

First Edition (March 1990)

This edition of the AIX Communications Programming Concepts for IBM RISC System/6000
applies to Version Number 3 of the IBM AIX Base Operating System licensed program, AIX
SNA Services/6000, AIX 3278/79 Emulation/6000, and AIX Network Management/6000, and
to all subsequent releases of these products until otherwise indicated in new releases or
technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS MANUAL 11AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code
examples, whether individually or as one or more groups, will meet your requirements or that
the publication or the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country. Any
reference to an IBM licensed program in this publication is not intended to state or imply that
you can use only IBM's licensed program. You can use any functionally equivalent program
instead.

Requests for copies of this publication and for technical information about IBM products
should be made to your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been
removed, address comments to IBM Corporation, Department 997, 11400 Burnet Road,
Austin, Texas 78758-3493. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

© Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

© Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.

The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. We acknowledge
the following institutions for their role in its development: the Electrical Engineering and
Computer Sciences Department at the Berkeley Campus.

Portion of the code and documentation described in this book were derived from code and
documentation developed under the auspices of the Regents of the University of California
and have been acquired and modified under the provisions that the following copyright
notice and permission notice appear:

© Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this
notice is preserved and that due credit is given to the University of California at
Berkeley. The name of the University may not be used to endorse or promote products
derived from this software without specific prior written permission. This software is
provided 11as is" without express or implied warranty.

This software is derived in part from the ISO Development Environment (ISODE). IBM
acknowledges source author Marshall Rose and the following institutions for their role in its
development: The Northrup Corporation and The Wollongong Group.

© Copyright Apollo Computer, Inc., 1987. All rights reserved.

© Copyright TITN, Inc., 1984, 1989. All rights reserved.

IBM is a registered trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this book:

AIX is a trademark of International Business Machines Corporation.

AIXwindows is a trademark of International Business Machines Corporation.

Apollo is a trademark of Apollo Computer, Inc.

IBM is a registered trademark of International Business Machines Corporation.

NCK is a trademark of Apollo Computer, Inc.

NCS is a trademark of Apollo Computer, Inc.

Network Computing Kernel is a trademark of Apollo Computer, Inc.

Network Computing System is a trademark of Apollo Computer, Inc.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

RISC System/6000 is a trademark of International Business Machines Corporation.

SNA 3270 is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

Trademarks V

Vi Communications Programming Concepts

About This Book

This book contains conceptual and procedural information about various communications
programming tools.

Who Should Use This Book
This book is intended for programmers who know the C language and have some
knowledge of communications applications and who want to create and implement
communications programs.

How to Use This Book
The chapters of t~is book contain concepts, procedures and examples for programs for
communications on systems and networks. The concept sections are divided into overviews
and subsequent information. The procedures and examples follow the conceptual
information.

Overview of Contents
This book contains chapters on the following topics:

• The Generic Data Link Control (GDLC) is a generic interface definition that allows both
application and kernel users to have a common set of commands to control DLC device
managers within the AIX Version 3 system. The GDLC interface specifies requirements
for entry point definitions, functions provided, and data structures for all DLC device
managers. This section contains information on GDLC criteria, implementing GDLC
interfaces, installing data link controls, solving DLC problems, and programming for DLC.

• The external Data Representation (XOR) is a standard for the description and encoding
of data. XOR uses a language to describe data formats, but the language is used only for
describing data and is not a programming language. This section contains information on
XOR criteria, implementing XOR, installing XOR, solving XOR problems, and
programming for XOR.

• The AIX 3270 Host Connection Program/6000 Licensed Program (HCON) application
programming interface (API) allows AIX users to develop applications programs that
communicate with a host system. This chapter/section contains information on HCON
data structures, the file transfer programming interface and the HCON application
program interface. Also included is information on how to install the HCON API on a host
system, how to incorporate automatic logon in your HCON applications, and error and
status information for program troubleshooting.

• The Network Computing System (NCS) enables the distribution of processing tasks
across resources in a network or internet by maintaining databases that control the
information about the resources. NCS consists of three components: the Remote
Procedure Call runtime library, the Location Broker, and the Network Interface Definition
Language compiler. This chapter provides detailed information on the working of NCS and
its components. In addition, it provides brief introductions to the various library routines
used in NCS.

About This Book Vii

• The AIX Network ManagemenV6000 Licensed Program (xgmon) is a network
management program for monitoring TCP/IP networks. It assists in monitoring the status
of all the machines on a-network by communicating with SNMP agents and receiving
SNMP-based traps. This chapter provides detailed information on the xgmon
programming utility, which enables you to extend the xgmon program, as well as
information on the SNMP API Subroutine Library, which allows you to create SNMP
manager applications. Also included is information on the Simple Network Management
Protocol (SNMP), the SNMP daemon, and the SNMP Command Line Manager.

• The Remote Procedure Call (RPC) is a protocol that provides the high-level
communications paradigm used in the operating system. RPC implements a logical
client-to-server communications system designed specifically for the support of network
applications. This section contains information on the messages, authentication,
language, and protocol compiler for RPC.

• Systems Network Architecture (SNA) is a specification that formally defines the functional
responsibilities for components of a data communications system and specifies how those
components must interact. This chapter contains information to help you to set up and
customize SNA for your system. It includes information on SNA programming concepts.

• The Sockets facility is a Berkeley Software Distribution (BSD) programming interface that
provides applications programs with interprocess and network 1/0 communication
capabilities. The Sockets mechanism consists of socket subroutines which enable local
or remote application programs to set up virtual connections and exchange data. In AIX
Version 3.1, the Sockets facility serves as the application program interface for TCP/IP.
This section/chapter provides information on the Sockets facility and its components. It
contains information about socket creation, connection, and use in application programs.
In addition, this section/chapter provides brief descriptions of socket data structures, the
socket Kernel Service Subroutines, and Network Library Subroutines.

• The X.25 is an international standard protocol that allows intercommunication between
systems. It is particularly useful for communicating with people using different computer
systems and for applications that access public data bases.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following book contains information about or related to communications:

• AIX Calls and Subroutines Reference for IBM RISC System/6000, Order Number
SC23-2198.

• AIX Communications Concepts and Procedures for IBM RISC System/6000, Order
Number SC23-2203.

• AIX Files Reference for IBM RISC System/6000, Order Number SC23-2200.

Viii Communications Programming Concepts

• AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

• AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2206.

About This Book ix

X Communications Programming Concepts

Table of Contents

Chapter 1. Generic Data Link Control Environment . • . • • . • • . . • . . • . . • • . • . 1-1
Implementing the GDLC Interface . 1-3
Installing Data Link Controls . 1-4
List of the DLC Interface Entry Points . 1-4
Understanding DLC Interface ioctl Entry Point Operations 1-5
Using Special Kernel Services . 1-7
Understanding DLC Problem Determination . 1-8
Data Link Control (DLC) Reference Information . 1-14

Token-Ring Data Link Control . 1-16
DLCTOKEN Device Manager Functions .. 1-17
Protocol Support... 1-18
Name-Discovery Service . 1-19
Direct Network Services . 1-20
Connection Contention . 1-20
Link Session Initiation . 1-20
Link Session Termination . 1-21
DLCTOKEN Programming Interfaces . 1-21

IEEE 802.3 Ethernet Data Link Control . 1-26
DLC8023 Device Manager Functions................................. 1-27
Protocol Support ~ 1-28
Name Discovery Services . 1-29
Direct Network Services . 1-30
Connection Contention . 1-30
Link Session Initiation . 1-30
Link Session Termination . 1-30
DLC8023 Programming Interfaces . 1-31

Standard Ethernet Data Link Control . 1-35
DLCETHER Device Manager Functions............................... 1-36
Protocol Support . 1-37
Name-Discovery Services . 1-38
Direct Network Services . 1-39
Connection Contention . 1-39
Link Session Initiation . 1-39
Link Session Termination . 1-40
DLCETHER Programming Interfaces . 1-40

Synchronous Data Link Control . 1-44
DLCSDLC Device Manager Functions . 1-44
DLCSDLC Protocol Support . 1-44
DLCSDLC Programming Interfaces . 1-47

Qualified Logical Link Control . 1-52
DLCQLLC Device Manager Functions . 1-52
DLCQLLC Programming Interfaces . 1-53

Contents Xi

Chapter 2. Lists of DBM, NDBM, and NIS Subroutines • . . • • 2-1
Alphabetical List of DBM Subroutines . 2-1
Alphabetical List of NDBM Subroutines . 2-2
Alphabetical List of NIS Subroutines . 2-3

Chapter 3. eXternal Data Representation (XOR) • . • . . • . . . • . • • . • • . • . • 3-1
A Canonical Standard . 3-1
Basic Block Size . 3-2
Planned Enhancements . 3-2

Understanding the XDR Subroutine Format . 3-3
Using the XDR Library . 3-4

XDR with RPC . 3-4
XDR Operation Directions . 3-4

Understanding the XDR Language Specification . 3-5
Lexical Notes . 3-5
Declarations, Enumerations, Structures, and Unions . 3-5
Syntax Notes . 3-7

Understanding XDR Data Types . 3-8
Integer Data Types . 3-8
Enumeration Data Type . 3-9
Boolean Data Type . 3-9
Floating-Point Data Type . 3-9
Opaque Data Type . 3-11
Array Data Type . 3-12
Strings . 3-13
Structures . 3-13
Discriminated Unions . 3-14
Voids . 3-15
Constants . 3-15
Type Definitions . 3-15
Optional Data . 3-16

Understanding XDR Library Filter Primitives . 3-17
Using XDR Basic Filter Primitives.................................... 3-17
Using XDR Constructed Filter Primitives . 3-18

Understanding XDR Non-Filter Primitives . 3-20
Creating and Using XDR Data Streams . 3-20
Manipulating an XDR Data Stream . 3-21
Implementing an XDR Data Stream . 3-21
Destroying an XDR Data Stream . 3-22

Alphabetical List of XDR Subroutines and Macros . 3-24
Functional List of XDR Subroutines and Macros................. 3-26

Using the XDR Library Filter Primitives . 3-26
Using the XDR Library Non-Filter Primitives . 3-27

List of XDR Examples . 3-28
Example Passing Linked Lists Using XDR . 3-29
Example Showing the Justification for Using XDR . 3-32
Example Showing the Use of Pointers in XDR . 3-35
Example Using an XDR . 3-36
Example Using an XDR Array . 3-37
Example Using an XDR Data Description . 3-40
Example Using an XDR Discriminated Union . 3-42

Xii Communications Programming Concepts

Chapter 4. 3270 Host Connection Program/6000 (HCON)................. 4-1
Understanding the File Transfer Program Interface . 4-4
Understanding the HCON Application Program Interface (API) 4-8
Understanding the AIX Interface for HCON API . 4-11
Understanding the Host Interface for HCON API . 4-15

Host Session Control . 4-15
Host Message Interface . 4-16
Host Interface Errors . 4-16

Understanding Explicit and Implicit Logon . 4-17
Understanding AUTOLOG . 4-19
Understanding the Logon Assist Feature (LAF) . 4-20

Understanding the Automatic Logon Commands . 4-25
Understanding HCON Programming Examples . 4-25

File Transfer Programming Examples . 4-25
API Programming Examples . 4-26
Running Example Programs in TSO . 4-26
AUTOLOG and LAF Program Examples . 4-26
Compiling Programs . 4-27

File Transfer Program Interface Error Codes . 4-28
HCON AIX API Error Codes . 4-42

Implementation Specifics . 4-49
HCON Host API Errors . 4-50

Host API System Errors-VM/CMS . 4-51
Host API System Errors - MVS/TSO . 4-52

cname Example VM/CMS File Transfer Program . 4-53
fname Example FORTRAN File Transfer Program . 4-55
pname Example Pascal File Transfer Program . 4-56
g32_sampl Example Program . 4-58
g32_test Example Program . 4-61
g32_3270 Example Program . 4-62
How To Install the HCON MVS/TSO Host API . 4-64
How To Install the HCON VM/CMS Host API . 4-66
How To Compile a File Transfer Program . 4-68
How To Compile an AIX API Program . 4-69
How To Compile a Host HCON API Program . 4-70
How To Use a Logon Assist Feature Script . 4-71

How to Use the Sample LAF Scripts . 4-71
Testing a LAF Script . 4-72

How To Use an AUTOLOG Profile . 4-7 4
Using an AUTOLOG Profile . 4-74
Testing the AUTOLOG Profile . 4-76
Linking to AUTOLOG . 4-77

Contents Xiii

Chapter 5. Network Computing System (NCS).......................... 5-1
Understanding NCS . 5-2

The Remote Procedure Call (RPC) Runtime Library (NCS) 5-13
Routines . 5-13
Client Routines . 5-14
Server Routines . 5-14
Conversion Routines . 5-15

Interface Definitions and the NIDL Compiler (NCS) . 5-16
The Banking Example... 5-17
The binop Example... 5-18
Stub Functionality . 5-20
Marshalling and Conversion . 5-20
Handles and Binding . 5-21
Client Switches . 5-24
Writing Programs That Use the Network Computing System 5-24
Managing Handles and Bindings . 5-34
Writing the Client Program . 5-43
Writing the Server Program . 5-46
Writing the Manager Procedures . 5-48
Building an Application . 5-49
Using C Syntax with NIDL . 5-50
Using Pascal Syntax with NIDL . 5-62
Using NCS with FORTRAN Programs . 5-73

The Location Broker (NCS) . 5-75
Understanding the Location Broker . 5-75

NCS Daemons and Utilities . 5-80
rpc_$ Library Routines (NCS) . 5-81

Constants . 5-81
External Variable . 5-81
Data Types . 5-81
rpc_$ Status Codes . 5-83
List of rpc_$ Library Routines . 5-85

pfm_$ Library Routines (NCS) . 5-86
Cleanup Handlers . 5-86
Constant . 5-86
Data Types . 5-86
pfm_$ Status Codes . 5-87
List of pfm_$ Library Routines . 5-88

lb_$ Library Routines (NCS) . 5-89
Constants . 5-89
External Variable . 5-89
Data Types . 5-90
lb_$ Status Codes . 5-92
List of lb_$ Library Routines . 5-93

uuid_$ Library Routines (NCS) . 5-94
External Variables . 5-94
Data Types . 5-94
List of uuid_$ Library Routines . 5-96

Glossary . 5-97

XiV Communications Programming Concepts

Chapter 6. Network Management/6000 (xgmon) . . • • • • 6-1
Understanding the Simple Network Management Protocol (SNMP) 6-3

Understanding the Management Information Base (MIB) 6-3
Understanding Terminology Related to MIB Variables . 6-6
Using the Management Information Base (MIB) Database 6-6
Understanding How a Monitor Functions . 6-8
Understanding How an Agent Functions . 6-8
Working with Management Information Base (MIB) Variables 6-9
Using the SNMP API Subroutine Library . 6-1 O
Alphabetic List of API Subroutines . 6-12

Understanding the SNMP Daemon . 6-13
Configuring the SNMP Daemon . 6-13
Understanding SNMP Daemon Processing . 6-14
Understanding SNMP Daemon Support for the EGP Family of MIB Variables . 6-16
Understanding SNMP Daemon Support for SET Request Processing 6-17
Understanding SNMP Daemon RFC Conformance . 6-20
Understanding SNMP Daemon Implementation Restrictions 6-21

Understanding the SNMP Command Line Manager . 6-22
Understanding the xgmon Programming Utility . 6-23
Extending xgmon Intrinsic Functions . 6-23
Creating xgmon Library Commands . 6-24
Programming Virtual G Machines (VGMs) . 6-24

Understanding the Internal Database . 6-25
Formatting the Virtual G Machine (VGM) Windows . 6-25
Working with Virtual G Machine (VGM) Variables . 6-26
Working with Virtual G Machine (VGM) Data Types . 6-29
Understanding the Virtual G Machine (VGM) Run-Time Environment 6-30

Understanding the Structure of xgmon Library Programs. 6-30
Using Simple Statements . 6-32
Using Iteration and Conditional Statements . 6-33
Using Expressions . 6-34
Using Operators . 6-34
Using Intrinsic Functions . 6-35

Alphabetic List of Intrinsic Functions . 6-37
Functional List of Intrinsic Functions . 6-39

Database Operations . 6-39
Host Information . 6-40
String Manipulation . 6-40
Formatted Output . 6-40
File 1/0 . 6-40
Virtual G Machine Control . 6-41
Graphics Functions . 6-41

How to Create xgmon Intrinsic Functions . 6-43
How to Create xgmon Library Commands . 6-46
How to Modify Existing xgmon Library Commands . 6-48

Contents XV

Chapter 7. Remote Procedure Call (RPC) . 7-1
Understanding the RPC Model . 7-2

Transports and Semantics . 7-3
RPC in the Binding Process,.. 7-4

Understanding the RPC Message Protocol............................... 7-5
Understanding the RPC Protocol Requirements . 7-5
Understanding the RPC Messages................................... 7-5
Understanding an RPC Call Message . 7-6
Understanding an RPC Reply Message . 7-7
Marking Records in RPC Messages . 7-9

Understanding RPC Authentication . 7-1 O
Understanding RPC Authentication Protocol . 7-1 O
Understanding NULL Authentication . 7-11
Understanding UNIX Authentication . 7-11
Understanding Data Encryption Standard (DES) Authentication 7-12
Understanding Data Encryption Standard (DES) Authentication Protocol 7-14
Understanding Diffie-Hellman Encryption . 7-15

Understanding the RPC Port Mapper Program . 7-17
Registering Ports . 7-17
Understanding Port Mapper Protocol . 7-18
Understanding Port Mapper Procedures . 7-19

Programming in RPC . 7-20
Assigning Program Numbers . 7-20
Assigning Version Numbers . 7-21
Assigning Procedure Numbers . 7-21
Using Registered RPC Programs . 7-21
Using the Intermediate Layer of RPC . 7-23
Allocating Memory with XDR . 7-26
Starting RPC from the inetd Daemon . 7-27
Compiling and Linking RPC Programs . 7-27

Understanding the RPC Features . 7-29
Batching Remote Procedure Calls . 7-29
Broadcasting Remote Procedure Calls . 7-30
Understanding RPC Call-back Procedures . 7-30
Understanding the select Subroutine on the Server Side 7-30

Understanding the RPC Language . 7-31
Understanding RPC Language Descriptions . 7-31
Definitions . 7-31
Structures . 7-32
Unions . 7-32
Enumerations . 7-33
Type Definitions . 7-33
Constants . 7-34
Programs . 7-34
Declarations . 7-35
RPCL Syntax Requirements for Program Definition . 7-36
Exceptions to the RPCL Rules . 7-36

Understanding the rpcgen Protocol Compiler . 7-37
Converting Local Procedures into Remote Procedures 7-38
Generating XDR Routines . 7-38
Understanding the C Preprocessor.... 7-38

XVi Communications Programming Concepts

Changing Time Outs.. 7-39
Handling Broadcast on the Server Side . 7-39
Other Information Passed to Server Procedures . 7-39

Alphabetical List of RPC Subroutines and Macros . 7-41
Functional List of RPC Subroutines and Macros . 7-44
List of RPC Examples . 7-49
Example Using UNIX Authentication . 7-50
Example Using DES Authentication . 7-53
Example of an RPC Language ping Program . 7-56
Example of Broadcasting a Remote Procedure Call . 7-57
Example Using the Highest Layer of RPC . 7-58
Example Using the Intermediate Layer of RPC . 7-59
Example Showing How RPC Passes Arbitrary Data Types 7-61
Example Using the Lowest Layer of RPC . 7-63

The Lowest Layer of RPC from the Client Side . 7-65
Example Using the select Subroutine . 7-68
Example Using rep on TCP . 7-69
Example Using Multiple Program Versions . 7-73
Example Converting Local Procedures into Remote Procedures 7-75
Example Generating XOR Routines . 7-80
Example Using RPC Callback Procedures . 7-84

Chapter 8. AIX SNA Services/6000 . • • . • • 8-1
AIX SNA Services/6000 Subroutines . 8-1

AIX SNA Services/6000 Operating System Subroutines 8-1
AIX SNA Services/6000 Operating System Subroutine Interfaces 8-1
AIX SNA Services/6000 Library Subroutines . 8-2

AIX SNA Services/6000 Special Files . 8-5
luxsna.h Include File . 8-5
allo_str Structure . 8-6
alloc_listen Structure ... ·;. 8-9
attr_str Structure . 8-10
confirm_str Structure . 8-11
cp_str Structure . 8-11
deal_str Structure . 8-13
erro_str Structure . 8-14
ext_io_str Structure . 0~15

flush_str Structure . 8-20
fmh_str Structure . 8-21
get_parms Structure . 8-22
gstat_str Structure . 8-22
pip_str Structure . 8".""24
prep_str Structure 8-24
read_out Structure . 8-25
stat_str Structure . 8-27
write_out Structure . 8-27
Constant Definitions . 8-28
Request Code Constants . 8-30

Developing Special SNA Functions . 8-32
Document Guide . 8-32
Configurations . 8-34

Contents xvii

Functional Characteristics . 8-34
AIX SNA Services/6000 Terminology . 8-36
IBM AIX SNA Services/6000 LUO Facility . 8-37

Document Guide . 8-37
Using the Menus . 8-38
Defining LUO Secondary Support . 8-38
Defining LUO Primary Support . 8-40
Defining LUO Primary Application Logical Units . 8-41

Application Program Interface . 8-43
Applications . 8-43

Writing Transaction Programs for AIX SNA Services/6000 8-44
Guidelines for Writing Transaction Programs . 8-44
AIX SNA Services/6000 Example Programs . 8-45
Local Transaction Program Example Program . 8-46
Remote Transaction Program Example Program . 8-48
Mapped Local Transaction Program Example Program 8-51
Mapped Remote Transaction Program Example Program 8-52

Transferring Files Using AIX SNA Services/6000 . 8-55
Sending Files from a Local AIX Node to a Remote AIX Node 8-56
Receiving Files from a Remote AIX Node . 8-56

Writing Generic AIX SNA Services/6000 Programs . 8-57
Generic AIX SNA Services/6000 Example Program . 8-57

Chapter 9. Sockets . • • . . . • . • 9-1
Critical Attributes . 9-1
Sockets Background . 9-1
Sockets Facilities . 9-2

Understanding the Sockets Interface . 9-3
Sockets Interface . 9-3
Socket Interface to Network Facilities . 9-4

Understanding Socket Subroutines . 9-5
Socket Subroutines . 9-5

Understanding Socket Header Files . 9-5
Socket Header Files . 9-5
Understanding Socket Communications Domains . 9-6
Understanding Socket Addresses . 9-8
Socket Address Storage . 9-8
Socket Addresses in TCP/IP . 9-9

Understanding Socket Types and Protocols . 9-9
Socket Types . 9-1 O
Socket Protocols . 9-11
Understanding Socket Creation . 9-12
Socket Creation . 9-12

Binding Names to Sockets ·. 9-13
Binding Addresses to Sockets . 9-13
Obtaining Socket Addresses.. 9-14

Understanding Socket Connections . 9-15
Socket Connection . 9-15
Server Connections . 9-16
Connectionless Datagram Services . 9-16
Understanding Socket Options . 9-17

xviii Communications Programming Concepts

Socket Options
Understanding Socket Data Transfer

Socket Data Transfer .. .
Out--of-Band Data .. .
Socket 1/0 Modes

Understanding Socket Shutdown
Socket Shutdown
Closing Sockets .. .

Understanding Network Address Translation
Network Address Translation

Understanding Domain Name Resolution
Domain Name Resolution

Understanding Socket Examples
Socket Examples

List of Socket Kernel Service Subroutines
List of Network Library Socket Subroutines
List of Socket Header Files .. .
List of Socket Examples .. .

Socketpair Communication Example Program
Reading UNIX Datagrams Example Program
Sending UNIX Datagrams Example Program
Reading Internet Datagrams Example Program
Sending Internet Datagrams Example Program
Initiating Internet Stream Connections Example Program
Accepting Internet Stream Connections Example Program
Initiating UNIX Stream Connections Example Program
Accepting UNIX Stream Connections Example Program
Checking for Pending Connections Example Program

Chapter 1 O. X.25 Communications•.....•.•..••.......••.•••.••.•
X.25 Overview .. .

The X.25 Application Programming Interface (API)
Using the X.25 Subroutines
Using X.25 Applications Written for Previous Releases
Using the X.25 Structures and Flags
Understanding X.25 Error Codes
Using Processes in X.25 Applications
Providing Security in X.25 Applications

X.25 Calls: API Level .. .
X.25 API: Initializing and Terminating

/dev/x25sn Special File'
X.25 API: Using the Connection Identifier for Calls
X.25 API: Using Counters to Correlate Messages
X.25 API: Listening for Incoming Calls
X.25 API: Making and Receiving a Call
X.25 API: Transferring and Acknowledging Data
X.25 API: Clearing, Resetting, and Interrupting Calls
List of X.25 API Error Codes
List of System Error Codes .. .

X.25 Example Programs Overview
Preparing, Compiling, and Running the Example Programs

9-17
9-18
9-18
9-19
9-20
9-21
9-21
9-21
9-22
9-22
9-24
9-24
9-26
9-26
9-27
9-27
9-29
9-29
9-30
9-31
9-32
9-33
9-34
9-35
9-36
9-38
9-39
9-41

10-1
10-1
10-1
10-2
10-3
10-5
10-6
10-6
10-6
10-8
10-8
10-9
10-9

10-10
10-12
10-13
10-14
10-15
10-18
10-20
10-21
10-21

Contents xix

Using the Example Code
X.25 Example Program pvcrcv: Program Description

Do until the end-of-transmission indicator is received:
When the end-of-transmission indicator has been received:

X.25 Example Program pvcrcv: Receive Data Using a PVC
X.25 Example Program pvcxmit: Program Description
X.25 Example Program pvcxmit: Send Data Using a PVC

Example Program pvcxmit .. .
X.25 Example Program svcrcv: Program Description

Repeat until a clear-indication message arrives:
X.25 Example Program svcrcv: Receive a Call Using an SVC
X.25 Example Program svcxmit: Program Description
X.25 Example Program svcxmit: Make a Call Using an SVC

Index ... · · · · · · · · ·

XX Communications Programming Concepts

10-21
10-22
10-22
10-22
10-23
10-27
10-28
10-28
10-32
10-32
10-33
10-38
10-39

X-1

Chapter 1. Generic Data Link Control Environment

The Generic Data Link Control (GDLC) is a generic interface definition that allows both
application and kernel users to have a common set of commands to control DLC device
managers within the AIX Version 3 system. The GDLC interface specifies requirements for
entry point definitions, functions provided, and data structures for all DLC device managers.
This section contains information on GDLC criteria, implementing GDLC interfaces, installing
data link controls, solving DLC problems, and programming for DLC.

Generic Data Link Control Environment Overview
The Generic Data Link Control (GDLC) is a generic interface definition that allows both
application and kernel users to have a common set of commands to control DLC device
managers within the AIX Version 3 system. The GDLC interface specifies requirements for
entry point definitions, functions provided, and data structures for all DLC device managers.
An example set of DLCs that conform to the GDLC interface are:

• DLCTOKEN (Token-Ring)
• DLCETHER (Standard Ethernet)
• DLC8023 (IEEE 802.3 for Ethernet)
• DLCSDLC (Synchronous Data Link Control)
• DLCQLLC (Qualified Logical Link Control).

DLC device managers perform higher layer protocols and functions beyond the scope of a
kernel device driver, but still reside within the kernel for maximum performance and use a
kernel device driver for their 110 requests to the adapter. A user of a DLC can be located
above or within the kernel.

An example of a DLC device manager is Synchronous Data Link Control {SDLC) or IEEE
802.2 Data Link Control. Each DLC device manager operates with a specific device driver or
set of device drivers. SDLC, for example, operates with the IBM Multiprotocol device driver
for the GL product and its associated adapter.

The basic structure of a DLC environment is shown in the following figure. Users within the
kernel have access to the Communications memory buffers (mbufs) and call the dd entry
points by way of the fp kernel services. Users above the kernel use the standard
interface-to-kernel device drivers, and the file system then calls the dd entry points. Data
transfers in this case require a move of the data between user and kernel space.

Data Link Control (DLC) 1-1

See DLC's environment and its relationship to other components in the following figure:

DLC Device Manager Environment

Application User

Kernel

Kernel User

File 110 Subsystem
Buffer
Pool

DLC Device Manager

COMM 10 Device Driver

Adapter

Application User

Kernel User

File 1/0 Subsystem

Hardware

Resides above the kernel as an application or access method.

Resides within the kernel as a kernel process or device manager.

Converts the file descriptor and file pointer subroutines to file
pointer accesses of the switch table.

Buffer Pool Provides data buffer services for the communications subsystem.

Comm 110 Device Driver Controls hardware adapter 110 and OMA registers, and routes
receive packets to multiple DLCs.

Adapter Attaches to the communications media.

A device manager written in accordance with GDLC specifications can run on all AIX Version
3 hardware configurations that contain a communications device driver and its target
adapter. Each of these device managers can support multiple users above and multiple
device drivers and adapters below. In general, users can operate concurrently over a single
adapter, or each user can operate over multiple adapters. Some DLC device managers may
vary depending on their particular protocol constraints.

1-2 Communications Programming Concepts

The following figure illustrates a multiple user configuration:

Example of Multiple-user, Multiple-Adapter Configuration

I J 1

Applicatlon User J Application DLC

----Kernel

.---JJ
Kernel User

11

DLC Device Manager Other DLC

Communication 1/0 Device Drivers

11 J]-------Hardware

~apter
Meeting the GDLC Criteria

There are several criteria that must be met in order for a GDLC interface to be a truly
generic interface. This interface must do the following:

• Be flexible and be accessible to both application and kernel users.

• Have multi-user and multi-adapter capability for protocols that can take advantage of
multiple sessions and ports.

• Support both connection-oriented and connectionless types of DLC device managers.

• Provide a means to pass data in a transparent mode for those users that have special
requirements beyond the scope of the DLC device manager in use.

Implementing the GDLC Interface
Each DLC device manager is a standard /dev entry that operates in the kernel as a
multiplexed device manager for a particular protocol. Each open subroutine to a DLC device
manager for an adapter port that is not already in use by DLC causes a kernel process to be
created and an open subroutine to be issued to the target adapter's device handler.
Additional open subroutines can be issued to the same DLC device manager in order to talk
to multiple adapter ports of the same protocol. Any Open subroutines that target the same
port do not create additional kernel processes, but rather link the new open subroutine with
the existing process. There is always one kernel process for each port in use.

The internal structure of a DLC device manager has the same basic structure as a kernel
device handler, except that the interrupt handler is replaced by a kernel process for handling

Data Link Control (DLC) 1-3

asynchronous events. The read, write, 1/0 control, and select blocks function exactly the
same, as shown in the following figure:

Standard Kernel Device Manager

dlcwrite

Write

From the User

dlcioctl

1/0
Control

dlcread

Read

dlcselect

Select Interrupt
Handler

To the Device Handler From the Device Handler

Installing Data Link Controls
Each DLC can be installed separately or in a group. Once the DLCs are installed, you must
add the DLC device to the system in order to make it useable. You may want to display or
list information about an installed DLC to verify that installation and the addition of an
installed DLC was successful. Listing current DLC attributes is useful when one must check
to see if any changes are necessary.

On heavily used systems, fine tuning or changing may be necessary. If receive performance
is sluggish and the system error log indicates that the DLC is experiencing ring queue
overflows between the DLC and its device handler, the operator can change the DLC's
queue depth for incoming data. Finally, you may want to remove an installed DLC from the
system when changing networks, such as switching from the SDLC device manager to the
Token-Ring device manager. All of these DLC procedures can be accomplished through the
System Management Interface Tool (SMIT) install menus or through the command line.

List of the DLC Interface Entry Points
dlcclose Closes a GDLC channel.

dlcconfig

dlcioctl

dlcmpx

dlcopen

dlcread

dlcselect

dlcwrite

Configures the GDLC device manager.

Issues specific commands to the GDLC.

Decodes the device handler's special file name that was appended to the
open subroutine.

Opens a GDLC channel.

Reads receive data from the GDLC.

Selects asynchronous criteria from the GDLC such as receive data
completion and exception conditions.

Writes transmit data to the GDLC.

1-4 Communications Programming Concepts

Understanding DLC Interface ioctl Entry Point Operations
The GDLC interface supports the following ioctl subroutine operations:

DLC_ENABLE_SAP

DLC_DISABLE_SAP

DLC_START_LS

DLC_HALT_LS

DLC_TRACE

DLC_CONTACT

DLC_TEST

DLC_ALTER

DLC_QUERY_SAP

DLC_QUERY_LS

DLC_ENTER_LBUSY

DLC_EXIT_LBUSV

DLC_ENTER_SHOLD

DLC_EXIT_SHOLD

DLC_GET_EXCEP

IOCINFO

Service Access Point (SAP)

Enables a service access point (SAP).

Disables a SAP.

Starts a link station on a particular SAP as caller or listener.

Halts a link station.

Traces a link station's activity for short or long activities.

Contacts a remote station for a particular local link station.

Tests the link to a remote for a particular local link station.

Alters a link station's configuration parameters.

Queries statistics of a particular SAP.

Queries statistics of a particular link station.

Enters local busy mode on a particular link station.

Exits local busy mode on a particular link station.

Enters short hold mode on a particular link station.

Exits short hold mode on a particular link station.

Returns asynchronous exception notifications to the
application user.

Note: This ioctl subroutine operation is not used by the
kernel user since all exception conditions are passed
to the kernel user by way of their exception handler.

Returns a structure that describes the GDLC device manager.
See the sys/devinfo.h file.

A service access point (SAP) identifies a particular user service that will send and receive a
specific class of data. This allows different classes of data to be routed separately to their
corresponding service handlers. Those DLCs that support multiple concurrent SAPs have
SAP addresses known as Destination SAP and Source SAP imbedded in their packet
headers. DLCs that can only support a single SAP do not need or use SAP addressing, but
still have the concept of enabling the one SAP. In general, there is a SAP enabled for each
DLC user on each port.

Data Link Control (DLC) 1-5

Most SAP address values are defined by IEEE-standardized network management entities.
Some of the common SAP addresses are:

Null SAP (x'OO')

SNA Path Control (x'04')

Provides some ability to respond to remote nodes even
when no SAP has been enabled. This SAP supports only
connectionless service and responds only to XID and TEST
Link Protocol Data Unit (LPDUs).

Denotes the default individual SAP address used by SNA
nodes.

PC Network NETBIOS (x'FO') Used for all DLC communication that is driven by NETBIOS
emulation.

Discovery SAP (x'FC')

Global SAP (x'FF')

Link Station (LS)

Used by IBM LAN name discovery services.

Identifies all active SAPs.

A link station (LS) identifies an attachment between two nodes for a particular SAP pair. This
attachment can operate as a connectionless service (datagram) or connection-oriented
service (fully sequenced data transfer with error recovery). In general, there is one LS
started for each remote attachment.

Local Busy Mode
Whenever an LS is operating in a connection-oriented mode (contacted) and wishes to stop
the remote station's sending of information packets for reasons such as resource outage,
notification can be sent to the remote station to cause the local station to enter local busy
mode. Once resources are available, the local station will notify the remote that it is no
longer busy and that information packets can flow again. Only sequenced information
packets are stopped with local busy mode. All other types of data are unaffected.

Short Hold Mode
Use the short hold mode of operation when operating over certain data networks that have
the following characteristics:

• Short call setup time

• Tariff structure that specifies a relatively small fee for the call setup compared to the
charge for connect time.

With short hold mode an attachment between two stations is maintained only while there is
data available for transfer between the two stations. When there is no data to send, the
attachment is cleared after a certain time out and established again when there is new data
to transfer.

Testing and Tracing a Link
To test an attachment between two stations an LS can be instructed to send a test packet
from the local station. This packet is echoed back from the remote station if the attachment
is operating correctly.

Some data links may be limited in their support of this function due to protocol constraints.
SDLC, for example, only generates the test packet from the host or primary station. Most
other protocols, however, allow test packets to be initiated from either station.

1-6 Communications Programming Concepts

Statistics

To trace a link, line data and special events (such as station activation, termination, and time
outs) can be logged in the system's generic trace facility for each link station (LS). This
function helps determine the cause of certain communications attachment problems. The
GDLC user may select either short or long entries to be traced. Short entries consist of up to
80 bytes of line data, while long entries allow full packets of data to be traced.

Note: Tracing can be activated when an LS is started, or it may be activated or terminated
dynamically anytime after an LS has been started.

Both SAP and LS statistics can be queried by a GDLC user. The statistics for a SAP consist
of the current SAP state and information about the device handler. LS statistics consist of
the current station states and various Reliability/Availability/Serviceability counters that have
monitored the activity of the station since it was started.

Using Special Kernel Services
G.DLC provides special services for a kernel user, with the understanding that a trusted
environment must exist within the kernel. Instead of the DLC device manager copying
asynchronous event data into user space, the kernel user must specify function pointers to
special routines called function handlers. The function handlers are called by the DLC at the
time of execution. This allows maximum performance between the kernel user and the DLC
layers. Each kernel user is required to keep the number of function handlers down to a
minimum path length, and to use the communications memory buffer (mbuf) scheme.

A function handler must never call another DLC entry directly, since the call would be made
under lock, causing a fatal sleep. The only exception to this general rule is that a kernel user
is allowed to call the dlcwritex entry during its service of any of the four receive data
functions. Calling the dlcwritex entry allows immediate responses to be generated without
an intermediate task switch.

Special logic is required within the DLC device manager to check the process identification
of the user calling a write. If it is a DLC process and the internal queueing capability of the
DLC has been exceeded, the write is sent back with a bad return code (EAGAIN return
value) instead of putting the calling process (DLC) to sleep. It is then up to the calling user
subroutine to return a special notification to DLC from its receive data function to ensure a
retry of the receive buffer at a later time.

The following routines are user provided function handlers:

Datagram Data Received

Exception Condition

I-Frame Data Received

Network Data Received

XID Data Received

Called any time a datagram packet is received for the
kernel user.

Called any time an asynchronous event occurs that must
notify the kernel user, such as SAP Closed or Station
Contacted.

Called each time a normal sequenced data packet is
received for the kernel user.

Called any time network-specific data is received for the
kernel user.

Called any time an exchange identification (XID) packet is
received for the kernel user.

Data Link Control (DLC) 1-7

The dlcread and dlcselect entry points for DLC are not called by the kernel user because
the asynchronous functional entries are called by the DLC device manager directly.
Generally, any queuing of these events must occur in the user's function handler. If,
however, the kernel user cannot handle a particular receive packet, the DLC device manager
may hold the last receive buffer and enter one of two special user busy modes.

User Terminated Busy Mode {I-frame only)
If the kernel user cannot handle a received I-frame (due to problems such
as queue blockage), a-1 return code is given back and DLC holds the
buffer pointer and enters local busy mode to stop the remote station's
I-frame transmissions. The kernel user must call the Exit Local Busy
function to reset local busy mode and start the reception of I-frames again.
Only normal sequenced I-frames can be stopped. XID, datagram, and
network data are not affected by local busy mode.

Timer Terminated Busy Mode {all frame types)
If the kernel user cannot handle a particular receive packet, and wants DLC
to hold the receive buffer for a short period and then re-call the user's
receive function, a-2 return code is given back to DLC. If the receive
packet is a sequenced I-frame, the station enters local busy mode for that
period. In all cases, a timer is started, and once the timer expires, the
receive data functional entry is called again.

Understanding DLC Problem Determination
Each of the generic data link controls provide problem determination data that can be used
to isolate network problems. Three types of diagnostic information are provided:

• Status

• Error Log

• Link Trace.

Understanding DLC Status Information
Status can be obtained for a service access point (SAP) or a link station by issuing
DLC_QUERY _SAP and DLC_QUERY _LS ioctl subroutines to the specific DLC kernel
device manager in use.

Individual device driver statistics can be obtained with the DLC_QUERY _SAP ioctl
subroutine from various devices such as:

• Token-Ring
• Ethernet
• Multiprotocol
• X.25.

Link station statistics can be obtained with the DLC_QUERY _LS ioctl subroutine from
various data link controls. These statistics include data link protocol counters. Each counter
is reset by the DLC during the DLC_START _LS ioctl subroutine, and generally runs
continuously until the link station is terminated and its storage is freed. If a counter reaches
the maximum count, the count is frozen and no wrap around occurs.

The suggested counters to be provided by a DLC device manager are shown below. Some
DLCs may wish to modify this set of counters based on the specific protocols being
supported. For example, the number of rejects or receive-not-ready packets received might
be meaningful.

1-8 Communications Programming Concepts

Test Commands Sent
Contains a binary count of the test commands sent to the remote station by
GDLC, in response to test commands issued by the user.

Test Command Failures
Contains a binary count of the test commands that did not complete
properly due to problems such as the following:

• Invalid response
• Bad data compare
• Inactivity.

Test Commands Received
Contains a binary count of valid test commands received, regardless of
whether the response is completed properly.

Sequenced Data Packets Transmitted
Contains a binary count of the total number of normal sequenced data
packets that were transmitted to the remote link station.

Sequenced Data Packets Transmitted
Contains a binary count of the total number of normal sequenced data
packets that were retransmitted to the remote link station.

Maximum Contiguous Retransmissions
Contains a binary count of the maximum number of times a single data
packet has been retransmitted to the remote link station prior to
acknowledgment. This counter is reset each time a valid acknowledgment is
received.

Sequenced Data Packets Received
Contains a binary count of the total number of normal sequenced data
packets that have been correctly received.

Invalid Packets Received
Contains a binary count of the number of invalid commands or responses
received, including invalid control bytes, invalid I-fields, and overflowed
I-fields.

Adapter Detected Receive Errors
Contains a binary count of the number of receive errors reported back from
the device driver.

Adapter Detected Transmit Errors
Contains a binary count the number of transmit errors reported back from
the device driver.

Receive Inactivity Time Outs
Contains a binary count of the number of receive time outs that have
occurred.

Command Polls Sent
Contains a binary count of the number of command packets sent, that
requested a response from the remote link station.

Data Link Control (DLC) 1-9

Command Repolls Sent
Contains a binary count of the total number of command packets that were
retransmitted to the remote link station due to lack of response.

Command Contiguous Repolls
Contains a binary count of the number of times a single command packet
was retransmitted to the remote link station due to lack of response. This
counter is reset each time a valid response is received.

Understanding the DLC Error Log
Each DLC provides entries to the system error log whenever errors are encountered. To call
the kernel error collector, use the errsave kernel service.

GDLC supports the GL product Network Management Alert Management architecture for
reporting error conditions. The error conditions are reported using the GL product system
error log using the error log daemon (errdaemon). Each error is defined with the following
entries:

Error Type

Error Description

Probable Cause

Indicates the severity of the error. The three levels of severity are
as follows:

Temporary

Permanent

Performance

Indicates errors that do not force closure of
the link station or SAP connections, but are
logged for network analysis.

Indicates errors that result in the closure of the
individual link station, SAP, or the entire
physical port due to their catastrophic nature.

Indicates errors such as queue overruns that
are causing performance degradation due to
retransmissions and other factors.

Describes the failure.

Describes what likely caused the failure.

Recommended Actions Describes how to correct the problem. This is divided into
operator (User), installation/set-up (Install), and resource
(Failure) actions.

Detailed Data Provides additional data obtained at the time of the error.

The user can obtain formatted error log data by issuing the errpt command. When used with
the ·R DLCType flag, the errpt command produces a detailed report of all the error log
entries for the resource type indicated by the DLCType variable previously collected in the
/etc/rasconf default file.

1-10 Communications Programming Concepts

Valid values for the DLCType variable include:

dlcether

dlc802.3

dlctoken

dlcsdlc

Alerts

Standard Ethernet datalink

IEEE 802.3 Ethernet datalink

Token-Ring datalink

SDLC datalink

Some error conditions must generate specific error log formats so that Alert
Vectors can be sent to the local network manager and possibly to a remote
SNA host.

The format of each required Alert Vector can be found in Appendix A of IBM
publication SNA Format and Protocol Reference Manual: Management
Services.

Understanding the DLC Link Trace Facility
GDLC provides optional entries to a generic system trace channel as required by the GL
product system Reliability/Availability/Serviceability. GDLC is defaulted with trace disabled in
order to provide maximum performance and reduce the number of system resources
utilized. For more information, see Understanding the DLC Local Area Network Monitor
Trace.

Trace Channels

AIXv3 supports up to seven generic trace channels in operation simultaneously. A channel
must be allocated by the user prior to activation of a link trace, whether it is being started in
the DLC_START _LS ioctl operation or in the DLC_ TRACE ioctl operation. This is
accomplished with the trcstart and trcon subroutines.

Trace activity in the link station must be stopped by either halting the link station or by
issuing an ioctl{DLC_ TRACE, flags=O) operation to that station. See the DLC_ TRACE ioctl
operation for DLC. Once the link station has stopped tracing, the channel can be disabled
using the trcoff subroutine and returned to the system using the trcstop subroutine.

Trace Reports

The user can obtain formatted trace log data by issuing the trcrpt command with the
appropriate file name, such as:

trcrpt /tmp/linkl.log

This example produces a detailed report of all the link trace entries in the /tmp/link1 .log file,
if a prior trcstart subroutine specified the /tmp/link1.log file as the {·o) name for the trace
log.

Data Link Control (DLC) 1-11

Trace Entries

The subroutine call generated by GDLC to the kernel Generic Trace for each entry is:

#include <sys/trchkid.h>

void trcgenkt (chan, hk_ word, data_ word, /en, but)
unsigned int chan, hk_word, data_word, /en;
char*buf,

where:

ch an

hk_word

data_ word

Specifies the channel number for the trace session. This number is obtained
from the trcstart subroutine.

Contains the trace hook identifier as defined in the
/usr/include/sys/trchkid.h header file.

Five types of link trace entries are registered using hook ID:

HKWD_SYSX_DLC_START
HKWD_SYSX_DLC_TIMER
HKWD _SYSX_DLC _XMIT
HKWD_SYSX_DLC_RECV
HKWD_SYSX_DLC_HALT

Start Link Station Completions
Timeout Completions
Transmit Completions
Receive Completions
Halt Link Station Completions.

Specifies trace data format field, varies depending on the hook ID. Each of
these definitions can be found in the /usr/include/sys/gdlextcb.h header
file.

The first half-word always contains the data link protocol field.

DLC_DL_SDLC
DLC_DL_HDLC
DLC_DL_BSC
DLC_DL_ASC
DLC_DL_PCNET
DLC_DL_ETHER
DLC_DL_802_3
DLC_DL_TOKEN
DLC_DL_QLLC

SDLC
HDLC
BISYNC
A SYNC
PC Network
Standard Ethernet
IEEE 802.3
Token-Ring
X.25 Qualified DLC.

1-12 Communications Programming Concepts

Jen

buf

The second half-word is as follows:

• On start or halt link station completions the second half-word contains the
physical link protocol in use:

DLC_PL_EIA232
DLC_PL_EIA366
DLC_PL_X21
DLC_PL_PCNET
DLC_PL_ETHER
DLC_PL_SMART
DLC_PL_802_3
DLC_PL_TBUS
DLC _PL_ TRING
DLC_PL_X25
DLC_PL_EIA422
DLC_PL_V35

DLC_PL_ V25BIS

EIA-232D Telecommunications
EIA-366 Auto Dial
CCITT X.21 Data Network
PC Network Broadband
Standard Baseband Ethernet
Smart Modem Auto Dial
IEEE 802.3 Baseband Ethernet
IEEE 802.4 Token Bus
IEEE 802.5 Token-Ring
X.25 Packet Network
EIA-422 Telecommunications
CCITT V.35 Telecommunications

CCITT V.25 bis Autodial for
Telecommunications.

• On time out completions the second half-word contains the type of time
out occurrence:

DLC _TO _SLOW _POLL
DLC_ TO_IDLE_POLL
DLC_TO_ABORT
DLC_TO_INACT
DLC_TO_FAILSAFE
DLC_TO_REPOLL_T1
DLC_TO_ACK_T2

Slow Station Poll
Idle Station Poll
Link Station Aborted
Link Station Receive Inactivity
Command Failsafe
Command Repoll
I-frame Acknowledgment.

• On transmit completions the second half-word is set to the data link
control bytes being sent. Some transmit packets only have a single
control byte, so the second control byte is not displayed in those cases.

• On receive completions the second half-word is set to the data link
control bytes that were received. Some receive packets only have a
single control byte, so the second control byte is not displayed in those
cases.

Specifies the length in bytes of the entry specific data specified by the buf
parameter.

Specifies the pointer to the entry specific data that consists of one of the
following completions:

Start Link Station

Timeout

Transmit

Link Station Diagnostic Tag, and the remote
station's name and address.

No specific data is recorded.

Either the first 80 bytes or all the
transmitted data, depending on the
short/long trace option.

Data Link Control (DLC) 1-13

Receive

Halt Link Station

Either the first 80 bytes or all the received
data, depending on the short/long trace
option.

Link Station Diagnostic Tag, the remote
station's name and address, and the result
code.

Data Link Control (DLC) Reference Information
The following is a list of reference information for DLC:

• DLC Entry Points:

- dlcclose
- dlcconfig
- dlcioctl
- dlcmpx
- dlcopen
- dlcread
- dlcselect
- dlcwrite

• Kernel Services for DLC:

- fp_close
- fp_ioctl
- fp_open
- fp_write

• DLC Kernel Routines for DLC:

- Datagram Data Received
- Exception Condition
- I-Frame Data Received
- Network Data Received
- XID Data Received.

• Subroutines Available for DLC:

- DLC Extended Parameters for Subroutines:

Extended Parameters for open
Extended Parameters for read
Extended Parameters for write

- Application Subroutines for DLC:

close
ioctl
open
readx
select
writex

• DLC Operations:

- ioctl Operations (op) for DLC.
- Parameter Blocks by Operation for DLC.

1-14 Communications Programming Concepts

Related Information
The errpt command.

The errsave kernel service, trcgenkt kernel service.

The trcoff subroutine, trcon subroutine, trcstart subroutine, trcstop subroutine.

The icotl subroutine for DLC, open subroutine for DLC.

Data Link Control (DLC) 1-15

Token-Ring Data Link Control
Token-Ring Data Link Control (DLCTOKEN) is a device manager that follows the generic
interface definition (GDLC). This DLC device manager provides an access procedure for the
transfer of four types of data over the IBM token ring: datagrams, sequenced data,
identification data, and logical link controls. It also provides a pass-through capability that
allows transparent data flow.

This access procedure relies on functions provided in the Token-Ring Device Handler
Overview and the IBM Token-Ring Network 16/4 Co-Processor Busmaster Adapter to
actually transfer data, with address checking, token generation, or frame check sequences.

The Token-Ring Data Link Control (DLCTOKEN) provides the following:

• DLCTOKEN device manager functions
• Name-discovery services
• Protocol support
• Direct network services
• Connection contention
• Link session initiation
• Link session termination
• Programming interfaces.

The DLCTOKEN device manager operates between two nodes on the Token-Ring LAN
using IEEE 802.2 procedures and control information as defined in the IBM Token-Ring LAN
Formats and Protocols Manual (SC30-3374). This protocol support includes the following:

• Asynchronous Disconnected mode (ADM) and Asynchronous Balanced mode extended
(ABME)

• Two-way simultaneous (full-duplex) data flow

• Multiple point-to-point logical attachments on the LAN using network and service access
point addresses

• Peer-to-peer relationship with remote station

• Both name-discovery and address-resolve services

• Source-routing generation for up to eight bridge hops.

The Token-Ring Data Link Control (DLCTOKEN) provides full-duplex, peer-data transfer
capabilities over an IBM Token-Ring local area network (LAN). The Token-Ring LAN must
use the Token-Ring IEEE 802.5 medium access control (MAC) procedure and a superset of
the IEEE 802.2 logical link control (LLC) protocol as described in the IBM Token-Ring LAN
Formats and Protocols Manual.

Multiple Token-Ring adapters are supported, with a maximum of 254 service access point
(SAP) users per adapter. A total of 255 link stations (LS) per adapter are supported, which
are distributed among the active SAP users. Multiple ring segments can be accessed using
IBM Token-Ring network bridge facilities, with up to eight consecutive ring segments
supported between any two nodes.

1-16 Communications Programming Concepts

The term logical link control (LLC) is used to describe the collection of manager, access
channel, and link station subcomponents of a Generic Data Link Control (GDLC) component
such as DLCTOKEN device manager. The following figure illustrates the DLCTOKEN
Component Structure:

DLCTOKEN Component Structure

User.
Physical
Unit
Services

DLC
Mgr

LLC

--]]
User Data Services

Link Station

Access Channel Control

DLCTOKEN Component --------------'

Each link station (LS) controls the transfer of data on a single logical link. The access
channel performs multiplexing and demultiplexing for message units flowing from the LSs
and manager to MAC. The DLC manager performs connection establishment and
termination as well as LS creation and deletion. In addition, it routes commands to the
proper station.

DLCTOKEN Device Manager Functions
The DLCTOKEN device manager and transport medium use two functional layers (MAC and
LLC) to maintain reliable link-level connections, guarantee data integrity, negotiate
exchanges of identification, and connectless connection-oriented services.

The Token-Ring adapter and the DLCTOKEN device handler are responsible for the
following MAC functions:

• Ring-insertion protocol
• Token detection and creation
• Encoding and decoding the serial bit-stream data
• Checking received network, group, and functional addresses
• Routing of received frames based on the LLC/MAC indicator and using the destination

SAP address if an LLC frame was received
• CRC checking and generation
• Frame delimiters, such as start/end delimiters and frame status field
• Failsafe time outs.

Data Link Control (DLC) 1-17

DLCTOKEN is responsible for additional medium access control functions, such as:

• Framing control fields on transmit frames
• Network addressing on transmit frames
• Routing information on transmit frames.

DLCTOKEN is also responsible for all the logical link control (LLC) functions:

• Remote connection services and bridge routing using the address-resolve and
name-discovery procedures

• Sequencing of link stations on a given port
• Generating service access point (SAP) addresses on transmit frames
• Generating IEEE 802.2 LLC commands and responses on transmit frames
• Recognizing and routing of received frames to the proper service access point
• Servicing of IEEE 802.2 LLC commands and responses on receive frames
• Frame sequencing and retries
• Failsafe and inactivity time outs
• Reliability/Availability/Serviceability counters, error logs, and link trace.

Protocol Support

Station Type

DLCTOKEN supports the logical link control (LLC) protocol and state tables described in the
IBM Token-Ring Local Area Network Format and Protocol Manual, which contains the Local
Area Network IEEE 802.2 Logical Link Control standard. Both address-resolve services and
name-discovery services are supported for establishing remote connections. Also supported
is a direct network interface that allows a user to transmit and receive unnumbered
information packets directly through DLCTOKEN without any protocol handling done by the
data link layer.

A combined station is supported for a balanced (peer-to-peer) configuration on a logical
point-to-point connection. This allows either station to asynchronously initiate the
transmission of commands at any response opportunity. The sender in each combined
station controls the receiver in the other station. Data transmissions then flow as primary
commands, and acknowledgments and status flow as secondary responses.

Response Modes
Both Asynchronous Disconnect mode (ADM) and Asynchronous Balanced mode extended
(ABME) are supported. ADM is entered by default whenever a link session is initiated, and is
switched to ABME only after the set Asynchronous Balanced mode extended (SABME)
command sequence is complete. Once operating in ABME, information frames containing
user data can be transferred. ABME then remains active until termination of the LLC
session, which occurs due to the disconnect (DISC) command packet sequence or a major
link error.

1-18 Communications Programming Concepts

Token-Ring Data Packet
All communication between a local and remote station is accomplished by the transmission
of a packet that contains the Token-Ring headers and trailers as well as an encapsulated
LLC protocol data unit (LPDU). See the following figure that describes the Token-Ring data
packet:

DLCTOKEN Frame Encapsulation

'4- 3 + 6 bytes + 6 bytes _.__ m bytes 11+11 n bytes ~14 4 _. 2 ~

s A F Destination Source Routing LPDU CRC E F
D c c Address Address Information D s

i:= 2 bytes .,~ 1 (2) byte -~·l-i1--- p bytes ~
DSAP SSAP Control Information
Addr. Addr. Field Field

The Token-Ring data packet consists of the following:

SD Starting delimiter
AC Access control field
FC Frame control field
LPDU LLC protocol data unit
DSAP Destination service access point (SAP) address field
SSAP Source SAP address field
CRC Cyclic redundancy check or frame check sequence
ED Ending delimiter
FS Frame status field
m bytes Integer value greater than or equal to O and less than or equal to 18
n bytes Integer value greater than or equal to 3 and less than or equal to 4064
p bytes Integer value greater than or equal to O and less than or equal to 4060.

Note: SD, CRC, ED, and FS are added and deleted by the hardware adapter.

Name-Discovery Service
In addition to the standard IEEE 802.2 Common Logical Link Protocol support and address
resolution services, DLCTOKEN also provides a name-discovery service that allows the
operator to identify local and remote stations by name instead of by 6-byte physical
addresses. Each port must have a unique name on the network of up to 20 characters. The
character set used will vary depending on the user's protocol (SNA, for example, requires
Character Set A). Additionally, each new SAP supported on a particular port may have a
unique name if desired.

Each name is added to the network by broadcasting a find (local name) request when the
new name is being introduced to a given network port. If no response other than an echo
results from the find (local name) request after sending it the number of times specified, the
physical link is declared opened, and the name is assigned to the local port and SAP. If
another port on the network already has the name being added, a name found response is
sent to the station that issued the find request, and the new attachment fails with a result
code (DLC_NAME_IN_USE} indicating that a different name must be chosen.

Data Link Control (DLC) 1-19

Calls are established by broadcasting a find (remote name) request to the network and
waiting for a response from the port with the specified name. Only those ports that have
listen attachments pending, that receive colliding find requests, or that are already attached
to the requesting remote station answer a find request.

Direct Network Services
Some users wish to handle their own unnumbered information packets on the network
without the aid of the data link layer within DLCTOKEN. A direct network interface is
provided that allows an entire packet to be generated and sent by a user once their SAP has
been opened. This allows full control of every field in the data link header for each write
issued. Also provided is the ability to view the entire packet contents on received frames.
The only criteria for a direct network write are:

• The local SAP must be valid and opened.
• The data link control byte must indicate unnumbered information (Ox03).

Connection Contention
Dual paths to the same nodes are detected by DLCTOKEN in one of two ways. If a call is in
progress to a remote node that is also trying to call the local node, the incoming find (remote
name) request is treated as if a local listen was outstanding. On the other hand, if a pending
local listen has been acquired by a remote node's call, and the local user issues a call to that
remote node after the LS is already active, a result code (DLC_REMOTE_CONN) is returned to
the user along with the LS correlator of the attachment already active, so that the user can
relink its attachment pointers.

Link Session Initiation
When a link station is opened DLCTOKEN is initialized at Open Link Station as a combined
station in Asynchronous Disconnect mode (ADM). As a secondary/combined station,
DLCTOKEN is in receive state waiting for a command frame from the primary/combined
station. The command frames accepted by the secondary/combined station at this time are
SABME (set Asynchronous Balanced mode extended), XID (exchange station identification),
TEST (test link), UI (unnumbered information - datagram), and DISC (disconnect). Any other
command frame is ignored. Once a SABME is received, the station is ready for normal data
transfer, and I {information), RR (receive ready), RNR (receive not ready), and REJ (reject)
frames are also accepted.

As a primary/combined station, DLCTOKEN can perform ADM XID exchanges and ADM
TEST exchanges, send datagrams, or contact the remote into ABME. XID exchanges allow
the primary/combined station to send out its station-specific identification to the
secondary/combined station and obtain a response. Once an XID response is received, any
attached information field is passed to the user for further action.

TEST exchanges allow the primary/combined station to send out a buffer of information that
will be echoed by the secondary/combined station in order to test the integrity of the link.

Initiation of the normal data exchange mode (ABME) causes the primary/combined station to
send a SABME to the secondary/combined station. Once sent successfully, the connection
is said to be contacted and the user is notified. I-frames can now be sent and received
between the linked stations.

1-20 Communications Programming Concepts

Link Session Termination
DLCTOKEN can be terminated by the user or by the remote station.

• The user can cause normal termination by issuing a DLC_HALT_LS command to
DLCTOKEN. This causes the primary/combined station to initiate a disconnect (DISC)
packet sequence.

• Receive inactivity can be optioned to cause termination. This is useful in detecting a loss
of connection in the middle of a session.

• The remote station can cause termination by sending a DISC command packet as a
primary/combined station.

• Abnormal termination is caused by certain protocol violations or by resource outages.

DLCTOKEN Programming Interfaces
The Token-Ring Data Link Control (DLCTOKEN) conforms to the GDLC guidelines except
where noted below. Additional structures and definitions for DLCTOKEN can be found in the
/usr/include/sys/trlextcb.h header file.

Note: The die prefix is replaced with the trl prefix for DLCTOKEN.

trlclose DLCTOKEN is fully compatible with the dlcclose GDLC interface.

trlconfig

trlmpx

trio pen

trlread

trlselect

trlwrite

DLCTOKEN is fully compatible with the dlcconfig GDLC interface. No
initialization parameters are required.

DLCTOKEN is fully compatible with the dlcmpx GDLC interface.

DLCTOKEN is fully compatible with the dlcopen GDLC interface.

DLCTOKEN is compatible with the dlcread GDLC interface with the
following conditions: The readx subroutines may have DLCTOKEN data link
header information prefixed to the I-field being passed to the application.
This is optional based on the readx subroutine data link header length
extension parameter in the gdl_io_ext structure.

If this field is nonzero, DLCTOKEN copies the data link header and the
I-field to user space, and sets the actual length of the data link header into
the length field. If the field is zero, no data link header information is copied
to user space. See the DLCTOKEN frame format for more details. It should
be noted that there is always an 18-byte area for routing information
regardless of whether routing was present.

Kernel receive packet function handlers always have the DLCTOKEN data
link header information within the communications memory buffer {mbuf),
and can locate it by subtracting the length passed (in the gdl_io_ext
structure) from the data offset field of the mbuf structure.

DLCTOKEN is fully compatible with the dlcselect GDLC interface.

DLCTOKEN is compatible with the dlcwrite GDLC interface, with the
exception that network data may only be written as an unnumbered
information (UI) packet and must have the complete data link header
prefixed to the data. DLCTOKEN verifies that the local {source) SAP is
enabled and that the control byte is UI {Ox03). See the DLCTOKEN frame
format for more details.

Data Link Control (DLC) 1-21

trlioctl

DLC~ENABLE_SAP

DLCTOKEN is compatible with the dlcioctl GDLC interface, with conditions
on the following operations:

DLC_ENABLE_SAP
DLC_STAAT_LS
DLC_ALTEA
DLC_ENTEA_SHOLD
DLC_EXIT _SHOLD
DLC_ADD_GAOUP
IOCINFO.

The ioctl argument structure for enabling a SAP (dlc_esap_arg) has the following specifics:

• The grp_addr (group address) field for token ring contains the four least significant
bytes of the desired 6-byte group address. Only bits 1 through 31 are valid. Bit O (zero) is
ignored. The most significant 2 bytes are automatically compared for OxCOOO by the
adapter.

• The func_addr_rnask (functional address mask) field must be the logical OR operation
with the functional address on the adapter, which allows packets that are destined for
specified functions to be received by the local adapter. Only bits 1 through 29 are valid.
Bits 0, 30 and 31 are ignored. The most significant 2 bytes of the full 6-byte functional
address are automatically compared for OxCOOO by the adapter.

The following is an example of a NetBios functional address:

To select the Netbios functional address of Oxcooo_oooo_ooao,
the functional address mask is set to OxOOOO 0080.
Note: No checks are made by DLCTOKEN as to whether a received packet was

accepted by the adapter due to a pre-set network address, group address, or
functional address.

• The max_ ls (maximum link stations) field cannot exceed 255.

• The following are the common SAP flags that are not supported:

ENCD SDLC serial encoding
NTWK Teleprocessing network type
LINK Teleprocessing link type
PHYC Physical network call (teleprocessing)
ANSW Teleprocessing autocall and autoanswer.

• Group SAPs are not supported, so the nurn_grp_saps (number of group SAPs) field
must be set to O (zero).

• The laddr_name (local address/name) field and its associated length are only used for
name discovery when the common SAP flag ADDA is set to 0. When resolve procedures
are used (the ADDA flag set to one), DLCTOKEN obtains the local network address from
the device handler, and not from the dlc_esap_arg structure.

• The local_ sap (local service access point) field may be set to any value except the Null
SAP (OxOO) or the Discovery SAP (OxFC). Also, the low-order bit must be set to O
(B1nnnnnnnO') to indicate an individual address.

• No protocol-specific data area is required for DLCTOKEN to enable a SAP.

1-22 Communications Programming Concepts

DLC_START_LS

The ioctl argument structure for starting a link station (dlc_sls_arg) has the following
specifics:

The following common link station flags that are not supported:

STAT Station type for SDLC
NEGO Negotiable station type for SDLC.

• The raddr_name (remote address/name) field is used only for outgoing calls when
DLC_SLS_LSVC common link station flag is set active.

• The maxi£ (maximum I-field length) field may be set to any value greater than 0. See the
DLCTOKEN frame format for more details. DLCTOKEN adjusts this value to a maximum
of 4060 bytes if set too large.

• The rcv_wind (receive window) field may be set to any value from 1 (one) to 127. The
recommended value is 127.

• The xmit_wind {transmit window) field may be set to any value from 1 to 127. The
recommended value is 26.

• The rsap {remote SAP) field may be set to any value except the NULL SAP (OxOO) or the
name-discovery SAP (OxFC). Also, the low-order bit must be set to 0 {B'nnnnnnnO') to
indicate an individual address.

• The max_repoll field may be set to any value from 1 to 255. The recommended value is
8.

• The repoll_time field is defined in increments of 0.5 seconds and may be set to any
value from 1 to 255. The recommended value is 2, giving a time-out duration of 1 to 1.5
seconds.

• The ack_time (acknowledgment time) field is defined in increments of 0.5 seconds, and
may be set to any value from 1 to 255. The recommended value is 1 , giving a time-out
duration of 0.5 to 1 second.

• The inact_time (inactivity time) field is defined in increments of 1 second and may be
set to any value from 1 to 255. The recommended value is 48, giving a time-out duration
of 48 to 48.5 seconds.

• The force_time (force halt time) field is defined in increments of 1 second and may be
set to any value from 1 to 16383. The recommended value is 120, giving a time-out
duration of approximately 2 minutes.

• A protocol-specific data area must be appended to the generic start link station argument
{dlc_sls_arg). This structure provides DLCTOKEN with additional protocol-specific
configuration parameters:

struct trl~start_psd

{

uchar t pkt_prty;

uchar t dyna_wnd;

ushort t reserved;

} ;

/* ring access packet priority

/* dynamic window increment

/* currently not used

*/

*/

*/

Data Link Control (DLC) 1-23

DLC_ALTER

pkt_prty Specifies the ring access priority that the user wishes to reserve on transmit
packets. Values of Oto 3 are supported, where O is the lowest priority and 3
is the highest priority.

dyna_wnd Network congestion causes the local transmit window count to automatically
drop to a value of 1. The dynamic window increment specifies the number of
consecutive sequenced packets that must be acknowledged by the remote
station before the local transmit window count can be incremented. This
allows a gradual increase in network traffic after a period of congestion. This
field may be set to any value from 1 to 255; the recommended value is 1.

The ioctl subroutine argument structure for altering a link station (dlc_alter_arg} has the
following specifics:

• The alter flags that are NOT supported:

SM1, SM2 Set SDLC control mode.

• A protocol-specific data area must be appended to the generic alter link station argument
structure {dlc_alter_arg}. This structure provides DLCTOKEN with additional
protocol-specific alter parameters.

#define TRL_ALTER_PRTY Ox80000000 /* alter packet priority */

#define TRL_ALTER_DYNA Ox40000000 /* alter dynamic window incr. */

{

} ;

struct trl_start_psd

ulong_t flags;

uchar t pkt_prty;

uchar t dyna_wnd;

ushort_t reserved;

• The specific alter flags include:

/* specific alter flags

/* ring access packet priority value

/* dynamic window increment value

/* currently not used

*/

*/

*/

*/

TRL_ALTER_PRTY Alter Priority. If set to 1, the pkt_prty value field replaces the
current priority value being used by the LS. The LS must be
started for this alter command to be valid.

TRL_ALTER_DYNA Alter Dynamic Window. If set to 1, the dyna_wnd value field
replaces the current dynamic window value being used by the
LS. The LS must be started for this alter command to be valid.

• The pkt_prty value field specifies the new priority reservation value for transmit
packets.

• The dyna_wnd value field specifies the new dynamic window value to control network
congestion.

1-24 Communications Programming Concepts

DLC_ENTER_SHOLD

The enter short hold option is not supported by DLCTOKEN.

DLC_EXIT_SHOLD

The exit short hold option is not supported by DLCTOKEN.

DLC_ADD_GROUP

IOCINFO

The add group or multicast address option is not supported by DLCTOKEN.

The ioctype variable returned is defined as a DD _DLC definition and the subtype returned is
DS_DLCTOKEN.

Related Information
The dlcclose routine, dlcconfig routine, dlcmpx routine, dlcopen routine, dlcread routine,
dlcselect routine, dlcwrite routine, dlcioctl routine.

The ioctl subroutine, readx subroutine.

IEEE 802.3 Ethernet Data Link Control (DLC8023} Overview on page 1-26, Standard
Ethernet Data Link Control (DLCETHER) Overview on page 1-35,Synchronous Data Link
Control (DLCSDLC) Overview on page 1-44, Qualified Logical Link Control (DLCQLLC)
Overview on page 1-52.

Data Link Control (DLC) 1-25

IEEE 802.3 Ethernet Data Link Control
IEEE 802.3 Ethernet Data Link Control (DLC8023) is a device manager that follows the
generic interface definition (GDLC). This DLC device manager provides a pass-through
capability that allows transparent data flow and provides an access procedure for the
transfer of four types of data over an Ethernet LAN: datagrams, sequenced data,
identification data, and logical link controls.

This access procedure relies on functions provided in the Ethernet Kernel Device Driver and
the IBM Ethernet Co-Processor Busmaster adapter to actually transfer data.

The IEEE 802.3 Ethernet Data Link Control (DLC8023) provides the following:

• DLC8023 device manager functions
• Protocol support
• Name-discovery services
• Direct network services
• Connection contention
• Link session initiation
• Link session termination
• Programming interfaces.

The DLC8023 device manager on an Ethernet LAN operates between two nodes: Media
Access Control (MAC) procedures and IEEE 802.2 Logical Link Control (LLC) procedures.
MAC and LLC procedures are defined in the IEEE Project 802 Local Area Network ·
Standards. The specific state tables implemented can be found in the IBM Token-Ring LAN
Formats and Protocols Manual. The DLC8023 device manager operating between these two
nodes supports:

• Asynchronous Disconnected Mode (ADM) and Asynchronous Balanced Mode Extended
(ABME)

• Two-way simultaneous (full-duplex) data flow

• Multiple point-to-point logical attachments on the LAN using network address and service
access point address

• Peer-to-peer relationship with remote station

• Both name-discovery and address resolution services.

The DLC8023 device manager provides full-duplex, peer-data transfer capabilities over an
Ethernet local area network. The Ethernet local area network must use the IEEE 802.3
CSMA/CD medium access control protocol and a superset of the IEEE 802.2 logical link
control protocol.

Multiple adapters are supported, with a maximum of 255 logical attachments per adapter.

1-26 Communications Programming Concepts

The term logical link control (LLC) is used to describe the collection of manager, access
channel, and link station subcomponents of a Generic Data Link Control (GDLC) component
such as the DLC8023 device manager. The following figure illustrates the DLC8023
Component Structure:

DLC8023 Component Structure

User
Physical
Unit
Services

DLC
Mgr

LLC

-----]]
User Data Services

Link Station

Access Channel Control

2-

Medium Access Control

DLC8023 Component

Each link station controls the transfer of data on a single logical link. The access channel
performs multiplexing and demultiplexing for message units flowing from the link stations
and manager to medium access control {MAC). The DLC manager performs connection
establishmenVtermination, link station creation/deletion, and routing commands to the proper
station.

DLC8023 Device Manager Functions
The DLC8023 device manager and transport medium use two functional layers, MAC and
LLC to maintain reliable link-level connections, guarantee data integrity, negotiate
exchanges of identification, and connectless connection-oriented services.

The Ethernet adapter and DLC8023 device handler are responsible for the following MAC
functions:

• Managing the carrier sense multiple access with collision detection (CSMA/CD) algorithm

• Encoding and decoding the serial bit stream data

• Receiving network address checking

• Routing received frames based on the LPDU DSAP field

• Generating preamble

• Checking CRC and generation

Data Link Control (DLC) 1-27

• Failsafe time outs.

The DLC8023 device manager is also responsible for the following LLC functions.

• Remote connection services
• Sequencing of each link station on a given port
• Creating of the network addresses on transmit frames
• Creating of service access point (SAP) addresses on transmit frames
• Creating of IEEE 802.2 LLC commands and responses on transmit frames
• Recognizing and routing of received frames to the proper SAP
• Servicing of IEEE 802.2 LLC commands and responses on receive frames
• Frame sequencing and retries
• Failsafe and inactivity time outs
• Reliability/Availability/Serviceability counters, error logs, and link traces.

Protocol Support

Station Type

DLC8023 supports the SNA logical link control (LLC) protocol and state tables described in
the IBM Token-Ring Local Area Network Format and Protocol Manual, which contains the
Local Area Network IEEE 802.2 Logical Link Control standard. Additional name discovery
services have been added for establishing remote connections.

A combined station is supported for a balanced (peer-to-peer) configuration on a logical
point-to-point connection. This allows either station to asynchronously initiate the
transmission of commands at any response opportunity. The data source in each combined
station controls the data sink in the other station. Data transmissions then flow as primary
commands, and acknowledgments and status flow as secondary responses.

Response Modes
Both asynchronous disconnect mode (ADM) and asynchronous balanced mode extended
(ABME) are supported. ADM is entered by default whenever a link session is initiated, and is
switched to ABME only after the set asynchronous balanced mode extended (SABME)
command sequence is complete. Once operating in the ABME command mode, information
frames containing user data can be transferred. The ABME command mode then remains
active until termination of the LLC session, which occurs due to the disconnect (DISC)
command packet sequence or a major link error.

1-28 Communications Programming Concepts

IEEE 802.3 Data Packet
All communication between a local and remote station is accomplished by the transmission
of a packet that contains the IEEE 802.3 headers and trailers, and an encapsulated LLC
protocol data unit (LPDU}. See the following figure that describes the DLC8023 data packet:

DLC8023 Frame Encapsulation

'4--- 8 bytes __... 6 bytes * 6 bytes ~ 2 _...,.~14---- m bytes ---~ 14- 4 --t-1

Preamble Destination Source LPDU LPDU I Pad CRC Address Address Length

i:== 2 bytes -.i+- 1 (2) byte --~14----- p byte~
DSAP SSAP Control Information
Addr. Addr. Field Field

The IEEE 802.3 data packet consists of the following fields:

LPDU LLC protocol data unit
DSAP Destination service access point address field
SSAP Source service access point address field
CRC Cyclic redundancy check or frame check sequence
m bytes Integer value greater than or equal to 46 and less than or equal to 1500
p bytes Integer value greater than or equal to O and less than or equal to 1496.

Note: Preamble and CRC are added and deleted by the hardware adapter.

Name Discovery Services
In addition to the standard IEEE 802.2 Common Logical Link Protocol support and the
address resolution services, DLC8023 also provides a name service that allows the operatol'
to identify local and remote stations by name instead of by 6-byte physical addresses. Each
port must have a unique name of up to 20 characters on the network. The character set
used will vary depending on the user's protocol (SNA, for example, requires Character Set
A). Additionally, each new SAP supported on a particular port may have a unique name, if
desired.

Each name is added to the network by broadcasting a find (local name) request when the
new name is being introduced to a given network port. If no response results from the find
(local name) request, after sending it the number of times specified, the physical link is
declared opened, and the name is assigned to the local port and SAP. If another port on the
network already has the name being added, a name found response is sent to the station
that issued the find request, and the new attachment fails with a result code
(DLC_NAME_IN_USE), indicating that a different name must be chosen.

Calls are established by broadcasting a find (remote name) request to the network and
waiting for a response from the port with the specified name. Only those ports that have
listen attachments pending, that receive colliding find requests, or that are already attached
to the requesting remote station will answer a find request.

Data Link Control {DLC) 1-29

Direct Network Services
Some users wish to handle their own unnumbered information packets on the network
without the aid of the data link layer within DLC8023. A direct network interface is provided
that allows an entire packet to be generated and sent by a user once their service access
point has been opened. This allows full control of every field in the data link header for each
write issued. Also provided is the ability to view the entire packet contents on received
frames. The only criteria for a direct network write are:

• The local SAP must be valid and opened.
• The data link control byte must indicate unnumbered information (Ox03).

Connection Contention
Dual paths to the same nodes are detected by the DLC8023 device manager in one of two
ways. If a call is in progress to a remote node that is also trying to call the local node, the
incoming find (remote name) request is treated as if a local listen were outstanding.

On the other hand, if a pending local listen has been acquired by a remote node's call, and
the local user issues a call to that remote node after the link session is already active, a
result code {DLC_REMOTE_CONN) is returned to the user along with the link station correlator
of the attachment already active, so that the user can relink its attachment pointers.

Link Session Initiation
The DLC8023 device manager is initialized at Open Link Station as a combined station in
Asynchronous Disconnect Mode (ADM). As a secondary combined station, DLC8023 is in
receive state waiting for a command frame from the primary combined station. The
command frames accepted by the secondary combined station at this time are the SABME
command (set asynchronous balanced mode extended), XID (exchange station
identification), TEST (test link), UI (unnumbered information--datagram), and DISC
(disconnect). Any other command frame will be ignored. Once a SABME command is
received, the station is ready for normal data transfer, and I (Information), RR (receive
ready), RNA (receive not ready), and REJ (reject) frames are also accepted.

As a primary combined station, the DLC8023 device manager can perform ADM XID
exchanges, ADM TEST exchanges, send datagrams, or contact the remote into ABME. XID
exchanges allow the primary combined station to send out its station specific identification to
the secondary combined station and obtain a response. Once an XID response is received,
any attached information field is passed to the user for further action.

TEST exchanges allow the primary combined station to send out a buffer of information that
is echoed by the secondary combined station in order to test the integrity of the link.

Initiation of the normal data exchange mode (ABME) causes the primary combined station to
send a SABME command to the secondary combined station. Once sent successfully, the
connection is said to be contacted, and the user is notified. I-frames can now be sent and
received between the linked stations.

Link Session Termination
The DLC8023 device manager can be terminated by the user or by the remote station in the
following ways:

• The user can cause normal termination by issuing a close link station command to the
DLC8023 device manager. This causes the primary/combined station to initiate a
disconnect (DISC) packet sequence.

• The user can cause receive inactivity to cause termination. This is useful in detecting a
loss of connection in the middle of a session.

1-30 Communications Programming Concepts

• The remote station can cause termination by sending a disconnect (DISC) command
packet as a primary combined station.

• Abnormal termination is caused by certain protocol violations or by resource outages.

DLC8023 Programming Interfaces
The IEEE 802.3 Ethernet Data Link Control (DLC8023) device manager conforms to the
GDLC guidelines except where noted below.

Note: The die prefix is replaced with e31 prefix for the DLC8023 device manager.

e31close

e31config

e31mpx

e31open

e31read

e31select

e31write

e31ioctl

DLC8023 is fully compatible with the dlcclose GDLC interface.

DLC8023 is fully compatible with the dlcconfig GDLC interface. No
initialization parameters are required.

DLC8023 is fully compatible with the dlcmpx GDLC interface.

DLC8023 is fully compatible with the dlcopen GDLC interface.

DLC8023 is compatible with the dlcread GDLC interface, under the
following condition:

The readx subroutines may have DLC8023 data link header information
prefixed to the I-field being passed to the application. This is optional based
on the readx subroutine data link header length extension parameter in the
gdl_io_ext structure. If this field is nonzero, DLC8023 copies the data link
header and the I-field to user space, and sets the actual length of the data
link header into the length field. If the field is O (zero), no data link header
information is copied to user space. See the DLC8023 frame format for
more details.

Kernel receive packet function subroutine calls always have the DLC8023
data link header information within the communications memory buffer
(mbuf), and can locate it by subtracting the length passed (in the
gdl_io_ext structure) from the mbuf data offset field.

DLC8023 is fully compatible with the dlcselect GDLC interface.

DLC8023 is compatible with the dlcwrite GDLC interface, with the
exception that network data may only be written as an unnumbered
information (UI) packet and must have the complete data link header
prefixed to the data. DLC8023 verifies that the local (source) SAP is
enabled and that the control byte is UI (Ox03). See the DLC8023 frame
format for more details.

DLC8023 is compatible with the dlcioctl GDLC interface, with conditions on
the following operations:

DLC_ENABLE_SAP
DLC_START_LS
DLC_ALTER
DLC_ENTER_SHOLD
DLC_EXIT_SHOLD
DLC_ADD_GROUP
IOCINFO.

Data Link Control (DLC) 1-31

DLC_ENABLE_SAP
The ioctl argument structure for enabling a SAP (dlc_esap_arg) has the following specifics:

• The grp_addr {group address sometimes called multicast address) field must be set as
specified in the IBM Ethernet Co-Processor Busmaster Adapter specifications. This is a
6-byte value that allows the local adapter to accept packets destined for a group of
remote stations. An example of a group address is:

Ox0900_2B00_0004.

Note: No checks are made by the DLC8023 device manager as to whether a received
packet was accepted by the adapter due to burned in network address or group
address.

• The max_ls {maximum link station) field cannot exceed 255.

• The following Common SAP Flags are not supported:

ENCD SDLC serial encoding
NTWK Teleprocessing network type
LINK Teleprocessing. link type
PHYC Physical network call {teleprocessing)
ANSW Teleprocessing auto call and answer.

• Group SAPs are not supported, so the num_grp_saps (number of group SAPs) field
must be set to 0 (zero).

• The laddr_name (local address name) field and its associated length are only used for
name-discovery when the common SAP flag ADDR is set to O (zero). When resolve
procedures are used (the ADDR flag is set to one), the DLC8023 device manager obtains
the local network address from the device handler, and not from the dlc_esap_arg
structure.

• The local_sap (local SAP) field may be set to any value except the Null SAP (OxOO) or
the Discovery SAP (OxFC). Also, the low-order bit must be set to O (B'nnnnnnnO') to
indicate an individual address.

• No protocol-specific data area is required for the DLC8023 device manager to enable a
SAP.

DLC_START_LS
The ioctl argument structure for starting a link station (dlc_sls_arg) has the following
specifies:

• The common link station flags are not supported:

STAT Station type for SDLC
NEGO Negotiable station type for SDLC.

• The raddr_name (remote address/name) field is used only for outgoing calls when
DLC_SLS_LSVC common link station flag is set active.

• The maxif (maximum I-field length) field may be set to any value greater than 0. See the
DLC8023 frame format for the specific byte lengths that are supported. DLC8023 adjusts
this value to a maximum of 1496 bytes if set too large.

• The rcv_wind (receive window) field may be set to any value from 1 to 127. The
recommended value is 127.

1-32 Communications Programming Concepts

DLC_ALTER

• The xrnit_wind (transmit window) field may be set to any value from 1 to 127. The
recommended value is 26.

• The rsap (remote SAP) field may be set to any value except the null SAP (OxOO) or the
discovery SAP (OxFC). Also, the low-order bit must be set to O (B1nnnnnnnO') to indicate
an individual address.

• The rnax_repoll field may be set to any value from 1 to 255. The recommended value is
8.

• The repoll_tirne field is defined in increments of 0.5 seconds and may be set to any
value from 1 to 255. The recommended value is 2, giving a time out duration of 1 to 1.5
seconds.

• The ack_tirne (acknowledgement time) field is defined in increments of 0.5 seconds,
and may be set to any value from 1 to 255. The recommended value is 1, giving a timeout
duration of 0.5 to 1 second.

• The inact_tirne (inactivity time) field is defined in increments of 1 second, and may be
set to any value from 1 to 255. The recommended value is 48, giving a time out duration
of 48 to 48.5 seconds.

• The force_ time (force halt time) field is defined in increments of 1 second and may be
set to any value from 1 to 16383. The recommended value is 120, giving a time out
duration of approximately 2 minutes.

• There is no protocol-specific data area required for the DLC8023 device manager to start
an LS (link station).

The ioctl argument structure for altering a link station (dlc_alter_arg} has the following
specifies:

• The following alter flags that are not supported:

RTE Alter routing
SM1, SM2 Set SDLC control mode.

• There is no protocol-specific data area required for DLC8023 to alter a link station.

DLC_ENTER_SHOLD

The enter short hold option is not supported by the DLC8023 device manager.

DLC_EXIT_SHOLD

The exit short hold option is not supported by the DLC8023 device manager.

DLC_ADD_GROUP

IOCINFO

The add group or multi-cast address option is supported by the DLC8023 device manager as
a 6-byte value as described above in the DLC_ENABLE_SAP (group address) ioctl
operation.

The ioctype variable returned is defined as a DD_DLC definition and the subtype returned is
DS_DLC8023.

Data Link Control (OLC) 1-33

Related Information
The dlcclose routine, dlcconfig routine, dlcmpx routine, dlcopen routine, dlcread routine,
dlcselect routine, dlcwrite routine, dlcioctl routine.

The ioctl subroutine, readx subroutine.

Token-Ring Data Link Control (DLCTOKEN) Overview on page 1-16, Standard Ethernet
Data Link Control (DLCETHER) Overview on page 1-35, Synchronous Data Link Control
(DLCSDLC) Overview on page 1-44, Qualified Logical Link Control (DLCQLLC) Overview
on page 1-52.

1-34 Communications Programming Concepts

Standard Ethernet Data Link Control
Standard Ethernet Data Link Control (DLCETHER) is a device manager that follows the
generic interface definition (GDLC). This DLC device manager provides a pass-through
capability that allows transparent data flow and provides an access procedure for the
transfer of four types of data over a Standard Ethernet: datagrams, sequenced data,
identification data, and logical link controls.

To actually transfer data, this access procedure relies on functions provided in the Ethernet
Device Handler Overview and the IBM Ethernet Co-Processor Busmaster adapter. See also
RISC System/6000 Power Station and Power Server Hardware Technical Reference Options
and Devices (SA23-2646).

The Standard Ethernet Data Link Control (DLCETHER) provides the following:

• DLCETHER device manager functions
• Protocol support
• Name-discovery services
• Direct network services
• Connection contention
• Link session initiation
• Link session termination
• Programming interfaces.

The DLCETHER device manager on an Ethernet LAN operates between two nodes: media
access control (MAC) procedures and IEEE 802.2 logical link control (LLC) procedures, as
defined in the IEEE Project 802 Local Area Network Standards. The specific state tables
implemented can be found in the IBM Token-Ring LAN Formats and Protocols Manual. This
device manager operating between these two nodes supports:

• Asynchronous Disconnected Mode (ADM) and Asynchronous Balanced Mode Extended
(ABME)

• Two-way simultaneous (full-duplex) data flow

• Multiple point-to-point logical attachments on the LAN using network and service access
point addresses

• Peer-to-peer relationship with remote station

• Both name-discovery and address resolution services.

The Ethernet Data Link Control provides full-duplex, peer data-transfer capabilities over a
Standard Ethernet local area network, using the Xerox Ethernet CSMA/CD medium access
control (MAC) protocol and a superset of the IEEE 802.2 logical link control (LLC).

Note: Multiple adapters are supported with a maximum of 255 logical attachments per
adapter.

Data Link Control (DLC) 1-35

The term logical link control (LLC) is used to describe the collection of manager, access
channel, and link station subcomponents of a Generic Data Link Control (GDLC) component
such as DLCETHER device manager. The following figure illustrates the DLCETHER
Component Structure:

DLCETHER Component Structure

User
Physical
Unit
Services

DLC
Mgr

---.]]
User Data Services

Link Station

Access Channel Control

2-

Medium Access Control

DLCETHERComponent--------------------

Each link station controls the transfer of data on a single logical link. The access channel
performs multiplexing and demultiplexing for message units flowing from the link stations
and manager to medium access control (MAC). The DLC manager performs connection
establishment and termination, link station creation and deletion, and routing commands to
the proper station.

DLCETHER Device Manager Functions
The DLCETHER device manager and transport medium use two functional layers, medium
access control (MAC) and logical link control (LLC) to maintain reliable link-level
connections, guarantee data integrity, negotiate exchanges of identification, and connectless
connection-oriented services.

The Ethernet adapter and the DLCETHER device handler are responsible for the following
MAC functions:

• Managing the carrier sense multiple access with collision detection (CSMA/CD) algorithm
• Encoding and decoding the serial bit stream data
• Receiving network address checking
• Routing received frames based on the LLC type field
• CRC checking and generation
• Failsafe time outs.

1-36 Communications Programming Concepts

The DLCETHER device manager is responsible for the following LLC functions, as well:

• Remote connection services
• Sequencing of each link station on a given port
• Creating of the network addresses on transmit frames
• Creating of service access point (SAP) addresses on transmit frames
• Creating of IEEE 802.2 LLC commands and responses on transmit frames
• Recognizing and routing of received frames to the proper SAP
• Servicing of IEEE 802.2 LLC commands and responses on receive frames
• Frame sequencing and retries
• Failsafe and inactivity time outs
• Reliability/Availability/Serviceability counters, error logs, and link traces.

Protocol Support

Station Type

DLCETHER supports the SNA logical link control (LLC) protocol and state tables described
in the IBM Token-Ring Local Area Network Format and Protocol Manual, which contains the
Local Area Network IEEE 802.2 Logical Link Control standard. Additional direct-name
services have been added for establishing remote connections.

A combined station is supported for a balanced (peer-to-peer) configuration on a logical
point-to-point connection. This allows either station to asynchronously initiate the
transmission of commands at any response opportunity. The data source in each combined
station controls the data sink in the other station. Data transmissions then flow as primary
commands, and acknowledgments and status flow as secondary responses.

Response Modes
Both asynchronous disconnect mode (ADM) and asynchronous balanced mode extended
(ABME) are supported. The ADM mode is entered by default whenever a link session is
initiated, and is switched to ABME only after the set asynchronous balanced mode extended
(SABME) command sequence is complete. Once operating in the ABME mode, information
frames containing user data can be transferred. The ABME mode then remains active until
termination of the LLC session, which occurs due to the disconnect (DISC) command
sequence or a major link error.

Data Link Control (DLC) 1-37

ETHERNET Data Packet
All communication between a local and remote station is accomplished by the transmission
of a packet that contains the token-ring headers and trailers, and an encapsulated LLC
protocol data unit (LPDU). This packet format is specifically designed for IBM Systems
Network Architecture (SNA) Logical Unit (LU) type 6.2 higher-level protocol, but other
protocols can use this format as well. See the following figure that describes the Ethernet
data packet:

DLCETHER Frame Encapsulation

i.--- 8 bytes IJJll4 6 bytes + 6 bytes -+j4- 2 IJJll4 m bytes IJJll4 4 -+I

Preamble Destination Source Type Data CRC Address Address Field

i:=2bytes

I l
IJJll4 1 ---111Ji~l-t1----- n bytes ----.!

LPDU Leading
LPDU

Trailing
Length Pad Pad

i:= 2 bytes ~4 1 (2) byte _.....,14----- p bytes ~
DSAP SSAP Control Information
Addr. Addr. Field Field

The Ethernet data packet consists of the following fields:

LPDU LLC protocol data unit.
DSAP Destination service access point address field.
SSAP Source service access point address field.
CRC Cyclic redundancy check or frame check sequence.
m bytes Integer value greater than or equal to 46 and less than or equal to 1500.
n bytes Integer value greater than or equal to 43 and less than or equal to 1497.
p bytes Integer value greater than or equal to O (zero) and less than or equal to

1493.
Note: Preamble and CRC are added and deleted by the hardware adapter.

Name-Discovery Services
In addition to the standard IEEE 802.2 Common Logical Link Protocol support and the
address resolution services, DLCETHER also provides a name service that allows the
operator to identify local and remote stations by name instead of by 6-byte physical
addresses. Each port must have a unique name on the network of up to twenty characters.
The character set used varies depending on the user's protocol (SNA, for example, requires
Character Set-A). Additionally, each new SAP supported on a particular port may have a
unique name if desired.

Each name is added to the network by broadcasting a find (local name) request when the
new name is being introduced to a given network port. If no response other than an echo
results from the find (local name) request, after sending it the number of times specified, the
physical link is declared opened, and the name is assigned to the local port and SAP. If

1-38 Communications Programming Concepts

another port on the network already has the name being added, a name found response is
sent to the station that issued the find request, and the new attachment fails with a result
code (DLC_NAME_IN_USE), indicating that a different name must be chosen. Calls are
established by broadcasting a find {remote name) request to the network and waiting for a
response from the port with the specified name. Only those ports that have listen
attachments pending, that receive colliding find requests, or that are already attached to the
requesting remote station answers a find request.

Direct Network Services
Some users wish to handle their own unnumbered information packets on the network
without the aid of the data link layer within DLCETHER. This results in protocol constraints
from their individual service access points. A direct network interface is provided that allows
an entire packet to be generated and sent by a user once the user's service access point
has been opened. This allows full control of every field in the data link header for each write
issued. Also provided is the ability to view the entire packet contents on received frames.
The only criteria for a direct network write are that:

• The local SAP must be valid and opened.
• The data link control byte must indicate unnumbered information {Ox03).

Connection Contention
Dual paths to the same .nodes are detected by the DLCETHER device manager in one of
two ways. If a call is in progress to a remote node that is also trying to call the local node,
the incoming find {remote name) request is treated as if a local listen were outstanding. On
the other hand, if a pending local listen has been acquired by a remote node's call and the
local user issues a call to that remote node after the link session is already active, a result
code {DLC_REMOTE_CONN) is returned to the user along with the link station correlator of the
attachment already active. This allows the user to re-link attachment pointers.

Link Session Initiation
DLCETHER is initialized at Open Link Station as a combined station in Asynchronous
Disconnect Mode {ADM). As a secondary/combined station, DLCETHER is in receive state
waiting for a command frame from the primary combined station. The command frames
accepted by the secondary combined station at this time are SABME {set asynchronous
balanced mode extended), XID {exchange station identification), TEST {test link), UI
(unnumbered information-datagram), and DISC (disconnect). Any other command frame
will be ignored. Once a SABME command frame is received, the station is ready for normal
data transfer, and the I {information), RR {receive ready), RNR (receive not ready), and REJ
(reject) frames are also be accepted.

As a primary or combined station, DLCETHER can perform ADM XID exchanges, ADM
TEST exchanges, send datagrams or contact the remote into the ABME command frame.
XI D exchanges allow the primary or combined station to send out its station specific
identification to the secondary or combined station and obtain a response. Once an XID
response is received, any attached information field is passed to the user for further action.

The TEST exchanges allow the primary or combined station to send out a buffer of
information that is echoed by the secondary or combined station in order to test the integrity
of the link.

Initiation of the normal data exchange mode (ABME) causes the primary combined station to
send a SABME command frame to the secondary combined station. Once sent successfully,
the connection is said to be contacted, and the user is notified. I-frames can now be sent
and received between the partner stations.

Data Link Control (DLC) 1-39

Link Session Termination
The DLCETHER device manager can be terminated by the user or by the remote station in
the following ways:

• The user can cause normal termination by issuing a DLC_HALT_LS command operation
to the DLCETHER device manager. This will cause the primary/combined station to
initiate a disconnect (DISC) command packet sequence.

• Receive inactivity can be optioned to cause termination. This is useful in detecting a loss
of connection in the middle of a session.

• The remote station can cause termination by sending a DISC command packet as a
primary combined station.

• Abnormal termination is caused by certain protocol violations or by resource outages.

DLCETHER Programming Interfaces
The Standard Ethernet Data Link Control (DLCETHER) conforms to the GDLC guidelines
except where described in the following list:

Note: The die prefix is replaced with edl prefix for the DLCTOKEN device manager.

edlclose

edlconfig

edlmpx

edlopen

edlread

edlselect

edlwrite

DLCETHER is fully compatible with the GDLC interface, dlcclose.

DLCETHER is fully compatible with the GDLC interface, dlcconfig. No
initialization parameters are required.

DLCETHER is fully compatible with the GDLC interface, dlcmpx.

DLCETHER is fully compatible with the GDLC interface, dlcopen.

DLCETHER is compatible with the GDLC interface dlcread with the
following conditions: The readx subroutines may have DLCETHER data link
header information prefixed to the I-field being passed to the application.
This is optional based on the readx subroutine data link header length
extension parameter in the gdl_io_ext structure.

If this field is nonzero, DLCETHER copies the data link header and the
I-field to user space, and sets the actual length of the data link header into
the length field. If the field is zero, no data link header information is copied
to user space. See the DLCETHER frame format for more details.

Kernel receive packet function subroutine calls always have the
DLCETHER data link header information within the Communications
memory buffer (mbuf), and can locate it by subtracting the length passed
(in the gdl_io_ext structure) from the mbuf data offset field.

DLCETHER is fully compatible with the GDLC interface, the dlcselect.

DLCETHER is compatible with the GDLC interface, dlcwrite with the
exception that network data may only be written as an unnumbered
information (U I) packet and must have the complete data link header
prefixed to the data. DLCETHER verifies that the local (source) SAP is
enabled and that the control byte is UI (Ox03). See the DLCETHER frame
format for more details.

1-40 Communications Programming Concepts

edlioctl DLCETHER is compatible with the GDLC interface, dlcioctl, with conditions
on the following operations:

DLC_ENABLE_SAP

DLC_ENABLE_SAP
DLC_START_LS
DLC_ALTER
DLC_ENTER_SHOLD
DLC_EXIT_SHOLD
DLC_ADD_GRP
IOCINFO

The ioctl argument structure for enabling a SAP (dlc_esap_arg) has the following specifics:

• The grp_addr field (group address--sometimes called multicast address) must be set as
specified in the IBM Ethernet Co-Processor Busmaster adapter specifications. This is a
6-byte value that allows the local adapter to accept packets destined for a group of
remote stations. An example of a group address follows:

Ox0900_2B00_0004

Note: No checks are made by the DLCETHER device manager as to whether a
received packet was accepted by the adapter due to a pre-set network address or
group address.

• The max_ls (maximum link stations) field cannot exceed 255.

• The common SAP flags that are not supported:

ENCD SDLC serial encoding
NTWK Teleprocessing network type
LINK Teleprocessing link type
PHYC Physical network call (teleprocessing)
ANSW Teleprocessing auto call and answer.

• Group SAPs are not supported, so the num_grp_saps (number of group SAPs) field
must be set to 0.

• The laddr_name (local address and name) field and its associated length are only used
for name-discovery when the common SAP flag field ADDR is set to 0 (zero). When
resolve procedures are used (ADDR is set to one), DLCETHER obtains the local network
address from the device handler, and not from the dlc_esap_arg structure.

• The local_sap field may be set to any value except the null SAP (OxOO) or the
discovery SAP (OxFC). Also, the low-order bit must be set to O (B'nnnnnnnO') to indicate
an individual address.

• No protocol-specific data area is required for the DLCETHER device manager to enable a
SAP.

DLC_START_LS
The ioctl argument structure for starting a link station (dlc_sls_arg) has the following
specifics:

• The common link station flags that are not supported:

STAT Station type for SDLC
NEGO Negotiable station type for SDLC.

Data Link Control (DLC) 1-41

DLC_ALTER

• The raddr_name (remote address/name) field is used only for outgoing calls when the
DLC_SLS_LSVC common link station flag is set active.

• The maxi£ (max I-field) length may be set to any value greater than 0 (zero). See the
frame format figure for specific byte lengths that are supported. The DLCETHER device
manager adjusts this value to a maximum of 1493 bytes if set too large.

• The rev _wind (receive window) field may be set to any value from 1 to 127. The
recommended value is 127.

• The xmi t _wind (transmit window) field may be set to any value from 1 to 127. The
recommended value is 26.

• The rsap (remote SAP) field may be set to any value except the Null SAP (OxOO) or the
discovery SAP (OxFC). Also, the low-order bit must be set to 0 (8 1nnnnnnnO') to indicate
an individual address.

• The max_ repoll field may be set to any value from 1 to 255. The recommended value is
8.

• The repoll_time field is defined in increments of 0.5 seconds and may be set to any
value from 1 to 255. The recommended value is 2, giving a time out duration of 1 to 1.5
seconds.

• The ack_time (acknowledgement time) field is defined in increments of 0.5 seconds and
may be set to any value from 1 to 255. The recommended value is 1, giving a time out
duration of 0.5 to 1 second.

• The inact_time (inactivity time) field is defined in increments of 1 second, and may be
set to any value from 1 to 255. The recommended value is 48, giving a time out duration
of 48 to 48.5 seconds.

• The force_ time (force halt time) field is defined in increments of 1 second, and may be
set to any value from 1 to 16383. The recommended value is 120, giving a time out
duration of approximately 2 minutes.

• There is no protocol-specific data area required for the DLCETHER device manager to
start a link station.

The ioctl argument structure for altering a link station (dlc_alter_arg) has the following
specifics:

• The alter flags that are not supported:

RTE Alter routing
SM1, SM2 Set SDLC control mode.

• There is no protocol specific data area required for the DLCETHER device manager to
alter a link station.

DLC_ENTER_SHOLD
The Enter Short Hold option is not supported by the DLCETHER device manager.

DLC_EXIT_SHOLD
The Exit Short Hold option is not supported by the DLCETHER device manager.

1-42 Communications Programming Concepts

DLC_ADD_GRP

IOCINFO

The add group or multicast address option is supported by the DLCETHER device manager
as a 6-byte value as described above in DLC_ENABLE_SAP {group address) ioctl
operation.

The ioctype operation returned is DD_DLC definition and the subtype returned is
DS_DLCETHER.

Related Information
The dlcclose routine, dlcconfig routine, dlcmpx routine, dlcopen routine, dlcread routine,
dlcselect routine, dlcwrite routine, dlcioctl routine.

The ioctl subroutine, readx subroutine.

The Token-Ring Data Link Control {DLCTOKEN) Overview on page 1-16, The IEEE 802.3
Ethernet Data Link Control {DLC8023) Overview on page 1-26, The Synchronous Data Link
Control {DLCSDLC) Overview on page 1-44, The Qualified Logical Link Control (DLCQLLC)
on page 1-52.

The RISC System/6000 Power Station and Power Server Hardware Technical Reference
Options and Devices (SA23-2646).

Data Link Control (DLC) 1-43

Synchronous Data Link Control
Synchronous Data Link Control (DLCSDLC) is one of the generic data link controls. It
provides the access procedure for transparent and code-independent information
interchange across teleprocessing and data networks, as defined in the IBM SDLC
Concepts, GA27-3039 document. The subset of the SDLC architecture supported by
DLCSDLC is as follows:

• Normal disconnected mode (NDM) and Normal Response mode (NRM)
• Two-way alternate (half-duplex) data flow
• Secondary station point-to-point, multipoint, and multi-multipoint configurations
• Primary station point-to-point and multipoint configurations
• Modulo 8 transmit and receive sequence counts
• Nonextended (single-byte) station address.

DLCSDLC Device Manager Functions
SDLC is split between a physical adapter with its associated device handler and a data link
control (DLC) component. The DLCSDLC device manager is responsible for the following
SDLC functions:

• Information frame sequencing
• Creation of address and control for transmit frames
• Service of control for receive frames
• Repoll and inactivity time outs
• Frame-reject generation
• Transmit windows
• Reliability/Availability/Serviceability counters, error logs, and link traces.

The device handler and adapter are jointly responsible for the remaining SDLC functions:

• Station address recognition
• NRZl/NRZ encoding and decoding
• Zero bit insertion and deletion
• Frame-check sequence generation and checking
• Flag and pad generation and deletion
• lnterframe time fill
• Transmit failsafe timer
• Line-attachment protocols, such as RS232C, X.21, and Smartmodem
• Failsafe time out
• Autoresponse for nonproductive supervisory command frames.

DLCSDLC Protocol Support
Station Types

Two station types are supported:

• The primary station responsible for control of data interchange on the link
• The secondary, or subordinate, station on the link.

1-44 Communications Programming Concepts

Transmission Frames
All communication between the local and remote stations is accomplished by the
transmission of frames. The SDLC frame format consists of the following fields:

• Unique Flag Sequence (B'0111111 O')

• Station Link Address Field

• Control Field

• Information Field

• Frame Check Sequence

• Unique Flag Sequence (B'0111111 O')

1 byte

1 byte

1 byte

n bytes

2 bytes

1 byte.

There are three kinds of SDLC frames: information, supervisory, and unnumbered.
Information frames transport sequenced user data between the local and remote stations.
Supervisory frames carry control parameters relative to the sequenced data transfer.
Unnumbered frames transport the controls relative to nonsequenced transfers.

Response Modes
Both Normal Disconnect Mode (NDM) and Normal Response Mode (NAM) are supported.
NDM is entered by default whenever a session is initiated, and is switched to NAM only after
completion of the Set Normal Response Mode/Unnumbered Acknowledge (SNRM/UA)
command sequence. Once operating in NAM, information frames containing user data can
be transferred. NAM then remains active until termination of the SDLC session, which
occurs due to the Disconnect/Unnumbered Acknowledge (DISC/UA) command sequence or
a major link error. Once termination is complete, SDLC activity halts, and the NDM/NRM
modes are not re-entered until another session is initiated.

Station Link Address Field
The station link address field supported is nonextended and consists of either the all-stations
(Broadcast) address or a single unique 8-bit value other than the all-zeros (Null) address.
The secondary station's address may be any value between 1 and 254, inclusive. Address
value 255 (Broadcast) is used only by the primary station for initial contact of a point-to-point
secondary station type, where the secondary's address is unknown. Once contact has been
made, the secondary station's returned address is used exclusively for the remainder of the
session.

Control Field (Commands Supported)
All commands are generated by the primary station for the secondary station. Each
command carries the poll indicator to request immediate response, except when sending
multiple information frames. Information frames that are concatenated have the poll indicator
turned on in the last frame of the burst. The commands supported are as follows:

Information Sends sequenced user data from the primary station to the secondary
station, as well as acknowledging any received information frames.

Receive Ready
Indicates that receive storage is available, and acknowledges any received
information frames.

Receive Not Ready
Indicates receive storage is not available and acknowledges any received
information frames.

Data Link Control (DLC) 1-45

Disconnect Requests the logical and physical disconnection of the link. An unnumbered
command.

Set Normal Response Mode

Test

Requests entry into Normal Response Mode, and resets the information
sequence counts.This command is unnumbered.

Solicits an echoed TEST response from the secondary station and may
carry an optional information field. This command is unnumbered.

Exchange Station Identification
Solicits an XID response that contains either the station identification of the
secondary station or link negotiation information allowing the alteration of
the primary/secondary relationship by the user. This command is
unnumbered.

Control Field (Responses Supported)
All responses are generated by the secondary station for the primary station. Each response
carries the final indicator to specify send completion, except when sending multiple
information frames. Information frames that are concatenated have the final indicator on in
the last frame of the burst. The responses supported are as follows:

Information Sends sequenced user data from the secondary station to the primary
station. It also acknowledges any received information frames.

Receive Ready Indicates receive storage is available and acknowledges any received
information frames.

Receive Not Ready
Indicates receive storage is not available and acknowledges any received
information frames.

Frame Reject Indicates that the secondary station detects a problem in a command frame
that otherwise had a valid frame check sequence in Normal Response
Mode. An unnumbered response. The types of frame reject supported are:

Type 01H

Type 03H

Type 04H

Type 08H

Disconnected Mode

Invalid or nonimplemented command received.

Invalid information field attached to command received.

I-field exceeded buffer capacity (this value is not supported
by DLCSDLC). Each overflowed receive buffer is passed to
the user with an indication of overflow.

The received Number Received (NR) sequence count is out
of range.

Indicates that the secondary station is in Normal Disconnect Mode. This
response is unnumbered.

Unnumbered Acknowledge
Acknowledges receipt of the Set Normal Response Mode or Disconnect
commands that were sent by the primary station. This response is
unnumbered.

1-46 Communications Programming Concepts

Test Echos the TEST command frame sent by the primary station, and carries
the information field received only if sufficient storage is available. This
response is unnumbered.

Exchange Station Identification
Contains the station identification of the secondary station. This response is
unnumbered.

DLCSDLC Programming Interfaces
The SDLC Data Link Control (DLCSDLC) conforms to the GDLC guidelines except where
noted in the following list. Additional structures and definitions for DLCSDLC can be found in
the /usr/include/sys/sdlextcb.h header file.

Note: The die prefix is replaced with the sdlc prefix for DLCSDLC.

sdlclose

sdlconfig

sdlmpx

sdlopen

sdlread

sdlselect

sdlwrite

sdlioctl

DLCSDLC is fully compatible with the dlcclose GDLC interface.

DLCSDLC is fully compatible with the dlcconfig GDLC interface. No
initialization parameters are required.

DLCSDLC is fully compatible with the dlcmpx GDLC interface.

DLCSDLC is fully compatible with the dlcopen GDLC interface, with the
following condition: only one open is allowed per port. This open can come
from either an application or kernel user, but multiple users cannot share the
same port.

DLCSDLC is compatible with the dlcread GDLC interface, with the following
condition: network data is defined as any data received from the data
communications equipment (DCE) that is not specific to the SDLC session
protocol. Examples are X.21 call-progress signals or Smartmodem
call-establishment messages. This data must be interpreted differently,
depending on the physical attachment in use.

Datagram receive data is not supported.

DLCSDLC is fully compatible with the dlcselect GDLC interface.

DLCSDLC is compatible with the dlcwrite GDLC interface, with the
exception that network data and datagram data are not supported in the
send direction. Network data such as X.21 or Smartrnodem call
establishment data is sent using the DLC_ENABLE_SAP ioctl operation.

DLCSDLC is compatible with the dlcioctl GDLC interface, with conditions
on the following operations:

DLC_ADD_GRP
DLC_ALTER
DLC_ENABLE_SAP
DLC_ENTER_SHOLD
DLC_EXIT_SHOLD
DLC_START_LS
IOCINFO

Data Link Control (DLC) 1-47

DLC_ADD_GRP

DLC_ALTER

The add group or multicast address option is not supported by DLCSDLC.

The ioctl subroutine argument structure for altering a link station (dlc_alter_arg) has the
following specifics:

• The alter flags that are not supported:

AKT Alter acknowledgment time out
RTE Alter routing.

• The act_ time (acknowledge time out) field is ignored.

• The routing data field is ignored.

• No protocol-specific data area is required for DLCSDLC to alter its configuration.

DLC_ENABLE_SAP

DLCSDLC can support only a single DLC_ENABLE_SAP ioctl operation per port. All
additional DLC_ENABLE_SAP ioctl operations are rejected.

The ioctl subroutine argument structure for enabling a SAP (dlc_esap_arg) has the
following specifics:

• The func_addr_mask (function address mask) field is not supported.

• The grp_addr (group address) field is not supported.

• The max_ls (maximum link stations) field cannot exceed 254 on a multidrop primary link
and cannot exceed 1 on a point-to-point or multidrop secondary link.

• The following common SAP flags are not supported:

ADDR Local address or name indicator.

• The laddr_name (local address/name) field is not supported, so the length of local
address/name field and local address/name field are ignored.

• Group SAPs are not supported, so the num_grp_saps (number of group SAPs) and
grp_sap (group SAP-n) fields are ignored.

• The local_sap field is not supported and is ignored.

• The protocol specific data area is identical to the start device structure required by the
Multiprotocol device handler. See the /usr/include/sys/mpqp.h header file and the
t_start_dev structure for more details.

DLC_ENTER_SHOLD
The enter short hold option is not currently supported by DLCSDLC.

DLC_EXIT_SHOLD
The exit short hold option is not currently supported by DLCSDLC.

DLC_START_LS
DLCSDLC supports up to 254 concurrent link stations (LS) on a single port when it operates
as a multidrop primary node. Only one LS can be started when DLCSDLC operates as a
secondary node or when operating on a point-to-point connection.

1-48 Communications Programming Concepts

The ioctl subroutine argument structure for starting an LS {dlc_sls_arg) has the following
specifics:

• The following common flags are not supported:

LSVC Link station virtual call is ignored.
ADDA Address indicator must be set to 1 to indicate that no name-discovery

services are provided.

• The len_raddr_name (length of remote's address/name) field must be set to 1.

• The raddr_name (remote's address/name) field is the 1-byte station address of the
remote node in hex.

• The maxi£ (maximum I-field length) field may be set to any value greater than 0 (zero).
DLCSDLC adjusts this value to a maximum of 4094 bytes if set too large.

• The rcv_wind (maximum receive window) field may be set to any value from 1 to 7. The
recommended value is 7.

• The xmit_wind (maximum transmit window) field may be set to any value from 1to7.
The recommended value is 7.

• The rsap (remote SAP} field is ignored.

• The rsap_low (remote SAP low range) field is ignored.

• The rsap_high (remote SAP high range) field is ignored.

• The max_repoll field may be set to any value from 1to255. The recommended value is
15.

• The repoll_time field is defined in increments of 0.1 second and may be set to any
value from 1 to 255. The recommended value is 30, giving a time-out duration of
approximately 3 seconds.

• The ack_time (acknowledgment time) field is ignored.

• The inact_time (inactivity time) field is defined in increments of 1 second and may be
set to any value from 1 to 255. The recommended value is 30, giving a time-out duration
of approximately 30 seconds.

• The force_ time (force halt time) field is defined in increments of 1 second and may be
set to any value from 1 to 16383. The recommended value is 120, giving a time-out
duration of approximately 2 minutes.

Data Link Control (DLC) 1-49

• The following protocol-specific data area must be appended to the generic start link
station argument structure (dlc_sls_arg). This structure provides DLCSDLC with
additional protocol-specific configuration parameters:

struct sdl_start_psd
{
uchar_t duplex; /*
link station xmit/receive capability */
uchar_t
uchar t
uchar t
uchar_t
uchar t
uchar t
uchar_t

} ;

secladd;
prirpth;
priilto;
prislto;
retxct;
retxth;
reserved;

/* secondary station local address */
/* primary repoll timeout threshold */
'* primary idle list timeout */
/* primary slow list timeout */
/* retransmit count ceiling */
/* retransmit count threshold */
/* currently not used */

The protocol-specific parameters are:

duplex

secladd

prirpth

priilto

prislto

retxct

Link station transmit-receive capability. This field must be set to 0, indicating
two-way alternating capability.

This field specifies the secondary station link address of the local station. If
the local station is negotiable, this address is used only if the local station
becomes a secondary from role negotiation.

Primary repoll threshold. This field specifies the number of contiguous
repolls that will cause the local primary to log a temporary error. Any value
from 1 to 100% may be specified. The recommended value is 10%.

Primary idle list time out. If the primary station has specified the Hold Link
on Inactivity parameter and then discovers that a secondary station is not
responding, the primary station places that secondary on an idle list. The
primary station polls a station on the idle list less frequently than the other
secondary stations to avoid tying up the network with useless polls. This
field sets the amount of time (in seconds) that the primary station should
wait between polls to stations on the idle list. Any value from 1 to 255 may
be specified. The recommended value is 60, giving a time-out duration of
approximately 60 seconds.

Primary slow list time out. When the primary station discovers that
communication with a secondary station is not productive, it places that
station on a slow list. The primary station polls a station on the slow list less
frequently than the other secondary stations to avoid tying up the network
with useless polls. This field sets the amount of time (in seconds) that the
primary station should wait between polls to stations on the slow list. Any
value from 1 to 255 may be specified. The recommended value is 20, giving
a time-out duration of approximately 20 seconds.

Retransmit count. This field specifies the number of contiguous information
frame bursts containing the same data that the local station retransmits
before it declares a permanent transmission error. Any value from 1 to 255
may be specified. The recommended value is 10.

1-50 Communications Programming Concepts

IOCINFO

retxth Retransmit threshold. This field specifies the number of information frame
retransmissions allowed as a percentage of total information frame
tranmission (sampled only after a block of information frames has been
sent). The specified percentage is the maximum rate of retransmissions
allowed above which the system declares that a temporary error has
occurred. Any value from 1 to 100% may be specified. The recommended
value is 10%.

The ioctype variable is defined as a DD _DLC definition and the subtype returned is
DS_DLCSDLC.

Asynchronous Function Subroutine Calls
Datagram data received is not supported, and the rcvd_fa function is never called by
DLCSDLC.DLCSDLC is compatible with each of the other asynchronous function subroutine
calls for the kernel user.

Related Information
The dlcclose routine, dlcconfig routine, dlcmpx routine, dlcopen routine, dlcread routine,
dlcselect routine, dlcwrite routine, dlcioctl routine.

The ioctl subroutine.

Token-Ring Data Link Control (DLCTOKEN) Overview on page 1-16, IEEE 802.3 Ethernet
Data Link Control (DLC8023) Overview on page 1-35, Standard Ethernet Data Link Control
(DLCETHER) Overview on page 1-35, Qualified Logical Link Control (DLCQLLC) Overview
on page 1-52.

Data Link Control (DLC) 1-51

Qualified Logical Link Control
Qualified logical link control (DLCQLLC) is one of the generic data link controls. It provides
the access procedure for attachment to X.25 packet switching networks.

DLCQLLC for AIX provides full support for the 1980 and 1984 versions of the CCITT
recommendation relevant to SNA-to-SNA connections. It allows point-to-point connections to
be established over an X.25 network between a pair of primary and secondary link stations.
It supports modulo 8/128 packet sequence numbering and the following X.25 optional
facilities:

• Closed user groups
• Recognized private operating agencies
• Network user identification
• Reverse charging
• Packet size negotiation
• Window size negotiation
• Throughput class negotiation.

DLCQLLC provides two-way alternate (half-duplex) data flow over switched or permanent
virtual circuits.

DLCQLLC Device Manager Functions
DLCQLLC, as described in the X.25 Interface for Attaching SNA Nodes to Packet-Switch
Data Networks (GA27-3345) and X.25 1984 Interface Architectural Reference (SC30-3409),
is split between a physical adapter with its associated device handler and a DLC component.
The data link control component is responsible for the following QLLC functions:

• Creation of address and control for transmit frames
• Service of control for receive frames
• Repoll and inactivity time outs
• Frame-reject generation
• Facility negotiation.

The data link control and device handler components are jointly responsible for the following:

• Establishment of an X.25 virtual circuit
• Clearing of an X.25 virtual circuit
• Notification of exceptional conditions to higher levels
• Reliability/Availability/Serviceability counters, error logs, and link traces.

The device handler and adapter are jointly responsible for the following:

• Packetization of I-frames
• Packet sequencing
• LAPB procedures as defined by CCITT recommendation X.25
• Physical line attachment protocols.

1-52 Communications Programming Concepts

DLCQLLC Programming Interfaces
The QLLC Data Link Control (DLCQLLC} conforms to the GDLC guidelines except where
noted below.

Note: The die prefix is replaced with qlc prefix for DLCQLLC.

qlcclose

qlcconfig

qlcmpx

qlcopen

qlcread

qlcselect

qlcwrite

qlcioctl

DLCQLLC is fully compatible with the dlcclose GDLC interface.

DLCQLLC is fully compatible with the dlcconfig GDLC interface. No
initialization parameters are required.

DLCQLLC is fully compatible with the dlcmpx GDLC interface.

DLCQLLC is fully compatible with the dlcopen GDLC interface.

DLCQLLC is compatible with the dlcread GDLC interface except that
network data and datagram receive data are not supported.

DLCQLLC is fully compatible with the dlcselect GDLC interface.

DLCQLLC is compatible with the dlcwrite GDLC interface with the
exception that network data and datagram data are not supported.

DLCQLLC is compatible with the dlcioctl GDLC interface with the following
conditions on the following operations:

DLC_ADD_GRP
DLC_ALTER
DLC_ENABLE_SAP
DLC_ENTER_SHOLD
DLC_EXIT_SHOLD
IOCINFO
DLC_START_LS

DLC_ADD_GRP

DLC_ALTER

The add group or multicast address option is not supported by DLCQLLC.

The ioctl subroutine argument structure for altering a link station (dlc_alter_arg} has the
following differences:

• The alter flags that are not supported are:

AKT Alter acknowledgment time out
RTE Alter routing
XWIN Alter transmit window size.

• The acknowledge time out field is ignored.

• The routing data field field is ignored.

• The transmit window size field is ignored.

• No protocol-specific data area is required for DLCQLLC to alter its configuration.

Data Link Control (DLC) 1-53

DLC_ENABLE_SAP
The ioctl subroutine argument structure for enabling a SAP (dlc_esap_arg) has the
following differences:

• The function address mask field is not supported.
• The group address field is not supported.
• The common SAP flags are no/supported:
• Group SAPs are not supported, so the number of group SAPs and group SAP-n fields

are ignored.
• The local SAP field is not supported and is ignored.
• The protocol-specific data area is not required.

DLC_ENTER_SHOLD
The enter short hold option is not supported by DLCQLLC.

DLC_EXIT_SHOLD
The exit short hold option is not supported by DLCQLLC.

IOCINFO
The ioctype variable is defined as a DD_DLC definition and the subtype is DS_DLCQLLC.

DLC_START_LS
DLCQLLC supports up to 255 concurrent link stations (LS) on a single SAP.

The ioctl subroutine argument structure for starting an LS (dlc_sls_arg) has the following
differences:

• The following common link station flag is not supported:

ADDR The address indicator flag is ignored.

• The remote's address/name field is the network user address of the remote node.

• If the CCITT attribute is set to 1980 when configuring the X.25 adapter, the rcv_window
(max receive window) field may be set to any value from 1 to 7. If the CCITI configuration
attribute is set to 1984, the rev_ window {max receive window) field may be set to any
value from 1 to 128.

• If the CCITT attribute is set to 1980 when configuring the X.25 adapter, the xmit_wind
{max transmit window) field may be set to any value from 1 to 7. If the CCITT
configuration attribute is set to 1984, the xmi t _wind (max transmit window) field may be
set to any value from 1 to 128.

• The ASAP (remote SAP) field is ignored.

• The ASAP low (remote SAP low range) field is ignored.

• The ASAP high {remote SAP high range) field is ignored.

• The repoll time field is defined in increments of 1 second.

• The ack time {acknowledgment time) field is ignored.

• A protocol-specific data area must be appended to the generic start link station argument
(dlc_sls_arg).

1-54 Communications Programming Concepts

Example of Protocol-Specific Configuration Parameters
The following is an example of a structure that provides DLCQLLC with additional
protocol-specific configuration parameters:

struct qlc_start_psd
{

char listen_name[8];
unsigned short support_level;
struct sna_facilities_type facilities;

} ;

The protocol-specific parameters are:

listen_name The name of the entry in the X.25 routing list that specifies the
characteristics of incoming calls. This field is used only when a station
is listening, that is, when the LSVC flag in the dlc_sls_arg argument
structure is 0.

support_level The version of CCITT recommendation X.25 to be supported. It must
be the same as or earlier than the CCITT attribute specified for the
X.25 adapter, using SMIT.

facilities A structure that contains the X.25 facilities required for use on the
virtual circuit for the duration of this attachment.

The Facilities Structure
The following is the SDLC facilities structure:

struct sna_facilities_type
{

} ;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
char

char
char
char
char
char
char
short
short
short
short
int

facs:l;
rpoa:l;
psiz:l;
wsiz:l;
tcls:l;
cug :1;
cugo:l;
resl:l;
res2:1;
nui :1;

:21;
recipient_tx_psiz;
originator_tx_psiz;
recipient_tx_wsiz;
originator_tx_wsiz;
recipient_tx_tcls;
originator_tx_tcls;
reserved;
cug_index;
rpoa_id_count;
rpoa_id[30];
nui_length;
nui_data[l09];

Data Link Control (DLC) 1-55

Fields in the Facilities Structure

The following fields are bits: (A value of O indicates false; a value of 1 indicates true.)

facs Indicates whether there are any facilities being requested or not. If this field
is set to O, the whole of the remainder of the facilities structure is ignored.

rpoa Indicates whether a recognized private operating agency is to be used.
psiz Indicates whether a non-default packet size is to be used.
wsiz Indicates whether a non-default window size is to be used.
tels Indicates whether a non-default throughput class is to be used.
cug Indicates whether an index to a closed user group is to be supplied.
cugo Indicates whether an index to a closed user group with outgoing access is to

be supplied.
res 1 Reserved.
res2 Reserved.

nui Indicates whether network user identification is being supplied to the
network.

The remaining fields provide the values or data associated with each of the above facilities
bits that are set to 1. If the corresponding facilities bit is set to 0, each of these fields is
ignored:

recipient_tx_psiz
The coded value of packet size to be used when sending data to the node
that initiated the call. The values are coded as follows:

Ox06 64 octets
Ox07 128 octets
Ox08 256 octets
Ox09 512 octets
OxOA 1 024 octets
OxOB 2048 octets
OxOC 4096 octets.

Note: The 4096-octet packets are allowed only in the 1984 CCITT
recommendation and, for the call to be valid, the value of the X.25
CCITT attribute and the corresponding QLLC attribute must be set
to 1984.

originator_tx_psiz
The coded value of packet size to be used when sending data from the
node that initiated the call. The values are coded as for the
recipient_ tx_psiz field.

recipient_tx_wsiz
Reserved for QLLC use.

originator_tx_wsiz
Reserved for QLLC use.

recipient_tx_tcls
The coded values of throughput class requested for this virtual circuit, when
sending data to the node that initiated the call. The values are coded as
follows:

Ox07 1200 bits per second
Ox08 2400 bits per second

1-56 Communications Programming Concepts

Ox09 4800 bits per second
OxOA 9600 bits per second
OxOB 19200 bits per second
OxOC 48000 bits per second.

originator_tx_tcls
The coded values of throughput class requested for this virtual circuit, when
sending data from the node that initiated the call. The values are coded as
for the recipient_tx_tcls field.

cug_index The decimal value of the index of the closed user group (CUG) within which
this call is to be placed. This field is used for either CUG or CUG with
outgoing access (CUGO) facilities.

rpoa_id_count
The number oJ recognized private operating agency (RPOA) identifiers to be
supplied in the rpoa_id field.

rpoa_id An array of RPOA identifiers that contains the number of identifiers
specified in the rpoa_id_count field. The RPOA identifiers appear in the
order in which they will be traversed during establishment of the call. The
content of each array element is the decimal value of an RPOA identifier.

nui_length The length, in bytes, of the nui_data field.

nui_data Network user identification (NUI) data. The contents of this array are
defined by you, in conjunction with the network provider. Note that the
maximum allowable X.25 facilities string is 109 bytes. Even if NUI is the only
facility requested, the facility code occupies one byte, so it is impossible to
send more than 108 bytes of NUI data. Each additional facility requested
reduces the space available for NUI data.

Asynchronous Function Subroutine Calls

Network and datagram data are not supported, so the rcvn_fa and rcvd_fa data functions
are never called by DLCQLLC.DLCQLLC is compatible with each of the other asynchronous
function subroutine calls for the kernel user.

Related Information
X.25 Routing Overview, X.25 Packet Switching Overview, List of X.25 Diagnostic Codes in
Communication Concepts and Procedures.

The cb_fac_struct structure.

The dlcclose routine, dlcconfig routine, dlcmpx routine, dlcopen routine, dlcread routine,
dlcselect routine, dlcwrite routine, dlcioctl routine.

The ioctl subroutine.

Token-Ring Data Link Control (DLCTOKEN) Overview on page 1-16, IEEE 802.3 Ethernet
Data Link Control (DLC8023) Overview on page 1-26, Synchronous Data Link Control
(DLCSDLC) Overview on page 1-44, Standard Ethernet Data Link Control (DLCETHER)
Overview on page 1-35.

Data Link Control (DLC) 1-57

1-58 Communications Programming Concepts

Chapter 2. Lists of DBM, NDBM, and NIS Subroutines

This chapter contains lists of subroutines for DBM, NDBM and NIS. These subroutines
maintain key or content pairs in a database.

Alphabetical List of DBM Subroutines
The DBM subroutines maintain key/content pairs in a database. The DBM library has been
superseded by the NDBM library and is now implemented with NDBM subroutines.

dbmclose

dbminit

delete

fetch

firstkey

next key

store

Closes a database. The programmer must close one database
before opening another database. The equivalent NDBM
subroutine is the dbm_close subroutine.

Opens a database. The equivalent NDBM subroutine is the
dbm_open subroutine.

Deletes a key and its associated contents. The equivalent
NDBM subroutine is the dbm_delete subroutine.

Accesses the data stored under a key. The equivalent NDBM
subroutine is the dbm_fetch subroutine.

Makes a linear pass through all keys in the database and
returns the first key that matches the specification. The
equivalent NDBM subroutine is the dbm_firstkey subroutine.

Traverses the database and returns the next key in the
database. The equivalent NDBM subroutine is the
dbm_nextkey subroutine.

Stores data under a key. The equivalent NDBM subroutine is
the dbm_store subroutine.

DBM/NDBM 2-1

Alphabetical List of NDBM Subroutines
The NDBM subroutines maintain key/content pairs in a data base. These routines handle
large databases and access a keyed item in one or two file system accesses. The NDBM
library replaces the earlier DBM library, which managed only a single database.

dbm_close

dbm_delete

dbm_fetch

dbm_firstkey

dbm_nextkey

dbm_open

dbm_store

2-2 Communications Programming Concepts

Closes a database.

Deletes a key and its associated contents.

Accesses data stored under a key.

Returns the first key in the database.

Returns the next key in the database.

Opens a database for access.

Stores data under a key.

Alphabetical List of NIS Subroutines
The following is a list of the IBM NFS network information service subroutines:

yp_all

yp_bind

yperr_string

yp_first

yp_get_default_domain

yp_master

yp_match

yp_next

yp_order

ypprot_err

yp_unbind

yp_update

Transfers all of the key-value pairs from the network
information service (NIS) server to the client as the entire
map.

Calls the ypbind daemon directly for processes that use
backup strategies when NIS is not available.

Returns a pointer to an error message string.

Returns the first key-value pair from the named NIS map in
the named domain.

Gets the default domain of the node.

Returns the machine name of the NIS master server for a
map.

Searches for the value associated with a key.

Returns each subsequent value it finds in the named NIS
map until it reaches the end of the list.

Returns the order number for an NIS map that identifies
when the map was built.

Takes an NIS protocol error code as input, and returns an
error code to be used as input to a yperr_string subroutine.

Manages socket descriptors for processes that access
multiple domains.

Makes changes to the NIS map.

DBM/NDBM 2-3

2-4 Communications Programming Concepts

Chapter 3. external Data Representation (XOR)

The external Data Representation (XOR) is a standard for the description and encoding of
data. XOR uses a language to describe data formats, but the language is used only for
describing data and is not a programming language. This chapter contains information on
XOR criteria, implementing XOR, installing, solving XOR problems, and programming for
XOR. The chapter is divided into concepts, lists of XOR subroutines, and examples.

eXternal Data Representation {XOR) Overview
The external Data Representation (XOR) is a standard for the description and encoding of
data. XOR uses a language to describe data formats, but the language is used only for
describing data and is not a programming language. Protocols such as Remote Procedure
Call (RPC) and the Network File System (NFS) use XOR to describe their data formats.

XOR not only solves data portability problems, it permits the reading and writing of arbitrary
C language constructs in a consistent and well-documented manner. Therefore, it makes
sense to use the XOR library routines even when the data is not shared among machines on
a network.

The XOR standard does not depend on machine languages, manufacturers, operating
systems, or architectures. This enables networked computers to share data regardless of
the machine on which the data is produced or consumed. The XOR language permits
transfer of data between different computer architectures and has been used to
communicate data between such diverse machines as the VAX, IBM-PC, and Cray.

RPC uses XOR to establish uniform representations for data types in order to transfer
message data between machines. For basic data types, such as integers and strings, XOR
provides filter primitives that serialize, or translate, information from the local host's
representation to XDR's representation. Likewise, XOR filter primitives deserialize XDR's
data representation to the local host's data representation. XOR constructor primitives allow
the use of the basic data types to create more complex data types such as arrays and
discriminated unions.

The XOR routines that are called directly by RPC routines can be found in the Alphabetical
List of RPC Subroutines and Macros on page 7-41. The XOR routines can be found in the
Alphabetical List of XOR Subroutines and Macros on page 3-24.

A Canonical Standard
The XOR approach to standardizing data representations is canonical. That is, XOR defines
a single byte (big endian}, a single floating-point representation (IEEE}, and so on. Any
program running on any machine can use XOR to create portable data by translating its local
representation to the XOR standards. Similarly, any program running on any machine can
read portable data by translating the XOR standard representations to its local equivalents.
The canonical standard decouples programs that create or send portable data from those
that use or receive portable data.

The advent of a new machine or new language has no effect upon the community of existing
portable data creators and users. A new machine can be programmed to convert both the
standard representations and its local representations regardless of the local
representations of other machines. Conversely, the local representations of the new machine
are also irrelevant to existing programs running on other machines. These existing programs

eXternal Data Representation (XOR) 3-1

can immediately read portable data produced by the new machine, because such data
conforms to canonical standards.

There are strong precedents for XDR's canonical approach. All protocols below layer five of
the ISO model (including TCP/IP, UDP/IP, XNS, and Ethernet) are canonical protocols. XOR
fits into the ISO presentation layer and is roughly analogous in purpose to X.409, ISO
Abstract Syntax Notation. The major difference here is that XOR uses implicit typing, while
X.409 uses explicit typing. With XOR, a single set of conversion routines need only be
written once.

The time spent converting to and from a canonical representation is insignificant, especially
in networking applications. When preparing a data structure for transfer, traversing the
elements of the structure requires more time than converting the data. In networking
applications, additional time is required to move the data down through the sender's protocol
layers, across the network, and up through the receiver's protocol layers. Every machine
must traverse and copy data structures, whether or not conversion is required.

Basic Block Size
The XOR language is based on the assumption that bytes (8 bits of data, or an octet) can be
ported to and encoded on media that preserve the meaning of the bytes across the
hardware boundaries of data. XOR does not represent bit fields or bit maps. It represents
data in blocks of multiples of 4 bytes (32 bits). The bytes are numbered from 0 (zero) to the
value of n-1, where the value (n mod 4) = 0. They are read from or written to a byte stream
in order, such that byte m precedes byte m + 1.

Bytes are ported and encoded from low order to high order in local area networks.
Representing data in standardized formats resolves situations that occur when different
byte-ordering formats exist on networked machines. This also enables machines with
different structure-alignment algorithms to communicate with each other.

See the following figure for an illustration of a block.

A Block

I -_byt_e_o ____ b_yte_1 __ I : : : I byte n-1 I 0 I : : : I 0 I
r:
----n bytes •14 r bytes --...... ~

n+r (where (n+r) mod 4 = 0) ~

In a graphics box illustration, each box is delimited by a+ (plus) sign at the 4 corners and
vertical bars and dashes. Each box depicts a byte. The ... (ellipses) between boxes show
zero or more additional bytes where required.

Planned Enhancements
The XOR standard currently lacks representations for bit fields and bit maps because the
standard is based on bytes. Packed, or binary-coded, decimals are also missing.

The XOR standard describes only the most commonly used data types of high-level
languages, such as C or Pascal. This enables applications that are written in these
languages to communicate easily over some medium.

Future extensions to XOR may permit the description of almost any existing protocol, such
as TCP/IP. Support for different block sizes and byte orders is a minimum requirement for
these protocols. With such support, XOR might be considered the 4-byte big endian member
of a larger XOR family.

3-2 Communications Programming Concepts

Related Information
Alphabetical List of XOR Subroutines and Macros on page 3-24, Alphabetical List of RPC
Subroutines and Macros on page 7-41.

Functional List of XOR Subroutines and Macros on page 3-26, Functional List of RPC
Subroutines and Macros on page 7-44.

Understanding the XOR Subroutine Format on page 3-3, Using the XOR Library on page
3-4, Understanding the XOR Language Specification on page 3-5, Understanding XOR
Data Types on page 3-8, Understanding XOR Library Filter Primitives on page 3-17,
Understanding XOR Non-Filter Primitives on page 3-20.

Remote Procedure Call {RPC) Overview for Programming on page 7-1.

Network File System Overview for System Management, Understanding Protocols for
TCP/IP, User Datagram Protocol {UDP) in Communication Concepts and Procedures.

Understanding the XOR Subroutine Format
An XOR routine is associated with each data type. XOR routines have the following format:

xdr_xxx (XDRS, FP)

{
}

XDR *XDRS;
XXX *FP;

The parameters are described as follows:

xxx An XOR data type.
XDRS An opaque handle that points to an XOR stream. The opaque handle pointer

is passed to the primitive XOR routines.
FP An address of the data value that provides data to the stream or receives

data from it.

The XOR routines usually return a value of 1 if successful and a value of O if unsuccessful.
Return values other than these are noted within the description of the appropriate routine.

Related Information
Alphabetical List of RPC Subroutines and Macros on page 7-41, Alphabetical List of XOR
Subroutines and Macros on page 3-24.

Functional List of RPC Subroutines and Macros on page 7-44, Functional List of XOR
Subroutines and Macros on page 3-26.

Using the XOR Library on page 3-4, Understanding the XOR Language Specification on
page 3-5, Understanding XOR Data Types on page 3-8, Understanding XOR Library
Filter Primitives on page 3-17, Understanding XOR Non-Filter Primitives on page 3-20.

eXternal Data Representation (XOR) 3-3

Using the XOR Library
The XOR library includes routines that permit programmers not only to read and write C
language constructs, but also to write XOR routines that define other data types.

The XOR library includes the following:

• Library primitives for basic data types and constructed data types. The basic data types
include number filters for integers, floating-point, and double-precision numbers,
enumeration filters, and a routine for passing no data. Constructed data types include the
filters for strings, arrays, unions, pointers, and opaque data.

• Data stream creation routines that call streams for serializing and deserializing data to or
from standard 1/0 file streams, TCP/IP connections, and memory.

• Routines for the implementation of new XOR streams.
• Routines for passing linked lists.

See the Example Showing the Justification for Using XOR on page 3-32.

XOR with RPC
The XOR subroutines and macros may be called explicitly or by an RPC routine. When
using XOR with RPC, clients do not create data streams. Instead, the RPC interface creates
the streams. The RPC interface passes the information about a data stream as opaque data
in the form of handles. This opaque data handle is referred to in routines as the xdrs
parameter. Programmers who use C language programs with XOR routines must include the
<rpc/xdr.h> header file, which contains the necessary XOR interfaces.

XOR Operation Directions
The XOR routines are not dependent on direction. The operation direction represented by
xdrs->xop can have the XDR_ENCODE, XDR_DECODE, or XDR_FREE value. These
operation values are handled internally by the XOR routines, which means the same XOR
routine can be called to serialize or deserialize data. To achieve this independence, XOR
passes the address of the object instead of passing the object itself.

Related Information
Alphabetical List of XOR Subroutines and Macros on page 3-24.

Understanding the XOR Subroutine Format on page 3-3, Understanding the XOR
Language Specification on page 3-5, Understanding XOR Data Types on page 3-8,
Understanding XOR Library Filter Primitives on page 3-17, Understanding XOR Non-Filter
Primitives on page 3-20.

Example Showing the Justification for Using XOR on page 3-32.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

3-4 Communications Programming Concepts

Understanding the XOR Language Specification
The XOR language specification uses an extended Backus-Naur Form notation for
describing the XOR language. The following is a brief description of the notation:

• The following characters are special characters:

A vertical bar separates alternative items.
Parentheses enclose items that are grouped together.
Brackets enclose optional items.
A comma separates more than one variable.

* An asterisk following an item means O or more occurrences of the item.

• Terminal symbols are strings of special and non-special characters surrounded by""
(double quotes).

• Non-terminal symbols are strings of non-special characters.

The following specification illustrates the XOR notation:

"a" "very" ("," "very")* ["cold" "and"] "rainy" ("day" I "night")

An infinite number of strings match this pattern. Some of them are:

• "a very rainy day"

• "a very, very rainy day"

• "a very cold and rainy day"

• "a very, very, very cold and rainy night"

Lexical Notes
The following lexical notes apply to XOR language specification:

• Comments begin with a/* (backslash character followed by an asterisk) and terminate
with a *I (asterisk followed by a backslash character).

• White space is used to separate items and is otherwise ignored.
• An identifier is a letter followed by an optional sequence of letters, digits, or an_

(underscore). Identifiers are case-sensitive.
• A constant is a sequence of one or more decimal digits, optionally preceded by a - (minus

sign).

Declarations, Enumerations, Structures, and Unions
The XOR syntax describes declarations, enumerations, structures, and unions:

declaration:

type-specifier identifier

type-specifier identifier "[" value "]"

type-specifier identifier "<" [value "<"

"opaque" identifier "[" value "]"

"string" identifier "[" value "]"

type-specifier "*" identifier

!"void"

eXternal Data Representation (XOR) 3-5

value:

constant

I identifier

type-specifier:

"unsigned" "int"

["unsigned"] "hyper"

"float"

"double"

"bool"

en um-type-spec

struct-type-spec

union-type-spec

identifier

enum-type-spec:

"enum" enum-body

enum-body:
II { U

(identifier "=" value)

("," identifier "=" value)*
II} U

struct-type-spec:

"struct" struct-body

struct-body:

" {"

declaration

declaration

"}"

II • II ,
II; U) *

union-type-spec:

"union" union-body

union-body:

"switch" "(" declaration ")" "{"

"case" value ":" declaration II • If ,
"case" value ":" declaration ";")*

"default" " : ,, declaration II • 11

'
II} U

constant-def:

"const" identifier "=" constant

type-def

3-6 Communications Programming Concepts

II • II
I

"typedef" declaration ";"

"enum" identifier enum-body II • ti

'
"struct" identifier struct-body ".,,

'
"union"

definition:

type-def

identifier union-body

I constant-def

specification:

definition *

Syntax Notes

II • II

'

Following are some additional notes pertaining to the XOR language syntax.

1. The following keywords cannot be used as identifiers:

• bool
• case
• const
• default
• double
• enum
• float
• hyper
• opaque
• string
• struct
• switch
• typedef
• union
• unsigned
• void

2. Only unsigned constants can be used as size specifications for arrays. If an identifier is
used, it must be declared previously as an unsigned constant in a canst definition.

3. Constant and type identifiers within the scope of a specification are in the same name
space and must be declared uniquely within this scope.

4. Variable names must be unique within the scope of struct and union declarations.
Nested struct and union declarations create new scopes.

Related Information
Understanding the XOR Subroutine Format on page 3-3, Using the XOR Library on page
3-4, Understanding XOR Data Types on page 3-8, Understanding XOR Library Filter
Primitives on page 3-17, Understanding XOR Non-Filter Primitives on page 3-20.

external Data Representation (XOR) 3-7

Understanding XOR Data Types
The following basic and constructed data types are defined in the XDR standard:

• Integers
• Enumerations
• Booleans
• Floating-point decimals
• Opaque data
• Arrays
• String
• Structure
• Discriminated union
• Void
• Constant
• Typedef
• Optional data.

A general paradigm declaration is shown for each type. The< and> (angle brackets) denote
variable-length sequences of data, while the [and] (square brackets) denote fixed-length
sequences of data. The letters n, m, and r denote integers. See the Example Using an XDR
Data Description on page 3-40 for an extensive example of the data types.

Integer Data Types
XDR defines two integer data types: signed and unsigned integer and hyper-integer.

Signed and Unsigned Integers
The XOR standard defines signed integers as integer. A signed integer is a 32-bit datum that
encodes an integer in the range [-2147483648 to 2147483647]. The signed integer is
represented in two's complement notation. The most significant byte is O; the least
significant byte is 3.

An unsigned integer is a 32-bit datum that encodes a nonnegative integer in the range [O to
4294967295]. The unsigned integer is represented by an unsigned binary number whose
most significant byte is O; the least significant byte is 3.

See the following figure for an illustration of signed and unsigned integers.

Signed Integer
Unsigned Integer

(MSB) (LSB)

I byte O I byte 1 I byte 2 i byte 31

32 bits -----..~

Signed and Unsigned Hyper-Integers

The XOR standard also defines 64-bit (8-byte) numbers called hyper-integers and unsigned
hyper-integers. Their representations are the extensions of integers and unsigned integers.
Hyper-integers are represented in two's complement notation. The most significant byte is O;
the least significant byte is 7.

3-8 Communications Programming Concepts

See the following figure for an illustration of signed and unsigned hyper integer.

Signed Hyper-Integer
Unsigned Hyper-Integer

(MSB) (LSB)

byte O byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

64 bits

Enumeration Data Type
The XOR standard pr.ovides enumerations for describing subsets of integers. XOR defines
enumerations as enum. Enumerations have the same representation as signed integers and
are declared as follows:

enum { name-identifier= constant, ••• } identifier;

Encoding as enum any integers other than those with assignments in the enum declaration
causes an error condition.

Boolean Data Type
Booleans occur frequently enough to warrant an explicit type in the XOR standard.

Booleans are declared as follows:

bool identifier;

This declaration is equivalent to:

enum { FALSE = 0., TRUE = 1 } identifier;

Floating-Point Data Type
The XOR standard defines two floating-point data types: single-precision and
double-precision floating points.

Single-Precision Floating-Point
XOR defines the single-precision floating-point data type as a float. The length of a float is
32 bits, or 4 bytes. Floats are encoded using the IEEE standard for normalized
single-precision floating-point numbers.

The single-precision floating-point number is described as follows:

(~l)**S * 2**(E-Bias) * 1.F

s

E

F

Sign of the number. This is a 1-bit field that contains the value O to
represent positive or 1 to represent negative.
Exponent of the number in base 2. This field contains 8 bits. The exponent
is biased by 127.
Fractional part of the number's mantissa in base 2. This field contains 23
bits.

eXternal Data Representation {XOR) 3-9

See the following figure for an illustration of the single-precision floating-point data type.

Single-Precision
Floating-Point

byte O byte 1

s E

byte 2 byte 3

F

I 1 I+- 8 ---~1•4 -- 23 bits ---~I
~ 32 bits-------~

The most and least significant bits of a single-precision floating-point number are O and 31.
The beginning (and most significant) bit offsets of s, E, and F are 0, 1, and 9, respectively.
These numbers refer to the mathematical positions of the bits and not to their physical
locations, which vary from medium to medium.

The IEEE specifications should be considered for the encoding for signed zero, signed
infinity (overflow), and denormalized numbers (underflow). According to IEEE specifications,
the NaN (not-a-number) is system-dependent and should not be used externally.

Double-Precision Floating-Point
The XOR standard defines the encoding for the double-precision floating-point data type as
a double. The length of a double is 64 bits or 8 bytes. Doubles are encoded using the IEEE
standard for normalized double-precision floating-point numbers.

The double-precision floating-point data type is described by:

(-l)**S * 2**(E-Bias) * 1.F

s

E

F

Sign of the number. This 1-bit field contains the value O to represent positive
or 1 to represent negative.
Exponent of the number, base 2. This field contains 11 bits. The exponent is
biased by 1023.
Fractional part of the number's mantissa in base 2. This field contains 52
bits.

See the following figure for an illustration of the double-precision floating-point data type.

Double-Precision
Floating-Point

byte O l byte 1

sJ E

l byte 2 byte 3 J byte 4 J byte 5 J byte 6 l byte 7

F

I 1 -I~-- 11 bits----~!-~------ 52 bits -------91-.1
~-------------54 bits------------~

The most and least significant bits of a double-precision floating-point number are 0 and 63.
The beginning (and most significant) bit offsets of s, E, and Fare 0, 1, and 12, respectively.
These numbers refer to the mathematical positions of the bits and not to their physical
locations, which vary from medium to medium.

3-10 Communications Programming Concepts

The IEEE specifications should be consulted concerning the encoding for signed zero,
signed infinity (overflow), and denormalized numbers (underflow). According to IEEE
specifications, the NaN (not-a-number) is system-dependent and should not be used
externally.

Opaque Data Type
The XOR standard defines two types of opaque data: fixed-length and variable-length
opaque data.

Fixed-Length Opaque Data
XOR defines fixed-length uninterpreted data as opaque. Fixed-length opaque data is
declared as follows:

opaque identifier [n];

The constant n is the (static) number of bytes necessary to contain the opaque data. If n is
not a multiple of four, then the n bytes are followed by enough (0 to 3) residual zero bytes, r,
to make the total byte count of the opaque object a multiple of four.

See the following figure for an illustration of the fixed-length opaque data type.

Fixed-Length Opaque

0 1

I...._ _by_te _o_b_yte_1__.I : : : I byte n-1 I o I : : :I...._ _o____.I

':

----n bytes .,,._ r bytes ---:1
n+r (where (n+r) mod 4 = 0) ...

Variable-length Opaque Data
The XOR standard also provides for variable-length (counted) opaque data which is defined
as a sequence of n arbitrary bytes and numbered o through n-1. Opaque data is encoded
as an unsigned integer and followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+ 1 , and byte o of the sequence always
follows the sequence length (count). Enough (0 to 3) residual zero bytes, r, are added to
make the total byte count a multiple of four.

Variable-length opaque data is declared in one of the following forms:

opaque identif ier<m>;

OR

opaque identifier<>;

The constant m denotes an upper bound for the number of bytes that the sequence can
contain. If mis not specified, as in the second declaration, it is assumed to be (2**32) - 1,
which is the maximum length. The constant m would normally be found in a protocol
specification.

eXternal Data Representation (XOR) 3-11

See the following figure for an illustration of the variable-length opaque data type.

Variable-Length Opaque

0 1 2 3 4 5

length n I byte 0 I byte 1 I : : :1.__ _n-_1 ____ o____,I : : : ~
j4-- 4 bytes ~I• n bytes ~I• r bytes --+I
j4--- n+r (where (n+r) mod 4 = 0) •I
Encoding a length that is greater than the maximum described in the specification is an
error.

Array Data Type
The XDR standard defines two type of arrays: fixed-length or variable-length arrays.

Fixed-Length Array
Fixed-length arrays of homogeneous elements are described in the following form:

type-name identifier [n];

Fixed-length arrays of elements are encoded by individually coding the elements of the array
in their natural order, o through n-1. Each element size is a multiple of four bytes. Although
the elements are of the same type, they may have different sizes. For example, in a
fixed-length array of strings, all elements are of the string type, yet each element varies in
length.

See the following figure for an illustration of fixed-length arrays.

Fixed-Length Array

__ e_1e_m_e_n_t_o ___ e_1e_m_e_n_t_1__.I : : : I element n-1

•14------ n elements -------~!

Variable-Length Array
The XDR standard provides counted byte arrays for encoding variable-length arrays of
homogeneous elements. The array is encoded as the element count n (an unsigned integer)
followed by the encoding of each of the array's elements, starting with element O and
progressing through element n-1.

Variable-length arrays are described as follows:

type-name identif ier<m>;

OR

type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array. If m is not
specified, it is assumed to be (2**32) - 1.

3-12 Communications Programming Concepts

Strings

Structures

See the following figure for an illustration of variable-length arrays.

Variable-Length Array

0 1 2 3 4

I n I element O element 1 I : : : I element n-1

I+- 4 bytes --1111Ji..-l4i------- n elements --------11Jil
Encoding a value of n that is greater than the maximum described in the specification is an
error.

The XOR standard defines a string of n (numbered o through n-1) ASCII bytes to be the
number n encoded as an unsigned integer and followed by then bytes of the string. Byte m
of the string always precedes byte m+ 1, and byte o of the string always follows the string
length. If n is not a multiple of four, then the n bytes are followed by enough (0 to 3)
residual zero bytes, r, to make the total byte count a multiple of four.

Counted byte strings are declared as one of the following:

string object<m>;

OR

string object<>;

The constant m denotes an upper bound of the number of bytes that a string may contain. If
mis not specified, as in the second declaration, it is assumed to be (2**32) - 1, which is the
maximum length. The constant m would normally be found in a protocol specification. For
example, a filing protocol may state that a file name can be no longer than 255 bytes, as
follows:

string filename<255>;

See the following figure for an illustration of counted byte strings.

Counted Byte String

0 1 2 3 4 5

I length n I byte O I byte 1 I : : : l __ n-_1 ___ o __ I : : : ~
~ 4 bytes 11Jil4 · n bytes 11Jil4 r bytes ~I
14--- n+r (where (n+r) mod 4 = 0) 11Jil
Encoding a length greater than the maximum described in the specification causes an error
condition.

Using the the primitive routines, the programmer can write unique XOR routines to describe
arbitrary data structures such as elements of arrays, arms of unions, or objects pointed to
from other structures. The structures themselves may contain arrays of arbitrary elements or
pointers to other structures.

external Data Representation (XOR) 3-13

Structures are declared as follows:

struct {
component-declaration-A;
component-declaration-B;

} identifier;

In a structure, the components are encoded in the order of their declaration in the structure.
Each component's size is a multiple of four bytes, though the components may have
different sizes.

See the following figure for an illustration of a structure.

Structure

I component A I component B I : : :
Discriminated Unions

A discriminated union is a union data structure that holds various objects, with one of the
objects identified directly by a discriminant, or arm. The discriminant is the first item to be
serialized or deserialized. A discriminated union includes a discriminant and a component
selected from a set of types that are prearranged according to the value of the discriminant.
The type of discriminant is either integer, unsigned integer, or an enumerated type, such as
bool. The component types are called arms of the union. The arms of a discriminated union
are preceded by the value of the discriminant that implies their encoding. See the Example
Using an XOR Discriminated Union on page 3-42.

Discriminated unions are declared as follows:

union switch (discriminant-declaration) {
case discriminant-value-A:
arm-declaration-A;
case discriminant-value-B:
arrn-declaration-B;

default: default-declaration;
} identifier;

Each case keyword is followed by a legal value of the discriminant. The default arm is
optional. If an arm is not specified, a valid encoding of the union cannot take on unspecified
discriminant values. The size of the implied arm is always a multiple of four bytes.

The discriminated union is encoded as the discriminant followed by the encoding of the
implied arm.

See the following figure for an illustration of a discriminated union.

Discriminated Union

0 1 2 3

I discriminant I implied arm

I+- 4 bytes --.i

3-14 Communications Programming Concepts

Voids

Constants

An XDR void is a zero-byte quantity. Voids are used for describing operations that take no
data as input or output. Voids are also useful in unions, where some arms contain data and
others do not.

The declaration for a void follows:

void;

Voids are illustrated as follows:

++
11

++
-><-0 bytes

A constant is used to define a symbolic name for a constant, and it does not declare any
data. The symbolic constant may be used anywhere a regular constant may be used.

The data declaration for a constant follows this form:

canst name-identifier = n;

The following example defines a symbolic constant DOZEN that is equal to 12:

canst DOZEN = 12;

Type Definitions
A type definition (typedef) does not declare any data but serves to define new identifiers for
declaring data.

The syntax for a typedef is:

typedef declaration;

The new type name is the variable name in the declaration part of the typedef. For example,
the following defines a new type called eggbox, using an existing type called egg:

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type name
would have in the typedef if the type was considered a variable. For example, the following
two declarations are equivalent in declaring the variable fresheggs:

eggbox fresheggs;
egg fresheggs[DOZEN];

A typedef has the following form:

typedef <<struct, union, or enum definition>> identifier;

eXternal Data Representation (XOR) 3-15

There is an alternative typedef form that is preferred for structures, unions, and
enumerations. The typedef form can be converted to the alternative form by removing
typedef and placing the identifier after the struct, union, or enum keyword, instead of at
the end. For example, here are the two ways to define the type bool:

enum bool {
FALSE = 0,
TRUE = 1
};

/* preferred alternative */

This syntax is preferred because the programmer does not have to wait until the end of a
declaration to determine the name of the new type.

Optional Data
Optional data is a type of union that occurs so frequently that it has its own syntax. The
optional data type has a close correlation to the representation of recursive data structures
by use of pointers in high-level languages, such as C or Pascal. The syntax for pointers is
the same as that for C language.

The syntax for optional data is as follows:

type-name *identifier;

The declaration for optional data is equivalent to the following union:

union switch (bool opted) {
case TRUE:
type-name element;
case FALSE:
void;

} identifier;

Since the boolean opted can be interpreted as the length of the array, the declaration for
optional data is also equivalent to the following variable-length array declaration:

type-name identifier<l>;

Optional data is very useful for describing recursive data structures such as linked lists and
trees. For example, the following defines a stringlist type that encodes lists of arbitrary
length strings:

struct *stringlist {
string item<>;
stringlist next;

} ;

The previous example can be equivalently declared as a union, as follows:

union stringlist switch (bool opted) {

} ;

case TRUE:
struct {

string item<>;
stringlist next;

} element;
case FALSE:

void;

3-16 Communications Programming Concepts

The same example can also be declared as a variable-length array, as follows:

struct stringlist<l> {
string item<>;
stringlist next;

};

Since both the union and the array declarations obscure the intention of the stringlist
type, the optional data declaration is preferred.

Related Information
Understanding the XOR Language Specification on page 3-5, Understanding the XOR
Subroutine Format on page 3-3, Using the XOR Library on page 3-4, Understanding
XOR Data Types on page 3-8, Understanding XOR Library Filter Primitives on page 3-17,
Understanding XOR Non-Filter Primitives on page 3-20.

Understanding XOR Library Filter Primitives
The XOR primitives are routines that define the basic and constructed data types. The XOR
language provides programmers with a specification for uniform representations that
includes filter primitives for basic and constructed data types. The basic data types include
integers, enumerations, Booleans, hyper-integers, floating points, and void data. The
constructed data types include: strings, structures, byte arrays, arrays, opaque data, unions,
and pointers.

The XOR standard translates both basic and constructed data types. For basic data types
such as integers and strings, XOR provides basic filter primitives that serialize information
from the local host's representation to XOR representation, and deserialize information from
the XOR representation to the local host's representation. For constructed data types, XOR
provides constructed filter primitives that allow the use of basic data types, such as integers
and floating-point numbers, to create more complex constructs such as arrays and
discriminated unions.

RPC uses XOR to establish uniform representations for data types in order to transfer the
call message data between machines. Although the XOR constructs resemble the C
programming language, it is important to note that C-language constructs define the code for
programs, while XOR standardizes the representation of data types within the programming
code itself.

Using XOR Basic Filter Primitives
The XOR primitives are routines that define the basic and constructed data types. The basic
data type filter primitives include the following:

• Number filter primitives
• Floating-point filter primitives
• Enumeration filter primitives
• No data filter primitives.

Number Filter Primitives
The XOR library provides basic filter primitives that translate between types of numbers and
their external representations. The XOR riumber filters cover signed and unsigned integers,
as well as signed and unsigned short and long integers.

eXternal Data Representation (XOR) 3-17

The routines for the XOR number filters are:

xdr_int
xdr_u_int

xdr_long

xdr_u_long

xdr_short

xdr_u_short

Translates between C language integers and their external representations.
Translates between C language unsigned integers and their external
representations.
Translates between C language long integers and their external
representations.
Translates between C language unsigned long integers and their external
representations.
Translates between C language short integers and their external
representations.
Translates between C language unsigned short integers and their external
representations.

Floating-Point Filter Primitives
The XOR library provides primitives that translate between floating-point data and their
external representations. Floating-point data encodes an integer with an exponent. Floats
and double-precision numbers compose floating-point data.

Note: Numbers are represented as IEEE standard floating points. Routines may fail when
decoding IEEE representations into machine-specific representations, or vice versa.

The routines for the XOR floating-point filters are:

xdr_float Translates between C language floats and their external representations.
xdr_double Translates between C language double-precision numbers and their

external representations.

Enumeration Filter Primitives
The XOR library provides a primitive for generic enumerations based on the assumption that
a C enumeration value (enum) has the same representation. There is a special enumeration
in XOR known as the Boolean.

The routines for the XOR library enumeration filters are the following:

xdr_enum
xdr_bool

Translates between C language enums and their external representations.
Translates between Booleans and their external representations.

Passing No Data
Sometimes an XOR routine must be supplied to the RPC system, but no data is required or
passed. The XOR library provides the following primitive for this function:

xdr_void Supplies an XOR subroutine to the RPC system without transmitting data.

Using XOR Constructed Filter Primitives
The XOR filter primitives are routines that define the basic and constructed data types.
Constructed data type filters allow complex data types to be created from the basic data
types. Constructed data types require more parameters to perform more complicated
functions than the basic data types. Memory management is an example of a more
complicated function that can be performed with the constructed primitives. Memory is
allocated when deserializing data with the xdr_decode routine. Memory is deallocated
through the xdr _free routine.

3-18 Communications Programming Concepts

The constructed data type filter primitives include the following:
• String filter primitives
• Array filter primitives
• Opaque data filter primitives
• Pointers to structures
• Discriminated unions.

String Filter Primitives
A string is a constructed filter primitive that consists of a sequence of bytes terminated by a
null byte. The null byte does not figure into the length of the string. Externally, strings are
represented by a sequence of ASCII characters. Internally, XOR represents them as pointers
to characters with the designation char *.

The XOR library includes primitives for the following string routines:

xdr_string Translates between C language strings and their external
representations.

xdr_wrapstring Calls the xdr_string subroutine.

Array Filter Primitives
Arrays are constructed filter primitives and may be generic arrays or byte arrays. The XOR
library provides filter primitives for handling both types of arrays.

Generic Arrays

Generic arrays consist of arbitrary elements. Generic arrays are handled in much the same
way as byte arrays, which handle a subset of generic arrays where the size of the elements
is 1 and their external descriptions are predetermined. The primitive for generic arrays
requires an additional parameter to define the size of the element in the array and to call an
XOR routine to encode or decode each element in the array.

The XOR library has the following routine for generic arrays:

xdr_array

xdr_vector

Byte Arrays

Translates between variable-length arrays and their corresponding external
representations.
Translates between fixed-length arrays and their corresponding external
representations.

The XOR library provides a primitive for byte arrays. Although similar to strings, byte arrays
differ from strings by having a byte count. That is, the length of the array is set by an
unsigned integer. They also differ in that byte arrays are not terminated with a null character.
External and internal representations of byte arrays are the same.

The XOR library includes the following routine for byte arrays:

xdr_bytes Translates between counted byte string arrays and their external
representations.

Opaque Data Filter Primitives
Opaque data is composed of bytes of a fixed size that are not interpreted as they pass
through the data streams. Opaque data bytes, such as handles, are passed between server
and client without being inspected by the client. The client uses the data as it is and then
returns it to the server. By definition, the actual data contained in the opaque object is not
portable between computers.

eXternal Data Representation (XOR) 3-19

The XOR library includes the following routine for opaque data:

xdr_opaque Translates between opaque data and its external representation.

Primitive for Pointers to Structures
The XOR library provides the primitive for pointers so that structures referenced within other
structures can be easily serialized, deserialized, and freed.

The XOR library includes the following routine for pointers to structures:

xdr _reference Provides pointer chasing within structures.

Primitive for Discriminated Unions
A discriminated union is a C language union, which is an object that holds several data types
with one arm of the union an enumeration value, or discriminant, that holds a specific object
to be processed over the system first. The discriminant is an enumeration value (enum_t).

The XOR library includes the following routine for discriminated unions:

xdr_union

Related Information

Translates between discriminated unions and their external
representations.

Alphabetical List of XOR Subroutines and Macros on page 3-24.

List of XOR Examples on page 3-28.

Understanding the XOR Subroutine Format on page 3-3, Using the XOR Library on page
3-4, Understanding the XOR Language Specification on page 3-5, Understanding XOR
Data Types on page 3-8, Understanding XOR Non-Filter Primitives on page 3-20.

Understanding XOR Non-Filter Primitives
The XOR non-filter primitives are used to create, manipulate, implement, and destroy XOR
data streams. These primitives allow the programmer to describe the data stream position,
change the data stream position, and destroy a data stream.

Creating and Using XOR Data Streams
XOR data streams are Obtained by calling creation routines that take arguments specifically
designed to the properties of the stream. There are existing XOR data streams for serializing
or deserializing data in standard input and output streams, memory streams, and record
streams.

Note: RPC clients do not have to create XOR streams because the RPC system creates
and passes these streams to the client.

The types of data streams include standard 1/0 streams, memory streams, and record
streams.

Standard 110 Streams

XOR data streams serialize and deserialize standard input/output by calling the standard
input/output creation routine to initialize the XOR data stream pointed to by the xdrs
parameter.

3-20 Communications Programming Concepts

The XDR library includes the following routine for standard 1/0 data streams:

xdrstdio_create Initializes the XOR data stream pointed to by the xdrs parameter.

Memory Streams

XOR data streams serialize and deserialize data from memory by calling the XDR memory
creation routine to initialize in local memory the XDR stream pointed at by the xdrs
parameter. In RPC, UDP/IP implementation of remote procedure calls uses this routine to
build entire call and reply messages in memory before sending the message to the recipient.

The XOR library includes the following routine for memory data streams:

xdrmem_create

Record Streams

Initializes in local memory the XDR stream pointed to by the xdrs
parameter.

Record streams are XDR streams built on top of record fragments, which are built on TCP/IP
streams. TCP/IP is a connection protocol for transporting large streams of data at one time
instead of transporting a single data packet at a time.

The primary use of a record stream is to interface remote procedure calls to TCP
connections. It can also be used to stream data into or out of normal files.

XDR provides the following routines for use with record streams:

xdrrec_create Provides an XDR stream that can contain long sequences of
records.

xdrrec_endofrecord Causes the current outgoing data to be marked as a record.
xdrrec_skiprecord Causes the position of an input stream to move to the beginning of

xdrrec_eof
the next record.
Checks the buffer for an input stream that identifies the end of file
(EOF).

Manipulating an XOR Data Stream
XDR provides routines for describing the data stream position and changing the data stream
position:

xdr_getpos

xdr_setpos

Returns an unsigned integer that describes the current position in
the data stream.
Changes the current position in the XDR stream.

Implementing an XOR Data Stream
XDR data streams can be created and implemented by programmers. The abstract data
types (XOR handle) required for programmers to implement their own XDR streams are
shown in the following example. They contain operations that are being applied to the
stream, an operation vector for the particular implementation, and two private fields for the
use of the particular implementation.

eXternal Data Representation (XOR) 3-21

enum xdr_op { XDR_ENCODE=O, XDR_DECODE=l, XDR FREE=2 };
typedef struct {

enum xdr_op x_op;
struct xdr_ops {

bool_t (*x_getlong) ();
boot_t (*x_putlong) ();
boot_t (*x_getbytes) ();
boot_t (*x_putbytes) ();
u int (*x_getpostn) ();
boot t (*x_setpostn) ();
caddr_t (*x_inline) ();
VOID (*x_destroy) ();

} *XOp;
caddr t x_public;
caddr t x_private;
caddr t x_base;
int x_handy;

} XDR;

The following parameters are pointers to XOR stream manipulation routines:

x_getlong

x_putlong

x_getbytes

x_putbytes

x_getpostn

x_setpostn

x_inline

x_destroy

XOp

Gets long integer values from the data stream.

Puts long integer values into the data stream.

Gets bytes from the data stream.

Puts bytes into the data stream.

Returns stream offset.

Repositions offset.

Points to internal data buffer, which can be used for any purpose.

Frees private data structure.

Specifies the current operation being performed on the stream. This field
is important to the XOR primitives. However, the stream's implementation
does not depend on the value of this parameter.

The following fields are specific to a stream's implementation:

x_public

x_private

x_base

x_handy

Specifies user data that is private to the stream's implementation and is
not used by the XOR primitive.

Points to the private data.

Contains the position information in the data stream that is private to the
user implementation.

Data can contain extra information as necessary.

Destroying an XOR Data Stream
XOR provides a routine that destroys the XOR stream pointed to by the xdrs parameter and
frees the private data structures allocated to the stream.

xdr _destroy
Destroys the XOR stream pointed to by the xdrs parameter.

The use of the XOR stream handle is undefined after it is destroyed.

3-22 Communications Programming Concepts

Related Information
The xdr_destroy subroutine, xdr_getpos subroutine, xdr_setpos subroutine.

Alphabetical List of XOR Subroutines and Macros on page 3-24.

Understanding the XOR Subroutine Format on page 3-3, Using the XOR Library on page
3-4, Understanding the XOR Language Specification on page 3-5, Understanding XOR
Data Types on page 3-8, Understanding XOR Library Filter Primitives on page 3-17.

Understanding Protocols for TCP/IP, User Datagram Protocol (UDP) in Communication
Concepts and Procedures.

external Data Representation (XOR) 3-23

Alphabetical List of XOR Subroutines and Macros
xdr_array

xdr_bool

xdr_bytes

xdr_char

xdr_destroy

xdr_double

xdr_enum

xdr_float

xdr_free

xdr_getpos

xdr_lnllne

xdr_lnt

xdr_long

xdr_opaque

xdr _pointer

xdr _reference

xdr_setpos

xdr_short

xdr_strlng

xdr_u_char

Translates between variable-length arrays and their
corresponding external representations.

Translates between Booleans and their external representations.

Translates between internal counted byte string arrays and their
external representations.

Translates between C language characters and their external
representations.

Destroys the XOR stream pointed to by the xdrs parameter.

Translates between C language double-precision numbers and
their external representations.

Translates between C language enums and their external
representations.

Translates between C language floats and their external
representations.

Deallocates or frees memory.

Returns an unsigned integer that describes the current position in
the data stream.

Returns a pointer to the buffer of a stream pointed to by the xdrs
parameter.

Translates between C language integers and their external
representations.

Translates between C language long integers and their external
representations.

Translates between fixed-length opaque data and its external
representation.

Provides pointer chasing within structures and serializes NULL
pointers.

Provides pointer chasing within structures.

Changes the current position in the XOR stream.

Translates between C language short integers and their external
representations.

Translates between C language strings and their external
representations.

Translates between unsigned C language characters and their
external representations.

3-24 Communications Programming Concepts

xdr_u_lnt

xdr_u_long

xdr_u_short

xdr_unlon

xdr_vector

xdr_vold

xdr _wrapstrlng

xdrmem_create

xdrrec _create

xdrrec_endofrecord

xdrrec_eof

xdrrec_sklprecord

xdrstdlo_create

Related Information

Translates between C language unsigned integers and their
external representations.

Translates between C language unsigned long integers and their
external representations.

Translates between C language unsigned short integers and their
external representations.

Translates between discriminated unions and their external
representations.

Translates between fixed-length arrays and their corresponding
external representations.

Supplies an XOR subroutine to the RPC system without
transmitting data.

Calls the xdr_strlng subroutine.

Initializes in local memory the XOR stream pointed to by the xdrs
parameter.

Provides an XOR stream that can contain long sequences of
records.

Causes the current outgoing data to be marked as a record.

Checks the buffer for an input stream that identifies the end of file
(EOF).

Causes the position of an input stream to move to the beginning
of the next record.

Initializes the XOR data stream pointed to by the xdrs parameter.

Functional List of XOR Subroutines and Macros on page 3-26.

Understanding XOR Data Types on page 3-8, Understanding the XOR Subroutine Format
on page 3-3, Understanding the XOR Language Specification on page 3-5, Using the
XOR Library on page 3-4, Understanding XOR Library Filter Primitives on page 3-17,
Understanding XOR Non-Filter Primitives on page 3-20.

eXternal Data Representation (XOR) 3-25

Functional List of XOR Subroutines and Macros
The XOR library provides subroutines and macros that translate the C language to
standardize data transport. The XOR library consists of filter primitives and non-filter
primitives.

Using the XOR Library Filter Primitives
The XOR library provides the following filter primitives:

xdr_array

xdr_bool

xdr_bytes

xdr_char

xdr_double

xdr_enum

xdr_float

xdr_lnt

xdr_long

xdr_opaque

xd r _reference

xdr_short

xdr_strlng

xdr_u_char

xdr_u_lnt

xdr_u_long

Translates between variable-length arrays and their
corresponding external representations.

Translates between Booleans and their external representations.

Translates between internal counted byte string arrays and their
external representations.

Translates between C language characters and their external
representations.

Translates between C language double-precision numbers and
their external representations.

Translates between C language enums and their external
representations.

Translates between C language floats and their external
representations.

Translates between C language integers and their external
representations.

Translates between C language long integers and their external
representations.

Translates between opaque data and its external representation.

Provides pointer chasing within structures.

Translates between C language short integers and their external
representations.

Translates between C language strings and their external
representations.

Translates between unsigned C ianguage characters and their
external representations.

Translates between C language unsigned integers and their
external representations.

Translates between C language unsigned long integers and their
external representations.

3-26 Communications Programming Concepts

xdr_u_short

xdr_unlon

xdr_vector

xdr_vold

xdr_wrapstrlng

Translates between C language unsigned short integers and their
external representations.

Translates between discriminated unions and their external
representations.

Translates between fixed-length arrays and their corresponding
external representations.

Supplies an XOR subroutine to the RPC system without
transmitting data.

Calls the xdr_strlng subroutine.

Using the XOR Library Non-Filter Primitives
The XOR library provides the following filter primitives:

xdr_destroy

xdr_getpos

xdr_setpos

xdr_lnllne

xdrmem_create

xdr_polnter

xdrstdlo_create

xdrrec_create

xdrrec_endofrecord

xdrrec_eof

xdrrec_sklprecord

xdr_free

Related Information

Destroys the XD R stream pointed to by the xdrs parameter.

Returns an unsigned integer that describes the current position in
the data stream.

Changes the current position in the XOR stream.

Returns a pointer to an internal piece of the buffer of a stream,
pointed to by the xdrs parameter.

Initializes in local memory the XDR stream pointed to by the-xdrs
parameter.

Provides pointer chasing within structures and serializes NULL
pointers.

Initializes the XDR data stream pointed to by the xdrs parameter.

Provides an XOR stream that can contain long sequences of
records.

Causes the current outgoing data to be marked as a record.

Checks the buffer for an input stream.

Causes the position of an input stream to move to the beginning
of the next record.

Deallocates or frees memory.

Alphabetical List of XDR Subroutines and Macros on page 3-24.

Understanding XDR Data Types on page 3-8, Understanding the XDR Subroutine Format
on page 3-3, Understanding the XDR Language Specification on page 3-5, Using the
XDR Library on page 3-4, Understanding XOR Library Filter Primitives on page 3-17,
Understanding XDR Non-Filter Primitives on page 3-20.

eXternal Data Representation (XOR) 3-27

List of XOR Examples
The following is a list of XOR examples:

Example Passing Linked Lists Using XOR on page 3-29

Example Showing the Justification for Using XOR on page 3-32

Example Showing the Use of Pointers in XOR on page 3-35

Example Using an XDRon oage 3-36.

Example Using an XOR Array on page 3-37

Example Using an XOR Data Description on page3-40

Example Using an XOR Discriminated Union on page 3-42.

Related Information
Alphabetical List of XOR Subroutines and Macros on page 3-24, Functional List of XOR
Subroutines and Macros on page 3-26.

Understanding XOR Data Types on page 3-8, Understanding the XOR Subroutine Format
on page 3-3, Understanding the XOR Language Specification on page 3-5, Using the
XOR Library on page 3-4, Understanding XOR Library Filter Primitives on page 3-17,
Understanding XOR Non-Filter Primitives on page 3-20.

3-28 Communications Programming Concepts

Example Passing Linked Lists Using XDR
Linked lists of arbitrary length can be passed using XOR. To help illustrate the functions of
the XOR routine for encoding, decoding, or freeing linked lists, the following example creates
a data structure and defines its associated XOR routine:

The Example Showing the Use of Pointers in XOR on page 3-35 presents a C data structure
and its associated XOR routines for an individual's gross assets and liabilities. The example
is duplicated below:

struct gnumbers {
long g_assets;

} ;
bool t

long g_liabilities;

xdr_gnumbers (xdrs, gp)
XOR *xdrs;
struct gnumbers *gp;

{
if (xdr_long (xdrs, &(gp->g_assets)))

return (xdr_long (xdrs, &(gp->g_liabilities)));
return(FALSE);

}

xdrs Points to the XOR data stream handle.

gp Points to the address of the structure that provides the data to or from the
XOR stream.

To implement a linked list of such information, a data structure could be constructed as
follows:

struct gnumbers_node {
struct gnumbers gn_numbers;
struct gnnumbers_node *gn_next;

} ;
typedef struct gnumbers_node *gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the head is not
merely a convenient shorthand for a structure. Similarly, the gn_next field is used to
indicate whether or not the object has terminated. If the object continues, the gn_next field
is also the address of where it continues. The link addresses carry no useful information
when the object is serialized.

The XOR data description of this linked list can be described by the recursive declaration of
the gnumbers_list, as follows:

struct gnumbers {
int g assets;
int g-liabilities;

} ;
struct gnumbers_node {

gnumbers gn_numbers;
gnumbers_node *gn_next;

} ;

eXternal Data Representation {XOR) 3-29

In this description, the Boolean indicates whether there is more data following it. If the
Boolean is FALSE, then it is the last data field of the structure. If it is TRUE, then it is
followed by a gnumbers structure and (recursively) by a gnumbers_list. Note that the C
declaration has no Boolean explicitly declared in it (though the gn_ next field implicitly
carries the information), while the XOR data description has no pointer explicitly declared in
it.

Hints for writing the XOR routines for a gnumbers_list follow from the previous XOR
description. Note how the primitive xdr_pointer is used to implement the XOR union
above:

bool t
xdr_gnumbers_node (xdrs, gn)

XOR *xdrs;
gnumbers_node *gn;

{

bool_t

return (xdr_gnumbers (xdrs, &gn->gn_numbers) &&
xdr_gnurnbers_list (xdrs, &gp->gn_next));

xdr_gnurnbers_list (xdrs, gnp)
XOR *xdrs;
gnurnbers_list *gnp;

{
return (xdr_pointer (xdrs, gnp,

SizeOf(struct gnurnbers_node),
xdr_gnumbers_node));

With these routines, the C stack grows linearly with respect to the number of nodes in the
list. This is due to the recursion. The following routine collapses the above two mutually
recursive programs into a single, non-recursive one.

bool_t
xdr_gnumbers_list (xdrs, gnp)

XOR *xdrs;
gnumbers_list *gnp;

{
bool_t more_data;
gnurnbers_list *nextp;

for (; ;) {
more_data = (*gnp !=NULL);
if (!xdr_bool (xdrs, &rnore_data)) {

return (FALSE)
}
if (!more_data) {

break;
}
if (xdrs->x_op == XOR_FREE) {

nextp = &(*gnp)->gn_next;
}
if (!xdr_reference (xdrs, gnp,

sizeof (struct gnurnbers_node), xdr_gnumbers)) {

3-30 Communications Programming Concepts

return (FALSE);
}
gnp = xdrs->x_op == XDR_FREE) ?

nextp : &{*gnp)->gn_next;
}
*gnp NULL;
return (TRUE)

}

The routine's first task is to find out whether there is more data or not, so that this Boolean
information can be serialized. Notice that this statement is unnecessary in the
XDR_DECODE case, since the value of more_data is not known until it is deserialized in
the next statement.

The next statement XDRs the more_data field of the XOR union. Then if there is no more
data, the routine sets this last pointer to NULL to indicate the end of the list, and returns
TRUE because it is done. Note that setting the pointer to NULL is only important in the
XDR_ENCODE case, because the pointer is already null in the XDR_ENCODE and
XOR_ FREE cases.

Next, if the direction is XDR_FREE, the routine sets the value of nextp to indicate the
location of the next pointer in the list. This routine performs this task because it needs to
dereference gnp to find the location of the next item in the list, and after the next statement
the storage pointed to by gnp will be freed up and no longer valid. This can't be done for all
directions, though, because in the XDR_DECODE direction the value of gnp won't be set
until the next statement.

Next, the routine XDR's the data in the node using the primitive xdr_reference.
xdr_reference is like xdr_pointer, which was used before, but it does not send over
the Boolean indicating whether there is more data. The routine uses it instead of
xdr_pointer because it has already XDRd this information. Notice that the XOR routine
passed is not the same type as an element in the list. The routine passed is
xdr_gnumbers, for XDRing gnumbers, but each element in the list is actually of the
gnumbers_node type. The routine dosen't pass xdr_gnumbers_gnode because it is
recursive, and instead uses xdr_gnumbers, which XDRs all of the non-recursive part.

Note: This method will work only if the gn_numbers field is the first item in each element,
so that their addresses are identical when passed to xdr_reference.

Finally, the routine updates gnp to point to the next item in the list. If the direction is
XDR_FREE, the routine sets it to the previously saved value; otherwise, the routine can
dereference gnp to get the proper value. This non-recursive routine is far less likely to
overflow the C stack. It also runs more efficiently since a lot of procedure call overhead has
been removed. Most lists are small, however (in the hundreds of items or less), and the
recursive version should be sufficient for them.

Related Information
List of XOR Examples on page 3-28.

Understanding the XOR Subroutine Format on page 3-3, Using the XOR Library on page
3-4, Understanding the XOR Language Specification on page 3-5, Understanding XOR
Data Types on page 3-8, Understanding XOR Library Filter Primitives on page 3-17,
Understanding XOR Non-Filter Primitives on page 3-20.

eXternal Data Representation (XOR) 3-31

Example Showing the Justification for Using XOR
Consider two programs, writer and reader. The writer program is written as follows:

#include <stdio.h>
main() /* writer.c */
{

}

long i;
for (i = O; i < 8; i++) {

if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) {
fprintf(stderr, "failed!\n");
exit(!);

}
}
exit(O);

The reader program is written as follows:

#include <stdio.h>
main() /* reader.c */
{

long i, j;
for (j = 0; j < 8; j ++) {

if (fread((char *)&i, sizeof (i), 1, stdin) != l) {
fprintf(stderr, "failed!\n");
exit (1);

}
printf("%ld ", i);

}
printf("\n");

exit (0);
}

The two programs appear to be portable., because (a) they pass lint checking, and (b) they
· exhibit the same behavior when executed on two different hardware architectures, an IBM

and a VAX.

Piping the output of the writer program to the reader program gives identical results on an
IBM or a VAX as follows:

ibm% writer reader
0 1 2 3 4 5 6 7
ibm%
vax% writer I reader
0 1 2 3 4 5 6 7
vax%

The following are the results if the first produces data on an IBM, and the second consumes
data on a VAX:

ibm% writer I rsh vax reader
0 16777216 33554432 50331648 67108864 83886080 100663296
117440512
ibm%

3-32 Communications Programming Concepts

Identical results can be obtained by executing writer on the VAX and reader on the IBM.
These results occur because the byte ordering of long integers differs between the VAX and
the IBM, even though word size is the same. Note that 16777216 is 224 - when four bytes
are reversed, the 1 winds up in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for portable data.
Programs can be made data-portable by replacing the read and write system calls with calls
to an XDR library routine xdr_long, a filter that knows the standard representation of a long
integer in its external form.

The following are the revised versions of the writer program:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */
main() /* writer.c */
{

}

XOR xdrs;
long i;
xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
for (i = O; i < 8; i++) {

if (!xdr_long(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(l);

}
}
exit(O);

The following are the results of the reader program:

#include <stdio.h>
#include <rpc/rpc.h>
main()

/* xdr is a sub-library of rpc */
/* reader.c */

{

}

XOR xdrs;
long i, j;
xdrstdio create(&xdrs, stdin, XOR DECODE);
for (j = - 0 ; j < 8 ; j ++) { -

if (!xdr_long(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(l);

}
printf("%ld ", i);
}

printf("\n");
exit (0);

external Data Representation (XOR) 3-33

The new programs were executed on an IBM, on a VAX, and from an IBM to a VAX. The
results are shown below.

ibm% writer I reader
0 1 2 3 4 5 6 7
ibm%
vax% writer I reader
0 1 2 3 4 5 6 7
vax%
ibm% writer I rsh vax reader
0 1 2 3 4 5 6 7
ibm%

In addition to integers, arbitrary data structures require portability considerations, particularly
with respect to alignment and pointers. Alignment on word boundaries may cause the size of
a structure to vary from machine to machine. Pointers, which are convenient to use, have no
meaning outside the machine where they are defined.

Related Information
List of XDR Examples on page 3-28.

Using the XDR Library on page 3-4.

3-34 Communications Programming Concepts

Example Showing the Use of Pointers in XOR
If a structure containing a person's name and a pointer to a gnumbers structure which in
turn has the person's gross assets and liabilities, the structure can be written as follows:

struct pgn {
char *name;
struct gnumbers *gnp;

} ;

The corresponding XOR routine for this structure is:

bool_t
xdr_pgn(xdrs, pp)

{

}

XOR *xdrs;
struct pgn *pp;

if (xdr_string(xdrs, &pp->name, NLEN) &&
xdr_reference(xdrs, &pp->gnp,
sizeof(struct gnumbers), xdr_gnumbers))

return(TRUE);
return(FALSE);

Related Information
List of XOR Examples on page 3-28.

Understanding XOR Library Filter Primitives on page 3-17.

eXternal Data Representation (XOR) 3-35

Example Using an XOR
In the following example, a person's gross assets and liabilities are to be exchanged among
processes. These values are important enough to warrant their own data type:

struct gnumbers {
long g_assets;
long g_liabilities;

} ;

The corresponding XOR routine describing this structure would be:

bool t /* TRUE is success, FALSE is failure *I
xdr_gnumbers(xdrs, gp)

{

}

XOR *xdrs;
struct gnumbers *gp;

if (xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities))
return(TRUE);

return(FALSE);

Note that the parameter xdrs is never inspected or modified; it is only passed on to the
subcomponent routines. It is imperative to inspect the return value of each XOR routine call,
and to give up immediately and return FALSE if the subroutine fails.

This example also shows that the type bool_t is declared as an integer whose only values
are TRUE (1) and FALSE (0). This document uses the following definitions:

#define bool t int
#define TRUE 1
#define FALSE 0

Keeping these conventions in mind, the xdr_gnumbers routine can be rewritten as follows:

xdr_gnumbers(xdrs, gp)

{

}

XOR *xdrs;
struct gnumbers *gp;

return(xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities));

Related Information
List of XOR Examples on page 3-28.

Using the XOR Library on page 3-4.

3-36 · · Communications Programming Concepts

Example Using an XOR Array

Example A

Example B

The following four examples illustrate XOR arrays:

A user on a networked machine can be identified by the machine name (using the
gethostname routine), the user's UIO (using the geteuid routine), and the group numbers
to which the user belongs (using the getgroups routine). A structure with this information
and its associated XOR routine could be coded as follows:

struct netuser {
char *nu machinename;
int nu_uid;
u int nu_glen;
int *nu_gids;

} ;
#define NLEN 255
#define NGRPS 20
bool_t

/* machine names < 256 chars */
/* user can't be in > 20 groups */

xdr_netuser(xdrs, nup)
XDR *xdrs;

{

}

struct netuser *nup;

return(xdr_stririg(xdrs, &nup->nu_machinename, NLEN) &&
xdr_int(xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen,

NGRPS, sizeof (int), xdr_int));

To code a routine to use fixed-length arrays, the above example can be rewritten as follows:

#define NLEN 255
#define NGRPS 20
struct netuser {

} ;
bool t

char *NUMachineName;
int nu_uid;
int nu_gids;

xdr_netuser (XDRS, nup
XDR *xdrs;

{

}

struct netuser *nup;

int i;
if (!xdr_string(xdrs,&nup->NUMachineName, NLEN))
return (FALSE);

if (!xdr_int (xdrs, &nup->nu_uid))
return (FALSE);

for (i = O; i < NGRPS; i+++) {

}

if (!xdr_int (xdrs, &nup->nu_uids[i]))
return (FALSE);

return (TRUE);

eXternal Data Representation (XOR) 3-;-37

Example C

Example D

A party of network users could be implemented as an array of netuser structure. The
declaration and its associated XDR routines are as follows:

struct party {
u_int p_len;
struct netuser *p_nusers;

} ;
#define PLEN 500
bool t
xdr_party(xdrs, pp)

XDR *xdrs;

/* max number of users in a party */

struct party *pp;
{

}

return(xdr_array(xdrs, &pp->p_nusers, &pp->p~len, PLEN,
sizeof (struct netuser), xdr_netuser));

The well-known parameters to main, argc, and argv can be combined into a structure. An
array of these structures can make up a history of commands. The declarations and XDR
routines may have the following syntax:

struct cmd {

} ;

u_int c_argc;
char **c_argv;

#define ALEN 1000
#define NARGC 100
struct history {

u_int h_len;

/* args cannot be > 1000 chars */
/* commands cannot have > 100 args */

struct cmd *h_cmds;
} ;
#define NCMDS.75
bool t

/* history is no more than 75 commands */

xdr_wrap_string(xdrs, sp)
XDR *xdrs;
char **sp;

{
return(xdr_string(xdrs, sp, ALEN));

}
bool t
xdr_cmd(xdrs, cp)

{

}

XDR *xdrs;
struct cmd *cp;

return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,
sizeof (char*), xdr_wrap_string));

bool t
xdr_history(xdrs, hp)

{

}

XDR *xdrs;
struct history *hp;

return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,
sizeof (struct cmd), xdr_cmd));

3-38 Communications Programming Concepts

Related Information
List of XDR Examples on page 3-28.

Understanding the XDR Subroutine Format on page 3-3, Using the XOR Library on page
3-4, Understanding the XDR Language Specification on page 3-5, Understanding XDR
Data Types on page 3-8, Understanding XDR Library Filter Primitives on page 3-17.

eXternal Data Representation (XOR) 3-39

Example Using an XOR Data Description
Here is a short XOR data description of a £ ile that might be used to transfer files from one
machine to another.

con st MAXUSERNAME = 32; /* max
con st MAXFILELEN = 65535; /* max
con st MAXNAMELEN = 255;
/*

* Types of files:
*/

enum f ilekind {

} ;
/*

TEXT
DATA
EXEC

= o,
= 1,
= 2

/*
/*
/*

/* max

ascii data
raw data
executable

length
length
length

*/
*/
*/

* File information, per kind of file:
*/

union filetype switch (filekind kind) {
case TEXT:

of a user name
of a file
of a file name

void;
case DATA:

/* no extra information */

string creator<MAXNAMELEN>; /* data creator */
case EXEC:

*/
*/
*/

string interpretor<MAXNAMELEN>; /* program interpretor */
} ;
/*
* A complete file:
*/

struct file {

} ;

string filename<MAXNAMELEN>; /*
filetype type; /*
string owner<MAXUSERNAME>; /*
opaque data<MAXFILELEN>; /*

"3-40 Communications Programming Concepts

name of file */
info about file */
owner of file */
file data */

If a user named john wants to store his LISP program sillyprog that contains just the
data (quit), his file can be encoded as follows:

XDR Data Description Table

Offset Hex Bytes ASCII Description

0 00 00 00 09 ... Length of filename = 9

4 73 69 6c 6c sill Filename characters

8 79 70 72 6f ypro ... and more characters ...

12 67 00 00 00 g and 3 zero-bytes of fill

16 00 00 00 02 ... Filekind is EXEC = 2

20 00 00 00 04 ... Length of owner = 4

24 Sc 69 73 70 lisp Interpretor characters

28 00 00 00 04 ... Length of owner = 4

32 6a 6f 68 6e john Owner characters

36 00 00 00 06 ... Length of file data = 6

40 28 717569 (qui File data bytes ...

44 74 29 00 00 t) and 2 zero-bytes of fill

Related Information
List of XOR Examples on page 3-28.

Understanding the XOR Language Specification on page 3-5.

eXternal Data Representation (XOR) 3-41

Example Using an XOR Discriminated Union
If the type of a union can be integer, character pointer (a string), or a gnumbers
structure, and the union and its current type are declared in a structure, the declaration
follows:

enum utype { INTEGER=!, STRING=2, GNUMBERS=3 };
struct u_tag {

} ;

enum utype utype; /* the union's discriminant */
union {

int ival;
char *pval;
struct gnumbers gn;

} uval;

The following constructs and XOR procedure (de)serialize the discriminated union:

struct xdr_discrim u_tag_arms[4] = {
{ INTEGER, xdr_int },

}

{ GNUMBERS, xdr_gnumbers }
{ STRING, xdr_wrap_string },
{ dontcare , NULL }
/*--always terminate arms with a NULL xdr_proc */

bool t
xdr_u_tag(xdrs, utp)

{

}

XDR *xdrs;
struct u_tag *utp;

return(xdr_union(xdrs, &utp->utype, &utp->uval,
u_tag_arms, NULL));

The xdr_gnumbers routine was presented in the Example Showing the Justification for
Using XOR on page 3-32. The xdr_wrap_string routine is presented in Example D of the
Example Using an XOR Array on page 3-37. The default arm parameter to the xdr _union
parameter is NULL in this example. Therefore the value of the union's discriminant may
legally take on only values listed in the u_tag_arms array. This example also demonstrates
that the elements of the arm's array do not need to be sorted.

The values of the discriminant may be sparse (though not in this example). Assign explicit
integer values to each element of the discriminant's type to document the external
representation of the discriminant and guarantee that different C compilers emit identical
discriminant values.

Related Information
List of XOR Examples on page 3-28.

Understanding XOR Library Filter Primitives on page 3-17, Understanding XOR Data Types
on page 3-8.

3-42 Communications Programming Concepts

Chapter 4. 3270 Host Connection Program/6000 {HCON)

The AIX 3270 Host Connection Program/6000 Licensed Program (HCON) application
programming interface (API) allows AIX users to develop applications programs that
communicate with a host system. This chapter/section contains information on HCON data
structures, the file transfer programming interface and the HCON application program
interface. Also included is information on how to install the HCON API on a host system,
how to incorporate automatic logon in your HCON applications, and error and status
information for program troubleshooting.

HCON Overview
The 3270 Host Connection Program/6000 (HCON) is a software package that provides
communications capabilities between RISC System/6000 and IBM System/370 host
computer systems. HCON provides the following programming facilities:

• File transfer programming interface
• Application Programming Interface (API)
• Implicit logon/logoff features and commands
• HCON programming examples.

File Transfer Programming Interface

HCON API

The File Transfer Programming Interface permits the transfer of files between RISC
System/6000 and a System/370 host. The host operating system can be either VM/CMS or
MVS/TSO with the corresponding version of the IBM 3270 File Transfer Program
(IND$FILE) installed. The application program can transfer a file from a RISC System/6000
to the host (uploading) or from the host to the RISC System/6000 (downloading). The
application program can transfer either text or binary data. The program interface is a library
linked with an AIX user application program.

The Applications Programming Interface (API) to HCON allows a user to write a program
that can interface with the System/370 host computer system in one of three modes.

HCON API Modes

HCON API modes are as follows:

APl/API

APl/APl_T

Allows an AIX application program to communicate with a host
application program. The APl/API mode requires the user to write an AIX
application and a corresponding Host Interface application. The APl/API
mode is used when an AIX application uses the API to communicate with
a host application that also uses the API.

Translates data between ASCII and EBCDIC formats in addition to
performing the same function as APl/API mode.

3270 Host Connection Program/6000 (HCON) 4-1

APl/3270 Allows an AIX application program to communicate with a System/370
host by means of standard 3270 Protocol. The APl/3270 mode is used
when an AIX application uses the API to communicate with a host
application that assumes it is dealing with a 3270 terminal (the APl/3270
application uses the emulator to communicate with the host through a
3270 session).

AIX Interface for HCON API

AIX access to the HCON API is through use of a C, Pascal, or FORTRAN language
interface. The AIX Interface consists of the following categories of functions:

Session Control ·

Message Interface

API File Transfer

Logical Terminal Interface

Host Interface for HCON API

Enables an AIX application program to open, start, and
end communication with a System/370 host application.

Enables an AIX application program to send messages
to and receive messages from a System/370 host.

Permits an API application to perform a file transfer
through the use of the g32_fxfer function.

Allows an AIX application program to access the
presentation space of the associated terminal emulator.

Host Interface applications must be written in System/370 Assembler language. The Host
Interface consists of the following categories of functions:

Host Session Control

Host Message Interface

The 3270 assembler functions that enable a host
application program to open, start, and end
communication with an AIX application.

The 3270 assembler functions that enable a host
application program to send messages to and receive
messages from AIX.

HCON provides a set of header files that the application program must include when
incorporating any of the HCON API functions. The header files (also called include files)
contain data structures required by the AIX HCON functions.

Logon/Logoff Facilities
Before information can be exchanged between a RISC System/6000 and a host system, the
user must log on to the host system with a valid host user ID and a password. HCON
supports two logon methods: explicit logon and implicit logon.

Explicit logon requires the user to invoke the e789 program and log on to the host system.

Implicit logon requires that the user provide logon information to the file transfer or API
application program being invoked. HCON supplies two facilities to allow the user to include
logon information in a program: AUTOLOG and the Logan Assist Feature (LAF).

AUTOLOG and LAF may be used with explicit logon (an open emulator) if the flag in the
g32_open function is set to one (1).

4-2 Communications Programming Concepts

HCON Programming Examples
HCON includes program examples that illustrate the use of the API, implicit logon, and file
transfer programming facilities. Program examples fall into the following categories:

File Transfer Program Interface

Application Program Interface

Logon Assist Feature Scripts

AUTOLOG profiles

HCONTerms
Session

File transfer programming examples illustrate the
use of the fxfer function.

Application Program Interface (API) examples
illustrate the use of the AIX and Host functions.
In addition to the example fragments provided to
show how each API function works, HCON also
provides three example programs illustrating the
use of more than one function in an application.

Illustrate implicit logon. The /usr/lib/hcon
directory contains the g_log.vm and g_log.mvs
sample LAF scripts.

Provide samples of implicit AUTOLOG profiles.
The /usr/lib/hcon directory contains the sample
AUTOLOG profiles: SVStso, SVSvm1, and
SVSvm2.

A session is a period of activity with an IBM System/370 host computer. This period begins
as soon as the host and HCON begin to exchange greetings. This session is separate from
the logon activity. The sequence of communication events between the device driver and the
controller does not constitute a session. A host application is always in control of a session.
This application can be the host operating system or a user-written API program. The 3270
interface is a master/slave interface, with the master being the host computer and the slave
being the RISC System/6000.

Logical Path

A logical path is a bi-directional communication route between the RISC System/6000 and
the IBM System/370 host computer. Over this route flow the 3270 commands as well as
messages from the host to the RISC System/6000 and from the RISC System/6000 to the
host.

Physical Path

A physical path refers to a specific adapter and communication cable. A physical path
supports 0 or more logical paths. The configuration of the device driver, controller, and host
determines the number of paths.

Presentation Space

An internal data structure that contains all information or data that appears on an e 789
terminal screen. The e789 screen display reflects the information of the internal data
structure.

3270 Host Connection Program/6000 (HCON) 4-3

Related Information
Understanding the File Transfer Program Interface on page 4-4, Understanding the HCON
Application Programming Interfaces on page 4-8, Understanding the AIX Interface for
HCON on page 4-11, Understanding the Host Interface for HCON API on page 4-15,
Understanding Explicit and Implicit Logon on page 4-17, Understanding HCON
Programming Examples on page 4-25.

Understanding the File Transfer Program Interface
The file transfer programming interface consists of library routines that are linked with an
AIX user application program written in C, FORTRAN or Pascal. The file transfer routines
are the following:

fxfer Initiates the file transfer from within an AIX application program.

cfxf er Returns the completion status of the file transfer request to the program.

The file transfer status codes are described in the table of File Transfer Error Codes.

Note: The file transfer program interface cannot be interrupted; therefore, no restart files
are created. The file transfer program interface cannot invoke the restart option. If
restart files exist, the file transfer program interface function returns a status code of
202.

Synchronous and Asynchronous File Transfers

Security

Synchronous and asynchronous file transfers differ in these respects:

• Asynchronous file transfers are processed in the background. If a current file transfer is
not complete, additional asynchronous file transfer requests to the same session are
placed in a queue. Each request is processed after the preceding file transfer has
completed.

• Synchronous file transfers are processed immediately. If a current file transfer is not
completed, additional synchronous file transfer requests generate a host connection busy
message.

• It is an error to attempt a synchronous transfer while any other file transfer is being
processed.

The File Transfer program protects the user and host logons as well as the integrity of the
files. Passwords required for any host logon are solicited from the control terminal. The
password is not displayed on the screen, and it is not maintained in any file. If a password is
maintained in memory for any length of time, it is disguised by the fxfer program.

A logical path created by the file transfer program is destroyed automatically when the
session is terminated by logging off, the associated queue is empty, and the time specified in
the file transfer wait period within the session profile has expired. If the associated queue is
not empty, the logical path is not destroyed until all the queued requests are processed and
the specified wait period has expired.

The fxfer function does not replace existing files unless the FXC_REPL option is specified.
This option overwrites the contents of an existing file. If the replace option is not specified
and the destination file exists, the function terminates with an error condition.

4-4 Communications Programming Concepts

The file transfer program interface includes a file protection mechanism when downloading
files to the RISC System/6000, so that the destination file which exists before the file transfer
begins is not destroyed or altered if the file transfer is interrupted. This protection
mechanism is not available when uploading files to the System/370 host.

File Transfer Programming Header Files
All file transfer programs use a defined data structure (provided in header files) for each
language. File transfer header (include) files are as follows:

/usr/include/fxfer.h

/usr/include/fxconst.inc

/usr/include/fxfer.inc

/usr/include/fxhfile.inc

File transfer include file with structures and definitions

Pascal file transfer constants

Pascal file transfer include file with structures

Pascal file transfer invocation include file.

File Transfer Data Structures

fxfer.h File

The C and Pascal Program Interface for the fxfer function use data structures that are
defined in header files. The C Program Interface uses the fxfer.h file. The Pascal Interface
uses the fxfer.inc file.

Note: The FORTRAN interface does not use include files. Check the syntax provided by
the fxfer and cfxfer functions to determine how to handle the FORTRAN
implementation.

The fxfer.h file defines the C Program Interface fxc structure for the fxfer file transfer
function. The xfer parameter of the fxfer function specifies a pointer to the fxc structure.
Each C program module that uses the fxfer function must include the fxfer.h file.

fxc Structure for C

The C Program Interface structure fxc is defined as follows:

struct fxc {
char *fxc_src;
int srclength;
char *fxc dst;
int dstlength;
struct fxcf {

int f_flags;

#define FXC UP
#define FXC DOWN
#define FXC TNL
#define FXC TCRLF
#define FXC REPL
#define FXC APPND
#define FXC_QUEUE
#define FXC FIXED

#define FXC VAR
#define FXC UNDEF
#define FXC TSO
#define FXC_CMS

char *f_logonid;
int loglength;
int f_lrecl;
int f_blksize;

/* Source file name
/* Put here for Pascal stringpt
/* Destination file name
/* Put here for Pascal stringptr

/* option flags

OxOOOl
Ox0002
Ox0004
Ox0008
OxOOlO
Ox0020
Ox0040
OxOOBO

OxOlOO
Ox0200
Ox0400
Ox0800

*/
*/
*/
*/

*/

/* Logon ID */
/* Put here for Pascal stringptr */
/* Logical record length */
/* Block size */

3270 Host Connection Program/6000 (HCON) 4-5

struct fxcs {
int s_space;
int s_increment;
int s_unit;

#define FXC TRACKS
#define FXC_CYLINDERS

} f_s;
fxc_opts;

};

-1
-2

/*
/*
/*

Allocation space */
Allocation space increment */
Unit of allocation */
/* Tracks */
/* Cylinder */

struct f xs {
int fxs_bytcnt; /* Byte count */
char *fxs src·

- ' /* Source file name */
int srclen; /* Put here for Pascal stringptr */
char *fxs dst· - ' /* Destination file name */
int dstlen; /* Put here for Pascal stringptr */
char *fxs_ctime; /* Destination file creation time */
int timelen; /* PQt here for Pascal stringptr */
int f xs _stat; /* Status code */
int fxs_errno; /* Errno */

} ;

struct f xp {
char *prof _id;
int proflen;

/* Profile id */
/* Put here for Pascal stringptr */

} ;

fxfer.inc Header File
The fxfer.inc file defines the fxc record format for the Pascal Program Interface and is used
by the fxfer file transfer function. Each Pascal program module that uses the fxfer function
must include the fxfer.inc file, the fxconst.inc file, and the fxhfile.inc file.

fxc Declarations for Pascal

The fxconst.inc header file includes the external declarations for the file transfer Pascal
interface routines: pfxfer and pcfxfer. The fxhfile.inc is the Pascal file transfer invocation
file for pfxfer and pcfxfer. The fxfer.inc file contains the fxs and fxc declarations for the
Pascal interface routines ..

The fx_statxxxxxx status file contains the status of each file transfer request made by the
application program. This information is placed in the $HOME directory.

C and Pascal Options
The options for the File Transfer Program Interface C structures and Pascal record
declarations are as follows:

f_logonid The f_logonid option is a string consisting of the host logon ID. As an
option, the host logon ID may be followed by a comma and a list of three (3)
variables, separated by commas. This list is passed to the implicit logon
procedure.

At run time, the operator will be asked to enter the password. The host
logon session is maintained for subsequent file transfers, thus eliminating
the need to logon again. The length of time the logon session is maintained
is determined by the file transfer wait period in the HCON session profile
variable.

4-6 Communications Programming Concepts

FXC_APPND Appends the file specified by the source file to the destination file, if the
destination file exists when the FXC_APPND flag is set in fxc_opts.f_flags.
This option is ignored if the destination file does not exist.

FXC_CMS Specifies the host as VM/CMS when the FXC_CMS flag is set in
fxc_opts.f_flags. The user must specify the correct host operating system.
The file transfer program does not distinguish between the two host
operating systems.

FXC_DOWN Downloads the file from a host file to an AIX file when this is set in
fxc_opts.f_flags.

FXC_QUEUE Executes the file transfer asynchronously as a background process when
this is set in fxc_opts.f_flags. If any file transfers have not completed, the
current transfer request is queued. If this option is not specified, the file
transfer operation is synchronous.

FXC_REPL Replaces an existing file on the host (upload) or replaces an existing AIX file
(download), when the FXC_REPL flag is set in fxc_opts.f_flags.

FXC_ TSO Specifies the host as MVS/TSO when this flag is set in fxc_opts.f_flags.
The user must specify the correct host operating system. The file transfer
program does not distinguish between the two host operating systems.

FXC_TNL Translates EBCDIC to ASCII when downloading files if this is set in
fxc_opts.f_flags. During uploading, it translates ASCII to EBCDIC. This
option assumes the file is a text file. The default is no translation. The AIX
new-line character is the line delimiter. This option is used when transferring
AIX formatted text files.

FXC_TCRLF Performs the same function as the FXC_TNL flag when this is set in
fxc_opts.f_flags except that the line delimiter is the character sequence
CR-LF. This option is used to translate PC-DOS files. A PC-DOS end-of-file
character is inserted at the end of the downloaded file.

FXC_UP Uploads the file from the AIX file to the host file when this is set in
fxc_opts.f_flags.

Host File Flags
The following flags specify host file characteristics. They can only be used to upload files.

f _blksize Specifies the non-zero block size of the host data set. This option can only
be used in the MVS/TSO environment. For new files, the default is the
logical record length. This flag is ignored if the file is being appended.

f _lrecl Specifies the non-zero logical record length of the host file. For new files,
the default is 80. For variable-length records, the f_lrecl flag is the
maximum size of the record. This flag is ignored if the file is being
appended.

FXC_FIXED Specifies fixed-length records when set in fxc_opts.f_flags. This is the
default if neither the FXC_VAR, the FXC_TNL, nor the FXC_TCRLF flag is
set. This flag is ignored if the file is being appended.

3270 Host Connection Program/6000 (HCON) 4-7

FXC_UNDEF Specifies records of undefined length when set in fxc_opts.f_flags. This
option can only be used in the MVS/TSO environment. This flag is ignored if
the file is being appended.

FXC_VAR

s_space

Related Information

Specifies variable-length records when set in fxc_opts.f_flags. This is the
default if the FXC_FIXED flag is not set and either the FXC_TNL or the
FXC_TCRLF flag is set. This flag is ignored if the file is being appended.

Specifies the non-zero number of units of space to be allocated for a new
data set. This option can only be used in the MVS/TSO environment. The
s_space field has the following optional sub-fields:

s_increment

s_unit

Specifies the number of units of space to be added to the
data set each time the previously allocated space is
filled.

Specifies the unit of space. A value of FXC_TRACKS
indicates the unit of allocation is tracks. A value of
FXC_CYLINDERS indicates the unit of allocation is
cylinders. Otherwise, the s_space field specifies the
average block size (in bytes) of the records that are to be
written to the data set. If the s_space field is zero, the
default unit of allocation is the value specified by the
f_blksize field. If the f_blksize field is not specified, the
the host file transfer program uses the default value of
80.

The fxfer function, cfxfer function, and fxfer command.

Understanding Explicit and Implicit Logon on page 4-17, Understanding the HCON API on
page 4-8.

Understanding the HCON File Transfer Process in Communication Concepts and
Procedures .

Understanding the HCON Application Program Interface (API)
The HCON Application Programming Interface (API) provides high-level access to the
communication link for program-to-program communication between AIX and the host
application. The API consists of the following elements:

• An object library on AIX

• A MACLIB, a TXTLIB, and two 1/0 modules (VM only) on the host System/370 computer.

Note: The API may be used for communication between AIX and either the VM/CMS or
MVS/TSO environments.

Both the AIX application program and the host application program must use the HCON API
commands to communicate with one another.

The API program provides these functions:

• Program-to-program communication. AIX applications may communicate with host
applications in a VM/CMS or MVS/TSO environment.

4-8 Communications Programming Concepts

• Write and read functions for transmission of messages between the AIX application and
the System/370 host applications. Messages are simple byte strings containing arbitrary
data and may be up to the length specified by the maximum 110 buffer size in the session
profile.

• Optional data translation between EBCDIC (in the host) and ASCII (in AIX) in messages.

• Automatic logon of the AIX application to the host and initiation of the host application.

• Session control functions to start and stop sessions.

• An interface to the terminal emulator, so that an AIX application can invoke a host
application that assumes it is communicating with a 3278179 terminal.

The following rules apply to application programs using the API:

• Host application names are in uppercase letters when they are used to describe
functions. AIX application names must be specified in lowercase letters.

• An application may use the API to establish a session. The session is unique to the
AIX-application/Host-application pair that established it.

• The HCON API library reserves the prefix g32 for API functions. Do not use this prefix for
naming user application programs.

• By definition, control of a session cannot be passed to another process. A logical path
however, can be transferred from one AIX process to another.

Sample Flows of API Programs
The HCON API allows an AIX application program to communicate with an application
program located at the System/370 host (VM/CMS or MVSffSO), using HCON API
functions. Applications can be written in both environments and communicate together over
a 3270 session. The applications must be synchronized; when an AIX application issues a
read, the host must issue a write, and vice versa.

The following is a sample program flow for an AIX application program and a Host Interface
program using the APl/API or APl/APl_ T mode. It also matches API functions with Host
Interface functions, showing how HCON applications are synchronized.

AIX Application
g32_openx
g32_alloc
g32_read
g32_write
g32_get_status
g32_dealloc
g32_close

S/370 Host Application

G32ALLOC
G32WRITE
G32READ

G32DLLOC

HCON includes two AIX and host programs that use the session control and message
interface functions.

3270 Host Connection Program/6000 (HCON) 4-9

The following is a sample program flow for an AIX application program using the APl/3270
mode:

AIX Application
g32_openx
g32 alloc
g32_notify
g32 search
g32_send_keys
g32_get_data
g32_get_cursor
g32_notify
g32_dealloc
g32 close

Note: APl/3270 mode applications should not invoke Host Interface applications.

Related Information
Understanding Explicit and Implicit Logan on page 4-17, Understanding the File Transfer
Program Interface on page 4-4, Understanding HCON Programming Examples on page
4-25.

HCON Overview for System Management on page 4-1.

4-10 Communications Programming Concepts

Understanding the AIX Interface for HCON API
The HCON Application Programming Interface (API) includes a set of AIX library subroutines
that are linked with AIX applications that use it. The subroutines are C function calls that
interface to API and file transfer functions. The /usr/lib/libg3270.a library contains these
subroutines. The /usr/include/g32_api.h file contains associated symbol definitions and
structures. Any C program using API functions should include the g32_api.h file. The API
also supports Pascal and FORTRAN. The /usr/lib/libg3270p.a and /usr/lib/libg3270f.a files
contain the Pascal and FORTRAN equivalents to the C library.

The components of the HCON AIX Interface are as follows:

• Header files (include files)

• Session control

• Message interface

• File transfer

• Logical terminal interface.

AIX Header Files
The C and Pascal Program Interface for the AIX API use data structures that are defined in
header files. The FORTRAN Program interface contains data structure equivalents which
are also declared in header files. The AIX header files are as follows:

/usr/include/g32const.inc

/usr/include/g32hfile.inc

/usr/include/g32keys.inc

/usr/include/g32types.inc

/usr/include/g32_api.h

/usr/lnclude/g32_keys.h

AIX Data Structures

Pascal API constants include file

Pascal API include file with external definitions

Pascal API include file for APl/3270 mode

Pascal API data types include file

API include file

API keys include file.

All AIX API programs use a defined data structure g32_api (provided in header files) for
each language. An important field in this structure is the eventf field. This field is the file
descriptor of the communication device special file if the application opens a session in
APl/API or APl/APl_ T mode.

If the application opens a session in APl/3270 mode, the eventf field is a message queue
ID. The application may use this and the g32_notify function to instruct the emulator to
notify the application when it receives data from the host.

3270 Host Connection Program/6000 {HCON) 4-11

C Language Structures

Each module that uses the API must include the /usr/include/g32_api.h file. This file
contains the g32_api data structure. The fields in the g32_api structure are:

lpid Logical path id

errcode Error code indicator

xerrinfo Extra error information

row Row number

column Column number

length Length for pattern

eventf Message queue ID/file descriptor

maxbuf Maximum buffer size

timeout Timeout of host response.

Pascal Language Structures

Each module that uses the Pascal Program Interface to the API must include the
/usr/include/g32types.inc, /usr/include/g32hfile.inc, and /usr/include/g32const.inc files.
The /usr/include/g32types.inc file contains the Pascal equivalent to the g32_api structure.
The following example illustrates the use of the Pascal header files:

program example(input, output);
con st

%include /usr/include/g32const.inc
I* user's constant definitions */

type

var

%include /usr/include/g32types.inc
/* user's type definitions */

User_Buffer: packed array[l •. 100] of char;
API BUF PTR : integer;
/* user7 s variable declarations */

%include /usr/include/g32hfile.inc
/* user's external function declarations */
begin

end

API BUF PTR = addr(User Buffer);
/* user7s program */ -

The APl_BUF _PTR declaration must be an integer and must be assigned the address of the
User _Buffer declaration.

The g32hfile.inc file contains all the external declarations for each of the API Pascal
interface routines. The two declarations User_Buffer and APl_BUF _PTA must be declared
by the programmer. The User_Buffer declaration can be called anything, but it must be a
packed array. The APl_BUF _PTA declaration must point to the User_Buffer declaration.
This ensures that the API interface and the programs have the same types.

4-12 Communications Programming Concepts

FORTRAN Language Structures

The following declaration must be used in FORTRAN programs. It is equivalent to the C
g32_api structure.

INTEGER AS(9)

An array can have any name, but the size of the array must be nine. Constants are
recommended for different subscripts. For example:

INTEGER, ERRCD, XERR, ROW, COL, LEN, EVENT,
DATA, MAXB, TIMEOUT, LPID, ERRCD, XERR,
ROW COL I LEN I I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I

The following statements use constants to print the value of the timeout.

WRITE (*,1000) AS(TIMEOUT)

1000 FORMAT ('The TIMEOUT is->' I)

Reserved Variables
The following is a list of reserved variables that the API uses internally. An AIX application
should not attempt access to these variables.

• Any variable beginning with the prefix g32_
• Any variables beginning with the prefix API_
• sessions
• in_qid
• out_qid
• q_ctoa
• q_atoe.

HCON API Session Control
The AIX Interface to the HCON uses the following session control functions:

g32_open

g32_openx

g32_alloc

g32_dealloc

g32_close

Attaches to a session. If session does not exist, an attempt is made to
start the session (i.e. implicit). The user is logged on to the host if
requested.

Attaches to a session. If session does not exist, an attempt is made to
start the session (i.e. implicit).

Initiate interaction with a host application.

End interaction with a host application.

Detach from session and terminate session if created by the
g32_open function.

3270 Host Connection Program/6000 (HCON) 4-13

HCON API Message Interface
The message interface functions are used to exchange messages with the host application.
They may be used only if the session is in APl/API mode or APl/APl_ T mode.

Message interface functions are as follows:

g32_write

g32_read

g32_get_status

HCON API File Transfer

Sends a message to a host application.

Receives a message from a host application.

Returns status information on 110 operation.

The API file transfer function allows a file transfer to occur to the active session while
running an API application.

g32_fxfer Issues a file transfer to the host. g32_open must have been executed
and all host applications terminated through the dealloc function for
the g32_fxfer to run.

HCON API Logical Terminal Interface (LTI)
Each terminal emulator has a presentation space that contains the image of the data
displayed on the terminal screen. This same presentation space is associated with and
available to an application using the APL

The logical terminal interface functions are used for access to the presentation space of the
terminal emulator and for sending keystrokes to the emulator as if the keystrokes were
coming directly from the keyboard. The logical terminal interface may be used only if the API
is operating in APl/3270 mode.

The AIX application should wait for the host display to complete its redraw before issuing a
logical terminal interface function to synchronize input and output on the host.

The logical terminal interface does limited error checking of parameters. The AIX application
should verify function parameters before issuing these commands.

Logical terminal functions are as follows:

g32_search

g32_get_cursor

g32_get_data

g32_send_keys

g32_notify

AIX Interface Errors

Searches for a character pattern in the session presentation space.

Returns the current cursor position in the session presentation space.

Obtains current display data from the session presentation space.

Sends one or more keystrokes to the terminal emulator.

Turns data notification on or off.

AIX Interface errors are explained in the Summary of AIX API Errors table.

4-14 Communications Programming Concepts

Related Information
The AIX session control subroutines are the g32_open function, g32_openx function,
g32_alloc function, g32_dealloc function, and g32_close function.

The message interface functions are the g32_write function, g32_read function, and
g32_get_status function.

The file transfer function is the g32_fxfer function.

The logical terminal functions are the g32_search subroutine, g32_get_cursor subroutine,
g32_get_data subroutine, g32_send_keys subroutine, and g32_notlfy subroutine.

Understanding Explicit and Implicit Logan on page 4-17, Understanding the File Transfer
Program Interface on page 4-4, Understanding HCON Emulator Sessions in
Communication Concepts and Procedures, and Pascal Language Information in XL Pascal
Language Reference .

Understanding the Host Interface for HCON API
The host interface is a set of library routines that are linked with user-supplied 370
Assembler applications. Each routine implements an HCON API function. A macro library is
provided for Assembler programmers to call these HCON API functions. HCON includes
versions of the host interface for VM/CMS and MVS/TSO environments.

The HCON API must be installed on the host System/370. Two procedures describe how to
install HCON on the host. The procedures are:

• How to Install the HCON MVS/TSO Host API

• How to Install the HCON VM/CMS Host API.

The How to Compile a Host API Program procedure on page 4-69 describes how to compile
an application containing Host Interface functions.

Host interface functions are grouped into session control and message interface functions.
These functions are analogous to the g32_alloc, g32_dealloc, g32_read, and g32_write
AIX Interface functions.

The HCON host interface is made up of the following:

• Host session control

• Host message interface.

Ho~t Session Control
The host session control functions are as follows:

G32ALLOC

G32DLLOC

Initiates interaction with an AIX application.

Ends interaction with an AIX application.

3270 Host Connection Program/6000 (HCON) 4-15

Host Message Interface
Message interface functions are used to exchange data with the AIX application. They may
be used only while in APl/API mode or APl/APl_ T mode. Message interface functions for the
host interface are:

G32READ

G32WRITE

Host Interface Errors

Receives a message from an AIX application.

Sends a message to an AIX application.

A DSECT is provided in the macro library to define the error values referred to by the
command. The DSECT is brought in by coding G32DATA DSECT:VES in the host
application. The error codes are defined as negative numbers. A return code that is equal to
or greater than O (zero) indicates a normal or successful completion.

Host Interface errors are explained in the Summary of Host API Errors tables.

Related Information
Host interface functions are the G32ALLOC, G32DLLOC function, G32READ function, and
G32WRITE function.

Understanding the HCON API on page 4-8.

Summary of Host API Errors.

4-16 Communications Programming Concepts

Understanding Explicit and Implicit Logon
Before information can be exchanged between a RISC System/6000 and a host system, the
user must log on to the host system with a valid host user ID and a password. There are two
ways to log on to a host system: explicit logon and implicit logon.

Note: The HCON API allows the user to use AUTOLOG explicitly by setting the g32_open
(or g32_openx) flag parameter to one (1). Explicit AUTOLOG means an emulator is
up, but the host is not logged onto when the application is executed.

Explicit Logon
Performing an explicit logon requires the following steps:

1. Enter e 7 8 9 session name from an AIX shell.

e789a

2. After the 3270 emulator screen is displayed, log on to the host system.

3. Initiate an AIX subshell, after logging on to the host operating system, by pressing the
emulator SHELL key (default is Ctrl-C).

Note: From the subshell, the user can execute a file transfer/AP! application. The user
may also execute a file transfer/AP! application explicitly from another shell as
long as the session profile is specified or the SNAME environment variable is set
to the session name.

An explicit logoff requires the following steps:

1. Exit the emulator subshell, once the communications process has completed.

2. Log off the host system.

3. Terminate the emulator session, by pressing the emulator QUIT key, (the default is
Ctrl-D pressed twice).

Implicit Logon
For implicit logon, the user must provide logon information to the communications
application being invoked. Before an implicit logon, the user must develop either a Logon
Assist Feature (LAF) script or an AUTOLOG profile. Following are the steps for an implicit
host logon:

1. Invoke the desired communications process from an AIX shell by entering the fxfer file
transfer command from the command line or by entering the name of a file transfer or
API application.

2. The user is prompted for a host user ID and any other host logon parameters if they are
not specified within the session profile or in the fxfer/API parameter lists.

3. The user is prompted for a host password.

The communications process logs on to the host computer, transfers the data, and logs off
the host computer.

The implicit logon procedures are subroutines linked into the fxfer command, fxfer
applications, and API applications. The implicit logon procedures contain two methods of
operations.

3270 Host Connection Program/6000 (HCON) 4-17

• AUTOLOG is a non-programming, menu-driven interface. The genprof command
generates the input file for the AUTOLOG procedure in a file, and the AUTOLOG interface
reads the file when an HCON API program or a file transfer operation attempts to log on
and log off the host computer.

• The Logon Assist Feature (LAF) is a high-level language that enables a user to write a
program that logs on and off of a host computer.

Both the AUTOLOG and LAF procedures use the API logical terminal interface functions for
access to the presentation space of the terminal emulator and for sending keystrokes to the
host. Utility commands aid the user in creating, testing, or linking the implicit logon
procedures.

AUTOLOG procedure

The AUTOLOG procedure allows the user to create a logon procedure with a menu-driven
utility. This method is intended for users with no programming experience. The utility is easy
to use and does not require writing a program.

If the AUTOLOG procedure is used, the autolog.o object module must be linked to the
user's API application program. The user must then provide an AUTOLOG profile, which
contains all the information necessary to perform logon and logoff operations. Use the
genprof command to create the profile. HCON also provides sample AUTOLOG profiles
that contain the appropriate information for the AUTOLOG procedure.

Note: The HCON installation process links the fxfer command with the autolog.o object
module. Therefore, a file transfer program using AUTOLOG does not need to
perform a link to the autolog.o object module. It also links tlaf with AUTOLOG, so
any AUTOLOG profile can be tested.

LAF method

The Logan Assist Feature (LAF) method provides a language to develop LAF logon and
logoff scripts. LAF statements help use and configure system response. The user must
develop LAF scripts that contain all the necessary information to perform logon and logoff
operations. Once the user develops a LAF script, the script must be converted to C,
compiled, and linked to the API application program. The process is as follows:

1. The genlaf command converts the LAF scripts to the C language laf.c source file.

2. Compiling the laf.c source file produces a laf.o object file. To compile laf.c, enter the
following:

cc -c laf .c

3. The laf.o object file is linked to the API application program.

Note: You can also use the apilaf command which performs all three steps.

4-18 Communications Programming Concepts

Explicit and Implicit File Transfer Differences
Explicit and implicit file transfers differ in these respects:

• In the explicit transfer, no input from the user is needed other than the file transfer option
parameters.

• In the implicit transfer, a logon script program suitable to the user's logon procedure is
required. The user is prompted for the logon ID string, which should contain the logon ID
for LAF scripts or the logon ID, the script name, and the optional AUTOLOG parameters
for AUTOLOG. The user is not prompted for the logon ID string if the host logon ID is
specified for LAF or the host logon ID, AUTOLOG script name, and optional AUTOLOG
parameters are specified for AUTOLOG within the session profile or with the -x option.

• Recovery is possible only with implicit transfers. The dfxfer file transfer process uses the
logon script, the user logon ID, and the password to log back on to the host and execute
the file transfer. The file transfer occurs only if the link is recovered within the time
specified by the file transfer recovery time in the session profile.

• Explicit transfers restart both implicit and explicit restart files. The x_fxfer.r explicit restart
file requests are transferred to the currently logged-on session, and the i_fxfer.r implicit
restart file requests are transferred using the session specified by the -n option and the
appropriate logon ID is saved in the restart file. The user is prompted for the password.

• Implicit transfer can only restart the i_fxfer.r implicit restart file because the logon IDs of
the explicit transfer requests are not known.

• By default, the dfxfer process is linked with the AUTOLOG implicit logon procedure.

Related Information
Understanding the HCON File Transfer Process in Communication Concepts and
Procedures, Understanding the HCON API on page 4-8, Understanding the Automatic
Logon Commands on page 4-25, Understanding the Logon Assist Feature on page 4-20,
Understanding AUTOLOG on page 4-19.

HCON Overview for System Management on page 4-1.

Understanding AUTOLOG
If the host logon ID is set in the session profile, the user is only prompted for the password
and the rest of the parameters are retrieved from the profile. If the host logon ID is not set,
the user is prompted for both the host logon string and the password. The first value in the
logon ID string must be the host Login ID. The second value is the AUTOLOG profile name
(Mode ID). Two more optional values can be passed to the AUTOLOG procedures: trace
and time.The trace procedure controls output to help users test the AUTOLOG profile. The
time option allows the user to change the default time of three seconds to wait for a
particular pattern to be received from the host.

If the user leaves off certain parameters from the host logon string, and they are set in the
profile, they are still retrieved For example, if the user sets the nodeid, trace, and time
parameters in the session profile, the user need only enter the host logon ID when
prompted. However, a user response to a prompt always overrides a profile parameter. For
example, if the user sets AUTOLOG time parameter in the session profile, but enters a
different value on the prompt line, the latter value is used.

The autolog.o contains two procedures, g32_1ogon and g32_1ogoff, which are called by
the File Transfer Program or the Application Program Interface (API).

3270 Host Connection Program/6000 (HCON) 4-19

The g32_1ogon procedure reads the following information from the AUTOLOG profile about
each logon or logoff event: a pattern to be searched in the presentation space, data and
keystrokes to be sent to the emulator, and the next-events list. The first event from the
next-events list refers to the expected event. The expected event is one that will be invoked
next upon successful completion of the last event. All others are unexpected events.

Both g32_1ogon and g32_1ogoff procedures check the presentation space for a particular
pattern. If the search for the pattern is successful, the input string and keystroke are sent to
the emulator. The process proceeds with the first event from the next-events list. If the
search fails after a specified period of time, the process proceeds to the next unexpected
event. A null event signifies the end of the logon or logoff procedure. A -1 causes a return
to the previous event. If the logon or logoff process fails, the procedure terminates with an
error code, which is the number of the last event processed.

The user must ensure that the host session is inactive following the g32_1ogoff procedure.
That is, the logoff procedure should be terminated at the same screen normally used for
logging on to the host.

Note: To ensure inactivity, a time-delayed search of the presentation space can be included
in either the AUTOLOG profile or the LAF script. After the logoff and ENTER keys
have been sent to the host for execution, the search routine looks for a pattern that is
unique to the logon screen. Only when this pattern is found is it acceptable to exit the
AUTOLOG profile or LAF script.

If the g32_1ogoff procedure is not ended properly, the next call to the g32_1ogon procedure
may fail because the host screen is the last screen manipulated by the previous g32_1ogoff
procedure.

Related Information
The apilaf command, fxlaf command, genlaf command, genprof command, mtlaf
command, tlaf command.

Understanding Explicit and Implicit Logan on page 4-17, Understanding Automatic Logan
Commands on page 4-25, Understanding the File Transfer Program Interface on page
4-4, Understanding the HCON File Transfer Process in Communication Concepts and
Procedures .

Understanding the Logon Assist Feature {LAF)
The Logan Assist Feature (LAF) helps us~rs develop scripts for programmatic (implicit)
logging on to and logging off from the host. A script:

• Sends data to the host.

• Waits for data to be received from the host.

• Looks for patterns in a presentation space.

The HCON File Transfer Program and API applications then use these scripts or programs
to perform a logon and logoff.

LAF provides the usual control structures (if-then-else, while-do, repeat-until, and select),
and allows users to customize their scripts during execution by passing up to 10 values in
the logon ID string. The genlaf command generates a C program from the LAF script.

The LAF processor takes input in the LAF language and produces a C program. This
program is compiled and linked with a user program that is linked with the API or file
transfer. Two scripts are required: g32_1ogon and g32_1ogoff. Both scripts are input to the
LAF processor in the same source module.

4-20 Communications Programming Concepts

The host session must be inactive following the g32_1ogoff procedure. That is, the
procedure should terminate at the same screen normally used for logging on to the host.

If the g32_1ogoff procedure is not ended properly, the next can to the g32_1ogon procedure
may fail because the host screen is the last screen manipulated by the g32_1ogoff
procedure.

LAF Language Description
The basic unit of the Logon Assist Feature (LAF) language is the token. Statements are
sequences of tokens. The LAF language tokens are divided into the following categories:

• Reserved Words

• Strings

• Key Names

• Special Variables

• Language Conventions.

Reserved Words

Strings

Reserved words determine statement types. LAF reserved words are the following:

BREAK OTHERWISE

DEBUG RECEIVE

DO RECVAT

ELSE REPEAT

END SELECT

EXIT SEND

RECOVERY START

FINISH TIMEOUT

IF UNTIL

MATCH WHEN

WHILE

Strings are sequences of any number of characters, delimited by either the single quote (')
or double quote (") delimiters. Either delimiter may be used, but the delimiters must match.
(For example, a string begun with a single quote must be terminated with a single quote.) If
you want to use a single quote in a string, you must use a double quote as the delimeter,

·and if you want to use a double quote in a string, use the single quote as the delimiter.
Strings must be on a single line; the newline character is not allowed in a string. The
RECEIVE, RECVAT, MATCH, and MATCHAT functions allow certain special characters in
strings. These special characters are discussed in the description of the g32_search
function.

3270 Host Connection Program/6000 (HCON) 4-21

Key Names
Key names are special tokens that identify non-alphanumeric keys on a 3270 family
terminal. Use the key name to send these key strokes to the emulator. The following are
valid key names:

KEY NAMES

ENTER PF13 DEL (delete)

PA1 PF14 C_UP (cursor up)

PA2 PF15 C_DN (cursor down)

PA3 PF16 C_LT (cursor left)

PF1 PF17 C_RT (cursor right)

PF2 PF18 C_UUP (cursor up fast)

PF3 PF19 C_DDN (cursor down fast)

PF4 PF20 C_LLT (cursor left fast)

PFS PF21 C_RRT (cursor right fast)

PF6 PF22 TAB

PF? PF23 B_ TAB (backtab)

PFS PF24 CR (carriage return or newline)

PF9 CLEAR RESET

PF10 DUP E_INP (erase input)

PF11 FM (field mark) E_EOF (erase EOF)

PF12 INS (insert) T _REQ (test req or sys req)

HOME PRINT (screen print)

Special Variables
The LAF language uses the following special variables:

UID

PW

ARG(O) - ARG(9)

ROW

COL

Represents the host user ID. UID is an alias for ARC(O).

Represents the password associated with UID. It is provided
automatically by the file transfer and API.

Represents the first through tenth variables, respectively, in the
logon ID string. The logon ID string is passed to each LAF script.
ARG(O) must be in the logon ID string, but the remaining nine
variables are optional. These ten arguments are used by both
g32_1ogon and g32_1ogoff procedures.

Indicates the row on the screen where the target is found, after a
successful scan of the presentation space. This variable is
applicable to the RECEIVE, RECVAT, MATCH, and MATCHAT
language statements. ·

Indicates the column on the screen where the target is found after a
successful scan of the presentation space. This variable is

4-22 Communications Programming Concepts

MATCH

RECOVERY

LAF Language Conventions

applicable to the RECEIVE, RECVAT, MATCH, and MATCHAT
language statements.

Indicates a successful search of the presentation space. This
variable is applicable to the RECEIVE, RECVAT, MATCH, and
MATCHAT language statements

Is set if the HCON file transfer program interface is trying to log on
and recover from an error during an earlier file transfer. This
variable may be tested in the LAF conditions.

LAF language conventions include the following categories:

Logical Operators

The logical operators used in building expressions are:

not (NOT or!)

and (AND or&&)

or (OR or ID

Comparison Operators

The comparison operators are used in building expressions. These operators are:

is equal to (=)

is not equal to(!=)

is less than (<)

is greater than (>)

is less than or equal to(<=)

is greater than or equal to(>=)

Numbers

LAF defines a number as a sequence of the digits 0-9, possibly with a leading minus sign
(-).

Parentheses

LAF uses parentheses to :

• Group terms in an expression

• Enclose a parameter list in a statement.

Commas

Commas are used to separate items in parameter lists.

3270 Host Connection Program/6000 (HCON) 4-23

Statement Terminators

LAF uses the semicolon(;) to terminate statements. All statements must end with a
semicolon.

Comments

Comments are sequences of any number of characters bounded by r and *I delimiter.
Comments may stretch across several lines.

SCRIPT Statements
A LAF script consists of the following components:

• A START statement

• A sequence of other statements:

SEND

RECEIVE

RECVAT

MATCH

MATCHAT

DO-END

WHILE

REPEAT-UNTIL

BREAK

IF-ELSE

SELECT

EXIT

WAIT

DEBUG

NODEBUG

• A FINISH statement.

Related Information
The apilaf command, fxlaf command, genlaf command, genprof command, mtlaf
command, tlaf command.

Understanding Explicit and Implicit Logan on page 4-17, Understanding Automatic Logan
Commands on page 4-25, Understanding the File Transfer Program Interface on page
4-4, Understanding the HCON File Transfer Process in Communication Concepts and
Procedures .

4-24 Communications Programming Concepts

Understanding the Automatic Logon Commands
HCON provides the following utility commands used for generating, testing, and using the
implicit logon procedures:

a pilaf

fxlaf

gen prof

genlaf

mtlaf

tlaf

logform

Related Information

Links an implicit logon procedure into a user's API application.

Links the fxfer function with a LAF script or AUTOLOG to generate a file
transfer program containing a implicit logon procedure.

Generates the input file for the AUTOLOG procedure.

Generates a C program from a LAF script.

Makes a test program for an AUTOLOG profile or a LAF script.

Output test program produced by the mtlaf command.

Example of the implicit logon input form.

The apilaf command, fxlaf command, genlaf command, genprof command, mtlaf
command, tlaf command.

Understanding HCON Programming Examples
The AIX applications are written in C language, and host applications are written in 370
Assembler language. The C and Assembler source code, as well as AIX executable code,
are located in the AIX directories:

/usr/lib/hcon/vm For VM/CMS systems

For MVS/TSO systems. /usr/lib/hcon/mvs

File Transfer Programming Examples
File transfer programming examples are provided only in the documentation and are for
illustrative purpose only. These program examples illustrating the use of the File Transfer
Programming Interface are as follows:

en a me

pname

fname

Example C language program illustrating the file transfer process using the
file transfer program interface. This program can found on page 4-53.

Example Pascal language program illustrating the file transfer process using
the file transfer program interface. This program can found on page 4-56.

Example FORTRAN language program illustrating the file transfer process
using the file transfer program interface. This program can found on page
4-55.

3270 Host Connection Program/6000 (HCON) 4-25

API Programming Examples
HCON provides three API programs to aid users in developing API applications:

g32_test

g32_sampl

g32_3270

Verifies API HCON installation.

Evaluates APl/API performance.

Demonstrates APl/3270 mode application.

The instalapi program installs and compiles API program examples. The instalapl program
also creates the g32asm exec for VM and TSO. The g32asm exec assembles and creates
executable load modules of the test programs: g32test, and g32sampl.

Running Example Programs in TSO
In TSO, the g32asm exec allows the AIX API programs to execute the test programs by
keying in the program name. The g32asm exec must have executed before the API program
can run any of the test programs.

If you log off and start a new session, the next time you try to run the test programs you will
get an error (in TSO only).

To get them to execute again (in TSO only), you cannot key in their names as before.

You can either execute the g32asm exec again or you can execute one of the following
commands:

call g32appl (g32test)

call g32appl (g32sampl)

call g32appl (g323270)

If you have not used the g32asm exec during your session and you add API programs to the
g32appl data set, you must run g32asm exec or use one of the g32appl calls to run the test
program.

AUTOLOG and LAF Program Examples
The /usr/lib/hcon directory contains the following AUTOLOG and LAF programming
examples:

g_log.mvs

g_log.vm

SYStso

SYSvm1

SYSvm2

Example LAF program for MVS/TSO host

Example LAF program for VM/CMS host

Example AUTOLOG script for MVS/TSO host

Example AUTOLOG script for VM/CMS host

Example AUTOLOG script for VM/CMS host.

4-26 Communications Programming Concepts

Compiling Programs
HCON includes commands to assist in debugging, compiling, and linking the example
programs and the Logon Assist Feature scripts. The following procedures describe how to
debug, compile, and link applicati.ons and scripts.

How to Compile a File Transfer (fxfer) Program

How to Compile a Host API Program

How to Compile an AIX API Program

How to Use a Logon Assist Feature Script

Related Information
Understanding Explicit and Implicit Logon on page 4-17, Understanding the Logan Assist
Feature (LAF) on page 4-20, Understanding the HCON API on page 4-8, Understanding
the File Transfer Program Interface on page 4-4.

3270 Host Connection Program/6000 (HCON) 4-27

File Transfer Program Interface E~ror Codes
The following table lists the File Transfer Program Interface error codes, describes the
errors, and provides suggestions for user responses.

File Transfer Program Interface Error Codes Part 1 of 14

Error Code Error Description User Response

200 The file transfer program cannot at- Check that the HCON resource man-
tach to the HCON shared memory. ager is running.

202 A RESTART file exists. The file trans- Remove the RESTART file (i_fxfer.r
fer is stopped. A programmatic file or x_fxfer.r) before trying to run the
transfer cannot run while a RE- programmatic file transfer.
START file exists.

203 Cannot get information about the RE- Check path name and permissions or
START file. The stat() system call er- use local problem reporting proce-
ror number is (fxs_errno). du res.

209 Cannot get the path name of the cur- Check path name and permissions or
rent working directory. use local problem reporting proce-

du res.

214 The file transfer program cannot Check that the HCON resource man-
communicate with the HCON re- ager is running or use local problem
source manager. reporting procedures.

215 Return code (fxs_errno) from the Check that the HCON resource man-
HCON resource manager is not car- ager is running, check that the ses-
rect. sion is available or use local problem

reporting procedures.

221 This user cannot run the dfxfer file Check for the dfxfer process in /usr/
transfer background process. bin, check permissions, or use local

problem reporting procedures.

222 The HOME environment variable is Set the HOME environment variable
not defined. to your HOME directory.

225 Either the host link address is busy, If the host link address is busy, try
the host link address does not exist, again later. If the host link address is
or there are some remaining mes- not busy, restart the emulator and try
sages on the message queues. the file transfer again or use local

problem reporting procedures.

226 The host operating system specified Specify either TSO or CMS only.
is invalid.

253 Cannot create another dfxfer pro- Check that there is a valid dfxfer pro-
cess at this time. The fork system call cess in the directories of the PATH
error number is (fxs_errno). environment variable or use local

problem reporting procedures.

259 Cannot send an interrupt signal to kill Kill the dfxfer file transfer daemon
the dfxfer file transfer daemon back- process by issueing a kill -9 to the
ground process. The kill system call dfxfer process on the command line
error number is (fxs_errno). or use local problem reporting proce-

du res.

4-28 Communications Programming Concepts

File Transfer Program Interface Error Codes

Error Code Error Description

268

269

271

273

277

Cannot initialize the dfxfer file trans
fer background process. Cannot
open the link address file. The open
system call error number
is (fxs_errno).

Cannot initialize the e789x emulator
server process. The communication
device specification in the session
profile may not be correct.

Cannot initialize the e789x emulator
server process.

Cannot initialize the e789x emulator
server process. The emulator server
process ended abnormally.

Transfer Status:
The file transfer request was can
celled.

Diag nasties:
There was an error sending the file
transfer request to the host.

Source File: (fxs_src)
Destination File: (fxs_dst)

Part 2 of 14

User Response

Check path name and permission or
use local problem reporting proce
dures.

Check that there is a valid e789x pro
gram in the directories of the PATH
environment variable, check that the
communication device specified in
the session profile exists and is valid
or use local problem reporting proce
dures.

Check that there is a valid e789x pro
gram in the directories of the PATH
environment variable or use local
problem reporting procedures.

Check that there is a valid e789x pro
gram in the directories of the PATH
environment variable, retry the file
transfer, or use local problem report
ing procedures.

Check to make sure that the control
unit is running or use local problem
reporting procedures.

280 Transfer Status: Retry the file transfer specifying the
The file transfer request was can- correct operating system.
celled by the host.

Diagnostics:
The wrong host operating system
has been specified either on the
command line or in the session pro
file.

Source File: (fxs_src)
Destination File: (fxs_dst)

281 Transfer Status:
The file transfer completed with no
errors. The host file records are seg
mented.

Byte Count: (fxs_bytcnt)
Source File: (fxs_src)
Destination File: (fxs_dst)
Created at: (fxs_ctime)

3270 Host Connection Program/6000 (HCON) 4-29

File Transfer Program Interface Error Codes Part 3of14

Error Code Error Description User Response

282 Transfer Status: Delete some useless files on your
The file transfer request was can- host disk or ask the host system ad-
celled by the host. minstrator for more disk space.

Diagnostics:
There is not enough disk space avail-
able on the host.

Source File: (fxs_src)
Destination File: (fxs_dst)

283 Transfer Status: Retry the file transfer using correct
The file transfer request was can- request codes or use local problem-
celled by the host. reporting procedures.

Diagnostics:
The request code was not correct.

Source File: (fxs_src)
Destination File: (fxs_dst)

284 Transfer Status: Retry the file transfer using correct
The file transfer request was can- flags for the specified host operating
celled by the host. system, retry the file transfer using an

existing host file, or specify the cor-
Diagnostics: rect host operating system.
A specified flag is not correct, the
specified host file does not exist on
the host, or the host operating sys-
tern is incorrect.

Source File: (fxs_src)
Destination File: (fxs_dst)

285 Transfer Status: Check to make sure that the host disk
The file transfer request was can- you are transferring to or from exists,
celled by the host. is valid, and can be written to or read

from or increase the size of the speci-
Diagnostics: tied partitioned data set.
There is an error reading from or writ-
ing to the host disk or partitioned data
set specified is full.

Source File: (fxs_src)
Destination File: (fxs_dst)

286 Transfer Status: Retry the file transfer specifying the
The file transfer request was can- correct host operating system or the
celled by the host. correct flag value.

Diagnostics:
The host option specified is invalid for
this particular host operating system.

Source File: (fxs_src)
Destination File: (fxs_dst)

4-30 Communications Programming Concepts

File Transfer Program Interface Error Codes Part 4 of 14

Error Code Error Description User Response

287 Transfer Status: Check to make sure that the host disk
The file transfer request was you are transferring to exists, is valid,
cancelled by the host. and has write permissions.

Diagnostics:
Cannot write a file to the host.

Source File: (fxs_src)
Destination File: (fxs_dst)

288 Transfer Status: Check to make sure that the host disk
The file transfer request was you are transferring from exists, is
cancelled by the host. valid, and the file you are attempting

to download from the host exists.
Diag nasties:
Cannot read a file from the host.

Source File: (fxs_src)
Destination File: (fxs_dst)

289 Transfer Status: Specify a data set name that is valid
The file transfer request was or talk with the host system
cancelled by the host. administrator to get write

permissions on the specified host
Diagnostics: disk.
The TSO data set name specified is
missing, already exists, or the host
disk has read only access.

Source File: (fxs_src)
Destination File: (fxs_dst)

290 Transfer Status: Refer to the help menu by entering
The file transfer request was fxfer -h for the correct usage of the
cancelled by the host. -S flag.

Diagnostics:
The-S flag was specified incorrectly.

Source File: (fxs_src)
Destination File: (fxs_dst)

291 Transfer Status:
The file transfer request was
cancelled by the host.

Diagnostics:
Do not specify the flags specified with
a Partitioned Data Set.

Source File: (fxs_src)
Destination File: (fxs_dst)

3270 Host Connection Program/6000 {HCON) ~31

File Transfer Program Interface Error Codes Part 5of14

Error Code Error Description User Response

292 Transfer Status:
The file transfer request was
cancelled by the host.

Diagnostics:
Specify only one of tracks, cylinders,
or avblocks when specifying the -S
flag.

Source File: (fxs_src)
Destination File: (fxs_dst)

293 Transfer Status: Specify all CMS file identifiers
The file transfer request was correctly.
cancelled by the host.

Diagnostics:
The CMS file identifier is missing or
not correct.

Source File: (fxs_src)
Destination File: (fxs dst)

294 Transfer Status:
The file transfer request was can-
celled by the host.

Diagnostics:
The CMS file specified as the source
file does not exist on the host.

Source File: (fxs_src)
Destination File: (fxs_dst)

295 Transfer Status: Talk with the host system administra-
The file transfer request was can- tor to get write permissions on the
celled by the host. specified disk.

Diagnostics:
The CMS disk has read permissions
only.

Source File: (fxs_src)
Destination File: (fxs_dst)

4-32 Communications Programming Concepts

File Transfer Program Interface Error Codes Part 6 of 14

Error Code Error Description User Response

296 Transfer Status: Try to upload the file using the -r flag
The file transfer request was to replace the existing file on the host,
cancelled by the host. or talk to the host system

administrator.
Diagnostics:
Either the CMS disk is not accessible
or the file already exists.

Source File: (fxs_src)
Destination File: (fxs_dst)

297 Transfer Status: Delete some useless files on your
The file transfer request was host disk or ask the host system
cancelled by the host. adminstrator for more disk space.

Diagnostics:
The CMS disk is full.

Source File: (fxs_src)
Destination File: (fxs_dst)

298 Transfer Status: Use the -a flag to do the file transfer
The file transfer request was specified.
cancelled by the host.

Diagnostics:
Invalid options specified without the
-a flag.

Source File: (fxs_src)
Destination File: (fxs_dst)

299 Transfer Status: The specified file already exists on
The file transfer request was the host, the user must specify the
cancelled by the host. -r flag to replace it.

Diagnostics:
Specify the -r flag to replace the file.

Source File: (fxs_src)
Destination File: (fxs_dst)

300 Transfer Status:
The file transfer completed with no
errors.

Byte Count: (fxs_bytcnt)
Source File: (fxs_src)
Destination File: (fxs_dst)
Created at: (fxs_ctime)

3270 Host Connection Program/6000 (HCON) 4-33

File Transfer Program Interface Error Codes Part 7of14

Error Code Error Description User Response

301 Transfer Status: Check to make sure the host file
The file transfer request was transfer utility (IND$FILE) you are
cancelled by the host. using is correct and up to date or use

local problem reporting procedures.
Diagnostics:
The host error message was not rec-
ognizable.

Source File: (fxs_src)
Destination File: (fxs_dst)

302 Warning: The dfxfer file transfer The fxfer front end process was
daemon process attempt to send file either removed or the emulator
transfer complete acknowledgement session was terminated.
to the fxfer front end process failed.
The msgsnd() system call error
number is (fxs_errno).

303 Transfer Status: Make sure that both the fxfer and
The file transfer request was dfxfer processes were not
cancelled. interrupted or use local problem

reporting procedures.
Diagnostics:
A message sent by the fxfer front end
process to the dfxfer file transfer
background process failed.
The msgrcv() system call error
number is (fxs_errno).

304 Transfer Status: Check path name and permissions,
The file transfer request was try again later, or use local problem
cancelled. reporting procedures.

Diagnostics:
Cannot read from the source file for
uploading. The read() system call
error number is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

305 Transfer Status: Check path name and permissions or
The file transfer request was use local problem reporting
cancelled. procedures.

Diagnostics:
Cannot open the source file for
uploading. The open() system call
error number is (fxs_errno)

Source File: (fxs_src)
Destination File: (fxs_dst)

4-34 Communications Programming Concepts

File Transfer Program Interface Error Codes Part 8 of 14

Error Code Error Description User Response

306 Transfer Status: Check path name and permissions or
The file transfer request was use local problem reporting
cancelled. procedures.

Diagnostics:
Cannot close the uploaded source
file. The close() system call error
number is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

307 Transfer Status: Files with zero bytes cannot be
The file transfer request was transferred.
cancelled.

Diagnostics:
The specified source file is empty.

Source File: (fxs_src)
Destination File: (fxs_dst)

309 Transfer Status: Check path name and permissions,
The file transfer request was try again later or use local problem
cancelled. reporting procedures.

Diag nasties:
Cannot write to the destination file.
The write() system call error number
is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

310 Transfer Status: Check path name and permissions,
The file transfer request was do not use the -r flag, or use local
cancelled. problem reporting procedures.

Diagnostics:
Cannot open the temporary replace
file for downloading. The open()
system call error number is
(fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

3270 Host Connection Program/6000 (HCON) 4-35

File Transfer Program Interface Error Codes Part 9of14

Error Code Error Description User Response

311 Transfer Status: Check path name and permissions or
The file transfer request was use local problem reporting
cancelled. procedures.

Diagnostics:
Cannot open the destination file for
download. The open() system call
error number is (fxs_errno).

Source File: (fxs_src)
Destinatino File: (fxs_dst)

312 Transfer Status: Check path name and permissions or
The file transfer request was use local problem reporting
cancelled. procedures.

Diagnostics:
Cannot close the destination file. The
close() system call error number is
(fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

313 Transfer Status: Check path name and permissions,
The file transfer request was try to download to a different file
cancelled. name without using the-r flag, or use

local problem reporting procedures.
Diagnostics:
Cannot delete the original
destination file. The unlink() system
call error number is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

314 Transfer Status: Check path name and permissions,
The file transfer request was try to download to to a different file
cancelled. name without using the-r flag, or use

local problem reporting procedures.
Diagnostics:
Cannot link the replace file to the
destination file. The link() system call
error number is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

4-36 Communications Programming Concepts

File Transfer Program Interface Error Codes Part 10 of 14

Error Code Error Description User Response

315 Transfer Status: Check path name and permissions,
The file transfer completed with one try to download to a different file
warning. name without using the-r flag, or use

local problem reporting procedures.
Warning:
Cannot delete the temporary
replace file name. The unlink() sys-
tern call error number is
(fxs_errno).

Byte Count: (fxs_bytcnt)
Source File: (fxs_src)
Destination File: (fxs_dst)
Created at: (fxs_ctime)

316 Diagnostics: Check path name and permissions
Cannot open the diagnostics output or use local problem reporting
file that contains the status procedures.
information. The open() system call
error number is (fxs_errno).

318 Transfer Status: Check path name and permissions or
The file transfer request was use local problem reporting
cancelled. No RESTART file was procedures.
created.

Diagnostics:
There was an error in the RESTART
file input or output operation. A
system call error occurred. The error
number is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

319 Transfer Status: Check and make sure that the LAF or
The file transfer request was AUTOLOG script that is being used
cancelled. to log on to the host is correct by using

the tlaf test tool program.
Diagnostics:
Cannot log on to the host. The
AUTOLOG or LAF program return
code is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

3270 Host Connection Program/6000 {HCON) 4-37

File Transfer Program Interface Error Codes Part 11 of 14

Error Code Error Description User Response

320 Transfer Status: Check permissions or use local
The file transfer completed with one problem reporting procedures.
warning.

Warning:
Could not get the destination file
creation time.

Byte Count: (fxs_bytcnt)
Source File: (fxs_src)
Destination File: (fxs_dst)

323 Transfer Status: Check to make sure that the HCON
The file transfer request was resource manager has not been
cancelled. removed, check that the fxfer and/or

dfxfer processes have not been
Diagnostics: removed, check that the message
Cannot receive a message through queue in question has not been
the fxfer message queue. The removed or use local problem
msgrcv() system call error number reporting procedures.
is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

325 Transfer Status: Check that the coaxial cable is still
The file transfer did not complete. connected or use local problem

reporting procedures.
Diagnostics:
The connection with the host is lost
and no recovery for an explicit file
transfer is available.

Source File: (fxs_src)
Destination File: (fxs_dst)

326 Transfer Status: Check to make sure that the HCON
The file transfer request was resource manager has not been
cancelled. removed, check that the fxfer and/or

dfxfer processes have not been
Diagnostics: removed, check that the message
Cannot send a message through the queue in question has not been
fxfer message queue. The removed or use local problem
msgsnd() system call error number reporting procedures.
is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

4-38 Communications Programming Concepts

File Transfer Program Interface Error Codes Part 12of14

Error Code Error Description User Response

327 Transfer Status: Check that the coaxial cable is
The file transfer did not complete. connected, check that the control unit

is running, or use local problem
Diagnostics: reporting procedures.
The connection with the host is lost.
Cannot recover in the specified
recovery time.

Source File: (fxs_src)
Destination File: (fxs_dst)

330 Transfer Status: Try again later or use local problem
The file transfer request was reporting procedures.
cancelled.

Diagnostics:
The session that the user is
attempting to recover is busy at this
time.

Source File: (fxs_src)
Destinatino File: (fxs_dst)

332 Transfer Status: Log off the emulator server and try
The file transfer request was the file transfer again or use local
cancelled. problem reporting procedures.

Diagnostics:
The response received from the
emulator server is not recognized.

333 Transfer Status: A RESTART file should be created
The file transfer request was that will allow the user to restart the
cancelled. interrupted file transfer.

Diagnostics:
The file transfer received an interrupt
signal.

Source File: (fxs_src)
Destination File: (fxs_dst)

334 Transfer Status: Check path name and permissions,
An error occurred during the file try the file transfer again or use local
transfer. problem reporting procedures.

Diagnostics:
A system call failed. The system call
error number is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

3270 Host Connection Program/6000 (HCON) 4-39

File Transfer Program Interface Error Codes Part 13of14

Error Code Error Description User Response

338 Transfer Status: Check to make sure that the HCON
The file transfer request was resource manager has not been
cancelled. removed, check that the fxfer and/or

dfxfer processes have not been
Diagnostics: removed, check that the message
Cannot get the status of the file queue in question has not been
transfer message queue. The removed or use local problem
msgctl() system call error number reporting procedures.
is (fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

339 Transfer Status: The user either removed the
The file transfer request was emulator server session or the
cancelled. HCON resource manager before the

file transfer had completed or before
Diagnostics: the file transfer wait time had run out.
The dfxfer file transfer background
process queue was removed. The
system call error number is
(fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

340 Transfer Status: The user either removed the
The file transfer request was emulator server session or the
cancelled. HCON resource manager before the

file transfer had completed or before
Diagnostics: the file transfer wait time had run out.
An interrupt was received while the
file transfer fxfer process was
receiving a message from the dfxfer
file transfer background process.
The interrupt is not of a known type.
The system call error number is
(fxs_errno).

Source File: (fxs_src)
Destination File: (fxs_dst)

343 Restart Status:
The RESTART file was created.

344 Restart Status: Check path name and permissions or
Cannot create the RESTART file. use local problem reporting
There was an input or output error. procedures.

4-40 Communications Programming Concepts

File Transfer Program Interface Error Codes Part 14 of 14

Error Code Error Description User Response

345 Transfer Status: Check for the e789x process in
The file transfer request was /usr/bin, check permissions, try
cancelled. again later, or use local problem

reporting procedures.
Diagnostics:
Cannot initialize the e789x emulator
process. The fork{) system call error
number is %1$d.

347 Transfer Status: If this is the user's first time to run a
The file transfer request was file transfer make sure that the
cancelled. PSERVIC value has been changed

on the host and that VTAM has been
Diagnostics: recycled. Check to make sure that
The file transfer timed out. the host is set in extended mode,

check that the control unit is not
Source File: (fxs_src) down, check that the host file transfer
Destination File: (fxs_dst) program variable within the session

profile is valid, or use local problem
reporting procedures.

349 The connection to the host is lost. All file transfer requests are can-
Trying to recover the connection. celled. Read through the AIX BOS

manual on how to increase
the system queue value or use local
problem reporting procedures. Too
many asynchronous file transfer re-
quests may have been queued up
also.

350 The system queue is full.

352 A message sent to the dfxfer file Try the file transfer again or use local
transfer background process has problem reporting procedures.
been interrupted. The dfxfer file
transfer background process may-
have been deleted, the HCON re-
source manager may have been re-
moved, or the file transfer
message queue may have been re-
moved.

Implementation Specifics
The HCON File Transfer Program Interface error codes are part of the AIX 3270 Host
Connection Program/6000 (HCON).

Related Information
Host file transfer program interface functions are the fxfer and cfxfer functions.

3270 Host Connection Program/6000 (HCON) 4-41

HCON AIX API Error Codes
The following table lists the valid AIX API error codes, describes the errors, and provides
suggestions for user responses.

Summary of HCON AIX API Error Codes page 1 of 8

Error API Error User
Number & Name Subroutine Description & Reasons Response

-1 alloc A session exists on the Correct the API
G32_SESS_EXIST logical path. application appropriately.

The previous g32_alloc()
function is not matched
with a g32_dealloc
function.

or

Failure on previous ses-
sion's g32_dealloc()
function:

- missing G32DALLOC
function in host
application.

- as -> timeout value too
small.

-2 open There are no logical paths Wait for a logical path to
G32_NO_LA available. become available.

HCON device drivers not Check user profile.
installed.

4-42 Communications Programming Concepts

Summary of HCON AIX API Error Codes page 2 of 8

Error API Error User
Number & Name Subroutine Description & Reasons Response

-3 open An error occurred opening No user response
G32_EOPEN openx the logical path. required.

xerrinfo contains the
value of errno after the
open system call:

EINTR - the process was
cancelled by the user.

EIO-the application is Use correct link address.
attempting to use a link
address that is being used
by another system.

EIO - possible hardware Check control unit.
problem or link is down.

Others Contact your local IBM
representative.

-5 close An error occurred while Modify your laf script or
G32_NO_LOG open attempting implicit logon AUTOLOG profile and test

or logoff from the host. it with the tlaf utility.

xerrinfo contains the re-
turn code from the
g32_1ogon or g32_1ogoff
programmatic logon
routines.

-6 open There are no free logical No user response
G32_NO_LP path IDs. required.

close The specified logical path Correct the API
alloc does not exist: application appropriately.
dealloc - missing g32_open()
get_ cursor function.
get_ data - failure on g32_open()
get_ stat function.
notify
search or
send_keys
read The logical path ID is
write invalid:

- as -> lpid was
incorrectly overwritten by
the user program.

3270 Host Connection Program/6000 (HCON) 4-43

Summary of HCON AIX API Error Codes page 3 of 8

Error API Error User
Number & Name Subroutine Description & Reasons Response

-7 dealloc Missing or failure of the Correct the API
G32_NO_SESS get_ cursor g32_alloc() function. application appropriately.

get_ data
get_ stat
notify
read
search
send_ keys
write

-8 open The API could not start
G32_EEMU e789 while executing

implicit logging.

The xerrinfo field
contains:

~o Refer to the
e 789x returned an error $HOME/hconerrors file
code. for the emulator error.

-1 Reinstall HCON and try
Unexpected Interrupt again.

-2 Reinstall HCON and try
e789x not found again.

-9 alloc The API was unable to Record the information
G32_EMALLOC close allocate memory. and contact your local IBM

dealloc representative.
get_ cursor
get_ data
read
search
send_ keys
write

-10 open The fork system call failed Record the information
G32_EFORK while starting an emulator. and contact your local IBM

representative.
The xerrinfo field .
contains the value of
errno returned from the
fork system call.

-12 read The host application Correct the API
G32_ENDSESS write wishes to end. application appropriately.

The AP I application is out
of synchronization or host
application failed.

4-44 Communications Programming Concepts

Summary of HCON AIX API Error Codes page 4 of 8

Error API Error User
Number & Name Subroutine Description & Reasons Response

-13 The specified mode is in- Correct the API
G32_1NV _MODE valid for the application appropriately

particular function.

alloc Only modes
MODE_3270,
MODE_API, and
MODE_APl_ T are valid.

close The application has not
issued a g32_dealloc()
function.

read Only modes MODE_API
get_ stat and MODE_API_ T are
write valid.

get_ cursor Only mode MODE_3270
get_dat is valid.
notify
search
send_keys

-14 alloc The API mode is Correct the API
G32_MIX_MODE APl/3270, but application appropriately.

host program is APl/API
application.

-15 alloc The mode is API Correct the API
G32_PARMERR or API_ T, but no host application appropriately.

application name has
been provided.

open The user did not supply a Correct the API
openx logon ID string or host application or input correct

password when parameters when logging.
performing implicit
logging.

-16 alloc The API was unable to get Cancel and restart all
G32_LINK_CTL control of the logical path. HCON applications.

3270 Host Connection Program/6000 (HCON) 4-45

Summary of HCON AIX API Error Codes page 5 of 8

Error API Error User
Number & Name Subroutine Description & Reasons Response

-17 alloc The API received an error
G32_EREAD dealloc while attempting to read

read from the logical path.
write

The xerrinfo field
contains the value of
errno from the read
system call:

EIO Call the g32_get_status
function. Match the value
of xerrinfo with the
emulator program error
codes.

EINTR Cancel and restart all
HCON applications.

Other Record the information
and contact your local IBM
representative.

The xerrinfo field
contains the value of
errno from the write
system call:

EIO Call the g32_get_status
function. Match the value
of xerrinfo with the
emulator program error
codes.

EINTR Cancel and restart all
HCON applications.

Other Record the information
and contact your local IBM
representative.

-18 alloc The API received an Correct the API
G32_EWRITE dealloc error while trying to application appropriately.

read write to the logical
write path.

-19 write Invalid buffer size Correct the API
G32_ELENGTH specified for the application appropriately.

g32_write() function:

- greater than
as-> maxbuf

- O or negative value

4-46 Communications Programming Concepts

Summary of HCON AIX API Error Codes page 6 of 8

Error API Error User
Number & Name Subroutine Description & Reasons Response

-20 get_ data The row or column Correct the API
G32_1NV _POSITION search specification is invalid. application appropriately.

The application issued
locations that are beyond
the size of the
presentation space.

-21 search The specified pattern is Correct the API
G32_1NV _PATTERN invalid. application appropriately.

The xerrinfo field
contains the offset into the
string of the invalid part of
the pattern.

Application does not
follow the rules specified
for the g32_search
subroutine patterns.

-23 search The target string was not
G32_SEARCH_FAIL in the presentation space.

-24 open The API was unable to Refer to the msgsnd
G32_EMSGSND alloc communicate with the system call.

close emulator via the msgsnd
dealloc system call.
get_ cursor
get_dat The xerrinfo field
notify contains the errno from
open the msgsnd system call.
read
search
send_keys
write

-25 alloc The API was unable to Refer to the msgrcv
G32_EMSGRCV close communicate with the system call.

dealloc emulator via the msgrcv
get_ cursor system call.
get_dat
open The xerrinfo field
read contains the errno from
search the msgrcv system call.
write

3270 Host Connection Program/6000 (HCON) 4-47

Summary of HCON AIX API Error Codes page7of 8

Error API Error User
Number & Name Subroutine Description & Reasons Response

-29 open The API was unable to Record the information
G32_PROMPT read the user ID and and contact your local IBM

password during an representative.
implicit logon.

This condition can occur if
the AIX application was
interrupted during
prompting for user ID and
password. (Ctrl-Brk).

-30 get_ stat Error occurred on ioctl Record the information
G32_EIOCTL system call. and contact your local IBM

representative.

The xerrinfo field
contains the errno
returned by ioctl system
call.

-31 alloc The API encountered an Record the information
G32_ESELECT dealloc error while issuing the and contact your local IBM

read poll system call. representative.
write

The xerrinfo field
contains the value of
errno, which is generated
by the poll system call.

-32 dealloc The API application is out Correct the API
G32_NOTACK read of synchronization: application appropriately.

write

- a g32_read does not
match with a

G32WRITE.

- a g32_write does not
match with a G32READ.

-a g32_dealloc does not
match with a G32DLLOC.

-33 alloc The timeout value was Correct the API
G32_TIMEOUT dealloc reached while waiting for application appropriately.

read data from the host.
write

API application is out of
synchronization.

The timeout value was too Increment the value of
small. as -> timeout.

An error has occurred on Record the information
the host side of API. from the workstation and

the host, and contact your
local system programmer
or IBM.

4-48 Communications Programming Concepts

Summary of HCON AIX API Error Codes page 8 of 8

Error API Error User
Number & Name Subroutine Description & Reasons Response

-34 g32_open An error occurred while at- Issue a g32_close tune-
G32_0PENERROR g32_openx tempting to open multiple tion before attempting the

sessions. Only one ses- second open operation.
sion may be open at a
time.

Implementation Specifics
The HCON AIX API error codes are part of the AIX 3270 Host Connection Program/6000
(HCON).

The HCON AIX API error codes are not available for Japanese Language Support.

Related Information
HCON AIX API Functions are the g32_alloc function, g32_close function, g32_dealloc
function, g32_fxfer function, g32_get_cursor function, g32_get_data function,
g32_get_status function, g32_notify function, g32_open function, g32_openx function,
g32_read function, g32_search function, g32_send_keys function, and g32_wrlte
function.

3270 Host Connection Program/6000 (HCON) 4-49

HCON Host API Errors
The following table lists the Host API error codes, describes the errors, and provides
suggestions for user responses.

Summary of Host API Errors Part 1of 2

Error API Error User
Number & Name Subroutine Description & Reasons Response

-1 G32READ An API session does not The host application must
G32ESESS G32WRITE exist for this application issue a G32ALLOC

G32DLLOC function before issuing a
G32READ function,
G32WRITE function, or
G32DLLOC function.

G32ALLOC An API session already The host application should
exists for this application. issue a G32DLLOC

function. The host
application source code
should be checked for
multiple G32ALLOC
functions.

-2 G32ALLOC A host operating system The host application should
G32ESYS G32READ error occurred while print the error code stored in

G32WRITE attempting to read or write. RO to the screen and
G32DLLOC RO contains one of the re- terminate. Record the

turn codes listed in this information on the emulator
table. screen, contact your local

host system programmer.

-3 G32WRITE The host API application Adjust the length sent to
G32ELEN attempted to send a the G32WRITE function

message to the AIX AP I appropriately
application, through the
G32WRITE function, that
was longer than the value
returned from the
G32ALLOC function, the
length is negative, or the
length was not defined.

-4 G32READ The AIX API application Correct the API applica-
G32ETERM G32WRITE wishes to end the session tion(s) so the program flow

or is synchronized.

the API applications are
out of synchronization.

4-50 Communications Programming Concepts

Summary of Host API Errors Part 2 of 2

Error API Error User
Number & Name Subroutine Description & Reasons Response

-5 G32READ Non-API message Contact your local IBM
G32ENAPI received during the representative if the error

G32READ routine on the occurs frequently.
host.

-6 G32READ Error obtaining memory. The host application should
G32EMEM terminate. Record the

information on the emulator
screen and see your local
system programmer.

Host API System Errors - VM/CMS
The Host API System Errors table lists system error codes, error names, and describes the
error condition for a VM/CMS operating system.

Host API System Errors - VM/CMS Operating System

Error Error Error
Number Name Description

4 G321NCP Console is in CP mode.

8 G32DISC Console is disconnected.

12 G321NOP Console is not operational.

16 G32UEX Unit exception.

20 G32UCHK Unit check.

24 G32CERR Channel error.

28 G321NVD Invalid device address.

32 G321NVC Invalid command code.

36 G32NDWD Parameter list not dword aligned.

40 G321NVR Invalid interrupt routine address.

44 G32REDI Display re-dialed.

3270 Host Connection Program/6000 (HCON) 4-51

Host API System Errors - MVS/TSO
The Host API System Errors table lists system error codes, error names, and describes the
error condition for a MVS/TSO operating system.

Host API System Errors - MVS/TSO Operating System

Error MVS/TSO Error
Number Function Description

0 TGET The data received by the terminal was edited by the TG ET macro.

8 TPUT, An attention interruption occurred while the SVC routine for
TGET TPUT/TGET was processing. The message was not senVre-

ceived.

16 TPUT, Invalid parameters were received by the TPUT or TGET SVC rou-
TGET tine.

20 TPUT, The host terminal was disconnected and could not be reached.
TGET

Implementation Specifics
The HCON Host error codes are part of the AIX 3270 Host Connection Program/6000
(HCON).

Related Information
Host API Functions are the G32ALLOC function, G32DLLOC function, G32READ function,
and G32WRITE function.

4-52 Communications Programming Concepts

cname Example VM/CMS File Transfer Program
The following program illustrates the file transfer process using the file transfer program
interface on VM/CMS. To upload the file to an MVS/TSO host, the host option flag
FXC_CMS must be changed to FXC_TSO and the file name must be in MVS/TSO format.

/**/
Program Name cname - transfers a file using the file

transfer Program Interface
Module Name cname.c
Description The following program uploads a file from AIX

to the VM/CMS host. The file is translated from
ASCII to EBCDIC using the translation tables of the
language specified in the session profile.
The file overwrites the host file, if it exists.
The transfer is performed via explicit logon;
that is, the user must establish a host session
by logging on to the host and running the
application from the 3278/79 subshell.

/***/

#include <stdio.h>
#include <sys/types.h>
#include <fxfer.h>
#include <memory.h>
#include <time.h>
main()
{

char *malloc () ;
void free ();
void exit();
unsigned int sleep();
struct fxc *xfer;
struct fxs sxfer;
timer_t tmptime;
char *c_time;
register int LOOP; /* indicates status not available yet */

LOOP = O;
xfer = (struct fxc *) malloc (1024);

xfer->fxc src = "samplefile";
xfer->fxc dst = "test file a";

/* RT file to be uploaded */
/* VM/CMS Host file name */

**
Set the transfer flags

**
xfer->fxc_opts.f_flags
xfer->fxc_opts.f_flags
xfer->fxc_opts.f_flags
xfer->fxc_opts.f_flags

xfer->fxc_opts.f_flags

xfer->fxc_opts.f_flags

= O;
I= FXC_UP;
I= FXC_TNL;
I= FXC_REPL;

/* Upload file flag */
/* Translate--EBCDIC */
/* Replace host file if

I= FXC_QUEUE;/*
/*

I= FXC_VAR; /*
/*

it exists */
Transfer file, */
asynchronously */
Variable host */

record format */

3270 Host Connection Program/6000 (HCON) 4-53

xfer->fxc_opts.f_flags I= FXC_CMS; /* VM/CMS host */
xfer->fxc_opts.f_logonid = O; /* Explicit file transfer*/
xfer->fxc_opts.f_lrecl = 132; /* Logical record length */

/* from subshell of an already logged on emulator session */

if (fxfer(xfer,(void *)O) == 0) } /*Send file transfer
request*/

for (;;) }
switch(cfxfer(&sxfer)) } /*Check status */

case -1:
LOOP = O;
printf("Status file not available due to\n");
printf(" status file I/O error\n");

/* Check hcon errors in your HOME directory for possible cause */
/* of error */

}

}
}

}

break;
case 0:

LOOP = O;
printf("Source file:%s\n", sxfer.fxs_src);
printf("Destination file:%s\n", sxfer.fxs_dst);
printf("Byte Count:%d\n", sxfer.fxs_bytcnt);
printf("MSG No:%d\n", sxfer.fxs_stat);
printf("ERROR if any:%d\n", sxfer.fxs_errno);
print£ ("Destination file creation time:%s\n",

sxfer.fxs_ctime);
break;

case -2:
LOOP = 1;
sleep(lS);
printf("Status not available yet\n");
break;

if !LOOP) }
break;

}

free(xfer);
exit(l);

4-54 Communications Programming Concepts

fname Example FORTRAN File Transfer Program
SAMPLE PROGRAM "sample fname"
THIS FORTRAN PROGRAM WILL DOWNLOAD THE TSO FILE test.file TO
THE AIX TEXT FILE /tmp/testfile. THE FILE WILL BE TRANSLATED
AND REPLACED ON AIX IF IT ALREADY EXISTS. WE WILL BE INVOKING
THE FILE TRANSFER TO SESSION a.

INTEGER FCFXFER
EXTERNAL FCFXFER
INTEGER FFXFER
EXTERNAL FFXFER
CHARACTER*60 SRC
CHARACTER*60 DST
CHARACTER*60 SRCF
CHARACTER*60 DSTF
CHARACTER*25 LOG ID
CHARACTER*20 COMM
CHARACTER*60 TIME
INTEGER BYTCNT,STAT,ERRNO
INTEGER FLAGS,RECL,BLKSizg,SPACE,INCR,UNIT,RCl,RC2

5 FORMAT(" ")
6 FORMAT("FXFER RETURN CODE =",1X,I4)
7 FORMAT("CFXER RETURN CODE =",1X,I4)
8 FORMAT("SOURCE FILE =",lX,A)
9 FORMAT("DESTINATION FILE =",lX,A)
10 FORMAT("BYTE COUNT =",lX,IlO)
11 FORMAT("TIME =",lX,A)
12 FORMAT("STAT =",lX,IlO)
13 FORMAT("ERRNO =",lX,IlO)

DSTF = '/tmp/testfile'//CHAR(O)
SRCF = 'test.file'//CHAR(O)
LOGID = CHAR(O)
SRC = CHAR(O)
DST = CHAR(O)
RECL = 0
BLKSIZE = 0
SPACE = 0

C THESE FLAGS REPRESENT TSO(l024) + REPLACE(l6) + TRANSLATE(4) + DO
WNLOAD(2)

FLAGS = 1046
C WE WANT TO RUN THE FILE TRANSFER TO SESSION a.

COMM= 'a'//CHAR(O)
RCl = FFXFER(SRCF,DSTF,LOGID,FLAGS,RECL,BLKSIZE,SPACE,

+ INCR,UNIT,COMM)
WRITE(6,6) RCl
RC2 = FCFXFER(SRC,DST,BYTCNT,STAT,ERRNO,TIME)
WRITE(6,7) RC2
WRITE(G,S)
WRITE(G,8) SRC
WRITE(6,9) DST
WRITE(G,10) BYTCNT
WRITE(G,11) TIME
WRITE(G,12) STAT
WRITE(G,13) ERRNO
WRITE(G,5)

22 STOP
23 END

3270 Host Connection Program/6000 (HCON) 4-55

pname Example Pascal File Transfer Program
{**}
{* *}
{* This Pascal program uses the File transfer pfxfer function *}
{* to upload the binary file bin_file to a TSO host.The program *}
{* will prompt the user for a session profile to do the file *}
{* transfer and will use the AUTOLOG script SYStso2 to logon to *}
{* the host id johndoe with trace and time=lO being set. *}
{* *}
{**}
program pname;

const

%include /usr/include/fxconst.inc

type

%include /usr/include/fxfer.inc
%include /usr/include/fxhfile.inc

var

strc2
strcl
source,
prof id
login
rtvall
rtval2

: fxs;
: fxc;
destin: stringptr;

stringptr;
stringptr;
integer;
integer;

4-56 Communications Programming Concepts

begin
new(source, 256);
new(destin, 256);
new(profid, 256);
new(login, 102);
source@ := '/bin_file';
destin@ := 'binfile';

{ Prompt the user for the session profile to use }
writeln('Enter a profile id: ');
readln (profid@) ;

{ Set login Host user id to johndoe, Autolog profile to SYStso2 }
{ turn trace on, and set time to 10 seconds. }

login@ := 'johndoe,tso2,trace,time=10';
strcl.fxc_opts.f_logonid := login;

{ Set the options to upload to a TSO host
}

end.

strcl.fxc_opts.f_flags := FXC_UP + FXC_TSO;
strcl.fxc_src := source;
strcl.fxc_dst := destin;
strcl.fxc_opts.f_lrecl := O;
rtvall := pfxfer(strcl,profid);
writeln('pfxfer return = ',rtvall);
rtval2 := pcfxfer(strc2);
writeln('pcfxfer return = ',rtval2);
writeln('~~~~~~~~~~~~~~~~~~~~~~~~~~');
writeln('Source file = ',strc2.fxs_src@);
writeln('Destination file= ',strc2.fxs_dst@);
writeln('Byte count = ',strc2.fxs_bytcnt);
writeln('Time = ',strc2.fxs_ctime@);
writeln('Stats = ',strc2.fxs_stat);
writeln('Errno ',strc2.fxs_errno);
writeln('~~~~~~~~~~~~~~~~~~~~~~~~~~');
writeln;

3270 Host Connection Program/6000 {HCON) 4-57 -

g32_sampl Example Program

Procedure

The g32_sampl program is an example of an API application that tests API performance
and verifies the implicit logon procedures.

The executable code is linked with the AUTOLOG procedure to allow the program to be
executed implicitly or explicitly.

The g32_sampl program execution can take from ten minutes to one hour, and a control
window allows the user to monitor the progress of data transmission between AIX and host
systems. The window shows the buffer number in process, the maximum number of buffers
for a particular session, and the direction of message transmission.

Use the following commands to compile the g32_sampl program:

1. On AIX Workstations, use the following:

• For standard workstations, enter:

cc -c g32_sarnpl.c

• For AIX Workstation with AUTOLOG option, enter:

apilaf AUTOLOG g32_sarnpl g32_sarnpl.o -!cur -!curses

• For AIX Workstation with LAF script /usr/lib/hcon/g_log.mvs, enter:

apilaf /usr/lib/hcon/g_log.rnvs g32_sarnpl g32_sarnpl.o

2. On the Host System, use the following:

• For VM/CMS, enter:

g32asrn g32sarnpl

• For MVS/TSO, enter:

exec g32asrn 'g32sarnpl'

Inputs to g32_sampl
The g32_sampl program requires the following input:

• For implicit execution with the AUTOLOG option:

AUTOLOG_profile In user's home directory or the /usr/lib/hcon file
Host user ID First argument in user logon string
Host node ID Second argument in user logon string
Host password Response to the password prompt

• For implicit execution with LAF option:

LAF _script
Host user ID
Host password

No inputs are required for explicit execution.

4-58 Communications Programming Concepts

Outputs from g32_sampl

Execution

• On AIX, the g32_sampl program displays a table that shows the mode, session, buffer
information, and transmission direction.

G32SAMPL evaluates HCON API performance for memory-to-memory transmission of
one-megabyte data. Transmission time is a function of the session mode, length of the
data stream, and direction.

• On VM/CMS host, the g32sampl program displays the upload and download time for the
last session (only for explicit logon}.

• On MVS/TSO host, the g32sampl program displays the following message: END OF

G32SAMPL PROGRAM (only for explicit logon}.

The g32_sampl program execution considerations are as follows:

• Run time option

If no option is specified, the program uses the curses library to create the control window.

If the -c option is specified, the program uses the standard output, and the control
window is not created. Use the -c option if the output from g32_sampl is being
redirected to a file.

• To execute the g32_sampl program using the implicit method (g32_sampl is linked with
AUTOLOG}:

1. Start the application on AIX by entering:

g32_sampl [-c]

2. Enter the proper host logon ID string and password when prompted.

The AUTOLOG or LAF g32_1ogon function logs on to the host.

Upon completion of g32_sampl, the AUTOLOG or LAF g32_1ogoff function logs off
from the host.

3270 Host Connection Program/6000 {HCON) 4-59

• To execute the g32_sampl using the explicit method:

1 . Establish the emulator session by entering e 7 a 9.

2. Log on to the host.

3. Start an AIX subshell by using the emulator SHELL key (default is Ctrl-C).

4. Run the sample program by entering:

g32_sampl [-c]

The g32_sampl program transfers data between the AIX and the host system,
monitoring progress on the display.

5. Upon completion of the g32_sampl program, return to the host by entering the
Ctr 1-D or Exit key sequence.

6. End the HCON terminal emulation session by logging off and entering the ctrl-D key
sequence.

Related Information
Understanding Explicit and Implicit Logan on page 4-17, Understanding the Logan Assist
Feature (LAF) on page 4-20, Understanding the HCON API on page 4-8, Understanding
the File Transfer Program Interface on page 4-4.

4-60 Communications Programming Concepts

g32_test Example Program
The g32_test program verifies the functional ability of the API library after installation of the
host API library by the instalapi program.

The g32_test program also demonstrates how an application interfaces with the API library
when an implicit logon is not needed. The user must add two dummy functions, g32_1ogon
and g32_1ogoff, to the API application if the application will not be linked to autolog.o or
laf.o.

Outputs from g32_test

Execution

On AIX, the g32_test program displays the following messages:

• Upon successful completion:

HCON HOST API INSTALLED AND OPERATIONAL

• Upon unsuccessful completion:

The HCON host API is not functional

The g32_test can only be executed explicitly. If the g32_test program is executed implicitly,
the g32_open function returns the following error:

errcode = -5 (G32_NO_LOG)

xerrinfor = -2

Related Information
Understanding the HCON API on page 4-8, Understanding Explicit and Implicit Logon on
page 4-17, Understanding AUTOLOG on page 4-19, Understanding the Automatic Logon
Utilities on page 4-25.

The g32_open function.

3270 Host Connection Program/6000 (HCON) 4-61

g32_3270 Example Program

Procedure

The g32_3270 program demonstrates how to use the APl/3270 subroutines. The g32_3270
program performs the following functions:

• Uploads a host program called g323270.

• Assembles the g323270 program.

• Executes the g323270 program.

• Outlines the output from the g323270 program in** (asterisks).

• Sends portions of the 3270 presentation space to the screen.

Use the following commands to compile the g32_3270 program:

• On the AIX Workstation, enter:

cc -a -o g32_3270.o

- To link with the AUTOLOG option:

apilaf AUTOLOG g32_3270 g32_3270.o

- To link with the /usr/lib/hcon/g_log.mvs LAF script:

apilaf /usr/lib/hcon/g_log.mvs g32_3270 g32_3270.o

Inputs to g32_3270
The g32_3270 program requires the following input:

• For implicit execution with the AUTOLOG option:

AUTOLOG_profile

Host user ID

Host node ID

Host password

In user's home directory or the /usr/lib/hcon file

First argument in user logon string

Second argument in user logon string

Response to the password prompt.

• For implicit execution with LAF option:

laf_script

Host user ID

Host password

No inputs are required for explicit execution.

4-62 Communications Programming Concepts

Outputs from g32_3270

Execution

On AIX the g32_3270 program displays the following messages:

Uploading g323270 assemble
Assembling g323270 assemble
Executing g323270 on host
Outlining g323270 output

* * * * * * * * * * * * *
* *

Greetings from

* *
IBM

* *
Austin, Texas

* *

* * * * * * * * * * * * *

• To execute the g32_3270 program using the implicit method (g32_3270.o is linked with
AUTOLOG)

1. Start the application on AIX by entering:

g32_3270

2. Enter the proper host logon ID string and password at the prompt.

The AUTOLOG or LAF g32_1ogon function logs on to the host.

The g32_3270 program transfers data between AIX and the host system. The program
displays progress messages during the transfer process.

Upon completion of the g32_3270 program, the AUTOLOG or Logan Assist Feature
g32_1ogoff function logs off from the host.

• To execute the g32_3270 using the explicit method:

1 . Establish the emulator session by entering e 7 a 9.

2. Log on to the host.

3. Start an AIX subshell by using the emulator SHELL key (default is Ctrl-C).

4. Run the APl/3270 program by entering:

g32_3270

The g32_3270 program transfers data between the AIX and the host system. The program
displays progress messages during the transfer.

5. Upon completion of the g32_3270 program, return to the host by entering ctrl-D or
Exit.

6. End the HCON terminal emulation session by logging off and entering ctr 1-D.

Related Information
Understanding the HCON API on page 4-8, Understanding Explicit and Implicit Logan on
page 4-17, Understanding AUTOLOG on page 4-19, Understanding the Automatic Logan
Utilities on page 4-25, g32_open function

3270 Host Connection Program/6000 (HCON) 4-63

How To Install the HCON MVS/TSO Host API
The following procedure describes how to install the HCON MVS/TSO Host API.

Prerequisite Tasks or Conditions

Procedure

Before the API can be installed on MVS/TSO, the following procedures must be completed:

1. The 3270 Connection Adapter or System/370 Host Interface Adapter must be installed.

2. The IBM 3270 File Transfer Program (IND$FILE) must be installed on the System/370
host.

3. HCON and HCON MRI must be installed.

4. You must have a user ID on the host system.

5. You must be an HCON user and have at least one session configured.

Perform the following steps to complete the installation of the HCON API library on
MVS/TSO:

1. Set your current working directory to /usr/lib/hcon/mvs by entering:

cd /usr/lib/hcon/mvs

2. Establish an HCON emulation session on the console using the e789 command.

3. Log on to the host. Process all output until there is no host activity and the screen is
clear.

4. Start an AIX subshell by entering the emulator SHELL key (the default is ctrl-c).

5. Start API installation by entering:

instalapi

The installation program transfers the following files:

AIX Source Files

g32catal.cli
g32asm.cli
g32alloc.mac
g32data.mac
g32dlloc.mac
g32read.mac
g32stat.mac
g32write.mac
g32alloc.txt
g32data.txt
g32dlloc.txt
g32read.txt
g32stat.txt
g32write.txt
g32sampl.asm
g32test.asm

Host Destination Files

G32CATAL.CLIST
G32ASM.CLIST
G32API.MACLIB.ASM(G32ALLOC)
G32API.MACLIB.ASM(G32DATA)
G32API.MACLIB.ASM(G32DLLOC)
G32API.MAXLIB.ASM(G32READ)
G32API.MAXLIB.ASM(G32STAT)
G32API.MAXLIB.ASM(G32WRITE)
G32API.TXTLIB.LOAD(G32ALLOC)
G32API.TXTLIB.LOAD(G32DATA)
G32API.TXTLIB.LOAD(G32DLLOC)
G32API.TXTLIB.LOAD(G32READ)
G32API.TXTLIB.LOAD(G32STAT)
G32API.TXTLIB.LOAD(G32WRITE)
G32APPL.ASM(G32SAMPL)
G32APPL.ASM(G32TEST)

4-64 Communications Programming Concepts

The installation program displays a status message as each file transfer completes. If the
file transfer fails, the,installation procedure terminates. The following example illustrates the
messages returned as a result of a successful transfer:

0789-300 fxfer: Transfer Status: The file transfer completed
with no errors.

Byte Count:
Source File:
Destination File:
Created at:

1945
/usr/lib/hcon/mvs/g32catal.cli
g32catal.clist
(destination file create time)

After completing the file transfers, the instalapi program does the following:

• Compiles the g32_sampl and g32_test file.

• Catalogs the HCON API library in the user catalog.

When the installation process completes, the installation program displays the following
message:

Installation of the HCON API library is complete.

6. Return to the emulator session by entering ctrl-D.

7. The API library functions can be verified by entering the emulator SHELL key (the default
is ctr 1-C) to start an AIX subshell.

8. Start the AIX API test program by entering:

g32_test

The g32_test program displays the message:

HCON HOST API INSTALLED AND OPERATIONAL

Note: If this message fails to appear, follow your local procedure for reporting problems.

Related Information
Understanding the Host Interface for HCON API on page 4-15, How To Install the HCON
VM/CMS Host API on page 4-66.

3270 Host Connection Program/6000 (HCON) 4-65

How To Install the HCON VM/CMS Host API
The following procedure describes how to install the HCON VM/CMS Host Application
Program Interface (API).

Prerequisite Tasks or Conditions

Procedure

Before the API can be installed on VM/CMS, the following procedures must be completed:

1. The 3270 Connection Adapter or System/370 Host Interface Adapter must be installed.

2. The IBM 3270 File Transfer Program (IND$FILE) must be installed on the System/370
host.

3. HCON and HCON MRI must be installed.

4. You must have a user ID on the host system.

5. You must be an HCON user and have at least one session configured.

Perform the following steps to complete the installation of the HCON API library on
VM/CMS:

1. Set your current working directory to /usr/lib/hcon/vm by entering the following:

cd /usr/lib/hcon/vm

2. Establish an HCON emulation session on the console using the e789 command.

3. Log on to the host. Process all output until there is no host activity and the screen is
clear.

4. Start an AIX subshell by entering the emulator SHELL key (crtl-e is the default).

5. Start API installation by entering:

instalapi

The instalapi program uploads the API files. It transfers the following files:

AIX Source Files

dispax.txt
dispio.txt
g3'2api .mac
g32api. txl
g32sampl.asm
g32test.asm
g32asm.exe

Host Destination Files

DISPAX TEXT A
DISPIO TEXT A
G32API MACLIB A
G32API TXTLIB A
G32SAMPL ASSEMBLE A
G32TEST ASSEMBLE A
G32ASM EXEC A

The installation program displays a status message as each file transfer completes. An
example of a successful transfer message is as follows:

0789-300 fxfer: Transfer Status: The file transfer completed
with no errors.

Byte Count: 12080
Source File: /usr/lib/hcon/vm/g32api.mac
Destination File: G32API MACLIB
Created at: (destination file create time)

4-66 Communications Programming Concepts

The instalapi program also:

• Creates the DISPAX and DISPIO module files.

• Compiles the G32SAMPL and G32TEST files.

The installation program indicates successful installation of the API library by displaying the
following message:

Installation of the HCON API library is complete.

6. Return to the emulator sesion by entering ctrl-D.

7. To verify the API functions, start an AIX subshell by entering the emulator SHELL key,
(ctrl-C is the default).

8. Start the AIX API test. program by entering:

g32_test

The g32_test program displays the message:

HCON HOST API INSTALLED AND OPERATIONAL

Note: If this message fails to appear, follow your local procedure for reporting problems.

Related Information
Understanding the Host Interface for HCON API on page 4-15, How To Install the HCON
MVS/TSO Host API on page 4-64.

3270 Host Connection Program/6000 (HCON) 4-67

How To Compile a File Transfer Program
The following procedure describes how to compile a file transfer program.

Prerequisite Tasks or Conditions

Procedure

1. HCON and HCON MRI must be installed and configured on your system.

2. The specific computer language compiler, either Pascal, FORTRAN, or C, in which the
file transfer program was written must be installed on your system.

The following sections describe how to compile a file transfer program for each of the three
languages, C, FORTRAN, and Pascal.

Compiling a C Program
The following example illustrates how to compile the sample cname C program and link it
with the file transfer library:

cc -o cnarne cnarne.c -lfxfer

where cname is the C program executable code and cname.c is the actual C file transfer
program. The C file transfer program is linked with the libfxfer.a library.

Compiling a FORTRAN Program
The following example illustrates how to compile the sample fname FORTRAN program and
link it with the file transfer library:

xlf -v fnarne.f -o fnarne -lfxfer

where fname. f is the name of the FORTRAN file transfer program and fname is the name of
the FORTRAN executable program.

Compiling a Pascal Program
The following example illustrates how to compile the sample pname Pascal program and
link it with the file transfer library:

xlp -v pnarne.pas -o pnarne -1 fxfer

where pname.pas is the Pascal file transfer program and pname is the Pascal executable
code.

Related Information
Understanding the File Transfer Program Interface on page 4-4, Understanding HCON
Programming Examples on page 4-25.

Understanding the File Transfer Process in Communication Concepts and Procedures.

4-68 Communications Programming Concepts

How To Compile an AIX API Program
The following procedure describes how to compile an AIX API program.

Prerequisite Task or Condition

Procedure

1. HCON must be installed and configured on the RISC System/6000.

2. You must have installed a Pascal, FORTRAN or C compiler.

The following sections describe how to compile an AIX API program written in either the C,
Pascal, or FORTRAN language.

Compiling a C Program
To compile a typical C HCON API application, such as g32_3270.c, enter:

cc -c g32_3270.c

Note: The g32_3270.c program is a sample program existing in the /usr/lib/hcon/vm
directory and /usr/lib/hcon/mvs directory.

To link the g32_3270 program with AUTOLOG, enter:

apilaf AUTOLOG g32_3270.c g32_3270.o

To compile a C HCON API application, enter:

cc -c testap.c

where te~tap.c is the name of the HCON API application you want to compile.

To link it with the HCON API application with the LAF script /usr/lib/hcon/g_log.vm, enter:

apilaf /usr/lib/hcon/g_log.vm testap testap.o <other required
object files>

Compiling a Pascal Program
To compile a Pascal HCON API program, such as testap.pas, enter:

xlp -c testap.pas

To link a Pascal HCON API program, such as testap.pas, with AUTOLOG, enter:

apilaf -p AUTOLOG testap testap.o <other required object files>

Compiling a FORTRAN Program
To compile a FORTRAN HCON API program, apiftest.f, enter:

xlf -c apiftest.f

To link a FORTRAN HCON API program, such as testap.pas, with AUTOLOG, enter:

apilaf -f AUTOLOG apiftest apiftest.o <other required object files>

Related Information
Understanding the HCON Application Program Interface (API) on page 4-25, Understanding
the AIX Interface for HCON API on page4-11 , Understanding HCON Programming
Examples on page 4-25, Understanding AUTOLOG on page 4-19, Understanding the
Logon Assist Feature (LAF) on page 4-20.

How To Use an AUTOLOG Profile on page 4-7 4, How to Use a Logan Assist Feature Script
on page 4-71.

3270 Host Connection Program/6000 (HCON) 4-69

How To Compile a Host HCON API Program
The following procedure describes how to compile a Host HCON API program.

Prerequisite Tasks or Conditions

Procedure

VM/CMS

MVS/TSO

1. HCON and HCON MRI must be installed and configured on the RISC System/6000.

2. The HCON API programs must be installed on the host system using the instalapi
program.

3. You must have a host ID.

The following sections describe how to compile a 370 Assembler program in either of the
Host environments, VM/CMS or MVS/TSO.

The g32asm exec file is provided for compiling a HCON API application on a VM/CMS host.

To compile a 370 Assembler program called apitest assemble with the VM/CMS HCON API
library, enter:

g32asm apitest

The g32asm.clist file is provided for compiling a HCON API application on a MVS/TSO
host. To compile a 370 Assembler program called apitest with the MVS/TSO HCON API
library, perform the following:

1. Place apitest into the g32appl. asm partitioned file.

2. Compile and link apitest with the HCON API by entering:

exec g32asm 'apitest'

Note: The prefix g32 is reserved for the HCON API library. This prefix must not be used for
naming VM/CMS or MVS/TSO application programs.

Related Information
Understanding the HCON Application Program Interface (API) on page 4-4, Understanding
the Host Interface for HCON API on page 4-15, Understanding HCON Programming
Examples on page 4-25, Understanding AUTOLOG on page 4-19, Understanding the
Logon Assist Feature (LAF) on page 4-20.

How To Install the HCON MVS/TSO Host API on page 4-64, How To Install the HCON
VM/CMS Host API on page 4-66.

4-70 Communications Programming Concepts

How To Use a Logon Assist Feature Script
HCON provides sample Logon Assist Feature (LAF) scripts to help you create, debug, and
link files using the LAF language. The first procedure describes how to use the sample LAF
scripts. The second procedure describes how to debug and link your own LAF script. The
LAF language is not the only method of incorporating automatic logon into your applications.
The AUTOLOG profile also provides this capability.

Prerequisite Tasks or Conditions
1. You must have installed HCON and HCON MRI.

2. You must have a C compiler installed on your system.

3. You must have written a LAF script using the LAF language statements.

4. You must have a host ID.

5. You must have a 3270 Connection Adapter or System/370 Host Interface Adapter.

6. You must be an HCON user and have established at least one session.

How to Use the Sample LAF Scripts

Procedure

The steps below are provided to help you use the provided LAF script for creating,
debugging, and linking files and to help you better understand the processes.

1. Copy one of the example LAF scripts in /usr/lib/hcon into your home directory. For
example:

cp /usr/lib/hcon/g_log.vm g_log.vm

or

cp /usr/lib/hcon/g_log.mvs g_log.mvs

2. If you have the capability on your system, edit the copied LAF script while logging on and
off of the emulator in another AIX shell. The changes should reflect your particular logon
and logoff process. If you want DEBUG, then insert the DEBUG statement after the
START statement or before the statements that you want DEBUG output for.

3. Given that g_log.vm is the file name of your LAF script, create a test program for your
LAF script. To create the tlaf command executable test program, enter:

mtlaf g_log.vm

When running the tlaf test program, you must have the e789 program also running.

4. Run the emulator command with a session profile name. To run the e789 command with
a session profile of z, enter:

e789 z

3270 Host Connection Program/6000 (HCON) 4-71

5. Execute the tlaf program, within the emulator subshell or within another shell. The
command prompts you for the user ID string and password, unless the host login ID is
specified in the session profile. If the login ID is specified, the program only prompts you
for the password. Enter or create your logon ID and/or password. To execute a tlaf
program with a session profile name of z, enter:

tlaf z

The LAF script attempts to log on and log off. You must change the LAF script if you do
not get a successful logon and logoff. Continue to debug the LAF script until you get a
successful logon and logoff. When you get a successful logon and logoff, you have a
LAF script that is ready to test with an API program or the fxfer file transfer program
interface.

6. Turn on the DEBUG so that you may run the tlaf command and debug your LAF script.

7. Upon successful completion of the tlaf program, link the HCON applications with your
LAF script by entering one of the following link commands.

For file transfer programs, use:

fxlaf g_log.vm

For API application programs, use:

apilaf g_log.vm

Note: The DEBUG statement should be removed from the LAF script when linking with an
API or fxfer application. It is not necessary to run the emulator when running an
implicit API or fxfer application. If you are using LAF, the AUTOLOG Node ID in the
session profile must be blank.

Another LAF program, which enables the user to log onto a MVS host, is also provided in
the /usr/lib/hcon directory in the file g_log.mvs.

Testing a LAF Script
To test the LAF script with an API program, complete the following steps:

1. Compile the API program:

cc -c apiprog.c

2. Now link the API program object with the LAF script object to create an API executable
program:

apilaf laf .script apiprog apiprog.o

3. Execute the API program without initiating an emulator session. This will cause the API
program to prompt you for logon ID and a password, unless you have specified a host
login ID in the session profile. If you have specified a login ID in the session profile, the
program only prompts you for the password.

Occasionally, your script may not successfully log on or log off even though your tlaf
program works. In this case you will have to keep adjusting or debugging the LAF script until
it works. It is a good idea to look at the C program that is generated from the LAF script.

4-72 Communications Programming Concepts

To test the LAF script with a file transfer application program, complete the following:

• Run the fxfer command with a LAF script by entering:

fxlaf laf script

This command links the LAF script with the file transfer dfxfer process.

• If you are running in a codeserver environment, the following command must be run to
link the LAF script with file transfer:

apilaf <lafscript> dfxfer /usr/lib/hcon/dfxfer.o

The apilaf command creates a new dfxfer program in your current working directory.
You must enter the new location of the dfxfer program in the PATH environment variable
before the /usr/bin entry, so that the newly created dfxfer is located and used before the
system reads the original dfxfer program in the /usr/bin directory.

To generate a C program from a LAF script, execute the following program:

genlaf laf script

The C program will be contained in the laf.c file.

Related Information
The apilaf command, fxlaf command, mtlaf command, tlaf command.

Understanding Explicit and Implicit Logon on page 4-17, Understanding the Logan Assist
Feature (LAF) on page 4-20, Understanding the HCON API on page 4-8, Understanding
the File Transfer Program Interface on page 4-4.

3270 Host Connection Program/6000 (HCON) 4-73

How To Use an AUTOLOG Profile

Using an AUTOLOG Profile
The following procedure describes how to create, test, link, and execute an AUTOLOG
profile.

Prerequisite Tasks or Conditions

Procedure

1. The 3270 Connection Adapter or System/370 Host Interface Adapter must be installed.

2. You must have HCON and HCO~ MRI installed on your system.

3. You must be an HCON user and have at least one session profile defined.

4. You must have a user ID on the host.

5. You must have written an AUTOLOG profile using the genprof command.

Note: The /usr/lib/hcon directory provides sample AUTOLOG profiles, SYSvm1,
SYSvm2, and SYStso. The directory also contains the logform file which shows
what the format of the genprof command menu looks like.

6. The genprof command must have produced a SYSname file (where name= the node id
you specified when using the genprof command).

7. You must have a C compiler installed on your system to use the mtlaf, fxlaf, and apilaf
programs.

8. You must have a tlaf program.

a. If you are only working with AUTOLOG, use the existing tlaf program in the
/usr/lib/hcon directory.

b. If you have used a LAF script and want to create a new tlaf program, use the mtlaf
command. To execute the mtlaf command, enter:

mtlaf AUTOLOG

The following steps describe how to create an AUTOLOG profile.

1. Run the e789 emulator program. You must provide a specific session profile. To run
e789 with session profile z, you would enter the following:

e789 z

2. Log on to the host, then log off. Record all the events on an AUTOLOG logform, until the
final logon/logoff prompt.

3. Generate the log profile by running the genprof command. The genprof command
offers.menus that allow the user to create, display, or change an AUTOLOG profile. The
genprof command stores the log information in the user's HOME directory. The log
information resides in the log profile under the name, SYSnode_id. For example:

SYSdanvml

The suffix danvml represents the node id.

4-7 4 Communications Programming Concepts

At this point, you have two options: You can use the tlaf program provided in the
/usr/lib/hcon directory or you can create a test program for AUTOLOG using the mtlaf
command. The mtlaf command creates an executable tlaf program in your working
directory. To use the existing tlaf program, skip step 4 and go to step 5.

Note: The mtlaf command requires a C compiler.

4. To create a test program for AUTOLOG using the mtlaf command, enter:

mtlaf AUTOLOG

5. Run the test program using the tlaf command. You must specify the same session
profile that you used to start the emulator in step 1. For example, to use the tlaf
command, if you have used session profile z for the e789 command, enter:

tlaf z

If the host login ID is not specified in the session profile, the tlaf command prompts you
for the logon ID string and password. Otherwise, the program only prompts you for the
password. Enter the logon ID string in the following format:

uid,nid,trace,time=value

For example:

grace,danvml,trace,time=S

where:

uid Specifies the User ID.

nid Specifies the Node ID. The Node ID is name of the AUTOLOG profile
(excluding the SYS prefix).

trace Specifies optional control output.

time Specifies optional parameter, which allows the user to change the
three-second default time to wait for a particular pattern to be received from a
host.

value Specifies the time in seconds for AUTOLOG to wait for a particular pattern to
be received from the host.

If the AUTOLOG procedure cannot find the AUTOLOG profile in your $HOME directory, it
checks the /usr/lib/hcon directory. If the procedure cannot find the AUTOLOG profile in the
/usr/lib/hcon directory, the AUTOLOG procedure displays an error message.

The tlaf program, located in the /usr/lib/hcon directory, is linked to AUTOLOG. At
installation, the dfxfer file transfer subsystem is automatically linked with AUTOLOG.
Therefore, with the exception of API programs, you do not need to do anything else to link
HCON applications with the AUTOLOG procedure.

3270 Host Connection Program/6000 (HCON) 4-75

Testing the AUTOLOG Profile
If you are going to test the AUTOLOG profile with an API program, do the following:

1. Compile the API program:

cc -c apiprog.c

2. Link the API program object with the autolog.o object file to create an API program
executable. For example:

apilaf AUTOLOG apiprog apiprog.o

3. Execute the API program without initiating an emulator session. If the host login ID is not
in the session profile, the API program prompts you for a logon ID and a password.
Otherwise, the program only prompts you for the password.

If you are going to test the AUTOLOG profile with the file transfer command or program, do
the following:

• Run the file transfer command or program implicitly specifying the -n session name
option.

Occasionally, your AUTOLOG profile may not successfully log on or log off even though your
tlaf program works. In this case, keep adjusting or debugging the profile until it works.

When debugging, enable the tracing facility. By setting AUTOLOG trace on in the session
profile or if the logon ID is prompted, simply enter in a comma and the word trace after the
AUTOLOG profile name. For example:

Enter login id:
dummyid,node id,trace

If the host machine is slow during debugging, you may also want to use the time facility. The
time option allows the user to specify the maximum amount of time in seconds to wait for a
successful event.

To enable the time facility by setting the AUTO LOG timeout parameter in the session profile
or if the logon ID is prompted, enter:

a. the AUTOLOG name and AUTOLOG trace value

b. a comma and time = N seconds

For example:

Enter login id:
dummyid, node id, trace, time=lO

4-76 Communications Programming Concepts

Linking to AUTOLOG
If you have used a Logan Assist Feature (LAF) script and want to switch to using AUTOLOG
or have used a combination of both, you need to use additional commands to link to
AUTOLOG.

The following commands link an HCON application with the AUTOLOG procedure:

fxlaf Links a file transfer program to AUTOLOG

apilaf Links an API application to AUTOLOG.

Prerequisite Task or Condition

Procedure

• You must have a C compiler installed on your system.

• To link a file transfer HCON application with the AUTOLOG procedure after the tlaf
program runs successfully, enter:

f xlaf AUTOLOG

• To link an API HCON application program with the AUTOLOG procedure, enter:

apilaf AUTOLOG name obj.a

Related Information
The apilaf command, fxlaf command, genprof command, mtlaf command, tlaf command,
/usr/lib/hcon directory.

Understanding the Logon Assist Feature (LAF) on page 4-17, Understanding the HCON API
on page 4-8, Understanding the File Transfer Program Interface on page 4-4,
Understanding Explicit and Implicit Logan on page 4-17, Understanding AUTOLOG on page
4-19, Understanding the Automatic Logan Utilities on page 4-25.

Understanding Emulator Sessions in Communication Concepts and Procedures, Installing
and Updating HCON, Configuring HCON.

3270 Host Connection Program/6000 (HCON) 4-77

4-78 Communications Programming Concepts

Chapter 5. Network Computing System (NCS)

The Network Computing System (NCS) enables the distribution of processing tasks across
resources in a network or internet by maintaining databases that control the information
about the resources. NCS consists of three components: the Remote Procedure Call
runtime library, the Location Broker, and the Network Interface Definition Language compiler.
This chapter provides detailed information on the working of NCS and its components. In
addition, it provides brief introductions to the various library routines used in NCS.

NCS Overview
The Network Computing System (NCS) is a set of tools for distributing computer processing
tasks across resources in either a network or several interconnected networks (an internet).
NCS is an implementation of the Network Computing Architecture, which distributes
software applications across networks and internets that include a variety of computers and
programming environments. Programs based on the Network Computing Architecture take
advantage of computing resources throughout a network or internet, with different parts of
each program executing on the computers best suited for certain tasks.

Network Computing System (NCS) 5-1

The following figure shows how the Network Computing Architecture shares processing and
application data:

D___ ____
Shared Data

D

Shared
Processing

Shared
Processing
and Data

D

Figure 1 . Distributed Computing Using NCS

Understanding NCS
NCS consists of the following components:

• Remote Procedure Call (RPC) runtime library
• Location Broker
• Network Interface Definition Language (NIDL) compiler.

D

The RPC runtime library and the Location Broker provide runtime support for network
computing. Together these two components make up the Network Computing Kernel (NCK),
which contains all the software required to run a distributed application. The NIDL compiler
is a tool for developing applications.

5-2 Communications Programming Concepts

RPC Runtime Library
The RPC runtime library provides the library routines that enable local programs to execute
procedures on remote hosts. These routines transfer requests and responses between
clients (the programs calling the procedures) and servers (the programs executing the
procedures). When you write a distributed application, you usually do not need to use RPC
routines directly. Instead, you can create an interface definition in Network Interface
Definition Language and use the NIDL compiler to generate the required RPC routines.

NIDL Compiler
The NIDL compiler takes as input an interface definition written in NIDL. An interface
definition specifies the interface between a user of a service and the provider of the service.
It defines both the way in which a client application sees a remote service and the way in
which a remote server sees requests for its service. From this definition, the NIDL compiler
generates client and server stub source code and header files.

The client stub program performs the conversion between requests (and responses) that are
meaningful to the client and packets that are transmitted (and received) on the network. The
server stub program provides similar support for the server.

The stubs produced by the NIDL compiler contain nearly all of the remoteness in a
distributed application. The stubs perform data conversions, assemble and disassemble
packets, and interact with the RPC runtime library. It is much easier to write an interface
definition in NIDL than it would be to write the stub code that the NIDL compiler generates
from your definition.

Location Broker
The Location Broker provides information about the network or internet resources to clients.
It maintains a database that contains the identities and locations of objects in the network.
Through a Client Agent, the Location Broker maintains information about the local brokers
that manage information about resources on the local host, the global brokers that manage
information about resources available on all hosts, and the administrative tools.

Objects, Types, and Interfaces
Like the architecture on which it is based, NCS is object-oriented. An object is an entity
accessed or manipulated by well-defined operations. Files, serial lines, printers, and
processors can all be objects.

Programs access objects through interfaces. The programs are cast in terms of the objects
they manipulate instead of the machines with which they communicate. Object-oriented
programs are easy to design and can readily accommodate changes to hardware and
network configurations.

Every object has a type that specifies the class or category of the object. All objects of a type
are accessed through one or more interfaces. Each interface is a set of operations that can
be applied to any of the objects of that type. For example, you can classify printer queues as
objects of the type printqueue, which are accessed through a printqueue_ops interface that
includes operations to add, delete, and list jobs in the queues.

The definition of an operation specifies its input and output parameters, but not its
implementation. Therefore, an operation can be implemented differently on different types of
objects.

Network Computing System (NCS) 5-3

UUID·S

Array processors provide an example of how objects, types, and interfaces apply to NCS.
You can define an arrayproc type. Array processor objects are accessed through either of
two interfaces: a vector_ops interface with operations such as vector_add and
vector_multiply, and a misc_ops interface with operations such as max_absolute_value
and root_mean_square.

NCS identifies every object, type, and interface by a Universal Unique Identifier (UUID).
Each UUID is a 16-byte quantity identifying the host on which the UUID is created and the
time at which it is created. Six bytes identify the time, two are reserved, and eight identify the
host.

The Network Computing Kernel (NCK) includes a uuid_gen utility that generates UUIDs as
ASCII strings or as data structures defined in the C or Pascal programming language. The
string representation used by the NIDL compiler and by NCK utilities consists of 28
hexadecimal digits arranged as in this example:

3a2£883c4000.0d.OO.OO.fb.40.00.00.00

Clients and Servers
A client is a program that makes remote procedure calls. A remote procedure call requests
that a particular operation be performed on a particular object. A server is a program that
implements interfaces. The server process listens for requests for each interface's
operations. When it receives a request from a client, the server executes the procedures that
perform the operation and sends a response to the client.

Network Communications
The communications between systems in an NCS environment are handled through the
RPC runtime library. It is possible that one program can access different hosts that listen on
two different ports or have two different addresses.

In the NCS environment, RPC uses sockets for interprocess communications. A socket is an
end point for communications, in the form of a message queue. An RPC server listens on
one or more sockets. It receives any message sent to a socket on which it is listening.
Messages can be broadcast to sockets at several hosts on the local network. Broadcasting
is often used when the location of an object is not known.

5-4 Communications Programming Concepts

The following figure illustrates RPC communications using sockets. It shows two servers
running on one host and several clients on other hosts. Server 1 listens on two sockets: one
socket uses the Internet Protocol (IP); the other uses another network communications
interface. Server 2 listens on a socket that uses IP.

Host 1

Server 1 Server 2

Family: IP Family: other Family: IP
Addr: 192.5. 7 .9 Addr: 29c16.bee Addr: 192.5.7.9
Port: 99 Port: 33 Port: 25

socket socket socket

I l l
l l l

~ ~ ~
Client 1 Client 2 Client 3

Host 2 Host3 Host4

Figure 2. RPC Communications Using Sockets

Each socket is identified uniquely by a socket address. A socket address, sometimes called
a sockaddr, is a data structure that specifies the following information about a socket:

• Address family, also called the protocol family, which determines the communications
protocol used to deliver messages and the structure of the addresses used to represent
communications end points.

• Network address, which is a value that, given the communications protocol, uniquely
identifies a host on one or more interconnected networks.

• Port riumber, which specifies a communications end point within the host. The terms port
and socket are synonymous, but port number and socket address are not. A port number
is one of the three parts in a socket address. For example, a port number can be
represented as the character string 7 7, while a socket address can be represented as
i p : my host [7 7] .

Network Computing System (NCS) 5-5

The following figure illustrates the socket address structure for a domain socket address and
an IP socket address.

Domain Socket Address

Family Port Network Address

Network Host
16·bit integer 16-bit integer

32-bit integer 32·bit integer

IP Socket Address

Family Port Network Address

16-bit integer 16·bit integer 32-bit integer

Figure 3. Domain Socket Address and IP Socket Address Structures

Well-Known and Opaque Ports
Interfaces can be designed and implemented with a particular port number built in. The port
used in such an interface is called a well-known port. Clients of the interface always send to
that port, and servers always listen on that port. Some well-known ports are assigned to
particular servers by the administrators of a communications protocol. For example, the
administrators of the Internet Protocols have assigned port number 23 to the server for the
Telnet remote login facility. All Telnet servers listen on this well-known port, and all Telnet
user programs send to it.

Well-known ports are an effective way to coordinate communication between clients and
servers if portability to other networks and coexistence with other services are of little
concern. However, the number of ports in each protocol family is limited. Unless the
assignment is obtained from a central administrator, an application's well-known port number
is liable to conflict with that of another program. The NCS Location Broker circumvents this
problem by allowing you to locate services easily without direct use of well-known ports. It
uses one well-known port to listen for requests. Clients and servers can locate a broker by
broadcasting to this port.

NCS enables a server to use ports that the RPC runtime software assigns dynamically. After
a server registers this assignment with the Location Broker, a client can then obtain the
server's socket address from the broker. Since there is no need for either the client or the
server to know a port number, the number is said to be opaque.

The RPC Paradigm
Remote procedure calls extend the procedure call mechanism from a single system to a
distributed computing environment. The calls distribute the execution of a program among
multiple computers in a way that is transparent to the application-level code.

5-6 Communications Programming Concepts

Interfaces

The following figure shows the flow of ordinary local procedure calls between the calling
client and the called procedures.

call _..
Pl

Client t..t return Procedures
r"

Interface

Figure 4. Single-Process Procedure Call Flow

The following figure shows the same flow for remote procedure calls and illustrates how
RPC hides the remote aspects of a call from the calling client. The client application
requests a procedure by using standard calling conventions, as if the procedure were a part
of the local program, the procedure is, however, executed by a remote server. The client
stub acts as the local representative of the procedure, organizing the data into a format that
can be transmitted to the server and using RPC runtime library routines to communicate with
the server. Similar activities occur within the server process.

apparent flow

call
~ Manager Client ..._ return Procedures r"

call
.. ~ • return call return

Interface
.. r_ ~

Client Stub Server Stub

call return call return

RPC Runtime
_. ... RPC Runtime

Library ..._ Library r-
network ·-

messages

Client Process Server Process

Figure 5. Remote Procedure Call Flow

An interface consists of procedure names and signatures. It defines the calling syntax that is
used both by the client and by the remote procedures. An interface is independent of the
mechanism that conveys the request between the client and the procedures; it is also
independent of the way in which the procedures perform the operations. The server that
implements an interface's operations is said to export the interface. The program that
requests the operations imports the interface.

For example, suppose that print is a print queue manipulation interface used to manipulate
queues for several types of printers. One printer type is laser, and objects of this type are
my_laser, your_laser, and public_laser. The print interface includes the
print$add_to_queue, print$delete_from_queue, and print$check_queue operations.

Network Computing System (NCS) 5-7

A remote matrix arithmetic package is another example of an interface. An array processor
exports a set of matrix operations as an interface. The array processor is the object, and its
type is arrayproc. Array processor objects are accessed through a vector_ops interface
with operations such as vector_add and vector_multiply. The arrayproc type might have
other interfaces, for example, a misc_ops interface, with operations such as
max_absolute_value and root_mean_square, and a scalar_ops interface for scalar
arithmetic. Client programs on various hosts import the vector_ops interface by making
calls such as vector_add. The programs run on the local hosts, but all matrix operations run
on the remote array processor.

Clients, Servers, and Managers
An RPC client is a program that makes remote procedure calls to request operations. A
client does not know how an interface is implemented. The client is not required to know the
location of the server exporting the interface either.

An RPC server is a process that implements the operations in one or more interfaces. The
server is the module to which the RPC runtime library sends an operation r~quest packet,
and from which this library receives a response containing the results of the operation.

A server can export a single interface or multiple interfaces as explained in the array
processor example discussed previously in Interfaces on page 5-7. The following figure
illustrates a server that exports two interfaces. A server can export an interface for a single
object or for multiple objects. In the array processor example, there is only one object, the
array processor. A file server, however, manages many file objects.

Interface 1

Figure 6.

Manager Manager
Procedures Procedures

call • ~
return call return

-,r_ _y

Server Stub 1 Server Stub 2

• ~~

call call

return return
~ .,,

RPC Runtime Library

•
From
Clients

• To
Clients

RPC Server Exporting Two Interfaces

Interface 2

A server can also be a client. It can even be a client of itself. The client and server play
symmetrical roles in the RPC paradigm. However, their program structures are
asymmetrical.

5-8 Communications Programming Concepts

The client consists of two parts:

• The application code (labeled client), which makes calls to be executed remotely
• The stub code (labeled client stub), which uses the RPC runtime library to have these

calls executed.

The server has the following parts:

• The manager code, which corresponds to the client application code
• A stub, which corresponds to the client stub
• The code that initializes the server process itself.

Reference to the server means the whole server process. However, manager code refers
directly to the procedures that actually implement the server operations.

Identifying Objects and Servers
When a client makes a remote procedure call to request that a particular operation be
performed on a particular object, the following information is required to transmit the call
from the RPC runtime library:

• The object on which the operation is to be performed
• The server that exports the interface containing the operation.

This information about the object and the server is represented in the client process by a
handle. Handles are created and managed by RPC library routines. Once a handle is
created, it always represents the same object. The handle can, however, represent different
servers at different times, although it is not required to specify a server at all. The
representation of the server in a handle is called the binding. To bind a handle is to establish
its representation of the server.

RPC Handles

An RPC handle is a pointer to an opaque data structure that includes the information
required to access a remote object. Clients and servers do not manipulate this structure
directly, but through RPC runtime library calls. The following figure shows an RPC handle.

[Handle l
J ...

Figure 7. RPC Handle

Object ID

Address Family

Network Address

Port

Opaque Structure

Socket Address
(Represents the
binding)

Network Computing System (NCS) 5-9

Stubs

The RPC Binding

A binding, and therefore the RPC handle that includes the binding, can exist in three states:

• Unbound (or allocated)
• Bound-to-host
• Bound-to-server (or fully bound).

An unbound or allocated handle identifies an object but does not identify its location. When a
client uses an unbound handle to make a remote procedure call, the runtime library
broadcasts a message to all hosts on the local network. Any host that supports the
requested interface to the object (such as the interface that contains the called operation)
can respond. The client runtime library accepts the first response that it receives.

A bound-to-host handle identifies the object and the host but does not represent the specific
server that exports the interface to the object. When a client uses a bound-to-host handle to
make a remote procedure call, the runtime library sends a message to the forwarding port
on the specified host. If a server that exports the required interface to the object is registered
with the host's Local Location Broker, the message is forwarded to the required server.

A bound-to-server or fully bound handle identifies the object and the server. When a client
uses a fully bound handle to make a remote procedure call, the runtime library sends the
message directly to the socket address identified by the handle.

In all cases, whenever the client RPC runtime library receives a response from a server, it
binds the handle to the server socket address. Therefore, RPC handles are fully bound
whenever a remote procedure call returns, and the client does not need to use the
broadcasting or forwarding mechanism for subsequent calls to the server.

The following table shows, for each possible binding state of a handle when a remote
procedure call is made, the information that the handle represents, the delivery mechanism
of the remote procedure call, and the binding state when the procedure call returns.

Handles and Binding States

Binding State on Information Delivery Binding State on
Call Return

Allocated Object Broadcast to all hosts Fully bound

Bound-to-host Object Sent to host's Location Fully bound
Host Broker forwarding port

Fully bound Object Sent to specific server port Fully bound
Host
Server

Both clients and servers are linked (in the sense of combining object modules to form
executable files) with stubs. Stubs enable the clients and servers to use the RPC facilities as
transparently as possible, which makes remote invocations look almost local. The client stub
stands in for the remote procedures in the client process. The server stub stands in for the
client in the server process. This means that, when a client makes a remote procedure call,
it actually calls a routine in the client stub. The client stub calls an RPC runtime routine to
send the request to the server. Similarly, the server RPC runtime library calls the server stub
when it receives an RPC packet, and the server stub then calls manager code that executes
the requested procedure.

5-10 Communications Programming Concepts

The stub program modules transfer remote procedure calls and responses between an RPC
client and the manager procedures that implement an interface. The modules convert data
between the procedure call format specified by the interface definition and the format
required by the RPC runtime routines. The modules also issue the RPC runtime library calls
required for communication between the client and the server.

When a client calls an interface operation, such as vector_add from the array processor
example, it actually calls a routine in the client stub. The client stub does the following:

1 . Establishes the binding between the client and the server if the client has not explicitly
created a binding.

2. Marshalls, or copies into an RPC packet, the input parameter values.

3. Calls an RPC runtime procedure to send the packet to the server stub and await a reply.

4. Receives the reply packet.

5. Unmarshalls the output parameter values into the format expected by the client. The
format is specified in the interface definition.

6. Converts the output's data representation into a form that is meaningful to the client if the
server uses a different format (for example, converts characters from EBCDIC to ASCII).

7. Returns to the client.

Similarly, the RPC runtime library calls a server stub routine when the server receives a
request from the client. The server stub then does the following:

1. Unmarshalls the input parameter values into the format expected by the server. The
format is specified in the interface definition .

. 2. Converts the input's data representation into a form that is meaningful to the server if the
client uses a different format (for example, converts characters from ASCII to EBCDIC).

3. Calls the manager procedure that implements the operation.

4. Marshalls the output parameter values into an RPC packet.

5. Returns the packet to the RPC runtime library for transmission to the client stub.

Network Computing System (NCS) 5-11

The following figure illustrates these operations in the context of the figure illustrating a
remote procedure call flow and the figure illustrating a server exporting two interfaces.

Client

foo$doit (a,b,c)

t
procedure foo$doit
begin

(in a,b; out c)
put a,b, in packet
call rpc $sar
get c from packet

end

Client Stub

Client Process

- ...

Figure 8. Client and Server Stub Operations

Manager
Procedures

procedure foo$doit
begin

end

• procedure foo$stub
begin

get a,b from packet
foo$doit(a,b,c)
pub c in packet

end

Server Stub

Server Process

NCS provides a compiler that automatically generates source code for both the client and
the server stubs from a definition of the interface written in Network Interface Definition
Language (NIDL). Interface Definitions and the NIDL Compiler on page 5-16 provides more
detailed information about the NIDL compiler and the stubs that it generates.

5-12 Communications Programming Concepts

The Remote Procedure Call (RPC) Runtime Library (NCS)

Routines

The RPC runtime library, included in the /usr/lib/libnck.a library, contains the routines,
tables, and data that support the communication of remote procedure calls between clients
and servers. RPC runtime routines are responsible for transmitting RPC packets between
the client and server stubs.

The RPC runtime library contains routines that are normally used only by clients {client
routines), some that are normally used only by servers {server routines), and others that
either clients or servers can use {conversion routines).

Client Routines
rpc_$alloc_handle

Allocates a handle that identifies a specific object but not a specific server.

rpc_$set_binding

rpc_$bind

Sets the binding in an allocated handle so that it specifies a socket address.

Allocates a handle and sets a binding. This function is identical to a call to
the rpc_$alloc_handle routine followed by a call to the rpc_$set_binding
routine.

rpc_$dup_handle
Makes a copy of an RPC handle.

rpc_$clear_server_binding
Removes the association between an RPC handle and a server, but retains
the association with a host. A remote procedure call that is made using this
handle is sent to the Local Location Broker forwarding agent port on the
remote host.

rpc_ $clear _binding
Removes the association between an RPC handle and both a server and a
host. This routine saves the handle and its related resources for reuse in
accessing the same object, possibly at another server or host location. A
remote procedure call that is made using a handle with a cleared binding is
broadcast to the Local Location Broker forwarding agent port.

rpc_$free_handle
Removes {frees} the information represented by a handle by clearing the
association between the handle and an object and socket address, and then
releasing the RPC handle.

rpc_$inq_binding

rpc_$sar

Returns the socket address identified by the RPC handle, which enables the
client to determine the specific server that responded to a remote procedure
call.

Sends a packet to a bound interface and awaits a reply from the server.

Network Computing System (NCS) 5-13

Server Routines
rpc_$use_family

Creates a socket that is the server's end point for communications with
clients over the network and assigns an available port number for the
socket.

rpc_$use_family _wk
Creates a socket that uses a well-known port.

rpc_$register Registers an interface with the RPC runtime library, which enables the
server to handle requests for the registered interface.

rpc_$unregister

rpc_$1isten

Unregisters an interface that was previously registered with the server (with
the rpc_$register routine). The server does not respond to requests for the
unregistered interface.

Listens for RPC requests from clients, calls the requested interface
procedure when a request is received, and sends the result in a reply to the
client.

rpc_$inq_object
Returns the UUID of the object represented by an RPC handle.

Conversion Routines
rpc_$name_to _sockaddr

Determines the socket address for a specific named host.

rpc_$sockaddr_to_name
Given a socket address, returns the host name and socket port number.

Client Routines
The RPC runtime routines that are called by clients include routines that either create
handles or manage their binding state. In addition, there is one routine that sends and
receives packets.

The client and its stub use handles to represent the object and server to the RPC runtime
routines. Manual binding occurs when the client makes RPC handle management calls
directly. Automatic binding occurs when the client stub calls a routine (written by the
application developer) that makes all of the client's calls to the RPC runtime routines.

An internal call generated by the NIDL compiler, the rpc_$sar call (RPC Send and Await
Reply), sends data and a request for a specific operation, and then awaits a reply from the
server. This call is made only by the client stub. When the stub receives a response, the stub
then passes the results to the calling application. Since the NIDL compiler automatically
generates all rpc_$sar calls, clients never call this routine directly.

Server Routines
The RPC runtime routines that are called by servers initialize the server, except for one
routine that identifies the object to which a client has requested access.

5-14 Communications Programming Concepts

Most of the server routines in the RPC runtime library initialize the server so that it can
respond to client requests for one or more interfaces. In the server code, routines should be
included to do the following:

• Create one or more sockets to which clients can send messages.
• Register each interface that the server exports.
• Begin listening for client requests.

The RPC runtime library provides two routines that create sockets. One creates a socket
with a well-known port while the other creates a socket with an opaque port number.

A single server can support several interfaces. It can also listen on several sockets at a time.
Most servers use one socket for each address family. A server is not required to use
different sockets for different interfaces.

The server must register each interface that it exports with the RPC runtime library so that
the runtime library can direct client calls to the procedures that implement the requested
operations. The library also includes a routine to unregister an interface that the server no
longer exports.

Once the server creates sockets, registers its interfaces, and begins listening, it is not
required to make additional calls to the initialization routines. However, a server can register
and unregister interfaces while it is running.

The rpc_$inq_object routine enables the server's manager procedures to determine the
specific object that the manager procedures must access. This routine returns the object
UUID identified by an RPC handle. The rpc_$inq_object routine is required because a
server can export an interface to multiple objects and because the handle passed as a
parameter in remote procedure calls is an opaque object.

Conversion Routines
The RPC runtime library also provides two routines that convert between names and socket
addresses. These routines enable programs to use names rather than addresses to identify
server hosts. A client can accept a host name as input and then use the
rpc_$name_to_sockaddr routine to convert the information for use in a call to an RPC
binding routine. A server can use the rpc_$sockaddr_to_name routine to log the identity of
a client.

Network Computing System (NCS) 5-15

Interface Definitions and the NIDL Compiler (NCS)
The Network Interface Definition Language (NIDL) is used to define remote interfaces. NIDL
definitions are used as specifications for application writers and as input to the NCS NIDL
compiler.

An interface definition written in NIDL completely defines the interface and fully specifies
each remote procedure call's parameters. This definition provides the information you need
to develop clients that use the interface's operations.

NIDL contains constructs for describing the data types, functions, and procedures
associated with a remote interface. It is a strictly declarative language and contains no
executable constructs. NIDL can be written in syntax for C or Pascal language
programmers.

The NIDL compiler translates an NIDL interface definition into C source-code stubs, which
are then compiled and linked with clients and servers. These stubs facilitate remote
procedure calls by copying arguments to and from RPC packets, converting data
representations as necessary, and calling the RPC runtime library. It is much easier to write
an NIDL interface definition than it is to write the code that the NIDL compiler generates for
you. The compiler also generates C and Pascal header files. The following figure illustrates
the NIDL compiler input and output files:

NIDL
Interface
Definition

name.id/

Figure 9. NIDL Compiler Input and Output Files

Insert Files

name.h

name.ins.pas

Client Stub
Files
name_cstub.c

name_cswtch.c

Server Stub
Files
name_sstub.c

The NIDL compiler generates C source-code stub and switch files that are fully compatible
with Pascal programs. If you write your client or server in Pascal, the stub and switch files
can be compiled with the C compiler and linked to the Pascal object code. The stub and
switch files can also be linked with FORTRAN programs.

Note: To compile NCS applications that use AIX Version 3.1, the applications must be
linked with the libbsd.a library because of the usage of Berkeley Software
Distribution (BSD) signals.

5-16 Communications Programming Concepts

The Banking Example
The examples used here are based on a simple banking program. This banking program
allows tellers to access and modify account databases at several banks. It mimics the real
world, where you can use a single automatic teller to access accounts at any of several
different banks. The Banking Example figure illustrates this banking example, showing one
possible implementation using the banking client and server programs. In this figure, clients
(teller programs) run on hosts A and B. The clients can access accounts belonging to either
of two different banks. One bank's account database is maintained by a server running on
host C. A second bank's accounts are maintained on host D.

This example uses remote procedure calls to access one type of object, the bank database,
which maintains the information for all of the bank's accounts. Each bank database object
contains a number of entries, each with the following information:

• Account owner's name
• Account balance
• Account number
• A Boolean deleted marker
• Time of last transaction
• Tim~ of account creation.

Host A Host B

Client Client Client Client Client

l 1
J L

Hoste Host D

Server Server

Interface Interface

~ ~ re='
~ ~

Object: Object:
First National Credit Union
Database Database
Type: Type:
bank bank

Figure 1 O. The Banking Example

There is one copy of the database object for each bank. Multiple bank database objects are
allowed.

Network Computing System (NCS) 5-17

An interface called bank contains all operations that are supported for bank database
objects. The following describes these operations:

bank$create_acct

bank$inq_acct

bank$get_acct

bank$kill_acct

bank$deposit

bank$withdraw

Given a customer name, creates a new account and returns the
account number.

Given an account number, returns the current balance, time of
last transaction, and time the account was created.

Returns the account number that corresponds to a specific
customer name.

Cancels the account with the specified account number.

Updates the balance of the specified account to reflect a deposit.

Updates the balance of the specified account to reflect a
withdrawal.

The /usr/lpp/ncs/examples/bank/bank.idl file contains the NIDL definitions for these
operations.

The binop Example
The following example programs show the interface definition for the binop application that is
provided in the /usr/lpp/ncs/examples directory. The /binop_c/binop.idl file, written in C
syntax, follows:

%c
[uuid(334a2e240000.0d.00.00.31.66.00.00.00), port(dds:[l9],
ip:[6677]),

interface binop
{
import '/usr/include/idl/base.idl';
import '/usr/include/idl/rpc.idl';

void [idempotent] binop$add(
handle_t [in] h,
int [in] a,
int [in] b,
int [out] *c
) ;

}

5-18 Communications Programming Concepts

version(O)]

The binop/binop.idl file, written in Pascal syntax, follows:

%pascal
[uuid(334a2e240000.0d.00.00.31.66.00.00.00), port(dds:[l9],
ip:[6677]),

interface binop;

import
'/usr/include/idl/base.idl',
'/usr/include/idl/rpc.idl';

[idempotent] procedure binop$add(
in h: handle_t;
in a: integer32;
in b: integer32;
out c: integer32
) ;

end;

version(O)]

The first line of each interface definition states the syntax of the particular NIDL being
used.The next three lines of the interface definition identify the interface. These lines specify
the interface's unique identifier, well-known ports, version, and name. The interface UUID is
the name used by the RPC runtime library and by the Location Broker. The textual name
binop is used for documentation and for generating names in the stub and insert files.

The definition then imports two existing interfaces. The NIDL import statement is similar to
the C #include or the Pascal %include statement, with some differences. (The differences
are discussed in Using C Syntax with NIDL on page 5-50 and Using Pascal Syntax with
NIDL on page 5-62.)

The remaining lines define a remote procedure. The first argument contains RPC binding
information, which the RPC runtime library uses to send the call to the correct server. The
next two arguments are inputs. The final argument is an output.

To keep this example simple, well-known ports and predefined data types are used in the
interface definition.

Running this definition through the NIDL compiler produces the following output files:

• The header file (binop.h)

• The client stub and switch files (binop_cstub.c and binop_cswtch.c)

• The server stub file (binop_sstub.c).

Note: If the application is written in the Pascal language, you must use the -pascal flag
with the NIDL compiler. This produces another header file, binop.ins.pas, which
contains Pascal constant, type, and procedure declarations.

The binop.h file contains C #define control lines, typedef declarations, and function
declarations. In addition, the binop.h file and, if you have produced it, the Pascal header file
contain the interface specification, a data structure that is passed to the RPC runtime library
when the interface is bound or registered.

The binop_cstub.c and binop_cswtch.c files together implement the client stub. The files
contain the binop$add procedure. This procedure copies its two input arguments (a and b}
into an RPC packet and calls the rpc_$sar (send and await reply) routine. When rpc_$sar
returns, the output argument is copied from the packet into the output argument (c) of the
procedure, and then the procedure returns to its caller.

Network Computing System (NCS) 5-19

The binop_sstub.c contains the server stub for the binop interface. The procedure takes a
packet as its input argument. It copies the a and b values from the packet into two local
variables. It then calls the binop_$add manager procedure with the values. The result of
calling this procedure c is copied into the packet, and control is returned to the RPC runtime
library. The RPC runtime library sends the packet back to the waiting client, which processes
it as described above.

Stub Functionality
Stubs are used to convert and copy data, or to bind with a remote interface. The simplest
stubs provide only argument passing and data conversion. More complex stubs aid in the
RPC binding process.

Marshalling and Conversion
All stubs marshal! values into RPC packets and unmarshall values from RPC packets. Client
stubs marshal! input parameters, call the rpc_$sar routine to send the packet to the server
and await a reply, and unmarshall the output parameters. Server stubs unmarshall input
parameters from a received packet, call the interface manager to process the data, and then
marshal! the output parameters to be returned to the client.

The compiler automatically generates stubs that can marshal! and unmarshall the following
data types:

• Signed and unsigned integers
• Single-precision and double-precision floating-point numbers
• Characters
• Strings
• Fixed-length and variable-length arrays
• Enumerations
• Sets
• Records
• Discriminated unions
• Simple pointers.

The compiler does not generate code to marshal! and unmarshall either pointers to pointers
or records that contain pointers. However, with NIDL, you can write separate procedures that
handle such types, which means data structures of almost arbitrary complexity can be
passed between machines.

In addition to marshalling the data, each stub procedure checks an incoming packet's data
representation format. Each side sends data using its native format, and the transmitted
packet indicates the sender's data representation for integers, characters, and floating-point
numbers. If the sender's representation of a data type is different from the receiver's
representation, the receiving stub converts that data type when it unmarshalls values. If the
sender and receiver have the same representation for a scalar type, conversion is not
performed.

Note: This technique, called receiver makes it right, the sender never puts data into a
canonical form. There is no need to convert data to a standard form if both machines
have identical representations. This strategy allows heterogeneity at minimum cost.

5-20 Communications Programming Concepts

Handles and Binding
The RPC runtime library (specifically, the rpc_$sar operation that the NIDL compiler
includes in the stub) must know the object and binding represented by an RPC handle
before it can send a remote procedure call. NIDL supports the following techniques for
managing this information:

• Explicit or implicit interface handles, which determine whether the client uses operation
parameters or a global variable to represent the handle information

• Manual or automatic binding, which determines whether the client or the stub generates
the actual RPC handle that the client runtime routine uses to send a request.

The effect of the interface-defined handle format and binding technique on the handle
variable data type and format can be summarized as follows:

Explicit and Implicit Handle Bindings

Type of Handle Manual Binding Automatic Binding

Explicit Data type: handle_t Data type: user defined

Explicit Format: operation parameter Format: operation parameter

Implicit Data type: handle_t Data type: user defined

Implicit Format: client global variable Format: client global variable

The following sections describe handles and binding in detail.

Explicit and Implicit Handles
In an RPC application that uses explicit handles, each operation in the interface must have a
handle parameter. The client explicitly passes the handle parameter whenever it makes a
remote procedure call. Similarly, this parameter is passed to the server's manager routines
when the server receives a remote procedure call.

In an application that uses implicit handles, the handle identifier is a single global client
variable. The operations do not have to include a handle parameter, and the server does not
receive the handle information. This means an implicit handle makes remote procedure calls
look more like ordinary procedure calls, since there is no need to pass special information in
each call. An implicit handle trades the flexibility of an explicitly passed parameter for the
simplicity of a single global variable.

Implicit handles imply idempotent procedures. That is, if both client and server are on two
distinct networks and the client broadcasts on both networks, the server receives both
broadcasts and executes the procedure one time for each request. The two requests are
different because the socket address (sockaddr) of the sending client is different.

Network Computing System (NCS) 5-21

The following figure illustrates explicit and implicit handles:

Explicit Handle

Client Side

l handle J ~ handle J ~l handle}-~

Client Client Stub RPC Runtime
Library

Server Side

l handle J~ I handle f { handle Jt-1_.
l

Server Server Stub RPC Runtime
Library

Implicit Handle

Client Side

~ handle]
.4~

~[...... --.,.-

Client Client Stub RPC Runtime
Library

Server Side

Server Server Stub RPC Runtime
Library

Figure 11. Explicit and Implicit Handles

An implicit handle can be useful if the client accesses only one server while it is running and
if the server manages only one object. An array processor application can meet these
criteria. The client starts by locating a particular array processor and uses the server at that
host until it completes its calculations. The array processor server manages only the array
processor object.

5-22 Communications Programming Concepts

Interfaces using an implicit handle have two major limitations that interfaces using explicit
handles do not have. First, the handle is not passed to the server routines, and the server
therefore does not receive the object identifier that is represented by the handle. As a result,
you cannot use implicit handles in any interface whose server manipulates multiple objects
unless you explicitly pass an object identifier (such as a UUID or a path name) as an
operation parameter.

A second limitation of using implicit handles is that, because binding information is contained
in one variable, the client cannot access more than one remote server at any time. For
example, you cannot use an implicit handle for an application that divides computation
among multiple processors because the single handle restricts you to using only one remote
processing server at a time.

Manual and Automatic Binding
In an RPC application that uses manual binding, the client makes all calls that create and
manage the handle. As a result, the interface's handle variable must be an RPC handle, and
the client makes all the RPC runtime library calls that allocate, bind, and manage this
handle.

In an application that uses automatic binding, the client does not manage the binding.
Instead, the client stub calls an autobinding routine each time the client makes a remote
procedure call and calls an auto-unbinding routine after the remote call returns. The type of
the handle variable can be application dependent. However, the variable must provide
information sufficient for the binding routine to generate an RPC handle. The binding and
unbinding routines must be written by the application developer.

Automatic binding is useful when a procedure talks to different servers each time it is
invoked. A good example is an interface to a remote file system. On any open call, you can
be operating on a file located at a different host. It is unreasonable to expect a client of the
file system to call an RPC binding routine before each file access. Therefore, the file
interface should use automatic binding. This means that the client passes the file path name
as its handle variable in each procedure call. The stub then passes the path name to the
autobinding routine, which generates an RPC handle. The stub can then use the RPC
handle to send the request to the client.

Automatic binding trades performance for convenience. Each time it processes a remote
procedure call, the stub must convert between a handle that is meaningful to the client and
an RPC handle that specifies an object UUID and socket address. Interfaces that use
automatic binding require more processing than those in which the client does the binding
once and passes an RPC handle (explicitly or implicitly) to the stub.

Network Computing System {NCS) 5-23

The following table shows the differences between manual and automatic binding in making
a remote procedure call.

Manual and Automatic Binding in a Remote Procedure Call

Manual Binding Automatic Binding

Client: . Client:
Generates an RPC handle. Using handle, makes procedure call to
Binds handle, if necessary. stub.
Makes procedure call to stub.

Stub: Stub:
Sends request to server. Calls autobinding routine.
Receives response from server.
Returns to client.

Client: Autobinding routine:
Receives call return from stub. Generates and binds RPC handle, as
Manages handle, if necessary. necessary, based on passed handle.

Returns RPC handle to stub.

Stub:
Sends request to server.
Receives response from server.
Calls auto-unbinding routine.

Auto-unbinding routine:
Clears or frees handle, as necessary.
Returns to stub.

Stub:
Returns to client.

Client Switches
Although the RPC paradigm calls for a single client stub, the NIDL compiler actually
generates two client files: a stub (name_cstub.c) and a switch (name_cswtch.c).

Writing Programs That Use the Network Computing System
The following sections contain information on writing applications that use the Network
Computing System. It is important to understand how NCS uses UUIDs, how it defines the
interface definitions, and how to manage handles and bindings.

Managing UUIDs
Each object, type, and interface must have a UUID. You must generate a new UUID each
time you create an object, type, or interface. The following tools are provided for managing
UUIDs:

• The /etc/ncs/uuid_gen command, which generates character-string representations of
UUIDs

• Three uuid_$ library routines for generating UUIDs and for converting between UUIDs
and their character-string representations.

The uuid_gen Command

The uuid_gen command returns a character-string representation of a UUID. You should
use this program to generate the UUID specifier that you include in each interface
description heading. You can also use the uuid_gen command to generate object-type

5-24 Communications Programming Concepts

UUIDs that you administer manually. The following example shows the uuid_gen command
run from a shell:

/etc/ncs/uuid_gen

This produces the following output:

33547£280000.0d.00.00.37.27.00.00.00

For a detailed explanation, refer to the uuid_gen command.

UUID Library Routine Summary

The uuid_$ library routines are summarized as follows:

uuid_$gen Generates a new UUID.

uuid_$decode Converts a character-string representation of a UUID (as generated by the
uuid_gen command) into a uuid_$t value (that can be used by a program).

uuid_$encode Converts a UUID into its character-string representation.

Refer to uuid_$ Library Routines on page 5-94 and the individual library routines for more
detailed information.

Defining the Interface
An interface is defined by writing an interface definition in NIDL. This interface definition
specifies the signatures of the remote procedure calls (operations) that the clients call and
the servers implement. It also provides other information that the NIDL compiler uses to
generate the client and server stubs. The /usr/lpp/ncs/examples/bank file contains the
NIDL definition for the bank example interface using Pascal syntax.

An interface definition consists of the following:

• Heading
• Import declarations
• Constant declarations
• Type declarations
• Operation declarations.

The Heading

The heading of an interface definition specifies whether the definition is written in C or
Pascal language syntax, and defines the interface name and attributes. The following
attributes can be specified:

uuid

version

The Universal Unique Identifier assigned to this interface. No other object,
type, or interface can be assigned this UUID.

The version number of the interface. The RPC runtime code checks that the
server and client both use the same version.

implicit_handle
The global variable containing handle information. If this attribute is not
specified, the handle must be passed as an explicit parameter to each
operation.

Network Computing System (NCS) 5-25

port The well-known port or ports on which the server exporting this interface
listens.

local A flag specifying that this interface definition is used only to generate header
files (.h or .ins files) and contains information only about constants and data
types, not procedures. The compiler does not create any stub files.

The heading must specify the interface name and either the uuid or the local attribute. All
other attributes are optional. Their use depends on the interface you are creating. The
following is an example of the NIDL heading in Pascal syntax:

%pascal
[uuid(334033030000.0d.00.00.87.84.00.00.00), version(O)
interface bank;

The banking example on page 5-17 uses explicit handles and manual binding. Therefore,
each procedure must have a handle_t handle variable as its first parameter, as shown in the
following NIDL declaration in Pascal syntax of the bank$kill_acct call:

procedure bank$kill_acct(
in h: handle_t;
in acct: bank_$acct_t;
out st: status_$t
) ;

If the banking example used implicit handles and manual binding, the NIDL heading would
be as follows:

%pascal
[uuid(334033030000.0d.00.00.87.84.00.00.00), version(O),

implicit_handle(bank_handle: handle_t)]
interface bank;

The NIDL declaration of the bank$kill_acct operation is as follows:

procedure bank$kill~acct(
in acct: bank$acct_t;
out st: status_$t
) ;

Import, Type, and Constant Declarations

NIDL provides declarations for included files, data types, and constants similar to those in
the C and Pascal languages.

The NIDL import declaration is similar to the C #include and Pascal %include directives. It
specifies another NIDL file whose definitions are to be used by the importing interface. For
example, if an interface includes operations that use rpc_$ routines or types, the definition
for that interface must import the rpc.idl file.

NIDL provides three type attributes that you can specify for certain data types. Two of these
attributes, last_is and max_is, are used with array data types. These attributes control the
amount of data transmitted between the client and server and the amount of storage
allocated at the server.

5-26 Communications Programming Concepts

The transmit_as attribute allows you to make remote procedure calls that use complex data
types such as trees and linked lists. The NIDL compiler cannot generate code to marshall
and unmarshall data types that include pointers (that is, pointers to pointers and records that
contain pointers). However, NIDL allows you to write routines that convert these types into
transmissible types. The transmit_as attribute specifies the form in which the complex data
type will be transmitted. It indicates to the NIDL compiler that user-written routines should be
called to do type conversion and storage management.

Operation Declarations

Operation declarations specify the format of each remote procedure call, including the
procedure name, the type of data returned (if any), and the types of all parameters passed in
the call. Operation declarations also specify parameter and operation attributes that the
NIDL compiler uses in generating stubs. The following example illustrates, first in C syntax
and then in Pascal syntax, the operation declaration for the bank$get_acct procedure:

%c

[idempotent] void bank$get_acct(
handle t [in] h,
bank$acct_name_t [in] name,
long [in] namelen,
bank$acct_t [out] *acct,
status_$t [out] *st
) ;

%pascal

[idempotent]
in h:

procedure bank$get_acct(

in name:
in namelen:
out acct:
out st:
) ;

Operation Attributes

handle_t;
bank$acct_name_t;
integer32;
bank$acct_t;
status_$t

Operation attributes are the first part of an operation declaration and are used to describe
characteristics of individual operations that affect communication between server and client.
You can specify any of the following operation attributes and attribute combinations:

• idempotent
• broadcast
• maybe
• broadcast, maybe

An operation is idempotent if its results do not affect the results of any operation, including
itself. For example, a call that returns the time is idempotent because, while the operation
returns different results each time it is called, the call itself has no effect on any operations. If
you specify the idempotent operation attribute in an operation declaration, the RPC runtime
library takes advantage of the operation's idempotent characteristic to reduce internal
overhead and thereby speed up the calling activity. The bank$get_acct operation is
idempotent.

Network Computing System (NCS) 5-27

The broadcast attribute is useful for applications in which many servers should be notified
of an event. The maybe attribute is useful when there is no need for confirmation that a
message was received. For example, the Location Broker Client Agent uses both the
broadcast and maybe attributes for routines that update the GLB database.

A distributed game can use these attributes for routines that inform all players of each move,
as in the following example:

%c

[broadcast, maybe] void dgame$my_move(
char [in] my_name[64],
move_record_t [in] my_move
) ;

%pascal

[broadcast, maybe] procedure dgame$my_move(
in my_name: array [l •. 64] of char;
in my_move: move_record_t
) ;

Note: This operation declaration does not specify a handle parameter; the interface uses
an implicit handle.

Handles and Binding

An implicit handle is specified in the heading as an interface attribute. If an interface uses
explicit handles, however, the handle must be supplied as the first parameter in each
operation declaration. The type of a handle, whether implicit or explicit, determines how the
application manages the binding.

If the operation declaration (or, for implicit handles, the interface heading) specifies the type
as handle_t, then the interface is manually bound. This means that the client must manage
the binding, and pass to the stub a handle of type handle_t that is meaningful to the
underlying RPC runtime routines.

If the operation declaration (or the interface heading) specifies any other type for the handle
parameter, then the interface is automatically bound. In this case, whenever the stub
receives a call for the operation, it calls a binding routine named type_bind, where type is
the data type specified for the handle parameter. The stub then uses the handle_t variable
returned by type_bind to send the remote procedure call. When the RPC runtime library
returns a response, the stub automatically calls a type_unbind procedure, and then returns
the response to the client. The application developer must write the type_bind and
type_unbind routines that convert between the handles that are meaningful to the client and
the RPC handles required by the runtime library.

Directional Parameter Attributes and Parameter Classes
The directional characteristics of an operation parameter are specified by the parameter
attribute in the C syntax of NIDL and by the parameter class in Pascal syntax. Attributes and
classes are different syntactic elements, but are expressed with the same key words. The
parameter attributes and classes inform the NIDL compiler and the RPC runtime library
whether a parameter passes from client to server (in), from server to client (out), or both.

5-28 Communications Programming Concepts

You must specify exactly one of the following combinations for each parameter:

in Specifies that the client passes the parameter to the server.

in ref (Pascal syntax)

out

Specifies that the client passes the parameter to the server and that the
parameter is passed by reference. Note that in ref is defined only as a
parameter class in the Pascal syntax of NIDL. Passing by reference is
specified in the C syntax of NIDL by the & operator. All Pascal parameters
that are longer than four bytes, except for arrays, must have the in ref
class.

Specifies that the server passes the parameter to the client.

in, out (C syntax)

in out (Pascal syntax)
Specifies that the parameter is passed in both directions.

Attributes for Array Parameters

The following are optional attributes for array parameters:

last_is (last) Specifies that last is the index of the last array element to be passed
between the client and the server. This attribute is required for open (that is,
variable-length) arrays.

max_is (max) Specifies that max is the maximum possible index of an open array.

The following example illustrates, first in C syntax and then in Pascal syntax, the use of
parameter attributes in an operation definition. In this example, the data_record_t is a
record type declared elsewhere in the NIDL file.

%c

void update_record(
handle_t [in] h,
long [in] code,
[last_is (name_end)] char [in] namelen[64],
long [in] name_end,
data_record_t [in] *data_rec,
status_$t [out] *st
) ;

%pascal

procedure update_record(
in h:
in code:
in name: [last_is (name_end)]
in name end
in ref data rec:
out st:
) ;

handle_t;
integer32;
array [l •• 64] of char;
integer32;
data_record_t;
status_$t

Network Computing System (NCS) 5-29

Running the NIDL Compiler
Once you have written the interface definition, use the following command to run the NIDL
compiler:

nidl File [options ••• -cpp]

The File parameter specifies the path name of the interface definition file. When run without
options, the compiler generates the C header file, the client stub and switch files, and the
server stub file. For a detailed explanation of the options choices, see the nidl command.

Header Files and NIDL-Defined Variables
The NIDL compiler creates header files containing the following:

• File inclusion directives
• Constant declarations
• Type declarations
• Operation declarations
• Variable declarations and assignments.

In addition to code that is derived directly from analogous NIDL code (for example, a C
#include directive derived from an NIDL import declaration), the header file contains code
that defines the following types and variables:

interface$if _spec
The interface specifier, required as an input parameter to some RPC
routines. This variable identifies the interface and specifies such information
as the interface version number, the well-known server port number (if any),
the number of operations, and the interface UUID.

interface$epv_tThe interface entry point vector (EPV) type, consisting of pointers to
routines that correspond to the operations in the interface. This is the data
type of the interface$client_epv, interface$server_epv, and
interface$manager _ epv variables.

interface$cl ient_ epv
The EPV that is used to access client stub routines. The client switch uses
this EPV. Replicated servers also use this EPV. The client stub assigns the
values in this EPV.

interface$server _ epv
The EPV that is used to access server stub routines. The RPC runtime
library uses this EPV. The server must specify this EPV in the call to the
rpc_$register routine that registers the interface with the RPC runtime
library. The server stub assigns the values in this EPV.

interface$manager _ epv
An EPV that can be used to access the manager routines that implement
the interface operations. This EPV is currently unused.

5-30 Communications Programming Concepts

Marshalling and Unmarshalling of Complex Types
The NIDL compiler cannot generate stub code to marshal! and unmarshall data types that
include pointers, such as trees and linked lists. To use complex types in remote procedure
calls, routines must be constructed that convert the complex type into transmissible type.
The transmissible type represents the complex type in RPC communications. Each complex
type in the NIDL definition can be identified with the transmit_as attribute. When the
application is built, linking the conversion routines written by the· programmer with the client
and the server stubs that are generated by the NIDL compiler causes the stubs to call the
routines as required.

Converting Complex Types
For each complex type you use, you must write the following four conversion routines:

• type_to_xmit_rep (complex, pointer-to-transmissible)
• type_from_xmit_rep (transmissible, pointer-to-complex)
• type_tree (pointer-to-complex)
• type_free_xmit_rep (pointer-to-transmissible).

In all of these signatures, type is the name of the complex type, complex is a variable of this
type, and transmissible is a variable of the transmissible type.

The type_to_xmit_rep routine takes as an input parameter a variable of the complex type. It
takes as an output parameter a pointer to a variable of the transmissible type. This routine
allocates storage for the transmissible type and converts from the complex type to the
transmissible one.

The type_from_xmit_rep routine takes as an input parameter a variable of the transmissible
type. It takes as an output parameter a pointer to a variable of the complex type. This routine
allocates storage for the complex type and converts from the transmissible type to the
complex one.

The type_free routine frees storage used by the server for the complex type.

The type_free_xmit_rep routine frees storage used by the client for the transmissible type.

The following example uses a calendar program that schedules appointments involving
several users. The names of the users are stored in a linked list of the cal$user_list_t type.
A list of this type is transmitted as a structure of the cal$user_array_t type. The following
shows the NIDL definition in C syntax for the interface:

%c
[
uuid(34fe9783f000.0d.00.00.12.b9.00.00.00),
version(l)
1
interface calendar {

const int MAX NAME LEN 128 - -

typedef
char cal$user_name_t[MAX_NAME_LEN]

Network Computing System (NCS) 5-31

}

typedef
struct {

int n users ;
[last_is(n_users)]

cal$user_name_t participants(*]
} cal$user_array_t ;

typedef [transmit_as(cal$user_array_t)]
struct {

char
cal$user_list t

} cal$user_list_t ;

name[MAX_NAME_LEN];
*next ;

cal$make_appt(handle_t [in] h,
cal$user_name t [in] withWhom,
cal$user_list_t (in] participants)

The routines that convert between lists of the cal$user _list_t and cal$array _t types are as
follows:

#include "calendar.h"
#include <stdio.h>

/*
* Client side call to convert a user list into its transmissible f
* form.
*/

void cal$user_list_t_to_xmit_rep(pl, pa)
cal$user_list_t *pl ;
cal$user_array_t **pa ;

{
cal$user_array_t *ap ;
int pc ;
cal$user_list_t *up ;

I*
* Count up the number of participants
*/

pc = 1;
for (up=pl;pl; pl=pl->next)

++pc ;

/*
* Allocate the participant array and copy the participants

* into it.
*/

5-32 Communications Programming Concepts

ap = (cal$user_array_t *)

malloc(sizeof(cal$user_array_t)+(pc-l)*sizeof(cal$user_name_t));
ap->n_users = pc ;

}

pc = 0 ;
for (up=pl; up; up=up->next) {

strcpy(ap->participants[pc], up->name)
++pc;

}

*pa ap

/*
* Client side call to free the transmissible representation.
*/

void cal$user_list_t_free_xmit_rep(pa)
cal$user_array_t *pa ;

{

}
free(pa) ;

/*
* Server side call to convert a user array from its transmissible
* form.
*/

void cal$user_list_t_from_xmit_rep(pa, pl)
cal$user_array_t *pa;

{

}

cal$user_list_t **pl ;

cal$user_list_t *participants
cal$user_list_t *pp
int i ;

participants = (cal$user_list_t *)
malloc(sizeof(cal$user_list_t));
participants->next = NULL ;
strcpy(participants->name, pa->participants[O])

pp = participants ;
for (i=l; i<pa->n_users;i++) {

pp-> next = (cal$user_list_t *)
malloc(sizeof(cal$user_list_t))

pp = pp->next ;
pp -> next = NULL ;
strcpy(pp->name, pa->participants[i])

}

*pl = participants

Network Computing System (NCS) 5-33

/*
* Server side call to free the complex representation.
*/

void cal$user_list_t_free(pl)
cal$user_list_t *pl ;

{
free(pl)

}

Notes:

1. The transmit_as attribute enables you to use any complex data type in a remote
procedure call, provided you assume responsibility for converting between the
complex type and a transmissible one.

2. You cannot use a complex data type as an element of an array or as a field in a
record. This means complex types must appear at top level. You also cannot
name one complex type as the transmissible representation for another complex
type.

3. To compile, use:

cc -c cal.c -I/usr/include/ude/idl/c -B/etc/ncs/ -tp

Managing Handles and Bindings
An NCS client application must identify the remote object that it is trying to access. The
object is identified to the RPC runtime library in the form of an RPC handle. The application
can use either of the following techniques to create and manage the RPC handle:

• Manual binding, where the client creates and manages RPC handles directly.

• Automatic binding, where the client does not manage the RPC handles and instead uses
some other type of variable (a generic handle) to represent the required object. Whenever
the client makes a remote procedure call, the stub calls a user-written autobinding routine
that converts the generic handle into an RPC handle.

5-34 Communications Programming Concepts

RPC Binding Management Routine Overview
The RPC runtime library includes calls that create and manage the binding state of an RPC
handle (that is, its representation of a server and a host). The following figure illustrates
several of these calls and their effect on an RPC handle:

or
Call return
from server

rpc_Sclear_
binding

Fully Bound Handle

Identifies:
Object
and Server

rpc_$blnd
(using a
specific
port)

rpc_Sset_binding
or
Call return from server

rpc_$clear_
server _binding

rpc_Sset_ ---------. Bound-Unbound
Handle
(used for
broadcast)

Identifies:
Object

binding Identifies: to-Host ______ ...,_______ Object Handle
rpc_$clear_ (using and Host (used for ------ binding unspecified forwarding)

rpc_$alloc_
handle

rpc_$free_
handle

Figure 12. Managing RPC Handles

Obtaining a Socket Address

port)

rpc_$free_
handle

No Handle

rpc_$bind
(using unspecified
port)

rpc_$free_
handle

The socket address information represented in a handle determines the destination of any
remote procedure call made using that handle. You can use an unbound handle to locate
objects by a network broadcast, but if you want to specify a host, you must generate a
socket address. NCS provides two tools for generating socket addresses: the Location
Broker and the rpc_$name_to_sockaddr routine. The rpc_$inq_binding routine returns
the socket address represented by an RPC handle.

Network Computing System (NCS) 5-35

Using Location Broker Lookup Routines

The Location Broker looks up and returns the socket addresses of servers. The Location
Broker provides the following routines to handle lookup requests in its databases by object,
type, interface, or any combination of these identifiers:

lb_$1ookup_object
Finds in the GLB database one or more entries that match the specified
object identifier.

lb_$1ookup_type
Finds in the GLB database one or more entries that match the specified
type identifier.

lb_$1ookup_interface
Finds in the GLB database one or more entries that match the specified
interface identifier.

lb_$1ookup_ object_local
Finds in the specified LLB database one or more entries that match the
specified object identifier.

lb_$1ookup_range
Finds in the specified database (LLB or GLB) one or more entries that
match the specified combination of object, type, and interface UUIDs.

See lb_$ Library Routines on page 5-89 and the individual library routines for more detailed
information about the Location Broker library routines.

A lookup call for an object, type, or interface specifies the following:

object Specifies the UUID of the object being looked up.

object_ type Specifies the UUID of the object type being looked up.

object_interfaceSpecifies the UUID of the interface being looked up.

lookup_handle Specifies where to start in the database.

max_results Specifies the number of matching entries to return.

num_results Specifies the number of entries returned in the array.

results Specifies an array of matching entries from the call.

status Specifies the completion status.

For example, the bank server program, bankd.c, uses the following call to see if another
bank server is already running:

lb_$lookup_object(&bank_id, NULL, MAX_LOCS, &n_locs, bank_loc, &st);

The NULL value for the lookup_handle parameter indicates that the lookup should begin at
the start of the GLB database. The MA)(_LOCS parameter specifies the maximum number
of entries that the routine can return (there can be more). The n_locs parameter specifies
the number of entries that are actually returned. The bank_loc parameter specifies an array
of returned entries.

The max_results parameter, which cannot exceed the length of the results array, determines
the maximum number of entries that a lookup routine can return. If a routine returns
max_results entries before the entire database has been searched, the returned value of

5-36 Communications Programming Concepts

lookup_handle is a key to the next unsearched part of the database. Otherwise, if the entire
database has been searched, the returned value of lookup_handle is the
lb_$default_lookup_handle constant. This means a client can get all matching entries by
repeating a lookup call, using the returned lookup_handle key, until the
lb_$default_lookup_handle constant is returned, which indicates that the end of the
database has been reached. For example, if an array processor client looks for array
processors by doing type lookup, it can use the following Pascal code:

REPEAT
lb_$lookup_type(array_tid, lookup_hndl, max_rslts, n_rslts,

rslts, st);
UNTIL (lookup_hndl = lb_$default_lookup_handle);

Under normal conditions, repeated lookup calls obtain all matching entries in a database.
However, some conditions, such as the databases being modified between lookup calls or
the reception of two lookup calls by two different GLB databases, can cause entries to be
skipped or duplicated. The client should be prepared to deal with missing or duplicated
entries in the results array.

Converting between Host Names and Socket Addresses
The RPC runtime library also provides tools that convert between host names and socket
addresses. For example, if you know the name of the destination host, the address family of
the host, and the server port, you can make a call to the rpc_$name_to_sockaddr routine
to obtain a socket address without using a Location Broker routine.

You must provide a value for the port number parameter of the rpc_$name_to_sockaddr
routine. If you know that the server uses a well-known port, specify that port number. If you
do not know the port number, specify socket_$unspec_port. When you use a socket
address with a socket_$unspec_port to make a remote procedure call, the port number is
determined at runtime. The RPC runtime library extracts a port number (if one was specified
in the NIDL definition of the interface, from the interface$if_spec variable). Otherwise, the
call is sent to the forwarding port at the host.

The rpc_$sockaddr_to_name routine converts a socket address (such as the ones
returned by Location Broker lookup routines) to a host name, which you can use in
diagnostic output. For example, the bankd.c server program uses the following calls to
identify its host and port number when it starts running:

rpc_$sockaddr_to_name(&saddr, slen, name, &namelen, &port, &st);
printf("(bankd) name=\"%.*s\", port=%d\n", namelen, name, port);

Using Handles That Are Not Fully Bound
You do not have to use a fully bound handle to make a remote procedure call. The handle
can be bound to a host if the client knows only the host address but not the port the server
uses. The handle can be unbound if the client does not know the location of the object.

Using Bound-to-Host Handles

When a program uses a bound-to-host handle to make a remote procedure call, the call is
sent to the LLB forwarding port on that host. If the server for the requested interface has
registered with the Location Broker, the LLB automatically forwards the call to the server's
port. When the procedure call returns, the client's RPC runtime library then binds the handle
to the server's port, and any subsequent calls are sent directly to the server.

Network Computing System (NCS) 5-37

Bound-to-host handles can be useful for clients of interfaces (such as remote shells) that are
supported on many or all hosts. You do not need to do a Location Broker lookup operation to
access the remote server. Only the host name or address is required. There is no need for
the servers to register with the GLB, though each server must be registered in the LLB
database on its host.

You can generate a bound-to-host handle by using a socket address with an unspecified port
as an input parameter to an rpc_$bind or rpc_$set_binding routine, or by calling the
rpc_$clear_server_binding routine on a fully bound handle.

Typically, an rpc_$bind or rpc_$set_binding routine is used to bind to a host if you used
the rpc_$name_to_sockaddr routine to generate the socket address. For example, the
following lines send a matrix multiplication call to the array processor server located at the
host identified by host_ id:

rpc_$name_to_sockaddr (host_id, hlen, socket_$unspec_port,
socket_$internet, &saddr, slen, &st);

handle= rpc_$bind(&matrix_id, &saddr, slength, &st);
matrix$multiply(handle, a, b, result, $st);

The rpc_$clear_server_binding routine is particularly useful for error recovery. If a server
fails and restarts using a new port, the client can reset the binding to the new port by calling
the rpc_$clear_server_binding routine on the existing handle. The handle is then rebound
when the server responds to the next client call.

Using Unbound Handles

When a program uses an unbound handle to make a remote procedure call, the call is
broadcast on the local network. You can create an unbound handle by calling
rpc_$alloc_handle to generate a new unbound handle, or by calling rpc_$clear_binding
on an existing handle to clear the binding.

Generally, you should use an unbound handle only if you cannot use the Location Broker or
the rpc_$name_to_sockaddr routine to determine the address of the host, because
broadcast messages must be processed by all hosts that use the destination port.

If an operation has the broadcast attribute, it is always broadcast. The RPC runtime library
automatically unbinds the handle after such an operation returns, so there is no need for the
client to clear the binding before broadcasting again.

5-38 Communications Programming Concepts

Determining the Binding

If a client application uses an unbound or bound-to-host handle to make a call, it could need
to identify the server that responded (for example, for auditing). Because the handle is
automatically bound to the responding server when the routine returns, you can call the
rpc_$inq_binding routine to obtain the socket address represented by the returned handle,
then call the rpc_$sockaddr_to_name routine to determine the server's address family,
network address, and port. For example, the following code sequence generates an
unbound handle, broadcasts for an available server, and then identifies the server:

my_handle = rpc_$alloc_handle(&my_object, socket_$internet,
&status);

my_interface$find_server(my_handle, &status);
rpc_$inq_binding(my_handle, &server_sockaddr,

&server_sockaddr_len, &status);
rpc_$sockaddr_to_name(&server_sockaddr, server_sockaddr_len,

server_name, &server_name_len, &server_port, &status);

Generating and Managing RPC Handles
The RPC runtime library provides you with a flexible set of tools for creating and managing
RPC handles. You can use RPC calls that allocate and bind handles simultaneously, or you
can manage the creation and the binding state of handles separately.

The rpc_$bind routine simultaneously creates an RPC handle and binds it. A client should
call the rpc_$bind routine if it accesses an interface on only one host. For example, the
bank.c client program uses the following call to create the handle and bind it to the bank
server:

h = rpc_$bind(&client_$if_spec, &client_id, &client_loc[O].saddr,
bank_loc[O].saddr_len, &st);

The client then uses the h variable in the subsequent remote procedure call. Note that the
client never frees the handle. It simply exits after getting a response from the server and
printing the results.

The rpc_$alloc_handle routine creates an RPG handle that identifies an object, but not a
specific server. The rpc_$set_binding, rpc_$clear_binding, and
rpc_$clear_server_binding routines set and change the handle-binding state. These
routines are useful in any application where the client can access an object on different
hosts at different times. These routines allow the application to change the binding state
without the expense of freeing and then creating the handle again.

For example, if an application must sequentially update all replicas of an object that are
located on several different hosts, the client can do the following:

1. Make a call to the rpc_$alloc_handle routine to create a handle.

2. Determine the first server.

3. Make a call to the rpc_$set_binding routine to bind to the server.

4. Make the remote procedure call to update the replica.

5. Repeat steps 3 and 4, binding to servers on each host in sequence, to update all
replicas.

Network Computing System (NCS) 5-39

Implementing Autobinding

If the client does not manage the RPC handles directly, but instead uses some other type of
variable to identify the object, then you must write autobinding and auto-unbinding routines.
The stub uses the binding routine to convert the client program's object identifier (the
generic handle) into an RPC handle. Similarly, it uses the unbinding routine to free the RPC
handle.

If an interface uses autobinding, the following occurs when the client makes a remote procedure
call:

1. The client makes a remote procedure call (through the client switch) to the stub. The
client provides a generic handle either as the first parameter of the routine (an explicit
handle) or through a global variable (an implicit handle).

2. The stub calls the autobinding procedure, passing to it the generic handle.

3. The autobinding procedure returns an RPC handle to the stub.

4. The stub uses the RPC handle as a parameter to the rpc_$sar routine.

5. The rpc_$sar routine returns the server response to the stub.

6. The stub calls the auto-unbinding procedure, passing to it the RPC handle.

7. The auto-unbinding procedure returns a generic handle to the stub.

8. The stub returns to the client.

The generic handle can be a variable of any type that enables the autobinding procedure to
identify the object and to generate a valid RPC handle. For example, if the generic handle is
a UUID, the autobinding procedure can use the Location Broker to get the server socket
address and call the rpc_$bind routine to create the RPC handle. In a remote file system
interface, the generic handle can be a path name. If an interface supports only one object
per host, the generic handle can be the host ID.

Routine Signatures

The only requirement or limitation imposed on the autobinding and auto-unbinding routines
is the routine signature. The autobinding routine must be declared as follows:

• It must be named type_bind, where type is the type of the generic handle.

• It must take one input parameter, the generic handle, and have no output parameters.

• It must return the handle_t RPC handle.

The auto-unbinding routine must be declared as follows:

• It must be named type_unbind, where type is the type of the generic handle.

• It must take two input parameters, the generic handle and the handle_t RPC handle.

Routine Structure

The structure of the routines can vary considerably, depending on the type of the generic
handle and the needs of the application. For example, if the generic handle is a path name,
the autobinding procedure must somehow use the path name to determine the host socket
address and object UUID before it can return the RPC handle.

5-40 Communications Programming Concepts

Below is an example of autobinding. The routines in this program use UUIDs as generic
handles and maintain a cache of handles to save the expense of using an
lb_$1ookup_object and an rpc_$bind routine each time the client makes a remote
procedure call. This approach is particularly useful in applications where the client tends to
make several calls to access the same object.

The autobinding routine, uuid_$t_bind, searches the cache for an RPC handle that
matches the generic handle (the object UUID). If there is no matching handle in the cache, it
calls the lb_$1ookup_object routine to determine the location of the object and calls the
rpc_$bind routine to construct a new handle. It uses the rpc_$dup_handle routine to return
a copy of the handle.

Each handle in the cache has an associated reference count. When all copies have been
freed, meaning that the binding is not in use, the original handle is kept available but is
considered collectible. If its entry in the cache is needed for a new handle, it can be freed.

The auto-unbinding routine, uuid_$t_unbind, uses the rpc_$free_handle routine to free a
copy of the RPC handle that matches the generic handle, then decrements the reference
count of the handle.

Example of autobinding Routine

#include <idl/c/nbase.h>
#include <idl/c/lb.h>
#include <idl/c/uuid.h>
#include <sys/types.h>

#define MAX_ENTRIES 10

static struct db_entry {
/*Table mapping UU!Ds into RPC handles */

boolean valid;
uuid_$t obj;
handle_t handle;
unsigned short refcnt;

/* Is this entry valid? */
/* Object UUID */
/* RPC handle for the object */
/* # of references on this entry */

} uuid_db[MAX_ENTRIES];

handle_t uuid_$t_bind(object)
uuid_$t object;
{

short i, invalid_i = -1, collectible i -1;
lb_$entry_t lb_entry;
int n_results;
status_$t st;
lb_$lookup_handle_t ehandle = lb_$default_lookup_handle;

/*
* Scan the table for an entry that has a matching UUID. If
* we find one, return the handle that's stored there. While
* scanning, keep note of the last invalid (i.e. unused)
* entry and the last collectible entry (i.e. one which has
*an object/handle but isn't referenced by anyone).
* If there is no match in the table, ask the LB for the
* location.
*/

for (i = 0; i < MAX_ENTRIES; i++) {
struct db_entry *db= &uuid_db[i];

Network Computing System (NCS) 5-41

}

}
}

if (! db->valid)
invalid_i = i;

else {
if (bcmp(&db->obj, &object, sizeof object) == 0) {

db->refcnt++;
return (rpc_$dup_handle(db->handle, &st));

}
if (db->refcnt == 0)

collectible i = i;

lb_$lookup_object(&object, &ehandle, 1, &n_results,
&lb_entry, &st);

/*

if (st.all != status_$ok I I n results <= 0)
abort ();

* Decide whether we have an entry to use. Free the current
* handle if we're collecting the entry.
*/

if (invalid_i != -1)
i = invalid_i;

else if (collectible_i != -1) {

}

i = collectible_i;
rpc_$free_handle(uuid_db[i].handle, &st);

else
abort();

/*
* Fill in the entry. Make an RPC handle for the and return
* it.
*/

uuid_db[i].obj
uuid_db[i].valid
uuid_db[i].refcnt
uuid_db[i].handle

object;
true;

= 1;
rpc_$bind(&object, &lb_entry.saddr,

lb_entry.saddr_len, &st);
if (st.all != status_$ok)

abort ();

return (rpc_$dup_handle(uuid_db[i].handle,&st));

void uuid_$t_unbind(object, handle)
uuid_$t object;
handle_t handle;
{

unsigned short i;
status_$t st;

/*
* Scan the table looking for the handle.
*/

for (i = O; i < MAX_ENTRIES; i++) {
struct db_entry *db= &uuid_db[i];

5-42 Communications Programming Concepts

if (db->valid && db->handle == handle) {
rpc_$free_handle(handle, &st);
db->ref cnt-;
return;

}
}
abort (); /* Didn't find the handle in the table! */

}

Writing the Client Program
The source code you use to build a client program that makes remote procedure calls
consists of the following elements:

• Header files, particularly the header file generated by the NIDL compiler

• The client application itself, which means the main client program and any other
user-written routines that implement the application and call the remote procedures

• The client switch, generated from the interface definition by the NIDL compiler

• The client stub, generated from the interface definition by the NIDL compiler

• Any user-written routines that perform marshalling and autobinding.

If a client imports several interfaces, then the client source code must include the header file,
client switch, client stub, and any marshalling and autobinding routines for each interface.

The following source files make up the client in a banking example:

• Header file: bank.h

• Client: bankd.c and util.c

• Client switch: bank_cswtch.c

• Client stub: bank_cstub.c.

The application code is contained in two files: bank.c, which contains the main program, and
util.c, which contains utility routines that are used by both the client and the server. While a
more complex program can be structured differently, NCS clients are usually built from at
least the four elements listed above.

Handling Errors
In many ways, an RPC client handles errors in the same manner as a program that makes
local procedure calls. However, there are also several types of errors that can be generated
in the underlying RPC and communications mechanisms, and there are methods useful for
detecting and handling such errors.

An RPC client can receive the following general classes of errors:

• Communications errors
• Server-failure errors
• Interface mismatch errors.

Communication Errors

Communications errors are errors that occur in the underlying communications mechanisms,
resulting in the failure of a remote procedure call to reach the server or the failure of a
server's response to reach the client. Communications errors are usually indicated by the
rpc_$comm_failure status. To recover, a client can try the failed call again or try to find
another server.

Network Computing System {NCS) 5-43

Server Failure Errors

Server failure errors are caused by a server crash. If the server process crashes while
handling a remote procedure call, a fault is returned to the client indicating the failure. In this
case, the error is signaled in the same manner as if the server had been locally linked with
the client.

If the server fails and restarts between client RPC calls, the failure is usually indicated by an
rpc_$wrong_boot_time status. If a server for another interface starts on the server host,
using the same port number as the failed server, the client receives an rpc_$wrong_if
status from the new server.

Recovery techniques depend on the type of call that is being made when the error gets
signaled. If the server restarts and the application is connectionless (that is, the client and
the server do not maintain any temporary state information between procedure calls), the
client can call the rpc_$clear_server_binding routine to clear the handle port information. If
the server did not restart, then the client must fully unbind, locate a working server, and
rebind to the new server.

If the application does maintain some state between calls, the client must first clear the state
(for example, by unwinding to the point at which it bound to the server), and then rebind with
the restarted server or locate a new server.

Interface Mismatch Errors

Interface mismatch errors occur when the version of an interface used to generate the
server stub is not identical to the version of the interface used to generate the client stub and
switch. These errors are easily caught if you change the version number in the NIDL
heading each time you change the interface definition. When version numbers do not match,
the RPC runtime library signals a fault. If you do not change version numbers when you
change the interface definition, the resulting errors are more difficult to detect.

Note: In most cases, a program cannot recover from mismatch errors. You must rebuild the
out-of-date client or server.

Error-Handling Strategies for Remote Procedure Calls

The RPC runtime library always signals a fault if an error occurs when handling a remote
procedure call. Therefore, you should set cleanup handlers around remote procedure calls
to catch and handle any such faults.

A cleanup handler is set by calling the pfm_$cleanup library routine. If the operating system
detects a fault while the cleanup handler is set, it does the following:

1. Unwinds the process stack to the most recent call to the pfm_$cleanup routine.

2. Releases the handler.

3. Returns from the pfm_$cleanup routine with the status value for the error that caused
the fault.

Program execution then continues with the code that immediately follows the pfm_$cleanup
routine. You usually follow the call with code that handles the fault. This code starts by
testing the pfm_$cleanup return value so that the fault-handling statements are executed
on.ly when the handler is not set. Since in the normal case the handler is set, this code is
executed only when a fault occurs.

A cleanup handler that is set at the start of the program returns the program to its start when
a fault occurs. A cleanup handler can also be set before a particular call or procedure and
then be released, using the pfm_$rls_cleanup routine, following the call. Use this technique
to set a cleanup handler around remote procedure calls.

5-44 Communications Programming Concepts

The example program below shows how to use a cleanup handler around a remote
procedure call. The code fragment is based on the Global Location Broker source. This
example routine allocates an RPC handle, calls the pfm_$cleanup routine (which returns a
value of pfm_$cleanup_set), tests the return value, skips the error handling code if no fault
occurs, and then makes a remote procedure call (glb_$find_server) that locates and binds
to an available broker.

However, if a fault occurs in the glb_$find_server routine, the program unwinds back to the
pfm_$cleanup routine, which returns the error status value. The error handling code then
executes, testing whether the error was reported by the RPC runtime library or by some
other module. If the error was signaled by the RPC runtime library, the code clears the
handle and passes the status to the caller. Otherwise, it signals the fault again so that a
previously set cleanup or fault handler can take the fault.

Note: The pfm_$ routines are provided in the NCS RPC runtime library to enable you to
implement fault handling routines. For a detailed discussion of the pfm_$ routines,
refer to pfm_$ Library Routines on page 5-86 and individual library routines.

#define RPC_ERROR(s) (((s).all & OxffffOOOO) == rpc_$mod)
/* macro to check whether a fault is an rpc error */

static int check_binding(status)
status_$t *status;
{

}

pfm_$cleanup_rec crec;
status_$t fst;
int i;

if (valid_binding)
return TRUE;

glb_$handle = rpc_$alloc_handle(&glb_$uid, socket_$internet,
status);

if (status->all == status_$ok)
return FALSE;

fst = pfm_$cleanup(crec); /* set cleanup handler */
/* begin fault case */ if (£st.all != pfm_$cleanup_set) {

}

if (RPC_ERROR(fst)) {
rpc_$free_handle(glb_$handle, status);

*status = fst;
}
else {

pfm_$signal(fst);
}

/* if fault is an rpc
/* pass status up to

error */
caller */

/* if fault is not an rpc error */
/* re-signal the fault to the next */

/* level cleanup handler */

else { /* begin normal case */
glb_$find_server(glb_$handle, status);
valid_binding = TRUE;

}
pfm_$rls_cleanup(crec, fst);
return valid_binding;

/* release cleanup handler */

Network Computing System (NCS) 5-45

Writing the Server Program
The source code that you use to generate a server program consists of the following
elements:

• Header files, particularly the header file generated by the NIDL compiler

• Server initialization code, which registers the server's interfaces

• Server stubs, one per interface, generated from the interface definition by the NIDL
compiler

• User-written routines, if any, to perform marshalling

• Manager procedures, which implement the operations in the interfaces that the server
exports. Manager procedures are independent of NCS and function exactly as in a local
implementation.

The following source files make up the server in a banking example:

• Header file: bank.h

• Server initialization and manager: bankd.c and util.c

• Server stub: bank_sstub.c.

The initialization code and the manager are contained in two files: bankd.c, which contains
the main program, and util.c, which contains utility routines that are used by both the client
and the server. A more complex server can be structured differently.

The following figure shows the components of a server that exports two interfaces. The stub
for one interface calls a user-written marshalling routine.

Manager

Interface 1 Interface 2
Manager Manager
Procedures Procedures

Interface 1 Stub and
Interface 2 Stub Marshalling Routines

Initialization Code (main procedure)

Figure 13. Components of a Server Exporting Two Interfaces

Writing the Server Main Procedure
The server initialization code is contained in the server main procedure, usually the Pascal
PROGRAM or the C main procedure. This procedure does the following:

• Performs any type-specific or application-specific initialization.

• Establishes the sockets on which it will listen.

• Registers the server's interfaces with the RPC runtime library.

• Registers the server's objects and interfaces with the Location Broker.

• Establishes termination and fault-handling conditions.

• Begins listening for requests.

5-46 Communications Programming Concepts

Most servers perform these chores in the order listed. A server must establish the sockets
and register the interfaces with the RPC runtime library before it begins listening. The server
begins listening last because the rpc_$1isten routine normally does not return. A server
should register with the Location Broker after it establishes the sockets.

Application-Specific Initialization

A program performs several application-specific tasks. In an example program called
bankd.c, the program checks that the right number of input arguments are present. It
checks the bank name input argument for validity, reads the bank database into memory
from a file, and prints the bank name and the port number. The program does not print the
bank name until it has established the socket and registered the interface. To get the socket
name, the program calls the rpc_$sockaddr_to_name routine, using as input the address
that was returned when the socket was established.

The server must call the rpc_$use_family or rpc_$use_family_wk routines once for each
socket on which it listens. The rpc_$use_family routine assigns an available port for the
socket, while the rpc_$use_family_wk routine assigns the well-known port that you specify.
Do not use well-known ports unless necessary. A server can listen on more than one port
simultaneously, although most servers do not need to listen on more than one port per
address family.

The bankd.c main program uses the following routine to establish its socket:

rpc_$use_family(atoi(argv[l]), &saddr, &slen, &st);

Registering with the RPC Runtime Library
The server must call the rpc_$register routine once for each interface that it exports.
Registration enables the RPC runtime library to call the required procedure when the server
receives a packet requesting one of the operations in the interface.

The bankd.c main program uses the following routine to register its interface:

rpc_$register(&bank$if_spec, bank$server_epv, &st);

Remember that the NIDL compiler generates from an interface definition both an interface
specifier, named interface$if_spec, and a server entry point vector, named
interface$server_epv. The interface specifier is defined in the header file. The EPV is
defined in the server stub.

Registering with the Location Broker

Most servers register their objects and interfaces with the Location Broker. Clients can then
use lb_$ lookup routines to locate objects. The server must use a separate lb_$register
routine to register each possible combination of object, interface, and socket address. For
example, a server should make six registration calls if all of the following is true:

• The server listens on an Internet socket.

• The server has one manager that exports two interfaces.

• The server manages three objects of the supported type.

Some object types, such as files or databases, may be numerous or may be frequently
created and deleted. A server for such a type can register itself once for each type, interface,
and address family combination, using uuid_$nil for the object UUID. Clients can use the
Location Broker to look up only by type or by interface, but not by object UUID.

Network Computing System {NCS) 5-47

If a server runs on most or all hosts, it should register itself only with the Local Location
Broker, and not with the Global Location Broker. In this case, clients can use a bound-to-host
handle to access the interface. To register locally, specify lb_$service_local in the flags
parameter of the lb_$register routine.

Because the socket address returned by the rpc_$use_family or rpc_$use_family_wk
routine is an input argument to the lb_$register routine, interfaces must be registered with
the Location Broker after sockets are established.

The lb_$register routine automatically replaces any existing registration that matches the
specified object, type, interface, address family, and host. If there is no entry matching these
values, the Location Broker adds a new entry. If a server terminates abnormally (without
unregistering) and then restarts, the registration for the terminated server is replaced.

Note: It is the responsibility of the application developer to assign the type UUID and to use
it consistently when registering and looking up objects in the Location Broker. Neither
the RPC runtime library nor the NIDL compiler makes use of type identifiers.

The bankd.c main program uses the following routine to register its interface and object:

lb_$register(&bankID, &bank$uid, &bank$if_spec.id, O, BankName,
&saddr, slen, &BankEntry, &st);

Fault Handling and Termination

The initialization code also establishes any server fault handlers and signal catchers. For
example, the bankd.c program includes the following lines to cause the Terminate routine
to run whenever a hangup, interrupt, or quit signal occurs:

signal(SIGHUP, Terminate);
signal(SIGINT, Terminate);
signal(SIGQUIT, Terminate);

The routine is executed on both normal and abnormal termination.

The Terminate routine should unregister the server's objects and interfaces with the
Location Broker so that clients do not try to access objects that are unavailable. Most other
fault-handling and termination activities are application dependent.

The Terminate routine should be defined in the main program (bankd.c. in the example).
The Terminate routine writes a message to the standard error output, unregisters the server
with the Location Broker, writes the database to a disk file, and causes the program to exit.

In many cases, servers do not need cleanup handlers, which are necessary for clients.
However, a fault or signal handler for asynchronous faults is recommended.

Writing the Manager Procedures
Although most of the remoteness of an NCS server is hidden in the server stub, the
manager may require code to identify objects or to register objects with the Location Broker.

Identifying an Object
In an interface that uses explicit handles, the first parameter of any procedure must be the
handle parameter. If the interface uses an implicit handle, the handle is not passed to the
procedure. Handles for a manually bound interface have the type handle_t, while the handle
type for an automatically bound interface is user defined.

5-48 Communications Programming Concepts

A manager that supports multiple objects must be able to identify the particular object on
which the client wishes to operate. Since the client has specified the object UUID in the
handle, it is natural to pass the handle explicitly and have the manager obtain the object
UUID from the handle. If the interface is manually bound, the manager can call the
rpc_$inq_object routine to extract the object UUID from the handle_t handle. If the
interface is automatically bound, the handle must be either the object UUID itself or some
other data type from which the manager can determine the UUID.

For example, each manager routine in the bankd.c program calls the following
CheckObject routine that gets the object UUID represented by the handle parameter and
compares it with the UUID of the bank's database object:

static boolean CheckObject(h, st)
uuid_$th;
status_$t *st;
{

if (bcmp(h, &BankID, sizeof(BankID))) {
fprintf(stderr, "(bankd) Request for wrong bank!\n");
st->all = -1; /* "object not found" */

}

return(false);
}
st->all = status_$ok;
return(true);

Although, in this example, the server manages only one object, the code still shows how to
determine object UUIDs from handles.

Registering Objects with the Location Broker
If a server manages only static objects, the server initialization code registers the objects
with the Location Broker. However, if the server manages dynamic objects, such as files or
databases, the manager routine that creates the objects can register newly created objects
with the Location Broker by calling the lb_$register routine. Any routine that deletes an
object must call the lb_$unregister routine to remove the registration.

Building an Application
Use the following steps to build an NCS application:

1. For each interface, run the NIDL compiler to generate header files and the source code
for the server stub, the client stub, and the client switch.

2. For each interface, use the C compiler to generate object modules for the server stub,
the client stub, and the client switch.

3. For each interface, compile the autobinding and marshalling routines, if any.

4. Compile the client application source to create the client object modules.

5. Bind the client switches, the client stubs, any autobinding routines, any marshalling
routines, and the client application object modules to make the executable client.

6. Compile the server managers and initialization code to create the server object modules.

7. Bind the server stubs, any stub-marshalling routines, and the server object modules to
make the executable server.

Network Computing System {NCS) 5-49

Remember that the client and the server must include the header or insert files for any
library routines or types used, including any rpc_$, pfm_$, lb_$, or uuid_$ routines or
types. Similarly, any interface definition that includes predeclared system types should
import the corresponding NIDL file. The NIDL files are located in the /usr/include/idl
directory. The C header files are located in the c subdirectory.

If you are compiling in Pascal, create the Pascal insert files for each NIDL file in the
/usr/include/idl directory using the following:

nidl -pascal -out pas -no_stubs -no_cpp

For example, to create the base.ins.pas file in the /usr/include/idl/pas subdirectory, type
the following:

cd /usr/include/idl
mkdir pas
nidl -pascal -out pas -no_stubs -no_cpp

Note: A makefile function is located in the /usr/lpp/ncs/examples/bank directory that
uses the make command to automate the building of the banking example.

Using C Syntax with NIDL
The C language syntax of the Network Interface Definition Language (NIDL) is a subset of
ANSI C, with a few constructs added to express NCS remote procedure call semantics.

An NIDL interface definition must contain a heading and a body in the following form:

%c

[interface_attribute_list] interface identifier
{

body
}

The Heading

The Body

The interface definition heading consists of the following elements:

1. The syntax identifier, %c. This identifier specifies that the interface definition is written in
the C syntax of NIDL. It must precede the remainder of the interface definition. The
syntax identifier allows one compiler to parse both the C and the Pascal syntaxes of
NIDL.

2. The interface_attribute_list. This list specifies characteristics of the interface. It must be
enclosed in brackets, follow the syntax identifier, and precede the interface name.

3. The interface name. The name must be preceded by the interface attribute list and the
interface keyword.

The interface attributes are described in detail later in this section.

The interface definition body follows the heading and is enclosed in braces. The body
consists of one or more of these declarations:

• Import
• Constant
• Type
• Operation.

5-50 Communications Programming Concepts

Comments

There must be at least one constant, type, or operation declaration. It is not sufficient to
have an interface body containing only import declarations. Each declaration is terminated
by a ; (semicolon).

The declarations are described in detail later in this section.

Comments in an NIDL definition are delimited as in the C language as follows:

/* all natural */
import "rpc.idl"; /* no preservatives */

Interface Attributes
The interface_attribute_list parameter is enclosed in brackets and includes one or more of
the following elements, separated by commas:

• uuid (uuid_string)
• port (port_ identifier, ...)
• version (version_number)
• local
• implicit_handle (type identifier,.

The uuid Attribute

The uuid attribute designates the Universal Unique Identifier (UUID) assigned to the
interface. No other object, interface, or type can be assigned this UUID. The uuid attribute is
expressed by the keyword uuid followed in parentheses by the character-string
representation of a UUID. (Refer to the description of the uuid_$string_t data type in
uuid_$ Library Routines on page 5-94 for more information.)

The /etc/ncs/uuid_gen command generates character-string representations of UUIDs as
shown in the following:

/etc/ncs/uuid_gen

This produces the following output:

334980380000.0d.00.00.37.27.00.00.00

The output of the uuid_gen command can be entered directly in the interface header. For
example, the following interface definition heading includes a UUID attribute:

%c
[uuid (334980380000.0d.00.00.37.27.00.00.00)] interface
my_interface

The port Attribute

The port attribute specifies the well-known port or ports on which servers that export the
interface listen. Do not use this attribute in most cases. Instead, use the RPC runtime library
to assign ports dynamically.

The port attribute has the following syntax:

port (port_identifierl, •.. , port_identifierN)

Each port_identifier field specifies an address family and a well-known port number. The
port_identifierfield takes the form family:[port_numberj. The family parameter specifies the
address family, and port_ number indicates the well-known port.

Network Computing System (NCS) 5-51

In AIX, the only supported value for the family parameter is ip (Internet Protocols). However
the following values for family are available in NIDL:

unspec Unspecified
unix Local to host (pipes, portals)
implink ARPANET imp addresses
pup Pup protocols (for example, BSP)
chaos MIT CHAOS protocols
ns XEROX NS protocols
nbs NBS protocols
ecma European computer manufacturers
datakit Datakit protocols
ccitt CCITT protocols (for example, X.25)
sna IBM SNA
unspec2 Unspecified
dds Domain DDS protocol
ip Internet Protocols.

The following example assigns a well-known port for the Internet address family:

port(ip:[l230])

The version Attribute

The version attribute helps manage multiple versions of an interface. Its syntax is as
follows:

version (version_number)

The version_number parameter specifies an integer. You can increase the version number to
indicate that the interface has changed in some upwardly compatible way. For example, if
you were adding a new procedure to the array _calc interface, your heading could look
like the following:

%c
[uuid(338b5f985000.0d.00.00.37.27.00.00.00), version (2)]

interface array_calc

The local Attribute

The local attribute indicates that the N IDL definition does not declare any remote
operations, which means only header files (no stub files) are generated. An interface
definition heading must contain the local attribute or the uuid attribute. If you use local, the
NIDL compiler ignores any other interface attributes.

The implicit_handle Attribute

The handle used to represent an object can be either an explicit parameter that is passed in
each remote procedure call or an implicit global variable. The type of an implicit handle is
determined by the implicit_handle attribute.

Explicit handles are the default handling technique. If you do not specify an implicit_handle
attribute in the interface definition heading, the interface uses explicit handles, and each
operation declaration must include a handle parameter as the first parameter of the
declaration. Explicit handles enable the client to specify a different handle in each call it
makes.

5-52 Communications Programming Concepts

If you are using explicit handles, an operation declaration could look like the following:

my_proc (handle t (in] h,
int [in] high,
int [in] low,
int (out] average);

If you specify an implicit_handle attribute, the stub uses this handle to represent the
remote object in all remote procedure calls, and no handle information is passed to the
server. Do not include a handle parameter in the operation declarations.

The implicit_handle attribute has the following syntax:

implicit_handle (type identifier)

The type and identifier parameters specify the type and name of the global variable to be
used as an implicit handle.

If you use implicit handles for an array arithmetic interface, its definition heading could look
like the following:

%c
[uuid(338b5f985000.0d.00.00.37.27.00.00.00),
implicit_handle(handle_t array_handle)]
interface array_calc

Import Declaration
The import declaration, which is similar to the C #include directive, specifies interface
definition files that contain definitions for data types that the importing interface uses. It takes
the following form:

import string ;

Each string parameter specifies the path name, enclosed in double quotation marks, of the
file that you want to import. For example, the following declaration imports the base NIDL
file:

import "/usr/include/idl/base.idl";

If an interface definition is imported, header files generated by the NIDL compiler contain C
#include (or Pascal %include) directives for header files that correspond to the imported
definitions. However, if an imported file contains operation declarations, stub procedures are
not generated for these operations.

You can import interfaces written in either of the two NIDL syntaxes. The import declaration
is idempotent. Importing an interface many times has the same effect as importing it once.

Constant Declaration
The constant declaration takes the following form:

const type_specifier identifier = integer I string!
value_identifier ;

The type_specifier parameter specifies the data type of the constant being declared. The
identifier parameter specifies the name of the constant. The integer, string, or
value_identifier parameters indicate the value you are assigning to the constant. You can
specify any previously defined constant as the value_identifier in a constant declaration.
Constant expressions are not currently supported.

Network Computing System (NCS) 5-53

The C syntax of NIDL provides only int and char constants because it must be possible to
compile any NIDL interface into languages (such as Pascal) that allow only simple
constants.

Following are examples of constant declarations:

canst int array_size = 100;
canst char jsb = "Johann Sebastian Bach";

Types and Type Declarations
You can declare data types in type declarations and in the parameter lists of operation
declarations. Note that some of the constructs used in type declarations can also be used in
operation declarations.

A type declaration can appear in any of the following forms:

• A struct declaration
• A union declaration
• A typedef statement.

The type declaration takes the following form:

[attributes] type_specifier declaratory_list ;

Attributes

The following can be specified as attributes of types in a type declaration or of parameters in
an operation declaration:

• handle
• last_is (las~
• max_is (max)
• transmit_as (identifiel}.

Enclose the list of attributes in brackets, with the attributes separated by commas.

The handle attribute can appear only in a type declaration, not in an operation declaration.
You must specify this attribute when you declare a type which is to be used as a generic
handle. You must also write autobinding and auto-unbinding routines to convert between the
generic handle type and the RPC handle type. The following example declares that the
uuid_handle type uuid_$t is to be used as a generic handle:

typedef [handle] uuid_handle uuid_$t;

The last_is and max_is attributes can appear in a struct declaration or in an operation
declaration. The transmit_as attribute can appear in a struct declaration, in a union
declaration, or in a typedef statement.

The last_is attribute allows the client to indicate dynamically the length of an array. This
attribute informs the NIDL compiler that the variable named last holds, at runtime, the index
of the last array element to be passed between the client and server. This value can be the
index of the very last element, specifying that the entire array is to be passed, or it can be
the index of an earlier element, specifying that only part of the array is to be passed.

5-54 Communications Programming Concepts

You can apply the last_is attribute only to an array, and only use the attribute in a struct
declaration or an operation declaration. In a structure declaration, the array is a member of
the structure. In an operation declaration, the array is an operation parameter. In both cases,
the last_is attribute specifies a last variable that holds the index of the array's last
meaningful element. For example, the following struct declaration defines that the plast
variable holds the index of the last element to be passed in the pathname array:

struct {
int plast;
[last_is (plast)] char pathname[];
} open_pathname;

If you specify the last_is attribute for an array in an operation declaration, the last variable
must have the same parameter attribute as the array. For instance, if the array is declared
as an in parameter, the last must also be an in parameter.

In an operation declaration, you must use the last_is attribute for any open array, which is
any array whose declaration does not include an explicit fixed length. For open arrays, the
last variable controls the amount of data passed by the client and server stubs. For arrays of
fixed length, last_is is optional. It optimizes performance when only part of the array needs
to be passed.

If you specify the last_is attribute for an open array in a structure declaration, the last
variable must be a member in the structure and must precede the array itself (as in the
example).

The max_is attribute can be applied only to open arrays that are returned by the server. It
enables the client to indicate the maximum size of the array to be returned. The specified
max variable in a max_is attribute is the name of a variable that holds the maximum
possible index of the array.

Like the last_is attribute, the max_is attribute can appear only in a struct declaration or in
an operation declaration. In an operation declaration, the array. and its max variable are
parameters of the operation. In a structure declaration, the array and its max variable are
members of the structure, and max must precede the array. For example, the following
struct includes both max_is and last_is attributes for the data_return array:

typedef struct {
int biggest array;
int array_end;

[max_is(biggest_array), last_is(array_end)] char data_return[];
} struct_with_open_array;

The server stub uses the max variable in a max_is attribute to determine how much storage
space to allocate for an array. The max variable must have a value when the client makes
the call. If you use the max_is attribute in an operation declaration, then max must have the
in or in out parameter attribute. If you declare the array and its maximum length as
members of a structure, the structure must be specified as an in or in out parameter in
operation declarations.

Network Computing System (NCS) 5-55

The max_is attribute is not required for all open arrays. However, if you do not specify this
parameter, then the array's last variable must be an in or in out parameter (or a member of
an in or in out structure), and the server stub uses the last variable as if it had also been
declared as a max variable.

The NIDL compiler cannot generate code to marshal! and unmarshall pointers to pointers,
pointers within structures, or pointers within unions. Therefore, if you use complex types
such as trees and linked lists, you must provide routines that convert them into simpler
transmissible types. The transmit_as attribute identifies a complex type and the
transmissible type into which your routines convert it.

The identifiervariable in a transmit_as attribute must be either an NIDL type_specifieror a
previously defined type. It indicates the form in which the data is transmitted by the RPC
runtime library. For example, the following typedef statements show the use of the
transmit_as attribute for a binary tree:

typedef struct {
data_t data;
tree_t left;
tree_t right;

} tree_node_t;
typedef [transmit_as(tree_xmit_t)] tree_node_t *tree_t;

Because tree_t is a pointer to tree_node_t, and tree_node_t contains pointers (to tree_t,
no less), the NIDL Compiler cannot generate code to marshal! variables of type tree_t.
Instead, it generates code that calls user-written routines to convert between tree_t and
tree_xmi(_t, and the stubs actually transmit the data in tree_xmit_t format.

For any type that has a transmit_as attribute, you must provide the following routines and
link them with the stubs:

type_to_xmit_rep

type_from_xmit_rep

type_free

type_free_xmit_rep

Declarator List

Converts from the complex type into the transmitted type.

Converts from the transmitted type into the complex type.

Frees storage used by the server for the complex type.

Frees storage used by the client for the transmitted type.

The declarator list specifies names of variables that have a particular type. The members of
a declarator list can be simple names, pointer names, or array names. If your list includes
multiple names, separate the names with commas as shown in the following:

char
float

input_array[lO]; /* Single identifier*/
open, high, low, close; /* Multiple identifiers */

To specify a pointer, precede the name with an* (asterisk) as shown in the following:

long int *point_to_int;

5-56 Communications Programming Concepts

To specify an array, put brackets after the name. Although it is not required, you can put the
array size or an asterisk inside the brackets. If you put an asterisk or if you put nothing, you
are declaring an open array that has a length that is not known until runtime, and you must
use the last_is type attribute in its type declaration. Array subscripts start at 0. The following
example of a structure (struct) declaration includes two arrays:

struct {char last_name[l5];
int matrix[*]; }

If a struct declaration contains an open array, the array must be the last member. A struct
declaration containing an open array cannot be returned by an operation as its value or as a
parameter. A union cannot contain an open array.

Multidimensional arrays are declared with consecutive pairs of brackets, as in the C
language, An example follows:

int two_by_four [2][4];

Only the first dimension of a multidimensional array can be unspecified:

int n_by_four [][4]; /*this is valid*/
int two_by_n [2][]; /*this is NOT valid*/

The typedef Constructor

As in the C language, the NIDL typedef statement allows you to create a synonym for a
data type. Its syntax takes the following form:

typedef type_declaration;

For instance, the following typedef statement defines an integer of the long_int type to be a
synonym for regular integer, int:

typedef int long_int;

Typically, a typedef statement is used to create a distinct name for a struct declaration, as
shown in the following:

typedef struct { char month[3];
int day, year;

} birthday;

Type Specifiers
The type specifier portion of a type declaration can specify any of the following types:

• Simple types
• Constructed types
• handle_t
• Types defined with typedef statements (as defined in the previous section).

Network Computing System (NCS) 5-57

Simple Types

NIDL supports the following simple data types:

• Integers, which include the following:

- int
- long int
- short int
- unsigned int
- unsigned long int
- unsigned short int

The int keyword is optional after any of the five other integer type names. For example,
long and long int are synonymous. The int, long, unsigned, and unsigned long types
are represented in 32 bits. A short or unsigned short type is represented in 16 bits.

• Floating-point types, which include the following:

- float, which is represented in 32 bits

- double, which is represented in 64 bits.

• Character types, which include the following:

- char
- unsigned char

NIDL does not support a signed character. If you specify char, the NIDL compiler treats
the type as unsigned char.

• The boolean type. Following convention, a value of O (zero) means false, and a nonzero
value means true.

• The byte type. This is an 8-bit integer that is not converted when transmitted by the RPC
runtime mechanism. To protect data of any type from conversion, you can write routines
to convert that type into an array of byte.

• The void type. This type is most often used for a function that does not return a value.

• Enumerated types, which include the following:

enum { identifierl, ••. , identifierN }
short enum { identifierl, ••• , identifierN }

The enumerated types provide names for integers. An enum type is a 32-bit integer, and a
short enum type is a 16-bit integer. The compiler assigns integer values, beginning at
o, to enum identifiers based on their order in the list. For example, in the following enum
declaration:

enum {John, Paul, George, Ringo} beatles_members;

John gets the value 0, Paul gets 1, George gets 2, and Ringo gets 3.

5-58 Communications Programming Concepts

Constructed Types

NIDL also supports the following constructed data types:

• Sets, which provide names for bits within single integers, starting with the least significant
bit of a 16-bit integer. This is similar to enum types, which provide names for integers. A
set takes the following form:

set { identifierl, ••• , identifierN }

For example, in the following set declaration, Steinhardt represents the value of bit 0
in an integer, Dalley represents bit 1, Tree represents bit 2, and Sayer represents bit
3:

set {Steinhardt, Dalley, Tree, Sayer} guarneri_quartet_members:

• Strings, which take the following form:

stringO [length]

A stringO is a C-style null-terminated string, which is a character array whose last element
is the C null character, \0. The length parameter indicates the maximum length of the
string.

• Structures that are named in typedef statements as shown in the following:

struct { type_declarationl; •.• ; type_declarationN; }

This type differs slightly from its C counterpart. An NIDL struct statement cannot contain
pointers unless it is to be marshalled by user-written routines. NIDL does not allow
structures to have tags.

• Unions, which take the following form:

union switch (simple_type_specifier identifier)
{ componentl;

componentN; }

The simple_type_specifier parameter specifies one of the simpl_e data types described in
the previous section. The Identifier parameter specifies the name of a discriminating
variable, and each component variable consists of the following:

case constant : type_declaration

This type differs considerably from its C counterpart. In NIDL, unions must be
discriminated. That is, in the union header you must specify a discriminating variable and
its type. The generated stubs use this variable to determine which member is relevant for
a routine. The NIDL union looks like a cross between the C union and switch
statements.

In an NIDL union, the declarator_list portion of the type_ declaration parameter is limited
to one name. A union, like a struct (structure), cannot have a tag, nor can it contain
pointers unless it is to be marshalled by user-written routines.

Network Computing System (NCS) · 5-59

The type_declaration parameter in a case clause is optional. Its omission indicates that
several cases all take the same declarator. For example, the following defines an
enumerated data type, stats, and uses the names in stats to discriminate a union:

enum {atbats, hits, avg} stats;
union switch (enum stats)

{ case atbats
case hits int total;
case avg : float average; } stats_union;

The handle_t Type

The handle_t type indicates that the variable is a handle type meaningful to the RPC
runtime mechanism. If you specify this type for the first parameter of each operation in an
explicitly bound interface or for the handle variable of an implicitly bound interface, the
interface uses manual binding. The client application must manage the binding state of the
handle.

The Operation Declaration
The operation declaration in NIDL is similar to a function heading in the C language. The
syntax takes the following form:

[operation_attributes] type_specifier declarator (param_list);

The optional operation_attributes parameters specify calling semantics. The following
attributes apply:

• idempotent
• broadcast
• maybe

If you specify more than one of these, separate the attribute names with commas. Enclose
the entire list in square brackets.

The idempotent Attribute

By default, the RPC runtime software provides at most once calling semantics. It ensures
that a remote procedure, when called once, is not executed more than once. The
idempotent attribute overrides this default for a particular operation, allowing the operation
to be executed as many times as is necessary to get a response. This reduces overhead in
the RPC mechanism, improving performance. Use the idempotent attribute only if the
operation can safely be executed multiple times. For instance, an operation that simply
reads a value is idempotent, while one that increments a value is not.

The broadcast Attribute

The broadcast attribute specifies that the client's RPC runtime software always broadcasts
this operation to all hosts on the local network. When an operation with the broadcast
attribute is called, the handle is automatically unbound before the remote procedure call is
issued.

The maybe Attribute

The maybe attribute specifies that the caller does not expect any response and that the
RPC runtime system need not guarantee delivery of the call. Use this attribute to post a
notification whose receipt is not crucial. Operations with the maybe attribute cannot have
any output parameters.

5-60 Communications Programming Concepts

Simple Type Specifiers and Declarators
In any operation declaration, you must give the declaration a data type and a name.The
type_specifier parameter in the operation declaration is the data type returned by the
operation. It can be any scalar or previously named data type, but it cannot be a pointer. For
example, if the operation returns a long integer, specify long as the type_specifier
parameter. Specify void if the operation does not return. If you omit the type_specifier
parameter, the operation must return an int value.

Note: The declarator is the name of the operation.

The Parameter List
The parameters of an operation appear in the p~ram_list field. The list takes the following
form:

attributesl] type_specifierl param_attributesl
declaratorl , • • • ,

attributesN] type_specifierN param_attributesN declaratorN

If you have more than one entry in a param_list field, separate the entries with commas. In
an operation declaration, you can use the last_is and max_is attributes. The type_specifier
field specifies the data type of the parameter. It can be any of the simple data types.

Note: If an interface uses explicit handles (the interface definition heading does not specify
an implicit_handle attribute), the first parameter in param_list must be the explicit
handle. If the interface also uses manual binding, this parameter must have the
handle_t type.

The param_attributes in the list specify the direction in which the parameter is passed using
one of the following:

in
out
in, out

Passed from client to server.
Passed from server to client.
Passed both ways.

To specify that the parameter is passed by reference from the client to the server,, precede
the declarator parameter with an & (ampersand), the address operator. This construct is
equivalent to the in ref attributes in the Pascal syntax of NIDL. It is typically used when the
application software is implemented in Pascal.

Note: The declarator parameter specifies the name of each parameter.

Operation Declaration Example
The following example shows the elements in an operation declaration:

[broadcast] int array$add (handle t [in] bind_var,
int [in] arrayl[lO][lO],
int [in] array2[10][10],
int [out] result);

Network Computing System (NCS) 5-61

Using Pascal Syntax with NIDL
The Pascal syntax of the Network Interface Definition Language (NIDL) is a subset of
Pascal, with a few constructs added to express NCS remote procedure call semantics.

An NIDL interface definition must contain a heading and a body in the following form:

%pascal
[interface_attribute_list] interface identifier ;
body
end;

The Heading

The Body

Comments

The interface definition heading consists of the following elements:

• 1 The syntax identifier, %pascal. This identifier specifies that the interface definition is
written in the Pascal syntax of NIDL, and must precede the remainder of the interface
definition. The syntax identifier allows one compiler to parse both the C and the Pascal
syntaxes of NIDL.

• 2The interface_attribute_list. This list specifies characteristics of the interface. The list
must be enclosed in brackets, follow the syntax identifier, and precede the interface
name.

• 3The interface name. The name specified by the identifier parameter must be preceded
by the interface attribute list and the interface keyword, and be followed by a semicolon.

The interface definition body follows the heading and is enclosed in braces. The body
consists of one or more of these declarations:

• Import declaration
• Constant declaration
• Type declaration
• Operation declaration.

There must be at least one constant, type, or operation declaration. It is not sufficient to
have an interface body containing only import declarations. Each declaration is terminated
by a ; (semicolon).

Comments in an NIDL definition are delimited as in the Pascal language, as follows:

{ all natural }
import 'rpc.idl'; {no preservatives}

Interface Attributes
The interface_attribute_list field is enclosed in brackets and includes one or more of the
following elements, separated by commas:

• uuid (uuid_string)
• port (port_identifier, ...)
• version (version_ number)
• local
• implicit_handle (identifier: type).

5-62 Communications Programming Concepts

The uuid Attribute

The uuid attribute designates the Universal Unique Identifier (UUID) assigned to the
interface. No other object, interface, or type may be assigned this UUID. The uuid attribute
is expressed by the keyword uuid followed in parentheses by the character-string
representation of a UUID. (Refer to the description of the uuid_$string_t data type in
uuuid_$ Library Routines on page 5-94 for more information.)

The /etc/ncs/uuid_gen command generates character-string representations of UUIDs as
shown in the following:

/etc/ncs/uuid_gen
334980380000.0d.00.00.37.27.00.00.00

The output of the uuid_gen command can be entered directly in the interface header. For
example, the following interface definition heading includes a UUID attribute:

%pascal
[uuid (334980380000.0d.00.00.37.27.00.00.00)] interface
my_interface;

The port Attribute

The port attribute specifies the well-known port or ports on which servers that export the
interface listen. In most cases, do not use this attribute. Instead, use the RPC runtime library
to assign ports dynamically.

The port attribute has the following syntax:

port (port_identifierl, ... , port_identifierN

Each port_identifierfield specifies an address family and a well-known port number. The
port_ identifier field takes the form family.[port_numberj. The family parameter specifies the
address family and the port_number parameter indicates the well-known port.

In AIX, the only supported value for the family parameter is ip (Internet Protocols). However
the following values for family are available in NIDL:

unspec
unix

. ip
implink
pup
chaos
ns
nbs
ecma
data kit
ccitt
sna
unspec2
dds

Unspecified
Local to host (pipes, portals)
Internet Protocols
ARPANET imp addresses
Pup protocols (for example, BSP)
MIT CHAOS protocols
XEROX NS protocols
NBS protocols
European computer manufacturers
Datakit protocols
CCITT protocols (for example, X.25)
IBM SNA
Unspecified
Domain DDS protocol.

Network Computing System (NCS) 5-63

The following example assigns a well-known port for the Internet address family:

port(ip:[l230])

The version Attribute

The version attribute helps manage multiple versions of an interface. Its syntax is as
follows:

version (version_number)

The version_ number parameter specifies an integer. You can increase the version number to
indicate that the interface has changed in some upwardly compatible way. For example, if
you were adding a new procedure to the array_calc interface, your heading could look like
the following:

%pascal
[uuid(338b5f985000.0d.00.00.37.27.00.00.00), version (2)]
interface array_calc

The local Attribute

The local attribute indicates that the NIDL definition does not declare any remote
operations. Only header files {no stub files) are generated. An interface definition heading
must contain the local attribute or the uuid attribute. If you use local, the NIDL compiler
ignores any other interface attributes.

The implicit_handle Attribute

The handle that is used to represent an object can be either an explicit parameter that is
passed in each remote procedure call or an implicit global variable. The type of an implicit
handle is determined by the implicit_handle attribute.

Explicit handles are the default handling technique. If you do not specify an implicit_handle
attribute in the interface definition heading, the interface uses explicit handles, and each
operation declaration must include a handle parameter as the first parameter of the
declaration. Explicit handles enable the client to specify a different handle in each call it
makes.

If you are using explicit handles, an operation declaration could look like the following:

procedure rny_proc(
in h: handle_t;
in high,low: int;
out average: int
) ;

If you specify an implicit_handle attribute, the stub uses this handle to represent the
remote object in all remote procedure calls, and no handle information is passed to the
server. You should not include a handle parameter in the operation declarations.

5-64 Communications Programming Concepts

The implicit_handle attribute has the following syntax:

implicit_handle (identifier: type)

The type and identifier parameters specify the type and name of the global variable to be
used as an implicit handle.

If you use implicit handles for an array arithmetic interface, its definition heading could look
like the following:

%pascal
[uuid(338b5£985000.0d.00.00.37.27.00.00.00),

implicit_handle(array_handle: handle_t))
interface array_calc;

Import Declaration
The import declaration, which is similar to the Pascal %include directive, specifies interface
definition files that contain definitions for data types that the importing interface uses. It takes
the following form:

import stringl, •.• , stringN;

Each string parameter specifies the path name, enclosed in single quotation marks, of a file
that you want to import. If you list several files, separate them with commas. For example,
the following declaration imports two NIDL files:

import '/usr/include/idl/base.idl',
'/usr/include/idl/rpc.idl';

If an interface definition is imported, header files generated by the NIDL compiler contain C
#include (or Pascal %include) directives for header files that correspond to the imported
definitions. However, if an imported file contains operation declarations, stub procedures are
not generated for these operations.

You may import interfaces written in either of the two NIDL syntaxes. The import declaration
is idempotent. Importing an interface many times has the same effect as importing it once.

Constant Declaration
The constant declaration takes the following form:

con st
identifierl = integerl I stringl I value_identifierl '
identifierN = integerN I stringN I value identifierN

The identifier parameter specifies the name of the constant. The integer, string, or
value_identifier parameters specify the value you are assigning to the constant. You can
specify any previously defined constant as the value_identifier parameter in a constant
declaration. Several constants may be declared under one const keyword. Each declaration
should be terminated by a; (semicolon). Constant expressions are not currently supported.

The following example declares two constants:

con st
array_size = 100;
jsb = 'johann sebastian bach';

Network Computing System (NCS) 5-65

Types and Type Declarations
You can declare data types in type declarations and in the parameter lists of operation
declarations. Note that some of the constructs used in type declarations can also be used in
operation declarations.

A type declaration takes the following form:

type
identifierl = type_descriptl .

• • • I

Aptr_typel

identifierN = type_descriptN Aptr_typeN

The identifier parameter specifies the name you are assigning to the data type.

You must provide either a type_descriptor a ptr_type parameter. A type_descriptparameter
describes attributes of the type, and has the following syntax:

[attributes] type_specif ier

A ptr_type parameter, preceded by a" (circumflex), names a pointer type.

Note: There is an important difference between ordinary Pascal and the Pascal syntax of
NIDL. Standard Pascal uses the type keyword to define data types and the var
keyword to declare variables having those types. NIDL does not have a var keyword.
Variables are declared in the parameter lists of operations.

Attributes

The following attributes can appear in a type declaration or as part of an operation
declaration:

• handle
• last_is (last)
• max_is (max)
• transmit_as (identifiet}.

The attributes should be enclosed in brackets, with the attributes separated by commas.

The handle attribute can appear only in a type declaration, not in an operation declaration.
You must specify this attribute when you declare a type which is to be used as a generic
handle. You must also write autobinding and auto-unbinding routines to convert between the
generic handle type and the RPC handle type. The following example declares that the
uuid_handle type (a uuid_$t data type) is to be used as a generic handle:

type uuid_handle = [handle] uuid_$t;

The last_is attribute allows the client to indicate dynamically the length of an array. This
attribute informs the NIDL compiler that the variable named last holds, at runtime, the index
of the last array element to be passed between the client and server. This value can be the
index of the very last element, specifying that the entire array is to be passed, or it can be
the index of an earlier element, specifying that only part of the array is to be passed.

5-66 Communications Programming Concepts

You can apply the last_is attribute only to an array. You can use the attribute only in' a
record declaration or an operation declaration. In a record declaration, the array is a field in
the record. In an operation declaration, the array is an operation parameter. In both cases,
the last_ls attribute specifies a last variable that holds the index of the array's last
meaningful element. For example, the following record declaration defines that the plast
variable holds the index of the last element to be passed in the pathname array:

type
open_pathname = record

plast: integer;
pathname: [last_is (plast)] char;

end;

If you specify the last_is attribute for an array in an operation declaration, the last variable
must have the same parameter attribute as the array. For instance, if the array is declared
as an in parameter, the last variable must also be an In parameter.

In an operation declaration, you must use the last_ls attribute for any open array, which is
any array whose declaration does not include an explicit fixed length. For open arrays, the
last variable controls the amount of data passed by the client and server stubs. For arrays of
fixed length, the last_is parameter is optional. It optimizes performance when only part of
the array needs to be passed.

If you specify the last_is attribute for an open array in a record declaration, the last variable
must be a field in the record and must precede the array itself (as in the preceding example).

The max_is attribute can be applied only to open arrays that are returned by the server. It
enables the client to indicate the maximum size of the array to be returned. The specified
max variable in a max_is attribute is the name of a variable that holds the maximum
possible index of the array.

Like the last_is attribute, the max_is attribute can appear only in a record declaration or in
an operation declaration. In an operation declaration, the array and its max variable are
parameters of the operation. In a record declaration, the array and its max variable are fields
in the record, and the maxvariable must precede the array. For example, the following
record includes both max_is and last_is attributes for the data_return array:

type rec_with_open_array = record

end;

biggest_array: integer;
array_end: integer;

[max_is(biggest_array), last_is(array_end)]
data_return:

array[l •• *] of char;

The server stub uses the max variable in a max_is attribute to determine how much storage
space to allocate for an array. The max variable must have a value when the client makes
the call. If you use the max_is attribute in an operation declaration, then max must have the
in or in out parameter attribute. If you declare the array and its maximum length as fields in
a record, the record must be specified as an in or in out parameter in operation
declarations.

The max_is attribute is not required for all open arrays. However, if you do not specify this
parameter, then the array's last variable must be an in or in out parameter (or a field in an
in or in out record). The server stub then uses the last variable as if it had also been
declared as a max variable.

Network Computing System (NCS) 5-67

The NIDL compiler cannot generate code to marshal! and unmarshall pointers to pointers,
pointers within structures, or pointers within unions. Therefore, if you use complex types
such as trees and linked lists, you must provide routines that convert them into simpler
transmissible types. The transmit_as attribute identifies a complex type and the
transmissible type into which your routines can convert it.

The identifiervariable in a transmit_as attribute must be either a NIDL type_specifier
parameter or a previously defined type that indicates the form in which the data is
transmitted by the RPC runtime library. The following example shows the use of the
transmit_as attribute for a binary tree:

type
tree_t = [transmit_as(tree_xmit_t)] Atree_node_t;

tree_node_t =·record
data data_t;
left,
right : tree_t;
end;

Because the tree_t variable is a pointer to tree_node_t, and tree_node_t contains pointers
(to tree_t, no less), the NIDL compiler cannot generate code to marshal! variables of type
tree_t. Instead, it generates code that calls user-written routines to convert between tree_t
and tree_xmit_t, and the stubs actually transmit the data in tree_xmit_t format. For any
type that has a transmit_as attribute, you must provide the following routines and link them
with the stubs:

type_to_xmit_rep

type_from_xmit_rep

type_free

type_free_xmit_rep

Type Specifiers

Converts from the complex type into the transmitted type.

Converts from the transmitted type into the complex type.

Frees storage used by the server for the complex type.

Frees storage used by the client for the transmitted type.

The type_specifier portion of a type declaration can specify any of the following types:

• Simple types
• Structured types
• handle_t type
• Types defined using type statements.

Simple Types

NIDL supports the following simple data types:

• Integers, which include the following:

- integer
- integer32
- unsigned
- unsigned32

The integer and unsigned types are represented in 16 bits. The integer32 and
unsigned32 types are represented in 32 bits.

5-68 Communications Programming Concepts

• Floating-point types, which include the following:

- real, which is represented in 32 bits

- double, which is represented in 64 bits.

• The char type.

• The boolean type.

• The byte type. This is an 8-bit integer that is not converted when transmitted by the RPC
runtime mechanism. To protect data of any type from conversion, you can write routines
to convert that type into an array of byte.

• Enumerations, which provide names for 16-bit integers. A list of identifiers is provided in
parentheses, with the identifiers separated by commas. The compiler assigns integer
values, beginning at 0, to enum identifiers based on their order in the list. For example, in
the following enum declaration:

enum {John, Paul, George, Ringo} beatles_members;

John gets the value 0, Paul gets 1, George gets 2, and Ringo gets 3.

• Subranges, which specify a subrange of integers or of any previously defined
enumeration. Provide the lower and upper limits of the subrange separated by two
periods. The following example declares a subrange:

small_ints = 1 •• 100;

Structured Data Types

NIDL also supports the following structured data types:

• Arrays, which take the following form:

array [simple_typel, ••. , simple_typeN] of type_descript

The simple_type parameter indicates the index values allowed for each dimension of the
array. This parameter can be any simple data type but is most often a subrange. The
type_descript parameter can be any simple data type or previously defined structured
type. For example, this array includes two dimensions, both of which are specified with
the following subranges:

matrix= array[l •• 10, 1 •• 5] of integer;

To specify that the first dimension of an array is of varying length, use an* (asterisk) as
the upper limit of the index value. Note that only the first dimension of an array can be
varying. The following example shows how to use the* (asterisk):

daily_temps = array[l .. *, 1 .• 12] of real; {this is valid}
two_by_n = array[l .• 2, 1 .• *] of real; {this is NOT valid}

If you declare an open array (an array of varying length) as a field in a record or as a
parameter in an operation, you must use the last_is attribute, as described earlier.

• Strings, which take the following form:

stringO [length

A stringO is a C-style null-terminated string, which is a character array whose last element
is the C null character, \0. The length variable indicates the maximum length of the string.

Network Computing System (NCS) 5-69

• Sets, which provide names for bits within single integers, starting with the least significant
bit of a 16-bit integer. Sets take the following form:

set of enumerated_type I (identifierl, ... , identifierN)

A set is similar to an enumeration, which provides names for integers. The following
example declares an enumeration called beatles_members and a set called
beatles_set:

beatles_members = (John, Paul, George, Ringo);
beatles_set = set of beatles_members;

In this set, John represents the value of bit 0 in an integer, Paul represents bit 1, George
represents bit 2, and Ringo represents bit 3.

Alternatively, you can define an enumerated type and declare a set in one step. For
example:

guarneri_quartet_set = set of (Steinhardt, Dalley, Tree,
Sayer);

• Records, which take the following form:

record
member_listl : type_descriptl ;

member_listN : type_descriptN ;
end

The type_descript parameter can be any simple data type or previously defined structured
data type. The member_list parameter consists of one or more identifiers, separated by
commas. The following example defines a record:

type
date_type = array[l •• 8] of char;
weather = record

date : date_type;
hi_temp, low_temp, rain real;
pressure : double;

end;

• Variant records, which take the following form:

record case tag : simple_type of
union_componentl .

• • • I

union_componentN
end

The tag parameter is analogous to the tag field in the case portion of a Pascal variant
record. The simple_type parameter specifies a simple data type specifying the type of tag.
Each union_ component parameter has the following form:

const_expl, •.• , const_expN: (fieldl ; .•• ; fieldN)

In a union_component, the const_exp variable can be an integer, an enumeration value,
or a previously defined constant. Each field has the following form:

identifierl, .•• , identifierN : type_descript

5-70 Communications Programming Concepts

The identifier parameter specifies the name of a field in the record, and the type_descript
component specifies the data type of the field. The type_descript can be any simple data
type or previously defined structured type. The following example shows how a variant
record is defined:

my_union = record case
1 a,b,c
2, 3 d
4 all
5 first half

second-half
end;

The handle_t Type

result : integer of
real);
boolean);
array[l •. 4] of char);
array[l •. 2] of char;
array[l .• 2] of char);

The handle_t type indicates that the variable is a handle type meaningful to the RPC
runtime mechanism. If you specify this type for the first parameter of each operation in an
explicitly bound interface or for the handle variable of an implicitly bound interface, the
interface uses manual binding. The client application must manage the binding state of the
handle.

The Operation Declaration
The operation declaration in NIDL is analogous to a procedure or function heading in Pascal.
It can take two forms:

operation_attributes

operation_attributes
:type_descript

procedure identifier (param_list

function identifier (param_list

The optional operation_attributes parameters specify calling semantics. The following
attributes apply:

• idempotent

• broadcast

• maybe

If you specify more than one of these, separate the attribute names with commas. Enclose
the entire list in square brackets.

The idempotent Attribute

By default, the RPC runtime software provides at most once calling semantics. This ensures
that a remote procedure, when called once, is not executed more than once. The
idempotent attribute overrides this default for a particular operation, allowing the operation
to be executed as many times as necessary to get a response. In other words, the
idempotent attribute specifies at least once semantics. This reduces overhead in the RPC
mechanism, improving performance. Use idempotent only if the operation can safely be
executed multiple times. For example, an operation that simply reads a value is idempotent,
while one that increments a value is not.

The broadcast Attribute

The broadcast attribute specifies that the client's RPC runtime software always broadcasts
this operation to all hosts on the local network. When an operation with the broadcast
attribute is called, the handle is automatically unbound before the remote procedure call is
issued.

Network Computing System (NCS) 5-71

The maybe Attribute

The maybe attribute specifies that the caller does not expect any response and that the
RPC runtime system need not guarantee delivery of the call. Use this attribute to post a
notification whose receipt is not crucial. Operations with the maybe attribute cannot have
any output parameters. ·

Naming and Typing the Operation
In any operation declaration, you must specify whether the operation is a procedure or a
function, and you must name it with an identifiervariable.

If you specify that the operation is a function, you must also specify a type_descript,
declaring the data type that the function returns. The type_descriptcan be any simple data
type or previously named data type, but it cannot be a pointer.

The Parameter List
The parameters of an operation appear in the param_list field. The list takes the following
form:

param_classl name_listl attributesl type_namel ;
. . . ;

param_classN name_listN attributesN type_nameN

If you have more than one entry in a param_list field, separate the entries with semicolons.
Each name_listfield lists parameters of the operation, separated by commas. The
type_name parameter specifies any simple data type or previously named data type.

Note: If an interface uses explicit handles (if the interface definition heading does not
specify an implicit_ handle attribute), the first parameter in the param_list field must
be the explicit handle. If the interface also uses manual binding, this parameter must
have the handle_t type.

In an operation declaration, you can use the last_is and max_is attributes.

The param_class field specifies the direction and manner in which the parameter is passed,
from the following choices:

in Passed from client to server
out Passed from server to client
in out Passed both ways
in ref Passed by reference from client to server.

Note: Users of Pascal should note that values larger than 32 bits must be passed by
reference and therefore must have in ref specified.

• Operation Declaration Example
The following example shows the elements in an operation declaration:

type
matrix= array[l •• 10] of int;

[broadcast] procedure array_$add (in bind_var
in arrayl, array2 : matrix;
out result : integer);

handle_t;

[idempotent] function true_or_false (in bind_var : handle t;
in high_val, low_val : real) : boolean;

5-72 Communications Programming Concepts

Using NCS with FORTRAN Programs
The Network Computing System allows you to write distributed applications in FORTRAN.
You define interfaces in the C syntax or the Pascal syntax of the Network Interface Definition
Language (NIDL). The NIDL compiler generates C source code for the client stub and switch
as well as for the server switch. These modules are compiled by a C compiler. Client and
server application code can be written in FORTRAN, compiled by a FORTRAN compiler,
and linked with the stubs and switches.

However, there are some special considerations that apply to FORTRAN, and there are
additional considerations that apply to UNIX F77 FORTRAN. This section describes both
general FORTRAN and F77 considerations.

General FORTRAN Considerations
This section describes considerations that apply to the use of any versions of FORTRAN
with NCS. If you are building an application from source code both in FORTRAN and in C or
Pascal, you should consult the appropriate language manuals for more information on
cross-language communication.

Parameter Passing and Interface Definitions
FORTRAN passes all parameters by reference. Therefore, the NIDL declaration of any
FORTRAN operation must specify that the stubs are to pass all parameters by reference. If
you write the interface definition in the C syntax of NIDL, prefix all parameters with an *
(asterisk), the indirection operator. If you use the Pascal syntax of NIDL, you must specify in
ref for all input parameters. Special treatment of output parameters in the Pascal syntax is
not required because the NIDL compiler assumes that the parameters are passed by
reference.

Library Routine Considerations
FORTRAN programs cannot directly call library routines that expect any parameters to be
passed by value. As a result, many rpc_$ and lb_$ routines cannot be called directly from
FORTRAN. You must instead write C or Pascal interlude routines for the FORTRAN
programs to call. These routines accept input parameters that are all passed by reference,
make the calls passing parameters by value as required, and then return the results by
reference.

The following NCS library routines cannot be called directly from FORTRAN:

• rpc_$alloc_handle
• rpc_$bind
• rpc_$1isten
• rpc_$name_to_sockaddr
• rpc_$set_binding
• rpc_$sockaddr_to_name
• rpc_$use_family
• rpc_$use_family_wk
• lb_$1ookup_interface
• lb_$1ookup_object
• lb_$1ookup_object_local
• lb_$1ookup_range
• lb_$1ookup_type
• lb_$register

Network Computing System {NCS) 5-73

NIDL Compiler F77 Options
The UNIX F77 compiler appends an _ (underscore) to external names. For example, if you
specify a procedure name of my _proc in the source code, the compiler changes the name
to my_proc_. While this renaming does not cause problems in programs that are generated
entirely from FORTRAN source, it does require consideration when some of the program's
modules are written in another language, since the C and Pascal compilers do not append
underscores to names. The C or Pascal source code must explicitly terminate with an
underscore any names that are referenced or defined by a FORTRAN program.

The NIDL compiler provides two options, -f77c and -f77s, that cause the compiler to
generate stubs with names that conform to the F77 naming convention. As a result, you can
write the interface definition without specifically appending underscores to any names.
These options also make it easier to write an application in which the client is written in
FORTRAN and the server is written in C or Pascal (or the opposite).

Use the -f77c option if the client is written in FORTRAN and is compiled by a UNIX F77
compiler. This option causes the NIDL compiler to use F77-compatible names (with
underscores appended) for the client switch procedures. (The switch procedures are those
actually invoked when a client makes a remote procedure call.)

Use the -f77s option if the server manager procedures (the procedures which actually
implement the operations in an interface) are written in FORTRAN and are compiled by a
UNIX F77 compiler. This option causes the NIDL compiler to generate server stub
procedures that use F77-compatible names in calling the manager procedures.

5-7 4 Communications Programming Concepts

The Location Broker (NCS)
This section describes the concepts behind the Location Broker and how it works. For
information on how to configure the Location Broker on your network or internet, see
Configuring NCS in Communication Concepts and Procedures.

Understanding the Location Broker
The Location Broker provides clients with information about the locations of objects and
interfaces. Servers register with the Location Broker their socket addresses and the objects
and interfaces to which they provide access. Clients issue requests to the Location Broker
for the locations of objects and interfaces they wish to access. The broker returns database
entries that match an object, type, interface, or combination of these, as specified in the
request.

The Location Broker also implements the RPC message-forwarding mechanism. If a client
sends a request for an interface to the Location Broker forwarding port on a host, the broker
automatically forwards the request to the appropriate server on the host.

Location Broker Components
The Location Broker consists of the following interrelated components:

• Local Location Broker (LLB)

An RPC server that maintains a database of information about objects and interfaces
located on the local host. The LLB provides access to its database for application
programs and also provides the Location Broker forwarding service. An LLB must run on
any host that runs RPC servers. The LLB runs as the daemon program, llbd.

• Global Location Broker (GLB)

An RPC server that maintains information about objects and interfaces throughout the
network or internet. The GLB runs as the nrglbd daemon program.

• Location Broker Client Agent

A set of library routines that application programs call to access LLB and GLB databases.
Any client that uses Location Broker library routines is actually making calls to the Client
Agent. The Client Agent interacts with LLBs and GLBs to provide access to their
databases.

Network Computing System {NCS) 5-75

The following figure shows the relationships among application programs, the Location
Broker components, and the Location Broker databases:

Local Application GLB

Client Agent GLB Database

LLB GLB Host

LLB Database
Remote Application

Local Host
Client Agent

Remote Host

Figure 14. Location Broker Software

Location Broker Data
Each entry in a Location Broker database contains information about an object, an interface,
and the location of a server that exports the interface to the object. The fields in a database
entry are as follows:

Object UUID

Type UUID

Interface UUID

Flag

Annotation

Socket Address Length

Socket Address

5-76 Communications Programming Concepts

The unique identifier of the object

The unique identifier that specifies the type of the object

The unique identifier of the interface to the object

A flag that indicates if the object is global (and should be
registered in the GLB database)

64 characters of user-defined information

The length of the socket address field

The location of the server that exports the interface to the
object.

Each database entry contains one object UUID, one interface UUID, and one socket
address. This means a Location Broker database must have an entry for each possible
combination of object, interface, and socket address. For example, the database must have
ten entries for a server that does all of the following:

• Listens on two sockets, socket_a and socket_b.

• Exports interface_1 for object_x, object_y, and object_z.

• Exports interface_2 for object_p and object_q.

The server must make a total of ten calls to the lb_$register routine to completely register
its interfaces and objects.

You can look up Location Broker information by using any combination of the object UUID,
type UUID, and interface UUID as keys. You can also request the information from the GLB
database or from a particular LLB database. Therefore, you can obtain information about all
objects of a specific type, all hosts with a specific interface to a object, or even all objects
and interfaces at a specific host. For example, you can find the addresses of all remotely
available array processors by looking up all entries with the arrayproc type.

The Location Broker Client Agent
The Location Broker Client Agent is a set of library routines that applications use to access
and modify the LLB and GLB databases. When a program issues any Location Broker call,
the call actually goes to the local host's Client Agent. The Client Agent then does the work to
add, delete, or look up information in the appropriate Location Broker database.

The following figure illustrates a typical case in which a client requires a particular interface
to a particular object, but ·does not know the location of a server exporting the interface to
the object. In this figure, an RPC server registers itself with the Location Broker by calling
the Client Agent in its host (step 1 a). The Client Agent, through the LLB, adds the
registration information to the LLB database at the server host (not shown). The Client Agent
also sends the information to the GLB (1 b). To locate the server, the client issues a Location
Broker lookup call (2a). The Client Agent on the client host sends the lookup request to the
GLB, which returns it through the Client Agent to the client (2b). The client can then use
RPC calls to communicate directly with the located server (3a, 3b).

1a
Register
object

Object

Server

Client
Agent

1b
Register
object

3a
Access object

Global Location Broker

Figure 15. Client Agent and a Global Location Broker

Client

Client
Agent

2b
Lookup
object

2a
Lookup
object

Network Computing System (NCS) 5-77

If a client knows the host where the object is located without knowing the port number used
by the server, it can specify this information in its lookup call. Then the Client Agent
interrogates the remote host's LLB directly, as illustrated in the following figure.

1a
Lookup
object

Client

Client
Agent

2
Access object

1b
Lookup object

Figure 16. Client Agent Doing a Lookup at a Known Host

The Local Location Broker {LLB)

Requested
object

LLB

The LLB, which runs as the llbd daemon, maintains a database of the objects and interfaces
that are exported by servers running on the host. In addition, it acts as a forwarding agent for
requests.

An llbd daemon must be running on hosts that run RPC servers. However, it is
recommended to run an llbd daemon on every host in the network or internet.

The Local Database

The database maintained by the LLB provides location information about interfaces on the
local host. This information is used by both local and remote applications. To look up
information in an LLB database, an application queries the LLB through a Client Agent. For
applications on a local host, the Client Agent accesses the LLB database directly. For
applications on a remote host, the remote Client Agent accesses the LLB database through
the LLB process. You can also access the LLB database manually by using the lb_admin
command.

The LLB Forwarding Agent

The LLB's forwarding facility eliminates the need for a client to know the specific port that a
server uses. It is intended to limit the number of well-known port numbers that must be
reserved for specific purposes.

The forwarding agent listens on one well-known port for each address family. It forwards any
messages that it receives to the local server that exports the requested object. Forwarding is
particularly useful when the requester of a service already knows the host where the server
is running. For example, you would not need to assign a well-known port to a server that
reports load statistics, nor would you need to register the server with the GLB. Each such
server would register only with its host's LLB. Remote clients would access the server by
specifying the object, the interface, and the host, but not a specific port, when making a
remote procedure call.

5-78 Communications Programming Concepts

The Global Location Broker {GLB)
The GLB, which runs as the nrglbd daemon, manages information about the objects and
interfaces that are available to users on the network. In an internet, at least one GLB must
be running on each network.

The GLB database is accessed manually by using the lb_admin command. The lb_admin
command is useful to manually correct errors in the database. For example, if a server starts
while the GLB is not running, you can manually enter the information for the server in the
GLB database. Similarly, if a server terminates abnormally without unregistering itself, you
can use the lb_admin command to manually remove its entry from the GLB database.

Network Computing System (NCS) 5-79

NCS Daemons and Utilities
The description of each NCS daemon and utility program includes the following information:

• A Purpose section identifying the use of the daemon or utility

• A Syntax section showing the syntax or location of the program

• A Description section giving an explanation of the usage

• A Files section describing any files related to the operation of the program.

Some of the daemons and utilities also include descriptions of subcommands that are used
along with the program, and examples of command usage.

List of Daemons and Utilities
The following is a list of NCS-related commands and daemons. The descriptions of each
can be found in Commands Reference.

• lb_admin command

• llbd daemon

• nidl command

• nrglbd daemon

• uuid_gen command.

5-80 Communications Programming Concepts

rpc_$ Library Routines (NCS)

Constants

This section provides reference descriptions of the rpc_$ library routines. These routines
implement the NCS Remote Procedure Call (RPC) mechanism.

The definitions of the constants and types associated with the rpc_$ routines and
descriptions of error values that are specific to each routine are discussed in the following.
Error values returned by other subsystem procedures are not documented.

Note: In these routines, all input parameters except integers and pointers are passed by
reference, and all output parameters are passed by reference.

The following constants are used in rpc_$ routines. The value of the constant is enclosed in
()parentheses.

socket_$unspec_port (0) Port number indicating to the RPC runtime software that
no port is specified.

The following 16-bit integer constants are used in specifying the communications protocol
address families in socket_$addr_t structures:

socket_$unspec (0)

socket_$internet (2)

socket_$dds (13)

Address family is unspecified.

Internet Protocols (IP).

Domain protocol (DDS).

Note: The rpc_$use_family and rpc_$use_family_wk routines use the 32-bit integer
equivalents of these values.

External Variable
The following external variable is used in rpc_$ routines:

uuid_$nil

Data Types

An external uuid_$t variable that is preassigned the value of the nil UUID.
Do not change the value of this variable.

The following data types are used in rpc_$ routines:

handle_t

rpc_$epv_t

rpc_$if_spec_t

rpc_$server_stub_t

An RPC handle.

An entry point vector (EPV), which specifies an array of server stub
procedures.

An RPC interface specifier. This opaque data type contains information
about an interface, including its UUID, the current version number, any
well-known ports used by servers that export the interface, and the
number of operations in the interface.

A pointer to a server stub procedure. This type is used in the server
stub EPV to point to the stub representation of a called procedure.

Network Computing System (NCS) 5-81

socket_$addr _t

status_$t

A socket address record that uniquely identifies a socket.
A record with the following fields:

Family 16-bit integer The address family

Socket Address 14 bytes The socket address.

The format of the address depends on the address family.

A status code. The following C typedef statement defines the
status_$t data type:

typedef union {
struct {

unsigned fail 1,
subsys 7,

mode 8;
short code;

} s;
long all;

} status_$t;

The following illustrates this type:

31

I all

or

31 24 16

11 subsys I mode I code

t
fail

Field Description

all All 32 bits in the status code.

0

I
0

I

fall The fail bit. If this bit is set, the error was not within the
scope of the module invoked, but in a lower level module.

subsys The subsystem that encountered the error.

mode The module that encountered the error.

code A signed number that identifies the type of error that
occurred.

5-82 Communications Programming Concepts

uuid_$t

rpc_$ Status Codes

A 128-bit value that uniquely identifies an object, type, or interface for
all time. The following C typedef statement defines the uuid_$t data
type:

typedef struct uuid_$t {
unsigned long time_high;
unsigned short time_low;
unsigned short reserved;
unsigned char family;
unsigned char (host)[?];

} uuid_$t;

The following illustrates this type:

127 112

time_high

time_high

time_low

reserved

family

15

Field

host

host

host

time_high

time_low

reserved

family

host

host

host

host

host

0

Description

The high 32 bits of a 48-bit unsigned time value, which
is the number of 4-microsecond intervals that have
passed between 1/1/1980 00:00 GMT and the time of
UUID creation.

The low 16 bits of the 48-bit time value.

16 bits of reserved space.

An 8-bit address family identifier corresponding to the
value used in a socket_$addr_t record.

7 bytes that specify the host on which the UUID was
created. The format depends on the address family of
the host.

The following status codes for errors are returned by RPC routines:

rpc_$comm_failure

rpc_$op_rng_error

The client is unable to get a response from the server.

The requested operation does not correspond to a valid
operation in the requested interface.

Network Computing System (NCS) 5-83

rpc_$unk_if

rpc_$cant_create_sock

rpc_$cant_bind_sock

rpc_$wrong_boot_time

rpc_$too_many_ifs

rpc_$not_in_call

rpc_$you_crashed

rpc_$proto_error

rpc_$too _many _sockets

rpc_$illegal_register

rpc_$bad_pkt

rpc_$unbound_handle

rpc_$addr_in_use

5-84 Communications Programming Concepts

The requested interface is not known. It is not registered
in the server, the version number of the registered
interface is different from the version number specified in
the request, or the UUID in the request does not match
the UUID of the registered interface.

The RPC runtime library is unable to create a socket.

The RPC runtime library created a socket but was unable
to bind it to a socket address.

The server boot time value maintained by the client does
not correspond to the current server boot time. (The
server was probably rebooted while the client program
was running.)

The maximum number of interfaces is already registered
with the RPC runtime library. The server must unregister
some interface before it registers an additional interface.

An internal error.

This error can occur if a server has crashed and
restarted. A client RPC runtime library sends the error to
the server if the client makes a remote procedure call
before the server crashes, and then receives a response
after the server restarts.

An internal protocol error.

The server is trying to use more than the maximum
number of sockets allowed. The server has called the
rpc_$use_family or rpc_$use_family_wk routine too
many times.

You are trying to register an interface that is already
registered and you are using an EPV different from the
one used when the interface was first registered. An
interface can be multiply registered, but you must use the
same EPV in each call to the rpc_$register routine.

The server or client has received an ill-formed packet.

The handle is not bound and does not represent a
particular host address. This status code is returned by
the rpc_$inq_binding routine.

The address and port specified in a call to the
rpc_$use_family_wk routine are already in use. This is
caused by multiple calls to the rpc_$use_family_wk
routine with the same well-known port.

List of rpc_$ Library Routines
The following routines are found in Calls and Subroutines Reference.

• rpc_$alloc_handle
• rpc_$bind
• rpc_$clear_binding
• rpc_$clear_server_binding
• rpc_$dup_handle
• rpc_$free_handle
• rpc_$inq_binding
• rpc_$inq_object
• rpc_$1isten
• rpc_$name_to_sockaddr
• rpc_$register
• rpc_$set_binding
• rpc_$sockaddr_to_name
• rpc_$unregister
• rpc_$use_family
• rpc_$use_family_wk

Network Computing System (NCS) 5-85

pfm_$ Library Routines (NCS)
This section provides reference descriptions of the pfm_$ library routines. These routines
allow programs to manage signals, faults, and exceptions by establishing cleanup handlers.

Definitions of the constants and types associated with the pfm_$ routines and descriptions
of error values that are specific to the routines are discussed in the first section. Error values
returned by other subsystem procedures are not documented. The cleanup handler is also
discussed.

Note: In these routines, all input parameters except integers and pointers are passed by
reference, and all output parameters are passed by reference.

Cleanup Handlers

Constant

A cleanup handler is a piece of code that ensures a program terminates gracefully when it
receives a fatal error. A cleanup handler begins with a call to the pfm_$cleanup routine. It
usually ends with a call to the pfm_$signal or pfm_$exit routine. It can also simply continue
back into the program after the cleanup code.

A cleanup handler is not entered until all fault handlers established for a fault have returned.
If there is more than one established cleanup handler for a program, the most recently
established cleanup handler is entered first, followed by the next most recently established
cle(;\nup handler, and so on, up to the first established cleanup handler if necessary.

A default cleanup handler is invoked after all user-defined handlers have completed. The
default cleanup handler releases any resources still held by the program, before returning
control to the process that invoked it.

The following constant is used in pfm_$ routines:

pfm_$init_signal_handlers Used as the flags parameter to the pfm_$init routine,
causing C signals to be intercepted and converted to
program fault management (PFM) signals.

Data Types
The following data types are used in pfm_$ routines:

pfm_$cleanup_rec A record type for passing process context among cleanup handler
routines. It is an opaque data type.

status_$t A status code. The following C typedef statement defines the
status_$t data type:

typedef union {
struct {

unsigned fail : 1,
subsys : 7,
mode 8;

short
} s;
long all;

} status_$t;

code;

5-86 Communications Programming Concepts

pfm_$ Status Codes

The following illustrates this type:

31 0

I all I
or

31 24 16 0

11 subsys I mode
I

code I
t

fail

Field Description

all All 32 bits in the status code.

fail The fail bit. If this bit is set, the error was not within the
scope of the module invoked, but in a lower level module.

subsys The subsystem that encountered the error.

mode The module that encountered the error.

code A signed number that identifies the type of error that
occurred.

The following status codes for errors are returned by program fault management routines:

pfm_$bad_rls_order

pfm_$cleanup_not_found

pfm_$cleanup_set

pfm_$cleanup_set_signalled

pfm_$invalid_cleanup_rec

pfm_$no_space

status_$ok

An attempt was made to release a cleanup handler
out of order.

There is no pending cleanup handler.

A cleanup handler was established successfully.

An attempt was made to use pfm_$cleanup_set as a
signal.

An invalid cleanup record was passed to a routine.

Storage cannot be allocated for a cleanup handler.

The routine was successful.

Network Computing System {NCS) 5-87

List of pfm_$ Library Routines
The following routines are found in Calls and Subroutines Reference

• pfm_$cleanup

• pfm_$enable

• pfm_$enable_faults

• pfm_$inhibit

• pfm_$inhibit_faults

• pfm_$init

• pfm_$reset_cleanup

• pfm_$rls_cleanup

• pfm_$signal

5-88 Communications Programming Concepts

lb_$ Library Routines (NCS)

Constants

This section provides reference descriptions of the lb_$ library routines. These constitute the
programming interface to the Location Broker.

Definitions of the constants and types associated with the lb_$ routines and descriptions of
error values that are specific to the routines are discussed in the first section. Error values
returned by other subsystem procedures are not documented.

Note: In these routines, all input parameters except integers and pointers are passed by
reference, and all output parameters are passed by reference.

The following constants are used in lb_$ routines:

lb_$default_lookup_handle
Assigned to an lb_$1ookup_handle_t variable for use as an input
parameter value. If you use this constant, a Location Broker lookup
routine will start searching at the beginning of the database. The
value of this constant is O (zero).

lb_$server_flag_local Used in the flags field of an lb_$entry_t variable. This constant
specifies that the server that implements the interface is available to
the local node only. It is registered only in the Local Location Broker
(LLB) database. If this flag is not set, the information for the entry is
also registered in the Global Location Broker (GLB) database. The
value of this constant is 1 (one).

External Variable
The following external variable is used in lb_$ lookup routines:

uuid_$nil An external uuid_$t variable that is preassigned the value of the nil
Universal Unique Identifier (UUID). It is used as a wild card in
Location Broker lookup operations. Do not change the value of this
variable.

Network Computing System (NCS} 5-89

Data Types
The following data types are used in lb_$ routines:

lb_$entry_t An identifier for an object, a type, an interface, and the socket
address used to access a server exporting the interface to the
object. The record contains the following fields:

Field Type Description

object uuid_$t The UUID for the object.

obj_ type uuid_$t The UUID for the type of
the object.

obj_interface uuid_$t The UUID for the
interface.

flags lb_$server_flag Must be O or
lb_$server_flag_local.

annotation 64-character array User-defined textual
annotation.

saddr_len 32-bit integer The length of the socket
address (saddr) field.

saddr socket_$addr_t The socket address of the
server.

Note: If the object, type, or interface is not associated, the value
for the UUID can be uuid_$nil.

lb_$1ookup_handle_t A 32-bit integer used to specify the location in the database at
which a Location Broker lookup operation starts.

socket_$addr_t

status_$t

A socket address record that uniquely identifies a socket. The
record contains the following fields:

Family 16-bit integer

Socket Address 14 bytes

The address family

The socket address.

The format of the address depends on the address family.

A status code. The following C typedef statement defines the
status_$t data type:

typedef union {
struct {

unsigned fail : 1,
subsys : 7,
mode 8;

short
} s;
long all;

} status_$t;

code;

5-90 Communications Programming Concepts

uuid_$t

The following illustrates this type:

31 0

I all I
or

31 24 16 0

11 subsys I mode
I

code I
t

fail

Field Description

all All 32 bits in the status code.

fail The fail bit. If this bit is set, the error was not within the
scope of the module invoked, but in a lower level module.

subsys The subsystem that encountered the error.

mode The module that encountered the error.

code A signed number that identifies the type of error that
occurred.

A 128-bit value that uniquely identifies an object, type, or interface
for all time. The following C typedef statement defines the uuid_$t
data type:

typedef struct uuid_$t {
unsigned long time_high;
unsigned short time_low;
unsigned short reserved;
unsigned char family;
unsigned char (host)[?];

} uuid_$t;

Network Computing System (NCS) 5-91

lb_$ Status Codes

The following illustrates this type:

127 112

time_high

time_high

time_low

reserved

family

15

Field

host

host

host

time_high

time_low

reserved

family

host

host

host

host

host

0

Description

The high 32 bits of a 48-bit unsigned time value,
which is the number of 4-microsecond intervals that
have passed between 1 /1 /1980 00:00 GMT and the
time of UUID creation.

The lower 16 bits of the 48-bit time value.

16 bits of reserved space.

An 8-bit address family identifier corresponding to
the value used in a socket_$addr_t record.

7 bytes that specify the host on which the UUID
was created. The format depends on the address
family of the host.

The following status codes for errors are returned by the Location Broker routines:

lb_$database_invalid The format of the Location Broker database is out of date for one of
the following reasons:

• The database may have been created by an old version of the
Location Broker. Delete the out-of-date database and register
again any entries that it contained.

• The LLB or GLB database being accessed may be running
out-of-date software. Update all Location Brokers to the current
software version.

lb_$database_busy The Location Broker database is currently in use in an incompatible
manner.

5-92 Communications Programming Concepts

lb_$not_registered The Location Broker does not have any entries that match the
criteria specified in the lookup or unregister call. The requested
object, type, interface, or combination of these items is not
registered in the specified database. If you are calling an
lb_$1ookup_object_local or lb_$1ookup_range routine specifying
an LLB, check that you have specified the correct LLB database.

lb_$update_failed The Location Broker is unable to register or unregister the entry (for
example, because the broker ran out of disk space).

lb_$cant_access The Location Broker cannot access the database for one of the
following reasons:

The database does not exist, and the Location Broker cannot create
it.

The database exists, but the Location Broker cannot access it.

The GLB entry table or the GLB propagation queue is full.

lb _$server _unavailable
The Location Broker Client Agent cannot reach the requested GLB
or LLB database. A communications failure has occurred or the
broker was not running.

List of lb_$ Library Routines
The following is a list of NCS-related routines. Descriptions of each can be found in Calls
and Subroutines Reference.

• lb_$1ookup_interface

• lb_$1ookup_object

• lb_$1ookup_object_local

• lb_$1ookup_range

• lb_$1ookup_type

• lb_$register

• lb_$unregister

Network Computing System (NCS) 5-93

uuid_$ Library Routines (NCS)
This section provides reference descriptions of the uuid_$ library routines. These create and
access Universal Unique Identifiers (UUIDs).

Definitions of the external variables and data types associated with the uuid_$ routines are
discussed first.

Note: In these routines, all input parameters, except integers and pointers, are passed by
reference. All output parameters are passed by reference as well.

External Variables
The following external variables are used in uuld_$ routines:

uuid_$nil

uid_$nil

Data Types

An external uuid_$t variable that is preassigned the value of the nil UUID.
Do not change the value of this variable.

An external uid_$t variable that is preassigned the value of the nil UID. Do
not change the value of this variable.

The following data types are used in uuid_$ routines:

status_$t A status code. The following C typedef statement defines the status_$t
data type:

typedef union {
struct {

unsigned fail : 1,
subsys 7,

mode : 8;
short

} s;
long all;

} status_$t;

code;

5-94 Communications Programming Concepts

uid_$t

uuid_$t

The following illustrates this type.

31

I

31 24

11 subsys I

t
fail

Field

all

fail

subsys

mode

code

0
all I
or

16 0
mode I code I

Description

All 32 bits in the status code.

The fail bit. If this bit is set, the error was not within the
scope of the module invoked, but in a lower level module.

The subsystem that encountered the error.

The module that encountered the error.

A signed number that identifies the type of error that
occurred.

A 64-bit value that uniquely identifies objects and types.

A 128-bit value that uniquely identifies an object, type, or interface for all
time. The following C typedef statement defines the uuid_$t data type:

typedef struct uuid_$t {
unsigned long tirne_high;
unsigned short tirne_low;
unsigned short reserved;
unsigned char family;
unsigned char 'host)[?];

} uuid_$t;

Network Computing System (NCS) 5-95

• Field
Description

The following illustrates this type:

127 112

time_high

time_high

time_low

reserved

family

host

host

host

15

time_high

time_low

reserved

family

host

host

host

host

host

0

The high 32 bits of a 48-bit unsigned time value, which is
the number of 4-microsecond intervals that have passed
between 1/1/1980 00:00 GMT and the time of UUID
creation.

The lower 16 bits of the 48-bit time value.

16 bits of reserved space.

An 8-bit address family identifier corresponding to the value
used in a socket_$addr _t.

7 bytes that specify the host on which the UUID was
created. The format depends on the address family of the
host.

uuid_$string_t A string of 37 characters (including a null terminator) that is an ASCII
representation of a UUID. It takes the following form:

cccccccccccc.ff.hl.h2.h3.h4.h5.h6.h7

The cccccccccccc field specifies the time stamp in hexadecimal digits.
The ff field specifies the address family, in hexadecimal digits, and
hl .•. h7 specifies the 7-byte host ID, in hexadecimal digits.

List of uuid_$ Library Routines
The following is a list of NCS-related routines. Descriptions of each can be found in Calls
and Subroutines Reference.

• uuid_$decode

• uuid_$encode

• uuid_$gen

5-96 Communications Programming Concepts

Glossary
address family. A set of communications protocols that use a common addressing
mechanism to identify end points. This term is often used synonymously with protocol family.

allocate (a handle). To create a Remote Procedure Call (RPC) handle that identifies an
object.

bind. To set a binding. NCS provides two library routines that bind: rpc_$bind, which both
creates and binds a handle, and rpc_$set_binding, which requires a handle as an input
parameter.

binding. A temporary association between a client and both an object and a server that
exports an interface to the object. A binding is meaningful only to the program that sets it
and is represented by a bound handle.

broker. A server that manages information about objects and interfaces to the objects. A
program that wishes to become the client of an interface can use a broker to obtain
information about servers that export the interface. Location brokers are brokers.

client. A user of an interface. In the context of this manual, a program that makes remote
procedure calls.

Client Agent. See Location Broker Client Agent.

entry point vector (EPV). A record whose fields are pointers to procedures that implement
the operations defined by an interface.

EPV. See entry point vector.

export. To provide the operations defined by an interface. A server exports an interface to a
client. See also import.

GLB. See Global Location Broker.

Global Location Broker (GLB). Part of the NCS Location Broker. A server that maintains
global information about objects on a network or an internet.

handle. A data structure that is a temporary local identifier for an object. You create a
handle by allocating it. You make a handle identify an object at a specific location by binding
it.

host. A computer that is attached to a network.

host ID. An identifier for a host. A host ID uniquely identifies a host within an address family
on a network, but does not identify the network. A host ID is not necessarily sufficient to
establish communications with a host. See also network address.

idempotent. A class of operations. An operation is idempotent if its results do not affect the
results of any operation. For example, a call that returns the time is idempotent.

import. To request the operations defined by an interface. A client imports an interface from
a server. See also export.

interface. A set of operations. The Network Computing Architecture specifies a Network
Interface Definition Language for defining interfaces.

Network Computing System (NCS) 5-97

Internet Protocol (IP). The protocol that provides the interface from the higher level
host-to-host protocols to the local network protocols. Addressing at this level is usually from
host to host.

IP. See Internet Protocol.

LLB. See Local Location Broker.

Local Location Broker (LLB). Part of the NCS Location Broker. A server that maintains
information about objects on the local host. The LLB also provides the Location Broker
forwarding facility.

Location Broker. A set of software including the Local Location Broker, the Global Location
Broker, and the Location Broker Client Agent. The Location Broker maintains information
about the locations of objects.

Location Broker Client Agent. Part of the NCS Location Broker. Programs communicate
with Global Location Brokers and with remote Local Location Brokers using the Location
Broker Client Agent.

marshall. To copy data into a Remote Procedure Call (RPC) packet. Stubs perform
marshalling. See also unmarshall.

NCK. See Network Computing Kernel.

NCS. See Network Computing System.

network address. A unique identifier (within an address family) for a specific host on a
network or an internet. The network address is sufficient to identify a host, but does not
identify a communications end point within the host.

Network Computing Architecture. A set of protocols and architectures that support
distributed computing.

Network Computing Kernel (NCK). The combination of the RPC runtime library and the
Location Broker, which contain the necessary pieces required to run distributed applications.

Network Computing System (NCS). A set of software tools developed by Apollo Computer
Inc. that conform to the Network Computing Architecture. These tools include the Remote
Procedure Call runtime library, the Location Broker, and the NIDL compiler.

Network Interface Definition Language (NIDL). A declarative language for the definition of
interfaces. A component of the Network Computing Architecture. NIDL has two forms, a
Pascal-like syntax and a C-like syntax.

NIDL. See Network Interface Definition Language.

NIDL compiler. An NCS tool that converts an interface definition, written in NIDL, into
several program modules, including source code for client and server stubs. The NIDL
compiler accepts interface definitions written in either syntax of NIDL. It generates C source
code and C or Pascal header files.

object. An entity that is manipulated by well-defined operations. Disk files, printers, and
array processors are examples of objects. Objects are accessed though interfaces. Every
object has a type.

object UUID. A UUID that identifies a particular object. Both the RPC runtime library and the
Location Broker use object UUIDs to identify objects.

5-98 Communications Programming Concepts

operation. A procedure through which an object is accessed or manipulated. An operation
is defined syntactically by its name and its parameters but not by its implementation.

PFM. See program fault management.

port. A specific communications end point within a host. A port is identified by a port
number. See also socket.

program fault management (PFM). A subsystem of NCS that allows a user to set up
cleanup routines when an application fails to complete successfully.

protocol family. A set of related communications protocols, for example, the Department of
Defense Internet Protocols. All members of a protocol family use a common addressing
mechanism to identify end points. This term is often used synonymously with address family.

register (an interface). To make an interface known to the RPC runtime library, and thereby
available to clients through the RPC mechanism. The rpc_$register routine registers an
interface.

register (an object). To enter an object and its location in the Location Broker database. The
lb_$register routine registers an object with the Location Broker. A program can use
Location Broker lookup routines to determine the location of a registered object.

remote procedure call. An invocation of a remote operation. You can make remote
procedure calls between processes on different hosts or on the same host.

Remote Procedure Call runtime library. The set of rpc_$ library routines that NCS
provides to implement a remote procedure call mechanism.

RPC. See remote procedure call.

server. A process that implements interfaces. In the context of this manual, a server whose
procedures can be invoked from remote hosts. A server exports one or more interfaces to
one or more objects.

set (a binding). To associate an allocated Remote Procedure Call (RPC) handle with a
specific socket address.

socket. A port on a specific host; a communications end point that is accessible through a
protocol family's addressing mechanism. A socket is identified by a socket address.

socket address. A data structure that uniquely identifies a specific communications end
point. A socket address consists of a port number and a network address. It also specifies
the address family (protocol family).

stub. A program module that transfers remote procedure calls and responses between a
client and a server. Stubs perform marshalling, unmarshalling, and data format conversion.
Both clients and servers have stubs. The NIDL compiler generates client and server stub
code from an interface definition.

type. A class of object. All objects of a specific type can be accessed though the same
interface or interfaces.

type UUID. A UUID that permanently identifies a particular type. Both the RPC runtime
library and the Location Broker use type UUIDs to specify types.

UID. See user number.

Universal Unique Identifier {UUID). A 128-bit value used for identification. NCS uses
UUIDs to identify interfaces, objects, and types.

Network Computing System (NCS) 5-99

unmarshall. To copy data from an RPC packet. Stubs perform unmarshalling. See also
marshal/.

user number. A number that uniquely identifies a user to a system.

UUID. See Universal Unique Identifier.

5-100 Communications Programming Concepts

Chapter 6. Network Management/6000 (xgmon)

The AIX Network Management/6000 Licensed Program (xgmon) is a network management
program for monitoring TCP/IP networks. It assists in monitoring the status of all the
machines on a network by communicating with SNMP agents and receiving SNMP-based
traps. This chapter provides detailed information on the xgmon programming utility, which
enables you to extend the xgmon program, as well as information on the SNMP API
Subroutine Library, which allows you to create SNMP manager applications. Also included
is information on the Simple Network Management Protocol (SNMP), the SNMP daemon,
and the SNMP Command Line Manager.

xgmon Overview
The xgmon network monitor program is designed so that it can be readily customized by the
end user. However, the end user must know where the relevant directories are and which
features can be altered by setting the environment variables appropriately. The relevant
directories are:

• /usr/lpp/xgmon

• /usr/lpp/xgmon/bin

• /usr/lpp/xgmon/lib

• /etc

• $HOME

The xgmon client (manager) is a monitor for TCP/IP networks. To understand the xgmon
program and exploit its full potential, the programmer needs to have a working knowledge of
AIX, C programming, and general TCP/IP network management protocols. The following
RFCs will also be of use:

• RFC 1098, Simple Network Management Protocol (SNMP)

• RFC 1066, Management Information Base for Network Management of TCP/IP-based
internets (MIB)

• RFC 1065, Structure and Identification of Management Information for TCP/IP-based
internets (SMI).

Consult the xgmon Overview for Network Management in Communication Concepts and
Procedures for more information on xgmon.

Environment variables, or shell variables, are set by the user to define the current shell
environment. Environment variables that are used by the xgmon program are:

GLIB Defines the path for the xgmon library programs. The xgmon
program uses the default setting of the /usr/lpp/xgmon/lib directory
for this variable.

Note: If the network manager chooses to use a different library
program directory, the GLIB environment can be set to this
other directory before the xgmon program is invoked.

Network Management/6000 (xgmon) 6-1

XGMONFONT Defines the X11 font used in the topology display window and the
virtual G machine windows. See the /usr/lpp/fonts directory for the
available X11 fonts. The xgmon program uses the default setting of
8x13 for this variable.

Note: The font specified should be of fixed width for proper
orientation. The xgmon client (manager) deals correctly with
variable width fonts in a topology display window, but the
results will not be as desired when used in a virtual G machine
output window.

Set and export environment variables as follows:

EnvironmentVariable= Value
export EnvironmentVariable

As shipped, the xgmon distribution resides under the /usr/lpp/xgmon directory. The
xgmon binary is found under the bin subdirectory, and the library commands are stored
under the lib subdirectory. This binary may be copied or moved to a directory already in the
user's search path (such as /usr/bin), or the directory itself may be added to the search
path.

The xgmon program must be run with root privileges to support all of its capabilities. The
xgmon program is therefore installed as a setuid program owned by the root user.

The xgmon client (manager) obtains its description of Management Information Base (MIB)
variables (described by RFC 1066) from the mib_desc file found in the /etc directory. For
more information on these variables, see Working with Management Information Base (MIB)
Variables on page 6-9. For more information on the tree structure of the MIB database, see
Understanding the Management Information Base (MIB) on page 6-3.

The xgmon program can be extended by a C programmer. This is done by making new
intrinsic functions available to library programs. A user-written intrinsic function can override
an intrinsic function already in the xgmon program. This is done by giving the new intrinsic
function the same name as the existing function it replaces. See How to Create xgmon
Intrinsic Functions on page 6-43 and Extending xgmon Intrinsic Functions on page 6-23.

The xgmon program contains a compiler that translates programs written in the xgmon
programming utility into object code that is interpreted by virtual G machines (VGMs). The
operation of the VGMs is overseen by the xgmon program. Each VGM works on its own
library program. More than one library program can execute at the same time because the
xgmon client (manager) is ·able to control more than one VGM at a time. See Working with
the Virtual G Machine (VGM) Output Windows in Communication Concepts and Procedures.

The xgmon program is able to communicate with SNMP agents. It is also able to receive
SNMP-based traps. Trap information may arrive by way of the conventional SNMP UDP
packets. These traps are made available to library programs executing within virtual G
machines. In addition, the ping command (ICMP ECHO/ECHO RESPONSE) can be used
within the xgmon program to check the reachability of hosts.

6-2 Communications Programming Concepts

The xgmon program supports the following hardware:

• IBM RISC System/6000

• IBM Megapel display (5081)

• IBM ASCII terminals (line mode).

The xgmon client (manager) supports the following software platform:

• AIX 3.1.

In principle, the code should run on any AIX system, but only the above system has been
tested.

Understanding the Simple Network Management Protocol
(SNMP)

The Simple Network Management Protocol (SNMP) is a protocol used by network hosts to
exchange information used in the management of networks. SNMP is defined in Requests
For Comments (RFCs), available from the Network Information Center at SRI International,
Menlo Park, California.

The following RFCs define SNMP:

RFC1065

RFC1066

RFC1098

Defines the structure of Management Information.

Defines the Management Information Base (MIB) for network management.

Defines the SNMP protocol for creating requests for MIB information and
formatting responses.

SNMP network management is based on the familiar client-server model that is widely used
in TCP/IP-based network applications. Each host that is to be managed runs a process
called an agent. The agent is a server process that maintains the MIB database for the host.
Hosts that are involved in network management decision-making may run a process called a
monitor. A monitor is a client application that generates requests for MIB information and
processes responses. In addition, a monitor may send requests to agent servers to modify
MIB information.

Understanding the Management Information Base (MIB)
The Management Information Base (MIB) is a database containing the information pertinent
to network management. The database is conceptually organized as a tree. The upper
structure of this tree is defined in RFC 1065 and RFC 1066. The internal nodes of the tree
represent subdivision by organization or function. MIB variable values are stored in the
leaves of this tree. Thus, every distinct variable value corresponds to a unique path from the
root of the tree. The children of a node are numbered sequentially from left to right, starting
from 1, so that every node in the tree has a unique name, which consists of the sequence of
node numbers that comprise the path from the root of the tree to the node.

Network Management/6000 (xgmon) 6-3

The following figure is a representation of part of the MIB tree:

(.)

joint-iso-ccitt (3)

internet (1)

mgmt (2)

version-number (1)

Internet-standard MIB database

The network management data for the Internet is stored in the subtree reached by the path
1.3.6.1.2.1. This notation is the conventional way of writing the numeric path name,
separating node numbers by periods. All variables defined in RFC 1066 have numeric
names that begin with this prefix.

Note: Future versions of the Internet-standard MIB may have higher version numbers. The
names of variables will therefore be distinct from those of earlier versions.

6-4 Communications Programming Concepts

A typical variable value is stored as a leaf, as represented in the following figure:

1.3.6.1.2.1

system (1)

sysDescr (1) sysObjectld (2)

value (0) value (0)

sysUpTime (3)

Variable names:
defined by RFC1065
and RFC1066

Instance values: defined
by the administrator of
the host, in conformance
with RFC1098

value (0)

The values of the variables are data associated by the MIB manager with each uniquely
named instance of a variable. For example, 1.3.6.1.2.1.1.0 is the unique name of the system
description, a text string describing the host's operational environment. There is only one
such string, so the instance of the variable name 1.3.6.1.2.1.1 is denoted by a O (zero),
which is reserved for this use only. Many other variables have multiple instances as shown in
the following figure:

ipRouteEntry (1.3.6.1.2.1.4.21.1)

ipRouteAge (10)

value (127 .50.50.50)

Variable names:
defined by RFC1065
and RFC1066

Instance values: defined
by the administrator of
the host, in conformance
with RFC1098

value (255.25.50. 75)

Network Management/6000 (xgmon) 6-5

Each variable that contains information about a route has an instance that is simply the IP
address of the route's destination. Other variables have more complex rules for forming
instances. The variable name uniquely identifies a group of related data, while the variable
instance is a unique name for a particular datum within the group. Thus,
1 • 3 • 6 • 1 • 2 • 1 • 4 • 21 • 1 • 1 o is the name of the variable whose instances are route ages,
while 1 • 3 • 6 • 1 • 2 • 1 • 4 • 21 • 1 • 1 o • 12 7 • so • so • so is the nanie of the instance that
contains the age of the route to a host with IP address 12 7 • 5 o • so • 5 o.

Understanding Terminology Related to Management Information Base
(MIB) Variables

RFCs 1065 and 1066 define the Management Information Base (MIB) as an object-oriented
database. They refer to the node names as Object Identifiers. Most nodes also have
descriptive textual names called Object Descriptors. The Object Descriptors are convenient
aliases, but SNMP request packets refer to variable instances only by Object Identifier.
Variable names and variable instances are both denoted by Object Identifiers or Object
Descriptors. To clearly distinguish the four possible combinations, the following non-RFC
terminology is used here, in particular in describing the syntax and use of the API
subroutines:

Terminology

Non-RFC Terminology RFC Terminology Example

Text-format variable name Object Descriptor of a variable sysDescr
(denotes the descriptive
textual name of a variable)

Numeric-format variable name Object Identifier of a variable 1.3.6.1.2.1.1.1
(denotes a variable name
expressed as a sequence of
decimal numbers separated
by periods)

Text-format instance ID Object Descriptor of a variable sysDescr.O
(denotes a text-format variable with an instance appended
name qualified by an instance)

Numeric-format instance ID Object Identifier of a variable 1.3.6.1.2.1.1.1.0
(denotes a numeric-format with an instance appended
variable name qualified by an
instance)

Instance IDs are just variable names with an instance appended. A variable name refers to a
set of related data, while an instance ID refers to a specific datum from the set.

For information on the API subroutines, see Using the SNMP API Subroutine Library on
page 6-1 O and Alphabetic List of API Subroutines on page 6-12.

Using the Management Information Base (MIB) Database
Network management can be passive or active. Passive management involves the collection
of statistical data so that the network activity of each host can be profiled. Every variable in
the Internet-standard MIB has a value that can be queried and used for this purpose. Active
network management involves the use of a subset of MIB variables that are designated
read-write. When an agent is instructed to modify the value of one of these variables, an
action is taken on the agent's host as a side effect. For example, a request to set
ifAdminStatus.3 to the value 2 has the side effect of disabling the network adapter card
whose iflndex is 3.

6-6 Communications Programming Concepts

Requests to read or change variable values are generated by monitor applications. There
are three kinds of requests:

get Returns the value of the specified variable instance.

get-next

set

Returns the value of the variable instance following the specified instance.

Modifies the value of the specified variable instance.

Requests are encoded according to the ISO ASN.1 CCITT standard for data representation
(ISO document DIS 8825). Each get request contains a list of pairs of variable instances and
variable values. This is called the variable binding list. The variable values are empty when
the request is transmitted. The values are filled in by the receiving agent and the entire
binding list is copied into a response packet for transmission back to the monitor. If the
request is a set request, the request packet also contains a list of variable values. These
values are copied into the binding list when the response is generated. If an error occurs, the
agent immediately stops processing the request packet, copies the partially processed
binding list into the response packet, and transmits it with an error code and the index of the
binding that caused the error.

The get-next request deserves special consideration. It is designed to navigate the entire
Internet-standard MIB subtree. Since all instance IDs are sequences of numbers, they can
be ordered. The first four instance IDs are:

1.3.6.1.2.1.1.1.0

1 .3.6.1 .2.1.1 .2.0

1.3.6.1.2.1.1.3.0

1.3.6.1.2.1.2.1.0

sysDescr.O

sysObjectld.O

sysUpTime.O

ifNumber.O

A get-next request for sysUpTime.O returns a binding list containing the following pair:
(ifNumber.O, Value). Instance IDs are somewhat like decimal number representations, with
the digits to the right increasing more rapidly than the digits on the left. Unlike decimal
numbers, the digits have no real base. The possible values for each digit are determined by
the RFCs and the instances that are appended to the variable names. The important feature
of the get-next request is that it allows a traversal of the whole tree, even though instances
are not known.

The following example is an illustration of the algorithm, not of actual code:

struct binding {
char instance[lengthl];
char value[length2];
}bindlist[maxlistsize];

bindlist[O] = get(sysDescr.O);
for (i = 1; i < maxlistsize && bindlist[i-1].instance !=NULL; i++)
{

bindlist[i] = get_next(bindlist[i-1].instance);
}

The fictitious get and get-next functions in this example return a single binding pair, which is
stored in an array of bindings. Each get-next request uses the instance returned by the
previous request. By daisy-chaining in this way, the entire MIB database is traversed.

Network Management/6000 (xgmon) 6-7

Understanding How a Monitor Functions
Monitors are the clients in the clienVserver relationship. They are divided into two functional
layers as shown in the following figure:

MONITOR

APPLICATION PROTOCOL
r.... J NETWORK] ["Ill" 1

Creates requests Encodes and transmits
Processes replies Decodes replies
Makes decisions Detects errors

The protocol layer accepts requests from the application layer, encodes them in ASN.1
format, and transmits them on the network. It receives and decodes replies and trap
packets, detects erroneous packets, and passes the data up to the application layer.

The application layer does the real work of the monitor. It decides when to generate requests
for variable values and what to do with the results. A monitor may perform a merely passive
statistics-gathering function, or it may attempt to actively manage the network by setting new
values in read-write variables on some hosts. For example, a network interface may be
enabled or disabled by means of the ifAdminStatus variable. The variables in the ipRoute
family can be used to download kernel route tables, using data obtained from a router.

Understanding How an Agent Functions
Agents are the servers in the clienVserver relationship. Agents listen on well-known port 161
for request packets from monitors. In addition to the protocol and application layers, agents
must also communicate with the operating system kernel. Most of the information in the
Internet-standard MIB is maintained by kernel processes. The actions associated with a set
request are often implemented as ioctl commands. In addition, the kernel may generate
asynchronous notifications called traps. Some MIB information may be managed by another
application, such as the gated daemon. The following figure illustrates the function of an
agent:

AGENT

KERNEL APPLICATION PROTOCOL
i...
~

Gets and saves values Processes requests Decodes requests
Performs set actions Creates replies Authenticates
Generates traps Sends trap packets Encodes replies

1 •
gated Daemon l NEi"wORK]

egplnMsgs egpOutMsgs
egplnErrors egpOutErrors
egpNeighAddr egpNeighState

6-8 Communications Programming Concepts

Traps

One of the tasks of the protocol layer is to authenticate requests. This is optional and not all
agents implement this task. If the protocol layer authenticates requests, the community
name included in every request packet is used to determine what access privileges the
sender has. The community name might be used to reject all requests (if it is an unknown
name), restrict the sender's view of the database, or reject set requests from some senders.
A monitor might belong to many different communities, within each of which it has a different
set of access privileges granted by the agents. A monitor might generate or forward requests
for other processes, using different community names for each.

The kernel may generate asynchronous event notifications called traps. For example, if an
interface adapter fails, the kernel may detect this and generate a link-down trap (in some
implementations, the agent may detect the condition). Other applications may generate
traps. For example, the gated daemon generates an egp neighbor-loss trap whenever it
puts an EGP (Exterior Gateway Protocol) neighbor into the down state. The agent itself
generates traps (cold-start, warm-start) when it initializes, and when authentication fails
(authentication-failure). Each agent has a list of hosts to which traps should be sent. The
hosts are assumed to be listening on well-known port 162 for trap packets.

Working with Management Information Base (MIB) Variables
The xgmon client (manager) obtains its description of the Management Information Base
(MIB) variables (described by RFC 1066) from the mib_desc file found in the /etc directory.
This file has the following format:

Format of the mib_desc File

Name Object ID Type TTL

sysDescr 1.3.6.1.2.1.1.1. string 900

The fields are separated by spaces or tabs, and contain the following information:

Name field

Object ID field

Type field

Holds the text description of the object.

Is the object identifier prefix assigned to the object class. The prefix is
entered with a trailing . (dot) at the point just prior to where an instance
would be specified.

Denotes the type of the object as one of the following:

• Number
• String
• Object
• Internet
• Counter
• Gauge
• Ticks.

Network Management/6000 (xgmon) 6-9

TTL field Contains the time-to-live value. This is the amount of time, in
seconds, that the xgmon program should consider the data as valid.
As long as a particular value is considered valid, the xgmon program
will not generate a query to obtain it. In some situations, network
traffic can be reduced by increasing the time-to-live value for a
particular variable class. The time-to-live value should never be less
than one second.

The Network Management program diskettes include a mib_desc file that contains all the
variables as specified in RFC 1066.

The following intrinsic functions have parameters that specify MIB object IDs: the base_type
intrinsic function, gw_var intrinsic function, real_type intrinsic function, and snmp_var
intrinsic function.

The following library commands have parameters that specify MIB object IDs: the snmp_get
library command, snmp_next library command, and snmp_set library command.

Using the SNMP API Subroutine Library
AC programmer can create SNMP manager applications by writing C programs that
communicate with an SNMP agent. A set of library subroutines are provided for this
interface. These library subroutines are stored in the /usr/lib/libsnmp.a file. A library
required by the libsnmp.a file is stored in the /usr/lib/libisode.a file. This software is
derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The
Northrup Corporation and The Wollongong Group.

The /usr/lib/libsnmp.a and /usr/lib/libisode.a files must be linked with the user's
application object files at link time.

Some of the API library subroutines access an additional file, the /etc/mib_desc file, which
defines Management Information Base (MIB) variables as described in RFC 1066. The
Simple Network Management Protocol (SNMP) is explained in RFC 1098.

To install the SNMP API library subroutines, place the IBM RISC System/6000 Network
Management LPP diskette #1 in the diskette drive. Type:

installp -F netmgr.api

and press Enter.

External Variables
All applications that use the API library subroutines should include the following definitions:

extern int SNMP_port; /*Socket returned by create_SNMP_port() */
extern sockaddr_in snmp_dest;

/*Socket address from create_SNMP_port() */
extern char *SNMP_errormsg[];

/* Contains messages for SNMP Return codes */

In addition, the following external variables may be declared:

#include <sys/time.h>
extern struct timeval SNMP_timeout;

/* Retry interval - default 5 seconds */
extern int max_SNMP_retries;

/* Maximum retry number - default is 3 */
extern int io_debug; /* io_debug == 1 means "trace packets" */

6-10 Communications Programming Concepts

The retry interval can be reset to 1 O seconds, and the number of retries to 5, with the
following instructions:

max_SNMP_retries = 5;
SNMP_timeout.tv_sec = 10;

Writing Applications Using the SNMP API Library
All applications that issue get, get-next, or set requests should have the following general
format:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>

extern int SNMP_port;
extern sockaddr_in snmp_dest;
extern char *SNMP_errormsg[];

main(argc,argv)
int argc;
char *argv[];
{
unsigned long addr;
int num_reqs;

char rpacket[l024];

char *req[50];

char *sval[50];

char *community;

int len,rc;

/* Binary IP address of agent host */
/* Number of instance IDs in the request

packet */
/* Buffer for ASN-encoded SNMP request

packet */
/* Array of up to 50 pointers to instance

IDs */
/* Array of up to 50 pointers to set

values */
/* Community name required for

authorization */

re= create_SNMP_port(addr); /* Bind a socket for use with SNMP */
if (re< 0) exit(l);

len = make_SNMP_request(l,community,num_reqs,req,O,rpacket,
sizeof(rpacket));

if (len < 0) exit(2); /* len > 0 is actual length of packet*/
re= send_recv_SNMP_packet(SNMP_port,&snmp_dest,rpacket,len);
if (re< 0) exit(3); /*No response received*/
if (re > 0) { /* SNMP error code from agent */

}
}

fprintf("%s\n",SNMP_errormsg[rc]);
exit(4)

In this example, make_SNMP_request is asked to send a get request. If the first parameter
is 2, the request is a get-next. If the first parameter is 3, it is a set request. In that case, the
fifth parameter {O in the example above) would be sva, a pointer to an array of pointers to
the set values corresponding to the instance IDs in the array req.

Network Management/6000 {xgmon) 6-11

Replacing the API Library Routines
The send_recv_SNMP _packet subroutine calls the parse_SNMP _packet subroutine to
analyze and process the get-response packet returned by the agent. An application that
listens on port 162 for traps generated by agents might call the parse_SNMP _packet
subroutine directly to process the trap data. After checking the packet for errors, the
parse_SNMP _packet subroutine calls either the save_SNMP _var subroutine to process
get-response packets, or the save_SNMP _trap subroutine to process trap data. The default
action of the library versions of these subroutines is to print the formatted data to standard
output.

These subroutines may be replaced by user-written subroutines that conform to the
documented entry protocols. A replacement subroutine might save trap data in a database
or forward it to another process. Remember that the save_SNMP _var subroutine is called
once for each variable binding in a get-response packet, and the save_SNMP _trap
subroutine is called once for each trap packet.

The create_SNMP _port subroutine does not support multiple concurrent data streams to
agents. One way to reach many agents is to close the port designated by the SNMP _port
variable after each use, and call the create_SNMP _port subroutine to reopen it for the next
request. Another way to do it is to ignore the create_SNMP _port subroutine, and write
application code to create a separate socket and corresponding socket address for each
data stream. However, the send_recv_SNMP _packet subroutine uses the sendto
subroutine to send the request, and then immediately calls the select subroutine to wait for
a response. If true concurrence is needed, the application should also replace the
send_recv_SNMP _packet subroutine.

You may wish to consult the following information: the parse_SNMP _packet subroutine, the
save_SNMP _trap subroutine, the save_SNMP _var subroutine, the
send_recv_SNMP _packet subroutine, and the snmpd command.

Alphabetic List of API Subroutines
. create_SNMP _port

extract_SNMP _name

get_MIB_base_type

get_MIB_name

Creates a UDP socket to communicate with an SNMP agent.

Extracts the variable name portion of a numeric-format instance
ID.

Returns a value indicating the base type of a Management
Information Base (MIB) variable.

Returns the text name of a Management Information Base (MIB)
variable.

get_MIB_variable_type Returns a value indicating the variable type of a Management
Information Base (MIB) variable.

lookup_addr Returns the text name of a host.

lookup_host Returns the Internet address of a host.

lookup_SNMP _group Finds the set of all numeric-format variable names that contain a
given text string as prefix.

lookup_SNMP _name Returns the numeric-format name of a Management Information
Base (MIB) variable.

make_SNMP _request Encodes an SNMP request.

6-12 Communications Programming Concepts

parse_SNMP _packet

save_SNMP _trap

save_SNMP _var

Decodes an SNMP packet.

Stores SNMP trap data.

Stores retrieved SNMP variable data.

send_recv_SNMP _packet
Sends a query to and awaits a response from an SNMP agent.

SNMP _errormsg Stores SNMP error messages.

Understanding the SNMP Daemon
The SNMP daemon is a background server process that may be run on any AIX 3.0 TCP/IP
host. The daemon, acting as SNMP agent, receives, authenticates, and processes SNMP
requests from monitor applications. Read Understanding the Simple Network Management
Protocol (SNMP) on page 6-3, Understanding How a Monitor Functions on page 6-8, and
Understanding How an Agent Functions on page 6-8 for more detailed information on
agent and monitor functions.

Note: The terms "SNMP daemon," "SNMP agent," and "agent" are used interchangeably.

TCP/IP support must be available before the SNMP daemon can be run, so the inetd
process must be started before the snmpd command is issued. In addition, the loO device
must be configured with the following command:

/etc/ifconfig loO loopback up

This software is derived in part from the ISO Development Environment (ISODE). IBM
acknowledges source author Marshall Rose and the following institutions for their role in its
development: The Northrup Corporation and The Wollongong Group.

Configuring the SNMP Daemon
The SNMP daemon will attempt to bind sockets to three ports, which must be defined in the
/etc/services file as follows:

snrnp 161/udp
rnib port#/udp
snrnp-conf port#/udp

The snrnp service must be assigned port 161, as required by RFC 1098. The two remaining
services may be assigned any unused port number, and are used for internal purposes. It is
recommended that the rnib and snrnp-conf services be assigned values greater than
1023. The assigned ports must be available before the SNMP daemon can run.

The /etc/services file shipped with AIX 3.0 assigns default values to each of these services.

Two configuration files are used by the SNMP daemon:

• The /etc/snmptrap.dest file, which contains a list of hosts that are to receive trap
packets.

Note: The /etc/snmptrap.dest file contains unencrypted community names, so read
permission should be granted only to members of the system group.

• The /etc/snmpd.pw file, which contains information used to authenticate requests and
determine request attributes. For more information on this file, see the smpl.pwinput file
and the mksnmppw command.

Network Management/6000 (xgmon) 6-13

Understanding SNMP Daemon Processing
Message Processing and Authentication

All requests, traps, and responses are transmitted in the form of ASN.1-encoded messages.
A message, as defined by RFC 1098, has the following structure:

Version Community POU

where Version is the SNMP version (currently version 1), Community is the community
name, and POU is the Protocol Data Unit that contains the SNMP request, response, or trap
data. A PDU is also encoded according to ASN.1 rules.

The SNMP daemon receives and transmits all SNMP protocol messages via the TCP/IP
UDP datagram protocol. Requests are accepted on well-known port 161, and traps are
transmitted to hosts identified in the /etc/snmptrap.dest file at the well-known port 162.

When a request is received, the source IP address and the community name are checked
against the /etc/snmpd.pw file. If no matching entry is found, the request is ignored. If a
matching entry is found, access is allowed according to the attributes assigned from the
/etc/snmpd.pw file. Both the message and the PDU must be encoded according to ASN.1
rules.

The authentication scheme described above is not intended to provide full security. If the
SNMP daemon is used only for get and get-next requests, security may not be a problem. If
set requests are allowed, the set privilege may be restricted.

See the snmpl.pwinput file and the mksnmppw command for further information.

Request Processing
There are three types of request PDUs that may be received by the SNMP daemon. The
request types are defined in RFC 1098, and the PD Us all have the following format:

Request POU Format

request-id error-status error-index variable-bindings

GET 0 0 VarBindlist

GET-NEXT 0 0 VarBindlist

SET 0 0 VarBindlist

The request-id field identifies the nature of the request; the error-status field and error-index
field are unused and must be set to O (zero); and the variable-bindings field contains a
variable-length list of numeric-format instance IDs whose values are being requested. If the
value of the request-id field is SET, the variable-bindings field is a list of pairs of instance IDs
and values.

Read Using the Management Information Base (MIB) Database on page 6-6 for a
discussion of the three request types.

Response Processing
. Response PDUs have nearly the same format as request PDUs:

Response PDU Format

request-id error-status error-index variable-bindings

GET-RESPONSE ErrorStatus Errorlndex VarBindlist

6-14 Communications Programming Concepts

If the request was successfully processed, the values for the error-status and error-index
field are 0 (zero), and the variable-bindings field contains a complete list of pairs of instance
IDs and values.

If any instance ID in the variable-bindings field of the request POU was not successfully
processed, the SNMP agent stops processing, writes the-index of the failing instance ID into
the error-index field, records an error code in the error-status field, and copies the partially
completed result list into the variable-bindings field.

RFC 1098 defines the following values for the error-status field:

Values for the Error-Status Field

Value Value Explanation

no Error 0 Processing successfully completed (error-index is zero).

too Big 1 The size of the response POU would exceed an
implementation-defined limit (error-index is zero).

noSuchName 2 An instance ID does not exist for GET and SET request types,
or has no successor in the MIB for GET-NEXT requests
(non-zero error-index).

badValue 3 For SET requests only, a specified value is syntactically
incompatible with the type attribute of the corresponding
instance ID (non-zero error-index).

read Only 4 For SET requests only, an attempt to modify a read-only MIB
variable is rejected (non-zero error-index).

genErr 5 An implementation-defined error occurred (non-zero error-
index); for example, an attempt to assign a value that exceeds
implementation limits.

Trap Processing
Trap PDUs are defined by RFC 1098 to have the following format:

Trap POU Format

enterprise agent· generic· specific- time-stamp variable-bindings
address trap trap

Object ID Integer Integer Integer Time Ticks VarBindlist

where the fields are used as follows:

enterprise

agent-address

The Object Identifier assigned to the vendor implementing the
agent. This is the value of the sysObjectlD variable, and it is
unique for each implementor of an SNMP agent. The value
assigned to this implementation of the agent is
3.6.1.4.1.2.2.1.2.7.

IP address of the object generating the trap.

Network Management/6000 (xgmon) 6-15

generic-trap

specific-trap

time-stamp

variable-bindings

Integer as follows:

0 cold Start
1 warm Start
2 linkDown
3 linkUp
4 authentication Failure
5 egpNeighborloss
6 enterpriseSpecific

Unused, reserved for future development.

Elapsed time, in hundredths of a second, from the last
reinitialization of the agent to the event generating the trap.

Extra information, dependent on generic-trap type.

The generic-trap values indicate that certain system events have been detected:

coldStart The agent is reinitializing. Configuration data or MIB variable
values, or both, may have changed. Measurement epochs should
be restarted.

warmStart Not implemented; reserved for future use.

linkDown The agent has detected that a communications interface has
been disabled.

linkUp The agent has detected that a communications interface has
been enabled.

authenticationfailure A message was received that could not be authenticated.

egpNeighborloss An EGP neighbor was lost. This value is only generated when the
agent is running on a host that runs the gated daemon using the
Exterior Gateway Protocol (EGP).

enterpriseSpecific Not implemented; reserved for future use.

The linkDown and linkUp traps contain a single instance ID/value pair in the
variable-bindings list. The instance ID identifies the iflndex of the adapter that was disabled
or enabled, and the value is the iflndex value. The trap for egpNeighborloss also contains a
binding consisting of the instance ID and value of egpNeighAddr for the lost neighbor.

When an interface is disabled, MIB variable values for that interface may be lost. When an
interface is enabled, a linkUp trap is generated. A flag in the /etc/snmptrap.dest file may be
set for each destination host. This causes a coldStart trap to be generated as well. The
purpose is to guarantee that the receiving host understands that crucial MIB variable values
may have changed. In particular, measurement epochs should be restarted.

Understanding SNMP Daemon Support for the EGP Family of MIB
Variables

If the agent host is running the gated daemon with Exterior Gateway Protocol (EGP) support
enabled, the following MIB variables are available:

egplnMsgs The number of EGP protocol messages received by the gated
daemon running on the agent's host.

6-16 Communications Programming Concepts

egplnErrors

egpOutMsgs

egpOutErrors

egpNeighState

egpNeighAddr

The number of EGP messages received in error.

The number of EGP messages transmitted by the gated daemon
running on the agent's host.

The number of EGP messages that could not be sent by the
agent host's gated daemon due to resource limitations.

The state of an EGP peer acquired by the agent host's gated
daemon:

1 idle
2 acquisition
3 down
4 up
5 cease

The IP address of an EGP peer acquired by the agent host's
gated daemon.

If the gated daemon is not running, get or get-next requests for the values of these variables
will return the noSuchName error response code.

To communicate properly with the SNMP agent, the /etc/services file must have an
assigned UDP port for the mib service. In addition, the /etc/gated.conf file should contain
the following statement:

SNMP yes

Warning: The gated daemon manages the kernel routing tables. The ipRouteNextHop and
ipRouteType MIB variables may also be used to manage kernel routing tables. The SNMP
agent does not coordinate with the gated daemon in any way. Therefore, it is strongly
recommended that neither the gated nor routed daemons are started if the SNMP agent is
to manage routing tables.

For information on the ipRouteNextHop and ipRouteType MIB variables, see the following
section.

Understanding SNMP Daemon Support for SET Request Processing
The snmpd daemon supports set requests for five read/write MIB variables:

atPhysAddress

if AdminStatus

ipDefaultTtl

ipRouteNextHop

ipRouteType

The hardware address portion of an address table binding on the
agent's host (an entry in the arp table).

The state of an interface adapter on the agent's host (up or
down).

The default time-to-live value inserted into IP headers of
datagrams originated by the agent's host.

The gateway by which a destination IP address can be reached
from the agent's host (an entry in the route table).

The state of a route table entry on the agent's host (used to
delete entries).

Network Management/6000 (xgmon) 6-17

The variables require instances and values as shown in the following table:

Instances and Values of Variables

Name Instance Value Action

atPhysAddress f.1.n.n.n.n hh:hh:hh:hh:hh:hh For the interface with
iflndex f, any existing arp
table binding for IP
address n.n.n.n is
replaced with the binding
(n.n.n.n,
hh:hh:hh:hh:hh:hh). If a
binding did not exist, the
new binding is added.
hh:hh:hh:hh:hh:hh is a
twelve hexadecimal digit
hardware address.

00 :00 :00 :00 :00 :00 Any arp binding on
iflndex f for IP address
n.n.n.n is deleted.

ifAdminStatus f 1 The interface adapter
with iflndex f is enabled.

2 The interface adapter
with iflndex f is disabled.

ipDef aultTtl 0 n The default time-to-live
value used by IP
protocol support is set to
the integer n.

ipRoutNextHop n.n.n.n m.m.m.m A route table entry to
reach network n.n.n.n via
gateway m.m.m.m is
added to the route table.
The host portion of the
IP address n.n.n.n must
be zero to indicate a
network address.

ipRouteType h.h.h.h 2 Any route to host IP
address h.h.h.h is
deleted.

n.n.n.n 2 Any route to host IP
address n.n.n.n is
deleted.

Note: It is strongly recommended that the atPhysAddress variable only be used to create
address table entries for hosts that do not participate in the Address Resolution
Protocol (ARP). Most hosts on broadcast networks (Ethernet, Token-Ring, 802.3)
have ARP capability. Reliance on ARP will result in more efficient and responsive
address table management.

6-18 Communications Programming Concepts

Examples
The following examples use the snmp_set library command for the xgmon command.

1.

snmp_set hostl atPhysAddress.2.1.255.255.255.255=02:60:8c:ab:cd:ef

This command creates a new ARP table binding on hostl, associated with a network
interface adapter with iflndex 2. The binding is (255. 255. 255. 255,
02: 60: Sc: ab: cd: ef). This means that the IP address 255. 255. 255. 255 is associated
with the hardware address o 2 : 6 o : 8 c : ab : cd : e £ on the physical network reached by the
interface adapter with iflndex 2. If an arp binding for 2 5 5 • 2 5 5 • 2 5 5 • 2 5 5 already exists, it is
replaced. (See note above.)

2.

snmp_set hostl ifAdminStatus.2=2

This command disables the network interface adapter that has iflndex 2. If the assigned
value is 1, the interface adapter is enabled.

3.

snmp_set hostl ipDefaultTtl=50

This command allows an IP datagram using default time-to-live to pass through up to 50
gateways before being discarded.

4.

snmp_set hostl ipRouteNextHop.255.255.255.255=128.0.0.1

This command creates a route to host 2 5 5 • 2 5 5 • 2 5 5 • 2 5 5 via the gateway host
128. o. o. 1. The ipRouteType value is 4 (remote).

5.

snmp_set hostl ipRouteNextHop.255.255.255.0=128.0.0.l

This command creates a route to the class C network 2 5 5 • 2 5 5 • 2 5 5 via the gateway host
12 8 • o • o . 1. Note that the host part of the address must be O (zero) to indicate a network
address.

6.

snmp_set hostl ipRouteType.255.255.255.255=2

This command deletes any route to host 2 5 5 • 2 5 5 • 2 5 5 • 2 5 5.

Network Management/6000 (xgmon) 6-19

Understanding SNMP Daemon RFC Conformance
RFC 1098 requires that each set request variable assignment "should be effected as if
simultaneously set with respect to all other assignments specified in the same message"
(page 25). This means that a set request with multiple instance ID/value pairs should be
processed in an all-or-none fashion: either all the new values are assigned without error, or
else none of the variables in the request have modified values. This requirement is also
known as atomic commit with rollback. The RFC does not address the problems of order
dependency or consistency.

Atomic commit is not currently implemented. This should not present a problem in the use of
the five read-write MIB variables currently allowed. The possible actions that can be taken
by modifying these variables are:

• Adding a route
• Deleting a route
• Enabling an adapter
• Disabling an adapter
• Adding an arp table entry
• Deleting an arp table entry
• Changing default time-to-live.

Each of these actions is accomplished by modifying a single variable. There are no
dependencies between the variables. Therefore, a set request containing multiple bindings
is equivalent to a sequence of single-binding set requests, and will be processed as such.

RFC 1066 describes all ten variables in the ipRouteEntry table as read-write. As described
above, set support is only implemented for ipRouteType and ipRouteNextHop (see note 2).
In order to accept set requests that may specify several unsupported route attributes (such
as the ipRouteMetric1 or the ipRouteProto attributes), set requests for these unsupported
variables are accepted. No error response is returned to the request originator, but a
subsequent get request will show that the original values have been retained.

Note that ordering dependencies may exist, such as in:

snmp_set hostl atPhysAddress.f.1.n.n.n=hh:hh:hh:hh:hh:hh
ifAdminStatus.f=l

snmp_set hostl iproutenexthop.n.n.n.n=m.m.m.m ifAdrninStatus.f=l

where the adapter with iflndex f must be enabled before an address table entry can be
associated with it, or a route can be established that reaches a gateway via that adapter. In
these cases, the order of the variables is significant, and must be the reverse of that shown
above. If the RFC 1098 atomic commit policy were followed exactly, the set requests
described above would have undefined effects.

Consistency problems are not addressed by RFC 1098. For example, the request

snrnp_set hostl ipRouteNextHop.n.n.n.n=rn.rn.rn.rn ipRouteType.n.n.n.n=2

causes a route to be added and then immediately deleted. If the order of the variables is
reversed, any existing route is deleted, and then the new route is added. If the RFC 1098
atomic commit policy were followed exactly, the set request described above would have an
undefined effect.

6-20 Communications Programming Concepts

Understanding SNMP Daemon Implementation Restrictions
The current implementation of the agent does not have:

• National Language Support (NLS)

• System Resource Controller (SAC) support

• Proxy agent support

• Support for restricted M IB database views

• Non-trivial authentication support

• Coordination of routing table management with the gated or routed daemons. It is
strongly recommended that gated and routed daemons not be run if the SNMP agent is
used to manage kernel route tables.

There is no support for set requests to modify values of read-write MIB variables except
those described in Understanding SNMP Daemon Support for SET Request Processing.

Not all values defined in RFC 1066 are supported, as illustrated in the following table:

Support for Values of Read-Write MIB Variables Defined in RFC 1066

Name Value Support

ifAdminStatus 1 (up) Supported for get and set requests

2 (down) Supported for get and set requests

3 (testing) Not supported for get or set requests

ipRouteType 1 (other) Not supported for get or set requests

2 (invalid) Supported for set requests only (see note 1)

3 (direct) Supported for get requests only (see note 2)

4 (remote) Supported for get requests only (see note 3)

Notes:

1. A set request for ipRouteType 2 (invalid) causes deletion of a route. A get request
will obviously never return this value for an existing route.

2. A value for ipRouteType is always assigned when a route entry is added to the
kernel route table. When the ifconfig command is issued on the host to enable an
adapter, a route to the adapter of ipRouteType 3 (direct) is automatically created.
This is the only way to create a direct route.

3. A value for ipRouteType of 4 (remote) indicates a route to a destination host via a
gateway host. The gateway host is not the local host, but is directly reachable on a
physically connected network. All routes added via the ipRouteNextHop variable
are of this type.

The following implementation restrictions should be observed:

• An interface must be enabled by a locally issued ifconfig command before it can be
enabled or disabled by the ifAdminStatus variable. There is no way to associate an IP
address with an interface except with a locally issued ifconfig command. The iflndex
value is assigned when the ifconfig col]1mand is issued.

• An interface may only be detached by a locally issued ifconfig command. Another
ifconfig command is required to enable the adapter before it can be managed via the
ifAdminStatus variable.

Network Management/6000 (xgmon) 6-21

• The SNMP agent does not provide a way to alter the ,IP address associated with an
interface adapter. This must be done with a locally issued ifconfig command.

• The SNMP agent will not search a route table hash chain to a depth of greater than 100
during set processing. If a hash chain longer than 100 is detected, set requests for the
ipRouteType and ipRouteNextHop variables will be rejected with a genErr response.
Other conditions may cause this response.

If a set request for ipRouteNextHop receives a genErr response code, the condition that
caused it may be transitory. The monitor application should reissue the set request at
least once.

• The maximum message size that can be sent or received is 2048 bytes.

Understanding the SNMP Command Line Manager
The SNMP Command Line Manager consists of three executable commands:

• /usr/bin/snmp_get

• /usr/bin/snmp_next

• /usr/bin/snmp_set

These commands are executed on the AIX command line. They obtain or modify
information about a host by sending GET, GET-NEXT, or SET requests to the SNMP agent
running on that host.

The /etc/mib_desc file describes the supported MIB variables that are defined in RFC 1066.
The requests are defined in RFC 1098.

To install the SNMP Command Line Manager, place the IBM RISC System/6000 Network
Management LPP diskette #1 in the diskette drive. Type:

installp -F netmgr.clm

and press Enter.

This software is derived in part from the ISO Development Environment (ISODE). IBM
acknowledges source author Marshall Rose and the following institutions for their role in its
development: The Northrup Corporation and The Wollongong Group.

6-22 Communications Programming Concepts

Understanding the xgmon Programming Utility
The xgmon programming utility is used to write extensions to the xgmon client (manager).
It is both a subset and a superset of the C programming language. As a subset it uses
syntax similar to C, though it does not support the complete language. As a superset, it
supports operations (for example, comparison and addition) on types such as strings.

The xgmon program contains a compiler that translates programs written in the xgmon
programming utility into object code that is interpreted by virtual G machines (VGMs). The
xgmon application oversees the operation of the VGMs. Each VGM works on its own
program. More than one program can be executing at the same time because xgmon is
able to control more than one virtual G machine.

The xgmon program is essentially a passive entity. Any required monitoring algorithms are
embedded within library commands, which are programs written in the xgmon programming
utility. These programs are stored as source code.

There are two kinds of commands available to the user at the xgmon command prompt(>):

System commands
System commands are built into the client (manager), are generally used to
control virtual G machines, and cannot be extended.

Library commands
Library commands are programs written in the xgmon programming utility
and can be extended. When a library command is referenced, the
corresponding source code is compiled. The resulting object code is loaded
into a virtual G machine, and the virtual G machine begins executing the
command.

Since much of the xgmon programming utility looks like C language, C programmers can
learn it easily. The xgmon programming utility is intended to support writing applications
that are used to monitor TCP/IP-based networks.

The capabilities of the xgmon system can be extended by the programmer merely by writing
a new program in the xgmon programming utility and adding this program to the directory of
library commands.

Extending xgmon Intrinsic Functions
The xgmon program consists of intrinsic functions that are activated by library commands.
The xgmon program has two distinct object files:

xgmon.o file Object code of the basic xgmon program.

user_func.o file Object code of the intrinsic functions defined by users.

A C programmer can extend the xgmon program by adding new intrinsic functions. These
new intrinsic functions must be coded in C and must be included in the user_func.c file,
which has been shipped in the /usr/lpp/xgmon/bin directory. The C programmer can create
additional files to contain the source code of new intrinsic functions.

The C programmer must compile each file that contains the new intrinsic functions in order
to create the corresponding object files. These object files can then be linked with xgmon.o
to build the new extended xgmon program. For a full description of this procedure, see How
to Create xgmon Intrinsic Functions on page 6-43.

Network Management/6000 {xgmon) 6-23

A user-defined intrinsic function is called similar to a C program. It has two parameters.
The first is the count of the number of arguments the function is passed. The second is an
array, each element of which is the value of the corresponding argument. The value the C
function returns will be the result of the intrinsic function as seen by the xgmon library
program that is executing.

To override an existing intrinsic function, give the new function the same name as the
function it replaces.

For lists of intrinsic functions, see Alphabetic List of Intrinsic Functions on page 6-37 and
Functional List of Intrinsic Functions on page 6-39.

Creating xgmon Library Commands
To develop and test a library command, store the command source in a working directory
that belongs to the user. After the new command is debugged, move the source code to the
/usr/lpp/xgmon/lib directory so that it is included in the global list of library commands.
This makes the new command available to all xgmon users.

You can add new library commands at any time and use them without having to terminate
the current xgmon program. Similarly, you can correct bugs in library commands without
stopping everything. This means that algorithms can be corrected without losing global state
information that has already been collected. Thus, the failure of one library command does
not necessarily incapacitate the rest of the monitoring system. This feature makes the
monitoring system as available as the network it is monitoring. See How to Create xgmon
Library Commands on page 6-46.

Programming Virtual G Machines (VGMs)
A virtual G machine is a section of memory that belongs to the xgmon program. The VGM is
loaded with the object code generated by compiling an application (library program) written
using the xgmon programming utility, and the data area for use by the application. The
xgmon program interprets the object code in each VGM in a round-robin fashion,
subdividing its own time slice.

A VGM executes xgmon library program object code produced by the xgmon internal
compiler. For instance, when a user issues a library command, the virtual G machine
executes the command and sends the output to the VGM standard output device. If xgmon
is running under X11, this output device is a graphics window that is associated with that
VGM. If xgmon is running in the ASCII mode, this output device is the standard output.
However, it is possible to redirect the output from a VGM into a file.

If xgmon is running under X11, the VGM output window supports both text and graphics
formatted output. A VGM can determine if the output is being sent to a window or to the
standard output. Thus, a VGM is able to determine if the graphics function is available.

If xgmon is running in the ASCII mode, graphics are not supported.

6-24 Communications Programming Concepts

A maximum of 6 VGMs can be activated when xgmon is invoked. Thus, if xgmon is
running under X11, 6 VGM output windows can be displayed on the screen simultaneously.
Having several VGMs available at the same time allows multiple, independent library
commands to be in progress, thereby making it possible to receive output from several VGM
processes simultaneously. Each VGM works on its own library program and is essentially
independent of all other VGMs, although it is possible to implement some inter-machine
communication if needed.

The xgmon program implements an abstraction of VGM architecture. The actual details of
this abstraction are not critical as all programmer access to the VGM is via xgmon library
programs. Several underlying characteristics of the VGM are, however, important to
understand, such as:

• Formatting the VGM Windows, see page 6-25
• The VGM Run-time Environment, see page 6-30
• Working with VGM Data Types, see page 6-29
• Working with VGM Variables, see page 6-26.

See also the intrinsic functions for VGM control: the aix_exec intrinsic function, alloc
intrinsic function, ctime intrinsic function, exec intrinsic function, reuse_mem intrinsic
function, time intrinsic function, and words_free intrinsic function.

Understanding the Internal Database
Only a library program executed by a virtual G machine can make SNMP (Simple Network
Management Protocol) requests. The xgmon program makes no requests of SNMP agents
on its own. When a request is made, the server may or may not respond. Whenever the
client (manager) receives a response from an SNMP agent, it stores the response in an
internal database, making it available to all of the virtual G machines.

Variables are stored in the internal database temporarily. These variables have time stamps
associated with them, and after a certain period of time these variables are discarded as
invalid. As long as a variable in the database is believed to be valid, a request for that
variable is satisfied from the internal database, and no query is sent to the remote host. This
helps reduce the amount of traffic generated by the client (manager).

The MIB (Management Information Base) file lists each variable by text name and describes
its object ID, type, and time-to-live value (in seconds). The name of this file is
/etc/mib_desc. See Working with Management Information Base (MIB) Variables on page
6-9.

The following intrinsic functions have parameters that specify MIB object IDs: the base_type
intrinsic function, gw_var intrinsic function, real_type intrinsic function, and snmp_var
intrinsic function.

The following library commands have parameters that specify MIB object IDs: the snmp_get
library command, snmp_next library command, and snmp_set library command.

Formatting the Virtual G Machine (VGM) Windows
Each virtual G machine (VGM) has a window you can write text to (using the print
statement) and draw graphics to (using the draw_line and draw_string intrinsic functions).

To format a VGM window, use the following escape sequences and control codes.

Network Management/6000 (xgmon) 6-25

Recognized Escape Sequences
The internal xgmon compiler recognizes the following escape sequences inside string
constants:

Escape Sequences

Escape Seq. Name Dec. Value Description

\0 NUL 0 Null character, string delimiter

\t HT 9 Horizontal Tab (tabs are set at every 8
characters)

\n LF 10 Line Feed, New Line

\f FF 12 Form Feed, New Page

\r CR 13 Carriage Return

\' " 34 Double Quote

\\ \ 92 Back slash

Window Control Codes
The VGM output windows recognize the following control codes:

Window Control Codes

Code Action

7 Rings the bell.

HT Advances the cursor to the next tab stop.

LF Advances the cursor to the next line, column 1.

FF Clears the window, moves the cursor to line 1, column 1.

CR Returns the cursor to column 1.

271c Positions the cursor to line I, column c.

Note: Column and row numbering start at 1.

Example

To start the cursor at column 1, row 1, enter:

print "%c%c%c", 27, 1, 1; II cursor to upper left corner

Working with Virtual G Machine (VGM) Variables
Each virtual G machine (VGM) can have three kinds of variables:

Local variables Local to the specific VGM. In general, these are read/write
variables.

Global variables Shared by all VGMs on a read-only basis.

Special local variables Values set by the xgmon program.

6-26 Communications Programming Concepts

Local Variables
Local variables must be declared before use. The suggested convention is to declare them
at the top of the library program. Global variables are defined by the system; user's library
programs do not declare them. To declare local variables, include a list of variables in the
library program prefixed with the desired data type, as demonstrated below:

int i, j;

string s,str2;
pointer ptr,ptr2;

Global Variables
In addition to the local variables defined for each VGM, a set of predefined global variables
are maintained by the xgmon program. Global variables communicate information to
VGMs. This information arrives from outside the client (manager), for instance, the arrival of
trap information or the pressing of a mouse button.

Global Variables

Name Type Function

selected_host string Name of the node or host on which the right
mouse button was clicked.

selected_ window string Name of the topology window the pointer was in
when the button was pressed. The name of the
root topology window is" "(null string).

selected_x integer x coordinate of pointer when button was pressed.

selected_y integer y coordinate of pointer when button was pressed.

elemenLmask integer Element mask of current display.

traps_pending integer Number of traps left in queue.

trap_host string Name of host from which the trap arrived.

trap_type string Type of trap received.

trap_ userdata string Additional user-defined trap data.

ping_ hosts pointer List of hosts that respond to the ping library
command.

snmp_hosts pointer List of hosts that respond to an SNMP request.

snmp_passwords pointer Community names associated with the
snmp_hosts variable.

Notes:

1. Global variables must be treated as read-only. If a virtual machine attempts a store
operation outside of memory allocated to it, it will be stopped.

2. The ping_hosts, snmp_hosts, and snmp_passwords variables are lists whose
ends are marked by the null string.

3. The trap_type variable indicates both the class of the trap, as well as its type. The
class is indicated by the snmp: prefix (indicating an SNMP trap). The remainder of
the string indicates the actual trap type. Thus, an SNMP link-up trap appears as
snmp:3. The xgmon also generates "traps" when it changes the coloring of a
display element. These traps are indicated by the xgmon prefix.

Network ManagemenV6000 (xgmon) 6-27

Trap Types

cold-start snmp:O
warm-start snmp:1
link-down snmp:2
link-up snmp:3
authentication-failure snmp:4
EGP neighbor-loss snmp:S
enterprise-specific snmp:6

4. The trap_userdata variable contains additional information about the trap. It
contains information that was provided in the original SNMP trap packet, such as
the interface number in a link-up or down-trap, or the IP address (in dot notation)
of the EGP peer in an EGP neighbor-loss trap. If the trap indicates an xgmon
display element state change (for example, up, down, or unknown), this variable
indicates the new state of the display element.

5. If the machine hostid of the agent generating the trap has not been set, the
trap_ host variable will default to o . o . o . o.

Special Local Variables
There are several special local variables that may be defined in an xgmon library program.
These special local variables are set by the xgmon program. If these variables are defined,
the underlying run-time environment updates them appropriately.

Special Local Variables

Name Type Function

argc integer Number of arguments to the library program.

argv pointer Array of argument strings.

send_response integer Indicates response to a send request (0 = no
error).

gw_ var_size integer Size in bytes of the return value from the last call
to the gw_var intrinsic function.

gw_ var_name string Name of last variable received in response to a
send request.

Notes:

1. The send_response variable is set to -1 if no response was received from the
server or agent. Otherwise, this variable is set to the error code sent by the
remote host (see the RFC 1098 for these values). A value of 0 indicates no error
occurred. For information about the send statement, see Using Simple
Statements on page 6-32.

2. The gw_var_name variable is used when making get-next requests. The name of
the MIB variable the agent provided as a response to the query is made available
in this variable. For information about the send statement and get-next requests,
see Using Simple Statements on page 6-32.

6-28 Communications Programming Concepts

Working with Virtual G Machine (VGM) Data Types
Virtual G machines (VGM) support three types of variable data: integers, strings, and
pointers. Integers and strings are supported by the underlying VGM architecture.
Depending on the context, an integer may be treated as an unsigned quantity. The basic
unit of storage of a VGM is one word, which is 32 bits in length. A string is a null-terminated
sequence of characters (identical to the C convention) with an index that starts at 1 (one).

The VGMs also support arrays, which lead to the pointer variable. Pointers are intended to
refer to the base of a block of storage containing interesting data. Subscripting can be used
to dereference the pointer and extract the data (subscripting is indicated with the use of
variables). The data extracted may be treated as an integer, string, or pointer. Array
references can only occur in the following situations:

• As a result of an assignment, as in:

var[i] = expression;

• As the only component of an expression on the right hand side of an assignment
statement, as in:

var= var[i];

• As a parameter of an intrinsic function call, as in:

pw = (string) password(argv[l]);

Note: No operations are permitted because the pointer has no type defined.

Strings are passed by reference, not value. The value stored in a string variable is a
reference to the string data. That is, the string variable is a pointer, not the actual string data.

VGMs have a finite amount of memory available to them. As they work, they continue to use
up this memory to store intermediate string expressions. The result is that, over time, a
VGM uses up all of its available memory. Any long-running xgmon program has to
recognize this and be prepared to detect an impending lack of free memory and to respond
to it (see the words_free intrinsic function). VGMs do no garbage collection by default.

The xgmon program performs a form of hybrid garbage collection if you explicitly enable
this function within an xgmon library program (see the reuse_mem intrinsic function) and
the reuse system command has been issued to enable the hybrid garbage collector.

With garbage collection enabled, when a string assignment statement is executed, the
storage space that the variable references is freed prior to the variable taking on its new
value. The programmer must be careful when making string assignments because the
underlying implementation passes references to strings, not the actual value. Thus, the
following would cause problems if garbage collection is enabled:

varl = "string expression";
var2 = varl; /* No problem yet. */
varl = "new expression"; /* Now var2 references a space that */

/* as been freed. */

However, a copy of the string can be created by concatenating the null string to the end of
the string variable taking on the new value:

varl "string expression";
var2 varl + ""; /* var2 now references a separate copy. */
varl = "new expression"; /* var2 is still valid. */

Network Management/6000 {xgmon) 6-29

xgmon does not reclaim the storage used for intermediate string expressions. The
programmer must explicitly store such expressions in string variables. Thus, instead of:

print "-naddress = %s-n", (string) dotaddr (addr);

Use:

print "-naddress = %s-n", (string) dotaddr (addr);

By following the guidelines outlined above, it is possible to write library programs that will
achieve a steady state of storage utilization instead of growing without bound.

Understanding the Virtual G Machine {VGM) Run-Time Environment
The virtual G machines (VGMs) provide a simple, easily understood run-time environment.
Each machine has an address space composed of the following segments:

Text segment Holds the object code

Data segment

Stack segment

Holds local variables, string constants, dynamically allocated blocks,
and intermediate string expressions generated during the evaluation of
a string expression

Holds parameters during evaluation of expressions.

Understanding the Structure of xgmon Library Programs
An xgmon library program is introduced by the phrase start thread and ends with the
phrase end thread.

The following complete library program (equivalent to the ping library command) illustrates
an xgmon library program:

II ping hostname
start thread
int argc;
pointer argv;

int ret_code;
string host;

if (argc != 2) {

}

print "usage: %s hostname\n",argv[O];
exit;

host= argv[l];
ret_code = (int) ping(host);
if (ret_code != -1) {

print "%s responded, time=%d ms\n", host, ret_code;
}
if (ret_code == -1) {

print "no response from %s\n",host;
}

end thread

6-30 Communications Programming Concepts

Comments
Comments in an xgmon program are introduced with:

#(pound sign)

II (double slash)

--(dash)

A comment extends to the end of the line. Comments can be anywhere in the xgmon
library program source.

Supported Types
The xgmon programming utility supports three basic data types:

int For integers
string For strings
pointer For use in implementing arrays.

The basic unit of storage in a virtual G machine (VGM) is one word (32 bits).

Declaring Variables
Variables must be declared before use. The suggested convention is to declare them at the
top of the program following the start thread statement. Global variables are defined by the
system; user programs do not declare them. To declare local variables and special local
variables, include a list of variables in the prefix with the desired type, as demonstrated
below:

int argc;
pointer argv;
int i,j;
string s,str2;
pointer ptr,ptr2;

xgmon Library Program Reserved Words
The following keywords are reserved by xgmon and cannot be used as variable names in
xgmon library programs:

alternate are a send at

define display do end

exit for from get

group if in int

interfaces link links logical

next no node nodes

physica pointer print send

set sleep snmp start

string thread to under

use while window with

Network Management/6000 (xgmon) 6-31

Using Simple Statements
There are several simple statements in the xgmon programming utility. As in the C
language, the; {semicolon) is used as a statement terminator, not a statement separator.
Several statements may be grouped as one by enclosing them in braces as follows:

{

}

statement!;
statement2;

Such a grouping is treated as one logical statement.

Assignment Statement
The most common statement is the assignment statement:

var:_name = expression;

Sleep Statement
The sleep statement can be used to pause for a moment:

sleep int_ expression; II pause for specified seconds

Exit Statement
The exit statement terminates the current program and unloads the virtual G machine
{VGM) executing the program:

exit;

Send Statement
The send statement is used to send requests to a Simple Network Management Protocol
{SNMP) agent. The agent parameter must be a string data type and may either be the
Internet Protocol {IP) address in dot notation or the text name of the agent. The syntax of the
send statement is as follows:

send snmp req_type req_string to agent (community_string);

send snmp set req_string, value to agent (community_string);

where the req_type parameter is either get or get next and the community_string parameter
specifies the community name of the specified SNMP agent.

For SNMP get requests, the req_string parameter must be a numeric-format instance ID
indicating the requested MIB variable {for example, 1.3.6.1.2.1.1.1.0). For SNMP get-next
requests, the req_string parameter can be either a numeric-format variable name or a
numeric-format instance ID.

Note: For an explanation of the terminology used, see Understanding Terminology Related
to Management Information Base {MIB) Variables on page 6-6.

The gw_var_name, gw_var_size, and send_response special local variables are updated if
declared.

6-32 Communications Programming Concepts

Asend Statement
The asend (asynchronous send) statement is also used to send requests to an SNMP agent
and functions in a similar fashion as the send statement. The asend statement differs from
the send statement in that it does not wait for a response; therefore, no status information is
made available. The agent parameter must be a string data type and may either be the
Internet Protocol (IP) address in dot notation or the text name of the agent. The syntax of the
asend statement is as follows:

asend snmp req_type req_string to agent (community_string);

asend snmp set req_string, value to agent (community_string);

where the req_type parameter is either get or get next and the community_string parameter
specifies the community name of the specified SNMP agent.

For SNMP get requests, the req_string parameter must be a numeric-format instance ID
indicating the requested MIB variable (for example, 1.3.6.1.2.1.1.1.0). For SNMP get-next
requests, the req_string parameter can be either a numeric-format variable name or a
numeric-format instance ID.

Note: For an explanation of the terminology used, see Understanding Terminology Related
to Management Information Base (MIB) Variables on page 6-6.

The gw_var_name and gw_var:__size special, local variables are updated if declared, but the
send_response special local variable is not.

Print Statement
The print statement is used to display formatted output on the status window associated
with the virtual G machine. It can also be used to write output to a file that was previously
opened with the fopen intrinsic function. The syntax of the print statement is as follows:

print format_string [,arg1] ... [to file_descriptofj;

Note: The format string can be specified as permitted by the printf subroutine.

Using Iteration and Conditional Statements

If Statement

In addition to simple statements, the xgmon programming utility has looping and control
statements.

The if statement is like its C counterpart. If the conditional expression is nonzero, the
statement is executed. The syntax of the if statement is as follows:

if (int_expression) statement

While Statement
Some looping may be performed using the while statement, which works like its C
counterpart. If the conditional expression is nonzero, the statement is executed. The syntax
of the while statement is as follows:

while (int_expression) statement

Network Management/6000 {xgmon) 6-33

For Statement
It is possible to iterate over a list of expressions by using the for statement. The syntax of
the for statement is as follows:

for var_name in {exprt [, expr2j ... } do statement

The for statement starts with the last element and proceeds toward the first.

Using Expressions
The simplest expression is a constant. Integer constants and string constants are easy to
understand, as illustrated below:

int i;
i = 2;
string s;
s = "hello";

You can build more complicated expressions with operators.

To obtain the desired evaluation order, use parentheses to group the expressions.

Expressions are not limited to operations on constants. Expressions can reference variables
and call intrinsic functions.

Pointer variables may be dereferenced using subscripting. A pointer variable points to an
array of elements. Each element in the array may be an integer, string, or another pointer.
Subscripting is indicated with the use of brackets as follows:

var_name [int_expression]

Using Operators
The xgmon programming utility supports several operators:

Operators

Type Operator Result

int + sum of two integers

int - difference of two integers

int * product of two integers

int I integer dividend of two integers

int && bitwise AND of two integers

int II bitwise OR of two integers

string + concatenation of two strings

6-34 Communications Programming Concepts

There are also several logical operators. A logical operator always produces an integer
result. The value 0 represents false, and any nonzero value is treated as true.

Logical Operators

Type Operator Result

int II logical OR of two operands

int && logical AND of two operands

int - - true if operands are equal

int I= true if operands are not equal

int < true if op 1 is less than op2

int > true if op1 is greater than op2

int <= true if op1 is less than or equal to op2

int >= true if op1 is greater than or equal to op2

string - - true if operc;inds are equal

string I= true if operands are not equal

string < true if op1 is less than op2

string > true if op1 is greater than op2

string <= true if op1 is less or equal than op2

string >= true if op1 is greater than or equal to op2

Using Intrinsic Functions
There are several intrinsic functions built into the xgmon programming utility. Some
functions are able to return values of different types. The most notable such function is the
gw_var intrinsic function.

When an intrinsic function is referenced, the return value must be cast. Thus, all references
to intrinsic functions are preceded by one of the following casts:

(int)
(string)
(pointer)

Thus, the call to obtain the time of day would look like the following:

int i;
i = (int) time(O);

Intrinsic functions are functions that are built into the xgmon program. AC programmer
may extend the xgmon program and add new intrinsic functions.

Each intrinsic function is described using the following notation:

(type) func_name (type paramt, type param2, ... }

For example:

(int) fopen (string Filename, string Mode)

Network Management/6000 (xgmon) 6-35

In this example, the £open function returns a value of int type, and takes two parameters.
Both parameters are of string type, the first being the file name and the second being the
access mode.

The seven kinds of intrinsic functions are described below:

• Intrinsic Functions for' Database Operations

These intrinsic functions extract information from the internal database, and set and
retrieve user-defined environment variables associated with hosts.

• Intrinsic Functions for Host Information

These functions obtain information about hosts.

• Intrinsic Functions for Formatted Output

These intrinsic functions provide the ability to create formatted text strings.

• Intrinsic Functions for Graphics Functions

The graphics intrinsic functions permit virtual G machines to manipulate display elements
on the topology display window and to treat the window associated with a virtual G
machine as an all-points-addressable display.

• Intrinsic Functions for File lnpuVOutput Operations

These intrinsic functions are used in conjunction with the print statement to perform file
input or output.

• Intrinsic Functions for Virtual G Machine Control

These intrinsic functions provide information about the current virtual G machine
environment and allow a virtual G machine to start programs in other virtual G machines
or start up an AIX program.

• Intrinsic Functions for String Manipulation

These intrinsic functions manipulate strings in a variety of ways.

Related Information
How to Install the AIX Network ManagemenV6000 Licensed Program in General Concepts
and Procedures.

xgmon Overview for Network Management in Communication Concepts and Procedures.

6-36 Communications Programming Concepts

Alphabetic List of Intrinsic Functions
aix_exec Executes AIX programs and commands from within a VGM environment.

alloc Makes a specified amount of storage space available and returns a pointer
to the newly allocated space.

ascii Returns the integer ASCII value of the first character in the specified string.

base_type Takes a Management Information Database (MIB) numeric-format variable
name or numeric-format instance ID and returns a number that indicates its
base type.

close Closes the open file indicated by the specified file descriptor.

ctime Generates a text string that corresponds to an integer expression of time.

dep_info Returns information about a display element.

dotaddr Returns a string representing the Internet Protocol (IP) address in dot
notation.

draw_line Draws a line.

draw_string Enables the display of formatted output in color.

exec Allows a virtual G machine to start execution of a library command in
another virtual machine or to issue a system command.

flush_trap Flushes the current trap being processed.

font_height Returns the height, in pixels, of the font being used in the graphics window
associated with a virtual G machine (VGM).

font_width Returns the width, in pixels, of the font being used in the graphics window
associated with a VGM.

fopen Opens the file indicated by the specified file name.

get_deps Returns a list of display elements that are grouped under a particular node.

getenv Obtains the value of a user-defined environment variable for a display
element.

get_MIB_group
Finds the set of all Management Information Base (MIB) variable names
that contain a given text string as a prefix.

get_primary Returns the current primary address associated with the specified host.

Network Management/6000 {xgmon) 6-37

group_dep

gw_var

he xv al

Maps a dynamically created node or host to the topology display window.

Extracts the value of the specified Management Information Base (MIB)
numeric-format instance ID for the specified host from the internal database.

Returns the integer value represented by the text characters in the specified
string.

highlight_dep Permits a VGM to temporarily highlight a display element.

hostname

ipaddr

left

make_dep

make_link

mid

move_dep

new_deps

Returns the text name of the host.

Returns the normal, primary Internet Protocol (IP) address of the specified
host.

Extracts a substring beginning at the leftmost portion of the source string.

Dynamically creates a new node or host.

Dynamically creates a link between two hosts.

Extracts a substring from within a source string.

Changes the relative location of a display element within a topology display
window.

Returns a pointer to an array of strings representing the names of
dynamically created display elements.

next_alternate Changes the current primary address of the specified host to the next
available alternate address.

num

password

ping

Returns a string of text characters representing the decimal value of the
specified integer.

Returns the Simple Network Management Protocol (SNMP) community
name associated with the specified host.

Sends an ICMP ECHO request to the specified host.

raise_window Attempts to raise the graphics window associated with the virtual G machine
in which the program is running.

read Reads the next line in an open file specified by the file descriptor.

real_type Takes a Management Information Base (MIB) numeric-format variable name
or numeric-format instance ID and returns a number indicating its actual
MIB type.

rename_dep Renames a display element.

reuse_mem Controls garbage collection by a VGM.

right Extracts a substring from the rightmost portion of the source string.

set_ element_ mask
Allows a VGM to change the current display element mask.

6-38 Communications Programming Concepts

setenv

snmp_var

sprintf

strlen

substr

time

val

Sets the user-defined environment variable for a display element to the
specified value.

Returns the Management Information Base (MIB) numeric-format variable
name associated with a specified MIB text-format variable name.

Enables formatted arguments.

Returns the length of a string.

Searches a source string for a particular substring and returns the position
of the leftmost occurrence of that substring.

Returns the current system time.

Returns the integer value represented by the text characters in the specified
string.

window_height

window_width

Returns the height, in pixels, of the graphics window associated with a
VGM.

Returns the width, in pixels, of the graphics window associated with a VGM.

words_free Returns the number of free words remaining in the data segment of the
VGM.

Functional List of Intrinsic Functions

Database Operations
base_type

getenv

Takes a Management Information Database (MIB) numeric-format variable
name or numeric-format instance ID and returns a number that indicates its
base type.

Obtains the value of a user-defined environment variable for a display
element.

get_MIB_group

gw_var

real_type

setenv

snmp_var

Finds the set of all Management Information Base (MIB) variable names
that contain a given text string as a prefix.

Extracts the value of the specified Management Information Base (MIB)
numeric-format instance ID for the specified host from the internal database.

Takes a Management Information Base (MIB) numeric-format variable name
or numeric-format instance ID and returns a number indicating its actual
MIB type.

Sets the user-defined environment variable for a display element to the
specified value.

Returns the Management Information Base (MIB) numeric-format variable
name associated with a specified MIB text-format variable name.

Network Management/6000 (xgmon) 6-39

Host Information
dotaddr Returns a string representing the IP address in dot notation.

get_primary Returns the current primary address associated with the specified host.

hostname Returns the text name of the host.

ippaddr Returns the normal, primary Internet Protocol {IP) address of the specified
host.

next_ alternate

password

ping

Changes the current primary address of the specified host to the next
available alternate address.

Returns the SNMP community name associated with the specified host.

Sends an ICMP ECHO request to the specified host.

String Manipulation
ascii Returns the integer ASCII value of the first character in the specified string.

Returns the integer value represented by the text characters in the specified
string.

hexval

left

mid

right

strlen

substr

val

Formatted Output

File 1/0

num

sprintf

close

fopen

read

Extracts a substring beginning at the leftmost portion of the source string.

Extracts a substring from within a source string.

Extracts a substring from the rightmost portion of the source string.

Returns the length of a string.

Searches a source string for a particular substring and returns the position
of the leftmost occurrence of that substring.

Returns the integer value represented by the text characters in the specified
string.

Returns a string of text characters representing the decimal value of the
specified integer.

Enables formatted arguments.

Closes the open file indicated by the specified file descriptor.

Opens the file indicated by the specified file name.

Reads the next line in the open file specified by the file descriptor.

6-40 Communications Programming Concepts

Virtual G Machine Control
aix_exec Executes AIX programs and commands from within a VGM environment.

alloc Makes a specified amount of storage space available and returns a pointer
to the newly allocated space.

ctime Generates a text string that corresponds to an integer expression of time.

exec Allows a virtual G machine to start execution of a library command in
another virtual G machine or to issue a system command.

flush_trap Flushes the current trap being processed.

reuse_mem Controls garbage collection by a VGM.

time Returns the current system time.

words_free Returns the number of free words remaining in the data segment of the
VGM.

Graphics Functions
dep_info Returns information about a display element.

draw_line Draws a line.

draw_string Enables the display of formatted output in color.

font_height Returns the height, in pixels, of the font being used in the graphics window
associated with a VGM.

font_width Returns the width, in pixels, of the font being used in the graphics window
associated with a VGM.

get_deps Returns a list of display elements that are grouped under a particular node.

group_dep Maps a dynamically created node or host to the topology display window.

highlight_dep Permits a VGM to temporarily highlight a display element.

make_dep

make_link

move_dep

new_deps

Dynamically creates a new node or host.

Dynamically creates a link between two hosts.

Changes the relative location of a display element within a topology display
window.

Returns a pointer to an array of strings representing the names of
dynamically created display elements.

raise_window Attempts to raise the graphics window associated with the virtual G machine
in which the program is running.

Network Management/6000 (xgmon) 6-41

rename_dep Renames a display element.

set_ element_ mask
Allows a VGM to change the current display element mask.·

window_height

window_width

Returns the height, in pixels, of the graphics window associated with a
VGM.

Returns the width, in pixels, of the graphics window associated with a VGM.

6-42 Communications Programming Concepts

How to Create xgmon Intrinsic Functions

Prerequisite Tasks or Conditions

Procedure

Install the xgmon program.

1 . Go to your working directory.

2. Place a copy of the /usr/lpp/xgmon/bin/xgmon.o file and the
/usr/lpp/xgmon/bin/user_func.c file in your working directory. If you have previously
extended the xgmon program using files in addition to the user_func.c file, place a copy
of those .o files in your working directory. For example, if new functions were previously
implemented in the /usr/lpp/xgmon/bin/new_code.c file, place a copy of the
/usr/lpp/xgmon/bin/new_code.o file in your working directory.

The following is the template of a user_func.c file:

/* XGMON user-defined functions */

/* function types: integer, string, pointer */
#define T INT 256
#define T_STRING 512
#define T POINTER 1024

/* declare function names here */

/* User-defined functions are made available by adding an entry
to each of the following three tables.

user_func_name: add a string corresponding to the function name
user_func_type: add a bitmask corresponding to the types of the

values that can be returned by the function
user_func_rout: add the name of the routine to be called using

·prototype:

routine(argc,argv)
int argc; //argument count
unsigned long argv[]; //the arguments

*/

/* user function names */
char *user_func_name[] = {

} ;

/* user function types */
int user_func_type[] = {

} ;

/* user function routines */
unsigned long (*user_funct_rout[])() = {

};

Network Management/6000 (xgmon) 6-43

3. Choose a name for the new function, determine the data type(s) (integer, pointer, or
string) the function will return, choose a name for the C routine, and write the C routine
for the new function. Add the function name, return data type(s), and C routine name to
the appropriate tables that are supplied in the /usr/lpp/xgmon/bin/user_func.c file. All
entries must be made to the same relative location in all the respective tables. Proceed
as follows:

a. Add a string corresponding to the name of the intrinsic function to the
user_func_name table.

For example, if the name of the new intrinsic function is cast, enter:

char *user_func_name[] = {
"cast",

} ;

The end of the table is marked by a null string.

Note: To override an existing intrinsic function, give the new function the same name
as the function it replaces.

b. Add a bitmask corresponding to the data types that can be returned by the function to
the user _func_type table.

For example, if the new intrinsic function is intended to return any possible type,
specify the data type as the logical OR of the types T_INT, T_STRING, and
T_POINTER by entering:

int user func type[] = {
T_INT I T_STRING I T_POINTER

};

c. Declare the name of the C routine as a function at the top of the user_func.c file.
Add the name in the corresponding position in the user_func_rout table.

For example, if the name of the C routine implementing the intrinsic function is
cast_proc, enter the following at the top of the user_func.c file under the
/* declare function names here *I comment:

static unsigned long cast_proc();

Then, enter the following in the user_func_rout table:

unsigned long (*user_funct_rout[])() = {
cast_proc

} ;

d. Place the C routine for the new intrinsic function at the end of the user_func.c file:

static unsigned long cast_proc(argc,argv)
int argc;
unsigned long argv[];
{

return(argv[O]);
}

6-44 Communications Programming Concepts

Note: Any user-defined intrinsic function is called similar to a C program. It has two
parameters. The first is the count of the number of arguments the function is
passed. The second is an array, each element of which is the value of the
corresponding argument. The value the C routine returns will be the result of
the intrinsic function as seen by the xgmon programming utility that is
executing.

If desired, the C routine for the new intrinsic function can be placed in a different file; for
example, the new_code.c file.

4. ·Create the user_func.o file by compiling the user_func.c file as follows:

cc -c user func.c

If the C routine for the new intrinsic function is stored in a different file, compile that file as
well. For example, if the function is stored in the new_code.c file, compile as follows:

cc -c new code.c

5. Build the new xgmon program by linking the new user_func.o file with the xgmon.o file
and any other .o files that are needed. For example, assuming that the new functions
are implemented in the new_code. c file, create a new xgmon program as follows:

cc -o xgrnon+ xgrnon.o user_func.o new_code.o -1 Xll

6. Rename the new xgmon program to xgmon+ and move it to the /usr/lpp/xgmon/bin
directory.

7. Place a copy of the user_func. c and the user_func.o files in the /usr/lpp/xgmon/bin
directory. If the new intrinsic function is stored in a different file, such as the new_code.c
file, move that file and its .o file to the /usr/lpp/xgmon/bin directory.

Related Information
Extending xgmon Intrinsic Functions on page 6-23, Understanding Version Control in
Communication Concepts and Procedures.

How to Create xgmon Library Commands on page 6-46, How to Modify Existing xgmon
Library Commands on page 6-48.

Network Management/6000 {xgmon) 6-45

How to Create xgmon Library Commands

Prerequisite Tasks or Conditions

Procedure

1. Install the xgmon program.

2. Set the GLIB environment variable to the /usr/lpp/xgmon/lib directory as follows:

GLIB=/usr/lpp/xgmon/lib
export GLIB

3. Change the directory to /usr/lpp/xgmon as follows:

cd /usr/lpp/xgmon

4. Set the PATH environment variable as follows:

$PATH:/usr/lpp/xgmon/bin
export PATH

5. Start the xgmon program by typing:

xgmon

1. Switch to another shell or X11 window, and change to your working directory. For
example, type:

cd /u/test

2. Choose a name for your new library command; for example, new_pgm. According to the
naming convention for library programs, a .g qualifier must be appended to the library
command name; for example, new_pgm.g.

3. Code the new library program using the xgmon programming utility.

4. Return to the xgmon console.

5. Compile the new library program with the compile system command. For example, type:

compile /u/test/new__pgm.g

6. If there are any errors, return to the previous shell or X11 window, correct the problems,
and recompile the new library program at the xgmon console.

7. If this new library program has no parameters, test the new library command using the
start system command. If the functionality of the code is not correct, fix the problem(s),
and recompile and test the new library program.

If the new library program has parameters, execute the halt system command to unload
the virtual G machine that the compile system command loaded with the new library
program object code. In this case, you cannot test the functionality of the code unless the
library program resides in the directory specified by the GLIB environment variable.

8. Switch to another shell or X11 window. Move the new library program to the directory
specified by the GLIB environment variable. For example, if the GLIB environment
variable is set to /usr/lpp/xgmon/lib, type:

mv /u/test/new_pgm.g /usr/lpp/xgmon/lib/.

6-46 Communications Programming Concepts

9. Return to the xgmon console. Execute the new library command by entering at the
xgmon command prompt (>) the name of the library command and any required
parameters; for example:

new_pgrn Parameterl Parameter2 .•• Parametern

10. If the functionality of the new code is not correct, continue debugging the library program
from the directory specified by the GLIB environment variable. If your new library
command has parameters, do not use the compile system command to test the new
library program. Continue to execute it as specified in the previous step.

Related Information
The compile system command, halt system command, start system command.

The mv command.

How to Create xgmon Intrinsic Functions on page 6-43, How to Modify Existing xgmon
Library Commands on page 6-48.

Network Management/6000 (xgmon) 6-47

How to Modify Existing xgmon Library Commands

Prerequisite Tasks or Conditions

Procedure

1. Install the xgmon program.

2. Set the GLIB environment variable to the /usr/lpp/xgmon/lib directory as follows:

GLIB=/usr/lpp/xgmon/lib
export GLIB

3. Change the directory to /usr/lpp/xgmon as follows:

cd /usr/lpp/xgmon

4. Set the PATH environment variable as follows:

$PATH:/usr/lpp/xgmon/bin
export PATH

5. Start the xgmon program by typing:

xgmon

1. Switch to another shell or X11 window, and change to your working directory. For
example, type:

cd /u/test

2. Copy the library program (must be a .g file) to a .bak file, and move the .g file to your
working directory. For example, if the program you wish to modify is ping_all.g, type:

cp /usr/lpp/xgmon/lib/ping_all.g /usr/lpp/xgmon/lib/ping_all.bak

mv /usr/lpp/xgmon/lib/ping_all.g /u/test/

3. Edit the .g file with a text editor and save your changes.

4. Return to the xgmon console ..

5. Compile the modified library program with the compile system command. For example,
type:

compile /u/test/ping_all.g

6. If there are any errors, return to the previous shell or X11 window, correct the problems,
and recompile the modified library program at the xgmon console.

7. If this modified library program has no parameters, test the modified library command
using the start system command. If the functionality of the code is not correct, fix the
problem(s), and recompile and test the modified library program.

If the modified library program has parameters, execute the halt system command to
unload the virtual G machine that the compile system command loaded with the
modified library program object code. In this case, you cannot test the functionality of the
code unless the library program resides in the directory specified by the GLIB
environment variable.

6-48 Communications Programming Concepts

8. Switch to the previous shell or X11 window. Move the modified library program to the
directory specified by the GLIB environment variable. For example, if the GLIB
environment variable is set to /usr/lpp/xgmon/lib, type:

mv /u/test/ping_all.g /usr/lpp/xgrnon/lib/

9. Return to the xgmon console. Execute the modified library command by entering at the
xgmon command prompt (>)the name of the library command and any required
parameters. For example, enter:

ping_ all

or, if the modified library command has parameters:

LibraryCommand Parameterl Parameter2 ... Parametern

10. If the functionality of the modified code is not correct, continue debugging the library
program from the directory specified by the GLIB environment variable. If your modified
library command has parameters, do not use the compile system command to test the
modified library program. Continue to execute it as specified in the previous step.

Related Information
The compile system command, halt system command, start system command.

The cp command, mv command.

How to Create xgmon Intrinsic Functions on page 6-43, How to Create xgmon Library
Commands on page 6-46.

Network Management/6000 (xgmon) 6-49

6-50 Communications Programming Concepts

Chapter 7. Remote Procedure Call (RPC)

Remote Procedure Call (RPC) is a protocol that provides the high-level communications
paradigm used in the operating system. RPC implements a logical client-to-server
communications system designed specifically for the support of network applications. This
chapter contains information on the messages, authentication, language, and protocol
compiler for RPC. The chapter is divided into RPC concepts, lists of subroutines, and
examples.

Remote Procedure Call (RPC) Overview
Remote Procedure Call (RPC) is a protocol that provides the high-level communications
paradigm used in the operating system. RPC presumes the existence of a low-level
transport protocol, such as Transmission Control Protocol/Internet Protocol (TCP/IP) or User
Datagram Protocol (UDP/IP), for carrying the message data between communicating
programs. RPC implements a logical client-to-server communications system designed
specifically for the support of network applications.

The RPC protocol is built on top of the external Data Representation (XOR) protocol, which
is used to standardize the representation of data in remote communications. XOR converts
the parameters and results of each RPC service provided.

The RPC protocol enables users to work with remote procedures as if the procedures were
local. The remote procedure calls are defined through routines contained in the RPC
protocol. Each call message is matched with a reply message. The RPC protocol is a
message-passing protocol that implements other non-RPC protocols such as batching and
broadcasting remote calls. The RPC protocol also supports callback procedures and the
select subroutine on the server side.

A client is a computer or process that accesses the services or resources of another process
or computer on the network. A server is a computer that provides services and resources,
and that implements network services. Each network service is a collection of remote
programs. A remote program implements remote procedures. The procedures, their
parameters, and the results are all documented in the specific program's protocol.

RPC provides an authentication process that identifies the server and client to each other.
RPC includes a slot for the authentication parameters on every remote procedure call so
that the caller can identify itself to the server. The client package generates and returns
authentication parameters. RPC supports various types of authentication such as the UNIX
and Data Encryption Standard (DES) systems.

In RPC, each server supplies a program that is a set of procedures. The combination of a
host address, a program number, and a procedure number specifies one remote service
procedure. In the RPC model, the client makes a procedure call to send a data packet to the
server. When the packet arrives, the server calls a dispatch routine, performs whatever
service is requested, and sends a reply back to the client. The procedure call then returns to
the client.

RPC is divided into three layers: highest, intermediate, and lowest. The RPC interface is
generally used to communicate between processes on different workstations in a network.
However, RPC works just as well for communication between different processes on the
same workstation.

Remote Procedure Call {RPC) 7-1

The port mapper program maps RPC program and version numbers to a transport-specific
port number. The port mapper program makes dynamic binding of remote programs
possible.

To write network applications using RPC, programmers need a working knowledge of
network theory. For most applications, understanding the RPC mechanisms usually hidden
by the rpcgen protocol compiler is also helpful. However, rpcgen circumvents the need for
understanding the details of RPC.

Related Information
The rpcgen command.

Alphabetical List of RPC Subroutines and Macros on page 7-41, Functional List of RPC
Subroutines and Macros on page 7-44.

List of RPC Examples on page 7-49.

Understanding the RPC Features on page 7-29, Programming in RPC on page 7-20,
Understanding the Port Mapper Program on page 7-17, Understanding RPC Authentication
on page 7-10, Understanding the RPC Language on page 7-31, Understanding the RPC
Message Protocol on page 7-5, Understanding the RPC Model on page 7-2,
Understanding the rpcgen Protocol Compiler on page 7-37.

external Data Representation (XDR) Overview for Programming on page 3-1.

Understanding Protocols for TCP/IP, User Datagram Protocol in Communication Concepts
and Procedures.

Understanding the RPC Model
The remote procedure call (RPC) model is similar to the local procedure call model. In the
local model, the caller places arguments to a procedure in a specified location such as a
result register. Then, the caller transfers control to the procedure. The caller eventually
regains control, extracts the results of the procedure, and continues execution.

RPC works in a similar manner, in that one thread of control winds logically through two
processes: the caller process and the server process. First, the caller process sends a call
message that includes the procedure parameters to the server process. Then, the caller
process waits for a reply message {blocks). Next, a process on the server side, which is
dormant until the arrival of the call message, extracts the procedure parameters, computes
the results, and sends a reply message. The server waits for the next call message. Finally,
a process on the caller receives the reply message, extracts the results of the procedure,
and the caller resumes execution.

See the following figure for an illustration of the RPC Paradigm.

7-2 Communications Programming Concepts

apparent flow

call
Manager Client L.t_ return Procedures I...,

• ~
call call return return

Interface
~ ~

Client Stub Server Stub

call return return call

_...
RPC Runtime .. RPC Runtime
Library i... Library r-

network
messages

Client process Server process

Figure 1. Remote Procedure Call Flow

In the RPC model, only one of the two processes is active at any given time. Furthermore,
this model is only an example. The RPC protocol makes no restrictions on the concurrency
model implemented and others are possible. For example, an implementation may choose
asynchronous remote procedure calls so that the client can continue working while waiting
for a reply from the server. Additionally, the server can create a task to process incoming
requests and thereby remain free to receive other requests.

Transports and Semantics
The RPC protocol is independent of transport protocols. That is, RPC does not care how a
message is passed from one process to another. The protocol deals only with the
specification and interpretation of messages.

RPC does not try to implement any kind of reliability. The application must be aware of the
type of transport protocol underneath RPC. If the application is running on top of a reliable
transport, such as TCP/IP, then most of the work is already done. If the application is running
on top of a less reliable transport, such as UDP/IP, then the application must implement a
retransmission and time-out policy, because RPC does not provide these services.

Due to transport independence, the RPC protocol does not attach specific semantics to the
remote procedures or their execution. The semantics can be inferred from (and should be
explicitly specified by) the underlying transport protocol. For example, consider RPC running
on top of a transport such as UDP/IP. If an application retransmits RPC messages after short
time outs and receives no reply, then the application infers that the procedure was executed
zero or more times. If the application receives a reply, then the application infers that the
procedure was executed at least once.

A transaction ID is packaged with every RPC request. In order to ensure some degree of
execute-at-most-once semantics, RPC allows a server to use the transaction ID to recall a
previously granted request. The server can then refuse to grant that request again. The
server is allowed to examine the transaction ID only as a test for equality. The RPC client
mainly uses the transaction ID to match replies with requests. However, a client application
can reuse a transaction ID when transmitting a request.

Remote Procedure Call (RPC) 7-3

When using a reliable transport such as TCP/IP, the application can infer from a reply
message that the procedure was executed exactly once. If the application receives no reply
message, the application cannot assume that the remote procedure was not executed. Note
that even if a connection-oriented protocol like TCP/IP is used, an application still needs time
outs and reconnection to handle server crashes.

There are possibilities for transports besides datagram or connection-oriented protocols.
For ·example, a request-reply protocol, such as Versatile Message Transaction Protocol
(VMTP), is perhaps the most natural transport for RPC.

RPC in the Binding Process
The act of binding a client to a service is not part of the remote procedure call specification.
This important and necessary function is left to higher level software. However, the higher
level software may use RPC in the binding process. The Port Mapper Program is an
example of software that uses RPC.

The RPC protocol's relationship to the binding software is similar to the relationship of the
network jump-subroutine instruction (JSR) to the loader (binder). The loader uses JSR to
accomplish its task. Likewise, the network uses RPC to accomplish the bind.

Related Information
List of RPC Examples on page 7-49.

Programming in RPC on page 7-20, Understanding the Port Mapper Program on page
7-17, Understanding the RPC Language on page 7-31, Understanding the RPC Message
Protocol on page 7-5.

Understanding Protocols for TCP/IP, User Datagram Protocol in Communication Concepts
and Procedures.

7-4 Communications Programming Concepts

Understanding the RPC Message Protocol
The RPC message protocol consists of two distinct structures: the call message and the
reply message. A client makes a remote procedure call to a network server and receives a
reply containing the results of the procedure's execution. By providing a unique specification
for the remote procedure, RPC can match a reply message to each call (or request)
message.

The RPC message protocol is defined using the XOR data description, which includes
structures, enumerations, and unions. See Using the RPC Language Descriptions on page
7-31 for more information.

When RPC messages are passed using the TCP/IP byte stream protocol for data transport,
it is important to identify the end of one message and the start of the next one.

Understanding the RPC Protocol Requirements
The RPC message protocol requirements are:

• Unique specification of a procedure to call
• Matching of response messages to request messages
• Authentication of caller to service and service to caller.

In addition to these requirements, features that detect the following are worth supporting
because of protocol roll-over errors, implementation bugs, user errors, and network
administration:

• RPC protocol mismatches
• Remote program protocol version mismatches
• Protocol errors (such as misspecification of a procedure's parameters)
• Reasons why remote authentication failed
• Any other reasons why the desired procedure was not called.

Understanding the RPC Messages
The initial structure of an RPC message is as follows:

struct rpc_rnsg {
unsigned int xid;
union switch (enurn msg_type rntype) {

case CALL:

} ;

call_body cbody;
case REPLY;

reply_body rbody;
} body;

All remote procedure call and reply messages start with a transaction identifier, xid, which
is followed by a two-armed discriminated union. The union's discriminant is rnsg_ type,
which switches to one of the following message types: CALL or REPLY. The rnsg_type has
the following enumeration:

enurn rnsg_type {
CALL = O,
REPLY 1

} ;

Remote Procedure Call {RPC) 7-5

The xid parameter is used by clients matching a reply message to a call message or by
servers detecting retransmissions. The server side does not treat the xid parameter as a
sequence number.

The initial structure of an RPC message is followed by the body of the message. The body
of a call message has one form. The body of a reply message takes one of two forms,
depending on whether a call is accepted or rejected by the server.

Understanding an RPC Call Message
Each remote procedure call message contains the following unsigned integer fields to
uniquely identify the remote procedure:

• Program number
• Program version number
• Procedure number.

The body of an RPC call message takes the following form:

struct call_body {
unsigned int rpcvers;
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque_auth cred;
opaque_auth verf;
1 parameter
2 parameter

} ;

The parameters for the call message body structure are defined as follows:

rpcvers

prog

vers

proc

cred

Specifies the version number of the RPC protocol. The value of this
parameter is 2 for the second version of RPC.

Specifies the number that identifies the remote program. This is an
assigned number represented in a protocol that identifies the program
needed to call a remote procedure. Program numbers are
administered by a central authority and documented in the program's
protocol specification.

Specifies the number that identifies the remote program version. As a
remote program's protocols are implemented, they evolve and change.
Version numbers are assigned to identify different stages of a
protocol's evolution. Servers can service requests for different versions
of the same protocol simultaneously.

Specifies the number of the procedure associated with the remote
program being called. These numbers are documented in the specific
program's protocol specification. For example, a protocol's
specification can list the read procedure as procedure number 5 or the
write procedure as procedure number 12.

Specifies the credentials-authentication parameter that identifies the
caller as having permission to call the remote program. This parameter
is passed as an opaque data structure, which means the data is not
interpreted as it is passed from the client to the server.

7-6 Communications Programming Concepts

• verf
Specifies the verifier-authentication parameter that identifies the caller to the server. This
parameter is passed as an opaque data structure, which means the -data is not interpreted
as it is passed from the client to the server.

1 parameter

2 parameter

Denotes a procedure-specific parameter.

Denotes a procedure-specific parameter.

The client can send a broadcast packet to the network and wait for numerous replies from
various servers. The client can also send an arbitrarily large sequence of call messages in a
batch to the server.

Understanding an RPC Reply Message
The RPC protocol for a reply message varies depending on whether the call message is
accepted or rejected by the network server.

The reply message to a request contains information to distinguish the following conditions:

• RPC executed the call message successfully.
• The remote implementation of RPC is not protocol version 2. The lowest and highest

supported RPC version numbers are returned.
• The remote program is not available on the remote system.
• The remote program does not support the requested version number. The lowest and

highest supported remote program version numbers are returned.
• The requested procedure number does not exist. This is usually a caller-side protocol or

programming error.

The RPC reply message takes the following form:

enum reply_stat stat {
MSG_ACCEPTED 0,
MSG DENIED = 1

} ;

The enum reply _stat discriminant acts as a switch to the rejected or accepted reply
message forms.

The Reply to an Accepted Request
The body of an RPC reply message for a request that is accepted by the network server has
the following structure:

struct accepted_reply areply {
opaque_auth verf;

} ;

union switch (enum accept_stat stat) {
case SUCCESS:

opaque results {O};
/* procedure specific results start here */

case PROG MISMATCH:
struct {

unsigned int low;
unsigned int high;

} mismatch_info;
default:

void;
} reply_data;

Remote Procedure Call (RPC) 7-7

The structures within the accepted reply are defined as follows:

opaque_auth verf Authentication verifier generated by the server to identify itself
to the caller.

enum accept_stat A discriminant that acts as a switch between SUCCESS,
PROG_MISMATCH, and other appropriate conditions which are
defined as follows:

SUCCESS

PROG UNAVAIL

PROG MISMATCH

PROC UNAVAIL

GARBAGE ARGS

RPC call is successful.

The remote server has not exported
the program.

The remote server cannot support the
client's version number. Returns the
lowest and highest version numbers
of the remote program that are
supported by the server.

The program cannot support the
requested procedure.

The procedure cannot decode the
parameters specified in the call.

The accept_stat enumeration data type has the following definitions:

en um accept_ stat {
SUCCESS 0, /* RPC executed successfully */
PROG UNAVAIL = 1' /* remote has not exported program */
PROG MISMATCH 2, /* remote cannot support version # */
PROC UNAVAIL 3, /* program cannot support procedure */
GARBAGE ARGS 4' /* procedure cannot decode params */

} ;

Note: An error condition may exist even when a call message is accepted by the server.

The Reply to a Rejected Request
A call message can be rejected by the server for two reasons: either the server is not
running a compatible version of the RPC protocol, or there is an authentication failure.

The body of an RPC reply message for a request that is rejected by the network server has
the following structure:

struct rejected_reply rreply {
union switch (enum reject_stat stat) {

case RPC_MISMATCH:

} ;

struct {
unsigned int low;
unsigned int high;

} mismatch_info;
case AUTH ERROR:

enum auth stat stat;

7-8 Communications Programming Concepts

The enum reject_stat discriminant acts as a switch between RPC_MISMATCH and
AUTH_ERROR. The rejected call message returns one of the following status conditions:

enum reject_stat {
RPC MISMATCH
AUTH ERROR

} ;

RPC MISMATCH

AUTH ERROR

enum auth_stat {
AUTH BADCRED

O, /* RPC version number is not 2 */
= 1, /* remote cannot authenticate caller */

The server is not running a compatible version of the RPC protocol.
The server returns the lowest and highest version numbers
available.

The server refuses to authenticate the caller and returns a failure
status with the value enurn auth_stat. Authentication may fail
because of bad or rejected credentials, bad or rejected verifier,
expired or replayed verifier, or security problems.

If the server does not authenticate the caller, AUTH_ERROR returns
one of the following conditions as the failure status:

AUTH REJECTEDCRED
AUTH BADVERF

1, /* bad credentials */
2, /* client must begin new session */
3, /* bad verifier */
4, /* verifier expired or replayed */
5, /* rejected for security reasons */

} ;

AUTH REJECTEDVERF
AUTH TOOWEAK

Marking Records in RPC Messages
When RPC messages are passed using the TCP/IP byte stream protocol for data transport,
it is important to identify the end of one message and the start of the next one. This is called
Record Marking (RM).

A record is composed of one or more record fragments. A record fragment is a 4-byte
header. The header is followed by O to 232-1 bytes of fragment data. The bytes encode an
unsigned binary number, similar to XDR integers, in which the order of bytes is from highest
to lowest. This binary number encodes a Boolean and an unsigned binary value of 31 bits.

The Boolean value is the highest-order bit of the header. If the Boolean value is 1 (one), the
fragment is the last fragment of the record. The unsigned binary value is the length in bytes
of the data fragment. If the parameters to the remote procedure appear as garbage to the
server, it is usually caused by a protocol disagreement between client and service.

Related Information
List of RPC Examples on page 7-49.

Programming in RPC on page 7-20, Understanding RPC Authentication on page 7-10,
Using the RPC Language Descriptions on page 7-31, Understanding the RPC Model on
page 7-2.

external Data Representation (XOR) Overview for Programming on page 3-1.

Understanding Protocols for TCP/IP, User Datagram Protocol in Communication Concepts
and Procedures.

Remote Procedure Call (RPC) 7-9

Understanding RPC Authentication
The caller may not want to identify itself to the server, and the server may not require an ID
from the caller. However, some network services, such as the Network File System, require
stronger security. RPC authentication provides a certain degree of security. The following are
part of RPC authentication:

• Understanding RPC Authentication Protocol
• Understanding NULL Authentication
• Understanding UNIX Authentication
• Understanding Data Encryption Standard (DES) Authentication
• Understanding Data Encryption Standard (DES) Authentication Protocol
• Understanding Diffie-Hellman Encryption.

RPC deals only with authentication and not with access control of individual services. Each
service must implement its own access control policy and reflect this policy as return
statuses in its protocol. The programmer can build additional security and access controls on
top of the message authentication.

The authentication subsystem of the RPC package is open ended. Different forms of
authentication can be associated with RPC clients. That is, multiple types of authentication
are easily supported at one time. Examples of authentication types include UNIX, DES, and
NULL. The default authentication type is none (AUTH_NULL).

Understanding RPC Authentication Protocol
The RPC protocol provisions for authentication of the caller to the service, and vice versa,
are provided as part of the RPC protocol. Every remote procedure call is authenticated by
the RPC package on the server, and similarly, the RPC client package generates and sends
authentication parameters. The call message has two authentication fields: credentials and
verifier. The reply message has one authentication field: response verifier.

The RPC protocol specification defines the credentials of the call message and the verifiers
of both the call message and the reply message as an opaque data type, as follows:

enum auth flavor {

AUTH_NULL = 0'
AUTH UNIX 1,
AUTH SHORT 2,
AUTH DES 3
/* and more to be defined */

} ;
struct opaque_auth {

auth_flavor flavor;
opaque body<400>;

} ;

Any opaque_auth structure is an auth_flavor enumeration followed by bytes which are
opaque to the RPC protocol implementation. The interpretation and semantics of the data
contained within the authentication fields are specified by individual, independent
authentication protocol specifications.

If authentication parameters were rejected, the response message contains information
stating why they were rejected. A server can support multiple types of authentication at one
time. If authentication parameters are rejected, the response message contains information
stating the reason.

7-10 Communications Programming Concepts

Understanding NULL Authentication
Sometimes, the RPC caller does not know its own identity or the server does not need to
know the caller's identity. In these cases, the AUTH_NULL authentication type can be used
as the flavor in both the RPC call message and the response message. The bytes of the
opaque_auth body are undefined. It is recommended that the opaque length be O (zero).

Understanding UNIX Authentication
The caller of a remote procedure may wish to identify himself as he is identified on the UNIX
system. The value of the credential's discriminant of an RPC call message is AUTH_UNIX.
The bytes of the credential's opaque body encode the following structure:

struct auth unix {
unsigned
string
unsigned
unsigned
unsigned

} ;

stamp;
machinename<255>;
uid;
gid;
gids<lO>;

The parameters in the structure are defined as follows:

stamp Specifies the arbitrary ID generated by the caller's workstation.
machinename<255> Specifies the name of the caller's workstation. The name must not

exceed 255 bytes in length.
uid Specifies the caller's effective user ID.
gid Specifies the caller's effective group ID.

gids<lO> Specifies the counted array of groups that contain the caller as a
member. A maximum of 10 groups is allowed.

The verifier accompanying the credentials should be AUTH_NULL.

The value of the discriminant in the response verifier of the reply message from the server is
either AUTH_NULL or AUTH_SHORT. If the value is AUTH_SHORT, the bytes of the response
verifier's string encode an opaque structure. The new opaque structure can then be passed
to the server in place of the original AUTH _UNIX credentials. The server maintains a cache
that maps shorthand opaque structures (passed back by way of an AUTH_SHORT style
response verifier) to the original credentials of the caller. The caller saves network bandwidth
and server CPU time when the shorthand credentials are used.

Note: The server can eliminate, or flush, the shorthand opaque structures at any time. If
this happens, the RPC message is rejected due to an AUTH_REJECTEDCRED
authentication error. The original AUTH_UNIX credentials can be used when this
happens.

UNIX Authentication on the Client Side
When a caller creates a new RPC client handle, the authentication handle of the appropriate
transport is set to the default using the authnone_create subroutine. The default for an
RPC authentication handle is NULL. After creating the client handle, the client can select
UNIX authentication, using the authunix_create routine. This routine creates an
authentication handle with AIX permissions and causes each remote procedure call
associated with the handle to carry with it the UNIX credentials.

Authentication information can be destroyed with the auth_destroy subroutine.
Authentication information should be destroyed if one is attempting to conserve memory.

For more information, see the Example Using UNIX Authentication on page 7-50.

Remote Procedure Call (RPC) 7-11

UNIX Authentication on the Server Side
Dealing with authentication issues on the server side is more difficult than dealing with them
on the client side. The caller's RPC package passes the service dispatch routine a request
that has an arbitrary authentication style associated with it. The server must then determine
which style of authentication the caller used and whether the style is supported by the RPC
package.

If the authentication parameter type is not suitable for the calling service, the service
dispatch routine calls the svcerr_weakauth routine to refuse the remote procedure call. It is
not customary for the server to check the authentication parameters associated with
procedure 0 (NULLPROC).

If the service does not have the requested protocol, the service dispatch returns a status for
access denied. The svcerr_systemerr primitive is called to detect a system error that is not
covered by a service protocol.

Understanding Data Encryption Standard (DES) Authentication
DES authentication offers more security features than UNIX authentication. In order for DES
authentication to work, the keyserv daemon must be running on both the server and client
machines. The users at these workstations need public keys assigned in the public key
database by the person administering the network. Additionally, each user's secret key must
be decrypted using their keylogin command password.

DES authentication can handle the following UNIX problems:

• The naming scheme within UNIX authentication is UNIX-system oriented.

• UNIX authentication lacks a verifier, thereby allowing falsification of credentials.

For more information, see the Example Using DES Authentication on page 7-53.

DES Authentication Naming Scheme
DES addresses the caller with a simple string of characters instead of an operating
system-specific integer. This string of characters is known as the caller's network name, or
netname. The server is allowed to interpret the contents of the netname only for the purpose
of identification of the caller. Therefore, netnames should be unique for each caller in the
network.

Each operating system is responsible for implementing DES authentication to generate
unique netnames for calling on remote servers. Operating systems can already distinguish
local users to their systems, so extending this mechanism to the network is simple.

For example, a UNIX user at IBM with a user ID of 515 might be assigned the following
netname: unix. 515@ibm.com. This netname contains three items that serve to insure it is
unique. Going backwards, there is only one naming domain called ibm. com in the internet.
Within this domain, there is only one UNIX user with user ID 515. However, there may be
another user on another operating system, for example VMS, within the same naming
domain that, by coincidence, happens to have the same user ID. To insure that these two
users can be distinguished we add the operating system name. So one user is
unix. 515@ ibm. com and the other is vms • 515@ ibm. com.

The first field is actually a naming method rather than an operating system name. However,
there is currently a one-to-one correspondence between naming methods and operating
systems. If a naming standard is universally agreed upon in the future, the first field will
become the name of that standard, instead of an operating system name.

7-12 Communications Programming Concepts

DES Authentication Verifiers
Unlike UNIX authentication, DES authentication has a verifier that permits the server to
validate the client's credential and the client to valiqate the server's credential. The contents
of this verifier is primarily an encrypted timestamp. The timestamp is encrypted by the client
and decrypted by the server. If the timestamp is close to the real time, then the client
encrypted it correctly. In order to encrypt the timestamp correctly, the client must have the
conversation key of the RPC session. The client with the conversation key is the authentic
client.

The conversation key is a DES key that the client generates and includes in its first remote
procedure call to the server. The conversation key is encrypted using a public key scheme in
the first transaction. The particular public key scheme used in DES authentication is
Diffie-Hellman with 192-bit keys. For more information, see the section on Understanding
Diffie-Hellman Encryption) on page 7-15.

For successful validation, the client and the server need the same notion of the current time.
If network time synchronization cannot be guaranteed, the client can synchronize with the
server before beginning the conversation, perhaps by consulting the Internet Time Server
(TIME).

DES Authentication on the Server Side
Determining the validity of a client's timestamp depends on whether it is the first transaction.
In the first transaction, the server checks only that the timestamp has not expired. For all
transactions other than the first transaction, the server verifies that the timestamp is greater
than the previous timestamp from the same client, and that the timestamp has not expired. A
timestamp has expired if the server's time is later than the sum of the client's timestamp plus
the client's window. The sum of the timestamp plus the client window can be thought of as
the lifetime of the credential.

DES Authentication on the Client Side
In the first transaction to the server, the client sends an encrypted item, the window verifier,
that must be equal to the client's window minus one as an added check. Otherwise, it would
be easy for the client to send random data in place of the timestamp with a fairly good
chance of succeeding. Any other value for the credential is rejected by the server. If the
window verifier is accepted by the server, the server returns to the client a verifier equal to
the encrypted timestamp minus one second. If the client receives a different timestamp from
the server, the client rejects it.

For all subsequent transactions, the client's timestamp is valid if it is greater than the
previous timestamp and has not expired. A timestamp has expired if the server's time is later
than the sum of the client's timestamp plus the client's window. The sum of the timestamp
plus the client window can be thought of as the lifetime of the credential.

To use DES authentication, the programmer must set the client authentication handle using
the authdes_create subroutine. This routine requires the network name of the owner of the
server process, a lifetime for the credential, the address of the host with which to
synchronize, and the address of a DES encryption key to use for encrypting timestamps and
data.

Remote Procedure Call (RPC) 7-13

Nicknames
The server's DES authentication subsystem returns a nickname to the client in the verifier
response to the first transaction. The nickname is an unsigned integer. The nickname is
likely to be an index into a table on the server that stores each client's netname, decrypted
DES key, and window. The client can use the nickname in all subsequent transactions
instead of passing its netname, encrypted DES key, and window each time. Using the
nickname is not required, but its use can save time.

Clock Synchronization
Although the client and server clocks are originally synchronized, they can lose this
synchronization. When this happens the client RPC subsystem normally receives the
RPC_AUTHERROR error message and should resynchronize.

A client can also receive the RPC_AUTHERROR message, even when the clocks are
synchronized. This is because the server's nickname table has been flushed due to size
limitations of the table or during a server crash. To receive new nicknames, all clients must
re-send their original credentials to the server.

Understanding Data Encryption Standard (DES) Authentication Protocol
DES authentication has the following form of XDR enumeration:

enum authdes_namekind {
ADN_FULLNAME = 0,
AON NICKNAME = 1

} ;
typedef opaque des_block[8];
canst MAXNETNAMELEN = 255;

A credential is either a client's full network name or its nickname. In the first transaction with
the server, the client must use its full name. In all further transactions with the server the
client can use its nickname. DES authentication protocol includes a 64-bit block of encrypted
DES data and specifies the maximum length of a network user's name.

The authdes_cred union provides a switch between the full name and nickname forms, as
follows:

union authdes_cred switch (authdes_narnekind adc_namekind) {
case ADN_FULLNAME:

} ;

authdes_fullname adc_fullname;
case ADN NICKNAME:

unsigned int adc_nickname;

The full name contains the network name of the client, an encrypted conversation key, and
the window. The window is actually a lifetime for the credential. The server can terminate a
client's timestamp and not grant the request if the time indicated by the verifier timestamp
plus the window has expired. In the first transaction, the server confirms that the window
verifier is one second less than the window. To ensure that requests are granted only once,
the server can require timestamps in subsequent requests to be greater than the client's
previous timestamps.

The structure for a credential using the client's full network name follows:

struct authdes_fullname {
string name<MAXNETNAMELEN>; /* name of client *I
des_block key; /* PK encrypted conversation key*/
unsigned int window; /* encrypted window */

} ;

7-14 Communications Programming Concepts

A timestamp encodes the time since midnight, January 1, 1970. The structure for the
timestamp follows:

struct timestamp {
unsigned int seconds;
unsigned int useconds;

I* seconds */
/* and microseconds */

The client verifier has the following structure:

struct {

}

adv_timestamp;
adc_fullname.window;
adv_winverf;

/* one DES block
/* one half DES block
/* one half DES block

*/
*/
*/

The window verifier is only used in the first transaction. In conjunction with the fullname
credential, these items are packed into the above structure before being encrypted.

This structure is encrypted using CBC mode encryption with an input vector of zero. All other
encryptions of timestamps use ECB mode encryption. The client's verifier has the following
structure:

struct authdes_verf_clnt {
timestamp adv_timestamp;
unsigned int adv_winverf;

} ;

/* encrypted timestamp */
/* encrypted window verifier */

The server returns the client's timestamp minus one second in an encrypted response
verifier. This verifier also sends the client an unencrypted nickname to be used in future
transactions. The verifier from the server has the following structure:

struct authdes_verf_svr {
timestamp adv_timeverf;
unsigned int adv_nickname;

/* encrypted verifier */
/* new nickname for client */

} ;

Understanding Diffie-Hellman Encryption
The particular public key scheme used in DES authentication is Diffie-Hellman with 192-bit
keys. In the Diffie-Hellman encryption scheme, there are two constants, BASE and MODULUS.
The particular values chosen for these for the DES authentication protocol are:

Const BASE = 3;
canst MODULUS = "d4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b88b";
/* hex */

For example, two programmers A and B can send encrypted messages to each other in the
following manner. First, programmers A and B independently generate secret keys at
random, which can be represented as SK(A) and SK(B). Both programmers then publish
their public keys PK(A) and PK{B) in a public directory. These public keys are computed
from the secret keys as follows:

PK(A) = (BASE ** SK(A)) mod MODULUS
PK(B) = (BASE ** SK(B)) mod MODULUS

The** {double asterisk) notation is used here to represent exponentiation. Now, both
programmers A and B can arrive at the common key between them, represented here as
CK(A, 8), without revealing their secret keys.

Remote Procedure Call {RPC) 7-15

Programmer A computes:

CK(A, B) = (PK(B) ** SK(A)) mod MODULUS

while programmer B computes:

CK(A, B) = (PK(A) ** SK(B)) mod MODULUS

These two can be shown to be equivalent:

(PK(B) ** SK(A)) mod MODULUS= (PK(A) ** SK(B)) mod MODULUS

If the mod MODULUS parameter is omitted, modulo arithmetic can simplify things as follows:

PK(B) ** SK(A) = PK(A) ** SK(B)

Then, if the result of the previous computation on B replaces PK(B) and the previous
computation of A replaces PK(A), the equation is:

((BASE** SK(B)) ** SK(A) = (BASE** SK(A)) ** SK(B)

This equation can be simplified as follows:

BASE** (SK(A) * SK(B)) =BASE** (SK(A) * SK(B))

This produces a common key CK(A,B). This common key is not used directly to encrypt the
timestamps used in the protocol. Instead, it is used to encrypt a conversation key that is then
used to encrypt the timestamps. This allows the common key to be used as little as possible
to prevent it from being broken. Breaking the conversation key usually has less serious
consequences because conversations are relatively short-lived.

The conversation key is encrypted using 56-bit DES keys, yet the common key is 192 bits.
To reduce the number of bits, 56 bits are selected from the common key as follows. The
middle-most 8-bytes are selected from the common key, and then parity is added to the
lower order bit of each byte, producing a 56-bit key with 8 bits of parity.

Related Information
The keylogin command.

The keyserv daemon.

The authdes_create subroutine, auth_destroy subroutine, authnone_create subroutine,
authunix_create subroutine, svcerr_weakauth subroutine, svcerr_systemerr subroutine.

List of RPC Examples on page 7-49.

Example Using DES Authentication on page 7-53, Example Using UNIX Authentication on
page 7-50.

external Data Representation (XOR) Overview for Programming on page 3-1.

Network File System (NFS) Overview for System Management in Communication Concepts
and Procedures.

7-16 Communications Programming Concepts

Understanding the RPC Port Mapper Program
Client programs must find the port numbers of the server programs that they intend to use.
Network transports do not provide such a service; they merely provide process-to-process
message transfer across a network. A message typically contains a transport address which
contains a network number, a host number, and a port number.

A port is a logical communications channel in a host. A server process receives messages
from the network by waiting on a port. How a process waits on a port varies from one
operating system to another, but all systems provide mechanisms that suspend processes
until a message arrives at a port. Therefore, messages are sent to the ports at which
receiving processes wait for messages.

Ports allow message receivers to be specified in a way that is independent of the
conventions of the receiving operating system. The portmapper protocol defines a network
service that permits clients to look up the port number of any remote program supported by
the server. Since the port mapper program can be implemented on any transport that
provides the equivalent of ports, it works for all clients, all servers, and all networks.

The port mapper program maps RPC program and version numbers to transport-specific
port numbers. The port mapper program makes dynamic binding of remote programs
possible. This is desirable because the range of reserved port numbers is small and the
number of potential remote programs large. When running only the port mapper on a
reserved port, the port numbers of other remote programs can be determined by querying
the port mapper.

The port mapper also aids in broadcast RPC. A given RPC program usually has different
port number bindings on different machines, so there is no way to directly broadcast to all of
these programs. The port mapper, however, has a fixed port number. To broadcast to a
given program, the client sends its message to the port mapper located at the broadcast
address. Each port mapper that picks up the broadcast then calls the local service specified
by the client. When the port mapper receives a reply from the local service, it sends the reply
back to the client.

Registering Ports
Every port mapper on every host is associated with port number 111. The port mapper is the
only network service that must have a dedicated port. Other network services can
be assigned port numbers statically or dynamically, as long as the services register their
ports with their host's port mapper. For example, a server program based on an RPC library
typically gets a port number at run time by calling an RPC library procedure. The
programmer should note that a given network service can be associated with port number
256 on one server and with port number 885 on another, because a service on a given host
can be associated with a different port every time its server program is started.

The delegation of port-to-remote program mapping to a port mapper also automates port
number administration. Statically mapping ports and remote programs in a file duplicated on
each client requires updating all mapping files whenever a new remote program is
introduced to a network. The alternative of placing the port-to-program mappings in a shared
NFS file would be too centralized, and if the file server were to go down, the whole network
would go down with it.

The port-to-program mappings, which are maintained by the port mapper server, are called a
portmap. The port mapper is started automatically whenever a machine is booted. Both the
server programs and the client programs call port mapper procedures. As part of its
initialization, a server program calls its host's port mapper to create a portmap entry.

Remote Procedure Call (RPC) 7-17

Whereas server programs call port mapper programs to update portmap entries, clients call
port mapper programs to query portmap entries. To find a remote program's port, a client
sends an RPC call message to a server's portmapper. If the remote program is supported on
the server, the port mapper returns the relevant port number in an RPC reply message. The
client program can then send RPC call messages to the remote program's port. A client
program can minimize port mapper calls by caching the port numbers of recently called
remote programs.

Note: The port mapper provides an inherently stateful service because a port map is a set
of associations between registrants and ports.

Understanding Port Mapper Protocol
The following is the port mapper protocol specification in RPC language:

const PMAP_PORT = 111; /* port mapper port number */

The mapping of program, version, and protocol to the port number is shown by the following
structure:

struct mapping {
unsigned int prog;
unsigned int vers;
unsigned int prot;
unsigned int port;

} ;

The values supported for the prot parameter are:

const IPPROTO_TCP = 6;
const IPPROTO_UDP = 17;

/* protocol number for TCP/IP
/* protocol number for UDP/IP

The list of mappings takes the following structure:

struct *pmaplist {
mapping map;
pmaplist next;

} ;

The structure for arguments to the calli t parameter follows:

struct call_args {
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque args<>;

} ;

The results of the calli t parameter have the following structure:

struct call_result {
unsigned int port;
opaque res<>;

} ;

The structure for port mapper procedures follows:

program PMAP_PROG {
version PMAP_VERS {

void
PMAPPROC_NULL(void)

7-18 Communications Programming Concepts

O;

*/
*/

bool
PMAPPROC_SET(mapping) 1;

bool
PMAPPROC_UNSET(mapping) = 2;

unsigned int
PMAPPROC_GETPORT(mapping) = 3;

pmaplist
PMAPPROC_DUMP(void) 4;

call result
PMAPPROC_CALLIT(call_args) 5;

} = 2;
} = 100000;

Understanding Port Mapper Procedures
The port mapper program currently supports two protocols: UDP/IP and TCP/IP. The port
mapper is contacted by port number 111 on either of these protocols.

A description of the port mapper procedures follows:

PMAPPROC_NULL This procedure does no work. By convention, procedure 0 (zero)
of any protocol takes no parameters and returns no results.

PMAPPROC_SET When a program first becomes available on a machine, it
registers itself with the port mapper program on the same
machine. The program passes its program number (prog),
version number (vers), transport protocol number (prot), and the
port (port) on which it awaits service request. The procedure
returns a Boolean response whose value is TRUE if the
procedure successfully established the mapping or FALSE
otherwise. The procedure does not establish a mapping if one
already exists for the tuple (prog, vers, pro~.

PMAPPROC_UNSET When a program becomes unavailable, it should unregister itself
with the port mapper program on the same machine. The
parameters and results have meanings identical to those of the
PMAPPROC_SET procedure. The protocol and port number
fields of the argument are ignored.

PMAPPROC_GETPORT Given a program number (prog), version number (vers), and
transport protocol number (prot), this procedure returns the port
number on which the program is awaiting call requests. A port
value of 0 (zero) means the program has not been registered.
The port parameter of the argument is then ignored.

PMAPPROC_DUMP This procedure enumerates all entries in the port mapper data
base. The procedure takes no parameters and returns a list of
program, version, protocol, and port values.

PMAPPROC_CALLIT This procedure allows a caller to call another remote procedure
on the same machine without knowing the remote procedure's
port number. It supports broadcasts to arbitrary remote programs
through the well-known port mapper port. The prog, vers, and
proc parameters, and the bytes of the args parameter of a
remote procedure call represent the program number, version
number, procedure number, and arguments, respectively. The

Remote Procedure Call (RPC) 7-19

Related Information

PMAPPROC_CALLIT procedure sends a response only if the
procedure is successfully executed. The port mapper
communicates with the remote program using UDP/IP only. The
procedure returns the remote program's port number, and the
bytes of results are the results of the remote procedure.

List of RPC Examples on page 7-49.

Broadcasting Remote Procedure Calls on page 7-30.

Network File System (NFS) Overview for System Management, Understanding Protocols for
TCP/IP, User Datagram Protocol in Communication Concepts and Procedures.

Programming in RPC
Remote procedure calls can be made from any language. RPC is generally used to
communicate between processes on different workstations. However, RPC works just as
well for communication between different processes on the same workstation.

The RPC interface can be seen as being divided into three layers: highest, intermediate, and
lowest. The highest layer of RPC is totally transparent to the operating system, workstation,
and network upon which it runs. This level is actually a method for using RPC routines,
rather than a part of RPC proper. The intermediate layer of RPC is RPC proper. At the
intermediate layer, the programmer need not consider details about sockets or other
low-level implementation mechanisms. The programmer simply makes remote procedure
calls to routines on other workstations. The lowest layer of RPC allows the programmer
greatest control. Programs written at this level can be more efficient.

Intermediate and lower level RPC programming includes assigning program numbers,
version numbers, and procedure numbers. An RPC server can be started from the inetd
daemon.

Assigning Program Numbers
A central system authority administers the program number (prog parameter). A program
number permits the implementation of a remote program. The first implementation of a
program is usually version number 1.

A program number is assigned by groups of Ox20000000 (decimal 536870912), according to
the following list:

0-1xxxxxxx

20000000-3xxxxxxx

40000000-5xxxxxxx

60000000-7xxxxxxx

7-20 Communications Programming Concepts

This group of numbers is predefined and administered by the
AIX system. The numbers should be identical for all system
customers.

The user defines this group of numbers. The numbers are
used for new applications and for debugging new programs.

This group of numbers is transient and is used for applications
that generate program numbers dynamically.

Reserved.

80000000-9xxxxxxx

aOOOOOOO-bxxxxxxx

cOOOOOOO-dxxxxxxx

eOOOOOOO-fxxxxxxxx

Reserved.

Reserved.

Reserved.

Reserved.

The first group of numbers is predefined, and should be identical for all customers. If a
customer develops an application that might be of general interest, that application can be
registered by assigning a number in the first range. The second group of numbers is
reserved for specific customer applications. This range is intended primarily for debugging
new programs. The third group is reserved for applications that generate program numbers
dynamically. The final groups are reserved for future use, and should not be used.

Assigning Version Numbers
Most new protocols evolve into more efficient, stable, and mature protocols. As a program
evolves, a new version number (vers parameter) is assigned. The version number identifies
which version of the protocol the caller is using. The first implementation of a remote
program is usually designated as version number 1 (or a similar form). Version numbers
make it possible to use old and new protocols through the same server. See the Example
Using Multiple Program Versions on page 7-73.

Just as remote program protocols may change over several versions, the actual RPC
message protocol can also change. Therefore, the call message also contains the RPC
version number. In the second version of the RPC protocol specification, the version number
is always 2.

Assigning Procedure Numbers
The procedure number (proc parameter) identifies the procedure to be called. The
procedure number is documented in each program's protocol specification. For example, a
file service protocol specification can list the read procedure as procedure 5 and the write
procedure as procedure 12.

Using Registered RPC Programs
The RPC program numbers and protocol specifications of standard RPC services are in the
header files in the /usr/include/rpcsvc directory. The RPC /etc/rpc file describes the RPC
program numbers in text so that users can identify the number with the name. The names
identified in the text can be used in place of RPC program numbers. These programs,
however, constitute only a small subset of those that have been registered.

The following is a list of registered RPC programs including the program number, program
name, and program description:

Number Name Description

100000 PMAPPROG port mapper

100001 RSTATPROG remote stats

100002 RUSERSPROG remote users

100003 NFSPROG nfs

100004 YPPROG network information service (N IS)

100005 MOUNTPROG mount demon

Remote Procedure Call (RPC) 7-21

Number Name Description

100006 DBXPROG remote dbx

100007 YPBINDPROG yp binder

100008 WALLPROG shutdown msg

100009 YPPASSWDPROG yppasswd server

100010 ETHERSTATPROG ether stats

100011 RQUOTAPROG disk quotas

100012 SPRAYPROG spray packets

100013 IBM3270PROG 3270 mapper

100014 IBMRJEPROG RJE mapper

100015 SELNSVCPROG selection service

100016 RDATABASEPROG remote database access

100017 REXECPROG remote execution

100018 ALICEPROG Alice Office Automation

100019 SCHEDPROG scheduling service

100020 LOCKPROG local lock manager

100021 NETLOCKPROG network lock manager

100022 X25PROG x.25 inr protocol

100023 STATMON1 PROG status monitor 1

100024 STATMON2PROG status monitor 2

100025 SELNLIBPROG selection library

100026 BOOTPARAMPROG boot parameters service

100027 MAZEPROG mazewars game

100028 YPUPDATEPROG yp update

100029 KEYSERVEPROG key server

100030 SECURECMDPROG secure login

100031 NETFWDIPROG nfs net forwarder init

100032 NETFWDTPROG nfs net forwarder trans

100033 SUNLINKMAP _PROG sunlink MAP

100034 NETMONPROG network monitor

100035 DBASEPROG lightweight database

100036 PWDAUTHPROG password authorization

100037 TFSPROG translucent file svc

7-22 Communications Programming Concepts

Number Name Description

100038 NSEPROG nse server

100039 NSE_ACTIVATE_PROG nse activate daemon

150001 PCNFSDPROG pc passwd authorization

200000 PYRAMIDLOCKINGPROG Pyramid-locking

200001 PYRAMIDSYS5 Pyramid-sys5

200002 CADDS_IMAGE CV cadds_image

300001 ADT _RFLOCKPROG ADT file locking.

Programmers who write remote procedure calls should make the highest layer of RPC
available to other users by way of a simple C language front-end routine that entirely hides
the networking. To illustrate a call at the highest level, a program can simply call the rnusers
routine, a C routine that returns the number of users on a remote workstation. The user need
not be explicitly aware of using RPC.

Other RPC service library routines available to the C programmer are:

ruse rs Returns information about users on a remote workstation.

havedisk Determines whether the remote workstation has a disk.

rs tat Gets performance data from a remote kernel.

rwall Writes to a specified remote workstation.

yppasswd Updates a user password in the network information service (NIS).

RPC services, such as the mount and spray commands, are not available to the C
programmer as service library routines. Though unavailable, these services have RPC
program numbers and can be invoked with the callrpc subroutine. Most of these services
have compilable rpcgen protocol description files that simplify the process of developing
network applications.

For more information, see the Example Using the Highest Layer of RPC on page 7-58.

Using the Intermediate Layer of RPC
The intermediate layer RPC routines are used for most applications. The intermediate layer
is sometimes overlooked in programming due to its simplicity and lack of flexibility. At this
level, RPC does not allow time-out specifications, choice of transport, or process control in
case of errors. Nor does the intermediate layer of RPC support multiple types of call
authentication. The programmer often needs these kinds of control.

Remote procedure calls are made with the registerrpc, callrpc, and svc_run system
routines, which belong to the intermediate layer of RPC. The first two routines, registerrpc
and callrpc, are the most fundamental. The registerrpc routine obtains a unique
system-wide procedure identification number. The callrpc routine executes the remote
procedure call.

Each RPC procedure is uniquely defined by a program number, version number, and
procedure number. The program number specifies a group of related remote procedures,
each of which has a different procedure number. Each program also has a version number.

Remote Procedure Call (RPC) 7-23

Therefore, when a minor change, such as adding a new procedure, is made to a remote
service, a new program number need not be assigned.

The RPC interface also handles arbitrary data structures, regardless of the different byte
orders or structure layout conventions at various workstations. For more information, see the
Example Using the Intermediate Layer of RPC on page 7-59.

Using the registerrpc Routine
Only the User Datagram Protocol (UDP) transport mechanism can use the registerrpc
routine. This routine is always safe in conjunction with calls generated by the callrpc routine.
The UDP transport mechanism can deal only with arguments and results that are less than
BK bytes in length.

The RPC registerrpc routine includes the following parameters:

• Program number
• Version number
• Procedure number to be called
• procedure name
• XDR subroutine that decodes the procedure parameters
• XDR subroutine that encodes the procedure calls.

After registering the local procedure, the server program's main procedure calls the svc_run
routine, which is the RPC library's remote procedure dispatcher. The svc_run routine then
calls the remote procedure in response to RPC messages. The dispatcher uses the XDR
data filters that are specified when the remote procedure is registered to handle decoding
procedure arguments and encoding results.

Using the callrpc Routine
The RPC callrpc routine executes remote procedure calls. See the Example Using the
Intermediate Layer of RPC on page 7-59.

The callrpc routine includes the following parameters:

• Name of the remote server workstation
• Program number
• Version number of the program
• Procedure number
• Input XOR filter primitive
• Argument to be encoded and passed to the remote procedure
• Output XOR filter for decoding the results returned by the remote procedure
• Pointer to the location where the procedure's results are to be stored.

Multiple arguments and results can be embedded in structures. If the callrpc routine
completes successfully, it returns a value of O (zero). Otherwise, it returns a nonzero value.
The return codes are cast into values of integer data type in the <rpc/clnt.h> header file.

If the callrpc routine gets no answer after several attempts to deliver a message, it returns
with an error code. The delivery mechanism is User Datagram Protocol (UDP). Adjusting the
number of retries or using a different protocol requires the use of the lower layer of the RPC
library.

7-24 Communications Programming Concepts

Passing Arbitrary Data Types
The RPC interface can handle arbitrary data structures, regardless of the different byte
orders or structure layout conventions on different machines, by converting the structures to
a network standard called external Data Representation (XOR) before sending them over
the wire. The process of converting from a particular machine representation to XDR format
is called serializing, and the reverse process is called deserializing.

The input and output parameters of the callrpc and registerrpc routines can be a built-in or
user-supplied procedure. For more information, see the Example Showing How RPC Passes
Arbitrary Data Types on page 7-61.

The XOR language has the following built-in type routines:

• xdr_bool
• xdr_char
• xdr_u_char
• xdr_enum
• xdr_int
• xdr_u_int
• xdr_long
• xdr _u_long
• xdr_short
• xdr_u_short
• xdr_wrapstring

Although the xdr_string routine exists, it passes three parameters to its XOR routine and
cannot be used with the callrpc and registerrpc routines, which pass only two parameters.
However, the xdr_string routine can be called with the xdr_wrapstring routine, which also
has only two parameters.

If completion is successful, XOR routines return a nonzero value (or TRUE, in the C
language). Otherwise, XOR returns a value of 0 (zero, or FALSE).

In addition to the built-in primitives are the following prefabricated building blocks:

• xdr_array
• xdr_bytes
• xdr_opaque
• xdr_pointer
• xdr_reference
• xdr_string
• xdr_union
• xdr_vector

For the higher layers, RPC takes care of many details automatically. However, the lowest
layer of the RPC library allows the programmer to change the default values for these
details. The lowest layer of RPC requires familiarity with sockets and their system calls. For
more information, see the Example Using the Lowest Layer of RPC on page 7-63 and the
Example Using Multiple Program Versions on page 7-73.

The lowest layer of RPC may be necessary in the following situations:

• The programmer needs to use TCP/IP. Higher layers use UDP, which restricts RPC calls
to SK bytes of data. TCP/IP permits calls to send long streams of data.

Remote Procedure Call (RPC) 7-25

• The programmer wants to allocate and free memory while serializing or deserializing
messages with XOR routines. No system call at the higher levels explicitly permits freeing
memory. XOR routines are used for memory allocation as well as for input and output.

• The programmer needs to perform authentication on the client or server side by supplying
credentials or verifying them.

Allocating Memory with XOR
XOR routines not only do input and output, they also do memory allocation. Consider the
following XOR routine xdr_chararrl (),which deals with a fixed array of bytes with length
SIZE.

xdr_chararrl (xdrsp, chararr)
XOR *xdrsp;

{

}

char chararr[];

char *p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes (xdrsp, &p, &len, SIZE));

If space has already been allocated in chararr, it can be called from a server. For
example:

char chararr [SIZE};
svc_getargs (transp, xdr_chararrl, chararr);

If you want XOR to do the allocation, you need to rewrite this routine in the following way:

xdr_chararr2 (xdrsp, chararrp)
XOR *xdrsp;
char **chararrp;

{
int len;

len = SIZE;
return (xdr_bytes (xdrsp, charrarrp, &len, SIZE));

}

Then the RPC call might look like this:

char *arrptr;

arrptr = NULL;
svc_getargs (transp, xdr_chararr2, &arrptr);
/*
*Use the result here
*/
svc_freeargs (transp, xdr_chararr2, &arrptr);

The character array can be freed with the svc_freeargs () macro. This does not attempt
to free any memory in the variable indicating it is NULL.

Each XOR routine is responsible for serializing, deserializing, and freeing memory. When an
XOR routine is called from the callrpc routine, the serializing part is used. When called from
the svc_getargs routine, the deserializer is used and when called from the svc_freeargs
routine, the memory deallocator is used.

7-26 Communications Programming Concepts

Starting RPC from the inetd Daemon
An RPC server can be started from the inetd daemon. The only difference between using
inetd and the usual code is that the service creation routine is called. Since the inet passes
a socket as file descriptor O (zero), the following form is used:

transp
transp
transp

= svcudp_create(O);
svctcp_create(0,0,0);
svcfd_create(0,0,0);

/*
/*
/*

For UDP */
For listener TCP sockets */
For connected TCP sockets */

In addition, the svc_register routine should be called as follows:

svc_register(transp, PROGNUM, VERSNUM, service, 0)

The final flag is O (zero) since the program is already registered by the inetd daemon. To
exit from the server process and return .control to the inet, the user must explicitly exit. The
svc_run routine never returns.

Entries in the /etc/inetd.conf file for RPC services take one of the following two forms:

p_name sunrpc_udp udp wait user server args version

p_name sunrpc_tcp tcp wait user server args version

where p_name is the symbolic name of the program as it appears in the RPC routine,
server is the program implementing the server, and version is the version number of the
service.

If the same program handles multiple versions, then the version number can be a range, as
in the following:

rstatd sunrpc_udp udp wait root /usr/etc/rpc.rstatd rstatd 100001
1-2

Compiling and Linking RPC Programs
RPC subroutines are part of the libc.a library. Add the following line to the Makefile file:

CFLAGS=-D BSD -DBSD_INCLUDES

Related Information
The mount command, rpcgen command, spray command.

The inetd daemon.

The /etc/inetd.conf file, /etc/rpc file.

The svc_freeargs macro, svc_getargs macro.

The callrpc subroutine, clnttcp_create subroutine, clntudp_create subroutine, malloc
subroutine, registerrpc subroutine, svc_register subroutine, svc_run subroutine,
svctcp_create subroutine, svcudp_create subroutine, svc_run subroutine, xdr_array
subroutine, xdr_string subroutine.

List of RPC Examples on page 7-49.

Example Using Multiple Program Versions on page 7-73, Example Using the Highest Layer
of RPC on page 7-58, Example Using the Intermediate Layer of RPC on page 7-59,
Example Showing How RPC Passes Arbitrary Data Types on page 7--61, Example Using the
Lowest Layer of RPC on page 7-63.

Remote Procedure Call (RPC) 7-27

Understanding the rpcgen Protocol Compiler on page 7-37, Understanding the RPC
Message Protocol on page 7-5.

external Data Representation (XDR) Overview for Programming on page 3-1, Alphabetical
List of XDR Subroutines and Macros on page 3-24, Functional List of XDR Subroutines and
Macros on page 3-26.

Sockets Overview on page 9-1.

Understanding Protocols for TCP/IP, User Datagram Protocol in Communication Concepts
and Procedures.

7-28 Communications Programming Concepts

Understanding the RPC Features
The features of RPC include batching calls, broadcasting calls, call-back procedures, and
using the select subroutine. Batching allows a client to send an arbitrarily large sequence of
call messages to a server. Broadcasting allows a client to send a data packet to the network
and wait for numerous replies. Call-back procedures permit a server to become a client and
make an RPC call-back to the client's process. The select subroutine examines the 1/0
descriptor sets whose addresses are passed in the readfds, writefds, and exceptfds
parameters to see if some of their descriptors are ready for reading or writing, or have an
exceptional condition pending. It then returns the total number of ready descriptors in all the
sets.

RPC is also used for the rep program on TCP. See the Example Using rep on TCP on page
7-69.

Batching Remote Procedure Calls
Batching allows a client to send an arbitrarily large sequence of call messages to a server.
Batching typically uses reliable byte stream protocols, such as TCP/IP, for its transport.
When batching, the client never waits for a reply from the server, and the server does not
send replies to batched requests. Normally, a sequence of batch calls should be terminated
by a legitimate, nonbatched RPC to flush the pipeline.

The RPC architecture is designed so that clients send a call message and then wait for
servers to reply that the call succeeded. This implies that clients do not compute while
servers are processing a call. However, the client may not want or need an acknowledgment
for every message sent. Therefore, clients can use RPC batch facilities to continue
computing while they wait for a response.

Batching can be thought of as placing RPC messages in a pipeline of calls to a desired
server. Batching assumes the following:

• Each remote procedure call in the pipeline requires no response from the server, and the
server does not send a response message.

• The pipeline of calls is transported on a reliable byte stream transport such as TCP/IP.

In order for a client to use batching, the client must perform remote procedure calls on a
TCP-based transport. Batched calls must have the following attributes:

• The resulting XOR routine must be O (NULL).

• The remote procedure call's time out must be O (zero).

Since the server sends no message, the clients are not notified of any failures that occur.
Therefore, clients must handle their own errors.

Since the server does not respond to every call, the client can generate new calls that run
parallel to the server's execution of previous calls. Furthermore, the TCP/IP implementation
can buffer many call messages, and send them to the server with one write system call.
This overlapped execution decreases the interprocess communication overhead of the client
and server processes as well as the total elapsed time of a series of calls. Batched calls are
buffered, so the client should eventually perform a nonbatched remote procedure call in
order to flush the pipeline with positive acknowledgment.

Remote Procedure Call {RPC) 7-29

Broadcasting Remote Procedure Calls
In broadcast RPC-based protocols, the client sends a broadcast packet to the network and
waits for numerous replies. Broadcast RPC uses only packet-based protocols, such as
UDP/IP, for its transports. Servers that support broadcast protocols respond only when the
request is successfully processed and remain silent when errors occur. Broadcast RPC
requires the RPC port mapper service to achieve its semantics. The portmapper daemon
converts RPC program numbers into DARPA protocol port numbers. See the Example of
Broadcasting a Remote Procedure Call on page 7-57.

The main differences between broadcast RPC and normal RPC are as follows:

• Normal RPC expects only one answer, while broadcast RPC expects one or more
answers from each responding machine.

• The implementation of broadcast RPC treats unsuccessful responses as garbage by
filtering them out. Therefore, if there is a version mismatch between the broadcaster and
a remote service, the user of broadcast RPC may never know.

• All broadcast messages are sent to the port-mapping port. As a result, only services that
register themselves with their port mapper are accessible through the broadcast RPC
mechanism.

• Broadcast requests are limited in size to the maximum transfer unit (MTU) of the local
network. For the Ethernet system, the MTU is 1500 bytes.

• Broadcast RPC is supported only by packet-oriented (connectionless) transport protocols
such as UPD/IP.

Understanding RPC Call-back Procedures
Occasionally, the server may need to become a client by making an RPC call-back to the
client's process. In order to do an RPC call-back, the user needs a program number on
which to make the remote procedure call. Since this is a dynamically generated program
number, it should be in the transient range, Ox40000000 to Ox5fffffff. See the Example Using
Call-back Procedures on page 7-84 for more information.

Understanding the select Subroutine on the Server Side
The select subroutine checks the specified file descriptors and message queues to see if
they are ready for reading (receiving) or writing (sending), or if they have an exceptional
condition pending. A select procedure allows the server to interrupt an activity, check for
data, and then continue processing the activity. For example, if the server processes RPC
requests while performing some other activity that involves periodically updating a data
structure, the process can set an alarm signal to notify the server before calling the svc_run
routine. However, if the current activity is waiting on a file descriptor, the call to the svc_run
routine does not work. See the Example Using the select Subroutine on page 7-68 for more
information.

The programmer can bypass the svc_run routine and call the svc_getreqset routine
directly. It is necessary to know the file descriptors of the socket(s) associated with the
programs being waited on. The programmer can have a select statement that waits on both
the RPC socket and his own descriptors. Note that the svc_fds parameter is a bit mask of
all the file descriptors that RPC is using for services. It can change each time that any RPC
library routine is called, because descriptors are continually opened and closed. TCP
connections are an example.

7-30 Communications Programming Concepts

Related Information
The portmap daemon.

The gettransient subroutine, pmap_set subroutine, select subroutine, svctcp_create
subroutine, svcudp_create subroutine, svc_run subroutine.

The write system call.

List of RPC Examples on page 7-49.

Example Using RPC Callback Procedures on page 7-84, Example Using the select
Subroutine on page 7-68, Example of Broadcasting a Remote Procedure Call on page
7-57, Example Using rep on TCP on page 7-69.

Understanding the Port Mapper Program on page 7-17, Using the RPC Message Protocol
on page 7-5.

Understanding Protocols for TCP/IP in Communication Concepts and Procedures.

Understanding the RPC Language
The Remote Procedure Call Language (RPCL) is identical to the XDR language, except for
the added program definition.

Understanding RPC Language Descriptions
Just as the external Data Representation (XDR) data types are described in a formal
language, it is necessary to describe the procedures that operate on these XOR data types
in a formal language. As an extension to the XDR language, the RPCL is used for this
purpose.

RPC uses the RPCL as the input language to its protocol and routines. RPCL specifies the
data types used by RPC and generates the XDR routines that standardize their
representation. In order to implement the service protocols and routines, the RPCL input is
compiled into the corresponding C language code, using the rpcgen command.

The RPC language descriptions include:

• Definitions
• Structures
• Unions
• Enumerations
• Typedefs
• Constants
• Programs
• Declarations.

See the Example of an RPC Language ping Program on page 7-56 for more information. In
addition to the language descriptions, there are some exceptions to the rules for the RPC
Language.

Definitions
An RPC language file consists of a series of definitions in the following format:

definition-list:
definition
definition

II • It

' "." ' definition-list

Remote Procedure Call (RPC) 7-31

Structures

Unions

RPC recognizes the following six types of definitions:

definition:
enum-def inition
struct-definition
union-definition
typedef-definition
const-definition
program-definition

The C language structures are usually located in header files located in the /usr/include or
/usr/include/sys directories, although the structures can be located in any directory in the
file system. An XDR structure, declared almost exactly like its C counterpart, appears as the
following:

struct-definition:
"struct" struct-ident "{"
declaration-list
"}"

declaration-list:
declaration
declaration

" . ,, ,
"." , declaration-list

As an example, here is an XDR structure to a two-dimensional coordinate, and the C
structure that it gets compiled into in the output header file:

struct coord {
int x;
int y;

} ;

->
struct coord {

int x;
int y;

} ;
typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of the output.
This allows the programmer to use coo rd instead of s truct coo rd when declaring items.

XDR unions are discriminated unions and look quite different from C unions. They are more
analogous to Pascal variant records than to C unions. The following is a union definition:

union-definition:
"union" union-ident "switch" "(" declaration ")" "{"

case-list
"}"

case-list:
"case" value ":" declaration ";"
"default" ":" declaration ";"
"case" value ":" declaration ";" case-list

7-32 Communications Programming Concepts

The following is an example of a type that might be returned as the result of a read data
operation. If there is no error, it returns a block of data; otherwise, it returns nothing.

union read result switch (int errno) {
case 0

opaque data[l024];
default:

void;
} ;

It gets compiled into the following:

struct read result {
int errno;
union {

} ;

char data(1024];
}read_result_u;

typedef struct read_result read_result;

Notice that the union component of the output structure has the same name as the type
name, except for the trailing _ u.

Enumerations
XOR enumerations have the same syntax as C enumerations:

enurn-definition:
"enum." enurn-ident "{"
enurn-value-list
"} ,,

enurn-value-list:
enurn-value
enurn-value "," enurn-value-list

enurn-value:
enurn-value-ident
enurn-value-ident "=" value

The following is a short example of an XOR enumeration, and the C enumeration that it gets
compiled into:

enurn colortype {
RED = 0,
GREEN = 1,
BLUE = 2

} ;

enurn colortype {
RED = 0,

-> GREEN = 1,
BLUE = 2,

} ;
typedef enurn colortype colortype;

Type Definitions
XOR type definitions (typedefs) have the same syntax as C typedefs:

typedef-definition:
"typedef" declaration

The following is an example that defines an fnarne _type used for declaring file name
strings that have a maximum length of 255 characters:

typedef string fnarne_type<255>; -> typedef char *fnarne_type;

Remote Procedure Call (RPC) 7-33

Constants

Programs

XOR constants can be used wherever an integer constant is required. The definition for a
constant is:

const-definition:
"const" const-ident "=" integer

For example, the following defines a constant DOZEN equal to 12:

const DOZEN = 12; --> #define DOZEN 12

RPC programs are declared using the following syntax:

program-definition:
"program" program-ident "{"

version-list
"}" "=" value

version-list:
version
version

" . "
' " . " ' version-list

version:
"version" version-ident "{"

procedure-list_
"}" "=" value

procedure-list:
procedure
procedure

procedure:

"." ' ,, . "
'

procedure-list

type-ident procedure-ident "(" type-ident ")" "=" value

The the time protocol is defined as follows:

/*
* time.x: Get or set the time. Time is represented as number
* of seconds since 0:00, January 1, 1970.
*/

program TIMEPROG {
version TIMEVERS {

unsigned int TIMEGET (void) = 1;
void TIMESET (unsigned) = 2;

} = 1;
} = 44;

This file compiles into #defines in the output header file:

#define TIMEPROG 44

#define TIMEVERS 1

#define TIMEGET 1

#define TIMESET 2

7-34 Communications Programming Concepts

Declarations
In XOR, there are four types of declarations: simple declarations, fixed array declarations,
variable array declarations, and pointer declarations. Declarations have the following forms:

declaration:
simple-declaration
fixed-array-declaration
variable-array-declaration
pointer-declaration

Simple Declarations
Simple XOR declarations are like simple C declarations, as follows:

simple-declaration:
type-ident variable-ident

Example:

colortype color; ~> colortype color;

Fixed-Length Array Declarations
Fixed-length array declarations are just like C array declarations, as follows:

fixed-array-declaration:
type-ident variable-ident "[" value "]"

Example:

colortype palette[8]; ~> colortype palette[8]

Variable-Length Array Declarations
Variable-length array declarations have no explicit syntax in C, so XOR invents its own
syntax using angle brackets. The maximum size is specified between the angle brackets. A
specific size can be omitted to indicate that the array may be of any size.

variable-array-declaration:
type-ident variable-ident "<" value ">"
type-ident variable-ident "<" ">"

The maximum size is specified between the angle brackets. The size may be omitted,
indicating that the array may be of any size.

int heights<12>;
int widths<>;

/* at most 12 items */
/* any number of items */

Since variable-length arrays have no explicit syntax in C, these declarations are actually
compiled into structure definitions (struct). For example, the heights declaration gets
compiled into the following structure:

struct {
u_int heights_len;
int *heights_val;

} heights;

/* # of items in array */
/* #pointer to array */

Remote Procedure Call (RPC) 7-35

Pointer Declarations
Pointer declarations are made in XDR exactly as they are in C. The programmer cannot
send pointers over a network, but can use XDR pointers for sending recursive data types
such as lists and trees. In XDR language, the type is called optional-data, instead of
pointer. Pointer declarations have the following form in XDR language:

pointer-declaration:
type-ident "*" variable-ident

Example:

listitem *next; --> listitem *next;

RPCL Syntax Requirements for Program Definition
The RPCL has the following syntax requirements:

• The program and version keywords are added and cannot be used as identifiers.

• A version name cannot occur more than once within the scope of a program definition.
Nor can a version number occur more than once within the scope of a program definition.

• A procedure name cannot occur more than once within the scope of a version definition.
Nor can a procedure number occur more than once within the scope of a version
definition.

• Program identifiers are in the same name space as the constant and type identifiers.

• Only unsigned constants can be assigned to program, version, and procedure
definitions.

Exceptions to the RPCL Rules
The exceptions to the rules of the RPC language include Booleans, strings, opaque data,
and voids:

Booleans

The C language has no built-in Boolean type. However, the RPC library uses a Boolean type
called bool_t, which is either TRUE or FALSE. Objects that are declared as type boo! in
XDR language are compiled into bool_ t in the output header file.

Example:

boo! married; --> boo! t married;

Strings

The C language has no built-in string type. Instead, it uses the null-terminated char *
convention. In the XDR language, strings are declared using the string keyword, and then
compiled into char * in the output header file. The maximum size contained in the angle
brackets specifies the maximum number of characters allowed in the strings (not counting
the NULL character). The maximum size may be left off, indicating a string of arbitrary
length.

Examples:

string name<32>; --> char *name;

string longname<>; --> char *longname;

7-36 Communications Programming Concepts

Opaque Data

Opaque data is used in RPC and XOR to describe untyped data: that is, sequences of
arbitrary bytes. Opaque data may be declared either as a fixed-length or variable-length
array.

Examples:

opaque diskblock[512]; ~> char diskblock[512];

opaque filedata<1024>; ~> struct {

Voids

u_int filedata_len;
char *filedata_val;

} f iledata

In a void declaration, the variable is not named. The declaration is simply void. Void
declarations can occur as the argument or result of a remote procedure in only two places:
union definitions and program definitions.

Related Information
The rpcgen command.

List of RPC Examples on page 7-49.

Example of an RPC Language ping Program on page 7-56.

Understanding the RPC Message Protocol on page 7-5, Understanding the rpcgen
Protocol Compiler on page 7-37.

external Data Representation (XOR) Overview for Programming on page 3-1, Functional
List of XOR Subroutines and Macros on page 3-26.

Understanding the rpcgen Protocol Compiler
The rpcgen protocol compiler accepts a remote program interface definition written in the
RPC language, which is similar to the C language. The rpcgen compiler helps programmers
write RPC applications simply and directly. The rpcgen compiler debugs the network
interface code, thereby allowing programmers to spend their time debugging the main
features of their applications.

The rpcgen compiler produces a C language output that includes the following:

• Stub versions of the client and server routines

• Server skeleton

• XOR filter routines for parameters and results

• A header file that contains common definitions of constants and macros.

Client stubs interface with the RPC library to effectively hide the network from its callers.
Server stubs similarly hide the network from the server procedures that are to be invoked by
remote clients. The rpcgen output files can be compiled and linked in the usual way. The
programmer writes server procedures in any language and then links the procedures with
the server skeleton to get an executable server program.

Remote Procedure Call (RPC) 7-37

When application programs use the rpcgen compiler, there are many details to consider. Of
particular importance is the writing of XOR routines needed to convert procedure arguments
and results into the network format, and vice versa.

This discussion of the rpcgen protocol compiler includes the following topics:

• Converting Local Procedures into Remote Procedures
• Generating XOR Routines
• Understanding the C Preprocessor.
• Changing Time Outs
• Handling Broadcast on the Server Side
• Other Information Passed to Server Procedures

Converting Local Procedures into Remote Procedures
Applications running at a single workstation can be converted to run over the network. A
converted procedure can be called from anywhere in the network. Generally, it is necessary
to identify the types for all procedure inputs and outputs. A null procedure (procedure 0) is
not necessary because the rpcgen compiler generates it automatically. See the Example
Converting Local Procedures into Remote Procedures on page 7-75 for more information.

Generating XOR Routines
The rpcgen compiler can be used to generate XOR routines that are necessary to convert
local data structures into network format, and vice versa. Some types can be defined using
the struct, union, and enum keywords. However, these keywords should not be used in
subsequent declarations of variables of these same types. The rpcgen compiler compiles
RPC unions into C structures. It is an error to declare these unions using the union
keyword. See the Example Generating an XOR Routine on page 7-80 for more information.

Understanding the C Preprocessor
The C language preprocessor is run on all input files before they are compiled, so all the
preprocessor directives are legal within a .x file. Four symbols can be defined, depending
upon which output file is generated. The symbols and their uses are:

RPC_HDR Represents header file output.

RPC_XDR Represents XOR routine output.

RPC_SVC Represents server skeleton output.

RPC_CLNT Represents client stub output.

The rpcgen compiler also does some preprocessing of its own. Any line that begins with a
% {percent sign) is passed directly into the output file without an interpretation of the line.
Use of the percent feature is not generally recommended, since there is no guarantee that
the compiler will put the output where it is intended.

7-38 Communications Programming Concepts

Changing Time Outs
When using the clnt_create routine, RPC sets a default time out of 25 seconds for remote
procedure calls. The time-out default can be changed using the clnt_control routine. The
following code fragment illustrates the use of this routine:

struct timeval tv
CLIENT *cl;
cl=clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp");
if (cl=NULL) {

exit(l);
}
tv.tv_sec=60; /* change timeout to 1 minute */
tv.tv_usec=O;
clnt_control(cl, CLSET_TIMEOUT, &tv);

Handling Broadcast on the Server Side
When a client calls a procedure through broadcast RPC, the server normally replies only if it
can provide useful information to the client. This prevents flooding the network with useless
replies.

To prevent the server from replying, a remote procedure can return NULL as its result. The
server code generated by the rpcgen compiler detects this and does not send a reply. For
example, the following procedure replies only if it thinks it is a server:

void *
reply_if_nfsserver()
{

}

char notnull; /* just here so we can use its address */
if {access("/etc/exports", F OK) < 0) {

return (NULL); /*prevent-RFC from replying*/
}
/*
*return non-null pointer so RPC will send out a reply
*/
return ((void*) ¬null);

If a procedure returns type void, the server must return a non-null pointer in order for RPC
to reply.

Other Information Passed to Server Procedures
Server procedures often want more information about a remote procedure call than just its
arguments. For example, getting authentication information is important to procedures that
implement some level of security. This additional information is supplied to the server
procedure as a second argument.

Remote Procedure Call (RPC) 7-39

The following example program that allows only root users to print a message on the
console, demonstrates its use.

int *
printmessage_l(msg, rq)

char **msg;

{

}

struct svc_req *rq;

static in result; /* Must be static */
FILE *f;
struct authunix_parms *aup;
aup=(struct authunix_parms *)rq->rq_clntcred;
if (aup->aup_uid !=O) {

}
/*

result=O;
return (&result);

*Same code as before.
*/

Related Information
The rpcgen command.

The clnt_create subroutine.

List of RPC Examples on page 7-49.

Example Generating an XOR Routine on page 7-80, Example Converting Local Procedures
into Remote Procedures on page 7-75.

Understanding the RPC Language on page 7-31, Understanding the RPC Message
Protocol on page 7-5.

eXternal Data Representation (XOR) Overview for Programming on page 3-1, Functional
List of XOR Subroutines and Macros on page 3-26.

7-40 Communications Programming Concepts

Alphabetical List of RPC Subroutines and Macros
auth_destroy

authdes_create

authdes_getucred

authnone_create

authunix _create

authunix_create_default

callrpc

clnt_broadcast

clnt_call

clnt_control

clnt_create

cl nt_ destroy

cl nt_ f reeres

clnt_geterr

cl nt_pcreateerror

clnt_perrno

clnt_perror

clnt_spcreateerror

clnt_sperrno

clnt_sperror

clntraw _create

cl nttcp _create

clntudp_create

get_myaddress

getnetname

host2netname

key _decryptsession

Destroys authentication information.

Enables the use of DES from the client side.

Maps a DES credential into a UNIX credential.

Creates NULL authentication information.

Creates an authentication handle with AIX permissions.

Sets the authentication to the default.

Calls the remote procedure on the machine associated with
host.

Broadcasts a remote procedure call to all network hosts.

Calls the remote procedure associated with clnt.

Changes or retrieves information about a client object.

Creates a generic client transport handle.

Destroys a client's RPC handle.

Frees memory allocated by RPC and XOR.

Copies error information from a client transport handle.

Identifies why a client RPC handle was not created.

Specifies the condition of the stat parameter.

Determines why a remote procedure call failed.

Identifies why a client RPC handle was not created.

Specifies the condition of the stat parameter.

Indicates why a remote procedure failed.

Creates a sample RPC client handle for simulation.

Creates a TCP/IP client transport handle.

Creates a UDP/IP client transport handle.

Gets the user's IP address.

Installs the network name of the caller in the array.

Converts a host name to a network name.

Decrypts a server network name and DES key.

Remote Procedure Call (RPC) 7-41

key_ encryptsession

key_gendes

key _setsecret

netname2host

netname2user

pmap_getmaps

pmap_getport

pmap_rmtcall

pmap_set

pmap_unset

registerrpc

rtime

svc_destroy

svc_freeargs

svc_getargs

svc_getcaller

svc_getreqset

svc _register

svc_run

svc_sendreply

svc_unregister

svcerr_auth

svcerr _decode

svcerr _ noproc

svcerr_noprog

svcerr _progvers

7-42 Communications Programming Concepts

Encrypts a server network name and DES key.

Requests a secure conversation key from the keyserv
daemon.

Sets the key for the user ID of the calling process.

Converts a network name to a host name.

Converts a network name to a user ID.

Returns a list of the current RPC port mappings.

Requests the port number on which a service waits.

Instructs the portmap daemon to make an RPC.

Maps a remote procedure call to a port.

Destroys the mapping between the RPC and the port.

Registers a procedure with the RPC service.

Returns the remote time in the timeval structure.

Destroys a service transport handle.

Frees data allocated by the RPC and XDR system.

Decodes the arguments of an RPC request.

Gets the network address of the caller of a procedure.

Services an RPC request.

Maps a remote procedure.

Signals a wait for the arrival of RPC requests.

Sends back the results of a remote procedure call.

Removes mappings between procedures and objects.

Indicates that the remote procedure call cannot be
completed due to an authentication error.

Indicates that the parameters of a request cannot be
decoded.

Indicates that the remote procedure call cannot be
completed because the program cannot support the
requested procedure.

Indicates that the remote procedure call cannot be
completed because the program is not registered.

Indicates that the remote procedure call cannot be
completed because the program version is not registered.

svcerr _systemerr

svcerr _ weakauth

svcfd_create

svcraw _create

svctcp_create

svcudp_ create

user2netname

xdr_accepted_reply

xdr _authunix_parms

xdr_callhdr

xdr_callmsg

xdr_opaque_auth

xdr_pmap

xdr_pmaplist

xdr_rejected_reply

xdr _replymsg

xprt_register

xprt_unregister

Related Information

Indicates that the remote procedure call cannot be
completed due to an error not covered by any protocol.

Indicates that the remote procedure call cannot be
completed due to insufficient authentication security
parameters.

Creates a service on any open file descriptor.

Creates a sample RPC service handle for simulation.

Creates a TCP/IP service transport handle.

Creates a UDP/IP service transport handle.

Converts a user ID to a network name.

Encodes an RPC reply messages.

Describes UNIX-style credentials.

Describes RPC call header messages.

Describes RPC call messages.

Describes RPC authentication messages.

Describes parameters for portmap procedures.

Describes a list of port mappings externally.

Describes RPC rejected message replies.

Describes RPC message replies.

Registers an RPC service transport handle.

Removes an RPC service transport handle.

Functional List of RPC Subroutines and Macros on page 7-44.

List of RPC Examples on page 7-49.

Programming in RPC on page 7-20.

Remote Procedure Call (RPC) 7-43

Functional List of RPC Subroutines and Macros
RPC provides subroutines and macros for performing various tasks. The following list is a
functional grouping of the RPC subroutines and macros:

• Authenticating Remote Procedure Calls

• Managing the Client

• Managing the Server

• Using RPC Utilities

• Using DES Interface to the keyserv Daemon

• Interfacing to the portmap Daemon

• Describing and Encoding Remote Procedure Calls.

Authenticating Remote Procedure Calls
RPC provides subroutines and macros for creating and destroying authentication
information.

Creating RPC Authentication Information
The following RPC routines create authentication information:

authnone_create

authunix_create

authunix_create_default

authdes_create

authdes_getucred

Creates NULL authentication information.

Creates an authentication handle with AIX permissions.

Sets the authentication to the default.

Enables the use of DES from the client side.

Maps a DES credential into a UNIX credential.

Destroying RPC Authentication Information
The following RPC routine destroys authentication information:

auth_destroy Destroys authentication information.

Managing the Client
RPC provides subroutines and macros for the following client management tasks:

• Creating an RPC client for a remote program

• Changing or retrieving client information

• Destroying a client RPC handle

• Broadcasting a remote procedure call

• Calling a remote procedure

• Freeing memory allocated by RPC and XDR

• Handling client errors.

7-44 Communications Programming Concepts

Creating an RPC Client for a Remote Program

The following RPC routines create client transport handles:

clntraw_create

clnttcp_create

clntudp_create

clnt_create

Creates a sample RPC client handle for simulation.

Creates a TCP/IP client transport handle.

Creates a UDP/IP client transport handle.

Creates a generic client transport handle.

Changing or Retrieving Client Information

The following RPC routine changes or retrieves client information:

clnt_control Changes or retrieves information about a client object.

Destroying a Client RPC Handle

The following RPC routine destroys a client transport handle:

clnt_destroy Destroys a client's RPC handle.

Broadcasting a Remote Procedure Call

The following RPC routine broadcasts calls:

clnt_broadcast Broadcasts a remote procedure call to all network hosts.

Calling a Remote Procedure

The following RPC routines call a remote procedure:

callrpc

clnt_call

Calls the remote procedure on the machine associated with the host
parameter.

Calls the remote procedure associated with the clnt parameter.

Freeing Memory Allocated by RPC and XOR

The following RPC routine frees allocated memory:

clnt_freeres Frees memory allocated by RPG and XOR.

Handling Client Errors

The following RPC routines handle errors on the client:

clnt_pcreateerror Identifies why a client RPC handle was not created.

clnt_perrno

clnt_perror

clnt_geterr

clnt_spcreateerror

clnt_sperrno

clnt_ sperro r

Specifies the condition of the stat parameter.

Determines why a remote procedure call failed.

Copies error information from a client transport handle.

Identifies why a client RPG handle was not created.

Specifies the condition of the stat parameter.

Indicates why a remote procedure call failed.

Remote Procedure Call (RPC) 7-45

Managing the Server
RPC provides subroutines and macros for the following server management tasks:

• Creating an RPC service transport handle

• Destroying an RPC service transport handle

• Registering and unregistering RPC procedures and handles

• Handling an RPC request

• Handling server errors.

Creating an RPC Service Transport Handle

The following RPC routines create service transport handles:

svcraw_create

svctcp_create

svcudp_create

svcfd_create

Creates a sample RPC service handle for simulation.

Creates a TCP/IP service transport handle.

Creates a UDP/IP service transport handle.

Creates a service on any open file descriptor.

Destroying an RPC Service Transport Handle

The following RPC routine destroys a service handle:

svc _destroy Destroys a service transport handle.

Registering and Unregistering RPC Procedures and Handles

The following RPC routines register and map procedures and handles:

registerrpc

xprt_register

xprt_unregister

svc_register

svc_unregister

Handling an RPC Request

Registers a procedure with the RPC service.

Registers an RPC service transport handle.

Removes an RPC service transport handle.

Maps a remote procedure.

Removes mappings between procedures and objects.

The following routines handle RPC requests:

svc_run

svc _getreqset

svc_getargs

svc_sendreply

svc_freeargs

svc _getcaller

7-46 Communications Programming Concepts

Signals a wait for the arrival of RPC requests.

Services an RPC request.

Decodes the arguments of an RPC request.

Sends back the results of a remote procedure call.

Frees data allocated by the RPC and XDR system.

Gets the network address of the caller of a procedure.

Handling Server Errors

The following RPC routines handle errors on the server:

svcerr _auth

svcerr _decode

svcerr _noproc

svcerr _noprog

svcerr _progvers

svcerr _systemerr

svcerr _ weakauth

Using RPC Utilities

Indicates that the remote procedure call cannot be
completed due to an authentication error.

Indicates that the parameters of a request cannot be
decoded.

Indicates that the remote procedure call cannot be
completed because the program cannot support the
requested procedure.

Indicates that the remote procedure call cannot be
completed because the program is not registered.

Indicates that the remote procedure call cannot be
completed because the program version is not registered.

Indicates that the remote procedure call cannot be
completed due to an error not covered by any protocol.

Indicates that the remote procedure call cannot be
completed due to insufficient authentication security
parameters.

RPC provides the following RPC utilities:

host2netname Converts a host name to a network name.

netname2host Converts a network name to a host name.

netname2user Converts a network name to a user ID.

user2netname Converts a user ID to a network name.

getnetname Installs the network name of the caller in the array.

get_myaddress Gets the user's IP address.

rtime Returns the remote time in the timeval structure.

Using DES Interface to the keyserv Daemon
RPC provides subroutines for interfacing to the keyserv daemon:

key _decryptsession

key _encryptsession

key_gendes

key _setsecret

Decrypts a server network name and a DES key.

Encrypts a server network name and a DES key.

Requests a secure conversation key from the keyserv
daemon.

Sets the key for the user ID of the calling process.

Remote Procedure Call (RPC) 7-47

Interfacing to the portmap Daemon
RPC provides subroutines for interfacing to the portmap daemon:

pmap_getmaps

pmap_getport

pmap_rmtcall

pmap_set

pmap_unset

xdr_pmap

xdr _pmaplist

Returns a list of the current RPC port mappings.

Requests the port number on which a service waits.

Instructs the portmap daemon to make an RPC.

Maps a remote procedure call to a port.

Destroys the mapping between the RPC and the port.

Describes parameters for portmap procedures.

Describes a list of port mappings externally.

Describing and Encoding Remote Procedure Calls
RPC provides subroutines for describing and encoding RPC call and reply messages,
authentication, and portmappings:

xdr _accepted_reply

xdr _authunix_parms

xdr_callhdr

xdr_callmsg

xdr_opaque_auth

xdr _rejected_reply

xdr _replymsg

Related Information

Encodes RPC reply messages.

Describes UNIX-style credentials.

Describes RPC call header messages.

Describes RPC call messages.

Describes RPC authentication messages.

Describes RPC message rejection replies.

Describes RPC message replies.

Alphabetical List of RPC Subroutines and Macros on page 7-41.

List of RPC Examples on page 7-49.

Programming in RPC on page 7-20.

Remote Procedure Call (RPC) Overview for Programming on page 7-1.

7-48 Communications Programming Concepts

List of RPC Examples
Example Converting Local Procedures into Remote Procedures on page 7-75

Example Generating XOR Routines on page 7-80

Example of an RPC Language ping Program on page 7-56

Example of Broadcasting a Remote Procedure Call on page 7-57

Example Showing How RPC Passes Arbitrary Data on page 7-61

Example Using DES Authentication on page 7-53

Example Using Multiple Program Versions on page 7-73

Example Using rep on TCP on page 7-69

Example Using RPC Callback Procedures on page 7-84

Example Using the Highest Layer of RPC on page 7-58

Example Using the Intermediate Layer of RPC on page 7-59

Example Using the Lowest Layer of RPC on page 7-63

Example Using the select Subroutine on page 7-68

Example Using UNIX Authentication on page 7-50

Related Information
Alphabetical List of RPC Subroutines and Macros on page 7-41, Functional List of RPC
Subroutines and Macros on page 7-44.

Remote Procedure Call (RPC) 7-49

Example Using UNIX Authentication
This example shows how UNIX authentication works on both the client and server sides.

UNIX Authentication on the Client Side
To use UNIX authentication, the programmer first creates the RPC client handle and then set
the authentication parameter. The RPC client handle can be created as follows:

clnt = clntudp_create (address, prognum, versnum, waLt, sockp)

The UNIX authentication parameter can be set as follows:

clnt->cl_auth = authunix_create_default();

Each remote procedure call associated with the client (clnt) then carries the following
UNIX-style authentication credentials structure:

/*
* UNIX style credentials.
*/

struct authunix_parms {
u_long aup_time;
char *aup_machname;
int aup_uid;
int aup_gid;
u int aup_len;
int *aup_gids;

} ;

/* credentials creation time
/* host name where client is
/* client's UNIX effective uid
/* client's current group id
/* element length of aup_gids
/* array of groups user is in

The authunix_create_default subroutine sets these fields by invoking the appropriate
subroutines. The UNIX-style authentication is valid until it is destroyed with the following
routine:

auth_destroy(clnt->cl_auth);

UNIX Authentication on the Server Side
The following example shows how to use UNIX authorization on the server side.

The following is a structure definition of a request handle passed to a service dispatch
routine at the server:

/*
* An RPC Service request
*/

struct svc_req {

} ;

u_long rq_prog;
u_long rq_vers;
u_long rq_proc;

struct opaque_auth rq_cred;
caddr_t rq_clntcred;

7-50 Communications Programming Concepts

/* service program number
/* service protocol vers num
/* desired procedure number
/* raw credentials from wire
/* credentials (read only)

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

Except for the style or flavor of authentication credentials, the rq_cred routine is opaque.

/*
* Authentication info.
*/

struct opaque_auth {
enum_t oa_flavor;
caddr_t oa_base;
u int oa_length;

} ;

Mostly opaque to the programmer.

/* style of credentials
/* address of more auth stuff
/* not to exceed MAX_AUTH_BYTES

Before passing a request to the service dispatch routine, RPC guarantees:

*/
*/
*/

• The request's rq_cred field is in an acceptable form. Therefore, the service implementor
may inspect the request's rq_ cred. oa _flavor to determine which style of
authentication the caller used. The service implementor may also wish to inspect the
other rq_ cred fields if the authentication style is not one of the styles supported by the

. RPC package.

• The request's rq_clntcred field is either NULL or points to a well formed structure that
corresponds to a supported style of authentication credentials. The rq_clntcred field
can currently be set as a pointer to an authunix_parms structure for UNIX style
authentication. If rq_clntcred is NULL, the service implementor can inspect the other
opaque fields of the rq_cred credential for any new types of authentication that may be
unknown to the RPC package.

The following is an example using UNIX authentication on the server side.The remote users
service example can be extended, so that it computes results for all users except UID 16:

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authunix_parms *unix_cred;
int uid;
unsigned long nusers;

/*
* we don't care about authentication for null proc
*/

if (rqstp->rq_proc == NULLPROC) {

}

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "can't reply to RPC call\n");
return (l);

}
return;

Remote Procedure Call (RPC) 7-51

}

/*
* now get the uid
*/

switch (rqstp->rq_cred.oa_flavor) {
case AUTH UNIX:

unix_cred =
(struct authunix_parms *)rqstp->rq_clntcred;

uid = unix_cred->aup_uid;
break;

case AUTH NULL:
default:

svcerr_weakauth(transp);
return;

}
switch {rqstp->rq_proc) {
case RUSERSPROC NUM:

/*
* make sure caller is allowed to call this proc
*/

if {uid == 16) {
svcerr_systemerr{transp);
return;

}
/*
* Code here to compute the number of users
* and assign it to the variable nusers
*/

if {!svc_sendreply(transp, xdr u long, &nusers)) {
fprintf(stderr, "can't reply-to RPC call\n");
return (1);

}
return;

default:
svcerr_noproc{transp);
return;

}

Related Information
The auth_destroy macro.

The authnone_create subroutine, authunix_create subroutine, clntudp_create
subroutine, svcerr_noproc subroutine, svcerr_systemerr subroutine, svcerr_weakauth
subroutine, svc_sendreply subroutine, xdr_u_long subroutine.

List of RPC Examples on page 7-49.

Understanding UNIX Authentication on page 7-11.

7-52 Communications Programming Concepts

Example Using DES Authentication
The following example illustrates how DES authentication works on both the client side and
the server side.

DES Authentication on the Client Side
To use DES authentication, the client first sets its authentication handle as follows:

cl->cl auth =
authdes_create(servernarne, 60, &server_addr, NULL);

The first argument (servernarne) to the authdes_create routine is the network name or
netname of the owner of the server process. Typically, server processes are root processes.
The netname can be derived using the following call:

char servernarne[MAXNETNAMELEN];

host2netnarne(servernarne, rhostnarne, NULL);

The rhostnarne parameter is the host name of the machine on which the server process is
running. The host2netnarne routine supplies the servernarne that contains this netname
for the root process. If the server process is run by a regular user, the user2netnarne
routine can be called instead.

The following example illustrates a server process with the same user ID as the client:

char servernarne[MAXNETNAMELEN];

user2netnarne(servernarne, getuid(), NULL);

The user2netnarne and host2netnarne routines identify the naming domain at the server
location. The NULL parameter in this example means that the local domain name should be
used.

The second argument (60) to the authdes_create routine identifies the lifetime of the
credential, which is 60 seconds. This means the credential has 60 seconds until expiration.
The server RPC subsystem does not grant either a second request within the 60-second
lifetime or requests made after the credential has expired.

The third argument (&server_addr} to the authdes_create routine is the address of the
host with which to synchronize. DES authentication requires that the server and client agree
upon the time. The time is determined by the server when it receives the address. If the
server and client times are already synchronized, the argument can be set to NULL.

The final argument (NULL} to the authdes_create routine is the address of a DES
encryption key that is used to encrypt timestamps and data. If this argument is NULL, a
random key is chosen. The programmer can get the encryption key from the ah_key field of
the authentication handle.

DES Authentication on the Server Side

This example illustrates DES authentication on the server side. The server side is simpler
than the client side. The following example uses AUTH_DES instead of AUTH_UNIX:

Remote Procedure Call (RPC) 7-53

7-54

#include <sys/time.h>
#include <rpc/auth_des.h>

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authdes_cred *des_cred;
int uid;
int gid;
int gidlen;
int gidlist[lO];
/*
* we don't care about authentication for null proc
*/

if (rqstp->rq_proc == NULLPROC) {
/* same as before */

}

/*
* now get the uid
*/

switch (rqstp->rq_cred.oa_flavor) {
case AUTH DES:

des cred =
(struct authdes_cred *) rqstp->rq_clntcred;

if (! netname2user(des_cred->adc_fullname.name,
&uid, &gid, &gidlen, gidlist))

{
fprintf (stderr, "unknown user: %s\n",

des_cred->adc_fullname.name);
svcerr_systemerr(transp);
return;

}
break;

case AUTH NULL:
default:

svcerr_weakauth(transp);
return;

}

Communications Programming Concepts

}

/*
* The rest is the same as UNIX-style authentication
*/

switch (rqstp->rq_proc) {
case RUSERSPROC NUM:

/* -
* make sure caller is allowed to call this proc
*/

if (uid == 16) {
svcerr_systemerr(transp);
return;

}
/*
* Code here to compute the number of users
* and assign it to the variable nusers
*/

if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
fprintf(stderr, "can't reply to RPC call\n");
return (l);

}
return;

default:
svcerr_noproc(transp);
return;

}

Note the use of the netname2user routine, the inverse of the user2netname routine: it
takes a network ID and converts to a user ID. The netname2user routine also supplies the
group IDs, which are not used in this example, but which may be useful to other programs.

Related Information
The authdes_create subroutine, host2netname subroutine, netname2user subroutine,
svcerr_noproc subroutine, svcerr_systemerr subroutine, svcerr_weakauth subroutine,
svc_sendreply subroutine, user2netname subroutine, xdr_u_long subroutine.

List of RPC Examples on page 7-49.

Understanding Data Encryption Standard (DES} Authentication on page 7-12.

Remote Procedure Call (RPC) 7-55

Example of an RPC Language ping Program
The following is an example of the specification of a simple ping program described in the
RPC language.

/*
* Simple ping program
*/
program PING_PROG {

/* Latest and greatest version */
version PING_VERS_PINGBACK {

void
PINGPROC_NULL(void) = O;

/*
* Ping the caller, return the round-trip time
* (in microseconds). Returns -1 if the operation
* timed out.

} = 2;

/*

*/
int
PINGPROC_PINGBACK(void)

* Original version
*/
version PING_VERS_ORIG {

} = 1;

void
PINGPROC_NULL(void) O;
} = 1;

1 · '

const PING VERS = 2; /* latest version */

In this example, the first of the ping program (PING_ VERS_PINGBACK) has two procedures:
PINGPROC_NULL and PINGPROC_PINGBACK. The PINGPROC_NULL procedure takes no
arguments and returns no results. However, it is useful for computing round-trip times from
the client to the server. By convention, procedure o of an RPC protocol should have the
same semantics and require no kind of authentication. The second procedure
(PINGPROC_PINGBACK) requests a reverse ping operation from the server. It returns the
amount of time in microseconds that the operation used.

The original version of the ping program, PING_ VERS_ORIG, does not contain the
PINGPROC_PINGBACK procedure. The original version is useful for compatibility with older
client programs. As this program matures, it may be dropped from the protocol entirely.

Related Information
List of RPC Examples on page 7-49.

Understanding the RPC Language on page 7-31.

7-56 Communications Programming Concepts

Example of Broadcasting a Remote Procedure Call
The following example illustrates broadcast RPC:

#include <rpc/prnap_clnt.h>

enurn clnt stat clnt_stat;

clnt_stat = clnt_broadcast(prognurn, versnurn, procnurn,
inproc, in, outproc, out, eachresult)

u_long prognurn; /* program number */
u_long versnurn; /* version number */
u_long procnurn; /* procedure number */
xdrproc_t inpro /* xdr routine for args */
caddr t in; I* pointer to args *I
xdrproc_t outproc /* xdr routine for results */
caddr t out; /* pointer to results */
bool t (*eachresult)();/* call with each result gotten*/

The eachresul t procedure is called each time a result is obtained. This procedure returns
a Boolean value that indicates whether the caller wants more responses.

bool_t done;

done = eachresult(resultsp, raddr)
caddr_t resultsp;
struct sockaddr_in *raddr; /* Addr of responding machine */

If the done parameter returns a value of TRUE, then broadcasting stops and the
clnt_broadcast routine returns successfully. Otherwise, the routine waits for another
response. The request is rebroadcast after a few seconds of waiting. If no response comes
back, the routine returns with a value of RPC_ TIMEDOUT.

Related Information
The clnt_broadcast subroutine.

List of RPC Examples on page 7-49.

Understanding the RPC Features on page 7-29, Broadcasting Remote Procedure Calls on
page 7-30.

Remote Procedure Call (RPC) 7-57

Example Using the Highest Layer of RPC
The following example shows how a program that determines how many users are logged
into a remote workstation does so by calling the RPC library rnusers routine:

#include <stdio.h>

main(argc, argv)
int argc;
char **argv;

{
int num;

}

Related Information

if (argc ! = 2) {

}

fprintf(stderr, "usage: rnusers hostname\n");
exit(l);

if ((num = rnusers(argv[l])) < 0) {
fprintf(stderr, "error: rnusers\n")~
exit(-1);

}
printf("%d users on %s\n", num, argv[l]);
exit (0);

List of RPC Examples on page 7-49.

7-58 Communications Programming Concepts

Example Using the Intermediate Layer of RPC
The following example shows a simple interface that makes explicit remote procedure calls
using the callrpc routine at the intermediate layer of RPC.

Intermediate Layer of RPC on the Server Side
Normally, the server registers each procedure, and then goes into an infinite loop waiting to
service requests. Since there is only a single procedure to register, the main body of the
server message would look like the following:

#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>
#include <rpcsvc/rusers.h>

char *nuser();

main()
{

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,

}

nuser, xdr void, xdr u long);
svc_run(); - /*Never-returns*/
fprintf(stderr, "Error: svc run returned!\n");
exit(l);

The registerrpc routine registers a C procedure as corresponding to a given RPC
procedure number. The first three parameters, RUSERPROG, RUSERSVERS, and
RUSERSPROC_NUM, are the program, version, and procedure numbers of the remote
procedure to be registered; the nuser parameter is the name of the local procedure that
implements the remote procedure; and the xdr_void and xdr_u_long parameters are the
XDR filters for the remote procedure's arguments and results, respectively.

Intermediate Layer of RPC on the Client Side
#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>
#include <rpcsvc/rusers.h>

main(argc, argv)

{

int argc;
char **argv;

unsigned long nusers;
int stat;

if (argc ! = 2) {
fprintf(stderr, "usage: nusers hostname\n");
exit (-1);

}
if (stat= callrpc(argv[l],

RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
xdr_void, 0, xdr_u_long, &nusers) != 0) {

clnt_perrno(stat);
exit(l);

Remote Procedure Call (RPC) 7-59

}

}
printf("%d users on %s\n", nusers, argv[l]);
exit(O);

The callrpc subroutine has eight parameters. The first is the name of the remote server
machine. The next three parameters are the program, version, and procedure numbers. The
fifth and sixth parameters are an XOR filter and an argument to be encoded and passed to
the remote procedure. The final two parameters are a filter for decoding the results returned
by the remote procedure and a pointer to the place where the procedure's results are to be
stored. Multiple arguments and results are handled by embedding them in structures. If the
callrpc subroutine completes successfully, it returns zero. Otherwise, it returns a nonzero
value.

Since data types may be represented differently on different machines, the callrpc
subroutine needs both the type of the RPC argument and a pointer to the argument itself.
For the RUSERSPROC_NUM parameter, the return value is unsigned long, so the callrpc
subroutine has xdr_u_long as its first return parameter. This says that the result is of the
unsigned long type. The second return parameter, &nusers, is a pointer to where the long
result is placed. Since the RUSERSPROC_NUM parameter takes no argument, the argument
parameter of the callrpc subroutine is xdr _void.

Related Information
The callrpc subroutine, clnt_perrno subroutine, registerrpc subroutine, svc_run
subroutine, xdr_u_long subroutine, xdr_void subroutine.

List of RPC Examples on page 7-49.

Using the Intermediate Layer of RPC on page 7-23.

7-60 Communications Programming Concepts

Example Showing How RPC Passes Arbitrary Data Types
The following two examples show how RPC handles arbitrary data types:

Example Passing a Simple User-Defined Structure
struct simple {

int a;
short b;

} simple;

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
xdr_simple, &simple ..•);

where the xdr_simple function is written as:

#include <rpc/rpc.h>

xdr_simple(xdrsp, simplep)
XDR *xdrsp;

{

}

struct simple *simplep;

if (!xdr_int(xdrsp, &simplep->a))
return (0);

if (!xdr_short(xdrsp, &simplep->b))
return (O);

return (l);

Example Passing a Variable-Length Array
struct varintarr {

int *data;
int arrlnth;

} arr;

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
xdr_varintarr, &arr .•.);

The xdr_varintarr subroutine is defined as:

xdr_varintarr(xdrsp, arrp)
XDR *xdrsp;
struct varintarr *arrp;

{
return (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth,

MAXLEN, sizeof(int), xdr_int));
}

This routine's parameters are the XOR handle (xdrsp), a pointer to the array
(aarp->data), a pointer to the size of the array (aarp->arrlnth), the maximum
allowable array size (MAXLEN), the size of each array element (sizeof), and an XOR
routine for handling each array element (xdr_int).

Remote Procedure Call (RPC) 7-61

Example Passing a Fixed-Length Array
If the size of the array is known in advance, the programmer can call the xdr_vector
subroutine to serialize fixed-length arrays as in the following example:

int intarr[SIZE];

xdr_intarr(xdrsp, intarr)
XOR *xdrsp;

{

}

int intarr [] ;

int i;

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int),
xdr_int));

Example Passing Structure with Pointers
The following example calls the previously written xdr_simple routine as well as the built-in
xdr_string and xdr_reference functions. The xdr_reference routine chases pointers as
shown in the following example:

struct f inalexample {
char *string;
struct simple *simplep;

} finalexample;

xdr_finalexample(xdrsp, finalp)
XOR *xdrsp;

{

}

struct finalexample *finalp;

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
return (O);

if (!xdr_reference(xdrsp, &finalp->simplep,
sizeof(struct simple), xdr_simple);

return (O);
return (l);

Related Information
The callrpc subroutine, xdr_array subroutine, xdr_int subroutine, xdr_reference
subroutine, xdr_short subroutine, xdr_string subroutine, xdr_vector subroutine.

List of RPC Examples on page 7-49.

Programming in RPC on page 7-20, Passing Arbitrary Data Types on page 7-25.

7-62 Communications Programming Concepts

Example Using the Lowest Layer of RPC
The following is an example of the lowest layer of RPC on the server and client side using
an nusers program.

The Lowest Layer of RPC from the Server Side
The server for the nusers program in the following example does the same thing as a
program using the registerrpc subroutine at the higher level of RPC, but the following is
written using a lower layer of the RPC package:

#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>
#include <rpcsvc/rusers.h>

main ()
{

}

}

SVCXPRT *transp;
int nuser();

transp = svcudp_create(RPC_ANYSOCK);
if (transp ==NULL){

}

fprintf(stderr, "can't create an RPC server\n");
exit (1);

pmap_unset(RUSERSPROG, RUSERSVERS);
if (!svc_register(transp, RUSERSPROG, RUSERSVERS,

}

nuser, IPPROTO_UDP)) {
fprintf(stderr, "can't register RUSER service\n");
exit(l);

svc_run(); /* Never returns */
fprintf(stderr, "should never reach this point\n");

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can't reply to RPC call\n");

return;
case RUSERSPROC NUM:

/*
* Code here to compute the number of users
* and assign it to the nusers variable
*/

if (!svc_sendreply(transp, xdr_u_long, &nusers))
fprintf(stderr, "can't reply to RPC call\n");

return;
default:

svcerr_noproc(transp);
return;

}

Remote Procedure Call (RPC) 7-63

First, the server gets a transport handle, which is used for receiving and replying to RPC
messages. The registerrpc routine calls the svcudp_create routine to get a UDP handle. If
a more reliable protocol is required, the svctcp_create routine can be called instead. If the
argument to the svcudp_create routine is RPC_ANYSOCK, the RPC library creates a socket
on which to receive and reply to remote procedure calls. Otherwise, the svcudp_create
routine expects its argument to be a valid socket number. If the programmer specifies his
own socket, it can be bound or unbound. If it is bound to a port by the programmer, the port
numbers of the svcudp_create routine and the clnttcp_create routine (the low-level client
routine) must match.

If the programmer specifies the RPC_ANYSOCK argument, the RPC library routines open
sockets. The svcudp_create and clntudp_create routines cause the RPC library routines
to bind the appropriate socket if it is not already bound.

A service may register its port number with the local port mapper service. This is done by
specifying a non-zero protocol number in the svc_register routine. A programmer at the
client machine can discover the server port number by consulting the port mapper at the
server workstation. This is done automatically by specifying a zero port number in the
clntudp_create or clnttcp_create routines.

After creating a service transport (SVCXPRT) handle, the next step is to call the
pmap_unset routine. If the nusers server crashed earlier, this routine erases any trace of it
before restarting. Specifically, the pmap_unset routine erases the entry for RUSERSPROG

from the port mapper's tables.

Finally, the program number for nusers is associated with the nuser procedure. The final
argument to the svc_register routine is normally the protocol being used, which in this case
is IPPROTO_UDP. Registration is performed at the program level, rather than the procedure
level.

The nuser user service routine must call and dispatch the appropriate XDR routines based
on the procedure number. The nuser routine requires two tasks, unlike the registerrpc
routine which performs them automatically. The first is that the NULLPROC procedure
(currently zero) returns with no results. This can be used as a simple test for detecting
whether a remote program is running. Second, there is a check for invalid procedure
numbers. If one is detected, the svcerr_noproc routine is called to handle the error.

The user service routine serializes the results and returns them to the RPC caller through
the svc_sendreply routine. The first parameter of this routine is the SVCXPRT handle, the
second is the XDR routine that indicates return data type, and the third is a pointer to the
data to be returned.

As an example, a RUSERSPROC_BOOL procedure can be added, which has an nusers
argument and returns a value of TRUE or FALSE, depending on whether there are nusers
logged on. The following example shows this addition:

7-64 Communications Programming Concepts

case RUSERSPROC_BOOL: {
int bool;
unsigned nuserquery;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
svcerr_decode(transp);

}
/*

return;

* Code to set nusers = number of users
*/

if (nuserquery nusers)
bool TRUE;

else
bool FALSE;

if (!svc_sendreply(transp, xdr_bool, &bool)) {
fprintf(stderr, "can't reply to RPC call\n");

return (l);
}
return;

}

The svc_getargs routine takes the following arguments: an SVCXPRT handle, the XDR
routine, and a pointer that indicates where to place the input.

The Lowest Layer of RPC from the Client Side
When a programmer uses the callrpc routine, there is no control over the RPC delivery
mechanism or the socket used to transport the data. To illustrate the lowest layer of RPC,
which allows the user to adjust these parameters, the following code can be used to request
the nusers service:

#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>
#include <rpcsvc/rusers.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(argc, argv)
int argc;
char **argv;

{
struct hostent *hp; .
struct timeval pertry_timeout, total timeout;
struct sockaddr in server addr;
int sock = RPC_ANYSOCK; -
register CLIENT *client;
enum clnt_stat clnt_stat;
unsigned long nusers;

Remote Procedure Call (RPC) 7-65

}

if (argc ! = 2) {

}

fprintf(stderr, "usage: nusers hostname\n");
exit (-1);

if ((hp= gethostbyname(argv[l])) ==NULL) {
fprintf(stderr, "can't get addr for %s\n",argv[l]);
exit(-1);

}
pertry_timeout.tv_sec = 3;
pertry_timeout.tv_usec = O;
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,

hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = O;
if ((client= clntudp_create(&server_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout, &sock)) ==NULL) {
clnt_pcreateerror("clntudp_create");
exit(-1);

}
total_timeout.tv_sec = 20;
total_timeout.tv_usec = O;
clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void,

0, xdr_u_long, &nusers, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit (-1);

}
clnt_destroy(client);
close (sock);
exit(O);

The low-level version of the callrpc routine is the clnt_call macro, which takes a CLIENT
pointer rather than a host name. The parameters to the clnt_call macro are a CLIENT
pointer, the procedure number, the XDR routine for serializing the argument, a pointer to the
argument, the XOR routine for deserializing the return value, a pointer to where the return
value is to be placed, and the total time in seconds to wait for a reply. Thus, the number of
tries is the clnt_call time out divided by the clntudp_create timeout.

The CLIENT pointer is encoded with the transport mechanism. The callrpc routine uses
UDP, thus it calls the clntudp_create routine to get a CLIENT pointer. To get TCP
(Transmission Control Protocol), the programmer can call the clnttcp_create routine.

The parameters to the clntudp_create routine are the server address, the program number,
the version number, a time out value (between tries), and a pointer to a socket.

The clnt_destroy call always deallocates the space associated with the client handle. If the
RPC library opened the socket associated with the client handle, the clnt_destroy macro
closes it. If the socket was opened by the programmer, it stays open. In cases where there
are multiple client handles using the same socket, it is possible to destroy one handle
without closing the socket that other handles are using.

The stream connection is made when the call to the clntudp_create macro is replaced by a
call to the clnttcp_create routine.

clnttcp_create(&server_addr, prognum, versnum, &sock,
inputsize, outputsize);

7-66 Communications Programming Concepts

In following example, there is no timeout argument. Instead, the send and receive buffer
sizes must be specified. When the clnttcp_create call is made, a TCP connection is
established. All remote procedure calls using the client handle use the TCP connection. The
server side of a remote procedure call using TCP is similar, except that the svcudp_create
routine is replaced by the svctcp_create routine, as follows:

transp = svctcp_create(RPC_ANYSOCK, 0, O);

The last two arguments to the svctcp_create routine are send and receive sizes
respectively. If 0 is specified for either of these, the system chooses a reasonable default.

Related Information
The clnt_call macro, clnt_destroy macro, svc_getargs macro.

The callrpc subroutine, clnt_pcreateerror subroutine, clnt_perror subroutine,
clnttcp_create subroutine, clntudp_create subroutine, pmap_unset subroutine,
registerrpc subroutine, svcerr_decode subroutine, svcerr_noproc subroutine,
svc_register subroutine, svc_run subroutine, svc_sendreply subroutine, svctcp_create
subroutine, svcudp_create subroutine, xdr_bool subroutine, xdr_u_long subroutine,
xdr_void subroutine.

List of RPC Examples on page 7-49.

Remote Procedure Call (RPC) 7-67

Example Using the select Subroutine
The code for the svc_run routine with the select subroutine is as follows:

void
svc_run()
{

}

fd set readfds;
int dtbsz = getdtablesize();

for (;;) {

}

readfds = svc_fds;
switch (select(dtbsz, &readfds, NULL,NULL,NULL)) {

case -1:
if (errno == EINTR)

continue;
perror("select");
return;

case 0:
break;

default:
svc_getreqset(&readfds);

}

Related Information
The select subroutine, svc_getreqset subroutine, svc_run subroutine.

List of RPC Examples on page 7-49.

Understanding the RPC Features on page 7-29.

7-68 Communications Programming Concepts

Example Using rep on TCP
The following is an example using rep. This example also illustrates an XOR procedure that
behaves differently on serialization than on deserialization. The initiator of the RPC snd call
takes its standard input and sends it to the server rev process, which prints it on standard
output. The snd call uses Transmission Control Protocol (TCP).

The routine follows:

/*
* The xdr routine:
* on decode, read from wire, write onto fp
* on encode, read from fp, write onto wire
*/

#include <stdio.h>
#include <rpc/rpc.h>

xdr_rcp(xdrs, fp)

{

}

XOR *xdrs;
FILE *fp;

unsigned long size;
char buf[BUFSIZ], *p;
if (xdrs->x_op == XDR_FREE)/* nothing to free */

return 1;
while (1) {

}

if (xdrs->x_op == XDR_ENCODE) {

}

if ((size= fread(buf, sizeof(char), BUFSIZ,
fp)) == 0 && ferror(fp)) {

}

fprintf(stderr, "can't fread\n");
return (l);

p buf;
if (!xdr_bytes(xdrs, &p, &size, BUFSIZ))

return O;
if (size == 0)

return 1;
if (xdrs->x_op == XDR_DECODE) {

}

if (fwrite(buf, sizeof(char),size,
fp) != size) {

}

fprintf(stderr, "can't fwrite\n");
return (1);

/*
* The sender routines
*/

#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/sock~t.h>
#include <sys/time.h>

Remote Procedure Call (RPC} 7-69

main(argc, argv)
int argc;
char **argv;

{

}

int xdr_rcp();
int err;
if (argc < 2) {

}

fprintf(stderr, "usage: %s servername\n", argv[O]);
exit(-1);

if ((err= callrpctcp(argv[l], RCPPROG, RCPPROC,
RCPVERS, xdr_rcp, stdin, xdr_void, 0) != 0)) {

clnt perrno(err);
fpri~tf(stderr, "can't make RPC call\n");
exit (1);

}
exit(O);

callrpctcp(host, prognum, procnum, versnum, inproc, in,
outproc, out)

{

}
/*

char *host, *in, *out;
xdrproc_t inproc, outproc;

struct sockaddr_in server_addr;
int socket = RPC_ANYSOCK;
enum clnt_stat clnt_stat;
struct hostent *hp;
register CLIENT *client;
struct timeval total_timeout;

if ((hp= gethostbyname(host)) -- NULL) {

}

fprintf(stderr, "can't get addr for '%s'\n", host);
return (-1) ;

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,
hp->h_length);

server_addr.sin_family = AF_INET;
server_addr.sin_port = O;
if ((client= clnttcp_create(&server_addr, prognum,

versnum, &socket, BUFSIZ, BUFSIZ)) ==NULL) {
perror("rpctcp_create");
return (-1);

}
total timeout.tv sec = 20;
total_timeout.tv_usec = O;
clnt_stat = clnt_call(client, procnum,

inproc, in, outproc, out, total_timeout);
clnt_destroy(client);
return (int)clnt_stat;

* The receiving routines
*/

#include <stdio.h>
#include <rpc/rpc.h>

7-70 Communications Programming Concepts

main()

{

}

register SVCXPRT *transp;
int rcp_service(), xdr_rcp();

if ((transp = svctcp_create(RPC_ANYSOCK,
BUFSIZ, BUFSIZ)) ==NULL) {

fprintf("svctcp_create: error\n");
exit(l);

}
pmap_unset(RCPPROG, RCPVERS);
if (!svc_register(transp,

}

RCPPROG, RCPVERS, rcp_service, IPPROTO_TCP)) {
fprintf(stderr, "svc_register: error\n");
exit(l);

svc_run(); /* never returns */
fprintf(stderr, "svc run should never return\n");

rcp_service(rqstp, transp)

{

}

register struct svc_req *rqstp;
register SVCXPRT *transp;

switch (rqstp->rq_proc) {
case NULLPROC:

if (svc_sendreply(transp, xdr_void, 0) == 0) {
fprintf(stderr, "err: rcp_service");
return (l);

}
return;

case RCPPROC FP:
if (!svc_getargs(transp, xdr_rcp, stdout)) {

svcerr_decode(transp);
return;

}
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "can't reply\n");
return;

}
return (O);

default:
svcerr_noproc(transp);
return;

}

Remote Procedure Call (RPC) 7-71

Related Information
The clnt_call macro, clnt_destroy macro, svc_getargs macro.

The clnt_perrno subroutine, clnttcp_create subroutine, pmap_unset subroutine,
svcerr_decode subroutine, svcerr_noproc subroutine, svc_register subroutine, svc_run
subroutine, svc_sendreply subroutine, svctcp_create subroutine, xdr_bytes subroutine,
xdr_free subroutine, xdr_void subroutine.

List of RPC Examples on page 7-49.

Understanding the RPC Features on page 7-29.

7-72 Communications Programming Concepts

Example Using Multiple Program Versions
By convention, the first version number of program PROG is referred to as
PROGVERS_ORIG and the most recent version is PROGVERS. For example, the
programmer can create a new version of the user program that returns an unsigned short
value rather than a long value. If the programmer names this version
RUSERSVERS_SHORT, then the following program permits the server to support both
programs:

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
nuser, IPPROTO_TCP)) {

}

fprintf(stderr, "can't register RUSER service\n");
exit (1);

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,
nuser, IPPROTO_TCP)) {

}

fprintf(stderr, "can't register RUSER service\n");
exit(l);

Both versions can be handled by the same C procedure. This is illustrated in the following
example using the nusers procedure:

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
unsigned long nusers;
unsigned short nusers2;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "can't reply to RPC call\n");

return (1);
}
return;

case RUSERSPROC NUM:
/*
* Code here to compute the number of users
* and assign it to the variable nusers
*/

Remote Procedure Call (RPC) 7-73

}

nusers2 = nusers;
switch (rqstp->rq_vers) {
case RUSERSVERS_ORIG:

if (!svc_sendreply(transp, xdr_u_long,
&nusers)) {

fprintf(stderr,"can't reply to RPC call\n");
}
break;

case RUSERSVERS_SHORT:

}

if (!svc_sendreply(transp, xdr_u_short,
&nusers2)) {

fprintf(stderr,"can't reply to RPC call\n");
}
break;

default:
svcerr_noproc(transp);
return;

}

Related Information
The svcerr_noproc subroutine, svc_register subroutine, svc_sendreply subroutine,
xdr_u_short subroutine, xdr..:_void subroutine.

List of RPC Examples on page 7-49.

Programming in RPC on page 7-20, Assigning Version Numbers on page 7-21.

7-7 4 Communications Programming Concepts

Example Converting Local Procedures into Remote
Procedures

This example illustrates one way to convert an application that runs on a single machine into
one that runs over a network. For instance, the programmer first creates a program that
prints a message to the console, as follows:

/*
* printmsg.c: print a message on the console
*/

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{
char *message;

if (argc < 2) {
fprintf(stderr, "usage: %s <message>\n",

argv[O]);
exit(l);

}
message= argv[l];

if (!printmessage(message)) {
fprintf (stderr, "%s: couldn't print your
message\en", argv[O]);

}
/*

exit (1);
}
printf("Message Delivered!\n");
exit(O);

* Print a message to the console.
* Return a boolean indicating whether the
*message was actually printed.
*/

printmessage(msg)
char *msg;

{

}

FILE *f;
f = fopen("/dev/console", "w");
if (f == NULL) {

return (O);
}
fprintf(f, "%s\en", msg);
fclose(f);
return(l);

The reply message follows:

example% cc printmsg.c -o printmsg
example% printmsg "Hello, there."
Message delivered!
example%

Remote Procedure Call (RPC) 7-75

If the printmessage program is turned into a remote procedure, it can be called from
anywhere in the network. Ideally, one would insert a keyword such as remote in front of a
procedure to turn it into a remote procedure. Unfortunately, the constraints of the C language
do not permit this. However, a procedure can be made remote without language support

To do this, the programmer must know the data types of all procedure inputs and outputs. In
this case, the printmessage procedure takes a string as input and returns an integer as
output. Knowing this, the programmer can write a protocol specification in RPC language
that describes the remote version of printmessage, as follows:

/*
* msg.x: Remote message printing protocol
*/

program MESSAGEPROG {
version MESSAGEVERS {

int PRINTMESSAGE(string) = 1;
} = 1;

} = 99;

Remote procedures are part of remote programs, so the above protocol declares a remote
program which contains the single procedure PRINTMESSAGE. This procedure was declared
to be in version 1 of the remote program. No null procedure (procedure 0) is necessary
because the rpcgen command generates it automatically.

Conventionally, all declarations are written with capital letters.

The argument type is string and not char *because a char *in C is ambiguous.
Programmers usually intend it to mean a null-terminated string of characters, but it could
also represent a pointer to a single character or a pointer to an array of characters. In RPC
language, a null-terminated string is unambiguously called a string.

Next, the programmer writes the remote procedure itself. The definition of a remote
procedure to implement the PRINTMESSAGE procedure declared above can be written as
follows:

/*
* msg_proc.c: implementation of the remote
*procedure "printmessage"
*/

#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "msg.h" /* msg.h will be generated by rpcgen */
/*
* Remote version of "printmessage"
*/ int *

7 ~76 Communications Programming Concepts

printrnessage_l(rnsg)
char **rnsg;

{

}

static int result; /* must be static! */
FILE *f;

f = fopen("/dev/console", "w");
if (f == NULL) {

result = O;
return (&result);

}
fprintf(f, "%s\en", *rnsg);
£close (f);
result = 1;
return (&result);

The declaration of the remote procedure printrnessage_l in this step differs from that of
the local procedure printrnessage in the first step in three ways:

• It takes a pointer to a string instead of a string itself. This is true of all remote procedures,
which always take pointers to their arguments rather than the arguments themselves.

• It returns a pointer to an integer instead of the integer itself. This is also true of remote
procedures, which generally return a pointer to their results.

• It has a _ 1 appended to its name. Remote procedures called by the rpcgen command
are named by the following rule: the name in the program definition (here
PRINTMESSAGE) is converted to all lower-case letters, and an_ (underbar) and the
version number are appended.

Finally, the programmers declare the main client program that will call the remote procedure,
as follows:

/*
* rprintmsg.c: remote version of "printmsg.c"
*/

#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "rnsg.h" /* msg.h will be generated by rpcgen */

rnain(argc, argv)
int argc;
char *argv[];

{
CLIENT *cl;
int *result;
char *server;
char *message;

if (argc < 3) {
fprintf (stderr,
"usage: %s host rnessage\en", · argv[0]);
exit(l);

}
/*
* Save values of command line arguments
*/

Remote Procedure Call {RPC) 7-77

}

server= argv[l];
message= argv[2];

/*
* Create client uhandle" used for calling MESSAGEPROG on
* the server designated on the command line. We tell
* the RPC package to use the "tcp" protocol when
* contacting the server.
*/

cl= clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");
if (cl == NULL) {

}
/*

/*
* Couldn't establish connection with server.
* Print error message and die.
*/
clnt_pcreateerror(server);
exit(l);

* Call the remote procedure "printmessage" on the server
*/
result= printmessage_l(&message, cl);
if (result == NULL) {

}

/*
* An error occurred while calling the server.
* Print error message and die.
*I
clnt_perror(cl, server);
exit(l);

/*
* Okay, we successfully called the remote procedure.
*/

if (*result == 0) {
/*
* Server was unable to print our message.
* Print error message and die.
*/

fprintf (stderr, "%s: %s couldn't print your message\n",
argv[O], server);

}
/*

exit(l);

* The message got printed on the server's console
*/
printf("Message delivered to %s!\n", serv~r);

exit (O);

There are two things to note here:

1. First a client handle is created using the RPC library routine clnt_create. This client
handle is passed to the stub routines that call the remote procedure.

2. The remote procedure printmessage_l is called exactly the same way as it is declared
in msg_proc. c, except for the inserted client handle as the first argument.

7-78 Communications Programming Concepts

The client program rprintmsg and the server program msg_server are compiled as
follows:

example% rpcgen msg.x
example% cc rprintmsg.c msg_clnt.c -o rprintmsg
example% cc msg_proc.c msg_svc.c -o msg_server

Before compilation, however, rpcgen is used to perform the following operations on the
input file ms g. x:

• It creates a header file called msg.h that contains #defines for MESSAGEPROG,
MESSAGEVERS, and PRINTMESSAGE for use in the other modules.

• It creates a client stub routine in the msg_clnt. c file. In this case there is only one, the
printmessage_l that is referred to from the printmsg client program. The name of the
output file for client stub routines is always formed in this way: if the name of the input file
is FOO.x, the client stub's output file is called FOO_clnt.c.

• It creates the server program which calls printmessage_l in msg_proc.c. This server
program is named msg_svc. c. The rule for naming the server output file is similar to the
previous one: for an input file called FOO.x, the output server file is named FOO_svc.c.

Related Information
The clnt_create subroutine, clnt_pcreateerror subroutine, clnt_perror subroutine.
List of RPC Examples on page 7-49.
Understanding the rpcgen Protocol Compiler on page 7-37, Converting Local Procedures
into Remote Procedures on page 7-38.

Remote Procedure Call (RPC) 7-79

Example Generating XOR Routines
The previous example demonstrates the automatic generation of client and server RPC
code. The rpcgen protocol compiler may also be used to generate XOR routines, that is, the
routines necessary to convert local data structures into network format and vice versa. The
following example presents a complete RPC service-a remote directory listing service that
uses the rpcgen protocol compiler not only to generate stub routines, but also to generate
XOR routines. Here is the protocol description file:

/*
* dir.x: Remote directory listing protocol
*/
const MAXNAMELEN = 255;/* maximum length of a directory entry */
typedef string nametype<MAXNAMELEN>; /* a directory entry */
typedef struct namenode *narnelist; /* a link in the listing */
/*
* A node in the directory listing
*/

struct namenode {
nametype name;
namelist next;

} ;
/*

/* name of directory entry
/* next entry

* The result of a READDIR operation.
*/
union readdir res switch (int errno) {
case 0:

*/
*/

namelist list; /* no error: return directory listing */
default:

} ;
/*

void; /* error occurred: nothing else to return

* The directory program definition
*/

program DIRPROG {
version DIRVERS {

} = 76;

readdir res
READDIR(nametype) 1;

} = 1;

*/

Note: Types (like readdir_res in the example above) can be defined using the struct,
union and enum keywords, but those keywords should not be used in subsequent
declarations of variables of those types. For example, if you define a union foo, you
should declare using only foo and not union foo. In fact, the rpcgen protocol
compiler compiles RPC unions into C structures, and it is an error to declare them
using the union keyword.

Running the rpcgen protocol compiler on dir.x creates four output files. Three are the same
as before: header file, client stub routines, and server skeleton. The fourth file contains the
XOR routines necessary for converting the specified data types into XOR format and vice
versa. These are output in the dir_xdr.c file.

7-80 Communications Programming Concepts

The following is the implementation of the READDIR procedure:

/*
* dir_proc.c: remote readdir implementation
*I
#include <rpc/rpc.h>
#include <sys/dir.h>
#include "dir.h"

extern int errno;
extern char *malloc();
extern char *strdup();

readdir_res *
readdir_l(dirname)

nametype *dirname;
{

}

DIR *dirp;
struct direct *d;
namelist nl;
namelist *nlp;
static readdir res res; /* must be static

/*
* Open directory
*/

dirp = opendir(*dirname);
if (dirp == NULL) {

res.errno = errno;
return {&res);

}
/*
* Free previous result
*/

xdr free(xdr readdir res, &res);
/* - - -
* Collect directory entries.
* Memory allocated here will be freed by xdr_free
* next time readdir_l is called
*/

nlp = &res.readdir_res_u.list;
while (d = readdir(dirp)) {

}

nl = *nlp = (namenode *) malloc(sizeof(namenode));
nl->name = strdup(d->d_name);
nlp = &nl->next;

*nlp = NULL;

/*
* Return the result
*/
res.errno = O;

closedir(dirp);
return (&res);

*/

Remote Procedure Call (RPC) 7-81

Finally, there is the client side program to call the server:

/*
* rls.c:
*/
#include
#include
#include

Remote directory listing client

<stdio.h>
<rpc/rpc.h>
"dir.h"

/* always need this
/* will be generated by rpcgen

extern int errno;

main(argc, argv)

{

int argc;
char *argv[];

CLIENT *cl;
char *server;
char *dir;
readdir_res *result;
namelist nl;

if (argc != 3) {

}
/*

fprintf(stderr, "usage: %s host directory\n",
argv(O]);

exit (1);

* Remember what our command line arguments refer to
*/

server= argv[l];
dir = argv[2];

/*
* Create client "handle" used for calling MESSAGEPROG on
* the server designated on the command line. We tell the
* RPC package to use the "tcp" protocol when contacting
* the server.
*/

cl= clnt_create(server, DIRPROG, DIRVERS, "tcp");
if (cl == NULL) {

}
/*

I*
* Couldn't establish connection with server.
* Print error message and die.
*/
clnt_pcreateerror(server);
exit(l);

* Call the remote procedure readdir on the server
*/

result= readdir_l(&dir, cl);
if (result -- NULL) {

/*
* An error occurred while calling the server.
* Print error message and die.
*I

clnt_perror(cl, server);
exit (1);

7-82 Communications Programming Concepts

*/
*/

}

}
/*
* Okay, we successfully called the remote procedure.
*/

if (result->errno != 0) {
/*

}
/*

* A remote system error occurred.
* Print error message and die.
*/
errno = result->errno;
perror(dir);
exit(l);

* Successfully got a directory listing.
* Print it out.
*/

for (nl = result->readdir_res_u.list; nl != NULL;
nl = nl->next) {

}
exit(O);

printf("%s\en", nl->name);

A final note about the rpcgen protocol compiler: The client program and the server
procedure can be tested together as a single program by simply linking them with each other
rather than with the client and server stubs. The procedure calls are executed as ordinary
local procedure calls and the program can be debugged with a local debugger such as dbx.
When the program is working, the client program can be linked to the client stub produced
by the rpcgen protocol compiler and the server procedures can be linked to the server stub
produced by the rpcgen protocol compiler.

Note: If you do this, you may want to comment out calls to RPC library routines and have
client-side routines call server routines directly.

Related Information
List of RPC Examples on page 7-49.
Understanding the rpcgen Protocol Compiler on page 7-37.

Remote Procedure Call (RPC) 7-83

Example Using RPC Callback Procedures
Occasionally, it is useful to have a server become a client and make a remote procedure call
back to the process that is its client. For example, with remote debugging, the client is a
window system program and the server is a debugger running on the remote machine.
Usually, the user clicks a mouse button at the debugging window, which converts this to a
debugger command, and then makes a remote procedure call to the server (where the
debugger is actually running), telling it to execute that command. However, when the
debugger hits a breakpoint, the roles are reversed, and the debugger makes a remote
procedure call to the window program to inform the user that a breakpoint has been
reached.

To do an RPC callback, you need a program number to make the remote procedure call on.
Since this is a dynamically generated program number, it should be in the transient range,
Ox40000000 to OxSfffffff. The gettransient routine returns a valid program number in
the transient range, and registers it with the port mapper. This routine only talks to the port
mapper running on the same machine as the gettransient routine itself. The call to the
pmap_set routine is a test-and-set operation. That is, it indivisibly tests whether a program
number has already been registered, and reserves the number if not. On return, the sockp
argument contains a socket that can be used as the argument to an svcudp_create or
svctcp_create routine.

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/socket.h>

gettransient(proto, vers, sockp)

{

int proto, vers, *sockp;

static int prognurn = Ox40000000;
int s, len, socktype;
struct sockaddr_in addr;

switch(proto) {
case IPPROTO UDP:

socktype = SOCK_DGRAM;
break;

case IPPROTO_TCP:

default:

socktype = SOCK_STREAM;
break;

fprintf(stderr, "unknown protocol type\n");
return O;

7-84 Communications Programming Concepts

}

}
if (*sockp == RPC_ANYSOCK) {

}

if ((s = socket(AF_I~ET, socktype, 0)) < 0) {
perror("socket");
return (O);

}
*sockp = s;

else
s = *sockp;

addr.sin_addr.s_addr = O;
addr.sin_family = AF_INET;
addr.sin_port = O;
len = sizeof(addr);

/*
*may be already bound, so don't check for error
*/

bind(s, &addr, len);
if (getsockname(s, &addr, &len)< 0) {

perror("getsockname");
return (O);

}
while (!pmap_set(prognum++, vers, proto,

ntohs(addr.sin_port))) continue;
return (prognum-1);

Note: The call to the ntohs subroutine is necessary to ensure that the port number in
addr. sin_port, which is in network byte order, is passed in host byte order (as the
pmap_set subroutine expects).

The following pair of programs illustrate how to use the gettransient routine. The client
makes an remote procedure call to the server, passing it a transient program number. Then
the client waits around to receive a callback from the server at that program number. The
server registers the program EXAMPLEPROG so that it can receive the remote procedure call
informing it of the callback program number. Then at some randomly selected time (on
receiving an ALRM signal in this example), the server sends a callback remote procedure
call, using the program number it received earlier.

/*
* client
*/

#include <stdio.h>
#include <rpc/rpc.h>

int callback () ;
char hostname[256];

main()
{

Remote Procedure Call (RPC) 7-85

}

int x, ans, s;
SVCXPRT *xprt;
gethostname(hostname, sizeof(hostname));
s = RPC_ANYSOCK;
x = gettransient(IPPROTO UDP, 1, &s);
fprintf(stderr, "client ~ets prognum %d\n", x);
if ((xprt = svcudp_create(s)) ==NULL) {

}

fprintf(stderr, "rpc_server: svcudp_create\n");
exit(l);

/* protocol is 0 - gettransient does registering
*/

(void)svc_register(xprt, x, 1, callback, O);
ans = callrpc(hostname; EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, O);
if ((enum clnt_stat) ans != RPC_SUCCESS) {

fprintf(stderr, "call: ");
clnt_perrno(ans);
fprintf(stderr, "\n");

}
svc_run();
fprintf(stderr, "Error: svc run shouldn't return\n");

callback(rqstp, transp)

{

}
/*

register struct svc_req *rqstp;
register SVCXPRT *transp;

switch (rqstp->rq_proc) {
case 0:

}

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "err: exampleprog\n");
return (l);

}
return (O);

case 1:
if (!svc_getargs(transp, xdr_void, 0)) {

svcerr_decode(transp);
return (l);

}
fprintf(stderr, "client got callback\n");
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err: exampleprog");
return (l);

}

* server
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>

7-86 Communications Programming Concepts

char *getnewprog();
char hostname[256];
int docallback();
int pnum; /* program number for callback routine */

main ()

{
gethostname(hostname, sizeof(hostname));
registerrpc(EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
fprintf(stderr, "server going into svc_run\n");
signal(SIGALRM, docallback);
alarm(10);
svc_run();
fprintf(stderr, "Error: svc run shouldn't return\n");

}

char *
getnewprog(pnump)

char *pnump;
{

}

pnum *(int *)pnump;
return NULL;

docallback ()
{

int ans;

ans = callrpc(hostname, pnurn, 1, 1, xdr_void, O,
xdr_void, O);

if (ans ! = 0) {

}
}

Related Information

fprintf(stderr, "server: ");
clnt_perrno(ans);
fprintf(stderr, "\n");

List of RPC Examples on page 7-49.

Understanding the RPC Features on page 7-29.

Remote Procedure Call (RPC) 7-87

7-88 Communications Programming Concepts

Chapter 8. AIX SNA Services/6000

The following information can be used to design and code application programs that use the
AIX SNA Services/6000 programming interface to send and receive data over a network.
Included in this chapter is information about the AIX Operating System and AIX Library
subroutines that are part of the programming interface to AIX SNA Services/6000. Also
included is the content of the header files used with the programming interface to AIX SNA
Services/6000.

There is information about the generic SNA device driver, which provides support that allows
the generic SNA application code to use the PU Services of AIX SNA Services/6000. The
SNA Services/6000 LUOFacility is explained and the subsystem is defined. The application
program interface is also defined in this chapter.

Finally four transaction program examples, a file transfer program description, and
information for writing a generic SNA application are supplied.

AIX SNA Services/6000 Subroutines
AIX SNA Services/6000 Subroutines describes two kinds of subroutines: (1) the AIX SNA
Services/6000 Operating System subroutines that you can use from a program to control the
operation of AIX SNA Services/6000 and, (2) the AIX SNA Services/6000 Library
subroutines that you can use in your application program to control the general operation of
AIX SNA Services/6000 and send network management information to the host.

AIX SNA Services/6000 Operating System Subroutines
The AIX SNA Services/6000 Operating System subroutines are:

• open subroutine for SNA Services/6000
• close subroutine for SNA Services/6000
• read subroutine for SNA Services/6000
• write subroutine for SNA Services/6000
• ioctl subroutine for SNA Services/6000
• readx subroutine for SNA Services/6000
• writex subroutine for SNA Services/6000
• select subroutine for SNA Services/6000.

Refer to the Subroutines Overview in Communications Programming Concepts for general
reference information about the syntax and functions provided by these subroutines. This
document discusses their use with AIX SNA Services/6000 only.

AIX SNA Services/6000 Operating System Subroutine Interfaces
AIX SNA Services/6000 has two subroutine interfaces: limited and extended. Both of these
interfaces use standard AIX SNA Services/6000 Operating System subroutines. When you
configure a network, you must specify in the connection profile which subroutine interface
the transaction program uses (refer to the discussion of the connection profile in Defining
Remote Connection Characteristics in Communication Concepts and Procedures). You can
use either interface to write an application transaction program that issues routines directly
to the SNA device driver. In addition, you can use the extended interface to write kernel
transaction programs, combine functions into one routine, or both.

SNA Services/6000 8-1

Be sure to document which interface you choose and pass this information on to the person
who installs your program. The connection profile requires this information to install your
program (see Defining Remote Connection Characteristics in Communication Concepts and
Procedures) ..

Limited Interface
The limited interface allows application programs to perform basic data send and receive
operations for an LU 6.2 protocol boundary only. It does not provide any complex send and
receive operations or monitor network status. It cannot be used for LUs 1, 2, or 3. The
subroutines that implement this interface are:

• open subroutine for SNA Services/6000
• close subroutine for SNA Services/6000
• read subroutine for SNA Services/6000
• write subroutine for SNA Services/6000.

Programs that use the limited interface must observe the following restrictions:

• The session must be ,for LU 6.2.
• Only one conversation can be allocated for each open connection.
• The conversation must be a basic conversation.
• No additional information other than data can be sent or received.

In this interface, the resource ID is not used. Likewise, the limited interface does not support
PIP data. The profile pointer (file descriptor) is returned by calling the open subroutine in the
transaction program. See Remote Transaction Program Example Program on page 8-48 .

Extended Interface
The extended interface allows a kernel or application transaction program to control AIX
SNA Services/6000 operations by directly communicating with the SNA device driver. You
can use this interface to control operations for LUs 1 , 2, 3, or 6.2, and to allocate more than
one conversation for an open connection. This interface uses the following AIX SNA
Services/6000 Operating System subroutines:

• open subroutine for SNA Services/6000
• close subroutine for SNA Services/6000
• select subroutine for SNA Services/6000
• read subroutine for SNA Services/6000
• readx subroutine for SNA Services/6000
• write subroutine for SNA Services/6000
• writex subroutine for SNA Services/6000
• ioctl subroutine for SNA Services/6000.

To pass additional information between the SNA device driver and the transaction program,
the readx and writex subroutines use a data structure of type ext_io_str. The structure is
defined in the luxsna.h include file, and the routines pass a pointer to the structure as part
of the syntax. Refer to the description of each routine for information about how each uses
this structure.

AIX SNA Services/6000 Library Subroutines
The AIX SNA Services/6000 Library subroutines are divided into two groups, the AIX SNA
Services/6000 Library Subroutines for Transaction Program Conversations and the AIX SNA
Services/6000 Library Subroutines for Network Management.

8-2 Communications Programming Concepts

AIX SNA Services/6000 Library Subroutines for Transaction Program Conversations
AIX SNA Services/6000 provides a set of run-time library subroutines to use in a program to:

• Establish a conversation with one or more remote transaction programs
• Exchange data with that program
• Disconnect from the remote transaction program.

These subroutines are contained in a library file, /usr/lib/libsna.a. To use these subroutines
in a program, compile the program, using the -lsna flag with the cc command. For example,
to compile the rnytpn. c program that contains routines to the AIX SNA Services/6000
subroutines, use the following command:

cc rnytpn.c -o mytpn -lsna

The subroutines support two types of SNA conversations:

basic conversation
A connection between two transaction programs that allows them to
exchange logical records containing a two-byte prefix that specifies the
length of the record. LUs 1, 2, and 3 do not use the two-byte prefix.
However, LU 1, 2, and 3 conversations must be basic conversations. This
conversation type is used by service transaction programs as well as LU 1,
2, and 3 application transaction programs.

mapped conversation
A connection between two transaction programs that allows them to
exchange data records of any length and in any format specified by the
transaction programs. This conversation type is used for LU 6.2
conversations only and is used primarily for application transaction
programs.

The following library subroutines can be used with any conversation type. Some of the
requests that the snactl subroutine sends can only be used with a basic conversation. See
the snactl subroutine for information about these restrictions.

• snaclse
• snactl
• snadeal
• snalloc
• snaopen
• snaread
• snawrit.

When using these subroutines, the general order of events is as follows:

1. Use the snaopen subroutine to initialize the connection to a remote node.

2. Use the snalloc subroutine to create a conversation between your transaction program
and a transaction program at the remote node.

3. Begin data exchange with the remote program using:

• the snaread subroutine to get data from the remote program
• · the snawrit subroutine to send data to the remote program
• the snactl subroutine to monitor and control the conversation.

SNA Services/6000 8-3

4. When the operation is complete, use the snadeal subroutine to dissolve the conversation
between the two transaction programs.

5. Use the snaclse subroutine to end the connection.

AIX SNA Services/6000 Library Subroutines for Network Management (System
Services Control Point Subroutines)

The second category of subroutines in the runtime library is network management
subroutines. These subroutines send and receive network management information in the
form of Network Management Vector Transport (NMVT) data, transmitting the data between
AIX SNA Services/6000 in an AIX node and the System Services Control Point (SSCP) in
the host through an SSCP-PU session.

Network management subroutines provide the following functions:

nm_open Associates the program with the SSCP-PU session.
nm_send Sends NMVT data to the SSCP-PU session.
nm_receive Receives NMVT data from the SSCP-PU session.
nm_close Releases the SSCP-PU session.
nm_status Obtains the status of the SSCP-PU session.

To send NMVT data, you need a Network Management Program that is defined as a server
program and that includes the subroutines just described. The subroutines are used in the
following sequence:

1. Associate program with the session, using the nm_open subroutine.

2. Format the NMVT data.

3. Send the NMVT data to the host, using the nm_send subroutine. The data is sent as a
request.

4. Receive and check the response from the host, using the nm_receive subroutine.

5. Free the SSCP session, using the nm_close subroutine.

8-4 Communications Programming Concepts

AIX SNA Services/6000 Special Files

luxsna.h Include File
Purpose

Path Name

Description

Structures

Defines constants and structures used by AIX SNA Services/6000 subroutines.

/usr/include/luxsna.h

The luxsna.h header file provides definitions of constants and structures that are used by
AIX SNA Services/6000 subroutines.

The header file defines the following structures:

• allo_str
• alloc_listen
• attr_str
• confirm_str
• cp_str
• deal_str
• erro_str
• ext_io_str
• flush_str
• fmh_str
• get_parms
• gstat_str
• pip_str
• prep_str
• read_out
• stat_str
• write_out

SNA Services/6000 8-5

allo_str Structure
This structure provides additional parameters for the snalloc subroutine and the
ioctl(ALLOCATE) subroutine. Refer to the snalloc or ioctl subroutine in Calls and
Subroutines Reference for a description of these functions. The structure appears as
follows:

struct allo str
{

} ;

char
char
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
int
long
struct
int

mode_name [9];
tpn[65];
priority
type
return control
sync_level
recov level
pip
sess_type
svc_tpn_flag
rsvd2
sense_ code;

2;
2;
2;
2;
2;
1;
1;
1;
3;

rid; /* rid for a previous conversation */
pip_str *pip_ptr;
conv_group_id;

Note: When parameters in this structure are specified, the remote TPN profile parameters
are overriden. If no parameters are specified, the remote TPN profile parameters are
used as the default.

The allo_str structure parameters have the following meaning:

mode name Specifies the mode name for the conversation. The mode name designates
the network properties for the session to be allocated, such as the class of
service to be used.

tpn

priority

A special mode name, SNASVCMG, specifies the mode name used for
control operator subroutines. Any program using this mode name must have
control operator privileges based on the operating-system group ID. This
mode name is not used for LU 1 , 2, or 3.

Specifies the name of the remote transaction program with which to
establish the conversation. The TPN must be coded in EBCDIC. The AIX
SNA Services/6000 subroutine interface converts ASCII to EBCDIC if the
svc_tpn_flag field is set to zero. If you use the AIX SNA Services/6000
subroutine interface, the svc_tpn_flag field is ignored, and you must
ensure that the conversion is done. Refer to EBCDIC to ASCII Translation
for US English (TEXT) in Communication Concepts and Procedures for
assistance in converting ASCII to EBCDIC.

Specifies the priority option which selects a mode profile to be used to
establish an appropriate session for the conversation. Priority options are:

B'OO'

B'01'

Use the first mode profile listed in the mode list profile
for the connection. The mode list profile name is
specified in the connection profile.

Use the second mode profile listed in the mode list
profile for the connection. The mode list profile name
is specified in the connection profile.

8-6 Communications Programming Concepts

8'1 O' Use the third mode profile listed in the mode list profile
for the connection. The mode list profile name is
specified in the connection profile.

8'11' Use the fourth mode profile listed in the mode list
profile for the connection. The mode list profile name
is specified in the connection profile.

type Specifies the type of conversation to be allocated:

DEF _CONV (8'00') Use the value defined in the remote transaction
profile.

8ASIC_CONV (8'01 ')
Allocate a basic conversation.

MAPPED_CONV (8'1 O')
Allocate a mapped conversation. Do not use this value
for LUs 1, 2, or 3.

RECON_CONV (8'11 ')

return control

Reconnect a conversation between the local and
remote transaction program. Do not use this value
with LU 1 , 2, or 3 conversations.

Specifies the type of conversation the application is requesting. Options are:

WHEN_SESSION_ALLOC (8'00')
Return control to application when either a Contention
Winner or Contention Loser session is allocated. The
type assigned is the first available.

WHEN_CONWINNER_ALLOCATED (8'01 ')
Return control to application when a Contention
Winner session is allocated.

WHEN_CGID_ALLOCATED (8'1 O')
Return control to application when a session with the
specified conversation group id is allocated.

RESERVED (8'11 ') Reserved.

sync_level Specifies the synchronization level to be used by the program for this
conversation:

DEFAULT (8'00')

SYNC_NONE (8'01 ')

SYNC_CONF (8'1 O')

Use the value defined in the remote transaction
profile.

The program does not perform confirmation.

The program performs confirmation processing.

recov _level Specifies the recovery level that the local program uses for this
conversation. Do not use this parameter with LU 1, 2, or 3.

RECOV _DEF (8'00')
Use the value defined in the remote transaction
profile.

SNA Services/6000 8-7

RECOV _NONE (8'01 ')
The program does not support program reconnect or
sync point restart.

RECOV _RECON (8'1 O')
The program supports program reconnect, but not
sync point restart.

PIP Specifies whether program initialization data is provided for the remote
transaction program. Do not use this parameter with LU 1, 2, or 3
conversations.

PIP _NO (B'O') Program initialization data is not provided.
PIP_ YES (8'1 ') Program initialization data is provided.

sess_type Specifies the type of session to be allocated. Use for LU 1, 2, or 3 sessions
only. This field is not used for mapped conversations.

8'0' LU-LU session
8'1' SSCP-LU session

svc_tpn_f lag

rsvd2

rid

pip_ptr

Indicates whether the tpn parameter defines a service transaction program
name specified in hex:

8'0'

8'1'

This field is not used.

Indicates that it is not a service transaction program
name. The AIX SNA Services/6000 subroutine
interface translates the TPN name into EBCDIC code.

Indicates that it is a service transaction program
name. AIX SNA Services/6000 does not translate the
TPN name into EBCDIC code. Refer to EBCDIC to
ASCII Translation for US English (TEXT) in
Communication Concepts and Procedures for
assistance in converting ASCII to EBCDIC.

Specifies a resource ID that is returned from an ioctl(ALLOCATE) or a
snalloc subroutine. This field is also used to supply the rid necessary in
order to reconnect to an old conversation when the type parameter of the
allo_str structure is specified as reconnect (8'11 '). For the remote attached
ALLOCATE, the only parameter required in the allo_str structure is rid,
which is passed into the application program by argv [3].

When the PIP parameter indicates that program initialization data for the
remote program is being supplied, this pointer points to the structure that
contains that initialization data. Refer to the pip_str structure on page 8-24
for PIP data structure.

conv_group_id
The conversation group ID that identifies a specific session to be allocated.

8-8 Communications Programming Concepts

alloc listen Structure
- This structure provides additional parameters for the ioctl(ALLOCATE_LISTEN) subroutine.

Refer to the ioctl subroutine in Calls and Subroutines Reference for a description of this
function. The structure appears as follows:

struct alloc listen
{

1 ;
} ;

int tpn_mask
char tpn_profile_name[MAX_PROF_LEN];
unsigned short num_tpn;
char tpn_list[MAX NUM TPN][MAX_TPN_LEN

The alloc_listen structure parameters have the following meaning:

tpn_prof ile_name

num_tpn

tpn_list

tpn_mask

Specifies the name of a Transaction Program Profile against which
incoming attaches are checked. This profile serves as conversation
characteristics template for the Transaction Programs listed in the
t pn _list field. The name can be up to 15 bytes long and must be
null-terminated (total of 16 bytes maximum). This profile name must be
defined in the TPN List Profile for the specified connection.

The number of TPNs in the tpn_list array described below.

An array of Transaction Program Names to register as being 11listened" for. A
maximum of 31 names can be registered per call. Each name can be a
maximum of 64 bytes and must be null-terminated (total of 65 bytes per
name). These TPNs should not be defined in the TPN List Profile for the
specified connection. Their conversation characteristics are defined in the
single TPN profile specified in the tpn_profile_name field. These names
are not converted from ASCII to EBCDIC.

A mask that indicates which of the specified TPNs are registered. The least
significant bit (bit 0) corresponds to the first TPN (tpn_list [o]), and so
on. The values of the bits are:

o TPN is not registered.
1 TPN is registered.

If no TPN was registered, the result is (-1) or Ox7FFFFFFF.

SNA Services/6000 8-9

attr str Structure
- This structure receives output from the GET _ATTRl8UTE request for the snactl and ioctl

subroutines. Refer to the snactl or ioctl subroutine in Calls and Subroutines Reference for a
description of the these functions. The structure appears as follows:

struct attr str
{

} ;

long rid;
char own_fully_qualified_lu_name[l8];
char ptner_fully_qualified_lu_name[l8];
char conversation_correlator[l8];
char modename[9];
unsigned conn_status
unsigned sync_level
unsigned recovery_level
unsigned rsvd
long conv_group_id

1.
I

2;
2;
3;

The attr_str structure parameters have the following meaning:

rid Specifies the variable that contains the resource ID of the GET _ATTRl8UTE
conversation. This is the resource ID returned by the snalloc or
ioctl(ALLOCATE) subroutine.

own_fully_qualified_lu_name
The variable where the request returns the fully qualified name of the LU at
which the local transaction program is located.

ptner_fully_qualified_lu_name
The variable where the request returns the fully qualified name of the LU at
which the remote transaction program is located.

conversation correlator

mode name

The variable where the request returns the local program's conversation
correlator, an identifier that ties the current instance of the local program to
the conversation.

The variable where the request returns the mode name for the session on
which the conversation is allocated.

conn status A variable where the request returns a value specifying the status of the
connection. Valid values are:

8'0' Connected
8'1' Stopped.

sync_level A variable where the request returns a value specifying the level of
synchronization processing being used for the conversation. Valid values
are:

8'00' No synchronization processing
8'01' Confirm synchronization processing is being used.

recovery_level
A variable where the request returns a value specifying the level of recovery
being used for the conversation. Valid values are:

8'00' No recovery level
8'01' Reconnect.

8-10 Communications Programming Concepts

rsvd This field is not used.

conv_group_id
A variable where the request returns the conversation group ID that
identifies a specific allocated session.

confirm str Structure
- This structure receives output from the CONFIRM request for the snactl and ioctl

subroutines. Refer to the snactl or ioctl subroutine in Calls and Subroutines Reference for a
description of the these functions. The structure appears as follows:

struct confirm str
{

long rid;
int sense_code;

}

The confirm_str structure parameters have the following meanings:

rid Specifies the variable that contains the resource ID of the conversation to
perform the confirm function. This is the resource ID returned by the
snalloc or ioctl(ALLOCATE) subroutine.

sense code Specifies a variable that contains the sense code returned from AIX SNA
Services/6000. This parameter is used for LUs 1, 2, and 3 only.

cp_str Structure
This structure provides additional parameters that describe the cp capabilities of the
adjacent node. Refer to GP-Status in the snactl or ioctl subroutine in Calls and Subroutines
Reference for a description of the these functions. This structure appears as follows:

struct cp_str
{

} ;

long rid;
char adj cp name[l8];
int conv=group_id;
int sess_type;
struct adj_cp_cap adj_cp_cap;

The cp_str structure parameters have the following meaning:

rid The variable that contains the resource ID returned from the allocate
function.

adj_cp_name The variable where the request returns the adjacent control point (CP)
name.

conv_group_id
The variable where the request returns the conversation group ID that
identifies a specific allocated session.

sess_type The variable where the request returns the session type:

O No session allocated
1 Contention Loser session
2 Contention Winner session.

SNA Services/6000 8-11

struct adj_cp_cap
{
unsigned locate gds
unsigned directory svc
unsigned resource_reg
unsigned char_reg
unsigned topology_update
unsigned cp_msu

1;
1;
1;
1;
1 • ,
1· ,

unsigned unsol_cp_msu
unsigned parallel_cp

1;
1· ,

int f low_reduction_seq_num;
} ;

The adj_cp_cap structure parameters have the following meaning:

locate_gds Indicates whether the remote cp accepts LOCATE/CDINIT requests for
resources that cp controls. The value returned is either TRUE (1) or FALSE
(0).

directory_svc

resource_reg

char_reg

Indicates whether the remote cp forwards LOCATE/CDINIT search requests
for resources to other cps. The value returned is either TRUE (1) or FALSE
(0).

Indicates whether the remote cp accepts register requests. The value
returned is either TRUE (1) or FALSE (0).

Indicates whether the remote cp accepts register requests that include
resource characteristics. The value returned is either TRUE (1) or FALSE
(0).

topology_update

cp_msu

unsol_cp_msu

Indicates whether the remote cp accepts topology database updates on the
current session. The value returned is either TRUE (1) or FALSE (0).

Indicates whether the remote cp accepts requests for management services
data in a CP-MSU and replies to requests in a CP-MSU. The value returned
is either TRUE (1) or FALSE (0).

Indicates whether the remote cp accepts unsolicited requests for
management services data in a CP-MSU and replies to requests in a
CP-MSU. The value returned is either TRUE (1) or FALSE (0).

parallel_cp Indicates whether the remote cp supports and activates parallel CP-CP
sessions. The value returned is either TRUE (1) or FALSE (0).

f low_reduction_seq_num
The value the remote node last used to reduce the number of database
updates sent when two nodes were reconnected.

8-12 Communications Programming Concepts

deal_str Structure
This structure provides additional parameters for the snadeal and ioctl(DEALLOCATE)
subroutines. Refer to the snadeal or ioctl subroutine in Ca/ls and Subroutines Reference for
a description of the these functions. This structure is as follows:

struct deal str
{

} ;

long rid;
unsigned type
unsigned deal_f lag
unsigned rsvd
int sense_code;

3;
1;

12;

The deal_str structure parameters have the following meaning:

rid Specifies the variable that contains the resource ID of the conversation to
be deallocated. This is the resource ID returned by the snalloc or
ioctl(ALLOCATE) subroutine.

type Specifies the type of deallocation to be performed for this conversation. This
parameter is optional. If you do not provide a value, the system uses a value
of 8'000'. Because this value cannot be used for LU 1, 2, or 3, you must
specify a type value when using those logical unit specifications. Values for
type are:

DEFAULT (B'OOO') Use the default value specified in the sync_level
parameter of the snalloc or ioctl(ALLOCATE)
subroutine that established this conversation. Do not
use this value for LU 1, 2, or 3.

DEAL_CONFIRM (8'001 ')
Perform CONFIRM logic (see the snactl(CONFIRM)
or ioctl(CONFIRM) subroutine). If that request is
successful, deallocate the conversation normally;
otherwise, the conversation remains allocated. Do not
use this value for LU 2 or 3.

DEAL_ABEND (8'01 O')
Deallocate the conversation abnormally. Do not use
this value for LU 1, 2, or 3.

DEAL_FLUSH (8'011 ')
Flush the send buffer and deallocate the conversation
normally.

deal_flag Specifies whether the resource ID is discarded or retained when the
conversation is deallocated. This parameter is optional. If you do not provide
a value, the system uses a value of 8'0'. Values for deal_flag are:

DISCARD (B'O') Specifies that the resource ID be discarded. The local
transaction program will not reconnect to the
conversation.

RETAIN (8'1 ') Specifies that the resource ID be retained. The local
transaction program plans to reconnect to the
conversation. Do not use this value with LU 1, 2, or
3.

SNA Services/6000 8-13

rsvd This field is not used.

sense code Specifies a variable that contains the sense code returned from AIX SNA
Services/6000. This parameter is used for LUs 1, 2, and 3 only.

erro str Structure
- This structure provides additional parameters for the SEND_ERROR request for the snactl

and ioctl subroutines. Refer to the snactl or ioctl subroutine in Calls and Subroutines
Reference for a description of the these functions. The structure appears as follows:

struct erro str
{

long rid;
int sense code;
unsigned type 1;
unsigned rsvd 15;

} ;

The rid parameter is the only parameter used for a mapped conversation.

rid Specifies the variable that contains the resource ID of the conversation to
perform the send_error function. This is the resource ID returned by the
snalloc or ioctl(ALLOCATE) subroutine.

The additional parameters for a basic conversation have the following meanings:

type Specifies the level of error being reported, as follows:

B'O' An application program produced the error being reported.

8'1' LU services Transaction Program produced the error being
reported.

This parameter is optional. If not specified, SNA services
provides a value of B'O'. This parameter is used for LU 6.2 Basic
conversations only.

sense_code Specifies a variable that contains the sense code to be reported to the
remote session. This parameter is used for LUs 1, 2, and 3 only.

rsvd This field is not used.

8-14 Communications Programming Concepts

ext io str Structure
- - This structure provides additional input and output parameters for the readx and writex

subroutines. Neither subroutine uses all parameters in the structure. Refer to the readx and
writex subroutines in Calls and Subroutines Reference for a description of the functions
provided and the fields used.

The structure appears as follows:

struct ext io str
{

} ;

struct input
{

unsigned priority
unsigned tpn_option
unsigned confirm
unsigned deallocate
unsigned deallo_type
unsigned deallo_flag
unsigned allocate
unsigned fill
unsigned mc_gds
unsigned sess_type
unsigned f lush_flag

} input;
struct output
{

2;
2;
1;
1;
3;
1;
1;
1;
1;
1;
2;

unsigned rq_to_snd_rcvd 1;
unsigned what_data_rcvd 3;
unsigned what_control_rcvd 5;
unsigned usr trunc 1;
unsigned rsvd3 6;
unsigned gdsid 16;
int sense_code;

} output;
long rid;
int usrhdr_len;

The ext_io_str structure parameters have the following meanings:

Input Parameters
These parameters are sent to SNA.

priority Specifies the priority option which selects a mode profile to be used to
establish an appropriate session for the conversation. The priority option
should be used with the writex subroutine only and should not be used with
LU 1, 2, or 3. Priority options are:

8'00' Use the first mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

8'01' Use the second mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

8'1 O' Use the third mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

SNA Services/6000 8-15

B'11' Use the fourth mode profile listed in the mode list profile for the
connection. The mode list profile name is specified in the
connection profile.

tpn _option Specifies the remote transaction program name (RTPN) option which
selects a remote RTPN profile to be used to establish an appropriate
session for the conversation. The following RTPN options are used by the
writex subroutine only:

confirm

B'OO' Use the first RTPN profile listed in the RTPN list profile for the
connection. The RTPN list profile name is specified in the
connection profile.

B'01' Use the second RTPN profile listed in the RTPN list profile for the
connection. The RTPN list profile name is specified in the
connection profile.

B'1 O' Use the third RTPN profile listed in the RTPN list profile for the
connection. The RTPN list profile name is specified in the
connection profile.

B'11' Use the fourth RTPN profile listed in the RTPN list profile for the
connection. The RTPN list profile name is specified in the
connection profile.

This parameter is used by the writex subroutine only and designates
whether to flush the send buffer and wait for confirmation of receipt of the
data from the remote application program.

B'O' Do not issue a CONFIRM.

8'1' Issue a CONFIRM.

deallocate This parameter is used by both the writex and readx subroutines and
designates whether to deallocate the conversation after transmitting the
data associated with this subroutine:

8'0' Do not deallocate the conversation.

8'1' Deallocate the conversation. If used with an SSCP-LU application
program, it could also terminate the associated LU-LU session.

deallo_type This parameter specifies the type of deallocation to perform when a
deallocation is performed along with the subroutine:

8'000' Deallocate the conversation as specified in the sync_level
parameter used in the ioctl(ALLOCATE) subroutine request that
established this conversation. Used by the writex subroutine
only.

8'001'

8'010'

8'011'

Issue a CONFIRM request. If that request is successful,
deallocate the conversation normally; otherwise, the conversation
remains allocated. Used by the writex subroutine only. Do not
use this value for LUs 1, 2, or 3.

Deallocate the conversation abnormally. Used by the writex and
readx subroutines only.

Flush the send buffer when the conversation is in the send state
and deallocate the conversation normally. Used by the writex
subroutine only.

8-16 Communications Programming Concepts

deallo_flag Specifies whether the resource ID is discarded or retained when the
conversation is deallocated. Used by the writex and readx subroutines only.
Values for deallo_flag are:

allocate

DISCARD (8'0') Specifies that the resource ID be discarded. The local
transaction program will not reconnect to the
conversation.

RETAIN (8'1 ') Specifies that the resource ID be retained. The local
transaction program plans to reconnect to the
conversation. Do not use this value with LUs 1, 2, or
3.

This parameter specifies whether to allocate a conversation along with the
subroutine. Used by the writex and readx subroutines only:

B'O' Do not allocate a conversation. The rid field must be supplied.

8'1' Allocate a conversation. If the rid parameter is 0, allocate a new
conversation. If the rid parameter is not 0, reconnect a previous
conversation identified by the value of rid.

The allocate parameter can be used with the deallocate parameter
(but not for LU 1, 2, or 3). If deallocate is also set, the readx and writex
subroutines perform the following actions:

1. Allocates a conversation as described above.

2. Transfers the data associated with the subroutine.

3. Deallocates the conversation.

fill Specifies whether the program receives data without regard to the logical
record format of the data. This parameter is optional and is used by the
readx subroutine only. If you do not specify one of the two following values,
the program uses a value of 8'0'. Always use a value of 8'0' for mapped
conversations.

BUFFER (8'0')

LL (8'1 ')

Specifies that the program receives data without
regard to the logical record format of the data.

Specifies that the program receives one complete
logical record, or a logical record that has been
truncated to the length specified in the length
parameter of this subroutine. Do not use with LU 1, 2,
or 3.

mc_gds Reserved for use by mapped conversation ATS.

sess_type Specifies the type of session to be allocated if the allocate field indicates
that a session should be allocated. Used for LU 1, 2, and 3. Valid values
are:

8'1' SSCP-LU session
B'O' LU-LU session.

flush_flag This parameter indicates whether to perform a flush (of the LU's send
buffers) request in addition to the requested writex operation:

l_O_NO_FLUSH (8'00')
Do not perform the flush.

SNA Services/6000 8-17

Output Parameters

l_O_FLUSH_NOT _EC (8'01 ')
Perform the flush, but do not indicate end of chain.

l_O_FLUSH_EC (8'1 O')
Perform the flush, indicating end of chain. This
function is used by LUs 1, 2, and 3 only.

These parameters are set by SNA.

rq_to_snd_rcvd
Indicates whether a request to send has been received. The
rq_to_snd_rcvd parameter specifies the variable used by the writex and
readx subroutines only:

8'0'

8'1'

what_data_rcvd

A request to send has not been received from the
remote transaction program.

A request to send has been received from the remote
transaction program.

Specifies the variable that gets set to indicate what type of data the program
received. Used by the readx subroutine only:

DATA (8'000') Indicates that data has been received by the program.
Occurs only when the fill parameter for this call is
buffer. Not used for LU 1, 2, or 3.

DATA_COMP (8'001 ')
LU 6.2: Indicates that a complete logical record, or the
last remaining portion of a logical record, has been
received by the program. Occurs only when the fill
parameter for this call is II.

LUs 1, 2, 3: Indicates that a complete chain element
was received.

DATA_INCOMP (8'01 O')
LU 6.2: Indicates that less than a complete logical
record has been received by the program. Occurs only
when the fill parameter for this call is II.

LUs 1, 2, 3: Indicates that a complete chain element
was not received.

LL_ TRUNCATED (8'011 ')
Indicates that the 2-byte II field of a logical record was
truncated after the first byte and that the LU has
discarded the II field. The program does not receive
the II field. Not used for LU 1 , 2, or 3.

FMH_COMPLETE (8'100')

8-18 Communications Programming Concepts

Indicates that the data received was FM header data
for an LU 1 session and that the complete header has
been received.

FMH_INCOMPLETE (8'101 ')

8'110'

8'111'

what_control_rcvd

Indicates that the data received was FM header data
for an LU 1 session and that the complete header has
not been received.

Not used.

Not used.

Specifies the variable that is set to indicate the type of control that the
program received. Used by the readx subroutine only:

8'XOOOO'

SEND (8'X0001 ')

CONFIRM (8'X001 O')

No control information was received.

Indicates that the remote program has entered the
receive state, placing the local program in 'the send
state.

Indicates that the remote program issued a CONFIRM
request. The local program must respond with an ioctl
subroutine, using either a CONFIRMED request or a
SEND_ERROR request.

CONFIRM_SEND (8'X0011 ')
Indicates that the remote program used an ioctl or
snactl subroutine to issue a
PREPARE_ TO_RECEIVE request, and that the type
parameter was set to 8'1 O' (confirm).

CONFIRM_DEALLOCATE (8'X0100')
Indicates that the remote program used an ioctl or
snactl subroutine to issue a DEALLOCATE request
with the type parameter set to 8'001' (confirm). Not
used for SSCP-LU sessions for LU 1 , 2, or 3.

NORMAL_DEALLOCATE (8'X0101 ')
Indicates that the remote program issued a
DEALLOCATE request with the type parameter set to
8'011' (flush). Not used for SSCP-LU sessions for LU
1, 2, or 3.

CONFIRM_DEALLOCATE_RETAIN (8'X011 O')
Indicates that the remote program issued a
DEALLOCATE request with the type parameter set to
8'001' (confirm) and the deal_flag parameter set to
retain. Not used for LU 1, 2, or 3.

NORMAL_DEALLOCATE_RETAIN (8'X0111 ')
Indicates that the remote program issued a
DEALLOCATE request with the type parameter set to
8'011' (flush) and the deal_flag parameter set to
retain. Not used for LU 1, 2, or 3.

SNA Services/6000 8-19

Note: The following parameters are used by LU 1, 2, or 3 only:

FLUSH RECEIVED (B'X1000')
Specifies end chain, RQE, not change direction.

NOT END OF DATA (B'X1001 ')
Specifies end chain was not received from the host.

BEGIN CHAIN (B'1 XXXX')
Specifies begin chain indicator was received from the
host. This may be set in addition to other returned
flags.

NOT BEGIN CHAIN (B'OXXXX')
Specifies begin chain was not received in this data
buffer.

Note: 'X' means that the X bit positions are meaningless for this function.

usr trunc Indicates that the length of the user header field was not large enough for
the received header data. You can get no information from the user header
field when the user header has been truncated.

rsvd3 This field is not used.

gdsid This field is used for mapped conversation runtime service (ATS) routines
only.

sense code Specifies the variable that is set to the value of the sense code for negative
responses received. Used for LUs 1 , 2, and 3 only.

rid This parameter specifies the resource ID returned by the snalloc or
ioctl(ALLOCATE) subroutine for this connection. This parameter has the
following effects:

• For the writex subroutine with the allocate bit on and rid equal to 0, the
system allocates a new conversation and returns the resource ID in rid.

• For the writex subroutine with the allocate bit on and rid not equal. to 0,
the system reconnects an old conversation identified by the value in rid.

• For the readx subroutine with the allocate bit on and rid not equal to 0,
it indicates a remotely attached allocation.

usrhdr len This parameter specifies the number of bytes of header data to be sent or
that was received with the data. The header data is provided in the usrhdr
field (see "User Header Field" for the writex subroutine or "User Header
Field" for the readx subroutine.).

flush str Structure
- This structure provides additional parameters for the FLUSH request for the snactl and ioctl

subroutine. Refer to the snactl or ioctl subroutine in Calls and Subroutines Reference for a
description of the these functions. The structure appears as follows:

struct flush str
{

}

long rid;
unsigned end_chain
unsigned rsvd
int sense_code;

8-20 Communications Programming Concepts

1 · ' 15;

The flush_str structure parameters have the following meanings:

rid This parameter specifies the resource ID returned by the ioctl(ALLOCATE)
or the snalloc subroutine for this connection.

end_ chain Specifies whether or not to send the buffer with the end chain indication.
The program specifies this parameter as a 1 to complete a chain. To flush
the send buffer without completing the chain, the program specifies this
parameter as a 0. Valid values are:

0 Send buffer without end chain.
1 Send buffer with end chain.

rsvd This field is not used.

sense code Specifies a field that receives indications of errors that occurred on
previously sent data. Used for LU 1, 2, and 3 only.

fmh str Structure
- This structure used for LU 1, 2, and 3 provides additional parameters for the SEND_FMH

request for the snactl and ioctl subroutines. Refer to the snactl or ioctl subroutine in Calls
and Subroutines Reference for a description of the these functions. The structure appears
as follows:

struct fmh str
{

} ;

long rid;
short fmh_len;
unsigned type
unsigned rsvd
char *fmh_addr;
int sense_code;

2;
14;

The fmh_str structure parameters have the following meanings:

rid

fmh_len

type

Specifies the variable that contains the resource ID of the conversation to
perform the SEND_FMH request. This is the resource ID returned by the
snalloc or ioctl(ALLOCATE) subroutine.

Specifies the length (in bytes) of the FM header to be sent.

Specifies the type of request to be performed for this conversation. Values
for type are:

8'00' Flush without end chain.

8'01' Flush the FMH with end chain.

8'1 O' Execute a CONFIRM function (see the snactl(CONFIRM)
subroutine).

8'11' Do not flush the FMH.

rsvd This field is not used.

fmh_addr Specifies a pointer to the address of the FM header to be sent.

sense code Specifies a variable that contains the sense code returned from the AIX
SNA Services/6000.

SNA Services/6000 8-21

get_parms Structure
Returns data associated with the get_parameters structure of the ioctl subroutine.

struct get_parrns
{

int gparrns_size;
char gparrns_data [MAX_GETPARMS_DATA];

}

The get_parms structure parameters have the following meanings:

gparrns_size Specifies the length (in bytes) of the parameter data returned in the
gparrns_data field.

gparrns_data Contains the following data:

TPN Name Specifies the transaction program name, which has a
maximum length of 64 bytes plus a terminating blank.

Connection Name Specifies the connection name, which has a maximum
length of 15 bytes plus a terminating blank.

RID

PIP

Specifies the resource ID, which has a maximum
length of 6 bytes plus a terminating blank.

Specifies the program initialization parameters, which
have a maximum of sixteen fields, each having a
maximum of 64 bytes plus a terminating blank.

gstat_str Structure
This structure provides current link and session information in response to a GET _STATUS
request with either an ioctl or snactl subroutine. Refer to the snactl or ioctl subroutine in
Calls and Subroutines Reference for a description of the these functions. This structure is
defined for use by LUs 1 , 2, and 3 only. The structure appears as follows:

struct gstat_str
{

} ;

int sscp_sense_code;
int status;
unsigned rtn_irnage
unsigned rsrv
short irnage_len;
char *image;
int lu_sense_code;

l• ,
15;

The gstat_str structure parameters have the following meaning:

status Specifies the current status of the physical and logical link and the
SSCP-LU and LU-LU sessions. Several values may be set at once (bit
settings). Valid values shown in parentheses are expressed in hexadecimal
notation below:

LINK_ACTIVE (OX1)

LINK_INACTIVE (OX2)

LINK_ TIMEOUT (OX4)

The link is active.

The link is not active.

A link time out has occurred.

SSCP _LU_ACTIVE (OX8) An SSC-LU session is active on the link.

8-22 Communications Programming Concepts

SSCP _LU_INACTIVE (OX10)
An SSCP-LU session is allocated to the link, but
is not active.

LU_LU_ACTIVE (OX20) An LU-LU session is allocated to the link and is
currently active.

LU_LU_INACTIVE (OX40) An LU-LU session is allocated to the link, but is
not active.

LU_LU_RESET (OXSO) The LU-LU session allocated to the link has been
reset.

HOST_BID (OX100) A BID, request to begin a bracket, was received
from the host.

LU_LU_SHUTDOWN (OX200)
The LU-LU session has been shut down.

LU_LU_CONFIRM_RCVD (OX400)
A CONFIRM request is received from the host on
the LU-LU session.

SSCP _LU_CONFIRM_RCVD (OX800)
A CONFIRM request is received from the host on
the SSCP-LU session.

ASP_ TO_RTS_RCVD (OX1000)
A response is received from the host for a
request to send, sent on the LU-LU session.

RQTS_RCVD (OX2000) A request to send is received from the host.

ASP_ TO_CANCEL_RCVD (OX4000)
A response is received from the host for a
CANCEL request previously sent on the LU-LU
session.

rtn_image When set, this field indicates that the BIND image associated with the
session should be returned in the buffer pointed to by image_ptr.

image_len This field contains one of the following values if rtn_image is set:

image

• When the GET _STATUS is issued, this field contains the maximum
amount of BIND image data (in bytes) that can be returned by the
request.

• When the request is complete, this field contains the actual amount of
BIND image data (in bytes) that was returned.

Specifies a pointer (up to 26 bytes or the image length) to the buffer area in
which the BIND image data is to be stored.

SNA Services/6000 8-23

sscp_sense_code
This parameter is set to O if the response is positive and to the sense code
received if negative.

lu sense code
This parameter is set to O if the response is positive and to the sense code
received if negative.

pip_str Structure
This structure provides program initialization parameters (PIP) to be sent to a remote
program by the snalloc or ioctl(ALLOCATE) subroutine. Refer to the snalloc or ioctl
subroutine in Calls and Subroutines Reference for a description of the these functions. This
structure is defined for use by LU 6.2 only. The structure appears as follows:

struct pip_str
{

int sub_num;
char sub data [16][65].;

}

The pip_str structure parameters have the following meaning:

sub num A variable that specifies the number of PIP subfields in sub_data.

sub data The array of program initialization data for the remote program. There may
be up to 16 entries, each containing up to 64 bytes of initialization data.

prep_str Structure
This structure provides additional parameters for the PREPARE_ TO_RECEIVE request for
the snactl and ioctl subroutines. Refer to the snactl or ioctl subroutine in Calls and
Subroutines Reference for a description of the these functions. The structure appears as
follows:

struct prep_str
{

} ;

long rid;
unsigned type
unsigned rsvd
int sense_code;

2· ,
14;

The prep_str structure parameters have the following meanings:

rid This parameter specifies the resource ID returned by the ioctl(ALLOCATE)
or snactl(ALLOCATE) subroutine for this connection.

type Specifies the type of request to be performed for this conversation. Values
for type are:

SYNCL_DEF (8'00') Use the default value specified in the sync_ level
parameter of the snalloc subroutine that established
this conversation.

SYNCL_NONE (8'01 ')
Flush the send buffer and enter the receive state.

SYNCL_CONFIRM (8'1 O')

8-24 Communications Programming Concepts

Execute a confirm function (see the snactl(CONFIRM)
subroutine). If that request is successful, enter the
receive state.

SYNCL_FLUSH (8'11 ')
Flush the send buffer and enter the receive state.

rsvd This field is not used.

sense code Specifies a field that receives indications of errors that occurred on
previously sent data. This parameter is used by LUs 1, 2, and 3 only.

read out Structure
- This structure receives output from the snaread subroutine. Refer to the snaread subroutine

in Calls and Subroutines Reference for a description of that function. The structure appears
as follows:

struct read out
{

long rid;
int request_to_send_received;
int what_data_rcvd;
int what_control_rcvd;
int sense_code;

} ;

The read_out structure parameters have the following meanings:

rid Specifies the variable that contains the resource ID returned by the snalloc
subroutine that allocated the resource to be read.

request_to_send_received
Specifies the variable that gets set to indicate whether a request to send
has been received:

TRUE(1)

FALSE (0)

A request to send has been received from the remote
transaction program.

A request to send has not been received from the
remote transaction program.

what data rcvd - -
Specifies the variable that gets set to indicate what type of data the program
received:

0 Indicates that data has been received by the program.
Occurs only when the fill parameter for this subroutine
is buffer.

DATA_COMPLETE (1)
Occurs only when the fill parameter for this subroutine
is II. It indicates that a complete logical record, or the
last remaining portion of a logical record, has been
received by the program.

DATA_INCOMPLETE (2)
Occurs only when the fill parameter for this subroutine
is II. It indicates that less than a complete logical
record has been received by the program. ,

3 Indicates that the 2-byte II field of a logical record was
truncated after the first byte and that the LU has
discarded the II field. The program does not receive
the II field. Not used for LU 1, 2, or 3.

SNA Services/6000 8-25

4

5

what_control_rcvd

Indicates that the data received was FM header data
for an LU 1 session and that the complete FM header
was received.

Indicates that the data received was FM header data
for an LU 1 session, but that the complete FM header
was not received.

Specifies the variable that is set to indicate the type of control that the
program received:

0

2

3

4

5

6

7

No control information received.

Indicates that the remote program has entered the
receive state, placing the local program in the send
state.

Indicates that the remote program used a snactl
subroutine to issue a CONFIRM request. The local
program must respond with a snactl subroutine using
either a CONFIRMED request or a SEND_ERROR
request.

Indicates that the remote program used a snactl
subroutine to issue a PREPARE_ TO_RECEIVE
request, and that the type parameter was set to 8'1 O'
(confirm).

Indicates that the remote program used a snadeal
subroutine with the type parameter set to 8'001'
(confirm). Not used for SSCP-LU sessions for LU 1, 2,
or 3.

Indicates that the remote program used a snadeal
subroutine with the type parameter set to 8'011'
(flush). Not used for SSCP-LU sessions for LU 1, 2, or
3.

Indicates that the remote program used a snadeal
subroutine with the type parameter set to 8'001'
(confirm) and the deal_flag parameter set to retain.
Not used for LU 1 , 2, or 3.

Indicates that the remote program used a snadeal
subroutine with the type parameter set to 8'011' (flush)
and the deal_flag parameter set to retain. Not used for
LU 1, 2, or 3.

sense code Specifies the variable that is set to the value of the sense code for negative
responses. Used for LUs 1, 2, and 3 only.

8-26 Communications Programming Concepts

stat str Structure
- This structure provides additional parameters for the SEND_STATUS request for the snactl

and ioctl subroutines. Refer to the snactl or ioctl subroutine in Calls and Subroutines
Reference for a description of the these functions. The structure appears as follows:

struct stat str
{

} ;

long rid;
unsigned type
unsigned id
int sense_code;

4. ,
8;

The stat_str structure parameters have the following meanings:

rid Specifies the variable that contains the resource ID returned by the snalloc
or ioctl(ALLOCATE) subroutine that performs the SEND_STATUS function.

type Specifies the status condition to be reported. Use one of the following
values in parentheses as defined in the luxsna.h header file:

POWER_ON (0) The device is on.

POWER_ OFF (1) The device is off.

UNAVAILABLE (2) The device is not configured.

PERMANENT _ERROR (3)
The device has an error which cannot be corrected.

PS_ALTERED (4) Presentation space altered.

UNBIND_REQUESTED (5)
A request shutdown (RSHUTD) command has been
sent to the partner LU requesting an unbind (UNBIND)
command to be sent to this secondary LU. This type
does not use the id field. This type does not cause the
received data to be rejected. The application program
should continue to read the data until it receives
SNA_NSES (session not active).

ATTENDED (6) The device is attended by an operator (LU 1 only).

UNATTENDED (7) The device is no longer attended by an operator (LU 1
only).

ID Specifies the ID of the device for which status is being reported.

sense code Specifies a variable that contains the sense code returned from AIX SNA
Services/6000.

write out Structure
- This structure provides additional parameters for the snawrit subroutine. Refer to the

snawrit subroutine in Calls and Subroutines Reference for a description of these functions.
The structure appears as follows:

struct write out
{

}

int request_to_send_received;
int sense_code;

SNA Services/6000 8-27

The write_out structure parameters have the following meanings:

request_to_send_received
Specifies the variable that gets set to indicate whether a request to.send
has been received:

TRUE(1) A request to send has been received from the remote
transaction program.

FALSE (0) A request to send has not been received from the
remote transaction program.

sense code Specifies the variable that is set to the value of the sense code for negative
responses. Used for LUs 1 , 2, and 3 only.

Constant Definitions
The luxsna.h file contains constant definitions that are used in the following areas of AIX
SNA Services/6000:

• Status codes (see the gstat_str structure)
• Error codes
• Request codes for the snactl and ioctl subroutines.

Error Code Constants
This file defines the error return values that are exclusive to AIX SNA Services/6000. The
AIX SNA Services/6000 subroutines set the errno global variable to one of the following
values when an error occurs to indicate the nature or cause of the error.

Error Code Constants Page 1of3

Name Code Definition

SNA_CTYPE 101 The specified conversation type does not match the indi-
cated conversation.

SNA_NREC 103 Reconnect is not supported.

SNA_NSYC 104 Sync level is not supported.

SNA_ALFN 105 An allocation failure occurred. Do not try the operation
again.

SNA_ALFR 106 An allocation failure occurred. Try the operation again.

SNA_LUNREC 107 Reconnect is not supported by the LU.

SNA_LUNSYC 108 Sync level is not supported by the LU.

SNA_RID 109 The resource ID was invalid.

SNA_STATE 110 The network management request was issued while the
Program was not in an allowed state.

SNA_RFR 111 A resource failure occurred. Try the operation again.

SNA_RFN 112 A resource failure occurred. Do not try again.

SNA_PROTOCOL 113 An SNA protocol violation occurred.

SNA_NPIP 114 Remote program initialization parameter (PIP) data is
not supported.

SNA_PNSYC 115 Sync level is not supported by the program.

SNA_PNREC 116 Reconnection is not supported by the program.

8-28 Communications Programming Concepts

Error Code Constants Page 2 of 3

Name Code Definition

SNA_NRREC 117 Could not reconnect to the transaction program. Do not
try again.

SNA_PPURG 118 Program error purging.

SNA_PNTR 119 A program error occurred since no truncation is allowed.

SNA_PTR 120 Program error truncate.

SNA_PGMDEAL 121 A deallocation occurred due to the abnormal ending of
the remote program.

SNA_BOUNDARY 122 The function was not requested on a logical record
boundary.

SNA_NOMODE 123 Invalid mode name specified.

SNA_RREC 124 Cannot connect to the transaction program. Try the op-
eration again.

SNA_NOCONN 125 The SNA connection has been stopped.

SNA_NRESTART 126 A recovery_level value of restart is not valid for this sub-
routine.

SNA_NOTPN 127 The specified transaction program name is not valid.

SNA_NRMDEAL 129 A normal deallocation terminated the conversation.

SNA_SVCDEAL 130 A deallocation occurred due to an abnormal ending of an
system service (systems logic error}.

SNA_TIMDEAL 131 Deallocate abend due to excessive time having elapsed.

SNA_WRGPIP 132 The remote program initialization data (PIP) specified
was not correct.

SNA_INVACC 133 Access security information invalid.

SNA_SPURG 134 A SVC error occurred; purging.

SNA_SNTR 135 A service transaction program error occurred; no trun-
cate.

SNA_STR 136 A service transaction program error occurred; truncate.

SNA_NDELAY 137 Delay allocation not supported.

SNA_SVCTYPE 138 An unsupported type was specified.

SNA_NFMH 139 The FM Header data gds variable is not supported by
mapped conversation.

SNA_NMAPPING 140 The MAP name is not supported by mapped conversa-
tion.

SNA_MAP_NOT_FOUND 141 Map name not found.

SNA_MAPEXEC 142 Map execution failure.

SNA_GDSID 143 Invalid GOS identifier in data.

SNA_SHUT 144 A shutdown request was received.

SNA_NSES 145 The session is not established (LUs 1 , 2, 3, and 6.2) or
not active (LUs 1, 2, and 3).

SNA_PARMS 146 Input parameters not valid.

SNA_NTPN 147 Transaction Program cannot be started, no retry.

SNA Servlces/6000 8-29

Error Code Constants Page 3 of 3

Name Code Definition

SNA_NTPR 148 Transaction Program cannot be started due to lack of re-
sources, retry.

SNA_RCANC 149 Received cancel for LU 1, 2, or 3.

SNA_SENSE 150 Sense code available for LU 1 , 2, or 3 (exception request
or negative response received).

SNA_NOTCP 151 This is not a CP connection.

SNA_FAIL 160 There was an SNA system failure.

SNA_NSACT 161 No session can be started as the session limit is set to
0.

SNA_NSLMT 162 No session can be activated as the number of sessions
of the requested type has been exceeded.

SNA_INOP 164 Link INOP received.

SNA_HIER_RESET 165 Hierarchical reset received.

SNA_NO_LU 166 No LUs registered for generic SNA.

SNA_INUSE 170 The session between the system services control point
and the physical unit is being used by another applica-
tion.

SNA_NOTAVAIL 171 The requested session between the system services
control point and the physical unit was not available.

SNA_UNDEF _SVR 172 The application server is not defined.

SNA_INVALID 173 The ID specified for the session between the system ser-
vices control point and the physical unit (SSCP _ID) is not
valid.

SNA_LENGTH 174 The length specified for the NMVT data is not valid.

SNA_ERP 175 The physical unit is not active. An error-recovery proce-
dure (ERP) instructing you to activate the physical unit
(ACTPU) was received.

SNA_INACT 176 The session between the system services control point
and the physical unit is inactive.

Request Code Constants
This file defines the following constants and their codes for use in the request parameter of
the ioctl or snactl subroutine.

Request Code Constants Page 1of2

Name Code Definition

ALLOCATE 1 Allocates a conversation. Used only by the ioctl sub-
routine.

DEALLOCATE 2 Deallocates a conversation. Used only by the ioctl sub-
routine.

CONFIRM 3 Sends a request for confirmation of transmission to the
remote transaction program.

CONFIRMED 4 Positive response to a CONFIRM request.

8-30 Communications Programming Concepts

Request Code Constants Page 2 of 2

Name Code Definition

FLUSH 5 Transmits everything in the send buffer to the remote
transaction program. Used only for LU 1, 2, or 3.

PREPARE_ TO_RECEIVE 6 Changes the conversation direction to allow the local
transaction program to receive.

HIER_RESET_RSP 6 Hierarchical reset response for Generic SNA Applica-
tions.

REQUEST_TO_SEND 7 Request to change the conversation direction to allow
the local transaction program to send.

INOP _RSP 7 Link inoperative response for Generic SNA Applica-
tions.

SEND_FMH 8 Sends the FM header to the remote LU. Used by the
snactl subroutine for LU 1 on a basic conversation only.
Used for LU 1, 2, or 3 only.

SEND_ERROR 9 Negative response to a CONFIRM request or incorrect
data received.

GET _ATTRIBUTE 10 Gets information about the specified LU 6.2 conversa-
tion.

SEND_STATUS 11 Sends status information about the devices on the local
session (LUs 1, 2, and 3, only) to the host program.

GET_STATUS 12 Gets information about the current link and session on
a basic conversation only. Used only for LU 1, 2, or 3.

CP _STATUS 13 Requests the control point name, the session type, and
the control point capabilities of the remote node.

ALLOCATE_LISTEN 14 Registers a list of transaction program names (TPNs)
for which an application wishes to accept allocate re-
quests. Used for LU 6.2 only.

GET _PARAMETERS 15 Retrieves the data associated with the receipt of an alto-
cate request for a registered TPN on a particular con-
nection. The GET _PARAMETERS argument is used in
conjunction with the ALLOCATE_LISTEN argument.
Used for LU 6.2 only.

SNA Services/6000 8-31

Developing Special SNA Functions

Document Guide
Intended Readership

This document is intended for persons interested in developing special SNA functions not
provided by AIX SNA Services/6000. Intended readers include both IBM programming
personnel and third party programmers.

Reader Pre-Conditions
The reader should have a basic understanding of AIX system architecture, the AIX operating
system and SNA concepts.

Reader Post-Conditions
After completing this document, the reader should:

• Have an understanding of the generic SNA device driver and its relationship to AIX SNA
Services/6000.

• Be able to use the API provided by this document to write applications to perform generic
SNA functions.

Recommended Reference Documentation

Overview

Refer to Systems Network Architecture: Technical Overview (GC30-3073) for further
information concerning the generic SNA device driver.

AIX SNA Services/6000 currently provides support for PU type 2.1 and LU types 1, 2, 3, and
6.2. If additional LU SNA function support is required on AIX SNA Services/6000 (such as
LU type 0), the user can write personalized SNA application code to interface with the
generic SNA device driver.

The generic SNA device driver provides support that allows the generic SNA application
code to use the PU Services of AIX SNA Services/6000. This is done throug;1 the use of the
open (specify attachment profile name), close, read, write, select, and ioctl subroutines
for Generic SNA. This function support allows the user to write LU-independent protocol
application on top of the AIX SNA Services/6000 PU 2.1 node.

8-32 Communications Programming Concepts

The following figure shows the structure of the LU-independent protocol application running
on top of the PU Services of AIX SNA Services/6000.

LU-INDEPENDENT PROTOCOL APPL

LU

kernel

LU SERVICES

PATH CONTROL
(OUTBOUND)

SEGMENTATION

GENERIC SNA DEVICE DRIVER

PATH CONTROL (INBOUND)

GENERIC DATA LINK CONTROL

SNA SERVICES

PU SERVICES
(PU2.1)

SNA Services/6000 8-33

Configurations
The generic SNA device driver is part of the AIX SNA Services/6000 licensed program. After
installation, it will reside in the AIX kernel. The generic SNA device driver supports multiple
application processes and runs under the application process control. The appropriate
device driver and data link control must be installed and configured on the system.

For generic SNA device drivers, users are required to provide their own utilities to configure
the SNA Logical Unit and network information.

The local LU address(es) used by the generic SNA application need to be registered in an
address registration profile, which is specified in the attachment profile. This registration can
be done using either the SMIT Interface described in Customizing AIX SNA Services/6000
or the configuration commands listed under AIX SNA Services/6000 Commands in
Commands Reference

Functional Characteristics
Generic SNA Device Driver Interface To AIX SNA Services

The generic SNA device driver provides a special interface to AIX SNA Services/6000. This
special interface allows the generic SNA application to utilize the PU Services function (PU
2.1 only) of AIX SNA Services/6000.

The generic SNA application can use this special interface to establish an AIX SNA
Services/6000 attachment or share the same AIX SNA Services/6000 attachment with AIX
SNA Services/6000. For example, a generic SNA LU_O secondary application can run
simultaneously with a 3270 emulation application to the Host system over the same AIX
SNA attachment. Other programming interfaces for the following subroutines are described
in detail in AIX SNA Services/6000 Subroutines in Ca/ls and Subroutines Reference.

The generic SNA device driver provides the following API subroutines to interface with AIX
SNA Services/6000:

open

close

read

write

select

ioctl

Specifies an AIX SNA Services/6000 attachment profile name in the open
path to open a file descriptor for an AIX SNA Services/6000 attachment.

Closes a file descriptor.

Receives data from a file descriptor.

Sends data to a file descriptor.

Waits for file descriptors until data is available or until an exception condition
occurs for the file descriptors.

Performs the following command options:

HIER_RESET _RSP Responds to a hierarchical reset from the PU Services
of AIX SNA Services/6000.

INOP _RSP

IOCINFO

Responds to an INOP from the PU Services of AIX
SNA Services/6000.

Requests the type of device.

8-34 Communications Programming Concepts

The following figure shows the structure of the relationship between the generic SNA device
driver and AIX SNA Services/6000.

kernel

GENERIC SNA APPLICATION
(for example, LU_O)

(1)

(5)

GENERIC SNA DEVICE DRIVER ~ (2)_liJ
,.. "1

GENERIC DATA LINK CONTROL

SNA

SERVICES

(PU 2.1)

(4) (3)

Figure 1. Relationship between Generic SNA Device Driver and AIX SNA Services/6000

1. The generic SNA application issues the open (attachment profile name) subroutine to the
generic SNA device driver.

2. The generic SNA device driver invokes AIX SNA Services/6000 to start an attachment.

3. AIX SNA Services/6000 interfaces with the generic data link control to start the
attachment. AIX SNA Services/6000 also passes LU addresses (registered for the
generic SNA device driver) to Path Control.

4. When Path Control receives data, it routes the PIU to AIX SNA Services/6000 if the LU
address is not registered. If the LU address is registered, Path Control routes the PIU to
the generic SNA device driver.

5. The generic SNA device driver returns the PIU to the generic SNA application.

Operator Interface
There is no special operator interface for the generic SNA device driver. Operator
commands (startsrc, stopsrc, lssrc, and so forth) for AIX SNA Services/6000 may be used.

Application Program Interface
The programming interface defined here is used by a process to issue subroutines directly to
the generic SNA device driver. The following AIX subroutines are used: open, close, read,
write, select, and ioctl.

SNA Services/6000 8-35

AIX SNA Services/6000 Terminology
ACTPU
AIX
API
CPS
CR
DACTPU
GDLC
IODN
INOP
IPC
LNS
PC
PSB
PU
RH
RISC
RU
SAP
SNA
SVC
GSNA_DD
SNA_MDD
TH
XID

Activate Physical Unit
Advanced Interactive Executive Operating System
Application Program Interface
Control Point Services
Command Router
Deactivate Physical Unit
Generic Data Link Control
Input/Output Device Number
Inoperative
Inter-Process Communication
LU Network Services
Path Control
Program Status Block
Physical Unit
Request/Response Header
Reduced Instruction Set Computing
Request/Response Unit
Service Access Point
Systems Network Architecture
Supervisor Call
Generic SNA Device Driver
SNA Manager Device Driver
Transmission Header
Exchange Identification.

8-36 Communications Programming Concepts

IBM AIX SNA Services/6000 LUO Facility

Document Guide
Intended Readership

This document is intended for those persons interested in using the LUO Subsystem on the
RISC System/6000.

Reader Preconditions
The reader should have a basic understanding of the RISC System/6000, the AIX operating
system, SNA concepts, and AIX SNA Services/6000.

Reader Postconditions
After completing this document, the reader should:

• Have an understanding of the use of the LUO support and its relationships with AIX SNA
Services/6000.

Recommended Reference Documentation
Refer to the following documents for further information concerning LUO support.

• AIX Systems Network Architecture Services/6000 Guide and Reference

• Calls and Subroutines Reference

• Files Reference

• IBM Advanced Data Communication for Stores Program Reference and Operation Guide

• SNA Technical Overview.

Introduction
This document provides the information necessary to configure, start, and stop the LUO
subsystem. The application program interface is also defined in this document. The following
subjects are covered in detail in this manual:

Configuring the LUO Subsystem
This section guides the userthrough the steps necessary to configure the
LUO subsystem. Use of SNA Services for Secondary support and the LUO
Configurator for Secondary and Primary support are covered.

Using the LUO Subsystem

API

This section covers starting, stopping, and command line arguments for the
LUO Subsystem.

This section gives a description of how the LUO Subsystem provides an
application program interface for the Primary and Secondary support. These
subroutines allow you to open, send, receive, close, and control the session
from within your application. The Secondary and Primary support have
separate APls for use by the application program.

Applications This section provides three applications as part of the LUO Subsystem: the
Advanced Data Communications for Stores (ADCS) Emulator, the Host
Command Processor (HCP) Emulator, and the LUO Passthrough facility.
This section discusses these applications and their use.

SNA Services/6000 8-37

Using the Menus
When the main menu appears, you can select any of the options displayed by entering the
number of the option:

MAIN MENU

1. Define LUO Secondary.
2. LUO Primary.
3. Print Configuration File.
4. Exit.

Enter Option Number :

F3=exit program

The available options are:

Field Name Description

Define LUO Secondary
See Defining LUO Secondary Support on page 8-38.

Define LUO Primary
See Defining LUO Primary Support on page 8-40.

Print Configuration file
This option prints a formatted report showing the Primary LUO and
Secondary LUO definitions. This report is written to the
/usr/lpp/luO/luOconfg.rpt file.

Exit This option exits the configuration utility.

Function key:

F3 Exits. This option exits the configuration utility.

Defining LUO Secondary Support
Defining the LUO Secondary Support entails defining the logical units to be used for
Secondary support. AIX SNA Services/6000 is required for Secondary support. The
following menu shows the parameters you specify to define the LUO Secondary LUs:

LUO SECONDARY SPECIFICATIONS
LU Name =====> (REQUIRED ENTRY)
Send Initself =====> (Y or N)
LU Address =====> (1-255)
Host Appl Name ====> (for init_self only)
Log Mode Table Ent=> (for init_self only)
Passthru Partner ==> (Primary LU name for passthru)
Enable API Trace ==> (Y or N)

F2=clear F3=exit F5=refresh F6=write file
F7=next record F9=delete record

Field Name

LU Name

Description

KEY - Required

The name, 1 to 8 alphanumeric characters, of the logical unit. The LU Name
corresponds to an SNA attachment name.

8-38 Communications Programming Concepts

Send Initself
Optional

Enter Y if this LU should send an INIT-SELF request to the host. Enter N if
the secondary LU should wait for a BIND request from the host.

LU Address Required

This numeric value must correspond to a previously defined local LU
address on the attachment profile dialog. No other secondary LU entries in
the file may use this LU address.

Host Appl Name
Optional

The name of the host application to use as a session partner.

Log Mode Table Ent
Optional

If this field is specified, the log mode entry name will be specified in the
INIT-SELF request.

Passthru Partner
Optional

If this field is specified, this primary LU on the RISC System/6000 is the
passthru partner and all Pl Us received are sent to this PLU. If you specify
Init-Self = Y, then you may not enter a value in this field.

Enable API Trace
Optional

Enter a Y to enable this option. If this field is specified, a trace file is written
when an application reads from, or writes data to, this device. The trace file
specification is: /usr/lpp/luO/ LUName, where the LU Name parameter
specifies the logical unit name for this device (same as LU Name entry
above). Please refer to the luO Command for more information on this file.

Function keys Description

F2

F3

FS

F6

F7

F9

Erases the unprotected fields of this screen. All unsaved changes are lost.

Exits. Returns to the main menu. Unsaved changes are lost.

Refreshes the screen from the currently saved file. Use the LU name to
determine which record to display. Unsaved changes are lost.

Writes this record to file. Only this record is used to update the file.

Displays the next sequential secondary record in the file. When end-of-file is
reached, the first secondary record in the file becomes current and is
displayed. Unsaved changes are lost. ·

Deletes the current secondary record.

SNA Services/6000 8-39

Defining LUO Primary Support
Defining the LUO Primary Support entails of defining the port, physical unit, application
logical units, session partners, xid tables, and log mode entries. The following menu shows
the parameters you specify to define the LUO Primary Support:

LUO PRIMARY LINE

(mpq 0-7)
(optional)

Port Name =====>
Physical Unit Name ==>
Max data =====>
Remote Station Addr==>
Local Station Addr ==>
Modem =====>

(Max i-field size,
(01-FE)

89-4100)

F3=exit

Connect
RTS
DTR

FS=ref resh

=====>
=====>
=====>

(01-FE)
(l=NRZ 2=NRZI)
(l=Switched
(l=Controlled
(l=DTR

F6=write record
F8=def ine Primary records

Field Name Description

Port Name Required

2=Non-switched)
2=Continuous)
2=CDSTL)

The name, 1 to 8 alphanumeric characters, of the SDLC port. This is used
as an identifier only.

Physical Unit Name
Required

Max Data

The name of the physical unit to be defined on this port.

Default= 265

The size of the maximum I-field, 89 to 4100 bytes, that the secondary PU
can receive or send.

Remote Station Addr
Required

The SDLC station address, hex 01 to FE, that this PU will be calling.

Local Station Addr
Required

Modem

Connect

RTS

DTR

The SDLC station address, hex 01 to FE, for polling this PU.

Required

Enter 1 for NRZ. Enter 2 for NRZI.

Required

Enter 1 for a switched connection.
Enter 2 for a non-switched connection.

Required

Enter 1 for Controlled.
Enter 2 for Continuous.

Required

Enter 1 for DTR.

8-40 Communications Programming Concepts

Enter 2 for CDSTL.

Function keys Description

F3

F5

F6

F8

Exits. Returns to the main menu. Unsaved changes are lost.

Refreshes the screen from the currently saved file. Unsaved changes are
lost.

Writes this record to file. Only this record is used to update the file.

Transfers control to the LUO Primary Application Logical Units screen.
Unsaved changes are lost.

Defining LUO Primary Application Logical Units
LUO Primary Application Logical Units

LU Name =====>
PLU Address ===>
SLU Address ====>
FM Profile ====>
TS Profile ====>
FM Pri Protocols ==>
FM Sec Protocols ==>
FM Com Protocols ==>
TS Protocols ====>
PS Profile ====>
PS Protocols
User Data

====>
====>

Line Name ====>
Enable API Trace ==>

(REQUIRED ENTRY)
(always 1)
(1-255)
(3-4)
(3-4)
(bind byte 4)
(bind byte 5)
(bind bytes 6-7)
(bind bytes 8-13)
(bind bytes 1,4)
(bind bytes 15-25)

(Optional)
(Y or N)

F2=clear F3=exit F5=refresh F6=write file
F7=next record F9=delete record

Field name

LU Name

Description

KEY-Required

The name of the logical unit, 1 to 8 alphanumeric characters in length.

PLU Address Protected field: always set to 1

The LU number of the primary LU.

SLU Address Required

The LU number, 1 to 255, of the secondary LU.

FM Profile Required

The Function Management profile that the session uses. FM profiles 3 and 4
are supported.

TS Profile Required

The Transmission Subsystem profile that the session uses. TS profiles 3
and 4 are supported.

SNA Services/6000 8-41

FM Pri Protocols
Required

The primary logical unit protocols, 2 hex digits in length, that the session
uses for FM data.

FM Sec Protocols
Required

The secondary logical unit protocols, 2 hex digits in length, that the session
uses for FM data.

FM Com Protocols
Required

The logical unit protocols, 4 hex digits in length, and common to both the
primary and secondary logical units that the session uses for FM data.

TS Protocols
Required

The Transmission Subsystem protocols, 12 hex digits in length, that the
session uses.

PS Profile Required

The PS profile, 2 hex digits in length, that the session uses.

PS Protocols
Default: 0 hex

The PS protocols that the session uses. Specify an even number of digits,
up to 22 digits in length.

user Data Optional

Any hexadecimal user data that you want to send in the BIND command.
Specify an even number of hex digits, up to 48 digits in length.

Line Name Required

The name of the SDLC line, 1 to 8 alphanumeric characters in length. It
should match the Port Name field on the LUO Primary Line Definitions
screen.

vEnable API Trace
Optional

Enter a Y to enable this option. If this field is specified, a trace file is written
when an application reads from, or writes data to, this device. The trace file
specification is the /usr/lpp/luO/ LUName, where the LUName parameter
specifies the logical unit name for this device (same as LU Name entry
above). Please refer to the luO Command for more information on this file.

Function Keys Definition

F2

F3

FS

F6

Erases the unprotected fields of this screen. All unsaved changes are lost.

Exits. Returns to the Define LUO Primary screen. Unsaved changes are lost.

Refreshes the screen from the currently saved file. Use the LU name to
determine which record to display. Unsaved changes are lost.

Writes this record to file. Only this record is used to update the file.

8-42 Communications Programming Concepts

F7

F9

Displays the next sequential primary record in the file. When end-of-file is
reached, the first primary record in the file becomes current and is
displayed. Unsaved changes are lost.

Deletes the current primary record. Unsaved changes are lost.

Application Program Interface
The LUO Subsystem provides an application program interface for Primary and Secondary
support. These subroutines allow you to open, send, receive, close, and control the session
from within your application.

The Secondary and Primary support have separate APls for use by the application program.

Secondary LUO API
Five subroutines are available in the Secondary API. They are the luOcloses, luOctls,
luOopens, luOreads, and luOwrites subroutines.

Primary LUO API
Five subroutines are available in the Primary API. They are the luOclosep, luOctlp,
luOopenp, luOreadp, and luOwritep subroutines.

Applications
Three applications are provided as part of the LUO Subsystem: the Advanced Data
Communications for Stores (ADCS) Emulator, the Host Command Processor (HCP)
Emulator, and the luO Passthrough API.

Advanced Data Communications for Stores (ADCS) API
The Advanced Data Communications for Stores (ADCS) API uses the luOapi subroutine to
create the cmd4680 file used by the ADCS emulator. You must compile the luOapi.e module
with your source code.

Host Command Processor (HCP) API
The Host Command Processor (HCP) API uses the hep and stophep commands to start
and stop the Host Command Processor. The HCP API also uses the heps and stophcps
commands to start and stop the HCP SUP Command Processor.

luO Passthrough API
The luO Passthrough API uses the luOpass command to start the luO Passthrough
application, which provides LUO connectivity on an AIX RISC System/6000 machine
between a host and a 4680 Store Controller.

SNA Services/6000 8-43

Writing Transaction Programs for AIX SNA Services/6000
Writing Transaction Programs for AIX SNA Services/6000 provides information to help you
write an application program that uses AIX SNA Services/6000 to transfer data over a
network. Such a program is called a transaction program. The information is divided into
two parts. The first part provides guidelines for interfacing the program to AIX SNA
Services/6000, including the parameters passed to all transaction programs and the signals
sent to programs. The second part provides simplified examples of a local and a remote
transaction program to illustrate the use of the AIX SNA Services/6000 application
programming interface.

Guidelines for Writing Transaction Programs
An application program that uses AIX SNA Services/6000 to transfer information over a
network must conform to the interface conventions that AIX SNA Services/6000 uses. The
following paragraphs outline those conventions.

Parameter Passing
When AIX SNA Services/6000 starts a remote transaction program, it passes information to
that program using the argv [] parameters of a C language program. How this
information is passed depends upon whether the application program uses the limited
interface or the extended interface.

Using the Extended Interface
When a program uses the extended interface, AIX SNA Services/6000 passes the following
information to the program when it starts:

Parameter

argv[O]

argv[l]

argv[2]

argv[3]

Contents

The name of the transaction program.

The name of the TPN profile for the transaction program.

The name of the connection profile for the transaction program.

The resource ID of the connection in string format. Use the library function
a641 with this parameter to get the resource ID:

resource_id = a641(argv[3]);

argv[4], argv[5], ••• , argv[n]
If the remote transaction program receives PIP (program initialization
parameter) data, these arguments contain the subfields of that PIP data.

Using the Limited Interface
When a program uses the limited interface, AIX SNA Services/6000 passes the following
information to the program when it starts:

Parameter Contents

argv[O] The name of the transaction program.

8-44 Communications Programming Concepts

Signals

argv[l] The name of the TPN profile for the transaction program.

argv[2] The name of the connection profile for the transaction program.

The limited interface does not support PIP data and does not require a resource ID.

AIX SNA Services/6000 sends the signal s IGUSRl to all transaction programs, both local
and remote, when one of the following conditions occurs:

• The connection is stopped.

• AIX SNA Services/6000 is stopped.

If a transaction program receives this signal, it must close the file descriptor for the
connection.

When the SIGUSRl signal is sent to a process, it is also directed to other processes that
have the same process group ID.

For example, assume that the command interpreter bsh started an application process that
interfaces with AIX SNA Services/6000. A SIGUSRl signal sent to the application process is
also sent to the command interpreter and may stop the interpreter process. To avoid this, an
application process that will run as a background task can change its process group ID by
using the setpgrp subroutine when it begins execution.

AIX SNA Services/6000 Example Programs
The following pages contain short example programs that illustrate the use of many of the
subroutines described in this manual to control operation of a network using AIX SNA
Services/6000. The programs have been abbreviated by leaving out most error checking
and recovery procedures that would normally be included in programs of this type. Although
the programs do compile and run, they are included as examples only and should not be
used for actual data operations without significant changes to provide the missing functions.

These programs illustrate programs running at each end of the conversation:

• "Local Transaction Program Example Program" on page 8-46 shows the program that
starts the conversation.

• "Remote Transaction Program Example Program" on page 8-48 shows the program that
responds to the conversation.

• "Mapped Transaction Program Example" on page 8-51 shows a program that starts a
mapped conversation.

• "Mapped Remote Transaction Program Example" on page 8-53 shows the program that
responds to the mapped conversation.

SNA Services/6000 8-45

Local Transaction Program Example Program
The example program shown in the following example illustrates the use of subroutines by a
transaction program that invokes a partner transaction program on a remote logical unit.
This program performs the following actions:

1. Opens a connection.

2. Allocates a conversation with the remote transaction program, sysrmt.

3. Sends data to the remote program.

4. Receives data from the remote program.

5. Closes the connection.

The input parameter, argv [1], is the name of the connection profile for the remote LU. The
program is started by entering the following command:

$ sysloc cpn

Where the cpn parameter is the name of the connection profile for the remote LU.

When the program runs, it prints messages to standard output that describe the events that
occur, such as subroutines and data transmissions. To make the program easier to
understand, its only reaction to an error is to exit and set return_code to the error value.
The following major events occur during the programs operation:

1. Opens the resource whose path name consists of the device driver name, followed by the
connection profile name, which was given as an argument to the program.

2. Initializes the allo_str structure to nulls and then fills in the remote transaction program
name. Leaves other fields null for default values.

3. Issues the ioctl subroutine to allocate the conversation and get a resource ID. When the
allocation is complete, the program is in send state.

4. Initializes the ext_io_str structure to nulls and fills in the resource ID to prepare for the
readx or writex subroutine.

5. Sends data to the remote transaction program, using the writex subroutine. This data is
prefixed by byte count and gdsid. Once the data is sent, the program remains in the
send state.

6. Issues the readx subroutine to flush the send buffer, put the program into the receive
state, and read data from the remote transaction program.

7. Prints out the information received. A value is printed indicating what control information
was received; this value should be 5 for normal deallocate, indicating that the remote
program issued a DEALLOCATE request with type parameter of FLUSH.

8-46 Communications Programming Concepts

8. Issues the close subroutine to close the connection.

#include
#include
#include
#include

<stdio.h>
<fcntl.h>
<errno.h>
<luxsna.h>

#define NULL 0
#define ERROR -1
#define OK O

extern int
main(int

char

errno;
argc,

**argv)
/*number arguments received */
/*pointers to arguments received */

{

char
char
int
int

buf[80];
path[80];
fd;
nbytes;

/*buffer for input data */
/*buffer for pathname of resource*/
/*file descriptor for connection */
/*number of bytes read or written*/

int resource_id; /*resource ID of conversation */
int return_code = OK; /*exit code */
struct allo_str allo_str;
struct ext_io_str ext_str;
strcpy(path, "/dev/sna");
strcat(path, argv[l]);

/*structure for ioctl(ALLOCATE) */
/*structure for readx subroutine */

if ((fd = open(path, O_RDWR)) ERROR) {
return code = errno;

}
else {

print£("Connection established with< %s >.\n", path);
memset(&allo_str, O, sizeof(struct allo_str));
strcpy(allo_str.tpn, "sysrmt");
if (ioctl(fd, ALLOCATE, &allo str) == ERROR) {

return code = errno;
}
else {

resource_id = allo_str.rid;
printf("Conversation allocated with tpn < %s >.\n",

buf[O]
buf[l] =
buf[2] =
buf[3] =

allo_str.tpn);
OxOO;
Oxlc;
Oxl2;
Oxff;

memset(&ext_str, 0, sizeof(struct ext_io_str));
ext_str.rid = resource_id;
strcpy(&buf[4], "Please send me a message");
if ((nbytes = writex(fd, buf, 29, &ext_str --

ERROR) {
return_code = errno;

}
else {

printf("Bytes sent: < %d >\n", nbytes);
print£("Data sent: < %s > \n", &buf[4]);
if ((nbytes = readx(fd, buf, 29, &ext_str)) -

ERROR) {

SNA Services/6000 8-47

}

}
}

}

return code errno;
}
else {

}

printf("Bytes received: < %d >\n", nbytes);
printf("Data received: < %s > \n", &buf[4]);
printf ("Control information received: < %s > \n",

ext_str.output.what_control_rcvd);
close(fd);
printf("Conversation deallocated.\n");
printf("Connection closed.\n");

exit(return code);

Remote Transaction Program Example Program
The example program shown in the following example illustrates the use of subroutines by a
transaction program that was invoked by a partner transaction program on a remote logical
unit. This program performs the following actions:

1. Opens a connection, using the connection profile it receives as an argument.

2. Allocates a conversation with the remote transaction program, sysrmt, resource ID it
receives as an argument to the program.

3. Issues the ioctl subroutine with a REQUEST_To_SEND request to the remote program.

4. Receives control information and data from the remote program, using the readx
subroutine.

5. Sends data to the remote program, using the writex subroutine.

6. Deallocates the conversation.

7. Closes the connection.

The input parameter, argv[2 J, is the name of the connection profile for the remote LU. The
input parameter, argv [3 J, is the resource ID for the connection.

When the program runs, it prints messages to standard output that describe the events that
occur, such as subroutines and data transmissions. To make the program easier to
understand, its only reaction to an error is to exit and set return_code to the error value.
The following major events occur during the programs operation:

1. Opens the resource whose path name consists of the device driver name (/dev/sna)
followed by the connection profile name. The connection profile name is an argument to
the program.

2. Initializes the allo_str structure to nulls to select the default values.

3. Converts the rid that was received as a string argument (argv[3]) into an integer. Puts
the integer into the rid field of allo_str to indicate a remote attach.

4. Issues the ioctl subroutine with an ALLOCATE request, leaving this program in the
receive state.

8-48 Communications Programming Concepts

5. Issues the ioctl subroutine with a REQUEST_TO_SEND request to notify the remote
program that this program needs to send data. This program remains in the receive
state.

6. Reads data and control information from the remote program, using the readx
subroutine. ·

7. Prints out the information received. A value is printed indicating what control information
was received; this value should be 1 for the send parameter, indicating that the remote
program is in the receive state and that this program is now in the send state.

8. Sends data to the remote program, using the writex subroutine. This data is prefixed
by byte count and gdsid. Once the data is sent, the program remains in the send state.

9. Fills in the deal_str structure fields with:

A type of DEAL_FLUSH
To flush the send buffer and deallocate the conversation normally

A flag of DISCARD
To discard the conversation when it is deallocated.

10. Issues the ioctl subroutine with a DEALLOCATE request to deallocate the conversation.

11. Issues the close subroutine to close the connection.

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <luxsna.h>

#define NULL 0
#define ERROR
#define OK 0

-1

extern int
extern int
main(int

errno;
a641();

argc,
**argv)

/* number arguments received */
/* pointers to arguments received */

{
char

char buf[80]; /*buffer for input data */
char path[80]; /* buffer for pathname of resource*/
int fd; /* file descriptor for connection */
int nbytes; /* number of bytes read or written*/
int resource id; /* resource ID of conversation */
int return code = OK; /* exit code */
struct allo str allo_str;/* structure for ioctl(ALLOCATE) */
struct deal_str deal_str; /* structure for ioctl(DEALLOCATE)*/
struct ext_io_str ext_str;/* structure for readx subroutine */
strcpy(path, "/dev/sna");
strcat(path, argv[2]);
if ((fd = open(path, O_RDWR)) ERROR) {

return code = errno;
}
else {

SNA Services/6000 8-49

}

print£("Connection established with< %s >.\n", path);
memset(&allo_str, O, sizeof(struct allo_str));
allo_str.rid = a641(argv[3]);
if (ioctl(fd, ALLOCATE, &allo_str) == ERROR) {

return code = errno;
}
else {

}

resource_id = allo_str.rid;
printf("Conversation allocated (remote attach): rid

= < %d >.\n",resource_id);
if (ioctl(fd, REQUEST_TO_SEND, resource id) == ERROR

) {
return code = errno;

}
else {

}

printf("REQUEST TO SEND ioctl issued.\n");
memset(&ext_str, 0, sizeof(struct ext_io_str);
ext_str.rid = resource_id;
if ((nbytes = readx(fd, buf, 29, &ext str --

ERROR) {
return code = errno;

}
else {

}

printf("Bytes received: < %d >\n", nbytes);
print£("Data received: < %s > \n", &buf[4]);
print£("Control information received: < %s > \n",

ext_str.output.what_control_rcvd);
buf[O] OxOO;
buf [1] Oxld;
buf[2] Ox12;
buf[3] Oxff;

strcpy(&buf[4], "This is a message for you.");
if ((nbytes = writex(fd, buf, 29, &ext_str)) ==

ERROR) {
return code = errno;

}
else {

}

printf("Bytes sent: < %d >\n", nbytes);
print£("Data sent: < %s > \n", &buf[4]);
deal_str.rid = resource_id;
deal_str.type = DEAL_FLUSH;
deal_str.deal_flag = DISCARD;
if (ioctl(fd, DEALLOCATE, &deal_str -

ERROR) {
return code = errno;

}
else {

}

close(fd) ;
printf("Conversation deallocated.\n");
printf("Connection closed.\n");

8-50 Communications Programming Concepts

exit(return code);
}

Mapped Local Transaction Program Example Program
The example program shown in the following example illustrates the use of subroutine calls
running on a mapped conversation by a transaction program that invokes a partner
transaction program on a remote logical unit.

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <luxsna.h>

#define NULL 0
#define ERROR -1
#define OK

extern int
main(int

char
{

char
char

0

errno;
argc,

**argv)

buf[80];
path[BO];

char c_type = 'M';
int connection_id;
int length;

/* number arguments received
/* pointers to arguments received

/* buffer for input data
/* buffer for pathname of resource
/* Conversation type ~ mapped
/* file descriptor for connection

int nbytes; /* number of bytes read or written
int resource_id; /* resource ID of conversation
int return code OK; /* exit code

*/
*/

*/
*/
*/
*/

*/
*/
*/

struct allo str allo_str;/* structure for
struct read out read_out;/* structure for

ioctl(ALLOCATE) */
readx subroutine*/

struct write_out write_out;
strcpy(path, argv[l]);
printf("Path = < %s >.\n", path);
if ((connection_id = snaopen(path)) == ERROR) {

printf("snaopen failed, errno = < %d >.\n", errno);
return_code = errno;

}
else {

print£("Connection established with< %s >.\n", path);
memset(&allo_str, O, sizeof(struct allo_str));
strcpy(allo_str.tpn, "sysrmtmap");
if ((resource_id = snalloc(connection_id, &allo_str,

c_type)) == ERROR) {

}

printf("snalloc failed, errno = < %d >.\n", errno);
return code = errno;

else {
printf("Conversation allocated with tpn < %s >.\n",

allo_str.tpn);
length = 24;
strncpy(buf, "please send me a message", length);

SNA Services/6000 8-51

OR

}

}
}

if ((nbytes = snawrit(connection_id, buf, length,
resource_id, &write_out, c_type)) == ERROR) {

printf("snawrit failed, errno = < %d >.\n", errno);
return_code = errno;

}
else {

}

printf("Bytes sent: < %d >\n", nbytes);
printf("Data sent: < %s > \n", buf);
length = 80;
if ((nbytes = snaread(connection id, buf, length,
resource_id, 0, &read_out, c_type)) == ERROR

}

) {
printf("snaread failed, errno = < %d >.\n",

errno);
return_code = errno;

else {

}

printf("Bytes received: < %d >\n", nbytes);
printf("Data received: < %s > \n", buf);

printf ("Control information received: < %s > \n",
read_out.what_control_rcvd);

exit(return code);

8-52 Communications Programming Concepts

Mapped Remote Transaction Program Example Program
The example program shown in the following example illustrates the use of subroutine calls
running on a mapped conversation by a transaction program that was invoked by a partner
transaction program on a remote logical unit.

#include
#include
#include
#include

<stdio.h>
<fcntl.h>
<errno.h>
<luxsna.h>

#define NULL 0
#define ERROR -1
#define OK 0

extern int
extern int
main(int

char
{

errno;
a641();

argc,
**argv)

buf[80];
path[SO];
c _type = 'M' ;
connection_id;
length;

/* number arguments received
/* pointers to arguments received

/* buffer for input data
/* buffer for pathname of resource
/* Conversation type ~ mapped
/* file descriptor for connection

*/
*/

*/
*/
*/
*/

char
char
char
int
int
int
int
int
struct
struct
struct
struct
strcpy(

nbytes; /* number of bytes read or written */
resource_id; /* resource ID of conversation */
return code = OK; /* exit code */
allo str allo_str;/* structure for ioctl(ALLOCATE) */
deal str deal str;/*structure for ioctl(DEALLOCATE)*/
read out read-out;/* structure for readx subroutine*/
write_out write_out;
path, argv[2]) ;

if ((connection_id = snaopen(path)) == ERROR) {
printf("snaopen failed, errno = < %d >.\n", errno);
return_code = errno;

}
else {

print£("Connection established with< %s >.\n", path);
memset(&allo_str, O, sizeof(struct allo_str));
allo_str.rid = a641(argv[3]);
if ((resource_id = snalloc(connection_id, &allo_str,

c_type)) == ERROR) {

}

printf("snalloc failed, errno = < %d >.\n", errno);
return code = errno;

else {
printf("Conversation allocated (remote attach): rid=

< %d >.\n", resource_id);
if (snactl(connection_id, REQUEST_TO_SEND,

resource_id, c_type) == ERROR) {

SNA Services/6000 8-53

}

}
}

}

printf("REQUEST TO SEND failed, errno = < %d >.\n",
errno);

return_code = errno;

else {

}

printf("REQUEST TO SEND snactl issued.\n");
length = 80;
if ((nbytes = snaread(connection_id, buf, length,

resource_id, 0, &read_out, c_type)) ==
ERROR) {

}

printf("snaread failed, errno = < %d >.\n",
errno);

return_code = errno;

else {

}

print£("Bytes received: < %d >\n", nbytes);
print£("Data received: < %s > \n", buf);

print£("Control information received: < %s > \n",
read_out.what_control_rcvd);

length = 26;
strncpy(buf, "This is a message for you.",

length);
if ((nbytes = snawrit(connection id, buf,

length, resource_id, &write_out, c_type))
== ERROR) {

}

printf("snawrit failed, errno = < %d >.\n",
errno);

return code = errno;

else {

}

print£("Bytes sent: < %d >\n", nbytes);
print£("Data sent: < %s > \n", buf);
deal_str.rid = resource_id;
deal_str.type = DEAL_FLUSH;
deal_str.deal_flag = DISCARD;
if (snadeal(connection_id, &deal_str,

c_type) == ERROR) {
return code = errno;

}
else {

}

snaclse(connection_id);
printf("Conversation deallocated.\n");
print£("Connection closed.\n");

exit(return code);

8-54 · Communications Programming Concepts

Transferring Files Using AIX SNA Services/6000
Transferring Files Using AIX SNA Services/6000 describes the file transfer programs
included with AIX SNA Services/6000.

Two sample programs, sendto.c and rcvfrom.c, send files from a local AIX node to a
remote AIX node, using SNA LU 6.2 protocol. To use these programs, both nodes must have
the proper communication adapters installed. In addition, both nodes must have the software
for AIX and SNA, which includes the file transfer programs.

During a mapped conversation, the local AIX node can start a file transfer by using the
sendto command. This command activates the rcvfrom program on the remote or partner
AIX node so the partner can receive the files.

Another time the roles can be reversed, with the partner AIX node becoming the system that
initiates the file transfer.

The file transfer programs are in the samples directory, and have the following path:
/usr/lpp/sna/samples.

To compile the programs, use the following commands:

cc sendto.c -o sendto
cc rcvfrom.c -o rcvfrom -lsna

To start a file transfer, give the following command on the local system, substituting the
actual names for the connection and the file names:

sendto ConnectionName LocalFileName RemoteFileName

If the RemoteFileName parameter is not specified, the sendto.c program defaults to
Loca/FileName so that the user would see the following:

sendto ConnectionName LocalFileName LocalFileName

The following subroutines are called:

• snaopen
• snalloc
• snaread
• snawrit
• snaclse
• snadeal

For a description of these subroutines, refer to "AIX SNA Services/6000 Subroutines" on
page 8-1. Parameters defined in command structures are described in "Special Files" on
page 8-5.

SNA Services/6000 8-55

Sending Files from a Local AIX Node to a Remote AIX Node
The sendto.c program includes the following steps:

sendto.c Program

1. Open the data file. (open)

2. Obtain the connection name and local file name. (strcpy)

3. Open a connection. (snaopen)

4. Allocate a conversation. (snalloc)

• Set the type of conversation that you want with the c_type parameter.

This sample program establishes a mapped conversation between a local and a remote
transaction program by setting c_type to M.

• Set the sync_level parameter in *allo_str to indicate whether you want synchronized
processing between the two transaction programs.

This program synchronizes the processing by setting sync_level to confirm.

5. Read data file into the sending buffer. (read)

6. Write data from the sending buffer to the receive file at the remote AIX node. (snawrit)

Repeat steps 4 and 5 until EOF is read.

7. Ask the remote program to confirm when the data is received. (snactl with the CONFIRM
request)

8. Deallocate the conversation. (snadeal)

9. Close the connection. (snaclse)

Receiving Files from a Remote AIX Node
The rcvfrom.c program includes the following steps:

rcvfrom.c Program
1. Obtain the connection name and resource ID. (strcpy)

2. Open a connection. (snaopen)

3. Allocate the conversation. (snalloc)

4. Open the data file. (open)

5. Read the data into the receive buffer. (snaread)

6. Write the data from the receive buffer to the receive file. (write)

Repeat steps 5 and 6 until EOF is read.

7. Send confirmation to the sending program when the data is received. (snactl with the
CONFIRMED request)

8. Close the connection. (snaclse)

8-56 Communications Programming Concepts

Writing Generic AIX SNA Services/6000 Programs
Writing Generic AIX SNA Services/6000 Programs provides information to help you write an
application that uses the generic support of AIX SNA Services/6000 to transfer data over a
network. The following pages contain a short example program that illustrates the use of
some of the subroutines described in this manual to control operation of a network using
Generic AIX SNA Services/6000.

The program has been abbreviated by leaving out most error checking and recovery
procedures that would normally be included in programs of this type. Although the program
does compile and run, it is included as an example only and should not be used for actual
data operations without significant changes to provide the missing functions. Note that there
must also be a cooperating program running on the remote node.

Generic AIX SNA Services/6000 Example Program
The following figure illustrates the use of subroutines by a program that uses the Generic
AIX SNA Services/6000 support. This program performs the following actions:

1. Opens an attachment.

2. Receives data from a remote program running on the remote node.

3. Sends data to the remote program.

4. Closes the attachment.

The input parameter, argv [1] , is the name of the attachment profile for the remote node.
The program is started by entering the following command:

gsnaloc cpn

Where cpn is the name of the attachment profile for the remote node.

When the program runs, it prints messages to standard output that describe the events that
occur, such as subroutines and data transmissions. To make the program easier to
understand, its only reaction to an error is to exit and set return_code to the error value.
The following major events occur during the programs operation:

1. Opens the resource whose path name consists of the device driver name, followed by the
attachment profile name, which was given as an argument to the program.

2. Issues the read subroutine to receive data from the remote program.

3. Prints out the information received.

4. Fills in the send buffer with the necessary control information to send data to the remote
program.

5. Sends data to the remote program, using the write subroutine.

SNA Services/6000 8-57

6. Issues the close subroutine to close the attachment.

#include <stdio.h>
#include <fcntl.h>
#include <sys/trace.h>
#include <luxgsna.h>

main(argc, argv)
int argc;
char *argv[];
{

extern int errno;
char att_name[30];
int
int
int

count = O;
fd;
n;

int return_code = O;
char *temp_ptr;
char *test case = "secappl"; /* testcase name */
char buf [256];
/* */
/* open to generic SNA device driver */
/* */
(void) strcpy (att_name, "/dev/gsna");
(void) strcat (att_name, argv[l]);
if ((fd = open(att_name, O_RDWR)) == -1) {

printf("open to GSNA_DD failed, errno = %d\n", errno);
return code = errno;

}
else {

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

/* Attachment is UP and RUNNING */
/* */
printf("open to GSNA_DD success, fd = %d\n", fd);
printf ("ATTACHMENT IS UP AND RUNNING ...• \n");
printf("sleep 10 seconds •.•. \n");
sleep(lO);
while (count < 3) {

printf("issuing read subroutine \n");
n =read(fd, buf, Ox800);
if (n == -1) {

return_code = errno;
printf("read failed, errno = %d\n", errno);
if (errno == SNA_INOP) {

printf("INOP received •.. , issue
INOP_RSP \n");

errno);

}
}
else {

n = ioctl(fd, INOP_RSP, NULL);
if (n == -1)

printf("INOP_RSP failed, errno

else
printf("INOP_RSP OK \n");

8-58 Communications Programming Concepts

%d\n",

printf("read completed, number of bytes read=
%d\n", n);

temp_ptr = buf;
printf("6 bytes TH = %x %x %x %x %x %x\n",

*temp_ptr++,
*temp_ptr++, *temp_ptr++,*temp_ptr++, *temp_ptr+

+, *temp _ptr++) ;

}

}

}

printf("3 bytes RH= %x %x %x\n", *temp_ptr++,
*temp_ptr++, *temp_ptr);

printf("data rcvd = %s\n", &buf[9]);
}

buf .data[O] = Ox2c;
buf[l] OxOO;
buf[2] Ox02;
buf[3] OxOO;
buf[4] OxOO;
buf[S] OxOl;
buf[6] Ox03;
buf[7] Ox91;
buf[8] OxOl;
temp_ptr = &buf[9];
if (count == 0)

strcpy(temp_ptr,
"This is the first reply sent by GSNALOC .••• ");

if (count == l) {
buf[2] = Ox04;
strcpy(temp_ptr,

"This is the second reply sent by GSNALOC ... ");
}
if (count == 2) {

buf[2] = Ox06;
strcpy(temp_ptr,

"This is the third reply sent by GSNALOC •.•. ");
}

n write(fd, buf, 132);
if (n == -1) {

}
else

return code = errno;
printf("write failed, errno %d\n",errno);

printf("write OK, number bytes sent= %d\n",n);
count ++;

close(fd);

exit(return code);

SNA Services/6000 8-59

8-60 Communications Programming Concepts

Chapter 9. Sockets

The Sockets facility is a Berkeley Software Distribution (BSD) programming interface that
provides applications programs with interprocess and network 1/0 communication
capabilities. The Sockets mechanism consists of socket subroutines which enable local or
remote application programs to set up virtual connections and exchange data. In AIX
Version 3.1, the Sockets facility serves as the application program interface for TCP/IP. This
section/chapter provides information on the Sockets facility and its components. It contains
information about socket creation, connection, and use in application programs. In addition,
this section/chapter provides brief descriptions of socket data structures, the socket Kernel
Service Subroutines, and Network Library Subroutines.

Sockets Overview
AIX includes an implementation of the Berkeley Software Distribution (BSD) interprocess
communication facility known as sockets. Sockets are communication channels that enable
unrelated processes to exchange data locally and over networks. A single socket is one
endpoint of the two-way communications channel. In AIX, sockets have the following
characteristics:

• A socket exists only as long as some process holds a descriptor referring to it.

• Sockets are referenced by file descriptors and have qualities similar to those of a
character special device. Read, write, and select operations can be performed on sockets
by using the appropriate subroutines.

• Sockets may be created in pairs, or given names and used to rendezvous with other
sockets in a communications domain, accepting connections from these sockets or
exchanging messages with them.

Critical Attributes
Sockets share certain critical attributes which no other interprocess communication
mechanisms feature. Sockets have the following attributes:

• Provide a two-way communications path.
• Have a type and one or more associated processes.
• Exist within communications domains.
• Do not require a common ancestor to set up the communication.

Application programs request the operating system to create a socket when one is needed.
The operating system returns an integer that the application program uses to reference the
newly created socket. Unlike file descriptors, the operating system can create sockets
without binding them to a specific destination address. The application program can choose
to supply a destination address each time is uses the socket.

Sockets Background
Sockets were developed in response to the need for sophisticated interprocess facilities that
met the following goals:

• Provided access to communications networks such as the DARPA Internet.

Sockets 9-1

• Enabled communication between unrelated processes residing locally on a single host
computer and residing remotely on multiple host machines.

The development of sockets as part of the interprocess facilities was intended to provide a
sufficiently general interface to allow network-based applications to be constructed
independently of the underlying communications facilities and supported the construction of
distributed programs built on top of communications primitives.

Note: In AIX, the socket subroutines serve as the application program interface for
Transmission Control Protocol/Internet Protocol (TCP/IP).

Sockets Facilities
Socket subroutines and network library subroutines provide the building blocks for
interprocess communication. An application program must perform the following basic
functions to conduct interprocess communication through the socket layer:

• Creating and naming sockets.
• Accepting and making socket connections.
• Sending and receiving data.
• Shuttting down socket operations.
• Translating network addresses.

Each of these general functions is discussed briefly in this article and described in greater
detail in related articles.

Creating and Naming Sockets
A socket is created with the socket subroutine. This subroutine creates a socket of a
specified domain, type, and protocol. Sockets have different qualities depending on these
specifications. A communication domain indicates the protocol families to be used with the
created socket. The socket type defines its communications properties such as reliability,
ordering, and prevention of duplication of messages. Some protocols families have multiple
protocols that support one type of service. To supply a protocol in the creation of a socket,
the programmer must understand the protocol family well enough to know the type of service
each protocol supplies.

An application can bind a name to a socket. The socket names used by most applications
are human-readable strings. However, the name for a socket that is used within a
communication domain is usually a low-level address. The form and meaning of socket
addresses are dependent on the communication domain in which the socket is created. The
socket name is specified by one of three sockaddr structures; these structures are defined
in header files.

Accepting and Making Socket Connections
Sockets may be connected or unconnected. Unconnected socketed are produced by the
socket subroutine. An unconnected socket can yield a connected socket in one of two ways:
either by actively connecting to another socket, or by becoming associated with a name in
the communications domain and accepting a connection from another socket. Other types of
sockets, such as datagram sockets, need not establish connections before use.

9-2 Communications Programming Concepts

Sending and Revceiving Data
Sockets include a variety of calls for sending and receiving data. The usual read and write
subroutines, as well as the socket send and recv subroutines, can be used on sockets that
are in a connected state. Additional socket subroutines exists that permit callers to specify or
receive the address of the peer with whom they are communicating; these calls are useful
for connectionless sockets, where the peer sockets may vary on each message transmitted
or received. The sendmsg and recvmsg subroutines support the full interface to the
interprocess-communications facilities. Besides offering scatter-gather operations, these
calls allow and address to be specified or received, and support flag options.

Shutting Down Socket Operations
Once sockets are no longer of use they can be closed or shutdown using the shutdown
subroutine or close subroutine.

Translating Network Addresses
Application programs may also need to locate and construct network addresses when
conducting the interprocess communication. The socket facilites include subroutines to:

• Map addresses to host names and back.
• Map network names to numbers and back.
• Extract network, host, service, and protocol names.
• Convert between varying length byte quantities.
• Resolve domain names.

Related Information
Binding Names to Sockets on page 9-13, Understanding Domain Name Resolution on page
9-24, Understanding Network Address Translation on page 9-22, Understanding Socket
Addresses on page 9-8, Understanding Socket Communications Domains on page 9-6 ,
Understanding Socket Creation on page 9-12, Understanding Socket Connections on page
9-15, Understanding Socket Data Transfer on page 9-18, Understanding Socket Examples
on page 9-26, Understanding Socket Header Files on page 9-5, Understanding the
Sockets Interface on page 9-3, Understanding Socket Options on page 9-17,
Understanding Socket Subroutines on page 9-5, and Understanding Socket Types and
~rotocols on page 9-9.

TCP/IP Overview for System Management in Communication Concepts and Procedures.

Networks Overview in Communication Concepts and Procedures.

Understanding the Sockets Interface

Sockets Interface
The kernel structure consists of three layers: the socket layer, the protocol layer, and the
device layer. The socket layer supplies the interface between the subroutines and lower
layers, the protocol layer contains the protocol modules used for communication, and the
device layer contains the device drivers that control the network devices. In AIX Version 3.1
protocols and drivers are dynamically loadable.

Sockets 9-3

Client Process Server Process
l l

Socket Layer
I
l

I
Socket Layer

l
I I

TCP TCP
Protocol Layer I I Protocol Layer

r
T

r
T

Device Layer Network
Driver

Network Device Layer Driver
l l

L Network J
Processes communicate using the client/server model: a server process listens to a socket,
one end point of a two-way communications path, and client processes communicate to the
server process over another socket, the other end point of the communications path, which
may be on another machine. The kernel maintains internal connections and routes data from
client to server.

Within the socket layer, the socket data structure is the focus of activity. The system-call
interface subroutines manage the activities related to an AIX subroutine, collecting the
subroutine parameters and converting program data into the format expected by the second
level subroutines.

Most of the socket facilities are implemented within the second level subroutines. These
second level subroutines directly manipulate socket data structures and manage the
synchronization between asynchronous activities.

Socket Interface to Network Facilities
The socket interprocess communication facilities are layered on top of networking facilities.
Data flows from an application program through the socket layer to the networking support.
Protocol related state is maintained in auxiliary data structures that are specific to the
supporting protocols. The socket level passes responsibility for storage associated with
transmitted data to the network level.

Socket Layer
i..._ ... Stream Socket ~ ...

Network Protocols 1.1111..: TCP/IP Protocols ~ -...:

Network Interfaces
i.._ _..

1 O Mbit/s Ethernet ~ ...

Some of the communications domains supported by the socket interprocess
communications facility provide access to network protocols. These protocols are
implemented as a separate software layer logically below the socket software in the kernel.
The kernel provides ancillary services, such as buffer management, message routing,
standardized interfaces to the protocols, and interfaces to the network interface drivers for
the use of the various network protocols.

User request and control output subroutines serve as the interface from the socket
subroutines to the communication protocols.

9-4 Communications Programming Concepts

Related Information
Sockets Overview on page 9-1 .

Understanding Network Interfaces for TCP/IP in Communication Concepts and Procedures.

Understanding Socket Subroutines

Socket Subroutines
AIX provides socket subroutines to enable interprocess and network interprocess
communications. Some socket routines once contained in (libc.a) subroutines are now part
of the AIX kernel. These routines are grouped together as the Socket Kernel Service
Subroutines.

Note: Do not call any Socket Kernel Service subroutines from kernel extensions.

The socket subroutines still maintained in (libc.a) are grouped together under the heading of
Network Library Subroutines. Application programs can use both types of socket subroutines
for interprocess communication.

Related Information
Sockets Overview on page 9-1 .

List of Socket Kernel Service Subroutines on page 9-27, List of Network Library Socket
Subroutines on page 9-27.

Understanding Socket Header Files

Socket Header Files
Socket header files contain data definitions, structures, constants, macros, and options used
by the socket subroutines and subroutines. An application program must include the
appropriate header file to make use of structures or other information a particular socket
subroutine or subroutine requires. Commonly used socket header files are as follows:

/usr/include/netinet.h/in.h

/usr/include/arpa/nameser.h

/usr/include/netdb.h

/usr/include/resolv.h

/usr/include/sys/socket.h

/usr/include/sys/socketvar.h

/usr/include/sys/types.h

/usr/include/sys/un.h

Defines Internet constants and structures.

Contains Internet nameserver information.

Contains data definitions for socket subroutines.

Contains resolver global definitions and variables.

Contains data definitions and socket structures.

Defines the kernel structure per socket and contains.
buffer queues.

Contains data type definitions.

Defines structures for the UNIX Interprocess
Communication domain.

In addition to the commonly used socket header files, the Internet Address Translation
subroutines require the inclusion of the inet.h file. The inet.h file is located in the
/usr/include/arpa directory.

Sockets 9-5

Socket Address Data structures
The socket data structure defines the socket. During a socket subroutine, the system
dynamically creates the socket data structure. The socket address is specified by a data
structure that is defined in a header file.

The /usr/include/sys/socket.h file contains the sockaddr structure. The sockaddr
structure contains the following elements:

ushort sa_f amily
char sa_data[l4];

The sa_family element contains the socket address family or domain, either AF _UNIX for
the UNIX domain or AF _INET for the Internet domain. The sa_data element represents the
socket name. The contents of the sa_data element depend on the protocol in use.

socket address_family socket address_data

L..t. 2 bytes ... ~ variable size ___.
r--

The types of socket address data structures are as follows:

struct sockaddr_in

struct sockaddr _un

Related Information

Defines sockets used for machine-to-machine communication
across a network and local interprocess communication. The
/usr/include/netinet/in.h file contains the sockaddr_in
structure. The sockaddr_in structure contains the following
elements:

short sin_family;
u short sin_port;
struct in_addr sin_addr;
char sin_zero[8};

Defines UNIX domain sockets used for local interprocess
communication only. These sockets require complete path name
specification and do not traverse networks. The
/usr/include/sys/un.h file contains the sockaddr_un structure.
The sockaddr_un structure contains the following elements:

short
char

sun_family;
sun_path[l08];

Sockets Overview on page 9-1.

Understanding Network Address Translation on page 9-22.

Understanding Socket Communications Domains
Sockets that share common communication properties, such as naming conventions and
protocol address formats, are grouped into communications domains. A communication
domain is sometimes referred to as name space or an address space.

The communication domain includes the following:

• Rules for manipulating and interpreting names
• A collection of related address formats that comprise an address family
• A set of protocols, called the protocol family.

9-6 Communications Programming Concepts

Address formats
The address format indicates what set of rules were used in creating network addresses of a
particular format. For example, in the Internet communication domain, a host address is a
32-bit value that is encoded using one of four rules based on the type of network on which
the host resides.

AIX supports the UNIX and Internet communication domains. Each communication domain
has different rules for valid socket names and interpretation of names. After a socket is
created, it can be given a name according to the rules of the communication domain in
which it was created. For example, in the UNIX communication domain sockets are named
with UNIX path names (a socket can be named "/dev/foo"). Sockets normally exchange data
only with sockets in the same communication domain.

Address families
The socket subroutine takes an address family as a parameter. Specifying an address
family indicates to the system how to interpret supplied addresses. The
/usr/include/socket.h and /usr/include/socketvar.h include files define the address
families supported in AIX.

A socket subroutine that takes an address family as a parameter can use either AF _UNIX
(Address Family UNIX) or AF _INET (Address Family Internet). These address families are
part of the following communication domains:

UNIX

Internet

Provides socket communication between processes running on the same
AIX system when an address family of AF _UNIX is specified. A socket
name in the UNIX domain is a string of ASCII characters whose maximum
length depends on the machine in use.

Provides socket communication between a local process and a process
running on a remote host when an address family of AF _INET is specified.
The Internet domain requires that TCP/IP be installed on your system. A
socket name in the Internet domain is a DARPA Internet address, made up
of a 32-bit IP address and a 16-bit port address.

Communications domains are defined by a loadable data structure that is defined within the
operating system based on the system's configuration.

UNIX Domain Properties
Characteristics of the UNIX domain are as follows:

Types of sockets

Naming

Internet Domain Properties

In the UNIX domain, the SOCK_STREAM typ~ provides pipe-like
facilities, while SOCK_DGRAM usually provides reliable
message-style communications.

Socket names are strings and appear in the UNIX file system name
space through portals.

Characteristics of the Internet domain are as follows:

• Socket types and protocols

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by the UDP
protocol. Each is layered atop the transport-level Internet Protocol (IP). The Internet
Control Message Protocol is implemented atop/beside IP and is accessible through a raw
socket.

Sockets 9-7

• Naming

Sockets in the Internet domain have names composed of the 32 bit Internet address, and
a 16 bit port number. Options may be used to provide IP source routing or security
options. The 32-bit address is composed of network and host parts; the network part is
variable in size and is frequency encoded. The host part may optionally be interpreted as
a subnet field plus the host on a subnet; this is enabled by setting a network address
mask.

• Raw access

The Internet domain allows a program with root user authority access to the raw facilities
of IP. These interfaces are modeled as SOCK_RAW sockets. Each raw socket is
associated with one IP protocol number, and receives, all traffic for that protocol. This
allows administrative and debugging functions to occur, and enables user-level
implementations of special-purpose protocols such as inter-gateway routing protocols.

Communications domains are described by a domain data structure that is loadable in AIX
Version 3·.1. Communications protocols within a domain are described by a structure that is
defined within the system for each protocol implementation configured. When a request is
made to create a socket, the system uses the name of the communication domain to search
linearly the list of configured domains. If the domain is found, the domain's table of
supported protocols is consulted for a protocol appropriate for the type of socket being
created, or for a specific protocol request. (A wildcard entry may exist for a raw domain.)
Should multiple protocol entries satisfy the request, the first is selected.

Related Information
Sockets Overview on page 9-1, Understanding Socket Header Files on page 9-5,
Understanding the Sockets Interface on page 9-3.

Understanding Socket Addresses
Sockets may be named with an address so that processes can connect to them. The socket
layer treats an address as an opaque object. Applications supply and receive addresses as
tagged, variable length byte strings. Addresses always reside in an memory buffer (mbuf)
on entry to the socket layer. A data structure called a sockaddr may be used as a template
for referring to the identifying tag of each socket address.

Each address family implementation includes subroutines for address family-specific
operations on addresses. When addresses must be manipulated (for example, to compare
them for equality) a pointer to the address (a sockaddr structure) is used to extract the
address family tag. This tag is then used to identify the subroutine to invoke for the desired
operation.

Socket Address Storage
It is common for addresses passed in by an application program to reside in mbufs only
long enough for the socket layer to pass them to the supporting protocol for transfer into a
fixed-sized address structure. This occurs, for example, when a protocol records an address
in a protocol control block. The sockaddr structure is the common means by which the
socket layer and network-support facilities exchange addresses. The size of the generic data
array was chosen to be large enough to hold most addresses directly. Communications
domains that support larger addresses may ignore the array size. Only the routing data
structures contain fixed-sized generic sockaddr structures.

• The UNIX communication domain stores filesystem pathnames in mbufs and allows
socket names as large as 1 08 bytes.

9-8 Communications Programming Concepts

• The Internet communication domain uses a structure that combines a DARPA Internet
address and a port number. The Internet protocols reserve space for addresses in an
Internet control-block data structure, and free up mbufs that contain addresses after
copying their contents.

Socket Addresses in TCP/IP
The AIX TCP/IP provides a set of 16-bit port numbers within each host. Because each host
assigns port numbers independently, it is possible for ports on different hosts to have the
same port number. AIX TCP/IP creates the socket address as an identifier that is unique
throughout all Internet networks. AIX TCP/IP concatenates the Internet address of the local
host interface with the port number to devise the Internet socket address.

A socket is an abstract mechanism which provides an endpoint for communication. With
TCP/IP, sockets are not tied to a destination address; applications sending messages can
specify a different destination address for each datagram, if necessary, or they can tie the
socket to a specific destination address for the duration of the conne~tion.

Since the Internet address is always unique to a particular host on a network, the socket
address for a particular socket on a particular host is unique. Additionally, since each
connection is fully specified by the pair of sockets it joins, every connection between Internet
hosts is also uniquely identified.

The port numbers up to 255 are reserved for official Internet services. Port numbers in the
range of 256 to1023 are reserved for other well-known services that are common on Internet
networks. When a client process needs one of these well-known services at a particular
host, the client process sends a service request to the socket address for the well-known
port at the host.

If a process on the host is listening at the well-known port, the server process either
services the request using the well-known port or transfers the connection to another port
that is temporarily assigned for the duration of the connection to the client. Using temporarily
assigned (or secondary) ports frees the well-known port and allows the host well-known port
to handle additional requests concurrently.

The port numbers for well-known ports are listed in the /etc/services file. The port numbers
above 1023 are generally used by processes that need a temporary port once an initial
service request has been received. These port numbers are generated randomly and used
on a first-come, first-served basis.

Related Information
Sockets Overview on page 9-1, Binding Names to Sockets on page 9-13.

TCP/IP Overview for System Management in Communication Concepts and Procedures.

Understanding Socket Types and Protocols
In addition to a address family parameter, the socket creation subroutines take as
parameters a socket type and a socket protocol. An application program specifying a socket
type indicates what communication style is desired for that socket or pair of sockets.
Providing a socket protocol, allows an application program to indicate a specific type of
service that is desired from within allowable services in a protocol family.

Sockets 9-9

Socket Types
Sockets are typed according to their communication properties. Processes usually
communicate only between sockets of the same type. However, if the underlying
communication protocols support the communication, communication can occur between
sockets of different types.

Each socket has an associated type, which describes the semantics of communications
using that socket. The socket type determines the socket communication properties such as
reliability, ordering, and prevention of duplication of messages. The basic set of socket types
is defined in <sys/socket.h>:

/*Standard socket types */

#define SOCK OGRAM

#define SOCK STREAM

#define SOCK RAW

1 /*datagram*/

2 /*virtual circuit*/

3 /*raw socket*/

Other socket types can be defined.

AIX supports the following types of sockets:

SOCK_ OGRAM

SOCK_ STREAM

Provides datagrams, which are connectionless messages of a
fixed maximum length. This type of socket is generally used for
short messages, such as a name server or time server, since the
order and reliability of message delivery is not guaranteed.

In the UNIX domain, SOCK_DGRAM is similar to a message
queue. In the Internet domain, SOCK_DGRAM is implemented
on the UDP/IP protocol.

A datagram socket supports bidirectional flow of data, which is
not sequenced, reliable, or unduplicated. A process receiving
messages on a datagram socket may find messages duplicated,
or in an order different from the sent order. Record boundaries in
data are, however, preserved. Datagram sockets closely model
the facilities found in many contemporary packet switched
networks.

Provides sequenced, two-way byte streams with a transmission
mechanism for stream data. This socket type transmits data on a
reliable basis, in order, and with out-of-band capabilties.

In the UNIX domain, SOCK_STREAM works like a pipe. In the
Internet domain, SOCK_STREAM is implemented on the TCP/IP
protocol.

A stream socket provides for the bidirectional, reliable,
sequenced, and unduplicated flow of data without record
boundaries. Aside from the bidirectionality of data flow, a pair of
connected stream sockets provides an interface nearly identical
to pipes.

9-10 Communications Programming Concepts

SOCK_RAW Provides access to internal network protocols and interfaces.
This type of socket is only available to individuals with root user
authority. A raw socket allows an application to have direct
access to lower-level communications protocols. Raw sockets
are intended for advanced users who wish to take advantage of
some protocol feature not directly accessible through a normal
interface, or who wish to build new protocols atop existing
low-level protocols.

Raw sockets are normally datagram-oriented, though their exact
characteristics are dependent upon the interface provided by the
protocol.

AIX SOCK_DGRAM and SOCK_RAW sockets allow an application program to send
datagrams to correspondents named in send subroutines. Application programs can also
receive datagrams through sockets by using the recv subroutines. When using SOCK_RAW
to communicate with low-level protocols or hardware interfaces, the Protocol parameter is
important; the application program must specify the address family in which the
communication takes place.

AIX SOCK_STREAM sockets are full-duplex byte streams. A stream socket must be
connected before any data can be sent or received on it. When using a stream socket for
data transfer, an application program needs to perform the following sequence:

1. Create a connection to anqther socket with the connect subroutine.

2. Issue the read and write subroutines, or the send and recv subroutines to transfer data.

3. Issue the close subroutine to finish the session.

An application program can use the send and recv subroutines to manage out-of-band data.

SOCK_STREAM communications protocols are designed to prevent the loss or duplication
of data. If a piece of data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable period of time, the connection is broken. When
this occurs, the socket subroutine indicates an error with a return value of -1 and with
ETIMEDOUT as the specific code written to the errno global variable. If a process sends on
a broken stream, a SIGPIPE signal is raised. Processes that cannot handle the signal
terminate. When out-of-band data arrives on a socket, a SIGURG signal is sent to the
process group.

The process group associated with a socket can be read or set by either the SIOCGPGRP
or the SIOCSPGRP ioctl operation. To receive a signal on any data, use both the
SIOCSPGRP and FIOASYNC ioctl operations. These ioctl operations are defined in the
/sys/ioctl.h file.

Socket Protocols
A protocol is a standard set of rules for transferring data, such as UDP/IP and TCP/IP. An
application program may specify a protocol only if more than one protocol is supported for
this particular socket type in this domain.

Each socket may have a specific protocol associated with it. This protocol is used within the
domain to provide the semantics required by the socket type. Not all socket types are
supported by each domain; support depends on the existence and implementation of a
suitable protocol within the domain.

Sockets 9-11

The /usr/include/sys/socket.h file contains a list of socket protocol families supported by
AIX. The following list provides examples of protocol families found in the socket header file:

Pf _UNIX
PF_INET

local communication.
DARPA Internet (TCP/IP).

These protocols are defined to be the same as. their corresponding address families in the
socket header file. Before specifing a protocol family, the programmer should check the
socket header file for currently supported protocol families. Each protocol family consists of
a set of protocols. Major protocols in the suite of Internet Network Protocols include:

• Transmisison Control Protocol (TCP)
• User Datagram Protocol (UDP)
• Internet Protocol (IP)
• Internet Control Message Protocol (ICMP).

Related Information
Sockets Overview on page 9-1, Understanding Socket Header Files on page 9-5,
Understanding the Sockets Interface on page 9-3.

TCP/IP Overview for System Management, Understanding Protocols for TCP/IP in
Communication Concepts and Procedures.

Understanding Socket Creation
Socket Creation

The basis for communication between processes centers on the socket mechanism. The
socket is comparable to the AIX file access mechanism that provides an endpoint for
communication. Application programs request the operating system to create a socket when
one is needed through the use of socket subroutines. Subroutines used to create sockets
are as follows:

• socket
• socketpair

When an application program requests the creation of a new socket, the operating system
returns an integer that the application program uses to reference the newly created socket.
The socket descriptor is an unsigned integer that is the lowest unused number usable for a
descriptor. The descriptor is in index into the kernel descriptor table. A process can obtain a
socket descriptor table by creating a socket or inheriting one from a parent process.

To create a socket with the socket subroutine, the application program must include a
communication domain and a socket type, and it also may include a specific communication
protocol within the specified communication domain.

For additional information that you may need before creating sockets, read the following
concepts:

• Understanding Socket Header Files
• Understanding Socket Connections.

Related Information
The socketpair subroutine.

Sockets Overview on page 9-1, Understanding the Sockets Interface on page 9-3.

Networks Overview in Communication Concepts and Procedures.

9-12 Communications Programming Concepts

Binding Names to Sockets
The socket subroutine creates a socket without a name. An unnamed socket is one without
any association to local or destination addresses. Until a name is bound to a socket,
processes have no way to reference it and consequently, no message can be received on it.

Communicating processes are bound by an association. The bind subroutine allows a
process to specify half of an association: <local address, local port> or <local
pathname>, while the connect and accept subroutines are used to complete a socket's
association. Each domain association may have a different composite of addresses. The
following domain associations are:

Internet domain

UNIX domain

Produces an association composed of local and foreign
addresses, and local and foreign ports.

Produces an association is composed of local and foreign
path names.

An application program may not care abol:Jt the local address it uses and can allow the
protocol software to select one. This is not true for server processes. Server processes that
operate at a well-known port need to be able to specify that port to the system.

In most domains, associations must be unique. Internet domain associations must never be
duplicate <protocol, local address, local port, foreign address,
foreign port> tuples.

UNIX domain sockets need not always be bound to a name, but when bound there may
never be duplicate <protocol, local pathname, foreign pathname> tuples. The
path names may not refer to files already existing on the system.

The bind subroutine requires Socket, Name, and Namelength parameters. The socket is
the integer descriptor of the socket to be bound. The Name parameter specifies the local
address, and the Namelength parameter indicates the length of address in bytes. The local
address is defined by a data structure generally termed sockaddr. The sockaddr structure
starts with a 2-byte field that identifies the address family and is followed by information
specific to that family.

In the Internet domain, a process does not have to bind an address and port number to a
socket, because the connect and send subroutines automatically bind an appropriate
address if they are used with an unbound socket.

The bound name is a variable-length byte string which is interpreted by the supporting
protocol or protocols. Its interpretation may vary from communication domain to
communication domain (this is one of the properties that comprise the domain). In the
Internet domain a name contains an Internet address and port number. In the UNIX domain,
names contain a path name and family, which is always AF _UNIX.

Binding Addresses to Sockets
Binding addresses to sockets in the Internet domain a number of considerations. Port
numbers are allocated out of separate spaces, one for each system and one for each
domain on that system. Since the association is created in two steps, the association
uniqueness requirement indicated previously could be violated unless care is taken. Further,
user programs do not always know proper values to use for the local address and local port
since a host may reside on multiple networks and the set of allocated port numbers is not
directly accessible to a user.

Sockets 9...:13

Wildcard addressing is provided to aid local address binding in the Internet domain. When
an address is specified as INADDR_ANY (a manifest constant defined in the <netinet/in.h>
header file), the system interprets the address as any valid address.

Sockets with wildcard local addresses may receive messages directed to the specified port
number, and sent to any of the possible addresses assigned to a host. If a server process
wished to only allow hosts on a given network to connect to it, it would bind the address of
the host on the appropriate network.·

A local port can be specified or left as unspecified (specified as zero), in which case the
system selects an appropriate port number for it.

The restriction on allocating ports was done to allow processes executing in a secure
environment to perform authentication based on the originating address and port number.
For example, the rlogin(1) command allows users to log in across a network without being
asked for a password, if two conditions hold:

1. The name of the system the user is logging in from is located in the /etc/hosts.equiv file
on the system that the user is trying to log in to (or the system name and the user name
are in the user's .rhosts file in the user's home directory).

2. The user's rlogin process is coming from a privileged port on the machine from which
the user is logging.

The port number and network address of the machine from which the user is logging in can
be determined either by the From result of the accept subroutine, or from the getpeername
subroutine.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for
an application program. This is because associations are created in a two step process. For
example, the Internet file transfer protocol, FTP, specifies that data connections must always
originate from the same local port. However, duplicate associations are avoided by
connecting to different foreign ports. In this situation the system would disallow binding the
same local address and port number to a socket if a previous data connection's socket still
existed. To override that default port selection algorithm, a setsockopt subroutine must be
performed prior to address binding.

The socket subroutine creates a socket without any association to local or destination
addresses. For the Internet protocols, this means no local protocol port number has been
assigned. In many cases, application programs do not care about the local address they use
and are willing to allow the protocol software to choose one for them. However, server
processes that operate at a well-known port must be able to specify that port to the system.
Once a socket has been created, a server uses the bind subroutine to establish a local
address for it.

Not all possible binding are valid. For example the caller might request a local protocol port
that is already in use by another program, or it might request an invalid local Internet
address. In such cases, the bind subroutine fails and returns and error message.

Obtaining Socket Addresses
New sockets sometimes inherit the set of open sockets that created them. The sockets
program interface includes subroutines that allow an application to obtain the address of the
destination to which a socket connects and the local address of a socket. The socket
subroutines that allow a prqgram to retrieve socket addresses are the following:

• getsockname
• getpeername

9-14 Communications Programming Concepts

For additional information that you may need before binding or obtaining socket addresses,
read the following concepts:

• Understanding Socket Header Files
• Understanding Socket Addresses
• Understanding Socket Connections.

Related Information
The accept subroutine, bind subroutine, connect subroutine, getpeername subroutine,
getsockopt subroutine, rlogin command, rhosts file, send subroutine, socket subroutine,
socketpair subroutine.

Sockets Overview on page 9-1, Understanding the Sockets Interface on page 9-3.

Understanding Addresses for TCP/IP in Communication Concepts and Procedures.

Understanding Socket Connections

Socket Connection
Initially, a socket is created in the unconnected state, which means that the socket is not
associated with any foreign destination. The connect subroutine binds a permanent
destination to a socket, placing it in the connected state. An application program must call
the connect subroutine to establish a connection before it can transfer data through a
reliable stream socket. Sockets used with connectionless datagram services need not be
connected before they are used, but connecting sockets makes it possible to transfer data
without specifying the destination each time.

The semantics of the connect subroutine depend on the underlying protocols. An
application program desiring reliable stream delivery service in the Internet family should
select the Transmission Control Protocol (TCP). In such cases, the connect subroutine
builds a TCP connection with the destination and returns an error if it cannot. In the case of
connectionless services, the connect subroutine does nothing more than store the
destination address locally.

Connections are established between a client process and a server process. In a
connection-oriented network environment, a client process initiates a connection and a
server process receives, or responds to, a connection. The client and server interactions
occur as follows:

• The server, when willing to offer its advertised services, binds a socket to a well-known
address associated with the service, and then passively listens on its socket. It is then
possible for an unrelated process to rendezvous with the server.

• The server process socket is marked to indicate incoming connections are to be accepted
on it.

• The client requests services from the server by initiating a connection to the server's
socket. The client process uses a connect subroutine to initiates a socket connection.

• If the client process's socket is unbound at the time of the connect call, the system
automatically selects and bind a name to the socket if necessary. This is the usual way
that local addresses are bound to a socket.

• The system returns an error if the connection fails (any name automatically bound by the
system, however, remains). Otherwise, the socket is associated with the server and data
transfer may begin.

Sockets 9-15

Server Connections
The server process creates a socket, binds it to a well-known protocol port, and waits for
request~. If the server process uses a reliable stream delivery or the computing a response
takes a significant amount of time, it may happen that a new request arrives before the
server finishes responding to an old request. The listen subroutine allows server processes
to prepare a socket for incoming connections. In terms of underlying protocols, the listen
subroutine puts the socket in a passive mode ready to accept connections. When the server
process invokes the listen subroutine, it also informs the operating system that the protocol
software should enqueue multiple simultaneous requests that arrive at a socket. The listen
subroutine includes a parameter that allows a process to specify the length of the request
queue for that socket. If the queue is full when a connection request arrives, the operating
system refuses the connection by discarding the request. The listen subroutine applies only
to sockets that have selected reliable stream delivery service.

A server process uses the socket, bind, and listen subroutines to create a socket, bind it to
a well-known protocol port, and specify a queue length for connection requests. Invoking the
bind subroutine associates the socket with a well-known protocol port, but the socket is not
connected to a specific foreign destination. The server process may specify a wild card
allowing the socket to receive connection request from an arbitrary client.

Once a socket has been set up, the server process needs to wait for a connection. The
server process waits for a connection by using the accept subroutine. A call to accept
blocks until a connection request arrives. When a request arrives, the operating system
returns the address of the client process that has placed the request. The operating system
also creates a new socket that has its destination connected to the requesting client process
and returns the new socket descriptor to the calling server process. The original socket still
has a wildcard foreign destination and it still remains open.

When a connection arrives, the call to accept returns. The server process can either handle
requests iteratively or concurrently. In the iterative approach, the server handles the request
itself, closes the new socket, and then invokes the accept subroutine to obtain the next
connection request. In the concurrent approach, after the call to accept returns, the server
process forks a new process to handle the request. The new process inherits a copy of the
new socket, so it proceeds to service the request and then exists. The original server
process must close its copy of the new socket and then invoke the accept subroutine to
obtain the next connection request.

The concurrent design for server processes results in multiple processes using the same
local protocol port number. In TCP style communication, a pair of endpoints define a
connection. Thus, it does not matter how many processes use a given local protocol port
number as long as they connect to different destinations. In the case of a concurrent server,
there is one process per client and one additional process that accepts connections. The
main server process has a wildcard for the destination, allowing it to connect with an
arbitrary foreign site. Each remaining process has a specific foreign destination. When a
TCP data segment arrives, it is sent to the socket connected to the segment's source. If no
such socket exists, the segment is sent to the socket that has a wildcard for its foreign
destination. Furthermore, because the socket with a wildcard foreign destination does not
have an open connection, it only honors TCP segments that request a new connection.

Connectionless Datagram Services
AIX also provides support for connectionless interactions typical of the datagram facilities
found in packet switched networks. A datagram socket provides a symmetric interface to
data exchange. While processes are still likely to be client and server, there is no
requirement for connection establishment. Instead, each message includes the destination
address.

9-16 Communications Programming Concepts

An application program can create datagram sockets using the subroutine. If a particular
local address is needed, a subroutine must precede the first data transmission. Otherwise,
the operating system sets the local address and/or port when data is first sent. The
application program can use the subroutine and subroutines to transmit data; these calls
include parameters that allow the client process to specify the address of the intended
recipient of the data.

In addition to the sendto and recvfrom calls, datagram sockets can also use the connect
subroutine to associate a socket with a specific destination address. In this case, any data
sent on the socket is automatically addressed to the connected peer socket, and only data
received from that peer is delivered to the client process. Only one connected address is
permitted for each socket at one time; a second connect subroutine changes the destination
address.

A connect subroutine requests on datagram sockets return immediately, as this simply
results in the operating system recording the peer socket's address (as compared to a
stream socket, where a connect request initiates establishment of an end to end
connection). The accept and listen subroutines are not used with datagram sockets.

While a datagram socket is connected, errors from recent send subroutines may be
returned asynchronously. These errors may be reported on subsequent operations on the
socket, or a special socket option, SO_ERROR, used with the getsockopt subroutine can
be used to interrogate the error status. A select subroutine for reading or writing returns true
when a process receives an error indications. The next operation returns the error, and the
error status is cleared.

For additional information that you may need before connecting sockets, read the following
concepts:

• Understanding Socket Header Files
• Understanding Socket Types and Protocols.

Related Information
The accept subroutine, bind subroutine, connect subroutine, listen subroutine,
getsockopt subroutine, recvfrom subroutine, select subroutine, send subroutine, sendto
subroutine.

Sockets Overview on page 9-1, Understanding the Sockets Interface on page 9-3.

TCP/IP Overview for System Management, Understanding Protocols for TCP/IP in
Communication Concepts and Procedures.

Understanding Socket Options
Socket Options

In addition to binding a socket to a local address or connecting it to a destination address,
application programs need a method to control the socket. For example, when using
protocols that use time-out and retransmission, the application program may want to obtain
or set the time-out parameters. An application program may also want to control the
allocation of buffer space, determine if the socket allows transmission of broadcast, or
control processing of out-of-band data. The ioctl,.style getsockopt and setsockopt
subroutines provide the application program with the means to control socket operations.
The getsockopt subroutine allows an application program to request information about
socket options. The setsockopt subroutine allows an application program to set a socket
option using the same set of values obtained with the getsockopt subroutine. Not all socket

Sockets 9-17

options apply to all sockets. The options that can be set depend on the current state of the
socket and the underlying protocol being used.

For additional information that you may need when obtaining or setting socket options, read
the following concepts:

• Understanding Socket Header Files
• Understanding Socket Types and Protocols
• Out-of-Band Data

Related Information
The getsockopt subroutine, setsockopt subroutine.

Sockets Overview on page 9-1, Understanding the Sockets Interface on page 9-3.

Understanding Socket Data Transfer

Socket Data Transfer
Most of the work performed by the socket layer is in sending and receiving data. The socket
layer itself explicitly refrains from imposing any structure on data transmitted or received
through sockets. Any data interpretation or structuring is logically isolated in the
implementation of the communication domain.

Once a connection is established between sockets, an application program can send and
receive data. Sending and receiving data can be done with any one of several subroutines.
The subroutines vary according to the amount of information to be transmitted and received
and the state of the socket being used to perform the operation.

• The write subroutine may be used with a socket that is in a connected state, as the
destination of the data is implicitly specified by the connection.

• The sendto or sendmsg subroutines allow the process to specify the destination for a
message explicitly.

• The read subroutine allows a process to receive data on a connected socket without
receiving the sender's address.

• The recvfrom and recvmsg subroutines allow the process to retrieve the incoming
message and the sender's address.

Internally, all transmission and reception requests are converted to a uniform format and are
passed to the socket-layer sendit() and recvit () subroutines.

While the send subroutine and recv subroutine are virtually identical to the read and write
subroutines, the extra flags argument in the send and recv subroutines is important. The
flags, defined in the sys/socket.h header file, can be defined as a nonzero value if the
application program requires one or more of the following:

MSG_ OOB Send/receive out-of-band data
MSG_PEEK Look at data without reading
MSG_DONTROUTE Send data without routing packets

Out-of-band data is specific to stream sockets. The option to have data sent without routing
applied to the outgoing packets is currently used only by the routing table management
process, and is unlikely to be of interest to the casual user. The ability to preview data is,
however of general interest. When MSG_PEEK is specified with a recv subroutine, any data

9-18 Communications Programming Concepts

present is returned to the user, but treated as still unread. That is, the next read or recv
subroutine applied to the socket returns the data previously previewed.

Out-of-Band Data
The stream socket abstraction includes the concept of out-of-band data. Out-of-band data is
a logically independent transmission channel associated with each pair of connected stream
sockets. Out-of-band data can be delivered to the socket independently of the normal
receive queue oc within the receive queue depending upon the status of SO_OOBINLINE.
The abstraction defines that the out-of-band data facilities must support the reliable delivery
of at least one out-of-band message at a time. This message must contain at least one byte
of data, and at least one message may be pending delivery to the user at any one time.

For communications protocols which support only in-band signaling (i.e the urgent data is
delivered in sequence with the normal data), the operating system normally extracts the data
from the normal data stream and stores it separately. This allows users to choose between
receiving the urgent data in order and receiving it out of sequence without having to buffer all
the intervening data.

It is possible to peek at out-of-band data. If the socket has a process group, a SIGURG
signal is generated when the protocol is notified of out-of-band data. A process can set the
process group or process id to be informed by the SIGURG signal through a SIOCSPGRP
ioctl call.

Note: The /usr/include/sys/ioctl.h file contains the ioctl definitions and structures for use
with socket ioctl calls.

If multiple sockets have out-of-band data awaiting delivery, an application program can use a
select subroutine for exceptional conditions to determine those sockets with such data
pending. Neither the signal nor the select indicates the actual arrival of the out-of-band data,
but only notification that is pending.

In addition to the information passed, a logical mark is placed in the data stream to indicate
the point at which the out-of-band data was sent. When a signal flushes any pending output,
all data up to the mark in the data stream is discarded.

To send an out-of-band message the MSG_OOB flag is supplied to a send or a sendto
subroutine. To receive out-of-band data, an application program must set the MSG_OOB
flag when performing a recvfrom or recv subroutine.

An application program can determine if the read pointer is currently pointing at the logical
mark in the data steam, by using the SIOCATMARK ioctl call.

A process can also read or peek at the out-of-band data without first reading up to the logical
mark. This is more difficult when the underlying protocol delivers the urgent data in-band
with the normal data, and only sends notification of its presence ahead of time (e.g., the TCP
protocol used to implement streams in the Internet domain). With such protocols, the
out-of-band byte may not yet have arrived when a recv subroutine is done with the
MSG_OOB flag. In that case, the call will return an error of EWOULDBLOCK. There may be
enough in-band data in the input· buffer that normal flow control prevents the peer from
sending the urgent data until the buffer is cleared. The process must then read enough of
the queued data that the urgent data may be delivered.

Sockets 9-19

Certain program that use multiple bytes of urgent data and must handle multiple urgent
signals need to retain the position of urgent data within the stream. The socket-level option,
SO_OOINLINE provides the capability. With this option, the position of the urgent data (the
logical mark) is retained. The urgent data immediately follows the mark within the normal
data stream that is returned without the MSG_OOB flag. Reception of multiple urgent
indications causes the mark to move, but no out-of-band data are lost.

Socket 110 Modes
Sockets can be set to either blocking or nonblocking 1/0 mode. The FIONBIO ioctl operation
is used to determine this mode. When the FIONBIO ioctl is set, the socket is marked
nonblocking. If a read is tried and the desired data is not available, the socket does not wait
for the data to become available, but returns immediately with the EWOULDBLOCK error
code.

Note: The EWOULDBLOCK error code is defined with _BSD define and is equivalent to
EAGAIN error code.

When the FIONBIO ioctl is not set, the socket is in blocking mode. In this mode, if a read is
tried and the desired data is not available, the desired data is not available, the calling
process waits for the data. Similarly, when writing, if FIONBIO is set and the output queue is
full, an attempt to write causes the process to return immediately with an error code of
EWOULDBLOCK.

When performing non-blocking 1/0 on sockets, a program must check for the error
EWOULDBLOCK (stored in the global value errno), which occurs when an operation would
normally block, but the socket it was performed on is marked as non-blocking. The following
socket subroutines all return EWOULDBLOCK:

• accept subroutine
• connect subroutine
• send subroutine
• recv subroutine
• read subroutine
• write subroutine.

Processes using these subroutines should be prepared to deal with the EWOULDBLOCK
return codes. If an operation such as a send operation cannot be done in its entirety, but
partial writes are permissible (for example when using a stream socket), the data that can be
sent immediately will be processed, and the return value will indicate the amount actually
sent.

Related Information
Sockets Overview on page 9-1, Understanding Socket Header Files on page 9-5,
Understanding the Sockets Interface on page 9-3.

9-20 Communications Programming Concepts

Understanding Socket Shutdown

Socket Shutdown
Once a socket is no longer required, the calling program can discard the socket by applying
a close subroutine to the socket descriptor. If a reliable delivery socket has data associated
with it when a close takes place, the system continues to attempt data transfer. However, if
the data is still undelivered, the system discards the data. Should the application program
have no use for any pending data, it can use the shutdown subroutine on the socket prior to
closing it.

Closing Sockets
Closing a socket and reclaiming its resouces is not always a straightforward operation. In
certain situations, such as when a process exits, a close subroutine is never expected to
fail. However, when a socket promising reliable delivery of data is closed with data still
queued for transmission or awaiting acknowledgment of reception, the socket must attempt
to transmit the data. If the socket discards the queued data to allow the close subroutine to
complete successfully, it violates its promise to deliver data reliably. Discarding data can
cause naive processes, which depend upon the implicit semantics of the close call, to work
unreliably in a network environment. However, if sockets block until all data have been
transmitted successfully, in some communication domains a close subroutine may never
complete.

The socket layer compromises in an effort to address this problem yet to maintain the
semantics of the close subroutine. In normal operation, closing a socket causes any queued
but unaccepted connections to be discarded. If the socket is in a connected state, a
disconnect is initiated. The socket is marked to indicate that a file descriptor is no longer
referencing it, and the close operation returns successfully. When the disconnect request
completes, the network support notifies the socket layer, and the socket resources are
reclaimed. The network layer may attempt to transmit any data queued in the socket's send
buffer, although this is not guaranteed.

Alternatively, a socket may be marked explicitly to force the application program to linger
when closing until pending data are flushed and the connection has shutdown. This option is
marked in the socket data structure using the setsockopt subroutine with the SO_LINGER
option. The setsockopt subroutine, using the linger option, takes a linger structure. When
an application program indicates that a socket is to linger, it also specifies a duration for the
lingering period. If the lingering period expires before the disconnect is completed, the
socket layer forcibly shuts down the socket, discarding any data still pending.

Related Information
The close subroutine, linger structure, setsockopt subroutine, shutdown subroutine,.

Sockets Overview on page 9-1.

Sockets 9-21

Understanding Network Address Translation

Network Address Translation

Host Names

Network Library subroutines enable an application program to locate and construct network
addresses while using interprocess communications facilities in a distributed environment.

Locating a service on a remote host requires many levels of mapping before client and
server can communicate. A network service is assigned a name which is intended to be
understandable for a user; such as "the login server on host prospero." This name and the
name of the peer host must then be translated into network addresses. Finally, the address
must then be used in determining a physical location and route to the service.

Network Library subroutines map:

• Host names to network addresses.
• Network names to network numbers.
• Protocol names to protocol numbers.
• Service names to port numbers.

Additional network library subroutines exist to simplify manipulation of names and
addresses.

An application program must include the <netdb.h> header file when using any of the
Network Library subroutines.

The following related network library subroutines map Internet host names to addresses:

• gethostbyaddr subroutine
• gethostbyname subroutine
• sethostent subroutine
• endhostent subroutine.

The official name of the host and its public aliases are returned by the gethostbyaddr
subroutine and the gethostbyname subroutine, along with the address family and a null
terminated list of variable length addresses. The list of variable length addresses is required
because it is possible for a host to have many addresses, all with the same name.

The database for these calls is provided either by the /etc/hosts file or by use of a named
nameserver. Because of the differences in the databases and their access protocols, the
information returned may differ. When using the host table version of gethostbyname only
one address is returned, but all listed aliases are included. The nameserver version may
return alternate addresses but does not provide any aliases other than one given as a
parameter value.

Network Names
The following related network library subroutines map network names to numbers and
network numbers to names:

• getnetbyaddr subroutine
• getnetbyname subroutine
• getnetent subroutine
• setnetent subroutine
• endnetent subroutine.

9-22 Communications Programming Concepts

The getnetbyaddr subroutine, getnetbyname subroutine, and getnetent subroutines
extract their information from the /etc/networks file.

Protocol Names
Related network library subroutines used to map protocol names are as follows:

• getprotobynumber subroutine
• getprotobyname subroutine
• getprotoent subroutine
• setprotoent subroutine
• endprotoent subroutine.

The getprotobynumber subroutine, getprotobyname subroutine, and getprotoent
subroutines extract their information from the /etc/protocols file.

Service Names
The following related network library subroutines map service names to port numbers:

• getservbyname subroutine
• getservbyport subroutine
• getservent subroutine
• setservent subroutine
• endservent subroutine.

A service is expected to reside at a specific port and employ a particular communication
protocol. The expectation is consistent with the Internet domain, but inconsistent with other
network architectures. Further, a service may reside on multiple ports. If a service resides on
multiple ports, the higher level library subroutines must be bypassed or extended. Services
available are contained in the /etc/services file.

Network Byte Order Translation
The following related network library subroutines convert network address byte order:

• htonl subroutine
• htons subroutine
• ntohl subroutine
• ntohs subroutine.

Internet Address Translation
The following related network library subroutines convert Internet addresses and dotted
decimal notation:

• inet_addr subroutine
• inet_lnaof subroutine
• inet_makeaddr subroutine
• inet_netof subroutine
• inet_network subroutine
• inet_ntoa subroutine.

· Sockets 9-23

Network Host and Domain Names
AIX maintains an integer, called a hostid that identifies the host machine. Host ids fall under
the category of Internet Network Addressing because, by convention, the 32-bit Internet
address is used. The socket subroutines that manage the host ID are the following:

• gethostid
• sethostid

The following socket subroutines manage the internal host name are the following;

• gethostname
• sethostname

AIX maintains a string that specifies the naming domain under which the machine falls.
When a site obtains authority for part of the domain name space, it invents a string that
identifies its piece of the space and uses that string as the name of the domain. To manage
the domain name, applications can use the following socket subroutines:

• getdomainname
• setdomainname

Related Information
Sockets Overview on page 9-1, Understanding Socket Header Files on page 9-5,
Understanding the Sockets Interface on page 9-3.

Understanding Domain Name Resolution

Domain Name Resolution
When a process receives a symbolic name and needs to resolve it into an address, it calls a
resolver subroutine. The method used by the subroutine to resolve names depends on the
local host configuration. In addition, the organization of the network determines how
resolver subroutines communicate with remote nameserver hosts (the hosts that resolve
names for other hosts).

The resolver subroutines determine which type of network they are dealing with by
determining whether the /etc/resolv.conf file exists. If the file exists, the subroutines
assume that the local network has a nameserver. Otherwise, they assume that no
nameserver is present.

To resolve a name with no nameserver present, the resolver subroutine checks the
/etc/hosts file file for an entry that maps the name to an address.

To resolve a name in a nameserver network, the resolver subroutine first queries the
domain nameserver database, which may be local if the host is a domain name server or
may be on a foreign host. If the subroutine is using a remote name server, the subroutine
uses the Domain Name Protocol (DOMAIN) to query for the mapping. If this query fails, the
subroutine then checks for an entry in the local /etc/hosts file.

Resolver subroutines are used to make, send, and interpret packets for name servers in the
Internet domain. Together the following subroutines form the resolver, a set of functions that
resolves domain names:

• res_mkquery subroutine
• res_send subroutine
• res_init subroutine

9-24 Communications Programming Concepts

• dn_comp subroutine
• dn_expand subroutine
• dn_skip subroutine
• dn_find subroutine
• getshort subroutine
• getlong subroutine
• putshort subroutine
• putlong subroutine .

Global information that is used by these resolver subroutines is kept in the _res structure.
This structure is defined in the /usr/include/resolv.h header file, and it contains the
following members:

int retrans;
retry;
options;
nscount;

int
long
int
struct
ushort
char
#define

sockaddr_in nsaddr_list [MAXNS];
id;
defdname [MAXDNAME];
nsaddr nsaddr_list [OJ

The options field of the _res structure is constructed by logically ORing the following
values:

RES_INIT

RES_DEBUG

RES_USEVC

RES_STAYOPEN

RES_RECURSE

RES_DEFNAMES

Related Information

Indicates whether the initial name server and default domain name
have been initialized (that is, whether the res_init subroutine has
been called).

Prints debugging messages.

Uses TCP/IP connections for queries instead of UDP/IP.

Used with RES_USEVC, keeps the TCP/IP connection open
between queries. While UDP/IP is the mode normally used, TCP/IP
mode and this option are useful for programs that regularly perform
many queries.

Sets the Recursion Desired bit for queries. This is the default.

Note that the res_send subroutine does not perform iterative
queries and expects the name server to handle recursion.

Appends the default domain name to single label queries. This is
the default.

Sockets Overview on page 9-1, Understanding Socket Header Files on page 9-5,
Understanding the Sockets Interface on page 9-3.

TCP/IP Overview for System Management, Domain Name Protocol, Understanding Naming
for TCP/IP in Communication Concepts and Procedures.

Sockets 9-25

Understanding Socket Examples

Socket Examples
The socket examples are programming fragments illustrating a socket function. They cannot
be used in an application program without modification. They are intended only for
illustrative purposes and not for use within a program.

All socket applications must be compiled with _BSD defined. In addition, most should
probably include the libBSD BSD librar .

Related Information
Sockets Overview on page 9-1, Understanding Socket Header Files on page 9-5.

List of Socket Examples

9-26 Communications Programming Concepts

List of Socket Kernel Service Subroutines
accept

bind

Accepts a connection on a socket to create a new socket.

Binds a name to a socket.

connect Connects two sockets.

getdomainname
Gets the name of the current domain.

gethostid Gets the unique identifier of the current host.

gethostname Gets the unique name of the current host.

getpeername Gets the name of the peer socket.

getsockname Gets the socket name.

getsockopt Gets options on sockets.

listen Listens for socket connections and limits the backlog of incoming
connections.

Receives messages from connected sockets.

Receives messages from sockets.

Receives a message from any socket.

Sends messages from a connected socket.

recv

recvfrom

recvmsg

send

sendmsg

sendto

Sends a message from a socket by using a message structure.

Sends messages through a socket.

setdomainname
Sets the name of the current domain.

sethostid Sets the unique identifier of the current host.

sethostname Sets the unique name of the current host.

setsockopt Sets socket options.

Shuts down all socket send and receive operations. shutdown

socket

socketpair

Creates an end point for communication and returns a descriptor.

Creates a pair of connected sockets.

List of Network Library Socket Subroutines
dn_comp

dn_expand

dn_find

Compresses a domain name.

Expands a compressed domain name.

Searches for an expanded domain name.

dn_skipname Skips over a compressed domain name.

endhostent Ends retrieval of network host entries.

endnetent Closes the networks file.

endprotoent Closes the /etc/protocols file.

Sockets 9-27

endservent Closes the /etc/service file entry.

gethostbyaddr
Gets network host entry by address.

gethostbyname
Gets network host entry by name.

gethostent Gets host entry from the /etc/hosts file.

getnetbyaddr Gets network entry by address.

getnetbyname Gets network entry by name.

getnetent Gets network entry.

getprotobyname
Gets protocol entry from the /etc/protocols file by protocol name.

getprotbynumber
Gets a protocol entry from the /etc/protocols file by number.

getprotoent Gets protocol entry from the /etc/protocols file.

_getlong Retrieves long byte quantities.

_getshort Retrieves short byte quantities.

getservbyname
Gets service entry by name.

getservbyport Gets service entry by port.

getservent

htonl

htons

inet_addr

inet_lnaof

inet_ makeadd r

inet_netof

Gets services file entry.

Converts an unsigned long integer from host byte order to Internet network
byte order.

Converts an unsigned short integer from host byte order to Internet network
byte order.

Converts Internet addresses to Internet numbers.

Separates local Internet addresses into their network number and local
network address.

Makes an Internet address.

Separates network Internet addresses into their network number and local
network address.

inet_network Converts Internet network addresses in . (dot) notation to Internet numbers.

inet_ntoa Converts an Internet address into an ASCII string.

ntohl Converts an unsigned long integer from Internet network standard byte
order to host byte order.

ntohs

_putlong

_puts ho rt

rcmd

Converts an unsigned short integer from Internet network byte order to host
byte order.

Places long byte quantities into the byte stream.

Places short byte quantities into the byte stream.

Allows execution of commands on a remote host.

9-28 Communications Programming Concepts

res_init Searches for a default domain name and Internet address.

res_mkquery Makes query messages for name server.

res_send Sends a query to a name server and retrieves a response.

rexec Allows command execution on a remote host.

rresvport Retrieves a socket with a privileged address.

ruserok Allows servers to authenticate clients.

sethostent Opens network host file.

setnetent Opens and rewinds the network file.

setprotoent Opens and rewinds the /etc/protocols file.

setservent Gets service file entry.

List of Socket Header Files
/usr/include/netinet/in.h

/usr/include/arpa/nameser.h

/usr/include/netdb. h

/usr/include/resolv.h

/usr/include/sys/socket.h

/usr/include/sys/socketvar.h

Defines Internet constants and structures.

Contains Internet nameserver information.

Contains data definitions for socket subroutines.

Contains resolver global definitions and variables.

Contains data definitions and socket structures.

Defines the kernel structure per socket and contains
buffer queues.

Contains data type definitions. /usr/include/sys/types.h

/usr/include/sys/un.h Defines structures for the UNIX Interprocess
Communication domain.

List of Socket Examples
• Socketpair Communication Example Program

• Reading UNIX Datagrams Example Program

• Sending UNIX Datagrams Example Program

• Reading Internet Datagrams Example Program

• Sending Internet Datagrams Example Programs

• Initiating Internet Stream Connections Example Program

• Accepting Internet Stream Connections Example Program

• Initiating UNIX Stream Connections Example Program

• Accepting UNIX Stream Connections Example Program

• Checking for Pending Connections Example Program.

Sockets 9-29

Socketpair Communication Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

/* This program fragment creates a pair of connected sockets then
* forks and communicates over them. Socketpairs have a two-way
* communication path. Messages can be sent in both directions.
*/

#include <stdio.h>
#include <sys/socket.h>
#include <sys/types.h>

#define DATA! "In Xanadu, did Kublai Khan ... "
#define DATA2 "A stately pleasure dome decree ... "

main ()
{

}

int sockets[2], child;
char buf[l024];

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockets) < 0) {
perror("opening stream socket pair");
exit(l);

}

if ((child= fork()) == -1)
perror("fork");

else if (child) { /* This is the parent. */
close(sockets[O]);
if (read(sockets[l], buf, 1024, 0) < 0)

perror("reading stream message");
printf("->%s\n", buf);
if (write(sockets[l], DATA2, sizeof(DATA2)) < 0)

perror("writing stream message");
close(sockets[l]);

} else { /* This is the child. */

}

close(sockets[l]);
if (write(sockets[O], DATAl, sizeof(DATAl)) < 0)

perror("writing stream message");
if (read(sockets[O], buf, 1024, 0) < 0)

perror("reading stream message");
printf("->%s\n", buf);
close(sockets[O]);

9-30 Communications Programming Concepts

Reading UNIX Datagrams Example Program
The following program is incomplete and is intended to only illustrate the use of socket
subroutines. It cannot be compiled, linked, or executed without modification.

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

/*
* In the include file <sys/un.h>, a sockaddr_un is defined as
* follows:
* struct sockaddr_un {
* short sun_family;
* char sun_path[l08];
* } ;
*/

#include <stdio.h>

#define NAME "socket"

/*
* This program creates a UNIX domain datagram socket, binds a
* name to it, then reads from the socket.
*/

main()
{

}

int sock, length;
struct sockaddr un name;
char buf[l024];

/* Create socket from which to read. */
sock= socket(AF_UNIX, SOCK_DGRAM, 0);
if (sock < 0) {

}

perror("opening datagram socket");
exit(l);

/* Create name. */
name.sun_family = AF_UNIX;
strcpy(name.sun_path, NAME);
if (bind(sock, &name, sizeof(struct sockaddr_un))) {

perror("binding name to datagram socket");
exit(l);

}

printf("socket ->%s\n", NAME);
/* Read from the socket */
if (read(sock, buf, 1024) < 0)

perror("receiving datagram packet");
printf("->%s\n", buf);
close (sock) ;
unlink (NAME) ;

Sockets 9-31

Sending UNIX Datagrams Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

/*
* This program fragment sends a datagram to a receiver whose
* name is retrieved from the command line arguments. The form
* of the command line is <udgramsend pathname>.
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define DATA "The sea is calm tonight, the tide is full. •• "

main(argc, argv)
int argc;
char *argv[];

{

}

int sock;
struct sockaddr_un name;

/* Create socket on which to send. */
sock= socket(AF_UNIX, SOCK_DGRAM, O);
if (sock< 0) {

}

perror("opening datagram socket");
exit(l);

/* Construct name of socket to send to. */
name.sun_family = AF_UNIX;
strcpy(name.sun_path, argv[l]);

/* Send message. */
if (sendto(sock, DATA, sizeof(DATA), O, &name,

sizeof(struct sockaddr_un)) < 0) {
perror("sending datagram message");

}
close (sock) ;

9-32 Communications Programming Concepts

Reading Internet Datagrams Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

/*
* In the include file <netinet/in.h>, a sockaddr in is defined as
* follows:
* struct sockaddr_in {
* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[B];
* };
* This program creates a datagram socket, binds a name to it,
* then reads from the socket.
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

main ()
{

}

int sock, length;
struct sockaddr in name;
char buf[l024];

/* Create socket from which to read. */
sock= socket(AF_INET, SOCK_DGRAM, O);
if (sock < 0) {

}

perror("opening datagram socket");
exit(l);

/* Create name with wildcards. */
name.sin_family = AF_INET;
name.sin_addr.s_addr = INADDR_ANY;
name.sin_port = O;
if (bind(sock, &name, sizeof(name))) {

perror("binding datagram socket");
exit(l);
}

/* Find assigned port value and print it out. */
length = sizeof (name)
if (getsockname(sock, &name, &length)) {

perror("getting socket name");
exit(l);

}

printf("Socket has port #%d\n", ntohs(name.sin_port));
/* Read from the socket */
if (read(sock, buf, 1024) < 0)

perror("receiving datagram packet");
printf("->%s\n", buf);
close (sock) ;

Sockets 9-33

Sending Internet Datagrams Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

/*
* This program fragment sends a datagram to a receiver whose

name is retrieved from the command line arguments. The form
of the command line is <dgramsend hostname portnumber>.

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "The sea is calm tonight, the tide is full •.• "

main(argc, argv)
int argc;
char *argv [];

{

}

int sock;
struct sockaddr in name;
struct hostent *hp, *gethostbyname();

/* Create socket on which to send. */
sock= socket(AF_INET, SOCK_DGRAM, O);
if (sock < 0) {

}

perror("opening datagram socket");
exit(l);

/*
* Construct name, with no wildcards, of the socket to send to.
* Gethostbyname() returns a structure including the network
* address of the specified host. The port number is taken
* from the command line.
*/

hp= gethostbyname(argv[l]);
if (hp == 0) {

}

fprintf(stderr, "%s: unknown hostO", argv[l]);
exit(2);

bcopy(hp->h_addr, &name.sin_addr, hp->h_length);
name.sin_family = AF_INET;
name.sin_port = htons(atoi(argv[2]));
/* Send message. */
if (sendto(sock, DATA, sizeof(DATA), 0, &name,

sizeof(name)) < 0)
perror("sending datagram message");

close (sock) ;

9~34. Communications Programming Concepts

Initiating Internet Stream Connections Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

/*
* This program creates a socket and initiates a connection with
* the socket given in the command line. One message is sent over
* the connection and then the socket is closed, ending the
* connection. The form of the command line is <streamwrite
* hostname portnumber>.
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Half a league, half a league ... "

main(argc, argv)
int argc;
char *argv[];

{
int sock;
struct sockaddr in server;
struct hostent *hp, *gethostbyname();
char buf[l024];

/* Create socket */
sock= socket(AF_INET, SOCK_STREAM, O);
if (sock < 0) {

}

perror("opening stream socket");
exit (1);

/* Connect socket using name specified by command line. */
server.sin_family = AF_INET;

}

hp= gethostbyname(argv[l]);
if (hp == 0) {

}

fprint(stderr, "%s: unknown hostO", argv[l]);
exit(2);

bcopy(hp->h_addr, &server.sin_addr, hp->h_length);
server.sin_port = htons(atoi(argv[2]));

if (connect(sock, &server, sizeof(server)) , 0) {
perror("connecting stream socket");
exit(l);

}
if (write(sock, DATA, sizeof(DATA)) , 0)

perror("writing on stream socket");
close (sock);

Sockets 9-35

Accepting Internet Stream Connections Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

/*
* This program creates a socket and then begins an infinite loop.
* Each time through the loop it accepts a connection and prints
* out messages from it. When the connection breaks, or a
* termination message comes through, the program accepts a new
* connection.
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

main ()
{

int sock, length;
struct sockaddr in server;
int msgsock;
char buf[l024];
int rval;
int i;

/* Create socket */
sock= socket(AF_INET, SOCK_STREAM, O);
if (sock < 0) {

}

perror("opening stream socket");
exit(l);

/* Name socket using wildcards. */
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin_port = O;
if (bind(sock, &server, sizeof(server))) {

perror("binding stream socket");
exit(l);

}
/* Find out assigned port number and print it out */
length= sizeof(server);
if (getsockname(sock, &server, &length)) {

perror("getting socket name");
exit (1);

}
printf("Socket has port #%d\n", ntohs(server.sin_port));

9-36 Communications Programming Concepts

}

/* Start accepting connection */
listen(sock, 5);
do {

msgsock = accept(sock, 0, O);
if (msgsock == -1)

perror("accept");
else do {

bzero(buf, sizeof(buf));
if ((rval = read(msgsock, buf, 1024)) < 0)

perror("reading stream message");
i = O;
if (rval == 0)

printf("Ending connection\n");
else

print("->%s\n", buf);
} while (rval != O);
close(msgsock);

} while (TRUE);
/*
* Since this program has an infinite loop, the socket "sock"
* is never explicitly closed. However, all sockets are
* closed automatically when a process is killed or terminates
* normally.
*/

Sockets 9-37

Initiating UNIX Stream Connections Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

I*
* This program connects to the socket named in
* and sends a one line message to that socket.
* command line is <ustreamwrite pathname>.
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define DATA "Half a league, half a league ... "

main(argc, argv)
int argc;
char *argv[];

{
int sock;
struct sockaddr in server;
char buf[1024];

/* Create socket */
sock= socket(AF_UNIX, SOCK_STREAM, O);
if (sock< 0) {

}

perror("opening stream socket");
exit(l);

the command line
The form of the

/* Connect socket using name specified by command line. */
server.sun_family = AF_UNIX;

}

strcpy(server.sun_path, argv[l]);

if (connect(sock, &server, sizeof(struct sockaddr_un) < 0) {
close(sock);

}

perror("connecting stream socket");
exit (1);

if (write(sock, DATA, sizeof(DATA)) < 0)
perror("writing on stream socket");

9-38 Communications Programming Concepts

Accepting UNIX Stream Connections Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

/*
* This program creates a socket in the UNIX domain and binds a
* name to it. After printing the socket's name it begins a loop.
* Each time through the loop it accepts a connection and prints
* out messages from it. When the connection breaks, or a
* termination message comes through, the program accepts a new
* connection.
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NAME "socket"

main()
{ int sock, msgsock, rval;

struct sockaddr un server;
char buf[l024];

/* Create socket */
sock= socket(AF_UNIX, SOCK_STREAM, O);
if (sock < 0) {

}

perror("opening stream socket");
exit(l);

/* Name socket using file system name */
server.sun_family = AF_UNIX;
strcpy(server.sun_path, NAME);
if (bind(sock, &server, sizeof(struct sockaddr_un))) {

perror("binding stream socket");
exit (1);

}

printf("Socket has name %s\n", server.sun_path);
/* Start accepting connections */
listen(sock, 5);
for (; ;) {

Sockets 9-39

}

}

msgsock = accept(sock, 0, O);
if (msgsock == -1)

perror("accept");
else do {

bzero(buf, sizeof(buf));
if ((rval = read(msgsock, buf, 1024)) <0)

perror("reading stream message");
else if (rval == 0)

printf("Ending connection\n");
else

printf("->%s\n", buf);
} while (rval > O);
close(msgsock);

/* The following statements are not executed, because they
* follow an infinite loop. However, most ordinary programs
* will not run forever. In the UNIX domain it is necessary to
* tell the file system that one is through using NAME. In
*most programs one uses the call unlink() as below. Since
* the user will have to kill this program, it will be
* necessary to remove the name by a command from the shell.
*I

close (sock) ;
unlink (NAME) ;

9-40 Communications Programming Concepts

Checking for Pending Connections Example Program
The following program is incomplete and is intended to only illustrate the use of the socket
subroutines. It cannot be compiled, linked, or executed without modification.

/*
*This program uses select() to check that someone is trying to
*connect before calling accept().
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

main ()
{

int sock, length;
struct sockaddr in server;
int msgsock;
char buf[l024];
int rval;
fd_set ready;
struct timeval to;

/* Create socket */
sock= socket(AF_INET, SOCK_STREAM, O);
if (sock < 0) {

}

perror("opening stream socket");
exit(l);

/* Name socket using wildcards. */
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin_port = O;
if (bind(sock, &server, sizeof(server))) {

perror("binding stream socket");
exit(l);

}

/* Find out assigned port number and print it out */
length= sizeof(server);
if (getsockname(sock, &server, &length)) {

perror("getting socket name");
exit(l);

}
printf("Socket has port #%d\n", ntohs(server.sin_port));

Sockets 9-41

}

/* Start accepting connections */
listen(sock, 5);
do {

FD_ZERO(&ready);
FD_SET(sock, &ready);
to.tv_sec = 5;
if (select(sock + 1, &ready, 0, 0, &to) < 0) {

perror("select");
continue;

}
if (FD_ISSET(sock, &ready)) {

msgsock = accept(sock, (struct sockaddr *)O, (int *)O);
if (msgsock == -1)

perror("accept");
else do {

bzero(buf, sizeof(buf));
if ((rval = read(msgsock, buf, 1024)) < 0)

perror("reading stream message");
else if (rval == 0)

printf("Ending connection\n");
else

print("->%s\n", buf);
} while (rval > O);
close(msgsock);

} else
printf("Do something else\n");

} while (TRUE) ;

9-42 Communications Programming Concepts

Chapter 1 O. X.25 Communications

X.25 is an international standard protocol that allows intercommunication between systems.
It is particularly useful for communicating with people using different computer systems and
for applications that access public data bases.

There are both public networks and private networks based on X.25. Public networks are
usually provided on a national basis by the national Post, Telegraph and
Telecommunications {PTT) authority. Private networks are operated by individual
corporations, to help them carry out their business.

X.25 Overview
The use of an X.25 network is an airline reservation system; another is for an order entry
system for automobile parts. Many of the corporations using X.25 networks have a
requirement for communication between themselves and other companies such as dealers
and agents.

You can use X.25 communications on the RISC System/6000 to provide a network service
for higher-level protocols, such as SNA and TCP/IP. Or you can use an X.25 network
directly, either by using the xtalk command, or by using the application programming
interface {API) to write your own applications.

Before you can use the X.25 API, X.25 communications must be installed and configured.
You must install the base operating system extension that includes the X.25 application
programming interface {API). You also need access to a C compiler.

For information about the X.25 protocol, managing X.25 communications on the RISC
System/6000, and using the xtalk command, see the Communications Concepts and
Procedures book. The X.25 subroutines are included in the Calls and Subroutines Reference
book; the x25sdefs.h header file is included in the Files Reference book. For an introduction
to application programming for X.25, continue with the following:

• The X.25 Application Programming Interface {API)

• Using the X.25 Subroutines

• Using X.25 Applications Written For Previous Releases

• Using the X.25 Structures and Flags

• Using Processes in X.25 Applications

• Providing Security in X.25 Applications

• Understanding X.25 Error Codes

The X.25 Application Programming Interface (API)
In addition to the X.25 commands, such as xtalk, which can be used as soon as you have
set up X.25 communications, there is an application programming interface {API), with which
you can write your own applications, especially tailored to your own users' needs.

When you use the X.25 application programming interface, you are at a level slightly above
the packet level. Although it helps to have an overview of what is going on underneath, you
do not need to be concerned about all the details.

X.25 Communications for Programming 10-1

What the X.25 API Includes
The X.25 API includes a library of C subroutines that use the services of the X.25 adapter
and adapter code. Your application programs call these subroutines when they need X.25
functions. The subroutines use a number of structures to pass information between them
and the application programs. Further information is to be found in:

• Using the X.25 Subroutines

• Using the X.25 Structures and Flags.

The X.25 API provides the following types of identifiers for use in programs:

• Listen identifiers, listen_id, for potential incoming calls

• Connection identifiers, conn_id, for established calls

• Counter identifiers, ctr_id, for notification of incoming messages.

In addition to the subroutine library and the header files for the structures, there are also
some example programs that demonstrate the use of the subroutines. Further information is
to be found in:

• X.25 Example Programs Overview.

If you already have applications written using the X.25 API for a previous release of AIX, and
want to port them to this release, you should look at:

• Using X.25 Applications Written For Previous Releases.

Learning How to Use the API
Background information for using the subroutines is included in:

• X.25 API: Initializing and Terminating
• X.25 API: Using the Connection Identifier for Calls
• X.25 API: Using Counters to Correlate Messages
• X.25 API: Listening for Incoming Calls
• X.25 API: Making and Receiving a Call
• X.25 API: Transferring and Acknowledging Data
• X.25 API: Clearing, Resetting, and Interrupting Calls.

Using the X.25 Subroutines
The X.25 application programming interface includes the following groups of subroutines for
use in C programs:

• Initialization and termination subroutines
• Network subroutines
• Counter subroutines
• Management subroutines.

The X.25 API subroutines are kept in the /usr/lib/libx25s.a library. You call the API
subroutines using standard C conventions.

Compile your program by using this command:

cc sourcefilename -lx2 5 s

When you call one of the subroutines, the outcome can be either normal or one of a number
of error conditions. All the possible X.25 error conditions are listed and explained in the List
of X.25 API Error Codes and the possible error conditions for each subroutine are listed in
the reference article for that subroutine. When writing applications, you should test for any
possible error conditions and take appropriate action.

10-2 Communications Programming Concepts

List of X.25 Initialization and Termination Subroutines
x25_init Initializes the API for a particular X.25 port.
x25_term Terminates the API for a particular X.25 port.

List of X.25 Network Subroutines
These are the subroutines that establish calls, transmit data, clear calls, and make other use
of the network.

x25_ack
x25_call
x25_call_accept
x25_call_clear
x25_1isten
x25_deafen
x25_interrupt
x25_pvc_alloc
x25_pvc_free
x25_receive
x25_reset
x25 _reset_confirm
x25_send

Acknowledges data received with the 0-bit set.
Sets up a switched virtual circuit and establishes the call.
Accepts an incoming call.
Clears a call.
Starts listening for incoming calls.
Turns off listening.
Sends an interrupt.
Allocates a permanent virtual circuit.
Frees a permanent virtual circuit.
Receives a message and indicates the message type.
Resynchronizes communications.
Sends a reset-confirmation message.
Sends data.

List of X.25 Counter Subroutines
To understand and control what is happening during a call, your application should use
counters supplied by the API.

x25 _ctr _get
x25 _ctr _remove
x25 _ctr_ test
x25_ctr_wait

Gets a counter.
Removes a counter.
Gets the current value of a counter.
Suspends the current process until one of the counters has
exceeded a specified value, usually zero.

List of X.25 Management Subroutines
These subroutines can be used to control and monitor X.25 links.

x25_1ink_connect
x25_1ink_disconnect
x25_1ink_query
x25_1ink_monitor
x25_1ink_statistics
x25 _device_ query
x25_circuit_query

Connects an X.25 port to the X.25 network.
Disconnects an X.25 port from the X.25 network.
Queries the status of the X.25 port.
Controls monitoring of an X.25 port.
Obtains statistics for an X.25 port.
Returns information about some of the attributes of an X.25 adapter.
Returns information about a virtual circuit.

Using X.25 Applications Written for Previous Releases
If you have applications written for AIX 2.2, you will have to make a few changes to them
before you can run them on this release. You will be able to take advantage of some new
functions. The changes to the API include:

• New, changed, and obsolete subroutines
• Changes to structures
• Other changes.

X.25 Communications for Programming 10-3

Changed, New, and Obsolete Subroutines
To support multiple X.25 adapters, seven of the subroutines now have a link_name
parameter.

There are five new subroutines: x25_term, x25_circuit_query, x25_device_query,
x25_1ink_query, and x25_1ink_statistics.

The x25_query_device subroutine has been replaced by x25_circuit_query and
x25_device_query. The x25_1ink_status subroutine has been replaced by
x25_1ink_query.

All the subroutines are listed here:

• Initialization and termination subroutines
• Network subroutines
• Counter subroutines
• Management subroutines .

Changes to Initialization and Termination Subroutines

x25_init
x25_term

Now has the link_name parameter.
New.

Changes to Network Subroutines

x25_ack Unchanged.
x25_call Unchanged.
x25_call_accept Unchanged.
x25_call_clear Now has the cb_msg parameter.
x25_deafen Unchanged.
x25_interrupt Unchanged.
x25_1isten Unchanged.
x25_pvc_alloc Now has the pvc_ptr parameter instead of the channel parameter.
x25_pvc_free Unchanged.
x25_receive Unchanged.
x25_reset Unchanged.
x25_reset_confirm Unchanged.
x25_send Unchanged.

Changes to Counter Subroutines

x25_ctr_get Unchanged.
x25_ctr_remove Unchanged.
x25_ctr_test Unchanged.
x25_ctr_wait Unchanged.

10-4 Communications Programming Concepts

Changes to Management Subroutines

x25_circuit_query
x25_device_query

x25_1ink_connect
x25_1ink_disconnect
x25_1ink_query

x25_1ink_monitor
x25_1ink_status
x25_1ink_statistics
x25_query_device

Replaces some of functions of the x25_query_device subroutine.
Replaces some of functions of the x25_query_device subroutine; it
has the link_name parameter.
Now has the link_name parameter.
Now has the link_name parameter.
Replaces the x25_1ink_status subroutine and now has the
link_name parameter.
Now has the link_name parameter.
Has been replaced by x25_1ink_query.
New.
Has been replaced by x25_circuit_query and x25_device_query.

Changes to Structures
The structures that you include in your programs have been changed to allow for possible
future developments in the X.25 protocol. Every field now has a flag associated with it, which
you set to indicate that you are using the field.

Other changes to the structures are to support the 1984 version of X.25.

Other Changes
The X.25 API no longer uses shared memory.

Due to changes in interprocess communication, you no longer have to issue setgrp() at the
beginning of your programs.

Using the X.25 Structures and Flags
Structures

Flags

With many of the subroutines, you enter the parameters into a structure, and pass to the
subroutine a pointer to this structure. Definitions of these structures are supplied as a header
file, /usr/include/x25sdefs.h. Include the following line in your programs:

#include <x25sdefs.h>

The List of X.25 API Structures lists all the structures included in the
/usr/include/x25sdefs.h file.

Each of the fields in a structure has a flag associated with it. This flag tells the API whether
the associated field has been used; if the corresponding flag has not been set, the field is
ignored by the API. To use the flag, which is a constant, OR it with the unsigned long flags
in the structure. This sets the appropriate bit in flags.

Before invoking a subroutine, the appropriate flags field must be set to o or to a particular
flag constant. For example, to set the flags field to 0 before invoking x25_call:

cb_call.flags = O

To indicate that the link_name field is being used, before invoking x25_call:

cb_call.flags = X25FLG_LINK_NAME

There are also some flags (for instance, X25FLG_D_BIT) that do not correspond to
structure elements.

X.25 Communications for Programming 10-5

Understanding X.25 Error Codes
The X.25 subroutines set x25_errno and errno to indicate error conditions.

How x25 errno and errno Are Used
- If an error condition results from an X.25 API subroutine call, it is indicated in one of the

following ways, depending on the type of error:

• For X.25-specific error conditions, x25_errno indicates the error, for example
x2 SACKREQ; errno is not set in these conditions.

• For other error conditions, x25_errno is set to x2ssYSERR; errno indicates the error, for
example, EFAULT.

In a production program, you should handle each condition that is likely to occur, giving the
end user a message telling them what action to take. We give you a code example of how to
do this, for the x25_1ink_statistics subroutine. All the other subroutines can be handled in a
similar way.

The List of X.25 API Error Codes lists the error codes 'that may be returned by X.25
subroutines.

Using Processes in X.25 Applications
It is a good idea to divide applications into multiple processes. For instance, it is useful to
fork off a separate process for sending or receiving data, after the call has been established.
Or you could have one process to listen for calls and one process to make calls. Use of
multiple processes may improve performance.

Child processes should not be created while a call is being established; that is to say, you
could fork off a process:

• Before making a call
• After receiving the call confirmation
• Before receiving an incoming call.

A connection identifier can be used by the process that made or received the call, or its
children; it cannot be used by other processes.

A child process can use a virtual circuit established by its parent, but a parent process
cannot use a virtual circuit established by its child.

Providing Security in X.25 Applications
Security mechanisms are built into the hardware and the operating system. In addition, the
use of the management subroutines is restricted to users as follows:

10-6 Communications Programming Concepts

Security Permissions Needed for the X.25 Management Subroutines
x25_circuit_query No permission needed.

x25_device_query No permission needed.

x25_1ink_query No permission needed.

x25_1ink_statistics

x25_1ink_connect

No permission needed.

NET_CONFIG permission.

x25_1ink_disconnect NET_CONFIG permission.

x25_1ink_monitor NET_CONFIG and RAS_CONFIG permission.

The various identifiers used by the API also have restrictions:

See Restrictions on the Use of the Connection ldentifer on page 10-10.
See Restrictions on the Use of Counters on page 10-12.
See Restrictions on the Use of the Listen Identifier on page 1 0-12.

Related Information
x25sdefs.h File.

Header Files Overview, Subroutines Overview and Compiling, Linking, and Running
Programs in General Programming Concepts.

X.25 Communications for Programming 10-7

X.25 Calls: API Level
The packets exchanged during an X.25 call are discussed in X.25 Calls Overview: Packet
Level. This APl-level overview tells you how to use the application programming interface for
both switched and permanent virtual circuits. The following sections refer to the example
programs to show you how the subroutines are used:

• X.25 API: Initializing and Terminating
• X.25 API: Using the Connection Identifier for Calls
• X.25 API: Using Counters to Correlate Messages
• X.25 API: Listening for Incoming Calls
• X.25 API: Making and Receiving a Call
• X.25 API: Transferring and Acknowledging Data
• X.25 API: Clearing, Resetting, and Interrupting Calls.

X.25 API: Initializing and Terminating
Initializing

The application programming interface (API) must be initialized for a specific X.25 port
before any other subroutines can be used on that port. If the program uses more than one
X.25 port, the API must be initialized for each. Use the x25_init subroutine (as in example
program svcxmit).

Allocating a PVC

Freeing a PVC

Terminating

If the application is to use a permanent virtual circuit (PVC), you must use the
x25_pvc_alloc subroutine to allocate the PVC, identifying it by its logical channel number
and X.25 port name (as in example program pvcxmit). You can find out which logical channel
numbers are valid by using the smit command.

A permanent virtual circuit (PVC) must be freed using the x25_pvc_free subroutine, before
the program is terminated (as in example program pvcxmit).

You must terminate the API for each X.25 port, using the x25_term subroutine (as in
example program svcxmit).

Before you terminate, however, there may be some tidying up to do:

• Clear any calls, using x25_call_clear

• Remove any counters, using x25_ctr_remove

• Stop listening for calls, using x25_deafen

• Free any permanent virtual circuits, using x25_pvc_free.

10-8 Communications Programming Concepts

/dev/x25sn Special File
The /dev/x25sn special file provides access to X.25 network adapters by way of the X.25
device handler. The handler provides multiple X.25 connections on each multiplexed
channel.

The X.25 device handler may be loaded and unloaded. The handler supports configuration
calls to initialize and terminate itself. Calls other than the open and close system calls are
discussed based on the mode in which the device handler is operating.

The device handler supports the /dev/x25sn special file as a character-multiplex special file.
The special file must be opened for both reading and writing (O_RDWR). There are no
particular considerations for closing the special file. The special file name used in an open
call differs depending on how the device is to be opened. Types of special file names are:

/dev/x25sn Starts the device handler on the next available port.

/dev/x25sn/D Starts the device handler in Diagnostic mode.

/dev/x25sn/M Starts the device handler for reading and writing data to the monitor
facilities on the IBM X.25 Interface Co-Processor/2.

/dev/x25sn/R Starts the device handler for updating the routing table.

X.25 API: Using the Connection Identifier for Calls
Connection Identifier

Because the API, or even a single application, can be controlling more than one virtual
circuit at a time, there must be a way of identifying a call uniquely. The API assigns to each
call a positive integer known as the connection identifier.

The conn_id parameter is used by the API subroutines to pass the connection identifier.

Obtaining a Connection Identifier
On a switched virtual circuit, for an outgoing call, the connection identifier is returned by
x25_call (as in example program svcxmit). When receiving an incoming call the connection
identifier is allocated by x25_receive to the first of its parameters (as in example program
svcrcv).

On a permanent virtual circuit, the connection identifier is returned by x25_pvc_alloc (as in
example program pvcxmit).

Using a Connection Identifier
The connection identifier is assigned on return from the following subroutines:

• To make a call on a switched virtual circuit, using x25_call.
• To establish a permanent virtual circuit, using x25_pvc_alloc.
• To receive an incoming call, using x25_receive.
• To receive data from any currently connected call, using x25_receive.

X.25 Communications for Programming 10-9

The connection identifier is passed as a parameter to the following subroutines:

• To receive data from a particular call, using x25_receive.
• To accept a call, using x25_call_accept.
• To send data, using x25_send.
• To acknowledge data, using x25_ack.
• To reject or terminate a call, using x25_call_clear.
• To reset a call, using x25_reset.
• To confirm that a reset arrived, using x25_reset_confirm.
• To interrupt a call, using x25_interrupt.
• To free a permanent virtual circuit, using x25_pvc_free.
• To get information about a virtual circuit, using x25_circuit_query.

Restrictions on the Use of the Connection Identifier
A connection identifier can be used only by the process that made the call, established the
permanent virtual circuit, or received the call, and its child processes. Any attempt to use the
connection identifier of another process results in the X25BADCONNID error code.

X.25 API: Using Counters to Correlate Messages
Counters

Many applications can be using the network at once and each application may have several
calls active at one time. An application may also be listening for calls for several different
routing list names. How does the application know when a message has arrived on a
particular virtual circuit, or for a particular call? A counter, supplied by the API, is
incremented whenever a message arrives. The application issues an x25_ctr_wait, which
returns when the counter has been incremented. The counter is decremented when the
message has been received (using x25_receive).

Counters allow an application to wait for messages on several virtual circuits at one time; it
is the responsibility of the application to correlate counters with particular virtual circuits.
Optionally, an application can wait, using x25_ctr_wait, for several messages to accumulate
against a particular counter before being notified.

Counter Identifiers
Each counter has a counter identifier, the ctr_id parameter is used by some of the API
subroutines to pass the counter identifier. x25_ctr_wait uses an array of structures
(ctr_array_struct) each of which contains a counter identifier and a value; this allows an
application to wait for any of a number of counters to change.

How to Use Counters in Applications
It is up to you to decide how to use counters in your application, depending on what the

application has to do. Use of counters is not required, but the use of x25_ctr_wait is the
recommended way of notifying the application that a message has arrived.

For an application that makes calls, we recommend using a separate counter for each call.
For an application that listens for and receives calls, use one counter to listen for incoming
calls and then use a separate counter to accept each call and receive its subsequent
messages. For an application that receives messages from any one of a number of
connected calls, use a single counter.

The application is responsible for making sure that it gets enough counters.

10-10 Communications Programming Concepts

Obtaining a Counter
The application gets a counter from the API, by calling the x25_ctr_get subroutine (as in
example program svcxmit). This subroutine returns a counter identifier that is unique across
the system.

The two applications-the one that makes a call and the one that receives it-each use a
different counter for the call; they keep track of the messages independently of each other.

Using a Counter
The counter identifier is passed as a parameter to the following subroutines:

• x25_call assigns a counter to a specific connection, when making a call on a switched
virtual circuit.

• x25_pvc_alloc assigns a counter to a specific connection, when establishing a
permanent virtual circuit.

• x25_1isten assigns a counter to a listening process, when starting to listen for incoming
calls.

• x25_call_accept assigns a counter to a specific connection, when accepting a call.

• x25_ctr_wait uses an array of counters to wait for an incoming call or a message.

• x25_ctr_test use one counter to find out how many messages are waiting to be received
for a call.

Waiting for an Incoming Call or a Message

Using x25_ctr_wait is the normal way in which an application program finds out that a
message has arrived. You invoke x25_ctr_wait passing it a pointer to an array of counter
structures. This enables an application to wait for messages for more than one call.

The example programs show x25_ctr_wait being used in several situations, but always with
only one counter. If you want to wait for messages using multiple counters, you must assign
them all to ctr_array_struct before invoking x25_ctr_wait.

Be aware that, if you are writing a program that uses multiple counters to identify multiple
calls, you are responsible for storing the counter identifiers with their corresponding
connection identifiers.

Examples of x25_ctr_wait

1. Set up the ctr_array and wait for an incoming call (as in example program svcrcv).

2. Wait for an acknowledgement, when the ctr_array was set up earlier in the program (as
in example program svcxmit).

Finding Out How Many Messages are Waiting to be Received For a Call

The x25_ctr_test subroutine is provided for this purpose. The example shows how to use it:

1. Assign the counter identifier to ctr_id.

2. Invoke x25_ctr_test, passing ctr_id as a parameter.

3. The return value is the number of messages waiting to be received.

However, if you use x25_ctr_wait when you expect a message to arrive and receive every
message when it arrives, you should not need to use x25_ctr_test.

X.25 Communications for Programming 10-11

Removing a Counter
Before an application terminates, it should remove all counters that were in use. A counter
cannot be removed while its value is greater than 0, indicating that there is a message to be
received. First, receive any messages and then use the x25_ctr_remove subroutine,
passing it the counter identifier as a parameter (as in example program svcxmit).

Restrictions on the Use of Counters
Any application can test the value of a counter or wait for it to change. Only the application
that requested the counter with x25_ctr _get, or a root user, can use the corresponding
x25_ctr_remove.

X.25 API: Listening for Incoming Calls
Listen Identifier

The listen identifier is a positive integer returned by x25_1isten. It is used by x25_receive to
identify an incoming call. After the call has been received and accepted, the listen identifier
continues to be used to listen for subsequent incoming calls.

Obtaining a Listen Identifier (Starting to Listen for Incoming Calls)
1. Get a counter.

2. Invoke the x25_1isten subroutine, passing it two parameters: the counter identifier and
the name of an entry in the X.25 routing list (as in example program svcrcv).

3. x25_1isten returns a listen identifier.

Using the Listen Identifier
After obtaining a listen identifier, the application must wait for an incoming call. When an
incoming call arrives for that listen identifier, the application assigns the listen identifier to the
conn_id parameter and uses x25_receive, to receive the incoming call.

Removing the Listen Identifier (Stopping Listening)
1. Remove the counter associated with this listening process.

2. Invoke the x25_deafen subroutine, passing it the listen identifier as a parameter. Always
do this before terminating a prpgram that has been listening for incoming calls (as in
example program svcrcv).

Restrictions on the Use of the Listen Identifier
The use of this variable is restricted to the userwho received the listen_id from the
x25_1isten subroutine. The user may have one application that does the listening and
notifies them of an incoming call, and another application that actually receives the call.

10-12 Communications Programming Concepts

X.25 API: Making and Receiving a Call
Making an Outgoing Call

To make a call on a switched virtual circuit (SVC) (as in example program svcxmit):

1. Set up the cb_call_struct with the relevant information.

2. Invoke the x25_call subroutine, passing two parameters: a pointer to cb_call_struct and
a counter identifier.

3. The x25_call subroutine returns a connection identifier, which the application must use to
identify the call.

4. Store a counter identifier with the connection identifier.

If using a permanent virtual circuit (PVC), do not make any calls; after you have allocated a
PVC, you can send and receive data until you free the PVC.

After Making a Call
The calling application must wait for the called application's response, using x25_ctr_wait,
and then receive it, using x25_receive (as in example program svcxmit). The response
could be either a call-connected message or the clear-indication message.

Receiving an Incoming Call
When you know that there is an incoming call waiting because the counter associated with
the listen identifier has been incremented, you must use the listen identifier to receive the
incoming call (as in example program svcrcv).

1. Assign the listen identifier to conn_id.

2. Invoke the x25_receive subroutine, passing two parameters:

• The address of conn_id (which currently contains the listen identifier).

• A pointer to the message control block, cb_msg_struct.

3. On return, x25_receive assigns the connection identifier of the incoming call to conn_id.
(The listen identifier is still valid for further incoming calls.)

4. On return from x25_receive, the message control block includes the msg_type, which
indicates the type of message. In this case it is X25_INCOMING_CALL and you do not
need to check it because it is the only type of message that can be received using the
listen identifier. The cb_call_struct control block contains the incoming-call message,
which may include call user data.

5. Free any structures allocated by x25_receive (as in example program svcrcv).

X.25 Communications for Programming 10-13

Accepting or Rejecting an Incoming Call
After receiving an incoming call, you can accept it (as in example program svcrcv):

1. Get a new counter, to be used for accepting the call and receiving any subsequent
messages for it. (This allows the counter that was used for listening to continue to be
used to listen for calls.)

2. Optionally, set up cb_call_struct with the relevant information.

3. Invoke x25_call_accept, passing the connection identifier, the counter identifier, and
cb_call_struct as parameters.

4. x25_call_accept sends an x2s_CALL_CONNECTED message, which must be received
by the caller.

At this point, after accepting a call, you should deal with the call user data if necessary. After
dealing with the call user data, free the storage used (as in example program svcrcv).

Instead of receiving an incoming call, you can reject it, using x25_call_clear to clear it.

X.25 API: Transferring and Acknowledging Data
Sending Data

Either the called or the calling application can send data when:

• On a permanent virtual circuit (PVC), the PVC has been allocated.

• On a switched virtual circuit (SVC), a call has been made, received, and accepted.

To send data (as in example program svcxmit):

1. Ensure that any data sent previously with the D-bit set to 1 has been acknowledged.
Otherwise this x25_send will fail.

2. Assign to the data variable in cb_data_struct a pointer to the data you want to send.

3. Assign to the data_len variable in cb_data_struct the length of the data.

4. Invoke the x25_send subroutine, passing two parameters: the connection identifier and a
pointer to cb_data_struct.

Asking for Data to be Acknowledged by the Receiver

To ask for the receiver to acknowledge the data, set the flags to X25FLG_DBIT in
cb_data_struct, before using x25_send (as in example program svcxmit). The application
must then wait for and receive the x2 s _DATA_ ACK message that is sent back. Note that to
allow the use of the D-bit, it should also be set on x25_call (as in example program svcxmit)
orx25_call_accept.

Long Messages
If the length of the data is greater than the packet size, the API automatically splits the data
into packets which it sends separately. It sets on the M-bit in each packet to indicate that
there is more data. Only the final packet has the D-bit set and only one acknowledgment is
expected.

10-14 Communications Programming Concepts

Nevertheless, you should try to avoid sending data longer than the packet size, to allow
better recovery in the event of a transmission failure. Specify as large a packet size as
possible in the maximum transmit packet size attribute (for an SVC} or PVC maximum
transmit packet size. Or specify as large a packet size as possible in psiz_cld or psiz_clg in
cb_fac_struct. If necessary, split up the data yourself in the application, if you want to
receive an acknowledgment for each packet, and thus maintain data integrity. Otherwise, if
one piece of the data does not arrive, all of the data may need to be sent again.

Receiving Data
To receive data that has arrived for a particular call (as in example program svcrcv}:

1 . Ensure that you have acknowledged any data received previously with the D-bit set to 1.
Otherwise this x25_receive will return X25NODATA.

2. Invoke the x25_receive subroutine, passing the address of the connection identifier and
the address of the message structure (cb_msg_struct) as parameters.

3. x25_receive receives a complete packet sequence. That is to say, if a long message was
split up when it was sent, the X.25 API attempts to rebuild it before notifying the
application that there is a message waiting. If any packet (other than data or interrupt)
arrives before the sequence is completed, the attempt to rebuild is either abandoned and
the sequence made available to the application up to its current position, orthe incoming
packet is made available to the application ahead of the as-yet-unfinished sequence.

4. On return from x25_receive, the message structure (cb_msg_struct} includes the
msg_type, which indicates the type of message. In this case it is x2 5 _DATA, indicating
that the message is available in the cb_data_struct control block.

5. The counter that indicated the waiting message is decremented when the message is
received.

To receive data from any call that is currently connected, assign O to conn_id and invoke the
x25_receive subroutine, passing the address of conn_id as a parameter. On return from
x25_receive the conn_id contains the connection identifier of the call whose data was
returned by x25_receive.

Acknowledging Data Packets
For each data packet that was sent with the D-bit set to 1, invoke the x25_ack subroutine to
confirm that it arrived (as in example program svcrcv).

The application should ensure that the acknowledgement is given as soon as possible after
receiving a message with the D-bit set to 1.

X.25 API: Clearing, Resetting, and Interrupting Calls
Clearing a Call

Clearing does just that: it clears the call from the network. You can send a clear-request
message for several different reasons.

Rejecting a Call

If you clear a call without ever accepting it, you are, in effect, rejecting it.

Receiving Fast-Select Data

If it is a fast-select call, the fast-select data is in the incoming-call packet. You can clear the
call immediately after receiving this or you can receive further messages on the call.

X.25 Communications for Programming 10-15

Terminating a Call

Clearing is the normal way of terminating a call. Either the caller or the called application can
clear a call.

To clear a call

1. Optionally, assign any data you want to send to the user_data field in the
cb_clear_struct control block, and set the user-data flag

2. Optionally, assign a cause code and a diagnostic code to the appropriate fields in the
cb_clear_struct control block, and set the appropriate flags.

3. Invoke x25_call_clear, passing the connection identifier and a pointer to
cb_clear_struct as parameters. There is a third parameter that can be used for return
data. If you do not need this, set the third parameter to NULL. '

Example program svcxmit shows how a call is cleared. Note that example program svcrcv
could have cleared the call after receiving the data; svcxmit is therefore prepared for the call
to be cleared by the other application. A call does not have to be cleared by the application
that made it.

Resetting a Call
A reset flushes any data being sent at the time from the network. To reset a call (as in
example program pvcxmit):

1. Optionally, assign a cause code and a diagnostic code to the appropriate fields in the
cb_res_struct control block and set the appropriate flags.

2. Invoke the x25_reset subroutine, passing it the connection identifier and a pointer to the
cb_res_struct control block.

3. Wait for and receive the reset-confirmation message.

Handling a Reset
When an application receives a message with a msg_type of x2s_RESET_INDICATION, it
must send a reset-confirmation message immediately by invoking the x25_reset_confirm
subroutine (as in example program pvcrcv).

Interrupting a Call
An interrupt is placed at the beginning of the queue of incoming messages. To send an
interrupt:

1. Assign the connection identifier to conn_id.

2. Invoke the x25_interrupt subroutine, passing it the conn_id and a pointer to the
cb_int_data_struct control block.

3. Wait for and receive the interrupt-confirmation message. (Using this X.25 API, the
interrupt-confirmation is sent automatically.)

1 0-16 Communications Programming Concepts

Related Information
The open system call, close system call.

Special Files Overview in Files Reference.

X.25 Communications for Programming 10-17

List of X.25 API Error Codes
For X.25-specific error conditions, x25_errno is set to one of the following values:

X25ACKREQ

X25AUTH

X25AUTHCTR

X25AUTHLISTEN

X25BADCONNID

X25BADDEVICE

X25BADID

X25BADLISTENID

X25CALLED

X25CALLING

X25CTRUSE

X251NIT

X251NVCTR

X251NVFAC

X251NVMON

X25LINKUP

X25LINKUSE

X25LONG

X25MAXDEVICE

X25MONITOR

One or more packets require acknowledgement. Issue x25_ack
before continuing.

The calling application does not have system permission to control
the status of the link.

The application does not have permission to remove this counter
because it is not the application that issued the corresponding
x25_ctr_get.

The application cannot listen to this name, because the
corresponding entry in the routing list has a user name that
excludes the user running the application. Use another routing list
name, or change the user name in the routing list entry.

The connection identifier is invalid.

The X.25 port name is invalid.

The connection identifier or listen identifier is invalid.

The listen identifier is invalid.

The called address is invalid. Check that the address is correct and
is a NULL-terminated string.

The calling address is invalid. Check that the address is correct and
is a NULL-terminated string.

The counter has a non-zero value.

X.25 is already initialized for this X.25 port, so cannot be initialized
again.

The specified counter does not exist. (In the case of x25_ctr_wait,
the counter is one of an array of counters.)

An optional facility requested is invalid. Check cb_fac_struct.

The monitoring mode is invalid.

The X.25 port is already connected.

The X.25 port still has virtual circuits established; it may still be in
use. Either free all virtual circuits or disconnect the port using the
override.

The parameter is too long. Check each of the parameters for this
subroutine.

Attempts have been made to connect more X.25 ports than are
available. Check the smit configuration to see how many ports are
available.

X.25 traffic on this X.25 port is already being monitored by another
application. The other application must stop monitoring before any
other application can start it.

1 0-18 Communications Programming Concepts

X25NAMEUSED

X25NOACKREQ

X25NOCARD

X25NOCTRS

X25NODATA

X25NODEVICE

X25NOLINK

X25NONAME

X25NOSUCHLINK

X25NOTINIT

X25NOTPVC

X25PROTOCOL

X25PVCUSED

X25RESETCLEAR

X25SYSERR

X25TABLE

X25TIMEOUT

X25TOOMANYVCS

X25TRUNCTX

Calls for this name are already being listened for.

No packets currently require acknowledgement.

The X.25 adapter is either not installed or not functioning.

No counters are available.

No data is has arrived for this connection identifier. Issue
x25_ctr_wait to be notified when data arrives.

The X.25 device driver is either not installed or not functioning.

The X.25 port is not connected. Issue x25_1ink_connect, or use
xmanage to connect it.

The name is not in the routing list. Add the name or use one that is
already in the list.

The X.25 port does not exist. Check the smit configuration.

The application has not initialized X.25 communications. Issue
x25_init.

This is not defined as a permanent virtual circuit (PVC). Check the
smit configuration.

An X.25 protocol error occurred.

This permanent virtual circuit (PVC) is already allocated to another
application. The other application must free the PVC before it can
be used.

The call was reset or cleared during processing. Issue x25_receive
to obtain the reset-indication or clear-indication packet. Then issue
x25_reset_confirm or x25_clear_confirm, as necessary.

An error occurred that was not an X.25 error. Check the value of
errno.

The routing list cannot be updated because xroute is using it. Try
again after xroute has completed.

A timeout problem occurred.

No virtual circuits are free on the listed X.25 ports.

The packet size is too big for internal buffers, so data cannot be
sent.

X.25 Communications for Programming 10-19

List of System Error Codes
For non-X.25-specific error conditions, x25_errno is set to X25SYSERR and errno is set to
one of the following values:

EFAULT

EINTR

EIO

EN OM EM

ENOS PC

EPERM

Bad address pointer.

A signal was caught during the call.

An 1/0 error occurred.

Could not allocate memory for device information.

There are no buffers available in the pool.

Calling application does not have sufficient authorization.

10-20 Communications Programming Concepts

X.25 Example Programs Overview
To help you learn how to use the subroutines there are two pairs of example programs; one
pair demonstrates the use of a switched virtual circuit, and the other the use of a permanent
virtual circuit. The SVC call is similar to the example call described in X.25 Calls Overview:
Packet Level.

• X.25 Example Program svcxmit: Make a Call Using an SVC
• X.25 Example Program svcrcv: Receive a Call Using an SVC
• X.25 Example Program pvcxmit: Send Data Using a PVC
• X.25 Example Program pvcrcv: Receive Data Using a PVC.

Preparing, Compiling, and Running the Example Programs
The example programs (svcxmit.c, svcrcv.c, pvcxmit.c, and pvcrcv.c) are in
/usr/lpp/bosext2/x25app/samples.

Each of the example programs has some variables to which values are assigned at the start;
these include CALLING_ADDR, CALLED_ADDR, LINK_NAME, and LOG_CHAN_NUM,
which should be set to appropriate values for your setup, before you can run the programs.

To compile the example programs, type:

cd /usr/lpp/bosext2/x25app/samples
cc svcxmit.c -lx25s
cc svcrcv.c -lx25s
cc pvcxmit.c -lx25s
cc pvcrcv.c -lx25s

This creates the executable files, svcxmit, svcrcv, pvcxmit, and pvcrcv.

To run a program, type the name of the executable file at the shell prompt. Run them in
pairs: svcxmit talks to svcrcv and pvcxmit talks to pvcrcv. Note that you cannot run the PVC
programs unless your network allows the use of permanent virtual circuits.

Using the Example Code
Note that the example programs are for demonstration purposes only. When creating your
own programs, you may find it useful to copy parts of the code from the examples. Be aware
that the examples do not, in most cases, check the return codes from the subroutines. When
you invoke an X.25 subroutine in a production program, you should assign the return value
into a variable, like this:

re= x25_ ... (...):

Then test the value of the return code.

If you do not want to write your own programs, use the xtalk command to communicate with
other people. Use the other X.25 commands to manage the X.25 network.

X.25 Communications for Programming 10-21

X.25 Example Program pvcrcv: Program Description
This program uses a permanent virtual circuit (PVC).

1. Initialize the API for the port specified by LINK_NAME (x25_init).

2. If initialization failed, display a message and exit from the program.

3. Get a counter to be used to wait for incoming messages (x25_ctr_get).

4. Allocate a PVC to the port, using the logical channel number specified by
LOG_CHAN_NUM (x25_pvc_alloc).

5. If PVC allocation failed, display a message and exit from the program.

Do until the end-of-transmission indicator is received:
1. Wait for an incoming message (x25_ctr_wait).

2. Receive the incoming message (x25_receive).

3. Test the msg_type in cb_msg_struct:

a. If the incoming message is a reset indication, send a reset confirmation
(x25 _reset_ confirm).

b. If the incoming message is data display it on the screen. (If it is the end-of-tranmission
indicator specified in END_OF _TRANS, print a message saying that transmission has
ended.) Free the storage allocated to cb_msg_struct.

When the end-of-transmission indicator has been received:
1. Free the permanent virtual circuit (x25_pvc_free).

a. Remove the counter (x25_ctr_remove).

b. Terminate the API for port x25s1 (x25_term).

10-22 Communications Programming Concepts

X.25 Example Program pvcrcv: Receive Data Using a PVC
/* X.25 Example Program pvcrcv. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <NLchar.h>
#include <x25sdefs.h>

#define LINK NAME "x25s0"
#define LOG_CHAN_NUM (l)
#define END OF TRANS "EOP"

/* Name of X.25 port. */
/* PVC logical channel number. */
/* End-of-transmission indicator; */
/* must be the same as in pvcxmit.

/**/
/* Function main */
/* Description This program is designed to demonstrate usage */
/* of the X.25 API. */
/* It allocates a permanent virtual circuit, */
/* receives data and */
/* is prepared to handle a reset, by sending a */
/* reset-confirmation. */
/* Example Program pvcxmit is designed to send the data received */
/* By this program. */
/* Note that, in a production program, you should check the */
/* return code from each sub~outine call and take appropriate */
/* action. */
/* Return 0 if successful *I
/* 1 otherwise */
/**/

int main(

{

int argc,
char *argv[])

/**/
/* The following structures are defined in the x25sdefs.h file. */

/**/
struct ctr_array_struct ctr_array[l];

/* One counter in the array. */
struct cb_msg_struct cb_msg;

struct cb_pvc_alloc_struct cb_pvc;

struct cb_link_name_struct cb_link_name;

X.25 Communications for Programming 10-23

int conn_id;
/* Connection identifier to associate with this link.*/

int ctr_id;
/* Counter identifier for this link. */

int re;
/* Return codes from various subroutines. */

int ctr_num = 1;
/* Number of counters in the counter array. */

int end_tx = O;
/* Whether end of transmission has been reached. */

/***/
/* Initialize the API for access to a link. */
/***/

cb_link_name.flags = X25FLG_LINK_NAME;
cb_link_name.link_name = LINK_NAME;
re= x25_init(&cb_link_name);
if (re < 0)
{

(void)printf("%s: x25 init failed x25 errno %d errno %d\n",
argv[O],x25_errno,errno);

return (1);
}
else
{

/**/
/* Get a counter to be used to notify us of incoming messages.*/

/**/
ctr_id = x25_ctr_get();

/**/
/* Set up flags to show that a link and a channel number are */
/* supplied. */
/* Then allocate the permanent virtual circuit for this */
/* application. */

/***/
cb_pvc.flags = X25FLG_LINK_NAME I X25FLG_LCN;
cb_pvc.link_name = LINK_NAME;
cb_pvc.lcn = LOG_CHAN_NUM;

conn_id = x25_pvc_alloc(&cb_pvc,ctr_id);

if (conn_id < 0)
{

}

(void)printf("%s: x25_pvc_alloc failed : x25_errno
= %d\n", argv[O],x25_errno,errno);

return(!);

else
{

10-24 Communications Programming Concepts

%d errno

/**/
/* The PVC link has now been set up and data can be received. */
/* Wait for any message to arrive for this application */

/***/
ctr array[O].flags = X25FLG CTR ID;
ctr=array[O].flags I= X25FLG_CTR_VALUE;
ctr_array[O].ctr_id = ctr_id;
ctr_array[O].ctr_value = O;

do
{

(void)x25_ctr_wait(ctr_num,ctr_array);

/**/
/* Receive the message *I

/***/
(void)x25_receive(&conn_id,&cb_msg);

/**/
/* If a reset-indication message is received, we must */
/* send a reset-confirmation message as soon as possible. */

/**/
if (cb_msg.msg_type == X25_RESET_INDICATION)
{
(void)printf("%s: Received reset indication ... ",argv[O]);

(void)x25_reset_confirm(conn_id);
}

/*If data is received, we display it on the screen, unless it is */
/* end-of-transmission indicator specified by END_OF_TRANS. */

else if (cb_msg.msg_type == X25_DATA)
{

(void)printf("%s: Incoming Data : ",argv[O]);
(void)printf("%s\n",cb_msg.msg_point.cb_data->data);
if (strcmp(cb_msg.msg_point.cb_data->data,END_OF_TRANS) != 0)

{

}

(void)printf("%s",cb_msg.msg_point.cb_data->data);
(void)printf("\n");

else
{

}

(void)printf("%s: End of transmission received",argv[O]);
end tx = 1;

X.25 Communications for Programming 10-25

/**/
/* The X.25 API allocates memory for information to be returned. */
/* Although there are no memory constraints in this application, */
/* the space is freed when the information has been displayed. */

/**/
free((char *)cb_msg.msg_point.cb_data->data);
free((char *)cb_msg.msg_point.cb_data);

}
else
{

(void)printf("%s: Unexpected packet received",argv[O]);
}

} while (end_tx == 0);

/**/
/*Free up any resources allocated during the program before */
/* ending: free the permanent virtual circuit */
/* remove the counter */
/* terminate the API. */

/**/
(void)x25_pvc_free(conn_id);

}

(void)x25_ctr_remove(ctr_id);
(void)x25_terrn(&cb_link_name);

}
}
return(O);

10-26 Communications Programming Concepts

X.25 Example Program pvcxmit: Program Description
This program uses a permanent virtual circuit (PVC).

1. Initialize the API for the port specified by LINK_NAME (x25_init).

2. If initialization failed, display a message and exit from the program.

3. Get a counter to be used to wait for incoming messages (x25_ctr_get).

4. Allocate a PVC to the port, using the logical channel number specified by
LOG_CHAN_NUM (x25_pvc_alloc).

5. If PVC allocation failed, display a message and exit from the program.

6. Send some data (x25_send).

7. Send a reset (x25_reset).

8. Wait for the reset-confirmation message (x25_ctr_wait).

9. Receive the reset-confirmation message (x25_receive).

10. Send some more data (x25_send).

11. Send the end-of-transmission indicator specified by END_ OF_ TRANS (x25_send).

12. Free the permanent virtual circuit (x25_pvc_free).

13. Remove the counter (x25_ctr_remove).

14. Terminate the API for the port (x25_term).

X.25 Communications for Programming 1 0-27

X.25 Example Program pvcxmit: Send Data LI.sing a PVC

Example Program pvcxmit
/* X.25 Example Program pvcxmit. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <NLchar.h>
#include <x25sdefs.h>

#define LINK NAME "x25s0"
/* Name of X.25 port.

#define LOG_CHAN_NUM (1)
/* PVC logical channel number.

#define INFO "Hello World"
/* Data to be sent.

#define INF02 "Goodbye Everyone"

*/

*/

*/

/* More data to be sent. */
#define END OF TRANS "EOP"

I* End-of-transmission indicator: */

/* must be the same as in pvcrcv. */

/***/
/* Function main */
/* Description This program is designed to demonstrate */
/* usage of the X.25 API. */
/* It allocates a permanent virtual circuit, sends some data */
/* and then sends a reset. After receiving the */
/* reset-confirmation, the program sends some more data. */
/* Example Program pvcrcv is designed to receive the data sent */
/* by this program. */
/* Note that, in a production program, you should check the */
/* return code from each subroutine call and take appropriate */
/* action. */
/* Return 0 if successful *I
/* 1 otherwise */
/**/
int main(

{

int argc,
char *argv[])

/**/
/* The following structures are defined in the x25sdefs.h file. */

/**/
struct ctr_array_struct ctr_array[l];

/* One counter in the array. */
struct cb_msg_struct cb_msg;
struct cb_pvc_alloc_struct cb_pvc;
struct cb_res_struct cb_res;
struct cb_link_name_struct cb_link_name;
struct cb_data_struct cb_data;

10-28 Communications Programming Concepts

int conn_id;
/* Connection identifier to associate with this link.*/

int ctr_id;
/* Counter identifier for this link.

int ctr num = 1;
/* Number of counters in the counter array.

int re;
/* Return codes from various subroutines.

*/

*/

*/

/**/
/* Initialize the AP! for access to a link. */

/**/
cb_link_name.flags = X25FLG_LINK_NAME;
cb_link_name.link_name = LINK_NAME;
re= x25_init(&cb_link_name);
if (re < 0)
{

(void)printf("%s: x25 init failed x25 errno %d errno %d\n",
argv[O],x25_errno,errno);

return(l);
}
else
{

/**/
/* Get a counter to be used to notify us of incoming messages. */

/***/
ctr_id = x25_ctr_get();

/**/
/* Set up flags to show that a link and a channel number are */
/* supplied. */
/* Then allocate the permanent virtual circuit for this */
/* application. */

/**/
cb_pvc.flags = X25FLG_LINK_NAME I X25FLG_LCN;
cb pvc.link name = LINK NAME;
cb=pvc.lcn ~ LOG_CHAN_NUM;

conn_id = x25_pvc_alloc(&cb_pvc,ctr_id);

if (conn_id < 0)
{

}

(void)printf("%s: x25 pvc alloc failed : x25 errno
= %d\n", argv[O],x25_errno,errno);

return(l);

else
{

%d errno

X.25 Communications for Programming 10-29

/**/
/* Now the PVC is available, send some data. */

/**/
cb_data.flags = X25FLG_DATA;
cb_data.data_len = strlen(INFO);
cb_data.data = INFO;
(void)printf("%s: Sending some data ..• ",argv[O]);
(void)x25_send(conn_id,&cb_data);

/**/
/* Send a reset. */

/***/
(void)printf("%s: Resetting the circuit ... ",argv[O]);
(void)x25_reset(conn_id,&cb_res);

/**/
/* After sending a reset packet, you must wait for the reset */
/* confirm to arrive. */

/***/
ctr_array[O].flags = X25FLG_CTR_ID;
ctr_array[O].flags I= X25FLG_CTR_VALUE;
ctr_array[O].ctr_id = ctr_id;
(void)x25_ctr_wait(ctr_num,ctr_array);

/**/
/* There is now a message ready to be received. If it is */
/* anything other than the expected reset-confirmation, we: */
/* free the permanent virtual circuit remove the counter. */
/* terminate the API. */

/**/
(void)x25_receive(&conn_id,&cb_msg);

if (cb_msg.msg_type != X25_RESET_CONFIRM)
{

(void)printf("%s: Did not receive expected reset
confirm",argv[O]);

(void)x25_pvc_free(conn_id);
(void)x25_ctr_remove(ctr_id);
(void)x25_term(&cb_link_name);
return(!);

}

(void)printf("%s: Received reset confirm ... ",argv[O]);

/**/
/* Now send some more data */
/* The last block of data to be sent is the end-of-transmission */
/*indicator specified by END OF TRANS. This is understood by the */
/* PVC receiver example program~ pvcrcv. */

/**/
cb_data.data_len = strlen(INF02);
cb_data.data = INF02;

10-30 Communications Programming Concepts

(void)printf("%s: Sending some data ... ",argv[O]);
(void)x25_send(conn_id,&cb_data);

(void)printf("%s: Sending last block of data •.. ",argv[O]);
cb_data.data_len = strlen(END_OF_TRANS);
cb_data.data = END_OF_TRANS;
(void)x25_send(conn_id,&cb_data);

/**/
/* Free up any resources allocated during the program before */
/* ending: free the permanent virtual circuit */
/* remove the counter. */
/* terminate the API. */

/**/

}

(void)x25_pvc_free(conn_id);
(void)x25_ctr_remove(ctr_id);
(void)x25_term(&cb_link_name);

}
return(O);

X.25 Communications for Programming 10-31

X.25 Example Program svcrcv: Program Description
1. Initialize the API for the port specified by LINK_NAME (x25_init).

2. If initialization failed, display a message and exit from the program.

3. Get a counter for listening for incoming calls (x25_ctr_get).

4. Start listening for incoming calls (x25_1isten).

5. Wait for an incoming call (x25_ctr_wait).

6. Receive the incoming call (x25_receive).

7. Get a counter for handling this call (x25_ctr_get).

8. Accept the call (x25_call_accept).

9. Free any memory allocated by the API to cb_msg_struct.

Repeat until a clear-indication message arrives:
1. Wait for a message (x25_ctr_wait).

2. Receive message (x25_receive).

3. If the message is data:

a. Acknowledge it if the D-bit is set (x25_ack).

b. Display the data on the screen.

c. Free any memory allocated to cb_msg_struct by the API.

4. If the message is a clear-indication;

a. Display a message to say the call has been cleared.

b. Remove the counter (x25_ctr_remove).

c. Stop listening for calls (x25_deafen).

d. Terminate the API for the port (x25_term).

5. If the message is a reset-indication, send a reset-confirm (x25_reset_confirm).

6. If it is any other message type, do nothing.

10-32 Communications Programming Concepts

X.25 Example Program svcrcv: Receive a Call Using an SVC
/* X.25 Example Program svcrcv. */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <NLchar.h>
#include <x25sdefs.h>

#define LINK NAME "x25s0"
*/

#define SAMPLE NAME "IBMSAMP"
routing list. */

/* Name of X.25 port.

/* A name in the X.25

/**/
/* Function main */
/* Description This program is designed to demonstrate usage */
/* of the X.25 API. It waits for an incoming call, accepts it,*/
/* and then prints any data received. */
/* Example program svcxmit is designed to send the data */
/* received by this program. */
/* Note that, in a production program, you should check the */
/* return code from each subroutine call and take appropriate */
/* action. */
/* Returns 0 if successful */
/* 1 if error *I
/***/

int main(

{

int argc,
char *argv[])

/***/
/* The following structures are defined in the x25sdefs.h file.*/

/***/
struct cb_call_struct cb_call;
struct ctr_array_struct ctr_array[l];

/* This program waits for only */

/* one counter at a time.*/
struct cb_msg_struct cb_msg;
struct cb_link_name_struct cb_link_name;

X.25 Communications for Programming 10-33

NLchar name[8];
/* 1 longer than SAMPLE NAME for NULL terminator. */

int listen_id;
/* Listen identifier for x25 receive. */

int conn id;
I* Connection identifier to identify the call after */

/* receiving it. */
int listen_ctr_id;

/* Counter identifier to associate with incoming calls*/
int call_ctr_id;

/* Counter identifier to associate with accepted call */
int ctr_num;

/* Number of entries in ctr_array. */
int re;

/* Return code */

/**/
/* Initialize the API for access to a link. */

/**/
cb_link_name.flags = X25FLG_LINK_NAME;
cb_link_name.link_name = LINK_NAME;

re= x25_init(&cb_link_name);
if (re < 0)
{

}

(void)printf ("%s: x25 init failed : x25 errno
%d\n", argv[O],x25_errno,errno);

return(l);

else
{

%d errno

/**/
/* Prepare to receive incoming calls: */
/* 1. Get a counter to be used to notify us of incoming calls. */
/* 2. Listen for calls that satisfy the criteria specified by */
/* a name in the routing list. */

/**/
listen ctr id x25_ctr_get();

/* Get a counter. */

(void)NCdecstr(SAMPLE_NAME,name,8);
/* Convert to NLchar. */

listen id= x25 listen(name,listen ctr id);
if (listen id <-O) - -
{

}

(void)printf("%s: x25 listen failed : x25_errno %d errno
%d\n", argv[O],x25_errno,errno);

return(l);

else
(void)printf("%s: Awaiting incoming call ... \n",argv[O]);

10-34 Communications Programming Concepts

/**/
/* Wait for an incoming call. The x25 ctr wait subroutine */
/* returns when a message arrives. - - */

/***/
ctr_num = 1;
ctr_array[O].flags = X25FLG_CTR_ID;
ctr_array[O].flags I= X25FLG_CTR_VALUE;
ctr_array[O].ctr_id = listen_ctr_id;
ctr_array[O].ctr_value = O;
re= x25_ctr_wait(ctr_num,ctr_array);

***/
/* Receive an incoming call. */
/* In this example, we can assume that the message that has */
/* arrived (causing the counter to be incremented and */
/* x25_ctr_wait to return) is an incoming-call message. */
/* Therefore we assign the listen identifier to the conn id */
/*parameter before invoking x25 receive and */
I* we do not check the return code. *I

/* On return, conn_id is set to the connection identifier */
/* for this call. */

/***/

conn_id = listen_id;
(void)x25_receive(&conn_id,&cb_msg);

(void)printf("%s: Incoming call received\n",argv[O]);

/***
I
I* Get a new counter for handling data from this call
/* accepting the call.
/* No additional information needs to be put into the
/* packet, so the flags field is set to zero.

before */
*/

call-accept*/
*/

/**/
call_ctr_id = x25_ctr_get();
cb_call.flags = O;
(void)x25 call accept(conn id,&cb call,call ctr id);
(void)printf("°%s: Call accepted.\n",argv[O]); -

X.25 Communications for Programming 10-35

/**/
/* x25_receive allocates storage to return information. Although */
/* there are no storage constraints in this application, */
/* the allocated storage is freed once the information */
/* is no longer needed. */

/**/
if (cb_msg.msg_point.cb_call != NULL)
{

}

cb_msg.msg_point.cb_call -> flags = O;
if (cb msg.msg point.ch call->link name != NULL)

free(cb_msg.msg_point~cb_call->llnk_name);

if (cb_msg.msg_point.cb_call->calling_addr != NULL)
free(cb_msg.msg_point.cb_call->calling_addr);

if (cb_msg.msg_point.cb_call->called_addr != NULL)
free(cb_msg.msg_point.cb_call->called_addr);

if (cb_msg.msg_point.cb_call->user_data != NULL)
free(cb_msg.msg_point.cb_call->user_data);

free(cb_msg.msg_point.cb_call);

/**/
/* The call has now been received and accepted. Now wait for */
/* the data. */

/***~************************/
do
{

/***/
/* Wait for counter to indicate that data is waiting to be */
/* received. */

/**/
ctr_num = 1;
ctr array[O].flags = X25FLG CTR ID;
ctr=array[O].flags I= X25FLG_CTR_VALUE;
ctr_array[O].ctr_id = call_ctr_id; ·
ctr_array[O].ctr_value = O;
(void)x25_ctr_wait(ctr_num,ctr_array);

/**/
/* Receive the message that is now ready. The types of message */
/* that the program can handle are data, clear-indication, and */
/* reset-indication; other message types are ignored. */

/***/
(void)x25_receive(&conn_id,&cb_msg);

switch (cb~msg.msg_type)
{
case X25 DATA:

10-36 Communications Programming Concepts

/**/
/* Acknowledge the data if the D-bit (delivery confirmation) */
/* is set.*/

/**/
if ((cb_msg.msg_point.cb_data->flags) & X25FLG_D_BIT)

(void)x25_ack(conn_id);

/**/
/* Print the received data. Assume it is a normal string. */

/**/
if ((cb_msg.msg_point.cb_data ->flags) & X25FLG_DATA)
{

(void)printf("%s: Incoming Data : ",argv[O]);
(void)printf("%s\n",cb_msg.msg_point.cb_data->data);
free(cb_msg.msg_point.cb_data->data);

/* Free memory allocated */
free(cb_msg.msg_point.cb_data);

}
break;

case X25_CLEAR INDICATION:

/**/
/* When the call has been cleared, do the tidying up: */
/* Remove the counters. */
/* Stop listening for calls. */
/* Terminate the API. */

/**/
(void)printf("%s: Call cleared. Cause = Ox%02x Diagnostic =

Ox%02x\n", argv[O],
cb msg.msg point.ch clear->cause,
cb=msg.msg=point.cb=clear->diagnostic);

(void)x25 ctr remove(call ctr id);
(void)x25=ctr=remove(listen_ctr_id);
(void)x25 deafen(listen id);
(void)x25=term(&cb_link=name);
break;

case X25_RESET_INDICATION:

/**/
/* Respond to the arrival of a reset-indication message, by */
/* sending a reset-confirmation message. */

/**/
(void)x25_reset_confirm(conn_id);

}

break;

default:
/* Ignore packet types other than data, clear-indication, and */
/* reset-indication. */

break;
}

} while (cb_msg.msg_type != X25_CLEAR_INDICATION};
}
return(O);

X.25 Communications for Programming 10-37

X.25 Example Program svcxmit: Program Description
This example program uses a switched virtual circuit:

1. Initialize the API for the port specified by LINK_NAME (x25_init).

2. If initialization failed, display a message and exit from the program.

3. Get a counter (x25_ctr_get).

4. Make a call from address specified by CALLING_ADDR to address specified by
CALLED_ADDR, enabling D-bit acknowledgment. (x25_call)

5. Wait for a call-clear or call-connected message (x25_ctr_wait)

6. Receive the message (x25_receive)

7. If the message is call-connected:

a. Send data (x25_send), without the D-bit set.

b. Send data (x25_send), with the D-bit set.

c. Wait for (x25_ctr_wait) and receive (x25_receive) acknowledgment of the data sent
with the D-bit set.

d. Clear the call (x25_call_clear).

8. If the call was cleared by the remote DTE (the other user), display a message.

9. Remove the counter (x25_ctr_remove).

10. Terminate the API (x25_term).

10-38 Communications Programming Concepts

X.25 Example Program svcxmit: Make a Call Using an SVC
/* X.25 Example Program svcxmit. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <NLchar.h>
#include <x25sdefs.h>

#define LINK NAME "x25s0"
/* Name of

#define CALLING_ADDR "54321"
/* Calling

#define CALLED ADDR "1234502"
/* Called

#define SAMPLE NAME "IBMSAMP"

X.25 port.

Network User Address

Network User Address

/* A name in the X.25 routing list.

#define INFO "Hello World"
#define INF02 "Goodbye Everyone"

*/

*/

*/

*/

/***/
/* Function main */
/* Description This program is designed to demonstrate usage */
/* of the X.25 API. It makes a call, transmits some data, */
/* and then clears the call. */
/* Example program svcrcv is designed to receive the data sent */
/* by this program. */
/* Note that, in a production program, you should check the */
/* return code from each subroutine call and take appropriate */
/* action. */
/* Return 0 if successful *I
/* 1 if error occurs *I
/**/
int main(

{

int argc,
char *argv[])

int conn_id;
/* Connection identifier, */
/* to identify the call once it is made. */

int ctr id;
-/* Counter identifier to be associated with the call. */

int re;
/* Used for return codes. */

int ctr_num = 1;
/* The number of counters in counter array. */

X.25 Communications for Programming 10-39

/**/
/* The following structures are defined in the x25sdefs.h file. */
/* file. */

/**/
struct cb_msg_struct cb_msg;

struct cb_link_name_struct cb_link name;

struct ctr_array_struct ctr_array[l];

struct cb_call_struct cb_call;

struct cb_clear_struct cb_clear;

struct cb_data_struct cb_data;

/**/
/* Initialize the API for access to a link. */

/**/
cb link name.flags = X25FLG LINK NAME;
cb~)ink=name.link_name = LINK_NAME;
re= x25_init(&cb_link_name);

if (re < 0)
{

(void)printf("%s: x25_init failed : x25_errno = %d errno =
%d\n",argv[O],x25_errno,errno);

return(l);
}
else
{

/**/
/* Get a counter to be used to notify us of incoming messages. */

/***/
ctr_id = x25_ctr_get();

/**/
/* Set the flags in the cb call structure to indicate which */
/* fields have been filled-in. The fields which this program */
/* sets are the calling and called addresses, and the link on */
/* which to call. The D-bit field must also be set, as there */
/* will be a data packet sent later which sets the D-bit. */

/**/
cb_call.flags = X25FLG_LINK_NAME;

/* Set flag for using linkname. */
cb_call.link_name = LINK_NAME;

cb_call.flags I= X25FLG_CALLING_ADDR;
/* Set flag for calling address. */

cb_call.calling_addr = CALLING_ADDR;

cb_call.flags I= X25FLG_CALLED_ADDR;
/* Set flag for called address. */

cb_call.called_addr CALLED_ADDR;

10-40 Communications Programming Concepts

cb_call.flags I= X25FLG_D_BIT;
/* Set flag for D-bit. */

I* Now that cb_call structure has been set up, make the call. */
/* The return code is the connection identifier, which will be */

/* used to refer to this call later. */

conn_id = x25_call(&cb_call,ctr_id);
if (conn_id == -1)
{

(void)printf("%s: x25_call failed x25 errno = %d errno = %d\n",
argv[O],x25_errno,errno);

return(l);
}
else

(void)printf("%s: Placed outgoing call\n",argv[O]);

/**/
/* After making the call, prepare for either a call-connected */
/* or aclear-indication message to arrive: */
/* wait for the counter value to change indicating an incoming */
/* message. (If there were more than one counter in the array, */
/* you would have to test the counter identifier to see which */
/* one had been incremented. In this case there is only one, */
/*so we do not have to do this.) */

/**/
ctr_array[O].flags = X25FLG_CTR_ID;
ctr_array[O].flags I= X25FLG_CTR_VALUE;
ctr_array[O].ctr_id = ctr_id;
ctr_array[O].ctr_value = O;

(void)x25_ctr_wait(ctr_num,ctr_array);

/* Receive the call-clear or call-connected packet.
*/

(void)x25_receive(&conn_id,&cb_msg);

/***/
/* If the incoming message shows that the call has been */
/* connected, send some data. */

/**/
if (cb_msg.msg_type == X25_CALL_CONNECTED)
{

cb_data.flags = X25FLG_DATA;
cb_data.data_len = strlen(INFO);
cb_data.data = INFO;
(void)x25_send(conn_id,&cb_data);
(void)printf("%s: Data se~t\n",argv[O]);

X.25 Communications for Programming 10-41

/**/
/* Send some more data but this time with the D bit set. This */
/* requires the receiver to send an acknowledgement to this */
/* data, so we have to wait for the acknowledgment to arrive. */

/**/
cb_data.flags = X25FLG_DATA;
cb_data.flags I= X25FLG_D_BIT;
cb_data.data_len = strlen(INF02);
cb_data.data = INF02;
(void)x25_send(conn_id,&cb_data);
(void)printf("%s: Data sent\n",argv[O]);

/* Wait for and receive acknowledgement
(void)x25_ctr_wait(ctr_num,ctr_array);
(void)x25_receive(&conn_id,&cb_msg);

*/

if (cb_msg.msg_type == X25 DATA ACK)
(void)printf("%s: Data has been acknowledged.\n",argv[O]);

else
(void)printf("%s: Unexpected packet received.\n",argv[O]);

/**/
/* Clear the call now that transmission is completed. */

/**/
cb_clear.flags = X25FLG_CAUSE;
cb_clear.flags I= X25FLG_DIAGNOSTIC;
cb_clear.cause = O;

/* The CCITT code for DTE-originated */
cb_clear.diagnostic = O;

/* No further information */

(void)printf("%s: Clearin~ the call.",argv[O]);

/* The x25 call clear function can return information from the */
/* clear confirmation packet. However, this isn't required */
/* here, so set the third parameter to NULL. */

}

(void)x25_call_clear(conn_id,&cb_clear,(struct cb_msg_struct
*)NULL);

/**/
/* If the message received was a clear-indication, */
/* print out a message before terminating the program. */

/**/
else if (cb_msg.msg_type == X25_CLEAR_INDICATION)
{
(void)printf("%s: Call cleared. Cause = Ox%02x Diagnostic =

Ox%02x\n",

}

argv[O], cb_msg.msg_point.cb_clear->cause,
cb_msg.msg_point.cb_clear->diagnostic);

10-42 Communications Programming Concepts

/**/
/* Finally, tidy up by removing the counter and terminating */
/* the API. */

/**/
(void)x25_ctr_remove(ctr_id);
(void)x25_term(&cb_link_name);

}
return(O);

}

X.25 Communications for Programming 10-43

10-44 Communications Programming Concepts

Index

A
address families, Sockets, 9-7
addresses, binding socket, 9-13
addresses, socket

obtaining, 9-14
setting, 9-14

AIX API error codes, HCON programming, 4-42
AIX API errors, HCON programming, 4-14
AIX API file transfer, HCON programming, 4-14
AIX API logical terminal interface, HCON

programming, 4-14
AIX API message interface, HCON programming,
4-14

AIX API session control, HCON programming, 4-13
AIX data structures, HCON programming, 4-11
AIX header files, HCON programming, 4-11
AIX interface for HCON API, HCON programming,

4-11
AIX Network Management/6000. See SNMP;

xgmon
allo_str, 8-5, 8-6
alloc_listen, 8-9
allocating memory with XOR, RPC, 7-26
alphabetic list of NIS Subroutines, 2-3
alphabetical list of DBM subroutines, 2-1
alphabetical list of NDBM subroutines, 2-2
API for X.25

C subroutines, inclusion in, 10-2
calls

clearing, 10-15
interrupting, 10-16
receiving fast-select data, 10-15
rejecting, 10-15
resetting, 10-16
terminating, 10-15

data
acknowledging, 10-14
asking for acknowledgement, 10-14
transferring, 10-14

data receipt, procedure of, 10-15
data transfer, long messages procedure, 10-14
identifiers, use in, 10-2
shared memory, absence of, 10-5
subroutines, calling, 10-2
X.25 communications, use in, 10-1

API program flow, HCON programming, 4-9
application programming interface. See API for

X.25
application programming interface (API), HCON

programming, 4-8

applications for X.25
counters

obtaining a, 10-11
use of, 10-1 O

previous releases, changes to, 10-3
processes, use of, 10-6
programming for, introduction to, 10-1

arbitrary data types, RPC
example, 7-61
passing, 7-25

array, example, XOR, 3-37
array data types, XOR, 3-12
assigning procedure numbers, RPC, 7-21
assigning program numbers, RPC, 7-20
assigning version numbers, RPC, 7-21
attr_str, 8-5, 8-1 O
authentication

data encryption standard, RPC, 7-12
NULL, RPC, 7-11
RPC, 7-10
UNIX, RPC, 7-11

authentication protocol, RPC, 7-10
AUTOLOG profile, using, testing, linking, 4-74
AUTOLOG, HCON programming, 4-19

program examples. See AUTOLOG, HCON
programming

automatic logon commands, HCON programming,
4-25

B
basic filter primitives, XOR, 3-17
batching, RPC, 7-29
binding names to sockets, concepts. See bind

subroutine
binding process, RPC, 7-4
block size, XOR, 3-2
boolean data types, XOR, 3-9
booleans, RPC, 7-36
broadcasting

example, RPC, 7-57
RPC, 7-30
server side, RPC, 7-39

byte strings, XOR, 3-13

c
C language syntax for NIDL, NCS, 5-50
C preprocessor, RPC, 7-38

Index X-1

call for X.25
accepting an incoming, subroutines used,

10-14
determining message number, using

x25 ctr test, 1 0-11
listenidentifier, restrictions on, 10-12
making an outgoing, using cb_call_struct

subroutine, 10-13
obtaining a listen identifier, using x25_1isten,

10-12
receiving an incoming, subroutines used,

10-13
rejecting an incoming, subroutines used, 10-14
removing a listen identifier, using x25_1isten,

10-12
using a listen identifier, using x25_1isten, 10-12
waiting for an incoming, using x25_ctr_wait

subroutine, 10-11
call message, RPC, 7-6
call-back procedures

example, RPC, 7-84
RPC, 7-30

calls for X.25, API level
allocating a PVC, 10-8
connection identifier restrictions, 10-10
connection identifier uses, 10-9-10-1 O
counter identifier use, 10-10
counters use, 10-1 O
freeing a PVC, 10-8
initializing, 10-8
obtaining a connection identifier, 10-9
terminating, 10-8
terminating each X.25 port, 10-8

canonical standard, XOR, 3-1
changing time outs, RPC, 7-39
closing sockets. See socket shutdown
Command Line Manager, SNMP, 6-22
communications for X.25, standard, origin of, 10-1
compiling programs, RPC, 7-27
compiling, HCON programming

AIX API programs, C, FORTRAN, Pascal, 4-69
file transfer program, C, FORTRAN, Pascal,

4-68
host API programs, C, FORTRAN, Pascal,

4-70
confirm_str, 8-5, 8-11
connect sockets, 9-15
connected sockets, create a pair, 9-15
connection identifier for X.25, subroutines, use in,

10-9
connectionless sockets, 9-16
connections, socket. See connect subroutine
constants

luxsna.h constants, 8-28
error codes, 8-28
requestcodes,8-28,8-30
status codes, 8-28

RPC, 7-34
XOR, 3-15

X-2 Communications Programming Concepts

constructed filter primitives, XOR, 3-18
converting local procedures

example, RPC, 7-75
RPC, 7-38

counter for X.25
removing, 10-12
restrictions on, 10-12

counter identifier for X.25, subroutines
x25_call, 10-11
x25_call_accept, 10-11
x25 ctr test, 10-11
x25 :=ctr:= wait, 1 0-11
x25 listen, 10-11
x25:=pvc_alloc, 10-11

counter subroutines for X.25, list of, 10-3
cp_str, 8-5, 8-11

D
data description, example, XOR, 3-40
data encryption standard authentication

Diffie-Hellman encryption, RPC, 7-15
example, RPC, 7-53
protocol, RPC, 7-14
RPC, 7-12

data link control, generic, 1-1
data link control, IEEE 802.3 ethernet, 1-26
data link control, qualified logical link control, 1-52
data link control, standard ethernet, 1-35
data link control, synchronous, 1-44
data link control, token-ring, 1-16
data packets for X.25, receipt of, 10-15
data stream, XOR

creating, 3-20
destroying, 3-22
implementing, 3-21
manipulating, 3-21
using, 3-20

data transfer, socket, 9-18
data types

array, XOR, 3-12
boolean, XOR, 3-9
enumeration, XOR, 3-9
floating-point, XOR, 3-9
integer, XOR, 3-8
opaque, XOR, 3-11
XDR, 3-8

datagram services, connectionless, 9-16
DBM, alphabetical list of subroutines, 2-1
deal_str, 8-5, 8-13
declarations

RPC, 7-35
XOR, 3-5

definitions, RPC, 7-31
DES. See data encryption standard
/dev/x25sn special file, 10-9
Diffie-Hellman encryption, RPC, 7-15

discriminated union
example, XOR, 3-42
XOR, 3-14

dlc802.3, IEEE ethernet data link control, 1-26
dlcether, standard ethernet data link control, 1-35
DLCQLLC, qualified logical link control, 1-52
dlcsdlc, synchronous data link control, 1-44
dlctoken, token-ring data link control, 1-16
domain name resolution, Sockets, 9-24
domain name translation, Sockets, 9-24

E
enhancements, planned, XOR, 3-2
enumeration data type, XOR, 3-9
enumerations

RPC, 7-33
XOR, 3-5

erro_str, 8-5, 8-14
error codes, 8-28
error codes for X.25

errno, use of, 10-6
non-X.25 specific, list of, 10-20
x25_errno, use of, 10-6

ethernet data link control, IEEE 802.3, 1-26
example

array, XOR, 3-37
broadcasting, RPC, 7-57
call-back procedures, RPC, 7-84
converting local procedures, RPC, 7-75
data description, XOR, 3-40
DES authentication, RPC, 7-53
discriminated union, XOR, 3-42
generating XOR routines, RPC, 7-80
highest layer, RPC, 7-58
intermediate layer, RPC, 7-59
justification for using, XOR, 3-32
local to remote, RPC, 7-75
lowest layer, RPC, 7-63
multiple program versions, RPC, 7-73
passing arbitrary data types, RPC, 7-61
passing linked lists, XOR, 3-29
ping program, RPC, 7-56
pointers, XOR, 3-35
rep on TCP, RPC, 7-69
select subroutine, RPC, 7-68
UNIX authentication, RPC, 7-50
using an array, XOR, 3-37
using XOR, 3-36

example code, demonstration purposes, use only
as, 10-21

example programs
compiling, 10-21
preparing, 10-21
running, 10-21

example programs for X.25
PVC

receiving data using, 10-23-10-26
sending data using, 10-28-10-31

pvcrcv, 10-23-10-26
pvcxmit, 10-28-10-31
SVC

making a call using, 10-39-10-44
receiving a call using, 10-33-10-37

svcrcv, 10-33-10-37
svcxmit, 10-39-10-44

example programs, Sockets, understanding, 9-26
exceptions, RPCL rules, 7-36
explicit logon, HCON programming, 4-17
ext_io_str, 8-5, 8-15
eXternal Data Representation (XOR)

See also XOR
allocating memory with RPC, 7-26
array, example, 3-37
array data types, 3-12
basic filter primitives, 3-17
block size, 3-2
boolean data types, 3-9
byte strings, 3-13
canonical standard, 3-1
constants, 3-15
constructed filter primitives, 3-18
data description, example, 3-40
data stream

creating, 3-20
destroying, 3-22
implementing, 3-21
manipulating, 3-21
using, 3-20

data types, 3-8
array, 3-12
boolean, 3-9
constants, 3-15
discriminated unions, 3-14
enumerations, 3-9
floating-point, 3-9
integer, 3-8
opaque, 3-11
optional data, 3-16
strings, 3-13
structures, 3-13
type definitions, 3-15
union, optional data, 3-16
voids, 3-15

declarations, 3-5
discriminated union, 3-14

example, 3-42
enhancements, planned, 3-2
enumeration data type, 3-9
enumerations, 3-5
filter primitives, 3-17

basic, 3-17
constructed, 3-18

floating-point data types, 3-9
generating routines with RPC, 7-38

example, 7-80
integer data types, 3-8

Index X-3

F

justification for using, example, 3-32
language

declarations, 3-5
enumerations, 3-5
lexical notes, 3-5
specifications, 3-5
structure, 3-5
syntax notes, 3-7
unions, 3-5

lexical notes, 3-5
library, 3-4
library filter primitives, 3-17
linked lists, example, 3-29
memory allocation in RPC, 7-26
non-filter primitives, 3-20
opaque data types, 3-11
operation directions, 3-4
optional data, 3-16
overview, 3-1
passing linked lists, example, 3-29
pointers, example, 3-35
primitives

filter, 3-17
non-filter, 3-20

RPC, using with, 3-4
strings, 3-13
structures, 3-5, 3-13
subroutine format, 3-3
syntax notes, 3-7
type definitions, 3-15
unions, 3-5

discriminated unions, 3-14
optional data, 3-16

using, example, 3-36
using an array, example, 3-37
voids, 3-15

features, RPC, 7-29
file transfer

prerequisite hardware, 8-55
prerequisite software, 8-55
starting, 8-55

file transfer error codes, HCON programming, 4-28
file transfer programming interface, HCON

programming
asynchronous, synchronous file transfer, 4-4
cfxfer, fxfer, 4-4
data structures, 4-5
header files, 4-5
security, 4-4

file transfer, HCON programming, AIX API, 4-14
files, special, 8-5

luxsna.h header file, 8-5
filter primitives

basic, XOR, 3-17
constructed, XOR, 3-18
XOR, 3-17

flags for X.25, use of, 10-5

X-4 Communications Programming Concepts

floating-point data types, XOR, 3-9
flush str, 8-5, 8-20
fmh str, 8-5, 8-21
fxc C data structure, HCON programming. See file

transfer programming interface
fxc Pascal declarations, HCON programming. See

file transfer programming interface

G
gdlc, generic data link control, 1-1
generating XOR routines

example, RPC, 7-80
RPC, 7-38

generic data link control, 1-1
get_parms, 8-22
gstat_str, 8-5, 8-22

H
HCON File Transfer Program Interface, compiling,
4-68

HCON host API programs, compiling, 4-70
HCON programming

AIX API C language structures, 4-12
AIX API errors, 4-14
AIX data structures, 4-11
AIX interface for HCON API, 4-11
API program flow, 4-9
application programming interface (API), 4-8
AUTOLOG, 4-19
automatic logon commands, 4-25
compiling programs, 4-27
example programs, 4-25
explict, implicit logon, 4-17
file transfer programming data structures, C,

Pascal, 4-5
file transfer programming interface, 4-4
FORTRAN API language structures, 4-13
host interface errors, 4-16
host interface for HCON API, 4-15
LAF language, 4-21
LAF script statements, 4-24
Logan Assist Feature (LAF), 4-20
Pascal language API structures, 4-12

HCON programming error codes
AIX API, 4~42
file transfer, 4-28
host API, 4-50

HCON programming examples, 4-25
API, 4-26
file transfer program interface, 4-25

header file, luxsna.h, 8-5
header files, HCON programming

AIX, g32const.inc, g32hfile.inc, g32keys.inc,
g32types.inc, g32_api, g32_keys_h, 4-11

file transfer, fxfer.h, fxconst.inc, fxfer.inc,
fxhfile.inc, 4-5

header files, Sockets, in.h, nameser.h, netdb.h,
resolv.h, socket.h, socketvar.h, un.h, 9-5

highest layer, example, RPC, 7-58
host API, HCON programming

installing on MVS/TSO systems, 4-64
installing on VM/CMS systems, 4-66

host error codes, HCON programming, 4-50
host file flags, HCON programming, 4-7
host interface errors, HCON programming, 4-16
host interface for HCON API, HCON programming,

4-15
host message interface, HCON programming, 4-16
host name translation, Sockets, 9-22
host session control, HCON programming, 4-15

I
1/0 modes, Sockets, 9-20
IEEE 802.3 ethernet data link control, 1-26
implicit logon, HCON programming, 4-17
include files, Sockets. See header files, Sockets
inetd daemon, starting RPC, 7-27
initialization subroutines for X.25

changes to, 10-4
list of, 10-3

installing MVS/TSO host API, HCON programming,
4-64

installing VM/CMS host API, HCON programming,
4-66

integer data types, XOR, 3-8
intermediate layer

example, RPC, 7-59
RPC, 7-23

Internet address translation, Sockets, 9-23
ioctls, socket, SIOCGPGRP, SIOCSPGRP,

FIOASYNC. See out-of-band data, Sockets

J
justification for using, example, XOR, 3-32

L
LAF language, HCON programming, 4-21
LAF script statements, HCON programming, 4-24
LAF script, HCON programming, using, 4-71
language, RPC, 7-31
language descriptions, RPC, 7-31
language specifications, XOR, 3-5
lb_$ library routines, NCS, 5-89
lexical notes, XOR, 3-5
library, XOR, 3-4
library filter primities, XOR, 3-17
library routines, NCS

lb_$, 5-89
pfm_$, 5-86
rpc_$, 5-81
uuid_$, 5-94

linked lists, example, XOR, 3-29
linking programs, RPC, 7-27
listen identifier for X.25, purpose of, 10-12
local procedures, example converting to remote,

RPC, 7-75

Location Broker daemons, NCS
llbd daemon, 5-75, 5-78
nrglbd daemon, 5-75, 5-79

Location Broker, NCS, 5-3, 5-75
Client Agent, 5-3, 5-75, 5-77
lb_$ library routines, 5-89

logical path, HCON programming, 4-3
logical terminal interface, HCON programming, AIX

. API, 4-14
Logon Assist Feature (LAF), HCON programming,

4-20
See also Logan Assist Feature, HCON

programming
Logon Assist Feature script, HCON programming,

using sample, testing, 4-71
lowest layer, example, RPC, 7-63
luxsna.h, 8-5

M

constants, 8-28
error codes, 8-28
request codes, 8-28,8-30
status codes, 8-28

structures, 8-5
allo_str, 8-5, 8-6
alloc_listen, 8-9
attr_str, 8-5, 8-10
confirm_str, 8-5, 8-11
cp_str, 8-5, 8-11
deal_str, 8-5, 8-13
erro_str, 8-5, 8-14
ext_io_str, 8-5, 8-15
flush_str, 8-5, 8-20
fmh_str, 8-5, 8-21
get_parms, 8-22
gstat_str, 8-5, 8-22
pip_str, 8-5, 8-24
prep_str, 8-5, 8-24
read_out, 8-5, 8-25
stat_str, 8-5, 8-27
write_out, 8-5, 8-27

management subroutines for X.25
list of, 1 0-3
security permissions, requirements for, 10-7

marking records, RPC, messages, 7-9
memory allocation with XOR, RPC, 7-26
message interface, HCON programming

AIX API, 4-14
host API, 4-16

message protocol, RPC, 7-5
requirements, 7-5

message structure, RPC, 7-5
MIB, 6-3

using database, 6-6
variables

SNMP daemon support for, 6-16
terminology, 6-6
working with, 6-9

Index X-5

model, RPC, 7-2
multiple program versions, example, RPC, 7-73
MVSfTSO, HCON programming, installing host

API, 4-64

N
name, socket's bound, 9-13
NCS

commands, 5-80
daemons, 5-80

See also Location Broker daemons
introduction, 5-1
library routines

lb_$, 5-89
pfm_$, 5-86
rpc_$, 5-81
uuid_$, 5-94

Location Broker, 5-75
NIOL, 5-3, 5-16

See also NIOL; NIDL compiler
Remote Procedure Call (RPC) runtime library.

See RPC runtime library
remote procedure calls, 5-6
RPC runtime library, 5-3, 5-4

client routines, 5-14
conversion routines, 5-15
server routines, 5-14

UUIOs, 5-4, 5-24
writing applications, 5-24

NOBM, alphabetical list of subroutines, 2-2
network address translation, Sockets, 9-22
network byte order, Sockets, translation, 9-23
Network Computing System. See NCS
network host name, Sockets, translation, 9-24
Network Interface Definition Language, NCS. See

NIDL
network name translation, Sockets, 9-22
NIOL compiler, NCS, 5-3, 5-30

concepts, 5-16
NIOL, NCS

applications
building of, 5-49
writing of, 5-24

banking example, 5-17
binop example, 5-18
client programs, writing of, 5-43
concepts, 5-16
handles, use of, 5-21
handles and bindings, managing of, 5-34
interface definitions

compiling of, 5-30
writing of, 5-25

server program, writing of, 5-46
stub functions, 5-20
using C syntax, 5-50
using Pascal syntax, 5-62
with FORTRAN, 5-73

X-6 Communications Programming Concepts

writing manager procedures, 5-48
writing server main procedure, 5-46

N IS, alphabetic list of subroutines, 2-3
non-filter primitives, XOR, 3-20
NULL authentication, RPC, 7-11

0
opaque data, RPC, 7-37
opaque data types, XOR, 3-11
operation directions, XDR, 3-4
optional data, XDR, 3-16
options, socket

getting. See getsockopt subroutine
setting. See setsockopt subroutine

out-of-band data, Sockets, 9-19

p
Pascal language syntax for NIDL, NCS, 5-62
passing arbitrary data types, example, RPC, 7-61
passing linked lists, example, XOR, 3-29
pfm_$ library routines, NCS, 5-86
physical path, HCON programming, 4-3
ping program, example, RPC, 7-56
pip_str, 8-5, 8-24
pointers, example, XOR, 3-35
port mapper, RPC, registering ports, 7-17
port mapper procedures, RPC, 7-19
port mapper program, RPC, 7-17
port mapper protocol, RPC, 7-18
ports, registering, RPC, 7-17
prep_str, 8-5, 8-24
presentation space, HCON programming, 4-3
primitives

filter, XOR, 3-17
non-filter, XDR, 3-20

procedure numbers, RPC, assigning, 7-21
program numbers, RPC, assigning, 7-20
programming, RPC, 7-20
programming in RPC, 7-20
programs, RPC, 7-34
protocol, RPC message, 7-5
protocol compiler, rpcgen, RPC, 7-37
protocol name translation, Sockets, 9-23
protocols, socket, families, PF _INET, PF _UNIX,

9-11

Q
qualified logical link control, 1-52

R
rep on TCP, example, RPC, 7-69
read str, 8-5, 8-25
record marking, RPC, messages, 7-9
registered programs, RPC, 7-21
registered RPC programs, 7-21
registering ports, RPC, 7-17

Remote Procedure Call (RPC)
allocating memory with XOR, 7-26
arbitrary data types

example, 7-61
passing, 7-25

assigning procedure numbers, 7-21
assigning program numbers, 7-20
assigning version numbers, 7-21
authentication, 7-1 O

data encryption standard, 7-12
NULL, 7-11
UNIX, 7-11

authentication protocol, 7-1 O
batching, 7-29
binding process, 7-4
booleans, 7-36
broadcasting, 7-30

example, 7-57
server side, 7-39

C preprocessor, 7-38
call message, 7-6
call-back procedures, 7-30

example, 7-84
changing time outs, 7-39
compiling programs, 7-27
constants, 7-34
converting local precedures, 7-38
converting local procedures, example, 7-75
data encryption standard authentication, 7-12

example, 7-53
protocol, 7-14

declarations, 7-35
definitions, 7-31
DES authentication, example, 7-53
Diffie-Hellman encryption, 7-15
enumerations, 7-33
exceptions to language rules, 7-36
features, 7-29
generating XOR routines, 7-38

example, 7-80
highest layer, example, 7-58
inetd daemon, starting from, 7-27
intermediate layer, 7-23

example, 7-59
language, 7-31

constants, 7-34
declarations, 7-35
definitions, 7-31
descriptions, 7-31
enumerations, 7-33
example of ping program, 7-56
exceptions to rules, 7-36

booleans, 7-36
opaque data, 7-37
strings, 7-36
voids, 7-37

programs, 7-34
rpcgen protocol compiler, 7-37
structures, 7-32

syntax requirements, 7-36
type definitions, 7-33
unions, 7-32

linking programs, 7-27
local procedures, example converting to

remote, 7-75
lowest layer, example, 7-63
marking records in messages, 7-9
memory allocation with XOR, 7-26
message protocol, 7-5

requirements, 7-5
messages, 7-5

call, 7-6
marking records, 7-9
protocol requirements, 7-5
reply, 7-7

·structure, 7-5
model, 7-2
multiple program versions, example, 7-73
NULL authentication, 7-11
opaque data, 7-37
overview, 7-1
port mapper, registering ports, 7-17
port mapper procedures, 7-19
port mapper program, 7-17
port mapper protocol, 7-18
procedure numbers, assigning, 7-21
program numbers, assigning, 7-20
programming, 7-20
programs, 7-34
rep on TCP, example, 7-69
record marking in messages, 7-9
records, marking in messages, 7-9
registered programs, 7-21
registering ports, 7-17
reply message, 7-7
rpcgen protocol compiler

broadcast on the server side, 7-39
C preprocessor, 7-38
changing time outs, 7-39
converting local to remote, 7-38
generating XOR routines, 7-38
other information passed to server, 7-39
using, 7-37

select subroutine
example, 7-68
server side, 7-30

semantics, 7-3
server procedures, 7-39
servers

broadcasting, 7-39
select subroutine, 7-30

strings, 7-36
structures, 7-32
time outs, changing, 7-39
transports, 7-3
type definitions, 7-33
understanding model, 7-2
unions, 7-32

Index X-7

UNIX authentication, 7-11
example, 7-50

using rep on TCP, 7-69
version numbers, assigning, 7-21
voids, 7-37
XDR, using with, 3-4

Remote Procedure Call runtime library, NCS. See
RPC runtime library

remote procedure calls, NCS, paradigm for, 5-6
remote procedures, convert local procedures to,

RPC, 7-38
reply message, RPC, 7-7
requestcodes,8-28
reset for X.25, handling of, 10-16
resolver, Sockets, resolver subroutines, 9-24
RPC. See Remote Procedure Call (RPC)
RPC runtime library, NCS, 5-3, 5-4, 5-13

client routines, 5-14
conversion routines, 5-15
routines, 5-13
server routines, 5-14

rpc_$ library routines, NCS, 5-81
rpcgen, protocol compiler, RPC, 7-37
RPCL

s

exceptions to the rules, 7-36
ping program, example, 7-56
syntax requirements for program definition,

7-36

select subroutine
example, RPC, 7-68
server side, RPC, 7-30

semantics, RPC, 7-3
server connections, Sockets, 9-16
server procedures, RPC, 7-39
servers

broadcasting, RPC, 7-39
select subroutine, RPC, 7-30

service name translation, Sockets, 9-23
session control, HCON programming

AIX API, 4-13
host API, 4-15

Session Modes, HCON programming, 4-1
session, HCON programming, 4-3
shutdown sockets, 9-21
Simple Network Management Protocol. See SNMP
SNA Services/6000

developing special SNA functions, 8-32
configurations, 8-34
functional characteristics, 8-34

error codes, 8-28
example programs

file transfer
rcvfrom .c, 8-56
sendto.c, 8-56

X-8 Communications Programming Concepts

transaction program
local, 8-46
mapped, 8-51
mapped remote, 8-52
remote, 8-48

extended interface, using, 8-44
file transfer, 8-55

example program
rcvfrom.c, 8-56
sendto.c, 8-56

limited interface, using, 8-44
local transaction program, example program,

8-46
LUO facility, 8-37
mapped remote transaction program, example

program, 8-52
mapped transaction program, example

program, 8-51
parameter passing, 8-44
programs

rcvfrom.c, 8-56
sendto.c, 8-56

rcvfrom.c, file transfer, example program; 8-56
requestcodes,8-30
sendto.c, file transfer, example program, 8-56
signals, 8-45
transaction program

See also remote transaction program name
(RTPN)

extended interface, 8-44
limited interface, 8-44
local, example program, 8-46
mapped, example program, 8-51
mapped remote, example program, 8-52
remote, example program, 8-48
signals, 8-45
writing, 8-44

guidelines, 8-44
transferring files, 8-55
writing, transaction programs, 8-44

guidelines, 8-44
Writing Generic Programs for, 8-57

snaopen,8-55
SNMP, 6-3

agent, function of, 6-8
API subroutine library, 6-10

list of subroutines, 6-12
Command Line Manager, 6-22
daemon, 6-13

configuring, 6-13
implementation restrictions, 6-21
processing, 6-14
RFC conformance, 6-20
support for SET request processing, 6-17
support for the EGP family of MIB

variables, 6-16

formatting VGM windows, xgmon, 6-25
internal database, VGM, xgmon, 6-25
intrinsic functions, xgmon

alphabetic list, 6-37
extenrnng of, 6-23
functional list, 6-39
how to create, 6-43

library commands, creating of, 6-24
library commands, xgmon

how to create, 6-46
how to modify, 6-48

Management Information Base. See MIB
monitor, function of, 6-8
programming VGMs, xgmon, 6-24
VGM run-time environment, 6-30
working with VGM data types, 6-29
working with VGM variables, 6-26
xgmon library programs, structure of, 6-30
xgmon Overview for Programmers, 6-1
xgmon programming utility, 6-23

conditional statements, 6-33
expressions, 6-34
intrinsic functions, 6-35
iteration statements, 6-33
operators, 6-34
simple statements, 6-32

snmpd daemon. See SNMP, daemon
sockaddr structure, Sockets, sa_family, 9-6
socket

address storage, 9-8
blocking, non-blocking mode, 9-20
data transfer, 9-18
discarding. See close subroutine
ioctls, 9-18
network address translation, 9-22
out-of-band data, 9-19
protocols, 9-9
types, 9-9

socket address, data structures, 9-6
socket addresses, TCP/IP, 9-9
socket 1/0 modes, 9-20
socket interface to networks, 9-4
socket layer, 9-3
socket options, get, set, 9-17
socket subroutine library, 9-5
Sockets, 9-1
sockets interface, 9-3
Special Files, /dev/x25sn, 10-9
special files, 8-5
standard ethernet data link control, 1-35
starting from the inetd daemon, RPC, 7-27
stat_str, 8-5, 8-27
status codes, 8-28
strings

RPC, 7-36
XOR, 3-13

structures
luxsna.h structures, 8-5

allo_str, 8-5, 8-6
alloc_listen, 8-9
attr_str, 8-5, 8-1 O
confirm_str, 8-5, 8-11
cp_str, 8-5, 8-11
deal_str, 8-5, 8-13
erro_str, 8-5, 8-14
ext_io_str, 8-5, 8-15
flush_str, 8-5, 8-20
fmh_str, 8-5, 8-21
get_parms, 8-22
gstat_str, 8-5, 8-22
pip_str, 8-5, 8-24
prep_str, 8-5, 8-24
read_out, 8-5, 8-25
stat_str, 8-5, 8-27
write_out, 8-5, 8-27

RPC, 7-32
XOR, 3-5, 3-13

subroutine format, XOR, 3-3
subroutines for X.25

new, list of, 10-4
obsolete, list of, 10-4

synchronous data link control, 1-44
syntax notes, XOR, 3-7
syntax requirements, program definition, RPCL,

7-36

T
TCP/IP socket addresses, 9-9
termination subroutines for X.25

changes to, 10-4
list of, 10-3

time outs, changing, RPC, 7-39
token-ring data link control, 1-16
transaction program, 8-44
transports, RPC, 7-3
troubleshoot file transfer program interface errors,

HCON programming, 4-28
troubleshoot HCON API errors, HCON

programming, 4-42
troubleshoot host API errors, HCON programming,

4-50
TSO, HCON programming, running example

programs, 4-26
type definitions

RPC, 7-33
XOR, 3-15

types, socket, SOCK_OGRAM, SOCK_STREAM,
SOCK_ RAW, 9-10

Index X-9

u
unions

discriminated, XOR, 3-14
optional data, XOR, 3-16
RPC, 7-32
XOR, 3-5

Unique Universal Identifiers. See UUIDs
UNIX authentication

example, RPC, 7-50
RPC, 7-11

using a Logon Assist Feature script, HCON
programming, 4-71

using an array, example, XOR, 3-37
using an AUTOLOG profile, 4-74
using rep on TCP, RPC, 7-69
using XOR, example, 3-36
/usr/include/luxsna.h, 8-5
utilities, HCON programming, automatic logon

commands, 4-25 ·
uuid_$ library routines, NCS, 5-94
UUIDs, NCS, 5-4, 5-24

v
version numbers, RPC, assigning, 7-21
VGM. See xgmon, virtual G machines
VM/CMS, HCON programming, installing host API,

4-66
voids

w
RPC, 7-37
XOR, 3-15

write_out, 8-5, 8-27

x
X.25 adapters, multiple, support for, 10-4
X.25 Device Handler, special file, 10-9
X.25 management subroutines, changes to, 10-5.

X-10 Communications Programming Concepts

X.25 network
example of, 10-1
subroutines, list of, 10-3

X.25 network subroutines, changes to, 10-4
X.25 protocol, future developments, allowance for,

10-5
X.25 structures, use of, 10-5
XOR. See eXternal Data Representation (XOR)
xgmon

intrinsic functions
alphabetic list, 6-37
extending of, 6-23
functional list, 6-39
how to create, 6-43

library commands
creating of, 6-24
how to create, 6-46
how to modify, 6-48

library programs, structure of, 6-30
overview for programmers, 6-1
programming utility, 6-23

conditional statements, 6-33
expressions, 6-34
intrinsic functions, 6-35
iteration statements, 6-33
operators, 6-34
simple statements, 6-32

virtual G machines (VGMs)
data types, 6-29
formatting VGM windows, 6-25
internal database, 6-25
programming of, 6-24
run-time environment, 6-30
variables, 6-26

Reader's Comment Form

~IX Communications Programming Concepts for IBM RISC System/6000

>C23-2206-00

,lease use this form only to identify publication errors or to request changes in
>ublicatlons. Your comments assist us in improving our publications. Direct any requests for
ldditional publications, technical questions about IBM systems, changes in IBM programming
1upport, and so on, to your IBM representative or to your IBM-approved remarketer. You may
1se this form to communicate your comments about this publication, its organization, or subject
natter, with the understanding that IBM may use or distribute whatever information you supply
n any way it believes appropriate without incurring any obligation to you.

J If your comment does not need a reply (for example, pointing out a typing error), check this
box and do not include your name and address below. If your comment is applicable, we
will include it in the next revision of the manual.

J If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved
remarketer to request additional publications.

Please print

Date-----

Your Name------------------------
Company Name--------------------

Mailing Address --------------------

Phone No.-------------------
Area Code

No postage necessary if mailed in the U.S.A

I

I
I
I
1·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Ill II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTj
NECESSJ

IFMAIU
IN THE

UNITED ST

-----1--
1 PIO:!

I
I
I
I
~
c:

::::i
C> c:
0
<(
"O

&
5
'S
(.)

I
I
I
I
I
I
I
I
I
I
I
I

-----r--
ade1 pue p10:1 a1deis JON oa asea1d ade1 1

--------- ----- ---- - ---- - ------------ ·-
'.S IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin , Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2206-00

SC23-2206-00

