslist A list of addresses that make up a group.

<Alias-File An AIX file to be read for more alias definitions.

The addresses in the AddressList variable are separated by commas.

Special Characters
\ (backslash)

<(less than)

You can continue an alias definition on the next line by ending the line
to be continued with a\ (backslash) followed by a new-line character.

If a line starts with a < (less than) sign, MH reads the file specified
after the less-than sign for more alias definitions. The reading is done
recursively.

Chapter 2. File Formats 2-131

MH Alias

Example

=(equal)

+(plus)

* (asterisk)

If an address group starts with a< (less than) sign, MH reads the file
specified after the less-than sign and adds the contents of that file to
the address list for the alias.

If an address group starts with an = (equal) sign, MH consults the
/etc/group file for the AIX group specified after an equal sign. The MH
package adds each login name occurring as a member of the group to
the address list for the alias.

If an address group starts with a+ (plus) sign, MH consults the
/etc/group file to determine the group ID of the AIX group specified
after a plus character. MH adds to the address list for the alias each
login name occurring in the /etc/passwd file whose group ID is
indicated by this group.

If an address group is defined by an* (asterisk), MH consults the
/etc/passwd file and adds all login names with a user number greater
than 200 (or the value set for everyone in the /usr/lib/mh/mtstailor file
to the address list for the alias).

The following list explains how the system resolves aliases at posting time:

1. The system builds a list of all addresses from the message to be delivered, eliminating
duplicate addresses.

2. If the draft originated on the local host, the system performs alias resolution for
addresses that have no specified host.

3. For each line in the alias file, the system compares the alias with all existing addresses. If
a match is found, the system removes the matched alias from the address list. It then
adds each new address in the address group to the address list. The alias itself is not
usually output. Instead, the address group to which the alias maps is output. If the alias is
terminated with a ; (semicolon) instead of a : (colon), both the alias and the address are
output in the correctform. (This correct form makes replies possible since MH aliases
and personal aliases are unknown to the mail transport system.)

In pattern matching, a trailing * (asterisk) in an alias matches just about anything
appropriate.

The following example of an .mh_alias file illustrates some features:

</u/sarah/morealiases
systems:= systems
staff:+ staff
everyone:= *
manager:= harold@harold
project:= lance,mark@remote,peter,manager

The first line says that more aliases should be read from the /u/ sarah/morealiases

file. The name systems is defined as all users who are listed as members of the group
systems in the /etc/group file, and staff is defined as all users whose group ID in the
/etc/passwd file is equivalent to the staff group. Finally, everyone is defined as all
users with a user ID in the /etc/passwd file greater than 200.

The name manager is defined as an alias for the user harold@harold. The name
project is defined as an alias for the users lance, mark@remote, peter, and manager.

2...;132 AIX Files Reference

MH Alias

The Message Handler (MH) package reads alias files line by line. Therefore, references to
an alias in a previous line will be implemented. References to an alias in a following line will
not be implemented.

Implementation Specifics

Files

This file format is part of Message Handler in BOS Extensions 1 .

/usr/lib/mh/MailAliases

/usr/lib/aliases

Contains the defaults alias file for systemwide aliases,
which is set up by a user with root user authority.

Contains systemwide aliases for the sendmail command.

Related Information
The ali command, conflict command, post command, sendmail command, whom
command.

The aliases file, /etc/group file, /etc/passwd file, $HOME/.mh_profile file.

Chapter 2. File Formats 2-133

PC Simulator Startup

PC Simulator Startup File Format

Purpose
Specifies options when starting PC Simulator.

Description

Example

Whenever you start PC Simulator with the pcsim command, PC Simulator searches for a
profile that specifies startup options. The profile used by PC Simulator is a pure ASCII text
file that you can edit with any text editor.

You can specify a profile with the profile flag. Otherwise, PC Simulator searches for the
default profile, simprof. A sample profile named simprof, included with PC Simulator, is
located in the /usr/lpp/pcsim/samples directory.

You can have multiple profiles, for different users, or to start PC Simulator with different
options in effect. PC Simulator searches for the specified profile first in the current working
directory, then in the $HOME directory, and finally in the /usr/lpp/pcsim directory. If you
have only one profile, you can copy the simprof sample profile to one of these directories,
then edit it to set the options you want.

Even if PC Simulator finds a profile, it searches all three directories. It may, therefore, find
more than one profile with the same file name. If this happens, option settings in the second
profile override values specified for the same options in the first profile. Options set with
flags from the command line override option settings found in a profile.

A simulator profile resembles an AIXwindows defaults file. Options are listed by flag name,
followed by a colon (:),then a parameter value. The simprof sample profile included with
PC Simulator is similar to this example, except it includes no parameter values.

If an option is not listed, or no value is specified, PC Simulator starts with the default value
for this option. A blank space between the colon and parameter value is optional. Any text
following a pound sign (#) is a comment.

Cdrive

Ddrive

permission

Adiskette
Bdiskette
dtime

autoRaise

display

dmode
geometry

iconBitmap
iconGeometry
iconName

/u/dosl/txt.fil # select file /u/dosl/txt.fil
for fixed disk C:

/u/dos2 # select directory /u/dos2
for fixed disk D:

666 # read/write permissions to
all users for files saved
to fixed disk

3 # select 3.5-inch diskette drive
no B diskette drive selected

5 # release diskette drive to
AIX after 5 seconds
window manager controls
window level
use default AIXwindows
server, unix:O

V # select VGA display mode
use default window size
& position, 720x494+152+265
use default icon

=64X64+10+10 # size and position of icon
use default, pcsim

2-134 AIX Files Reference

Files

kbdmap
name
refresh

font
warp
lptl
lpt2
lpt3
ptime

xmemory

BUDGET
15

true
lpO

30

1024

PC Simulator Startup

no file selected
name in window title bar
refresh display every
15 milliseconds
use default font file, ROMl0.500
center initial mouse cursor
emulate DOS lptl with AIX lpO
none selected
none selected
print job file buffering
time out after 30 seconds
provide lMB extended memory

/usr/lpp/pcsim/samples/simprof Example startup profile.

Related Information
The pcsim command.

Chapter 2. File Formats 2-135

TCP/IP .3270keys

TCP/IP .3270keys File Format

Purpose
Defines a user keyboard mapping and colors for TELNET (3270).

Description
The /etc/.3270keys file allows a user to have a TELNET (3270) key mapping that differs
from the default mapping. For example, you might want to change the ACTION key to the
ENTER key.

If you are using a color display, you can also change this file to customize the colors for
various 3270 display attributes. (The default mapping in the 3270.keys file is generic. The
.3270keys file allows users to tailor key mappings to the workstation keyboard and to select
alternate colors for 3270 display attributes.) The .3270keys file exists as a hidden file in the
user's home directory. The name of the hidden file begins with a . (dot).

Note: When remapping keys to customize your .3270keys file, keep in mind that you
cannot map a 3270 function to the ESC key alone. You can specify the ESC key only
in combination with another key.

Creating Your Own .3270keys File
The /usr/lpp/tcpip/samples/3270keys.hft file is a sample that can be used to create a
.3270keys file. To create a $HOME/.3270keys file, copy the file to your home directory and
make any modifications to it.

The following options can be used in the sequence field:

\b
\s
\t
\n
\r
\e
A

backspace.
space.
tab.
new line.
return.
escape.
mask next character with \037 (e.g. "M).

set high order bit for next character.

The following are valid colors for 3270 display attributes:

• black

• blue

• red

• green

• white

• magenta

• cyan.

Note: You can also change the default key mappings by editing the 3270keys.hft file for
high function terminal mapping and the 3270.keys file for ASCII terminal mapping.

2-136 AIX Files Reference

Example

TCP/IP .3270keys

This example sets up two keys, the Backspace key and the Tab key.

3270 Function Sequence
bind backspace n\b"
bind tab n\t"

Key
#backspace
#tab

The# (pound sign) is used to indicate comments.

Implementation Specifics

Files

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/3270. keys

/etc/3270keys. hft

Contains the default keyboard mapping for non-RT
keyboards.

Contains the default keyboard mapping for RT keyboards.

/usr/lpp/tcpip/samples/3270keys.hft

$HOME/ .3270keys

/etc/tn3270.keys

Contains a sample RT keyboard mapping. This file also
contains directions for its use.

Defines the user's keyboard mapping for the TELNET
Protocol.

Contains the default keyboard mapping for the tn3270
command.

Related Information
The telnet, tn command.

Chapter 2. File Formats 2-137

TCP/IP Domain Cache

TCP/IP Domain Cache File Format

Purpose
Defines the root name server or servers for a domain name server host.

Description

Example

The cache file is one of the DOMAIN data files and contains the addresses of the servers
that are authoritative name servers for the root domain of the network. The name of this file
is defined in the named boot file. If the host serves more than one domain, the cache file
should contain an entry for the authoritative name server for each domain.

All entries in this file must be in Standard Resource Record Format. Valid resource records
in this file are:

• Name Server (NS)

• Address (A)

Except for comments (starting with a ; (semicolon) and continuing to the end of the line), the
resource records in the data files generally follow the format of the resource records that the
named daemon returns in response to queries from resolver routines.

The following examples show the various ways to use the cache data file. This example is
valid for any name server or either of the two networks.

Network abc consists of:

• gobi. abc, the primary name server for the abc network,· 192.9.201.2

• mojave. abc, a host machine, 192.9.201.6

• sandy. abc, secondary name server for the abc network and gateway between abc and
xyz, 192.9.201.3.

Network xyz consists of:

• kalahari. xyz, primary name server for the xyz network, 160.9.201.4

• lopnor. xyz, a host machine, 160.9.201.5

• sahara. xyz, a host machine and cache-only name server for the xyz network,
160.9.201.13

• sandy. xyz, a secondary name server for. the xyz network and gateway between abc
and xyz, 160.9.201.3

Note: Note that sandy, a gateway host, is on both networks and also serves as secondary
name server for both.

2-138 AIX Files Reference

TCP/IP Domain Cache

The following are sample entries in a Domain cache file on any of the name servers in either
of the domains:

;
;cache file for all name servers in both domains

. root name servers. ' abc IN NS gobi.abc.
xyz IN NS kalahari.xyz.
gobi.abc. 3600000 IN A 192.9.201.2
kalahari.xyz 3600000 IN A 160.9.201.4

Implementation Specifics

Files

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System {BOS)
Runtime.

/usr/lpp/tcpip/samples/named.boot
Contains a sample named.boot file. This file also contains directions for its
use.

/etc//named .boot
Defines how named initializes the DOMAIN name server file.

/usr/lpp/tcpip/samples/named.data
Contains a sample named.data file. This file also contains directions for its
use.

Related Information
The named daemon.

The DOMAIN Data file, DOMAIN Reverse Data file, DOMAIN Local file.

Configuring Name Servers for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter of Communication Concepts and Procedures.

Chapter 2. File Formats 2-139

TCP/IP Domain Data

TCP/IP Domain Data File Format

Purpose
Stores name resolution information for the named daemon.

Description
The hosts data file is one of the DOMAIN data files and contains name to address resolution
mapping information for all machines in the name server's zone of authority. The name of
the hosts data file is specified in the named boot file. This file should exist only on name
servers that are designated as primary for a domain. There may be more than one hosts
data file per primary name server.

All entries in this file must be in Standard Resource Record Format. Valid resource records
in this file are:

• Start of Authority (SOA)

• Name Server (NS)

• Address (A)

• Mailbox (MB)

• Mail Exchanger (MX)

• Mail Group (MG)

• Mail Rename (MR)

• Canonical Name (CNAME)

• . Well Known Services (WKS)

• Host Information (HINFO)

Except for comments (starting with a ; (semicolon) and continuing to the end of the line), the
resource records in the data files generally follow the format of the resource records that the
named daemon returns in response to queries from resolver routines.

Two awk scripts, addrs.awk and hosts.awk, are provided in the /usr/lpp/tcpip/samples
directory to assist you in converting your existing /etc/hosts file to DOMAIN data files.
These files also contain instructions for their use. Refer to these files for more information
on the conversion.

2-140 AIX Files Reference

Examples

TCP/IP Domain Data

The following examples show the various ways to use the Domain hosts data file. In these
examples, two networks are represented: abc and xyz.

Network abc consists of:

• gobi. abc, the primary name server for the abc network, 192.9.201.2

• mojave. abc, a host machine, 192.9.201.6

• sandy. abc, secondary name server for the abc network and gateway between abc and
xyz, 192.9.201.3.

Network xyz consists of:

• kalahari. xyz, primary name server for the xyz network, 160.9.201.4

• lopnor. xyz, a host machine, 160.9.201.5

• sahara. xyz, a host machine and cache-only name server for the xyz network,
160.9.201.13

• sandy. xyz, a secondary name server for the xyz network and gateway between abc
and xyz, 160.9.201.3

Note: Note that sandy, a gateway host, is on both networks and also serves as secondary
name server for both.

1. The primary host data file for network abc, stored on host gobi. abc, contains the
following entries:

;primary host data file for abc - gobi.abc

@ IN

;name servers for abc
IN

;other name servers
IN

kalahari.xyz. IN
;

SOA

NS

NS
A

;define local loopback host
localhost IN A

;define all hosts in abc
loopback IN CNAME
go bi IN A
gobi-abc IN CNAME
sandy IN A

IN WKS
udp tf tp name server domain

IN WKS

gobi.abc. root.gobi.abc.
1:1 ;serial
3600 ;refresh
600 ; retry
3600000;expire
86400 ;minimum
)

gobi.abc.

kalahari.xyz.
160.9.201.4

127.1

localhost.abc
192.9.201.2
gobi.abc
192.9.201.3
192.9.201.3

192.9.201.3 tcp
echo telnet smtp discard uucp-path
systat daytime netstat chargen ftp
time whois finger hostnames domain

Chapter 2. File Formats 2-141

TCP/IP Domain Data

)
sandy-abc IN CNAME sandy.abc
mojave IN A 192.9.201.6

IN HINFO RISC-System/6000 AIX-3.1
mojave-abc IN CNAME mojave.abc.

2. The primary host data file for network xyz, stored on host kalahari. xyz, contains the
following entries:

;primary host data file for xyz - kalahari.xyz

@ IN

;nameservers for xyz

IN

;other nameservers
IN

gobi.abc. IN

SOA

NS

NS
A

;define local loopback host
localhost IN A

;define all hosts in xyz
loopback IN CNAME
kalahari IN A
ns-xyz
kalahari-xyz

sahara

lopnor
lopnor-xyz

sandy

2-142 AIX Files Reference

IN
IN
IN
IN
IN

IN

IN
IN
IN
IN
IN

CNAME
CNAME
HINFO
A
WKS

WKS

HINFO
A
CNAME
HINFO
A

kalahari.xyz. root.kalahari.xyz.

1:1 ;serial
3600 ;refresh
600 ; retry
3600000;expire
86400 ;minimum
)

kalahari.xyz.

gobi.abc.
192.9.201.2

127.1

localhost.xyz.
160.9.201.4
kalahari.xyz.
kalahari.xyz.
RISC-System/6000 AIX-3.1
160.9.201.13
160.9.201.13 (udp tftp nameserver
domain)
160.9.201.13 tcp (
echo telnet smtp discard uucp
path systat daytime netstat
chargen ftp time whois ~inger
hostnames domain
)
RISC-System/6000 AIX-3.1
160.9.201.5
lopnor.xyz.
RISC-System/6000 AIX-3.1
160.9.201.3

TCP/IP Domain Data

Implementation Specifics

Files

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/usr/lpp/tcpip/samples/addrs.awk
Contains a sample awk script for converting an /etc/hosts file to an
/etc/named.rev file. This file also contains directions for its use.

/usr/lpp/tcpip/samples/hosts.awk
Sample awk script for converting an /etc/hosts file to an /etc/named.data
file. This file also contains directions for its use.

/usr/lpp/tcpip/samples/named.boot
Contains a sample named.boot file. This file also contains directions for its
use.

/etc/named.boot
Defines how named initializes the DOMAIN name server file.

/usr/lpp/tcpip/samples/named.data
Contains a sample named.data file. This file also contains directions for its
use.

Related Information
The named daemon.

The DOMAIN Reverse Data file, DOMAIN Cache file, DOMAIN Local file.

The TCP/IP Standard Resource Record Format.

Configuring Name Servers for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter of Communication Concepts and Procedures.

Chapter 2. File Formats 2-143

TCP/IP Domain Local Data

TCP/IP Domain Local Data File Format

Purpose
Defines the local loopback information for named on the name server host.

Description

Examples

The local data file is one of the DOMAIN data files and contains local loopback information
for the name server host. The name of the DOMAIN local data files is specified in the
named boot file.

All entries in this file must be in Standard Resource Record Format. Valid resource records
in local data file are:

• Start of Authority (SOA)

• Name Server (NS)

• Pointer (PTA)

The records in the DOMAIN data files are called resource records. Except for comments
(starting with a ; (semicolon) and continuing to the end of the line), the resource records in
the data files generally follow the format of the resource records that the named daemon
returns in response to queries from resolver routines.

The following examples show the various ways to use the Domain local data file. In these
examples, two networks are represented: abc and xyz.

Network abc consists of:

• gobi. abc, the primary name server for the abc network, 192.9.201.2

• mojave.abc, a host machine, 192.9.201.6

• sandy. abc, secondary name server for the abc network and gateway between abc and
xyz, 192.9.201.3.

Network xy z consists of:

• kalahari. xyz, primary name server for the xyz network, 160.9.201.4

• lopnor. xyz, a host machine, 160.9.201.5

• sahara. xyz, a host machine and cache-only name server for the xyz network,
160.9.201.13

• sandy. xyz, a secondary name server for the xyz network and gateway between abc
and xyz, 160.9.201.3

Note: Note that sandy, a gateway host, is on both networks and also serves as secondary
name server for both.

2-144 AIX Files Reference

TCP/IP Domain Local Data

1. The named.abclocal file stored on gobi. abc contains the following entries:

;primary reverse file for local 127 network

@

1

IN

IN
IN

SOA

NS
PTR

gobi.abc. root.gobi.abc.
(
1:1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)
gobi.abc.
localhost.

2. The named.xyzlocal file stored on kalahar i. xyz contains the following entries:

;primary reverse file for local 127 network

@

1

IN

IN
IN

SOA

NS
PTR

kalahari.xyz. root.kalahari.xyz.

(
1:1 ;serial
3600 ;refresh
600 ; retry
3600000;expire
86400 ;minimum
)
kalahari.xyz.
localhost.

3. The named.seclocal file stored on sandy contains the following entries:

;primary reverse file for local 127 network

@

1

IN

IN
IN

SOA

NS
PTR

sandy.abc. root.sandy.abc.
(
1:1 ;serial
3600 ;refresh
600 ; retry
3600000;expire
86400 ;minimum
)
sandy.abc.
localhost.

Chapter 2. File Formats 2-145

TCP/IP Domain Local Data

4. The named.calocal file stored on sahara. xyz contains the following entries:

;primary reverse file for local 127 network .
' @ IN SOA sahara.xyz. root.sahara.xyz.

(
1:1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

IN NS sahara.xyz.
1 IN PTR localhost.

Implementation Specifics

Files

This file is part of TCP/IP Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/usr/lpp/tcpip/samples/named.boot
Contains a sample named.boot file. This file also contains directions for its
use.

/etc/named.boot
Defines how named initializes the DOMAIN name server file.

/usr/lpp/tcpip/samples/named.data
Contains a sample named.data file. This file also contains directions for its
use.

Related Information
The named daemon.

The DOMAIN Data file, DOMAIN Reverse Data file, DOMAIN Cache file.

Configuring Name Servers for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter of Communication Concepts and Procedures.

2-146 AIX Files Reference

TCP/IP Domain Reverse Data

TCP/IP Domain Reverse Data File Format

Purpose
Stores reverse name resolution information for the named daemon.

Description

Examples

The Reverse Data File is one of the DOMAIN data files and contains address to name
resolution mapping information for all machines in the name server's zone of authority. The
name of the reverse hosts data file is specified in the named boot file. There may be more
than one reverse hosts data file per primary name server.

All entries in this file must be in Standard Resource Record Format. Valid resource records
in this file are:

• Start of Authority (SOA)

• Name Server (NS)

• Pointer (PTR)

Except for comments (starting with a ; (semicolon) and continuing to the end of the line), the
resource records in the data files generally follow the format of the resource records that the
named daemon returns in response to queries from resolver routines.

Two awk scripts, addrs.awk and hosts.awk, are provided in the /usr/lpp/tcpip/samples
directory to assist you in converting your existing /etc/hosts file to named data files. These
files also contain instructions for their use. Refer to these files for more information on the
conversion.

The following examples show the various ways to use the Domain reverse data file. In these
examples, two networks are represented: abc and xyz.

Network abc consists of:

• go bi. abc, the primary name server for the abc network, 192.9.201 .2

• moj ave. abc, a host machine, 192.9.201.6

• sandy. abc, secondary name server for the abc network and gateway between abc and
xyz, 192.9.201.3.

Network xyz consists of:

• kalahari.xyz, primary name server for the xyz network, 160.9.201.4;

• lopnor. xyz, a host machine and cache-only name server for the xyz network,
160.9.201.5

• sahara.xyz, a host machine, 160.9.201.13

• sandy. xyz, a secondary name server for the xyz network and gateway between abc
and xyz, 160.9.201.3

Note: Note that sandy, a gateway host, is on both networks and also serves as secondary
name server for both.

Chapter 2. File Formats 2-147

TCP/IP Domain Reverse Data

1. The reverse data file for gobi. abc, primary name server for network abc, contains
these entries:

;primary reverse host data file for abc - gobi.abc

@ IN SOA gobi.abc. root.gobi.abc.

1:1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

;nameservers for abc
IN NS gobi.abc.

;other nameservers
IN NS kalahari.xyz.

4.201.9.160.in-addr.arpa IN PTR kalahari.xyz

;define all hosts in abc
2 IN PTR gobi.abc.
3 IN PTR sandy.abc.
6 IN PTR mojave.abc.

2. The reverse data file for kalahari. xyz, primary name server for network xyz, contains
these entries:

;primary reverse host data file for xyz - kalahari.xyz

@ IN SOA
(

;nameservers for xyz

;other nameservers

2.201.9.192.in-addr.arpa

;define all hosts in xyz
2.201
13.201
5.201
3.201

Implementation Specifics

kalahari.xyz. root.kalahari.xyz.

1:1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

IN NS

IN NS
IN PTR

IN PTR
IN PTR
IN PTR
IN PTR

kalahari.xyz.

gobi.abc.
gobi.abc

kalahari.xyz.
sahara.xyz.
lopnor.xyz.
sandy.xyz.

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

2-148 AIX Files Reference

Files

TCP/IP Domain Reverse Data

/usr/lpp/tcpip/samples/addrs.awk
Contains a sample awk script for converting an /etc/hosts file to an
/etc/named.rev file. This file also contains directions for its use.

/usr/lpp/tcpip/samples/hosts.awk
Sample awk script for converting an /etc/hosts file to an /etc/named.data
file. This file also contains directions for its use.

/usr/lpp/tcpip/samples/named.boot
Contains a sample named.boot file. This file also contains directions for its
use.

/etc/named.boot
Defines how named initializes the DOMAIN name server file.

/usr/lpp/tcpip/samples/named.data
Contains a sample named.data file. This file also contains directions for its
use.

Related Information
The named daemon.

The DOMAIN Data file, DOMAIN Cache file, DOMAIN Local file.

The Standard Resource Record Format.

Configuring Name Servers for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter of Communication Concepts and Procedures.

Chapter 2. File Formats 2-149

TCP/IP ftpusers

TCP/IP ftpusers File Format

Purpose
Specifies local user names that cannot be used by remote FTP clients.

Description

Example

This file contains a list of local user names that the ftpd server does not allow to be used by
remote File Transfer Protocol (FTP) clients. The format of the /etc/ftpusers file is a simple
list of user names that also appear in the /etc/passwd file.

Entries to this file can be made using the System Management Interface Tool (SMIT) or
using the ruser command.

The following are sample entries in an ftpusers file:

root
guest
ftp
jean
UUCP

Implementation Specifics

File

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/ftp users Contains a list of user names that are not to be used by the
remote File Transfer Protocol users.

Related Information
The ftpd daemon.

The ruser command.

Understanding the File Transfer Protocol (FTP) and Understanding the SMIT Interface to
TCP/IP in the Transmission Control Protocol/Internet Protocol chapter of Communication
Concepts and Procedures.

2-150 AIX Files Reference

TCP/IP gated.conf

TCP/IP gated.conf File Format

Purpose
Contains configuration information for the gated daemon.

Description
The /etc/gated.conf file contains configuration information that is read by the gated daemon
at initialization time. This file contains stanzas that control tracing options, select routing
protocols, manage routing information, and manage independent system routing.

Stanzas can appear in any order in the gated.conf file. The following sections illustrate the
format of each stanza.

Controlling Trace Output
The option that controls trace output is read during the initialization of the gated daemon
and whenever the gated daemon receives a SIGHUP signal. This option is overridden at
initialization time if trace flags are ~pacified to the gated daemon on the command line.

Specifying the Level of Trace Output

The traceflags stanza is in the following format and tells the gated daemon what level of
trace output you want:

traceflags Flag [Flag Flag • . .]

The valid flags for tracing are as follows:

internal

external

route

egp

update

rip

hello

icmp

snmp

stamp

general

all

Logs all internal errors and interior routing errors.

Logs all external errors due to EGP, exterior routing errors, and EGP state
changes.

Logs all routing changes.

Traces all EGP packets sent and received.

Logs all routing updates sent.

Traces all RIP packets received.

Traces all HELLO packets received.

Traces all ICMP direct packets received.

Traces all SNMP transactions.

Prints a time stamp to the log file every 1 O minutes.

Combines the internal, external, route, and egp flags.

Enables all of the listed trace flags.

If more than one traceflags stanza is used, the trace flags specified in all stanzas are
enabled.

Chapter 2. File Formats 2-151

TCP/IP gated.cont

Selecting Routing Protocols
This section explains the configuration options for routing protocols. These options provide
the gated daemon with instructions on how to manage routing for each protocol.

Note: All references to point-to-point interfaces in the gated configuration file must use the
address specified by the Destination parameter.

Using the gated Daemon with the RIP Protocol

The following stanza tells the gated daemon how to perform the Routing Information
Protocol (RIP) routing protocol:

RIP { yes I no } [supplier I pointopoint] [quiet] [gateway HopCount]

A list of the arguments to the RIP stanza follows:

yes Performs the RIP protocol, processing all incoming RIP packets and
supplying RIP information every 30 seconds only if there are two or more
network interfaces.

no Specifies that the RIP protocol not be performed.

supplier Performs the RIP protocol, processing all incoming RIP packets and forcing
the supply of RIP information every 30 seconds no matter how many
network interfaces are present.

pointopoint Performs the RIP protocol, processing all incoming RIP packets and forcing
the supply of RIP information every 30 seconds no matter how many
network interfaces are present. When this argument is specified, RIP
information is not sent out in a broadcast packet. The RIP information is
sent directly to the gateways listed in the sourceripgateways stanza.

quiet Processes all incoming RIP packets, but does not supply any RIP
information no matter how many network interfaces are present.

gateway HopCount
Processes all incoming RIP packets, supplying RIP information every 30
seconds and announcing the default route (0.0.0.0) with a metric specified
by the HopCount variable. The metric should be specified in a value that
represents a RIP hop count.

With this option set, all other default routes coming from other RIP gateways
are ignored. The default route is only announced when actively peering with
at least one EGP neighbor and therefore should only be used when EGP is
used.

If no RIP stanza is specified, RIP routing is not performed.

Using the gated Daemon with the HELLO Protocol

The following stanza configures the Defense Communications Network Local-Network
Protocol (HELLO) routing protocol for the gated daemon:

HELLO { yes I no} [supplier I pointopoint] [quiet] [gateway Milliseconds]

The Argumentvariable parallels the RIP arguments, with some minor differences.

2-152 AIX Files Reference

TCP/IP gated.conf

A list of the arguments to the HELLO stanza follows:

yes Performs the HELLO protocol, processing all incoming HELLO packets and
supplying HELLO information every 15 seconds only if there are two or
more network interfaces.

no Specifies that this gateway does not perform the HELLO protocol.

supplier Performs the HELLO protocol, processing all incoming HELLO packets and
forcing a supply of HELLO information every 15 seconds no matter how
many network interfaces are present.

pointopoint Performs the HELLO protocol, processing all incoming HELLO packets and
forcing a supply of HELLO information every 15 seconds no matter how
many network interfaces are present.

When this argument is specified, HELLO information is not sent out in a
broadcast packet. The HELLO information is sent directly to the gateways
listed in the sourcehellogateways stanza.

quiet Processes all incoming HELLO packets, but does not supply any HELLO
information regardless of the number of network interfaces present.

gateway Milliseconds
Processes all incoming HELLO packets, supplying HELLO information
every 15 seconds and announcing the default route (0.0.0.0) with a time
delay specified by the Millisecond variable. The time delay should be a
numeric value specified in milliseconds.

The default route is only announced when actively peering with at least one
EGP neighbor. Therefore, this stanza should only be used when running
EGP.

If no HELLO stanza is specified, HELLO routing is not performed.

Using the gated Daemon with the EGP Protocol

The following stanzas specify the information necessary for the gated daemon to use the
Exterior Gateway Protocol (EGP).

EGP { yes I no } This stanza allows the processing of EGP by the gated daemon to be
turned on or off. The arguments are interpreted as follows:

yes Performs all EGP operations.

no ·Specifies that no EGP processing should be performed.

Note: EGP processing takes place by default. If no EGP stanza is specified, all EGP
operations take place.

autonomous system Number
When the gated daemon performs the EGP protocol, this stanza must be
used to specify the independent (autonomous) system number. If this
number is not specified, the gated daemon exits immediately with an error
message.

Chapter 2. File Formats 2-153

TCP/IP gated.conf

egpmaxacquire Number
When the gated daemon uses the EGP protocol, this stanza specifies the
number of EGP peers with whom the gated daemon uses EGP. The
Number variable must be a value greater than 0 and less than or equal to
the number of EGP neighbors specified, or the gated daemon exits
immediately. If this stanza is omitted, all EGP neighbors are acquired.

egpneighbor Gateway

2-154 AIX Files Reference

When the gated daemon uses the EGP protocol, this stanza specifies an
EGP neighbor. The Gateway variable is the address of an EGP neighbor,
and can be expressed in symbolic name uoe.austin.ibm.com) or dotted
decimal (192.5.8.1) format. Each EGP neighbor will be acquired in the order
listed in this file.

metricin Metric

egpmetricout EGPMetric

nogendefault

acceptdefault

defaultout EGPMetric

validate

intf Interface

sourcenet Network

gateway Gateway

When the gated daemon performs the EGP protocol, this stanza specifies
with whom the gated daemon is to perform EGP. The gateway specified by
the Gateway variable can be either a host address in Internet dotted
decimal notation or a symbolic name from the /etc/hosts file.

Each EGP neighbor should have its own egpneighbor stanza and is
acquired in the order listed in the gated.cont file.

The arguments to the egpmaxaquire Number stanza have the following
definitions:

metricin Metric Specifies the internal time delay to be used as a metric for
all of the routes learned from this neighbor. The Delay
variable should be specified as a time delay from 0 to
30000. If this keyword and the validate keyword are not
used, the internal metric used is the EGP distance
multiplied by 100.

egpmetricout EGPMetric
Sets the EGP distance used for all nets advertised to this
neighbor. The EGPMetric variable should be specified as an
EGP distance in the range of Oto 255. If this keyword is not
specified, the internal time delay for each route is converted
to an EGP distance by division by 100, with distances
greater than 255 being set to 255.

TCP/IP gated.cont

nogendefault Specifies that this neighbor should not be considered for the
internal generation of a default when the RIP gateway or
the HELLO gateway argument is used. If not specified, the
internal default is generated when actively peering with this
neighbor.

acceptdefault Indicates that the default route (net 0.0.0.0) should be
considered valid when received from this neighbor. If this
keyword is not specified, on reception of the default route
the gated daemon displays a warning message and ignores
the route.

defaultout EGPMetric
Specifies that the internally generated default may be
passed to this EGP neighbor at the specified distance. The
distance should be specified as an EGP distance from Oto
255. A default route learned from another gateway is not
propagated to an EGP neighbor.

Without this keyword, no default route is passed through
EGP. The acceptdefault keyword should not be specified
when the defaultout keyword is used. The EGP metric
specified in the egpmetricout keyword does not apply
when the defaultout keyword is used. The default route
always uses the metric specified by the defaultout
keyword.

validate Specifies that all networks received from this EGP neighbor
must be defined in a validAS stanza that also specifies the
autonomous system of this neighbor. Networks without a
validAS stanza are ignored after a warning message is
printed.

intf Interface Defines the interface used to send EGP packets to this
neighbor. This keyword is only used when there is no
common net or subnet with this EGP neighbor. This
keyword is present for testing purposes and does not imply
correct operation when peering with an EGP neighbor that
does not share a common net or subnet.

sourcenet Network
Specifies the source network to be used in EGP poll
packets sent to this neighbor. If this keyword is not
specified, the network (not subnet) of the interface used to
communicate with this neighbor is used. This keyword is
present for testing purposes and does not imply correct
operation when used.

gateway Gateway
Specifies the gateway to use when installing routes learned
from an EGP neighbor on a different network. Normally
these routes would be ignored.

Chapter 2. File Formats 2-155

TCP/IP gated.conf

Managing Routing Information
The following configuration file stanzas determine how the gated daemon handles both
incoming and outgoing routing information.

Specifying RIP or HELLO Gateways to Which the gated Daemon Listens

When the following stanzas are specified, the gated daemon only listens to RIP or HELLO
information, respectively, from these RIP or HELLO gateways:

trustedripgateways Gateway [Gateway Gateway . ..]
trustedhellogateways Gateway [Gateway Gateway . ..]

The Gateway variable can be either an Internet address in dotted decimal notation, which
avoids confusion, or a symbolic name from the /etc/hosts file. Note that the propagation of
routing information is not restricted by this stanza.

Specifying Gateways for the gated Daemon to Send RIP or HELLO Information

With the following stanzas, the gated daemon sends RIP or HELLO information directly to
the gateways specified:

sourceripgateways Gateway [Gateway Gateway . ..]
sourcehellogateways Gateway [Gateway Gateway ...]

If the pointopoint argument is specified in the RIP or HELLO stanzas defined earlier, the
gated daemon sends only RIP or HELLO information to the specified gateways and does
not send out any information using the broadcast address.

If the pointopoint argument is not specified in those stanzas and the gated daemon is
supplying RIP or HELLO information, the gated daemon sends information to the specified
gateways and also broadcasts information using a broadcast address.

Turning Routing Protocols On and Off by Interface

The following stanzas turn routing protocols on and off by interface:

noripoutinterface lnterfaceAddress [lnterfaceAddress lnterfaceAddress . ..]
nohellooutinterface lnterfaceAddress [lnterfaceAddress lnterfaceAddress ...]
noripfrominterface lnterfaceAddress [lnterfaceAddress lnterfaceAddress . ..]
nohellofrominterface lnterfaceAddress [lnterfaceAddress lnterfaceAddress ...]

A noripfrominterface or nohellofrominterface stanza means that no RIP or HELLO
information is accepted coming into the listed interfaces from another gateway.

A noripoutinterface or nohellooutinterface stanza means that no RIP or HELLO
knowledge is sent out of the listed interfaces. The lnterfaceAddress variable should be an
Internet address in dotted decimal notation.

Stopping the gated Daemon from Timing Out Interfaces

The following stanza stops the gated daemon from timing out the interfaces whose
addresses are listed in Internet dotted decimal notation by the lnterfaceAddress arguments.
These interfaces are always considered up and working.

passiveinterfaces lnterfaceAddress [lnterfaceAddress lnterfaceAddress . ..]

This stanza is used because the gated daemon times out an interface when no RIP, HELLO,
or EGP packets are being received on that particular interface, in order to dynamically
determine if an interface is functioning properly.

PSN interfaces send a RIP or HELLO packet to themselves to determine if the interface is
properly functioning, since the delay between EGP packets may be longer than the interface

2-156 AIX Files Reference

TCP/IP gated.conf

time out. Interfaces that have timed out automatically have their routes re-installed when
routing information is again received over the interface.

If the gated daemon is not a RIP or HELLO supplier, no interfaces are aged and the
passiveinterfaces stanza automatically applies to all interfaces.

Specifying an Interface Metric

The following stanza allows the specification of an interface metric for the listed interface:

interfacemetric lnterfaceAddress Metric

On systems that support interface metrics, this stanza overrides the kernel's metric. On
systems that do not support an interface metric, this feature allows one to be specified.

The interface metric is added to the true metric of each route that comes in with routing
information from the listed interface. The interface metric is also added to the true metric of
any information sent out through the listed interface. The metric of directly attached
interfaces is also set to the interface metric, and routing information broadcast about directly
attached nets is based on the interface metric specified.

The interfacemetric stanza is required for each interface on which an interface metric is
desired.

Providing Hooks for Fallback Routing

The following stanza provides hooks for fallback routing in the gated daemon.

fixedmetric lnterfaceAddress Protocol rip I hello Metric

If this stanza is used, all routing information sent out by the specified interface has a metric
specified by the Metric variable. For RIP, specify the metric as a RIP hop count from Oto
infinity. For HELLO, specify the metric as a HELLO delay in milliseconds from Oto infinity.
Any route that has a metric of infinity is left as infinity.

Note: Fixed metrics should be used with extreme caution.

Specifying Information to Be Ignored

The following stanza indicates that any information regarding the Network variable that
comes in by means of the specified protocols and from the specified interfaces is ignored:

donotlisten Network intf Address [Address ...] proto rip I hello
donotlistenhost Host intf Address [Address ...] proto rip I hello

The donotlisten stanza contains the following information: the donotlisten keyword,
followed by a network number specified by the Network variable, which should be in dotted
decimal notation, followed by the intf keyword. Next is a list of interfaces in dotted decimal
notation, then the proto keyword, followed by the rip or hello keyword.

The all keyword can be used after the intf keyword to specify all interfaces on the system.
For example:

donotlisten 10.0.0.0 intf 128.84.253.200 proto rip

means that any RIP information about network 1 o. o. o. o coming in by interface
12 8 • 8 4 . 2 5 3 • 2 o o will be ignored. One stanza is required for each network on which this
restriction is desired. In addition:

donotlisten 26.0.0.0 intf all proto rip hello

means that any RIP and HELLO information about net 2 6. o. o. o coming in through any
interface is ignored.

Chapter 2. File Formats 2-157

TCP/IP gated.conf

The donotlistenhost stanza is defined in the same way, except that a host address is
provided instead of a network address. Restrictions on routing updates are applied to the
specified host route indicated by the specified routing or protocols.

Specifying Network or Host Information to Which the gated Daemon Listens

The following stanzas indicate that gated daemon that should listen to specified protocols
and gateways:

listen Network gateway Address [Address ...] proto rip I hello
listenhost Host gateway Address [Address ...] proto rip I hello

The listen and listenhost stanzas specify to listen only to information about a network or
host on the specified protocol or protocols and from the listed gateways.

These stanzas read as follows: the listen or listenhost keyword is followed by a network or
host address, respectively, in dotted decimal notation. Next is the gateway keyword with a
list of gateways in dotted decimal notation, and then the proto keyword followed by the rip
or hello keyword. For example:

listen 128.84.0.0 gateway 128.84.253.3 proto hello

indicates that any HELLO information about network 12 8. 8 4 that comes in through gateway
12 8 • 8 4 . 2 5 3 . 3 is accepted. Any other information about network 12 8 • 8 4 from any other
gateway is rejected. One stanza is needed for each net to be restricted.

Also, the stanza:

listenhost 26.0.0.15 gateway 128.84.253.3 proto rip

means that any information about host 2 6. o. o. 15 must come through RIP from gateway
12 8 • 8 4 • 2 5 3 • 3. All other information regarding this host is ignored.

Restricting Announcements of Networks and Hosts

The following stanzas allow restriction of the networks and hosts that are announced and the
protocols that announce them:

announce Network lnterfaceAddress [Address ...] Protocol Type [EGPMetric]
announcehost Host lnterfaceAddress Protocol Type [EGPMetric]
noannounce Network lnterfaceAddress [Address ...] Protocol Type [EGPMetric]
noannouncehost Host lnterfaceAddress Protocol Type [EGPMetric]

The announce{host} and noannounce{host} stanzas cannot be used together on the
same interface. With the announce{host} stanza, the gated daemon only announces the
nets or hosts that have an associated announce or announcehost stanza with the
appropriate protocol.

With the noannounce{host} stanza, the gated daemon announces everything except those
nets or hosts that have an associated noannounce or noannouncehost stanza. These
stanzas provide a choice of announcing only what is on the announce list or everything
except those nets on the noannounce list on an individual basis.

The arguments are the same as in the donotlisten stanza except egp may be specified by
the Proto variable. The value of the Type variable can be rip, hello, egp, or any
combination of the three. When egp is specified in the Proto field, an EGP metric must be
specified. This is the metric at which the gated daemon announces the listed net through
EGP.

Note that these are not static route entries. These restrictions only apply if the net or host is
learned through one of the routing protocols. If a restricted network suddenly becomes
unreachable and goes away, announcement of this net stops until it is learned again.

2-158 AIX Files Reference

TCP/IP gated.conf

Only one announce{host} or noannounce{host} stanza may be specified for each network
or host. A network or host cannot, for instance, be announced through HELLO for one
interface and through RIP for another.

Some example announce stanzas might include:

announce 128.84 intf all proto rip hello egp egprnetric 0
announce 10.0.0.0 intf all proto rip
announce 0.0.0.0 intf 128.84.253.200 proto rip
announce 35.0.0.0 intf all proto rip egp egprnetric 3

With only these four announce stanzas in the configuration file, the gated process only
announces these four nets. Network 128. 84. o. o is announced through RIP and HELLO
to all interfaces and through EGP with a metric of o. Network 1 o. o. o. o is announced
through RIP to all interfaces.

Network o. o. o. o (default) is announced by RIP out interface 128. 84. 253. 200 only.
Network 3 5. o. o. o is announced through RIP to all interfaces and announced through EGP
with a metric of 3. These are the only nets that are broadcast by this gateway.

Once the first announce stanza is specified, only the networks with announce stanzas are
broadcast, including local subnets. Once an announce{host} or noannounce{host} stanza
has an all keyword specified after an intf keyword, that stanza is applied globally and the
option of having individual interface restrictions is lost.

If no routing announcement restrictions are desired, announce stanzas should not be used.
All information learned is then propagated out. That announcement has no affect on the
information to which the gated daemon listens.

Any network that does not have an announce stanza is still added to the kernel routing
tables, but it is not announced through any of the routing protocols. To stop networks from
being added to the kernel, the donotlisten stanza may be used.

As another example:

announce 128.84 intf 128.59.2.1 proto rip
noannounce 128.84 intf 128.59.1.1 proto rip

indicates that on interface 12 8 • 5 9 . 2 . 1, only information about network 12 8 • 8 4 • o • o is
announced through RIP, but on interface 12 8. 59. 1. 1, all information is announced, except
128. 84. o. o through RIP.

The stanzas:

noannounce 128.84 intf all proto rip hello egp egprnetric 0
noannounce 10.0.0.0 intf all proto hello

mean that except for the two specified nets, all networks are propagated. Specifically,
network 12 8. 8 4. o. o is not announced on any interface through any protocols. Knowledge
of network 128. 84. o. o is not sent anywhere. Network 10. o. o. o is not announced
through HELLO to any interface.

The second stanza also implies that network 1 o. o. o. o is announced to every interface
through RIP. This net is also broadcast through EGP with the metric specified in the
defaultegpmetric stanza.

Defining a Default EGP Metric

The following stanza defines a default Exterior Gateway Protocol (EGP) metric to use when
there are no routing restrictions:

defaultegpmetric Number

Chapter 2. File Formats 2-159

TCP/IP gated.cont

Without routing restrictions, the gated daemon announces all networks learned through
HELLO or RIP through EGP with this specified default EGP metric. If this stanza is not
used, the default EGP metric is set to 255, which causes any EGP advertised route of this
nature to be ignored.

When there are no routing restrictions, any network with a direct interface is announced
through EGP with a metric of 0. Note that this does not include subnets, but only the
non-subnetted network.

Defining a Default Gateway

The following stanza defines a default gateway, which is installed in the kernel routing tables
during initialization and re-installed whenever information about the default route is lost:

defaultgateway Gateway [Metric] Protocol [active I passive]

This route is installed with a time delay equivalent to a RIP metric of 15, unless another
metric is specified with the Metric variable.

If the RIP gateway or HELLO gateway argument is in use, this default route is deleted.

An active default route is overridden by any other default route learned through another
routing protocol. A passive default route is only overridden by a default route with a lower
metric. In addition, an active default route is not propagated in routing updates, while a
passive default route is propagated.

The gateway specified by the Gateway variable should be an address in Internet dotted
decimal notation. The Metric variable is optional and should be a time delay from 0 to
30000. If a Metric is not specified, a time delay equivalent to a RIP metric of 15 is used.

The Protocol variable should be either rip, egp, or hello. The Protocol variable initializes
the protocol by which the route was learned. In this case the Protocol variable is unused but
remains for consistency.

Installing a Static Route

The following stanzas install static routes:

net NetworkAddress gateway Address metric HopCount rip I egp I hello
host HostAddress gateway Address metric HopCount rip I egp I hello

The net and host stanzas install a static route to the network specified by the
NetworkAddress variable or the host specified by the HostAddress variable through a
gateway specified by the Address variable at a metric specified by the HopCount variable
learned through RIP, HELLO, or EGP. Again, dotted decimal notation should be used for the
addresses. These routes are installed in the kernel's routing table and are never affected by
any other gateway's RIP or HELLO announcements. The protocol by which they were
learned is important if the route is to be announced through EGP.

If the protocol is RIP or HELLO and there are no routing restrictions, then this route is
announced by EGP with a metric of defaultegpmetric. If the protocol keyword is egp and
there are no routing restrictions, then this route is announced by EGP with a metric specified
by the HopCount variable.

Restricting EGP Announcements

The following stanza provides a soft restriction to the gated daemon:

egpnetsreachable Network [Network Network ...]

2-160 AIX Files Reference

TCP/IP gated.conf

It cannot be used when the announce or noannounce stanzas are used. With no
restrictions, the gated daemon announces all routes learned from RIP and HELLO through
EGP. The egpnetsreachable stanza restricts EGP announcement to those networks listed
in the stanza.

The metric used for routes learned through HELLO and RIP is the value given in the
defaultegpmetric stanza. If this stanza does not specify a value, the value is set to 255.
With the egpnetsreachable stanza, unique EGP metrics cannot be set for each network.
The defaultegpmetric stanza is used for all networks except those that are directly
connected, which use a metric of 0.

Specifying Invalid Networks

The following stanza appends to the gated daemon's list of martian networks, which are
those that are known to be invalid and should be ignored:

martiannets Network [Network Network ...]

When the gated daemon receives information about one of these networks through any
means, it immediately ignores it. If external tracing is enabled, a message is printed to the
trace log. Multiple occurrences of the martiannets stanza accumulate.

The initial list of martian networks provided by the gated daemon contains the following
networks: 127.0.0.0, 128.0.0.0, 191.253.0.0, 192.0.0.0, 223.255.255.0, and 224.0.0.0.

Managing Autonomous System Routing
In the internal routing tables, the gated daemon maintains the autonomous system number
from which each route was learned. Independent (autonomous) systems are used only when
an exterior routing protocol is in use, in this case EGP.

Routes are tagged with the autonomous system number of the EGP peer from which they
were learned. Routes learned through the interior routing protocols, RIP and HELLO, are
tagged with the autonomous system number specified in the autonomoussystem stanza of
the gated.cont file.

Note: The gated server does not normally propagate routes learned from exterior routing
protocols to interior routing protocols, since some gateways do not have adequate
validation of routing information they receive. Some of the following stanzas allow
exterior routes to be propagated through interior protocols. Therefore, it is imperative
that utmost care be taken when allowing the propagation of exterior routes.

The following stanzas provide limited control over routing based on autonomous system
numbers.

Validating Networks from an Independent (Autonomous) System

The following stanza is used for validation of networks from a certain independent system:

validAS Network AS System metric Number

When an EGP update is received from a neighbor that has the validate keyword specified in
the associated egpneighbor stanza, a validAS stanza is searched for that defines the
network and the autonomous system number of the EGP neighbor.

If the appropriate validAS stanza is located, the network is considered for addition to the
routing table with the specified metric. If a validAS stanza is not located, a warning message
is printed and the network is ignored.

A network may be specified in several validAS stanzas as being associated with several
different autonomous systems.

Chapter 2. File Formats 2-161

TCP/IP gated.conf

Example

Controlling Exchange of Routing Information Between Autonomous Systems

The following stanzas control routing information exchange:

announcetoAS AutonomousSystem 1 AS list AutonomousSystem2
[AutonomousSystem3 ...]
noannouncetoAS AutonomousSystem 1 ASlist AutonomousSystem2
[AutonomousSystem3 ...]

The announcetoAS and noannouncetoAS stanzas control the exchange of routing
information between different autonomous (independent) systems. Normally the gated
daemon does not propagate routing information between independent systems.

The exception to this is that routes learned from the gated daemon's own independent
system through RIP and HELLO are propagated through EGP. These stanzas allow
information learned through EGP from one autonomous system to be propagated through
EGP to another autonomous system or through RIP and HELLO to the gated daemon's own
autonomous system.

If the announcetoAS stanza is specified, information learned through EGP from
autonomous systems AS1, AS2, AS3, and so on, is propagated to autonomous system ASO.
If the gated daemon's own autonomous system, as specified in the autonomoussystem
stanza, is specified as ASO, this information is propagated through RIP and HELLO. Routing
information from autonomous systems not specified in the ASlist are not propagated to
autonomous system ASO.

If the noannouncetoAS stanza is specified, information learned through EGP from all
autonomous systems except AS1, AS2, AS3, and so on is propagated to autonomous
system ASO. If the gated daemon's own autonomous system is specified as ASO, this
information is not propagated through RIP and HELLO.

Only one announcetoAS or noannounceAS stanza may be specified for each target
autonomous system.

Setting Up a gated.conf File for EGP Routing
An example gated.cont file for a gated server that performs only EGP routing might contain
the following entries:

The following three lines specify which protocol will be running. RIP and HELLO do not run.
EGP does run.

RIP no
HELLO no
EGP yes

The traceflags stanza tells what level of trace output is desired:

internal

external

route

egp

update

2...;.162 AIX Files Reference

Logs all internal error and interior routing errors

Logs all external errors due to EGP, exterior routing errors and EGP state
changes

Logs all routing changes

Traces all EGP packets sent and received

Logs all routing updates.

TCP/IP gated.conf

The autonomous system stanza specifies the autonomous system number. This must be
specified if running EGP.

tracef lags internal external route egp update
autonomoussystem 178

The following egpneighbor stanza specifies with whom you are going to perform EGP with.
This line says that your EGP neighbor is the host 192 .100. 9 .1. The defaultegpmetric
stanza specifies that when there are no routing restrictions, the default EGP metric is 132.

egpneighbor 192.100.9.1
defaultegpmetric 132

The next line indicates that for network 19 2 • 2 o • 9 the gateway is 19 2 • 1o1 • 9 • 3 with a hop
count of 5 o using RIP protocol. This is a static route.

The egpnetsreachable stanza restricts EGP announcements to those networks listed:

net 192.200.9 gateway 192.101.9.3 metric 50 rip
egpnetsreachable 192.200.9 192.101.9

The following list is a list of static routes showing the host address, gateway address, hop
count, and protocol used:

Static routes
host 129.140.46.1 gateway 192.100.9.1 metric 5 rip
host 192.102.9.2 gateway 192.100.9.1 metric 5 rip
host 192.104.9.2 gateway 192.100.9.1 metric 5 rip
host 149.140.3.12 gateway 192.100.9.1 metric 5 rip
host 129.140.3.12 gateway 192.100.9.1 metric 5 rip
host 129.140.3.13 gateway 192.100.9.1 metric 5 rip
host 129.140.3.14 gateway 192.100.9.1 metric 5 rip
host 192.3.3.54 gateway 192.101.9.3 metric 5 rip

Implementation Specifics

File

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/gated.conf Contains the configuration information for the gated daemon.

Related Information
The kill command.

The gated daemon, routed daemon.

Understanding the Protocols for TCP/IP, Understanding Routing for TCP/IP, Understanding
Gateways for TCP/IP, and How to Configure the gated Daemon in the Transmission Control
Protocol/Internet Protocol chapter of Communication Concepts and Procedures.

Chapter 2. File Formats 2-163

TCP/IP gateways

TCP/IP gateways File Format

Purpose
Specifies Internet routing information to the routed daemon on a network.

Description
The /etc/gateways file identifies gateways for the routed daemon. Ordinarily, the daemon
queries the network and builds routing tables. The daemon builds the tables from routing
information transmitted by other hosts directly connected to the network. However, there
may be gateways that the daemon cannot identify through its queries. These unidentified
gateways are known as distant gateways. Such gateways should be identified in the
gateways file which the routed daemon reads when it starts.

The general format of an entry (contained on a single line) in the gateways file is:

Destination Namel
gateway Name2 metric
Value Type

Following is a brief description of each element in an gateways file entry:

Destination

Namet

gateway

Name2

metric

Value

Type

2-164 AIX Files Reference

A keyword that indicates whether the route is to a network or to a specific
host. The two possible keywords are net and host.

The name associated with Destination. The Name 1 variable can be either a
symbolic name (as used in the /etc/hosts or /etc/networks file) or an
Internet address specified in dotted decimal format.

An indicator that the following string identifies the gateway host.

The name or address of the gateway host to which messages should be
forwarded.

An indicator that the next string represents the hop count to the destination
host or network.

The hop count, or number of gateways from the local network to the
destination network.

A keyword that indicates whether the gateway should be treated as active,
passive, or external. The three possible keywords are:

active

passive

An active gateway is treated like a network interface. That is, it
is expected to exchange RIP routing information. Information
about it is maintained in the internal routing tables as long as it
is active and is included in any routing information that is
transmitted through RIP. If it does not respond for a period of
time, the route associated with it is deleted from the internal
routing tables.

A passive gateway is not expected to exchange RIP routing
information. Information about it is maintained in the routing
tables indefinitely and is included in any routing information
that is transmitted through RIP.

Examples

external

TCP/IP gateways

An external gateway is identified to inform the routed daemon
that another routing process will install such a route and that
alternative routes to that destination should not be installed.
Information about external gateways is not maintained in the
internal routing tables and is not transmitted through RIP.

Note: These routes must be to networks.

1. To specify a route to a network through a gateway host with an entry in the gateways file,
enter a line in the following format:

net net2 gateway host4 metric 4 passive

This example specifies a route to a network, net2, through the gateway host4. The hop
count metric to net2 is 4 and the gateway is treated as passive.

2. To specify a route to a host through a gateway host with an entry in the gateways file,
enter a line in the following format:

host host2 gateway host4 metric 4 passive

This example specifies a route to a host, host2, through the gateway host4. The hop
count metric to host2 is 4 and the gateway is treated as passive.

3. To specify a route to a host through an active Internet gateway with an entry in the
gateways file, enter a line in the following format:

host hostlO gateway 192.100.11.S metric 9 active

This example specifies a route to a specific host, hostlO, through the gateway
19 2 • 1 o o . 11 • s. The hop count metric to host 1 o is 9 and the gateway is treated as
active

4. To specify a route to a host through a passive Internet gateway with an entry in the
gateways file, enter a line in the following format:

host hostlO gateway 192.100.11.S metric 9 passive

5. To specify a route to a network through an external gateway with an entry in the
gateways file, enter a line in the following format:

net nets gateway host? metric 11 external

This example specifies a route to a network, nets, through the gateway host 7. The hop
count metric to nets is 11 and the gateway is treated as external (that is, it is not
advertised through RIP but is advertised through an unspecified routing protocol).

Implementation Specifics
This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

Chapter 2. File Formats 2-165

TCP/IP gateways

Files
/etc/gateways Contains the Internet routing information for the routed command.

/usr/I pp/tcpip/samples/gateways
Contains the sample gateways file. This file also contains directions for
its use.

Related Information
The routed daemon.

Understanding Gateways for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter of Communication Concepts and Procedures.

2-166 AIX Files Reference

TCP/IP hosts

TCP/IP hosts File Format

Purpose
Defines the Internet Protocol (IP) name and address of the local host and specifies the
names and addresses of remote hosts.

Description

Examples

The /etc/hosts file contains the Internet Protocol (IP) host names and addresses for the
local host and other hosts in the Internet network. This file is used to resolve a name into an
address (that is, to translate a host name into its Internet address). When your system is
using a name server, the file is accessed only if the name server cannot resolve the host
name.

When the local host is using the DOMAIN protocol, the resolver routines query a remote
DOMAIN name server before searching this file. In a flat network with no name server, the
resolver routines search this file for host name and address data.

Entries in the hosts file have the following format:

Address HostName HostName HostName HostName

In this entry, Address is an IP address specified in either dotted decimal or octal format, and
HostName is the name of a host specified in either relative or absolute domain name format.
If you specify the absolute domain name, the portion of the name preceding the first. (dot)
has a maximum length of 63 characters and cannot contain blanks. For both formats of the
name, the total number of characters cannot exceed 255 characters, and each entry must be
contained on one line. Multiple HostNames (or aliases) can be specified.

This file can contain two special case entries that define reserved (or well-known) host
names. These host names are:

timeserver

printserver

Identifies a remote time server host. This host name is used by the
setclock command.

Identifies the default host for receiving print requests.

In this hosts file entry, the Address parameter is an IP address specified in either dotted
decimal or octal format, and each HostName parameter is a host name specified in either
relative or absolute domain name format. These never have the full domain name listed;
they are always listed as either printserver or timeserver.

Note: The local /etc/resolv.conf file defines where DOMAIN name servers are, and the
name server file defines where Internet services are available. Although it is not
necessary to define well-known hosts in the hosts file when using the DOMAIN
protocol, it may be useful if they are not defined by your name server.

Entries in this file can be made using the System Management Interface Tool (SMIT), by
using the hostent command, or by creating and editing the file with an editor.

In these examples, the name of the local host is the first line in each hosts file. This is to
help you identify the host whose file is being displayed. Your host does not have to be
defined on the first line of your hosts file.

Chapter 2. File Formats 2-167

TCP/IP hosts

1. The following sample entries might be contained in the hosts files for two different hosts
on a network that is not running a DOMAIN name server:

Host1

18S.300.10.1
18S.300.10.2
18S.300.10.3
18S.300.10.4
18S.300.10.S
18S.300.10.S

Host 2

18S.300.10.2
18S.300.10.1
18S.300.10.3
18S.300.10.4
18S.300.10.S

hostl
host2
host3
host4 merlin
hosts arthur king
timeserver

host2
hostl
host3
host4 merlin
hosts arthur king

In this sample network with no name server, the hosts file for each host must contain the
Internet address and host name for each host on the network. Any host that is not listed
cannot be accessed. The host at Internet address 18 s • 3 o o • 1 o • 4 in this example can
be accessed by either name: host4 or merlin. The host at Internet address
185. 300 .10. scan be accessed by any of the names hosts, arthur, or king.

2. Following is a sample entry in the hosts files for a different host on a DOMAIN .network,
but the host is not the name server, and the host is keeping some additional host names
for a smaller network:

Host 5

128.114.1.lS namel.xyz.aus.ibm.com namel
128.114.1.14 name2.xyz.aus.ibm.com name2
128.114.1.16 name3.xyz.aus.ibm.com name3

In this sample, hosts is not a name server, but is attached to a DOMAIN network. The
hosts file for hosts contains address entries for all hosts in the smaller network, and the
DOMAIN data files contain the DOMAIN database. The entries in the hosts hosts file
that begin with 128 .114 indicate that hosts resolves names for hosts on the smaller
network.

Implementation Specifics

File

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/hosts Contains the host names and addresses.

Related Information
The hostent command, setclock command.

The gethostbyaddr routine

Understanding the DOMAIN Protocol, Understanding the Internet Protocol (IP),
Understanding Naming for TCP/IP, Understanding the SMIT Interface for TCP/IP in the
Transmission Control Protocol/Internet Protocol chapter of Communication Concepts and
Procedures.

2-168 AIX Files Reference

TCP/IP hosts.equiv

TCP/IP hosts.equiv File Format

Purpose
Specifies remote systems that can execute commands on the local system.

Description

Example

The /etc/hosts.equiv file defines which remote hosts (computers on a network) are
permitted to execute certain commands on the local host without supplying a password. The
remote host must have a user name that is the same as the user name on the local host.
The user name cannot be root. The format of the hosts.equiv file is a simple list of host
names.

The lpd, rlogind, and rshd daemons check for the existence of a hosts.equiv file.

If you are using a DOMAIN name server and want to grant access to hosts in a different
domain, you must specify the full domain name of each host.

Entries in this file can be made using the System Management Interface Tool (SMIT) or
using the ruser command.

Following are sample entries in an hosts.equiv file:

hostl
host2
host3
host4

Implementation Specifics

File

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/hosts.equiv Contains the list of equivalent hosts.

Related Information
The lpd daemon, rlogind daemon, rshd daemon, ruser command.

Understanding Naming for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter of Communication Concepts and Procedures.

Chapter 2. File Formats 2-169

TCP/IP hosts.lpd

TCP/IP hosts.lpd File Format

Purpose
Specifies remote hosts that can print on the local host.

Description
,The /etc/hosts.lpd file defines which remote systems are permitted to print on the local
system. The remote systems listed in this file are not given the full privileges given to files
listed in the /etc/hosts.equiv file. The format of the hosts.lpd file is a simple list of host
names.

Example

Entries in this file can be made using the System Management Interface Tool (SMIT) or by
using the ruser command.

Following are example entries in an hosts.lpd file:

host12
host23
host25

Implementation Specifics

File

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/hosts.lpd Specifies foreign hosts that can print on the local host.

Related Information
The lpd daemon, ruser command.

The /etc/hosts.equiv file.

2-170 AIX Files Reference

TCP/IP inetd.conf

TCP/IP inetd.conf File Format

Purpose
Defines how the inetd daemon handles Internet service requests.

Description
In previous releases of AIX TCP/IP, this file was the default configuration file for the inetd
daemon. The inetd daemon now reads the lnetServ database (stored in the ODM) by
default. You can still use the /etc/inetd.conf file format as the configuration file for the inetd
daemon. However, each time you modify the file format, you must run the inetimp command
to keep inetd.conf in sync with the lnetServ database information. If you modify the
lnetServ database information (using SMIT or an ODM tool), the inetexp command is run
automatically.

The following daemons are controlled by the inetd daemon:

• comsat

• ftpd

• telnetd

• rshd

• rlogind

• rexecd

• fingerd

• tftpd

• talkd

• uucpd

Service Requests
The Internet service requests that are supported internally by the inetd daemon are
generally used for debugging. They include the following internal services:

Returns data packets to a client host.

Discards received data packets.

ECHO

DISCARD

CHARGEN

DAYTIME

TIME

Discards received data packets and sends predefined or random data.

Sends the current date and time in human-readable form.

Sends the current date and time in machine-readable form.

The inetd daemon reads its configuration file only when the inetd daemon starts, when the
inetd daemon receives a SIGHUP signal, or when the src refresh -s inetd command is
entered. Each line in the inetd configuration file defines how to handle one Internet service
request.

Each line is of the form:

ServiceName SocketType ProtocolName
Wait/NoWait UserName ServerPath
ServerArgs

Chapter 2. File Formats 2-171

TCP/IP inetd.conf

Example

These fields must be separated by spaces or tabs. The fields have the following meanings:

ServiceName Contains the name of an Internet service defined in the /etc/services file.

SocketType

For services provided internally by the inetd daemon, this name must be
the official name of the service. That is, the name must be identical to the
first entry on the line that describes the service in the /etc/services file.

Contains the name for the type of socket used for the service. You can use
either the stream value for a stream socket or the dgram value for a
datagram socket.

Protoco/Name Contains the name of an Internet protocol defined in the /etc/protocols file.
For example, use the tcp value for a service that uses the TCP/IP protocol
and the udp value for a service that uses the UDP protocol.

Wait!NoWait Contains either the wait or the nowait instruction for datagram sockets and
the nowait instruction for stream sockets. The Wait!NoWaitfield determines
whether the inetd daemon waits for a datagram server to release the
socket before continuing to listen at the socket.

UserName Specifies the user name that the inetd daemon should use to start the
server. This variable allows a server to be given less permission than the
root user.

ServerPath Specifies the full path name of the server that the inetd daemon should
execute to provide the service. For services that the inetd daemon provides
internally, this field should be internal.

ServerArgs Specifies the command line arguments that the inetd daemon should use to
execute the server. These arguments begin with the name of the server
used. For services that the inetd daemon provides internally, this field
should be empty.

The following are example entries in the /etc/inetd.conf file for an inetd daemon that:

• Uses the ftpd daemon for servicing ftp· requests

• Uses talkd daemon for ntalk requests

• Provides time requests internally.

ftp stream tcp nowait root /etc/ftpd ftpd
ntalk dgrarn udp wait root /etc/talkd talkd
time stream tcp nowait root internal
time dgram udp wait root internal

Implementation Specifics

File

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/inetd.conf Contains the configuration information for the inetd daemon.

2-172 AIX Files Reference

TCP/IP inetd.conf

Related Information
The kill command.

The inetd daemon.

The inetimp command, inetexp command.

How to Configure the inetd Daemon, Understanding the Transmission Control Protocol
(TCP), Understanding the User Datagram Protocol (UDP, Understanding TCP/IP Daemons,
and Understanding SRC Control of TCP/IP Daemons in the Transmission Control
Protocol/Internet Protocol chapter of Communication Concepts and Procedures.

The ODM Overview in General Programming Concepts.

Chapter 2. File Formats 2-173

TCP/IP named.boot

TCP/IP named.boot File Format

Purpose
Defines how named initializes the DOMAIN name server file.

Description
The /etc/named.boot file is the default configuration (or boot) file for the named server. If
the named daemon is started without specifying an alternate file, the named daemon reads
this file for information on how to set up the local name server file. This file is directly
accessed by local kernel resolver routines on the name server host and is indirectly
accessed through named service requests by remote hosts.

Note: The named daemon reads the startup file only when the named daemon starts or
when the named daemon receives an SAC refresh command or a SIGHUP signal.

The records in the named.boot file tell the named daemon what type of server it is, which
domains it has authority over (its zones of authority), and where to get the data for initially
setting up its name resolution database.

Any data files referenced in the named startup file must be in Standard Resource Record
Format. These data files can have any name. However, for convenience in maintaining the
named database, they are generally given names in the following form:
/etc/named.extension. The general format of named data files is described in DOMAIN
Data File, DOMAIN Reverse Data File, DOMAIN Cache File, and DOMAIN Local File.

Comments in the boot file begin with a ; (semicolon) and end at the end of the line.

The named~boot file is organized in lines; valid lines and their formats are:

cache File Name
Indicates that the local named server is a caching name server for the
domain specified in the Domain field and that the named daemon is to get
the data describing the domain from the file specified in the Source field.

The name server first needs to know the root name server (the name server
on the network with the highest authority). The root name server is
established in the named.boot file by specifying the root server file name
(named.ca) as the cache for this name server.

Note: The named daemon does not provide other hosts with the
information contained in a cache file. Cache files are usually used for
listing the name servers for domains higher than the local domain.

An example of the cache line follows:

cache /etc/named.ca

directory Path Causes the server to change its working directory to the directory specified.

2-17 4 AIX Files Reference

This can be important for the correct processing of $INCLUDE files in
primary zone files as well as in locating data files for the name server. An
example of the directory line follows:

directory /usr/local/domain

Note: If no directory line is specified here, the full path name must be
specified in all other lines specifying files.

TCP/IP named.boot

domain Domain
Indicates that the following Domain entry is the name of the default domain
for the name server. When the named daemon receives a query with a
domain or host name that does not end with a. (period), the named
daemon appends the default domain name to the queried name. An
example of the domain line follows:

domain abc.aus.ibm.com

forwarders IPAddresses
The forwarders line specifies the addresses of site-wide servers that will
accept recursive queries from other servers. If the boot file specifies one or
more forwarders, then the server will send all queries for data not in the
cache to the forwarders first. Each forwarder will be asked in turn until an
answer is returned or the list is exhausted. If no answer is forthcoming from
a forwarder, the server continues as it would have without the forwarders
line unless it is in slave mode. The forwarding facility is useful to cause a
large site-wide cache to be generated on a master, and to reduce traffic
over links to outside servers. It can also be used to allow servers to run that
do not have access directly to the Internet, but wish to act as though they
do. An example of a forwarders line follows:

forwarders 10.0.0.78 10.2.0.78

primary Domain File Name
Indicates that the local named server is the primary name server for the
domain specified in the Domain field and that the named daemon is to get
the data describing the domain from the file specified in the File Name field.
An example of the primary line follows:

primary abc.aus.ibm.com /etc/named.abcdata

secondary Domain IPAddresses File Name
Indicates that the local named server is a secondary name server for the
domain specified in the Domain field and that the named daemon is to get
the data describing the domain from one or more remote primary name
servers using the Internet address or addresses specified in the
IPAddresses field. The named daemon tries each address in the order
listed until it successfully receives the data from one of the name servers.
The named daemon will backup the information it receives from the primary
name server in the file specified in the File Name field. Whenever a new
copy of the domain information is received from one of the primary servers,
this file will be updated. The daemon will use this file as its initial cache any
time the primary name server is down. In the secondary line, the File Name
field is required. Examples of the secondary line follow:

secondary abc.aus.ibm.corn 192.9.20.1 192.9.20.2\
/etc/named.abc.bak
secondary 201.9.192.in-addr.arpa 192.9.20.1 192.9.20.2\
/etc/named.abc.bak

Chapter 2. File Formats 2-175

TCP/IP named.boot

Examples

slave

sortlist

The slave line is used to put the server in slave mode. In this mode, the
server only makes queries to forwarders. This option is normally used on
machines that wish to run a server but for physical or administrative reasons
cannot be given access to the Internet, but have access to a host that does
have access to the Internet. The format of the slave line follows:

slave

Indicates networks that take precedence over other networks. Requests for
name resolution from a host on the same network as the server receive
local network addresses listed first, addresses on the sortlist listed second,
and all other addresses listed last. The sortlist line is only acted upon at
initial startup. When reloading the name server with a SIGHUP signal, this
line will be ignored.

sortlist 192.9.200.14 129.35.17.2

The following examples show the various ways to use the named boot file. In these
examples, two networks are represented: abc and xyz.

Network abc consists of:

• gobi. abc, the primary name server for the abc network, 192.9.201.2

• moj ave. abc, a host machine, 192.9.201.6

• sandy. abc, secondary name server for the abc network and gateway between abc and
xyz, 192.9.201.3.

Network xyz consists of:

• kalahari. xyz, primary name server for the xyz network, 160.9.201.4

• lopnor. xyz, a host machine, 160.9.201.5

• sahara. xyz, a host machine and cache-only name server for the xyz network,
160.9.201.13

• sandy. xyz, a secondary name server for the xyz network and gateway between abc
and xyz, 160.9.201.3

Note: Note that sandy, a gateway host, is on both networks and also serves as secondary
name server for both.

1. The /etc/named.boot file for gobi. abc, primary name server for network abc, contains
these entries:

;boot file for abc primary server gobi.abc
;type domain source file or host
;
domain
primary
primary
primary

abc
abc /etc/named.abcdata
201.9.192.inn-addr.arpa /etc/named.abcrev
0.0.127.in-addr.arpa /etc/named.abclocal

2-176 AIX Files Reference

TCP/IP named.boot

2. The /etc/named.boot file for kalahari. xyz, primary name server for network xyz,
contains these entries:

;boot file for abc primary server - kalahari.xyz

;type domain source file or host

domain xyz
primary xyz /etc/named.xyzdata
primary 9.160.in-addr.arpa /etc/named.xyzrev
primary 0.0.127.in-addr.arpa /etc/named.xyz.local

3. The /etc/named.boot file for sandy, secondary name server for networks abc and xyz,
contains the following entries:

;boot file for secondary server for abc and xyz - sandy

;type domain source file or host

domain abc
directory /etc
secondary abc 192.9.201.2 named.abcdata.bak
secondary xyz 160.9.201.4 named.xyzdata.bak
secondary 201.9.192.in-addr.arpa 192.9.201.2 named.abcrev.bak
secondary 9.160.in-addr.arpa 192.9.201.4 named.xyzrev.bak
primary 0.0.127.in-addr.arpa named.seclocal

4. The /etc/named.boot file for sahara, a cache-only name server for the network xyz,
contains the following entries:

;boot file for cache-only server for xyz - sahara

;type

domain
cache
primary

domain

xyz

0.0.127.in-addr.arpa

source file or host

/etc/named.ca
/etc/named.calocal

Implementation Specifics

Files

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/named.boot Contains the configuration information for the named server.

/usr/lpp/tcpip/samples/named.boot
Contains the sample named.boot file. This file also contains directions
for its use.

Related Information
The named daemon.

The TCP/IP DOMAIN cache file, TCP/IP DOMAIN local file, TCP/IP DOMAIN data file,
TCP/IP DOMAIN Reverse data file, TCP/IP rc.tcpip file.

Configuring Name Servers for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter of Communication Concepts and Procedures.

Chapter 2 .. File Formats 2-177

TCP/IP .netrc

TCP/IP .netrc File Format

Purpose
Specifies automatic login information for the ftp and rexec commands.

Description
The .netrc file contains the information used by the automatic login feature of the rexec and
ftp commands. It is a hidden file in a user's home directory and must be owned either by
the user executing the command or by the root user. If the .netrc file contains a login
password, the file's permissions must be set to 600 (read and write by owner only).

Note: The .netrc file is not used by any programs when the secure.tcpip command is
running on your system.

The .netrc can contain the following entries (separated by blanks, tabs, or new lines):

machine HostName
The HostName variable is the name of a remote host. This entry begins the
definition of the autologin process for the specified host. All following
entries up to the next machine entry or the end of the file apply to that host.

login UserName
The UserName variable is the full domain user name for use at the remote
host. If this entry is found, the autologin process initiates a login using the
specified name. If this entry is missing, the autologin process fails.

password Password
The Password variable is the login password to be used. The autologin
process supplies this password to the remote server. A login password
must be established at the remote host and that password must be entered
in this file, or the autologin process fails and the user is prompted for the
login password.

account Password
The Password variable is the account password to be used. If this entry is
found and an account password is required at the remote host, the autologin
process supplies the password to the remote server. If the remote host
requires an account password but this entry is missing, the autologin
process prompts for the account password.

macdef MacroName

2-178 AIX Files Reference

The MacroName variable is the name of an ftp subcommand macro. The
macro is defined to contain all of the following ftp subcommands up to the
next blank line or the end of the file. If the macro is named init, the ftp
command executes the macro upon successful completion of the autologin
process. The rexec command does not recognize a macdef entry.

TCP/IP .netrc

Example
To use the example .netrc file to create your own, follow these steps:

1. Copy the /usr/lpp/tcpip/samples/netrc file to your home directory.

2. Edit the $HOME/netrc file to supply the appropriate HostName, UserName, and
Password variables.

3. Set the permissions on the $HOME/netrc file to 600.

4. Rename the .netrc file (the initial . (dot) causes the file to be hidden).

5. The following is an example of an entry in a .netrc file.

machine hostl.austin.ibm.com login fred password bluebonnet

Implementation Specifics

Files

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

$HOME/.netrc Contains automatic login information.

/usr/lpp/tcpip/samples/netrc Contains a sample .netrc file with directions for its use.

Related Information
The ftp command, rexec command.

Chapter 2. File Formats 2-179

TCP/IP networks

TCP/IP networks File Format

Purpose
Contains the network name information.

Description
The /etc/networks file contains information about the known networks that comprise the
DARPA Internet. Each network is represented by a single line in the networks file. The
format for the entries in the networks file is:

Name Number Aliases

The fields are described as follows:

Name Official network name

Number Network number

Aliases Unofficial names used for the network.

Items on a line are separated by one or more blanks or tab characters. Comments begin
with a# (pound sign). Routines that search the networks file do not interpret characters
from the beginning of a comment to the end of that line. Network numbers are specified in
dotted decimal notation. A network name can contain any printable character except a field
delimiter, new-line character, or comment character.

The networks file is normally created from the official network database maintained at the
Network Information Center (NIC). The file may need to be modified locally to include
unofficial aliases or unknown networks.

Implementation Specifics

Files

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/networks Contains the network name database.

/usr/lpp/tcpip/samples/networks Contains a sample networks file. This file also
contains directions for its use.

Related Information
The routed daemon.

The getnetent routines.

2-180 AIX Files Reference

TCP/IP protocols

TCP/IP protocols File Format

Purpose
Defines the Internet protocols used on the local host.

Description
The /etc/protocols file contains information about the known protocols used in the DARPA
Internet. Each protocol is represented by a single line in the protocols file. Each entry is of
the form:

Name Number Aliases

The fields contain the following information:

Name Official Internet Protocol name

Number Protocol number

Aliases Unofficial names used for the protocol.

Items on a line are separated by one or more blanks or tab characters. Comments begin
with the# {pound sign), and routines that search the protocols file do not interpret
characters from the beginning of a comment to the end of the line. A protocol name can
contain any printable character except a field delimiter, new line character, or comment
character.

The li.nes appear as follows:

ip 0 #dummy for IP

icmp 1 #control message protocol

#ggp 2 #gateway"2 (not normally used)

tcp 6 #tcp

#egp 8 #exterior gateway protocol

#pup 12 #pup

udp 17 #user datagram protocol

#idp 22 #xns idp

Implementation Specifics

File

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System {BOS)
Runtime.

/etc/protoco Is Defines Internet protocols for local host.

Related Information
The getprotoent routines.

Understanding Protocols for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter of Communication Concepts and Procedures.

Chapter 2. File Formats 2-181

TCP/IP re.net

TCP/IP re.net File Format

Purpose
Defines host configuration for the following areas: network interfaces, host name, default
gateway, and any static routes.

Description
The /etc/re.net file is a shell script that contains configuration information. The stanzas allow
you to enable the network interfaces and set the host name, the default gateway, and any
static routes for the current host. This file can be used as a one-step configuration
alternative to using individually the set of commands and files necessary to configure a host.

The re.net shell script is run by the configuration manager program during the second phase
of configuration. If TCP/IP is installed, a second script, rc.tcpip, is run from init after the
second phase of configuration has completed and after init has started the SRC master.
Stanzas in the file should appear in the order in which they are presented here.

Using the Configuration Methods
These stanzas use the configuration methods for TCP/IP to manipulate the ODM database.

Configuring Network Interfaces

For each network adapter that has been previously configured, a set of stanzas is required.
The following stanzas define, load, and configure the appropriate network interfaces for
every configured network adapter. These configuration methods require that the interface
and protocol information be entered in the ODM database using either SMIT or the high level
configuration commands (i.e., mkdev). The network interface configuration information is
held in the running system only, and must be reset at each system restart.

/etc/network/def if

/etc/network/cfgif $*

>>$LOGFILE

>>$LOGFILE

2>&1

2>&1

The defif method defines the network interfaces. The cfgif method configures the network
interfaces in the configuration database. The second part of the stanzas indicates that output
should be sent to a log file. The log file must include the full path name. If no log file is
specified, the default log file is /dev/null.

Along with the network interface configuration, additional commands must be executed for
X.25 and SLIP interfaces: the x25xlate command for X.25 interfaces and the slattach
command for SLIP connections.,The x25xlate command loads the X.25 translation table into
the kernel and the slattach command is used to assign a tty line to an interface for SLIP. For
each SLIP interface, the slattach command must be executed for the appropriate tty.

Setting the Host Name, Default Gateway, and Any Static Routes

The following stanzas set the host name, default gateway, and static routes using the
definet subroutine and the cfginet subroutine to alter the ODM database for the inetO
object.

/etc/definet
/etc/cfginet

>>$LOGFILE 2>&1
>>$LOGFILE 2>&1

The second part of the stanzas indicates that output should be sent to a log file. The log file
must include the full path name. If no log file is specified, the default log file is /dev/null.

2-182 AIX Files Reference

TCP/IP re.net

Using Traditional Configuration Commands
These stanzas use configuration commands for TCP/IP to set configuration values.

Configuring Network Interfaces

The following stanza defines, loads, and configures the specified network interface.

/etc/ifconfig Interface inet InternetAddress up >>$LOGFILE 2>&1

The Interface parameter should specify the type and number of the interface (i.e., trO). The
lnternetAddress parameter should specify the Internet address of the interface (i.e.,
192.1.8.0).

The last part of the stanza indicates that output should be sent to a log file. The log file must
include the full path name. If no log file is specified, the default log file is /dev/null.

Setting the Host Name, Default Gateway, and Any Static Routes

These stanzas should follow any stanzas for the network interfaces. These stanzas use the
hostname command to set the host name and the route command to define the default
gateway and any static routes. The static route information is held in the running system
only, and must be reset at each system restart.

/etc/hostnarne Hostname >>$LOGFILE 2>&1

/etc/route add 0 Gateway >>$LOGFILE 2>&1

/etc/route add DestinationAddress Gateway >>$LOGFILE 2>&1

The add parameter for the route command adds a static route to the host. This route can be
to the default gateway (by specifying a hop count, or metric, of 0), or to another host through
a gateway.

The last part of the stanzas indicates that output should be sent to a log file. The log file
must include the full path name. If no log file is specified, the default log file is /dev/null.

Miscellaneous Functions
Use these stanzas to set the host id and user name. By default, the host id and user name
are set to the host name. However, these stanzas can be altered to customize the host id
and user name.

/usr/bin/hostid 'hostnarne'

/bin/unarne -s 'hostnarne I sed -e's/\ •• *$//'' >>$LOGFILE 2>&1

To customize these stanzas, replace the hostnarne entry in single quotation marks with the
desired host id or user name.

The second part of the user name stanza indicates that output should be sent to a log file.
The log file must include the full path name. If no log file is specified, the default log file is
/dev/null.

Chapter 2. File Formats 2-183

TCP/IP re.net

Load Network File System (NFS)

Examples

If you have the Network File System (NFS) installed on the current host, the following stanza
will load and configure the NFS kernel extension:

if [-x /etc/gfsinstall -a -x /etc/nfs.ext] ; then
/etc/gfsinstall -a /etc/nfs.ext >>$LOGFILE 2>&1

The last part of the NFS stanza indicates that output should be sent to a log file. The log file
must include the full path name. If no log file is specified, the default log file is /dev/null.

1. To set up a Token-Ring interface using the ifconfig command, include the following
stanza:

/etc/ifconfig trO inet 192.1.8.0 up >>$LOGFILE 2>&1

This stanza will set up the Token-Ring interface, unit zero, with the Internet address
192.1.8.0.

2. To set the host name using the hostname command, include the following stanza:

/etc/hostname robo.austin.ibm.com >>$LOGFILE 2>&1

The stanza will set the host name as robo.austin.ibm.com. The host name in this
example includes domain and subdomain information, which is necessary if the host is
using the domain naming system.

3. To set up a default gateway using the route command, include the following stanza:

/etc/route add 0 192.100.13.7 >>$LOGFILE 2>&1

The value o for the Metric parameter means that any packets sent to destinations not
previously defined and not on a directly connected network go through the default
gateway. The 19 2 • 1 o o • 13 • 7 address is that of the gateway chosen to be the default.

4. To set up a static route using the route command, include the following stanza:

/etc/route add net 192.100.201.7 192.100.13.7 >>$LOGFILE 2>&1

The 19 2 • 1 o o . 2 o 1 • 7 address is that of the receiving computer (the Destination
parameter). The 19 2 • 1 o o • 13 • 7 address is that of the routing computer (the Gateway
parameter).

Implementation Specifics

File

This file is part of TCP/IP Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/rc.tcpip Initializes daemons each system IPL.

Related Information
The defif subroutine, cfgif subroutine, definet subroutine, cfginet subroutine.

The ifconfig command, init command, x25xlate command, slattach command, hostname
command, route command.

The rc.tcpip file, inetd daemon, sendmail daemon.

2-184 AIX Files Reference

TCP/IP resolv.conf

TCP/IP resolv.conf File Format

Purpose
Defines DOMAIN name-server information for local resolver routines.

Description

Example

If the /etc/resolv.conf file exists, the local resolver routines either use a local name
resolution database maintained by a local named daemon (a process) to resolve Internet
names and addresses, or they use the Domain Name Protocol (DOMAIN protocol) to
request name resolution services from a remote DOMAIN name server host. In either case,
if the name resolution information is unavailable, the routines then attempt to use the
/etc/hosts file for name resolution.

Note: If the resolv.conf file does not exist, the resolver routines attempt name
resolution using the local /etc/hosts file.

On a host that is not a name server but is to use a name server to obtain name resolution
information, the resolv.conf file should contain the Internet address of the name server. If
the host is a name server, the resolv.conf file must exist and should have a length of O
(zero).

The resolv.conf file contains at most one domain entry and 1 to 16 name server entries.

A domain entry tells the resolver routines which default domain name to append to names
that do not end with a. (dot). There can be only one domain entry. This entry is of the form:

domain DomainName

The DomainName variable is the name of the local Internet domain. If there is no domain
entry in the file, the default domain is the domain returned by the gethostbyname
subroutine (that is, everything following the first period). If the host name does not have a
domain name included, the root (.) domain is assumed.

A name server entry tells the resolver routines the Internet address of a remote DOMAIN
name server for the local domain. This entry is of the form:

nameserver Address

The Address variable is the dotted decimal address of the remote name server. If more than
one name server is listed, the resolver routines query each name server (in the order listed)
until either the query succeeds or the maximum number of attempts have been made.

Each line in the resolv.conf file must begin with either domain or name server, followed by
blanks or tabs and a corresponding DomainName or Address.

Entries in this file can be made using the System Management Interface Tool (SMIT), by
using the namerslv command, or by creating and editing the file with an editor.

To define a domain host that is not a name server, enter:

domain abc.aus.ibm.com
nameserver 192.9.201.1
nameserver 192.9.201.2

The example contains entries in the resolv.conf file for a host that is not a name server.

Chapter 2. File Formats 2-185

TCP/IP resolv.conf

Implementation Specifics

Files

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

/etc/resolv.conf Defines name server information for resolver
routines.

/usr/lpp/tcpip/samples/resolv.conf Contains the sample resolv.conf file.

Related Information
The named daemon.

The namerslv command.

The /etc/hosts file.

The gethostbyaddr subroutine, gethostname subroutine.

Understanding Naming for TCP/IP and Configuring Name Servers for TCP/IP in the
Transmission Control Protocol chapter of Communication Concepts and Procedures.

2-186 AIX Files Reference

TCP/IP .rhosts

TCP/IP .rhosts File Format

Purpose
Specifies remote users that can use a local user account on a network.

Description

Example

The $HOME/.rhosts file contains a list of remote users who are not required to supply a
login password when they execute the rep, rlogin and rsh commands using a local user
account. This file is a hidden file in the local user's home directory and must be owned by
the local user. The permissions of the .rhosts file should be set to 600 (read and write by
owner only). Each entry in the file is of the form:

Host UserName

The Host variable is the name of the remote host, and the UserName variable is the login
name of the remote user. If the remote host is in a different domain from the local host, the
full domain name must be specified.

To allow remote users to log in to someone else's home directory, enter:

venus geo
venus mark

The example shows entries in an .rhosts file on host zeus. For example the file may be the
/u/amy/.rhosts file. These entries allow users mark and geo at remote host venus to log
in to user amy's home directory on host zeus.

Implementation Specifics

File

This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

$HOME/.rhosts Specifies remote users that can use a local user account.

Related Information
The rep command, rlogin command, rsh, remsh command.

Chapter 2. File Formats 2-187

TCP/IP services

TCP/IP services File Format

Purpose
Defines the sockets and protocols used for Internet services.

Description

Example

The /etc/services file contains information about the known services used in the DARPA
Internet network. Each service is listed in this file on a single line of the form:

ServiceName PortNumber/ProtocolName Aliases

The fields contain the following information:

ServiceName Official Internet service name

PortNumber Socket port number used for the service

Protoco/Name Transport protocol used for the service

Aliases List of unofficial service names.

Items on a line are separated by blanks or tabs. Comments begin with a# (pound sign) and
continue to the end of the line.

Like the /etc/inetd.conf file, any time the services file is changed, the inetimp command
must be called to create or update the Object Data Manager (QOM) object class lnetServ.
Anytime the Object Data Manager (ODM) lnetServ object class is updated, the inetexp
command must be called to create or update the contents of the services and inetd.conf
files to make sure that their contents remain the same. It is important to make sure their
contents always reflect the same information because System Resource Controller (SAC)
and the inetd daemon use the information from the ODM object class. When the ODM
object is upqated by the inetserv command or through SMIT, the inetexp export routine is
automatically called.

Entries in the services file for the inetd internal services might look like this:

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
daytime 13/tcp
daytime 13/udp
char gen 19/tcp ttytst source
char gen 19/tcp ttytst source
ftp 21/tcp
time 37/tcp timeserver
time 37/udp timeserver

Implementation Specifics
This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

2-188 AIX Files Reference

TCP/IP services

File
/etc/services Defines sockets and protocols used for Internet services.

Related Information
The getservent. .. commands.

The inetimp command, inetexp command.

The /etc/inetd.conf file.

The ODM Overview in General Programming Concepts.

Chapter 2. File Formats 2-189

TCP/IP Standard Resource Record Format

TCP/IP Standard Resource Record Format

Purpose
Defines the format of lines in the named data files.

Description
Records in the named files are called resource records. Files using the Standard Resource
Record Format are:

• DOMAIN data file

• DOMAIN reverse data file

• DOMAIN cache file

• DOMAIN local file.

Resource records in the named files have the following general format:

{name} {tt~ addr-class Record Type Record-Specific Data

Field Definitions
name

ttl

addr-class

Varies depending on the record type field. The name field can specify the
name of a domain, a zone of authority, the name of a host, the alias of a
host or of a mailbox, or a user's login ID. The name field must begin in
column one. If this field is left blank, the name defaults to the value of the
previous resource record.

Time to live. This specifies how long the record is stored in the database. If
this field is left blank, the time to live defaults to the time to live specified in
the Start of Authority record. This field is optional.

Address class of the record. There are two valid entries for this field: IN for
Internet and ANY for all address classes.

Record Type The type of resource record. Valid record types are:

SOA Start of authority record

NS Name Server record

A Address record

HINFO Host Information record

WKS Well-Known Services record

CNAME Canonical Name record

PTR Domain Name Pointer record

MB Mailbox record

MR Mail Rename Name record

MINFO Mailbox Information record

MG Mail Group Member record

MX Mail Exchanger record.

Record types are described in Resource Record Types.

2-190 AIX Files Reference

TCP/IP Standard Resource Record Format

Record-Specific Data
These fields are dependent on the record type field.

Although case distinctions are kept when loading databases, all queries to the name server
database are case insensitive.

Special Characters
The following characters have special meanings:

@

If used in the name field, a free standing dot indicates the current domain.

Note: Use the dot at the end of resource records to append the path of the
current domain.

If used in the name field, two free standing dots indicate the null domain
name of the root domain.

If used in the name field, a free standing@ (at sign) indicates the current
origin.

\X Where Xis any character except numbers O through 9, a backslash
preceding a character indicates that the character's special meaning should
not be used. For example, \. can be used to put a dot or a period in the
label of an entry in the name field.

\DOD Where each D is a number (0 through 9). Each number will be seen as the
binary octet corresponding to the number. These octets will not be checked
for special meaning.

() Parentheses are used to indicate that data broken into more than one line
should be grouped together.

Indicates a comment line. All characters after the semi-colon are ignored.

* An asterisk indicates wildcarding.

Special Types of Lines
There are two special types of lines that are not data lines. Instead they specify special
processing. These lines are the $INCLUDE line and the $ORIGIN line.

$INCLUDE FileName
This line begins in column one and is followed by a file name. It indicates
that the file specified should be included in the name server database.
This is useful in separating different types of data into multiple files. For
example:

$INCLUDE /usr/named/data/mailbox

indicates that this file should be loaded into the name server's database.
Data files specified by the $INCLUDE line are not treated differently from
any other named data file.

$ORIGIN OriginName
This line begins in column one and is followed by the name of a domain.
This tine indicates that the origin from more than one domain in a data file
should be changed.

Chapter 2. File Formats 2-191

TCP/IP Standard Resource Record Format

Resource Record Types
Following are descriptions and examples of the resource record types used in the named
data files.

Start of Authority Record

Indicated by a value of SOA in the record type field. The Start of Authority record indicates
the start of a zone of authority. There should be only one Start of Authority record per zone.
However, the SOA record for the zone should be in each named.data and named.rev file
on each name server in the zone. Its structure is in the following format:

{name}

@

Fields

{ tt~ addr-class

IN
(1.1
3600
600
3600000
86400)

Record Type Origin Person in Charge

SOA merlin.ibm.com jane.merlin.ibm.com
;Serial
;Refresh
;Retry
;Expire
;Minimum

name Name of the zone.

ttl Time to live.

Serial

Refresh

Retry

Expire

Minimum

addr-class Internet (IN).

Version number of of this data file. This number should be
incremented each time a change is made to the data. The
upper limit for the number to the right of the decimal point is
9999.

The number of seconds after which a secondary name
server checks with the primary name server to see if an
update is needed. A suggested value for this field is 3600 (1
hour).

The number of seconds after which a secondary name
server is to retry after a refresh attempt fails. A suggested
value for this field is 600 (10 minutes).

The upper limit in seconds that a secondary name server is
to use the data before it expires because it has not been
refreshed. This value should be fairly large, and a
suggested value is 3600000 (42 days).

The minimum time, in seconds, to use as time-to-live values
in resource records. A suggested value is 86400 (one day).

Record Type Start of Authority (SOA).

Origin Name of the host on which this data file resides.

Person in Charge

2-192 AIX Files Reference

Person responsible for keeping the data file current. The format is similar to
a mailing address, but the@ (at sign) that normally separates the user from
the host name is replaced by a . (period).

TCP/IP Standard Resource Record Format

Name Server Record

Indicated by a value of NS in the record type field. The Name Server record specifies the
name server responsible for a given domain. There should be one name server record for
each primary server for the domain. The Name Server record can be in the named.data file,
the named.rev file, the named.ca file, and the named.local file. Its structure is in the
following format:

{name} {tt~ addr-class Record Type Name Server's name

IN NS arthur.ibm.com

Fields

name Indicates the domain that is serviced by the specified name server. In this
case, the domain will default to the value in the previous resource record.

ttl Time to live.

addr-class Internet (IN).

Record Type Name Server (NS).

Name Server's name
The name of the name server responsible for the specified domain .

. Address Record

Indicated by a value· of A in the record type field. The Address Record specifies the address
for the host. Address records can be entries in the named.ca file, the named.data file, and
the named.rev file. Its structure is in the following format:

{name} {tt~ addr-class Record Type

arthur

Fields

IN
IN

A

A

name Name of the host.

ttl Time to live.

addr-class Internet (IN).

Record Type Address (A).

Address

132.10.8.1
10.0.4.1

Address Internet address of the host in dotted decimal form. There should be one
Address record for each Internet address of the host.

If the name server host for a particular domain resides inside the domain, then an A

(address) resource record that specifies the address of the server is required. This address
record is only needed in the server delegating the domain, not in the domain itself. If, for
example, the server for domain aus. ibm. com was fr an. aus. ibm. com, then the NS
record and the required A record would look like:

aus. ibm.com.
fran.aus.ibm.com.

IN
IN

NS
A

fran.aus.ibm.com.
192.9.201.14

Chapter 2. File Formats 2-193

TCP/IP Standard Resource Record Format

Host Information Record

Indicated by HINFO in the Record Type field. The Host Information record lists host specific
information. This lists the hardware and operating system that are running at the specified_
host. Note that the hardware and operating system information is separated by a single
space. There must be one Host Information record for each host. The HINFO record is a
valid entry in the named.data and the named.rev files. Its structure is in the following
format:

{name} {tt~ addr-class Record Type

ANY HINFO

Fields

name Name of the host.

ttl Time to live.

Hardware OS

RS/6000 AIX

addr-class ANY. (Since host information is not specific to an address class, ANY may
be used.)

Record Type Host lnformation(HINFO).

Hardware Make and model of hardware.

OS Name of the operating system running on the host.

Well-Known Services Record

Indicated by WKS in the record type field. The Well-Known Services lists the well-known
services supported by a particular protocol at a specified address. This record is now
obsolete. However, AIX TCP/IP provides the record for backward compatibility.

The services and port numbers come from the list of services in the /etc/services file. There
should be only one WKS record per protocol per address. The WKS record is a valid entry in
the named.data file. Its structure is in the following format:

{name} {ft~ addr-class Record Type Address Protocol list of services

IN WKS 125.10.0.4 UDP (who route timed
domain)

IN WKS 125.10.0.4 TCP (echo telnet
ftp netstat
finger)

Fields

name Name of the host. In this case, the name of the host defaults to the value in
the previous resource record.

addr-class Internet (IN).

ttl Time to live.

Record Type Well-known services (WKS).

2-194 AIX Files Reference

TCP/IP Standard Resource Record Format

Address Internet address of the adapter in dotted decimal form .

Protocol The protocol used by the list of services at the specified address.

list of services The services supported by a protocol at the specified address.

Canonical Name Record

Indicated by CNAME in the record type field. Specifies an alias for a canonical name. The
CNAME record is the only Resource record that can use the alias of a canonical name. All
other Resource records must use the full canonical (or domain) name. The CNAME record is
a valid entry in the named.data file. For each CNAME record, there must be a
corresponding Address (A) record. Its structure is in the following format:

{aliases}

knight
john

Fields

{tt~ addr-class Record Type

IN
IN

CNAME
CNAME

Canonical Name

lance lot
lance lot

aliases Specifies an alias by which the host is known.

ttl Time to live.

addr-class Internet (IN).

Record Type Canonical name (CNAME).

Canonical Name
Specifies the official name associated with the alias.

IN-ADDR.ARPA Record

The structure of names in the domain system is set up in a hierarchical fashion. The
address of a name can be found by tracing down the domain structure, contacting a server
for each label in the name. Because of this structure based on name, there is no easy way
to translate a host address back into its host name.

In order to allow simple reverse translation, the IN-ADDA.ARPA domain was created. This
domain uses addresses of hosts as part of a name that points to the data for that host. The
IN-ADDA.ARPA domain provides an index to the resource records of each host based on its
address. There are subdomains within the IN-ADDA.ARPA domain for each network, based
on network number~ Also, to maintain consistency and natural groupings, the 4 octets of a
host number are reversed. The IN-ADDA.ARPA domain is defined by the IN-ADDA.ARPA
record in the named.boot files and the DOMAIN hosts data file.

For example, the ARPANET is net 10, which means that there is a domain called
1 o. in-addr. arpa. Within this domain, there is a PTA resource record at
51. o. o. 10. IN-ADDR, which points to the resource records for the host sri-nic. arpa
(whose address is 10. o. o. 51). Since the NIC is also on the MILNET (net 26, address
26. o. o. 7 3), there is also a PTA resource record at 7 3. o. o. 2 6. in-addr. arpa that
points to the same resource records for SRl-NIC.ARPA. The format of these special
pointers is defined in the following section on PTA resource records, along with the
examples for the NIC.

Chapter 2. File Formats 2-195

TCP/IP Standard Resource Record Format

Domain Name Pointer Record

Indicated by PTR in the Record Type field. This record allows special names to point to some
other location in the domain. PTR resource records are mainly used in IN-ADDA.ARPA
records for translation of addresses to names. PTA records should use official host names,
not aliases. The PTR record is a valid entry in the named.rev file. Its structure is in the
following format:

{aliases} {tt~ addr-class Record Type Real Name .

7.0

Fields

IN PTR arthur.ibrn.corn.

aliases Specifies where in the domain this record should point. The Internet address
of the host with the octets in reverse order. If you have not defined the
IN-ADDA.ARPA domain in your named.boot file, this address must be
followed by • in-addr. arpa.

ttl Time to live.

addr-class Internet (IN).

Record Type Pointer (PTA).

Real Name The domain name of the host to which this record points.

Gateway PTR Record

The IN-ADDA domain is also used to locate gateways on a particular network. Gateways
have the same kind of PTR resource records as hosts, but they also have other PTA records
used to locate them by network number alone. These records have 1, 2, or 3 octets as part
of the name, depending on whether they are class A, B, or C networks, respectively.

The gateway host named gw, for example, connects three different networks, one each in
class A, B, and C. This gateway has the standard resource records for a host in the
csl.sri.com zone:

gw.csl.sri.corn. IN
IN
IN

A
A
A

10.2.0.2
128.18.1.1
192.12.33.2

In addition, this gateway has one of the following pairs of number-to-name translation
pointers and gateway location pointers in each of the three different zones (one for each
network). In each example, the number-to-name pointer is listed first, followed by the
gateway location pointer.

Class A

2.0.2.10.in-addr.arpa. IN PTR gw.csl.sri.corn.
10.in-addr.arpa. IN PTR gw.csl.sri.corn.

Class B

1.1.18.128.in-addr.arpa. IN PTR gw.csl.sri.corn.
18.128.in-addr.arpa. IN PTR gw.csl.sri.corn.

Class C

1.33.12.192.in-addr.arpa. IN PTR gw.csl.sri.corn.
33.12.192.in-addr.arpa. IN PTR gw.csl.sri.corn.

For example, a user named elizabeth used the following resource record to have her mail
delivered to host venus. abc. aus. ibrn. corn.:

elizabeth IN MB venus.abc.aus.ibrn.corn.

2-196 AIX Files Reference

TCP/IP Standard Resource Record Format

Mailbox Record

Indicated by MB in the record type field. The Mailbox record lists the machine where a user
wants to receive mail. The MB record is a valid entry in the named.data file. Its structure is
in the following format:

{aliases} {tt~ addr-class Record Type Machine

jane

Fields

IN

aliases The user's login ID.

ttl Time to live.

addr-class Internet (IN).

Record Type Mailbox (MB).

MB merlin.ibm.com

Machine Name of the machine at which the user wants to receive mail.

Mail Rename Name Record

Indicated by MR in the record type field. The Mail Rename record allows a user to receive
mail addressed to a list of aliases. The MR record is a valid entry in the named.data file. Its
structure is in the following format:

{aliases} { tt~ addr-class Record Type Corresponding MB

merlin IN MR jane

Fields

aliases Alias for the mailbox name listed in the last field.

ttl Time to live.

addr-class Internet (IN).

Record Type Mail Rename (MR).

Corresponding MB
The name of the mailbox. This record should have a corresponding MB
record.

Mailbox Information Record

Indicated by MINFO in the record type field. The Mailbox Information record creates a mail
group for a mailing list. This record usually has a corresponding Mail Group record, but may
also be used with a Mailbox record. The MINFO record is a valid entry in the named.data
file. Its structure is in the following format:

{name} {tt~ addr-class Record Type Requests Maintainer

postmaster

Fields

IN MINFO

name The name of the mailbox.

ttl Time to live.

addr-class Internet (IN).

Record Type Mail Information record (MINFO).

post-request greg.ibm.com

Chapter 2. File Formats 2-197

TCP/IP Standard Resource Record Format

Requests Where mail requests (such as a request to be added to the mailing list)
should be sent.

Maintainer The mailbox that should receive error messages. This is particularly useful
when mail errors should be reported to someone other than the sender.

Mail Group Member Record

Indicated by MG in the record type field. The Mail Group Member record lists the members of
a mail group. The MG record is a valid entry in the named.data file. Its structure is in the
following format:

{mail group name}

dept

Fields

mail group name

{tt~ addr-class Record Type

IN MG

Specifies the name of the mail group.

ttl Time to live.

addr-class Internet (IN).

Record Type Mail group member record (MG).

Member Name The login ID of the group member.

Mail Exchanger Record

Member Name

Torn

Indicated by MX in the record type field. The Mail Exchanger records are used to identify
machines (gateways) that know how to deliver mail to a machine that is not directly
connected to the network. Wildcard names containing the character* (asterisk) may be used
for mail routing with MX records. There are likely to be servers on the network that simply
state that any mail to a domain is to be routed through a relay. The MX record is a valid entry
in the named.data file. Its structure is in the following format:

{name} {tt~ addr-class Record Type Pref value mail exchanger

Ann.ibrn.com
*.dev.ibrn.com

Fields

IN
IN

MX
MX

0
0

Hamlet.Century.Corn
Lear.Century.Corn

name Specifies the full name of the host to which the mail exchanger knows how
to deliver mail.

Note: The* (asterisk) in the second name entry is a wildcard name entry. It
indicates that any mail to the domain dev. ibrn. corn should be
routed through the mail gateway Lear. century. Corn.

ttl Time to live.

addr-class Internet (IN).

Record Type Mail Exchanger (MX).

Pref value Indicates the order the mailer should follow when there is more than one
way to deliver mail to a host.

mailer exchanger
The full name of the mail gateway

2-198 AIX Files Reference

Example

TCP/IP Standard Resource Record Format

The following is an example of a mailing list:

dept IN
IN
IN
IN
IN

MINFO
MG
MG
MG
MG

dept-request jane.merlin.ibm.com
greg.arthur.ibm.com
tom.lancelot.ibm.com
gary.guinevere.ibm.com
kent.gawain.ibm.com

Implementation Specifics
This file is part of TCP/IP in Network Support Facilities in AIX Base Operating System (BOS)
Runtime.

Related Information
The named daemon.

The DOMAIN Data file, DOMAIN Reverse Data file, DOMAIN Cache file, DOMAIN Local file.

Configuring Name Servers for TCP/IP in the Transmission Control Protocol/Internet Protocol
chapter in Communication Concepts and Procedures.

Chapter 2. File Formats 2-199

tip phones

tip phones File Format

Purpose
Describes connections used by the tip command to contact remote systems.

Description
The /etc/phones file lists the remote systems that can be contacted using the tip command,
and the telephone numbers used to contact those systems.

A sample phones file for tip is included with AIX. The sample file is named
/etc/phones-file. A user with root user authority can copy the sample file to the
/etc/phones file and modify it to suit the needs of a particular site.

Any tip user can create an individual phones file in the format of the phones file. The
individual phones file can be named with any AIX file name and placed in any directory to
which the user has access. To instruct the tip command to use the new file, set the tip
command phones variable, or set an environment variable named PHONES.

Systems listed in the phones file must also be described in the /etc/remote file or in the file
specified by the tip command remote variable.

Format of Entries

Examples

The format of an entry in the phones file is as follows:

SystemName PhoneNumber

The SystemName field and the PhoneNumberfield must be separated by at least one
space. More than one space can be used to improve readability.

SystemName Specifies the name of the remote system to be contacted.

PhoneNumber Specifies the telephone number, including line access codes, to be used to
reach the remote system. Dashes may be used for readability.

If more than one phone number can be used to reach a certain system, make multiple
entries for that system, placing each entry on a separate line.

Any line that begins with a # (pound sign) is interpreted as a comment.

1. To list phone numbers in a phones file, make entries similar to the following:

hera 1237654
zeus 9-512-345-9999

System hera is contacted using the telephone number 123-7654. To contact system
zeus, a line access code of 9 is followed by the telephone number 512-345-9999.

2. To define more than one phone number for the same system, make multiple entries for
that system, as follows:

decvax
decvax

9-915-987-1111
9-915-987-2222

If the tip command cannot reach the decvax system using the first phone number, it
attempts to contact the system using the second phone number.

2-200 AIX Files Reference

tip phones

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/etc/phones

/etc/phones-file

/etc/remote

Denotes complete path name of the phones file.

Contains an example phones file.

Describes remote systems that can be contacted using the tip
command.

Related Information
The tip command reads the phones file.

The tip Overview for System Management in Communication Concepts and Procedures
discusses configuring the tip command.

The tip command phones variable can be used to specify the phones file to use with the tip
command.

Chapter 2. File Formats 2-201

tip remote

tip remote File Format

Purpose
Describes remote systems contacted by the tip command.

Description
The /etc/remote file describes the remote systems that can be contacted using the tip
command. When a user invokes the tip command with the SystemName parameter, the tip
command reads the remote file to find out how to contact the specified remote system.

Any tip user can create an individual remote file in the format of the remote file. The
individual remote file can be named with any AIX file name and placed in any directory to
which the user has access. To instruct the tip command to use the new file, set the tip
command remote variable, or set an environment variable called REMOTE.

A sample remote file for tip is included with AIX. The sample file is named /etc/remote-file.
This sample file contains two examples. One of them uses a set of general dialer definitions,
followed by general system definitions, followed by specific systems. The second example
defines each system individually.

Any user can copy the sample file to some other directory and modify it for individual use. A
user with root user authority can copy the sample file to the /etc/remote file and modify it to
suit the needs of a particular site.

Format of Entries
The general format of an entry in the /etc/remote file is a system name or dialer name
followed by a description and one or more attributes, as follows:

System Name[I SystemName ...]I Description:Attribute[:Attribute ...] :

OR

DialerName[I DialerName ... 11 Description: Attribute[:Attribute ...] :

The name of the system or dialer is followed by a I (pipe symbol) and a description of the
system or dialer. More than one name can be given. If multiple names are given, they must
be separated by pipe symbols.

The Description field is followed by a: (colon) and a list of attributes separated by colons.
Each entry must also end with a colon.

An entry can be continued to the next line by typing a \ (backslash). The continuation line
must begin with a: (colon), and can be indented for readability. Spaces can be used within
the Description field only.

Any line which begins with a# (pound sign) is read as a comment line.

2-202 AIX Files Reference

tip remote

Attributes Used to Define Systems and Dialers
Use the following attributes to describe systems in the remote file:

at:ACUType Defines the type of Automatic Call Unit (also known as the ACU or modem).
This attribute should be specified in each entry (or in another entry included
with the tc attribute), unless the system will not be contacted with a modem.
The ACUType must be one of the following:

biz31f
biz31w
bix22f
biz22w
df02
df03
dn11
ventel
hay es
courier
vadic
v3451
v831

br#BaudRate Specifies the baud rate to be used on the connection. The default rate is
300 baud. This attribute should be specified in each entry, or in another
entry included with the tc attribute. The baud rate specified can be
overridden using the tip command -BaudRate flag.

cu= Device

du

Specifies the device for the call unit if it is different from the device defined
in the dv statement. The default is the device defined in the dv statement.

Flag to make a call. This attribute must be specified in each entry or in
another entry included with the tc attribute.

dv:Device[,Device ...]

el: Mark

fs:Size

Lists one or more devices to be used to connect to the remote system. If the
first device listed is not available, the tip command attempts to use the next
device in the list, continuing until it finds one which is available or until it has
tried all listed devices.

This attribute must be specified in each entry or in another entry included
with the tc attribute.

Defines the mark used to designate an end-of-line in a file transfer. This
setting is the same as that defined by the tip command eol variable.

Specifies the frame size. The default is the value of the BUFSIZ
environment variable. This value can also be changed using the tip
command framesize variable.

ie:lnputString Specifies the input end-of-file mark. The default is NULL.

oe:OutputString
Specifies the output end-of-file mark. The default is NULL.

Chapter 2. File Formats 2-203

tip remote

pn:

tc=Entry

Lists telephone numbers to be used to contact the remote system. This
entry is required if a modem is to be used to contact the remote system.

pn=@ Instructs tip to search the /etc/phones file, or the file
specified with the phones variable, for the telephone
number.

pn:Numbe!f.,Number ...]
Lists one or more phone numbers to be used to contact the
remote system.

Refers to another entry in the file. This allows you to avoid defining the
same attributes in more than one entry. If used, this attribute should be at
the end of the entry.

tc=DialerName Includes the specified DialerName entry in this entry. The
DialerName must be defined elsewhere in the remote file.

tc:SystemName
Includes the specified SystemName entry in this entry. The
SystemName must be defined elsewhere in the remote file.

Ways to Group Entries

Examples

There are two ways to set up entries in the remote file.

One is to simply define each system individually, giving all of its attributes in that entry. This
works well if you are contacting several dissimilar systems.

Another way to set up the file is to group systems by similarity. To do this, use two or three
sections, depending on the ways the systems are similar. You can use:

• Dialer definitions, including the device, baud rate, call unit, ACU type, and dial up flag

• General system definitions, including any information that several systems have in
common and using the tc attribute to refer to a dialer entry

• Specific system descriptions, which use the tc attribute to refer back to one of the general
system types or to a dialer entry.

You can omit either the dialer definitions or the general system definitions, depending on the
way you group the remote systems.

Defining a System Individually
1. To define a system without using the tc= attribute, make an entry similar to the following:

vms750lnymphlNPG 750:\
:dv=/dev/tty36,/dev/tty37:br#9600:el=AZAUACASAQAO:\
:ie=$@:eo=AZ:

This entry defines system vms750, which can also be referred to as nymph. The system
can be accessed using either /dev/tty36 or /dev/tty37, at a baud rate of 9600. The
end~of-line mark is AzAuAcAsAQAo. The input end-of-file mark is$@ and the output
end-of-file mark is A z. Since no phone number is defined, the system is accessed over a
direct connection.

2-204 AIX Files Reference

tip remote

Grouping Systems by Similarity
The following examples use a dialer entry, a general system entry, and specific system
entries which refer to the general entries.

2. To define a dialer, make an entry similar to the following:

diall200l1200 Baud Able Quadracall attributes:\
:dv=/dev/cull:br#1200:at=dnll:du:

This entry defines a dialer called dial 12 o o. The dialer is connected to device
/dev/cull, is an ACU type of dnll. The dial-up {du) flag is set.

3. To define a general system type and refer to a dialer entry, make an entry similar to the
following:

unixl200l1200 Baud dial-out to another UNIX system:\
:el=AUACARAOADASAQ:ie=%$:oe=AD:tc=dial1200:

This entry defines a system type called unix1200. The end-of-line mark for
communication with this type of remote system is AUACARAOADAS"Q. The input
end-of-file mark is % $ and the output end-of-file mark is AD. The dialer defined by the
dia11200 entry is used.

4. To describe a specific system, make an entry similar to the following:

zeus!CSRG ARPA VAX-11/780:pn=@:tc=unixl200:

This entry describes system zeus. The tip command will search the /etc/phones file for
the telephone number and use the attributes for a unix1200 system type.

Implementation Specifics

Files

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

/etc/remote

/etc/phones

/etc/remote-file

Denotes complete path name of the remote file.

Lists phone numbers used to contact remote systems.

Contains an example remote file.

Related Information
The tip command reads the remote file.

The tip Overview for System Management in Communication Concepts and Procedures
discusses setting up a remote file.

The tip command remote variable, can be used to specify the remote file to use with the tip
command.

Chapter 2. File Formats 2-205

tip.tiprc

tip .tiprc File Format

Purpose
Provides initial settings of variables for the tip command.

Description

Example

The .tiprc file allows you to initialize variable settings for the tip command. When first
invoked, the tip command checks the user's home directory (defined by the $HOME
environment variable) for a .tiprc file. If the file is present, the tip command sets the tip
variables according to instructions in the .tiprc file.

The tip command uses several different types of variables: numeric, string, character, or
Boolean. A Boolean variable can be toggled by putting the variable name in the .tiprc file, or
it can be reset by putting an ! (exclamation point) in front of the variable name. Other types
of variables are set by following the variable name with an= (equal sign) and the new value
of the variable.

You can use the -v flag of the tip command to see the variable settings as they are made.
Also, you can use the -s escape signal to change variables while the tip command is
running.

Following is a sample .tiprc file:

be
ba=9600
!echocheck

This file toggles the beautify variable, sets the baudrate variable to 9600, and resets the
echocheck variable to the default setting.

Implementation Specifics

File

This file is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for RISC
System/6000.

$HOME/.tiprc

Related Information

Complete path name of the .tiprc file.

The tip command uses the .tiprc file.

The tip Overview for System Management in Communication Concepts and Procedures
discusses setting up a .tiprc file.

tip Command Variables describes the variables that can be set in the .tiprc file. Settings
made with tip Command Escape Signals can override settings made in the .tiprc file.

2-206 AIX Files Reference

Chapter 3. Special Files

Chapter 3. Special Files 3-1

Special Files Overview
A special file is file that is associated with a particular hardware device or other resource of
the computer system. AIX uses special files, sometimes called device files, to provide file 1/0
access to specific character and block device drivers. Special files, at first glance, appear to
be just like ordinary files:

• They have path names that appear in a directory.

• They have the same access protection as ordinary files.

• They can be used in almost every way that ordinary files can be used.

However, there is an important difference between the two. An ordinary file is a logical
grouping of data recorded on disk. A special file, on the other hand, corresponds to a device
entity. Examples are:

• An actual device, such as a line printer

• A logical subdevice, such as a large section of disk drive

• A pseudo device, such as the physical memory of the computer (/dev/mem) or the null
file (/dev/null).

The special files are distinguished from other files by having a file type (c orb, for character
or block) stored in their i-nodes to indicate the type of device access provided. The i-node for
the special file also contains the device major and minor numbers assigned to the device at
device configuration time.

Warning: POTENTIAL FOR DATA CORRUPTION OR SYSTEM CRASHES: Data
corruption, loss of data, or loss of system integrity will occur if devices supporting paging,
logical volumes, or mounted file systems are accessed using block special files. Block
special files are provided for logical volumes and disk devices on AIX and are solely for
system use in managing filesystems, paging devices and logical volumes. They should not
generally be used for other purposes. Additional information concerning the use of special
files may be obtained in Understanding 1/0 Access through Special Files.

Several special files are provided with the AIX operating system. By convention, the special
files are located in the /dev directory. More information about the following special files is
provided in this documentation:

3270cn

bus

Cd
console

dump

entn

error

f d

hft

3-2 AIX Files Reference

Provides access to IBM 3270 Connection Adapters by way of the IBM 3270
Connection Adapter device driver.

Provides access to the hardware bus by way of the machine 1/0 device
driver.

Provides access to the cdrom device driver.

Provides access to the system console.

Supports system dump.

Provides access to the 3COM Ethernet adapters by way of the RISC
System/6000 Ethernet device handler.

Supports error logging.

Provides access to the diskette device driver.

Implements a high function terminal (HFT) device.

hiaO Provides access to the IBM Host Interface Adapter (HIA) by way of the IBM
HIA device handler.

kmem and mem

Ip

lvdd

mpqn

null
nvram

pty

rhdisk

rmt

SCSI

to kn

trace

tty

Related Information

Provides privileged virtual memory read and write access.

Provides access to the line printer device driver.

Provides access to the logical volume device driver.

Provides access to multiprotocol adapters by way of the Multiprotocol
(MPQP) device handler.

Provides access to the null device.

Provides access to platform-specific nonvolatile RAM used for system boot,
configuration, and fatal error information.

Provides the pseudo terminal (PTY) device driver.

Provides raw access to the physical volume (fixed-disk) device driver.

Provides access to the sequential access bulk storage medium device
driver.

Provides access to the SCSI adapter driver.

Provides access to the Token-Ring adapters by way of the Token-Ring
device handler.

Supports event tracing.

Supports the controlling terminal interface.

The Header Files Overview, which describes header files in general and lists header files
discussed in this documentation.

The File Formats Overview, which defines and describes file formats in general and lists file
formats discussed in this documentation.

The discussion of Device Driver Classes, Device Driver Roles, and File 1/0 Access Through
Special Files in General Concepts and Procedures.

Chapter 3. Special Files 3-3

3270cn

3_270cn Special File

Purpose
Provides access to IBM 3270 Connection Adapters by way of the IBM 3270 Connection
Adapter device handler.

Description
The 3270cn character special file provides access to the IBM 3270 Connection Adapter
device handler for the purpose of emulating 3270 display stations and printers. The device
handler is a multiplexed device handler that supports an independent, logical 3270 session
on each of its channels.

The device handler supports two modes of operation:

• Non-SNA Distributed Function Terminal (OFT) mode

In OFT mode, the adapter can appear as multiple terminal sessions, or printer sessions,
or both, and is an intelligent device to the control unit. In this mode, the device handler
provides the capability of emulating several IBM 3278/79 display stations. If the attached
control unit does not support Extended Asynchronous Event Device Status, the control
unit port must be configured for one session only orthe device handler must be
configured for one session only.

• 3278/79 emulation Control Unit Terminal (CUT) mode

In CUT mode, the adapter appears as a single-session, unintelligent device to the control
unit. In this mode, the device handler provides the capability of emulating a single IBM
3278/79 display station.

The device handler supports up to four IBM 3270 Connection adapters, each of which may
have up to 5 OFT sessions or 1 CUT session.

The <Sys/io3270.h> file contains the definitions of the structures used by the device
handler.

Usage Considerations
When accessing the IBM 3270 Connection device handler, the following should be taken into
account:

• Driver Initialization and Termination

The device handler may be loaded and unloaded. The device handler supports the
configuration calls to initialize and terminate itself, but does not support the configuration
call to query vital product data (VPD).

• Special File Support

Subroutines other than the open call and the close call are discussed in regard to the
mode in which the device handler is operating.

3-4 AIX Files Reference

3270cn

Subroutine Support
The 3270 device handler provides 3270-specific support for the following subroutines:

• open

• close

• read

• readx

• write

• writex

• ioctl

The open and close Subroutines

The device handler supports the /dev/3270cn special file as a character-multiplex special
file. The special file must be opened for both reading and writing (O_RDWR).

A special consideration exists for closing the 3270cn special file. If the file was opened in
both CUT mode and CUT File Transfer mode, the close operation for CUT File Transfer
mode must be done before the close operation for CUT mode

The special file name used in an open call takes on several different forms depending on
how the device is to be opened. Types of special file names are:

dev/3270cn/C Starts the device handler in CUT mode for the selected port, where the
value of n is 0 <= n <= 7.

/dev/3270cn/F Starts the device handler in CUT File Transfer mode for the selected port,
where the value of n is O <= n <= 7. The file must be currently open in CUT
mode before it can be opened in CUT File Transfer mode.

/dev/3270cn/* Starts the device handler in OFT mode for the selected port, where the
value of n is O <= n <= 7 and* is defined as one of the following:

P/00, P/01, P/02 ... P/1 F

01 to 05

Printer session with the P variable is equal to the control
unit session address, and the value of a is less than or
equal to Ox1 F.

Terminal session number.

/dev/3270cn Starts the device handler in OFT mode for the selected port, where the
value of n is 0 <= n <= 7.

The read Subroutine in OFT Mode

Data received by the communication adapter from the host is placed in the buffer until the
message completes or the buffer is full. When either conditi9n occurs, the AIX driver returns
program control back to the application. The application can determine the status of a read
subroutine call by issuing a WDC_INQ ioctl subroutine.

If the WDC_INQ ioctl subroutine returns a status that indicates there is more data available,
the application should immediately issue another read call. Available data must be read as
soon as possible so as not to degrade link or host performance.

Chapter 3. Special Files 3-5

3270cn

If a read subroutine call is made and no data is available, the calling process is blocked until
data becomes available. To avoid blocking, use the poll subroutine to determine if data is
available.

The host sends data as an outbound 3270 data stream. The device handler translates the
command codes in the outbound 3270 data stream. The command codes and translations
are as follows:

Command Code Translation Table

Command Code Into Driver Out of Driver

Erase All Unprotected Ox6F OxOF

Erase/Write OxFS Ox03

Erase/Write Alternate Ox7E OxOD

Read Buffer OxF2 Ox02

Read Modified OxF6 Ox06

Write OxF1 Ox01

Write Structured Field OxF3 Ox11

Note: The 3270 write commands require the application to send status to the host
indicating if the 3270 data stream is valid. Status may be sent using the
WDC_SSTAT ioctl subroutine.

The readx Subroutine in DFT mode

Data received by the communication adapter from the host is placed in the buffer until either
the message completes or the buffer is full. Upon completion of the read operation, the
io3270 structure pointed to by the read extension contains the status. One of the following
status codes is set in the io_flags field of the io3270 structure:

WDl_DAVAIL Indicates that there is additional data for this link address.

WDl_COMM Indicates that there is a communication error; the io_status field contains
the corresponding message code.

WDl_PROG Indicates that there is a program error; the io_status field contains the
corresponding message code.

WDl_MACH Indicates that there is a hardware error; the io_status field contains the
corresponding message code.

WDl_FATAL Indicates that an error occurred which prevents further communication with
the host. This flag is set in addition to theWDl_COMM flag, WDl_PROG, or
WDl_MACH flags. It is also set is a COAX failure occurs. In this case the
io_status field contains WEB_603, but the WDl_COMM, WDl_PROG, or
WDl_MACH flags are not set.

When reset, the WDl_DAVAIL flag indicates that the data just read marks the completion of
an outbound 3270 data stream.

If the WDl_DAVAIL flag indicates there is more data available, another readx subroutine call
should be issued immediately. Available data must be read as soon as possible so as not to
degrade link or host performance.

3-6 AIX Files Reference

3270cn

If a readx subroutine call is made and no data is available, the calling process is blocked
until data becomes available. To avoid blocking, use the poll subroutine to determine if data
is available.

Data received from the host is in the form of an outbound 3270 data stream. The device
driver translates the command codes in the outbound 3270 data stream.

Note: The 3270 write commands require the application to send a status to the host. Status
may be sent using the WDC_SSTAT ioctl subroutine.

The write Subroutine in OFT Mode

The write subroutine sends an inbound 3270 data stream to the host. The buffer specified
on a write subroutine must contain a complete inbound 3270 data stream. The write
operation completes when the data has been successfully transferred from the buffer
specified on the subroutine call.

The writex Subroutine in OFT mode

The writex subroutine sends to the host an inbound 3270 data stream. The buffer specified
on a writex subroutine call must contain a complete inbound 3270 data stream.

The write subroutine completes when it successfully transfers the data from the specified
buffer. Upon completion of the write subroutine call, the io3270 structure pointed to by the
write extension contains the status. One of the following status code is set in the in the
io_flags field of the io3270 structure:

WOl_OAVAIL Indicates that there is data available for this link address; the data must be
read before any write can occur.

WOl_COMM Indicates that there is a communication error; the io_status field contains
the corresponding message code.

WOl_PROG Indicates that there is a program error; the io_status field contains the
corresponding message code.

WOl_MACH Indicates that there is a hardware error; the io_status field contains the
corresponding message code.

The ioctl Subroutine in OFT Mode

The ioctl subroutine may be issued to the device handler when it is in OFT mode. The
following are the available ioctl commands:

IOCINFO Returns the logical terminal number. This number is the EBCDIC
representation of the controller type, and the controller attachment protocol
in the iocinfo structure.

WOC_AUTO Provides the handler with the option to automatically acknowledge the
receipt of a valid 3270 data steam. An acknowledgment is sent only if the
beginning of the 3270 data stream consists of OxF3 00 06 40 00 F1 C2 1 O
14. This command also allows the driver to indicate no acknowledgment
upon receipt of data.

WOC_INQ Queries the status of the last read or write call issued by the application.
Also, WDC_INQ is used to determine if data is available for reading. The
status is placed in the io_flags field of the io3270 structure. This field
accepts the following values:

Chapter 3. Special Files 3-7

3270cn

WDl_DAVAIL Data is available for reading. The data are either buffered in the driver or in
the communication adapter. The data should be read immediately so as to
not impact performance. A write or writex subroutine call cannot be
completed until the data is read.

WDl_COMM, WDl_PROG, or WDl_MACH
Indicate a communication check, program check, or machine check,
respectively. In that case, the io_status field contains a message code
specifying the type of check.

WDC_POR The link address is disabled and then re-enabled to emulate a 3270
terminal power-on reset function

WDC_SSTAT Sends status to the host. The argument field contains one of the following
values:

STAT _ACK The previously received 3270 data stream is valid and the
proper response is made to the host.

STAT_RESET Sends a RESET KEY to the DFT device handler.

STAT_PRTCMP
The printer session has completed printing the data.

STAT _BERR A bad buffer order or an invalid buffer address was
received.

STAT_BADC A non-3270 command was received.

STAT_UNSUP An unsupported 3270 command was received.

The <sys/io3270.h> header file contains the definitions of the structures used by the device
handler.

Error Conditions in OFT Mode

The following error conditions may be returned when accessing the device handler through
the /dev/3270cn special file:

EBUSY

EFAULT

EINTR

EINVAL

EIO

ENO DEV

ENOMEM

ENXIO

Indicates that an open was requested for a channel that is already open.

Indicates that a buffer specified by the caller was invalid.

Indicates that a subroutine call was interrupted.

Indicates that an invalid argument was received.

Indicates that an unrecoverable 1/0 error occurred on the requested data
transfer.

Indicates that an open was requested for an invalid channel.

Indicates that the driver could not allocate memory for use in the data
transfer.

Indicates that an operation was requested for an invalid minor device
number.

3-8 AIX Files Reference

3270cn

The read Subroutine in CUT Mode

The read subroutine places data received by the communication adapter in a buffer.

Note: To set the offset into the communication adapter's buffer from which to read, use the
EMSEEK ioctl operation.

Two ioctl commands control the way the read subroutine operates the EMNWAIT and
EMWAIT operations. The EMNWAIT operation indicates that subsequent read calls should
be satisfied immediately. The EMWAIT ioctl operation (the default) indicates that read calls
should be satisfied only after an interrupt from the control unit indicates that something has
changed on the display. The following are control unit interrupts:

Buffer Modification Complete
The read subroutine returns the number of bytes requested.

Load 1/0 Address Command Decoded
The read subroutine returns O (zero) for the number of bytes read.

Write Subroutine in CUT Mode

The write subroutine sends an inbound 3270 data stream to the host. The buffer specified
on a write subroutine must contain a complete inbound 3270 data stream. To set the offset
into the communication adapter's buffer to begin to write, use the EMSEEK ioctl operation.

The ioctl Subroutine in CUT Mode

The ioctl subroutine may be issued to the device handler in CUT mode. The following are
acceptable ioctl operations:

EM KEV

EMCPOS

EMXPOR

EMNWAIT

EMWAIT

EMVISND

EMIMASK

Sends a scancode to the emulation adapter. The scancode is logically
ORed with the EM KEY operation and the result is used_ as the command
field on the ioctl subroutine call.

Returns the position of the cursor relative to the start of the communication
adapter's buffer.

Disables the link address and then re-enables it to emulate a 3270 terminal
power""'."'on reset function.

Specifies that read subroutine calls should be satisfied immediately.

Specifies that read subroutine calls should be satisfied only after a change
to the emulation buffer or the cursor position (this is the default setting).

Returns the current contents of the emulation Visual/Sound register in the
integer field. The address of this field is specified as the argument to the
EMVISND operation.

Provides a mask to specify which interrupts appear. The argument field
specifies the address of the mask. The low-order bits of the mask (0-7)
correspond to bits O - 7 of the Interrupt Status register. Bits 8 - 15 of the
mask correspond to bits O - 7 of the Visual/Sound register.

Chapter 3. Special Files 3-9

3270cn

This operation allows the driver to ignore visual or sound interrupts except for those bits
specifically masked ON. When a bit is on, the interrupt that corresponds to that bit position
appears. Interrupts that correspond to off (0) bit positions in the mask are discarded by the
device handler. The previous mask setting is returned to the caller in the mask field. The
interrupt status bits and the visual or sound bits are documented in the IBM 3270
Connection Technical Reference.

IOCINFO

EMS EEK

Returns a structure of device information, as defined in the devinfo.h file, to
the user-specified area. The devtype field is DD_EM78, as defined in the
<sys/devinfo.h> file, and the flags field is O (zero).

Sets the offset into the communication adapter's buffer to begin a read
operation or write operation.

Error Conditions in CUT Mode

The following error conditions may be returned when accessing the device handler through
the dev/3270cn special file:

EBUSY

EFAULT

An open was requested for a channel that is already open. The keystroke
buffer is full.

A buffer specified by the caller is invalid.

EINTR A subroutine call was interrupted.

EINVAL An invalid argument was specified on an ioctl request.

EL3RST A reset command was received by the communications adapter.

ENOCONNECTThe connection to the control unit went down while a read operation for

EIO

ENXIO

which the EMWAIT ioctl operation had been specified was waiting.

An unrecoverable 1/0 error occurred on the requested data transfer.

An operation was requested for an invalid minor device number.

Implementation Specifics
This special file requires the IBM 3270 Connection Adapter.

Files
/usr/include/sys/io3270.h Defines structures used by the device handler.

usr/include/sys/devinfo.h Defines device information structures.

/dev /3270c0/* .. ./dev /3270c7 /*

Related Information
The close subroutine, poll subroutine, open subroutine, read subroutine, write subroutine.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special Files in Kernel Extensions and Device Support
Programming Concepts.

Understanding Major and Minor Numbers For A Special File in Kernel Extensions and
Device Support Programming Concepts.

3-10 AIX Files Reference

bus

bus Special File

Purpose
Provides access to the hardware bus by way of the machine 1/0 device driver.

Description
The bus special file consists of a pseudo-driver in the kernel that allows a privileged user to
access the.hardware 1/0 bus. This is done indirectly by use of the ioctl subroutine. The
calling process must have the appropriate system privilege to open the bus special file.

This capability should be used only by device initialization and configuration programs.
Programs that depend upon the bus device interface may not be portable to machines with
different hardware.

Implementation Specifics

File

For additional information concerning the use of the /dev/bus special file, refer to the
Machine Device Driver documentation in the Device Configuration Subsystem: Programming
Introduction.

/dev/buso

Related Information
The ioctl subroutine.

The Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

The Special Files Overview, which presents general information about spec ial files.

Understanding 1/0 Access Through Special Files in Kernel Extensions and Device Support
Programming Concepts.

Understanding Device Driver Classes in Kernel Extensions and Device Support
Programming Concepts.

Understanding Character 1/0 Device Drivers in Kernel Extensions and Device Support
Programming Concepts.

Understanding Pseudo-Device Drivers in Kernel Extensions and Device Support
Programming Concepts.

Chapter 3. Special Files 3-11

cd

cd Special File

Purpose
Provides access to the cdrom device driver.

Description
The cdrom special file provides block and character (raw) access to disks in the cdrom
drives. Compact disks are read-only media that provide storage for large amounts of data.
Block access to compact disks is achieved through the special files /dev/cdO, Character
access is provided through the special files /dev/rcdO,

The prefix of r on a special file name means that the drive is accessed as a raw device
rather than a block device. Performing raw 1/0 with a compact disk requires that all data
transfers be in multiples of the compact disk logical block length. Also, all lseek subroutines
that are made to the raw cdrom device driver must set the file offset pointer to a value that
is a multiple of the specified logical block size.

Device-Dependent Subroutines
Most cdrom operations ~re implemented using the open, read, and close subroutines.
However, for some purposes, use of the openx (extended) subroutine is required.

The open and close Subroutines

The openx subroutine is supported to provide additional functions to the open sequence.
The openx operation requires appropriate authority to execute. Attempting to execute this
subroutine without the proper authority results in a return value of-1 with the errno global
variable set to the EPERM value.

The ioctl Subroutine

One ioctl operation is defined for all device drivers that use the ioctl subroutine. This is the
IOCINFO operation. The remaining ioctl operations are all physical volume device-specific
operations. Diagnostic mode is not required for the following operation.

The IOCINFO ioctl operation

The IOCINFO ioctl operation returns a devinfo structure,which is defined in the
<sys/devinfo.h> header file.

Error Conditions

In addition to those errors listed for the ioctl, open, read, and write subroutines, the
following other error types are possible:

EACCES

EACCES

EFAULT

EBUSV

EINVAL

EINVAL

3-12 AIX Files Reference

A subroutine other than ioctl or close was attempted while in diagnostic
mode.

A normal read call was attempted while in diagnostic mode.

Illegal user address.

The target device is reserved by another initiator.

The device has been opened with a mode other than read-only.

An nbyte parameter to a read subroutine is not an even multiple of the
blocksize.

EINVAL

EINVAL

EINVAL

EINVAL

EM FILE

ENOTREADY

ENODEV

ENODEV

EMEDIA

EIO

EIO

EPERM

ESTA LE

ETIMEDOUT

cd

A sense-data buffer length greater than 255 is invalid for a CDIOCMD Ioctl
operation.

A data buffer length greater than SC_MAXREQUEST is invalid for a
CDIOCMD ioctl operation.

An attempt has been made to configure a device that is still open.

An illegal configuration command has been given.

An open operation has been attempted for a SCSI adapter which already
has the maximum permissible number of open devices.

There is no compact disk in the drive.

An attempt has been made to access a device that is not defined.

An attempt has been made to close a device that has not been defined.

The media has been changed.

Hardware error or aborted command or illegal request.

An attempt has been made to read beyond the end of media.

This subroutine requires appropriate authority.

A cdrom disk has been ejected (without first being closed by the user) and
then either re-inserted or replaced with a second disk.

An 1/0 operation has exceeded the given timer value.

Implementation Specifics
The SCSI cdrom Device Driver provides more information about implementation specifics.

The cd special file is part of AIX Base Operating System (BOS) Runtime.

Files
/dev/cdO, .. .

/dev/rcdO, .. .

Related Information
The SCSI cdrom device driver.

The open subroutine, close subroutine, read subroutine, write subroutine, lseek
subroutine, ioctl subroutine.

SCSI Subsystem Programming Introduction in Kernel Extensions and Device Support
Programming Concepts.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special Files in Kernel Extensions and Device Support
Programming Concepts.

Understanding Block 1/0 Device Drivers, Providing Raw 1/0 Access in a Block Device Driver
in Kernel Extensions and Device Support Programming Concepts.

Chapter 3. Special Files 3-13

console

console Special File

Purpose
Provides access to the system console.

Description
The /dev/console special file provides access to the device or file designated as the system
console. This file can be designated as the console device by the person administering the
system or a user with appropriate privilege. The console character special file provides
access to the console device driver. The console device driver in turn directs input and
output to the device or file selected as the system console.

The system console provides two functions in the AIX operating system. It is typically a
terminal or display located near the system unit and provides access to the system when it is
operating in a non-multi-user mode. (This would be the case for maintenance and diagnostic
purposes.) A console login is also normally provided on this device for all operating system
run levels.

The second function of the system console is to display messages for system errors and
other problems requiring intervention. These messages are generated by the operating
system and its various subsystems when booting or operating. The system console can also
be redirected to a file or to the /dev/null special file for systems operating without a console
device.

Console Configuration Support
The console driver configuration support allows the system console to be assigned or
reassigned to a specified device or file. The console configuration support also provides
query functions to determine the current and configured path names for the device or file
designated as the console. This configuration support is used by the swcons, chcons, and
lscons high-level system management commands. It is also used by the console
configuration method at system boot time._

The swcons (switch console) command can be used during system operation to switch the
system console output to a different target temporarily. This command switches only system
information, error, and intervention-required messages to the specified destination. The
swcons command does not affect the operation of the system console device providing a
login through the getty command. The device or file specified when using the swcons
command remains the target for console output until one of the following happens:

• Another swcons command is issued.

• The system is rebooted.

• The console driver detects an error when accessing the designated device or file.

If an open or write error is detected on the device or file specified by the swcons command,
the console device driver switches all output back to the device or file providing console
support when the system booted.

The chcons (change console) command can be used to switch the system console output
to a different device or file for the next reboot. This command does not affect the current
console selection, but becomes effective when the system is re-booted.

3-14 AIX Files Reference

console

When requested to activate a login on the console device, the getty program (which
provides login support) uses the console configuration support to determine the path name
of the targeted console device used at boot time. This ensures that the swcons command
does not effect the console device being used for login.

Usage Considerations
The open, close, read, write, ioctl, select and poll subroutines are supported by the
console device driver and may be used with the /dev/console special file. These
subroutines are redirected to the device or file serving as the current system console device
by the console device driver.

The open and close Subroutines

When an open subroutine call is issued to the console device driver, it is redirected to the
device or file currently chosen as the console device. If the system console choice is a file,
the file is opened with the append and create options when the first open of the dev/console
file is received. Subsequent opens have no effect when the console selection is a file.
However, they are passed on to the device driver supporting the device chosen as the
console.

If the console selection has been temporarily switched using the swcons command and the
first open of the new underlying device fails, the console device driver switches back to the
console device or file with which the system was booted. This prevents important system
messages from being lost.

If an ext parameter is passed using the openx subroutine, it is either passed to the device
driver supporting the console target, or is ignored. (The latter is true if the console selection
is a file.)

The close subroutine support is standard.

The select, poll, and ioctl Subroutines

The select, poll and ioctl subroutines are redirected to the current system console device
when the console selection is not a file. If the selected console device is a file, the console
device driver returns an error indicating that the subroutine is not supported.

If an ext parameter is passed to the ioctlx subroutine, it is then passed to the device driver
supporting the console target, or else ignored. (The latter is true if the console selection is a
file.)

The read and write Subroutines

Write subroutine calls are redirected to the current console device or file. If the console
selection has been temporarily switched using the swcons command, and the write to the
targeted device or file fails, the console device driver switches back to the console device or
file with which the system was booted and retries the write. This prevents important system
messages from being lost in case the temporary console target is unavailable or fails. The
console device driver stays switched to the device the system was booted with until another
swcons command is issued.

The read subroutine calls are redirected to the current console selection if it is a device. If
the current console selection is a file, the read is rejected with an error (EACCES).

If an ext parameter is passed to the readx or writex subroutine, it is passed to the device
driver supporting the console target, or is ignored. (The latter is true if the console selection
is a file.)

Chapter 3. Special Files 3-15

console

Implementation Specifics
The console special file is part of AIX Base Operating System (BOS) Runtime.

Files
/dev/console

/dev/null

Related Information
The swcons command, chcons command, lscons command, getty command.

The open subroutine, close subroutine, read subroutine, write subroutine, lseek
subroutine, ioctl subroutine, select subroutine, poll subroutine.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special Files, Understanding Character 1/0 Device

Drivers and Understanding Pseudo-Device Drivers in Kernel Extensions and Device Support
Programming Concepts.

3-16 AIX Files Reference

dump

dump Special Files

Purpose
Supports system dump.

Description
The /dev/sysdump and /dev/sysdumpctl special files support system dumping. Minor
device O of the sysdump driver provides the interfaces for the system dump routine to write
data to the dump device. The sysdump driver also provides interfaces for querying or
assigning the dump devices and initiating a dump.

Implementation Specifics
The dump special files are part of AIX Base Operating System (BOS) Runtime.

Files
/dev/sysdump The path to the sysdump special file.

/dev/sysdumpf The path to the sysdumpf special file.
/usr/include/sys/dump.h The path to the dump.h header file.

Related Information
The dmp_add kernel service, dmp_del kernel service.

The Special Files Overview, which presents general information about special files.

RAS Kernel Services, Understanding 1/0 Access Through Special Files, Understanding

Major and Minor Numbers, Understanding Device Driver Classes, and Understanding
Pseudo-Device Drivers in Kernel Extensions and Device Support Programming Concepts.

Chapter 3. Special Files 3-17

entn

entn Special File

Purpose
Provides access to Ethernet High-Performance LAN adapters by way of the RISC
System/6000 Ethernet device handler.

Description
The /dev/entn character special file provides access to the Ethernet device handler for the
purpose of providing access to an ethernet Local Area Network. The device handler
supports up to four adapters, each of which can be running either or both the standard
ethernet or IEEE 802.3 protocols.

Usage Considerations
When accessing the Ethernet device handler, the following should be taken into account:

• Driver Initialization and Termination

The device handler may be loaded and unloaded. The handler supports the configuration
calls to initialize and terminate itself.

• Special File Support

Calls other than the open and close subroutine calls are discussed based on the mode in
which the device handler is operating.

Subroutine Support
The Ethernet device handler supports the open, close, read, write, and ioctl subroutines in
the following manner:

• The open and close subroutines

The device handler supports the /dev/entn special file as a character-multiplex special
file. The special file must be opened for both reading and writing (O_RDWR). There are
no particular considerations for closing the special file. The special file name used in an
open call differs depending upon how the device is to be opened. Types of special file
names are:

/dev/entn An open subroutine call to this device is used to start the device handler
for the selected port, where the value of n is 0 <= n <= 7.

/dev/entn/D An open subroutine call to this device is used to start the device handler
for the selected port in diagnostic mode, where the value of n is 0 <= n
<= 7.

• The read subroutine

Can take the form of a read, readx, readv, or readvx subroutine. For this call, the device
handler copies the data into the buffer specified by the caller.

• The write subroutine

Can take the form of a write, writex, writev, or writevx subroutine. For this call, the
device handler copies the user data into a buffer and transmits the data on the LAN.

3-18 AIX Files Reference

entn

• The ioctl subroutine

The Ethernet device handler supports the following ioctl operations:

CIO_START

IOCINFO

CIO_HALT

CIO_QUERV

Starts a session and registers a network ID.

Returns a device information structure to the user specified area.
The devtype field is DD_NET_DH and the devsubtype field is
DD_EN, as defined in the <sys/devinfo.h> file.

Halts a session and unregisters a network ID.

Returns the current RAS counter values, as defined in the
<sys/comio.h> and <Sys/entuser.h> files.

CIO_GET_STAT

CIO_GET_VPD

ENT_SET_MULTI

Returns current adapter and device handler status.

Returns adapter vital product data if available and valid.

Sets or clears a multicast address.

Error Conditions
The following error conditions may be returned when accessing the device handler through
the dev/entn special file:

EACCES Indicates that permission to access the port is denied for one of the
following reasons:

• The device has not been i'nitialized.

• The request to open the device in Diagnostic mode is denied.

• The call is from a kernel mode process.

EAFNOSUPPORT

EA GAIN

EBUSV

EE XI ST

EFAULT

EINTR

EINVAL

EIO

ENOBUFS

Indicates that the address family is not supported by the protocol or that the
multicast bit in address is not set.

Indicates that the transmit Queue is full.

Indicates that the request is denied because the device is already opened in
Diagnostic mode or the maximum number of opens was reached.

Indicates that the define device structure (DDS) already exists.

Indicates that an invalid address or parameter was specified.

Indicates that a subroutine call was interrupted.

Indicates that an invalid range, operation code was specified or that the
device is not in Diagnostic mode.

Indicates that an 1/0 error occurred.

Indicates that no buffers are available.

ENOCONNECT Indicates that a connection was not established.

ENODEV

ENOENT

ENOMEM

ENO MSG

ENOS PC

Indicates that the device does not exist.

Indicates that there is no DDS to delete.

Indicates that the device does not have enough memory.

Indicates that no message of desired type was available.

Indicates that there is no space left on device (the Multicast table is full).

Chapter 3. Special Files 3-19

entn

ENOTREADY Indicates that the device is not ready, a CIO_START operation was not
issued, or was issued and did not complete.

ENXIO

EU NATCH

Indicates that the device does not exist or that the maximum number of
adapters was exceeded.

Indicates that the protocol driver is not attached.

Implementation Specifics
This file functions with the Ethernet device handler.

File
/usr/include/sys/devino.h Contains device types and information.

Related Information
The open subroutine, close subroutine, read or readx subroutine, write or writex
subroutine.

The Special Files Overview, which presents general information about special files.

Ethernet Device Handler Overview in Communication Concepts and Procedures.

Understanding 1/0 Access to Special Files, Understanding Major and Minor Numbers For A
Special File, Understanding Raw 1/0 Access to Block Special Files in Kernel Extensions and
Device Support Programming Concepts.

3-20 AIX Files Reference

error

error Special File

Purpose
Supports error logging.

Description
The error and errorctl special files support logging of error events. Minor device 0 of the
error special file is the interface between processes that log error events and the error
daemon. Error records are written to the error special file by the errlog library routine and
the errsave kernel service. The error special file timestamps each error record entry.

The error daemon opens error file for reading. Each read retrieves an entire error record.
The format of error records is described in the erec.h header file.

Each time an error is logged, the error ID, the resource name, and the timestamp are
recorded in nonvolatile random access memory (NVRAM) so that in the event of a system
crash, the last error logged is not lost. When the error file is restarted, the last error entry is
retrieved from NVRAM.

The standard device driver interfaces (open, close, read, and write) are provided for the
error file. The error file has no ioctl functions.

Implementation Specifics

Files

This file is part of AIX Base Operating System (BOS) Runtime.

/dev/error The path to the error special file.
/dev/errorctl The path to the errorctl special file.
/usr/include/sys/err.h

The path to the err.h header file.
/usr/include/sys/erec.h

The path to the erec.h header file, which describes the format of error
records.

Related Information
The errclear command, errdead command, errdemon command, errinstall command,
errlogger command, errmsg command, errpt command, errstop command, errupdate
command.

The errsave kernel service.

The errlog subroutine.

The Special Files Overview, which presents general information about special files.

The discussion of RAS Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Chapter 3. Special Files 3-21

f d

fd Special File

Purpose
Provides access to the diskette device driver.

Description
The fd special file provides block and character (raw) access to diskettes in the diskette
drives. The special file name can specify both the drive number and the format of the
diskette. The exceptions are /dev/fdO and /dev/fd1, which specify diskette drives 0 and 1,
respectively, without specifying their formats.

The generic special files /dev/rfdO and /dev/rfd1 determine the diskette type automatically
for both drive O and drive 1 . First, the device driver attempts to read the diskette using the
characteristics of the default diskette for the drive type. If this fails, the device driver
changes its characteristics and attempts to read either until it has read the diskette
successfully or until it has tried all the possibilities supported for the drive type by the device
driver.

A prefix of r on a special file name means that the drive is accessed as a raw device rather
than a block device. Performing raw 110 with a diskette requires that all data transfers be in
multiples of the diskette sector length. Also, all lseek subroutine calls made to the raw
diskette device driver must result in a file offset value that is a multiple of the sector size. For
the diskette types supported, the sector length is always 512 bytes.

Note: The diskette device driver does not perform read verification of data that is written to
a diskette.

Types of Diskettes Supported.
The 1.2 M-byte, 5.25-inch diskette drive and the 1.44 M-byte, 3.5-inch diskette drive are both
supported. All fd special file names (except the generic special files /dev/rfdO and
/dev/rfd1) contain suffixes that dictate how a diskette is to be treated. These special file
names have a format of PrefixXY, where Prefix, X and Y have the following meanings:

Prefix

x

y

Special file type. Possible values are fd and rfd, where the r indicates raw
access to the special file.

Drive number indicator. Possible values of O and 1 indicate drives 0 and 1,
respectively.

Diskette format indicator. Possible values depend on the type of diskette
being used. Either a single character or a decimal point with following
characters are allowed. Possible values are h (high-density 3.5-inch drive), I
(low-density 3.5-inch drive), .15 (15 sectors per track on a 5.25-inch drive)
and .9 (9 sectors per track on a 5.25-inch drive).

3.5-lnch Diskette Special Files

3-22 AIX Files Reference

Eight different special files are available for use with the 3.5-inch diskette
drive only. The default diskette type assumed for a 1.44 M-byte drive is a
double-sided, 80-cylinder, 18 sectors-per-track diskette.

Anh as the suffix of the special file name (for example, /dev/rfdOh) forces a
diskette to be treated as a double-sided, 80-cylinder, 18 sectors-per-track
diskette. An I as the suffix of the special file name (for example, /dev/rfd1 I)

forces a diskette to be treated as a double-sided, BO-cylinder, 9
sectors-per-track diskette.

f d

5.25 Inch Diskette Special Files

Usage Considerations

Eight different special files are available for use with the 5.25-inch diskette
drive only. The default diskette type assumed for a diskette in a 1.2 M-byte
drive is a double-sided, BO-cylinder, 15 sectors-per-track diskette.

A .15 as the suffix of the special file name (for example, /dev/rfd0.15) forces
a diskette to be treated as a double-sided, SO-cylinder, 15 sectors-per-track
diskette. A .9 as the suffix of the special file name (eg, /dev/rfd0.9) forces a
diskette to be treated as a double-sided, 40-cylinder, 9 sectors-per-track
diskette.

The open and close Subroutines

Only one process at time can issue an open subroutine call to gain access to a particular
drive. However, all children created by a process that successfully opens a diskette drive
will inherit the open diskette drive.

The read and write Subroutines

No special considerations.

The ioctl Subroutine

The possible ioctl operations and their descriptions are:

IOCINFO Returns a devinfo structure (defined in the <sys/devinfo.h> header file)
that describes the device.

FDIOCSINFO Sets the device driver diskette characteristics to the values passed in the
fdinfo structure, as defined in the <sys/fd.h> header file.

FDIOCSINFO Gets the device driver diskette characteristics and returns the values in the
fdinfo structure, as defined in the <sys/fd.h> header file.

FDIOCFORMAT
Formats a diskette track. The diskette is formatted using data passed in an
array of bytes. The length of this array is 4 times the number of sectors per
track on the diskette. The reason for this is that 4 bytes of data must be
passed in for every sector on the track. The 4 bytes contain, in this order,
the cylinder number, the side number (0 or 1), the sector number, and the
number of bytes per sector. This pattern must be repeated for every sector
on the track.

The diskette characteristics used during formatting are whatever values are
in the device driver when it receives the fo.rmat command. These
characteristics need to be set to the desired values prior to issuing the
format command. This can be accomplished in three different ways:

• Open the diskette driver using one of the format-specific special files. As
a result, the diskette characteristics for the driver will be those of the
diskette indicated by the special file.

Chapter 3. Special Files 3-23

ta

• Open the diskette driver using one of the generic special files. In this
case, the diskette characteristics will be the default characteristics for that
driver.

• Set the characteristics explicitly using the FDIOCSINFO ioctl operation.

For formatting, the diskette driver should be opened with the O_NDELAY
flag set. Otherwise, the driver will attefl'lpt to determ;ne the type of diskette
in the drive, causing the open to fail.

Implementation Specifics

Files

The fd special file is part of AIX Base Operating System (BOS) Runtime.

/dev/fdO, /dev/fd1, /dev/rfdO, /dev/rfd1

/dev/fdOh, /dev/fdOI, /dev/fd0.9, /dev/fd0.15
/dev/fd1 h, /dev/fd1 I, /dev/fd1 .9, /dev/fd1 .15
/dev/rfdOh, /dev/rfdOI, /dev/rfd0.9, /dev/rfd0.15
/dev/rfd1 h, /dev/rfd1 I, /dev/rfd1 .9, /dev/rfd1 .15

Related Information
The open subroutine, close subroutine, read subroutine, write subroutine, lseek
subroutine, ioctl subroutine. ·

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special Files, Understanding Device Driver Classes,
Understanding Block 1/0 Device Drivers, Understanding Character 1/0 Device Drivers, and
Providing Raw 1/0 Support in Kernel Extensions and Device Support Programming
Concepts.

3-24 AIX Files Reference

hft Special File

Purpose
Implements a high function terminal (HFT) device.

Description

hft

The hft device driver file is the application interface to the HFT subsystem (HFTSS). The
HFT device driver supports the concept of a virtual terminal. Virtual terminals are logically
independent of each other but share physical resources over time. The virtual terminal that
can accept physical input at a given time is called the active virtual terminal. The virtual
terminal concept supports the illusion that more devices exist than are physically present
and that these devices have characteristics and features not necessarily limited by the actual
devices.

The physical components that virtual terminals support include display devices, keyboards,
locators, valuators, lighted programmable function keys (LPFKs), and sound generators. The
HFT device driver is a collection of terminal-related device drivers that service the various
physical components of a terminal device. Thus the HFT device driver, as a virtual terminal
driver, provides a unified interface for accessing the separate components of a virtual
terminal.

The hft file is the kernel-level support for virtual terminals. Because the association of virtual
terminals to physical terminals is dynamic, this special file, which represents the physical
terminal, is multiplexed across virtual terminals by expanding the open, close, read, write,
and ioctl subroutines to the HFT driver. A number of ioctl functions are provided to allow
access to the many H FT operations.

HFT Physical and Virtual Terminals
A work station can have several virtual terminals open at the same time. Each of these
virtual terminals is logically independent of all other virtual terminals but shares the same set
of physical resources.

The HFTSS supports as many as 32 virtual terminals at one time. The virtual terminals can
be opened from as many as 4 physical terminals. In a non-windowing environment, only one
virtual terminal is visible on the screen at any time. While only one virtual terminal can
accept input at any given time (the active virtual terminal), as many as 4 virtual terminals,
each on a separate physical display device, can process output concurrently.

Each time the hft special file is opened, a new HFT virtual terminal is created and opened.
To reopen an existing virtual terminal, open the /dev/hft/n special file, where n represents
the number of an open driver channel. The channel number can be determined with the
HFGETID ioctl operation.

HFT Initial State
The HFT supplies default values for the following virtual terminal facilities:

• Keyboard-to-character mapping, which provides a mechanism that takes input from the
keyboard device driver and translates it to a displayable or ASCII control character.

• Character-to-display mapping, which provides the default font used to echo characters to
the screen.

• Echo-break specification, which provides the default map used by the display device to
echo characters to the screen and to break if there are none.

Chapter 3. Special Files 3-25

hft

• Tab rack, which provides default tabs at the first, last, and every eighth position in the
presentation space.

• Protocol mode flags, which translate all keyboard input without sending it to the operating
system.

These default values are used until a redefinition is received from the application.

HFT Virtual Terminal Modes
The virtual terminal provides a model of a single terminal that can be in either the keyboard
send-receive (KSR) mode or the monitor mode (MOM). The KSR mode emulates an ASCII
terminal using an ASCII data stream. The monitor mode allows applications to have a direct
output path to the display hardware and a shortened path for input. The form of the data
accepted in each mode is unique to that mode. This optimizes the movement of data
between the virtual terminal and the application program and supports the different functions
within each mode. The default mode is KSR, which supports existing applications that
expect an ASCII terminal.

HFT Operations
The hft.h header file contains the structure definitions for an HFT device. The file structures
in the hft.h file pertain to the following specific HFT operations:

• query ioctl operations

• special ioctl operations

• read operations

• write operations

• keyboard send-receive mode (KSR) operations

• monitor mode (MOM) operations.

The /usr/lib/samples/hft directory contains sample programs that use the HFT virtual
terminal subsystem.

For general information about special files; refer to the Special Files Overview. For genereral
information about the HFT subsystem, refer to the HFT Subsystem Conceptual Introduction
and related articles in Communication Concepts and Procedures.

HFT Query ioctl Operations
Several structures in the hft.h header file support ioctl operations, which provide access to
sophisticated features of the high function terminal (HFT) subsystem.

The following query ioctl operations are supported to request information about the HFT
subsystem:

• Get virtual terminal ID

• Query 110 Error

• Query device

• Query

• Query screen manager.

Several other specialized ioctl operations are also available. These are discussed in HFT
Special ioctl Operations.

3-26 AIX Files Reference

hft

Get Virtual Terminal ID (HFTGETID)
The HFTGETID operation gets identification information for the current HFT virtual terminal.
The hftgetid structure contains the following fields:

hf_dev The major and minor device number of the HFT subsystem.

hf_pgrp The process group ID of the terminal group leader.

hf_chan The channel number.

Query 1/0 Error (HFQERROR)
The HFQERROR operation returns detailed device error code information. If an 1/0
operation or other subroutine to the HFT is unsuccessful due to an HFT subsystem error, a
nonzero value is returned and the errno variable is set to EIO. The calling program can get
a more detailed device error code by using the ioctl subroutine to issue an HFQERROR
operation, as follows:

int ioctl (FileDescriptor,HFQERROR, Argument)
int FileDescriptor;
int *Argument

The argument from the HFQERROR ioctl operation is either a value of O (indicating that the
last 1/0 operation was successful) or the error code for the last HFT 1/0 operation.

Query Device (HFTQDEV)
The HFTQDEV operation obtains information about the devices associated with the HFT
subsystem and stores the information in an hftqdresp structure. The hftqdresp structure
contains the following fields:

hf_vtid

hf_dev

hf_numdisp

hf_kbddev

hf _mousedev

hf_snddev

hf _tabletdev

hf _dialsdev

hf_lpfkdev

hf _dispdev[t]

hf_defdisp

Virtual terminal ID number.

Major and minor number of the HFT device driver.

Number of display devices actually installed.

Major and minor number of the keyboard device driver.

Major and minor number of the mouse device driver.

Major and minor number of the sound device driver.

Major and minor number of the tablet device driver.

Major and minor number of the dials device driver.

Major and minor number of the lighted programmable function
keys (LPFKs) device driver.

Major and minor number of the display monitors attached to
the HFT subsystem.

Major and minor number of the default display monitor.

Chapter 3. ·special Files 3-27

hft

Query (HFQUERY)
The HFQUERY operation gets information about the current virtual terminal. The hf_cmd
and hf _cmdlen fields in the hfquery structure describe a buffer containing the command.
The hf _resp and hf_resplen fields describe a buffer large enough to hold the expected
response.

Structures for each the following query commands are defined in the hft.h header file.

• Query Physical Display IDs

• Query Physical Device

• Query Mouse, Query Tablet

• Query LPFKs

• Query Dials

• Query Presentation Space

• Query Software Keyboards

• Query HFT Device

• Query Keyboard Status

• Query Retract Device ID.

Query Physical Display IDs Command

The Query Physical Display IDs command returns the number of display devices and the ID
of each display device attached to the system. The command uses the hfqdevidc structure,
which contains the following fields and values:

hf_intro.hf_typehi

hf_intro. hf_typelo

HFQDEVIDCH.

HFQDEVIDCL.

The returned information is in the form of an hfqdevidr structure, which contains the
following fields and values:

hf _intro. hf _type hi

hf _intro .hf _typelo

hf_numdev

HFQDEVIDRH.

HFQDEVIDRL.

The number of display devices for which data is reported.

The following two fields are repeated for each display device:

hf_devid

3-28 AIX Files Reference

Physical device ID. The following values are possible:

Ox0421 mmnn IBM Color Graphics Display Adapter

Ox0422mmnn IBM Grayscale Graphics Display Adapter

Ox0425mmnn

Ox0429mmnn

IBM High Performance 3D Color Graphics
Processor

IBM High Speed 30 Graphics Accelerator

hf_ctass

hft

mm indicates the state of the adapter: OxOO indicates that the
adapter is totally functional; other values indicate that the adapter is
present but not totally functional.

nn differentiates between multiple instances of the same adapter
type (OxOO to Ox03).

Display class (Ox44).

Query Physical Device Command

This command returns information about display and locator devices. The hfqphdevc
structure, which is used to issue this command, contains the following fields and values:

hf_intro.hf_typehi

hf_intro.hf_typelo

hf_phdevid

HFQPDEVCH.

HFQPDEVCL.

Physical display ID that is queried and returned as the hf_devid field
in the Query Physical Display IDs command response. Any display
device ID can be queried, or this field can be set to a value of 0 to
query the display device to which the currently active terminal is
attached.

the display and locator device information that this command returns fills the response
buffer in the form of an hfqphdevr structure. The fields and values of the hfqphdevr
structure are described in the following paragraphs.

Physical Device Information VTD Header:

hf_intro.hf_typehi

hf_intro.hf_typelo

HFQPDEVRH.

HFQPDEVRL.

Physical Locator Information:

hf _scale[O]

hf_scale[1]

hf _locattr[1]

The mouse scale factor (millimeters per 100 counts):

HFMSCALE1

HFMSCALE2

Scaling for mouse is 1 :1.

Scaling for mouse is 2:1.

The tablet conversion:

HFTCONVE

HFTCONVM

English units.

Metric units.

Locator attributes. Indicates the presence of a mouse or tablet:

HFLOCREL

HFLOCABS

If set, indicates that a mouse is attached.

If set, indicates that a tablet is attached.

Physical Display Device Information:

hf _attrib[O] Display device attributes:

HFISAPA

HFHASBLINK

All points addressable (APA) display device.

Blink function allowed.

All other values are reserved.

Chapter 3. Special Files 3-29

hft

hf_attrib[2]

hf _attrib[3]

hf_pwidth

hf_pheight

hf_mwidth

hf_mheight

hf_bperpel

hf_phdevid

Display device attributes:

HFHASCOLOR Color allowed.

All other values are reserved.

Display device attributes:

HFCHGPALET The display adapter color palette can be
changed.

All other values are reserved.

Displayable width of the physical screen, expressed in pels (pixels).

Displayable height of the physical screen, expressed in pels.

Displayable width in millimeters.

Displayable height in millimeters.

Bits per pel (1, 2, or 4).

Physical display ID.

Physical Display Font Information:

hf_numfont Number of fonts available to this display device.

The following fields are repeated for each available font:

hf_fontid

hf _fontname

hf_fontweight

hf _fontstyle

hf_fontencode

hf _fontwidth

hf_fontheight

Physical font ID.

Name of the font (usually a file name).

Weight of the font (such as bold, semibold, and book).

Physical font style (such as Roman and italics).

Code page this font renders (such as PC850).

Physical font width (the width of a character cell in pels).

Physical font height (the height of a character cell in pels).

Physical Display Color Information:

hf_numcolor

hf_numactive

hf_numfgrnd

hf_numbgrnd

hf_actcolor

Total number of colors possible.

Number of colors that can be active at any one time (16 maximum).

Number of foreground color options.

Number of background color options.

Active color value. The value of this field can be in the range from O
through hf_numactive - 1, and is repeated for each of the currently
active colors. Each occurrence contains a hardware-dependent
color specification.

3-30 AIX Files Reference

hft

Query Mouse Command, Query Tablet Command

This command returns device information about a mouse or tablet input device connected to
a virtual terminal. The hfqgraphdev structure, which consists of the following fields, is used
to issue this command.

hf _intro. hf _type hi

hf_intro.hf_typelo

HFQMOUSECH or HFQMTABLETCH.

HFQMOUSECL or HFQMTABLETCL.

This command fills the response buffer with information about the locator device in the form
of an hfqlocr structure. The hfqlocr structure contains the following fields and values:

hf_intro.hf_typehi

hf_intro.hf_typelo

hf_resolution

hf_devinfo[O]

hf_horzmax_cnt

hf_vertmax_cnt

hf _horzdead_zone

hf_ vertdead_zone

hf_sample_rate

hf_ origin

hf _scale [O]

hf_scale [1]

HFQMOUSERH or HFQMTABLETRH.

HFQMOUSERL or HFQMTABLETRL.

The resolution of the mouse or tablet. This is a 4-byte value
expressed as millimeters per 100 count.

Locator attributes:

HFLOCABS

HFLOCREL

HFLOCUNKNOWN

HFLOCSTYLUS

HFLOCPUCK

If set, these are the absolute coordinates
for a tablet.

If set, these are the relative coordinates
for a mouse.

This is an unknown tablet sensor type.

The tablet has a stylus sensor.

The tablet has a puck sensor.

The tablet horizontal maximum count (a 2-byte value).

The tablet vertical maximum count (a 2-byte value).

The tablet horizontal dead zone or horizontal threshold of the
mouse.

The tablet vertical dead zone or vertical threshold of the mouse.

The sample rate of the mouse or tablet.

The tablet origin, which can be the HFMIDDLE value (middle of
tablet), or the HFLOWERL value (lower left corner of tablet).

The mouse scaling factor, as follows:

HFMSCALE1

HFMSCALE2

Scaling for the mouse is 1 :1.

Scaling for the mouse is 2:1.

The tablet conversion, as follows:

HFTCONVE

HFTCONVM

English units.

Metric units.

Chapter 3. Special Files 3-31

hft

Query Lighted Programmable Function Keys (LPFKs) Command

This command returns device information about the LPFKs. The hfqgraphdev structure,
which contains the following fields and values, is used to issue this command.

hf_intro.hf_typehi

hf_intro. hf _typelo

HFQLPFKSCH.

HFQLPFKSCL.

This command fills the response buffer with LPFK information in the form of an hfdial_lpfk
structure. The hfdial_lpfk structure contains the following fields and values:

hf _intro.hf_typehi

hf_intro.hf _typelo

hf_data1 .hf_numlpfks

hf _data2 .lpfk. flags

Query Dials Command

HFQLPFKSRH.

HFQLPFKSRL.

Number of LPFKs on the device.

A set of 32 bits corresponding to each of the LPFKs. Bits that are
set to a value of 1 indicate enabled LPFKs; bits set to a value of
O indicate disabled LPFKs.

This command returns device information about the dials. The hfqgraphdev structure,
which contains the following fields and values, is used to issue this command.

hf_intro.hf_typehi

hf_intro. hf _type lo

HFQDIALSCH.

H FQDIALSCL.

This command fills the response buffer with dial information in the form of an hfdial_lpfk
structure and contains the following fields and values:

hf_intro.hf_typehi

hf_intro.hf_typelo

hf_data1 .hf_numdials

hf_data2.granularity

HFQDIALSRH.

HFQDIALSRL.

Number of dials on the device.

An array of sixteen 1-byte values giving the number of events per
full 360-degree revolution (the granularity) of each dial. The
values in the array (0 through 8) represent powers of 2 (O=off,
1 =2 events per 360-degree revolution, 2=4 events, 4=16 events,
and so forth).

Query Presentation Space Command

This command returns an ASCII data stream image of the current display screen. All or part
of the screen can be queried. Attribute and character set information on the queried block
are returned. This query is valid only in keyboard send-receive (KSR) mode.

The hfqpresc structure, which is used to issue this command, contains the following fields
and values:

hf_intro.hf _typehi

hf_intro. hf _typelo

HFQPRESCH.

HFQPRESCL.

3-32 AIX Files Reference

hf_xuleft

hf_yuleft

hf_xlright

hf_ylright

The upper-left x coordinate (first column of the block).

The upper-lefty coordinate (first row in the block).

The lower-right x coordinate (last column in the block).

The lower-right y coordinate (last row in the block).

hft

This command fills the response buffer with attribute and character set information in the
form of an hfqpresr structure. The hfqpresr structure contains the following fields and
values:

hf _intro.hf_typehi

hf_intro.hf_typelo

HFQPRESRH.

HFQPRESRL.

The data returned from this command is an ASCII data stream that contains character codes
from the queried block. Character set and attribute changes are indicated with Set Graphic
Rendition (SGR) and Set GO or G1 Character Set (SGO) control sequences. A linefeed
control is returned after the last character code in each line of the queried block

Note: The returned attributes might be only a subset of the original attributes that were
output to the display device. Only those attributes that are actually supported by the
physical device are returned. Possible attributes include boldface, underscored,
blinking, reverse image, or invisible characters. Font selection and foreground and
background color selection are also supported.

Query Software Keyboards Command

This command returns status information about the software keyboard maps that are loaded
in the HFT. The hfqswbc structure, which is used to issue this command, contains the
following fields and values:

hf_intro.hf_typehi

hf_intro.hf_typelo

HFQSWKBCH.

HFQSWKBCL.

This command fills the response buffer with information about the available software maps.
This information is in the form of an hfqswbr structure, which contains the following fields
and values:

hf_intro.hf_typehi

hf_intro.hf_typelo

hf_numkbds

HFQSWKBRH.

HFQSWKBRL.

The number of software keyboard maps loaded.

The following fields are repeated for each available software keyboard map:

hf_disp_set

hf_kbdname

hf_kbdid

The display symbol set of this software keyboard map (for
example, PC850).

A descriptive name for this software keyboard map.

The unique identifier of this software keyboard map.

Chapter 3. Special Files 3-33

hft

Query HFT Device Command

This command returns information about the HFT device. The hfqhftc structure, which is
used to issue this command, contains the following fields and values:

hf _intro. hf _type hi

hf_intro.hf_typelo

HFQHFTCH

HFQHFTCL.

This command fills the response buffer with HFT device information in the form of an hfqhftr
structure. The hfqhftr structure contains the following fields and values:

hf_intro. hf _typehi

hf_intro.hf_typelo

hf_phdevid

hf_phrow

hf_phcol

hf_phcolor

hf_phfont

hf_phkbdid

HFQHFTRH.

HFQHFTRL.

Physical display ID (the same as returned by the Query Physical
Display IDs command).

The number of character rows in the presentation space, based
on the current font.

The number of character columns in the presentation space,
based on the current font.

The number of different colors supported by the display device.

The number of fonts defined in the system.

Physical keyboard ID:

HF101KBD

HF102KBD

HF106KBD

101-key keyboard.

102-key keyboard.

1 06-key keyboard.

Query Keyboard Status Command

This command returns status information about the state of a keyboard. The hfqkbsc
structure, which contains the following fields and values, is used to issue this command.

hf_intro.hf_typehi

hf_intro.hf_typelo

HFQKBSCH.

HFQKBSCL.

This command fills the response buffer with keyboard status information in the form of an
hfqkbsr structure. The hfqkbsr structure contains the following fields and values:

hf _intro. hf _type hi

hf_intro. hf _typelo

hf_kbstat[3]

HFQKBSRH.

HFQKBSRL.

Defines the keyboard state:

HFALPHAKBD Keyboard is in alpha (roma-ji) state.

HFKATAKBD Keyboard is in katakana state.

HFHIRAKBD Keyboard is in hiragana state.

'3-34 AIX Files Reference

hft

Query Retract Device ID Command

This command returns the display device ID and virtual terminal ID of the virtual terminal
being retracted. The hfqretractc structure, which contains the following fields and values, is
used to issue this command.

hf_intro.hf_typehi

hf_intro.hf_typelo

HFQRETRACTCH.

HFQRETRACTCL.

This command fills the response buffer with the display device ID and virtual terminal ID of
the virtual terminal being retracted. The information is in the form of an hfqretractr structure,
which contains the following fields and values:

hf _intro. hf _typeh i

hf_intro.hf_typelo

hf_devid

hf_vtid

HFQRETRACTRH.

HFQRETRACTRL.

Physical display device.

Virtual terminal ID.

Query Screen Manager (HFTQSMGR)
The HFTQSMGR operation queries the screen manager ring for each virtual terminal,
returning the multiplex number (vtid) and state of each. The file descriptor can be associated
with any virtual terminal in the HFT subsystem. The hfbuf structure is used when issuing
this command. The hf_bufp field in the hfbuf structure points to an hftqstat structure, and
the hf_buflen field in the hfbuf structure indicates the length of the hftqstat structure. The
hftqstat structure contains the following fields and values:

hf_numvts Specifies the number of virtual terminals.

The following fields are repeated for each virtual terminal in the screen manager ring:

hf_vtid

hf_vtstate

Specifies the ID number of the virtual terminal.

Specifies the status of the virtual terminal:

HFVTHIDDEN

HFVTACTIVE

HFVTCOMMAND

HFVTTRUSTED

HFVTNOHOTKEY

Virtual terminal is hidden.

Virtual terminal is active.

Virtual terminal is the command terminal.

Virtual terminal is a trusted terminal.

Virtual terminal cannot be activated by a hot
key.

Also refer to the descriptions of the hft.h structures for special ioctl operations, read
operations, general write operations, KSR write operations, and MOM write operations.

Chapter 3. Special Files 3-35

hft

HFT Special ioctl Operations
Several structures in the hft.h header file support ioctl operations, which provide access to
sophisticated features of the high function terminal (HFT) subsystem.

The following special ioctl operations are supported to perform other specialized HFT
functions:

• Reconfigure

• Set echo and break maps

• Set keyboard map

• Enable or disable sound signal

• Enter or exit monitor mode

• Control screen manager

• Enable software keyboard

• Change locator.

Several query ioctl operations are also available. These are discussed in the following
section:

HFT Query ioctl Operations

Reconfigure {HFRCONF)
The HFRCONF operation allows a user program to reconfigure the HFT subsystem. The
command changes the configuration of the HFT subsystem defaults. The hfrconf structure
contains two fields: the hf_op field contains the requested operation, and the hf_obj field
identifies the object of the operation. The following list describes the valid operations for the
hf_op field. These reconfigure operations, with the exception of those followed by an *
(asterisk), take effect only for virtual terminals that are opened after the reconfiguration. The
operations followed by an asterisk take effect for the terminals that are currently open as
well as those opened after the reconfiguration.

HFTADDFONT

HFCHGKBDRATE*

HFCHGKBDDEL *

3-36 AIX Files Reference

Adds the font indicated in the hf_obj field. The hf_obj field
contains the font file descriptor from an open subroutine.

Changes the automatic repeat mode rate of the keyboard. The
hf_obj field indicates the rate at which the keyboard takes
input and sends it to the HFT. Valid automatic repeat mode
rate values are from 2 through 30 characters per second
(char/sec) and can be incremented in 1-char/sec units. The
default value is 11 char/sec.

Changes the automatic repeat mode delay of the keyboard.
The hf_obj field indicates how long a key must be pressed
before the keyboard goes into the automatic repeat mode.
Valid delay values are between 250 and 1000 milliseconds
(ms) and can be incremented in 250-ms units. The default
value is 500 ms.

HFCHGCLICK*

HFCHGVOLUME*

HFTECHOMAP

HFTBREAKMAP

HFTDEFAULT

HFSETDD

HFADDSWKBD

HFCHGSWKBD

hft

Turns the keyboard click mechanism on or off. The hf_obj field
indicates whether the keyboard produces a sound when a key
is pressed. Sound is suppressed when the value of the hf_obj
field equals HFCLICKOFF. Sound is produced when the value
of the hf_obj field equals HFCLICKON. The default value is
keyboard click off (HFCLICKOFF).

Sets the sound volume level. The hf_obj field indicates the
volume of sounds produced by the speaker. For the standard
speaker, valid values are O (sound off), 1 (low volume), 2
(medium volume), and 3 (high volume). The default value for
the speaker is 2.

Replaces the echo map. The hf_obj field contains the new
echo map file descriptor from an open subroutine.

Replaces the break map. The hf_obj field contains the new
break map file descriptor from an open subroutine.

Replaces miscellaneous default values. The hf_obj field
contains the new miscellaneous defaults file descriptor from
an open subroutine.

Changes the default display. The hf_obj field contains the
physical display identifier returned by an HFQUERY Physical
Display IDs ioctl operation.

Adds a new software keyboard map to the system. The hf_obj
field contains the new software keyboard map file descriptor
from an open subroutine.

Changes the default software keyboard map. The hf_obj field
contains the software keyboard map identifier returned by an
HFQUERY Software Keyboards ioctl operation.

Set Echo (HFTSECHO) and Break Maps (HFTSBREAK)
The echo_map and break_map structures are used for these operations. These structures
consist of 16 consecutive words of storage aligned on a word boundary. The words are
numbered from O through 15; word O consists of bits O through 31, word 1 consists of bits 32
through 63, and so forth. The hf _buflen field contains the length of the array in bytes.

Set Keyboard Map (HFSKBD)
The HFSKBD operation sets the keyboard map. Most keys on the keyboard can be
remapped, changing the character or control sequence that each key generates when it is
pressed. The hf_bufp field in the hfbuf structure points to a hfkeymap structure. The
hf_buflen field in the hfbuf structure contains the length of the hfkeymap structure. ·

The hfkeymap structure can remap one or more keys. The number of keys to remap is
specified in the hf_nkeys field. One hfkey structure for each key specified in the hf_nkeys
field follows. The HFNKEYS constant, which is used as the dimension for the hfkey array,
has a default value of 1, which allows one key to be remapped. To change the HFNKEYS
constant, set its value in a #define statement that comes before the #include <sys/hft.h>
statement.

Chapter 3. Special Files 3-37

'1ft

The hfkey structure contains information for each key being remapped, such as key
position, shift states, and the type of remapping being done. The fields in the hfkey structure
are:

hf_kpos

hf_kstate

The key position number.

This field is subdivided into three groups of bits:

HFMAPMASK

HFMAPCHAR

HFMAPNONSP

HFMAPFUNC

HFMAPSTR

HFSHFMASK

HFSHFNONE

HFSHFSHFT

HFSHFCTRL

HFSHFALT

HFSHFALTGR

HFCAPSL

Defines the bits that specify the type of
mapping to be performed:

Specifies mapping a single character to a key.

Specifies mapping a non-spacing character to
a key.

Specifies mapping a function ID to a key.

Specifies mapping a string of more than one
character to a key.

Defines the bits that specify the Shift state that
applies to the key being mapped:

Specifies the base state (no Shift state).

Specifies the Shift state.

Specifies the Ctrl state.

Specifies the Alt state. (Use the left Alt key.)

Specifies the Alt Gr (Alternate Graphics) state.
(Use the right Alt key.)

Specifies whether the Caps Lock state affects
the key. If set, when Caps Lock mode is on,
the base state of a key functions as the Shift
state, and the Shift state functions as the base
state.

The hfkeyasgn structure specifies the key to be remapped and the character codes
generated when the key is pressed or released. The fields of this structure differ depending
on the value of the HFMAPMASK bits in the hf_kstate field of the hfkey structure:

HFMAPCHARand~FMAPNONSP

hf_char

HFMAPSTR

hf_kstrl

Specifies a character.

Specifies the length of a string in bytes minus 1. This is immediately
followed by the string.

Note: When using an hfkeymap structure, only the last key specified in the hfkey array can
be assigned a string value. However, the HFT subsystem allows any number of keys
to be assigned string values.

3-38 AIX Files Reference

HFMAPFUNC

hf_keyidh

hf_keyidl

Specifies the high-order byte of the function ID.

Specifies the low-order byte of the function ID.

hft

The function IDs that can be assigned for the keys are:

ID Name Description

OxOOOO- PFK Issues the program function (PF) key sequence for PF key 1

OxOOFE (ID = OxOOOO) through 255 (ID = OxOOFE).

Ox0101 cuu Moves the application cursor up one line.

Ox0102 CUD Moves the application cursor down one line.

Ox0103 CUF Moves the application cursor forward one character.

Ox0104 CUB Moves the application cursor backward one character.

Ox0105 CBT Moves the application cursor to the previous horizontal tab stop or to
the beginning of the field.

Ox0106 CHT Moves the application cursor to the next horizontal tab stop.

Ox0107 CVT Moves the application cursor down one vertical tab stop.

Ox0108 CUP Moves the application cursor to the first line, first character in the
presentation space.

Ox0109 LL Moves the application cursor to the last line, first character in the
presentation space.

Ox010A END Moves the application cursor to the last line, last character in the
presentation space.

Ox010B CPL Moves the application cursor to the first character of the previous line.

Ox010C CNL Moves the application cursor to the first character of the next line.

Ox0151 OCH Deletes the character over the application cursor.

Ox0152 IL Inserts one line following the line of the application cursor.

Ox0153 DL Deletes the line of the application cursor.

Ox0154 EL Erases to the end of the line.

Ox0155 EF Erases to the next tab stop.

Ox0156 CLEAR Erases all characters from the presentation space.

Ox0157 RIS Restores the initial state of the virtual terminal.

Ox0162 RI Performs one line reverse index control.

Ox0163 IND Performs one line index control.

Ox01 FF IGNORE Sends no information when the key is pressed.

Chapter 3. Special Files 3-39

hft

Enable and Disable Sound Signal (HFESOUND and HFDSOUND)
The HFESOUND operation informs the virtual terminal of the intent to use sound, enabling
the routing of the sound response signal. This command is issued using the hfsmon
structure, which includes the following field:

hf_momflags Contains one of the following values:

HFSINGLE

HFGROUP

Only the process issuing the ioctl system call
is to receive a sound response signal.

All members of the current process group are
to receive a sound response signal.

This signal is used to let an application know that a sound has been queued for the speaker
device. It can be used for pacing and other similar functions.

The HFDSOUND operation disables the sound signal by informing the virtual terminal of the
intent to discontinue the use of sound signals, in which case, sound signals are not sent.
There are no structures required to disable sound signals.

Enter and Exit Monitor Mode (HFSMON and HFCMON)
The HFSMON operation requests monitor mode. Monitor mode provides a program with
direct control of the screen and keyboard. This command is issued using the hfsmon
structure, which includes the following field:

hf _momflags Contains one of the following values:

HFSINGLE

HFGROUP

Only the process issuing the ioctl system call
is to receive monitor mode signals.

All members of the current process group are
to receive monitor mode signals.

The HFCMON operation releases monitor mode. There are no structures required to clear
monitor mode.

Control Screen Manager (HFTCSMGR)
The HFTCSMGR operation requests the screen manager to manipulate the status of virtual
terminals. The file descriptor can be associated with any virtual terminal in the HFT
subsystem. This operation is issued using the hftsmgrcmd structure, which contains the
following fields:

hf_vtid

hf_vsid

hf_cmd

3-40 AIX Files Reference

The multiplex number of the virtual terminal.

Reserved.

Contains one of the following screen manager commands:

SMACT

SMHIDE

Activates the virtual terminal.

Hides the virtual terminal. This command
marks the terminal specified in the hf_vtid field
so that the screen manager does not activate
it. If this terminal is at the head of the ring,
another virtual terminal is made active when
this terminal is hidden.

SMSCMD

SMUNHIDE

SMCVTEN

SMCVTDI

SMNOHOTKEY

hft

Sets the command virtual terminal. This
command designates the terminal that is
specified in the hf_vtid field as the command
virtual terminal. The command virtual terminal
is activated by pressing the command window
hot key.

Unmarks the hidden terminal. This command
restores to the screen manager ring the
hidden terminal that is specified in the hf_vtid
field. The virtual terminal becomes visible and
active if it is at the head of the ring when this
command is issued. This command is not
valid if either the active terminal or the object
terminal is trusted.

Causes the command virtual terminal to be
activated when both of the outermost mouse
buttons are pressed at the same time, the
Ctrl-Alt key sequence is pressed, or button 4
on the tablet is pressed. This is the default
setting.

Disables command terminal hot keying.

Marks the virtual terminal so that it cannot be
activated by a hot key sequence.

Enable Software Keyboard (HFESWKBD)
This command changes the software keyboard map currently used by a virtual terminal
to another keyboard map. The new keyboard map must currently be defined in the system.
If it is not, use the HFADDSWKBD operation of the reconfigure (HFRCONF) ioctl to add it.
The query (HFQUERY) ioctl shows the available keyboard maps. The HFESWKBD
operation invokes the enable software keyboard operation. The argument for the operation
points to the hf_kbdid field, which contains the unique identifier of the software keyboard
map to be enabled. The unique identifier is returned from the hf_kbdid field of the Query
Software Keyboards operation.

Change Locator (HFCHGLOC)
This command allows the user to change the mouse sample rate, mouse resolution, mouse
thresholds, mouse scaling, tablet sample rate, tablet resolution, tablet dead zone, tablet
conversion, or tablet origin. The change locator operation is issued using the HFCHGLOC
command. The argument to the command points to the hfchgloc structure, which contains
the following fields and values:

hf_cmd The command that is to be issued to the device driver. The following
are valid values:

HFMRATE

HFMRES

HFMTHRESH

HFMSCALE

HFTRATE

HFTRES

Set mouse sample rate.

Set mouse resolution.

Set mouse thresholds.

Set mouse scaling.

Set tablet sample rate.

Set tablet resolution.

Chapter 3. Special Files 3-41

hft

hf_value1

long hf_ value2

HFTDZONES

HFTORIGIN

HFTCONV

Set tablet dead zones.

Set tablet origin.

Set tablet conversion.

The value of the sample rate, resolution, origin, scaling, conversion,
horizontal threshold, or horizontal dead zone.

Valid mouse sample rates are 10, 20, 40, 60, 80, 100, or 200
samples per second.

Valid tablet sample rates are 1 to 100 samples per second.

Valid mouse resolutions are 0, 1, 4, or 8 counts per millimeter.

Valid tablet resolutions are 0 through 1279 counts per millimeter.

Valid mouse horizontal thresholds are values from 0 to 32767.

Valid tablet horizontal dead zones are values from 0 to 32767.

Valid origin indicators are:

HFMIDDLE

HFLOWERL

Set the tablet origin to the middle of the tablet.

Set the tablet origin to the lower-left corner of
the tablet.

Valid mouse scaling indicators are:

HFMSCALE1 1 :1.

HFMSCALE2 2:1.

Valid tablet conversion values are:

HFTCONVE

HFTCONVM

English.

Metric.

The valid mouse vertical threshold or tablet vertical dead zone. This
can be a value from Oto 32767.

Also refer to the descriptions of the hft.h structures for query ioctl operations, read
operations, general write operations, KSR write operations, and MOM write operations.

HFT read Operations
Several structures in the hft.h header file support input to the high function terminal (HFT)
subsystem from other devices. Data from devices other than the keyboard is passed back
from the read subroutine in the form of special control sequences, which are defined in the
hft.h header file. These control sequences include:

• Untranslated keyboard input

• Input device report.

3-42 AIX Files Reference

hft

Untranslated Keyboard Input
If keyboard input is received when the HFXLATKBD protocol mode is turned off, an
untranslated keystroke is returned. The key position identifies the physical key pressed. The
key status bits indicate Alternate (Alt), Alternate Graphics (Alt-Gr), Control (Ctrl), Shift, Caps
Lock, and Number Lock key states. The scan code and make and break keys are dependent
upon hardware and require knowledge of the physical keyboard in use. The hfunxlate
structure, used for this operation, contains the following fields:

hf_status[O] Status:

hf _status[1]

hf_seconds

hf _sixtyths

Input Device Report

HFUXSHIFT
HFUXCTRL
HFUXALT
HFUXCAPS
HFUXNUM
HFUXSCROLL
HFUXMAKE

Status:

HFUXRPT
HFUXLSH
HFUXRSH
HFUXLALT
HFUXRALT

A Shift key is pressed.
The Ctrl key is pressed.
An Alt key is pressed.
The Caps Lock mode is in effect.
The Number Lock mode is in effect.
The Scroll Lock mode is in effect.
If set, a key has been pressed. If not set, a key
has been released.

Automatic repeat state.
Left Shift state.
Right Shift state.
Left Alt-Shift state
Right Alt-Shift state. (Alt-Gr for 102-key
keyboards)

The time of the report in whole seconds since system startup.

The fractional part of the keyboard report time stamp, in 1 /60th
seconds.

The hflocator structure is used when reporting input data from a device. This structure
contains fields for the following input devices:

• Mouse

• Tablet

• Lighted programmable function keys

• Valuator dials.

Mouse Report

hf_deltax

hf_deltay

hf_seconds

hf _sixtyths

The x delta, a twos complement signed integer that holds the
relative x delta accumulations in counts of 0.25 millimeters of the
mouse movement. This information is sent to the virtual terminal to
indicate horizontal movement since the last mouse movement.

The y delta, a two's complement signed integer that holds the
relative y delta accumulations in counts of 0.25 millimeters of the
mouse movement. This information is sent to the virtual terminal to
indicate vertical movement since the last mouse movement.

The time of the mouse report in whole seconds since system
startup.

The fractional part of the mouse report time stamp, in 1 /60th
seconds.

Chapter 3. Special Files 3-43

hft

hf_buttons

hf_stype

Tablet Report

hf_deltax

hf_deltay

hf_seconds

hf_sixtyths

hf_buttons

hf_stype

LPFK Report

hf_deltax

hf_deltay

hf_seconds

hf _sixtyths

hf_buttons

hf_stype

Valuator Dial Report

hf_deltax

hf_deltay

hf_seconds

3-44 AIX Files Reference

The status of the mouse buttons. This information is sent to the
virtual terminal to indicate a change in the status of the buttons
since the last mouse movement, as follows:

HFBUTTON1 Button 1 (rightmost) has been pressed.
HFBUTTON2 Button 2 has been pressed.
HFBUTTON3 Button 3 has been pressed.
HFBUTTON4 Button 4 (leftmost) has been pressed.

The source of the input. (A value of O indicates that the input is from
the mouse.)

The absolute x coordinate of the tablet sensor.

The absolute y coordinate of the tablet sensor.

The time of the tablet report in whole seconds since system startup.

The fractional part of the tablet report time stamp, in 1 /60th
seconds.

The status of the tablet buttons. This information is sent to the
virtual terminal to indicate a change in the status of the buttons
since the last tablet movement, as follows:

HFBUTTON1 Button 1 (rightmost) has been pressed.
HFBUTTON2 Button 2 has been pressed.
HFBUTTON3 Button 3 has been pressed.
HFBUTTON4 Button 4 (leftmost) has been pressed.
HFBUTTON_STAT The presence of a stylus or puck is detected

over the tablet.

The source of the input. (A value of 1 indicates that the input is from
a tablet.)

The lighted programmable function key (LPFK) number.

Reserved.

The time of the report in whole seconds since system startup.

The fractional part of the locator report time stamp, in 1 /60th
·seconds.

Not used.

The source of the input. (A value of 2 indicates that the input is from
LPFKs.)

The dial number.

The dial value delta. This is a signed integer value in the dial units
of granularity, as defined in the hfdial_lpfk structure.

The time of the report in whole seconds since system startup.

hf_sixtyths

hf_buttons

The fractional part of the locator report time stamp, in 1 /60th
seconds.

Not used.

hft

hf_stype The source of the input. (A value of 3 indicates that the input is from
dials.)

Also refer to the descriptions of the hft.h structures for query ioctl operations, special ioctl
operations, general write operations, KSR write operations, and MOM write operations.

HFT General write Operations
ASCII data can be sent to the virtual terminal using the write subroutine along with data of
any length. In addition, virtual terminal control structures can be sent to the virtual terminal
using the write subroutine.

Each control structure is introduced by a virtual terminal data (VTD) character sequence.
The VTD prefix consists of the ASCII codes ESC, [,and x (Ox185878). This prefix is
followed by 4 bytes and an operation type code. The data that follows this structure depends
on the type of control.

The significant fields in the hfintro structure are:

hf_len The total number of bytes in the header and associated data, not
including the 3-character VTD control sequence.

hf_typehi

hf_typelo

The high-order byte of the information type code.

The low-order byte of the information type code.

Because the hfintro structure is an odd number of bytes in length, it is designated as the
hf_intro[HFINTROSZ] character array in the structures that define the various operation
requests. This prevents the C compiler from inserting bytes into the structure to align the
following fields on word boundaries. The hf _typehi and hf_typelo fields are also referred to
as hf_intro.hf_typehi and hf_intro.hf_typelo.

All reserved and unused fields must be set to a value of 0. You can set the entire structure to
a value of O and then fill in the appropriate fields.

Several structures in the usr/include/sys/hft.h header file support the following high
function terminal (HFT) write operations:

• Set Protocol Modes

• Set Keyboard LEDs

• Set LPFKs and Set Dial Granularities

• Write Sound

• Cancel Sound

• Change Physical Display.

Set Protocol Modes
Protocol modes determine how the virtual terminal interprets, translates, and returns data.
Two bits control each mode. The first, in the hf_select field, indicates whether to use the
current mode setting. If this bit is set, the corresponding bit in the hf_value field indicates the
new setting for the mode. The mode bits are set to the default value when the virtual
terminal is opened. These defaults can be changed for subsequently opened HFTs with the
HFRCONF operation.

Chapter 3. Special Files 3-45

hft

The hfprotocol structure, which gives the protocol definitions, contains the following fields:

hf_intro.hf_typehi HFKSRPROH or HFMOMPROH.

hf_intro.hf_typelo

hf_sublen

hf_subtype

hf_select

hf _select[O]

ht_select[1]

hf_ value[O]

hf_ value[O]

HFKSRPROL or HFMOMPROL.

2.

0.

Specifies which modes to change. A bit value of 1 specifies the
mode represented by that bit to change.

Mode selectors:
HF HOSTS

HFXLATKBD

Mode selectors:
HFWRAP
HFLPFKS
HF DIALS
HFJKANA
HFMOUSE
HFTABLET

New mode values:

Valid only in the KSR mode. Specifies whether to
report keyboard status changes. If H FHOSTS is
set, the keyboard status information is returned
in the KSI private ANSI control.
Valid in either the KSR or the MOM mode.

Valid only in the KSR mode
Valid in either the KSR or the MOM mode.
Valid in either the KSR or the MOM mode.
Valid in either the KSR or the MOM mode.
Valid in either the KSR or the MOM mode.
Valid in either the KSR or the MOM mode.

HFHOSTS 0 Does not report when the Shift key
is pressed (default).

1 Reports when Shift key is pressed.

HFXLATKBD 0 Sends key data as untranslated
key controls.
Translates keyboard input (default).

New mode values:
HFWRAP 0 Does not wrap the cursor when the

presentation space boundary is
exceeded.
Wraps cursor (default).

HFLPFKS 0 Disables LPFK input (default).
Enables LPFK input.

HF DIALS

HFJKANA

HFMOUSE

HFTABLET

1

0 Disables dial (valuator) input
(default).
Enables dial input.

For use with Japanese licensed program only.
O Disables kana shift state (default).
1 Enables kana input.

o Disables the mouse from sending
data (default).

1 Enables the mouse to send data.

O Disables the tablet from sending
data (default).
Enables the tablet to send data.

An attempt to set a protocol mode that is not valid results in the rejection of the entire
request.

3-46 AIX Files Reference

hft

Set Keyboard LEDs
The structure for this command is the hfkled structure, which contains the following fields:

hf_intro.hf_typehi HFKLEDCH.

hf_intro.hf_typelo HFKLEDCL.

hf_sublen

hf_subtype

hf_ledselect

hf_ledvalue

2.

0.

Indicates which of three LEDs to change:
HFNUMLOCK Num Lock LED.
HFCAPSLOCK Caps Lock LED.
HFSCROLLOCK Scroll Lock LED.

Indicates the value to which to set the LEDs specified in the
hf_ledselect field. LEDs that are specified with a 1 bit are set:
HFNUMLOCK Num Lock LED.
HFCAPSLOCK Caps Lock LED.
HFSCROLLOCK Scroll Lock LED.

Set LPFKs and Set Dial Granularities

Write Sound

The Set LPFKs operation turns on and off the lighted programmable function keys. The Set
Dial Granularities command sets the dial granularities. Granularity refers to the number of
events per full 360-degree revolution of the dial. The hfdial_lpfk structure, which contains
the following fields, is used for both of these commands:

hf_intro.hf_typehi HFLPFKSCH (Set LPFKs) or HFDIALSCH (Set Dial Granularities).

hf_intro.hf _typelo

hf_sublen

hf_subtype

hf_mask.keys

hf _mask.dials

hf_data2.lpfk.flags

hf_data2.granularity

HFLPFKSCL (Set LPFKs) or HFDIALSCL (Set Dial Granularities).

2.

0.

Set LPFKs only. A 4-byte bit mask numbered from O through 31.
Bits that are set specify the LPFK flag values to change.

Set dial gr~nularities only. A 4-byte bit mask numbered from 0
through 31. Bits that are set specify the dial granularity values to
change.

Set LPFKs only. A 4-byte set of bits numbered from 0 through 31.
For LPFKs selected by the hf_mask.keys field, a Obit disables the
LPFK, and a 1 bit enables the LPFK. (LPFK 1 is the most significant
bit.)

Set dial granularities only. An array of sixteen 1-byte values giving
the granularity of each dial. The values in the array represent
powers of 2, and they can range from 2 to 8.

This command sends output to the speaker. The hfsound structure is used for this
command. The hf_mode byte determines whether to implement sound commands for the
active virtual terminal and whether to interrupt the application after the sound command is
performed. No range check is made for the frequency or duration values. The hfsound
structure contains the following fields:

hf_intro.hf_typehi HFSOUNDCH.

hf_intro. hf_typelo HFSOUNDCL.

Chapter 3. Special Files 3-47

hft

hf_sublen

hf_subtype

hf_mode

hf_dur

hf_freq

2.

0.

Mode:

HFSIGSOUND

HFEXECALWAYS

If set, causes the SIGSOUND signal to be
sent to the process when this sound
command is run or discarded. If not set, no
signal is sent
If set, causes this sound command to be
run whether or not this virtual terminal is
active. If not set, the sound command is run
only if the terminal is active.

Duration in 1 /128 seconds.

Frequency in hertz.

Cancel Sound
The Cancel Sound command removes from the speaker device all sound requests that
belong to a process that no longer requires sound. Only the sound requests that have the
HFEXECALWAYS mode off are left in the speaker device. An inactive terminal ignores this
command.

Sending a Cancel Sound or Write Sound command flushes the speaker driver queue when a
virtual terminal transition occurs. This does not cancel sound currently playing, but only
flushes future requests. Regardless of whether the sound request is run or purged, the
virtual terminal receives a response if the HFSIGSOUND mode is on. The hfcansnd
structure, which contains the following fields, is used for this command:

hf_intro.hf_typehi HFCANSNDCH.

hf _intro. hf _typelo HFCANSNDCL.

Change Physical Display
This command changes the physical display to which the virtual terminal is logically
attached. The hfchgdsp structure, which contains the following fields, is used for this
command:

hf_intro.hf_typehi

hf_intro.hf_typelo

hf_sublen

hf_subtype

HFCHGDSPCH.

HFCHGDSPCL.

2.

0.

hf_mode If the HFNONDEF flag is set, the identifier specified in the hf_devid
field is used for the physical display device. If this flag is not set, the
current display device is used.

hf _devid The physical display device identifier that is returned from the
Query Physical Device command. If. the requested ID is not in the
configured list of available display devices, no action is taken. If the
requested ID is available, but a suitable font for the display device is
not loaded, no action is taken.

Note: If the physical terminal is changed, it might also be necessary to change the TERM
environment variable.

Also refer to the descriptions of the hft.h structures for query ioctl operations, special ioctl
operations, read operations, KSR write operations, and MOM write operations.

3-48 AIX Files Reference

hft

HFT KSR write Operations
Several structures in the hft.h header file support keyboard-send-receive (KSR) high
function terminal (HFT) output operations. These device-independent KSR mode operations
for character-oriented applications include:

• KSR color map specification

• Font palette redefinition

• Cursor representation redefinition.

Set KSR Color Map
This command specifies the color to associate with certain display adapters. The hfcolorpal
structure, which is used for this command, contains the following fields:

hf_intro.hf _typehi

hf _intro. hf _type lo

hf_sublen

hf_subtype

hf_numcolor

hf_palet

Change Fonts

HFCOLORPALH.

HFCOLORPALL.

2.

0.

The number of entries in the color palette.

The array that defines the color palette settings. This field is
repeated for each of the 16 adapter-specific values in the array.

The hffont structure, which contains the following fields, is used for the change fonts
request:

hf_intro.hf_typehi

hf _intro.hf_typelo

hf_sublen

hf_subtype

hf_primary

hf_alt1

hf_alt2

hf_alt3

hf_alt4

hf_alt5

hf_alt6

hf_alt7

HFFONTH.

HFFONTL.

2

Font ID of primary font attribute.

Font ID of first alternate font attribute.

Font ID of second alternate font attribute.

Font ID of third alternate font attribute.

Font ID of fourth alternate font attribute.

Font ID of fifth alternate font attribute.

Font ID of sixth alternate font attribute.

Font ID of seventh alternate font attribute.

Redefine Cursor Representation
The cursor representation data format determines how the cursor is presented on the
display screen. The hfcursor structure, which contains the following fields, is used for cursor
redefinition:

hf _intro. hf _type hi

hf_intro. hf _type lo

hf_sublen

HFCURSORH.

HFCURSORL.

2.

Chapter 3. Special Files 3-49

hft

hf_subtype

hf_rsvd

hf_shape

0.

Reserved.

Cursor shape:

HFNONE
HFSNGLUS
HFDBLUS
HFHALFBLOB
HFMIDLINE
HFFULLBLOB

No cursor.
Single underscore.
Double underscore.
Lower half of illuminated character cell.
Double mid-character line.
Full illuminated character cell.

Also refer to the descriptions of the hft.h structures for query ioctl operations, special ioctl
operations, read operations, general write operations, and MOM write operations.

HFT MOM write Operations
Several structures in the hft.h header file support monitor mode (MOM) high function
terminal (HFT) output for complex applications that require direct access to the display
hardware for graphics and other operations. Programs that operate the display hardware in
all points addressable (APA) mode should select the monitor mode of the virtual terminal.
The device-dependent MOM operations include:

• Screen request

• Input ring buffer definition

• Screen release.

Screen Request
Although the virtual terminal is in monitor mode, the program can perform direct operations
on the display hardware only when granted permission by the operating system. The
program first writes a screen request control, and then receives a SIGGRANT signal when
the screen is granted.

The screen request uses the hfmomscreq structure, which contains the following fields:

hf_intro.hf_len The length of the request. This is a value of 6 if no ring buffer is
defined or a value of 12 if a ring buffer is used.

hf_intro.hf_typehi

hf _intro. hf_typelo

hf_sublen

hf_subtype

hf _ringlen[2]

HFMOMREQH.

HFMOMREQL.

2.

0.

Contains the length of the ring in bytes (the size of the hfmomring
structure, including the raw data).

hf_ringoffset[4] Contains the offset to the input ring buffer from the beginning of the
hf_ringlen field. (Initialize to the value of &ring minus the value of
&hfmomscreq. hf _ri nglen.)

If you do not want to specify a ring buffer, set the length of the hf _intro field to the size of the
introducer, and then read the input with the standard read subroutine.

3-50 AIX Files Reference

hft

Input Ring Buffer Definition
The input ring buffer structure, hfmomring, must be aligned on a word boundary and
defined in memory after the screen request (hfmomscreq structure). The hf_ringoffset field
is the difference between the ring buffer address and the address of the hf_ringlen field, and
it must be a positive value. Usually, the hfmomring ring buffer structure is globally defined
so that it immediately follows the hfmomscreq structure in memory. Note that the compiler
may implicitly insert one or more filler bytes between the two structures to align them at a
memory address boundary. The value of the hf_ringoffset field must reflect such filler bytes.

The hfmomring input ring buffer structure contains the following fields:

hf_intreq

hf_ovflow

hf_source

hf_sink

hf_rdata

Screen Release

Interrupt request. This field can be set to a value of OxFF by the application
to cause the HFT subsystem to send a signal each time an input event
occurs. Data entry into the input ring buffer generates a SIGMSG signal.
When the hf_intreq field is set to a value of O (the default}, a signal is sent to
the application only when the buffer goes from being empty to non-empty.
This byte is automatically reset to a value of 0 by the virtual terminal each
time it stores input data into the ring buffer.

Overflow. This field determines whether the input ring buffer can
accommodate additional input information. A value of OxFF indicates an
overflow; a value of OxOO indicates normal operation.

The offset into the input ring buffer where the HFT puts received data.
Because this offset starts from the beginning of the ring, the virtual terminal
offset value is 32. Application programs must not alter this field after
initializing it at definition time; otherwise, continuation of software function
cannot be assured.

The offset into the hfmomring structure from which the application reads
data. Because this offset starts from the beginning of the input ring buffer,
the value is 32. The application must modify this field as input data is
removed from the ring.

The raw data.

If a MOM virtual terminal is active, pressing a hot key (the Alt-Action key sequence) for the
NEXT WINDOW function causes a SIGRETRACT signal to be sent to the process or group
of processes specified by the HFSMON type ioctl subroutine. Before activating the next
virtual terminal, the operating system allows the program to save the state of the display
hardware (such as registers and refresh memory). Then, the program must write a screen
release control to the terminal to inform the operating system that the state of the display
hardware has been saved. This request uses the hfmomscrel structure, which contains the
following fields:

hf_intro.hf_len

hf_intro.hf_typehi

hf_intro.hf_typelo

The length of the entire structure, including the input ring buffer,
minus 3.

HFMOMRELH.

HFMOMRELL.

After the display hardware is released, the next virtual terminal is activated. If a virtual
terminal is not released within 30 seconds of the receipt of the SIGRETRACT signal, all
processes in that terminal group receive a SIGKILL signal. This prevents disabled programs
from disrupting the NEXT WINDOW function.

Chapter 3. Special Files 3-51

hft

A program can issue a pause subroutine if there is no work to do while the display hardware
is not available. When the MOM virtual terminal is reactivated (with the Alt-Action key
sequence), the program receives a SIGGRANT signal and can resume direct output to the
display monitor. The display hardware state cannot be assumed to be the same as when the
program released it.

Also refer to the descriptions of the hft.h structures for query ioctl operations, special ioctl
operations, read operations, general write operations, and KSR write operations.

Implementation Specifics

Files

Th hft device driver file and hft.h header file are part of AIX Base Operating System (BOS)
Runtime.

/dev/hft
/usr/i nclude/sys/hft. h

The path to the hft device driver special file.
The path to the hft.h header file, which defines the interface to
the hft device driver.

Related Information
The termio.h header file.

The ioctl subroutine, open subroutine, read subroutine, write subroutine.

The Special Files Overview, which presents general information about special files.

The HFT Device Driver User Interface Overview in Communication Concepts and
Procedures.

The discussion of virtual terminals in General Concepts and Procedures.

3-52 AIX Files Reference

hiaO Special File

Purpose

hiaO

Provides access to IBM Host Interface Adapter (HIA) by way of the IBM HIA device handler.

Description
The /dev/hiaO character special file provides access to the IBM HIA device handler for the
purpose of emulating 3270 display stations. The device handler is a multiplexed device
handler that supports an independent logical 3270 session on each of its channels.

The device handler currently supports the 3270 mode of operation. In 3270 mode, the
adapter can appear as multiple terminal sessions and is an intelligent device to the control
unit. In this mode, the device handler provides the capability of emulating several IBM
3278/79 display stations.

The device handler supports one adapter, which may have up to 16 sessions and 1
invocation of the panel2Q command. The <Sys/io3270.h> file contains the definitions of the
structures used by the device handler.

Usage Considerations
When accessing the HIA device handler, the following should be taken into account:

• Driver Initialization and Termination

The device handler may be loaded and unloaded. The device handler supports the
configuration calls to initialize and terminate itself.

• Special File Support

The subroutines other than. the open and close subroutines are discussed based upon
the mode in which the device handler is operating.

Subroutine Support
The HIA device handler provides HIA-specific support for the following subroutines:

• open

• close

• read

• readx

• write

• writex

• ioctl

The open and close Subroutines

The device handler supports the /dev/hiaO special file as a character multiplex special file.
The special file must be opened for both reading and writing (O_RDWR). There are no
special considerations for closing the special file. To start the device handler for the next
available port, an open subroutine call is made to the /dev/hiaO file.

Chapter 3. Special Files 3-53

hiaO

The read Subroutine

Data received by the communication adapter from the host is placed in the buffer until either
the message completes or the buffer is full. When either condition occurs, the AIX driver
returns program control back to the application. To determine the status of a read call, the
application program can issue the WDC_INQ ioctl operation. The following are examples of
read call status types:

• Command chaining

• More data for this particular message.

If the status returned by the WDC_INQ operation indicates more data is available, another
read call should be issued immediately. The application program must read available data
as soon as possible so as not to degrade link performance.

If a read call is made and no data is available, the calling process is blocked until data
becomes available. To avoid blocking, the program can use the poll subroutine.

The host sends data as an outbound 3270 data stream.

Note: The 3270 write commands require the application to send status to the host
indicating if the 3270 data stream is valid. Status may be sent using the
WDC_SSTAT ioctl operation.

The readx Subroutine

Data received by the communication adapter from the host is placed in the buffer until either
the message completes or the buffer is full. Upon completion of the read subroutine call, the
io3270 structure pointed to by the ext parameter contains the status. The status is set in the
io_flags field of the io3270 structure and takes the following values:

WDl_DAVAIL

WDl_COMM

WDl_PROG

WDl_MACH

There is additional data for this link address.

There is a communication error. The io_status field contains the
corresponding message code.

There is a program error. The io_status field contains the corresponding
message code.

There is a hardware error. The io_status field contains the
corresponding message code.

When set, the WDl_DAVIL flag indicates that the data just read completes an outbound
3270 data stream. If the WDl_DAVAIL flag indicates there is more data available, the
application should immediately issue another readx call. Available data must be read as
soon as possible so as not to degrade link performance.

If a readx call is made and no data is available, the calling process is blocked until data
becomes available. To avoid blocking, the poll subroutine may be used. The host sends
data as an outbound 3270 data stream.

Note: The 3270 write commands require the application to send a status to the host. To
send a status, the application can use the WDC_SSTAT ioctl operation.

3-54 AIX Files Reference

hiaO

The write Subroutine

The write call sends an inbound 3270 data stream to the host. The buffer specified by a
write call must contain a complete inbound 3270 data stream. A write operation is complete
when the data has been successfully transferred from the specified buffer.

The writex Subroutine

The writex call sends to the host an inbound 3270 data stream. The buffer specified by a
writex call must contain a complete inbound 3270 data stream.

The write is complete when the data has been successfully transferred from the buffer
specified on the subroutine call. Upon completion of the write, the io3270 structure pointed
to by the write extension contains the status. The status code is set in the io_flags field of
the io3270 structure and takes the following values:

WDl_DAVAIL

WDl_COMM

WDl_PROG

WDl_MACH

There is data available for this link address. The data must be read
before any write can occur.

There is a communication error. The io_status filed contains the
corresponding message code.

There is a program error. The io_status field contains the corresponding
message code.

There is a hardware error. The io_status field contains the
corresponding message code.

When data is available for reading, it should be read immediately so as to not impact
performance. A write or writex subroutine call cannot be done until the data is read.

ioctl Subroutine

The following ioctl operations may be issued to the device handler in OFT mode.

IOCINFO

WDC_INQ

Returns the logical terminal number, the EBCDIC representation of the
controller type, and the controller attachment protocol in the iocinfo
structure.

Inquires the status of the last read or write call issued by the application.
Also, WDC_INQ is used to determine if data is available for reading. The
returned status is placed into the io3270 structure.

If the WDl_DAVAIL flag is set in the io_flags field, one of the following
status values is returned by the WDC_INQ operation.

STAT_ACK

STAT_RESET

Indicates that the previously received 3270 data
stream is valid and the proper response is to be made
to the host.

Indicates a RESET KEY should be sent.

Chapter 3. Special Files 3-55

hiaO

STAT_BERR Indicates a buffer error. An invalid buffer order or
address was received.

STAT _BADC Indicates an invalid 3270 command was received.

STAT_UNSUP Indicates that an unsupported 3270 command was
received.

Error Conditions
The following error conditions may be returned when accessing the device handler through
the /dev/hiaO special file:

EBUSY

EFAULT

EINTR

EINVAL

EIO

ENODEV

EN OM EM

ENXIO

Indicates that an open was requested for a channel that is already open.

Indicates that the caller specified an invalid buffer.

Indicates that a subroutine call was interrupted.

Indicates that the caller specified an invalid argument.

Indicates that an unrecoverable 1/0 error occurred on the requested data
transfer.

Indicates that an open was requested for an invalid channel.

Indicates that the device handler could not allocate memory for use in the
data transfer.

Indicates that an operation was requested for an invalid minor device
number.

Implementation Specifics

Files

The hiaO special file requires the HIA device handler.

/us r/i ncl ude/sys/io3270. h

/usr/include/sys/devinfo.h

Defines structures used by the HIA device handler.

Contains defines and structures for devices.

Related Information
The open subroutine, close subroutine, read or readx subroutine, write or writex
subroutine, poll subroutine.

The panel20 command.

The Special Files Overview, which provides general information about special files.

Understanding 1/0 Access Through Special Files and Understanding Raw 1/0 Access to
Block Special Files in Kernel Extensions and Device Support Programming Concepts.

3-56 AIX Files Reference

Ip Special File

Purpose

Ip

Provides access to the line printer device driver.

Description
The Ip driver provides an interface to the port used by a printer.

Printer Modes
The Ip driver interprets carriage returns, backspaces, line feeds, tabs, and form feeds in
accordance with the modes that are set in the driver (through the splp command or
configuration). The number of lines per page, columns per line, and the indentation at the
beginning of each line can also be selected. The default for these modes can be found using
the lsattr command. The following modes can be set with the LPRMODS ioctl operation:

PLOT

NOFF

NONL

NOCL

NOT AB

NOBS

NOCR

CAPS

Determines if the data stream is interpreted by the device driver when
formatting the text. If the PLOT mode is off, the text is formatted using the
current values set with the LPRSET ioctl operation.

If the PLOT mode is set, no interpretation of the data stream is performed
and the bytes are sent to the printer without modification. Setting the PLOT
mode causes other formatting modes, such as NOFF and NOFL, to be
ignored. The default printer backend, piobe, sends all output in PLOT
mode.

When in PLOT mode, it is the application's responsibility to send a final form
feed character. If the last write operation was performed while not in PLOT
mode, the final form-feed character will be sent by the device driver.

If this mode is on, a form-feed character is replaced with line-feed
characters, based on the current line value set with the LPRSET ioctl
operation. This mode is ignored if the PLOT mode is active.

If this mode is on, each line-feed character is replaced with a carriage
return. This mode is ignored if the PLOT mode is active.

If this mode is off, a carriage return is inserted after each line-feed. If the
mode is on, no carriage return is inserted after the line feed character. This
mode is ignored if the PLOT mode is active.

If this mode off, 8 position tabs are simulated using spaces. If the NOTAB
mode is on, the tab character is replaced with a space. This mode is ignored
if the PLOT mode is active.

If this mode off, backspaces are sent to the printers. If the NOBS mode is
on, the backspace is simulated by sending a carriage return followed by
spaces to the proper print position. This mode is ignored if the PLOT mode
is active.

If this mode on, each carriage return is replaced with a line feed character.
This mode is ignored if the PLOT mode is active.

If this mode on, lower-case characters are converted to upper-case. This
mode is ignored if the PLOT mode is active.

Chapter 3. Special Files 3-57

Ip

WRAP

FONTINIT

RPTERR

If this mode off, the line is truncated at the right margin and any characters
received past the right margin are discarded. If the WRAP mode is on, the
characters received after the right margin are printed on the next line
preceded by three dots(...). This mode is ignored if the PLOT mode is
active.

The FONTINIT mode is initially off. It is turned on by an application when a
printer font has been initialized. It can turned off in the following two cases:

• An application wants fonts to be reinitialized.

• A FATAL printer error occurs. In this case, the Ip device driver turns the
FONTINIT mode off.

If the RPTERR mode is off and an error occurs, the device driver does not
return until the error has been cleared or a cancel signal is received. If the
RPTERR mode is on, the device driver waits the amount of time specified
by a previous LPRSTOV ioctl operation and then returns with an error.

Error Handling When the RPTERR Mode Is Off
If the RPTERR mode is off, no error reporting is performed. The device driver waits for the
error to be cleared or a cancel signal to be received before returning to the application. This
is the default mode and is intended for existing applications that do not perform error
recovery.

If a signal is received by the device driver, the current operation is returned incomplete with
an EINTR return code.

If printing is canceled and the printer is in PLOT mode, it is the application's responsibility to
send the final form feed to eject the partial page. If the printer is not in PLOT mode, the final
form feed after cancelation will be sent by the device driver.

Error Handling When the RPTERR Mode Is On
If the RPTERR mode is on, the device driver will wait for the time specified in the v_timeout
configuration parameter and then return the uncompleted operation with an error return
code. This return allows the application to get the printer status and display an error
message if desired.

Note: When a device driver returns an incomplete operation with an error code (as
described above), it is the application's responsibility to re-send any data not printed.

Usage Considerations
Device Dependent Subroutines

Most printer operations are implemented using the open, read, write, and close
subroutines. However, these subroutines provide little or no information to the calling
program about the configuration and state of the printer. The ioctl subroutine provides a
more device-specific interface to the printer device driver.

Most of these subroutines pass data contained in structures. In all cases, a structure of the
type indicated should be allocated in the calling routine. A pointer to this structure should
then be passed to the device driver.

3-58 AIX Files Reference

Ip

The open and close Subroutines

If an adapter for a printer is not installed, an attempt to open fails. If the printer adapter is
busy, the open subroutine returns an error. However, all children created by a process that
successfully opens the Ip special file inherit the open printer.

The driver allows multiple open subroutines to occur if they all have a mode parameter
value of read-only. Thus, the splp command can perform inquiries when the printer adapter
is currently in use. The Ip driver allows only one process to write to a printer adapter at a
time.

The close subroutine waits until all output completes before returning to the user.

The read and write Subroutines

The read subroutine is not implemented for the native 1/0 parallel port.

The ioctl Subroutine

The possible ioctl operations and their descriptions are:

IOCINFO

LPRGET

LPRGETA

LPRMODG

LPRSET

LPRSETA

LPRMODS

LPRGTOV

Returns a structure defined in the <sys/devinfo.h> header file, which
describes the device.

Returns the page length, width and indentation values. These values are
used by the device driver when PLOT mode is not set. Note that the default
printer backend, piobe, sends all print jobs with PLOT mode set. This ioctl
operation uses the lprio structure, as defined in the <Sys/lpio.h> header
file.

Gets the RS232 parameters. These are the values for baud rate, character
rate, character size, stop bits and parity. Refer to the LPR232 structure and
to the termio.structure, as defined in the termios.h header file.

Gets the printer modes. These printer modes support the various formatting
options and error reporting. This ioctl operation uses the LPRMOD
structure, as defined in the <sys/lpio.h> header file.

Sets the page length, width and indent values. These values are used by
the device driver when PLOT mode is not set. Note that the default printer
backend, piobe, sends all print jobs with PLOT mode set. This ioctl
operation uses the lprio structure, as defined in the <Sys/lpio.h> header
file.

Sets the RS232 parameters. These are the values for baud rate, character
rate, character size, stop bits and parity. Refer to the LPR232 structure and
to the termio structure, as defined in the termios.h header file.

Sets the printer modes. These printer modes support the various formatting
options and error reporting. This ioctl operation uses the LPRMOD
structure, as defined in the <sys/lpio.h> header file.

Gets the current time-out value and stores it in the lptimer structure defined
in the <sys/lpio.h> header file. The time-out value is measured in seconds.

Chapter 3. Special Files 3-59

Ip

LPRSTOV

LPQUERY

Sets the time-out value. The arg parameter to this ioctl operation points to a
lptimer structure defined in <sys/lpio.h>. The time-out value must be given
in seconds.

Provides access to the printer status. Refer to the <sys/lpio.h> header file
for value definitions. The types of errors are the following:

• The printer is out of paper.

• No select bit: the printer may be turned off or not installed.

• The printer is busy.

• The printer is unknown.

Implementation Specifics

Files

The Printer Addition Management Subsystem: Programming Overview provides more
information on implementation specifics.

The Ip special fie is part of AIX Base Operating System (BOS) Runtime.

/dev/lp

sys/lpio.h

Related Information
The splp command, lsattr command, piobe command.

The open subroutine, close subroutine, read subroutine, write subroutine, ioctl subroutine.

The Special Files Overview, which presents general information about special files.

The Printer Addition Management Subsystem: Programming Overview, Understanding 1/0
Access Through Special Files, Understanding Device Driver Classes, Understanding
Character 1/0 Device Drivers, and Multiplexed Support in Character 1/0 Device Drivers in
Kernel Extensions and Device Support Programming Concepts.

3-60 AIX Files Reference

lvdd Special File

Purpose
Provides access to the logical volume device driver.

Description

lvdd

The logical volume device driver provides character (raw) access to logical volumes. The
Logical Volume Manager associates a major number with each volume group and a minor
number for each logical volume in a volume group.

When performing character 1/0, each request must start on a logical block boundary of the
logical volume. The logical block size is 512 bytes. This means that for character 1/0 to a
logical volume device, the offset supplied to the lseek subroutine must specify a multiple of
512 bytes. In addition, the number of bytes to be read or written, supplied to the read or
write subroutine, must be a multiple of 512 bytes.

Block 1/0 requests cannot be larger than a logical track group (128K bytes) and must not
cross a logical track group boundary.

Note: 1/0 requests should not be sent to the block special file interface when the logical
volume is mounted. When a logical volume is mounted (that is, the block special file
is opened by the file system), any 1/0 requests from the user made to that logical
volume should be made only through the character special file.

Usage Considerations
Warning: POTENTIAL FOR DATA CORRUPTION OR SYSTEM CRASHES: Data
corruption, loss of data, or loss of system integrity will occur if devices supporting paging,
logical volumes, or mounted file systems are accessed using block special files. Block
special files are provided for logical volumes and disk devices on AIX and are solely for
system use in managing file systems, paging devices and logical volumes. They should not
generally be used for other purposes. Additional information concerning the use of special
files may be obtained in Understanding 1/0 access Through Special Files.

The open and close Subroutines

No special considerations.

The read and write Subroutines

Extension word specification for the readx and writex subroutines

The ext parameter for the readx and writex extended 1/0 subroutines is used to indicate
specific physical or logical operations or both. The upper 4 bits of the ext parameter are
reserved for internal LVDD use. The value of this word is defined by logically ORing values
from the following list, as defined in the <sys/lvdd.h> header file:

WRIT EV

RORELOC

Perform physical write verification on this request. This operation can
only be used with the writex subroutines.

For this request, perform relocation on existing relocated defects only.
Newly detected defects are not to be relocated.

Chapter 3. Special Files 3-61

lvdd

MWC_RCV_OP

NOMWC

Mirror write consistency recovery operation. This option is used by the
recovery software to make consistent all mirrors with writes
outstanding at the time of the crash.

Inhibit mirror write ~onsistency recovery for this request only. This
operation can only be used with the writex subroutine.

AVOID_C1, AVOID_C2, AVOID_C3

RESYNC_OP

For this request, avoid the specified copy (mirror). This operation can
only be used with the readx subroutine.

For this request, synchronize the specified logical track group (LTG).
This operation can only be used with the readx subroutine and must
be the only operation.

There are some restrictions when using this operation. To synchronize
a whole logical partition (LP), a series of readx subroutines using the
RESYNC_OP operation must be done. The series must start with the
first logical track group (L TG) in the partition and proceed sequentially
to the last LTG. Any deviation from this will result in an error. The
length provided to each readx operation must be exactly 128K bytes
(LTG size).

Normal 1/0 can be done concurrently anywhere in the logical partition
while the RESYNC_OP is in progress. If an error is returned, the
series must be restarted from the first LTG. An error is returned only if
resynchronization fails for every stale physical partition copy of any
logical partition. Therefore, stale physical partitions are still possible at
the end of synchronizing a LP.

Normal 1/0 operations do not need to supply the ext parameter and can use the read and
write subroutines.

The ioctl Operations

The IOCINFO ioctl operation

The IOCINFO ioctl operation returns the devinfo structure, as defined in the
<Sys/devinfo.h> header file. The values returned in this structure are defined as follows for
requests to the logical volume device driver:

devtype Equal to DD_DISK (as defined in the devinfo.h header file).

flags Equal to OF _RAND.

devsubtype Equal to DS_LV.

bytpsec Bytes per block for the logical volume.

secptrk Number of blocks per logical track group.

trkpcyl Number of logical track groups per partition.

numblks Number of logical blocks in the logical volume.

3-62 AIX Files Reference

lvdd

The XLATE ioctl operation

The XLATE ioctl operation translates a logical address (logical block number and mirror
number) to a physical address (physical device and physical block number on that device).
The caller supplies the logical block number and mirror number in the xlate_arg structure,
as defined in the <sys/lvdd.h> header file. This structure contains the following fields:

lbn

mirror

p_devt

pbn

Logical block number to translate.

The number of the copy for which to return a pbn (physical block number on
disk). Possible values are:

1 copy 1 (primary)

2 copy 2 (secondary)

3 copy 3 (tertiary)

Physical dev_t (major/minor number of the disk)

Physical block number on disk.

Error Conditions

In addition to the possible general errors returned by the ioctl subroutine, the following
errors can also be returned from specific ioctl operation types.

ENXIO

ENXIO

ENXIO

ENXIO

The logical volume does not exist. (This error type is relevant to both the
IOCINFO and XLATE ioctl operations.)

The logical block number is larger than the logical volume size. (This error
type is relevant to the XLATE ioctl operation.)

The copy (mirror) number is less than 1 or greater than the number of actual
copies. (This error type is relevant to the XLATE ioctl operation.)

No physical partition has been allocated to this copy (mirror). (This error
type is relevant to the XLATE ioctl operation.)

Implementation Specifics

Files

The Logical Volume Manager (LVM) Subsystem provides more details on implementation
specifics.

The lvdd special file is part of AIX Base Operating System (BOS) Runtime.

Logical volume special file names can be assigned by the administrator of the system.
However, /dev/lv1, /dev/lv2 and /dev/rlv1, /dev/rlv2 are the names conventionally chosen.

Chapter 3. Special Files 3-63

lvdd

Related Information
The Logical Volume Manager (LVM) Subsystem.

The open subroutine, close subroutine, read subroutine, write subroutine, lseek
subroutine, ioctl subroutine.

The Special Files Overview, which presents general information about special files.

Logical Volume Storage Overview in General Programming Concepts.

Understanding 1/0 Access Through Special. Files, Understanding Major and Minor Numbers
For A Special File, Understanding 1/0 Access Through Special Files, Understanding Device
Driver Classes, Understanding Block 1/0 Device Drivers, and Understanding Character 1/0
Device Drivers, and Providing Raw 1/0 Support in Kernel Extensions and Device Support
Programming Concepts.

3-64 AIX Files Reference

mem Special File and kmem Special File

Purpose
Provides privileged virtual memory read and write access.

Description

mem, kmem

The /dev/mem and /dev/kmem character special files provide access to a pseudo-device
driver that allows read and write access to system memory or 1/0 address space. Typically,
these special files are used by operating system utilities and commands (such as crash,
sar, iostat, and vmstat) to obtain status and statistical information about the system.

Programs accessing these special files must have appropriate privilege. Commercial
application programs should avoid using the mem and kmem files, since the virtual memory
image is quite specific to the operating system level and machine platform. Use of these
special files thus seriously affects the portability of the application program to other operating
systems and machine platforms.

Warning: When incorrect access to virtual memory is made through these files, process
termination, a system crash, or loss of system data integrity can result.

Usage Considerations
kmem Special File Access

The kmem special file provides access to the virtual memory address space for the current
process, as it is seen by the kernel. The seek offset, set by the lseek subroutine, is used to
specify the virtual address targeted for the read or write. The kmem pseudo device driver
only supports the open, close, read, readx, writex, and write subroutines.

The knlist system subroutine is typically used to obtain the addresses of kernel symbols to
read or write through access provided by the kmem special file.

Before issuing a read or write operation, the lseek subroutine must be used to designate the
relevant starting address in virtual memory. If this address is within the first two gigabytes of
address space, then the read or write subroutine calls can be used. However, if the upper
two gigabytes of address space are to be accessed, the readx and writex form of the
subroutine calls must be used. In this case, the ext (extension) parameter must be set to a
value of TRUE. This causes the lseek offset to be interpreted relative to the upper 2
gigabytes of address space.

On the RISC System/6000 machine platform, the process address space is defined as
shown in the Implementation Specifics section. This address space layout can vary on other
machine platforms and versions of the operating system.

mem Special File Access

The mem special file access is specific to the machine platform on which the operating
system is executing. Use of this special file by application programs should be strictly
avoided, as it is provided for diagnostic and problem determination procedures only. Please
refer to the Implementation Specifics section for details on the function provided by this
special file.

Chapter 3. Special Files 3-65

mem, kmem

Process Address Space Regions for the kmem Special File
The Process Address Space Map illustrates the layout of process address space regions as
accessed through the kmem special file on the RISC System 6000 system:

Upper 4 bits
of lseek
offset

~ Process Address Space Regions

0 Primary Kernel Region

1 User Text Region

2 Process Private Region

Lower 2 gigabytyes 3 of address space:
use read or write
subroutines. 4

5

6
1--- Attached -

7

0

Data
1---

And -Mapped Files
Regions

t--- -1

2

Upper 2 gigabytyes
3

of address space:
4 use readx or writex

subroutines with ext
parameter= TRUE. 5 Shared Library Text Region

6 Secondary Kernel Region

7 Shared Data Region

Implementation of mem Special File Access
The mem special file has traditionally provided direct access to physical memory. This
capability and its interface requirements are machine-specific. However, for AIX on the RISC
System/6000, this function is indirectly provided by using the ext (extension) parameter on
the readx and writex subroutine calls. When issuing a readx or writex subroutine call
associated with the /dev/mem special file, the ext parameter must contain a valid segment
register value as defined in the POWERstation and POWERserver Hardware Technical
Reference - General Information. This allows the program to access all physical memory
mapped by the page table as well as the system 1/0 address space.

3-66 AIX Files Reference

mem, kmem

The seek offset set by the lseek subroutine call is used to specify the address offset within
the segment described by the ext parameter. The upper four bits of the offset are not used.
The pseudo device driver only supports the open, close, read, readx, write, and writex
subroutine calls. The lseek subroutine call must also be used before issuing the readx or
writex subroutine calls in order to specify the address offset.

If the read or write subroutine calls are used with this special file, the access to memory is
identical to that provided by the kmem special file.

Implementation Specifics

Files

The kmem and mem special files are part of AIX Base Operating System (BOS) Runtime.

/dev/mem

/dev/kmem

Related Information
The crash command, sar command, iostat command, vmstat command.

The open subroutine, close subroutine, read subroutine, write subroutine, lseek
subroutine, ioctl subroutine, select subroutine, poll subroutine, knlist subroutine.

Memory and 1/0 address space addressing is described in the POWERstation and
POWERserver Hardware Technical Reference - General Information.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special Files, Understanding Character 1/0 Device
Drivers, Multiplexed Support in Character 1/0 Device Drivers, and Understanding
Pseudo-Device Drivers in Kernel Extensions and Device Support Programming Concepts.

Chapter 3. Special Files 3-67

mpqn

mpqn Special File

Purpose
Provides access to multiprotocol adapters by way of the Multiprotocol (MPQP) device
handler.

Description
The /dev/mpqn character special file provides access to the MPQP device handler for the
purpose of providing access to a synchronous network. The MPQP device handler supports
multiple adapters.

Usage Considerations
When accessing the MPQP device handler, the following should be taken into account:

• Driver Initialization and Termination

The device handler may be loaded and unloaded. The handler supports the configuration
calls to initialize and terminate itself.

• Special File Support

Calls other than the open and close subroutine calls are discussed based on the mode in
which the device handler is operating.

Subroutine Support
The MPQP device handler supports the open, close, read, write, and ioctl subroutines in
the following manner:

• The open and close subroutines

The device handler supports the /dev/mpqn special file as a character-multiplex special
file. The special file must be opened for both reading and writing (O_RDWR). There are
no particular considerations for closing the special file. The special file name used in an
open call differs depending upon how the device is to be opened. Types of special file
names are:

/dev/mpqn

/dev/mpqn/D

Starts the device handler for the selected port.

Starts the device handler for the selected port in Diagnostic mode.

• The read subroutine

Can take the form of a read, readx, readv, or readvx subroutine call. For this call, the
device handler copies the data into the buffer specified by the caller.

• The write subroutine

Can take the form of a write, writex, writev, or writevx subroutine call. For this call, the
device handler copies the user data into a buffer and transmits the data on the LAN.

• The ioctl subroutine

CIO_START

CIO_HALT

CIO_QUERY

3-68 AIX Files Reference

Starts a session and registers a network ID.

Halts a session and removes a network ID.

Returns the current RAS counter values. These values are
defined in the <sys/comio.h> and <sys/ecluser.h> files.

CIO_GET_STAT

MP _START_AR

MP_STOP_AR

MP _CHG_PARMS

MP _SET_DELAV

Error Conditions

mpqn

Returns the current adapter and device handler status .
..

Puts the MPQP port into Auto-response mode.

Permits the MPQP port to exit Auto-response mode.

Permits the data link control (DLC) to change certain profile
parameters after the MPQP device has been started.

Sets the value of NDELAY.

The following error conditions may be returned when accessing the device handler through
the /dev/mpqn special file:

ECHRNG

EA GAIN

EBUSV

EIO

EFAULT

EINTR

EINVAL

ENOMEM

ENO MSG

ENOTREADV

Indicates that the channel number is out of range.

Indicates that the maximum number of DMAs was reached allowed
and the handler cannot get memory for internal control structures.

Indicates one of the following:

• The port is not in correct state.

• The port should be configured, but it is not opened or started.

• The port state is not opened for start of an ioctl operation.

• The port is not started or in data transfer state.

Indicates that the handler could not queue command to adapter.

Indicates that the cross memory copy service failed.

Indicates that the sleep was interrupted by a signal.

Indicates one of the following:

• The port not set up properly.

• The handler could not set up structures for write.

• The port is invalid.

• A select operation was called by a kernel process.

• The specified physical link parameter is invalid for that port.

• The read was called by a kernel process.

Indicates one of the following:

• No mbuf or mbuf clusters are available.

• The total data length is more than a page.

• There is no memory for internal structures.

Indicates that the status queue pointer is null, and there are no entries.

Indicates that the port state in define device structure (DDS) is not in
Data Transfer mode or that the implicit halt of port failed.

Chapter 3. Special Files 3-69

mpqn

ENXIO Indicates one of the following:

• The port has not been started successfully.

• An invalid adapter number was specified.

• The channel number is illegal.

• The adapter is already open in Diagnostic mode.

• The ACB pointer is null or does not exist.

• The registration of the interrupt handler failed.

• The port does not exist or is not in proper state.

• The adapter number is out of range.

The communication device handler chapter defines specific errors returned on each
subroutine call.

Implementation Specifics
This file functions with the Multiprotocol device handler.

File
/usr/include/sys/devino.h Contains device types and information.

Related Information
The open subroutine, close subroutine, read or readx subroutine, write or writex
subroutine.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access to Special Files, Understanding Major and Minor Numbers for a
Special File, and Understanding Raw 1/0 Access to Block Special Files in Kernel ·
Extensions and Device Support Programming Concepts.

3-70 AIX Files Reference

null

null Special File

Purpose
Provides access to the null device, typically for writing to the bit bucket.

Description
The null special file provides character access to the null device driver. This device driver is
normally accessed to write data to the bit bucket (when the data is to be discarded).

Usage Considerations
The open and close Subroutines

The null device can be opened by using the open subroutine with the /dev/null special file
name. The close subroutine should be used when access to the null device is no longer
required.

The read and write Subroutines

Data written to this file is discarded. Reading from this file always returns 0 bytes.

The ioctl Subroutine

There are no ioctl operations available for use with the null special file. Any ioctl operation
issued returns with the ENODEV error type.

Implementation Specifics
The null special file is part of AIX Base Operating System (BOS) Runtime.

File
/dev/null

Related Information
The open subroutine, close subroutine, ioctl subroutine.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special Files, Understanding Character 1/0 Device
Drivers, and Understanding Pseudo-Device Drivers in Kernel Extensions and Device
Support Programming Concepts.

Chapter 3. Special Files 3-71

nvram

nvram Special File

Purpose
Provides access to platform-specific nonvolatile RAM used for system boot, configuration,
and fatal error information. This access is achieved through the machine 1/0 device driver.

Description
The nvram character special file provides access to the machine pseudo-device driver for
accessing or modifying machine-specific nonvolatile RAM. The appropriate privilege is
required to open this special file. This special file is used by machine-specific configuration
programs to store or retrieve configuration and boot information using the nonvolatile RAM
or ROM provided on the machine.

The /dev/nvram character special file allows character mode access to the nonvolatile RAM
and selected parts of ROM as a multiplexed device where each channel provides access to
a separately allocated section of nonvolatile memory. When opening the nvram special file
as a multiplexed device, the special file name is /dev/nvram/n, where n is the channel
number (for example, /dev/nvram/O). This special file supports open, close, read, write,
and ioctl operations.

The machine device driver also allows read access of the compressed PCAT BIOS code
provided in system nonvolatile memory. To read the PCAT BIOS code, this special file must
be opened with the channel name of pcbios as follows:

/dev/nvram/pcbios

For additional information concerning the use of this special file to access machine specific
nonvolatile RAM, please refer to the Machine Device Driver information.

Note: Application programs should not generally access other channels supported by this
special fie. Because nonvolatile RAM is platform-specific, any reliance on its
presence and implementation places portability constraints upon the using
application. In addition, accessing the nonvolatile RAM may cause loss of system
boot and configuration information. Such loss could require system administrative or
maintenance task work to rebuild or recover.

Usage Considerations
The open and close Subroutines

The machine device driver supports the /dev/nvram special file as a multiplexed character
special file. This special file name in conjunction with the pcbios channel name can be used
to access the machine device driver to read the compressed PCAT BIOS code stored in the
system read-only memory (ROM).

This compressed PCAT BIOS code may be uncompressed and used by an application
program to assist in providing PC simulation on the RISC System/6000 platform. Multiple
concurrent opens to this channel are not supported by the machine device driver and return
an error.

The read, write, and lseek Subroutines

The read subroutine is supported after a successful open of the /dev/nvram special file with
a channel name of pcbios. The read operation starts transferring data at the location in
nonvolatile memory associated with the PCAT BIOS code with an offset specified by the
offset value associated with the file pointer being used on the subroutine.

3-72 AIX Files Reference

nvram

On a read subroutine, if the end of the data area is reached before the transfer count is
reached, the number of bytes read before the end of the data area was reached is returned.
If the read starts after the end of the data area, an error of ENXIO is returned by the driver.

The lseek subroutine may be used to change the starting read offset within the non-volatile
memory data area associated with the compressed PCAT BIOS code. The write subroutine
is not supported on this channel and results in an error return of ENODEV.

The ioctl Subroutine

The following ioctl commands can be is~ued to the machine device driver after a successful
open of the pcbios channel using the /dev/nvram special file:

IOCINFO Returns machine device driver information in the caller's devinfo structure,
as pointed to by the arg parameter to the ioctl subroutine. This structure is
defined in the sys/devinfo.h header file. The device type for this device
driver is DD_PSEU.

Error Conditions

The following error conditions can be returned when accessing the machine device driver
using the /dev/nvram special file name:

EBUSY

EFAULT

ENXIO

ENODEV

ENOMEM

An open operation was requested for a channel that is already open.

A buffer specified by the caller was invalid on a read, write or ioctl
subroutine call.

A read operation was attempted past the end of the data area specified by
the channel.

A write operation was attempted to the read-only pcbios channel.

A request was made with a user-supplied buffer that is too small for the
requested data.

Implementation Specifics

Files

For additional information concerning the data areas accessed by other channels associated
with the /dev/nvram special file, refer to the Machine Device Driver documentation in the
Device Configuration Subsystem: Programming Introduction.

The nvram special fie is part of AIX Base Operating System (BOS) Runtime.

/dev/nvram/O, /dev/nvram/1, ... /dev/nvram/n

Chapter 3. Special Files 3-73

nvram

Related Information
The open subroutine, close subroutine, read subroutine, write subroutine, lseek
subroutine, ioctl subroutine.

The format of the compressed PCAT BIOS code provided in system nonvolatile memory is
described in the POWERstation and POWERserver Hardware Technical
Reference - General Information.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special FilesUnderstanding Device Driver Classes,
Understanding Block 1/0 Device Drivers, Providing Raw 1/0 Access in a Block Device Driver,
Providing Raw 1/0 Support, Understanding Character 1/0 Device Drivers, Multiplexed
Support in Character 1/0 Device Drivers, Understanding Pseudo-Device Drivers, and The
Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

3-7 4 AIX Files Reference

pty Special File

Purpose

pty

Provides the pseudo terminal (PTY) device driver.

Description
The pty device driver provides support for a pseudo terminal. A pseudo terminal includes a
control and slave pair of character devices. The slave device provides to processes
essentially the same interface as provided by the tty device driver. However, instead of
providing support for a hardware device, the slave device is manipulated by another process
through the control half of the pseudo terminal. That is, anything written on the control
device is given to the slave device as input and anything written on the slave device is
presented as input on the control device.

In the AIX Version 2 and Berkeley PTY subsystems, commands had to search for an unused
pseudo terminal by opening each control side sequentially. The control side could not be
opened if it was already in use. Thus, the opens would fail, setting the errno variable to EIO,
until an unused pseudo terminal was found. The current version of AIX simplifies this
process by using two multiplexed special files, /dev/ptc and /dev/pts. A multiplexed special
file refers to a special file with an added attribute that indicates a channel number. When the
multiplexed file is opened directly, the pty device driver allocates an unused channel and
opens the associated file. A multiplexed file can also be opened by entering an extension
after the normal path name. The pty device driver interprets the extension as a request to
open the specified channel. (For example, if /dev/ptc/23 is entered, the pty device driver'
opens ptc channel 23.)

By opening the multiplexed files directly with /dev/ptc, an application can quickly open the
control and slave sides of an unused pseudo terminal. The name of the corresponding slave
side can be retrieved using the ttyname subroutine, which always returns the name of the
slave side, even if the control side was opened first.

When the pty device driver is configured into the system, a system management parameter
for the pty device driver determines the number of symbolic links that are made to the
multiplexed special files. For example, /dev/ptypO is linked to /dev/ptc/O and
/dev/ttypO is linked to /dev/pts/O. These symbolic links are created for applications
that use the Berkeley PTY naming convention when addressing pseudo terminals.

The following ioctl commands apply to pseudo terminals:

TIOCSTOP

TIOCSTART

TIOCPKT

Stops output to a terminal. This is the same as typing the Ctrl-s key
combination. No parameters are allowed for this command.

Restarts output that was stopped by a TIOCSTOP command or by the
Ctrl-s key combination. No parameters are allowed for this command.

Enables and disables the packet mode. Packet mode is enabled by
specifying (by reference) a non-zero parameter. It is disabled by
specifying (by reference) a zero parameter. When applied to the control
side of a pseudo terminal, each subsequent read from the terminal
returns data written on the slave part of the pseudo terminal preceded
either by a zero byte (symbolically defined as TIOCPKT _DATA) or by a
single byte that reflects control status information. In the latter case, the
byte is an inclusive or of zero or more of the following bits:

Chapter 3. Special Files 3-75

pty

TIOCUCNTL

TIOCPKT _FLUSHREAD

TIOCPKT _FLUSHWRITE

TIOCPKT_STOP

TIOCPKT _START

TIOCPKT _DOSTOP

TIOCPKT _NOSTOP

The read queue for the terminal is
flushed.

The write queue for the terminal is
flushed.

Output to the terminal is stopped with
Ctrl-s.

Output to the terminal is restarted.

The stop character as defined by the
current TTY line discipline is Ctrl-s; the
start character as defined by the line
discipline is Ctrl-q.

The start and stop characters are not
Crtl-s and Ctrl-q.

While this mode is in use, the presence of control status information to be
read from the control side can be detected by a select for exceptional
conditions.

This mode is used by the rlogin command and the rlogind command to
log in to a remote host and implement remote echoing and local Ctrl-s
and Ctrl-q flow control with proper back-flushing of output.

Enables and disables a mode that allows a small number of simple user
ioctl commands to be passed through the pseudo terminal, using a
protocol similar to that of the TIOCPKT mode. The TIOCUCNTL and
TIOCPKT modes are mutually exclusive.

This mode is enabled from .the control side of a pseudo terminal by
specifying (by reference) a non-zero parameter. It is disabled by
specifying (by reference) a zero parameter. Each subsequent read from
the control side will return data written on the slave part of the pseudo
terminal preceded either by a zero byte or by a single byte that reflects a
user control operation on the slave side. A user control command
consists of a special ioctl operation with no data; the command is given
as UIOCCMD(Value), where the Value parameter is a number in the
range 1 through 255. The operation value is received as a single byte on
the next read from the control side. A value of O (zero) can be used with
the UIOCCMD ioctl to probe for the existence of this facility; the zero is
not made available for reading by the master side. Command operations
can be detected with a select for exceptional conditions.

TIOCREMOTE A mode for the control half of a pseudo terminal, independent of
TIOCPKT. This mode causes flow control rather than input editing to be
implemented for input to the pseudo terminal, regardless of the terminal
mode. Each write to the control terminal produces a record boundary for
the process reading the terminal. In normal usage, a write of data is like
the data typed as a line on the terminal; a write of O bytes is like typing an
end-of-file character. This mode is used for remote line editing in a
window manager and flow controlled input.

Implementation Specifics
This device driver is provided for Berkeley compatibility.

This file is part of AIX Base Operating System (BOS) Runtime.

3-76 AIX Files Reference

· Files
/dev/pty[p-r][0-9a-f]

/dev/tty[p-r][0-9a-f]

The control pseudo terminal.

The slave pseudo terminal.

pty

Related Information
The ipctl subroutine, ttyname subroutine.

The rlogin command, rlogind command.

For general information about special files, refer to the Special Files Overview. For general
information about the TTY subsystem, refer to the TTY Subsystem Overview in General
Programming Concepts.

Chapter 3. Special Files 3-77

rhdisk

rhdisk Special File

Purpose
Provides raw 110 access to the physical volumes (fixed-disk) device driver.

Description
The rhdisk special file provides raw 110 access and control functions to the physical disk
device drivers for the physical disks on the RISC System/6000 machine platforms. Raw 1/0
access is provided through the /dev/rhdiskO, /dev/rhdisk1, ... , character special files.

Direct access to physical disks through block special files should be avoided. Such access
can impair performance and also cause data consistency problems between data in the
block 1/0 buffer cache and data in system pages. The /dev/hdisk block special files are only
provided for system use in managing file systems, paging devices and logical volumes.

The prefix of r on the special file name indicates that the drive is to be accessed as a raw
device rather than a block device. Performing raw 1/0 with a fixed-disk requires that all data
transfers be in multiples of the disk block size. Also, all lseek subroutines that are made to
the raw disk device driver must result in a file pointer value that is a multiple of the disk block
size.

Usage Considerations
Warning: POTENTIAL FOR DATA CORRUPTION OR SYSTEM CRASHES: Data
corruption, loss of data, or loss of system integrity will occur if devices supporting paging,
logical volumes, or mounted file systems are accessed using block special files. Block
special files are provided for logical volumes and disk devices on AIX and are solely for
system use in managing file systems, paging devices and logical volumes. They should not
generally be used for other purposes. Additional information concerning the use of special
files may be obtained in Understanding 1/0 access Through Special Files.

The open and close Subroutines

The openx subroutine is supported to provide additional functions to the open sequence.
The openx operation requires appropriate permission to execute. Attempting to execute this
subroutine without the proper permission results in a return value of -1 with the errno global
variable set to the value EPERM.

The read and write Subroutines

The readx and writex subroutines are supported to provide for additional parameters
affecting the raw data transfer. The ext parameter is used to specify certain options that
apply to the request being made. The options are constructed by logically ORing zero or
more of the following values:

WRIT EV

HWRELOC

3-78 AIX Files Reference

Perform physical write verification on this request. This operation can
only be used with the writex subroutine.

Perform hardware relocation of the specifed block before the block is
written. This is done only if the drive supports safe relocation. Safe
relocation ensures that once the relocation is started, it will complete
safely regardless of power outages. This operation can only be used with
the writex subroutine.

UNSAFER EL

rhdisk

Perform hardware relocation of the specifed block before the block is
written. This is done if the drive supports any kind of relocation (safe or
unsafe). This operation can only be used with the writex subroutine.

The ioctl Subroutine

One ioctl operation is defined for all device drivers that support the ioctl subroutine call.
This is the IOCINFO operation. The remaining ioctl operations are all specific to physical
disk devices. Diagnostic mode is not required for the IOCINFO operation.

The IOCINFO ioctl operation

The IOCINFO ioctl operation returns a structure (defined in the <sys/devinfo.h> header
file) for a device type of DD_DISK.

Error Conditions

In addition to those errors listed for the ioctl, open, read, and write subroutines, the
following other error types are possible:

EACCES

EACCES

EA CC ES

EINVAL

EINVAL

EINVAL

EMEDIA

ENXIO

ENXIO

EIO

EIO

EM FILE

EPERM

An open subroutine call has been made to a device in diagnostic mode.

A diagnostic openx subroutine call has been made to a device already
opened.

A diagnostic ioctl operation has been attempted when not in diagnostic
mode.

An nbyte parameter to a read or write subroutine is not a multiple of the
disk block size.

An unsupported ioctl operation has been attempted.

An unsupported readx or writex operation has been attempted.

The target device has indicated an unrecovered media error.

A parameter to the ioctl subroutine is invalid.

A read or write subroutine has been attempted beyond the end of the disk.

The target device cannot be located or is not responding.

The target device has indicated an unrecovered hardware error.

An open operation has been attempted for an adapter that already has the
maximum permissible number of opened devices.

The caller lacks the appropriate privilege.

Implementation Specifics
The SCSI Subsystem Programming Introduction and SCSI scdisk device driver provide
further information on implementation specifics.

The rhdisk special file is part of AIX Base Operating System (BOS) Runtime.

Chapter 3. Special Files 3-79

rhdisk

Files
/dev/rhdiskO, /dev/rhdisk1, ... /dev/rhdiskn
/dev/hdiskO, /dev/hdisk1, ... /dev/hdiskn

Related Information
The open subroutine, close subroutine, read subroutine, write subroutine, lseek
subroutine, ioctl subroutine.

The SCSI scdisk device driver.

The Special Files Overview, which presents general information about special files.

The SCSI Subsystem Programming Introduction in General Programming Concepts.

Understanding 1/0 Access Through Special Files, Understanding Device Driver Classes,
Understanding Block 1/0 Device Drivers, Understanding Character 1/0 Device Drivers, and
Providing Raw 1/0 Support in Kernel Extensions and Device Support Programming
Concepts.

3-80 AIX Files Reference

rmt Special File

Purpose

rmt

Provides access to the sequential access bulk storage medium device driver.

Description
Magnetic tapes are used primarily for backup, file archives, and other off-line storage. Tapes
are accessed through the /dev/rmtO, ... , /dev/rmt255 special files. The r in the special file
name indicates raw access through the character special file interface. A tape device does
not lend itself well to the category of a block device. Thus, only character interface special
files are provided.

Special files associated with each tape device determine what action is taken during open or
close operations. These files also dictate, for applicable devices, at what density data is to
be written to tape. The following figure shows the names of these special files and their
corresponding characteristics.

Special File Name Rewind-on-Close Retension-on-Open Bytes per Inch

/dev/rmt* Yes No HIGH

/dev/rmt* .1 No No HIGH

/dev/rmt*.2 Yes Yes HIGH

/dev/rmt* .3 No Yes HIGH

/dev/rmt* .4 Yes No LOW

/dev/rmt* .5 No No LOW

/dev/rmt* .6 Yes Yes LOW

/dev /rmt*. 7 No Yes LOW

Note: The density value (bytes per inch) is ignored when using a magnetic tape device that
does not support multiple densities. For tape drives that do support multiple
densities, the density value only applies when writing to the tape. When reading, the
drive defaults to the density at which the tape is written.

For the 9-track tape drive, the special file with the low-density attribute specifies the tape is
to be written at 1600 bpi. The special file with the high-density attribute specifies the tape is
to be written at 6250 bpi.

For the quarter-inch (QIC) tape drive, the special file with the low-density attribute specifies
the tape is to be written using the QIC-120 standard density. The special file with the
high-density attribute specifies the tape is to be written using the QIC-150 standard density.

Usage Considerations
Most tape operations are implemented using the open, read, write, and close subroutines.
However, for diagnostic purposes, use of the openx is required.

Chapter 3. Special Files 3-81

rmt

The open and close Subroutines

Care should be taken when closing a file after writing. If the application reverses over the
data just written, no file marks will be written. However, for tape devices that allow for block
update, unless the application spaces in the reverse direction or returns the tape position to
the beginning of the tape (BOT), one or two file marks will be written upon closing the
device. (The number of file marks depends on the special file type.)

For multi-tape jobs, the special file must be opened and closed for each tape. The user is
not allowed to continue if the special file is opened and the tape has been changed.

T:1e openx operation is intended primarily for use by the diagnostic commands and utilities.
Appropriate authority is required for execution. Executing this subroutine without the proper
authority results in an openx return value of -1 with the errno global variable set to the
EPERM value.

The read and write Subroutines

When opened for reading or writing, the tape is assumed to be positioned as desired. When
the tape is opened as no-rewind-on-close (/dev/rmt* .1) and a file is written, a single file
mark is written upon closing the tape. When the tape is opened as rewind-on-close
(/dev/rmt*) and a file is written, a double tape file mark is written upon closing the tape.
When the tape is opened as no-rewind-on-close and reads from a file, the tape is positioned
upon closing after the end of file (EOF) mark following the data just read.

By specifically choosing the rmt file, it is possible to create multiple file tapes.

Although tapes are accessed through character interface special files, the number of bytes
required by either a read or write operation must be a multiple of the blocksize defined for
the magnetic tape device.

During a read, the record size is returned as the number of bytes read, up to the buffer size
specified. If an EOF condition is encountered, then a zero-length read is returned, with the
tape positioned after the EOF.

An end of media (EOM) condition encountered during a read or write operation results in the
return of the number of bytes successfully ready or written. When a write is attempted after
the device has reached EOM, a value of-1 is returned with the errno global variable set to
the ENXIO value. When a read is attempted after the device has reached EOM, a
zero-length read is returned. Successive reads continue to return a zero-length read.

Data Buffering With a Tape Device

Some tape devices contain a data buffer to maximize date transfer speed when writing to
tape. It is useful to note that a write operation sent to tape is returned as complete when the
data has been transferred to the tape device data buffer. The data in the buffer is then
written to tape asynchronously. This permits increased data transfer speed since the host
need not wait for 1/0 completion.

Two modes are provided by the tape device driver to facilitate use of these data buffers.
The non-buffered mode causes writes to tape to bypass the data buffer and go directly to
tape. In buffered mode, all write subroutines are returned as complete when the transfer
data has been successfully written to the tape device buffer. The device driver does not
flush the data buffer until the special file is closed or EOM is encountered.

If an EOM is encountered while running in buffered mode, the device attempts to flush the
device data buffer. It is possible for the residual count to exceed the write transfer length in
the case of buffered mode. In some cases, the flushing of residual data may actually run the

3-82 AIX Files Reference

rmt

tape off the reel. Either case is considered a failure and results in a return value of -1 with
the errno global variable set to the value EIO. These errors can require the user to run in
non-buffered mode.

Note: The following points must be taken into consideration when using the rmt special file:

1. Failures that result in a device reset while reading or writing to tape require the
special file to be closed and the job restarted. Any commands issued after this
condition occurs and until the special file is closed will result in a return value of -1
and errno is set to the value EIO. Non-reset type errors (that is, media or
hardware errors) result in the tape being left positioned where the error occurred.

2. For multi-tape jobs, the special file must be opened and closed for each tape. The
user is not allowed to continue if the special file is opened and the tape has been
changed.

3. A signal received by the tape device driver will cause the current command to
abort. This allows the application to halt time-consuming commands (that is, an
erase operation) without re-cycling the drive power or waiting for a time-out to
occur.

The ioctl Subroutine

One ioctl operation is defined for all device drivers that use the ioctl subroutine. This is the
IOCINFO operation. For the rmt special file, the STIOCTOP operation has also been
defined.

The IOCINFO ioctl operation

The IOCINFO ioctl operation returns a structure defined in the <sys/devinfo.h> header file.

The STIOCTOP ioctl operation

The STIOCTOP ioctl operation provides for command execution such as erase and
retension. The parameter to the ioctl subroutine using the STIOCTOP operation is the
address of a stop structure, as defined in the <sys/tape.h> header file.

The operation found in the st_op field in the stop structure is performed st_count times,
except with rewind, erase, and retension. The available operations are:

STREW Rewind.

ST ERASE Erase tape; leave at load point.

STRETEN Retension tape; leave at load point.

STWEOF Write and end-of-file mark.

STFSF Forward space file.

STFSR Forward space record.

STRSF Reverse space file.

STRSR Reverse space record.

Note: Execution of the preceding commands is dependent on the particular tape device
and which commands are supported. If the command is not supported on a
particular device, a value of -1 is returned with the errno global variable set to the
value EINVAL.

Chapter 3. Special Files 3-83

rmt

Error Conditions

In addition to general error types listed for ioctl, open, read, and write subroutines, the
following specific error types may also occur:

EA GAIN

EBUSY

EINVAL

EINVAL

EINVAL

EINVAL

EIO

EIO

EMEDIA

ENXIO

ENOTREADY

EPERM

ETIMEDOUT

EWRPROTECT

EWRPROTECT

An open operation was attempted to a device that is already open.

The target device is reserved by another initiator.

O_APPEND is supplied as a mode in which to open.

An nbyte parameter to a read or write subroutine is not an even
multiple of the blocksize.

A parameter to the ioctl subroutine is invalid.

The requested ioctl operation is not supported on the current device.

Could not space forward or reverse st_count records before
encountering EOM or a file mark.

Could not space forward or reverse st_count file marks before
encountering EOM.

The tape device has encountered an unrecoverable media error.

A write operation was attempted while the tape is at end of media.

There is no tape in the drive or the drive is not ready.

The requested subroutine requires appropriate authority.

A command has timed out.

An open operation for read/write was attempted on a read-only tape.

An ioctl operation that effects media was attempted on a read-only
tape.

Implementation Specifics
The SCSI rmt device driver provides further information about implementation specifics.

The rmt special file is part of AIX Base Operating System (BOS) Runtime.

Files
/dev/rmtO, /dev/rmt0.1, /dev/rmt0.2, ... , /dev/rmt0.7
/dev/rmt1, /dev/rmt1 .1, /dev/rmt1 .2, ... , /dev/rmt1. 7 ...
/dev/rmt255, /dev/rmt255.1, /dev/rmt255.2, ... , /dev/rmt255.7

Related Information
The open subroutine, close subroutine, read subroutine, write subroutine, ioctl subroutine.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special Files , Understanding Device Driver Classes,
Understanding Block 1/0 Device Drivers, and Understanding Character 1/0 Device Drivers
in Kernel Extensions and Device Support Programming Concepts.

3-84 AIX Files Reference

scsi Special File

Purpose
Provides access to the SCSI adapter driver.

Description

scsi

The scsi special file provides an interface to an attached SCSI adapter. This special file
should not be opened directly by application programs (with the exception of diagnostics
applications).

Usage Considerations
The SCSI Adapter Device Driver provides information on using the SCSI adapter.

Implementation Specifics

File

The SCSI Adapter Device Driver provides information on implementation specifics of the
SCSI adapter.

The scsi special file is part of AIX Base Operating System (BOS) Runtime.

/dev/scsiO, /dev/scsi1, ...

Related Information
The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access Through Special Files and SCSI Subsystem Programming
Introduction in Kernel Extensions and Device Support Programming Concepts.

Chapter 3. Special Files 3-85

to kn

tokn Special File

Purpose
Provides access to the Token-Ring adapters by way of the Token-Ring device handler.

Description
The tokn character special file provides access to the Token-Ring device handler which
provides access to a Token-Ring Local Area Network. The device handler supports up to
four Token-Ring adapters.

Usage Considerations
When accessing the Token-Ring device handler, the following should be taken into account:

• Driver Initialization and Termination

The device handler may be loaded and unloaded. The device handler supports the
configuration calls to initialize and terminate itself.

• Special File Support

Calls other than the open and close subroutines are discussed based on the mode in
which the device handler is operating.

Subroutine Support
The Token-Ring device handler provides specific support for the open, close, read, write,
and ioctl subroutines.

The open and close Subroutines

The device handler supports the /dev/tokn special file as a character-multiplex special file.
The special file must be opened for both reading and writing (O_RDWR). There are no
particular considerations for closing the special file. The special file name used in an open
call differs depending upon how the device is to be opened. Types of special file names are:

/dev/tokn Starts the device handler for the selected port, where the value of n is 0 <=
n<= 7.

/dev/tokn/D Starts the device handler for the selected port in Diagnostic mode, where
the value of n is O <= n <= 7.

/dev/tokn/W Starts the device handler for the selected port in Diagnostic Wrap mode,
where the value of n is 0 <= n <= 7.

The read Subroutine

Can take the form of a read, readx, readv, or readvx subroutine. For this call, the device
handler copies the data into the buffer specified by the caller.

The write Subroutine

Can take the form of a write, writex, writev, or writevx subroutine. For this call, the device
handler copies the user data into a kernel buffer and transmits the data on the LAN.

3-86 AIX Files Reference

to kn

The ioctl Subroutine

The Token-Ring device handler supports the following ioctl operations:

IOCINFO

CIO_START

CIO_HALT

CIO_QUERV

CIO_GET_STAT

TOK_QVPD

TOK_GRP _ADDR

TOK_FUNC_ADDR

TOK_RING_INFO

Error Conditions

Returns a structure of device information to the user specified
area. The devtype field is DD_NET_DH and the devsubtype
field is DD_ TR, as defined in the <sys/devinfo.h> file.

Starts a session and registers a network ID.

Halts a session and removes a network ID from the network ID
table.

Returns the current counter values, as defined in the
<sys/comio.h> and <Sys/tokuser.h> file.

Returns current adapter and device handler status.

Returns adapter vital product data.

Allows the setting of the active group address for the Token-Ring
adapter.

Allows the setting of a functional address for the Token-Ring
adapter.

Returns information about the Token-Ring device.

The following error conditions may be returned when accessing the device handler through
the dev/tokn special file:

EACCES

EA GAIN

EBUSV

EEXIST

EFAULT

Indicates that permission to access the adapter is denied for one of
the following reasons:

• Device has not been configured.

• Diagnostic mode open request denied.

• The call is from a kernel-mode process.

Indicates that the transmit queue is full.

Indicates one of the following:

• The device is already opened in Diagnostic mode.

• The maximum number of opens has already been reached.

• The request is denied.

• The device is in use.

• The device handler cannot terminate.

Indicates that the device is already configured or the device handler
is unable to remove the device from switch table.

Indicates that the an invalid address or parameter was specified.

Chapter 3. Special Files 3-87

to kn

EINTR

EINVAL

ENOCONNECT

ENETDOWN

ENO ENT

ENOMEM

ENO MSG

ENOS PC

EADDRINUSE

ENXIO

ENETUNREACH

EMSGSIZE

Indicates that the subroutine was interrupted.

Indicates one of the following:

• The parameters specified were invalid.

• The define device structure (DDS) is invalid.

• The device handler is not in Diagnostic mode.

Indicates that the device has not been started.

Indicates that the network is down and the device handler is unable
to process the command.

Indicates that there was no DDS available.

Indicates that the device handler was unable to allocate required
memory.

Indicates that there was no message of desired type.

Indicates that the network ID table is full or the maximum number of
opens was exceeded.

Indicates that the specified network ID is in use.

Indicates that the specified minor number was invalid.

Indicates that the device handler is in Network Recovery mode and
is unable to process the write operation.

Indicates that the data is too large for the supplied buffer.

Implementation Specifics
This file functions with the Token-Ring Device Handler.

Related Information
The open subroutine, close subroutine, read or readx subroutine, write or writex
subroutine.

Token-Ring Device Handler Overview in Communications Programming Concepts.

POWERstation and POWERserver Hardware Technical Reference - Options and Devices.

The Special Files Overview, which presents general information about special files.

Understanding 1/0 Access to Special Files, Understanding Major and Minor Numbers For A
Special File, and Understanding Raw 1/0 Access to Block Special Files in Kernel Extensions
and Device Support Programming Concepts

3-88 AIX Files Reference

trace

trace Special File

Purpose
Supports event tracing.

Syntax
#include <Sys/trcctl.h>

Description
The /dev/systrace and /dev/systrcctl special files support the monitoring and recording of
selected system events. Minor device O of the trace drivers is the interface between
processes that record trace events and the trace daemon. Trace events are written to the
/dev/systrace file by the trchk and trcgen subroutines and the trcgenk kernel service.
Minor devices 1 through 7 of the trace drivers support generic trace channels for tracing
system activities such as communications link activities.

Implementation Specifics

Files

The trace special file is part of AIX Base Operating System (BOS) Runtime.

/dev/systrace

/dev/systrcctl

Related Information
The trcgenk kernel service.

The Special Files Overview, which presents general information about special files.

RAS Kernel Services, Understanding 1/0 Access Through Special Files, Understanding
Major and Minor Numbers, Understanding Character 1/0 Device Drivers, Multiplexed
Support in Character 1/0 Device Drivers, and Understanding Pseudo-Device Drivers in
Kernel Extensions and Device Support Programming Concepts.

Chapter 3. Special Files 3-89

tty

tty Special File

Purpose
Supports the controlling terminal interface.

Description
For each process, the tty special file is a synonym for the controlling terminal associated
with that process. By directing messages to the tty file, application programs and shell
sequences can ensure that the messages are written to the terminal even if output is
redirected. Programs can also direct their display output to this file so that it is not necessary
to identify the active terminal.

A terminal can belong to a process as its controlling terminal. Each process of a session that
has a controlling terminal has the same controlling terminal. A terminal can be the controlling
terminal for one session at most. If a session leader has no controlling terminal and opens a
terminal device file that is not already associated with a session (without using the
O_NOCTTY option of the open subroutine), the terminal becomes the controlling terminal of
the session leader. If a process that is not a session leader opens a terminal file or the
O_NOCTTY option is used, that terminal does not become the controlling terminal of the
calling process. When a controlling terminal becomes associated with a session, its
foreground process group is set to the process group of the session leader.

The controlling terminal is inherited by a child process during a fork function. A process
cannot end the association with its controlling terminal by closing all of its file descriptors
associated with the controlling terminal if other processes continue to have the terminal file
open. A process that is not already the session leader or a group leader can break its
association with its controlling terminal using the setsid function; other processes remaining
in the old session retain their association with the controlling terminal.

When the last file descriptor associated with a controlling terminal is closed (including file
descriptors held by processes that are not in the controlling terminal's session), the
controlling terminal is disassociated from its current session. The disassociated controlling
terminal can then be acquired by a new session leader.

A process can also remove the association it has with its controlling terminal by opening the
tty file and issuing the following ioctl command:

ioctl (FileDescriptor, TIOCNOTTY, 0):

It is often useful to disassociate server processes from their controlling terminal so that they
cannot receive input from or be stopped by the terminal.

Implementation Specifics

File

This device driver supports the POSIX and Berkeley line disciplines as well as the AIX
Version 2 compatibility mode.

This file is part of AIX Base Operating System (BOS) Runtime.

/dev/tty The path to the tty file.

Related Information
The fork subroutine, open subroutine, setsid subroutine.

3-90 AIX Files Reference

Chapter 4. Header Files

Header Files Overview
Information that is needed by several different files or functions as well as information that is
likely to change is collected into a header file. A header file contains C-language definitions
and structures. Centralizing this type of information into a header file facilitates the creation
and update. of programs. Because #include statements are used to insert header files into a
C-language program, header files are often referred to as include files.

Header files can provide the following functions:

• Defining the structures of certain files and subroutines

• Defining type definition (typedef) synonyms for data types

• Defining system parameters or implementation characteristics

• Defining constants and macros that are substituted during the C language preprocessing
phase.

By convention, the names of header files end with .h (doth). The .h suffix is used by header
files that are provided with the AIX operating system; however, the suffix is not required for
user-generated header files.

Note: A few of the header files provided with the AIX operating system end with .inc
(include file).

Several header files are provided with the AIX operating system. Most of these can be found
in either the /usr/include directory or the /usr/include/sys directory. The AIX pg command
can be used to view the contents of a header file. More information about the following
header files is provided in this documentation:

a.out.h

acct.h

ar.h

audit.h

core.h

dirent.h

fcntl.h

flock.h

fullstat.h

hft.h

limits.h

math.h

mode.h

param.h

poll.h

sem.h

sgtty.h

Refer to the a.out file format.

Refer to the acct file format.

Refer to the ar file format.

Refer to the audit file format.

Refer to the core file format.

Describes the format of a file system-independent directory entry.

Defines values for the fcntl and open subroutines.

Defines the file control options.

Describes the data structure returned by the fullstat and ffullstat
subroutines.

Defines the interface to the HFT device driver.

Defines implementation limits identified by the IEEE POSIX 1003 standard.

Defines math subroutines and constants

Defines the interpretation of a file mode.

Defines certain hardware-dependent parameters.

Defines the pollfd structure used by the poll subroutine.

Describes the structures that are used by subroutines that perform
semaphore operations.

Defines structures used by the Berkeley terminal interface.

SNA luxsna.h Defines structures used by the Berkeley terminal interface.

4-2 AIX Files Reference

srcobj.h

stat.h

statfs.h

termio.h

termios.h

types.h

unistd.h

utmp.h

values.h

vmount.h

x25sdefs.h

Defines structures used by the System Resource Controller (SAC)
subsystem.

Describes the data structure returned by the status subroutines.

Describes the structure of the statistics returned by the status subroutines.

Defines structures used by the terminal interface for the AIX Version 2
compatibility mode.

Defines structures used by the POSIX terminal interface.

Defines primitive system data types.

Defines POSIX implementation characteristics.

Defines the format of certain user and accounting information files.

Defines hardware-dependent values.

Describes the structure of a mounted file system.

Contains the structures used by the X25 application programming interface.

3270 Host Connection Program/6000 (HCON) Header Files
HCON fxconst.inc

Defines HCON fxter function constants for Pascal language file transfers.

HCON fxfer.h Defines HCON fxc and fxs data structures for C language file transfers.

HCON fxfer.inc Contains HCON fxc and fxs records for Pascal language file transfers.

HCON fxhfile.inc
Contains HCON external declarations for Pascal language file transfers.

HCON g32_api.h
Contains HCON API symbol definitions and data structures for the C
language.

HCON g32const.inc
Defines HCON API constants for the Pascal language.

HCON 32hfile.inc
Contains HCON API external definitions for the Pascal language.

HCON g32_keys.h
Enables HCON API in Mode_3270 for C language subroutines.

HCON g32keys.inc File
Contains common HCON API key value definitions for the Pascal language.

HCON g32types.inc File
Defines HCON API data types for the Pascal language.

Socket Header Files
in.h Defines Internet constants and structures.

nameser.h Contains Internet nameserver information.

netdb.h Contains data definitions for socket subroutines.

resolv.h Contains resolver global definitions and variables.

socket.h Contains data definitions and socket structures.

socketvar.h Defines the kernel structure per socket and contains buffer queues.

un.h Defines structures for the Interprocess Communication domain.

Chapter 4. Header Files 4-3

Example
If a C program contains the following statement, the text of the mode.h file is inserted into
the program when it is compiled.

#include <sys/mode.h>

In the C preprocessing stage, the angle brackets(<>) are interpreted as /usr/include/, so
that this statement includes the mode.h file from the /usr/include/sys directory.

Related Information
The pg command.

The File Formats Overview, which defines and describes file formats in general and lists file
formats discussed in this documentation.

The Special Files Overview, which defines and describes special files in general and lists
special files discussed in this documentation.

4-4 AIX Files Reference

dirent.h

dirent.h File

Purpose
Describes the format of a file system-independent directory entry.

Description
The dirent.h header file describes the format of a directory entry without reference to the
type of underlying file system.

The dirent structure is used in the directory access operations. Using these access
operations and the dirent structure along with its associated constants and macros shields
you from the details of implementing a directory and provides a consistent interface to
directories across all types of file systems.

The dirent structure defined in the dirent.h header file contains the following members for
each directory entry:

ulong_t d_offset;
ino t d_ino;
ushort t d_reclen;
ushort_t d_namlen;
char d_name[_D_NAME_MAX+l];

/* actual offset of this entry */
/* inode number of entry */
/* length of this entry */
/* length of string in d_name
/* name of entry (filename) */

_D_NAME_MAX is a constant that indicates the maximum number of bytes in a file name for
all file systems. (Related to this constant is PATH_MAX, which is the maximum number of
bytes in the full path name of a file, also not including the terminating null byte.)

The value of _D_NAME_MAX is specific to each file system type. It can only be determined via
the pathconf and fpathconf subroutines.

The size of a dirent structure depends on the number of bytes in the file name.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics

File

_D_NAME_MAX and PATH_MAX are maximum file names and path names defined across
all types of file systems. Each file system can define constants applicable only to that
specific file system. However, using file system-specific constants and directory structures
makes it very difficult to port code across different types of file systems.

This file is part of AIX Base Operating System (BOS) Runtime.

/usr/include/dirent.h The path to the dirent.h header file.

Related Information
The pathconf, fpathconf subroutines.

The dir file.

Chapter 4. Header Files 4-5

fcntl.h

fcntl.h File

Purpose
Defines file control options.

Description
The fcntl.h header file defines the values that can be specified for the Command and
Argument parameters of the fcntl subroutine, and for the Oflag parameter of the open
subroutine. The file status flags of an open file are described in the following paragraphs.

The following flag values are accessible only to the open subroutine:

O_RDONLY Read only.

O_WRONLY Write only.

O_RDWR Read and write.

O_CREAT Open with file create (uses the third open argument).

O_ TRUNC Open with truncation.

O_EXCL Exclusive open.

O_NOCTTY Do not assign a controlling terminal.

O_RSHARE Read shared open.

O_NSHARE Read shared open.

The following mask is used to determine the file access mode:

O_ACCMODE

The following file status flags are accessible to both the open subroutine and the fcntl
subroutine:

O_NONBLOCK POSIX non-blocking 1/0.

FNONBLOCK POSIX non-blocking 1/0.

O_APPEND An append with writes guaranteed at the end.

FAPPEND An append with writes guaranteed at the end.

O_SYNC Synchronous write option.

FSYNC Synchronous write option.

FASYNC Asynchronous 1/0.

O_NDELAY Non-blocking 1/0.

FNDELAY Non-blocking 1/0.

4-6 AIX Files Reference

File

The following file status flags are accessible to the open subroutine:

O_DEFER

O_DELAY

Defered update.

Open with delay.

The following file descriptor flag is accessible to the fcntl subroutine:

FD_CLOEXEC Close this file during an exec.

The Command values for the fcntl subroutine (the fcntl subroutine requests) are:

F_DUPFD Duplicate the file description.

F_GETFD Get the file description flags.

F_SETFD Set the file description flags.

F _GETFL Get the file flags.

F _SETFL Set the file flags.

F _GETLK Get the file lock.

F_SETLK Set the file lock.

F_SETLKW Set the file lock and wait.

F_GETOWN Get the descriptor owner.

F_SETOWN Set the descriptor owner.

fcntl.h

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

/usr/include/fcntl.h The path to the fcntl.h header file.

Related Information
The fcntl subroutine, open subroutine.

Chapter 4. Header Files 4-7

flock.h

flock.h File

Purpose
Defines file control options.

Description
The flock structure in the flock.h header file, which describes a lock, contains the following
fields:

l_type

I_ whence

Describes the type of lock. If the value of the Command parameter to the
fcntl subroutine is F _SETLCK or F _SETLCKW, the l_type field indicates the
type of lock to be created. Possible values are:

F_RDLCK
F_WRLCK
F_UNLCK

A read lock is requested.
A write lock is requested.
Unlock. An existing lock is to be removed.

If the value of the Command parameter to the fcntl subroutine is
F _GETLCK, the l_type field describes an existing lock. Possible values are:

F_RDLCK
F_WRLCK
F_UNLCK

A conflicting read lock exists.
A conflicting write lock exists.
No conflicting lock exists.

Defines the starting offset. The value of this field indicates the point from
which the relative offset, the l_start field, is measured. Possible values are:

SEEK_ SET
SEEK_ CUR
SEEK_END

The relative offset is measured from the start of the file.
The relative offset is measured from the current position.
The relative offset is measured from the end of the file.

These values are defined in the unistd.h header file.

I_ start

l_len

l_sysid

l_pid

l_vfs

Defines the relative offset in bytes, measured from the starting point in the
l_whence field.

Specifies the number of consecutive bytes to be locked.

Contains the ID of the node that already has a lock placed on the area
defined by the fcntl subroutine. This field is returned only when the value of
the Command parameter is F _GETLK.

Contains the ID of a process that already has a lock placed on the area
defined by the fcntl subroutine. This field is returned only when the value of
the Command parameter is F _GETLK.

Specifies the file system type of the node identified in the l_sysid field.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

4-8 AIX Files Reference

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/usr/include/sys/flock.h

Related Information
The unistd.h file.

The path to the flock.h header file.

The fcntl subroutine, lockf subroutine, flock subroutine, openx subroutine.

flock.h

Chapter 4. Header Files 4-9

fullstat.h

fullstat.h File

Purpose
Defines the data structure returned by the fullstat subroutine.

Description
The fullstat.h header file defines the data structure that is returned by the fullstat and
ffullstat subroutines. This file also defines the Command parameters that are used by the
fullstat and ffullstat subroutines. The fullstat structure contains the following fields:

st_dev

st_ino

st_ mode

st_nlink

st_uid

st_gid

st_rdev

st_ size

st_atime

st_mtime

st_ctime

st_blksize

st_ blocks

st_vfstype

ID of device containing a directory entry for this file. The file serial and the
device ID uniquely identify the file within the system.

File serial number.

The mode of the file, as defined in the mode.h header file mode.

Number of links to file.

User ID of the owner of the file.

Group ID of the file owner group.

ID of this device. This field is defined only for character or block special
files.

File size in bytes.

Time of last access.

Time of last data modification.

Time of last file status change.

Optimal block size for the file system.

Number of blocks actually allocated to the file.

File system type as defined in the vmount.h header file.

Time is measured in seconds since 00:00:00 GMT, January 1, 1970.

fst_type V-node type.

fst_vfs

fst_flag

fst_i_gen

Virtual file system ID.

Indicates whether directory or file is a virtual mount point.

Generation number of the i-node.

fst_reserved[B] Reserved.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

4-10 AIX Files Reference

fullstat.h

Implementation Specifics

Files

The following fields are maintained for source level compatibility with previous versions of
AIX: .

fst_uid_rev_tag

fst_gid_rev _tag

fst_nid

This file is part of AIX Base Operating System (BOS) Runtime.

/usr/include/sys/fullstat.h
/usr/include/sys/mode.h

usr/include/sys/stat.h

/usr/include/sys/types.h

/usr/include/sys/vmount.h
usr/include/sys/vnode.h

The path to the fullstat.h header file.
The path to the mode.h header file, in which the valid file
modes are defined.
The path to the stat.h header file. The fullstat.h header file
contains an include statement for this file.
The path to the types.h header file. The fullstat.h header file
contains an include statement for this file.
The path to the vmount.h header file.
The path to the vnode.h header file.

Related Information
The ffullstat, fullstat subroutines.

The mode.h file, stat.h file, statfs.h file, types.h file, vmount.h file.

Chapter 4. Header Files 4-11

limits.h

limits.h File

Purpose
Defines implementation limits identified by IEEE POSIX 1003.

Description
The limits.h header file contains definitions required by the ANSI X3.159-198x
Programming Language C Standard and the Institute of Electrical and Electronics Engineers
(IEEE) P1003.1 Portable Operating System Interface for Computer Environments (POSIX)
standard.

The constants required by the ANSI C Standard describe the sizes of basic data types, as
follow:

Symbol

CHAR_ BIT

CHAR_ MAX

CHAR_MIN

INT_MAX

INT_MIN

LONG_ MAX

LONG_MIN

SC HAR_ MAX

SCHAR_MIN

SHRT_MAX

SHRT_MIN

UCHAR_MAX

UINT_MAX

ULONG_MAX

USHRT_MAX

Value

8

255

0

2, 147,483,647

-2,147,483,648

2, 147,483,647

-2, 147,483,648

127

-128

32,767

-32,768

255

4,294,967,295

4,294,967 ,295

65,535

Explanation

The number of bits in a variable of type char.

The maximum value of a variable of type char.

The minimum value of a variable of type char.

The maximum value of a variable of type int.

The minimum value of a variable of type int.

The maximum value of a variable of type long.

The maximum value of a variable of type long.

The maximum value of a variable of type signed char.

The minimum value of a variable of type signed char.

The maximum value of a variable of type short.

The maximum value of a variable of type short.

The maximum value of a variable of type unsigned
char.

The maximum value of a variable of type unsigned int.

The maximum value of a variable of type unsigned
long.

The maximum value of a variable of type unsigned
short.

Run-Time Invariant Values

4-12

The first set of values required by POSIX, run-time invariant values, are simple constants
determined by basic operating system data structure sizes.

Symbol Value Explanation

MAX_INPUT 256 No fewer than the number of bytes specified by the
MAX_INPUT symbol will be allowed in a terminal input
queue.

NGROUPS_MAX 32 Maximum size of the concurrent group list.

AIX Files Reference

PASS_MAX

PID_MAX

UID_MAX

256

INT_MAX

ULONG_MAX

limits.h

Maximum number of bytes in a password (not
including the terminating NULL).

Maximum value for a process ID.

Maximum value for a user or group ID.

Run-Time Invariant Values (Possibly Indeterminate)
The second set of run-time invariant values required by POSIX specify values that might
vary, especially due to system load, but can be attained on a lightly-loaded system.

Symbol Value Explanation

ARG_MAX 16384 Maximum length (bytes) of arguments for the exec
subroutine, including the environment.

The argument list and environment are allowed to consume all of the user data segment.

CHILD_MAX 40 Maximum number of simultaneous processes per user
ID.

This is configurable by the setquota subroutine, and can never be less than 6.

MAX_CANON 256

OPEN_MAX 2000
open at any given time.

Path Name Variable Values

Maximum number of bytes in a canonical input line.

Maximum number of files that one process can have

The third set of values required by POSIX, path name variable values, represent constraints
imposed by the file system on file path names. Further constraints on these values might be
imposed by the underlying file system implementation. Use the pathconf or fpathconf
subroutine to determine any file implementation characteristics specific to the underlying file
system.

Symbol Value

NAME_MAX undefined

PATH_MAX 512

Run-time Increasable Values

Explanation

Maximum number of bytes in a file component name (not
including the terminating NULL).

Maximum number of bytes in a path name (not including
a terminating NULL).

The fourth set of values required by POSIX specify values that might be increased at run
time. Use the pathconf or fpathconf subroutine to determine any file implementation
characteristics specific to the underlying file system.

Symbol Value Explanation

LINK_MAX 32, 767 Maximum value of a file's link count (SH RT _MAX).

PIPE_BUF 32768
automatically to a pipe.

Maximum number of bytes guaranteed to be written

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Chapter 4. Header Files 4-13

limits.h

Implementation Specifics

Files

This file is provided for POSIX compatibility.

This file is part of AIX Base Operating System (BOS) Runtime.

/usr/include/limits.h The path to the limits.h header file.
/usr/include/values.h The path to the values.h header file, which defines

hardware-dependent values.

Related Information
The exec subroutine, pathconf or fpathconf subroutine.

The values.h file.

4-14 AIX Files Reference

math.h

math.h File

Purpose
Defines math subroutines and constants.

Description
The math.h header file contains declarations of all the subroutines in the Math library
(libm.a) and of various subroutines in the Standard C Library (libc.a) that return
floating-point values.

Among other things, the math.h file defines the following constant, which is used as an
error-return value:

HUGE_ VAL The maximum value of a single-precision floating-point number.

If you define the _MATH_ preprocessor variable before including the math.h file, the
math.h file defines macros that make the names of certain math subroutines appear to the
compiler as _xxxx. The following names are redefined to have the _ prefix:

exp sin as in

log cos a cos

log10 tan atan

sqrt fabs atan2.

These special names instruct the C compiler to generate code that avoids the overhead of
the Math library subroutines and issues compatible-mode floating-point subroutines directly.
The _MATH_ variable is defined by default.

The following mathematical constants are also defined for your convenience:

The base of natural logarithms (e).

The base-2 logarithm of e.

The base-1 O logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

M_E

M_LOG2E

M_LOG10E

M_LN2

M_LN10

M_PI

M_Pl_2

M_P1_4

M_1_PI

M_2_PI

pi, the ratio of the circumference of a circle to its diameter.

The value of pi divided by 2.

The value of pi divided by 4.

The value of 1 divided by pi.

The value of 2 divided by pi.

M_2_SQRTPI The value of 2 divided by the positive square root of pi.

M_SQRT2 The positive square root of 2.

M_SQRT1_2 The positive square root of 1/2.

Chapter 4. Header Files 4-15

math.h

File

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

/usr/include/math.h The path to the math.h header file.

Related Information
The values.h file.

4-16 AIX Files Reference

mode.h

mode.h File

Purpose
Defines the interpretation of a file mode.

Description
This version of the AIX operating system supports a 32 bit mode, which is divided into 3
parts. The 16 most significant bits are reserved by the system. The least significant 16 bits
define the type of file (S_IFMT) and the permission bits. The 12 permission bits can be
changed via the chmod subroutine or chacl subroutine. The file type cannot be changed.

File Type Bits
The file type determines the operations that can be applied to the file (including implicit
operations, such as searching a directory or following a symbolic link). The file type is
established when the file is created; it cannot be changed. The following file types are
supported:

S_IFDIR

S_IFREG

S_IFIFO

S_IFCHR

S_IFBLK

S_IFLNK

S_IFSOCK

Defines a directory.

Defines a regular file.

Defines a pipe.

Defines a character device.

Defines a block device.

Defines a symbolic link.

Defines a socket.

The S_IFMT format mask constant can be used to mask off a file type from the mode.

File Attribute Bits
The file attribute bits affect the interpretation of a particular file. With some restrictions, file
attributes can be changed by the owner of a file or by a privileged user. The file attribute bits
are:

Attribute

S_ISUID Bit

setuid

Description

When a process runs a regular file that has the S_ISUID bit set, the
effective user ID of the process is set to the owner ID of the file. The setuid
attribute can be set only by a process on a trusted path. If the file or its
access permissions are altered, the S_ISUID bit is cleared.

S_ISGID (S_ENFMT) Bit

setgid When a process runs a regular file that has both the S_ISGID bit and the
S_IXGRP permission bit set, the effective user ID of the process is set to
the group ID of the file. The setgid attribute can be set only by a process on
a trusted path. If the owner is establishing this attribute, the group of the file
must be the effective group ID or in the concurrent group set of the
process. If the file or its access permissions are altered, the S_ISGID bit is
cleared.

Chapter 4. Header Files 4-17

mode.h

enforced locking

S_IFMPX Bit

multiplexed

S_ISVTX Bit

If a regular file has the S_ISGID bit set and the S_IXGRP permission bit
cleared, locks placed on the file with the lockfx subroutine are enforced
locks.

A character device with the S_IFMPX attribute bit set is a multiplexed
device. This attribute is established when the device is created~

sticky If a directory has the S_SVTX bit set, no processes can link to the files in
that directory. Only the owner of the file or the owner of the directory can
remove a file in a directory that has this attribute.

S_IXACL Bit

access control list

S_ITCB Bit

trusted

S_IJRNL Bit

journalled

If any file has the S_IXACL bit set, it can have an extended Access Control
List (ACL). Specifying this bit when setting the mode with the chmod
command causes the permission bits information in the mode to be ignored.
Extended ACL entries are ignored if this bit is cleared. This bit can be
implicitly cleared by the chmod subroutine.

Any file that has the S_ITCB bit set is part of the trusted computing base.
Only files in the trusted computing base can acquire privilege on a trusted
path, and only files in the trusted computing base are run by the trusted
shell (which is invoked with the tsh command). This attribute can be
established or cleared only by a process running on the trusted path.

Any file that has the S_IJRNL bit set is defined as a journalled file. Updates
to a journalled file are added to a log atomically. All directories and system
files have the journalled attribute. This attribute cannot be reset.

File Permission Bits
The file permission bits control which processes can perform operations on a file. This
includes read, write, and execute bits for the file owner, the file group, and the default. These
bits should not be used to set access control information; the ACL should be used instead.
The file permission bits are:

S_IRWXU

S_IRUSR

S_IREAD

S_IWUSR

S_IWRITE

S_IXUSR

4-18 AIX Files Reference

Permits the owner of a file to read, write, and execute (run) the file.

Permits the owner of a file to read the file.

Permits the owner of a file to read the file.

Permits the owner of a file to write to the file.

Permits the owner of a file to write to the file.

Permits the owner of a file to execute (run) the file or to search the file's
directory.

S_IEXEC

S_IRWXG

S_IRGRP

S_IWGRP

S_IXGRP

S_IRWXO

S_IROTH

S_IWOTH

S_IXOTH

mode.h

Permits the owner of a file to execute (run) the file or to search the file's
directory.

Permits a file's group to read, write, and execute (run) the file.

Permits a file's group to read the file.

Permits a file's group to write to the file.

Permits a file's group to execute (run) the file or to search the file's directory.

Permits others to read, write, and execute (run) the file.

Permits others to read the file.

Permits others to write to the file.

Permits others to execute (run) the file or to search the file's directory.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics

Files

This file is part of AIX Base Operating System (BOS) Runtime.

/usr/i ncl ude/sys/acl. h

/usr/include/sys/access.h

/usr/include/sys/mode.h
/usr/include/sys/stat.h

/usr/include/sys/types.h

The path to the acl.h header file, which defines the format of
an Access Control List.
The path to the access.h header file, which defines the
constants used for access mode specification.
The path to the mode.h header file.
The path to the stat.h header file, which defines the structure
of the file status information returned by certain subroutines.
The path to the types.h header file, which defines the
primitive data types.

Related Information
The stat.h file, types.h file.

The chmod command, tsh command.

Chapter 4. Header Files 4-19

param.h

param.h File

Purpose
Describes system parameters.

Description
Certain parameters vary for different hardware that uses the AIX operating system. These
parameters are defined in the param.h file. The most significant parameters are:

NCAA GS

UBSIZE

Indicates the maximum number of characters, including terminating null
characters that can be passed using the exec subroutine.

The unit used by the statistics subroutines for returning block sizes of files.

This file also contains macros for manipulating machine-dependent fields.

Programs that are intended to comply with the POSIX standard should include the limits.h
file rather than the param.h file.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics

File

This file is part of AIX Base Operating System (BOS) Runtime.

/usr/include/sys/limits.h The path to the limits.h header file, which defines parameters
for compatiblity with the POSIX standard.

/usr/include/sys/param.h The path to the param.h header file.

Related Information
The exec subroutine.

4-20 AIX Files Reference

poll.h File

Purpose

poll.h

Defines the structures and flags used by the poll subroutine.

Description
The poll.h header file defines several structures used by the poll subroutine. An array of
pollfd or pollmsg structures or a pollist structure specify the file descriptors or pointers and
message queues for which the poll subroutine checks the 1/0 status. This file also defines
the returned events flags, error returned events flags, device-type flags and input flags used
in polling operations.

When performing a polling operation on both file descriptors and message queues, the
ListPointer parameter points to a pollist structure, which can specify both file descriptors or
pointers and message queues. The program must define the pollist structure in the
following form:

struct pollist {

} ;

struct pollfd[f];
struct pollmsg[m];

The pollfd structure and the pollmsg structure in the pollist structure perform the following
functions:

pollfd[~

pollmsg[m]

This structure defines an array of file descriptors or file pointers. The f
parameter specifies the number of elements in the array.

This structure defines an array of message queue identifiers. The m
parameter specifies the number of elements in the array.

A POLLIST macro is also defined in the poll.h header file to define the pollist structure. The
format of the macro is:

POLLIST(f, m) Declarator ... ;

The Declarator parameter is the name of the variable that is declared as having this type.

The pollfd and pollmsg structures defined in the poll.h header file contain the following
fields:

f d

msgid

events

Specifies a valid file descriptor or file pointer to the poll subroutine. If the
value of this field is negative, this element is skipped.

Specifies a valid message queue ID to the poll subroutine. If the value of
this field is negative, this element is skipped.

The events being tracked. This is any combination of the following flags:

POLLIN Input is present on the file or message queue.
POLLOUT The file or message queue is capable of accepting output.
POLLPRI An exceptional condition is present on the file or message

queue.

Chapter 4. Header Files 4-21

poll.h

File

revents Returned events. This field specifies the events that have occurred. This
can be any combination of the events requested by the events field. This
field can also contain one of the following flags:

POLLNVAL The value specified by the fd field or the msgid field is
neither a valid file descriptor or pointer nor the identifier of
an accessible message queue.

POLLERR An error condition arose on the specified file or message
queue.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

/usr/include/sys/poll.h The path to the poll.h header file.

Related Information
The poll subroutine, select subroutine.

The fp_poll kernel service, fp_select kernel service, selnotify kernel service.

4-22 AIX Files Reference

sem.h

sem.h File

Purpose
Describes the structures that are used by subroutines that perform semaphore operations.

Description
The sem.h header file defines the structures that are used by the semop subroutine and the
semctl subroutine to perform various semaphore operations.

The sem structure stores the values that the Commands parameter of the semctl
subroutine gets and sets. This structure contains the following fields:

semval

sempid

semncnt

semzcnt

Specifies the operation permission structure of a semaphore. The data type
of this field is unsigned short.

Specifies the last process that performed a semop subroutine. The data
type of this field is pid_t.

Specifies the number of processes awaiting semval > cval. The data type of
this field is unsigned short.

Specifies the number of processes awaiting semval = 0. The data type of
this field is unsigned short.

The sembuf structure stores semaphore information used by the semop subroutine. This
structure contains the following fields:

sem_num

sem_op

Specifies a semaphore on which to perform some semaphore operation.
The data type of this field is unsigned short.

Specifies a semaphore operation to be performed on the semaphore
specified by the sem_num field and the Semid parameter of the semop
subroutine. This value can be a positive integer, a negative integer, or zero:

If the current process has write permission, the positive integer
value of this field is added to the semval of the semaphore.

- i If the current process has write permission, a negative integer value
in this field causes one of the following actions:

If semval is greater than or equal to the absolute value of the
sem_op field, the absolute value of the sem_op field is subtracted
from semval.

If semval is less than the absolute value of the sem_op field and the
IPC_NOWAIT flag is set, the semop subroutine returns a value of
-1 and sets the global variable err.no to EAGAIN.

Chapter 4. Header Files 4-23

sem.h

sem_flg

4-24 AIX Files Reference

If semval is less than the absolute value of the sem_op field and the
IPC_NOWAIT flag is not set, the semop subroutine increments the
semncnt associated with the specified semaphore and suspends
execution of the calling process until one of the following conditions
is met.

• The value of semval becomes greater than or equal to the
absolute value of the sem_op field. When this occurs, the value
of semncnt associated with the specified semaphore is
decremented, the absolute value of the sem_op field is
subtracted from semval and, if SEM_UNDO is set in the sem_flg
field, the absolute value of the sem_op field is added to the
Semadj value of calling process for the specified semaphore.

• The Semaphoref D for which the calling process is awaiting action
is removed from the system (see the semctl subroutine). When
this occurs, the global variable errno is set equal to EIDRM, and
a value of -1 is returned.

• The calling process receives a signal that is to be caught. When
this occurs, the value of semncnt associated with the specified
semaphore is decremented, and the calling process resumes
execution in the manner prescribed in the sigaction subroutine.

0 If the current process has read permission, a value of zero in this
field causes one of the following actions:

If semval is 0, the semop subroutine returns a value of 0.

If semval is not equal to 0 and the IPC_NOWAIT flag is set, the
semop subroutine returns a value of -1 and sets the global variable
errno to EAGAIN.

If semval is not equal to O and the IPC_NOWAIT flag is not set, the
semop subroutine increments the semzcnt associated with the
specified semaphore and suspends execution of the calling process
until one of the following conditions is met.

• The value of semval becomes 0, at which time the value of
semzcnt associated with the specified semaphore is
decremented.

• The Semaphore/D for which the calling process is awaiting action
is removed from the system. When this occurs, the global
variable errno is set equal to EIDRM, and a value of-1 is
returned.

• The calling process receives a signal that is to be caught. When
this occurs, the value of semzcnt associated with the specified
semaphore is decremented, and the calling process resumes
execution in the manner prescribed in the sigaction subroutine.

The data type of the sem_op field is short.

If the value of this field is not zero for an operation, it is constructed by
logically ORing one or more of the following values:

SEM_UNDO

SEM_ORDER

IPC_NOWAIT

sem.h

Specifies whether to modify the Semadj values of the
calling process.

If this value is set for an operation and the value of the
sem_op field is a positive integer, the value of the
sem_op field is subtracted from the Semadj value of the
calling process.

If this value is set for an operation and the value of the
sem_op field is a negative integer, the absolute value of
the sem_op field is added to the Semadj value of the
calling process. The exit subroutine adds the Semadj
value to the semval of the semaphore when the process
terminates.

Specifies whether to perform the operations specified by
the SemaphoreOperations array of the semop
subroutine atomically or individually. {This value is valid
only when included in the
SemaphoreOperations[O].sem_flg parameter, the first
operation in the SemaphoreOperations array.)

If SEM_ORDER is not set {the default), the specified
operations are performed atomically. That is, none of the
semval values in the array are modified until all of the
semaphore operations are completed. If the calling
process must wait until some semval requirement is met,
the semop subroutine does so before performing any of
the operations. If any semaphore operation would cause
an error to occur, none of the operations are performed.

If SEM_ORDER is set, the operations are performed
individually in the order that they appear in the array,
regardless of whether any of the operations require the
process to wait. If an operation encounters an error
condition, then the semop subroutine sets the
SEM_ERR value in the sem_flg field of the failing
operation; neither the failing operation nor the following
operations in the array are performed.

Specifies whether to wait or to return immediately when
the semval of a semaphore is not a certain value.

The data type of the sem_flg field is short.

The semid_ds structure stores semaphore status information used by the semctl
subroutine and pointed to by the Buffer parameter. This structure contains the following
fields:

sem_perm Specifies the operation permission structure of a semaphore. The data type
of this field is struct ipc_perm.

sem_nsems Specifies the number of semaphores in the set. The data type of this field is
unsigned short.

Chapter 4. Header Files 4-25

sem.h

sem_otime

sem_ctime

Specifies the time at which a semop subroutine was last performed. The
data type of this field is time_t.

Specifies the time at which this structure was last changed with a semctl
subroutine. The data type of this field is time_t.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/usr/include/sys/sem.h The path to the sem.h header file.

Related Information
The exec subroutine, exit subroutine fork subroutine, semctl subroutine, semget
subroutine, semop subroutine, sigaction subroutine.

The exit subroutine, atexit subroutine.

4-26 AIX Files Reference

sgtty.h File

Purpose

sgtty.h

Provides the terminal interface for the Berkeley line discipline.

Description
The sgtty.h header file defines the structures that are used by ioctl subroutines that apply to
terminal files. The structures, definitions, and values in this file are provided for compatibility
with the Berkeley user interface for asynchronous communication. Window and terminal size
operations use the winsize structure, which is defined in the ioctl.h header file. The winsize
structure and the ioctl functions that use it are described in the discussion of TTY common
code in the TTY Subsystem Overview.

Note: Some documentation refers to the terminal drivers that are supported in the Berkeley
interface as line disciplines. However, the term line disciplines in this documentation
is used in a broader sense to refer to the entire asynchronous communications user
interface {the Berkeley and POSIX line disciplines).

Basic sgtty.h Modes
The basic ioctl functions use the sgttyb structure defined in the sgtty.h header file. This
structure contains the following fields:

sg_ispeed

sg_ospeed

sg_erase

sg_kill

Specifies the input speed of the device. For any particular hardware,
impossible speed changes are ignored. Symbolic values in the table are as
defined in the sgtty.h file.

BO Hangs up. The zero baud rate is used to hang up the connection.
If BO is specified, the 'data terminal ready' signal is dropped.

B50
B75
B110
B134
B150
8200
8300
B600
B1200
81800
82400
B4800
B9600
EXTA
EXTB

Normally, this disconnects the line.
50 baud

75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
External A
External B

Specifies the output speed of the device. Refer to the description of the
sg_ispeed field. ospeed has the same values as ispeed.

Specifies the erase character. {The default is Backspace.)

Specifies the kill character. {The default is Ctrl-U.)

Chapter 4. Header Files 4-27

sgtty.h

sg_flags

4-28 AIX Files Reference

Specifies how the system treats output. The initial output control value is all
bits clear. The possible output modes are described in the following list.

ALLDELAY

BS DELAY

VTDELAY

CRDELAY

TB DELAY

NLDELAY

Delay algorithm selection.

Select backspace delays. Backspace delays are currently
ignored. Possible values are BSO or BS1.

Select form-feed and vertical-tab delays:

FFO Specifies no delay.
FF1 Specifies one delay of approximately 2 seconds.

Select carriage-return delays:

CAO Specifies no delay.
CR1 Specifies one delay. The delay lasts approximately

.08 seconds.
CR2 Specifies one delay. The delay lasts approximately

.16 seconds.
CR3 Specifies one delay. The delay pads lines to be at

least 9 characters at 9600 baud.

Select tab delays:

TABO Specifies no delay.
TAB1 Specifies one delay. The delay is dependent on the

amount of movement.
TAB2 Specifies one delay. The delay lasts about .10

seconds.
XTABS Specifies that tabs are to be replaced by the

appropriate number of spaces on output.

Selects the new-line character delays. This is a mask to use
before comparing to NLO and NL 1.

NLO Specifies no delay.
NL 1 Specifies one delay. The delay is dependent on the

current column.
NL2 Specifies one delay. The delay lasts about .1 O

seconds.

The delay bits specify how long transmission stops to allow for mechanical
or other movement when certain characters are sent to the terminal. The
actual delays depend on line speed and system load.

EVE NP Allows even parity on input.

The flags for even and odd parity control parity checking on input and
generation on output in cooked and CBREAK mode (unless LPASS8 is
enabled). Even parity is generated on output unless ODDP is set and
EVENP is clear, in which case odd parity is generated. Input characters with
the wrong parity, as determined by the EVENP and ODDP flags, are ignored
in cooked and CBREAK mode.

ODDP

RAW

Allows odd parity on input. Refer to the description of the
EVENP flag.

Indicates the RAW mode which features a wake up on all
characters and an 8-bit interface.

Basic ioctls

sgtty.h

The RAW mode disables all processing except output flushing with
LFLUSHO. The full 8 bits of input are given as soon as they are available;
all 8 bits are passed on output. A break condition in the input is reported as
a null character. If the input queue overflows in RAW mode, all data in the
input and output queues are discarded; this applies to both the new and old
drivers.

CR MOD

ECHO

LC ASE

CBREAK

TANDEM

Maps a carriage return into a new-line on input and outputs
a new-line as a carriage return and a new-line.

Echo (full duplex).

Map uppercase to lowercase on input and lowercase to
uppercase on output on uppercase terminals.

Enables a half-cooked mode. Programs can read each
character as it is typed instead of waiting for a full line. All
processing is done except the input editing. Character and
word erase, line kill, input reprint, and special treatment of
the backslash character and EOT are disabled.

Enables automatic flow control (the TANDEM mode), which
causes the system to produce a stop character (Ctrl-S)
whenever the input queue is in danger of overflowing, and a
start character (Ctrl-Q) when the input queue has drained
sufficiently. This mode is useful for flow control when the
terminal is actually another computer that understands the
conventions.

Note: The same stop and start characters are used for both directions of flow control; the
t_stopc character is accepted on input as the character that stops output and is
produced on output as the character to stop input, and the t_startc character is
accepted on input as the character that restarts output and is produced on output as
the character to restar.t input.

A large number of ioctl commands apply to terminals. Some have the general form:

#include <sgtty.h>
ioctl(FileDescriptor, Code, Value)
struct sgttyb *Value;

The applicable values for the Code parameter are:

TIOCGETP

TIOCSETP

TIOCSETN

Fetch the basic parameters associated with the terminal, and store in the
pointed-to sgttyb structure.

Set the parameters according to the pointed-to sgttyb structure. The
interface delays until output stops, then throws away any unread characters
before changing the modes.

Set the parameters like TIOCSETP but do not delay or flush input. Input is
not preserved, however, when changing to or from the RAW mode.

Chapter 4. Header Files 4-29

sgtty.h

4-30

With the following codes, the Value parameter is ignored.

TIOCEXCL

TIOCNXCL

TIOCHPCL

Set exclusive-use mode; no further opens are permitted until the file is
closed.

Turn off exclusive-use mode.

When the file is closed for the last time, hang up the terminal. This is useful
when the line is associated with a modem used to place outgoing calls.

With the following codes, the Value parameter is a pointer to an integer.

TIOCGETD The Value parameter is a pointer to an integer into which is placed the
current terminal driver number. The integer is OTTYDISC for the old
Berkeley terminal driver and NTTYDISC for the standard (new) driver.

TIOCSETD The Value parameter is a pointer to an integer whose value becomes the
current terminal driver number.

TIOCFLUSH If the integer pointed to by the Value parameter has a zero value, all
characters waiting in input or output queues are flushed. Otherwise, the
value of the integer is for the FREAD and FWRITE bits defined in the file.h
header file; if the FREAD bit is set, all characters waiting in input queues are
flushed, and if the FWRITE bit is set, all characters waiting in output queues
are flushed.

In the following codes, the argument is O unless specified otherwise.

TIOCSTI The Value parameter points to a character that the system pretends had
been typed on the terminal.

TIOCSBRK The break bit is set in the terminal.

TIOCCBRK The break bit is cleared.

TIOCSDTR Data terminal ready is set.

TIOCCDTR Data terminal ready is cleared.

TIOCSTOP Output is stopped as if the stop character had been typed.

TIOCSTART Output is restarted as if the start character had been typed.

TIOCGPGRP The Value parameter is a pointer to an integer into which is placed the
process group ID of the process group for which this terminal is the control
terminal.

TIOCSPGRP The Value parameter is a pointer to an integer which is the value to which
the process group ID for this terminal will be set.

TIOCOUTQ Returns in the integer pointed to by the Value parameter the number of
characters queued for output to the terminal.

FIONREAD Returns in the integer pointed to by the Value parameter the number of
characters immediately readable from the argument descriptor. This works
for files, pipes, and terminals.

AIX Files Reference

sgtty.h

Uppercase Terminals
If the LCASE output mode is set, then all uppercase letters are mapped into the
corresponding lowercase letter. The uppercase letter can be generated by preceding it with
a backslash (\). Uppercase letters are preceded by a backslash when they are output. In
addition, the following escape sequences can be generated on output and accepted on
input:

For: Use:

' (grave) V

I \!

\"

\(

\)

To deal with terminals that do not understand that the tilde (-) has been made into an ASCII
character, the LTILDE bit can be set in the local mode word. When the LTILDE bit is set, the
tilde character will be replaced with the grave character n on output.

Special Characters
A tchars structure associated with each terminal specifies special characters for both the old
and new terminal interfaces. This structure is defined in the ioctl.h header file, for which the
sgtty.h header file contains an #include statement. The tchars structure contains the
following fields:

t_intrc

t_quitc

t_startc

t_stopc

t_eofc

t_brkc

The interrupt character (Ctrl-C by default) generates a SIGINT signal. This
is the normal way to stop a process which is no longer needed or to regain
control in an interactive program.

The quit character (Ctrl-\ by default) generates a SIGQUIT signal. This is
used to end a program and produce a core image, if possible, in a core file
in the current directory.

The start output character (Ctrl-Q by default).

The stop output character (Ctrl-S by default).

The end-of-file character (Ctrl-D by default).

The input delimiter (-1 by default). This character acts like a new-line in that
it ends a line, is echoed, and is passed to the program.

The stop and start characters can be the same to produce a toggle effect. The applicable
ioctl functions are:

TIOCGETC

TIOCSETC

Get the special characters and put them in the specified structure.

Set the special characters to those given in the structure.

Chapter 4. Header Files 4-31

sgtty.h

Local Mode
Associated with each terminal is a local mode word. The bits of the local mode word are:

LCRTBS

LP RTE RA

LC RTE RA

LTILDE

LMDMBUF

LLITOUT

LTOSTOP

LFLUSHO

LNOHANG

LCRTKIL

LPASS8

LCTLECH

LPENDIN

LDECCTQ

LNOFLSH

Backspace on erase rather than echoing erase.

Printing terminal erase mode.

Erase character echoes as backspace-space-backspace.

Convert to ' on output (for terminals that do not recognize the tilde as an
ASCII character).

Stop and start output when carrier drops.

Suppress output translations.

Send a SIGTTOU signal for background output.

Output is being flushed.

Do not send hang up when carrier drops.

Backspace-space-Backspace to erase the entire line on line kill.

Pass all 8 bits through on input, in any mode.

Echo input control characters as AX, delete as A?.

Retype pending input at next read or input character.

Only Ctrl-Q restarts output after a Ctrl-S.

Inhibit flushing of pending 1/0 when an interrupt character is typed.

The following ioctl functions operate on the local mode word structure:

TIOCLBIS

TIOCLBIC

TIOCLSET

TIOCLGET

The Value parameter is a pointer to an integer whose value is a mask
containing the bits to be set in the local mode word.

The Value parameter is a pointer to an integer whose value is a mask
containing the bits to be cleared in the local mode word.

The Value parameter is a pointer to an integer whose value is stored in the
local mode word.

The Value parameter is a pointer to an integer into which the current local
mode word is placed.

Local Special Characters

4-32

The ltchars structure associated with each terminal defines control characters for the new
terminal driver. This structure contains the following fields:

t_suspc

t_dsuspc

AIX Files Reference

The suspend process character (Ctrl-Z by default). This sends a SIGTSTP
signal to suspend the current process group. This character is recognized
during input.

The delayed suspend process character (Ctrl-Y by default). This sends a
SIGTSTP signal to suspend the current process group. This character is

t_rprntc

t_flushc

t_werasc

t_lnextc

sgtty.h

recognized when the process attempts to read the control character rather
than when it is typed.

The reprint line control character (Ctrl-R by default). This reprints all
characters that are preceded by a new-line character and have not been
read.

The flush output character (Ctrl-0 by default). This flushes data that is
written but not transmitted.

The word erase character (Ctrl-W by default). This erases the preceding
word. This does not erase beyond the beginning of the line.

The literal next character (Ctrl-V by default). This causes the special
meaning of the next character to be ignored so that characters can be input
without being interpreted by the system.

The following ioctl functions, which use the ltchars structure, are supported by the terminal
interface for the definition of local special characters for a terminal:

TIOCSLTC

TIOCGLTC

Set local characters. The argument to this function is a pointer to an ltchars
structure, which defines the new local special characters.

Set local characters. The argument to this function is a pointer to an ltchars
structure into which is placed the current set of local special characters.

The winsize structure and the ioctl functions that use it are described in the discussion of
the TTY common code in the TTY Subsystem Overview.

For general information about the TTY subsystem, refer to the TTY Subsystem Overview in
General Programming Concepts. For general information about the Berkeley line discipline,
refer to Understanding the Berkeley Line Discipline in General Programming Concepts.

Implementation Specifics

Files

This file is for Berkeley compatibility.

This file is part of AIX Base Operating System (BOS) Runtime.

/usr/include/sys/file.h
The path to the file.h header file, which defines the FREAD and FWRITE
bits used by the TIOCFLUSH ioctl command. The sgtty.h header file
contains an #include statement for the file.h header file.

/usr/include/sys/ioctl.h
The path to the ioctl.h header file, which defines several of the ioctls used
by the sgtty.h file. The sgtty.h header file contains an #include statement
for the ioctl.h header file.

/dev/tty The tty special file, which is a synonym for the controlling terminal.
/usr/include/sgtty.h

The path to the sgtty.h header file.

Related Information
The csh command, getty command, stty command, tset command.

The ioctl subroutine, sigvec subroutine.

Chapter 4. Header Files 4-33

srcobj.h

srcobj.h File

Purpose
Defines structures used by the System Resource Controller (SRC) subsystem.

Description
The srcobj.h header file contains the SRCsubsys structure, which contains the following
fields:

subsysname The string that contains the subsystem name. The string can contain 14
characters.

synonym The string that contains the subsystem synonym.The string can contain 14
characters.

cmdargs The string that contains the subsystem command arguments.The string can
contain 99 characters.

path The string that contains the path to the executable files.The string can
contain 99 characters.

uid The user ID for the subsystem.

auditid The audit ID for the subsystem. This value is supplied by the system and
cannot be changed by an SRC subroutine.

standin The string that contains the path for standard input.The string can contain
99 characters.

standout The string that contains the path for standard output. The string can contain
99 characters.

standerr The string that contains the path for standard error.The string can contain
99 characters.

action Respawn action. The value of this field can be either ONCE or RESPAWN.

multi Multiple instance support. The value of this field can be either SRCYES or
SRCNO.

contact

srvkey

svrmtype

priority

signorm

sigforce

display

4-34 AIX Files Reference

Contact type. The value of this field indicates either a signal
(SRCSIGNAL), a message queue (SRCIPC), or a socket (SRCSOCKET).

The IPC message queue key.

The IPC mtype for the subsystem.

Nice value, a number from 1 to 40.

Stop normal signal.

Stop force signal.

Display inactive subsystem on all or group status. The value of this field can
be either SRCYE s or SRCNO.

File

waittime

grpname

srcobj.h

Stop cancel time to wait before sending a SIGKILL signal to the subsystem
restart time period. (A subsystem can be restarted only twice in this time
period if it does not terminate normally.

The string that contains the group name of the subsystem.The string can
contain 14 characters.

The srcobj.h header file also contains the SRCsubsvr structure, which contains the
following fields:

sub_type The string that contains the type of the subsystem. The string can contain
14 characters.

subsysname The string that contains the subsystem name. The string can contain 14
characters.

sub_code The string that contains the subsystem code. The string can contain 99
characters.

The size specified for the strings in the SRCsubsys structure does not include the null
character that ends each of the strings. The possible values indicated for the strings are
predefined.

/usr/include/sys/srcobj.h The path to the srcobj.h header file.

Related Information
The getssys subroutine.

Chapter 4. Header Files 4-35

stat.h

stat.h File

Purpose
Defines the data structure returned by the status subroutines.

Description
The stat data structure in the stat.h header file is used to return information for the stat,
fstat, lstat, statx, and fstatx subroutines.

The stat data structure contains the following fields:

st_dev

st_ino

st_ mode

st_nlink

st_ access

st_ size

st_rdev

st_atime

st_mtime

st_ctime

st_blksize

st_ blocks

st_gen

st_type

4-36 AIX Files Reference

The device that contains a directory entry for this file.

The index of this file on its device. A file is uniquely identified by specifying
the device on which it resides and its index on that device.

The file mode. The possible file mode values are given in the description of
the mode.h header file.

The number of hard links (alternate directory entries) to the file created
using the link subroutine.

The access that the calling process would be granted to the file. This is
some combination of the !ROTH (other read permission), IWOTH (other
write permission), and IXOTH (other execute or search permission) bits.

The number of bytes in a file (including any holes). This field also defines
the position of the end-of-file mark for the file. The end-of-file mark is
updated only by subroutines, for example the write subroutine. If the file is
mapped by the shmat subroutine and a value is stored into a page past the
end-of-file mark, the end-of-file mark will be updated to include this page
when the file is closed or forced to permanent storage.

The ID of the device. This field is defined only for block or character special
files.

The time when file data was last accessed.

The time when file data was last modified.

The time when the file status was last changed.

The size, in bytes of each block of the file.

The number of blocks actually used by the file (measured in the units
specified by the DEV _BSIZE constant).

The generation number of this i-node.

The type of the v-node for the object. This is one of the following values,
which are defined in the vnode.h header file:

VNON
VBAD
VREG

An unallocated object; this should not occur.
An unknown type of object.
A regular file.

st_vfs

st_vfstype

st_ flag

st_uid

st_gid

VDIR
VBLK
VCHR
VLNK
VSOCK
VFIFO
VMPC

A directory file.
A block device.
A character device.
A symbolic link.
A socket.
FIFO.
A multiplexed character device.

stat.h

Virtual file system (VFS) ID, which identifies the VFS that contains the file.
By comparing this value with the VFS numbers returned by the mntctl
subroutine, the name of the host where the file resides can be identified.

File system type, as defined in the vmount.h header file.

A flag indicating whether the file or the directory is a virtual mount point.
This flag can have the following values:

FS_ VMP Indicates that the file is a virtual mount point.
FS_MOUNT Indicates that the file is a virtual mount point.
FS_REMOTE Indicates that the file resides on another machine.

The file owner ID.

The file group ID.

For remote files, the st_atime, st_mtime, and st_ctime fields contain the time at the server.

The value of the st_atime field can be changed by the following subroutines:

read, readx, readv, readvx
readlink
shmdt
utime, utimes

The values of the st_ctime field and st_mtime field can be set by the following subroutines:

write, writex, writev, writevx
open, openx, creat
link
symlink
unlink
mknod
mkdir
rmdir
rename
truncate, ftruncate
utime, utimes

In addition, the shmdt subroutine can change the st_mtime field and the chmod, fchmod,
chown, chownx, fchown, and fchownx subroutine can change the st_ctime field.

Because they can create a new object, the open, openx, creat, symlink, mknod, mkdir,
and pipe subroutines can set the st_atime, st_ctime, and st_mtime fields.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Chapter 4. Header Files 4-37

stat.h

Implementation Specifics

Files

This file is part of the AIX Base Operating System (BOS) Runtime.

/usr/include/sys/stat.h
/usr/include/sys/mode.h

/usr/include/sys/vmount.h

/usr/include/sys/vnode.h

The path to the stat.h header file.
The path to the mode.h header file, which contains
definitions of the file mode values.
The path to the vmount.h header file, which describes the
structure of a virtual file system.
The path to the vnode.h header file, which contains
definitions of the v-node types.

Related Information
The chmod subroutine, chownx subroutine, fstatx subroutine, link subroutine, mknod
subroutine, openx subroutine, pipe subroutine, read subroutine, shmat, statx subroutine,
unlink, utime subroutine, write subroutine.

The mode.h file, types.h file, vmount.h file.

4-38 AIX Files Reference

statfs.h

statfs.h File

Purpose
Describes the structure of the statistics returned by the statfs, fstatfs, ustat subroutines.

Description
The statfs and fstatfs subroutines return information on a mounted (virtual) file system in
the form of a statfs structure. The statfs.h header file describes the statfs structure, which
contains the following fields:

f_version The version number of the statfs structure. This value is currently 0.

f_length The length of the buffer that contains the returned information. This value is
currently 0.

f_type The type of information returned. This value is currently 0.

f_bsize The size of the fundamental file system.

f_blocks The total number of blocks in the system.

f_bfree The number of free blocks in the file system.

f_bavail The number of free blocks that are available to a non-root user.

f_files The total number of file nodes in the file system.

f_ffree The number of free file nodes in the file system.

f_fsid The file system ID.

f_vfstype The type of this virtual file system.

f_fname[32] The file system name (mount point).

f_fpack[32] The file system pack name.

f_name_max The maximum component name for this file system

Fields that are not defined for a particular file system are set to a value of -1 .

The ustat system returns information on a mounted file system in the form of a ustat
structure. The ustat structure, which is defined in the ustat.h header file, contains the
following fields:

f_tfree

f_inode

f_fname[6]

f_fpack[6]

The total number of free blocks in the file system.

The number of free i-nodes in the file system.

The file system name.

The file system pack name.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Chapter 4. Header Files 4-39

statfs.h

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

Files
/usr/include/sys/statfs.h The path to the statfs.h header file.
/usr/include/ustat.h The path to the ustat.h header file.

Related Information
The statfs, fstatfs, or ustat subroutine.

4-40 AIX Files Reference

termio.h

termio.h File

Purpose
Defines the structure of the termio file, which provides the terminal interface for AIX Version
2 compatibility.

Description
The termio.h header file contains the termio structure, which defines special characters as
well as the basic input, output, control, and line discipline modes. The termio.h header file is
provided for compatibility with AIX Version 2 applications.

AIX Version 2 applications that include the termio.h header file can use the AIX Version 2
terminal interface provided by the POSIX line discipline. The following AIX Version 2 terminal
interface operations are not supported by the POSIX line discipline:

• Terminal Paging (TCGLEN ioctl and TCSLEN ioctl)

• Terminal Logging (TCLOG ioctl)

• Enhanced Edit Line Discipline (LDSETDT ioctl and LDGETDT ioctl)

The termio structure in the termio.h header file contains the following fields:

c_iflag Describes the basic terminal input control. The initial input control value is
all bits clear. The possible input modes are:

IGNBRK

BR KINT

IGNPAR

PARMRK

Ignores the break condition. In the context of asynchronous
serial data transmission, a break condition is defined as a
sequence of zero-valued bits that continues for more than
the time required to send one byte. The entire sequence of
zero-valued bits is interpreted as a single break condition,
even if it continues for an amount of time equivalent to more
than one byte. If IGNBRK is set, a break condition detected
on input is ignored, which means that it is not put on the
input queue and therefore not read by any process.

Signal interrupt on the break condition. If IGNBRK is not set
and BRKINT is set, the break condition flushes the input
and output queues. If the terminal is the controlling terminal
of a foreground process group, the break condition
generates a single SIGINT signal to that foreground
process group. If neither IGNBRK nor BRKINT is set, a
break condition is read as a single \O; if PARMRK is set, a
break condition is read as \377, \0, \0.

Ignores characters with parity errors. If set, a byte with a
framing or parity error (other than break) is ignored.

Marks parity errors. If PARMRK is set, and IGNPAR is not
set, a byte with a framing or parity error (other than break)
is given to the application as the three-character sequence
\377, \0, x, where \377, \0 is a two-character flag preceding
each sequence and x is the data of the character received
in error. To avoid ambiguity in this case, if ISTRIP is not set,
a valid character of \377 is given to the application as \377,
\377. If neither IGNPAR nor PARMRK is set, a framing or

Chapter 4. Header Files 4-41

termio.h

c_oflag

4-42 AIX Files Reference

INPCK

ISTRIP

INLCR

IGNCR

ICRNL

IUCLC

IXON

IXANY

IXOFF

parity error (other than break) is given to the application as
a single character \0.

Enables input parity checking. If set, input parity checking is
enabled. If not set, input parity checking is disabled. This
allows for output parity generation without input parity
errors.

Strips characters. If set, valid input characters are first
stripped to 7 bits; otherwise all 8 bits are processed.

Maps new-line character (NL) to carriage return (CR) on
input. If set, a received NL character is translated into a CR
character.

Ignores CR character. If set, a received CR character is
ignored (not read).

Maps CR character to NL character on input. If ICRNL is
set and IGNCR is not set, a received CR character is
translated into a NL character.

Maps uppercase to lowercase on input. If set, a received
uppercase, alphabetic character is translated into the
corresponding lowercase character.

Enables start and stop output control. If set, a received
STOP character suspends output and a received START
character restarts output. When IXON is set, START and
STOP characters are not read, but merely perform flow
control functions. When IXON is not set, the START and
STOP characters are read.

Enables any character to restart output. If set, any input
character restarts output that was suspended.

Enables start and stop input control. If set, the system
transmits a STOP character when the input queue is nearly
full and a START character when enough input has been
read that the queue is nearly empty again.

Specifies how the system treats output. The initial output control value is all
bits clear. The possible output modes are:

OPOST

OLCUC

ONLCR

OCR NL

ON OCR

Post-processes output. If set, output characters are
post-processed as indicated by the remaining flags;
otherwise, characters are transmitted without change.

Maps lowercase to uppercase on output. If set, a lowercase
alphabetic character is transmitted as the corresponding
uppercase character. This function is often used in
conjunction with the IUCLC input mode.

Maps NL to CR-NL on output. If set, the NL character is
transmitted as the CR-NL character pair.

Maps CR to NL on output. If set, the CR character is
transmitted as the NL character.

Indicates no CR output at column 0. If set, no CR character
is transmitted when at column 0 (first position).

ON LR ET

termio.h

NL performs CR function. If set, the NL character is
assumed to do the carriage return function. The column
pointer is set to O and the delay specified for carriage return
is used. If neither ONLCR, OCRNL, ONOCR, nor ONLRET
is set, the NL character is assumed to do the line feed
function only; the column pointer remains unchanged. The
column pointer is also set to a value of 0 if the CR character
is actually transmitted.

The delay bits specify how long a transmission stops to allow for mechanical
or other movement when certain characters are sent to the terminal. The
actual delays depend on line speed and system load.

OFILL

OFDEL

NLDLY

CRDLY

TABDLY

Uses fill characters for delay. If set, fill characters are
transmitted for a delay instead of a timed delay. This is
useful for high baud rate terminals that need only a minimal
delay.

Sets fill characters to the DEL value. If set, the fill character
is DEL. If this flag is not set, the fill character is NULL.

Selects the new-line character delays. This is a mask to use
before comparing to NLO and NL 1.

NLO Specifies no delay.
NL 1 Specifies one delay of approximately 0.10

seconds. If ONLRET is set, the carriage return
delays are used instead of the new-line delays. If
OFILL is set, two fill characters are transmitted.

Selects the carriage return delays. This is a mask to use
before comparing to CAO, CR1, CR2 and CR3.

CAO Specifies no delay.
CR 1 Specifies that the delay is dependent on the

current column position. If OFILL is set, this
delay transmits two fill characters.

CR2 Specifies one delay of approximately 0.10
seconds. If OFILL is set, this delay transmits four
fill characters.

CR3 Specifies one delay of approximately 0.15
seconds.

Selects the horizontal-tab delays. This is a mask to use
before comparing to TABO, TAB1, TAB2, and TAB3. If
OFILL is set, any of these delays {except TAB3) transmit
two fill characters.

TABO Specifies no delay.
TAB1 Specifies that the delay is dependent on the

current column position. If OFILL is set, two fill
characters are transmitted.

TAB2 Specifies one delay of approximately 0.10
seconds.

TAB3 Specifies that tabs are to be expanded into
spaces.

Chapter 4. Header Files 4-43

termio.h

c_cflag

4-44 AIX Files Reference

BSDLY

VTDLY

FFDLY

Selects the backspace delays. This is a mask to use before
comparing to BSO, BS1.

BSO Specifies no delay.
BS1 Specifies one delay of approximately 0.05

seconds. If OFILL is set, this delay transmits one
fill character.

Selects the vertical-tab delays. This is a mask to use before
comparing to VTO and VT1.

VTO Specifies no delay.
VT1 Specifies one delay of approximately 2 seconds.

Selects the form-feed delays. This is a mask to use before
comparing to FFO and FF1.

FFO Specifies no delay.
FF1 Specifies one delay of approximately 2 seconds.

Describes the hardware control of the terminal. In addition to the basic
control modes, this field uses the following control characters:

CBAUD Specifies baud rate. These bits specify the baud rate for a
connection. For any particular hardware, impossible speed
changes are ignored.

CSIZE

BO Hangs up. The zero baud rate is used to hang up
the connection. If BO is specified, the 1data
terminal ready' signal is not asserted. Normally,
this disconnects the line.

B50
B75
B110
B134
B150
B200
B300
8600
B600
B1200
B1800
82400
84800
B9600
819200
838400
EXTA
EXTB

50 baud.
75 baud.
110 baud.
134.5 baud.
150 baud.
200 baud.
300 baud.
600 baud.
600 baud.
1200 baud.
1800 baud.
2400 baud.
4800 baud.
9600 baud.
19200 baud.
38400 baud.
External A.
External B.

Specifies the character size. These bits specify the
character size in bits for both transmit and receive
operations. This size does not include the parity bit, if any.

CS5 5 bits.
CS6 6 bits.
CS7 7 bits.
CS8 a bits.

c_lflag

CSTOPB

CREAD

PARE NB

PARO DD

HUPCL

CLOCAL

termio.h

Specifies number of stop bits. If set, 2 stop bits are sent;
otherwise, only 1 stop bit is sent.

Enables receiver. If set, the receiver is enabled. Otherwise,
characters are not received.

Enables parity. If set, parity generation and detection is
enabled and a parity bit is added to each character.

Specifies odd parity. If parity is enabled, PARODD specifies
odd parity if it is set. If parity is enabled and PARODD is not
set, even parity is used.

Hangs up on last close. If set, the line is disconnected when
the last process closes the line or when the process
terminates (when the 'data terminal ready' signal drops).

Specifies a local line. If set, the line is assumed to have a
local, direct connection with no modem control. If not set,
modem control (dial-up) is assumed.

Controls various terminal functions. The initial value after an open is all bits
clear. This field uses the following mask name symbols:

ISIG Enables signals. If set, each input character is checked
against the INTR and QUIT special control characters. If an
input character matches one of these control characters,
the function associated with that character is performed. If
the ISIG function is not set, checking is not done.

I CANON

XCASE

Enables canonical input. If set, turns on canonical
processing, which enables the erase and kill edit functions
as well as the assembly of input characters into lines
delimited by NL, EOF, and EOL. If !CANON is not set, read
requests are satisfied directly from the input queue. In this
case, a read request is not satisfied until one of the
following conditions is met: a) the minimum number of
characters specified by MIN are received; orb) the time-out
value specified by TIME has expired since the last
character was received. This allows bursts of input to be
read, while still allowing single-character input. The MIN
and TIME values are stored in the positions for the EOF
and EOL characters, respectively. The time value
represents tenths of seconds.

Enables canonical uppercase and lowercase presentation.
If set along with !CANON, an uppercase letter (or the
uppercase letter translated to lowercase by the IUCLC input
mode) is accepted on input by preceding it with a\
(backslash) character. The output is then preceded by a
backslash character. In this mode, the output generates and
the input accepts the following escape sequences:

Chapter 4. Header Files 4-45

termio.h

NOFLSH

ECHO

For: Use:

' (grave) \'
I \ !

\ J\

{ \ (
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

Disables queue flushing. If set, the normal flushing of the
input and output queues associated with the INTR and
QUIT characters is not done.

Enables echo. If set, characters are echoed as they are
received.

When ICANON is set, the following echo functions are possible:

ECHOE

EC HOK

ECHONL

Echoes the erase character as
Backspace-space-Backspace. If ECHO and ECHOE are
both set, the ERASE character is echoed as one or more
ASCII Backspace-space-Backspace sequences, which
clears the last character(s) from the screen.

Echoes NL after kill. If ECHOK is set, the NL character is
echoed after the kill character is received. This emphasizes
that the line is deleted.

Echoes NL. If ECHONL is set, the NL character is echoed
even if ECHO is not set. This is useful for terminals that are
set to local echo (also referred to as half-duplex).

c_cc Specifies an array that defines the special control characters. The relative
positions and initial values for each function are:

VINTR Indexes the INTR special character (Ctrl-C), which is
recognized on input if ISIG is set. The INTR character
generates a SIGINT signal, which is sent to all processes in
the foreground process group for which the terminal is the
controlling terminal. If ISIG is set, the INTR character is
discarded when processed.

VQUIT Indexes the QUIT special character (Ctrl-\), which is
recognized on input if ISIG is set. The QUIT character
generates a SIGQUIT signal, which is sent to all processes
in the foreground process group for which the terminal is
the controlling terminal, and writes a core image file into the
current working directory. If ISIG is set, the QUIT character
is discarded when processed.

VE RASE Indexes the ERASE special character (Backspace), which
is recognized on input if ICANON is set. The ERASE
character does not erase beyond the beginning of the line
as delimited by a NL, EOL, EOF, or EOL2 character. If
ICANON is set, the ERASE character is discarded when
processed.

4-46 AIX Files Reference

VKILL

VEOF

VEOL

VEOL2

VMIN

VTIME

termio.h

Indexes the KILL special character (Ctrl-U), which is
recognized on input if ICANON is set. The KILL character
deletes the entire line, as delimited by a NL, EOL, EOF, or
EOL2 character. If ICANON is set, the KILL character is
discarded when processed.

Indexes the EOF special character (Ctrl-D), which is
recognized on input if ICANON is set. When EOF is
received, all the characters waiting to be read are
immediately passed to the process, without waiting for a
new-line, and the EOF is discarded. If the EOF is received
at the beginning of a line (no characters are waiting), a
character count of zero is returned from the read, indicating
an end-of-file. If ICANON is set, the EOF character is
discarded when processed.

Indexes the EOL special character (Ctrl-@ or ASCII NULL),
which is recognized on input if ICANON is set. EOL is an
additional line delimiter, like NL. It is not normally used.

Indexes the EOL2 special character (Ctrl-@ or ASCII
NULL), which is recognized on input if ICANON is set.
EOL2 is another additional line delimiter, like NL. It is not
normally used.

Indexes the MIN value, which is not a special character.
The use of the MIN value is described in the discussion of
non-canonical mode input processing in "Understanding the
POSIX Line Discipline."

Indexes the TIME value, which is not a special character.
The use of the TIME value is described in the discussion of
non-canonical mode input processing in "Understanding the
POSIX Line Discipline."

The character values for the following control characters can be changed:

INTR
QUIT

ERASE
KILL

EOF
EOL

EOL2

The ERASE, KILL, and EOF characters can also be escaped (preceded with
a backslash) so that no special processing is done.

The primary ioctl subroutines have the form:

ioctl (FileDescriptor, Command, Structure) struct termio *Structure;

The commands using this form are:

TCGETA

TCSETA

TCSETAF

Get the parameters associated with the terminal and store them in the
termio structure referenced by the Structure parameter.

Set the parameters associated with the terminal from the structure
referenced by the Structure parameter. The change is immediate.

Wait for the output to drain, then flush the input queue and set the new
parameters.

Chapter 4. Header Files 4-47

termio.h

Files

TCSETAW Wait for the output to drain before setting the new parameters. This form
should be used when changing parameters that will affect output.

Additional ioctl subroutines have the form:

ioctl (FileDescriptor, Command, Value) int Value;

The commands using this form are:

TCSBRK Wait for the output to drain. If Value is 0, then send a break of 0.25 seconds
in duration. If Value is non-zero, cause a break condition of Value
milliseconds in duration.

TCSBREAK Wait for the output to drain. If Value is 0, then send a break of .25 seconds
in duration. If Value is non-zero, cause a break condition of Value
milliseconds in duration.

TCXONC Start and stop control. If Value is 0, suspend output; if 1, restart suspended
output; if 2, block intput; if 3, unblock input.

TCFLSH If Value is 0, flush the input queue; if 1, flush the output queue; if 2, flush
both the input and output queues.

The following ioctl operations are used for trusted communications path operations:

TCSAK Points to an integer that enables the Secure Attention Key (SAK) sequence
(Ctrl-X Ctrl-R) in order to provide a clean terminal to which only trusted
processes can read or write. When SAK is enabled and the user types this
sequence, all processes that are currently running are ended. The
TCSAKON operation turns on the SAK sequence; the TCSAKOFF operation
turns off the SAK sequence.

TCQSAK Queries the state (TCSAKON or TCSAKOFF) of the SAK sequence.

TCTRUST Sets a bit by which another process can query (with the TCQTRUST
operation) the state of the terminal, TCTRUSTED or TCUNTRUSTED.

TCQTRUST Queries the state of the terminal (TCTRUSTED or TCUNTRUSTED).

Also refer to the description of the termios.h header file.

For general information about the TTY subsystem, refer to TTY Subsystem Overview in
General Programming Concepts. For general information about the AIX Version 2
compatibility mode, refer to Understanding AIX Version 2 Compatibility Mode in General
Programming Concepts. For general information about the POSIX line discipline, refer to
Understanding the POSIX Line Discipline in General Programming Concepts.

/usr/include/sys/ioctl.h

/usr/i ncl ude/sys/term io. h
/usr/include/termios.h

The path to the ioctl.h header file, which contains the
winsize structure and many of the ioctls used by this line
discipline. The termio.h file contains an #include
statement for the ioctl.h file.
The path to the termio.h header file.
The path to the termios.h header file, which contains the
structures used by the POSIX line discipline.

4-48 AIX Files Reference

termio.h

Implementation Specifics
This file is for compatibility with AIX Version 2.

This file is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fork subroutine, ioctl subroutine, setpgrp subroutine, sigvec subroutine.

The csh command, getty command, stty command, tset command.

Chapter 4. Header Files 4-49

termios.h

termios.h File

Purpose
Defines the structure of the termios file, which provides the terminal interface for POSIX
compatibility.

Description

4-50

The termios.h header file contains information used by subroutines that apply to terminal
files. The definitions, values, and structures in this file are required for compatibility with the
Institute of Electrical and Electronics Engineers (IEEE) P1003.1 Portable Operating System
Interface for Computer Environments (POSIX) standard.

The general terminal interface information is contained in the termio.h header file. The
termio structure in the termio.h header file defines the basic input, output, control, and line
discipline modes. If a calling program is identified as requiring POSIX compatibility, the
termios structure and additional, POSIX control packet information in the termios.h header
file is implemented. Window and terminal size operations use the winsize structure, which is
defined in the ioctl.h header file.The termios structure in the termios.h header file contains
the following fields:

c_iflag

AIX Files Reference

Describes the basic terminal input control. The initial input control value is
all bits clear. The possible input modes are:

IGNBRK

BR KINT

IGNPAR

PARMRK

Ignores the break condition. In the context of asynchronous
serial data transmission, a break condition is defined as a
sequence of zero-valued bits that continues for more than
the time required to send one byte. The entire sequence of
zero-valued bits is interpreted as a single break condition,
even if it continues for an amount of time equivalent to more
than one byte. If IGNBRK is set, a break condition detected
on input is ignored, which means that it is not put on the
input queue and therefore not read by any process.
Signal interrupt on the break condition. If IGNBRK is not set
and BRKINT is set, the break condition flushes the input
and output queues. If the terminal is the controlling terminal
of a foreground process group, the break condition
generates a single SIGINT signal to that foreground
process group. If neither IGNBRK nor BRKINT is set, a
break condition is read as a single \0, or if PARMRK is set,
as \377, \0, \0 ..
Ignores characters with parity errors. If set, a byte with a
framing or parity error (other than break) is ignored.
Marks parity errors. If PARMRK is set, and IGNPAR is not
set, a byte with a framing or parity error (other than break)
is given to the application as the three-character sequence
\377, \0, x, where \377, \0 is a two-character flag preceding
each sequence and x is the data of the character received
in error. To avoid ambiguity in this case, if ISTRIP is not set,
a valid character of \377 is given to the application as \377,
\377. If neither IGNPAR nor PARMRK is set, a framing or
parity error (other than break) is given to the application as
a single character \0.

c_oflag

INPCK

ISTRIP

INLCR

IGNCR

ICRNL

IUCLC

IXON

IXANY

IXOFF

IMAXBEL

termios.h

Enables input parity checking. If set, input parity checking is
enabled. If not set, input parity checking is disabled. This
allows for output parity generation without input parity
errors.
Strips characters. If set, valid input characters are first
stripped to 7 bits; otherwise all 8 bits are processed.
Maps new-line character (NL) to carriage return (CR) on
input. If set, a received NL character is translated into a CR
character.
Ignores CR character. If set, a received CR character is
ignored (not read).
Maps CR character to NL character on input. If ICRNL is
set and IGNCR is not set, a received CR character is
translated into a NL character.
Maps uppercase to lowercase on input. If set, a received
uppercase, alphabetic character is translated into the
corresponding lowercase character.
Enables start and stop output control. If set, a received
STOP character suspends output and a received START
character restarts output. When IXON is set, START and
STOP characters are not read, but merely perform flow
control functions. When IXON is not set, the START and
STOP characters are read.
Enables any character to restart output. If set, any input
character restarts output that was suspended.
Enables start and stop input control. If set, the system
transmits a STOP character when the input queue is nearly
full and a START character when enough input has been
read that the queue is nearly empty again.
Echoes the ASCII BEL character if the input stream
overflows. Further input is not stored, but any input present
in the input stream ,is not lost. If not set, no BEL character is
echoed; the input in the input queue is discarded if the input
stream overflows.

Specifies how the system treats output. The initial output control value is all
bits clear. The possible output modes are:

OP OST

OLCUC

ONLCR

OCR NL

ON OCR

Post-processes output. If set, output characters are
post-processed as indicated by the remaining flags;
otherwise, characters are transmitted without change.
Maps lowercase to uppercase on output. If set, a lowercase
alphabetic character is transmitted as the corresponding
uppercase character. This function is often used in
conjunction with the IUCLC input mode.
Maps NL to CR-NL on output. If set, the NL character is
transmitted as the CR-NL character pair.
Maps CR to NL on output. If set, the CR character is
transmitted as the NL character.
Indicates no CR output at column 0. If set, no CR character
is transmitted when at column 0 {first position).

Chapter 4. Header Files 4-51

termios.h

4-52 AIX Files Reference

ONLRET NL performs CR function. If set, the NL character is
assumed to do the carriage return function. The column
pointer is set to O and the delay specified for carriage return
is used. If neither ONLCR, OCRNL, ONOCR, nor ONLRET
is set, the NL character is assumed to do the line feed
function only; the column pointer remains unchanged. The
column pointer is also set to a value of O if the CR character
is actually transmitted.

The delay bits specify how long a transmission stops to allow for mechanical
or other movement when certain characters are sent to the terminal. The
actual delays depend on line speed and system load.

OFILL

OFDEL

NLDLY

CRDLY

TABDLY

Uses fill characters for delay. If set, fill characters are
transmitted for a delay instead of a timed delay. This is
useful for high baud rate terminals that need only a minimal
delay.
Sets fill characters to the DEL value. If set, the fill character
is DEL. If this flag is not set, the fill character is NULL.
Selects the new-line character delays. This is a mask to use
before comparing to NLO and NL 1.

NLO Specifies no delay.
NL 1 Specifies one delay of approximately 0.1 O seconds.

If ONLRET is set, the carriage return delays are
used instead of the new-line delays. If OFILL is set,
two fill characters are transmitted.

Selects the carriage return delays. This is a mask to use
before comparing to CAO, CR1, CR2 and CR3.

CAO Specifies no delay.
CR1 Specifies that the delay is dependent on the current

column position. If OFILL is set, this delay transmits
two fill characters.

CR2 Specifies one delay of approximately 0.1 O seconds.
If OFILL is set, this delay transmits four fill
characters.

CR3 Specifies one delay of approximately 0.15 seconds.

Selects the horizontal-tab delays. This is a mask to use
before comparing to TABO, TAB1, TAB2, and TAB3. If
OFILL is set, any of these delays (except TAB3) transmit
two fill characters.

TABO Specifies no delay.
TAB1 Specifies that the delay is dependent on the current

column position. If OFILL is set, two fill characters
are transmitted.

TAB2 Specifies one delay of approximately 0.10 seconds.

TAB3 Specifies that tabs are to be expanded into spaces.

c_cflag

BSDLY

VTDLY

FFDLY

termios.h

Selects the backspace delays. This is a mask to use before
comparing to BSO, BS1.

BSO Specifies no delay.
BS1 Specifies one delay of approximately 0.05 ~econds.

If OFILL is set, this delay transmits one fill
character.

Selects the vertical-tab delays. This is a mask to use before
comparing to VTO and VT1.

VTO Specifies no delay.
VT1 Specifies one delay of approximately 2 seconds.

Selects the form-feed delays. This is a mask to use before
comparing to FFO and FF1.

FFO Specifies no delay.
FF1 Specifies one delay of approximately 2 seconds.

Describes the hardware control of the terminal. In addition to the basic
control modes, this field uses the following control characters:

CBAUD Specifies baud rate. These bits specify the baud rate for a
connection. For any particular hardware, impossible speed
changes are ignored.

CSIZE

BO Hangs up. The zero baud rate is used to hang up
the connection. If BO is specified, the 'data
terminal ready' signal is not asserted. Normally,
this disconnects the line.

B50
B75
B110
B134
B150
B200
B300
B600
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400
EXTA
EXTB

50 baud.
75 baud.
11 O baud.
134.5 baud.
150 baud.
200 baud.
300 baud.
600 baud.
600 baud.
1200 baud.
1800 baud.
2400 baud.
4800 baud.
9600 baud.
19200 baud.
38400 baud.
External A.
External B.

Specifies the character size. These bits specify the
character size in bits for both transmit and receive
operations. This size does not include the parity bit, if any.

CS5 5 bits.
CS6 6 bits.
CS7 7 bits.
cs0 8 bits.

Chapter 4. Header Files 4-53

termios.h

c_lflag

4-54 AIX Files Reference

CSTOPB

CREAD

PARE NB

PARO DD

HUPCL

CLOCAL

CIBAUD

PAR EXT

Specifies number of stop bits. If set, 2 stop bits are sent;
otherwise, only 1 stop bit is sent.

Enables receiver. If set, the receiver is enabled. Otherwise,
characters are not received.

Enables parity. If set, parity generation and detection is
enabled and a parity bit is added to each character.

Specifies odd parity. If parity is enabled, PARODD specifies
odd parity if it is set. If parity is enabled and PARODD is not
set, even parity is used.

Hangs up on last close. If set, the line is disconnected when
the last process closes the line or when the process
terminates (when the 'data terminal ready' signal drops).

Specifies a local line. If set, the line is assumed to have a
local, direct connection with no modem control. If not set,
modem control (dial-up) is assumed.

Specifies the input baud rate if it is differ~nt than the output
rate.

Specifies extended parity for mark and space parity.

Controls various terminal functions. The initial value after an open is all bits
clear. In addition to the basic modes, this field uses the following mask
name symbols:

ISIG Enables signals. If set, each input character is checked
against the INTR, QUIT, SUSP, and DSUSP special control
characters. If an input character matches one of these
control characters, the function associated with that
character is performed. If the ISIG function is not set,
checking is not done.

I CANON Enables canonical input. If set, turns on canonical
processing, which enables the erase and kill edit functions
as well as the assembly of input characters into lines
delimited by NL, EOF, and EOL. If ICANON is not set, read
requests are satisfied directly from the input queue. In this
case, a read request is not satisfied until one of the
following conditions is met: a) the minimum number of
characters specified by MIN are received; orb) the time-out
value specified by TIME has expired since the last
character was received. This allows bursts of input to be
read, while still allowing single-character input. The MIN
and TIME values are stored in the positions for the EOF
and EOL characters, respectively. The time value
represents tenths of seconds.

XCASE

termios.h

Enables canonical uppercase and lowercase presentation.
If set along with ICANON, an uppercase letter (or the
uppercase letter translated to lowercase by the IUCLC input
mode) is accepted on input by preceding it with a \
(backslash) character. The output is then preceded by a
backslash character. In this mode, the output generates and
the input accepts the following escape sequences:

For: Use:

' (grave) \'
I \ !

\"
{ \ (
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

NOFLSH

FLUSHO

PEN DIN

IEXTEN

TO STOP

ECHO

Disables queue flushing. If set, the normal flushing of the
input and output queues.associated with the INTR, QUIT,
and SUSP characters is not done.

Flushes the output. When this bit is set by typing the
FLUSH character, data written to the terminal is discarded.
A terminal can cancel the effect of typing the FLUSH
character by clearing this bit.

Reprints any input that has not yet been read when the next
character arrives as input.

Enables extended (implementation-defined) functions to be
recognized from the input data. If this bit is not set,
implementation-defined functions are not recognized, and
the corresponding input characters are processed as
described for ICANON, ISIG, IXON, and IXOFF.

Sends a SIGTTOU signal when a process in a background
process group tries to write to its controlling terminal. The
SIGTTOU signal stops the members of the process group.

Enables echo. If set, characters are echoed as they are
received.

When ICANON is set, the following echo functions are also possible:

ECHOE

EC HOP RT

Echoes the erase character as
Backspace-space-Backspace. If ECHO and ECHOE are
both set and ECHOPRT is not set, the ERASE and
WERASE characters are echoed as one or more ASCII
Backspace-space-Backspace sequences, which clears the
last character(s) from the screen.

If ECHO and ECHOPRT are set, echoes the first ERASE
and WERASE character in a sequence as a backslash(\),
followed by the characters t5eing erased. Subsequent
ERASE and WERASE characters echo the characters
being erased, in reverse order. The next non-erase
character causes a slash (/) to be typed before the
non-erase character is echoed.

Chapter 4. Header Files 4-55

termios.h

ECHO KE

ECHOK

ECHONL

ECHOCTL

Backspace-space-Backspace entire line on line kill. If set,
the kill character is echoed by erasing the entire line from
the screen (using the mechanism selected by ECHOE and
ECHOPRT).

Echoes NL after kill. If ECHOK is set and ECHOKE is not
set, the NL character is echoed after the kill character is
received. This emphasizes that the line is deleted.

Echoes NL. If ECHONL is set, the NL character is echoed
even if ECHO is not set. This is useful for terminals that are
set to local echo (also referred to as half-duplex).

Echoes control characters (with codes between O and 37
octal) as 11 X, where Xis the character given by adding 100
octal to the code of the control character. (For example, the
character with octal code 1 is echoed as 11A). The ASCII
DEL character (code 177 octal) is echoed as 11 ?. The ASCII
TAB, NL, and START characters are not echoed. Unless
escaped, the EOF character is not echoed. Because EQT is
the default EOF character, this prevents terminals that
respond to EQT from hanging up.

c_cc Specifies an array that defines the special control characters. The relative
positions and initial values for each function are:

VINTR

VQUIT

VE RASE

VKILL

VEOF

Indexes the INTR special character (Ctrl-c), which is
recognized on input if ISIG is set. The INTR character
generates a SIGINT signal, which is sent to all processes in
the foreground process group for which the terminal is the
controlling terminal. If ISIG is set, the INTR character is
discarded when processed.

Indexes the QUIT special character (Ctrl-\), which is
recognized on input if ISIG is set. The QUIT character
generates a SIGQUIT signal, which is sent to all processes
in the foreground process group for which the terminal is
the controlling terminal, and writes a core image file into the
current working directory. If ISIG is set, the QUIT character
is discarded when processed.

Indexes the ERASE special character (Backspace), which
is recognized on input if ICANON is set. The ERASE
character does not erase beyond the beginning of the line
as delimited by a NL, EOL, EOF, or EOL2 character. If
ICANON is set, the ERASE character is discarded when
processed.

Indexes the KILL special character (Ctrl-u), which is
recognized on input if ICANON is set. The KILL character
deletes the entire line, as delimited by a NL, EOL, EOF, or
EOL2 character. If ICANON is set, the KILL character is
discarded when processed.

Indexes the EOF special character (Ctrl-d), which is
recognized on input if ICANON is set. When EOF is
received, all the characters waiting to be read are
immediately passed to the process, without waiting for a

4-56 AIX Files Reference

VEOL

VEOL2

VSTART

VSTOP

VSUSP

VDSUSP

VREPRINT

VDISCRD

termios.h

new-line; the EOF is discarded. If the EOF is received at
the beginning of a line (no characters are waiting), a
character count of zero is returned from the read, indicating
an end-of-file. If ICANON is set, the EOF character is
discarded when processed.

Indexes the EOL special character (Ctrl-@ or ASCII NULL),
which is recognized on input if ICANON is set. EOL is an
additional line delimiter, like NL. It is not normally used.

Indexes the EOL2 special character (Ctrl-@ or ASCII
NULL), which is recognized on input if ICANON is set.
EOL2 is another additional line delimiter, like NL. It is not
normally used.

Indexes the START special character (Ctrl-q), which is
recognized on input if IXON is set and generated on output
if IXOFF is set. START can be used to resume output that
has been suspended by a STOP character. If IXON is set,
the START character is discarded when processed. While
output is not suspended, START characters are ignored
and not read. VSTRT is an alias for VSTART.

Indexes the STOP special character (Ctrl-s), which is
recognized on input if IXON is set and generated on output
if IXOFF is set. STOP is useful with terminals to prevent
output from disappearing before it can be read. If IXON is
set, the Stop character is discarded when processed. While
output is suspended, STOP characters are ignored and not
read ..

Indexes the SUSP special character (Ctrl-z), which is
recognized on input if ISIG is set. The SUSP character
generates a SIGTSTP signal, which is sent to all processes
in the foreground process group for which the terminal is
the controlling terminal. If ISIG is set, the SUSP character is
discarded when processed.

Indexes the DSUSP special character (Ctrl-y), which is
recognized on input if ISIG is set. DSUSP generates a
SIGTSTP signal as SUSP does, but the signal is sent when
a process in the foreground process group attempts to read
the DSUSP character, rather than when DSUSP is typed. If
ISIG is set, the DSUSP character is discarded when
processed.

Indexes the REPRINT special character (Ctrl-r), which is
recognized on input if ICANON is set. The REPRINT
character reprints all characters, preceded by a new-line,
that have not been read. If ICANON is set, the REPRINT
character is discarded when processed.

Indexes the DISCARD special character (Ctrl-o), which is
recognized on input if ICANON is set. The DISCARD
character causes subsequent output to be discarded until
another DISCARD character is typed, more input arrives, or
the condition is cleared by a program. If ICANON is set, the
DISCARD character is discarded when processed.

Chapter 4. Header Files 4-57

termios.h

VWERSE

VLNEXT

VMIN

VTIME

Indexes the WERASE special character (Ctrl-w), which is
recognized on input if ICANON is set. The WERASE
character causes the preceding word to be erased. The
WERASE character does not erase beyond the beginning
of the line as delimited by a NL, EOL, EOF, or EOL2
character. If ICANON is set, the WERASE character is
discarded when processed.

Indexes the LNEXT (literal next) special character (Ctrl-v),
which is recognized on input if ICANON is set. The LNEXT
character causes the special meaning of the next character
to be ignored so that characters can be input without being
interpreted by the system. If ICANON and ECHO are set,
the LNEXT character is replaced by a "-Backspace
sequence when processed.

Indexes the MIN value, which is not a special character.
The use of the MIN value is described in the discussion of
non-canonical mode input processing in Understanding the
POSIX Line Discipline.

Indexes the TIME value, which is not a special character.
The use of the TIME value is described in the discussion of
non-canonical mode input processing in Understanding the
POSIX Line Discipline.

The character values for the following control characters can be changed:

INTR
QUIT
ERASE
KILL

EOF
EOL
EOL2
START

STOP DISCARD
SUSP WERASE
DSUSP LNEXT
REPRINT

The ERASE, KILL, and EOF characters can also be escaped (preceded with
a backslash) so that no special processing is done.

The following values for the Optional_Actions parameter of the tcsetattr subroutine are also
defined in the termios.h header file:

TCSANOW Immediately sets the parameters associated with the terminal from the
referenced termios structure.

TCSADRAIN Waits until all output written to the object file has been transmitted before
setting the terminal parameters from the termios structure.

TCSAFLUSH Waits until all output written to the object file has been transmitted and all
input received but not read has been discarded before setting the terminal
parameters from the termios structure.

The following values for the Queue_Selectorparameter of the tcflush subroutine are also
defined in this header file:

TCIFLUSH Flushes data that is received but not read.

TCOFLUSH Flushes data that is written but not transmitted.

TCIOFLUSH Flushes both data that is received but not read and data that is written but
not transmitted.

4-58 AIX Files Reference

termios.h

The following values for the Action parameter of the tcflow subroutine are also defined in
the termios.h header file:

TCOOFF Suspends the output of data by the object file named in the tcflow
subroutine.

TCOON

TCIOFF

TCION

Restarts data output that was suspended by the TCOOFF parameter.

Transmits a stop character to stop data transmission by the terminal device.

Transmits a start character to start or restart data transmission by the
terminal device.

Modem Control Operations
The following ioctl operations, which are used for modem control, are an extension to the
POSIX line discipline. To use these operations in a program, the program must contain an
#include statement for the ioctl.h header file.

TIOCMBIS Turns on the control lines specified by the integer mask value of the
argument to this command. No other control lines are affected.

TIOCMBIC Turns off the control lines specified by the integer mask value of the
argument to this command. No other control lines are affected. This
command operates on the same

TIOCMGET Gets all modem bits. The argument to this command is a pointer to an
integer into which the the current state of the modem status lines is stored.

TIOCMSET Sets all modem bits. The argument to this command is a pointer to an
integer containing a new set of modem control lines. The modem control
lines are turned on or off, depending on whether the bit for that mode is set
or clear.

The integer specifies one of the following modem control or status lines on which the modem
control ioctl command operates:

TIOCM_LE Line enable.

TIOCM_DTR Data terminal ready.

TIOCM_RTS Request to send.

TIOCM_ST Secondary transmit.

TIOCM_SR Secondary receive.

TIOCM_CTS Clear to send.

TIOCM_CAR Carrier detect.

TIOCM_CD TIOCM_CAR.

TIOCM_RNG Ring.

TIOCM_RI TIOCM_RNG.

TIOCM_DSR Data set ready.

These ioctl operations are also supported by the termio terminal interface.

For general information about theTTY subsystem, refer to TTY Subsystem Overview in
General Programming Concepts. For general information about the POSIX line discipline,
refer to Understanding the POSIX Line Discipline in General Programming Concepts.

Chapter 4. Header Files 4-59

termios.h

Files
/usr/include/sys/ioctl.h

/usr/include/sys/termio.h

/usr/include/termios.h
/usr/include/sys/types.h

The path to the ioctl.h header file, which contains the winsize
structure used by this line discipline. The termios.h file
contains an #include statement for the ioctl.h file.
The path to the termio.h header file, which provides maximum
compatibility with the AIX Version 2 terminal interface.
The path to the termios.h header file.
The path to the types.h header file, which defines primitive
system data types.

Implementation Specifics
This file is for POSIX compatibility.

This file is part of AIX Base Operating System (BOS) Runtime.

Related Information
The termio.h file, types.h file.

The ioctl subroutine, sigvec subroutine, tcflow subroutine, tcflush subroutine, tcsetattr
subroutine.

The csh command, getty command, ksh command, stty command, tset command.

4-60 AIX Files Reference

types.h File

Purpose

types.h

Defines primitive system data types.

Description
The data types defined in the types.h header file are used in the computer system source
code. Some data of these types are accessible to user code and can be used to enhance
portability across different machines and operating systems. For example, the pid_t type
allows for more processes than the unsigned short type and the dev_t type can be 16 bits
rather than 32 bits on a machine that supports fewer devices than the RISC System/6000.

Standard Type Definitions
The types.h header file includes the following standard type definitions, which are defined
with a typedef statement:

daddr_t

caddr_t

ino_t

cnt_t

dev_t

chan_t

off_t

paddr_t

key_t

timer_t

nlink_t

mode_t

uid_t

gid_t

mid_t

pid_t

slab_t

mtyp_t

This data type is used for disk addresses, except in i-nodes on disk. The fs
file format describes the format of disk addresses used in i-nodes.

The core (memory) address.

The i-node number (filesystem).

The file system reference count type.

The major and minor parts of a device code specify the kind of device and
unit number of the device, and they depend on the system customization.

The channel number (the minor's minor}.

The file offset, measured in bytes from the beginning of a file.

The real address.

The ipc, key.

Timer ID. Times are encoded in seconds, since 00:00:00 GMT, January 1,
1970.

The number of file links.

The file mode.

The user ID.

The group ID.

The module ID.

The process ID.

The security label.

The ipc message type.

Chapter 4. Header Files 4-61

types.h

uchar_t

ushort_t

uint_t

ulong_t

Unsigned char.

Unsigned short.

Unsigned int.

Unsigned long.

Unsigned Integers and Addresses
The types.h header file also includes the following type definitions for unsigned integers and
addresses:

typedef struct
typedef long
typedef long

_quad { long val[2]; } quad;
swblk_t;
size_t;

The following type definitions are for BSD compatibility only.

typedef unsigned char u - char;
typedef unsigned short u - short;
typedef unsigned int u_int;
typedef unsigned long u_long;

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics
This file is part of Includes and Libraries in AIX Base Application Development Toolkit.

File
/usr/include/sys/types.h The path to the types.h header file.

Related Information
The fs file format.

The values.h header file.

4-62 AIX Files Reference

unistd.h

unistd.h File

Purpose
Defines implementation characteristics identified by the IEEE P1003 Portable Operating
System Interface for Computer Environments (POSIX).

Description
The unistd.h header file includes several other files that contain definitions that are required
for compatibility with the IEEE POSIX 1003 standard.

access.h Defines symbolic constants for the access subroutine.

lseek.h Defines symbolic constants for the lseek subroutine.

The unistd.h file also defines symbolic constants for the pathconf subroutine, fpathconf
subroutine, and sysconf subroutine. The unistd.h header file defines the following symbols,
which are used by POSIX 1003 applications to determine implementation characteristics:

_POSIX_JOB_CONTROL POSIX 1003-compatible job control is supported.

_POSIX_SAVED_IDS An exec subroutine saves the effective user and group IDs.

POSIX VERSION The version of the POSIX standard with which this version of the
operating system complies. The value of this symbol is 198808L.

_POSIX_CHOWN_RESTRICTED

POSIX VDISABLE

_POSIX_NO_TRUNC

The use of the chown function is restricted to a process with the
appropriate privileges. The group id of a file can be changed only
to the effective group id or a supplementary group id of the
process. The value of this symbol is -1.

The terminal special characters, which are defined in the
termios.h header file, can be disabled if this character value is
defined by the tcsetattr subroutine. The value of this symbol is
-1.

Path name components that are longer than NAME_MAX will
generate an error.

The unistd.h file also defines the following symbol, which is used by X/OPEN applications:

XOPEN VERSION The version of the X/OPEN standard with which this version of
the operating system complies.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics
This file is provided for POSIX compatibility.

This file is part of AIX Base Operating System (BOS) Runtime.

Chapter 4. Header Files 4-63

unistd.h

File
/usr/include/unistd.h The path to the unistd.h header file.

Related Information-
The access subroutine, exec subroutine.

The values.h header file.

4-64 AIX Files Reference

utmp.h File

Purpose

utmp.h

Defines the structures of certain user and accounting information files.

Description
The structure of the records in the utmp, wtmp, and failedlogin files is defined in the
utmp.h header file. The utmp structure in this header file contains the following fields:

ut_user

ut_line

ut_pid

ut_type

The user login name.

The device name (console or lnxx). The maximum length of a string in this
field is 11 characters plus a null character. When accounting for something
other than a process, the following special strings or formats are allowed:

RUNLVL_MSG
BOOT_MSG

OTIME_MSG
NTIME_MSG

The process id.

Run level. The run level of the process.
System boot. The time of the initial program load
(IPL).
Old time. The time of login.
New time. The time idle.

The type of entry, which can be one of the following values:

EMPTY
RUN_LVL

Unused space in file.
The run level of the process, as defined in the
inittab file.

BOOT_TIME The time at which the system was started.
OLD_ TIME. The time at which a user logged on to the system.
NEW_ TIME The amount of time the user is idle.
INIT_PROCESS A process spawned by the init command.
LOGIN_PROCESS A getty process waiting for a login.
USER_PROCESS A user process.
DEAD_PROCESS A zombie process.
ACCOUNTING A system accounting process.
UTMAXTYPE ACCOUNTING

The largest legal value allowed in the ut_type field.

Embedded within the utmp structure is the exit_status structure, which contains the
following fields:

e_termination The termination status of a process.

e_exit The exit status of a process, marked as the DEAD_PROCESS value.

ut_time The time at which the entry was made.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics
This file is part of Accounting Services in AIX BOS Extensions 2.

Chapter 4. Header Files 4-65

utmp.h

Files
/etc/utmp The path to the utmp file, which contains a record of users logged

into the system.
/usr/adm/wtmp The path to the wtmp file, which contains accounting information

about users logged in.
/etc/.ilog The path to the failedlogin file, which contains a list of invalid login

attempts.
/usr/include/utmp.h The path to the utmp.h header file.

Related Information
The getty command, init command, login command, who command, write command.

The utmp, wtmp, and failedlogin files.

4-66 AIX Files Reference

values.h File

Purpose
Defines machine-dependent values.

Description

values.h

The values.h header file contains a set of constants that are conditionally defined for
particular processor architectures. The model for integers is assumed to be a ones or twos
complement binary representation, in which the sign is represented by the value of the
high-order bit.

BITS(type) The number of bits in the specified data type.

HIBITS A short integer with only the high-order bit set (Ox8000).

HIBITL A long integer with only the high-order bit set (Ox80000000).

HIBITI A regular integer with only the high-order bit set (the same as the HIBITL
value).

MAXSHORT The maximum value of a signed short integer (Ox7FFF = 32,767).

MAXLONG The maximum value of a signed long integer (Ox7FFFFFFF =
2, 147,483,647).

MAXINT The maximum value of a signed regular integer (the same as the
MAX LONG value).

MAXFLOAT The maximum value of a single-precision floating-point number.

MAXDOUBLE The maximum value of a double-precision floating-point number.

LN_MAXDOUBLE
The natural logarithm of the MAXDOUBLE value.

MINFLOAT The minimum positive value of a single-precision floating-point number.

MINDOUBLE The minimum positive value of a double-precision floating-point number.

FSIGNIF The number of significant bits in the mantissa of a single-precision
floating-point number.

DSIGNIF The number of significant bits in the mantissa of a double-precision
floating-point number.

FMAXEXP The maximum exponent of a single-precision floating-point number.

DMAXEXP The maximum exponent of a double-precision floating-point number.

FMINEXP The minimum exponent of a single-precision floating-point number.

DMINEXP The minimum exponent of a double-precision floating-point number.

FMAXPOWTWO
The largest power of two that can be exactly represented as a
single-precision floating-point number.

DMAXPOWTWO
The largest power of two that can be exactly represented as a
double-precision floating-point number.

Chapter 4. Header Files 4-67

values.h

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/usr/include/values.h The path to the values.h header file.

Related Information
The math.h file, types.h file.

4-68 AIX Files Reference

vmount.h File

Purpose
Defines the structure of the data associated with a virtual file system.

Description

vmount.h

The vmount.h header file defines the vmount structure. Each active virtual file system has
a vmount structure associated with it. The vmount structure contains the mount parameters
(such a the mount object and the mounted over object) for that virtual file system. The
vmount data is created when the virtual file system is mounted; the mntctl subroutine
returns the virtual file system data.

The vmount structure contains the following fields to describe fixed-length data:

vmt_revision The revision code in effect when the program that created this virtual file
system was compiled.

vmt_length The total length of the structure and data. This will always be a multiple of
the word size (4 bytes).

vmt_fsid The two-word file system identifier; the interpretation of this identifier
depends on the vmt_gfstype field.

vmt_vfsnumber The unique identifier of the virtual file system. Virtual file systems and their
identifiers are deleted at IPL (initial program load).

vmt_time The time at which the virtual file system was created.

vmt_flags The general mount flags, for example: READONLY, REMOVABLE, DEVICE,
REMOTE.

vmt_gfstype The type of the general file system. Possible values are:

MNT_JFS
MNT_NFS
MNT_CDROM

The AIX Version 3 journalled file system.
The SUN network file system.
CD-ROM file system.

The remaining fields in the vmount structure describe variable-length data. Each entry in
the vmt_data array specifies the offset from the start of the vmount structure at which a data
item appears as well as the length of the data item.

vmt_off The offset of the data, aligned on a word (32-bit) boundary.

vmt_size The actual size of the data, in bytes.

vmt_data[VMT _OBJECT]
The name of the device, directory, or file that is mounted.

vmt_data[VMT _STUB]
The name of the device, directory, or file that is mounted over.

vmt_data[VMT _HOST]
The short (binary) name of the host that owns the mounted object.

vmt_data[VMT _HOSTNAME]
The long (character) name of the host that owns the mounted object.

Chapter 4. Header Files 4-69

vmount.h

vmt_data[VMT _INFO]
Binary information passed to the file system implementation that supports
this object; the contents of this field is specific to the gfs type defined by the
vmt_gfstype field.

vmt_data[VMT _ARGS]
A character string representation of the arguments supplied when the virtual
file system was created.

Also refer to the Header Files Overview, which defines header files, describes how they are
used, and lists several of the AIX header files for which information is provided in this
documentation.

Implementation Specifics
This file is part of AIX Base Operating System (BOS) Runtime.

File
/usr/include/sys/vmount.h The path to the vmount.h header file.

Related Information
The mntctl subroutine, uvmount subroutine, vmount subroutine.

4-70 AIX Files Reference

fxconst.inc

HCON fxconst.inc File

Purpose
Provides fxfer function constants for Pascal version file transfer.

Description
The /usr/include/fxconst.inc file contains the constants used in programmatic Pascal file
transfer program. Each module that uses the Pascal file transfer function must include the
fxconst.inc file. The constants are for use with Pascal program interface to the HCON File
Transfer Program.

The following constants are for the f_flags variable:

FXC UP 1; /* '0001'x */
FXC DOWN 2; /* '0002'x */
FXC TNL 4• , /* '0004'x */
FXC TCRLF 8; /* '0008'x */
FXC REPL 16; /* '0010'x */
FXC APPND 32; /* '0020'x */
FXC_QUEUE 64; /* '0040'x */
FXC FIXED 128; /* '0080'x */
FXC VAR 256; /* '0100'x */
FXC UNDEF 512; /* '0200'x */
FXC TSO 1024; /* '0400'x */
FXC_CMS 2048; /* '0800'x */

The following constants are for the allocation variables:

FXC TRACKS = -1; /* Tracks */
FXC_CYLINDERS = -2; /* Cylinder */

Implementation Specifics
The fxconst.inc file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a Pascal compiler.

Related Information
File transfer functions are the g32_fxfer function, cfxfer function, fxfer function.

Chapter 4. Header Files 4-71

HCON fxfer.h

HCON fxfer.h File

Purpose
Contains the fxc and fxs data structures for the C file transfer functions.

Description

4-72

The /usr/include/fxfer.h file contains the structures used in the C file transfer program.
Each module that uses the C file transfer function must include the fxfer.h file. The
structures are for use with C program interface to the HCON File Transfer Program.

The fxc structure fields are as follows:

struct fxc {
char *fxc_src;
int srclength;
char *fxc_dst;
int dstlength;
struct fxcf {

int f_flags;
#define FXC UP OxOOOl
#define FXC DOWN Ox0002
#define FXC TNL Ox0004
#define FXC TCRLF Ox0008
#define FXC REPL OxOOlO
#define FXC APPND Ox0020
#define FXC_QUEUE Ox0040
#define FXC FIXED Ox0080
#define FXC VAR OxOlOO
#define FXC UNDEF Ox0200
#define FXC TSO Ox0400
#define FXC CMS Ox0800

char *f_logonid;
int loglength;
int f_lrecl;
int f_blksize;
struct fxcs {

int s_space;
int s_increment;
int s unit; -

#define FXC TRACKS -1 -
#define FXC CYLINDERS -2

} f s; -
} f xc _opts;

} ;

struct f xs {
int fxs_bytcnt;
char *fxs src;
int srclen;
char *fxs _dst;
int dstlen;
char *fxs ctime;
int timelen;
int f xs _stat;
int f xs _errno;

} ;

AIX Files Reference

/* Source file name
/* Put here for Pascal stringptr
/* Destination file name
/* Put here for Pascal stringptr

*/
*/
*/
*/

/* Logan id */
/* Put here for Pascal stringptr */
/* Logical record length */
/* Block size */

/* Allocation space */
/* Allocation space increment */
/* Unit of allocation */
/* Tracks */
/* Cylinder */

/* Byte count */
/* Source file name */
/* Put here for Pascal stringptr */
/* Destination file name */
/* Put here for Pascal stringptr */
/* Destination file creation time */
/* Put here for Pascal stringptr */
/* Status code */
/* Errno */

struct f xp {
char *prof_id;
int proflen;

} ;

Implementation Specifics

HCON fxfer.h

/* Profile id */
/* Put here for Pascal stringptr */

The fxfer.h file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a C compiler.

Related Information
File transfer functions are the g32_fxfer function, cfxfer function, fxfer function.

Chapter 4. Header Files 4-73

fxfer.inc

HCON fxfer.inc File

Purpose
Contains the fxc and fxs records for Pascal file transfer functions.

Description
The /usr/include/fxfer.inc file contains the fxc and fxs records used in the programmatic
pascal file transfer program. Each module that uses the Pascal file transfer function must
include the fxfer.inc file. The records are for use with Pascal program interface to the
HCON Programmatic File Transfer.

The fxs record fields are as follows:

f xs = record
fxs_bytcnt
f xs src
f xs dst
f xs ctime
f xs stat
f xs errno

end;

integer;
stringptr;
stringptr;
stringptr;
integer;
integer;

The fx_s record fields are as follows:

fx_s = record
s_space
s increment
s unit

end;

integer;
integer;
integer;

fxc_opt record
f_flags : integer;
f_logonid stringptr;
f_lrecl integer;
f blksize integer;
f s fx_s;

end;

The fxc record fields are as follows:

f xc = record
f xc src
f xc dst
fxc_opts

end;

stringptr;
stringptr;
fxc_opt;

Implementation Specifics

/* Byte count
/* Source file name
/* Destination file name
/* Destination file creation
/* Status code
/* Err no
/* Record f xs

/* Allocation space
/* Alloction space increment
/* Unit of allocation
/* Record f s

/* Options record
/* Flags options

/* Address of logon id string
/* Logical record length
/* Block size
/* S option record
/* Record fxc_opts

/* Source file name
/* Destination file name
/* Options record
/* Record fxc

time

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

The fxfer.inc file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a Pascal compiler.

Related Information
The g32_fxfer function, fxfer function, cfxfer function.

4-74 AIX Files Reference

HCON fxhfile.inc

HCON fxhfile.inc File

Purpose
Contains external declarations for Pascal file transfer.

Description
The /usr/include/fxhfile.inc header file provides external definitions for the pfxfer File
Transfer Pascal Program status file. The fxhfile.inc is the Pascal file transfer invocation file.
Each module that uses the Pascal file transfer function must include the fxhfile.inc file. The
fields in the fxhfile.inc file are:

function pfxfer(var xfer : fxc; comm: stringptr):integer;external;

function pcfxfer(var sfer : fxs):integer;external;

Implementation Specifics
The fxhfile.inc file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a Pascal compiler.

Related Information
The g32_fxfer function, fxfer function, cfxfer function.

Chapter 4. Header Files 4-75

HCON g32_api.h

HCON g32_api.h File

Purpose
Contains associated API symbol definitions and data structures.

Description

4-76

The /usr/include/g32_api.h file provides data definitions and structures for use with HCON
C language subroutines. Each module that uses the HCON API must include the g32_api.h
file.

The constants in the g32_api file are:

#define H3270DEV
#define SSl
/*

0
Ox19

* Range for logical path ID's.
*/

#define MIN LPID
#define MAX LPID
#define NUM LPS

#define G320K
#define G32ERROR

0
lS
16

0
-1

#define NO SESSION 0
#define MODE_3270 1
#define MODE API 2
#define MODE API T 4
#define PEND DEALLOC 8

#define MAX_MSG_LEN 60000
/*
* screen size definitions for the different models
*/

#define MIN ROW 1
#define MIN COLUMN 1
#define MOD2 MAXROW 24
#define MOD2 MAXCOL 80
#define MOD3 MAXROW 32
#define MOD3 MAXCOL 80
#define MOD4 MAXROW 43
#define MOD4 MAXCOL 80
#define MODS MAXROW 27
#define MODS MAXCOL 132

AIX Files Reference

g32_api structure

struct g32_api {
int lpid;

} ;

/*

int errcode;
int xerrinfo;
int row;
int column;
int length;
int event£;
int maxbuf;
int timeout;

HCON g32_api.h

/* information and parameter structure */
/* logical path id */
/* error code indicator */
/* extra error information */
/* row number *I
/* column number */
/* length for patterns */
/* message queue ID/file descriptor */
/* maximum buffer size */
/* timeout of host response */

* This structure was put in to have a structure that directly
* corresponded to a Pascal stringptr (which equals a char

* andint).
*/

struct g32_str {

} ;

char *g_strval;
int g_strlength;

extern int errno;
/*

* Error codes used by the API routines
*/

#define G32_SESS EXIST

#define G32 NO LA
#define G32_EOPEN

#define G32_NO_LOG

#define G32 NO LP
#define G32 NO SESS

#define G32 EEMU
#define G32 EMALLOC
#define G32 EFORK
#define G32 ENDSESS

#define G32 INV MODE

#define G32 MIX MODE

#define G32 PARMERR

#define G32_LINK_CTL

#define G32 EREAD
#define G32 EWRITE
#define G32 ELENGTH

-1 /* A session exists on the logical
path*/

-2 /* There are no free link addresses */
-3 /* An error occurred opening the

special file */
-5 /* An error occurred while attempting

log onto the host */
-6 /* No logical path was available */
-7 /* No sesssion exists for this

application */

-8 /* Error starting emulator */
-9 /* Unable to malloc memory */
-10 /* fork failed */
-12 /* The host application wishes to end

the session */
-13 /* The AIX application is not in

API/API or API/API_T mode */
-14 /* The session is in API/3270 versus

host API/API application */

-15 /*

-16

-17
-18
-19

No host application name was
specified ~or an API or API_T mode
application */
/* The api was unable to get control
of the specified logical path */
/* An error occurred on a 'read' */
/* An error occurred on a 'write'*/
/* The message is more than 32000
bytes long, or negative */

#define G32 INV POSITION -20 /* The row or column specification
was invalid */

Chapter 4. Header Files 4-77

HCON g32_api.h

4-78

#define G32_INV PATTERN -21

#define G32 SEARCH FAIL -23

#define G32 EMSGSND -24

#define G32 EMSGRCV -25

#define G32 PROMPT -29

#define G32 EIOCTL -30

#define G32 ESELECT -31
#define G32 NOTACK -32

#define G32 TIMEOUT -33

/* The pattern presented to a
G32 search was invalid */
/* The string was not found in the
presentation space */
/* The API was not able to send a
rnsg to the emulator */
/* The API was not able to receive a
rnsg from the emulator */
/* The api was not able to read the
control terminal for a logon ID and
passwd */

/* The ioctl call to the AIX driver
failed */
/* An error occurred on a select */

/* The synchronization problem,
missing g32write function in the
host application */
/* A timeout occurred waiting for
host data */

/*

* Codes returned by g32_get_status
*/

#define
#define
#define
#define

I*

G32 NO ERROR
G32 COMM CHK - -
G32_PROG_CHK
G32 MACH CHK - -

0
-1
-2
-3

* constants used in g32_openx
*/

#define ASCII 0
#define ASCII 1
#define ASCII 9

/*
* length of header
*/

060
061
071

#define HEADER LENGTH 12

/*
* values for emulator quit message
*/

#define QUIT_BYTEl Ox03
#define QUIT_BYTE2 OxOl
#define QUIT_BYTE3 OxOO

/*
* values used in g sea xlate
*/

#define HEXaO
#define HEXb4
#define HEXb5
#define HEXcO
#define HEXe6

AIX Files Reference

OxaO
Oxb4
Oxb5
OxcO
Oxe6

HCON g32_api.h

/*

* values used in g32_alloc and g32_write
*/

#define MAX BUF DIV 256 7 - - -
#define MAX BUF MOD 256 8 - - -
/*

* value used in g32_alloc
*/

#define STRUCT AID Ox88

Implementation Specifics
The g32_api.h file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a C compiler.

Related Information
HCON AIX Header Files and Understanding the AIX Interface in Communications
Programming Concepts.

AIX interface functions are:

g32_alloc
g32_close
g32_dealloc
g32_openx

g32_get_cursor
g32_get_data
g32_search
g32_send_keys

g32_get_status
g32_read
g32_write
g32_fxfer

Chapter 4. Header Files 4-79

HCON g32const.inc

HCON g32const.inc File

Purpose
Defines Pascal HCON API constants

Description

4-80

The /usr/include/g32const.inc file contains definitions for API constants to use with HCON
Pascal language subroutines. Each module that uses the Pascal API must include the
g32const.inc file.

The constants in the g32const.inc file are:

/*

H3270DEV
SSl

O;
'19 'x;

* Range for logical path IDs.
*/

/*

MIN LPID
MAX LPID
NUM LPS = 16;

G320K
G32ERROR

NO_SESSION
MODE 3270
MODE API
MODE API T
PEND DEALLOC

MAX MSG LEN

API USER MSG - -
API_START_MSG
API TERM MSG - -
WSF
API SMSG LEN
API TMSG LEN - -
API NMSG LEN - -
API HDR LEN

O;
15;

O;
-1;

O;
1;
2;
4;
8;

60000;

'01 'x;
= '02'x;

'03'x;
'll'x;
11;
11;
11;
11;

* Error codes used by the API routines
*/

G32_SESS_EXIST = -1;
G32 NO LA
G32 EOPEN
G32_NO_LOGON
G32 NO LP
G32_NO_SESS
G32 EEMU
G32_EMALLOC
G32 EFORK
G32 ENDSESS
G32_INV_MODE
G32_PARMERR

AIX Files Reference

= -2;
= -3;
= -5;
= -6;
= -7;
= -8;
= -9;
= -10;
= -12;
= -13;
= -15;

/*

G32 LINK CTL - -
G32 EREAD
G32 EWRITE
G32 ELENGTH
G32 INV POSITION
G32_INV_PATTERN = -21;
G32_SEARCH_FAIL = -23;
G32_EMSGSND
G32 EMSGRCV
G32 PROMPT
G32 EIOCTL
G32 ESELECT
G32_NOTACK
G32_TIMEOUT

= -16;
= -17;
= -18;
= -19;
= -20;

= -24;
= -25;
= -29;
= -30;
= -31;
= -32;
= -33;

* Codes returned by g32stat
*/

G32_NO_ERROR
G32 COMM CHK - -
G32 PROG CHK - -
G32_MACH_CHK

Implementation Specifics

O;
-1;
-2;

= -3;

HCON g32const.inc

The g32const.inc file is part of the AIX 3270 Host Connection Program/6000 {HCON).

This file requires the use of a Pascal compiler.

Related Information
HCON AIX Header Files and Understanding the AIX Interface in Communications
Programming Concepts.

AIX interface functions are:

g32_alloc
g32_close
g32_dealloc
g32_openx

g32_get_ cursor
g32_get_data
g32_search
g32_send_keys

g32_get_status
g32_read
g32_write
g32_fxfer

Chapter 4. Header Files 4-81

HCON g32hfile.inc

HCON g32hfile.inc File

Purpose
Contains HCON API external definitions for Pascal language.

Description

4-82

The /usr/include/g32hfile.inc file provides external definitions for use with HCON Pascal
language subroutines. Each module that uses the Pascal API must include the g32hfile.inc
file.

The function declarations in the g32hfile.inc file are:

function g32allc(var as : g32_api;
appl_name : stringptr;
session_mode : integer):integer;external;

function g32clse(var as

function g32curs(var as

function g32deal(var as

g32_api):integer;external;

g32_api):integer;external;

g32_api):integer;external;

function g32data(var as g32_api;
buffer : integer):integer;external;

function g32fxfer(var as : g32_api;
xfer : fxc):integer;external;

function g32note(var as : g32_api;
note : integer):integer;external;

function g32open(var as : g32_api;
flag : integer;
uid : stringptr;
pw : stringptr;
comm: stringptr):integer;external;

function g32openx(var as : g32_api;
flag : integer;
uid : stringptr;
pw : stringptr;
comm : stringptr;
timeout : stringptr):integer;external;

function g32read(var as : g32_api;
var buffer : stringptr;
var msg_len : integer):integer;external;

function g32sdky(var as : g32_api;
buffer : stringptr):integer;external;

function g32srch(var as : g32_api;
pattern : stringptr):integer;external;

function g32stat(var as : g32_api):integer;external;

function g32wrte(var as : g32_api;
buffer : integer;
msg_len : integer):integer;external;

AIX Files Reference

HCON g32hfile.inc

Implementation Specifics
The g32hfile.inc file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a Pascal compiler.

Related Information
HCON AIX Header Files and Understanding the AIX Interface in Communications
Programming Concepts.

AIX interface functions are:

g32_alloc
g32_close
g32_dealloc
g32_openx

g32_get_ cursor
g32_get_data
g32_search
g32_send_keys

g32_get_status
g32_read
g32_write
g32_fxfer

Chapter 4. Header Files 4-83

HCON g32_keys.h

HCON g32_keys.h File

Purpose
Enables HCON API in Mode_3270 for C subroutines.

Description
The /usr/include/g32_keys.h file enables HCON API in Mode_3270 for use with the HCON
C language g32_send_keys function. Each module that uses the HCON Pascal
g32_send_keys function must include g32_keys.h file.

The constants in the g32_keys.h file are:

#define ENTER "\002\061" /* enter */
#define PAl "\002\055" /* PAl */
#define PA2 "\002\056" /* PA2 */
#define PA3 "\002\057" /* PA3 */
#define PFl "\002\025" /* PFl */
#define PF2 "\002\026" /* PF2 */
#define PF3 "\002\027" /* PF3 */

#define PF4 "\002\030" /* PF4 */
#define PF5 "\002\031" /* PF5 */
#define PF6 "\002\032" /* PF6 */
#define PF7 "\002\033" /* PF7 */
#define PF8 "\002\034" /* PF8 */
#define PF9 "\002\035" /* PF9 */
#define PFlO "\002\036" /* PFlO */

#define PFll "\002\037" /* PFll */
#define PF12 "\002\040" /* PF12 */
#define PF13 "\002\041" /* PF13 */
#define PF14 "\002\042" /* PF14 */
#define PF15 "\002\043" /* PF15 */
#define PF16 "\002\044" /* PF16 */
#define PF17 "\002\045" /* PF17 */
#define PF18 "\002\046" /* PF18 */
#define PF19 "\002\047" /* PF19 */

#define PF20 "\002\050" /* PF20 */
#define PF21 "\002\051" /* PF21 */
#define PF22 "\002\052" /* PF22 */
#define PF23 "\002\053" /* PF23 */
#define PF24 "\002\054" /* PF24 */
#define CLEAR "\002\060" /* clear */
#define DUP "\002\066" /* dup */

#define FM "\002\067" /* field mark */
#define INS "\002\024" /* insert */
#define DEL "\002\021" /* delete */
#define C_UP "\002\002" /* cursor up */
#define C DN "\002\003" /* cursor down */
#define C LT "\002\001" /* cursor left */
#define C RT "\002\004" /* cursor right */
#define C UUP "\002\006" /* cursor up fast */
#define C DON "\002\007" /* cursor down fast */
#define C LLT "\002\005" /* cursor left fast */

4-84 AIX Files Reference

HCON g32_keys.h

#define C RRT "\002\010" /* cursor right fast */
#define TAB "\002\013" /* tab */
#define B TAB "\002\014" /* back tab */
#define CR "\002\012" /* carriage return */
#define RESET "\003\002" /* reset */
#define E - INP "\002\022" /* erase input */
#define E EOF "\002\023" /* erase to end of field */
#define T_REQ "\002\070" /* test/sys req */
#define HOME "\002\015" /* home cursor */

Implementation Specifics
The g32_keys.h file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a C compiler.

Related Information
The g32_send_keys function

HCON AIX Header Files and Understanding the AIX Interface in Communications
Programming Concepts.

Chapter 4. Header Files 4-85

HCON g32keys.inc

HCON g32keys.inc File

Purpose
Contains common API key values definitions.

Description
The /usr/include/g32keys.inc file provides key definitions for use with the HCON Pascal
language g32_send_keys function. Each module that uses the HCON Pascal
g32_send_keys function must include g32keys.inc.

The key value definitions in the g32keys.inc file are:

ENTER chr(2) I chr(49); /* enter key (host) */
PAl chr(2) I chr(45); /* PAl */
PA2 chr(2) I chr(46); /* PA2 */
PA3 chr(2) I chr(47); /* PA3 */
PFl chr(2) I chr(21); /* PFl */
PF2 chr(2) I chr(22); /* PF2 */

PF3 chr(2) I chr(23); /* PF3 */
PF4 chr(2) I chr(24); I* PF4 */
PFS chr(2) I chr(25); /* PFS */
PF6 chr(2) I chr(26); /* PF6 */
PF7 chr(2) I chr(27); /* PF7 */

PF8 chr(2) I chr(28); /* PFS */
PF9 = chr(2) I chr(29); /* PF9 */
PFlO chr(2) I chr(30); /* PFlO */
PFll chr(2) I chr(31); /* PFll */
PF12 = chr(2) II chr(32); /* PF12 */
PF13 chr(2) I chr(33); /* PF13 */

PF14 chr(2) chr(34); /* PF14 */
PF15 chr(2) chr(35); /* PF15 */
PF16 chr(2) chr(36); /* PF16 */
PF17 chr(2) chr(37); /* PF17 */
PF18 chr(2) chr(38); /* PF18 */

PF19 chr(2) chr(39); /* PF19 */
PF20 chr(2) chr(40); /* PF20 */
PF21 = chr(2) chr(41); /* PF21 */
PF22 = chr(2) chr(42); /* PF22 */
PF23 chr(2) chr(43); /* PF23 */
PF24 chr(2) chr(44); /* PF24 */

CLEAR chr(2) chr(48); /* clear */
DUP chr(2) chr(54); I* dup */
FM chr(2) chr(55); /* field mark */
INS chr(2) chr(20); /* insert */
DEL chr(2) chr(l7); /* delete */

C UP chr(2) chr(2); /* cursor up *I
C ON chr(2) chr(3); /* cursor down */
C LT chr(2) chr (1); /* cursor left */
C RT = chr(2) chr (4); /* cursor right */
C UUP = chr(2) chr(6); /* cursor up fast */

4-86 AIX Files Reference

HCON g32keys.inc

C DDN chr(2) 11 chr(7); /* cursor right fast */
C LLT chr(2) 11 chr(5); /* cursor left fast */
C RRT chr(2) 11 chr (8); /* cursor right fast */
TAB chr(2) 11 chr(ll); /* tab */
B TAB chr(2) 11 chr (12); /* back tab */

CR chr(2) 11 chr(lO); /* carriage return
RESET chr(3) 11 chr(2); /* reset
E !NP chr(2) II chr(l8); /* erase input
E EOF chr(2) 11 chr (19); /* erase to end of field
T_REQ chr(2) 11 chr(56); /* test/sys request
HOME chr(2) 11 chr(l3); /* home cursor

Implementation Specifics
The g32_keys.inc file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a Pascal compiler.

Related Information
The g32_send_keys function

HCON AIX Header Files and Understanding the AIX Interface in Communications
Programming Concepts.

*/
*/
*/
*/
*/
*/

Chapter 4. Header Files 4-87

HCON g32types.inc

HCON g32types.inc File

Purpose
Contains Pascal API data types.

Description
The /usr/include/g32types.inc file provides data types and structures for use with HCON
Pascal language functions. The g32types.inc file is an include file that contains the
g32_api record. Each module that uses the HCON Pascal API must include g32types.inc.

4-88

The fields in the g32types.inc file are:

g32_api = record
lpid : integer;
errcode : integer;
xerrinfo : integer;
row : integer;
column integer;
length integer;
event£ integer;
maxbuf integer;

/* information and parameter structure
/* logical path id

timeout

end; /* record

f xs = record
fxs_bytcnt
f xs src -
f xs dst -
f xs ctime -
f xs stat -
f xs errno -

end;

f x s = record -
s_space
s increment -
s unit -

end;

integer;

g32_api */

integer;

/* error code indicator
/* extra error information
/* row number
/* column number
/* length for patterns
/* message queue ID/file descriptor
/* the maximum transfer message size
/* from the H3270MAXBUF variable in
/* the HCON profile.
/* The user may override the default
/* value only during a call to
/* g32allc
/* the amount of time, in seconds,
/* to wait for data from the host
/* computer. The default value is
/* 15 seconds. The user may override
/* the default value at anytime.

/* Byte count
stringptr; /* Source file name
stringptr; /* Destination file name
stringptr; /* Destination file creation time
integer; /* Status code
integer; /* Errno

/* Record f xs

integer; /* Allocation space
integer; /* Alloction space increment
integer; /* Unit of allocation

/* Record f s -
f xc _opt record /* Options record

f _flags integer; /* Flags options
f_logonid stringptr; I* Address of logon id string
f lrecl integer; /* Logical record length -
f - blksize integer; /* Block size
f s f x s• /* s option record - - I

end; /* Record f xc _opts

AIX Files Reference

*/
*/
*/
*/
*/
*/
*/
*/
*I
*/
*I
*/
*/
*/
*I
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*I
*/
*/
*/
*/

HCON g32types.inc

f xc = record
f xc src
f xc dst
fxc_opts

end;

stringptr;
stringptr;
fxc_opt;

Implementation Specifics

/* Source file name
/* Destination file name
/* Options record

The g32types.inc file is part of the AIX 3270 Host Connection Program/6000 (HCON).

This file requires the use of a Pascal compiler.

Related Information
HCON AIX Header Files and Understanding the AIX Interface in Communications
Programming Concepts.

AIX interface functions are:

g32_alloc
g32_close
g32_dealloc
g32_openx

g32_get_cursor
g32_get_data
g32_search
g32_send_keys

g32_get_status
g32_read
g32_write
g32_fxfer

Chapter 4. Header Files

*/
*/
*/

4-89

SNA luxsna.h

SNA luxsna.h File

Purpose
Defines constants and structures used by AIX SNA Services/6000 subroutines.

Description

Structures

The luxsna.h header file provides definitions of constants and structures that are used by
AIX SNA Services/6000 subroutines. The luxsna.h file defines the following structures:

The luxsna.h file contains the following structure definitions:

allo_str Structure

This structure provides additional parameters for the snalloc subroutine and the
ioctl(ALLOCATE) subroutine. Refer to the snalloc or ioctl subroutine for a description of
these functions. The structure appears as follows:

struct allo str
{

} ;

char
char
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
int
long
struct
int

rnode_narne[9];
tpn[65];
priority
type
return control
sync_level
recov level
pip
sess_type
svc_tpn_flag
rsvd2
sense_code;

2;
2;
2;
2;
2;
1;
1;
1;
3;

rid; /* rid for a previous conversation */
pip_str *pip_ptr;
conv_group_id;

Note: When parameters in this structure are specified, the remote TPN profile parameters
are overriden. If no parameters are specified, the remote TPN profile parameters are
used as the default.

The allo_str structure parameters have the following meaning:

mode name Specifies the mode name for the conyersation. The mode name designates
the network properties for the session to be allocated, such as the class of
service to be used.

A special mode name, SNASVCMG, specifies the mode name used for control operator
subroutines. Any program using this mode name must have control operator privileges
based on the operating-system group ID. This mode name is not used for LUs 1, 2, or 3.

4-90 AIX Files Reference

tpn

priority

type

SNA luxsna.h

Specifies the name of the remote transaction program with which to
establish the conversation. The TPN must be coded in EBCDIC. The AIX
SNA Services/6000 subroutine interface converts ASCII to EBCDIC if the
svc_tpn_flag is set to zero. If you use the AIX SNA Services/6000
subroutine interface, the svc_tpn_flag is ignored, and you must ensure that
the conversion is done. Refer to EBCDIC to ASCII Translation for US
English (TEXT) for assistance in converting ASCII to EBCDIC.

Specifies the priority option which selects a mode profile to be used to
establish an appropriate session for the conversation. Priority options are:

B'OO' Use the first mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

B'01' Use the second mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

B' 1 O' Use the third mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

B'11' Use the fourth mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

Specifies the type of conversation to be allocated:

DEF _CONV (B'OO')
Use the value defined in the remote transaction profile.

BASIC_CONV (B'01 ')
Allocate a basic conversation.

MAPPED_CONV (B'1 O')
Allocate a mapped conversation. Do not use this value for LUs 1 , 2,
or 3.

RECON_CONV (B'11 ')
Reconnect a conversation between the local and remote transaction
program. Do not use this value with LU 1, 2, or 3 conversations.

return control
Specifies the type of conversation the application is requesting. Options are:

WHEN_SESSION_ALLOC (B'OO')
Return control to application when either a Contention Winner or
Contention Loser session is allocated. The type assigned is the first
available.

WHEN_CONWINNER_ALLOCATED (B'01 ')
Return control to application when a Contention Winner session is
allocated.

WHEN_CGID_ALLOCATED (B'1 O')
Return control to application when a session with the specified
conversation group id is allocated.

Chapter 4. Header Files 4-91

SNA luxsna.h

4-92

RESERVED (B'11 ')
Reserved.

sync_level Specifies the synchronization level to be used by the program for this
conversation.

DEFAULT (B'OO')
Use the value defined in the remote transaction profile.

SYNC_NONE (B'01 ')
The program does not perform confirmation.

SYNC_CONF (B'1 O')
The program performs confirmation processing.

recov level Specifies the recovery level that the local program uses for this
conversation. Do not use this parameter with LUs 1, 2, and 3.

PIP

RECOV _DEF (B'OO')
Use the value defined in the remote transaction profile.

RECOV _NONE (B'01 ')
The program does not support program reconnect or sync point
restart.

RECOV _RECON (B'1 O')
The program supports program reconnect, but not sync point
restart.

Specifies whether program initialization data is provided for the remote
transaction program. Do not use this parameter with LU 1, 2, or 3
conversations.

PIP _NO (B'O')
Program initialization data is not provided.

PIP_ YES (B'1 ')
Program initialization data is provided.

sess_type Specifies the type of session to be allocate.d. Use for LU 1, 2, or 3 sessions
only. This field is not used for mapped conversations.

B'O' LU-LU session

B'1' SSCP-LU session

svc_tpn_f lag

rsvd2

AIX Files Reference

Indicates whether the tpn parameter defines a service transaction program
name specified in hex:

B'O' Indicates that it is not a service transaction program name. The AIX
SNA Services/6000 subroutine interface translates the TPN name
into EBCDIC code.

·B'1' Indicates that it is a service transaction program name. AIX SNA
Services/6000 does not translate the TPN name into EBCDIC code.
Refer to EBCDIC to ASCII Translation for US English (TEXT) for
assistance in converting ASCII to EBCDIC.

This field is not used.

rid

pip_ptr

SNA luxsna.h

Specifies a resource ID that is returned from an ioctl(ALLOCATE) or a
snalloc subroutine. This field is also used to supply the rid necessary in
order to reconnect to an old conversation when the type parameter of the
allo_str structure is specified as reconnect (8'11 '). For the remote
attached ALLOCATE, the only parameter required in the allo_str
structure is rid, which is passed into the application program by argv [3].

When the PIP parameter indicates that program initialization data for the
remote program is being supplied, this pointer points to the structure that
contains that initialization data. Refer to the pip_str structure for PIP data
structure.

conv _group_id The conversation group ID that identifies a specific session to be
allocated.

alloc_listen Structure

This structure provides additional parameters for the ioctl(ALLOCATE_LISTEN) subroutine.
Refer to the ioctl subroutine for a description of this function.

struct alloc listen
{

] ;
} ;

int tpn_rnask
char tpn_profile_narne[MAX_PROF_LEN];
unsigned short nurn_tpn;
char tpn_list[MAX NUM TPN][MAX_TPN_LEN

The alloc_listen structure parameters have the following meaning:

tpn_prof ile_narne

nurn_tpn

tpn_list

tpn_mask

Specifies the name of a Transaction Program Profile against which
incoming attaches are checked. This profile serves as conversation
characteristics template for the Transaction Programs listed in the
tpn_list field. The name can be up to 15 bytes long and must be NULL
terminated (total of 16 bytes maximum). This profile name must be defined
in the TPN List Profile for the specified connection.

The number of TPNs in the tpn_list array described below.

An array of Transaction Program Names to register as being "listened" for. A
maximum of 31 names can be registered per call. Each name can be a
maximum of 64 bytes and must be NULL terminated (total of 65 bytes per
name). These TPNs should not be defined in the TPN List Profile for the
specified connection. Their conversation characteristics are defined in the
single TPN profile specified in the tpn_profile_name field. These names
are not converted from ASCII to EBCDIC.

A mask that indicates which of the specified TPNs are registered. The least
significant bit (bit 0) corresponds to the first TPN (tpn_list [o]), and so
on. The values of the bits are:

o TPN is not registered.

1 TPN is registered.

If none were registered, the result is (-1) or Ox7FFFFFFF.

Chapter 4. Header Files 4-93

SNA luxsna.h

4-94

attr_str Structure

This structure receives output from the GET _ATTRIBUTE request for the snactl and ioctl
subroutines. Refer to the snactl or ioctl subroutine for a description of the these functions.
The structure appears as follows:

struct attr str
{

} ;

long rid;
char own_fully_qualified_lu_name[l8];
char ptner_fully_qualified_lu_name[l8];
char conversation_correlator[l8];
char modename[9];
unsigned conn_status
unsigned sync_level
unsigned recovery_level
unsigned rsvd
long conv_group_id

1 • I

2.
I

2· I

3;

The attr_str structure parameters have the following meaning:

rid Specifies the variable that contains the resource ID of the GET _ATTRIBUTE
conversation. This is the resource ID returned by the snalloc or
ioctl(ALLOCATE) subroutine.

own_fully_qualified_lu_name
The variable where the request returns the fully qualified name of the LU at
which the local transaction program is located.

ptner_fully_qualified_lu_name
The variable where the request returns the fully qualified name of the LU at
which the remote transaction program is located.

conversation correlator

mode name

The variable where the request returns the local program's conversation
correlator, an identifier that ties the current instance of the local program to
the conversation.

The variable where the request returns the mode name for the session on
which the conversation is allocated.

conn_ status A variable where the request returns a value specifying the status of the
connection. Valid values are:

B'O' Connected

8'1' Stopped.

sync_level A variable where the request returns a value specifying the level of
synchronization processing being used for the conversation. Valid values
are:

B'OO' No synchronization processing

8'01' Confirm synchronization processing is being used.

AIX Files Reference

SNA luxsna.h

recovery_level

A variable where the request returns a value specifying the level of recovery
being used for the conversation. Valid values are:

B'OO' No recovery level

8'01' Reconnect.

rsvd This field is not used.

conv_group_id

A variable where the request returns the conversation group ID that
identifies a specific allocated session.

confirm_str Structure

This structure receives output from the CONFIRM request for the snactl and ioctl
subroutines. Refer to the snactl or ioctl subroutine for a description of the these functions.
The structure appears as follows:

struct confirm str
{

long rid;
int sense_code;

}

The confirm_str structure parameters have the following meanings:

rid Specifies the variable that contains the resource ID of the conversation to
perform the confirm function. This is the resource ID returned by the
snalloc or ioctl(ALLOCATE) subroutine.

sense code Specifies a ~ariable that contains the sense code returned from AIX SNA
Services/6000. This parameter is used for LUs 1, 2, and 3 only.

cp_str Structure

This structure provides additional parameters that describe the cp capabilities of the
adjacent node. Refer to GP-Status in the snactl or ioctl subroutine for a description of the
these functions. This structure appears as follows:

struct cp_str
{

} ;

long rid;
char adj_cp_name[l8];
int conv_group_id;
int sess_type;
struct adj_cp_cap adj_cp_cap;

The cp_str structure parameters have the following meani"ng:

rid The variable that contains the resource ID returned from the allocate
function.

adj_cp_name The variable where the request returns the adjacent control point (CP)
name.

Chapter 4. Header Files 4-95

SNA luxsna.h

4-96

conv_group_id
The variable where the request returns the conversation group ID that
identifies a specific allocated session.

sess_type The variable where the request returns the session type:

0 No session allocated

Contention Loser session

2 Contention Winner session

struct adj_cp_cap
{
unsigned locate_gds 1;
unsigned directory_svc 1;
unsigned resource_reg 1;
unsigned char_reg 1;
unsigned topology_update l;
unsigned cp_msu l;
unsigned unsol_cp_msu l;
unsigned parallel_cp l;
int f low_reduction_seq_num;
} ;

The adj_cp_cap structure parameters have the following meaning:

locate_gds Indicates whether the remote cp accepts LOCATE/CDINIT requests for
resources that cp controls. The value returned is either TRUE (1) or FALSE
(0).

directory_svc
Indicates whether the remote cp forwards LOCATE/CDINIT search requests
for resources to other cps. The value returned is either TRUE (1) or FALSE
(0).

resource_reg

char_reg

Indicates whether the remote cp accepts register requests. The value
returned is either TRUE (1) or FALSE (0).

Indicates whether the remote cp accepts register requests that include
resource characteristics. The value returned is either TRUE (1) or FALSE
(0).

topology_update

cp_msu

Indicates whether the remote cp accepts topology database updates on the
current session. The value returned is either TRUE (1) or FALSE (0).

Indicates whether the remote cp accepts requests for management services
data in a CP-MSU and replies to requests in a CP-MSU. The value
returned is either TRUE (1) or FALSE (0).

unsol_cp_msu
Indicates whether the remote cp accepts unsolicited requests for
management services data in a CP-MSU and replies to requests in a
CP-MSU. The value returned is either TRUE (1) or FALSE (0).

parallel_cp Indicates whether the remote cp supports and activates parallel CP-CP
sessions. The value returned is either TRUE (1) or FALSE (0).

AIX Files Reference

SNA luxsna.h

f low_reduction_seq_nurn
The value the remote node last used to reduce the number of database
updates sent when two nodes were reconnected.

deal_str Structure

This structure provides additional parameters for the snadeal and ioctl(DEALLOCATE)
subroutines. Refer to the snadeal or ioctl subroutine for a description of the these functions.
This structure is as follows:

struct deal str
{

} ;

long rid;
unsigned type
unsigned deal_f lag
unsigned rsvd
int sense_code;

3;
1;

12;

The deal_str structure parameters have the following meaning:

rid Specifies the variable that contains the resource ID of the conversation to
be deallocated. This is the resource ID returned by the snalloc or
ioctl(ALLOCATE) subroutine.

type Specifies the type of deallocation to be performed for this conversation. This
parameter is optional. If you do not provide a value, the system uses a value
of B'OOO'. Because this value cannot be used for LUs 1, 2, or 3, you must
specify a type value when using those logical unit specifications. Values for
type are:

DEFAULT (8'000')
Use the default value specified in the sync_level parameter of the
snalloc or ioctl(ALLOCATE) subroutine that established this
conversation. Do not use this value for LUs 1, 2, or 3.

DEAL_CONFIRM (8'001 ')
Perform CONFIRM logic (see the snactl(CONFIRM) or
ioctl(CONFIRM) subroutine). If that request is successful,
deallocate the conversation normally; otherwise, the conversation
remains allocated. Do not use this value for LUs 2 or 3.

DEAL_ABEND (8'01 O')
Deallocate the conversation abnormally. Do not use this value for
LUs 1, 2, or 3.

DEAL_FLUSH (8'011 ')
Flush the send buffer and deallocate the conversation normally.

deal_flag Specifies whether the resource ID is discarded or retained when the
conversation is deallocated. This parameter is optional. If you do not provide
a value, the system uses a value of B'O'. Values for deal_flag are:

DISCARD (B'O')
Specifies that the resource ID be discarded. The local transaction
program will not reconnect to the conversation.

Chapter 4. Header Files 4-97

SNA luxsna.h

4-98

RETAIN (8'1 ')
Specifies that the resource ID be retained. The local transaction
program plans to reconnect to the conversation. Do not use this
value with LUs 1, 2, and 3.

rsvd This field is not used.

sense code Specifies a variable that contains the sense code returned from AIX SNA
Services/6000. This parameter is used for LUs 1, 2, and 3 only.

erro_str Structure

This structure provides additional parameters for the SEND_ERROR request for the snactl
and ioctl subroutines. Refer to the snactl or ioctl subroutine for a description of the these
functions. The structure appears as follows:

struct erro str
{

long rid;
int sense_code;
unsigned type 1;
unsigned rsvd 15;

} ;

The rid parameter is the only parameter used for a mapped conversation.

rid Specifies the variable that contains the resource ID of the conversation to
perform the send_error function. This is the resource ID returned by the
snalloc or ioctl(ALLOCATE) subroutine.

The additional parameters for a basic conversation have the following meanings:

type Specifies the level of error being reported, as follows:

B'O' An application program produced the error being reported.

8'1' LU services Transaction Program produced the error being
reported.

This parameter is optional. If not specified, SNA services provides a value of B'O'. This
parameter is used for LU 6.2 Basic conversations only.

sense code Specifies a variable that contains the sense code to be reported to the
remote session. This parameter is used for LUs 1, 2, and 3 only.

rsvd This field is not used.

AIX Files Reference

SNA luxsna.h

ext_io_str Structure

This structure provides additional input and output parameters for the readx and writex
subroutines. Neither subroutine uses all parameters in the structure. Refer to the readx and
writex subroutines for a description of the functions provided and the fields used.

The structure appears as follows:

struct ext io str
{

} ;

struct input
{

unsigned priority
unsigned tpn_option
unsigned confirm
unsigned deallocate
unsigned deallo_type
unsigned deallo_f lag
unsigned allocate
unsigned fill
unsigned mc_gds
unsigned sess_type
unsigned flush_f lag

} input;
struct output
{

unsigned rq_to_snd rcvd
unsigned what data rcvd
unsigned what_control_rcvd
unsigned usr trunc
unsigned rsvd3
unsigned gdsid
int sense_code;

} output;
long rid;
int usrhdr_len;

2.
' 2.
'

1 • ' 1·
' 3;

1 · '
1 • '
1 • ' 1·
' 1·
' 2.
I

1 · ' 3;
5;
1 · ' 6;

16;

The ext_io_str structure parameters have the following meanings:

Input Parameters

These parameters are sent to SNA.

priority Specifies the priority option which selects a mode profile to be used to
establish an appropriate session for the conversation. The priority option
should be used with the writex subroutine only and should not be used with
LU 1, 2, or 3. Priority options are:

8'00' Use the first mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

8'01' Use the second mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

8'1 O' Use the third mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

Chapter 4. Header Files 4-99

SNA luxsna.h

8'11' Use the fourth mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

tpn _option Specifies the remote transaction program name (RTPN) option which
selects a remote RTPN profile to be used to establish an appropriate
session for the conversation. The following RTPN options are used by the
writex subroutine only:

conf irrn

8'00' Use the first RTPN profile listed in the RTPN list profile for the
connection. The RTPN list profile name is specified in the
connection profile.

8'01' Use the second RTPN profile listed in the RTPN list profile for the
connection. The RTPN list profile name is specified in the
connection profile.

8'1 O' Use the third RTPN profile listed in the RTPN list profile for the
connection. The RTPN list profile name is specified in the
connection profile.

8'11' Use the fourth RTPN profile listed in the RTPN list profile for the
connection. The RTPN list profile name is specified in the
connection profile.

This parameter is used by the writex subroutine only and designates
whether to flush the send buffer and wait for confirmation of receipt of the
data from the remote application program.

8'0' Do not issue a CONFIRM.

8'1' Issue a CONFIRM.

deallocate This parameter is used by both the writex and readx subroutines and
designates whether to deallocate the conversation after transmitting the
data associated with this subroutine:

8'0' Do not deallocate the conversation.

8'1' Deallocate the conversation. If used with an SSCP-LU application
program, it could also terminate the associated LU-LU session.

deallo _type This parameter specifies the type of deallocation to perform when a
deallocation is performed along with the subroutine:

4-100 AIX Files Reference

8'000' Deallocate the conversation as specified in the sync_level
parameter used in the ioctl(ALLOCATE) subroutine request that
established this conversation. Used by the writex subroutine only.

8'001' Issue a CONFIRM request. If that request is successful, deallocate
the conversation normally; otherwise, the conversation remains
allocated. Used by the writex subroutine only. Do not use this value
for LUs 1, 2, or 3.

8'01 O' Deallocate the conversation abnormally. Used by the writex and
readx subroutines only.

8'011' Flush the send buffer when the conversation is in the send state
and deallocate the conversation normally. Used by the writex
subroutine only.

SNA luxsna.h

deallo_flag Specifies whether the resource ID is discarded or retained when the
conversation is deallocated. Used by the writex and readx subroutines only.
Values for deallo_flag are:

allocate

DISCARD (B'O')
Specifies that the resource ID be discarded. The local transaction
program will not reconnect to the conversation.

RETAIN (8'1 ')
Specifies that the resource ID be retained. The local transaction
program plans to reconnect to the conversation. Do not use this
value with LUs 1, 2, and 3.

This parameter specifies whether to allocate a conversation along with the
subroutine. Used by the writex and readx subroutines only:

B'O' Do not allocate a conversation. The rid field must be supplied.

8'1' Allocate a conversation. If the rid parameter is 0, allocate a new
conversation. If the rid parameter is not 0, reconnect a previous
conversation identified by the value of rid.

The allocate parameter can be used with the deallocate parameter (but not for LUs 1,
2, or 3). If deallocate is also set, the readx and writex subroutines perform the following
actions:

1. Allocates a conversation as described above.

2. Transfers the data associated with the subroutine.

3. Deallocates the conversation.

£ill Specifies whether the program receives data without regard to the logical
record format of the data. This parameter is optional and is used by the
readx subroutine only. If you do not specify one of the two following values,
the program uses a value of B'O'. Always use a value of B'O' for mapped
conversations.

BUFFER (8'0')
Specifies that the program receives data without regard to the
logical record format of the data.

LL (8'1 ')
Specifies that the program receives one complete logical record, or
a logical record that has been truncated to the length specified in
the length parameter of this subroutine. Do not use with LU 1, 2, or
3.

mc _gds Reserved for use by mapped conversation RTS.

sess_type Specifies the type of session to be allocateq if the allocate field indicates
that a session should be allocated. Used for LU 1 , 2, and 3. Valid values
are:

8'1' SSCP-LU session

B'O' LU-LU session.

Chapter 4. Header Files 4-101

SNA luxsna.h

flush_flag This parameter indicates whether to perform a FLUSH (of the LUs send
buffers) request in addition to the requested writex operation.

l_O_NO_FLUSH (8'00')
Do not perform the flush.

l_O_FLUSH_NOT _EC (8'01 ')
Perform the flush, but do not indicate end of chain.

l_O_FLUSH_EC (8'1 O')
Perform the flush, indicating end of chain. This function is used by
LUs 1, 2, and 3 only.

Output Parameters

These parameters are set by SNA.

rq_to_snd_rcvd

Indicates whether a request to send has been received. The
rq_to_snd_rcvd parameter specifies the variable used by the writex and
readx subroutines only:

8'0' A request to send has not been received from the remote
transaction program.

8'1' A request to send has been received from the remote transaction
program.

what data rcvd - -

4-102 AIX Files Reference

Specifies the variable that gets set to indicate what type of data the program
received. Used by the readx subroutine only:

DATA (8'000')
Indicates that data has been received by the program. Occurs only
when the fill parameter for this call is buffer. Not used for LUs 1, 2,
or 3.

DATA_COMP (8'001 ')

LU 6.2: Indicates that a complete logical record, or the last remaining
portion of a logical record, has been received by the program.
Occurs only when the fill parameter for this call is II.

LUs 1, 2, 3: Indicates that a complete chain element was received.

DATA_INCOMP (8'01 O')

LU 6.2: Indicates that less than a complete logical record has been received
by the program. Occurs only when the fill parameter for this call is
II.

LUs 1, 2, 3: Indicates that a complete chain element was not received.

LL_ TRUNCATED (8'011')
Indicates that the 2-byte II field of a logical record was truncated
after the first byte and that the LU has discarded the II field. The
program does not receive the II field. Not used for LUs 1, 2, or 3.

FMH_COMPLETE (8'100')
Indicates that the data received was FM header data for an LU 1
session and that the complete header has been received.

SNA luxsna.h

FMH_INCOMPLETE (8'101 ')
Indicates that the data received was FM header data for an LU 1
session and that the complete header has not been received.

8'11 O' Not used.

8'111' Not used.

what control rcvd - -
Specifies the variable that is set to indicate the type of control that the
program received. Used by the readx subroutine only:

B'XOOOO'
No control information was received.

SEND (B'X0001 ')
Indicates that the remote program has entered the receive state,
placing the local program in the send state.

CONFIRM (B'X001 O')
Indicates that the remote program issued a CONFIRM request. The
local program must respond with an ioctl subroutine, using either a
CONFIRMED request or a SEND_ERROR request.

CONFIRM_SEND (B'X0011 ')
Indicates that the remote program used an ioctl or snactl
subroutine to issue a PREPARE_ TO_RECEIVE request, and that
the type parameter was set to 8'1 O' (confirm).

CONFIRM_DEALLOCATE (B'X0100')
Indicates that the remote program used an ioctl or snactl
subroutine to issue a DEALLOCATE request with the type
parameter set to 8'001' (confirm). Not used for SSCP-LU sessions
for LUs 1 , 2, and 3.

NORMAL_DEALLOCATE (B'X0101 ')
Indicates that the remote program issued a DEALLOCATE request
with the type parameter set to 8'011' (flush). Not used for SSCP-LU
sessions for LUs 1, 2, and 3.

CONFIRM_DEALLOCATE_RETAIN (B'X011 O')
Indicates that the remote program issued a DEALLOCATE request
with the type parameter set to 8'001' (confirm) and the deal_flag
parameter set to retain. Not used for LUs 1, 2, and 3.

NORMAL_DEALLOCATE_RETAIN (B'X0111 ')
Indicates that the remote program issued a DEALLOCATE request
with the type parameter set to 8'011' (flush) and the deal_flag
parameter set to retain. Not used for LUs 1, 2, and 3.

Note: The following parameters are used by LUs 1, 2, or 3 only:

FLUSH RECEIVED (B'X1000')
Specifies end chain, RQE, not change direction.

NOT END OF DATA (B'X1001 ')
Specifies end chain was not received from the host.

BEGIN CHAIN (8'1 XXXX')
Specifies begin chain indicator was received from the host. This
may be set in addition to other returned flags.

Chapter 4. Header Files 4-103

SNA luxsna.h

NOT BEGIN CHAIN (B'OXXXX')
Specifies begin chain was not received in this data buffer.

Note: 'X' means that the X bit positions are meaningless for this function.

usr trunc tndicates that the length of the user header field was not large enough for
the received header data. You can get no information from the user header
field when the user header has been truncated.

rsvd3 Thi~.field is not used.

gdsid This field is used for mapped conversation runtime service (RTS) routines
only.

sense code Specifies the variable that is set to the value of the sense code for negative
responses received. Used for LUs 1, 2, and 3 only.

rid This parameter specifies the resource ID returned by the snalloc or
ioctl(ALLOCATE) subroutine for this connection. This parameter has the
following effects:

• For the writex subroutine with the allocate bit on and rid equal to 0, the
system allocates a new conversation and returns the resource ID in rid.

• For the writex subroutine with the allocate bit on and rid not equal to 0,
the system reconnects an old conversation identified by the value in rid.

• For the readx subroutine with the allocate bit on and rid not equal to 0, it
indicates a remotely attached allocation.

usrhdr len This parameter specifies the number of bytes of header data to be sent or
that was received with·the data. The header data is provided in the usrhdr
field (see "User Header Field" for the writex subroutine or "User Header
Field" for the readx subroutine.).

flush_str Structure

This structure provides additional parameters for the FLUSH request for the snactl and ioctl
subroutine. Refer to the snactl or ioctl subroutine for a description of the these functions.
The structure appears as follows:

struct flush str
{

long rid;
unsigned end_chain 1;
unsigned rsvd 15;
int sense_code;

} ;

The flush_str structure parameters have the following meanings:

rid This parameter specifies the resource ID returned by the ioctl(ALLOCATE)
or the snalloc subroutine for this connection.

end chain Specifies whether or not to send the buffer with the end chain indication.
The program specifies this parameter as a 1 to complete a chain. To flush

4-104 AIX Files Reference

SNA luxsna.h

the send buffer without completing the chain, the program specifies this
parameter as a 0. Valid values are:

O Send buffer without end chain.

Send buffer with end chain.

rsvd This field is not used.

sense code Specifies a field that receives indications of errors that occurred on
previously sent data. Used for LU 1, 2, and 3 only.

fmh_str Structure

This structure used for LU 1, 2, and 3 provides additional parameters for the SEND_FMH
request for the snactl and ioctl subroutines. Refer to the snactl or ioctl subroutine for a
description of the these functions. The structure appears as follows:

struct fmh str
{

} ;

long rid;
short fmh_len;
unsigned type
unsigned rsvd
char *fmh_addr;
int sense_code;

2.
'

14;

The fmh_str structure parameters have the following meanings:

rid

f mh len

type

Specifies the variable that contains the resource ID of the conversation to
perform the SEND_FMH request. This is the resource ID returned by the
snalloc or ioctl(ALLOCATE) subroutine.

Specifies the length (in bytes) of the FM header to be sent.

Specifies the type of request to be performed for this conversation. Values
for type are:

8'00' Flush without end chain

8'01' Flush the FMH with end chain.

8'1 O' Execute a CONFIRM function (see the snactl(CONFIRM)
subroutine).

8'11' Do not flush the FMH.

rsvd This field is not used.

fmh addr Specifies a pointer to the address of the FM header to be sent.

sense code Specifies a variable that contains the sense code returned from the AIX
SNA Services/6000.

Chapter 4. Header Files 4-105

SNA luxsna.h

get_parms Structure

Returns data associated with the get_parameters structure of the ioctl subroutine.

struct get_parrns
{

int gparrns_size;
char gparrns_data [MAX_GETPARMS_DATA];

}

The get_parms structure parameters have the following meanings:

gparrns_size Specifies the length (in bytes) of the parameter data returned in the
gparrns_data field.

gparms_data Contains the following data:

TPN Name
Specifies the transaction program name, which has a maximum
length of 64 bytes plus a terminating blank.

Connection Name
Specifies the connection name, which has a maximum length of 15
bytes plus a terminating blank.

RID Specifies the resource ID, which has a maximum length of 6 bytes
plus a terminating blank.

PIP Specifies the program initialization parameters, which have a
maximum of sixteen fields, each having a maximum of 64 bytes
plus a terminating blank.

gstat_str Structure

This structure provides current link and session information in response to a GET _STATUS
request with either an ioctl or snactl subroutine. Refer to the snactl or ioctl subroutine for a
description of the these functions. This structure is defined for use by LUs 1, 2, and 3 only.
The structure appears as follows:

struct gstat_str
{

} ;

int sscp_sense_code;
int status;
unsigned rtn_irnage
unsigned rsrv
short irnage_len;
char *image;
int lu_sense_code;

1;
15;

The gstat_str structure parameters have the following meaning:

status

4-106 AIX Files Reference

Specifies the current status of the physical and logical link and the
SSCP-LU and LU-LU sessions. Several values may be set at once (bit
settings). Valid values ()for this parameter are expressed in hexadecimal
notation below:

LINK_ ACTIVE (OX1)
The link is active.

SNA luxsna.h

LINK_INACTIVE (OX2)
The link is not active.

LINK_ TIMEOUT (OX4)
A link timeout has occurred.

SSCP _LU_ACTIVE (OX8)
An SSCP-LU session is active on the link.

SSCP _LU_INACTIVE (OX10)
An SSCP-LU session is allocated to the link, but is not active.

LU_LU_ACTIVE (OX20)
An LU-LU session is allocated to the link and is currently active.

LU_LU_INACTIVE (OX40)
An LU-LU session is allocated to the link, but is not active.

LU_LU_RESET (OX80)
The LU-LU session allocated to the link has been reset.

HOST _BID (OX100)
A BID, request to begin a Bracket, was received from the host.

LU_LU_SHUTDOWN (OX200)
The LU-LU session has been shut down.

LU_LU_CONFIRM_RCVD (OX400)
A CON Fl RM request is received from the host on the LU-LU
session.

SSCP _LU_CONFIRM_RCVD (OX800)
A CONFIRM request is received from the host on the SSCP-LU
session.

ASP_ TO_RT~_RCVD (OX1000)
A response is received from the host for a request to send, sent on
the LU-LU session.

RQTS_RCVD (OX2000)
A request to send is received from the host.

ASP_ TO_CANCEL_RCVD (OX4000)
A response is received from the host for a CANCEL request
previously sent on the LU-LU session.

rtn_image When set, this field indicates that the BIND image associated with the
session should be returned in the buffer pointed to by image_ptr.

image_len This field contains one of the following values if rtn_image is set:

image

• When the GET _STATUS is issued, this field contains the maximum
amount of BIND image data (in bytes) that can be returned by the
request.

• When the request is complete, this field contains the actual amount of
BIND image data (in bytes) that was returned.

Specifies a pointer (up to 26 bytes or the image length) to the buffer area in
which the BIND image data is to be stored.

Chapter 4. Header Files 4-107

SNA luxsna.h

sscp_sense_code

This parameter is set to 0 if the response is positive and to the sense code
received if negative.

lu_sense_code

This parameter is set to 0 if the response is positive and to the sense code
received if negative.

pip_str Structure

This structure provides program initialization parameters (PIP) to be sent to a remote
program by the snalloc or ioctl(ALLOCATE) subroutine. Refer to the snalloc or ioctl
subroutine for a description of the these functions. This structure is defined for use by LU 6.2
only. The structure appears as follows:

struct pip_str
{

int sub_num;
char sub data [16][65].;

}

The pip_str structure parameters have the following meaning:

sub num A variable that specifies the number of PIP subfields in sub_data.

sub data The array of program initialization data for the remote program. There may
be up to 16 entries, each containing up to 64 bytes of initialization data.

prep_str Structure

This structure provides additional parameters for the PREPARE_ TO_RECEIVE request for
the snactl and ioctl subroutines. Refer to the snactl or ioctl subroutine for a description of
the these functions. The structure appears as follows:

struct prep_str
{

} ;

long rid;
unsigned type
unsigned rsvd
int sense_code;

2.
' 14;

The prep_str structure parameters have the following meanings:

rid This parameter specifies the resource ID returned by the ioctl(ALLOCATE)
or snactl(ALLOCATE) subroutine for this connection.

type Specifies the type of request to be performed for this conversation. Values
for type are:

4-108 AIX Files Reference

SYNCL_DEF (8'00')
Use the default value specified in the sync_level parameter of the
snalloc subroutine that established this conversation.

SYNCL_NONE (8'01 ')
Flush the send buffer and enter the receive state.

SNA luxsna.h

SYNCL_CONFIRM (8'1 O')
Execute a confirm function (see the snactl(CONFIRM) subroutine).
If that request is successful, enter the receive state.

SYNCL_FLUSH (8'11 ')
Flush the send buffer and enter the receive state.

rsvd This field is not used.

sense code Specifies a field that receives indications of errors that occurred on
previously sent data. This parameter is used by LUs 1, 2, and 3 only.

read_out Structure

This structure receives output from the snaread subroutine. Refer to the snaread subroutine
for a description of that function. The structure appears as follows:

struct read out
{

long rid;
int request_to_send_received;
int what_data_rcvd;
int what_control_rcvd;
int sense_code;

} ;

The read_out structure parameters have the following meanings:

rid Specifies the variable that contains the resource ID returned by the snalloc
subroutine that allocated the resource to be read.

request_to_send_received
Specifies the variable that gets set to indicate whether a request to send
has been received:

TRUE(1)
A request to send has been received from the remote transaction
program.

FALSE (0)
A request to send has not been received from the remote
transaction program.

what data rcvd - -
Specifies the variable that gets set to indicate what type of data the program
received:

0 Indicates that data has been received by the program. Occurs only
when the fill parameter for this subroutine is buffer.

DATA_ COMPLETE (1)
Occurs only when the fill parameter for this subroutine is II. It
indicates that a complete logical record, or the last remaining
portion of a logical record, has been received by the program.

DATA_INCOMPLETE (2)
Occurs only when the fill parameter for this subroutine is II. It
indicates that less than a complete logical record has been received
by the program.

Chapter 4. Header Files 4-109

SNA luxsna.h

3 Indicates that the 2-byte II field of a logical record was truncated
after the first byte and that the LU has discarded the II field. The
program does not receive the II field. Not used for LUs 1, 2, or 3.

4 Indicates that the data received was FM header data for an LU 1
session and that the complete FM header was received.

5 Indicates that the data received was FM header data for an LU 1
session, but that the complete FM header was not received.

what control rcvd - -
Specifies the variable that is set to indicate the type of control that the
program received:

0 No control information received.

Indicates that the remote program has entered the receive state,
placing the local program in the send state.

2 Indicates that the remote program used a snactl subroutine to issue
a CONFIRM request. The local program must respond with a
snactl subroutine using either a CONFIRMED request or a
SEND_ERROR request.

3 Indicates that the remote program used a snactl subroutine to issue
a PREPARE_ TO_RECEIVE request, and that the type parameter
was set to 8'1 O' (confirm).

4 Indicates that the remote program used a snadeal subroutine with
the type parameter set to 8'001' (confirm). Not used for SSCP-LU
sessions for LUs 1 , 2, and 3.

5 Indicates that the remote program used a snadeal subroutine with
the type parameter set to 8'011' (flush). Not used for SSCP-LU
sessions for LUs 1 , 2, and 3.

6 Indicates that the remote program used a snadeal subroutine with
the type parameter set to 8'001' (confirm) and the deal_flag
parameter set to retain. Not used for LUs 1, 2, and 3.

7 Indicates that the remote program used a snadeal subroutine with
the type parameter set to 8'011' (flush) and the deal_flag parameter
set to retain. Not used for LUs 1, 2, and 3.

sense code Specifies the variable that is set to the value of the sense code for negative
responses. Used for LUs 1, 2, and 3 only.

stat_str Structure

This struct.ure provides additional parameters for the SEND_STATUS request for the snactl
and ioctl subroutines. Refer to the snactl or ioctl subroutine for a description of the these
functions. The structure appears as follows:

struct stat str
{

}

long rid;
unsigned type
unsigned id
int sense_code;

4-110 AIX Files Reference

4;
8;

SNA luxsna.h

The stat_str structure parameters have the following meanings:

rid Specifies the variable that contains the resource ID returned by the snalloc
or ioctl(ALLOCATE) subroutine that performs the SEND_STATUS function.

type Specifies the status condition to be reported. Use one of the following
values () as defined in the luxsna.h header file:

POWER_ON (0)
The device is on.

POWER_ OFF (1)
The device is off.

UNAVAILABLE (2)
The device is not configured.

PERMANENT _ERROR (3)
· The device has an error which cannot be corrected.

PS_ALTERED (4)
Presentation space altered.

UNBIND_REQUESTED (5)
A request shutdown (RSHUTD) command has been sent to the
partner LU requesting an unbind (UNBIND) command to be sent to
this secondary LU. This type does not use the id field. This type
does not cause the received data to be rejected. The application
program should continue to read the data until it receives
SNA_NSES (session not active).

ATTENDED (6)
The device is attended by an operator (LU 1 only).

UNATTENDED (7)
The device is no longer attended by an operator (LU 1 only).

ID Specifies the ID of the device for which status is being reported.

sense code Specifies a variable that contains the sense code returned from AIX SNA
Services/6000.

write_out Structure

This structure provides additional parameters for the snawrit subroutine. Refer to the
snawrit subroutine for a description of these functions. The structure appears as follows:

struct write out
{

}

int request_to_send_received;
int sense_code;

The write_out structure parameters have the following meanings:

request_to_send_received
Specifies the variable that gets set to indicate whether a request to send
has been received:

Chapter 4. Header Files 4-111

SNA luxsna.h

TRUE(1)
A request to send has been received from the remote transaction
program.

FALSE (0)
A request to send has not been received from the remote
transaction program.

sense code Specifies the variable that is set to the value of the sense code for negative
responses. Used for LUs 1 , 2, and 3 only.

Constant Definitions
The luxsna.h file contains constant definitions that are used in the following areas of AIX
SNA Services/6000:

• Status codes (see the gstat_str structure)

• Error codes

• Request codes for the snactl and ioctl subroutines.

Error Code Constants

This file defines the error return values that are exclusive to AIX SNA Services/6000. The
AIX SNA Services/6000 subroutines set the errno global variable to one of the following
values when an error occurs to indicate the nature or cause of the error.

Error Code Constants Page 1of3

Name Code Definition

SNA_CTYPE 101 The specified conversation type does not match the indi-
cated conversation.

SNA_NREC 103 Reconnect is not supported.

SNA_NSYC 104 Sync level is not supported.

SNA_ALFN 105 An allocation failure occurred. Do not try the operation
again.

SNA_ALFR 106 An allocation failure occurred. Try the operation again.

SNA_LUNREC 107 Reconnect is not supported by the LU.

SNA_LUNSYC 108 Sync level is not supported by the LU.

SNA_RID 109 The resource ID was invalid.

SNA_STATE 110 The network management request was issued while the
Program was not in an allowed state.

SNA_RFR 111 A resource failure occurred. Try the operation again.

SNA_RFN 112 A resource failure occurred. Do not try again.

SNA_PROTOCOL 113 An SNA protocol violation occurred.

SNA_NPIP 114 Remote program initialization parameter (PIP) data is
not supported.

SNA_PNSYC 115 Sync level is not supported by the program.

SNA_PNREC 116 Reconnection is not supported by the program.

SNA_NRREC 117 Could not reconnect to the transaction program. Do not
try again.

4-112 AIX Files Reference

SNA luxsna.h

Error Code Constants Page 2 of 3

Name Code Definition

SNA_PPURG 118 Program error purging.

SNA_PNTR 119 A program error occurred since no truncation is allowed.

SNA_PTR 120 Program error truncate.

SNA_PGMDEAL 121 A deallocation occurred due to the abnormal ending of
the remote program.

SNA_BOUNDARY 122 The function was not requested on a logical record
boundary.

SNA_NOMODE 123 Invalid mode name specified.

SNA_RREC 124 Cannot connect to the transaction program. Try the op-
eration again.

SNA_NOCONN 125 The SNA connection ·has been stopped.

SNA_NRESTART 126 A recovery _level value of restart is not valid for this sub-
routine.

SNA_NOTPN 127 The specified transaction program name is not valid.

SNA_NRMDEAL 129 A normal deallocation terminated the conversation.

SNA_SVCDEAL 130 A deallocation occurred due to an abnormal ending of an
system service (systems logic error).

SNA_TIMDEAL 131 Deallocate abend due to excessive time having elapsed.

SNA_WRGPIP 132 The remote program initialization data (PIP) specified
was not correct.

SNA_INVACC 133 Access security information invalid.

SNA_SPURG 134 A SVC error occurred; purging.

SNA_SNTR 135 A service transaction program error occurred; no trun-
cate.

SNA_STR 136 A service transaction program error occurred; truncate.

SNA_NDELAY 137 Delay allocation not supported.

SNA_SVCTYPE 138 An unsupported type was specified.

SNA_NFMH 139 The FM Header data gds variable is not supported by
mapped conversation.

SNA_NMAPPING 140 The MAP name is not supported by mapped conversa-
tion.

SNA_MAP_NOT_FOUND 141 Map name not found.

SNA_MAPEXEC 142 Map execution failure.

SNA_GDSID 143 Invalid GOS identifier in data.

SNA_SHUT 144 A shutdown request was received.

SNA_NSES 145 The session is not established (LUs 1, 2, 3, and 6.2) or
not active (LUs 1, 2, and 3).

Chapter 4. Header Files 4-113

SNA luxsna.h

Error Code Constants Page 3 of 3

Name Code Definition

SNA_PARMS 146 Input parameters not valid.

SNA_NTPN 147 Transaction Program can not be started, no retry.

SNA_NTPR 148 Transaction Program can not be started due to lack of re-
sources, retry.

SNA_RCANC 149 Received cancel for LU 1, 2, or 3.

SNA_SENSE 150 Sense code available for LU 1, 2, or 3 (exception request
or negative response received).

SNA_NOTCP 151 This is not a CP connection.

SNA_FAIL 160 There was an SNA system failure.

SNA_NSACT 161 No session can be started as the session limit is set to
0.

SNA_NSLMT 162 No session can be activated as the number of sessions
of the requested type has been exceeded.

SNA_INOP 164 Link INOP received.

SNA_HIER_RESET 165 Hierarchical reset received.

SNA_NO_LU 166 No LUs registered for generic SNA.

SNA_INUSE 170 The session between the system services control point
and the physical unit is being used by another applica-
tion.

SNA_NOTAVAIL 171 The requested session between the system services
control point and the physical unit was not available.

SNA_UNDEF _SVR 172 The application server is not defined.

SNA_INVALID 173 The ID specified for the session between the system ser-
vices control point and the physical unit (SSCP _ID) is not
valid.

SNA_LENGTH 174 The length specified for the NMVT data is not valid.

SNA_ERP 175 The physical unit is not active. An error recovery proce-
dure (ERP) instructing you to activate the physical unit
(ACTPU) was received.

SNA_INACT 176 The session between the system services control point
and the physical unit is inactive.

4-114 AIX Files Reference

SNA luxsna.h

Request Code Constants
This file defines the following constants and their codes for use in the request parameter of
the ioctl or snactl subroutine.

Request Code Constants

Name Code Definition

ALLOCATE 1 Allocates a conversation. Used by the ioctl subroutine
only.

DEALLOCATE 2 Deallocates a conversation. Used by the ioctl subrou-
tine only.

CONFIRM 3 Sends a request for confirmation of transmission to the
remote transaction program.

CONFIRMED 4 Positive response to a CONFIRM request.

FLUSH 5 Transmits everything in the send buffer to the remote
transaction program. Used for LU 1, 2, or 3 only.

PREPARE_ TO_RECEIVE 6 Changes the conversation direction to allow the local
transaction program to receive.

HIER_RESET _RSP 6 Hierarchical reset response for Generic SNA Applica-
tions.

REQUEST_ TO_SEND 7 Request to change the conversation direction to allow
the local transaction program to send.

INOP_RSP 7 Link inoperative response for Generic SNA Applica-
tions.

SEND_FMH 8 Sends the FM header to the remote LU. Used by the
snactl subroutine for LU 1 on a basic conversation only.
Used for LU 1, 2, or 3 only.

SEND_ERROR 9 Negative response to a CONFIRM request or incorrect
data received.

GET_ATTRIBUTE 10 Gets information about the specified LU 6.2 conversa-
tion.

SEND_STATUS 11 Sends status information about the devices on the local
session (LUs 1, 2, and 3, only) to the host program.

GET_STATUS 12 Gets information about the current link and session on
a basic conversation only. Used for LUs 1 , 2, or 3 only.

CP_STATUS 13 Requests the control point name, the session type, and
the control point capabilities of the remote node.

ALLOCATE_LISTEN 14 Registers a list of transaction program names (TPNs)
for which an application wishes to accept allocate re-
quests. Used for LU 6.2 only.

GET _PARAMETERS 15 Retrieves the data associated with the receipt of an allo-
cate request for a registered TPN on a particular con-
nection. The GET _PARAMETERS argument is used in
conjunction with the ALLOCATE_LISTEN argument.
Used for LU 6.2 only.

File
/usr/include/luxsna.h The path to the luxsna.h header file.

Chapter 4. Header Files 4-115

Sockets in.h

Sockets in.h File

Purpose
Defines Internet constants and structures.

Description

Protocols

The in.h file contains Internet system constants and socket structures required for inclusion
in programs using socket subroutines. The full pathname for the in.h file is
/usr/include/netinet/in.h. The usr/include/netinet/in.h file contains data definitions for
socket types, address families, and options.

IPPROTO_IP

IPPROTO_ICMP

IPPROTO_GGP

IPPROTO_TCP

IPPROTO_EGP

IPPROTO_PUP

IPPROTO_UDP

IPPROTO_IDP

IPPROTO_RAW

IPPROTO_MAX

A dummy for IP.

A control message protocol.

A gateway"2 (deprecated)

TCP.

The exterior gateway protocol.

PUP.

The user datagram protocol.

XNS IDP.

The raw IP packet.

Link Numbers
IMPLINK_IP

IMPLINK_LOWEXPER

IMPLINK_HIGHEXPER

Internet Address
struct in_addr{
u_long s_addr;
} ;

Bits in Internet Address Integers
IN_CLASSA(i) (((long) (i) & Ox80000000) == 0)

IN_ CLASSA_NET OxffOOOOOO

IN_CLASSA_NSHIFT 24

IN_ CLASSA_HOST

IN_CLASSA_MAX

IN_ CLASSB(i)

IN_CLASSB_NET

OxOOffffff

128

(((long) (i) & OxcOOOOOOO) == Ox80000000)

OxffffOOOO

IN_CLASSB_NSHIFT 16

IN_ CLASSB _HOST OxOOOOffff

~116 AIX Files Reference

IN_CLASSB_MAX

IN_CLASSC (i)

65536

(((long) (i) & OxeOOOOOOO) == OxcOOOOOOO)

IN_CLASSC_NET OxffffffOO

IN_CLASSC_NSHIFT 8

IN_CLASSC_HOST

IN_CLASSD(i)

IN_MULTICAST(i)

OxOOOOOOff

(((long) (i) & OxfOOOOOOO) == OxeOOOOOOO)

IN_CLASSD(i)

IN_EXPERIMENTAL(i) (((long) (i) & OxeOOOOOOO) == OxeOOOOOOO)

IN_BADCLASS(i)

INADDR_ANY

(((long) (i) & OxfOOOOOOO) == OxfOOOOOOO)

(u_long) OxOOOOOOOO)

INADDR_BROADCAST(u_long) Oxffffffff

KERNAL

INADDR_NONE Oxffffffff

INLOOPBACKNET 127

Socket Address
struct sockaddr_in {

short sin_family;
u_short sin_port;

struct in_addr sin_addr;
char sin_zero[8};

} ;

Implementation Specifics

Sockets in.h

The /usr/include/netinet/in.h file is part of AIX Base Operating System (BOS) Runtime.

All applications including the /usr/include/netinet/in.h file must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Related Information
Additional header files that contain a sockaddr structure are the /usr/include/sys/socket.h
file and the /usr/include/sys/un.h file.

Chapter 4. Header Files 4-117

Sockets nameser.h

Sockets nameser.h File

Purpose
The /usr/include/arpa/nameser.h file contains Internet name server information.

Description
The usr/include/arpa/nameser.h file contains Internet constants, data definitions, and
socket structures required for inclusion in programs using socket subroutines.

Internet Constants
PACKETETSZ The maximum packet size.

MAXDNAME The maximum domain name.

MAXCDNAME The maximum compressed domain name.

MAXLABEL The maximum length of domain label.

QFIXEDSZ Number of bytes of fixed size data in query structure.

RRFIXEDSZ Number of bytes of fixed size data in resource record.

Internet Nameserver Port Number
NAMESERVER_PORT53

Currently Defined Opcodes
QUERY The standard query.

IQUERV The inverse query.

STATUS The nameserver status query.

xxx Non standard.

UPDATEA Add resource record.

UPDATED Delete a specific resource record.

UPDATEDA Delete all named resource records.

UPDATEM Modify a specific resource record.

UPDATEMA Modify all named resource records.

ZONEINIT Initial zone transfer.

ZONEREF Incremental zone refresh.

Currently Defined Response Codes
NOERROR No error.

FORM ERR

SERVFAIL

NXDOMAIN

NOTIMP

REFUSED

NOCHANGE

4-118 AIX Files Reference

Format error.

Server failure.

Non existent domain.

Not implemented.

Query refused.

Update failed to change db.

Structure

Sockets nameser.h

typedef struct { u short id; /* query identification number */ #ifd
efined (sun) I I defined (sel) I I defined (pyr) I I defined (is68k)

\ I !defined (tahoe) I I defined (aiws) I I defined
(BIT-ZERO-ON-LEFT)

/* bit zero on left: Gould and similar architectures */
/* fields in third byte */

u - char qr:l; /* response flag */
u - char .opcode: 4; /* purpose of message */
u - char aa:l; /* authoritive answer */
u char tc:l; /* truncated message */
u char rd:l; /* recursion desired fields in
u char ra:l; /* recursion available */
u - char pr:l; /* primary server required (non
u - char unused:2; /* unused bits */
u char rcode:4; /* response code */

#else
#if defined (vax) I I defined(ns32000) I I defined

(BIT ZERO ON RIGHT)
/* bit zero-on right: VAX */

/* fields in third
u - char rd:l;
u - char tc:l;
u - char aa:l;
u - char opcode:4;
u - char qr:l;

/* fields in fourth

byte */
/* recursion desired
/* truncated message
/* authoritive answer
/* purpose of message
/* response flag */

byte */
/* response code */

/*unused bits */

*/
*/
*/
*/

fourth byte

standard) */

u char
u char
u char
u char

rcode:4;
unused:2;
pr:l;
ra:l;

/* primary server required (non standard) */
/* recursion available */

#else
/* You must determine what the correct bit order is for your

compiler */
UNDEFINED BIT ORDER;
#ENDIF - -
#ENDIF

/* remaining bytes
u short qdcount;
u - short ancount;
u short nscount;
u - short arcount;
} HEADER;

*/
/*
/*
/*
/*

number of question entries */
number of answer entries */
number of authority entries */
number of resource entries */

*/

Compressed Domain Names
Definitions for handling compressed domain names

INDIR_MASK OxcO

rrec Structure
The rrec structure is used for passing resource records around.

struct rrec {

Chapter 4. Header Files 4-119

Sockets nameser.h

short r zone zone number. -
short r class class number. -
short r_type Type number.

u_long r ttl Time to live. -

int r size Size of data area. -

char r data Pointer to data. -
} ;

extern u - short _get short () ;

extern u_long _get long () ;

Implementation Specifics
The /usr/include/arpa/nameser.h file is part of AIX Base Operating System (BOS)
Runtime.

All applications including the /usr/include/arpa/nameser.h file must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Related Information
Domain name access subroutines using the nameser.h file are the res_mkquery
subroutine, res_init subroutine and res_send subroutine.

Domain name translation subroutines using the nameser.h file are the dn_comp
subroutine, dn_expand subroutine, dn_find subroutine, and dn_skipname subroutine.

Byte stream and byte boundary retrieval subroutines using the nameser.h file are the
_getlong subroutine, _getshort subroutine, putlong subroutine, and putshort subroutine.

Sockets Overview and Understanding Header Files in Communications Programming
Concepts.

4-120 AIX Files Reference

Sockets netdb.h

Sockets netdb.h File

Purpose
Defines the structures returned by the network data base library.

Description
The /usr/include/netdb.h header file contains structures that are used globally by socket
library subroutines. The /usr/include/netdb.h file contains the following structures:

• hostent structure

• netent structure

• protoent structure

• servent structure.

hostent Structure
The hostent structure is defined in the /usr/include/netdb.h header file and contains the
following members:

char
char
int
int
char
#define

*h_name;
**h_aliases;
h_addrtype;
h_length;
**h addr list·

- - I

h_addr h_addr_list[O]

The members of the structure are defined below:.

h_name Official name of the host.

/* official name of host */
/* alias list */
/* host address type */
/* length of address */
/* list of addresses */
/* address, for backward
compatibility */

h_aliases An array, terminated with a 0, of alternate names for the host.

h_addrtype The type of address being returned. The subroutine always sets this value
to AF _INET.

h_length The length of the address in bytes.

h_addr_list An array, terminated by O (zero), of pointers to the network addresses for
the host. Host addresses are returned in network byte order.

h_addr The first address in the h_addr_list member, provided for backward
compatibility

netent Structure
The netent structure is defined in the netdb.h header file and contains the following
members:

char *n name· - ' /* official name of net */
char **n aliases; /* network alias list */
int n_addrtype; /* net number type */
long n_net; /* net number */

Chapter 4. Header Files 4-121

Sockets netdb.h

The members of the structure are defined as follows:

n_name Official name of the network.

n_aliases An array, terminated with a 0 {zero), of alternate names for the network.

n_addrtype The type of network number being returned. AF _INET is the only valid
value for this field.

n_net The network number. Network numbers are returned in machine-byte
order.

protoent Structure
The protoent structure is defined in the /usr/include/netdb.h header file and contains the
following members:

char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
long p_proto; /* protocol number */

The members of the structure are defined as follows:

p_name Official name of the protocol

p_aliases

p_proto

An array, terminated by the number 0, of alternate names for the protocol

The protocol number.

servent Structure
The servent (service entry) structure is defined in the /usr/include/netdb.h header file and
contains the following members:

char *s name·
- I

/*
char **s_aliases; /*
long s_port; /*
char *s_proto; /*

official name of service
alias list
port where service resides
protocol to use

*/
*/
*/
*I

The members of the structure are defined as follows:

s_name

s_aliases

s_port

s_proto

Official name of the service.

An array of alternate names for the service. Terminate the array with a
value of 0.

The port number at which the service resides. Port numbers are returned in
network byte order.

The name of the protocol to use when contacting the service.

Implementation Specifics
The /usr/include/netdb.h file is part of AIX Base Operating System (BOS) Runtime.

All applications including the /usr/include/netdb.h file must be compiled with _BSD defined.
In addition, when applicable, all socket applications must include the BSD library libbsd.

4-122 AIX Files Reference

Sockets netdb.h

Related Information
Host information retrieval routines using the /usr/include/netdb.h file are the gethostent
subroutine, endhostent subroutine, gethostbyname subroutine, gethostbyaddr
subroutine, and sethostent subroutine.

Network information retrieval subroutines using the /usr/include/netdb.h file are the
endnetent subroutine, getnetbyname subroutine, getnetbyaddr subroutine, getnetent
subroutine, and setnetent subroutine.

Service information retrieval subroutines using th /usr/include/netdb.h file are the
endservent subroutine, getservbyname subroutine, getservent subroutine, getservbyport
subroutine and setservent subroutine.

Protocol information retrieval subroutines using the /usr/include/netdb.h file are the
endprotoent subroutine, getprotobynumber subroutine, getprotobyname subroutine,
getprotoent subroutine, and setprotoent subroutine.

Chapter 4. Header Files 4-123

Sockets resolv.h

Sockets resolv.h File

Purpose
Contains global definitions and variables used by resolver subroutines.

Description
The /usr/include/resolv.h file contains the _res data structure and defines the options to be
used in the _res option field.

_res Data Structure
The _res data structure contains the following members:

retrans

retry

options

nscount

Specifies retransmission time interval.

Specifies the number of times to retransmit.

Specify the resolver options that can be logically ORed.

Specifies the number of name servers.

sockaddr_in nsaddr_list [MAXNS]
Specifies the address of a name server.

nsaddr _list [OJ Provided for backward compatibility.

id Specifies current packet id.

defdname [MAXDNAME]
Specifies the default domain.

dnsrch [MAXDNSRCH+ 1]
Specifies the components of the domain to search.

Resolver Options
The /usr/include/resolv.h file contains a data structure termed _res that is used by the
resolver subroutines. The _res structure contains an options field that is constructed by
logically ORing the following values:

RES_INIT Indicates whether the initial name server and default domain name have
been initialized (that is, whether res_init has been called).

RES_DEBUG Prints debugging messages.

RES_USEVC Uses TCP connections for queries instead of UDP.

RES_STAYOPEN
Used with RES_USEVC, keeps the TCP connection open between queries.
While UDP is the mode normally used, TCP mode and this option are
useful for programs that regularly perform many queries.

RES_RECURSE
Sets the recursion desired bit for queries. This is the default.

Note: The res_send subroutine does not perform iterative queries and
expects the name server to handle recursion.

RES_DEFNAMES

4-124 AIX Files Reference

Appends the default domain name to single label queries. This is the
default.

Files

QUERY

IQUERV

CQUERVM

CQUERYU

Standard query.

Inverse query.

Completion query (multiple).

Completion query (unique).

Sockets resolv.h

/etc/resolv.conf Defines DOMAIN nameserver information for local resolver routines.

Implementation Specifics
The /usr/include/resolv.h file is part of AIX Base Operating System (BOS) Runtime.

All applications including the /usr/include/resolv.h file must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Related Information
Resolver subroutines are the res_mkquery subroutine, res_init subroutine, res_send
subroutine, dn_comp subroutine, dn_expand subroutine, dn_find subroutine,
dn_skipname subroutine, _getlong subroutine, _getshort subroutine, putlong subroutine,
and putshort subroutine.

Chapter 4. Header Files 4-125

Sockets socket.h

Sockets socket.h File

Purpose
The /usr/include/sys/socket.h header file provides multiple data definitions and socket
structures for use with socket subroutines.

Description
The /sys/socket.h file contains data definitions and socket structures required for inclusion
in programs using socket subroutines. The socket.h file contains data definitions for socket
types, address families, and options.

The socket.h file also contains the following structures:

• linger structure

• sockaddr structure

• sockproto structure

• msghdr structure

linger Structure
The linger structure is used for manipulating the linger option. The linger structure contains
the following members:

l_onoff

I_ linger

sockaddr Structure

Toggles the option on or off.

Specifies the linger time.

The sockaddr structure is used by the kernal to store most addresses. The sockaddr
structure contains the following members:

sa_family Defines the address family of the socket.

sa_data[14] Specifies up to 14 bytes of direct address.

sockproto Structure
The sockproto structure is used by the kernal to pass protocol information in raw sockets.
The sockproto structure contains the following members:

sp_family Specifies the socket address family.

sp_protocol Defines the protocol for the specified address family.

msghdr Structure
The sendmsg and recvmsg subroutines use the msghdr data structure. The msghdr
structure contains the following members:

msg_name Defines the optional destination address if the socket is unconnected. If no
names are needed, use a NULL pointer for msg_name.

msg_namelen Specifies the size of the msg_name address.

msg_iov Describes the scatter gather locations.

msg_iovlen Specifies the number of elements in the msg_iov array.

msg_accrights Defines the access rights sent with the message.

4-126 AIX Files Reference

Sockets socket.h

msg_accrig htslen
Specifies the length of the access rights.

Implementation Specifics
The /usr/include/sys/socket.h file is part of AIX Base Operating System (BOS) Runtime.

All applications including the /usr/include/sys/socket.h file must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Related Information
Socket creation and connection subroutines using the socket.h file are the accept
subroutine, bind subroutine, connect subroutine, listen subroutine, socket subroutine, and
socketpair subroutine.

Status retrieval sockets using the socket.h file are the getsockopt subroutine,
getpeername subroutine, and getsockname subroutine.

Network address translation subroutines using the socket.h file are the inet_lnaof
subroutine, inet_addr subroutine, inet_makeaddr subroutine, inet_network subroutine,
inet_netof subroutine, and inet_ntoa subroutine.

Data transfer subroutines using the socket.h file are the recv subroutine, recvfrom
subroutine, recvmsg subroutine, send subroutine, sendto subroutine, sendmsg
subroutine, and shutdown subroutine.

Header files that contain a sockaddr structure are the /usr/include/netinet/in.h file and the
/usr/include/sys/un.h file.

Sockets Overview and Understanding Header Files in Communications Programming
Concepts.

Chapter 4. Header Files 4-127

Sockets socketvar.h

Sockets socketvar.h File

Purpose
Defines the kernel structure per socket and contains buffer queues.

Description
The /usr/include/sys/socketvar.h header file defines the kernel structure per socket for
use with socket subroutines. Each application that uses socket subroutines must include the
socketvar.h file. The /usr/include/sys/socketvar.h header file also contains send and
receive buffer queues, handle on protocol and pointer to protocol private data and error
information.

The fields in the socketvar.h file are:

*/
struct socket {

short so_type; /* generic type, see socket.h */
short so_ options; I* from socket call, see socket.h */
short so_linger; /* time to linger while closing */
short so_state; /* internal state flags SS * below */ ' caddr t so_pcb; I* protocol control block */
struct protosw *so_proto; /* protocol handle */

/*
* Variables for connection queueing.
* Socket where accepts occur is so_head in all subsidiary sockets.
* If so_head is O, socket is not related to an accept.
* For head socket so_qO queues partially completed connections,
* while so_q is a queue of connections ready to be accepted.
* If a connection is aborted and it has so head set, then
* it has to be pulled out of either so_qO or so_q.
* We allow connections to queue up based on current queue lengths
* and limit on number of queued connections for this socket.
*/

struct
struct
short
struct
short
short

4-128 AIX Files Reference

socket *so_head;
socket *so_qO;
so_qOlen;
socket *so_q;
so_qlen;
so_qlimi t;

/* back pointer to accept socket */
/* queue of partial connections */
/* partials on so_qO */
/* queue of incoming connections */
/* number of connections on so_q */
/* max number queued connections */

Sockets socketvar.h

Variables for Socket Buffering
The variables for socket buffering are as follows:

struct sockbuf
u short -
u short
u short
u short -
u short
short

{
sb_cc;
sb_hiwat;
sb_mbcnt;
sb_mbmax;
sb_lowat;
sb_timeo;

/* actual chars in buffer */
/* max actual char count */
/* chars of mbufs used */
/* max chars of mbufs to use */
/* low water mark (not used) */
/* timeout (not used yet) */

struct
struct
short
int
caddr t

mbuf *sb_mb;
proc *sb_sel;
sb_flags;
(*sb_iodone)();
sb_ioarg;

/* the mbuf chain */
/* process selecting read/write */
/* flags, see below */
/* I/O done function */
/* arg for sb_iodone */

} so_rcv, so_snd;
#define SB_MAX
#define SB_LOCK

65535
OxOl
Ox02
Ox04
Ox08
OxlO
Ox BO

#define
#define
#define
#define
#define

} ;

Socket State Bits

SB WANT
SB_WAIT
SB SEL
SB COLL
SB KIODONE

short
u short
u short
short

so_timeo;
so_error;
so_oobmark;
so_pgrp;

The socket state bits are as follows:

#define
#define
#define

#define

#define

#define

#define

#define

#define
#define

Socket Macros

SS NOFDREF
SS ISCONNECTED
SS ISCONNECTING

SS ISDISCONNECTING

SS_CANTSENDMORE

SS CANTRCVMORE

SS_RCVATMARK

SS PRIV

SS_NBIO
SS ASYNC

/* max chars in sockbuf */
/* lock on data queue (so rev only) */
/* someone is waiting to lock */
/* someone is waiting for data/space */
/* buffer is selected */
/* collision selecting */
/* kernel I/O done handling */
/* connection timeout */
/* error affecting connection */

/* chars to oob mark */
/* pgrp for signals */

OxOOl /* no file table ref any more */
Ox002 /* socket connected to a peer */
Ox004 /* in process of connecting to

peer */
Ox008 /* in process of

disconnecting */
Ox010 /* can't send more data to

peer */
Ox020 /* can't receive more data

from peer */
Ox040 /* at mark on input */

Ox080

OxlOO
Ox200

/* privileged for broadcast,
raw. . • *I

/* non-blocking ops */
/* async i/o notify */

The macros for sockets and socket buffering are as follows:

/* how much space is there in a socket buffer (so->so_snd or so->so_
rev) *I
#define sbspace(sb) \

(MIN((int)((sb)->sb_hiwat - (sb)->sb_cc),\
(int)((sb)->sb_mbmax - (sb)->sb_mbcnt)))

Chapter 4. Header Files 4-129

Sockets socketvar.h

/* do we have to send all at once on a socket? */
#define sosendallatonce(so) \

((so)->so_proto->pr_flags & PR_ATOMIC)

/* can we read something from so? */
#define soreadable(so) \

((so)->so_rcv.sb_cc I I ((so)->so_state & SS_CANTRCVMORE) I I \
(so)->so_qlen I I (so)->so_error)

I* can we write something to so? */
#define sowriteable(so) \

(sbspace(&(so)->so_snd) > 0 && \
(((so)->so_state&SS_ISCONNECTED) I I \

- ((so)->so_proto->pr_flags&PR_CONNREQUIRED)==O) I I \
((so)->so_state & SS_CANTSENDMORE) I I \
(so)->so_error)

/* adjust counters in sb reflecting allocation of m */
#define sballoc(sb, m) { \

}

(sb)->sb_cc += (m)->m_len; \
(sb)->sb mbcnt += MSIZE; \
if ((m)->m_off > MMAXOFF) \

(sb)->sb_mbcnt += CLBYTES; \

/* adjust counters in sb reflecting freeing of m */
#define sbfree(sb, m) { \

}

(sb)->sb cc -= (m)->m len; \
(sb)->sb-mbcnt -= MSIZE; \
if ((m)->m_off > MMAXOFF) \

(sb)->sb_mbcnt -- CLBYTES; \

/* set lock on sockbuf sb */
#define sblock(sb) { \

}

while ((sb)~>sb_flags & SB_LOCK) { \
(sb)->sb_flags I= SB WANT; \
sleep((caddr_t)&(sb)->sb_flags, PZERO+l); \

} \
(sb)->sb_flags I= SB_LOCK; \

/* release lock on sockbuf sb */
#define sbunlock(sb) { \

(sb)->sb_flags &= -SB_LOCK; \
if ((sb)->sb flags & SB WANT) { \

(sb)->sb=flags &= -SB_WANT; \
wakeup((caddr_t)&(sb)->sb_flags); \

} \
}

#define
#define

sorwakeup(so)
sowwakeup(so)

#if def KERNEL
struct socket *sonewconn();
#endif

4-130 AIX Files Reference

sowakeup((so), &(so)->so_rcv)
sowakeup((so), &(so)->so_snd)

Sockets socketvar.h

Implementation Specifics
The /usr/include/sys/socketvar.h file is part of AIX Base Operating System (BOS)
Runtime.

All applications including the /usr/include/sys/socketvar.h file must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Related Information
Header files containing a sockaddr type structure are the /usr/include/sys/socket.h file
/usr/include/sys/un.h file and the /usr/include/netinet/in.h file.

Sockets Overview and Understanding Header Files in Communications Programming
Concepts.

Chapter 4. Header Files 4-131

sockets

Sockets un.h File

Purpose
Defines the structures for the UNIX Interprocess Communication (IPC) domain.

Description
The /usr/include/sys/un.h file contains data definitions and a socket structure required for
the UNIX IPC domain. An application program must include the /usr/include/sys/un.h file
for use with socket subroutines and subroutines that specify the UNIX domain.

sockaddr_un Structure
The sockaddr_un structure i's used to store UNIX domain sockets that require specification
of a complete path name. An application program would include the sockaddr_un structure
for socket communication between local machine processes. The /usr/include/sys/un.h file
defines the sockaddr_un struture as follows:

struct sockaddr_un {

} ;

short
char

#if def KERNEL

sun_farnily;
~un_path[l08];

int unp_discard();
#endif

#endif /* H UN */

Implementation Specifics

/* AF UNIX */
/* path name */

The /usr/include/sys/un.h file is part of AIX Base Operating System (BOS) Runtime.

All applications including the /usr/include/sys/un.h file must be compiled with _BSD
defined. In addition, when applicable, all socket applications must include the BSD library
libbsd.

Related Information
Additional header files that contain a sockaddr structure are the /usr/include/sys/socket.h
file and the /usr/include/netinet/in.h file.

Sockets Overview and Understanding Header Files in Communications Programming
Concepts.

4-132 AIX Files Reference

X.25 x25sdefs.h

X.25 x25sdefs.h File

Purpose
Contains the structures used by the X.25 application programming interface (API).

Description
The /usr/include/x25sdefs.h file includes the following structures:

Miscellaneous Structures

cb_link_name_struct Used to indicate the name of the X.25 port.
cb_msg_struct Used to indicate the type of message being received.
ctr_array_struct Used to store the counter values and identifiers for use with

x25_ctr_wait.

Structures Primarily Used for Establishing Calls and Transferring Data

cb_call_struct
cb_data_struct
cb_fac_struct
cb_pvc_alloc_struct

Used for calls being made and accepted.
Used for the data to be transferred during a call.

·Used for information about optional facilities being used.
Used to indicate the logical channel number and port assigned to a
PVC.

Structures Used for Clearing, Interrupting and Resetting Calls

Used for calls being cleared. cb_clear_struct
cb_int_data_struct
cb_res_struct

Used for data sent or received in an interrupt packet.
Used for data sent or received in a reset-request packet.

Structures Primarily Used for Managing X.25 Communications:

cb_circuit_info_struct Used for information about a virtual circuit.
cb_dev_info_struct Used for information about an X.25 adapter.
cb_link_stats_struct Used for statistics for an X.25 port.

The structures are listed in alphabetical order.

X.25 cb call struct Structure
- Used by the x25_call, x25_call_accept, and x25_receive subroutines to pass the name of

the X.25 port, called and calling addresses, facilities, and user data.

struct cb call struct
{

}

- -

unsigned long flags;
char *link_narne;
char *called_addr;
char *calling addr;
struct.cb fac-struct *cb_fac;
int user_data_len;
unsigned char *user_data;

Chapter 4. Header Files 4-133

X.25 x25sdefs.h

The following constants are defined in the x25sdefs.h file for use by this structure:

X25_FLG_D_BIT
Indicates that the call is going to use D-bit procedures.

X25_FLG_LINK_NAME
Indicates that the link_name field is used.

X25_FLG_CALLED_ADDR
Indicates that the called_addr field is used.

X25_FLG_CALLING_ADDR
Indicates that the calling_addr field is used.

X25_FLG_CB_FAC
Indicates that the cb_fac field is used.

X25_FLG_USER_DATA
Indicates that the user_data field is used.

The meanings of the structure fields are shown here:

link_name The name of the X.25 port used for an incoming call. Note that this is set to
null on received packets.

called_addr Pointer to the network user address (NUA) of the called data terminal
equipment (DTE). The address is given in ASCllZ format

calling_addr Pointer to the NUA of the calling DTE. The address is given in ASCllZ
format

cb_fac Pointer to the facilities information in cb_fac_struct.

user data_len Length of field for call user data.

user_data Pointer to call user data.

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

X.25 Ports and Links Overview
Network User Addresses
Optional X.25 Facilities
X.25 Packet Switching: Making and Receiving a Call
X.25 API: Making and Receiving a Call

X.25 cb_circuit info struct Structure
Used by the x25_circuit_query subroutine to return information about the circuit.

struct cb circuit info struct
{

}

- - -

unsigned long flags;
unsigned short lcn;
unsigned int incoming_packet_size;
unsigned int outgoing_packet_size;
unsigned int incoming throughput class;
unsigned int outgoing=throughput=class;
unsigned int incoming window size;
unsigned int outgoing=window=size;

4-134 AIX Files Reference

X.25 x25sdefs.h

The following constants are defined in the x25sdefs.h file for use by this structure:

X25_FLG_INCOMING_PACKET _SIZE
Indicates that the incoming_packet_size field is used.

X25_FLG_ OUTGOING_PACKET _SIZE
Indicates that the outgoing_packet_size field is used.

X25_FLG_INCOMING_ THROUGHPUT _CLASS
Indicates that the incoming_throughput_class field is used.

X25_FLG_OUTGOING_ THROUGHPUT _CLASS
Indicates that the outgoing_throughput_class field is used.

X25_FLG_INCOMING_WINDOW_SIZE
Indicates that the incoming_window_size field is used.

X25_FLG_OUTGOING_WINDOW_SIZE
Indicates that the outgoing_window_size field is used.

Fields

The meanings of the structure fields are shown here:

lcn Logical channel number

incoming_packet_size
Actual size for incoming packets

outgoing_packet_size
Actual size for outgoing packets

incoming_throughput_class
Throughput class for incoming calls

outgoing_throughput_class
Throughput class for outgoing calls

incoming_window_size
Number of incoming packets that can be sent without confirmation

outgoing_ window _size
Number of outgoing packets that can be sent without confirmation.

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

Logical Channels and Virtual Circuits
X.25 Packet Attributes

Chapter 4. Header Files 4-135

X.25 x25sdefs.h

X.25 cb clear struct Structure
- Used by the x25_call_clear and x25_receive subroutines to pass the clear cause and

diagnostic values, called and calling addresses, facilities information, and user data.

struct cb clear struct
{

} ;

- -

unsigned long flags;
u_char cause;
u_char diagnostic;
char *called_addr;
char *calling_addr;
struct cb fac struct *cb_fac;
int user_data_len;
u_char *user_data;

The following constants are defined in the x25sdefs.h file for use by this structure:

X25_FLG_CAUSE
Indicates that the cause field is used.

X25_FLG_DIAGNOSTIC
Indicates that the diagnostic field is used.

X25_FLG_CALLED_ADDR
Indicates that the called_addr field is used.

X25_FLG_CALLING_ADDR
Indicates that the calling_addr field is used.

X25_FLG_CB_FAC
Indicates that the cb_fac field is used.

X25_FLG_USER_DATA
Indicates that the user_data field is used.

Fields

The meanings of the structure fields are shown here:

cause Cause value to be inserted in clear packet.

diagnostic Diagnostic reason to be inserted in packet.

called_addr Pointer to the network user address (NUA) of the called data terminal
equipment (DTE). The address is given in ASCllZ format.

calling_addr Pointer to the NUA of the calling DTE. The address is given in ASCllZ
format.

cb_fac Pointer to the facilities information in cb_fac_struct.

user_data_len Length of user-data field.

user_data Pointer to user data. This can only be used if fast select has been requested
in the call-request packet.

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

Network User Addresses
Optional X.25 Facilities

4-136 AIX Files Reference

X.25 Packet Switching: Clearing, Resetting, and Interrupting
X.25 API: Clearing, Resetting, and Interrupting Calls
List of X.25 Clear and Reset Cause Codes
List of X.25 Diagnostic Codes

X.25 cb data struct Structure

X.25 x25sdefs.h

- Used by the x25_send and x25_receive subroutines to pass data control information.

struct cb data struct
{

} ;

- -

unsigned long flags;
int data_len;
unsigned char *data;

The following constants are defined in the x25sdefs.h file for use by this structure:

X25FLG_D_BITlf the D-bit has been set in the call packet, and the value is not zero, the
remote data terminal equipment (DTE) must acknowledge the packet.

X25FLG_Q_BITSet the Q-bit in the packet. A non-zero value is converted to a single 1-bit in
the packet.

X25FLG_M_BIT
Set the M-bit in the packet. A non-zero value is converted to a single 1-bit in
the packet.

X25_FLG_DATA
Indicates that the data field is used.

Fields

The meanings of the structure fields are shown here:

data_len Length of data

data Pointer to actual data.

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

X.25 Packet Switching: Transferring and Acknowledging Data
X.25 API: Transferring and Acknowledging Data
X.25 Example Program svcxmit: Make a Call Using an SVC
X.25 Example Program svcrcv: Receive a Call Using an SVC
X.25 Example Program pvcxmit: Send Data Using a PVC
X.25 Example Program pvcrcv: Receive Data Using a PVC

Chapter 4. Header Files 4-137

X.25 x25sdefs.h

X.25 cb dev info struct Structure
- Used by the x25_device_query subroutine to pass device information.

struct cb dev info struct
{

} ;

- - -

unsigned long flags;
char *nua;
unsigned int no_of_vcs;
unsigned int rnax_rx_packet_size;
unsigned int rnax_tx_packet_size;
unsigned int default_svc_rx_packet_size;

unsigned int default_svc_tx_packet_size;

The following constants are defined in the x25sdefs.h file for use by this structure:

X25_FLG_NUA Indicates that the nua field is used.

X25_FLG_NO_OF_VCS
Indicates that the no_of_vcs field is used.

X25_FLG_MAX_RX_PACKET _SIZE
Indicates that the max_rx_packet_size field is used.

X25_FLG_MAX_ TX_PACKET _SIZE
Indicates that the max_tx_packet_size field is used.

X25_FLG_DEFAULT _SVC_RX_PACKET _SIZE
Indicates that the default_svc_rx_packet_size field is used.

X25_FLG_DEFAULT _SVC_ TX_PACKET _SIZE
Indicates that the default_svc_tx_packet_size field is used.

Fields

The meanings of the structure fields are shown here:

nua

no_of_vcs

Pointer to network user address (NUA) recorded for the device in ASCllZ
format.

The number of permanent virtual circuits (PVCs) configured on this device.

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

Network User Addresses
Logical Channels and Virtual Circuits
List of X.25 Packet Configuration Attributes

4-138 AIX Files Reference

X.25 x25sdefs.h

X.25 cb fac struct Structure
- -Used by the x25_call and x25_call_accept subroutines to pass facilities information.

The example shows how to code cb_fac_struct.

struct cb f ac struct
{

} ;

u_long flags ;
unsigned fac_ext_len;
u_char *fac_ext; /* for non-X.25 facilities */
u char psiz_clg;
u char psiz cld;
u char wsiz_clg;
u char wsiz_cld;
u char tcls_clg;
u char tcls_cld;
unsigned rpoa_id_len;
ushort *rpoa_id;
ushort cug_id;
unsigned nui_data_len;
u_char *nui_data;
unsigned ci_seg_cnt_len;
u_char *ci_seg_cnt;
unsigned ci_mon_unt_len;
u_char *ci_mon_unt;
unsigned ci_cal_dur_len;
u_char *ci_cal_dur;
u_char call_redr_addr[X25_MAX_ASCII_ADDRESS_LENGTH];
u_char call_redr_reason;
short tran_del;
u_char calling_addr_ext_use;
char calling_addr_ext[X25_MAX_EXT_ADDR_DIGITS+l];
u_char called_addr_ext_use;
char called_addr_ext[X25_MAX_EXT_ADDR_DIGITS+l];
u_char clamn;
u_char min_tcls_clg;
u_char min_tcls_cld;
unsigned end_to_end_del_len;
ushort end_to_end_del[3];

Several constants are defined in the x25sdefs.h file for use by this structure. Following are
the descriptions of these constants along with the corresponding fields:

X25FLG_RPOARecognized private operating agency selection required (rpoa_id).

X25FLG_PSIZ Packet size selection (psiz_clg, psiz_cld).

X25FLG_WSIZ Window size selection (wsiz_clg, wsiz_cld).

X25FLG_ TCLS Throughput class required (tcls_clg, tcls_cld).

X25FLG_REV _CHRG
Reverse Charge required (no corresponding field).

X25FLG_FASTSEL
Fast select (no corresponding field).

X25FLG_FASTSEL_RSP
Indicates whether a restricted response is required when
X25FLG_FASTSEL is also requested (no corresponding field).

Chapter 4. Header Files 4-139

X.25 x25sdefs.h

X25FLG_CUG Closed user group selection required (cug_id).

X25FLG_OA_CUG
Closed user group with outgoing access (basic format) selection required
(cug_id).

X25FLG_Bl_CUG
Bilateral closed user group selection required (cug_id).

X25FLG_NUl_DATA
Network user identification (nui_data).

X25FLG_Cl_SEG_CNT
Charging information: segment count (ci_seg_cnt).

X25FLG_Cl_MON_UNT
Charging information: monetary unit (ci_mon_unt).

X25FLG_ Cl_ CAL_DUR
Charging information: call duration (ci_cal_dur).

X25FLG_ Cl_REQU EST
Charging information is required (no corresponding field).

X25FLG_CLAMN
Called line address modified notification (clamn).

X25FLG_CALL_REDR
Call redirection notification (call_redr_addr, call_redr_reason).

X25FLG_ TRAN_DEL
Transit delay selection and notification (tran_del).

X25FLG_CALLING_ADDR_EXT
Calling address extension (calling_addr_ext_use, calling_addr_ext).

X25FLG_CALLED_ADDR_EXT
Called address extension (called_addr_ext_use, called_addr_ext).

X25FLG_MIN_ TCLS
Quality of service negotiation: minimum throughput class (min_tcls_clg,
min_tcls_cld).

X25FLG_END_TO_END_DEL
Quality of service negotiation: end-to-end transit delay (end_to_end_del).

X25FLG_EXP _DATA
Expedited data negotiation (no corresponding field).

X25FLG_FACEXT

Fields

Facilities extension: for all other facilities, including national options
(fac_ext).

The meanings of the structure fields are shown here, but the lengths associated with
individual pointer fields are not explained:

fac_ext

4-140 AIX Files Reference

Pointer to the facilities extension array: extra facility information provided by
the user or network. No checking is made on the validity of this information.
It allows extra facilities that the main cb_fac structure does not include. The
elements of fac_ext are copied directly into the facility field.

X.25 x25sdefs.h

When the information is provided by the X.25 network or by the remote DTE, it is the
responsibility of the application to interpret the field.

Only elements up to the first non-X.25 facility are decoded by the APL Facility markers must
be used in fac_ext if such facilities are required.

psiz_clg

psiz_cld

wsiz_clg

wsiz_cld

tcls_clg

tcls_cld

rpoa_id

cug_id

nui_data

ci_seg_cnt

ci_mon_unt

ci_cal_dur

Indicates the requested size for packets transmitted from the calling DTE.
Supported values are:

Ox04 = 1 6 octets
Ox05 = 32 octets
Ox06 = 64 octets
Ox07 = 128 octets
Ox08 = 256 octets
Ox09 = 512 octets
OxOA = 1 024 octets
OxOB = 2048 octets
OxOC = 4096 octets

Requested size for packets transmitted from the called DTE. Supported
values are the same as for psiz_clg.

Requested size for the window for packets transmitted by the calling DTE.
Values are in the range from Ox01 to Ox07 inclusive.

Requested size for the window for packets to be ·transmitted by the called
DTE. Values are in the range from Ox01 to Ox07 inclusive.

Throughput class requested for data to be sent by the calling DTE.
Supported values are:

Ox07 = 1200 bits per second
Ox08 = 2400 bits per second
Ox09 = 4800 bits per second
OxOA = 9600 bits per second
OxOB = 19200 bits per second
OxOC = 48000 bits per second

Throughput class request for data sent from the called DTE. Supported
values are the same as for tcls_clg

Indicates the requested RPOA transit network. Each element of the array is
an RPOA identifier.

Indicates the identifier of a closed user group (CUG). Used for all modes of
CUG and for bilateral CUGs.

Network user identification data in a format specified by the network
administrator.

Charging information: segment count data.

Charging information: monetary unit data.

Charging information: call duration data.

call_redr_addr The address to which the call has been redirected. The address is stored in
ASCllZ format.

Chapter 4. Header Files 4-141

X.25 x25sdefs.h

call_redr _reason
Contains reason for call redirection.

tran_del Transit delay in milliseconds.

calling_addr_ext_use
Indicates the use of the calling address extension.

calling_addr _ext
Up to 40 digits containing the calling address extension. The address
extension is stored in ASCllZ format. These are the values for the extended
calling and called address flags:

X25_FAC_ADDR_EXT _USE_ENTIRE_OSl_NSAP(O)

X25_FAC_ADDR_EXT _USE_PARTIAL_OSl_NSAP(1)

X25_FAC_ADDR_EXT _USE_NON_OSl(2)

called_addr _ ext_use
Indicates the use of the called address extension.

called_addr_ext Up to 40 digits containing the called address extension. The address
extension is stored in ASCllZ format. See calling_addr_ext for values.

clamn Called line address modified notification. Contains the reason for
redirection.

min_tcls_clg Throughput class requested for data to be sent by the calling DTE.
Supported values are:

Ox07 = 1200 bits per second
Ox08 = 2400 bits per second
Ox09 = 4800 bits per second
OxOA = 9600 bits per second
OxOB = 19200 bits per second
OxOC = 48000 bits per second

min_tcls_cld Throughput class request for data sent from the called DTE. Supported

values are the same as for min_tcls_clg.

end_to_end_del
Specifies cumulative, requested end-to-end and maximum-acceptable
transit delays. Requested end-to-end and maximum-acceptable values are
optional.

Example

This is a simple example of the use of the cb_fac_struct structure:

/*
struct cb_call_struct cb_call;
struct cb_fac_struct fac_struct;
u char facilities_extension[l0],facilities_extension[8];
ushort rpoa_ext_id[3] = {7,8,9};
char extended_calling_addr[]= "1234567890"; /*Example address
extension */

4-142 AIX Files Reference

*/

/* Initialize flags

fac_struct.flags = O;

/* Use of RPOAE

fac_struct.rpoa_id = rpoa_ext_id;
fac struct.rpoa id len = 3;
fac=struct.flags I; X25FLG_RPOA;

/* Use of extended addressing

X.25 x25sdefs.h

*/

*I

*/

fac_struct.calling_addr_ext = extended_calling_addr;
fac_struct.flags I= X25FLG_CALLING_ADDR_EXT;

/* Use of extended facilities

facilities_extension[O]
facilities_extension[l]

facilities_extension[2] =
facilities_extension[3] =
facilities_extension[4]
facilities_extension[S] =

OxOO;
OxOO;

Ox55;
Ox66;
OxOO;
OxFF;

*/

/* start of a Facility Marker */
/* non_X25 facility supported */
/* by calling DTE */
/* a facility */
/* a facility */
/* start of a Facility Marker */
/* non_X25 facility supported */
I* by called DTE */

facilities_extension[6] = Ox88; /* a facility */
facilities_extension[7] = Ox99; /* a facility */
strcpy(fac_struct.fac_ext, facilities_extension);
fac struct.fac ext len = 8;
fac=struct.flags I; X25FLG_FACEXT;

/***/
/* In this example a cb call structure is initialized */
/* with a cb fac structure. */
/*******************~**/
cb_call.cb_fac = &fac_struct;
cb_call. flags = X25FLG_CB_FAC;

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

X.25 Ports and Links Overview
Network User Addresses
Optional X.25 Facilities
X.25 Packet Switching: Making and Receiving a Call
X.25 API: Making and Receiving a Call

Chapter 4. Header Files 4-143

X.25 x25sdefs.h

X.25 cb int data struct Structure
- -Usedby the x25_interrupt and x25_receive subroutines to pass the interrupt data.

struct cb int struct
{

} ;

unsigned long flags ;
unsigned char int_data_len;
unsigned char *int_data;

The following constant is defined in the x25sdefs.h file for use by this structure:

X25FLG_INT _DATA
A non-zero value indicates the presence of data in cb_int_data.

Fields

The meanings of the structure fields are shown here:

int_data_len Length of data in cb_int_data.

int_data Interrupt data.

For additional information related to this structure, refer to the following article in
Communication Concepts and Procedures.

X.25 Packet Switching: Clearing, Resetting, and Interrupting Calls
X.25 API: Clearing, Resetting, and Interrupting Calls

X.25 cb link name struct Structure
- Used bythe x25_init, x25_1ink_connect, x25_1ink_disconnect, x25_1ink_monitor,

x25_device_query, and x25_term subroutines to pass the name of the X.25 port.

struct cb link name struct
{

} ;

- - -

unsigned long flags;
char *link_narne;

The following constant is defined in the x25sdefs.h file for use by this structure:

X25_FLG_LINK_NAME
Indicates that the link_name field is used.

Fields

The meanings of the structure fields are shown here:

link_name The name of the X.25 port.

For additional information related to this structure, refer to the following article in
Communication Concepts and Procedures.

X.25 Ports and Links Overview

4-144 AIX Files Reference

X.25 x25sdefs.h

X.25 cb_link_stats_struct, x25_query_data, and x25_stats Structures
Used by the x25_1ink_statistics subroutine to pass statistics about a X.25 port.

struct cb_link_stats_struct
{

} ;

unsigned long flags;
unsigned int no_of_vcs;
struct x25_query_data x25_stats;

The following constants are defined in the x25sdefs.h file for use by this structure:

X25_FLG_NO_OF_VCS
Indicates that the no_of_vcs field is used.

X25_FLG_LINK_STATS
Indicates that the x25_stats structure is being used.

Fields

The meanings of the structure fields are shown here:

no_of_vcs Number of virtual circuits currently in use for the X.25 port specified.

x25_stats Pointer to x25_query_data structure containing CIO and X.25 statistics.

x25_query_data Structure
x25_query_data is the structure returned from the CIO_QUERV ioctl. It includes two
structures: the standard statistics values found in sys/comio.h and the specific X.25
statistics structure, x25_stats.

struct x25_query_data
{

} ;

Fields

cio_stats

struct cio stats cc;
struct x25 stats ds;

See the <sys/comio.h> file.

x25_stats Pointer to x25_query_data structure containing CIO and X.25 statistics.

x25 stats Structure
- x25_stats is the structure that contains the specific X.25 statistics. Note that flags are not

used with this structure.

typedef unsigned short x25_stat_value_t;
struct x25 stats
{

Chapter 4. Header Files 4-145

X.25 x25sdefs.h

Frame Level

x25_stat_value_t ignored_f_tx;
x25_stat_value_t rr_f_tx;
x25_stat_value_t rnr_f_tx;
x25_stat_value_t rej_f_tx;
x25_stat_value_t info_f_tx;
x25_stat_value_t sabm_f_tx;
x25_stat~value_t sarm_dm_f_tx;
x25_stat_value_t disc_f_tx;
x25_stat_value_t ua_f_tx;
x25_stat_value_t frmr_f_tx;
x25_stat_value_t bad_nr_f_tx;
x25_stat_value_t unknown_f_tx;
x25_stat_value_t xid_f_tx;
x25_stat_value_t bad_length_f_tx;
x25_stat_value_t tl_expirations;
x25_stat_value_t lvl2_connects;
x25_stat_value_t lvl2_disconnects;
x25_stat_value_t carrier_loss;
x25_stat_value_t connect_time; /* In seconds */
x25_stat_value_t t4_expirations;
x25_stat_value_t t4_n2_times;
x25_stat_value_t ignored_f_rx;
x25_stat_value_t rr_f_rx;
x25_stat_value_t rnr_f_rx;
x25_stat_value_t rej_f_rx;
x25_stat_value_t info_f_rx;
x25_stat_value_t sabm_f_rx;
x25_stat_value_t sarm_dm_f_rx;
x25_stat_value_t disc_f_rx;
x25_stat_value_t ua_f_rx;
x25_stat_value_t frmr_f_rx;
x25_stat_value_t bad_nr_f_rx;
x25_stat_value_t unknown_f_rx;
x25_stat_value_t xid_f_rx;
x25_stat_value_t bad_length_f_rx;

Packet Level

x25_stat value t data_p_tx;
x25_stat_value_t rr_p_tx;
x25_stat_value_t rnr_p_tx;
x25_stat_value_t interrupt_p_tx;
x25_stat_value_t interrupt_confirm_p_tx;
x25_stat_value_t call_request_p_tx;
x25_stat_value_t call_accept_p_tx;
x25_stat_value_t clear_request_p_tx;
x25_stat_value_t clear_conf irm_p_tx;
x25_stat_value_t reset_request_p_tx;

4-146 AIX Files Reference

} ;

Fields

X.25 x25sdefs.h

x25_stat_value_t reset_confirm_p_tx;
x25_stat_value_t diagnostic_p_tx;
x25_stat_value_t registration_p_tx;
x25_stat_value_t registration_confirm_p_tx;
x25_stat_value_t restart_p_tx;
x25_stat_value_t restart_confirm_p_tx;
x25_stat_value_t error_p_tx;
x25_stat_value_t t20_expirations;
x25_stat_value_t t21_expirations;
x25_stat_value_t t22_expirations;
x25_stat_value_t t23_expirations;
x25_stat_value_t vc_establishments;
x25_stat_value_t t24_expirations;
x25_stat_value_t t25_expirations;
x25_stat_value_t t26_expirations;
x25_stat_value_t t28_expirations;
x25_stat_value_t data_p_rx;
x25_stat_value_t rr_p_rx;
x25_stat_value_t rnr_p_rx;
x25_stat_value_t interrupt_p_rx;
x25_stat_value_t interrupt_confirm_p_rx;
x25_stat_value_t incoming_call_p_rx;
x25_stat_value_t call_connected_p_rx;
x25_stat_value_t clear_indication_p_rx;
x25_stat_value_t clear_confirm_p_rx;
x25_stat_value_t reset_indication_p_rx;
x25_stat_value_t reset_confirm_p_rx;
x25_stat_value_t diagnostic_p_rx;
x25_stat_value_t registration_p_rx;
x25_stat_value_t registration_confirm_p_rx;
x25_stat_value_t restart_p_rx;
x25 stat_value_t restart_confirm_p_rx;
int transmit_profile [16];
int receive_profile [16];

The meanings of the structure fields are shown here:

ignored_f_tx Count of the number of transmitted frames that have been ignored instead
of being transmitted.

rr_f_tx Count of the number of RR frames transmitted.

rnr_f_tx Count of the number of RNR frames transmitted.

reLUx Count of the number of REJ frames transmitted.

info_f_tx Count of the number of INFO frames transmitted.

sabm_f_tx Count of the number of SABM frames transmitted.

sarm_dm_f _tx Count of the number of SARM/DM frames transmitted.

disc_f_tx

ua_f_tx

Count of the number of DISC frames transmitted.

Count of the number of UA frames tran~mitted.

Chapter 4. Header Files 4-147

X.25 x25sdefs.h

frmr_f_tx Count of the number of FRMR frames transmitted.

bad_nr_f_tx Count of the number of frames transmitted with a bad N(R) value.

unknown_f_tx Count of the number of unknown frames transmitted.

xid_f_tx Count of the number of XID frames transmitted.

bad_length_f_txCount of the number of bad length frames transmitted.

t1_expirations Count of the number of times the T1 timer has timed out.

lvl2_connects Count of the number of times the frame level has been connected.

lvl2_disconnects
Count of the number of times the frame level has been disconnected.

carrier_loss Count of the number of times the carrier signal was lost.

connect_time The number of seconds that the link has been connected.

t4_expirations Count of the number of times the T 4 timer has timed out.

t4_n2_expirations
Count of the number of times the T 4 timer has timed out N2 times.

ignored_f_rx Count of the number of received frames that have been ignored instead of
being received.

rr_f_rx Count of the number of RR frames received.

rnr_f_rx Count of the number of RNR frames received.

rej_f _rx Count of the number of REJ frames received.

info_f_rx Count of the number of INFO frames received.

sabm_f_rx Count of the number of SABM frames received.

sarm_dm_f_rx Count of the number of SARM/DM frames received.

disc_f_rx Count of the number of DISC frames received.

ua_f_rx Count of the number of UA frames received.

frmr_f_rx Count of the number of FRMR frames received.

bad_nr_f_rx Count of the number of frames received with a bad N(R) value.

unknown_f_rx Count of the number of unknown frames received.

xid_f_rx Count of the number of XID frames received.

bad_length_f_rx
Count of the number of bad length frames received.

data_p_tx Count of the number of data packets transmitted.

4-148 AIX Files Reference

rr_p_tx

rnr_p_tx

Count of the number of RR packets transmitted.

Count of the number of RNR packets transmitted.

X.25 x25sdef s.h

interrupt_p_tx Count of the number of interrupt packets transmitted.

interrupt_confirm_p_tx
Count of the number of interrupt-confirmation packets transmitted.

call-request_p_tx
Count of the number of call-request packets transmitted.

call_accept_p_tx
Count of the number of call-accept packets transn:iitted.

clear _request_p_tx
Count of the number of clear-request packets transmitted.

clear_confirm_p_tx
Count of the number of clear-confirm packets transmitted.

reset_request_p_tx
Count of the number of reset-request packets transmitted.

reset_ confirm _p_tx
Count of the number of reset-confirm packets transmitted.

diagnostic_p_tx Count of the number of diagnostic packets transmitted.

registration_p_tx
Count of the number of registration packets transmitted.

registration_confirm_p_tx
Count of the number of registration-confirmation packets transmitted.

restart_p_tx Count of the number of restart packets transmitted.

restart_confirm_p_tx
Count of the number of restart-confirmation packets transmitted.

error_p_tx Count of the number of error packets transmitted.

t20_expirations Count of the number of times the T20 timer has timed out.

t21_expirations Count of the number of times the T21 timer has timed out.

t22_expirations Count of the number of times the T22 timer has timed out.

t23_expirations Count of the number of times the T23 timer has timed out.

vc_establishments
Count of the number of times a virtual circuit has been established.

t24_expirations Count of the number of times the T24 timer has timed out.

t25_expirations Count of the number of times the T25 timer has timed out.

t26_expirations Count of the number of times the T26 timer has timed out.

Chapter 4. Header Files 4-149

X.25 x25sdefs.h

t28_expirations Count of the number of times the T28 timer has timed out.

data_p_rx

rr_p_rx

rnr_p_rx

Count of the number of data packets received.

Count of the number of RR packets received.

Count of the number of RNA packets received.

interrupt_p_rx Count of the number of interrupt packets received.

interrupt_confirm_p_rx
Count of the number of interrupt-confirmation packets received.

call-request_p_rx
Count of the number of call-request packets received.

call_accept_p_rx
Count of the number of call-accept packets received.

clear _request_p_rx
Count of the number of clear-request packets received.

clear_confirm_p_rx
Count of the number of clear-confirm packets received.

reset_request_p_rx
Count of the number of reset-request packets received.

reset_confirm_p_rx
Count of the number of reset-confirm packets received.

diagnostic_p_rx Count of the number of diagnostic packets received.

registration_p_rx
Count of the number of registration packets received.

registration_confirm_p_rx
Count of the number of registration-confirmation packets received.

restart_p_rx Count of the number of restart packets received.

restart_confirm_p_rx
Count of the number of restart-confirmation packets received.

transmit_profile[16]

4-150 AIX Files Reference

A profile of the transmission packet sizes in use on this X.25 port. Each
element of the array contains a count of the number of packets (sent since
the X.25 adapter was last configured) whose sizes are in the range
specified (as shown below).

O Packet size not known.
1 Reserved.
2 Reserved.
3 Reserved.
4 O through 15.
5 16 through 31.
6 32 through 63.

7
8
9
10
11
12
13-16

receive_profile[16]

64 through 127.
128 through 255.
256 through 511.
512 through 1023.
1024 through 2047.
2048 through 4095.
Reserved.

X.25 x25sdefs.h

A profile of the receive packet sizes in use on this X.25 port. Each element
of the array contains a count of the number of packets (received since the
X.25 adapter was last configured) whose sizes are in the range specified
(as for transmit_profile).

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

X.25 Ports and Links Overview
Logical Channels and Virtual Circuits
Example of X.25 Statistics
How to Get Statistics For an X.25 Port

X.25 cb_msg_struct Structure
Used by the x25_receive and x25_call_clear subroutines to pass the contents of a received
packet to an application.

struct
{

} ;

Fields

cb_msg_struct

int msg_type;
union
{

struct
struct
struct
struct
struct

} msg_point;

cb_call_struct *cb_call;
cb_data_struct *cb_data;
cb_clear_struct *cb_clear;
cb_res_struct *cb_res;
cb int struct *int_data;

The meanings of the structure fields are shown here:

msg_type Type of message being returned, as follows:

X25_ CALL_ CONNECTED
Call connected: cb_call points to the cb_call_struct structure.

X25_1NCOMING_CALL
Incoming call: cb_call points to the cb_call_struct structure.

X25_DATA Data: cb_data points to the cb_data_struct structure.

X25_DATA_ACK
Data acknowledgement: no buffer.

X25_1NTERRUPT
Interrupt: int_data points to the cb_int_data_struct structure.

Chapter 4. Header Files 4-151

X.25 x25sdefs.h

X25_1NTERRUPT_CONFIRMATION
Confirmation of a previously issued interrupt request: no data is returned.

X25_CLEAR_INDICATION
Indication that call has been cleared.

X25_CLEAR_CONFIRM
Confirmation that the call has been cleared. cb_clear points to the
cb_clear_struct structure. (This should only be received on
x25_call_clear.)

X25_RESET _INDICATION
Reset indication: cb_res points to the cb_res_struct structure.

X25_RESET _CONFIRM
Reset confirmation: no data is returned.

X25_UNKNOWN_PACKET

cb_call

cb_data

cb_clear

cb_res

int_ data

Allow for packets in future CCITT releases. These packets will be ones that
can be safely ignored by the application.

Pointer to the call structure, cb_call_struct.

Pointer to the data structure, cb_data_struct.

Pointer to the clear structure, cb_clear_struct.

Pointer to the reset structure, cb_res_struct.

Pointer to the interrupt data structure, cb_int_data_struct.

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

X.25 API: Making and Receiving a Call
X.25 API: Transferring and Acknowledging Data
X.25 API: Clearing, Resetting, and Interrupting Calls
X.25 Example Program svcxmit: Make a Call Using an SVC
X.25 Example Program svcrcv: Receive a Call Using an SVC

X.25 cb_pvc_alloc_struct Structure
Used by the x25_pvc_alloc subroutine to pass the name of the X.25 port and the logical
channel number.

struct cb_pvc_alloc_struct
{

} ;

unsigned long flags;
char *link_name;
unsigned int lcn;

The following constants are defined in the x25sdefs.h file for use by this structure:

X25_FLG_LCN Indicates that the lcn field is used.

X25_FLG_LINK_NAME
Indicates that the link_name field is used.

4-152 AIX Files Reference

X.25 x25sdefs.h

Fields

The meanings of the structure fields are shown here.

link_name The name of the X.25 port.

lcn Logical channel number of the permanent virtual circuit (PVC) to be
allocated to the call.

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

X.25 Ports and Links Overview
Logical Channels and Virtual Circuits
X.25 Example Program pvcxmit: Send Data Using a PVC
X.25 Example Program pvcrcv: Receive Data Using a PVC

X.25 cb res struct Structure
- -Used by the x25_reset and x25_receive subroutines to pass the reset cause and diagnostic

codes.

struct cb res struct
{

} ;

unsigned long flags;
unsigned char cause;
unsigned char diagnostic;

The following constants are defined in the x25sdefs.h file for use by this structure:

X25_FLG_CAUSE
Indicates that the cause field is used.

X25_FLG_DIAGNOSTIC
Indicates that the diagnostic field is used.

Fields

The meanings of the structure fields are shown here.

cause Cause value of either 0 or in the range Ox80 through OxFF, to be inserted in
the reset packet.

diagnostic Diagnostic reason to be inserted in the packet. The CCITT default value is
0.

For additional information related to this structure, refer to the following articles in
Communication Concepts and Procedures.

X.25 Packet Switching: Clearing, Resetting, and Interrupting Calls
X.25 API: Clearing, Resetting, and Interrupting Calls
List of X.25 Clear and Reset Cause Codes
List of X.25 Diagnostic Codes

X.25 ctr_array_struct Structure
Used by the x25_ctr_wait subroutine to pass the counter identifier and a value to be
exceeded.

Chapter 4. Header Files 4-153

X.25 x25sdefs.h

struct ctr_array_struct
{

unsigned long flags;
int ctr_id;
int ctr_value;

} ;

The following constants are defined in the x25sdefs.h file for use by this structure:

X25_FLG_CTR_ID
Indicates that the ctr_id field is used.

X25_FLG_CTR_VALUE
Indicates that the ctr_value field is used.

Fields

The meanings of the structure fields are shown here:

ctr_id Counter identifier.

ctr_value Value to be exceeded by the counter specified by the counter identifier. The
counter is incremented each time a message for the associated call or PVC
arrives, so x25_ctr_wait returns control to the calling program when this
number of messages are waiting.

For additional information related to this structure, refer to the following article in
Communication Concepts and Procedures.

X.25 API: Using Counters to Correlate Messages

Files
/usr/include/x25sdefs.h

Related Information

The path to the x25sdefs.h header file.

Using X.25 Applications Written for Previous Releases in Communication Concepts and
Procedures.
Using the X.25 Subroutines in Communication Concepts and Procedures.
Using the X.25 Structures and Flags in Communication Concepts and Procedures.

4-154 AIX Files Reference

Chapter 5. Directories

Chapter 5. Directories 5-1

BNU /etc/locks

BNU /etc/locks Directory

Purpose
Contains lock files that prevent multiple uses of communications devices and multiple calls
to remote systems.

Description
The /etc/locks directory contains files that lock communications devices and remote
systems so that another user cannot access them when they are already in use. Other
programs check the /etc/locks directory for lock files before attempting to use a particular
device or call a specific system.

A lock file is a file that is placed in the /etc/locks directory when a program uses a
communications device or contacts a remote system. The file contains the process ID
number (PIO) of the process that creates it.

The Basic Networking Utilities Program and other communications programs create a device
lock file whenever a connection to a remote system, established over the specified device, is
actually in use. The full path name of a device lock file is:

/etc/locks/ DeviceName

where the DeviceName extension is the name of a device, such as tty3.

When the Basic Networking Utilities (BNU) uucico daemon, cu command, or tip command
place a call to a remote system, they put a system lock file in the /etc/locks directory. The
full path name of a system lock file is:

/etc/locks/ System Name

where the SystemName extension is the name of a remote system, such as her a. The
system lock file prevents more than one connection at a time to the same remote system.

Under normal circumstances, the communications software automatically removes the lock
file when the user or program ends the connection to a remote system. However, if a
process executing on the specified device or system does not complete its run (for example,
if the computer crashes), the lock file remains in the /etc/locks directory either until the file is
removed manually or until the system is restarted after a shutdown.

Implementation Specifics

Files

This directory is part of AIX Base Operating System (BOS) Runtime.

/etc/locks/ DeviceName

/etc/locks/ System Name

Prevents multiple uses of the device named by the
DeviceName file.
Prevents multiple connections to the remote system named
by the SystemName file.

Related Information
The following commands and daemons place lock files in the /etc/locks directory: the
connect subcommand of the ATE command, pshare command, pdelay command, uucico
daemon, ct command, cu command, slattach command, tip command.

5-2 AIX Files Reference

BNU /usr/spool/uucp Directory

Purpose

BNU /usr/spool/uucp

Stores Basic Networking Utilities (BNU) log, administrative, command, data, and execute
files in multiple subdirectories.

Description
The /usr/spool/uucp directory, also known as the BNU spooling directory, is the parent
directory for multiple work directories created by the Basic Networking Utilities (BNU)
program to facilitate file transfers among systems.

The following directories are subdirectories of the /usr/spool/uucp directory:

.Admin Contains four administrative files. They are as follows:

audit

.Corrupt

• Log

. Old

• Foreign

• errors

• xferstats

Contains copies of files that could not be processed by the BNU program .

Contains log files for the uucico and uuxqt daemons .

Contains old log files for the uucico and uuxqt daemons .

. Status Stores the last time the uucico daemon tried to contact remote systems .

. Workspace Holds temporary files that the file transport programs use internally .

• Xqtdir Contains execute files with lists of commands that remote systems can run.

SystemName Contains files used by file transport programs, including:

• Command (C.*) files

• Data (D.*) files

• Execute (X. *) files

• Temporary (TM.*) files.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
The uucico daemon, uuxqt daemon.

The uucp command, uudemon.cleanu command, uuclean command, uupick command,
uuto command, uux command.

Chapter 5. Directories 5-3

BNU /usr/spool/uucp/.Admin

BNU /usr/spool/uucp/.Admin Directory

Purpose
Contains administrative files used by BNU.

Description
The /usr/spool/uucp/.Admin directory contains administrative files used by the Basic
Networking Utilities (BNU) program to facilitate remote communications among systems.
The .Admin directory contains the following files:

File Description

audit Contains debug messages from the uucico daemon.

Foreign Logs contact attempts from unknown remote systems.

errors Records uucico daemon errors.

xferstats Records the status of file transfers.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
The cron daemon, uucico daemon.

The uudemon.cleanu command.

Description
The /usr/spool/uucp/.Admin directory contains administrative files used by the Basic
Networking Utilities (BNU) program to fadlitate remote communications among systems.
The .Admin directory contains the following files:

File

audit

Foreign

errors

xferstats

Description

Contains debug messages from the uucico daemon.

Logs contact attempts from unknown remote systems.

Records uucico daemon errors.

Records the status of file transfers.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
The cron daemon, uucico daemon.

The uudemon.cleanu command.

5-4 AIX Files Reference

BNU /usr/spool/uucp/.Corrupt

BNU /usr/spool/uucp/.Corrupt Directory

Purpose
Contains copies of files that could not be processed.

Description
The /usr/spool/uucp/.Corrupt directory contains copies of files that could not be processed
by the Basic Network Utilities (BNU) program. For example, if a file is not in the correct form
for transfer, the BNU program places a copy of that file in the .Corrupt directory for later
handling. This directory is rarely used.

The files in the .Corrupt directory are removed periodically by the uudemon.cleanu
command, a shell procedure.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
The uucico daemon, uuxqt daemon.

The uudemon.cleanu command.

Chapter 5. Directories 5-5

BNU /usr/spool/uucp/.Log

BNU /usr/spool/uucp/.Log Directories

Purpose
Contain the BNU program log files.

Description
The /usr/spool/uucp/.Log directories contain Basic Networking Utilities (BNU) program log
files. The BNU program normally places status information about each transaction in the
appropriate log file each time you use the networking utilities facility.

All transactions of the uucico and uuxqt daemons as well as the uux and uucp commands
are logged-in files named for the remote system concerned. Each file is stored in a
subdirectory of the /usr/spool/uucp/.Log directory, named for the daemon or command
involved. Each subdirectory contains a separate file for each remote system contacted. Thus
the log files are named with a form of the following:

/usr/spool/uucp/.Log/ DaemonNamel System Name

OR

/usr/spool/uucp/.Log/ CommandNamel SystemName

All activities of the uucp command are logged in the SystemName file in the
/usr/spool/uucp/.Log/uucp directory. All activities of the uux command are logged in the
SystemName file in the /usr/spool/uucp/.Log/uux directory.

The uucp and uuto commands call the uucico daemon. The uucico daemon activities for a
particular remote system are logged in the SystemName file in the
/usr/spool/uucp/.Log/uucico directory on the local system.

The uux command calls the uuxqt daemon. The uuxqt daemon activities for a particular
remote system are logged in the SystemName file in the /usr/spool/uucp/.Log/uuxqt
directory on the local system.

When more than one BNU process is running, however, the system cannot access the
standard log file, so it places the status information in a file with a .Log prefix. The file
covers that single transaction.

The BNU program can automatically append the temporary log files to a primary log file.
This is called compacting the log files and is handled by the uudemon.cleanu command, a

·shell procedure. The procedure combines the log files of the activities of the uucico and
uuxqt daemons on a particular system and stores the files in the /usr/spool/uucp/.Old
directory.

The default is for the uudemon.cleanu command to save log files that are two days old.
This default can be changed by modifying the appropriate line in the shell procedure. If
storage space is a problem on a particular system, reduce the number of days that the files
are kept in their individual log files.

The uulog command can be used to view the BNU program log files.

5-6 AIX Files Reference

BNU /usr/spool/uucp/.Log

Implementation Specifics
These directories are part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX
for RISC System/6000.

Related Information
Working with BNU Log Files in Communication Concepts and Procedures.

The cron daemon, uucico daemon, uusched daemon, uuxqt daemon.

The uucp command, uudemon.cleanu command, uulog command, uuto command, uux
command.

Chapter 5. Directories 5-7

cr~u 1usr1spoo11uucp1 .u1a

BNU /usr/spool/uucp/.Old Directory

Purpose
Contains the combined BNU program log files.

Description
The /usr/spool/uucp/.Old directory contains the combined Basic Networking Utilities (BNU)
program log files.

The BNU program creates log files of the activities of the uucico and uuxqt daemons in the
/usr/spool/uucp/.Log directory. The log files are compacted by the
/usr/lib/uucp/uudemon.cleanu command, a shell procedure, which combines the files and
stores them in the .Old directory.

By default, the uudemon.cleanu command removes log files after two weeks. The length of
time log files are kept can be changed to suit the needs of an individual system.

The log files can be viewed using the uulog command.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
Working with BNU Log Files in Communication Concepts and Procedures.

The cron daemon, uucico daemon, uuxqt daemon.

The uucp command, uudemon.cleanu command, uulog command, uux command.

5-8 AIX Files Reference

BNU /usr/spool/uucp/.Status Directory

Purpose

BNU /usr/spool/uucp/.Status

Contains information about the status of the BNU program contacts with remote systems.

Description
The /usr/spool/uucp/.Status directory contains information about the status of the Basic
Networking Utilities (BNU) program contacts with remote systems.

For each remote system contacted, the BNU program creates a file in the .Status directory
called SystemName, which is named for the remote system being contacted. In the
.Status/SystemName file, the BNU program stores the following information:

• Time of the last call in seconds

• Status of the last call

• Number of retries

• Retry time, in seconds, of the next call.

Note: The times given in the .Status!SystemName file are expressed as seconds elapsed
since midnight of January 1, 1970 (the output of a time subroutine). Thus the retry
time is in the form of the number of seconds that must have expired since midnight of
January 1, 1970 before the system can retry. To make this entry in the
.Status/SystemName file, BNU performs a time subroutine, adds 600 seconds, and
places the resulting number of seconds in the file.

If the last call was unsuccessful, the uucico daemon will wait until the time specified by the
retry time before attempting to contact the system again. The retry time in the
.Status/ System Name file can be overridden using the -r flag of the uutry or Uutry
command.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
The uucico daemon.

The uutry command, Uutry command.

The time subroutine.

Chapter 5. Directories 5-9

ts NU 1usr1spoo11uucp/ SystemName

BNU /usr/spool/uucp/ SystemName Directories

Purpose
Contain queued requests for file transfers and command executions on remote systems.

Description
The /usr/spool/uucp/SystemName directories are the Basic Networking Utilities (BNU)
spooling directories on the local system. The BNU program creates a SystemName directory
for each system listed in the /usr/lib/uucp/Systems file, including the local system.

Each SystemName directory contains queued requests issued by local users for file
transfers to remote systems and for command executions on remote systems.

The BNU program uses several types of administrative files to transfer data between
systems. These files are stored in the SystemName directories. They are:

File Description

command (C. *) files

data (D. *) files

Contain directions for the uucico daemon concerning file transfers.

Contain data to be sent to remote systems by the uucico daemon.

execute (X. *) files Contain instructions for running commands on remote systems.

temporary (TM.*) files Contain data files after their transfer to the remote system until the
BNU program can deliver them to their final destinations (usually
the /usr/spool/uucppublic directory).

Implementation Specifics
These directories are part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX
for RISC System/6000.

Related Information
The uucico daemon, uusched daemon, uuxqt daemon.

The uucp command, uux command.

5-10 AIX Files Reference

BNU /usr/spool/uucp/.Workspace

BNU /usr/spool/uucp/.Workspace Directory

Purpose
Holds temporary files used internally by file transport programs.

Description
The /usr/spool/uucp/.Workspace directory holds temporary files of various kinds used
internally by BNU file transport programs.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
The uucico daemon, uuxqt daemon.

Chapter 5. Directories 5-11

BNU /usr/spool/uucp/.Xqtdir

BNU /usr/spool/uucp/.Xqtdir Directory

Purpose
Contains temporary files used by the uuxqt daemon to execute remote command requests.

Description
The /usr/spool/uucp/.Xqtdir directory contains temporary files used by the Basic
Networking Utilities (BNU) uuxqt daemon to execute remote command requests.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
The uuxqt daemon.

The uux command.

5-12 AIX Files Reference

BNU /usr/spool/uucppublic Directory

Purpose
Stores BNU files until they can be delivered.

Description

BNU /usr/spool/uucppublic

The /usr/spool/uucppublic directory is the public directory for the Basic Networking Utilities
(BNU) facility. One of these directories exists on every system connected by the BNU
utilities.

When a user transfers a file to a remote system or issues a request to execute a command
on another system, the files generated by these BNU commands are stored in the public
directory on the designated system until the destination directory is ready to receive them. (A
user can also specify a destination other than the public directory when issuing the uucp,
uuto, or uux command.) The transferred files remain in the uucppublic directory until they
are removed manually or automatically.

Note: The files are stored in the uucppublic/ System Name subdirectory of the uucppublic
directory, where the SystemName directory is named for the remote system where
the files originated.

All spooling directories are dynamic, including the public directory. Depending upon the size
of your installation and the number of files sent to the local /usr/spool/uucppublic directory
by users on remote systems, this directory can at times become quite large.

The uudemon.cleanu command, a shell procedure, cleans up all the BNU spooling
directories, including the public directories. Use the uucleanup command with the
-sSystemName flag to clean up the directories on one specific system.

Implementation Specifics
This directory is part of the UNIX to UNIX Copy Program in BOS Extensions 1 of AIX for
RISC System/6000.

Related Information
Commands used to clean up the spooling directories are the uucleanup command and
uudemon.cleanu command.

Commands used to make transfer and command requests are the uucp command, uuto
command, and uux command.

Chapter 5. Directories 5-13

HCON

HCON /usr/lib/hcon Directory

Purpose
Contains files used by the AIX 3270 Host Connection Program/6000 (HCON).

Description
The /usr/lib/hcon directory contains files used by the AIX 3270 Host Connection
Program/6000 (HCON). It contains color and keyboard definition files, terminal definition
files, HCON API subdirectories, AUTOLOG and LAF object and executable files, AUTOLOG
and LAF example files, configuration data base files, and the command to start the HCON
subsystem.

Color and Keyboard Definition Files
The following files contain data used to define and customize the HCON color and keyboard
definition tables:

File

e789_ctbl

e789_ctbl.p

e789_ktbl

e789_ktbl.p

func_names

keynames

nls_names

Contents

Default binary color definition table

Source for the default binary color definition table

Default binary keyboard definition table

Source for the default binary keyboard definition table

Keyboard function names

Key names

Color and attribute names.

The color and keyboard definition tables in the /usr/lib/hcon directory specify defaults for
use by HCON emulator sessions. The e789cdef and e789kdef commands allow users to
customize color and keyboard definition tables.

The func_names, keynames, and nls_names files define the names used for 3270
functions, keys, colors, and attributes. These names can be changed by editing the files with
an ASCII text editor. The names in these files can be in any language and are used as input
to the e789kdef and e789cdef commands. Changes to these files affect the entire HCON
color and keyboard customization process.

Terminal Definition Files
The HCON installation process creates a terminfo subdirectory in the /usr/lib/hcon
directory. The /usr/lib/hcon/terminfo directory contains terminal definition files that are
specific to HCON. When HCON is installed, the terminfo directory contains the following
files:

File

ibm.ti.H

dec.ti.H

wyse.ti.H

5-14 AIX Files Reference

Contents

Terminal definitions for HFT, IBM 5081, IBM 3151, IBM 3161, IBM 3162, and
IBM 3163 terminals.

Terminal definitions for DEC VT100 and DEC VT220 terminals.

Terminal definition for the WYSE WY-50 terminal.

HCON

The terminfo binary files for HCON terminal definitions are in subdirectories of the
/usr/lib/hcon/terminfo directory. Each subdirectory is named with the first letter of the
terminal name. When HCON is installed, the terminfo directory contains the following
subdirectories:

Subdirectory Contents

a

h

v

w

Binary terminal definition file for running within AIXwindows

Binary terminal definition files for color and monochrome HFTs

Binary terminal definition files for the IBM 5081, IBM 3151, IBM 3161, IBM
3162, and IBM 3163 terminals

Binary terminal definition files for the DEC VT100 and DEC VT220 terminals

Binary terminal definition files for the WYSE WY-50 terminal.

In addition to those delivered with HCON, the /usr/lib/hcon/terminfo subdirectory can
contain customized terminal definitions.

HCON API Subdirectories
The HCON installation process creates two subdirectories in the /usr/lib/hcon directory that
contain files used by the HCON API:

Directory

mvs

vm

Contents

API programs to use in interfaces to MVS/TSO host systems, including the
instalapi program

API programs to use in interfaces to VM/CMS host systems, including the
instalapi program.

AUTOLOG and LAF Object and Executable Files
When HCON is installed, the /usr/lib/hcon directory contains the following AUTOLOG and
LAF object and executable files:

File Contents

autolog.o AUTOLOG object file

dfxfer.o File-transfer process object file

laf.o LAF object file

tlaf.o LAF test-tool object file

tlaf Pre-compiled AUTOLOG test-tool executable file.

AUTOLOG and LAF Example Files
The /usr/lib/hcon directory contains several example files for the AUTOLOG and LAF
facilities. These files are:

File

g_log.mvs

g_log.vm

logform

Contents

Example LAF program for MVS/TSO host

Example LAF program for VM/CMS host

Example genprof form for creating AUTOLOG procedures

Chapter 5. Directories 5-15

HCON

SYStso

SYSvm1

SYSvm2

Example AUTOLOG script for MVS/TSO host

Example AUTOLOG script for VM/CMS host

Example AUTOLOG script for VM/CMS host.

Configuration Data Base Files
The following files contain HCON configuration information. This information is used by
HCON programs, by the Object Data Manager (ODM), and by the HCON configuration
commands, which are called by the System Management Interface Tool (SMIT).

File

sysdflts

sysdflts. vc

users

Contents

HCON database system defaults

HCON database system defaults

HCON users database.

Command to Start the HCON Subsystem
The sthcondmn command is used to start the hcondmn subsystem after HCON has been
installed.

Implementation Specifics
This directory is part of the AIX 3270 Host Connection Program/6000 (HCON).

Related Information
Customizing HCON in Communication Concepts and Procedures discusses the options
available to you for customizing HCON color and keyboard definitions, key and color names,
and terminal definitions.

Understanding HCON Programming Examples in Communications Programming Concepts
discusses the API directories.

Understanding AUTOLOG and Understanding the Logon Assist Feature (LAF) in
Communications Programming Concepts discuss the AUTO LOG and LAF facilities.

The e789cdef command and e789kdef command create customized color and keyboard
definition tables.

5-16 AIX Files Reference

Mail /usr/spool/mqueue

Mail /usr/spool/mqueue Directory

Purpose
Contains the log file and temporary files associated with the messages in the mail queue.

Description
The /usr/spool/mqueue directory contains temporary files associated with the messages in
the mail queue and may contain the log file. For further information see the syslogd
daemon.

Temporary files have names that include the mail queue ID (MQ/O) of the message for which
the file was created:

dfMQ/O Data file

lfMQ/O Lock file

nfMQ/O Backup file

qfMQ/O Queue control file

tfMQID Temporary control file

xfMQ/O Transcript file for session.

Implementation Specifics

File

This directory is part of AIX Base Operating System (BOS) Runtime.

/usr/spool/mqueue directory Contains the log file and temporary files associated with the
messages in the mail queue.

Related Information
The sendmail command.

The syslogd daemon.

How to Examine the Message Queue Files in Communication Concepts and Procedures.

Understanding the Mail Queue in Communication Concepts and Procedures.

Chapter 5. Directories 5-17

5-18 AIX Files Reference

Index

Numbers
.3270keys file format, 2-136

creating a .3270 keys file, 2-136
3278/79 Emulation

Customization File, 2-114
emaltdefs.p File, 1-16
emdefs File, 1-17

A
a.out file, 2-7-2-38

access routines, 2-8
auxilliary header, 2-10-2-11
dbx stabstring grammar, 2-29-2-38
file header section, 2-9
line number information, 2-15
raw data sections, 2-12-2-13
relocation information, 2-13-2-15
section headers, 2-11-2-12
special data sections, 2-15-2-20
stabstring grammar, 2-29-38
string table, 2-38
symbol table, 2-20-2-26

auxiliary entry formats, 2-27-2-28
a.out file format. See a.out file
a.out.h file. See a.out file
log access attempts by unknown systems, BNU,

1-109
accounting information

acct file format, 2-5-2-6
acct.h file, 2-5
utmp.h file, 4-91-4-92

accounting system
failedlogin file format, 2-63
utmp file format, 2-63
wtmp file format, 2-63

acct file format, 2-5-2-6
acct.h file, 2-5-2-6
.Admin directory, BNU, 5-4
administrative directory, BNU, 5-4
administrative files, directory for, BNU, 5-4
AIX V2 line discipline compatibility mode, defined in

the termio.h file, 4-67-4-75
alias definitions for the sendmail command, 1-114
aliases defining, MH, 2-131
aliases file, Mail, 1-114
ar file format, 2-39-2-41
ar.h file, 2-39

archiving files
ar file format, 2-39-2-41
ar.h file, 2-39
cpio file format, 2-46-2-4 7

Asynchronous Terminal Emulation. See ATE
ATE

ate.def file format, 2-65-2-70
connections, default settings, 2-65-2-70
default file format, 2-65-2-70
dialing directory file format, 2-71-2-72

ate.def file format, 2-65-2-70
audit events, defining, using

/etc/security/audit/events file, 1-23-1-24
audit file, 1-99
audit file format, 2-42-2-43
audit.h file, 2-42
auditing system

audit bin format, 2-42
audit file format, 2-42-2-43
audit record format, 2-42-2-43
audit.h file, 2-42
defining audit events, using

/etc/security/audit/events file,
1-23-1-24

defining auditstream commands, using
/etc/security/audit/streamcmds file,
1-69-1-70

defining commands to process bin files, using
the /etc/security/audit/bincmds file, 1-5

defining files for an audit, using
/etc/security/audit/objects file, 1-52

defining the system configuration, using
/etc/security/audit/config file,
1-7-1-10

automatically poll remote systems, BNU, specify
times, 2-104-2-105

B
backup file, 1-2-1-4

fs_end header record, 1-2
fs_name header record, 1-2
fs_volume header record, 1-2

Basic Networking Utilities. See BNU
Berkeley line discipline, defined in the sgtty.h file,

4-27-4-33
bin files, defining commands that process, using

/etc/security/audit/bincomds file, 1-5-1-6
bin stanza, description of, 1-7
bincmds file, 1-5-1-6

Index X-1

BNU
audit file, 1-99
command (C.*) files, 1-100-1-102
cycling multi-speed modems, 2-111
data (D.*) files, 1-103
Devices file format, 2-73-2-79
Dialcodes file format, 2-80-2-81
Dialers file format, 2-82-2-86
errors file, 1-104
/etc/locks directory, 5-2
execute (X.*) files, 1-105-1-107
expect-send sequences, list of, 2-111
Foreign file, 1-108
Maxuuscheds file format, 2-87
Maxuuxqts file format, 2-88
Permissions file format, 2-89-2-103
Poll file format, 2-104-2-105
remote.unknown file, 1-109
spooling directory, 5-3
Systems file format, 2-106-2-113
temporary (TM.*) files, 1-110
tip command

phones file format, 2-200-2-201
remote file format, 2-202-2-205
. tiprc file format, 2-206

/usr/spool/uucp directory, 5-3
.Admin directory, 5-4

audit file, 1-99
errors file, 1-104
Foreign file, 1-108
xferstats file, 1-111

.Corrupt directory, 5-5

.Log directories, 5-6-5-7

.Old directory, 5-8

.Status directory, 5-9
SystemName directories, 5-1 O

command (C.*) files, 1-100-1-102
data (D.*) files, 1-103
execute (E.*) files, 1-105-1-107
temporary (T. *) files, 1-11 O

.Workspace directory, 5-11

.Xqtdir directory, 5-12
/usr/spool/uucppublic directory, 5-13
xferstats file, 1-111

bootparams file, NFS, 1-136
bus special file, 3-11

X-2 AIX Files Reference

c
cd special files, 3-12
classes stanza, description of, 1-8
color and attribute name mappings, HCON,

2-129-2-130
color definition file format, HCON, 2-119-2-122
color definition table, HCON

color and attribute name mappings,
2-129-2-130

default, 1-112
source for, 2-119-2-122

key name mappings, 2-127-2-128
command (C.*) files, 1-100-1-102
compacted log files, BNU, 5-8
config file, 1-7-1-10
configure BNU

define devices, 2-73-2-79
define dialcodes, 2-80-2-81
define modems and dialers, 2-82-2-86
limit instances of uusched daemon, 2-87
limit instances of uuxqt daemon, 2-88
list remote systems for communications,

2-106-2-113
log access attempts by unknown systems,

1-109
specify permissions for remote

communications, 2-89-2-103
specify when to poll remote systems,

2-104-2-105
configure the tip command

describe conntections used to contact remote
systems, 2-200-2-201

describe remote systems contacted,
2-202-2-205

provide initial variable settings, 2-206
console special files, 3-14
constants, defined in the values.h file, 4-93--4-94
control options

defined by the flock.h file, 4-8-4-9
defined in the fcntl.h file, 4-6-4-7

controlling terminal, 3-90
core dump, 2-44
core file format, 2-44-2-45
cpio file format, 2-46-2-47
customize HCON

color and attribute name mappings,
2-129-2-130

color definition file format, 2-119-2-122
function name mappings, 2-125-2-126
key name mappings, 2-127-2-128
keyboard definition file format, 2-123-2-124

customizing the MH package, MH, 1-126
cycling multi-speed modems, BNU, 2-111-2-113

D
data (D.*) files, 1-103
data to be sent to remote systems, BNU, 1-103
data transferred from remote systems, BN U, 1-11 O
data types

as defined in the types.h file
standard type definitions, 4-87-4-88
unsigned integers and addresses, 4-88

default keyboard layout for 3278/79 Emulation,
1-17

/dev directory, special files in, 3-2-3-3
/dev/3270cn special files, 3-4
/dev/error special file, 3-21
/dev/hft special file, 3-25-3-52
/dev/pty special file, 3-75-3-77
/dev/tty special file, 3-90
device drivers

error special file, 3-21
hft special file, 3-25-3-52
pty special file, 3-75-3-77
tty special file, 3-90

Devices file format, BNU remote communications
2-73-2-79

Dialcodes file format, BNU, 2-80-2-81
Dialers file format, 2-82-2-86
dialing directory file format, 2-71-2-72
dir file, 1-11
directories

BNU /etc/locks, 5-2
BNU /usr/spool/uucp, 5-3
BNU /usr/spool/uucp/.Admin, 5-4
BNU /usr/spool/uucp/.Corrupt, 5-5
BNU /usr/spool/uucp/.Log, 5-6-5-7
BNU /usr/spool/uucp/.Old, 5-8
BNU /usr/spool/uucp/.Status, 5-9
BNU /usr/spool/uucp/.SystemName, 5-10
BNU /usr/spool/uucp/.Workspace, 5-11
BNU /usr/spool/uucp/.Xqtdir, 5-12
BNU /usr/spool/uucppublic, 5-13
HCON /usr/lib/hcon, 5-14-5-16
Mail /usr/spool/mqueue, 5-17

directory
describing, using inode file, 1-42-1-45
describing, using dir file, 1-11

dirent.h file, 4-5
domain cache file format, 2-138
domain data file format, 2-140
domain local data file format, 2-144
DOMAIN name server information, TCP/IP, 2-185
domain reverse data file format, 2-14 7
dump special files, 3-17
dumpdates file, 1-15

date information for backup command, 1-15
date information for rdump command, 1-15

E
e789_ctbl file, 1-112
e789_ctbl.p file format, 2-119-2-122
e789_ktbl file, 1-113
e789_ktbl.p file format, 2-123-2-124
EM78

Customization File, 2-114
emaltdefs.p File, 1-16
emdefs File, 1-17

EM78 Customization File Format, 2-114
emaltdefs.p File, 1-16
emdefs File, 1-17
environ file, 1-18-1-19
environment

setting at login time, using profile file ·format,
2-52

setting up the user, using environment file,
1-20-1-21

environment file, 1-20
eqn command, special character definitions for the,

using eqnchar file format, 1-22
eqnchar file format, 1-22
erec.h file, 3-21
err.h file, 3-21
error logging

using the erec.h file, 3-21
using the err.h file, 3-21
using the error special file, 3-21

error special file, 3-21
errors file, 1-104
/etc/locks directory, 5-2
/etc/group file, 1-35-1-36
/etc/passwd file, 1-53-1-54
/etc/security/auditlbincmds file, 1-5-1-6
/etc/security/audit/config file, 1-7-1-1 O
/etc/security/audit/events file, 1-23-1-24
etc/security/audit/objects file, 1-52
/etc/security/audit/streamcmds file, 1-69-1-70
/etc/security/environ file, 1-18-1-19
/etc/security/group file, 1-37-1-38
/etc/security/limits file, 1-46-1-47
/etc/security/login.cfg file, 1-48-1-50
/etc/security/mkuser.default file, 1-51
/etc/security/passwd file, 1-55-1-56
/etc/security/sysck.cfs file, 1-71-1-72
/etc/security/user file, 1-91-1-94
Ethernet device handler, entn special file,

3-18-3-20
ethers file, NIS, 1-142
execute (X.*) files, 1-105-1-107
expect-send sequences, BNU, list of, 2-111
exports file, NFS, 1-137

Index X-3

F
failedlogin file format, 2-63-2-64
fcntl.h file, 4-6-4-7
fd special file, 3-22-3-24
field attribute modes for 3278/79 Emulation, 1-17
file formats, 2-2-2-4

a.out, 2-7-2-38
acct, 2-5-2-6
ar, 2-39-2-41
audit, 2-42-2-43
BNU Devices, 2-73-2-79
BNU Dialcodes, 2-80-2-81
BNU Dialers, 2-82-2-86
BNU Maxuuscheds, 2-87
BNU Maxuuxqts, 2-88
BNU Permissions, 2-89-2-103
BNU Poll, 2-104-2-105
BNU Systems, 2-106-2-113
core, 2-44-2-45
cpio, 2-46-2-4 7
EM78 Customization, 2-114-2-118
failedlogin, 2-63-2-64
HCON e789_ctbl.p, 2-119-2-122
HCON e789_ktbl.p, 2-123-2-124
HCON func_names, 2-125-2-126
HCON keynames, 2-127-2-128
HCON nls_names, 2-129-2-130
list of, 2-2-2-4
MH Alias, 2-131
nterm, 2-48-2-51
PC Simulator Startup, 2-134-2-135
profile, 2-52
sccsfile, 2-53-2-56
TCP/IP gated.conf, 2-151-2-163
TCP/IP hosts, 2-167-2-168
TCP/IP hosts.lpd, 2-170
TCP/IP inetd.conf, 2-171-2-173
TCP/IP named.boot, 2-174-2-177
TCP/IP networks, 2-180
TCP/IP re.net, 2-182-2-184
TCP/IP services, 2-188-2-189
tip phones, 2-200-2-201
tip remote, 2-202-2-205
tip . ti pre, 2-206
troff, 2-57-2-59
troff Font, 2-60-2-62
utmp, 2-63
wtmp, 2-63

file formats overview, 2-2-2-4
file mode interpretation, using mode.h file,

4-17-4-19

X-4 AIX Files Reference

file system
account attribute, 1-25
boot attribute, 1-25
centralizing characteristics, using filesystems

file, 1-25-1-27
check attribute, 1-25
containing format of a logical volume, using fs

file, 1-28-1-31
copying into storage, using backup file,

1-2-1-4
describing, using inode file, 1-42-1-45
dev attribute, 1-25
log attribute, 1-26
mount attribute, 1-25
node name attribute, 1-26
size attribute, 1-26
type attribute, 1-26
vol attribute, 1-26

file transfer, BNU
directions for the uucico daemon,

1-100-1-102
queued requests, 5-10

filesystems file, 1-25-1-27
flock.h file, 4-8-4-9
Foreign file, 1-108
fs file, 1-28-1-31
fs_end header record, 1-2
fs_name header record, 1-2
fs_volume header record, 1-2
ftpusers file format, 2-150
fullstat.h file, 4-10-4-11
fu nc names file format, 2-125-2-126
function name mappings, HCON, 2-125-2-126

G
gated.cont file format

controlling trace output, 2-151
managing autonomous system routing, 2-161
managing routing information, 2-156
selecting routing protocols, 2-152

using gated with EGP, 2-153
using gated with HELLO, 2-152
using gated with RIP, 2-152

gateways file format, 2-164
groups

setting basic attributes, using /etc/group file,
1-35-1-36

setting extended attributes, using
/etc/security/group file, 1-37-1-38

H
hardware parameters, as described in the param.h

file, 4-20
HCON

e789_ctbl file, 1-112
e789_ctbl.p file format, 2-119-2-122
e789_ktbl file, 1-113
e789_ktbl.p file format, 2-123-2-124
func_names file format, 2-125-2-126
fxconst.inc file, 4-71
fxfer.h file, 4-72-4-73
fxfer.inc file, 4-74
fxhfile.inc file, 4-74, 4-75, 4-82-4-83
g32_api.h file, 4-76-4-79
g32_keys.h file, 4-84-4-85
g32const.inc file, 4-80-4-81
g32keys.inc file, 4-86-4-87
g32types.inc file, 4-88-4-89
keynames file format, 2-127-2-128
nls_names file format, 2-129-2-130
/usr/lib/hcon directory, 5-14-5-16

header files
a.out.h, 2-7
acct.h,2-5
ar.h, 2-39
audit.h, 2-42
core.h, 2-44
dirent.h, 4-5
erec.h, 3-21
err.h, 3-21
fcntl.h, 4-6-4-7
flock. h, 4-8-4-9
fullstat.h, 4-10-4-11
HCON fxconst.inc, 4-71
HCON fxfer.h, 4-72-4-73
HCON fxfer.inc, 4-74
HCON fxhfile.inc, 4-75
HCON g32_api.h, 4-76-4-79
HCON g32_keys.h, 4-84-4-85
HCON g32const.inc, 4-80-4-81
HCON g32hfile.inc, 4-82-4-83
HCON g32keys.inc, 4-86-4-87
HCON g32types.inc, 4-88-4-89
hft.h, 3-25-3-52
limits.h, 4-12-4-14
list of, 4-2-4-4
luxsna.h, 4-90-4-115
math.h, 4-15-4-16
mode.h, 4-17-4-19
param.h, 4-20
poll.h, 4-21-4-22
sem.h, 4-23-4-26

sgtty.h, 4-27-4-33
sockets in.h, 4-116-4-117
sockets nameser.h, 4-118-4-120
sockets netdb.h, 4-121-4-123
sockets re so Iv. h, 4-124-4-125
sockets socket. h, 4-126-4-1 27
sockets socketvar.h, 4-128-4-131
sockets un.h, 4-132
srcobj.h, 4-34-4-35
stat.h, 4-36-4-38
statfs.h, 4-39-4-40
termio.h, 4-41-4-49
termios.h, 4-50-4-60
types.h, 4-61-4-62
unistd.h, 4-63-4-64
utmp.h, 4-65-4-66
values.h, 4-67-4-68
vmount.h, 4-69-4-70
x25sdefs.h, 4-133-4-154

header files overview, 4-2-4-4
hft special file, 3-25-3-52
H FT subsystem

general write operations, 3-45-3-48
hft special file, 3-25-3-52
KSR write operations, 3-49-3-50
MOM write operations, 3-50-3-52
query ioctl operations, 3-26-3-35
read operations, 3-42-3-45
special ioctl operations, 3-36-3-42

hft.h file, 3-25-3-52
hiaO special file, 3-53-3-56
high function terminal

defining the interface, using the hft.h file,
3-25-3-52

general write operations, 3-45-3-48
using the hft.h file structures, 3-45

hft special file, 3-25-3-52
hft.h, 3-26, 3-36, 3-42, 3-45, 3-49, 3-50
ioctl operations

query,3-26-3-35
special, 3-36-3-42

KSR write operations, 3-49-3-50
using the hft.h file structures, 3-49

MOM write operations, 3-50-3-52
using the hft.h file structures, 3-50

read operations, 3-42-3-45
using the hft.h file structures, 3-42

hold internal files for remote communications, BNU,
5-11

Host Adapter Interface (HIA), hiaO special file,
3-53-3-56

hosts.equiv file format, 2-169
hosts.lpd file format, 2-170

Index X-5

indexed-archive file format, as described by the ar.h
file, 2-39

Initialize daemons each system IPL, TCP/IP, 1-152
inittab file, 1-39-1-41
inode file, 1-42-1-45
instructions for remote commands, files of, BNU,

1-105-1-107
Internet protocols used on local host, TCP/IP,

2-181
ioctl operations

defining terminal file structures for
using the sgtty.h file, 4-27-4-33
using the termio.h file, 4-67-4-75

HFT, 3-26
query,3-26-3-35
special, 3-36-3-42

ioctl subroutines, defining terminal file structures
for, modem control operations, 4-85

K
key name mappings, HCON, 2-127-2-128
keyboard definition file format, HCON,

2-123-2-124
keyboard definition table, HCON

default, 1-113
source for, 2-123-2-124

function name mappings, 2-125-2-126
keynames file format,· 2-127-2-128
keys, scan-codes for, list of, 1-62-1-63
kmem special files, 3-65

L
limit instances of uusched daemon, BNU, 2-87
limit instances of uuxqt daemon, BNU, 2-88
limits file, 1-46-1-47
limits.h file, 4-12-4-14
line disciplines

AIX V2 compatibility mode, as defined in the
termio.h file, 4-67-4-75

Berkeley, as defined in the sgtty.h file,
4-27-4-33

list modems for remote communications, BNU,
2-82-2-86

list phone numbers used to establish remote
connections, ATE, 2-71-2-72

list remote systems for communications, BNU,
2-106-2-113

list the hosts and community names that are to
receive traps, SNMP, 1-150

X-6 AIX Files Reference

local loopback information for named, TCP/IP,
2-144

lock files, devices and remote systems, 5-2
.Log directory, BNU, 5-6-5-7
log files, BNU

access attempts by unknown systems, 1-108
compacted, 5-8
directory of, 5-6-5-7

logical volume, containing format of a file system,
using fs file, 1-28-1-31

login.cfg file, 1-48-1-50
Ip special file, 3-57-3-60
luxsna.h file, 4-90-4-115

allo_str structure, 4-90-4-93
alloc_listen structure, 4-93
attr_str structure, 4-94-4-95
confirm_str structure, 4-95
constants, 4-112-4-114
cp_str structure, 4-95-4-97
deal_str structure, 4-97-4-98
erro_str structure, 4-98
ext_io_str structure, 4-99-4-104
flush_str structure, 4-104-4-105
fmh_str structure, 4-105
get_parms structure, 4-106
gstat_str structure, 4-106-4-108
pip_str structure, 4-108
prep_str structure, 4-108-4-109
read_ out structure, 4-1 09-4-11 0
stat_str structure, 4-110-4-111
write_ out structure, 4-111-4-112

lvdd special files, 3-61

M
Mail files

/usr/lib/aliases, 1-114
/usr/lib/sendmail.cf, 1-115
/usr/spool/mqueue directory, 5-17

.maildelivery file, 1-122
math constants, defined in the math.h file,

4-15-4-16
math.h file, 4-15-4-16
Maxuuscheds file format, 2-87
Maxuuxqts file format, 2-88
mem special files, 3-65
MH

maildelivery file, 1-122
MH alias file format, 2-131
mhl.format file, 1-131
.mh_profile file, 1-126
mtstailor file, 1-134

MH alias file format, 2-131
mhl.format file, 1-131
.mh_profile file, 1-126

mksnmppw command, sample input file, 1-147
mkuser.default file, 1-51
mode.h file, 4-17-4-19
modems, BNU

cycling multi-speed modems, 2-111-2-113
expect-send sequences, list of, 2-111

MPQP, mpqn special file, 3-68-3-70
mpqpn special file, 3-68-3-70
mqueue directory, 5-17
mtstailor file, 1-134
multiprotocol device handler, mpqpn special file,

3-68-3-70

N
name resolution

domain cache file format, 2-138
domain data file format, 2-140
domain local data file format, 2-144
domain reverse data file format, 2-14 7

neqn command, special character definitions for
the, using eqnchar file format, 1-22

netmasks file, NIS, 1-144
.netrc file format, 2-178
networks file, NFS, 1-139
NFS files

bootparams, 1-136
exports, 1-137
networks, 1-139
rpc, 1-140
xtab, 1-141

NIS files
ethers, 1-142
netgroup, 1-143
netmasks, 1-144
publickey, 1-145
updaters, 1-146

NIS netgroup file, 1-143
NIS updaters file, 1-146
nls_names file format, 2-129-2-130
nroff command, terminal driving tables for the,

using nterm file format, 2-48-2-51
nterm file format, 2-48-2-51
null special files, 3-71
nvram special file, 3-72-3-74

0
objects file, 1-52
.Old directory, BNU, 5-8
output file for assembler and link editor, a.out,

2-7-2-38
output format control for the mhl command, MH,

1-131

p
param.h file, 4-20
parameters, hardware, as described in the param.h

file, 4-20
password, setting attributes, using

/etc/security/passwd file, 1-55-1-56
PC Simulator

events, decoding of, 1-61
identifying problems with an application

program, using PC Simulator ttylog file,
1-57-1-63

searching for the startup options for the, using
PC Simulator startup file format,
2-134-2-135

PC Simulator startup file format, 2-134-2-135
PC Simulator ttylog file, 1-57-1-63
Permissions file format, 2-89-2-103

entries
combined LOGNAME and MACHINE, 2-91

example, 2-101
format of, 2-90-2-91
LOGNAME entry, 2-93-2-94
MACHINE entry, 2-94-2-95

examples, 2-100-2-102
option/value pairs

CALLBACK option, 2-96
COMMANDS option, 2-96-2-97
format of, 2-91-2-100
NOREAD option, 2-97
NOWRITE option, 2-97
READ option, 2-97-2-98
REQUEST option, 2-98
SENDFILES option, 2-99
VALIDATE option, 2-99-2-100
WRITE option, 2-97-2-98

phone number abbreviations, BNU, 2-80-2-81
phones file format, 2-200-2-201
plot file, 1-64
Poll file format, 2-104-2-105
poll.h file, 4-21-4-22
POSIX standard

computer environment implementation, as
defined in the unistd.h file, 4-89-4-90

implementation limits, defined in the limits.h
file, 4-12-4-14

primitive system data types, defined in the types.h
file, 4-87-4-88

printer, configuring a queueing system for, using
qconfig file, 1-66

process, controlling the initialization, using inittab
file, 1-39-1-41

processes, setting resource limits, using
, /etc/security/limits file, 1-46-1-47

profile file format, 2-52
progpcsimulator, 1-57
protocols file format, 2-181

entries in, 2-181

Index X-7

provide initial variable settings for the tip command
BNU, 2-206 . '

provide sample input to the mksnmppw command
SNMP, 1-147 '

pseudo terminal device driver, 3-75-3-77
pty special file, 3-75-3-77
publickey file, NIS, 1-145

Q
qconfig file, 1-66
queued requests for file transfers, storage BNU

5-10 ' '
queued requests for remote command execution

storage, BNU, 5-1 O '

R
rc.tcpip file, 1-152
received mail, actions on, MH, 1-122
record contacts from unknown systems, BNU,

1-108
record uucico daemon errors, BNU, 1-104
remote command executions, BNU, queued

requests, 5-1 O
remote file format, 2-202-2-205
remote file transfers, status of, xferstats file, 1-111
remote systems

BNU, list of, 2-106-2-113
prevent multiple calls to, 5-2

remote.unknown shell script. See remote.unknown
file

resolv.conf file format, 2-185
retry time, before calling a remote system BNU

5-9 ' '
rhdisk special files, 3-78
.rhosts file format, 2-187
rmt special files, 3-81
root name server for a domain, TCP/IP, 2-138
routed daemon, gateways file format 2-164
rpc file, NFS, 1-140 '

X-8 AIX Files Reference

s
sccsfile file format, 2-53-2-56
screen colors for 3278/79 Emulation, 1-17
scsi special file, 3-85
security, BNU

access attempts by unknown systems
log of, 1-108
recording, 1-109 .

specify permissions for remote
communications, 2-89-2-103

sem.h file, 4-23-4-26
semaphore operations, array structure defined in

the sem.h file, 4-23-4-26
sendmail configuration data, 1-115
sendmail.cf file, Mail, 1-115
services file format, entries in, 2-188
set default gateway, re.net file, 2-183
set host name, re.net file, 2-183
set static route, re.net file, 2-183
sgtty.h file, 4-27-4-33
smpl.pwinput file, 1-147
SNA Services/6000

error codes, 4-112-4-115
requestcodes,4-115

SNMP, Agent Applications
smpl.pwinput file, 1-147
snmptrap.dest file, 1-150

snmptrap.dest file, 1-150
sockets files

in.h, 4-116-4-117
nameser.h, 4-118-4-120
netdb.h, 4-121-4-123
resolv.h, 4-124-4-125
socketvar.h, 4-128-4-131
un.h, 4-132

sockets header files, socket.h, 4-126-4-127
sockets in.h file, 4-116-4-117
sockets nameser.h file, 4-118-4-120
sockets netdb.h file, 4-121-4-123
sockets re so Iv. h file, 4-124-4-125
sockets socket.h file, 4-126-4-127
sockets socketvar.h file, 4-128-4-131
sockets un.h file, 4-132
Source Code Control System (SCCS), sccsfile file

format, 2-53-2-56

special files, 3-2-3-3
/dev/3270cn, 3-4
bus, 3-11
cd,3-12
console, 3-14
dump, 3-17
entn, 3-18-3-20
error, 3-21
fd, 3-22-3-24
hft,3-25-3-52
hiaO, 3-53-3-56
kmem, 3-65
list of, 3-2-3-3
Ip, 3-57-3-60
lvdd, 3-61
mem, 3-65
mpqn, 3-68-3-70
null, 3-71
nvram, 3-72-3-7 4
overview, 3-2-3-3
pty, 3-75-3-77
rhdisk, 3-78
rmt, 3-81
scsi, 3-85
tokn, 3-86-3-88
trace, 3-89
tty, 3-90

specify automatic login information for ftp and
rexec, TCP/IP, 2-178

specify local users that remote FTP clients cannot
use, TCP/IP, 2-150

specify permissions for remote communications,
BNU, 2-89-2-103

specify remote systems that can execute
commands on the local system, TCP/IP,
2-169

specify remote users that can use local user
account, TCP/IP, 2-187

specify routing information to routed, TCP/IP, 2-164
specify when to poll remote systems, BNU,

2-104-2-105
spooling directory, BNU, 5-3
srcobj.h file, 4-34-4-35
standard resource record format, gateway ptr

record, 2-196
standards

ANSI C, implementation limits, defined in the
limits.h file, 4-12-4-14

IEEE P1003 POSIX
computer environment implementation, as

defined in the unistd.h file,
4-89-4-90

implementation limits, defined in the
limits.h file, 4-12-4-14

stat.h file, 4-36-4-38
statfs.h file, 4-39-4-40
statistics, statfs subroutine returning, using statfs.h

file, 4-65-4-66

statistics about status of file transfer requests,
BNU, 1-111

statistics subroutines, structure of returned data,
defined in the statfs.h file, 4-65-4-66

.Status directory, BNU, 5-9
status of calls to remote systems, BNU, 5-9
status subroutines, structure as defined in the stat.h

file, 4-62-4-64
store combined log files, BNU, 5-8
store debug messages from the uucico daemon,

BNU, 1-99
store files awaiting transfer, BNU, 5-3
store files that cannot be transferred, BNU, 5-5
store lock files that prevent multiple uses of

communication devices, 5-2
store log and administrative files, BNU, 5-3
store name resolution information for named,

TCP/IP, 2-140
store reverse name resolution information for

named, TCP/IP, 2-147
stream stanza, description of, 1-8
streamcmds file, 1-69-1-70
sysck.cfs file, 1-71-1-72
SystemName directories, BNU, 5-10
Systems file format, 2-106-2-113

entries, format of, 2-106-2-107

T
TCP/IP

BNU with
entries in the Devices file, 2-77
entries in the Dialers file, 2-84
entries in the Systems file, 2-111

.3270 keys file format, 2-136

.netrc file format, 2-178

.rhosts file format, 2-187
Domain cache file format, 2-138
Domain data file format, 2-140
Domain local data file format, 2-144
Domain reverse data file format, 2-147
ftpusers file format, 2-150
gated.conf file format, 2-151-2-163
gateways file format, 2-164
hosts file format, 2-167-2-168
hosts.equiv file format, 2-169
hosts.lpd file format, 2-170
inetd.con file formatf, 2-171-2-173
named.boot file format, 2-174-2-177
networks file format, 2-180
protocols file format, 2-181
re.net file format, 2-182-2-184
rc.tcpip file format, 1-152
resolv.conf file format, 2-185
services, 2-188-2-189

Index X-9

TCP/IP DOMAIN Cache file format, standard
resource record format, 2-190-2-199

TCP/IP DOMAIN Data file format, standard
resource record format, 2-190-2-199

TCP/IP DOMAIN Local Data file format, standard
resource record format, 2-190-2-199

TCP/IP DOMAIN Reverse Data file format,
standard resource record format,
2-190-2-199

TCP/IP gated.cont file format, 2-151-2-163
TCP/IP hosts file format, 2-167-2-168
TCP/IP inetd.conf file format, 2-171-2-173

service requests, 2-171-2-172
TCP/IP networks file format, 2-180
TCP/IP re.net file format, 2-182-2-184
TCP/IP services file format, 2-188-2-189
TCP/IP standard resource record format,

2-190-2-199
address record, 2-193
domain name pointer record, 2-196
host information record, 2-194
in-addr-arpa record, 2-195
mail exchanger record, 2-198-2-199
mail group member record, 2-198
mail rename name record, 2-197
mailbox information record, 2-197-2-198
mailbox record, 2-197
name server record, 2-193
start of authority record, 2-192
well-known services record, 2-194-2-195

temporary (TM.*) files, 1-11 o
temporary uuxqt daemon work files, directory for,

BNU, 5-12
terminal interface

AIX V2 compatibility mode, using termio.h file,
4-67-4-75

Berkeley line discipline, using sgtty.h file,
4-27-4-33

controlling, tty special file, 3-90
defining

modem control operations, 4-85
using sgtty.h file, 4-27-4-33
using termio.h file, 4-67-4-75

HFT
general write operations, 3-45-3-48
KSR write operations, 3-49-3-50
MOM write operations, 3-50-3-52
query ioctl operations, 3-26-3-35
read operations, 3-42-3-45
special ioctl operations, 3-36-3-42

pseudo terminal, 3-75-3-77
termio.h file, 4-41-4-49

modem control operations, 4-59
termios.h file, 4-50---4-60

modem control operations, 4-59

X-10 AIX Files Reference

tip command
connections used to contact remote systems,

BNU, 2-200-2-201
phones file format, 2-200-2-201
remote file format, 2-202-2-205
remote systems contacted by, BNU,

2-202-2-205
.tiprc file format, 2-206

.tiprc file format, 2-206
token-ring device handler, tokn special file,

3-86-3-88
tokn special file, 3-86-3-88
trace special files, 3-89
troff command, description files for the, using troff

font file format, 2-60-2-62
troff file format, 2-57-2-59
troff font file format, 2-60-2-62
trusted computing base, setting file definitions,

using /etc/security/sysck.cfg file,
1-71-1-72

tty special file, 3-90
TTY subsystem

AIX V2 compatibility mode, as defined in the
termio.h file, 4-67-4-75

Berkeley, as defined in the sgtty.h file,
4-27-4-33

controlling terminal, 3-90
line disciplines

AIX V2 compatibility mode, as defined in
the termio.h file, 4-67-4-75

Berkeley, as defined in the sgtty.h file,
4-27-4-33

tty special file, 3-90
ttylog file

format of, 1-59-1-60
generating a, 1-62-1-63
TRACE option, use in, 1-58-1-62

types.h file, 4-63-4-64

u
unistd.h file, 4-65-4-66
UNIX-to-UNIX Copy Program (UUCP). See BNU
user

setting basic attributes, using /etc/passwd file,
1-53-1-54

setting extended attributes, using
/etc/security/user file, 1-91-1-94

setting log in and authentication attributes,
using /etc/security/login.cfg file,
1-48-1-50

setting login in and authentication attributes,
using /etc/security/login.cfg file,
1-48-1-50

setting password attributes, using
/etc/security/passwd file, 1-55-1-56

setting process resource limits, using
/etc/security/limits file, 1-46-1-47

setting the environment at login time, using
profile file format, 2-52

user file, 1-91-1-94
user information, utmp.h file, 4-91-4-92
user keyboard mapping and colors for TELNET,

TCP/IP, 2-136
users

setting default attributes, using
/etc/security/mkusr.default file, 1-51

setting environment attributes, using
/etc/security/environ file, 1-18-1-19

users stanza, description of, 1-8
/usr/lib/aliases file, Mail, 1-114
/usr/lib/sendmail.cf file, Mail, 1-115
/usr/spool/mqueue directory, 5-17
/usr/spool/uucp directory, 5-3

.Admin directory, 5-4
audit file, 1-99
errors file, 1-104
Foreign file, 1-108
xferstats file, 1-111

.Corrupt directory, 5-5

.Log directories, 5-6-5-7

.Old directory, 5-8

.Status directory, 5-9
System Name directories, 5-1 O

command (C. *) files, 1-100-1-102
data (D.*) files, 1-103
execute files, 1-105-1-107
temporary (T. *) files, 1-110

.Workspace directory, 5-11

.Xqtdir directory, 5-12
utmp file format, 2-63-2-64
utmp.h file, 4-65-4-66
uucico daemon

debug messages from, 1-99
file transfer directions, files of, 1-100-1-102
limiting instances of, 2-87
log files, 5-6-5-7
record errors from, 1-104

UUCP. See BNU
uucp command, log files, 5-6-5-7
uucppublic directory, 5-13
uusched daemon, limiting instances of, 2-87
uux command, log files, 5-6-5-7
uuxqt daemon

limiting instances of, 2-88
log files, 5-6-5-7
temporary work files, where stored, 5-12

v
values.h file, 4-67-4-68
VFS. See virtual file systems
vfs file, 1-95-1-96
vgrind command, language definition database for

the, using vgrindefs file format,
1-97-1-98

vgrindefs file format, 1-97-1-98
virtual file system, structure, as defined by the

vmount.h file, 4-95-4-96
virtual file systems, describing, using vfs file,

1-95-1-96
vmount.h file, 4-69-4-70

w
.Workspace directory, 5-11
wtmp file format, 2-63-2-64

x,
X.25 cb_call_struct structure, 4-133-4-134
X.25 cb_circuit_info_struct structure,

4-134-4-135
X.25 cb clear struct structure, 4-136-4-137
X.25 cb-data -struct structure, 4-137
X.25 cb - dev info struct structure, 4-138
X.25 cb -fac struCt structure, 4-139-4-143
X.25 cb-int data struct structure, 4-144
X.25 cb-lin -stats-struct structure, 4-145
X.25 cb-link nam-e struct structure, 4-144
X.25 cb:=msg_struc-structure, 4-151-4-152
X.25 cb_pvc_alloc_struct structure, 4-152-4-153
X.25 cb res struct structure, 4-153
X.25 ctr=array_struct structure, 4-153-4-154
x25_query_data structure for X.25, 4-145
x25 stats structure for X.25, 4-145-4-151
x25sdefs.h file, 4-133-4-154
xferstats file, 1-111
.Xqtdir directory, BNU, 5-12
xtab file, NFS, 1-141

Index X-11

Reader's Comment Form

AIX Files Reference for IBM RISC System/6000
SC23-2200-00

Please use this form only to identify publication errors or to request changes in
publications. Your comments assist us in improving our publications. Direct any requests for
additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may
use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

0 If your comment does not need a reply (for example, pointing out a typing error), check this
box and do not include your name and address below. If your comment is applicable, we
will include it in the next revision of the manual.

0 If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved remarketer to request
additional publications.

Please print

Date-----

Your Name---
Company Name----------------------------~---------

Mailing Address ---------------------------------------

Area Code

No postage necessary if mailed in the U.S.A

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Ill II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

-1---
1 PIO:I PIO:I
I
I
I
I
b c
::i
C> c
0

<
"O

;f ...
0

'S
u

-~---
ede1 pue p10:1 a1deis JON oa aseetd adei pue p10:1

---------- ----- ---- - ---- - - ------------ ·-
@ IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2200-00

I

SC23-2200-00

