

First Edition (March 1990)

This edition of the Display Postscript Reference applies to the IBM AIXwindows Environment/6000 Licensed
Program and to all subsequent releases of these products until otherwise indicated in new releases or
technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

IBM is a registered trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

© Copyright Adobe Systems, Inc., 1987, 1989

Postscript and Adobe are registered trademarks of and the Postscript logo is a trademark of Adobe Systems
Incorporated.

Notice to U.S. Government Users- Documentation Related to Restricted Rights- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Preface
The Display Postscript Reference Manual for the AIXwindows Environment/6000 consists
of several publications produced by Adobe Systems Incorporated. The publications are in
the following order:

• Perspective for Software Developers

• Extensions for the Display Postscript System

• Color Extensions

• Client Library Reference Manual

• X Window System Programmer's Supplement to the Client Reference Manual

• pswrap Reference Manual

• ENCAPSULATED Postscript FILES Specification Version 2.0

• DOCUMENT STRUCTURING CONVENTIONS Specification Version 2.1

• CHARACTER BITMAP DISTRIBUTION FORMAT Specification Version 2.1

Related Publications
Refer to the following Adobe Systems Incorporated publications for additional information:

• Postscript Language Reference Manual

• Postscript Language Program Design

• Postscript Language Tutorial and Cookbook

Preface iii

Iv Display Postscript Reference Manual

Perspective
for Software Developers

ADOBE SYSTEMS
INCORPORATED

Perspective for Software Developers

January 23, 1990

Copyright© 1988-1990 Adobe Systems Incorporated.
All rights reserved.

PostScript and Display PostScript are registered trademarks of
Adobe Systems Incorporated.
X Window System is a trademark of the Massachusetts
Institute of Technology.

The information in this document is furnished for informational use
only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software described
in this document is furnished under license and may only be used or
copied in accordance with the terms of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated.

Written by Amy Davidson.

Contents

About This Document 1

2 About the Display Postscript System
3 Application Building Blocks 2

4 Using pswrap 3
5 The Client Library Interface 4

6 Support for Application Developers 5

6.1 The Adobe Developer Support Line 5
6.2 Manuals for Application Developers 6
6.3 Classes for Application Developers 8
6.4 The Adobe Developer Association 8
6.5 Postscript Standards and Conventions 9
6.6 The Public Access File Server 10

A Changes Since Last Publication Of This Document 11

Index 13

iii

iv

ai;g.iSfof Figures

Figure 1: The Display PostScript System 2

Figure 2: Creating a Display PostScript Application 3

v

1 ABOUT THIS DOCUMENT

This document is your introduction to application development
using the text and graphics imaging resources of the Display
Postscript® system.

This overview for the application programmer describes:

• The Display Postscript system environment you '11 be inter
acting with.

•The Client Library interface you'll be programming for.

• The use of the pswrap translator to prepare C-callable
procedures containing Postscript® language programs.

• The manuals you '11 need.

2 ABOUT THE DISPLAY POSTSCRIPT SYSTEM

The Display Postscript system provides a device-independent
imaging model for displaying information on a screen. This im
aging model is fully compatible with the imaging model used in
Postscript printers. By allowing you to use the Postscript lan
guage to display text, graphics, and sampled images, it frees you
from display-specific details such as screen resolution and num
ber of available colors.

You can look at the Display PostScript system as part of the
window system. Your application will use window system fea
tures for window placement and sizing, menu creation, and event
handling, while using Display Postscript system features to take
care of imaging inside the window.

Display Postscript system components include the Client
Library, the Postscript interpreter, and the pswrap translator.
These components are described in the accompanying set of
manuals. If you are a new Postscript language programmer,
you '11 also need copies of the Postscript language manuals. See
Section 6.2 for a discussion of documentation required by appli
cation developers.

Figure 1 shows the relationship between your application and the

2 ABOUT THE DISPLAY POSTSCRIPT SYSTEM 1

Display Postscript system. The Client Library contains data
structures and procedures your application will use to send re
quests to the Postscript interpreter. No matter what operating
system you 're dealing with, you can send Postscript language
programs to the interpreter in the same way, using the same pro
cedure calls. Therefore portability issues are minimized if you 're
developing an application for more than one environment.

Figure 1 The Display Postscript System

Application --------
Client
Library

Postscript

Language

Data & Events

Operating System

Window

System

Postscript
Interpreter

Display

Mouse

3 APPLICATION BUILDING BLOCKS

Most of your application will be written in C or another high
level languge. You'll call Client Library procedures to start a
Postscript execution context, send programs and data to the
Postscript interpreter, and get results from the the interpreter.
The Client Library is the application's primary interface to the
Display Postscript system.

In addition, you'll call wraps - Postscript language procedures
developed specifically for your application. Wraps, short for
wrapped procedures, are created by the pswrap translator from
PostScript language programs written to meet application needs.
Figure 2 on page 3 shows how an application program is built.

2 Perspective for Software Developers I Version of January 23, 1990

4 USING PSWRAP

Your application will perform calculations, communicate with
the window system, read and write files, and do other application
processing in C or another high-level language. It will perform
imaging tasks by calling wrapped procedures to send Postscript
language programs to the interpreter. The pswrap translator
creates these wraps from Postscript language input.

Figure 2 shows how an application is built of C source code and
Postscript language code translated into C-callable procedures
by pswrap.

Figure 2 Creating a Display Postscript Application

Wrap
Definitions

pswrap
Translator

C-Callable
Wrap

Display Postscript
Client Library

COMPILE

LINK

Application

4 USING PSWRAP 3

Consider a wrap, PSWDisplayText, that places text on the screen
at a particular x,y coordinate. A call to PSWDisplayText from the
application program might look something like this:

PSWDisplayText(72.0, 100.0, "Hello World");

The body of the PSWDisplayText procedure, is actually written
in the PostScript language. It was defined to pswrap as follows:

defineps PSWDisplayText(float X,Y; char *text)
X Y moveto
(text) show

endps

In the wrap definition, the 'defineps' and 'endps' keywords tell
pswrap where a given PostScript language program begins and
ends. The 'defineps' statement defines the resulting procedure
call. The pswrap translator processes this input and produces a C
language source-code file. When compiled and linked with the
application, the PSWDisplayText procedure sends a Postscript
language program to the interpreter (binary-encoded for more ef
ficient processing), causing the specified text to be displayed.

To summarize, pswrap takes a PostScript language program as
input and gives you back a C language program. After you com
pile the resulting C program and link it into your application,
calling the wrap will transmit a stream of Postscript language
binary objects to the interpreter. See the pswrap Reference
Manual for further information.

5 THE CLIENT LIBRARY INTERFACE

The Client Library is a linkable library of compiled C procedures
that provides an interface between the application and the Dis
play Postscript system. It creates an environment for handling
imaging calls to specific Client Library procedures like
DPSmoveto and custom wraps written for the application.

The Client Library is tailored by the Display Postscript system
vendor for your particular operating environment. The Client
Library Reference Manual describes a generic interface; your
system vendor may add additional features or slightly modify the
interface to suit your hardware and software. See your vendor's
system-specific documentation for details.

4 Perspective for Software Developers I Version of January 23, 1990

6 SUPPORT FOR APPLICATION DEVELOPERS

Adobe supports application developers by means of the follow
ing services:

Adobe Developer Support Line
A voice mailbox that puts you in touch with
Adobe's support services for developers. See
Section 6.1.

Technical Literature Catalog

Documentation

A free catalog of documentation, available on
request.

Postscript language manuals (see Section 6.2),
developer reference manuals (included with this
release), and additional technical literature
defining conventions and standards for
Postscript language applications (see Section
6.5).

Adobe Developer Association
A membership program for developers, provid
ing access to technical resources and monthly
mailings. See Section 6.4.

Public Access File Server
Contains technical documents, code examples,
AFM files, and documentation updates. See Sec
tion 6.6.

6.1 THE ADOBE DEVELOPER SUPPORT LINE

You can call the Adobe Developer Support Line,
(415) 961-4111, for the following kinds of support:

6 SUPPORT FOR APPLICATION DEVELOPERS 5

• To receive a free Technical Literature Catalog.

• To order technical literature. (See Section 6.2 for the toll
free number to use when ordering Postscript language
manuals.)

• To find out how to become a member of the Adobe
Developer Association.

• To request technical assistance (for members of the Adobe
Developer Association only).

If you prefer, you can write to us for information. Our mailing
address is:

Postscript Developer Support
Adobe Systems Incorporated
1585 Charleston Road, P.O. Box 7900
Mountain View, CA 94039-7900

6.2 MANUALS FOR APPLICATION DEVELOPERS

The accompanying set of developer reference manuals contains
information needed by a programmer developing an application
for the Display Postscript system. If you're new to the
PostScript language, you should first read the following manuals
(published by Addison-Wesley and available from Adobe by
calling 1-800-344-8335 or through your technical bookstore):

PostScript Language Reference Manual
The standard reference for the Postscript lan
guage. Describes the PostScript imaging model
and the concepts and facilities of the PostScript
interpreter. Documents the PostScript language.
Required reading.

Postscript Language Tutorial and Cookbook
Introduction to the Postscript language in an in
formal, interactive style. Contains a collection of
example programs that illustrate the PostScript
imaging model.

PostScript Language Program Design
Guidelines for the advanced developer to use in
designing and debugging Postscript language
programs. Printer-oriented, but most of the in
formation is relevant to writing a Display
PostScript application.

6 Perspective for Software Developers I Version of January 23, 1990

Once you're up to speed in the Postscript language, read the
following manuals:

PostScript Language Extensions for the Display PostScript
System
Describes the extensions to the Postscript lan
guage that were made for the Display Postscript
system, such as alternative Postscript language
encodings, multiple execution contexts, user
paths, window system support, and memory
management. Introduces important system con
cepts and documents additional PostScript
operators.

Client Library Reference Manual
Describes the procedural interface to the Display
Postscript system. Tells how to send programs
and data to a Postscript execution context, how
to handle context output, how to create and ter
minate a context. Contains procedure defini
tions, programming tips, and a sample applica
tion program.

pswrap Reference Manual
Describes how to define C-callable procedures
that contain Postscript language programs. Tells
how to declare input arguments and output to be
received from the interpreter. Documents the
pswrap command line options.

PostScript Language Color Extensions
Describes color extensions to the Postscript lan
guage, including multiple color images, color
halftone screen definitions, color correction, and
CMYK color specification.

Because the Display Postscript system has been implemented on
various system platforms, some of the information required by
application programmers is necessarily system-specific. There
fore in addition to the manuals listed above you'll need to con
sult the documentation provided by your system software ven
dor. The following system-specific documentation is available
from Adobe:

6 SUPPORT FOR APPLICATION DEVELOPERS 7

X Window System Programmer's Supplement to the Client
Library Reference Manual
Describes information about the Client Library
interface that is specific to the X Window
System™, such as context creation and addition
al error codes.

6.3 CLASSES FOR APPLICATION DEVELOPERS

Adobe offers regularly scheduled classes in:

• Programming in the Postscript language.

• The Display Postscript environment.

These classes are held in our East Coast and West Coast facilities
and in our European office. Classes in Japan are planned for the
future.

To receive a schedule of Adobe classes, please call our Training
Support Line at (415) 961-4949.

6.4 THE ADOBE DEVELOPER ASSOCIATION

The Adobe Developer Association is a fee-based membership
program for active developers using the PostScript page descrip
tion language or the Display PostScript system to enhance their
application products.

You must be a member of the Adobe Developer Association in
order to take advantage of the following offerings:

• Technical support.

• Monthly mailings.

• Discounts on Adobe Systems application products.

• Free technical literature.

You can request a membership application by calling the Adobe
Developer Support Line.

8 Perspective for Software Developers I Version of January 23, 1990

6.5 POSTSCRIPT STANDARDS AND CONVENTIONS

The following documents define important conventions and stan
dards that promote compatibility, efficiency, and quality for all
Postscript language applications. These documents are available
through the Adobe Developer Support Line or the public access
file server.

Document Structuring Conventions Specification
Replaces Appendix C of the PostScript Lan
guage Reference Manual (Version 1.0 of the
Postscript language document structuring
conventions). These conventions are important
for generating page description files suitable for
print spoolers, previewer applications, and post
processors, as well as Postscript printers.

Encapsulated PostScript File Format (EPSF)
Specifies the document format required for ex
change of Postscript language files. This
specification suggests a standard for importing
Postscript language files in all environments.
Applications that support EPSF can exchange
graphical output with each other.

PostScript Printer Description Files Specification
Describes the Adobe Systems Postscript Printer
Description (PPD) files and their usage. PPD
files are text files in a format that can be read by
people and parsed by computers. They are useful
for determining and using the special features
available on printers with PostScript interpreters.

Adobe Font Metric Files Specification
Describes the Adobe standard interchange for
mat for communicating font metric information
to people and programs.

6 SUPPORT FOR APPLICATION DEVELOPERS 9

6.6 THE PUBLIC ACCESS FILE SERVER

If you have access to Internet or UUCP electronic mail, you can
use Adobe's public access file server to obtain the following in
formation:

• Code examples.

• AFM files.

• Documentation updates.

•Conventions and standards documents listed in Section 6.5.

The public access file server is a mail-response program. That is,
you send it a request by electronic mail and it mails back a
response. (The ''Subject:'' line is treated as part of the message
by the file server.)

To send mail to the file server, use one of the following ad
dresses:

Internet ps-file-server@adobe.com

UUCP ... !decwrlladobe!ps-file-server

To receive a quick summary of file server commands, send the
following message:

help

To receive detailed information on how to use the file server,
send the following message:

send Documents long.help

10 Perspective for Software Developers I Version of January 23, 1990

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT

The changes to Perspective for Software Developers from the
document dated October 25, 1989, are noted in the paragraphs
below.

A section has been added to describe support services available
from Adobe Systems, including the Adobe Developer Support
Line, the Technical Literature Catalog, the Adobe Developer As
sociation, and the public access file server.

The changes to Perspective for Software Developers from the
document dated October 10, 1988, are noted in the paragraphs
below.

The manual has been rewritten and reorganized. A list of sug
gested reading for software developers has been added.
Diagrams have been provided to illustrate the following:

• The relationship of the Client Library and the Postscript
interpreter to application and system software.

• The creation of a Display PostScript system application.

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 11

Adobe Developer Association 8
application developers 5

classes 8
Client Library 4
conventions 9

device independence 1
Display Postscript components 1
document structuring conventions 9
DPSmoveto 4

Encapsulated PostScript Files Specification 9
EPSF 9

file format for PostScript files 9
file server 10
font metric information 9

help line 5

imaging model 1, 6
interchange format for fonts 9

manuals 6

portability 2
Postscript file format 9
Postscript fonts interchange format 9
PostScript imaging model 1, 6
Postscript Printer Description files 9
Postscript standards and conventions 9
PPD files 9
PSWDisplayText 4
pswrap translator 3
public access file server 10

registered developers 8

standards 9
support 5

telephone support 5

voice mailbox 5

window system 1
wraps 2, 3

Index

13

/


~~~t;)~U~©[RiO~U® 
... ·l~ro A G E 

Extensions 
for the 
Display Postscript® 
System 

ADOBE SYSTEMS 
INCORPORATED 



Postscript Language Extensions for the 
Display Postscript System 

January 23, 1990 

Copyright© 1988-1990 Adobe Systems Incorporated. 
All rights reserved. 

Postscript and Display PostScript are registered trademarks of 
Adobe Systems Incorporated. 

*Helvetica, *Palatino, and *Times are trademarks of Linotype AG 
and/or its subsidiaries. 
UNIX is a registered trademark of AT&T Information Systems. 

The information in this document is furnished for informational use 
only, is subject to change without notice, and should not be construed 
as a commitment by Adobe Systems Incorporated. Adobe Systems 
Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in this document. The software described 
in this document is furnished under license and may only be used or 
copied in accordance with the terms of such license. 

No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, electronic, 
mechanical, recording, or otherwise, without the prior written 
permission of Adobe Systems Incorporated. 

Revised by Amy Davidson. 



Contents 

1 Introduction 1 
2 Alternative Language Encodings 3 

3 Structured Output 20 

4 Memory Management 22 

5 Multiple Execution Contexts 29 

6 User Objects 36 
7 Graphics State Objects 37 

8 User Paths 38 
9 Rectangles 47 

10 Font-Related Extensions 48 

11 Halftone Definition 53 

12 Scan Conversion Details 59 

13 View Clips 63 
14 Window System Support 64 

15 Miscellaneous Changes 65 

16 Operators 7 4 

A Changes Since Last Publication Of This Document 135 

B POSTSCRIPT Language Changes 139 

c System Name Encodings 147 

INDEX 151 

iii 





1 INTRODUCTION 

This manual describes a number of extensions to the Postscript® 
language. These extensions are initially implemented in the Dis
play Postscript® system. However, the utility of most of the ex
tensions is not limited to display applications; we anticipate that 
those extensions will eventually be incorporated into printer 
products as well. 

As a matter of policy, we do not refer to a 'Display PostScript 
language'. There is only one Postscript language, which evolves 
over time to encompass a wider variety of device technologies, 
environments, and applications. The new facilities described in 
this manual constitute a set of extensions to the existing 
Postscript language. Considerable effort has gone into making 
these extensions upward-compatible from the existing language 
and integrating them with the Postscript language and imaging 
models in a harmonious way. We intend that a majority of these 
extensions will ultimately become a standard part of the lan
guage. 

Most of the extensions fall into a few major categories: 

• The l·anguage model is enhanced in several ways. Memory 
management is more flexible to accommodate applications 
whose resource requirements are dynamic and unpredict
able. Multiple PostScript execution contexts can execute 
simultaneously on behalf of separate applications sharing a 
single display system. There are alternative external encod
ings of the language for greater efficiency of generation 
and interpretation. 

•The set of built-in imaging operations is considerably ex
panded, though the basic imaging model is unchanged. 
Operations that are performed frequently by most applica
tions are streamlined to provide convenient generation and 
highly optimized execution. Although these extensions are 
motivated by the needs of display-based applications, their 
utility is not limited to those applications. 

• Additional extensions are included to serve the special 
needs of computer display systems. These extensions adapt 
the Postscript imaging model to the interactive, dynamic 
display environment presented by an underlying window 



system. Some extensions are generic and apply to all en
vironments; those are described in this manual. Others are 
specialized to a particular environment or a particular in
tegration of the Display Postscript system with a window 
system; those are described in documentation provided by 
the window system developer. 

Conceptual and descriptive information regarding the various 
types of extensions is presented in Sections 2 through 15, 
roughly in the above order. Individual operator descriptions are 
listed alphabetically in Section 16. Although we attempt to give 
a rationale for each extension individually, appreciating the full 
purpose of the extensions as a whole requires an overall under
standing of the Display Postscript system and the environments 
in which it is designed to operate. This topic is discussed in 
Perspective for Software Developers; see also its list of manuals 
that document the Display PostScript system. 

A majority of the extensions can be implemented in terms of the 
existing Postscript language, though not necessarily with great 
efficiency. Through such emulation, we can provide backward 
compatibility between applications that use the extensions and 
existing PostScript language implementations that do not support 
them directly. A few extensions are unique to display applica
tions and are not relevant to printing applications; those, ob
viously, cannot be emulated. 

Other extensions 

The PostScript language has already received one major exten
sion, which has appeared in all printers with Postscript inter
preter versions 25.0 and greater. This extension was not docu
mented in the original edition of PostScript Language Reference 
Manual, but it is in editions copyright 1986 or later, as well as in 
Appendix B of this manual. 

In order to deal with color output devices, several new operators 
have been defined. Most of these operators provide control over 
various aspects of the color rendering process, including color 
halftoning and undercolor removal. (The halftone dictionary ex
tension, described in this manual, encompasses the functions of 
some of those operators.) Additionally, there is a colorimage 

2 Extensions for the Display Postscript System I Version of January 23, 1990 



operator for rendering color sampled images. See PostScript 
Language Color Extensions for detailed information. 

2 ALTERNATIVE LANGUAGE ENCODINGS 

The standard Postscript language is based on the printable subset 
of the ASCII character set, as described in Section 3.3 of the 
PostScript Language Reference Manual. This representation is 
highly portable; it is easy to transmit and to store in a wide 
variety of operating system and communications environments. 
We refer to this representation as the ASCII encoding of the 
Postscript language. 

Although it is portable, the ASCII encoding of the language is not 
particularly compact, nor is it efficient to generate and to inter
pret. In environments served by the Display PostScript system, 
there is a much closer coupling between the producer and the 
consumer of PostScript language programs than is typical when 
sending page descriptions to a printer. The application program 
and the PostScript interpreter communicate in real time; usually 
they are either in the same machine or are connected by a high
performance communication system. In such environments, 
compactness or efficiency are more important than maximum 
portability. 

Binary encodings 

The Display Postscript system supports two additional encod
ings of the Postscript language: the binary token encoding and 
the binary object sequence encoding. These encodings are exten
sions to the syntax of the language; that is, they provide different · 
ways to express programs, but they introduce no new semantics. 
The Postscript language scanner (see PostScript Language Ref
erence Manual, Section 3.3) has been extended to recognize the 
binary encodings in addition to the existing ASCII encoding. 

The ASCII and binary encodings can be freely intermixed in any 
program; the scanner produces the same sequence of objects for 
a given program, regardless of how the program is encoded. It 
should be straightforward to translate from one encoding of the 
language to another. 

1 INTRODUCTION 3 



The binary encodings are intended exclusively for machine 
generation; it is unreasonable for a human programmer to deal 
with them. Furthermore, applications using the Display 
PostScript system are encouraged to make use of the Client 
Library, a procedural interface to capabilities of the PostScript 
language, and pswrap, a translator for PostScript language 
program fragments. The design of the binary encodings is based 
primarily on the needs of those facilities. Most applications, 
therefore, need not be concerned with the details of these encod
ings. 

The binary token encoding represents elements of the PostScript 
language as individual syntactic entities. This encoding em
phasizes compactness over efficiency of generation or interpreta
tion. Most elements of the language, such as integers, reals, and 
operator names, are represented by fewer characters in the binary 
encoding than in the ASCII encoding. This encoding is most 
suitable for environments in which communication bandwidth or 
storage space is the scarce resource. 

The binary object sequence encoding represents a sequence of 
one or more Postscript objects as a single syntactic entity. This 
encoding is not compact, but it can be generated and interpreted 
very efficiently. Most elements of the language are in a natural 
machine representation or something very close to one. Ad
ditionally, this encoding is oriented toward sending fully or par
tially precompiled sequences of objects as opposed to ones 
generated on the fly. This organization matches that of the Client 
Library, which is the principal interface between applications 
and the Display Postscript system. It is most suitable for en
vironments in which execution costs dominate communication 
costs. 

Use of the binary encodings requires that the communication 
channel between the application and the PostScript interpreter be 
fully transparent. That is, it must be capable of carrying an ar
bitrary sequence of arbitrary 8-bit character codes, with no 
characters reserved for communication functions, no 'line' or 
'record' length restrictions, etc. If the communication channel is 
not transparent, the ASCII encoding must be used. 

Remember that the various language encodings apply only to 

4 Extensions for the Display Postscript System I Version of January 23, 1990 



characters consumed by the PostScript language scanner. Apply
ing exec to an executable file or string object invokes the scan
ner, as does the token operator. File operators such as read and 
readstring, however, simply read the incoming sequence of 
characters as data, not as encoded PostScript language programs. 

The first character of each token determines what encoding is to 
be used for that token. If it is in the range 128 to 159 inclusive 
(that is, one of the first 32 codes with the high-order bit set), one 
of the binary encodings is used; 1 For binary encodings, the char
acter code is treated as a token type: it determines which encod
ing is used and sometimes also specifies the type and represen
tation of the token. 

Note that the determination of encoding occurs only on the first 
character of each token (ignoring any white space that precedes 
the token). Subsequent characters are interpreted according to 
that encoding until the end of the token is reached, regardless of 
character codes. For example, a character code in the range 128 
to 159 can appear within an ASCII string literal or a comment 
(however, a binary token type character does terminate a preced
ing ASCII name or number token). Similarly, a character code 
outside the range 128 to 159 can appear within a multiple-byte 
binary encoding. 

Token type 159 is reserved for introducing tokens whose syntax 
and semantics are specific to a particular implementation of the 
Postscript interpreter (or a particular integration with a window 
system). The standard language does not specify anything about 
such tokens, even to say how long they are. 

Number representations 

Binary tokens and binary object sequences use various represen
tations for numbers. Some numbers are the values of PostScript 
number objects (integers and reals); others provide structural in
formation, such as lengths and offsets within binary object se
quences. 

1These codes are considered to be 'control characters' in most standard char
acter sets, such as ISO and JIS; they do not have glyphs assigned to them and 
are therefore unlikely to be used to construct names in PostScript language 
programs. A means exists to disable interpretation of binary encodings; see the 
setobjectformat operator in Section 3. 

2 ALTERNATIVE LANGUAGE ENCODINGS 5 



Different machine architectures use different representations for 
numbers. The two most common variations are the byte order 
within multiple-byte integers and the format of real (floating
point) numbers. 

Rather than specify a single convention for representing num
bers, the language provides a choice of representations. The ap
plication program chooses whichever convention is most ap
propriate for the machine on which it is running. The Postscript 
language scanner accepts numbers conforming to any of the con
ventions, translating to its own internal representation when 
necessary. This translation is needed only when the application 
and the PostScript interpreter are running on machines with dif
ferent architectures. 

The number representation to be used is specified as part of the 
token type (the initial character of the binary token or binary 
object sequence). There are two independent choices, one for 
byte order and one for real format. The byte order choices are: 

• High-order byte first ('big-endian ') - in a multiple-byte in
teger or fixed-point number, the high-order byte comes 
first, followed by successively lower-order bytes. 

• Low-order byte first ('little-endian ') - in a multiple-byte 
integer or fixed-point number, the low-order byte comes 
first, followed by successively higher-order bytes. 

The real format choices are: 

• IEEE standard - a real number is represented in IEEE 32-
bit floating-point format. 2 The order of the bytes is the 
same as the integer byte order, as specified above. For ex
ample, if the high-order byte of an integer comes first, then 
the sign and first 7 exponent bits of an IEEE standard real 
come first. 

•Native - a real is represented in the native format for the 
machine on which the PostScript interpreter is running. 
This may be a standard format or something completely 
different; the choice of byte order is not relevant. The ap
plication program is responsible for finding out what the 
correct format is. In general, this is useful only in environ-

2IEEE 754: Standard for Binary Floating-Point Arithmetic, 1985. 

6 Extensions for the Display Postscript System / Version of January 23, 1990 



ments where it is known that the application and the 
Postscript interpreter are running on the same machine or 
on machines with compatible architectures. Obviously, 
Postscript language programs that use this real number rep
resentation are not portable. 

Since each binary token and binary object sequence defines its 
own number representation, binary encoded programs with dif
ferent number representations can be freely intermixed. This is a 
convenience for applications that obtain portions of Postscript 
language programs from different sources. 

Binary tokens 

Binary tokens are variable-length binary encodings of certain 
types of Postscript objects. A binary token represents an object 
that can also be represented in the ASCII encoding, but usually 
with fewer characters. Thus, the binary encoding is usually the 
most compact representation of a program, though not neces
sarily the most efficient to execute. 

Semantically, a binary token is equivalent to some corresponding 
ASCII token. When the scanner encounters the binary encoding 
for the integer 123, it produces the same result as when it en
counters an ·ASCII token consisting of the characters '123'. That 
is, it produces an integer object whose value is 123; the object is 
the same (and occupies the same amount of space if stored in 
VM) whether it came from a binary or an ASCII token. 

Unlike the ASCII and binary object sequence encodings, the bi
nary token encoding is incomplete: not everything in the lan
guage can be expressed as binary tokens. For example, it makes 
no sense to have binary token encodings of '{' and '}', since their 
ASCII encodings are already compact. Similarly, it makes no 
sense to have binary encodings for the names of operators that 
are rarely used, since their contribution to the overall length of a 
Postscript language program is negligible. The incompleteness 
of the binary token encoding is not a problem, since ASCII and 
binary tokens can be freely intermixed. 

The binary token encoding is summarized in the following table. 
A binary token begins with a token type character, as discussed 

2 ALTERNATIVE LANGUAGE ENCODINGS 7 



Token 
type(s) 

128-131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

Additional 
characters 

4 

4 

2 

2 

1 

3 or 5 

4 

4 

4 

1 

l+n 

2+n 

2+n 

earlier. A majority of the token types (128 to 159) are used for 
binary tokens; the remainder are used for binary object se
quences or are unassigned. The token type determines how many 
additional characters comprise the token and how the token is 
interpreted. 

Interpretation 

binary object sequence; this encoding is described in the next section. 

32-bit integer, high-order byte first. 

32-bit integer, low-order byte first. 

16-bit integer, high-order byte first. 

16-bit integer, low-order byte first. 

8-bit integer, treating the character after the token type as a signed number n; 
-128 :s; n :s; 127. 

16- or 32-bit fixed-point number. The number representation (size, byte order, 
and scale) is encoded in the character immediately following the token type; 
the remaining two or four characters are the number itself. The representation 
parameter is treated as an unsigned integer r in the range 0 to 255: 

0 :s; r :s; 31 

32 :s; r :s; 47 

r "'= 128 

32-bit fixed-point number, high-order byte first; the scale 

parameter (number of bits of fraction) is equal to r. 
16-bit fixed-point number, high-order byte first; scale= r - 32. 
same as r - 128 except that all numbers are given low-order byte 

first. 

32-bit IEEE standard real, high-order byte first. 

32-bit IEEE standard real, low-order byte first. 

32-bit native real. 

boolean. The character following the token type gives the value: 0 for false, 1 
for true. 

string of length n. The parameter n is contained in the character after the token 
type; 0 :s; n :s; 255. Then characters of the string follow the parameter. 

long string of length n. The 16-bit parameter n is contained in the two charac
ters after the token type, represented high-order byte first; 0 :s; n :s; 65535. The n 
characters of the string follow the parameter. 

long string of length n. The 16-bit parameter n is contained in the two charac
ters after the token type, represented low-order byte first; 0 :s; n :s; 65535. Then 
characters of the string follow the parameter. ' 

8 Extensions for the Display Postscript System I Version of January 23, 1990 



145 

146 

147 

148 

149 

150-158 

159 

1 

1 

1 

1 

3 +data 

unspecified 

literal name from system name table indexed by index. The index parameter is 
contained in the character after the token type; 0 :s; index :s; 255. 

executable name from system name table indexed by index. The index 
parameter is contained in the character after the token type; 0 :s; index :s; 255. 

literal name from user name table indexed by index. The index parameter is 
contained in the character after the token type; 0 :s; index :s; 255. 

executable name from user name table indexed by index. The index parameter 
is contained in the character after the token type; 0 :s; index :s; 255. 

homogeneous number array. This consists of a four-character header (including 
the token type) followed by a variable length array of numbers whose size and 
representation are specified in the header. This is described in detail below. 

unassigned; occurrence of a token with these types will cause a syntaxerror. 

reserved for token types that are implementation or window system specific. 

The encodings for integers, reals, and booleans are straightfor
ward and require no further explanation. The other token types 
require additional discussion. 

A fixed-point number is a binary number having integer and frac
tional parts; the position of the binary point is specified by a 
separate scale value. In a fixed-point number of n bits, the high
order bit is the sign, the next n - scale - 1 bits are the integer 
part, and the low-order scale bits are the fractional part. For ex
ample, if the number is 16 bits wide and scale is 5, it is inter
preted as a sign, a 10-bit integer part, and a 5-bit fractional part. 
A negative number is represented in two's complement form. 

There are both 16- and 32-bit fixed-point numbers, allowing an 
application to make a tradeoff between compactness and preci
sion. Regardless of the token's length, the abject produced by the 
scanner for a fixed-point number is an integer if scale is zero; 
otherwise it is a real. Note that a 32-bit fixed-point number ac
tually takes more characters to represent than a 32-bit real; it is 
useful only if the application already represents numbers that 
way. (Using this representation makes somewhat more sense in 
homogeneous number arrays, described below.) 

A string token specifies the string's length as a one- or two
character unsigned integer. The specified number of characters 
of the string follow immediately. Note that all the characters are 

2 ALTERNATIVE LANGUAGE ENCODINGS 9 



treated literally; there is no special treatment of '\' or other 
characters. The main purpose of the binary token encoding of 
strings is to allow arbitrary binary data to be represented 
straightforwardly, not to save space. 

The name encodings specify a system name index or a user name 
index that selects a name object from the system or user name 
table and uses it as either a literal or an executable name. This 
mechanism is described below. Note that only the first 256 ele
ments of each array can be accessed by this means. 

A homogeneous number array is a single binary token that 
represents a PostScript literal array object whose elements are all 
numbers. The token consists of a four-character header 
(including the token type) followed by a variable-length se
quence of numbers. All of the numbers are represented in one 
way, which is specified in the header. 

The header consists of the token type character (149, denoting a 
homogeneous number array), a character that describes the num
ber representation, and two characters that specify the array 
length (number of elements). The number representation is 
treated as an unsigned integer r in the range 0 to 255 and is 
interpreted as follows: 

0 s: rs: 31 32-bit fixed-point number, high-order byte first; the scale parameter (number of 
bits of fraction) is equal tor. 

32 s: rs: 47 16-bit fixed-point number, high-order byte first; scale = r - 32. 

48 32-bit IEEE standard real, high-order byte first. 

49 32-bit native real. 

128 s: r s: 177 same as r - 128 except that all numbers are given low-order byte first. 

Note that this interpretation is similar to that of the represen
tation parameter r in individual fixed-point number tokens. 

The array's length is given by the last two characters of the 
header, treated as an unsigned 16-bit number. The byte order in 
this field is as specified by the number representation: r < 128 
indicates high-order byte first; r :2: 128 indicates low-order byte 
first. 

10 Extensions for the Display Postscript System I Version of January 23, 1990 



Following the header are 2 x length or 4 x length characters, 
depending on representation, that encode successive numbers of 
the array. 

When this class of token is consumed by the Postscript language 
scanner, it produces a literal array object. The elements of this 
array are all integers if the representation parameter r is 0, 32, 
128, or 160 (specifying fixed-point numbers with a scale of 
zero); otherwise they are all reals. Once scanned, such an array is 
indistinguishable from an array produced by other means (and 
occupies the same amount of space). 

Although the homogeneous number array representation is useful 
in its own right, it is particularly useful in conjunction with 
operators that take an encoded number string as an operand. This 
is described later in this section. 

Binary object sequences 

A binary object sequence is a single token that describes an 
executable array of objects, each of which may be a simple ob
ject, a string, or another array nested to arbitrary depth. The en
tire sequence can be constructed, transmitted, and scanned as a 
single self-contained syntactic entity. 

Semantically, a binary object sequence is an ordinary executable 
array, as if the objects in the sequence had been surrounded by 
'{' and '}', but with one important difference: its execution is 
immediate instead of deferred. That is, when a binary object se
quence is encountered in a file being executed directly by the 
Postscript interpreter, the interpreter performs an implicit exec 
instead of pushing the array on the operand stack as it would 
ordinarily. (This special treatment does not apply when a binary 
object sequence appears in a context where execution is already 
deferred, e.g., nested in ASCII-encoded'{' and'}' or consumed by 
the token operator.) 

Since a binary object sequence is syntactically a single token, it 
is completely processed by the scanner before any of it is ex
ecuted by the interpreter. The entire array and all its subsidiary 
composite objects are allocated in private or shared VM accord
ing to the VM allocation mode in effect at the time the binary 

2 ALTERNATIVE LANGUAGE ENCODINGS 11 



object sequence is scanned (see Section 4). Similarly, encoded 
name bindings are those in effect at scan time (see below). 

The encoding emphasizes ease of construction and interpretation 
over compactness. Each object is represented by eight successive 
characters. In the case of simple objects, these eight characters 
describe the entire object (type, attributes, and value). In the case 
of composite objects, the eight characters include a reference to 
some other part of the binary object sequence where the value of 
the object resides. The entire structure is easy to describe using 
the data type definition facilities of implementation languages 
such as C and Pascal. 

A binary object sequence consists of four parts in the following 
order: · 

• header - four or eight characters of information about the 
binary object sequence as a whole; 

• top-level array - a sequence of objects, eight characters 
each, which constitute the value of the main array object; 

•subsidiary arrays - more eight-character objects, which 
constitute the values of nested array objects; 

• string values - an unstructured sequence of characters, 
which constitute the values of string objects and the text of 
name objects. 

The first character of the header is the token type, mentioned 
earlier. Four token types denote a binary object sequence and 
select a number representation for all integers and reals em
bedded within it: 

128 high-order byte first; IEEE standard real format 
129 low-order byte first; IEEE standard real format 
130 high-order byte first; native real format 
131 low-order byte first; native real format 

At this point, the header can take one of two forms, depending 
upon the number of elements in the top level array and the over
all length of the object sequence. If there are 255 top-level ele
ments or fewer and the overall length of the object sequence is 
65,535 characters or fewer, the second character specifies the 
number of elements in the top-level array and the third and 

12 Extensions for the Display Postscript System I Version of January 23, 1990 



fourth characters, taken together as a 16-bit unsigned integer, 
specify the size in characters of the entire binary object se
quence, including header, top-level, and subsidiary arrays, and 
string values. (The order of characters that constitute this size 
field is according to the number representation specified by the 
token type. This is true of all multi-character numbers in the bi
nary object sequence.) If there are more than 255 top-level ob
jects or the overall length of the object sequence is greater than 
65,535 characters, the second character is set to zero. The next 
two bytes are the number of top-level elements and the next four 
bytes are the overall length of the object sequence (again, the 
order of characters that constitute these size fields is according to 
the number representation specified by the token type). 

Following the header is an uninterrupted sequence of eight
character objects that constitute both the top-level array and sub
sidiary arrays. The length of this sequence is not given explicitly; 
it continues until the earliest string value referenced from an ob
ject in the sequence, or until the end of the entire token. 

The first character of each object in the sequence gives the 
object's literal/executable attribute in the high-order bit and its 
type in the low-order 7 bits.3 The attribute values are: 

0 literal 
1 executable 

The meaning of the object type field is given below. 

The second character of an object is unused; its value must be 
zero. The third and fourth characters constitute a 16-bit integer, 
referred to as the length. The fifth through eighth characters con
stitute the value. The interpretation of the length and value fields 
depends on the object's type. (Once again, the character order 
within these fields is according to the number representation for 
the binary object sequence overall.) 

The object types and the interpretation of the length and value 
fields are: 

3Note that the positions of these fields within the character are not influenced 
by the prevailing number representation. To describe these as distinct fields in a 
C 'struct' requires different type definitions for big-endian and little-endian 
machines. 

2 ALTERNATIVE LANGUAGE ENCODINGS 13 



0 null: length and value are unused 
1 integer: length is unused; value is a signed 32-bit in-

teger 
2 real: length is unused; value is a real 
3 name: see below 
4 boolean: length is unused; value is 0 for false, 1 for 

true 
5 string: see below 
6 immediately evaluated name: see below 
9 array: see below 

10 mark: length and value are unused 

For types string and array, the length field specifies the number 
of elements (characters in a string or objects in an array); it is 
treated as an unsigned 16-bit integer. The value field specifies 
the offset, in characters, of the start of the object's value relative 
to the first character of the first object in the top-level array. An 
array offset must refer somewhere within the top-level or sub
sidiary arrays; it must be a multiple of 8. A string offset must 
refer somewhere within the string values; the strings have no 
alignment requirement and need not be null-terminated or other
wise delimited. (If the length of a string or array object is zero, 
its value is disregarded.) 

For the name type, the length field is treated as a signed 16-bit 
integer that selects one of three interpretations of the value field: 

n > 0 value is an offset to the text of the name, just the same 
as for a string; n is the name's length (which must be 
within the implementation limit for names) 

0 value is a user name index (see below) 
-1 value is a system name index (see below) 

An immediately evaluated name object is analogous to the 
'//name' syntax of the ASCII encoding. (See Appendix B.) This 
object is treated just the same as a name, as described above. 
However, the scanner then immediately looks up the name in the 
context of the current dictionary stack and substitutes the cor
responding value for that name. If the name is not found, an 
undefined error occurs. 

For the composite objects, there are no enforced restrictions 
against multiple references to the same value or recursive or self
referential arrays. However, such structures cannot be expressed 

14 Extensions for the Display Postscript System / Version of January 23, 1990 



directly in the ASCII or binary token encodings of the language; 
their use violates the interchangeability of the encodings. There
fore, the recommended structure of a binary object sequence is 
for each composite object to refer to a distinct value. There is 
one exception: references from multiple name objects to the 
same string value are specifically encouraged, since name ob
jects are unique by definition. 

The scanner will generate a syntaxerror upon encountering a 
binary object sequence that is malformed in any way. Possible 
causes include: 

• an object type that is undefined; 

• an 'unused' field that is not zero; 

• lengths and offsets that, in combination, would refer out
side the bounds of the binary object sequence; 

• an array offset that is not a multiple of 8 or that refers 
beyond the earliest string offset. 

As is true for all errors, when a syntaxerror occurs, the 
PostScript interpreter pushes onto the operand stack the object 
that caused the error. For an error detected by the scanner, 
however, there is not actually such an object, since the error oc
curred before the scanner had finished creating one. Instead, the 
scanner fabricates a string object consisting of the characters en
countered so far in the current token. If a binary token or binary 
object sequence was being scanned, the string object produced is 
a description of the token rather than the literal characters (which 
would be gibberish if printed as part of an error message). For 
example: 

(bin obj seq, type=128, elements=23, size=234, 
array out of bounds) 

System and user name encodings 

Both the binary token and binary object sequence encodings 
provide optional means for representing names as small integers 
instead of as full text strings. Such an integer is either a system 
name index or a user name index. Careful use of encoded names 
can result in substantial space savings and execution perfor
mance improvement. 

2 ALTERNATIVE LANGUAGE ENCODINGS 15 



A name index is a reference to an element of a name table al
ready known to the Postscript interpreter. When the scanner en
counters a name token that specifies a name index (rather than a 
text name), it immediately substitutes the corresponding element 
of the appropriate table. This substitution occurs at scan time, not 
at execution time; the result of the substitution is an ordinary 
Postscript name object. 

A system name index is an index into the system name table, 
which is built-in and has a standard value. The elements of this 
table are standard operator names, font names, character names, 
and other names that are a standard part of the Postscript VM. 
The contents of this table are documented in appendix C; they 
are also available as a machine-readable file for use by pswrap, 
translators, and other programs that deal with binary encodings. 

A user name index is an index into the user name table, whose 
contents may be defined by a Postscript language program by 
means of the defineusername operator. This provides efficient 
encodings of non-system names that are used frequently. 
However, there are various restrictions on user name encodings; 
additions to the user name table must be made in a stylized way 
to ensure correct behavior. 

If there is no name associated with a system or user name index, 
the scanner generates an undefined error; the offending com
mand is 'systemn' or 'usern', where n is the decimal represen
tation of the index. 

An encoded binary name specifies (as part of the encoding) 
whether the name is to be literal or executable; this overrides the 
corresponding attribute of the replacement name object. Thus, a 
given element of the system or user name table can be treated as 
either literal or executable when referenced from a binary token 
or object sequence. In the binary object sequence encoding, one 
can also specify an immediately evaluated name object, 
analogous to '//name'. When such an object specifies a name 
index, note that there are two substitutions: the first obtains a 
name object from the appropriate table; the second looks up that 
name object in the current dictionary context. 

One should be aware that the binary token encoding provides 
means to reference only the first 256 elements of either of the 

16 Extensions for the Display Postscript System I Version of January 23, 1990 



name tables. (The binary object sequence encoding does not 
have this limitation.) Maximum program compactness can be 
achieved by organizing the user name table in such a way that 
the most commonly used names are in the first 256 elements. 

Like everything else having to do with binary encodings, en
coded names are intended for machine generation only. The 
pswrap and Client Library facilities are the preferred means for 
application programs to generate binary encoded programs. In 
particular, those facilities maintain the user name table automati
cally and encode names using both the system and user name 
tables. An application should not attempt to alter the user name 
table itself, since that would interfere with the activity of the 
Client Library. 

A program can depend on a given system name index represent
ing a particular name object. Applications that generate binary 
encoded Postscript language programs are encouraged to take 
advantage of system name index encodings, since they save both 
space and time. 

The meaning of a given user name index is local to a specific 
PostScript execution context - more precisely, to a context's 
private VM or space (see Sections 4 and 5). If several contexts 
are associated with the same space, a user name index defined in 
one context may be used in another context. (It is the client's 
responsibility to synchronize execution of the contexts so that 
definition and use occur in the correct order.) 

The user name index facility is intended for use only during in
teractive sessions with a Display Postscript system. It should not 
be used in a Postscript language program that must stand by 
itself, such as one sent to a printer or written to a file for later 
use. If a program contains user name index encodings, it cannot 
be composed with or embedded in other PostScript language 
programs and it cannot easily be translated to the ASCII encoding. 
Postscript printers may not support user definition of name en
codings. The Client Library has an option to disable use of user 
name encodings and, produce text encoded names always; this 
option may be invoked dynamically by an application program 
to produce a Postscript language program that is to be captured 
in a file or diverted to a printer. 

2 ALTERNATIVE LANGUAGE ENCODINGS 17 



Encoded number strings 

Several of the new operators require as operands an indefinitely 
long sequence of numbers to be used as coordinate values (either 
absolute or relative). The operators include those dealing with 
user paths, rectangles, and explicitly positioned text, all of which 
are described in other parts of this manual. In the most common 
use of these operators, all the numbers are provided as literal 
values by the application as opposed to being computed by the 
PostScript language program. 

In order to facilitate this common use and to streamline both the 
generation and the interpretation of numeric operand sequences, 
we have defined a standard facility for presenting such operands 
to an operator. A number sequence may be represented either as 
an ordinary Postscript array object (whose elements are to be 
used successively) or as an encoded number string. 

An encoded number string is a PostScript string object that con
sists of a single homogeneous number array according to the 
binary token encoding described above. That is, the first four 
characters are treated as a header; the remaining characters are 
treated as a sequence of numbers encoded as described in the 
header. 

The attractive feature of an encoded number string is that it is a 
compact representation of a number sequence both in its external 
form and in VM. Syntactically, it is simply a string object; it 
remains in that form after being scanned and placed in VM. It is 
interpreted as a sequence of numbers only when it is actually 
used as an operand of an operator that is expecting a number 
array. Furthermore, even then it is neither processed by the scan
ner nor expanded into a PostScript array object; instead, the 
numbers are consumed directly by the operator. This arrange
ment is both compact and efficient. 

The following are equivalent ways of invoking rectfill, which is 
one of the new operators that expect number sequences as 
operands: 

[ ASCII-encoded numbers ] rectfill 
homogeneous number array rectfill 
string rectfill 

18 Extensions for the Display Postscript System I Version of January 23, 1990 



The first line constructs an ordinary Postscript array object con
taining the numbers and passes it to rectfill. (This is actually the 
most general form, since the '[' and ']' could enclose an arbitrary 
computation that produces the numbers and pushes them on the 
stack.) 

On the second line, a binary token representing a homogeneous 
number array appears directly in the program. In this instance, 
the scanner produces an array object, which is then consumed by 
rectfill. The rectfill operator treats this case as indistinguishable 
from the first one. 

On the third line, a string object appears in the program. This 
string object is most likely encoded as a binary token or an ele
ment of a binary object sequence, but conceivably it could be an 
ASCII-encoded hexadecimal string enclosed in '<' and '>' or a 
string value read by readstring. (An ordinary ASCII string 
enclosed in '(' and ')' is less suitable because of the need to 
quote special characters.) When rectfill is given a string object, 
it interprets the value of the string as the binary token encoding 
of a homogeneous number array. The result produced is equiv
alent to: 

string. cvx exec rectfill 

Here, exec interprets string as a Postscript language program. 
The scanner, finding that the first (and only) token in string is a 
binary token encoding of a homogeneous number array, 
produces that array and pushes it on the operand stack. The 
rectfill now sees an array operand, as in one of the first two lines 
in the earlier example. However, although the end result is the 
same, passing string directly to rectfill is much more efficient 
(in both time and space), since it bypasses creating the array ob
ject in VM. 

The operators that use encoded number strings include rectfill, 
rectstroke, rectclip, rectviewclip, xshow, yshow, and xyshow. 
Additionally, an encoded user path represents its numeric 
operands as an encoded number string; the relevant operators are 
ufill, ueofill, uappend, inufill, inueofill, and inustroke. 

2 ALTERNATIVE LANGUAGE ENCODINGS 19 



3 STRUCTURED OUTPUT 

The Display PostScript system provides a means for a program 
to send various kinds of information back to the application (via 
the Client Library). This information includes the values of ob
jects produced by queries, error messages, unstructured text 
generated by print, and perhaps window system specific events. 
A Postscript context writes all of this data to its standard output 
file. The Client Library requires a way to distinguish among 
these different kinds of information received from a context. 

To serve this need, we have defined a structured output format 
and provided means for a PostScript language program to 
generate output conforming to it. The format is basically the 
same as the binary object sequence representation for input, 
described in Section 2. 

A program that writes structured output should be judicious in its 
use of unstructured output primitives such as print and '='. In 
particular, since the start of a binary object sequence is indicated 
by a character whose code is in the range 128 to 159 inclusive, 
unstructured output should consist only of character codes out
side that range; otherwise, confusion will ensue in the Client 
Library or the application. (Of course, this is only a convention; 
by prior arrangement, a program may send unstructured data to 
the application.) 

The new operator printobject writes an object to the standard 
output file as a binary object sequence. A similar operator, 
writeobject, writes to a file. The binary object sequence contains 
a top-level array consisting of one element which is the object 
being written; see the description of binary object sequences in 
Section 2. That object, however, can be composite, so the binary 
object sequence may include subsidiary arrays and strings. 

In the binary object sequences produced by printobject and 
writeobject, the number representation is controlled by the 
setobjectformat operator. The binary object sequence has a 
token type that identifies the representation used. 

Accompanying the top-level object in the object sequence is a 
one-character tag, which is specified as an operand of 

20 Extensions for the Display Postscript System I Version of January 23, 1990 



printobject. This tag is carried in the second character of the 
object, which is otherwise unused (see Section 2). Only the top
level object receives a tag; the second byte of subsidiary objects 
is zero. In spite of its physical position, the tag is logically asso
ciated with the object sequence as a whole. 

The purpose of the tag is to enable the Postscript language 
program to specify the intended disposition of the object se
quence. A few tag values are reserved for reporting errors (see 
below); the remaining tag values may be used arbitrarily. The 
Client Library uses tags when it issues a query to the PostScript 
context. The query consists of a Postscript language program 
that includes one or more instances of printobject to send 
responses back to the Client Library. A different tag is specified 
for each printobject so that the Client Library can distinguish 
among the responses as they arrive. 

Tag values 0 through 249 are available for general use. Tag 
values 250 through 255 are reserved to identify object sequences 
that have special significance. Of these, only tag value 250 is 
presently defined: it is used to report errors. 

Errors are initiated as described in Sections 3.6 and 3.8 of the 
PostScript Language Reference Manual. Normally when an error 
occurs, control automatically passes from the Postscript lan
guage program to an error-handling procedure in the root control 
program of the context. If binary encoding is disabled (see 
setobjectformat), the error handler generates a text message 
similar to an error message on a PostScript printer. Otherwise it 
writes a binary object sequence with a tag value of 250. 

The binary object sequence that reports an error contains a four
element array as its top-level object. The array elements, ordered 
as they appear, are: 

• The name 'Error' (indicates an ordinary error detected by 
the Postscript interpreter; a different name could indicate 
another class of errors, in which case the meanings of the 
other array elements might be different). 

• The name that identifies the specific error (e.g., 
typecheck). 

• The object that was being executed when the error oc-

3 STRUCTURED OUTPUT 21 



curred; if the object that raised the error is not printable, 
some suitable substitute is provided - for example, an 
operator name in place of an operator object. 

•An error-handler flag (a boolean object whose value is true 
if the program expects to resynchronize with the client and 
false otherwise). 

The normal error handler, handleerror, sets the flag to false. An 
alternate error handler, resynchhandleerror, sets the flag to 
true; it should be used when the program expects to 
resynchronize with the client. See the section on handling errors 
in the Client Library Reference Manual for more information on 
handleerror and resynchandleerror. 

In addition to binary object sequences and unstructured text, a 
program may need to send special tokens whose syntax and 
semantics are implementation or environment dependent. For ex
ample, if a Postscript language program is able to intercept win
dow system events, it may need to send some of those events to 
the application. Binary token type 159 is reserved for this pur
pose (see Section 2). 

4 MEMORY MANAGEMENT 

The Postscript interpreter used in printers has a very simple ap
proach to management of virtual memory (VM) resources. 
Memory consumed by creating new composite objects is simply 
not reclaimed until a restore is execut~d; the VM then reverts to 
the state it was in at the time of the matching save. 

This approach works well for PostScript printers. Execution of a 
Postscript page description should ordinarily have no lasting 
side effects. A page description is divided into pages; individual 
pages should have no lasting side effects that would influence 
the execution of subsequent pages. The strict nesting of VM 
states imposed by the save/restore facility matches this structure 
well. To ensure portability, PostScript language programs that 
are page descriptions should assume that VM is managed in this 
way. 

Interactive display applications, on the other hand, perform 

22 Extensions for the Display Postscript System I Version of January 23, 1990 



operations in a much less structured fashion. The stream of 
Postscript language text generated by an application is typically 
not divided into 'pages' and may have no obvious overall struc
ture. Furthermore, an interactive session may never terminate; 
there is no opportunity to reclaim VM resources consumed 
during the session. Thus, save and restore are m11ch less suitable 
for overall memory management, though they can still be useful 
for encapsulating isolated computations. 

Garbage collection 

A more sophisticated approach to memory management is 
clearly required. The Display PostScript system includes an 
automatic VM reclamation facility, popularly known as a 
'garbage collector'. This facility automatically reclaims the 
memory occupied by composite objects that are no longer acces
sible to the Postscript language program (i.e., do not appear on 
any of the stacks or as elements of other composite objects). 

Garbage collection is not a language feature per se, since it nor
mally takes place without explicit action on the part of the 
PostScript language program being executed. However, the 
presence of a garbage collector strongly influences the style of 
programming that is permissible. A program that endlessly con
sumes VM and never executes save and restore will eventually 
encounter a VMerror if executed by a PostScript interpreter that 
does not have garbage collection. 

Of course, garbage collection is not entirely free. There is a cer
tain cost associated with creating and destroying composite ob
jects in VM. The most common case is that of literal objects 
(strings, user path procedures, etc.) that are immediately con
sumed by operators such as show and utill and then never used 
again. The garbage collector is engineered to deal with this case 
inexpensively, so application programs should not hesitate to 
take advantage of it. However, the cost of garbage collection is 
greater for objects that have longer lifetimes or that are allocated 
explicitly. Programs that frequently require temporary objects 
are encouraged to create them once and reuse them instead of 
creating new ones on every use. 

Even with garbage collection, the save and restore operators still 

4 MEMORY MANAGEMENT 23 



have their standard behavior. That is, restore still resets all ob
jects visible to the PostScript language program to their state at 
the time of the matching save. It still reclaims all composite ob
jects created since the matching save (and does so very cheaply). 
Thus, a Display Postscript application may continue to use the 
save/restore facility in cases where its semantics are useful. 

In an environment with garbage collection, the semantics of 
vmstatus are not as well defined as they are in an environment 
with explicit memory management. The garbage collection 
process operates intermittently, not continously; some inacces
sible objects cannot immediately be recognized as such. Thus, 
the used value returned by this operator is only meaningful im
mediately after a garbage collection has taken place. This can be 
invoked explicitly by the vmreclaim operator. The 
setvmthreshold operator provides additional control over the 
behavior of the garbage collector. 

Deliberate discard and undef 

With garbage collection comes the opportunity to deliberately 
discard composite objects that are no longer needed and to do so 
in an order unrelated to the time of creation of those objects. 
This is particularly valuable for very large objects such as font 
definitions. In order for this to be done effectively, certain pro
gramming considerations must be observed; these considerations 
arise mainly from interactions with save and restore. 

As explained above, the VM occupied by a composite object can 
be reclaimed by the garbage collector as soon as it becomes in
accessible to the PostScript language program. For example, if 
the only reference to a particular composite object consists of an 
element of some array or dictionary, replacing that element with 
a null object (say, using put) renders the former object's value 
inaccessible and reclaimable. 

In the case of a dictionary, it is useful to be able to remove an 
entry entirely, that is, to remove both the key and the value of a 
key-value pair, as opposed to replacing the value with some 
other value. This action is performed by the new operator undef, 
which is described below. Removing an entry from the 
FontDirectory dictionary requires another new operator, 

24 Extensions for the Display Postscript System /Version of January 23, 1990 



undetinefont, since FontDirectory is read-only except by font 
specific operators. 

Regardless of the means used to remove references to a com
posite object, the action will be undone by a subsequent restore 
if the reference existed at the time of the matching save. This is 
true even for undef: restore reinstates the deleted dictionary 
entry. In this situation, the referenced object has never become 
truly inaccessible, since access to it can be reinstated by execut
ing restore. Consequently, the VM occupied by that object is not 
reclaimed. 

As a practical matter, this means that a PostScript language 
program can successfully discard a composite object only while 
executing at the same depth of save/restore nesting as was in 
effect when the object was created. Fonts are typically defined at 
the outermost level of save/restore nesting (or in shared VM, as 
described below). To discard a font definition and reclaim the 
VM that it occupies, one must execute undetinefont at the same 
level of save/restore nesting. 

Shared VM 

The existing· model of VM is that of a uniform, unstructured 
store of composite objects. This model has been extended to sup
port multiple VMs whose contents have different lifetime and 
visibility and whose behavior with respect to save and restore is 
decoupled. 

The motivation for introducing multiple VMs is the need to sup
port multiple, concurrent execution contexts in the Display 
PostScript system. The facilities that deal with multiple contexts 
are described in Section 5. However, most of the semantics of 
the multiple VM facility can be described independently of con
texts and are therefore presented here. 

Each PostScript execution context has a private VM that is 
visible only within that context. Additionally, there is a single 
shared VM that is visible to all contexts and that can be updated 

4 MEMORY MANAGEMENT 25 



by any context under suitable conditions. 4 

Of all the objects visible to a PostScript language program, some 
are in private VM and some are in shared VM. New composite 
objects, whether created implicitly by the Postscript language 
scanner or explicitly by operators, are normally allocated in 
private VM. A program can read and alter the values of objects 
in private VM in the usual way, subject only to the access at
tributes of the objects involved. A program can also read the 
values of objects in shared VM without any unusual restrictions. 
Thus, for most purposes, the behavior of the two-part VM is vir
tually indistinguishable from the behavior of the conventional 
one-part VM. 

The ability to alter the values of objects in shared VM is 
restricted in one important way.5 It is illegal to store a private 
object as an element of a shared object. More precisely, a com
posite object whose value was created by ordinary means (and is 
therefore in private VM) cannot be stored as an element of an 
existing composite object whose value is in shared VM. An at
tempt to do so will result in an invalidaccess error. On the other 
hand, there are no restrictions on storing simple objects, such as 
integers and names, as elements of shared objects; nor are there 
restrictions on storing shared objects as elements of private ob
jects. In this connection, name objects are always treated as if 
they were shared. The scheck operator inquires whether an ob
ject is private or shared. 

In order to create a new composite object in shared VM, a 
program must explicitly enter shared VM allocation mode. This 
is done by executing the setshared operator, which switches be
tween private and shared VM allocation modes. This mode con
trols the VM region in which the values of new composite ob-

4Even if a PostScript interpreter supports only one context, as in a printer, 
having a 'shared' VM is still useful. The shared VM holds objects whose 
lifetime is independent of the lifetime of objects in the (single) private VM. 
Such objects may include font definitions that are to persist through execution 
of multiple print jobs. In this respect, shared VM is a replacement for the 
cumbersome and less general exitserver mechanism. 
5The ability to alter the shared VM may be further restricted in some environ
ments. For example, a PostScript printer may require a program to present a 
password to some statusdict operator before attempting to alter the shared VM. 
Such restrictions do not ordinarily make sense in environments served by the 
Display PostScript system. 

26 Extensions for the Display Postscript System I Version of January 23, 1990 



jects are subsequently allocated; it affects both objects created 
implicitly by the scanner and ones created explicitly by 
operators. Such objects can be stored as elements of other ob
jects (both shared and private) without restriction. The allocation 
mode also has certain other effects that are explained below. 

The modifications made to the shared VM, including creation of 
new shared objects while in shared VM allocation mode, are not 
affected by subsequent execution of restore. That is, a restore 
does not undo the modifications to the shared VM, even if the 
matching save preceded the modificatons. It does, however, 
undo changes made to the private VM. Objects in shared VM are 
reclaimed only by the garbage collector; this occurs when those 
objects are no longer accessible from any context. 

Certain standard dictionaries are located in shared VM and 
others in private VM. Storing a shared object into a shared dic
tionary is the normal way of making that object visible to other 
contexts. The standard shared dictionaries are: 

systemdict the standard system dictionary, which is always read-only. 

shareddict a new standard shared dictionary, which is writable by any context. This 
dictionary is stored as shareddict in systemdict. It is permanently on the 
dictionary stack, below userdict and above systemdict. 

SharedFontDirectory a dictionary consisting of fonts installed by executing detinefont while in 
shared VM allocation mode. This dictionary is stored as SharedFontDirectory 
in systemdict. The tindfont procedure looks first in the private FontDirectory, 
then in SharedFontDirectory. This is also the case for the new selectfont 
operator (see Section 10). 

The standard private dictionaries6 are: 

userdict the standard user dictionary. This dictionary is stored as userdict in 
systemdict; however, as viewed by each context, the value of userdict is the 
one located in that context's private VM. 

errordict the standard error dictionary (stored as errordict in systemdict the same way 
as userdict). 

6Although logically there is a separate instance of each of these dictionaries in 
each context's private VM, they are implemented in such a way that a separate 
instance is created only if the dictionary is modified. This optimization is 
invisible to a Postscript language program. 

4 MEMORY MANAGEMENT 27 



statusdict the standard dictionary for product-specific operators, procedures, and 
parameters (stored as statusdict in systemdict the same way as userdict).7 

FontDirectory a dictionary consisting of fonts installed by executing definefont while in 
private VM allocation mode. Fonts so defined are private to the context that 
defined them. The findfont procedure looks first in FontDirectory, then in 
SharedFontDirectory. This dictionary is stored as FontDirectory in 
systemdict the same way as userdict. However, when shared VM allocation 
mode is in effect, the name FontDirectory is temporarily rebound to the value 
of SharedFontDirectory so that only shared fonts are visible; this ensures 
correct behavior of fonts that are defined in terms of other fonts. 

$error a dictionary accessed by the built-in error handler procedures (stored as $error 
in userdict). 

This organization is designed to permit font definitions to be ex
ecuted in either private or shared VM allocation mode. In the 
latter case, the font dictionary is created in shared VM and the 
definefont enters it into SharedFontDirectory, where it is 
available to all contexts. 

Although the principal intended use of shared VM is to hold font 
definitions, it is not limited to such use. Any definitions that are 
needed by several contexts may be placed in shared VM, saving 
both space and time. Additionally, shared VM can be used for 
active communication among contexts. However, several 
guidelines on use of shared VM must be observed in order to 
avoid unexpected behavior: 

• If a shared program defines a dictionary (or other data 
structure) to hold temporary data during execution of the 
program, it should create the dictionary in private VM upon 
first use of the program in a given execution context. Using 
a shared dictionary for this purpose could result in inter
ference between multiple contexts executing the same 
program. 

• For the reason just given, the prologues for most existing 
PostScript language applications may not work correctly if 
loaded into shared VM. Such prologues need to be restruc
tured to segregate the constant information, such as proce
dure definitions, from the variable information. 

7statusdict is private instead of shared for compatibility with Postscript 
printers, in which certain device specific parameters are set by storing into 
statusdict. 

28 Extensions for the Display Postscript System /Version of January 23, 1990 



• Programs that deliberately modify shared VM in order to 
accomplish intercontext communication may wish to take 
advantage of the mutual exclusion and synchronization 
primitives described in Section 5. 

5 MULTIPLE EXECUTION CONTEXTS 

The Display Postscript system is able to support the execution of 
multiple PostScript language programs concurrently. This capa
bility is required when multiple application programs share a 
single display system and window system. Additionally, it is 
sometimes advantageous for a single application to be structured 
as multiple concurrent processes. In this section, we describe the 
language extensions for managing the interactions between mul
tiple execution contexts. 

Applications normally access the Display Postscript system 
through the Client Library, which provides access to the 
PostScript imaging capabilities via procedures that can be called 
from an implementation language such as C or Pascal. The 
Client Library includes procedures for creating, communicating 
with, and destroying PostScript execution contexts. Strictly 
speaking, the Client Library facilities are not part of the 
PostScript language definition; they are described in the Client 
Library Reference Manual. 

Terminology and execution model 

A PostScript execution context (hereafter called simply a 
'context') consists of all the state that is visible to a running 
Postscript language program. This state includes: 

• an independent thread of control. Multiple threads can be in 
progress concurrently. 

• a set of stacks: operand stack, dictionary stack, execution 
stack, and graphics state stack. Starting from these stacks, 
one can access all state visible to a PostScript language 
program, such as dictionaries, paths, devices, etc. 

• a private VM or space, discussed below. 

• a shared VM, which is uniformly visible to all contexts (see 
Section 4). 

4 MEMORYMANAGEMENT 29 



• standard input and output -files. In the Display Postscript 
system, these provide a means for _communicating with an 
application program. 

• miscellaneous state variables, such as the current view clip 
(see Section 13), garbage collector control parameter 
(Section 4), object output format parameter (Section 3), and 
array packing mode (Appendix B). Unless otherwise docu
mented, any parameter that is not part of VM is private to 
each context. When a new context is created, all such 
parameters are initialized to their default state. 

A space is what we have called a private VM in Section 4. It 
includes userdict and all new composite objects created during 
normal execution of a context (except when the context invokes 
setshared and alters shared VM). 

In the usual case of multiple independent contexts serving mul
tiple independent applications, each context has its own space. 
Thus, the behavior of the contexts is decoupled to the maximum 
extent possible. Contexts can interact only by deliberately alter
ing shared VM; this is normally done only for the purpose of 
installing shared definitions such as fonts. At all other times, one 
can think of each context as a self-contained 'virtual printer'. 

However, it is also possible for two or more contexts to use the 
same space. This implies a much closer degree of coupling 
among the contexts, since they must cooperate closely to main
tain their common space in a consistent state. This arrangement 
makes sense when multiple contexts are serving a single appli
cation program. For example, an application may manage mul
tiple instances of itself, as in a text editor with multiple windows. 
Or an application may itself be organized as several concurrent 
activities, such as tracking user interactions in the foreground 
while updating the displayed image in the background. 

An application program can call Client Library procedures, not 
described here, to create multiple contexts that use the same 
space. Additionally, an executing Postscript language program 
can create a new context sharing the current context's space by 
executing the fork operator. It can also await completion of a 
previously forked context by executing the join operator. 

When multiple contexts share a single space, they require a 

30 Extensions for the Display Postscript System I Version of January 23, 1990 



means to synchronize their activities. To facilitate this, the lan
guage has been extended to include two new types of objects and 
several new operators for manipulating them. 

A lock is a mutual exclusion semaphore that can be used by 
cooperating contexts to guard against concurrent access to data 
that they are sharing. A context acquires a lock before accessing 
the data and releases it afterward. During that time, other con
texts are prevented from acquiring the lock, thus preventing them 
from accessing the data when it is in a possibly inconsistent 
state. The association between a lock object and the data 
protected by the lock is entirely a matter of programming con
vention. 

A condition is a binary semaphore that can be used by 
cooperating contexts to synchronize their activity. One or more 
contexts can wait on a condition, i.e., suspend execution for an 
arbitrary length of time until notified by another context that the 
condition has been satisfied. Once again, the association between 
the condition object and the actual event or state that it 
represents is a matter of programming convention. 

Although the synchronization primitives are primarily intended 
for use by ~ultiple contexts that share a single space, they can 
also be used by any contexts to synchronize access to data in 
shared VM. Of course, this requires prearrangement among all 
contexts involved; the lock and condition objects used for this 
purpose must themselves be in shared VM. 

Programming considerations 

In any environment that supports concurrent execution of inde
pendent threads of control, there is always the possibility of 
deadlock. The most familiar form of deadlock arises among two 
or more contexts when each waits for a notification from the 
other or each attempts to acquire a lock already held by the 
other. Another deadlock situation arises when all available com
munication buffers become filled with data for a context that is 
waiting for notification from some other context, but the other 
context cannot proceed because it has no way to communicate. 
Such deadlocks can be avoided only through careful system and 
application design. 

5 MULTIPLE EXECUTION CONTEXTS 31 



Scheduling of contexts in unpredictable. In some environments, 
the PostScript interpreter may switch control among contexts at 
arbitrary times (i.e., preemptively); therefore, program execution 
in different contexts may be interleaved arbitrarily. Preemption 
may occur even within a single operator, such as one that causes 
a Postscript language procedure to be executed or that reads or 
writes a file. Therefore, to ensure predictable behavior, contexts 
should use the synchronization primitives to control access to 
shared data. 

Locks and conditions are ordinarily used together in a fairly styl
ized way; the language primitives are organized with this way of 
using them in mind. The monitor operator acquires a lock 
(waiting if necessary), executes an arbitrary Postscript language 
procedure, then releases the lock. The wait operator is executed 
within a procedure invoked by monitor; it releases the lock, 
waits for the condition to be satisfied, and reacquires the lock. 
The notify operator indicates that a condition has been satisfied 
and resumes any contexts waiting on that condition. 

The recommended style of use of wait and notify is based on the 
notion that a context first waits for a shared data structure to 
reach some desired state, then performs some computation based 
on that state, and finally alerts other contexts of any changes it 
has made to the data. A lock and a condition are used to imple
ment this protocol. The lock protects against concurrent access to 
the data; the condition is used to notify other contexts that some 
potentially interesting change has taken place. 8 

This protocol is illustrated by the following two program frag
ments; note that they are likely to be executed by different con
texts. 

8Locks and conditions are treated separately because one may want to have 
several conditions that represent distinct states of the same shared data. 

32 Extensions for the Display Postscript System I Version of January 23, 1990 



lock1 
{ 

{ 
... boolean expression testing monitored data 
{exit} {lock1 cond1 wait} ifelse 

} loop 
... computation involving monitored data ... 

} monitor 

lock1 
{ 

... computation that changes monitored data 
cond 1 notify 

} monitor 

The first program executes monitor to acquire the lock lockl; it 
must do so to safely access the shared data associated with it. 
The program then checks whether the boolean expression has 
become true; it waits on the condition condl (repeatedly if 
necessary) until the expression evaluates to true. Now, while still 
holding the lock, it performs some computation based on this 
state of the shared data; note that it might alter the data in such a 
way that the boolean expression would evaluate false. Finally, it 
releases lockl by leaving the procedure invoked by monitor. 

The second program acquires lockl and then performs some 
computation that alters the data in a way that might favorably 
affect the outcome of the boolean expression. It then notifies 
condl and releases lockl. Any other context that is suspended at 
the wait in the first program now resumes and gets a chance to 
re-evaluate the boolean expression. 

Note that it is unsafe to assume that the state tested by the 
boolean expression is true immediately after resumption from a 
wait. Even if it was true at the moment of the notify, it might 
have become false due to intervening execution by some other 
context. Notifying condl does not necessarily certify that the 
value of the boolean expression is true, only that it might be true. 
Programs that conform to this protocol are immune from dead
locks due to 'lost notifies' or malfunctions due to 'extra notifies'. 

5 MULTIPLE EXECUTION CONTEXTS 33 



Restrictions 

Each· context has its own private pair of standard input and out
put files. That is, different contexts obtain different file objects 
as a result of executing currentfile or applying the file operator 
to the names '%stdin' and '%stdout'. A context should not at
tempt to make its standard input and output files available for 
use by other contexts; doing so will cause unpredictable be
havior. 

The standard input file carries data addressed to this context by 
the application; the standard output file carries data identified as 
coming from the current context to the application. Obviously, a 
program that executes fork must transmit the identity of the new 
context to the application in order for the application to address 
data to that context. (However, doing so is not always required, 
since some forked contexts have no need to communicate over 
their standard input and output files.) 

If multiple contexts share the same space, the semantics of save 
and restore become somewhat problematical. The operation per
formed by restore is logically to restore the entire space (i.e., the 
private VM) to its state as of the matching save. If one context 
does this, another context sharing the same space might observe 
the effect of the restore at some totally unpredictable time 
during its own execution; that is, its recent computations would 
be undone unexpectedly. This behavior is clearly not useful. 

Therefore, if any context executes a save, all other contexts shar
ing the same space are suspended until the original context ex
ecutes the matching restore. This ensures that the restore does 
not disrupt the activities of those other contexts. This restriction 
applies only to contexts sharing the same space; contexts associ
ated with other spaces proceed unhindered. 9 

Additionally, there are some restrictions on the synchronization 
operators that a context may execute while it has an unmatched 
save pending. For example, attempting to acquire a lock that is 
already held by another context sharing the same space is not 
allowed since it would surely lead to deadlock. 

9Note that save and restore do not affect shared VM; therefore, contexts with 
separate spaces cannot interfere with each other by executing save and restore. 

34 Extensions for the Display Postscript System I Version of January 23, 1990 



If a context terminates when it has an unmatched save pending, 
an automatic restore is executed, thereby allowing other con
texts to proceed. 

As a practical matter, save and restore are not of much use when 
a space is shared among multiple contexts. Programs that are 
organized in this way should avoid using save and restore. On 
the other hand, programs that are organized as one space per 
context can use save and restore without restriction. This is 
especially important to maintain compatibility with existing 
printing applications, font products, etc. 

Operators 

For the context operators, a context is an integer that identifies a 
PostScript execution context. Each context has a unique iden
tifier, whether it is created by calling a Client Library procedure 
or by executing the PostScript fork operator. This integer iden
tifies the context during communication between the application 
and the Display Postscript system as well as during execution of 
the join and detach operators. Identifiers for contexts that have 
terminated become invalid and are not reused during the lifetime 
of any currently active session. The currentcontext operator 
returns the identifier for the context that is executing. 

A context can suspend its own execution by any of a variety of 
means: execute the wait, monitor, or yield operators or return 
from its top-level procedure to await a join. The context retains 
all the state it had at the moment of suspension and can or
dinarily be resumed from the point of suspension. 

A context can terminate by executing the quit operator or as a 
result of an explicit termination request from the Client Library. 
Termination also occurs if an error occurs that is not caught by 
an explicit use of stopped. When a context terminates, its stacks 
are destroyed, its standard input and output files are closed, and 
its context identifier becomes invalid. 

There is no hierarchical relationship among contexts. Termina
tion of a context has no effect on other contexts that it may have 
created. An integer that identifies a context has the same mean
ing in every context; it may be referenced in a context different 
from the one that created it. 

5 MULTIPLE EXECUTION CONTEXTS 35 



The objects lock and condition are distinct types of PostScript 
object. They are composite objects in the sense that their values 
occupy space in VM separate from the objects themselves; when 
a lock or condition object is stored in multiple places, all the 
instances share the same value. However, the values of locks and 
conditions are not directly accessible; they are accessed im
plicitly by the synchronization operators described above. 

An invalidcontext error occurs if an invalid context identifier is 
presented to any of the context operators or if any of the pro
gramming restrictions are violated. 

6 USER OBJECTS 

Some applications require a convenient and efficient way to refer 
to PostScript language objects previously constructed in VM. 
Some types of objects, such as dictionaries and gstates, are not 
visible as data outside the Postscript interpreter; that is, they 
cannot be represented or referenced directly in any encoding of 
the language, even binary object sequences. Instead, the appli
cation must refer to such objects by means of surrogate objects, 
such as names or integers, whose values can be encoded and 
communicated easily. 

The traditional way to accomplish this is to store such objects as 
elements of dictionaries or arrays and later to refer to them with 
their dictionary keys or array indices. In a Postscript language 
program written by a programmer, this approach is natural and 
straightforward. When the program is generated mechanically by 
another program, however, managing the space of surrogate ob
jects (names or integers) requires additional bookkeeping. This is 
true particularly when the set of objects being managed is 
dynamically varying and when the responsibility for creating and 
referencing them is distributed among multiple libraries or pack
ages. 

pswrap provides a way for an application program to refer to 
user objects conveniently. This facility is described in the 
pswrap Reference Manual. 

To support user objects, the Display Postscript system provides 

36 Extensions for the Display Postscript System I Version of January 23, 1990 



three new operations: detineuserobject, undetineuserobject, 
and execuserobject, which manipulate an array named 
UserObjects. These operations introduce no fundamentally new 
capabilities; their behavior can be described entirely in the 
PostScript language and they can be implemented as procedures 
rather than as operators.10 They have been made a standard part 
of the language so that pswrap can depend on their being avail
able. 

The following example illustrates the intended use of user ob
jects. 

/Times-Roman findfont 12 scalefont 
17 exch defineuserobject 

The first line of the example obtains a user object (in this case, a 
font dictionary). The second line associates the user object index 
17 with this dictionary. Subsequently, 

1 7 execuserobject setfont 

pushes the font dictionary on the operand stack, from which it is 
taken by setfont. execuserobject executes the user object associ
ated with index 17; however, since the object in this example is 
not execqtable, the result of the execution is to push the object 
onto the operand stack. 

7 GRAPHICS STATE OBJECTS 

The Postscript graphics state consists of a large collection of 
parameters that are accessed implicitly by the imaging operators. 
These parameters can be read and altered individually; the entire 
graphics state can be saved by pushing it on a stack (gsave) and 
restored by popping it from the stack (grestore). 

This organization serves the needs of printing applications very 
well, assuming that the documents to be printed are reasonably 
structured. However, in interactive applications to be served by 
the Display PostScript system, a program needs to switch its at-

10User objects are entirely different from user names, described in Section 2. 
User names are part of the binary encoding extensions of the PostScript lan
guage syntax. 

6 USER OBJECTS 37 



tention among multiple, more-or-less independent imaging con
texts in an unpredictable order. Switching entire graphics states 
by altering their components individually is cumbersome and in
efficient. 

To address this need, we have introduced a new type of object, 
the gstate, that is capable of representing an entire graphics state. 
A gstate is a composite object that occupies VM and that con
forms to the normal save/restore discipline; it is ·created by the 
gstate operator. The type operator returns the name gstatetype 
when a gstate is its operand. 

The operators setgstate, currentgstate, and copy read and alter 
a gstate's value as a whole by copying it to or from the current 
graphics state or another gstate object. There is no way to select 
individual elements of a gstate's value directly; however, this 
can be accomplished by copying the gstate to the current 
graphics state temporarily and then accessing it using the regular 
graphics state operators. 

Note that a gstate object captures every element of a graphics 
state, including such things as the current path and current clip 
path. For example, if a non-empty current path exists at the time 
gstate or currentgstate is executed, that path will be reinstated 
by the corresponding setgstate. Unless this effect is specifically 
desired, it is best to snapshot a graphics state only when the cur
rent path is empty and the current clip path is in its default state. 

8 USER PATHS 

A user path is a PostScript language procedure consisting en
tirely of path construction operators and their coordinate 
operands expressed as literal numbers. In other words, it is a 
completely self-contained description of a path in user space. 
There exist several new operators that combine execution of a 
user path description with rendering the resulting path (i.e., using 
it for filling or stroking). 

The construction and use of a user path are best illustrated by an 
example: 

38 Extensions for the Display Postscript System I Version of January 23, .1990 



{ 
ucache % this is optional 
100 200 400 500 setbbox % this is required 
150 200 moveto 
250 200 400 390 400 460 curveto 
400 480 350 500 250 500 curveto 
100 400 lineto 
closepath 
} 
ufill 

The tokens enclosed in '{' and '}' constitute a user path defini
tion. The setbbox operator, with its four numeric operands 
(integers or reals), must appear first, or immediately after the 
optional ucache; the setbbox and ucache operators are described 
below. The remainder of the user path consists of path construc
tion operators and their operands, in any sensible order. The path 
is assumed to start out empty, so the first operator after the 
setbbox must be an absolute positioning operator (moveto, arc, 
or arcn). 

ufill is one of the new combined path construction and rendering 
operators. Its effect is to interpret the user path as if it were an 
ordinary Postscript language procedure (in the context of 
systemdict), then to perform a fill. Moreover, it performs a 
newpath prior to interpreting the user path and it encloses the 
entire operation with a gsave and a grestore. Thus, the overall 
effect of the above example is to define a path and to paint its 
interior with the current color; it leaves no side effects in the 
graphics state (or anywhere else except in raster memory). 

The user path rendering operators can be fully described in terms 
of the existing Postscript language facilities; they introduce no 
fundamentally new capability. There are several motivations for 
having an integrated user path facility as a standard part of the 
language: 

• It closely matches the needs of many application programs. 
In particular, it Jits very well with the Display Postscript 
Client Library organization. If the language did not provide 
a user path facility, most applications would have to invent 
one. 

• A user path consists of path construction operators and 

8 USER PATHS 39 



numeric operands, not arbitrary computations. Thus, the 
user path is self-contained; its semantics are guaranteed not 
to depend on an unpredictable execution environment. Ad
ditionally, the information provided by setbbox assures that 
the coordinates of the path will be within predictable 
bounds. As a result, interpretation of a user path may be 
much more efficient than execution of an arbitrary 
Postscript language procedure.11 

•Because a user path is represented as a procedure object 
and is self-contained, the Postscript interpreter can save the 
results of executing it in a cache. This may eliminate redun
dant interpretation of the same path definition, which is im
portant in some Display Postscript applications that update 
the display frequently. 

User path construction 

A user path is an array or packed array object consisting of the 
following sequences of elements: 

ucache 
/Ix //Y urx ury setbbox 
xy moveto 
dx dy rmoveto 
x y lineto 
dx dy rlineto 
x1 y1 x2 y2 x3 y3 curveto 
dx1 dy1 dx2 dy2 dx3 dy3 rcurveto 
xy rang 1 ang2 arc 
x yr ang 1 ang2 arcn 
x1 y1 x2 y2 r arct 
close path 

The permitted operators are all the standard Postscript operators 
that append to the current path, with the exception of arcto and 
charpath, which are not allowed. Additionally, there are three 
new user path construction operators: ucache, setbbox, and arct, 
which are described below. The permitted operands are number 

11The user path rendering operators that are defined not to alter the current path 
may not create an explicit path at all. Indeed, if the bounding box lies com
pletely outside the current clipping path, execution of the path definition and 
the rendering operation may be bypassed altogether. This behavior is, however, 
completely invisible to the PostScript language program. 

40 Extensions for the Display Postscript System / Version of January 23, 1990 



literals, i.e., integers and reals. The correct number of operands 
must be supplied to each operator. Any deviation from these 
rules will result in a typecheck error when the user path is inter
preted. 

The user path begins with an optional ucache, whose purpose is 
described below. Immediately following this must be a setbbox 
sequence, which establishes a bounding box (in user space) 
enclosing the entire path. All coordinates specified as operands 
to the subsequent path construction operators must fall within 
these bounds; if they don't, a rangecheck error will occur when 
the user path is interpreted. 

The path construction operators in a user path may appear either 
as executable name objects, such as 'moveto', or as actual 
Postscript operator objects, such as the value of 'moveto' in 
systemdict. An application program constructing a user path 
specifies name objects; however, applying bind to the user path 
(or to a procedure containing it) ordinarily causes the names to 
be replaced by the operator objects themselves. 

The user path rendering operators interpret a user path as if 
systemdict were the current dictionary (see the definition of 
uappend); thus, the path construction operators contained in the 
user path are guaranteed to have their standard meanings. It is 
illegal for a user path to contain names other than the standard 
path construction operator names. Aliases are prohibited so as to 
ensure that the user path definition is self-contained and its 
meaning is entirely independent of its execution environment. 

Encoded user paths 

An encoded user path is a very compact representation of a user 
path. It is an array consisting of two Postscript string objects (or 
an array and a string). The strings effectively encode the 
operands and operators of an equivalent user path procedure, 
using a compact binary encoding. 

The encoded user path representation is accepted and understood 
by the user path rendering operators such as ufill. Those 
operators interpret the data structure and perform the encoded 
operations; it does not make sense to think of 'executing' the 

8 USER PATHS 41 



encoded user path directly .12 When we say that an encoded value 
represents an operation such as moveto, we mean the standard 
moveto operation; as with unencoded user paths, there is no op
portunity to redefine the meanings of operators represented in an 
encoded user path. 

The first element of an encoded user path is a data string or data 
array containing numeric operands; the second is an operator 
string containing encoded operators. This two-part organization 
is for the convenience of application programs that generate en
coded user paths; in particular, operands always fall on natural 
addressing boundaries. All the characters in both strings are in
terpreted as binary numbers, not as ASCII character codes. 

If the first element is a string, it is interpreted as an encoded 
number string, whose representation is described in Section 2. If 
it is an array, its elements are simply used in sequence; they must 
all be numbers. 

The operator string is interpreted as a sequence of encoded path 
construction operators, one operation code (opcode) per charac
ter. (Unlike the data string, the operator string is not interpreted 
as an encoded number string.) The allowed opcode values are as 
follows: 

0 setbbox 
1 moveto 
2 rmoveto 
3 lineto 
4 rlineto 
5 curveto 
6 rcurveto 
7 arc 
8 arcn 
9 arct 

10 close path 
11 ucache 

n > 32 repetition count: repeat next opcode n - 32 times 

12In principle, one could write a PostScript language program to perform this 
interpretation; this is analogous to writing an emulator for another language. 
Note that the operator encoding is specialized to user path definitions; it has 
nothing to do with the alternative external encodings of the PostScript lan
guage, which are described in Section 2. 

42 Extensions for the Display Postscript System I Version of January 23, 1990 



Associated with each opcode in the operator string are zero or 
more operands in the data string or data array. The order of the 
operands is the same as in an ordinary user path. For example, 
execution of a lineto (opcode 3) consumes an x operand and a y 
operand from the data sequence. 

If the encoded user path does not conform to the rules described 
above, a typecheck error will occur when the path is interpreted. 
Possible errors include invalid opcodes in the operator string or 
premature end of the data sequence. 

User path cache 

Interactive applications using the Display Postscript system typi
cally define certain paths that must be redisplayed frequently or 
that are repeated many times. To optimize interpretation of such 
paths, the Display Postscript system provides a facility called the 
user path cache. This cache, analogous to the font cache, retains 
the results of interpreting user path definitions. When the 
PostScript interpreter encounters a user path that is already in the 
cache, it substitutes the cached results instead of reinterpreting 
the path definition. 

There is a· non-trivial cost associated with placing a user path in 
the cache: extra computation is required and existing paths may 
be displaced from the cache. Since most user paths are used once 
and immediately thrown away, it does not make sense to place 
every user path in the cache. Instead, the application program 
must explicitly identify the user paths that are to be cached. It 
does so by including the ucache operator as the first element of 
the user path definition (before the setbbox sequence), as shown 
in the following example: 

/Circle1 {ucache -1 -1 1 1 setbbox 0 0 1 0 360 arc} 
cvlit def 

Circle1 ufill 

The ucache operator notifies the Postscript interpreter that the 
enclosing user path should be placed in the cache if it is not 
already there or obtained from the cache if it is. This cache 
management is not performed directly by ucache; instead, it is 

8 USER PATHS 43 



performed by the user path rendering operator that interprets the 
user path (utill in this example). This is because the results 
retained in the cache differ according to what rendering opera
tion is performed.13 The utill produces the same effects on the 
current page whether or not the cache is accessed. 

Caching is based on the value of a user path object. That is, two 
user paths are considered the same for caching purposes if all 
elements of one are equal to the corresponding elements of the 
other, even if the objects themselves are not equal. Thus, a user 
path placed in the cache need not be explicitly retained in VM; 
an equivalent user path appearing literally later in the program 
can take advantage of the cached information. (Of course, if it is 
known that a given user path will be used many times, defining it 
explicitly in VM avoids creating it multiple times.) 

User path caching, like font caching, is effective across trans
lations of the user coordinate system, but not across other trans
formations such as scaling or rotation. In other words, multiple 
instances of a given user path rendered at different places on the 
page take advantage of the user path cache when the CTM is 
altered only by translate. If the CTM is altered by scale or 
rotate, the instances will be treated as if they were described by 
different user paths. 

Two other features of the above example should be noted. First, 
the user path object is explicitly saved for later use (as the value 
of 'Circle1' in this example). This is done in anticipation of 
rendering the same path multiple times (in this case, a one-unit 
circle). Second, the cvlit operator is applied to the user path ob
ject in order to remove its executable attribute. This is to ensure 
that the subsequent reference to 'Circle1' simply pushes the ob
ject on the operand stack rather than inappropriately executing it 
as a procedure. (It is unnecessary to do this if the user path isn't 
saved for later use but is simply consumed immediately by a user 
path rendering operator.) 

13For this reason, it does not make sense to invoke ucache outside a user path; 
doing so has no effect. 

44 Extensions for the Display Postscript System I Version of January 23, 1990 



Operators 

There are four categories of user path operators: 

•New path construction operators, intended for inclusion in 
user path definitions (but not limited to such use), i.e., 
setbbox, arct. 

•User path rendering operators, combining interpretation of 
a user path with a rendering operation (fill or stroke), i.e., 
ufill, ueofill, ustroke. 

•User path cache operators, providing the ability to control 
and query the operation of the user path cache, i.e., ucache, 
ucachestatus, setucacheparams. 

• miscellaneous operators that involve user paths, i.e., 
uappend, upath, ustrokepath, inufill, inueofill, 
inustroke 

A userpath is one of the following: 

• an ordinary user path: an array (which need not be 
executable) whose length is at least 5; 

• an encoded user path: an array of two elements. The first 
element must be either an array whose elements are all 
numbers or a string that can be interpreted as an encoded 
number string (see Section 2). The second must be a string 
that encodes a sequence of operators, as described above. 

In either case, the value of the object must conform to the rules 
for constructing user paths, as detailed in preceding sections; that 
is, the operands and operators must appear in the correct se
quence. If the user path is malformed, a typecheck error will 
occur. 

Several of the operators take an optional matrix as their topmost 
operand. This is a six-element array of numbers that describe a 
transformation matrix, as described in Section 4.4 of the 
PostScript Language Reference Manual. A matrix is distin
guished from a user path (which is also an array) by the number 
and types of its elements. 

In several of the descriptions of user path operators, the seman
tics of an operator are described as being 'equivalent' to a 

8 USER PATHS 45 



Postscript language program making use of lower-level 
operators. This does not necessarily mean that the implemen
tation executes those lower-level operators explicitly; in par
ticular, redefining those operator names will not affect the be
havior of the high-level operator. The effect is as if the 
'equivalent' Postscript language program has had bind applied 
to it with systemdict as the current dictionary. Furthermore, the 
'equivalent' program cannot take advantage of the user path 
cache. 

Most of the user path rendering operators have no effect on the 
graphics state. The absence of side effects is a significant reason 
for the efficiency of the operations; in particular, there is no need 
to build up an explicit current path only to discard it after one 
use. Although the behavior of the operators can be described as 
if the path were built up, rendered, and discarded in the usual 
way, the actual implementation of the operators is optimized to 
avoid unnecessary work. Note that there is no user path clip 
operation. Since the whole purpose of the clip operation is to 
alter the current clipping path, there is no way to avoid actually 
building the path. The best way to clip with a user path is: 

newpath userpath uappend clip newpath 

This operation can still take advantage of information in the user 
path cache under favorable conditions. 

The uappend operator and the rendering operators defined in 
terms of uappend, such as ufill, perform a temporary adjustment 
to the current transformation matrix as part of their execution. 
This adjustment consists of rounding the tx and ty components of 
the CTM to the nearest integer values. The purpose of this is to 
ensure that scan conversion of the user path produces uniform 
results when it is placed at different positions on the page 
through translation; it is especially important if the user path is 
cached. This adjustment is not ordinarily visible to a Postscript 
language program; it is not mentioned in the descriptions of the 
individual operators. 

46 Extensions for the Display Postscript System /Version of January 23, 1990 



9 RECTANGLES 

Rectangles are used very frequently, especially in display appli
cations. Thus, it is useful to have a few primitives to render rec
tangles directly. This is a convenience to application programs; 
additionally, the foreknowledge that the figure will be a rec
tangle results in significantly optimized execution. 

A rectangle is defined in the user coordinate system. The result 
produced is identical to that of a rectangle defined as an ordinary 
path. The rectangle operators are rectflll, rectstroke, rectclip, 
and rectviewclip. 

The rectangle operators accept three different forms of operands. 
The first form is simply four numbers: x, y, width, and height, 
which describe a single rectangle. The rectangle's sides are 
parallel to the user space axes; it has corners located at (x, y ), 
(x + width, y), (x + width, y +height), and (x, y +height). Note 
that width and height can be negative. 

The other two forms are an indefinitely long sequence of num
bers, represented either as an array or as an encoded number 
string; this representation is described in Section 2. The sequence 
must contain a multiple of four numbers; each group of four con
secutive numbers is interpreted as the x, y, width, and height 
values defining a single rectangle. The effect produced is equiv
alent to specifying all the rectangles as separate subpaths of a 
single combined path, which is then rendered by a single fill, 
stroke, or clip operator. 

All rectangles are drawn in a counterclockwise direction in user 
space, regardless of the signs of the width and height operands. 
This ensures that when multiple rectangles overlap, all of their 
interiors are treated as 'inside' the path according to the non-zero 
winding number rule. In the operator descriptions in Section 16, 
the programs stated to be 'equivalent' to the operators are valid 
only for positive width and height values; more complex 
programs are required to deal with negative values. 

8 USER PATHS 47 



10 FONT-RELATED EXTENSIONS 

Explicit character positioning 

The standard operators for setting text (show and its variants) are 
designed according to the assumption that characters are or
dinarily shown with their standard metrics. Means are provided 
to vary the metrics in certain limited ways: the ashow operator 
systematically adjusts the widths of all characters of a string 
during one show operation; the optional Metrics entry of a font 
dictionary adjusts the widths of all instances of particular charac
ters of a font. 

Certain applications that set text require very precise control over 
the positioning of each character. Although it is possible to posi
tion characters individually by executing a moveto and a single 
character show for each one, this approach is too cumbersome 
and expensive for setting more than small amounts of text. When 
an application has gone to the trouble of computing the positions 
of individual characters, it should have a reasonable way to ex
press those positions directly. 

Three new variants of the show operator have been defined to 
streamline the setting of individually positioned characters: 
xyshow, xshow,. and yshow. Each operator is given a string of 
text to be shown, just the same as show. Additionally, it expects 
a second operand, which is either an array composed of numbers 
or a string that can be interpreted as an encoded number string as 
described in Section 2. The numbers are used in sequence to con
trol the widths of the characters being shown, i.e., the spacing 
between each character and the next. They completely override 
the standard widths of the characters. 

Each number (or, for xyshow, each pair of consecutive numbers) 
is associated with the corresponding character of the text string 
being shown. For a basic PostScript font, this is the entire story. 
For a composite font, which may have a complex mapping from 
characters in the show string to glyphs rendered on the page, 
successive elements of the number array or the encoded number 
string are associated with successively rendered glyphs. 

48 Extensions for the Display Postscript System I Version of January 23, 1990 



Font selection 

Applications that frequently switch fonts require a streamlined 
means for doing so. The canonical sequence tindfont, scalefont 
(or makefont), and setfont appears so frequently that most ap
plications define a procedure to perform it. The cost of this pro
cedure, as well as tindfont (which is itself a procedure) and 
scalefont (which performs rather extensive computations), can 
have a serious impact on efficiency. 

To better support the needs of applications, we have introduced a 
new operator, selectfont, that combines the actions of the above 
three operators. This operator takes advantage of information in 
the font cache in order to avoid calling tindfont or performing 
the scalefont or makefont computations unnecessarily. Thus, in 
the common case of selecting a font and size combination that 
has been used recently, selectfont works with great efficiency. 

Outline and bitmap font coordination 

In display systems, the resolution of the device is typically quite 
low; resolutions in the range of 60 to 100 pixels per inch are 
common. When characters are produced algorithmically from 
outlines in typical sizes (10 to 12 points), the results are often not 
as legible as they need to be for most comfortable reading. The 
usual way to deal with this problem is to use screen fonts con
sisting of bitmap characters that have been tuned manually. The 
hand tuning increases legibility, possibly at the expense of 
fidelity to the original character shapes. 

The Display Postscript system includes the ability to take advan
tage of hand-tuned bitmap fonts when they are available. This 
facility is fully integrated with the standard Postscript font 
machinery; its operation is almost totally invisible to a Postscript 
language program. 

When a program sets text by executing an operator such as 
show, the PostScript interpreter first consults the font cache in 
the usual way. If the character is not there, it next consults the 
current device, requesting it to provide a bitmap form of the 
character at the required size. If the device can provide such a 
bitmap, it does so; the Postscript interpreter places the bitmap in 

10 FONT-RELATED EXTENSIONS 49 



the font cache for subsequent use. If there is no such character, 
the interpreter executes the character description in the usual 
way, placing the scan converted result in the font cache. 

The mechanism by which bitmap characters are provided by a 
device is not part of the language and is entirely hidden from a 
PostScript language program. In an integration of the Display 
PostScript system with a window system, the implementation of 
the device is the responsibility of the window system. Thus, the 
conventions for locating and representing bitmap characters are 
environment dependent. (Re-encoding a font preserves the as
sociation with bitmap characters; most other modifications to a 
font dictionary destroy the association.) 

Bitmap fonts are typically provided in one orientation and a 
range of sizes from 10 to 24 points. (Beyond 24 points, charac
ters scan converted from outlines are perfectly acceptable.) The 
PostScript interpreter can usually choose a bitmap character 
whose size is sufficiently close to the one requested and render it 
directly. 

Associated with each hand-tuned bitmap is a width, i.e., dis
placement from the origin of the character to the origin of the 
next character. This width is also hand tuned for maximum 
legibility; it is an integer interpreted in device space (i.e., in 
character space, since pixels are pixels). It is usually different 
from the width produced when the same character is scan con
verted from the font definition, since that width (the scaleable 
width) is defined by real numbers that are scaled according to the 
requested font size.14 

To achieve true fidelity between displays and printers when 
rendering characters, an application must use the scaleable 
widths to position characters on the display. Unfortunately, this 
leads to uneven letter spacing due to the need to round character 
positions to device pixel boundaries; at display resolution, this 
unevenness is objectionabJe. On the other hand, using the integer 
bitmap widths to produce evenly spaced text on the display leads 
to incorrect results on the printer. The only reasonable solution is 

14Hand tuned bitmaps are carefully designed so that the bitmap widths and 
scaleable widths are as similar as possible when averaged over large amounts 
of text. 

50 Extensions for the Display Postscript System I Version of January 23, 1990 



to use bitmap widths on the display and scaleable widths on the 
printer and to compensate for the positioning discrepancies in 
some other way. 

Many word processing and page layout programs already use the 
following technique when rendering text on the display: 

• Set the characters according to their integer bitmap widths, 
but keep track of the accumulated difference between the 
bitmap widths and the true scaleable widths. 

• Adjust the spaces between words to compensate for the ac
cumulated error. The most accurate way to do this is first to 
compute the error for an entire line and then to distribute 
the accumulated error among all the spaces in that line. 

This technique maintains fidelity between display and printer on 
a line-by-line basis. 

An application can control whether bitmap widths or scaleable 
widths are to be used on a per-font basis by adding a new entry, 
Bitmap Widths, to the top-level font dictionary. If this entry is 
present, it must have a boolean value: true indicates that bitmap 
widths are to be used when the device provides bitmaps for this 
font; false indicates that scaleable widths are to be used. If the 
entry is not present or if the device does not provide bitmaps for 
this font, the normal scaleable widths are used always. 

A device implementation ordinarily uses hand-tuned bitmaps 
only when the following conditions are met: 

•The coordinate system axes are perpendicular (that is, the 
transformations are not skewed). 

• The scale is uniform (reflections about axes are allowed). 

• The angle of rotation is an even multiple of 90 degrees (0, 
90, 180, or 270). 

The appearance of the hand-tuned bitmaps is usually preferable 
to that of scan-converted outlines for a given character at a given 
point size. 

Hand-tuned bitmaps are provided in a range of discrete sizes. 
When a requested size falls between two discrete sizes, the 
closest discrete size can be used and the widths are scaled ac-

10 FONT-RELATED EXTENSIONS 51 



cordingly. In all other cases, the default is to use scan-converted 
outlines. In certain cases a developer may deem it preferable to 
produce transformations of the bitmaps rather than scan
converting the transformed outlines. 

Three keys can be added to the top-level font dictionary to con
trol these transformations: 

ExactSize Refers to cases where there is an exact match 
between the requested size and a hand-tuned bit
map when the coordinate system axes are per
pendicular, the scale is uniform, and the angle of 
rotation is an even multiple of 90 degrees. 

InBetweenSize Refers to cases where the requested size falls be
tween discrete hand-tuned bitmap sizes under 
the same conditions as ExactSize. 

Transformed Char 
Refers to cases where the transformation is other 
than those mentioned under ExactSize con
ditions. 

Each of these keys (ExactSize, InBetweenSize, and 
TransformedChar) can take one of the following values to con
trol the use of hand-tuned bitmaps: 

0 

1 

2 

Use outline 

Use closest hand-tuned bitmap size 

Use transformed hand-tuned bitmap 

Not all implementations are able to transform hand-tuned bit
maps. The default values for the additional keys are specified 
below: 

52 Extensions for the Display Postscript System I Version of January 23, 1990 



Key 

Bitmap Widths 

ExactSize 

In Between Size 

TransformedChar 

Default Value 

false 

1 (closest hand-tuned bitmap) 

1 (closest hand-tuned bitmap) 

0 (outline) 

11 HALFTONE DEFINITION 

Halftoning is the process by which continuous gray tones are 
approximated by a pattern of pixels that can achieve only a 
limited number of discrete gray tones. The most familiar case of 
this is rendering of gray tones with black and white pixels. In the 
original Postscript language, program control of the halftoning 
process is provided by means of the setscreen operator, 
described in Section 4.8 of the Postscript Language Reference 
Manual. 

As PostScript interpreters are integrated with a wider assortment 
of printing and display technologies, the language must be ex
tended to provide more control over details of the halftoning 
process. For example, in color printing, one must specify inde
pendent halftone screens for each of three or four color separa
tions. In imaging on low-resolution displays, one must have finer 
control over the halftoning process in order to achieve the best 
approximations of gray levels or colors and to minimize artifacts. 

In recognition of the need to provide new halftoning processes 
with new printing and display technologies, we have introduced 
an extensible mechanism for defining halftones. This 
mechanism, called the halftone dictionary, provides means to 
define any of several types of halftones. The setscreen style of 
halftone is one of these types; new types (or new variations on 
those types) do not require fundamental language changes. 

Remember that everything relating to halftones is, by definition, 
device dependent. In general, when an application defines its 
own halftones, it sacrifices portability. Associated with every 
device is a default halftone definition that is appropriate for most 

10 FONT-RELATED EXTENSIONS 53 



applications. Only relatively sophisticated applications need to 
define their own halftones to achieve special effects. 

Halftone dictionaries 

A halftone dictionary is an ordinary Postscript dictionary object, 
certain of whose key-value pairs have special meanings. Some of 
the contents of a halftone dictionary are optional and user
definable, while other key-value pairs must be present and have 
the correct semantics in order for the halftone machinery to 
operate properly. In this respect (as in several others), a halftone 
dictionary is analogous to a font dictionary. 

The graphics state includes a current halftone dictionary, which 
specifies the halftoning process to be used by the painting 
operators. The operator currenthalftone returns the current 
halftone dictionary; sethalftone establishes a different halftone 
dictionary as the current one. 

A halftone dictionary is a self-contained description of a halfton
ing process. Painting operations, such as till, stroke, and show, 
consult the current halftone dictionary when they require infor
mation about the halftoning process. Some of the entries in the 
dictionary are procedures that are called to compute the required 
information. 

The Postscript interpreter consults the halftone dictionary at un
predictable times. Furthermore, it can cache the results internally 
for later use; such caching may persist through switches of 
halftone dictionaries caused by sethalftone, gsave, and grestore. 
For these reasons, once a halftone dictionary has been passed to 
sethalftone, its contents should be considered read-only. 
Procedures in the halftone dictionary must compute results that 
depend only on information in the halftone dictionary, not on 
outside information, and they must not have side-effects.15 

Every halftone dictionary must have a HalftoneType entry 
whose value is an integer. This specifies the major type of 

15This rules out certain 'tricks', such as the pattern fill example in the 
PostScript Language Tutorial and Cookbook, that depend on the spot function 
being executed at predictable times. Such tricks continue to work for halftones 
defined by setscreen, but not for halftones defined by halftone dictionaries. 

54 Extensions for the Display Postscript System I Version of January 23, 1990 



Key Type 

HalftoneType integer 

Frequency number 

Angle number 

halftoning process; the remaining entries in the dictionary are 
interpreted according to the type. The halftone types currently 
defined are: 

1 The halftone is defined by frequency, angle, and spot func
tion (corresponding to the existing setscreen facility). 

2 The halftone is defined by four separate frequency, angle, 
and spot functions: one for each of the three primary colors 
(red, green, and blue) plus gray. 

3 The halftone is defined directly by a threshold array at 
device resolution. 

4 The halftone is defined by four threshold arrays: one for 
each of the three primary colors plus gray. 

If the current halftone has been defined by sethalftone instead of 
by setscreen, a subsequent currentscreen will return a fre
quency of 60, an angle of 0, and the halftone dictionary as the 
spot function. If setscreen receives a dictionary as a spot func
tion, it will ignore the frequency and angle parameters and per
form the equivalent of sethalftone on the dictionary. This be
havior is for compatibility with existing applications that attempt 
to alter the screen frequency or angle without providing a new 
spot function. Such applications cannot produce the intended ef
fect but' still run to completion. 

Spot functions 

A type 1 halftone dictionary defines a halftone in terms of its 
frequency, angle, and spot function. These parameters have the 
same meanings as the operands given to setscreen, but they are 
provided as entries in a halftone dictionary. The entries are as 
follows: 

Semantics 

must be 1. 

screen frequency, measured in halftone cells per inch in device space. 

screen angle:· number of degrees by which the screen is to be rotated with 
respect to the device coordinate system. 

11 HALFTONE DEFINITION 55 



SpotFunction procedure procedure that defines the order in which device pixels within a screen cell are 
adjusted for different gray levels. 

A halftone defined in this way produces results identical to a 
halftone defined by setscreen. However, the dictionary form of 
this halftone definition can work more efficiently since the 
Postscript interpreter can retain information about it in a cache, 
which it is not permitted to do for a halftone specified by 
setscreen. See the previous section for a discussion of this mat
ter. 

A type 2 halftone dictionary defines a halftone as four screens in 
the same manner as setcolorscreen. Instead of a single 
Frequency entry, there are entries for RedFrequency, 
GreenFrequency, BlueFrequency, and GrayFrequency; 
likewise for Angle and SpotFunction. Color screens are not fur
ther discussed here; see PostScript Language Color Extensions 
for more information. 

Threshold arrays 

A type 3 halftone dictionary defines a halftone as an array of 
threshold values that directly control individual device pixels in 
a halftone cell. This provides a finer degree of control over 
halftone rendering; also, it permits halftone cells to be rectan
gular, whereas halftone cells defined by a spot function are al
ways square. Both of these capabilities are important for low
resolution display applications. 

A threshold array is much like a sampled image: it is a 
rectangular array of pixel values. However, it is defined entirely 
in device space and the sample values always occupy 8 bits each. 
The pixel values nominally represent gray levels in the usual 
way, where 0 is black and 255 is white. The threshold array is 
replicated to tile the entire device space; thus, each pixel of 
device space is mapped to a particular sample of the threshold 
array. 

On a bilevel device (each pixel is either black or white), the 
halftoning algorithm is as follows. For each device pixel that is 
to be painted with some gray level, the corresponding pixel of 

56 Extensions for the Display Postscript System I Version of January 23, 1990 



the threshold array is consulted. If the desired gray level is less 
than the pixel value in the threshold array, the device pixel is 
painted black; otherwise it is painted white. For the purpose of 
this comparison, gray values in the range 0 to 1 (inclusive) cor
respond to pixel values 0 to 255 in the threshold array. 

This scheme easily generalizes to monochrome devices with 
multiple bits per pixel. For example, if there are 2 bits per pixel, 
then each pixel can directly represent one of four different gray 
levels: black, dark gray, light gray, and white, encoded as 0, 1, 2, 
and 3 respectively. For each device pixel that is to be painted 
with some in-between gray level, the corresponding pixel of the 
threshold array is consulted to determine whether to use the next 
lower or next higher representable gray level. In this situation, 
the samples in the threshold array do not represent absolute gray 
values but gradations between two adjacent representable gray 
levels. 

With this approach, it is reasonable to use the same threshold 
array for monochrome displays having different numbers of gray 
levels. This works because the threshold values are effectively 
scaled to span the distance between adjacent representable gray 
values, regardless of how many distinct gray values there are. 
(Indeed, the halftone rendering algorithm for a single bit per 
pixel device is simply a special case of the one for multiple bits 
per pixel.) 

A type 3 halftone dictionary must contain the following entries: 

11 HALFTONE DEFINITION 57 



Key Type 

Halftone Type integer 

Width integer 

Height integer 

Thresholds string 

Semantics 

must be 3. 

width of threshold array, in pixels. 

height of threshold array, in pixels. 

threshold values. This string must be width x height characters long. The 
individual characters represent threshold values as described above. The order 
of pixels is the same as for a sampled image mapped directly onto device space, 
with the first sample at the lower left corner16 and x coordinates changing faster 
than y coordinates. 

A halftone defined in this way can also be used with color 
(RGB) displays. The red, green, and blue values are simply 
treated independently as gray levels; the same threshold array 
applies to each color. 

However, some devices, particularly color printers, require 
separate halftones for each primary color (and sometimes also 
for gray). A type 4 halftone dictionary defines four separate 
threshold arrays. Instead of a single Width entry, there are 
entries for Red Width, Green Width, Blue Width, and 
GrayWidth; likewise for Height and Thresholds. 

Halftone phase 

In a printer, the gray pattern tiles device space starting at the 
device space origin. That is, the halftone grid is aligned such that 
the lower left corner of the lower left halftone cell is positioned 
at (0, 0) in device space, independent of the value of the current 
transformation matrix. This ensures that adjacent gray areas will 
be painted with halftones having the same phase, thereby avoid
ing 'seams' or other artifacts. 

On a display, the phase relationship between the halftone grid 
and device space needs to be more flexible. This need arises be-

16that is, the corner corresponding to the minimum x and y coordinates in 
device space; mathematically, this is the 'lower left' corner in a normal, 
right-handed Cartesian coordinate system. Display devices typically have a 
left-handed coordinate system in which y coordinates increase downward on 
the screen. For such devices, the mathematical 'lower left' corner is the upper 
left corner on the physical screen. 

58 Extensions for the Display Postscript System /Version of January 23, 1990 



cause most window systems provide a scrolling operation in 
which the existing contents of raster memory are copied from 
one place to another in device space. This operation can alter the 
phase of halftones that have already been scan converted. It is 
necessary to alter the phase of the halftone generation algorithm 
correspondingly so that newly painted halftones will align with 
the existing ones. 

The graphics state includes a pair of halftone phase parameters, 
one for x and one for y. These integers define an offset from the 
device space origin to the halftone grid origin. Of course, the 
halftone grid does not actually have an origin, so the offset 
values are actually interpreted modulo the width and height of 
the halftone cell. Effectively, they ensure that some halftone cell 
will have its lower left corner at (x, y) in device space. 

The intended use of the halftone phase operators 
(sethalftonephase and currenthalftonephase) is in conjunction 
with window system operations that perform scrolling. If the ap
plication scrolls the displayed image by (dx, dy) pixels in device 
space, it should simply add dx and dy to the halftone phase 
parameters; it should not worry about computing them modulo 
the size of the halftone cell. This has the correct effect even if the 
displayed image is composed of several different halftone 
screens. 

Note that the halftone phase is defined to be part of the graphics 
state, not part of the device. This is because an application may 
subdivide device space into multiple regions that it scrolls in
dependently. A recommended technique is to associate a 
separate gstate (graphics state) object with each such region; this 
object carries all the parameters required to image within that 
region, including the halftone phase. 

12 SCAN CONVERSION DETAILS 

As discussed in Section 2.3 of the PostScript Language Refer
ence Manual, the PostScript interpreter executes a scan 
conversion algorithm to render abstract graphical shapes in the 
raster memory of the output device. The details of this algorithm 
have not been specified until now, since they are of little concern 

11 HALFTONE DEFINITION 59 



to a PostScript language program that purports to be device inde
pendent. However, at the low resolutions typical of computer 
displays, one must pay some attention to scan conversion details, 
since variations of even one pixel's width can have a noticeable 
effect on appearance. 

To ensure consistent and predictable results, the scan conversion 
algorithm is now specified more rigorously. This is not a lan
guage change per se; it is a more precise description of the scan 
conversion process, whose former definition was rather vague. 
Additionally, the PostScript imaging model has been extended to 
include a device-independent means for obtaining consistent line 
widths during stroke operations. 

Scan conversion rules 

The rules below enable one to determine precisely which device 
pixels will be affected by a painting operation. These rules apply 
to the Display Postscript system and to future Postscript 
products from Adobe Systems based on the same software tech
nology; they do not necessarily apply to older products. 

In the following descriptions, all references to coordinates and 
pixels are in device space. A 'shape' is a path to be painted with 
the current color or with an image; its coordinates are mapped 
into device space but not rounded to device pixel boundaries. At 
this level, curves have been flattened to sequences of straight 
lines and all 'insideness' computations have been performed. 

Pixel boundaries fall on integer coordinates in device space. A 
pixel is a square region identified by the coordinates of its min
imum x, minimum y corner. A pixel is a half-open region, mean
ing that it includes half of its boundary points. More precisely, 
for any point whose real number coordinate is (x, y ), let 
i = floor(x) and j = floor(y). The pixel that contains this point is 
the one identified as (i, j). The region belonging to that pixel is 
defined to be the set of points (x', y') such that i :s: x' < i+l and 
j :s:y' <j+l. 

Like pixels, shapes to be filled are also treated as half-open 
regions that include the boundaries along their 'floor' sides but 
not along their 'ceiling' sides. 

60 Extensions for the Display Postscript System I Version of January 23, 1990 



A shape is scan converted by painting any pixel whose square 
region intersects the shape, no matter how small the intersection 
is. This ensures that no shape ever disappears as a result of un
favorable placement relative to the device pixel grid (as might 
happen with other possible scan conversion rules). The area 
covered by painted pixels is always at least as large as the area of 
the original shape. · 

This scan conversion rule applies to both fill operations and to 
strokes with non-zero width. Zero-width strokes are done in a 
device dependent manner that may include fewer pixels than this 
rule specifies. 

The region of device space to be painted by a sampled· image is 
determined similarly, though not identically. The image source 
rectangle is transformed into device space and defines a half
open region, just as for fill operations. However, only those 
pixels whose centers lie within the region are painted. Further
more, the position of the center of such a pixel (i.e., coordinate 
values whose fractional part is one-halt) is mapped back into 
source space to determine how to color the pixel. There is no 
averaging over the pixel area; if the resolution of the source 
image is higher than that of device space, some source samples 
are not be used. 

For clipping, the clip region consists of the set of pixels that 
would be included by a fill. A subsequent painting operation af
fects a region that is the intersection of the set of pixels defined 
by the clip region with the set of pixels for the region to be 
painted. 

Automatic stroke adjustment 

When a stroke is drawn along a path, the scan conversion 
process may produce lines of non-uniform thickness due to ras
terization effects. This is because in general the line width and 
the coordinates of the end points, translated into device space, 
are arbitrary real numbers, not quantized to device pixels. Thus, 
a line of a given width can intersect with a different number of 
device pixels depending on where it is positioned. 

For best results, it is important to compensate for the rasteriza-

12 SCAN CONVERSION DETAILS 61 



tion effects so as to produce strokes of uniform thickness; this is 
especially important in low-resolution display applications. 
While this can be done explicitly by a Postscript language 
program (as discussed in the documentation for itransform in 
the PostScript Language Reference Manual), doing so is cum
bersome and inefficient. The newly introduced user path render
ing operators, such as ustroke, provide no opportunity for a 
program to intervene in order to adjust the coordinates and line 
width. Furthermore, a more sophisticated adjustment algorithm 
is required to produce the most accurate results. 

To meet this need, a stroke adjustment mechanism has been 
introduced as a standard part of the PostScript imaging model. 
When it is in effect, the line width and the coordinates of a stroke 
are automatically adjusted as necessary to produce lines of 
uniform thickness; furthermore, the thickness is as near as pos
sible to the requested line width (i.e., no more than half a pixel 
different).17 

Because automatic stroke adjustment can have a substantial ef
fect on the appearance of lines, an application must be able to 
control whether or not it is performed. The operator 
setstrokeadjust alters a boolean value in the graphics state that 
determines whether or not stroke adjustment will be performed 
during subsequent stroke and related operators. This allows 
compatibility with existing PostScript language programs. 

When a character description is executed (e.g., the Build Char 
procedure of a user-defined font), stroke adjustment is initially 
disabled instead of being inherited from the context of the show 
operation. This is necessary because character descriptions are 
executed at unpredictable times due to font caching. A 
BuildChar procedure can enable stroke adjustment if it wants to. 

171f the requested line width, transformed into device space, is less than half a 
pixel, the stroke is rendered as a single-pixel line. This is the thinnest line that 
can be rendered at device resolution; it is equivalent to the effect produced by 
setting the line width to zero. 

62 Extensions for the Display Postscript System I Version of January 23, 1990 



13 VIEW CLIPS 

Interactive applications frequently make incremental updates to 
the displayed image. Such updates arise both from changes to the 
displayed graphical objects themselves and from window system 
manipulations that cause formerly obscured objects to become 
visible. For efficiency's sake, it is desirable for the application to 
redraw only those graphical objects that are affected by the 
change. 

One approach to accomplishing this is to define a path that 
encloses the changed areas of the display, then redraw only those 
graphical objects that are enclosed (or partially enclosed) within 
the path. To produce correct results, it is necessary to impose this 
path as a clipping path while redrawing. If this were not done, 
portions of objects that are redrawn might incorrectly obscure 
objects that are not redrawn. 

This clipping could be accomplished by adjusting the clipping 
path in the graphics state in the normal way. However, this is not 
particularly convenient, since the program that imposes the clip
ping and the program that is executed to redraw objects on the 
display may have different ideas about what the clipping path 
should be. This problem becomes particularly acute given the 
ability to switch entire graphics states arbitrarily. 

To alleviate this, we have extended the PostScript imaging 
model to introduce another level of clipping, the view clip, that is 
entirely independent of the graphics state. Objects are rendered 
on the device qnly in areas that are enclosed by both the current 
clipping path and the current view clipping path. 

The view clipping path is actually part of the Postscript execu
tion context, not the graphics state. Its initial value is a path that 
encloses the entire imageable area of the output device (see 
initviewclip ). The operators that alter the view clipping path do 
not affect the clipping path in the graphics state or vice versa. 
The view clipping path is not affected by gsave and grestore; 
however, a restore will reinstate the view clipping path that was 
in effect at the time of the matching save.18 Note that view clips 

18View clipping is temporarily disabled when the current output device is a 
mask device, such as the one installed by setcachedevice. 

12 SCAN CONVERSION DETAILS 63 



do not nest; rather, a new view clip replaces the existing one. 
The following operators manipulate view clips: viewclip, 
eoviewclip, rectviewclip, viewclippath, and initviewclip. 

14 WINDOW SYSTEM SUPPORT 

For each integration of the Display Postscript system with a win
dow system, there is a collection of operators for doing such 
things as specifying the window that is to be affected by sub
sequent painting operators. These operators are window system 
specific because their syntax and semantics vary according to the 
properties and capabilities of the underlying window system. 
They are not documented in this manual. 

In addition to the window system specific operators, there are 
several operators that are window related but have a consistent 
meaning across all window systems. They are needed to enable 
an application to associate input events (e.g., mouse clicks) with 
graphical objects in user space. These operators (i.e., infill, 
ineofill, inufill, inueofill, instroke, and inustroke) can be used 
freely by display based applications. 

If a window system specific extension provides a way for a 
Postscript language program to receive input events directly, the 
program can perform operations such as mouse tracking and hit 
detection itself. With some window systems, however, input 
events are always received by the application. In that case, the 
application must either perform such computations itself or issue 
queries to the Display PostScript system. This decision involves 
a tradeoff between performance and application complexity. One 
possible approach is for the application to perform hit detection 
itself for simple shapes but to query the Display Postscript sys
tem for more complex shapes. 

A program may require information about certain properties of 
the raster output device, such as whether or not it supports color 
and how many distinguishable color or gray values it can 
reproduce. A Postscript language program that is a page descrip
tion should not need such information; using it compromises 
device independence. However, an interactive application using 
the Display Postscript system may desire to vary its behavior 

64 Extensions for the Display Postscript System I Version of January 23, 1990 



Key 

Colors 

GrayValues 

RedValues 

GreenValues 

BlueValues 

ColorValues 

Type 

integer 

integer 

integer 

integer 

integer 

integer 

according to the available display technology. For example, a 
CAD application may use stipple patterns on a binary black-and
white display but separate colors on a color display. 

The deviceinfo operator returns a dictionary whose entries 
describe static information about the device. (Dynamic informa
tion must be read from the graphics state or obtained through 
operators such as wtranslation.) Some of the entries in this dic
tionary have standard names that are described in the table 
below; others may have meanings that are device dependent. 
Most entries are optional and are present only if they are relevant 
for that type of device. 

Semantics 

number of independent color components: 1 indicates black-and-white or gray 
scale only; 3 indicates red, green, blue; 4 indicates red, green, blue, gray (or 
their complements: cyan, magenta, yellow, black, as typically used in printers). 

number of different gray values that individual pixels can reproduce (without 
halftoning). For example, 2 indicates a binary black-and-white device; 256 
indicates an 8 bits-per-pixel gray scale device. 

number of different red values that individual pixels can reproduce, inde
pendent of other colors. 

analogous to RedValues. 

analogous to RedValues. 

total number of different color values that each pixel can reproduce. If this 
entry is present and the entries for gray, red, green, and blue are absent, this 
means that the color components cannot be varied independently but only in 
combination. 

15 MISCELLANEOUS CHANGES 

This section contains miscellaneous language changes that have 
not been documented in earlier sections. 

Additions to statusdict 

As described in the PostScript Language Reference Manual, the 
standard dictionary statusdict is the repository for information 

14 WINDOW SYSTEM SUPPORT 65 



Key Type 

buildtime integer 

byteorder boolean 

realformat string 

and facilities that are specific to individual products. The set of 
keys and values contained in statusdict is product dependent. 
However, every product's statusdict contains a product 
(product name string) and revision (product revision number). 

In the Display PostScript system, the standard set of statusdict 
entries is extended to include the following: 

Semantics 

uniquely identifies a specific generation of this product. Its main purpose is to 
distinguish among various alpha- and beta-test versions of a product prior to its 
formal release; the value of revision is changed only for formal releases. (The 
integer value of buildtime actually represents a date and time in the format 
used in the machine on which the PostScript interpreter was constructed; this 
meaning, however, is not of any use to a Postscript language program.) 

describes the native (preferred) order of bytes in multiple-byte numbers appear
ing in binary tokens and binary object sequences (see Section 2). The value 
false indicates high-order byte first; true indicates low-order byte first. Al
though the interpreter will accept numbers in either order, it will process 
numbers in native order somewhat more efficiently. 

identifies the native format for real (floating-point) numbers appearing in 
binary tokens and binary object sequences (see Section 2). If the native format 
is IEEE standard, the value of this string is 'IEEE'; otherwise, the value 
describes a specific native format, e.g., 'VAX'. The interpreter will always 
accept real numbers in IEEE format, but it may process numbers in native 
format more efficiently. An application program can query realformat to 
determine whether the interpreter's native format is the same as the 
application's; if so, translation to and from IEEE format can be avoided. 

Syntax and scanner changes 

As described in Section 2, the PostScript language syntax has 
been augmented to introduce binary tokens and binary object se
quences. In the course of altering the PostScript interpreter's in
put scanner to accept the augmented language, we have taken the 
opportunity to eliminate several anomalies in the existing scan
ner. These anomalies are obscure; for some, the PostScript Lan
guage Reference Manual does not give a clear specification of 
what the correct behavior should be. 

The principal change has to do with execution of string objects. 
A program to be executed by the Postscript interpreter can come 

66 Extensions for the Display Postscript System I Version of January 23, 1990 



from either a file object or a string object. In the normal case, the 
interpreter reads from a file object, such as the one for the stan
dard input file. However, as described in Section 3.6 of the 
PostScript Language Reference Manual, the interpreter can also 
read from an executable string object; this is accomplished by 
applying exec (or other execution operators) to the string. The 
token operator, which invokes the PostScript language scanner 
only, also accepts a string operand. 

The syntax and semantics of a program should be the same 
whether the program is read from a file or from a string. 
However, in previous versions of the PostScript interpreter, there 
has been one difference in the treatment of string literals, 
enclosed in '(' and ')', which appear in the program being ex
ecuted. If the program is read from a file, '\' (back-slash) escape 
sequences have special meanings (see PostScript Language Ref
erence Manual, Section 3.3); if the program is read from a string, 
'\' escape sequences are not recognized and the characters are 
treated literally. 

In the Display Postscript system and in future products b~sed on 
the same software technology, this distinction between file and 
string execution semantics is eliminated. '\' escape sequences are 
now recognized in string literals always, regardless of whether 
the program is being read from a file or a string. 

This change is relatively obscure and is unlikely to affect real 
programs. A contrived example illustrates the effect of the 
change: 

(/a (\\n) def) cvx exec 

When the outer string is scanned, the '\\' is treated as an escape 
sequence and replaced by a single '\'; this is true under both old 
and new conventions. The difference lies in what happens when 
the outer string is executed - specifically, in the contents of the 
inner string that is defined to be the value of 'a'. Under the old 
convention, the '\' in this string is not recognized as an escape; 
consequently, the string consists of the two characters '\' and 'n'. 
Under the new convention, the '\' is recognized as an escape; the 
resulting string consists of a single newline character produced 
from the escape sequence '\n'. 

15 MISCELLANEOUS CHANGES 67 



Note that escape sequences apply only in ASCII encoded string 
literals. A string appearing in a binary token or binary object 
sequence is always treated literally (see Section 2). The inter
preter can consume a binary encoded program from a string just 
the same as from a file; the syntax accepted by the interpreter 
does not depend on the source of the characters being inter
preted. 

Apart from the change in string execution, there are several other 
differences between the scanner in the Display PostScript system 
and that of previous interpreters: 

• Outside of a string literal, the old scanner sometimes treats 
'\' as a self-delimiting special character, depending on con
text. The new scanner always treats '\' as a regular char
acter except within a string literal. This is consistent with 
the language specification. 

•The characters FF (ASCII \014) and NUL (ASCII \000) are 
treated as white space characters. Of these, FF will ter
minate a comment; NUL will not. This is a documentation 
change; the old and new scanners behave the same in this 
regard. 

• Certain tokens that are syntactically legal numbers but that 
exceed implementation limits are converted to name ob
jects by the old scanner; the new scanner generates a 
limitcheck error in such cases. 

• With the old scanner, all erroneous radix numbers of the 
form base#number are treated as names. With the new 
scanner, a base value not in the range 2 to 36 inclusive or a 
number digit not valid for the base causes the token to be 
treated as a name. However, if the number is syntactically 
valid but is simply too large to represent, a limitcheck oc
curs. 

File system extensions 

The Display PostScript system optionally provides access to 
named files in secondary storage. The file access capabilities are 
provided as part of the integration of the Display Postscript sys
tem with an underlying operating system; there are variations 
from one such integration to another. Not all the file system ca
pabilities of the underlying operating system are necessarily 
made available at the Postscript language level. 

68 Extensions for the Display Postscript System I Version of January 23, 1990 



The Postscript language provides a standard set of operators for 
accessing files. These consist of file, originally described in the 
PostScript Language Reference Manual, and several new 
operators: deletefile, renamefile, filenameforall, 
setfileposition, and fileposition. Although the language defines 
a standard framework for dealing with files, the detailed seman
tics of the file system operators (particularly file naming 
conventions) are operating system dependent. 

Files are contained within one or more 'secondary storage 
devices', hereafter referred to simply as devices (but not to be 
confused with the 'current device', which is a display device in 
the graphics state). The PostScript language defines a uniform 
convention for naming devices, but it says nothing about how 
files in a given device are named. Different devices have dif
ferent properties, and not all devices support all operations. 

A complete file name is in the form '%device%file', where 
device identifies the secondary storage device and file is the 
name of the file within the device. When a complete file name is 
presented to a file system operator, the device portion selects the 
device; the file portion is in turn presented to the implementation 
of that device, which is operating system and environment de
pendent. 

When a file name is presented without a '%device%' prefix, a 
search rule determines which device is selected. The available 
storage devices are consulted in order; the requested operation is 
performed for each device until it succeeds. The number of 
available devices, their names, and the order in which they are 
searched is environment dependent. Not all devices necessarily 
participate in such searches; some devices can be accessed only 
by naming them explicitly. 

Normally, there is a device that represents the complete file sys
tem provided by the underlying operating system.19 If so, by 
convention that device's name is 'os'; thus, complete file names 
are in the form '%os%file', where file conforms to underlying 
file system conventions. This device always participates in 

19However, this device may impose some restrictions on the set of files that can 
be accessed. The need for restrictions arises when the PostScript interpreter 
executes with a user identity different from that of the user running the appli
cation program. 

15 MISCELLANEOUS CHANGES 69 



searches, as described above; thus, a program can access or
dinary files without specifying the '%os%' prefix. There may be 
more than one device that behaves in this way. 

Additionally, there is normally a device that represents font 
definitions that can be loaded dynamically by the findfont 
operator. If so, by convention that device's name is 'font'; thus, 
complete file names are in the form '%font%file', where file is a 
specific foqt name such as 'Palatino-Boldltalic'. Note that this 
naming convention does not necessarily have anything to do 
with how font files are actually named in the underlying operat
ing system; the 'font' device is logically decoupled from the 'os' 
device. This device never participates in searches; accessing font 
files requires specifying the '%font%' prefix. If a 'font' device 
exists, the built-in definition of findfont will attempt to run the 
named font from that device; the program in the font file should 
create a font dictionary and execute a definefont with the same 
name. 

For the operators file, deletefile, renamefile, status, and 
filenameforall, a filename is a string object that identifies a file. 
The file name can be in one of three forms: 

%device%file identifies a file on a specific device, as described 
above. 

%device identifies one of the special files '%stdin', 
'%stdout', '%1ineedit', or '%statementedit', 
described in Section 3.8 of the PostScript Lan
guage Reference Manual. 

file (first character not '% ') identifies a file on an 
unspecified device; the device is selected by an 
environment specific search rule, as described 
above. 

An access is a string object that specifies how a file is to be 
accessed. File access conventions are operating system specific. 
The following access specifications are typical of the UNIX® 
operating system and are supported by many others. The access 
string always begins with 'r', 'w', or 'a', possibly followed by 
'+'; any additional characters supply operating system specific 
information. 

70 Extensions for the Display Postscript System I Version of January 23, 1990 



open for reading only; error if file doesn't already ex
ist. 

w open for writing only; create file if it doesn't already 
exists; truncate it if it does. 

a open for writing only; create file if it doesn't already 
exist; append to it if it does. 

r+ open for reading and writing; error if file doesn't al
ready exist. 

w+ open for reading and writing; create file if it doesn't 
already exist; truncate it if it does. 

a+ open for reading and writing; create file if it doesn't 
already exist; append to it if it does. 

Timekeeping 

The usertime operator, which is specified as returning execution 
time of the Postscript interpreter, now reports interpretation time 
on behalf of the current context only. The ability to perform per
context timekeeping accurately depends on the underlying 
operating system; in some environments, it may not be possible 
to separate execution time of the Postscript interpreter from that 
of other programs executing concurrently. 

A new standard operator, realtime, returns elapsed real time, in
dependent of the activities of the Postscript interpreter or other 
programs. 

Standard Error Handlers 

As described in Section 3.6 of the. Postscript Language Refer
ence Manual, when an error occurs, the PostScript interpreter 
looks up the error's name in errordict and executes the associ
ated procedure. That procedure is expected to handle the error in 
some appropriate way. 

The errordict present in the initial state of the VM provides 
standard handlers for all errors. However, errordict is a writable 
dictionary; a program can therefore replace individual error
handlers selectively. Since errordict is in the private VM, such 
changes are visible only to the context that made them (or to 
other contexts sharing the same space). 

15 MISCELLANEOUS CHANGES 71 



The standard error handlers in the Display Postscript system be
have slightly differently. from the ones described in the 
PostScript Language Reference Manual, Section 3.8. They 
operate as follows: 

• Execute 'false setshared', thereby reverting to private VM 
allocation mode 

• Record information about the error in the special diction
ary, $error; in the Display Postscript system, $error is lo
cated in private VM. 

• Execute stop, thereby exiting the innermost enclosing con
text established by stopped. 

The information recorded in the $error dictionary is shown in 
the table in Section 3.8 of the PostScript Language Reference 
Manual. In particular, the entries newerror, errorname, and 
command are always stored. However, the ostack, estack, and 
dstack arrays, which record snapshots of the operand, execution, 
and dictionary stacks, are generated only if the entry 
recordstacks has been previously set to the boolean value true; 
its normal value is false.20 

The procedure handleerror is invoked if a program loses control 
due to an error. In the Display Postscript system, the standard 
definition of handleerror generates a special type of binary ob
ject sequence, not a text message. This is described in Section 3. 

Font Cache Size 

The total size of the font cache can be adjusted dynamically. 
This enables one to tune the amount of memory consumed by the 
font cache according to the needs of applications and output 
devices. With undemanding applications and low-resolution 
devices, a relatively small font cache suffices. When applications 
use many fonts in many sizes or output to high-resolution 
devices, a large font cache is required for good performance. 

Adjusting the font cache size is accomplished by an extension to 
the existing setcacheparams operator, which takes a variable 

2°'fhe error handler for VMerror never snapshots the stacks, regardless of the 
value of recordstacks. This prevents an attempt to allocate more VM at a time 
when VM is already exhausted. 

72 Extensions for the Display Postscript System I Version of January 23, 1990 



number of operands. currentcacheparams returns the font 
cache parameters as described in the PostScript Language Refer
ence Manual, with the addition of the result size. See the 
operator description in Section 16. 

Permanent Entries on Dictionary Stack 

There are three permanent entries on the dictionary stack for the 
Display PostScript system. In order, starting from the bottom, 
they are: systemdict, shareddict, and userdict. A new operator, 
cleardictstack, has been added so that a program may clear all 
nonpermanent entries from the dictionary stack without having 
to know how many permanent entries there are. 

15 MISCELLANEOUS CHANGES 73 



16 OPERATORS 

Conventions 

This chapter contains detailed descriptions of all the extensions 
to the PostScript language that implement the Display PostScript 
system. The operators are organized alphabetically by operator 
name. Each operator description is presented in the following 
format: 

operator operand1 operand2 ... operand" operator result1 ... resultm 

Detailed explanation of the operator 

EXAMPLE: 
An example of the use of this operator. The symbol '=>' 
designates values left on the operand stack by the example. 

ERRORS: 

A list of the errors that this operator might execute. 

At the head of an operator description, operand1 through 
operandn are the operands that the operator requires, with 
operandn being the topmost element on the operand stack. The 
operator pops these objects from the operand stack and con
sumes them. After executing, the operator leaves the objects 
result1 through resultm on the stack, with resultm being the top
most element. 

Normally the operand and result names suggest their types. The 
following table lists most of the operand and result names and 
their use. 

7 4 Extensions for the Display Postscript System I Version of January 23, 1990 



name 

filename 

font 

halftone 

int 

matrix 

num 

numstring 

proc 

userpath 

see section description 

15 is a file name string. 

5.3 of PostScript Language Reference Manual 
is a dictionary constructed according to the rule for font dictionaries. 

11 is a dictionary constructed according to the rule for halftone dictionaries. 

3.4 of PostScript Language Reference Manual 
indicates an integer number. 

4.4 of PostScript Language Reference Manual 
is an array of six numbers describing a transformation matrix. 

3.4 of PostScript Language Reference Manual 
indicates that the operand or result is a number (integer or real). 

2 is an encoded number string. 

3.4 of PostScript Language Reference Manual 

8 

indicates a Postscript procedure (i.e., an executable array or executable packed 
array). 

is an array of path construction operators and their operands or an array of two 
strings comprising an encoded user path. 

The notation '-' in the operand position indicates that the 
operator expects no operands, and a '-' in the result position 
indicates that the operator returns no results. 

The documented effects on the operand stack and the possible 
errors are those produced directly by the operator itself. Many 
operators cause arbitrary PostScript procedures to be invoked. 
Obviously, such procedures can have arbitrary effects that are 
not mentioned in the operator description. 

16 OPERATORS 75 



Operator Summary 

Structured Output Operators 

currentobjectformat 

obj int printobject 

int setobjectformat 

file obj int writeobject 

Memory Management Operators 

key font 

any 

boo I 

int 

diet key 

key 

currentshared bool 

definefont font 

scheck bool 

sets hared 

setvmthreshold 

undef 

undefinefont 

int return binary object format 83 

write binary object to standard output file, 
using int as tag 101 

set binary object format (O=disable, 1 =IEEE 
high, 2=1ow, 3=native high, 4=1ow) 113 

write binary object to file, using int as 
tag 131 

return current VM allocation mode 84 

register a font as a font dictionary 84 

true if any is simple or in shared VM, false 
otherwise 107 

set VM allocation mode (false=private, 
true=shared 115 

set the allocation threshold for garbage 
collection 117 

remove key and its value from diet 122 

remove font definition 123 

int vmreclaim control garbage collector 129 

vmstatus level used maximum report VM status 130 

Multiple Execution Context Operators 

context 

mark obj1· •• obj" proc 

context 

lock proc 

condition 

lock condition 

condition condition 

currentcontext context 

detach 

fork context 

join mark obj1 •• obj" 

lock lock 

monitor 

notify 

quit 

wait 

yield 

create condition object 81 

re!urn current context identifier 82 

enable context to terminate immediately 
when done 87 

create context executing proc with obj1 •• 

objn as operands 92 

await context termination and return its 
results 98 

create lock object 99 

execute proc while holding lock 99 

resume contexts waiting for condition 100 

terminates the context 102 

release lock, wait for condition, reacquire 
lock 131 

suspend current context momentarily 133 

76 Extensions for the Display Postscript System I Version of January 23, 1990 



User Object Operators 

UserObjects array 

index any defineuserobject 

index execuserobject 

index undefineuserobject 

Graphics State Object Operators 

gstate currentgstate gstate 

gstate gstate 

gstate setgstate 

User Path Operators 

X1 Y1 X2 Y2 r 

llx llY urx ury 

mark blimit 

userpath 

arct 

setbbox 

setucacheparams 

uappend 

return UserObjects array in userdict 125 

associate index with any in UserObjects 
array 86 

execute index element in UserObjects 
array 88 

remove index element from UserObjects 
array 123 

read current graphics state into gstate 82 

create graphics state object 93 

set graphics state from gstate 112 

append tangent arc 81 

set bounding box for current path 109 

set user path cache parameters 116 

interpret userpath and append to current 
path 120 

ucache declare that user path is to be cached 121 

ucachestatus mark bsize bmax rsize rmax blimit 

userpath 

userpath 

boo I 

userpath 

userpath matrix 

userpath 

userpath matrix 

ueofill 

ufill 

upath userpath 

ustroke 

ustroke 

ustrokepath 

ustrokepath 

Rectangle Operators 

x y width height 

numarraylnumstring 

x y width height 

numarraylnumstring 

x y width height 

rectcllp 

rectclip 

rectfill 

rectfill 

rectstroke 

return user path cache status and 
parameters 121 

fill using even-odd rule 121 

interpret and fill userpath 122 

create userpath for current path; include 
ucache if boo/ is true 124 

interpret and stroke userpath 126 

interpret userpath, concatenate matrix, and 
stroke 126 

compute outline of stroked userpath 127 

compute outline of stroked userpath 127 

clip with rectangular path 103 

clip with rectangular paths 103 

fill rectangular path 104 

fill rectangular paths 104 

stroke rectangular path 105 

16 OPERATORS 77 



x y width height matrix 

numarrayjnumstring 

numarrayjnumstring matrix 

rectstroke 

rectstroke 

rectstroke 

Font Operators 

font matrix 

key scatejmatrix 

text numarrayjnumstring 

text numarraylnumstring 

text numarrayjnumstring 

makefont font' 

selectfont 

xshow 

xyshow 

yshow 

Halftone Definition Operators 

currenthalftone diet 

currenthalftonephase x y 

stroke rectangular path 105 

stroke rectangular paths 105 

stroke rectangular paths 105 

produces new font 99 

set font dictionary given name and 
transform 108 

print characters of text using x widths in 
numarrayjnumstring 132 

print characters of text using x and y 

widths in numarrayjnumstring 133 

print characters of text using y widths in 
numarrayjnumstring 134 

return current halftone dictionary 83 

return current halftone phase 83 

currentscreen frequency angle proc 

diet 

xy 

frequency angle proc 

num1 num2 halftone 

currentscreen 60 O halftone 

sethalftone 

sethalftonephase 

setscreen 

setscreen 

Scan Conversion Operators 

currentstrokeadjust bool 

boo I setstrokeadjust 

View Clip Operators 

x y width height 

numarrayjnumstring 

eoviewclip 

initviewclip 

rectviewclip 

rectviewclip 

viewclip 

viewclippath 

return current halftone screen 83 

return current halftone dictionary 
(sethalftone was used) 83 

set halftone dictionary 112 

set halftone phase 113 

set halftone screen 114 

set halftone screen using halftone 
dictionary 114 

return current stroke adjust 84 

set stroke adjust (fa/se=disable, 
true=enable) 116 

view clip using even-odd rule 87 

reset view clip 94 

set rectangular view clipping path 106 

set rectangular view clipping paths 106 

set view clip from current path 128 

set current path from view clip 128 

78 Extensions for the Display Postscript System I Version of January 23, 1990 



Window System Support Operators 

deviceinfo diet 

xy infill boo I 

userpath infill boo I 

xy ineofill boo I 

userpath lneoflll boo I 

x y userpath inueoflll boo I 

userpath1, userpath2 inueoflll boo I 

x y userpath inufill boo I 

userpath1 userpath2 lnufill boo I 

x y userpath inustroke boo I 

x y userpath matrix inustroke boo I 

userpath 1 userpath2 inustroke .bool 

userpath1 userpath2 matrix inustroke boo I 

wtranslation xy 

File System Operators 

string 

pattern proc scratch 

file 

string1 string2 

file int 

deletefile 

filenameforall 

fileposition int 

renamefile 

setflleposition 

return dictionary containing information 
about current device 87 

test whether point (x, y) would be painted 
by fill 94 

test whether pixels in userpath would be 
painted by fill 94 

test whether point (x, y) would be painted 
by eofill 93 

test whether pixels in userpath would be 
painted by eofill 93 

test whether point (x, y) would be painted 
by ueofill 95 

test whether pixels in userpath 1 would be 
painted by ueofill of userpath2 95 

test whether point (x, y) would be painted 
by uflll 96 

test whether pixels in userpath 1 would be 
painted by ufill of userpath2 96 

test whether point (x, y) would be painted 
by ustroke 97 

test whether point (x, y) would be painted 
by ustroke 97 

test whether pixels in userpath 1 would be 
painted by ustroke of userpath2 97 

test whether pixels in userpath 1 would be 
painted by ustroke of userpath2 97 

return translation from window origin to 
device space origin 132 

delete named file 86 

execute proc for each file name matching 
pattern 90 

return current position in file 91 

rename file string1 to string2 106 

set file to specified position 112 

string status pages bytes referenced created true 
or false return information about named file 118 

16 OPERATORS 79 



Miscellaneous Operators 

index name 

mark size lower upper 

Errors 

cleardictstack pop all nonpermanent dictionaries off dic
tionary stack 81 

currentcacheparams mark size lower upper 

defineusername 

realtime int 

setcacheparams 

usertime int 

invalidcontext 

invalid id 

return current characteristics of font 
cache 82 

define encoded name index 85 

return real time in milliseconds 102 

change characteristics of font cache 111 

return context execution time in 
milliseconds 125 

improper use of context operation 97 

invalid identifier for window-system-specific 
operator 98 

80 Extensions for the Display Postscript System I Version of January 23, 1990 



arct x1 y1 x2 y2 r arct 

appends an arc of a circle, defined by two tangent lines, to the current 
path. This operator is identical to arcto except that it does not push any 
results on the operand stack, whereas arcto pushes four numbers. That · 
is, ar:ct is equivalent to: 

arcto pop pop pop pop 

arct can be used as an element of a user path definition, whereas arcto 
is not allowed. 

ERRORS: 

limitcheck, nocurrentpoint, stackunderflow, typecheck, 
undetinedresult 

cleardictstack - cleardictstack -

pops all dictionaries off the dictionary stack except for the three per
manent entries, systemdict, shareddict, and userdict. 

ERRORS: 

(none) 

condition - condition condition 

creates a new condition object, unequal to any condition object already 
in existence, and pushes it on the operand stack. The condition initially 
has no contexts waiting on it. 

Since a condition is a composite object, creating one consumes VM. 
The condition's value is allocated either in the current context's space 
(private VM) or in shared VM according to the current VM allocation 
mode (see setshared). 

ERRORS: 

stackoverflow, VMerror 

16 OPERATORS 81 



copy gstate1 gstate2 copy gstate2 

copies the value of gstate1 to gstate2, entirely replacing gstate2's 
former value, then pushes gstate2 back on the operand stack. (The copy 
operator is thus extended to operate on gstate objects in addition to the 
types it already deals with.) 

ERRORS: 

invalidaccess, stackunderflow, typecheck 

currentcacheparams - currentcacheparams mark size lower upper 

pushes a mark object followed by the current cache parameters on the 
operand stack. The number of cache parameters returned is variable 
(see setcacheparams). 

ERRORS: 

stackoverflow 

currentcontext - currentcontext context 

returns an integer that identifies the current context. 

ERRORS: 

stackoverflow 

currentgstate gstate currentgstate gstate 

replaces the value of the gstate object by a copy of the current graphics 
state and pushes gstate back on the operand stack. 

If gstate is in shared VM (see Section 4), currentgstate will generate 
an invalidaccess error if any of the composite objects in the current 
graphics state are in private VM. Such objects might include the current 
font, screen function, halftone dictionary, transfer function, or dash 
pattern. In general, allocating gstate objects in shared VM is risky and 
should be avoided. 

ERRORS: 

invalidaccess, stackunderflow, typecheck 

82 Extensions for the Display Postscript System I Version of January 23, 1990 



currenthalftone - currenthalftone halftone 

If the current halftone was defined by sethalftone or by setscreen 
using a halftone dictionary, currenthalftone returns the current 
halftone dictionary in the graphics state. 

If the current halftone was defined by setscreen using a spot function, 
currenthalftone returns a null object. 

ERRORS: 

stackoverflow 

currenthalftonephase - currenthalftonephase x y 

returns the current values of the halftone phase parameters in the 
graphics state. If sethalftonephase has not been executed, zero is 
returned for both values. 

ERRORS: 

stackoverflow 

currentobjectformat - currentobjectformat int 

returns the current object format parameter (see setobjectformat). 

ERRORS: 

stackoverflow 

currentscreen - currentscreen frequency angle proc 
- currentscreen 60 O halftone 

returns the current halftone screen parameters (frequency, angle, and 
proc) in the graphics state if the current halftone screen was established 
by setscreen. If sethalftone was executed, currentscreen returns a 
frequency of 60, an angle of 0, and the halftone dictionary. (See Sec
tion 11.) 

ERRORS: 

stackoverflow 

16 OPERATORS 83 



currentshared - currentshared bool 

returns the current value of the VM allocation mode (see setshared). 

ERRORS: 

stackoverflow 

currentstrokeadjust - currentstrokeadjust bool 

returns the current stroke adjust parameter in the graphics state. 

ERRORS: 

stackoverflow 

definefont key font definefont font 

has its normal effects on FontDirectory and on the font machinery, as 
documented in the PostScript Language Reference Manual. 

Note that FontDirectory normally refers to the font directory in private 
VM; detinefont operates only on that directory and not on 
SharedFontDirectory. However, when shared VM allocation mode is 
in effect, the name FontDirectory refers to the font directory in shared 
VM; definefont operates on it. In the latter case, the value of font must 
itself be allocated in shared VM. 

ERRORS: 

dictfull, invalidaccess, invalidfont, stackunderflow, typecheck 

84 Extensions for the Display Postscript System / Version of January 23, 1990 



defineusername index name defineusername -

establishes an association bt'?tween the non-negative integer index and 
the name object name in the user name table. Subsequently, the scanner 
will substitute name when it encounters any binary encoded name 
token or object that refers to the specified user name index. (Since 
binary encoded names specify their own literal or executable attributes, 
it does not matter whether name is literal or executable.) 

The user name table is an adjunct to the current context's private VM 
or space (see Section 5). The effect of adding an entry to the table is 
immediately visible to all contexts that share the same space. Additions 
to the table are not affected by save and restore; the association be
tween index and name persists for the remaining lifetime of the space. 

The specified index must previously be unused in the name table or 
must already be associated with the same name; changing an existing 
association is not permitted (an invalidaccess error will occur). There 
may be an implementation limit on index values; assigning index 
values sequentially starting at zero is strongly recommended. 

ERRORS: 
invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck 

16 OPERATORS 85 



defineuserobject index any defineuserobject -

establishes an association between the non-negative integer index and 
the object any in the UserObjects array. First, it creates a UserObjects 
array in userdict if one is not already present; it extends an existing 
UserObjects array if necessary. It then executes: 

userdict /UserObjects get 
3 -1 roll put 

In other words, it simply stores any into the array at the position 
specified by index. 

If detineuserobject creates or extends the UserObjects array, it al
locates the array in private VM regardless of the current VM allocation 
mode. (See Section 6.) 

The behavior of defineuserobject obeys normal Postscript language 
semantics in all respects. In particular, the modification to the 
UserObjects array (and to userdict, if any) is immediately visible to 
all contexts that share the same space. It can be undone by a subsequent 
restore according to the usual VM rules. index values must be within 
the range permitted for arrays; a large index value may cause allocation 
of an array that would exhaust VM resources. Assigning index values 
sequentially starting at zero is strongly recommended. 

ERRORS: 

limitcheck, rangecheck, stackundertlow, typecheck, VMerror 

deletefile filename deletefile -

removes the specified file from the device. If no such file exists, an 
undefinedtilename error occurs. If this operation is not allowed by the 
device, an invalidtileaccess error occurs. If an environment dependent 
error is detected, an ioerror occurs. 

ERRORS: 

invalidtileaccess, ioerror, stackundertlow, typecheck, 
undefinedtilename 

86 Extensions for the Display Postscript System I Version of January 23, 1990 



detach context detach -

specifies that the context identified by the integer context is to ter
minate immediately when it finishes executing its top-level procedure 
proc, whereas ordinarily it would wait for a join. (If the context is 
already waiting for a join, detach causes it to terminate immediately.) 

detach executes an invalidcontext error if context is not a valid con
text identifier or if the context has already been joined or detached. It is 
permissible for context to identify the current context. 

ERRORS: 

invalidcontext, stackunderflow, typecheck 

deviceinfo - deviceinfo diet 

returns a read-only dictionary containing static information about the 
current device. The composition of this dictionary varies according to 
the properties of the device; typical entries are given in the table in 
section 14. 

The use of deviceinfo after a setcachedeviceoperation within the scope 
of a Build Char procedure is not permitted (an undefined. error 
results). 

ERRORS: 

stackoverflow 

eoviewclip - eoviewclip 

is similar to viewclip except that it uses the even-odd rule to determine 
the inside of the current path. 

ERRORS: 

limitcheck 

16 OPERATORS 87 



execuserobject index execuserobject -

executes the object associated with the non-negative integer index in 
the UserObjects array. execuserobject is equivalent to: 

userdict /UserObjects get 
exch get exec 

execuserobject's semantics are similar to those of exec or other ex
plicit execution operators. That is, if the object is executable, it is 
executed; otherwise, it is pushed on the operand stack. See Section 3.6 
of the PostScript Language Reference Manual. 

If UserObjects is not defined in userdict (because detineuserobject 
has never been executed), an undefined error occurs. If index is not a 
valid index for the existing UserObjects array, a rangecheck error 
occurs. If index is a valid index but detineuserobject has not been 
executed previously for that index, a null object is returned. (See Sec
tion 6.) 

ERRORS: 

invalidaccess, rangecheck, stackunderflow, typecheck, undefined 

88 Extensions for the Display Postscript System I Version of January 23, 1990 



file filename access file file 

creates a file object for the file identified by filename, accessing it as 
specified by access. The interpretation of the two string operands is 
described in Section 15. See the PostScript Language Reference 
Manual for a description of file objects in general and the tile operator 
in particular. 

Once opened, the file object remains valid until closed or invalidated. It 
can be closed explicitly by closetile or implicitly by reading to end of 
file. It can be invalidated by a restore, by garbage collection, or by 
termination of the current context. 

The lifetime of a file object is based on the VM allocation mode in 
effect at the time the tile operator is executed. A restore can destroy a 
file object in private VM but not one in shared VM. 

If the specified filename is malformed or if the file doesn't exist and 
access does not permit creating a new file, tile executes an 
undefinedtilename error. If access is malformed or the requested ac
cess is not permitted by the device, an invalidfileaccess error occurs. If 
the number of files opened by the current context exceeds an im
plementation limit, a limitcheck error occurs. If an environment de
pendent error is detected, an ioerror occurs. 

ERRORS: 

invalidfileaccess, ioerror, limitcheck, stackunderflow, typecheck, 
undefinedtilename 

16 OPERATORS 89 



filenameforall pattern proc scratch filenameforall -

enumerates all files whose names match the specified pattern string. 
For each matching file, filenameforall copies .. the file's name into the 
supplied scratch string, pushes a string object designating the substring 
of scratch actually used, and calls proc. tilenameforall does not return 
any results of its own, but proc may do so. 

The details of pattern matching are device dependent, but the following 
convention is typical. All characters in the pattern are treated literally 
(and are case sensitive), except the following special characters: 

* matches zero or more consecutive characters. 
? matches exactly one character. 

causes the next character of the pattern to be treated 
literally, even if it is '*', '?',or '\'. 

If pattern does not begin with '% ', it is matched against device relative 
file names of all devices in the search order (see the description above). 
When a match occurs, the file name passed to proc is likewise device 
relative, i.e., it does not have a '%device% ' prefix. 

If pattern does begin with '% ', it is matched against complete file 
names in the form '%device%file'; pattern matching can be performed 
on the device, the file, or both parts of the name. When a match occurs, 
the file name passed to proc is likewise in the complete form 
'%device%file'. 

The order of enumeration is unspecified and device dependent. There 
are no restrictions on what proc can do. However, if proc causes new 
files to be created, it is unspecified whether or not those files will be 
encountered later in the same enumeration. Likewise, the set of file 
names considered for pattern matching is device dependent. For ex
ample, the 'font' device might consider all font names whereas the 'os' 
general file system device might consider only names in the current 
working directory. 

ERRORS: 

ioerror, rangecheck, stackoverflow, stackunderflow, typecheck 

90 Extensions for the Display Postscript System I Version of January 23, 1990 



fileposition file fileposition position 

returns the current position in an existing open file. The result is a 
non-negative integer interpreted as number of bytes from the beginning 
of the file. If the file object is not valid or the underlying file is not 
positionable, an ioerror occurs. 

ERRORS: 

ioerror, stackunderflow, typecheck, undefined filename 

findfont key findfont font 

obtains a font dictionary, as documented in the Postscript Language 
Reference Manual. It looks for key first in FontDirectory, then in 
SharedFontDirectory; thus, fonts defined in private VM take 
precedence over ones defined in shared VM. Only if key is not present 
in either dictionary does tindfont perform its environment dependent 
action to locate the font elsewhere. 

Note that when shared VM allocation mode is in effect, the name 
FontDirectory refers to the font directory in shared VM. In this situa
tion, tindfont looks for key only in the shared font directory. Addition
ally, any action that tindfont takes to obtain a font definition from the 
external environment must cause that definition to be created in shared 
VM. 

In the Display Postscript system, when the font being sought is not 
already present in FontDirectory or SharedFontDirectory, tindfont 
attempts to obtain a font definition from the execution environment. If 
this succeeds, the font is loaded into shared VM and defined in 
SharedFontDirectory, regardless of the current VM allocation mode. 
This portion of tindfont is approximately equivalent to: 

cu rrentshared 
true setshared 
(%font%name) run 
sets hared 

% load font into shared VM 
% restore old shared mode 

where name is the text of the requested font name (without leading '/'). 
Since the font definition is shared, it is immediately visible to all con
texts and it persists until explicitly removed by undetinefont. 

ERRORS: 

invalidfont, stackoverflow, typecheck 

16 OPERATORS 91 



fork mark obj 1 .•. objn proc fork context 

creates a new context using the same space (private VM) as the current 
context. The new context begins execution concurrent with continued 
execution of the current context; which context executes first is unpre
dictable. 

The new context's environment is formed by copying the dictionary 
and graphics state stacks of the current context. The initial operand 
stack consists of obj1 through objn, pushed in the same order (obit 
through objn are objects of any type other than mark). fork consumes 
all operands down to and including the topmost mark. It then pushes an 
integer that uniquely identifies the new context. The forked context 
inherits its object format from the current context; all other miscel
laneous state variables for the context (see Section 5) are initialized to 
default values. 

When the new context begins execution, it executes the procedure proc. 
If proc runs to completion and returns, the context ordinarily will 
suspend until some other context executes a join on context; however, 
if the context has been detached, it will terminate immediately (see join 
and detach). 

If proc executes a stop that causes the execution of proc to end prema
turely, the context will terminate immediately. proc is effectively called 
as follows: 

proc stopped {handleerror quit} if 
% wait for join or detach 
quit 

In other words, if proc stops due to an error, the context invokes the 
error handler in the usual way to report the error; then it terminates, 
regardless of whether or not it has been detached. 

It is illegal to execute fork if there has been any previous save not yet 
matched by a restore; attempting to do so will cause an invalidcontext 
error. 

ERRORS: 

invalidaccess, invalidcontext, limitcheck, stackunderflow, 
typecheck, unmatchedmark 

92 Extensions for the Display Postscript System I Version of January 23, 1990 



gstate - gstate gstate 

creates a new graphics state object and pushes it on the operand stack. 
Its initial value is a copy of the current graphics state. 

This operator consumes VM; it is the only graphics state operator that 
does so. The gstate is allocated in either private or shared VM accord
ing to the current VM allocation mode (see Section 4). Allocating a 
gstate in shared VM is risky, for reasons described under 
currentgstate. 

ERRORS: 

invalidaccess, stackovertlow, VMerror 

ineofill x y ineofill bool 
userpath ineofill bool 

is similar to infill, but its 'insideness' test is based on eotill instead of 
till. 

ERRORS: 

stackunderflow, typecheck 

16 OPERATORS 93 



infill x y infill bool 
userpath infill bool 

The first form returns true if the device pixel containing the point (x, y) 
in user space would be painted by a fill of the current path in the 
graphics state; otherwise, it returns false. 

In the second form, the device pixels that would be painted by filling 
the userpath become an 'aperture.' This form of the operator returns 
true if any of the pixels in the aperture would be painted by a fill of the 
current path in the graphics state; otherwise, it returns false. 

Both forms of this operator ignore the current clipping path and current 
view clip; that is, they detect a 'hit' anywhere within the current path, 
even if filling that path would not mark the current page due to clip
ping. They do not actually place any marks on the current page, nor do 
they disturb the current path. The following program fragment takes the 
current clipping path into account: 

gsave clippath x y infill grestore 
x y infill and 

ERRORS: 

stackunderflow, typecheck 

initviewclip - initviewclip -

replaces the current view clipping path by one that encloses the entire 
imageable area of the output device. (It can enclose a larger area than 
that; the actual size and shape of the initial view clip is device 
dependent.) 

ERRORS: {none) 

94 Extensions for the Display Postscript System I Version of January 23, 1990 



instroke x y instroke bool 
userpath instroke bool 

returns true if the device pixel containing the point (x, y) in user space 
would be painted by a stroke of the current path in the graphics state; 
otherwise, it returns false. It does not actually place any marks on the 
current page, nor does it disturb the current path. 

In the second form of the operator, the device pixels that would be 
painted by filling the userpath become an 'aperture.' instroke returns 
true if any of the pixels in the aperture would be painted by a stroke of 
the current path in the graphics state; otherwise, it returns false. It does 
not actually place any marks on the current page, not does it disturb the 
current path. 

As with infill, this operator ignores the current clip path and current 
view clip; that is, it detects a 'hit' on any pixel that lies beneath a stroke 
drawn along the current path, even if stroking that path would not mark 
the current page due to clipping. 

The shape against which the point (x, y) or the aperture, userpath, is 
tested is computed according to the current stroke-related parameters in 
the graphics state: line width, line cap, line join, miter limit, and dash 
pattern. It is also affected by the stroke adjust parameter (see Section 
12). If the current line width is zero, the set of pixels considered to be 
part of the stroke is device dependent. 

ERRORS: 

stackunderflow, typecheck 

inueofill x y userpath inueofill bool 
userpath1 userpath2 inueofill bool 

is similar to inuflll, but its 'insideness' test is based on ueotill instead 
of utill. 

ERRORS: 

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck 

16 OPERATORS 95 



inufill x y userpath inufill bool 
userpath1 userpath2 inufill bool 

returns true if the device pixel containing the point (x, y) in user space 
would be painted by a ufill of the specified userpath (see Section 8); 
otherwise, it returns false. 

In the second form, the device pixels that would be painted by filling 
userpath 1 become an 'aperture.' inufill returns true if any of the pixels 
in the aperture would be painted by a ufill of userpath2; otherwise, it 
returns false. 

This operator does not actually place any marks on the current page, 
nor does it disturb the current path in the graphics state. Except for the 
manner in which the path is specified, inufill behaves the same as 
infill. 

By itself, this operator is seemingly a trivial composition of several 
other operators: 

gsave 
newpath uappend 
infill 
grestore 

However, when used in conjunction with ucache, it can access the user 
path cache, potentially resulting in improved performance. 

ERRORS: 

invalidaccess, lirnitcheck, rangecheck, stackunderflow, typecheck 

96 Extensions for the Display Postscript System I Version of January 23, 1990 



inustroke x y userpath inustroke bool 
x y userpath matrix inustroke bool 

userpath1 userpath2 inustroke bool 
userpath1 userpath2 matrix inustroke bool 

returns true if the device pixel containing the point (x, y) in user space 
would be painted by a ustroke applied to the same operands (see Sec
tion 8); otherwise it returns false. 

In the second form, inustroke concatenates matrix to the CTM before 
executing ustroke (see ustroke operator). 

In the third and fourth forms, the device pixels that would be painted by 
filling userpath1 become an 'aperture.' inustroke returns true if any of 
the pixels in the aperture would be painted by a ustroke of userpath2; 

otherwise it returns false. 

This operator does not actually place ·any marks on the current page, 
nor does it disturb the current path in the graphics state. Except for the 
manner in which the path is specified, inustroke behaves the same as 
instroke. 

As with inutill, if userpath is already present in the user path cache, 
inustroke can take advantage of the cached information to optimize 
execution. 

ERRORS: 

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck 

lnvalldcontext (error) 

indicates that an invalid use of the context synchronization facilities has 
been detected. Possible causes include: 

• presenting an invalid context identifier to join or detach; 

• executing monitor on a lock already held by the current context; 

• executing wait on a lock not held by the current context; 

• executing any of several synchronization operators when an un-
matched save is pending if the result would be a deadlock. 

The Postscript interpreter detects only the simplest types of deadlock. 
It is possible to encounter deadlocks for which no invalidcontext error 
is generated. 

16 OPERATORS 97 



invalidid (error) 

indicates that an invalid identifier has been presented to a window
system-specific operator. In each integration of the Display Postscript 
system with a window system, there exists a collection of window
system-specific operators. The operands of such operators are usually 
integers that identify windows and other objects that exist outside the 
Postscript language. This error occurs when the operand does not iden
tify a valid object. It is generated only by window-system-specific 
operators and not by any standard operator. 

join context join mark obj 1 ... objn 

waits for the context identified by the integer context to finish execut
ing its top-level procedure proc. It then pushes a mark followed by the 
entire contents of that context's operand stack onto the current 
context's operand stack. Finally, it causes the other context to ter
minate. 

The objects obj1 through objn are those left on the operand stack by the 
context that is terminating. Ordinarily there should not be a mark 
among those objects, since its presence might cause confusion in the 
context that executes join. 

If context is not a valid context identifier, perhaps because the context 
has terminated prematurely due to an error, join executes an 
invalidcontext error. This also occurs if the context has already been 
joined or detached, if context identifies the current context, or if the 
context does not share the current context's space. 

It is illegal to execute join if there has been any previous save not yet 
matched by restore; attempting to do so will cause an invalidcontext 
error. 

ERRORS: 

invalidcontext, stackunderflow, stackoverflow, typecheck 

98 Extensions for the Display Postscript System I Version of January 23, 1990 



lock - lock lock 

creates a new lock object, unequal to any lock object already in exist
ence, and pushes it on the operand stack. The state of the lock is 
initially free. 

Since a lock is a composite object, creating one consumes VM. The 
lock's value is allocated either in the current context's space (private 
VM) or in shared VM according to the current VM allocation mode 
(see setshared). 

ERRORS: 

stackovertlow, VMerror 

makefont font matrix makefont font' 

applies matrix to font producing a new font' whose characters are trans
formed by matrix when they are printed as described in the PostScript 
Language Reference Manual. The makefont, scalefont, and selectfont 
operators produce a font dictionary derived from an original font dic
tionary but with the FontMatrix entry altered. The derived font dic
tionary is allocated in private or shared VM according to whether the 
original font dictionary is in private or shared VM; this is independent 
of the current VM allocation mode. 

ERRORS: 

stackunderflow, typecheck, VMerror 

monitor lock proc monitor -

acquires lock, first waiting if necessary for it to become free, then 
executes proc, and finally releases lock again. The release of lock oc
curs whether proc runs to completion or terminates prematurely for any 
reason. 

If lock is already held by the current context, monitor executes an 
invalidcontext error without disturbing the lock. If the current context 
has previously executed a save not yet matched by a restore and lock is 
already held by another context sharing the same space as the current 
context, an invalidcontext error results. These restrictions prevent the 
most straightforward cases of a context deadlocking with itself. 

ERRORS: 

invalidcontext, stackunderflow, typecheck 

16 OPERATORS 99 



' I 

notify condition notify -

resumes execution of all contexts (if any) that are suspended in a wait 
for condition. 

Ordinarily, notify should be invoked only within the execution of a 
monitor that references the same lock used in the wait for condition. 
This ensures that notifications cannot be lost due to a race between a 
context executing notify and one executing wait. However, this recom
mendation is not enforced by the language. 

ERRORS: 

stackunderftow, typecheck 

1 00 Extensions for the Display Postscript System I Version of January 23, 1990 



printobject obj tag printobject -

writes a binary object sequence to the standard output file. The binary 
object sequence contains a top-level array whose length is one; its 
single element is an encoding of obj. If obj is composite, the binary 
object sequence also includes subsidiary array and string values for the 
components of obj. 

The tag operand, which must be an integer in the range 0 to 255, is 
used to tag the top-level object; it is used as the second character of the 
object's representation. As discussed in Section 3, tag values 0 through 
249 are available for general use; tag values 250 through 255 are 
reserved for special purposes such as reporting errors. 

The binary object sequence uses the number representation established 
by the most recent execution of setobjectformat. The token type given 
as the first character of the binary object sequence reflects the number 
representation that was used. If the object format parameter has been 
set to zero, printobject executes an undefined error. 

The object obj and its components must be of type null, integer, real, 
name, boolean, string, array, or mark (see Section 2); appearance of an 
object of any other type (including packed array) will result in a 
typecheck error. 

printobject always encodes a name object as a reference to a text name 
in the string value portion of the binary object sequence, never as a 
system or user name index. 

As is the case for all operators that write to files, the output produced 
by printobject may accumulate in a buffer instead of being transmitted 
immediately. To ensure immediate transmission, a flush is required. 
This is particularly important in situations where the output produced 
by printobject is the response to a query from the application. 

ERRORS: 

invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow, 
typecheck, undefined 

16 OPERATORS 101 



quit - quit -

causes termination of the execution context that issued the quit 
operator. A snaphot VM file is not produced, even on computers with 
operating systems and file systems. (This differs from the description in 
the PostScript Language Reference Manual, where the quit operator 
terminates the Postscript interpreter.) 

Instead of waiting for the join operator to be executed, the context 
terminates immediately as if the detach operator had been executed. 
Any context attempting to join a context that has executed quit will 
receive an invalidcontext error. 

ERRORS: 

(none) 

realtime - realtime int 

returns the value of a clock that counts in real time, independent of the 
execution of the Postscript interpreter. The clock's starting value is 
arbitrary; it has no defined meaning in terms of calendar time. The unit 
of time represented by the realtime value is one millisecond; however, 
the rate at which it actually changes is implementation dependent. 

ERRORS: 

stackoverflow 

1 02 Extensions for the Display Postscript System I Version of January 23, 1990 



rectclip x y width height rectclip -
numarray rectclip -
numstring rectclip -

intersects the inside of the current clipping path with a path described 
by the operands. In the first form, the operands are four numbers that 
describe a single rectangle. In the other two forms, the operand is an 
array or an encoded number string that describes an arbitrary number of 
rectangles. After computing the new clipping path, rectclip resets the 
current path to empty, as if by newpath. 

In the first form, assuming width and height are positive, rectclip is 
equivalent to: 

newpath 
x y moveto 
width O rlineto 
O height rlineto 
width neg O rlineto 
close path 
clip 
newpath 

Note that if the second or third form is used to specify multiple rec
tangles, the rectangles are treated together as a single path and used for 
a single .clip operation. Thus, the 'inside' of this combined path is the 
union of all the rectangular subpaths, since the paths are all drawn in 
the same direction and the non-zero winding number rule is used. 

ERRORS: 

limitcheck, stackunderflow, typecheck 

16 OPERATORS 103 



rectfill x y width height rectfill -
numarray rectfill -
numstring rectfill -

fills a path consisting of one or more rectangles described by the 
operands. In the first form, the operands are four numbers that describe 
a single rectangle. In the other two forms, the operand is an array or an 
encoded number string that describes an arbitrary number of rectangles. 
recttill neither reads nor alters the current path in the graphics state. 

In the first form, assuming width and height are positive, rectfill is 
equivalent to: 

gsave 
new path 
x y moveto 
width 0 rlineto 
O height rlineto 
width neg O rlineto 
close path 
fill 
grestore 

ERRORS: 

stackunderOow, typecheck 

1 04 Extensions for the Display Postscript System I Version of January 23, 1990 



rectstroke x y width height rectstroke -
x y width height matrix rectstroke -

numarray rectstroke -
numarray matrix rectstroke -

numstring rectstroke -
numstring matrix rectstroke -

strokes a path consisting of one or more rectangles described by the 
operands. In the first two forms, the operands are four numbers that 
describe a single rectangle. In the remaining forms, the operand is an 
array or an encoded number string that describes an arbitrary number of 
rectangles. In any event, if the matrix operand is present, rectstroke 
appends it to the CTM before stroking the path. Thus the matrix applies 
to the line width and dash pattern (if any), but not to the path itself. 
rectstroke neither reads nor alters the current path in the graphics state. 

The following example of rectstroke, using x y width height and 
matrix, is equivalent to: 

gs ave 
newpath 
x y moveto 
width 0 rlineto 
O height rlineto 
width neg O rlineto 
close path 
matrix concat 
stroke 
grestore 

ERRORS: 

% only if matrix operand is present 

limitcheck, stackunderflow, typecheck 

16 OPERATORS 105 



rectviewclip x y width height rectviewclip -
numarray rectviewclip -
numstring rectviewclip -

replaces the current view clip by a rectangular path described by the 
operands (see Section 9). In the first form, the operands are four num
bers that describe a single rectangle. In the other two forms, the 
operand is an array or an encoded number string that describes an 
arbitrary number of rectangles. After computing the new view clipping 
path, rectviewclip resets the current path to empty, as if by newpath. 

Except for the manner in which the path is defined, rectviewclip be
haves the same as viewclip. 

Note that if the second or third form is used to specify multiple rec
tangles, the rectangles are treated together as a single path and used for 
a single viewclip operation. Thus, the 'inside' of this combined path is 
the union of all the rectangular subpaths, since the paths are all drawn 
in the same direction and the non-zero winding number rule is used. 

ERRORS: 

stackunderflow, typecheck 

renamefile . old new renamefile -

changes the name of a file from old to new, where old and new are 
strings that specify file names on the same device. If a file named old 
does not exist, an undetinedtilename error occurs. If a renaming 
operation is not allowed by the device, an invalidtileaccess error oc
curs. If an environment dependent error is detected, an ioerror occurs. 
Whether or not an error occurs if a file named new already exists is 
environment dependent. 

ERRORS: 

invalidfileaccess, ioerror, stackunderflow, typecheck, 
undetinedtilename 

1 06 Extensions for the Display Postscript System I Version of January 23, 1990 



scheck any scheck bool 

returns true if the operand is simple or if its value is located in shared 
VM, false otherwise. In other words, scheck returns true if one could 
legally store its operand as an element of a shared object. 

ERRORS: 
stackunderflow 

16 OPERATORS 107 



selectfont key scale selectfont -
key matrix selectfont -

obtains a font whose name is key, transforms it according to scale or 
matrix, and establishes it as the current font dictionary in the graphics 
state. selectfont is equivalent to one of the following, according to 
whether the second operand is a number or a matrix: 

exch findfont exch scalefont setfont 
exch findfont exch makefont setfont 

If key is present in FontDirectory, selectfont obtains the font diction
ary directly and does not call the findfont procedure. However, if key is 

· not present, selectfont invokes findfont in the normal way. In the latter 
case, it actually executes the name object 'findfont', so it uses the cur
rent definition of that name in the context of the dictionary stack. (On 
the other hand, redefining exch, scalefont, makefont, or setfont would 
not alter the behavior of selectfont.) 

In the Display PostScript system, fonts can be defined in either 
FontDirectory or SharedFontDirectory (see Section 4). selectfont 
looks in both of those places before calling tindfont. 

selectfont can give rise to any of the errors possible for the component 
operations, including arbitrary errors from a user-defined tindfont pro
cedure. 

EXAMPLE: 

/Helvetica 1 O selectfont 
/Helvetica findfont 1 O scalefont setfont 

The two lines of the example have the same effect, but the first one is 
almost always more efficient. 

In a program represented using the binary token or binary object se
quence encoding (see Section 2), it may be advantageous to predefine 
key in the user name table so that it can be referenced by a user name 
index instead of a name string. 

ERRORS: 

invalidfont, rangecheck, stackunderflow, typecheck 

1 08 Extensions for the Display Postscript System I Version of January 23, 1990 



setbbox llx llY urx ury setbbox -

establishes an explicit bounding box for the current path. The bounding 
box established by setbbox is the smallest rectangle that contains both 
the existing bounding box, if any, and the bounding box requested by 
the setbbox arguments. These arguments define a rectangle expressed 
as two pairs of coordinates in user space, oriented with the user-space 
coordinate-system axes: ·ux and lly specify the lower left corner; urx and 
ury specify the upper right corner. The upper right coordinate values 
must be greater than or equal to the lower left values; otherwise a 
rangecheck error will occur. 

The coordinates of all subsequent path construction operators must fall 
within the resulting bounding box. This bounding box remains in effect 
for the lifetime of the current path - that is, until the next newpath or 
operator that resets the path implicitly, such as stroke, is executed -
or until it is enlarged by a subsequent setbbox. 

Once setbbox is executed, an attempt to append a path element with a 
coordinate lying outside the bounding box will give rise to a 
rangecheck error.21 Bounds checking applies only to the path itself, 
not to the result of rendering the path. For example, stroking the path 
may place marks outside the bounding box; this does not cause an 
error. 

Although the setbbox operator can be used when defining any path, its 
main use is in the definition of a user path, where it is mandatory. That 
is, a user path passed to one of the user-path-rendering operators, such 
as utill, must begin with a setbbox (optionally preceded by a ucache). 
The information passed to setbbox enables the user-path-rendering 
operator to optimize execution. The user path may contain only one 
setbbox. However, multiple executions of uappend during the con
struction of a current path will result in multiple executions of the 
setbbox operator. In this case, each execution of setbbox has the 
potential to enlarge the bounding box. 

When a path is constructed without an explicit setbbox request, an 
implicit bounding box for the path is maintained dynamically. Each 
path construction operator (moveto, lineto, curveto, and so on) en
larges the bounding box as necessary to enclose the elements being 
appended to the path. In this case the rangecheck error is not raised 
because the implicit bounding box is automatically adjusted to accom
modate the growing path. If setbbox is executed when such a path 
21Note that arcs are converted to sequences of curveto operations. The coordi
nates computed as control points for those curvetos must also fall within the 
bounding box. Effectively, this means that the figure of the arc must be entirely 
enclosed by the bounding box. 

16 OPERATORS 109 



exists, the resulting bounding box is enlarged if necessary to enclose 
the implicit bounding box of the path. 
If a bounding box has been established by setbbox, execution of 
pathbbox returns a result derived from that bounding box instead of 
from the implicit bounding box of the path. 

ERRORS: 

rangecheck, stackunderflow, typecheck 

110 Extensions for the Display Postscript System I Version of January 23, 1990 



setcacheparams mark size lower upper setcacheparams -

sets cache parameters as specified by the integer objects above the 
topmost mark on the stack, then removes all operands and the mark 
object as if by cleartomark. 

The number of cache parameters is variable. 22 If more operands are 
supplied to setcacheparams than are needed, the topmost ones are 
used and the remainder ignored; if fewer are supplied than are needed, 
setcacheparams implicitly inserts default values between the mark and 
the first supplied operand. 

The upper operand specifies the maximum number of bytes that may 
be occupied by the pixel array of a single cached character, as deter
mined from the information presented by the setcachedevice operator. 
This is the same parameter as is set by setcachelimit; see the descrip
tion of that operator in the PostScript Language Reference Manual. 

The lower operand specifies the threshold at which characters may be 
stored in compressed form rather than as full pixel arrays. If a 
character's pixel array requires more than lower bytes to represent, it 
may be compressed in the cache and reconstituted from the compressed 
representation each time it is needed. Some devices do not support 
compression of characters. 

Setting lower to zero forces all characters to be compressed, permitting 
more characters to be stored in the cache but increasing the work re
quired to print them. Setting lower to a value greater than or equal to 
upper disables compression altogether. 

The size operand specifies the new size of the font cache in bytes (the 
bsize value returned by cachestatus). If size is not specified, the font 
cache size is unchanged. If size lies outside the range of font cache 
sizes permitted by the implementation, the nearest permissible size is 
substituted, with no error indication. Reducing the font cache size can 
cause some existing cached characters to be discarded, increasing ex
ecution time when those characters are next shown. 

ERRORS: 
limitcheck, rangecheck, typecheck, unmatchedmark 

22In future versions of the Postscript interpreter there may be more than three 
cache parameters defined. 

16 OPERATORS 111 



setfileposition file position setfileposition -

repositions an existing open file to a new position, such that the next 
read or write operation will commence at that position. The position 
operand is a non-negative integer interpreted as number of bytes from 
the beginning of the file. For an output file, settileposition first per
forms an implicit nushtile. 

The result of positioning beyond the existing end of file depends on the 
behavior of the underlying file system. 

Possible causes of an ioerror are: the file object is not valid; the under
lying file is not positionable; the specified position is invalid for the 
file; a device dependent error condition is detected. 

ERRORS: 

ioerror, stackunderflow, typecheck, undefinedtilename 

setgstate gstate setgstate -

replaces the current graphics state by the value of the gstate object. 
This is a copying operation, so subsequent modifications to the value of 
gstate will not affect the current graphics state or vice versa. Note that 
this is a wholesale replacement of all components of the graphics state; 
in particular, the current clipping path is replaced by the value in gstate, 
not intersected with it. 

ERRORS: 

invalidaccess, stackunderflow, typecheck, undefined 

sethalftone halftone sethalftone -

establishes halftone as the current halftone dictionary in the graphics 
state. This must be a dictionary constructed according to the rules in 
Section 11. If halftone is a null object instead of a dictionary, 
sethalftone substitutes the default halftone definition for the current 
device (however it was defined). If the halftone dictionary's 
HalftoneType value is out of bounds or is not supported by the 
Postscript interpreter, a rangecheck error occurs. If a required entry is 
missing or its value is of the wrong type, a typecheck error occurs. If 
the Frequency entry in the halftone dictionary is less than or equal to 
zero, an undetinedresult error occurs. 

ERRORS: 

limitcheck, rangecheck, stackunderflow, typecheck, 
undetinedresult 

112 Extensions for the Display Postscript System I Version of January 23, 1990 



sethalftonephase x y sethalftonephase -

sets the current halftone phase parameters in the graphics state. x and y 
are integers specifying the new halftone phase, interpreted in device 
space. 

ERRORS: 

stackunderflow, typecheck 

setobjectformat int setobjectformat -

establishes the number representation to be used in object sequences 
written by subsequent execution of printobject and writeobject. Out
put produced by those operators will have a token type that identifies 
the representation used. The int operand is one of the following (see 
Section 2): 

0 disable binary encodings (see below) 
1 high-order byte first; IEEE standard real format 
2 low-order byte first; IEEE standard real format 
3 high-order byte first; native real format 
4 low-order byte first; native real format 

Note that any of the latter four values specifies the number represen
tation only for output. Incoming binary encoded numbers use a repre
sentation that is specified as part of each token (in the initial token type 
character). 

The value 0 disables all binary encodings for both input and output. 
That is, the PostScript language scanner treats all incoming characters 
as part of the ASCII encoding, even if a token starts with a character 
code in the range 128 to 159. The printobject and writeobject 
operators are disabled; executing them will cause an undefined error. 
This mode is provided for compatibility with certain existing PostScript 
language programs. 

Each Postscript execution context has its own object format parameter; 
modifications to this parameter obey the normal save/restore dis
cipline. When a context is created by fork, the new context inherits its 
object format from the current context. For other contexts, the initial 
value of of the object format parameter is implementation dependent; 
the program must execute setobjectformat in order to generate output 
with a predictable number representation. 

ERRORS: 

rangecheck, stackunderflow, typecheck 

16 OPERATORS 113 



setscreen frequency angle proc setscreen -
num1 num2 halftone setscreen -

sets the current halftone screen definition in the graphics state, as 
described in the PostScript Language Reference Manual. 

For compatibility with existing applications, setscreen has been ex
tended to take a halftone dictionary instead of the proc defining the 
spot function (see Section 11). In this case, the num1 and num2 
operands are ignored. 

ERRORS: 

limitcheck, rangecheck, stackunderflow, typecheck 

114 Extensions for the Display Postscript System I Version of January 23, 1990 



setshared bool setshared -

changes the VM allocation mode. The value false denotes private VM 
allocation; true denotes shared VM allocation. 

In the normal private VM allocation mode, the values of new com
posite objects are allocated in the execution context's private VM. This 
applies both to objects created implicitly by the scanner and ones 
created explicitly by Postscript operators. Private objects cannot be 
stored as components of shared objects. 

In shared VM allocation mode, the values of new composite objects are 
allocated in shared VM. Such objects may be stored as components of 
other shared objects (e.g., shareddict, SharedFontDirectory), thereby 
becoming visible to all contexts. 

Creation and modification of shared objects is unaffected by the 
save/restore facility, whose actions are confined to the private VM of 
the context that executes them. Note that this selective disabling of 
save/restore semantics is based on where each object's value is lo
cated; it has nothing to do with the VM allocation mode in effect at the 
time of the save or the restore. 

While shared VM allocation mode is in effect, the name 
FontDirectory refers to the value of SharedFontDirectory, located in 
shared VM, instead of to the normal private font directory. This affects 
the behavior of the detinefont and undetinefont operators and the 
tindfont procedure. 

The standard error handlers in errordict execute 'false sets hared', thus 
reverting to private allocation mode if an error occurs. 

ERRORS: 
stackunderflow, typecheck 

16 OPERATORS 115 



setstrokeadjust bool setstrokeadjust -

sets the stroke adjust parameter in the current graphics state to boo/. If 
boo! is true, automatic stroke adjustment will be performed during 
subsequent execution of stroke and related operators (including 
strokepath; see Section 12). If boo! is false, stroke adjustment will not 
be performed. 

The initial value of the stroke adjustment parameter is device depend
ent; typically it is true for displays and false for printers. It is not 
altered by initgraphics. 

ERRORS: 

stackunderflow, typecheck 

setucacheparams mark blimit setucacheparams -

sets user path cache parameters as specified by the integer objects 
above the topmost mark on the stack, then removes all operands and 
the mark object as if by cleartomark. The number of cache parameters 
is variable and may increase in future versions of the PostScript inter
preter. If more operands are supplied to setucacheparams than are 
needed, the topmost ones are used and the remainder ignored; if too 
few are supplied, setucacheparams implicitly inserts default values 
between the mark and the first supplied operand. 

blimit specifies the maximum number of bytes that can be occupied by 
the reduced representation of a single path in the user path cache. Any 
reduced path larger than this is not saved in the cache. Changing blimit 
does not disturb any paths that are already in the cache. (A blimit value 
that is too large is automatically reduced to the maximum permissible 
value without error indication.) 

ERRORS: 

typecheck, unmatchedmark 

116 Extensions for the Display Postscript System I Version of January 23, 1990 



setvmthreshold int setvmthreshold -

sets the allocation threshold to the specified value. The allocation 
threshold for a VM is the amount of memory use that will trigger 
automatic garbage collection for that VM (if automatic garbage collec
tion is enabled; see vmreclaim). The system keeps a separate account
ing of memory used by each VM. 

The allocation threshold for a VM defaults to a system-specific value. 
The value for a private VM can be changed; the new value must fall 
within the limits of a system-defined minimum and maximum (see 
example below). The value for the shared VM cannot be changed. 
When the allocation threshold for a private VM is exceeded, automatic 
garbage collection is triggered for that VM. When the allocation 
threshold for shared VM is exceeded, automatic garbage collection is 
triggered for the shared VM. 

This operation applies only to the VM of the current context. If the 
specified value is less than the implementation-dependent minimum 
value, the threshold is set to that minimum value. If the specified value 
is greater than the implementation-dependent maximum value, the 
threshold is set to that maximum value. If the value specified is -1, 
then the threshold is set to the implementation dependent default value. 
All the other negative values result in a rangecheck error. 

setvmthreshold never affects the allocation threshold associated with 
shared VM. 

Example: Assuming a default threshold of 40,000, a minimum allow
able value of 10,000, and a maximum allowable value of 500,000, the 
operation in the first column below produces the result shown in the 
second column. 

20000 setvmthreshold 

-1 setvmthreshold 

20 setvmthreshold 

1000000 setvmthreshold 

-5 setvmthreshold 

ERRORS: 

rangecheck 

Threshold set to 20,000. 

Threshold set to 40,000. 

Threshold set to 10,000. 

Threshold set to 500,000. 

rangecheck error. 

16 OPERATORS 117 



status file status bool 
string status if found: pages bytes referenced created true 

if not found: false 

If the operand is a file object, status returns true if it is still valid (i.e., 
is associated with an open file), false otherwise. This behavior of status 
is as described in the PostScript Language Reference Manual. 

If the operand is a string, status treats it as a file name according to the 
conventions described above. If there exists a file by that name, status 
pushes four integers of status information followed by the value true; 
otherwise it pushes false. The four integer values are: 

pages 

bytes 

referenced 

created 

ERRORS: 

storage space actually occupied by the file, in im
plementation dependent units. 

length of file in characters. 

date and time at which the file was last referenced for 
either reading or writing. The interpretation of the 
value is according to the conventions of the under
lying operating system; the only assumption that a 
program can make is that larger values indicate later 
times. 

date and time at which the information in the file was 
created. 

stackoverflow, stackunderflow, typecheck 

118 Extensions for the Display Postscript System I Version of January 23, 1990 



type any type name 

returns a name object that identifies the type of the object any, as 
documented in the PostScript Language Reference Manual. The type 
operator is extended to operate on gstate, lock, and condition objects in 
addition to the types it already deals with. The possible names that type 
can return are now as follows 

arraytype 
boolean type 
conditiontype 
dicttype 
filetype 
fonttype 
gstatetype 
integertype 
locktype 

ERRORS: 

stackunderflow 

marktype 
nametype 
nulltype 
operatortype 
packedarraytype 
realtype 
savetype 
stringtype 

16 OPERATORS 119 



uappend userpath uappend -

interprets a user path definition and appends the result to the current 
path in the graphics state. If userpath is an ordinary user path (i.e., an 
array or packed array whose length is at least 5), uappend is equivalent 
to: 

systemdict begin 
cvx exec 
end 

% ensure standard operator meanings 
% interpret userpath 

If userpath is an encoded user path, uappend interprets it and performs 
the encoded operations. It does not matter whether the userpath object 
is literal or executable. 

Note that uappend uses the standard definitions of all operator names 
mentioned in the user path, unaffected by any name redefinition that 
may have occurred. 

A ucache appearing in userpath may or may not have an effect, 
depending on the context in which uappend is executed. If the current 
path is initially empty and no path construction operators are executed 
after uappend, a subsequent rendering operator may access the user 
path cache; otherwise it definitely will not. This is particularly useful in 
the case of clip and viewclip. 

uappend performs a temporary adjustment to the current transfor
mation matrix as part of its execution. This adjustment consists of 
rounding the tx and ty components of the CTM to the nearest integer 
values. The reason for this is discussed in Section 8. 

ERRORS: 

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck 

120 Extensions for the Display Postscript System I Version of January 23, 1990 



ucache - ucache -

notifies the Postscript interpreter that the user path in which the ucache 
operator appears is to be placed in the cache if it is not already there. If 
present, this operator must appear as the first element of a user path 
definition (before the mandatory setbbox). 

The ucache operator has no effect of its own when executed; if ex
ecuted outside a user path definition, it does nothing. It is useful only in 
conjunction with a user path rendering operator, such as utill or 
ustroke, that takes the user path as an operand. If the user path is not 
already in the cache, the rendering operator performs the path construc
tion operations specified in the user path and places the results (referred 
to as the reduced path) in the cache. If the user path is already present 
in the cache, the rendering operator does not interpret the user path but 
obtains the reduced path from the cache. 

ERRORS: (none) 

ucachestatus - ucachestatus mark bsize bmax rsize rmax blimit 

reports the current consumption and limit for two user path cache 
resources: bytes of reduced path storage (bsize and bmax) and total 
number of cached reduced paths (rsize and rmax). Additionally, it 
reports the limit on the number of bytes occupied by a single reduced 
path .(blimit) - reduced paths that are larger than this are not cached. 
All ucachestatus results except blimit are for information only; a 
Postscript language program can change blimit (see 
setucacheparams ). 

The number of values pushed on the operand stack is variable; future 
versions of the PostScript interpreter can push additional values be
tween mark and bsize. The purpose of the mark is to delimit the values 
returned by ucachestatus; this enables a program to determine how 
many values were returned (by counttomark) and to discard any 
unused ones (by cleartomark). 

ERRORS: 

stackoverflow 

ueofill userpath ueofill -

is similar to utill, but does eotill instead of till. 

ERRORS: 

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck 

16 OPERATORS 121 



ufill userpath ufill -

interprets a user path definition and fills the resulting path as if by till. 
The entire operation is effectively enclosed by gsave and grestore, so 
utill has no lasting effect on the graphics state. utill is equivalent to: 

gsave 
new path 
uappend 
fill 
grestore 

ERRORS: 

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck 

undef diet key undef -

removes key and its associated value from the dictionary diet. diet does 
not need to be on the dictionary stack. 

Note that the effect of undef can be undone by a subsequent restore. 
That is, if key was present in diet at the time of the matching save, 
restore will reinstate key and its former value. (Remember, however, 
that restore has no effect if diet is in shared VM; in that case, the effect 
of undef is permanent.) 

An undef on a dictionary inside a 'forall' on that dictionary will give 
undefined results. The following example does not delete all keys in the 
dictionary: 

mydict { pop mydict exch undef} forall 

The dictionary must first be enumerated into another object and that 
object must be enumerated to remove the keys: 

[ mydict {pop} forall] { mydict exch undef} forall 

Note that this technique is more memory-efficient than assigning a new 
dictionary to 'mydict'. 

ERRORS: 

invalidaccess, stackunderflow, typecheck, undefined 

122 Extensions for the Display Postscript System I Version of January 23, 1990 



undefinefont key undefinefont -

removes key and its associated value (a font dictionary) from the 
FontDirectory dictionary. The effect of this is similar to undef; a 
special operator is needed because FontDirectory is read-only. 

Note that FontDirectory normally refers to the font directory in private 
VM; undetinefont operates only on that directory and not on 
SharedFontDirectory. However, when shared VM allocation mode is 
in effect, the name FontDirectory refers to the font directory in shared 
VM; undetinefont operates on it. 

ERRORS: 

stackunderflow, typecheck, undefined 

undefineuserobject index undefineuserobject -

breaks the association between the non-negative integer index and an 
object established by some previous execution of detineuserobject. It 
does so simply by replacing the specified UserObjects array element 
by the null object; this is equivalent to: 

userdict /UserObjects get 
exch null put 

undetineuserobject does not take any other actions such as shrinking 
the UserObjects array. If index is not a valid index for the existing 
UserObjects array, a rangecheck error occurs. 

There is no need to execute undetineuserobject prior to executing a 
detineuserobject that reuses the same index. The purpose of 
undetineuserobject is to eliminate references to objects that are no 
longer needed. This may enable such objects to be reclaimed by the 
garbage collector. 

ERRORS: 

rangecheck, stackunderflow, typecheck 

16 OPERATORS 123 



upath bool upath userpath 

creates a new user path object that is equivalent to the current path in 
the graphics state. upath creates a new executable array object of the 
appropriate length and fills it with the operands and operators needed to 
describe the current path. upath produces only an ordinary user path 
procedure, not an encoded user path. It does not disturb the current path 
in the graphics state. 

The boo! operand determines whether or not the resulting user path is 
to include ucache as its first element. 

Since the current path's coordinates are maintained in device space, 
upath transforms them to user space using the inverse of the CTM 
while constructing the user path. Applying uappend to the resulting 
user path will reproduce the same current path in the graphics state, but 
only if the same CTM is in effect at that time. 

upath is equivalent to:23 

[ 
exch {/ucache cvx} if 
pathbbox /setbbox cvx 
{/moveto cvx} {/lineto cvx} {/curveto cvx} 

{/closepath cvx} pathforall 
1 cvx 

If charpath was used to construct any portion of the current path, 
upath is not allowed; its execution will produce an invalidaccess error. 

ERRORS: 

invalidaccess, stackunderflow, typecheck, VMerror 

23 A perfect emulation of upath may need to be more complex than this in 
order to avoid exceeding the implementation limit on depth of the operand 
stack. 

124 Extensions for the Display Postscript System I Version of January 23, 1990 



UserObjects -- UserObjects array 

returns the current UserObjects array defined in userdict. 
UserObjects is not an operator; it is simply a name associated with an 
array in userdict. This array is created and managed by the operators 
defineuserobject, undefineuserobjects, and execuserobject. It 
defines a mapping from small integers (used as array indices) to ar
bitrary objects (the elements of the array). 

The UserObjects entry in userdict is present only if defineuserobject 
has been executed at least once by the current context (or a context that 
shares the same space). The length of the array depends on the index 
operands of all previous executions of defineuserobject. 

Note that defineuserobject, undefineuserobjects, and execuserobject 
operate on the value of UserObjects in userdict, without regard to the 
dictionaries currently on the dictionary stack. Defining UserObjects in 
some other dictionary on the dictionary stack changes the value 
returned by executing the name object UserObjects but does not alter 
the behavior of the user object operators. 

Although UserObjects is an ordinary array object, it should be 
manipulated only by the user object operators. Improper direct altera
tion of UserObjects can subsequently cause the user object operators 
to malfunction. 

ERRORS: 

stackoverflow, undefined 

usertime - usertime int 

returns Postscript interpreter execution time, as described in the 
PostScript Language Reference Manual. In a Display PostScript sys
tem that supports multiple execution contexts, the value returned by 
usertime reports execution time on behalf of the current context 
only. 24 As before, the value has no defined starting point, so usertime 
is useful only for interval timing. 

ERRORS: 

stackoverflow 

24A context that executes usertime can subsequently execute with reduced 
efficiency, because in order to perform user time accounting, the Postscript 
interpreter must perform an operating system call whenever it switches control 
to and from that context. Therefore, one should not execute usertime 
gratuitously. 

16 OPERATORS 125 



ustroke userpath ustroke -
userpath matrix ustroke -

interprets a user path definition and strokes the resulting path as if by 
stroke. The entire operation is effectively enclosed by gsave and 
grestore, so ustroke has no lasting effect on the graphics state. 

In the first form (with no matrix operand), ustroke is equivalent to: 

gsave 
new path 
uappend 
stroke 
grestore 

In the second form, ustroke concatenates matrix to the CTM before 
executing stroke. Thus the matrix applies to the line width and the dash 
pattern (if any) but not to the path itself. This form of ustroke is 
equivalent to: 

gsave 
new path 
exch uappend 
co neat 
stroke 
grestore 

% interpret userpath 
% concat matrix to CTM 

The main use of this operation is to compensate for variations in line 
width and dash pattern that occur if the CTM has been scaled by dif
ferent amounts in x and y. This is accomplished by defining matrix to 
be the inverse of the unequal scaling transformation. 

ERRORS: 

invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck 

126 Extensions for the Display Postscript System I Version of January 23, 1990 



ustrokepath userpath ustrokepath -
userpath matrix ustrokepath -

replaces the current path with one enclosing the shape that would result 
if the ustroke operator were applied to the same operands. The path 
resulting from ustrokepath is suitable as the implicit operand to a 
subsequent fill, clip, or pathbbox. In general, this path is not suitable 
for stroke, as it may contain interior segments or disconnected sub
paths produced by ustrokepath's stroke to outline conversion process. 

In the first form, ustrokepath is equivalent to: 

new path 
uappend 
stroke path 

In the second form, ustrokepath is equivalent to:25 

newpath 
exch uappend 
matrix currentmatrix 
exch concat 
strokepath 
setmatrix 

ERRORS: 

% interpret userpath 
% save CTM 
% concat matrix to CTM 

% restore original CTM 

invalidaccess, limitcheck, rangecheck, stackundertlow, typecheck 

25 A more satisfactory emulation of ustrokepath would not create a new matrix 
each time but would define one temporary matrix that it reuses. 

16 OPERATORS 127 



viewclip - viewclip -

replaces the current view clipping path by a copy of the current path in 
the graphics state. The inside of the current path is determined by the 
normal non-zero winding number rule. viewclip implicitly closes any 
open subpaths of the view clipping path. After setting the view clip, 
viewclip resets the current path to empty, as if by newpath. 

viewclip is similar to clip in that it causes subsequent painting opera
tions to affect only those areas of the current page that lie inside the 
new view clip path. However, it differs from clip in three important 
respects: 

• The view clipping path is independent of the current clipping 
path. The current clipping path is unaffected; a subsequent 
clippath returns the current clipping path, uninfluenced by the 
additional clipping imposed by the view clip. 

• viewclip entirely replaces the current view clipping path, whereas 
clip computes the intersection of the current and new clipping 
paths. 

• viewclip performs an implicit newpath at the end of its execu
tion, whereas clip leaves the current path unchanged. 

The view clipping path can be described by a user path (see Section 8); 
this is accomplished by: 

newpath userpath uappend viewclip 

If userpath specifies ucache, this operation may take advantage of 
information in the user path cache. 

ERRORS: 

limitcheck 

viewclippath - viewclippath -

replaces the current path by a copy of the current view clip path. If no 
view clipping path has been set, viewclippath replaces the current path 
by one that encloses the entire imageable area of the output device (see 
initviewclip). 

ERRORS: (none) 

128 Extensions for the Display Postscript System I Version of January 23, 1990 



vmreclaim int vmreclaim -

controls the garbage collection machinery as specified by int: 

-2 disable automatic collection in both private and shared VM. 
-1 disable automatic collection in private VM. 

0 enable automatic collection. 
1 perform immediate collection in private VM. 
2 perform immediate collection in both private and shared 

VM. This can take a long time, since it must consult the 
private VMs of all contexts. 

Garbage collection causes the memory occupied by the values of in
accessible objects to be reclaimed and made available for re-use. It 
does not have any effects that are visible to the Postscript language 
program. There is normally no need to execute the vmreclaim 
operator, since garbage collection is invoked automatically when 
necessary. However, there are a few situations in which this operator 
may be useful: 

• In an interactive application that is temporarily idle, the idle time 
can be put to good use by invoking an immediate garbage collec
tion; this defers the need to perform an automatic collection sub
sequently. 

• When monitoring the VM consumption of a program, one must 
invoke garbage collection before executing vmstatus in order to 
obtain meaningful results. 

• When measuring the execution time of a program, one must dis
able automatic garbage collection in order to obtain repeatable 
results. 

The negative values that disable garbage collection apply only to the 
current context; that is, they do not prevent collection from occurring 
during execution of other contexts. Note that disabling garbage collec
tion for too long may eventually cause a program to run out of memory 
and fail with a VMerror. 

ERRORS: 

rangecheck, stackundertlow, typecheck 

16 OPERATORS 129 



vmstatus - vmstatus level used maximum 

returns information about the state of the VM, as described in the 
PostScript Language Reference Manual. However, in the Display 
Postscript system, the returned values have more complex interpreta
tions. 

VM consumption is monitored separately for private and shared VM. 
The used and maximum values apply to either private or shared VM 
according to the current VM allocation mode (see setshared). Ad
ditionally, since save and restore do not have any effect on shared VM, 
the level value is meaningless if the current VM allocation mode is 
shared. 

The used value is meaningful only immediately after a garbage collec
tion has taken place (see vmreclaim). At other times, it may be too 
large because it includes memory occupied by objects that have be
come inaccessible but have not yet been reclaimed. 

The maximum value reflects the maximum prior memory consumption 
by the VM region in question. It is not necessarily a limit, since the 
Display Postscript system can usually obtain more memory dynami
cally from the underlying operating system. However, because of 
memory fragmentation it may not be possible to allocate an array or 
string whose size is maximum - used. In an environment that supports 
multiple PostScript execution contexts, available memory can be real
located from one context's VM to another. 

ERRORS: 

stackoverflow 

130 Extensions for the Display Postscript System I Version of January 23, 1990 



wait lock condition wait -

releases lock, waits for condition to be notified (by some other context), 
and finally reacquires lock. The lock must originally have been ac
quired by the current context, which means that wait can be invoked 
only within the execution of a monitor that references the same lock. 

If lock is initially held by some other context or· is not held by any 
context, wait executes an invalidcontext error. On the other hand, 
during the wait for condition, the lock can be acquired by some other 
context. After condition is notified, wait will wait arbitrarily long to 
reacquire lock. 

If the current context has previously executed a save not yet matched 
by a restore, wait executes invalidcontext unless both lock and 
conditionare in shared VM. The latter case is permitted under the as
sumption that the wait is synchronizing with some context whose space 
is different from that of the current context. 

ERRORS: 

invalidcontext, stackunderflow, typecheck 

writeobject file obj tag writeobject -

writes a binary object sequence to file. Except for taking an explicit file 
operand, writeobject is identical to printobject in all respects. 

As is the case for all operators that write to files, the output produced 
by writeobject may accumulate in a buffer instead of being transmitted 
immediately. To ensure immediate transmission, a flushfile is required. 

ERRORS: 

invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow, 
typecheck, undefined 

16 OPERATORS 131 



wtranslation - wtranslation x y 

returns the translation from the window origin to the PostScript device 
space origin. The integers!' and y are the amounts that need to be added 
to a window system coordinate to produce the Postscript device space 
coordinate for the same position. That coordinate may in turn be trans
formed to user space by the itransform operator. 

Window system and device space coordinates always correspond in 
resolution and orientation; they differ only in the positions of their 
origins. The translation from one origin to the other may change as 
windows are moved and resized; the precise behavior is window sys
tem specific. 

ERRORS: 

stackoverflow 

xshow text numarray xshow -
text numstring xshow -

is similar to xyshow. However, for each character shown, xshow ex
tracts only one number from numarray or numstring; it uses that num
ber as the x displacement and the value zero as the y displacement. In 
all other repects, xshow behaves the same as xyshow. 

ERRORS: 

invalidaccess, invalidfont, nocurrentpoint, rangecheck, 
stackunderflow, typecheck 

132 Extensions for the Display Postscript System /Version of January 23, 1990 



xyshow text numarray xyshow -
text numstring xyshow -

prints successive characters of text in a manner similar to show. After 
rendering each character, it extracts two successive numbers from the 
array numarray or the encoded number string numstring. These two 
numbers, interpreted in user space, determine the position of the origin 
of the next character relative to the origin of the character just shown. 
The first number is the x displacement and the second number is the y 
displacement. In other words, the two numbers override the character's . 
normal width. 

If numarray or numstring is exhausted before all the characters of text 
have been shown, a rangecheck error will occur. 

ERRORS: 

invalidaccess, invalidfont, nocurrentpoint, rangecheck, 
stackunderflow, typecheck 

yield - yield -

suspends the current context until all other contexts sharing the same 
space have had a chance to execute. This should not be used as a 
synchronization primitive, since there is no way to predict how much 
execution the other contexts will be able to accomplish. The purpose of 
yield is to break up long-running computations that might lock out 
other contexts. 

ERRORS: 
(none) 

16 OPERATORS 133 



yshow text numarray yshow -
text numstring yshow -

is similar to xyshow. However, for each character shown, yshow ex
tracts only one number from numarray or numstring; it uses that num
ber as they displacement and the value zero as the x displacement. In 
all repects, it behaves the same as xyshow. 

text is the string that specifies what characters are to be shown (as in 
show). numarry is an array whose elements are all numbers. numstring 
is an encoded number string, constructed as described in Section 2. 

ERRORS: 

invalidaccess, invalidfont, nocurrentpoint, rangecheck, 
stackunderOow, typecheck 

134 Extensions for the Display Postscript System I Version of January 23, 1990 



A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 

The changes to PostScript Language Extensions for the Display 
PostScript System from the document dated October 25, 1989, 
are noted in the paragraphs below. 

The detinefont operator, which was missing from the Operator 
Summary, has been added. 

Minor amplifications and corrections, including changes in pos
sible errors, have been made to the following operators: 
detinefont, currenthalftone, rectstroke, setcacheparams, 
setgstate, settileposition, sethalftone, setucacheparams, 
ucache, upath. 

There are similar amplifications and corrections throughout the 
manual. 

The index has been enhanced. 

The changes to PostScript Language Extensions for the Display 
PostScript System from the document dated May 30, 1989, are 
noted in the paragraphs below. 

The quit operator has been added to Section 16, and differences 
from its description in the PostScript Language Reference 
Manual have been provided. 

The detach and vmstatus operators, which were missing from 
the Operator Summary, have been added . 

• 
The setbbox operator description has been amplified. 

The changes to PostScript Language Extensions for the Display 
Postscript System from the document dated October 6, 1988, are 
noted in the paragraphs below. 

The header of binary object sequences has been extended to al
low binary object sequences with more than 255 top-level ob
jects. The header may have four or eight characters of informa
tion. See Binary Object Sequences in Chapter 2, Alternative 
Language Encodings. 

Management of user objects is system specific and may not be 
performed by the Client Library. 

16 OPERATORS 135 



Three keys have been added to the top level font dictionary to 
control the difference in appearance between hand-tuned bitmaps 
and scan-converted outlines for characters (ExactSize, 
InBetweenSize, and TransformedChar). See Outline and Bit
map Font Coordination in Chapter 10, Font Related Extensions. 

The dictionary stack has been changed to add a third permanent 
entry: shareddict. Originally, this stack contained only two per
manent entries, systemdict and userdict. 

In Appendix C, System Name Encodings, values 372-428 have 
been changed and values 429-603 have been deleted. 

Changes to operators summarized below are documented in full 
in Chapter 16, Operators. 

cleardictstack is a new operator that pops all nonpermanent dic
tionaries off the dictionary stack. 

currentscreen has been extended to return the current halftone 
screen unless sethalftone was used, in which case it returns the 
current halftone dictionary. Previously, currentscreen returned a 
result that depended upon the halftone dictionary type. 

fork gives a forked context the objectf ormat of the current con
text. 

ineofill, given a userpath argument, tests whether pixels in 
userpath would be painted by eofill. 

infill, given a userpath argument, tests whether pixels in 
userpath would be painted by fill. 

instroke, given a userpath argument, tests whether pixels in 
userpath would be painted by stroke. 

inueotill now has a form that tests whether pixels in userpath 1 
would be painted by ueofill of userpath2. 

inufill now has a form that tests whether pixels in userpath 1 
would be painted by ufill of userpath2• 

inustroke now has a form that tests whether pixels in userpath 1 
would be painted by ustroke of userpath2• 

136 Extensions for the Display Postscript System I Version of January 23, 1990 



printobject can now write an array that contains an element of 
type array. Previously, this was not permissible. 

rectstroke has an optional matrix argument. 

setcacheparams now takes a size argument. 

setscreen has been extended to take either a halftone dictionary 
or a spot function procedure as its third argument. 

writeobject can now write an array that contains an element of 
type array. Previously, this was not permissible. 

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 137 



138 Extensions for the Display Postscript System I Version of January 23, 1990 



B POSTSCRIPT LANGUAGE CHANGES 

Several additions have been made to the standard PostScript lan
guage. These additions are upward-compatible and do not affect 
the function of any existing Postscript language programs. The 
changes are included in all PostScript language implementations 
with version number 25.0 or higher; they are documented in edi
tions of the PostScript Language Reference Manual copyright 
1986 or later. 

In general, Postscript language programs that are intended to be 
compatible with all PostScript printers should not make use of 
the new features. However, it is possible for a program to deter
mine whether or not the new features are present and to invoke 
them conditionally. The descriptions below suggest how to 
determine whether a particular feature is present or absent. 

Packed arrays 

PostScript language procedures are represented as executable ar
rays which, until now, have been stored in the same fashion as 
literal data arrays. This representation, while offering maximum 
flexibility, is very costly in space (8 bytes per element). Large 
Postscript language programs, such as the built-in server 
program and downloaded preambles, consume considerable 
amounts of VM. 

Since most programs do not require the ability to be treated as 
data but only the ability to be executed, a more compact repre
sentation has been introduced: the packed array. Programs 
represented as packed arrays are typically 50 to 75 percent 
smalier than the same programs represented as ordinary arrays. 

A packed array object has a type different from an ordinary array 
object ('packedarraytype' versus 'arraytype'); but in most 
respects it behaves the same as an ordinary array. You can ex
ecute a packed array; you can extract elements (using get) or 
subarrays (using getinterval); you can enumerate it (using 
forall); and so forth. Individual elements extracted from a 
packed array are ordinary PostScript objects; a subarray of a 
packed array is also a packed array. 

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 139 



The differences between packed arrays and ordinary arrays are: 

• Packed arrays are always read-only: you can't use put, 
putinterval, etc., to store into one. 

•Packed arrays are created differently from ordinary arrays 
(see below). 

•Accessing arbitrary elements of a packed array can be quite 
slow; however, accessing the elements sequentially (as is 
done by the PostScript interpreter and by the forall 
operator) is approximately as efficient as accessing an or
dinary array. 

•The copy operator cannot copy into a packed array (since it 
is read-only); however, it can copy the value of a packed 
array to an ordinary array of at least the packed array's 
length. 

There are two ways in which packed arrays come into existence. 
The first and more common way is for the Postscript input 
scanner to create packed arrays automatically for all executable 
arrays that it reads. That is, whenever the scanner encounters a 
'{' while reading a file or string, it accumulates all tokens up to 
the matching '}' and turns them into a packed array instead of an 
ordinary array. 

The choice of array type is controlled by a mode setting, manipu
lated by the new operators setpacking and currentpacking 
(described at the end of this section). If the array packing mode 
is true, PostScript language procedures encountered sub
sequently by the scanner are created as packed arrays; if the 
mode is false, procedures are created as ordinary arrays. The 
default value is false (i.e., create ordinary arrays), for com
patibility with existing programs. 

The other way to create a packed array is to build it explicitly by 
invoking the packedarray operator with a list of operands to be 
incorporated into a new packed array. 

Immediately evaluated names 

The language syntax has been extended to include a new kind of 
name token, the immediately evaluated name. When the scanner 
encounters the token '//name' (a name preceded by two slashes 

140 Extensions for the Display Postscript System I Version of January 23, 1990 



with no intervening spaces), it immediately looks up the name in 
the context of the current dictionary stack and substitutes the cor
responding value for the name. If the name is not found, an 
undefined error occurs. 

The substitution occurs immediately, regardless of whether or not 
the token appears inside an executable array delimited by '{ ... }'. 
Note that this process is a substitution and not an execution; that 
is, the name's value is not executed but rather is substituted for 
the name itself, just as if the load operator had been applied to 
the name. This action is related to the action performed by the 
bind operator (see the PostScript Language Reference Manual); 
but whereas bind performs substitution only for names whose 
values are operators, each occurrence of the '//name' syntax is 
replaced by the value associated with name regardless of the 
value's type. The following examples illustrate this: 

fa 3 def 
/b {(test) print} def 
/la=> 3 
//b => {(test) print} 
{//a /lb a /b} => {3 {(test) print} a /b} 

The purpose of using immediately evaluated names is similar to 
that of using the bind operator: to cause names in procedures to 
become 'tightly bound' to their values. However, a word of cau
tion is in order: indiscriminate use of immediately evaluated 
names may change the semantics of a program. In particular, 
recall that when the interpreter encounters a procedure object 
directly it simply pushes it on the operand stack; but when it 
encounters a procedure object indirectly (by looking up an ex
ecutable name) it executes the procedure. (See Section 3.6 of the 
PostScript Language Reference Manual.) Therefore, execution 
of the program fragments: 

{ ... b ... } 
{ ... /lb ... } 

may have different effects if the value of the name 'b' is a proce
dure. 

The immediately evaluated name facility is present in all ver
sions of the PostScript interpreter since version 25.0 (as reported 

B POSTSCRIPT LANGUAGE CHANGES 141 



by the version operator). Earlier versions of the interpreter will 
scan '//name' as two distinct tokens: '/', a literal name with no 
text at all, and '/name', a literal name whose text is name. 

142 Extensions for the Display Postscript System I Version of January 23, 1990 



New Operators 

setpacking bool setpacking -

sets the array packing mode to the specified boolean value. This deter
mines the type of executable arrays subsequently created by the scan
ner. The value true selects packed arrays; false selects ordinary arrays. 

The packing mode affects only the creation of procedures by the scan
ner when it encounters program text bracketed by '{' and '}' during 
interpretation of an executable file or string object or during execution 
of the token operator. It does not affect the creation of literal arrays by 
the '[' and ']' operators or by the array operator. 

The array packing mode setting persists until overridden by another 
execution of setpacking or until undone by a restore. 

EXAMPLE: 
systemdict /setpacking known 

{/savepacking currentpacking def 
true setpacking 

} if 

... arbitrary procedure definitions ... 

systemdict /setpacking known {savepacking setpacking} if 

If the packed array facility is available, the procedures represented by 
'arbitrary procedure definitions' are defined as packed arrays; other
wise they are defined as ordinary arrays. This example is careful to 
preserve the array packing mode in effect before its execution. 

ERRORS: 

stackunderflow, typecheck 

currentpacking - currentpacking bool 

returns the array packing mode currently in effect. 

STANDARD VALUE: false 

ERRORS: 

stackoverflow 

B POSTSCRIPT LANGUAGE CHANGES 143 



packedarray any 0 ... any n-1 n packed array packed array 

creates a packed array object of length n containing the objects any0 
through anyn-l as elements. packedarray first removes the non
negative integer n from the operand stack. It then removes that number 
of objects from the operand stack, creates a packed array containing 
those objects as elements, and finally pushes the resulting packed array 
object on the operand stack. 

The resulting object has a type of 'packedarraytype', a literal attribute, 
and read-only access. In all other respects, its behavior is identical to 
that of an ordinary array object. 

STANDARD VALUE: false 

ERRORS: 

rangecheck, stackundertlow, typecheck, VMerror 

144 Extensions for the Display Postscript System / Version of January 23, 1990 



showpage and copypage 

The correct use of showpage versus copypage is a matter requir
ing some clarification. Inappropriate use of copypage can result 
in significant performance degradation in new PostScript 
printers. 

showpage is the normal operator for causing pages to be output. 
It has three effects: it prints the current page, it erases the current 
page, and it reinitializes the graphics state. 

copypage is a somewhat more specialized operator that just 
prints the current page but does not erase it or reset the graphics 
state. Its main intended use is to permit adding new marks to an 
existing page, e.g., when building up a page incrementally. 

showpage is logically equivalent to the sequence: 

copypage erasepage initgraphics 

However, use of copypage for printing pages can degrade page 
throughput significantly. One reason for this is that showpage 
performs the printing and the erasing in parallel whereas the 
copypage erasepage method performs them serially; there are 
other reasons as well. 

copypage should also not be used to defeat the automatic 
initgraphics of showpage.1 That is, to print and erase the cur
rent page but leave the graphics state unchanged, you should not 
say: 

copypage erasepage 

Instead you should say: 

gsave showpage grestore 

Please also note that the correct way to print multiple copies of a 
page is to associate the desired number of copies with the name 
#copies prior to invoking showpage, as discussed under 
showpage in the Postscript Language Reference Manual. The 
#copies convention now applies uniformly to both showpage 
and copypage, whereas formerly it applied only to showpage. 
1Unfortunately, the current PostScript Language Tutorial and Cookbook in
cludes an example that uses this technique. 

B POSTSCRIPT LANGUAGE CHANGES 145 



146 Extensions for the Display Postscript System I Version of January 23, 1990 



c SYSTEM NAME ENCODINGS 

index name index name index name 

0 abs 41 currentrgbcolor 82 idiv 
1 add 42 currents hared 83 idtransfonn 
2 aload 43 curve to 84 if 
3 anchorsearch 44 cvi 85 if else 
4 and 45 cvlit 86 image 
5 arc 46 cvn 87 imagemask 
6 arcn 47 cvr 88 index 
7 arct 48 cvrs 89 ineofill 
8 arcto 49 CVS 90 infill 
9 array 50 cvx 91 initviewclip 

10 ash ow 51 def 92 inueofill 
11 as tore 52 defineusemame 93 inufill 
12 awidthshow 53 diet 94 invertmatrix 
13 begin 54 div 95 itransform 
14 bind 55 dtransform 96 known 
15 bitshift 56 dup 97 le 
16 ceiling 57 end 98 length 
17 charpath 58 eoclip 99 line to 
18 clear 59 eofill 100 load 
19 cleartomark 60 eoviewclip 101 loop 
20 clip 61 eq 102 It 
21 clippath 62 ex ch 103 makefont 
22 closepath 63 exec 104 matrix 
23 co neat 64 exit 105 max length 
24 concatmatrix 65 file 106 mod 
25 copy 66 fill 107 moveto 
26 count 67 findfont 108 mul 
27 counttomark 68 flatten path 109 ne 
28 currentcmykcolor 69 floor 110 neg 
29 currentdash 70 flush 111 newpath 
30 currentdict 71 flushfile 112 not 
31 currentfile 72 for 113 null 
32 currentfont 73 forall 114 or 
33 currentgray 74 ge 115 pathbbox 
34 currentgstate 75 get 116 pathforall 
35 currenthsbcolor 76 getinterval 117 pop 
36 currentlinecap . 77 grestore 118 print 
37 currentlinejoin 78 gsave 119 printobject 
38 currentlinewidth 79 gstate 120 put 
39 currentmatrix 80 gt 121 putinterval 
40 currentpoint 81 identmatrix 122 rcurveto 

B POSTSCRIPT LANGUAGE CHANGES 14 7 



123 read 167 stroke 211 Times-Roman 
124 readhexstring 168 strokepath 212 execuserobject 
125 readline 169 sub 256 
126 readstring 170 system diet 257 --
127 rectclip 171 token 258 ISOLatinlEncoding 
128 rectfill 172 transform 259 StandardEncoding 
129 rectstroke 173 translate 260 [ 
130 rectviewclip 174 truncate 261 ] 
131 repeat 175 type 262 atan 
132 restore 176 uappend 263 banddevice 
133 rlineto 177 ucache 264 bytesavailable 
134 rmoveto 178 ueofill 265 cachestatus 
135 roll 179 ufill 266 closefile 
136 rotate 180 undef 267 colorimage 
137 round 181 upath 268 condition 
138 save 182 userdict 269 copypage 
139 scale 183 ustroke 270 cos 
140 scalefont 184 viewclip 271 countdictstack 
141 search 185 viewclippath 272 countexecstack 
142 selectfont 186 where 273 cs how 
143 setbbox 187 widthshow 274 currentblackgeneration 
144 setcachedevice 188 write 275 currentcacheparams 
145 setcachedevice2 189 writehexstring 276 currentcolorscreen 
146 setcharwidth 190 writeobject 277 currentcolortransfer 
147 setcmykcolor 191 writestring 278 currentcontext 
148 setdash 192 wtranslation 279 currentflat 
149 setfont 193 xor 280 currenthalftone 
150 setgray 194 xshow 281 currenthalftonephase 
151 setgstate 195 xyshow 282 currentmiterlimit 
152 sethsbcolor 196 yshow 283 currentobjectformat 
153 setlinecap 197 FontDirectory 284 currentpacking 
154 setlinejoin 198 SharedFontDirectory 285 currentscreen 
155 setlinewidth 199 Courier 286 currentstrokeadjust 
156 setmatrix 200 Courier-Bold 287 currenttransfer 
157 setrgbcolor 201 Courier-BoldOblique 288 currentundercolorremoval 
158 setshared 202 Courier-Oblique 289 defaultmatrix 
159 shareddict 203 Helvetica 290 definefont 
160 show 204 Helvetica-Bold 291 deletefile 
161 showpage 205 Helvetica-BoldOblique 292 detach 
162 stop 206 Helvetica-Oblique 293 deviceinfo 
163 stopped 207 Symbol 294 dictstack 
164 store 208 Times-Bold 295 echo 
165 string 209 Times-Boldltalic 296 erasepage 
166 stringwidth 210 Times-Italic 297 errordict 

148 Extensions for the Display Postscript System I Version of January 23, 1990 



298 execs tack 342 setfileposition 386 K 
299 executeonly 343 setflat 387 L 
300 exp 344 sethalftone 388 M 
301 false 345 sethalftonephase 389 N 
302 filenameforall 346 setmiterlimit 390 0 
303 fileposition 347 setobjectformat 391 p 

304 fork 348 setpacking 392 Q 

305 framedevice 349 setscreen 393 R 
306 grestoreall 350 setstrokeadjust 394 s 
307 handleerror 351 settransfer 395 T 
308 initclip 352 setucacheparams 396 u 
309 initgraphics 353 setundercolorremoval 397 v 
310 initmatrix 354 sin 398 w 
311 instroke 355 sqrt 399 x 
312 inustroke 356 srand 400 y 

313 join 357 stack 401 z 
314 kshow 358 status 402 a 
315 In 359 statusdict 403 b 
316 lock 360 true 404 c 
317 log 361 ucachestatus 405 d 
318 mark 362 undefinefont 406 e 
319 monitor 363 usertime 407 f 
320 noaccess 364 ustrokepath 408 g 
321 notify 365 version 409 h 
322 nulldevice 366 vmreclaim 410 
323 packedarray 367 vmstatus 411 j 
324 quit 368 wait 412 k 
325 rand 369 wcheck 413 I 
326 re heck 370 xcheck 414 m 
327 readonly 371 yield 415 n 
328 realtime 372 defineuserobject 416 0 

329 renamefile 373 undefineuserobject 417 p 
330 renderbands 374 UserObjects 418 q 
331 resetfile 375 cleardictstack 419 r 
332 reversepath 376 A 420 s 
333 rootfont 377 B 421 
334 rrand 378 c 422 u 
335 run 379 D 423 v 
336 scheck 380 E 424 w 
337 setblackgeneration 381 F 425 x 
338 setcachelimit 382 G 426 y 
339 setcacheparams 383 H 427 z 
340 setcolorscreen 384 428 setvmthreshold 
341 setcolortransfer 385 J 

C SYSTEM NAME ENCODINGS 149 





#copies 145 

$error 28, 72 

II immediately evaluated name syntax 140 

allocation threshold 116 
Angle 56 
appending a user path 119 
arct 40,45,77,81 
arcto 40 
array 143 
array 139 
array packing mode 143 
ASCII encoding 3 
automatic stroke adjustment 61 
automatic VM reclamation 23 

binary encoding 3 
binary object sequence 4, 11 
binary token 4 
bind 141 
bitmap font 49 
BitmapWidths 51 
BlueFrequency 56 
BlueWidth 58 
bounding box 41, 109 
buildtime 66 
byte order 6, 66 
byteorder 66 

changing a file name 106 
character positioning 48 
charpath 40, 123 
cleardictstack 73, 80, 81 
cleartomark 111, 121 
Client Library 4 
clip 119, 126, 127 
clipping path 63 
clock 102 
colorimage 2 

Index 

compressed character 111 
condition 76, 81, 130 
condition 31, 36 
condition object 81 
context 29 
context execution time 125 
context identifier 35 
context identifier, invalid 97 
context operators 35 
context, suspending 35, 133 
context, terminating 35, 86, 101 
copy 82, 140 
copypage 145 
counttomark 121 
creating a file object 88 
creating a forked context 91 
creating a graphics state object 92 
creating a packed array object 143 
creating a user path object 123 
currentcacheparams 72, 80, 82 
currentcontext 35, 76, 82 
currentgstate 38, 77, 82, 82 
currenthalftone 54, 78, 83 
currenthalftonephase 59, 78, 83 
currentobjectformat 76, 83 
currentpacking 140, 143 
currentscreen 78, 83 
currentshared 76, 84 
currentstrokeadjust 78, 84 
cvlit 44 

deadlock 31, 99 
definefont 28, 76,84,84 
defineusername 16, 80, 85 
defineuserobject 36, 77,86,87, 123,124 
deletefile 69, 70, 79, 86 
deleting a dictionary entry 122 
detach 35, 76, 87, 91, 101 
device space origin 131 
deviceinfo 65, 79, 87 
dictionary entry, deleting 122 

151 



dictionary stack 73 
discarding composite objects 24 

encoded names 15 
encoded number string 18 
encoded user path 41 
eoviewclip 64, 78, 87 
erasepage 145 
error handling 21 
error types 80 
errordict 27 
errors 15 
escape sequence 67 
ExactSize 52 
exch 107 
exec 5 
execuserobject 37,77,88,124 
executable array 139 
execution context 29 

file 34, 69, 89 
file deletion 86 
file name change 106 
file repositioning 111 
file status 117 
file system 68 
file system operators 79 
file, standard input 34 
file, standard output 34 
file, writing to 131 
filenameforall 69, 70, 79, 90 
fileposition 69, 79, 91 
fill 126 
filling a user path 121 
findfont 70, 91, 107 
fixed-point number 9 
floating-point format 6, 66, 113 
flushfile 131 
font cache 111 
font cache size 72 
font definition 84 
font operators 78 
font selection 49 
font storage device 70 
font, removing from FontDirectory 122 
font-related language extensions 48 
FontDirectory 27, 28, 84, 91, 107, 114, 122 
FontMatrix 99 

152 INDEX 

forall 139, 140 
fork 30, 34, 35, 76, 92, 113 
Frequency 56, 112 

garbage collection 23, 116, 128 
get 139 
getinterval 139 
graphics state object 37 
graphics state object operators 77 
graphics state object, creating 92 
Gray Frequency 56 
GrayWidth 58 
GreenFrequency 56 
Green Width 58 
gstate 77, 93 
gstate 37 
gstate object 81, 82, 112 

half-open region 60 
halftone definition operators 78 
halftone dictionary 54, 82, 112 
halftone phase 58, 59, 83, 112 
halftone screen 83, 113 
HalftoneType 54, 112 
halftoning 53 
hand-tuned bitmap font 49 
Height 58 
homogeneous number array 10 

identifier 35 
IEEE standard 6, 66, 113 
immediately evaluated name 14, 140 
InBetweenSize 52 
ineofill 64, 79, 93 
infill 64; 79, 94 
initgraphics 145 
initviewclip 63, 64, 78, 94 
instroke 64, 95 
inueofill 19, 45, 64, 79, 95 
inufill 19, 45, 64, 79, 96 
inustroke 19, 45, 64, 79, 97 
invalidcontext 36, 80, 97, 99 
invalidfileaccess 86 
invalidid 80, 98 

join 30, 35, 76, 86, 91, 98 

load 141 



lock 76, 99, 130 
lock 31, 36, 99, 130 

makefont 78, 99, 107 
mark object 82, 111 
memory consumption 129 
memory management 22 
memory management operators 76 
miscellaneous operators 80 
miscellaneous state variable 30, 91 
monitor 32, 33, 35, 76, 99, 99, 130 
multiple contexts, restrictions on 34 
multiple execution context operators 76 
multiple execution contexts 29 

name encodings 15 
name index 10, 15 
name, immediately evaluated 140 
notify 32, 33, 76, 100 
number representation 5, 113 

object type 118 
operator 74 
operator description 74 
outline font 49 
output 20 

packed array 139, 143 
packedarray 140, 144 
page, printing 145 
pathbbox 110, 126 
permanent entries on dictionary stack 73 
pixel boundaries 60 
Postscript execution context 29 
Postscript scanner 140 
printing a page 145 
printobject 20, 76, 101, 113 
private VM 17, 25, 30 
private VM allocation mode 114 
procedure 139, 143 
product 66 
pswrap 4 
put 140 
putinterval 140 

quit 76, 102 

read 5 

readstring 5 
real format 6, 66 
real number format 113 
real number representation 6 
real time 71 
realformat 66 
realtime 71, 80, 102 
rectangle 4 7 
rectangle operators 77 
rectclip 19, 47, 77, 103 
rectfill 18, 19, 47, 77, 104 
rectstroke 19, 47, 77, 78, 105 
rectviewclip 19, 47, 64, 78, 106 
RedFrequency 56 
RedWidth 58 
registering a font 84 
removing a font 122 
renamefile 69, 70, 79, 106 
restore 34 
restrictions 34 
resynchhandleerror 22 
revision 66 
rotate 44 

sampled image 61 
save 34 
scale 44 
scaleable width 50 
scalefont 107 
scan conversion 59 
scan conversion operators 78 
scanner 140 
scanner changes 66 
scheck 26, 76, 107 
screen font 49 
scrolling 58 
secondary storage device 68 
selectfont 27, 49, 78, 99, 108 
setbbox 39, 40, 43, 45, 77, 109 
setcachedevice 87, 111 
setcachelimit 111 
setcacheparams 72, 80, 111 
setcolorscreen 56 
setfileposition 69, 79, 112 
setfont 107 
setgstate 38, 77, 112 
sethalftone 54, 78, 82, 112 
sethalftonephase 59, 78, 83, 113 

153 



setobjectformat 5, 20, 76, 83, 100, 113 
setpacking 140, 143 
setscreen 78, 82, 114 
setshared 26, 30, 76, 115 
setstrokeadjust 62, 78, 116 
setucacheparams 45, 77, 116 
setvmthreshold 24, 76, 117 
shape 60 
shared dictionaries 27 
shared VM 25, 106 
shared VM allocation mode 26, 114 
shared diet 27, 114 
SharedFontDirectory 27, 28, 84, 91, 107, 114, 122 
showpage 145 
space 17, 30 
spot function 55 
SpotFunction 56 
standard error dictionary 27 
standard error handlers 71 
standard input file 34 
standard output file 34, 100 
standard private dictionaries 27 
standard shared dictionary 27 
standard system dictionary 27 
standard user dictionary 27 
state variable 30, 91 
status 79, 118 
status of user path cache 121 
status of VM 129 
statusdict 28, 65 
stop 72, 91 
stopped 72 
string execution semantics 66 
stroke 126 
stroke adjust parameter 84, 115 
stroke adjustment 61, 62 
strokepath 115 
stroking a user path 125 
structured output 20 
structured output operators 76 
suspending a context 35, 133 
switching graphics states 38 
synchronization 30, 34, 97, 130 
syntax changes 66 
syntaxerror 15 
system name encodings 15 
system name index 10, 15 
systemdict 27 

154 INDEX 

tag 20 
terminating a context 35, 86, 98, 101 
threshold array 56 
Thresholds 58 
tiling 58 
timekeeping 71, 102 
timing a context 125 
token 5, 143 
token type 5, 7 
TransformedChar 52 
translate 44 
type 38, 119 

uappend 19,45,46, 77,109,120,123 
ucache 39,40,43,45, 77,119,121 
ucachestatus 45, 77, 121 
ueofill 19,45, 77,121 
ufill 19,23,39,41,44,45,46, 77,120,122 
undef 24, 76, 122 
undefined 141 
undefinedtilename 86 
undefinefont 76, 123 
undefineuserobject 36, 77, 123 
undefineuserobjects 124 
unstructured output 20 
upath 45, 77, 124 
user name encodings 15 
user name index 10, 15, 84 
user object operators 77 
user objects 36 
user path 38 
user path appending 119 
user path cache 43 
user path cache parameters 116 
user path cache status 121 
user path caching 120 
user path construction 40 
user path encoding 41 
user path filling 121 
user path object, creating 123 
user path operators 45, 77 
userdict 27 
UserObjects 37, 77, 85, 87, 123, 125 
usertime 80, 125 
ustroke 45, 62, 77, 120, 126 
ustrokepath 45, 77, 127 

version 141 



view clip 63 
view clip operators 78 
view clipping 63 
view clipping path 94 
viewclip 64, 78, 119, l28 
viewclippath 64, 78, 128 
virtual memory 139 
VM 22 
VM allocation mode 83, 114 
VM allocation threshold 116 
VM reclamation 23 
VM, shared 25, 106 
vmreclaim 24, 76, 129 
vmstatus 76, 128, 130 

wait 32, 33, 35, 76, 99, 130, 131 
Width 58 
width of bitmap font 50 
window origin 131 
window system support 64 
window system support operators 79 
writeobject 20, 76, 113, 131 
writing to a file 131 
wtranslation 65, 79, 132 

xshow 19, 48, 78, 132 
xyshow 19, 48, 78, 133 

yield 35, 76, 133 
yshow 19, 48, 78, 134 

155 





COLOR 
EXTENSIONS 

ADOBE SYSTEMS 
INCORPORATED 



Postscript Language Color Extensions 

January 23, 1990 

Copyright© 1988-1990 by Adobe Systems Incorporated. 
All rights reserved. 

Postscript is a registered trademark of Adobe Systems 
Incorporated. 

The information in this document is furnished for informational use 
only, is subject to change without notice, and should not be construed 
as a commitment by Adobe Systems Incorporated. Adobe Systems 
Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in this document. The software described 
in this document is furnished under license and may only be used or 
copied in accordance with the terms of such license. 

No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, electronic, 
mechanical, recording, or otherwise, without the prior written 
permission of Adobe Systems Incorporated. 

Revised by Amy Davidson. 



Contents 

About This Manual 1 

2 About the Postscript Language Color Extensions 
3 New Features 3 

3.1 Conversion of RGB Values to CMYK 3 

3.2 Black Generation and Undercolor Removal 4 

3.3 Direct CMYK Color Specification 6 

3.4 Color Screens, Transfer Functions, and Images 7 

3.5 The colorimage Operator a 
3.6 Color Implementations 13 

4 Operators 14 

A Changes Since Last Publication Of This Document 25 

Index 27 

iii 





1 ABOUT THIS MANUAL 

This document contains: 

• A description of the extensions to the Postscript® language 
that support new color functionality. 

• Detailed information on the associated color operators. 

Section 2 provides a general introduction to color functionality 
in the Postscript language. 

Section 3 discusses the extended color capabilities of the 
Postscript language. 

Section 4 contains an alphabetical listing of descriptions for all 
color operators that have been added to the PostScript language. 

Appendix A lists changes to the manual since the previous 
version. 

2 ABOUT THE POSTSCRIPT LANGUAGE COLOR EXTENSIONS 

The Postscript language has been extended to provide more 
complete color functionality. This includes cyan-magenta
yellow-black (CMYK) color specification, black generation and 
undercolor removal functions, screen and transfer functions for 
four separate color components, and extension of the image con
cept to a colorimage operator that accepts multiple color com
ponents. 

Earlier versions of the PostScript language support color using 
the setrgbcolor and sethsbcolor operators, which enable the 
Postscript interpreter to paint filled regions, strokes, image 
masks, and characters in color. On black-and-white machines, 
these operators generate an equivalent gray shade, which is 
printed or displayed. 

To support color more fully, the Postscript language has been 
extended to provide the following functions: 

• Most significantly, multiple color images: the colorimage 
operator renders a multiple color image; it functions 

2 ABOUT THE POSTSCRIPT LANGUAGE COLOR EXTENSIONS 



analogously to the the image operator, but uses red-green
blue (RGB) or cyan-magenta-yellow-black (CMYK) color 
input and generates full-color output. 

• Halftone screen definitions: the setcolorscreen operator 
specifies halftone screen definitions for red, green, blue, 
and gray, or cyan, magenta, yellow, and black concurrently; 
it is the logical expansion of setscreen as it takes the same 
three arguments to define each screen for each printing ink. 

• Color correction: the setcolortransfer operator sets the 
transfer function parameters for red, green, blue, and gray; 
it is an expansion of settransfer to four color components. 
The setblackgeneration operator provides a black genera
tion function that establishes a black component from a 
cyan, magenta, and yellow specification. The 
setundercolorremoval operator provides undercolor 
removal from the cyan, magenta, and yellow components to 
compensate for the addition of black by the black genera
tion function. 

• CMYK color specification: the setcmykcolor operator al
lows the user to set the current color in the graphics state to 
a cyan-magenta-yellow-black color directly, bypassing the 
color correction operators. 

The Postscript language supports one-color, three-color, and 
four-color output devices .. The color devices can be binary (one
bit-per-pixel per color component) or grayscale (multiple-bits
per-pixel per color component, representing a range of intensities 
of each color component). A binary device uses halftoning to 
produce intermediate shades of its color components. A device 
that has eight-bits-per-pixel per component, called a full 
grayscale device, does not use halftoning. Devices with more 
than one and fewer than eight bits per pixel use a combination of 
built-in intensities and halftoning to produce the full range of 
desired shades of their color components. Three-color devices 
may be either red-green-blue (RGB), typically for displays and 
film recorders, or cyan-magenta-yellow (CMY) for printers. 
Four-color devices are cyan-magenta-yellow-black (CMYK) for 
color printers and color separation making devices. 

The color operators described in this document are available in 
two forms. Some new versions of the Postscript interpreter have 
these operators built in. For other versions of the Postscript in-

2 Postscript Language Color Extensions I Version of January 23, 1990 



terpreter, a package of PostScript language programs that emu
late these operators is available. 

3 NEW FEATURES 

The color extensions to the Postscript language include CMYK 
color specification, black generation, and undercolor removal. 
Because black generation and undercolor removal use 
procedures, they allow you to adjust the conversion from RGB to 
CMYK values, for example, by producing less black in black 
generation. 

Operators are provided that allow full color input and output for 
screens, transfer functions, and images. The new color features 
are described conceptually in Sections 3.1 through 3.6. The cor
responding operators are documented in Section 4. The new 
operators are identified on first mention by an asterisk; for ex
ample, colorimage *. 

3.1 CONVERSION OF RGB VALUES TO CMYK 

Colors are formed either by adding light to black or by subtract
ing light from white. Computer displays and film recorders typi
cally add colors, while printing inks typically subtract colors. 
These two methods for forming colors give rise to the two major 
complementary color specifications, the additive RGB specifica
tion and the subtractive CMYK specification. 

Accordingly, a color component in these specifications either in
dicates the amount of light it reflects or the amount of light it 
absorbs. Each one of three standard printing process colors, 
cyan, magenta, and yellow, absorb one of the standard light com
ponents, red, green, and blue, respectively. Black, a fourth stan
dard printing process color, absorbs all components of light. In 
the red-green-blue (RGB) color specification, each of its red, 
green, and blue components is associated with a real number be
tween 0.0 and 1.0, inclusive, where 0.0 represents dark (no light) 
and 1.0 represents full light. In the cyan-magenta-yellow-black 
(CMYK) color specification, each of the four components is as
sociated with real numbers between 0.0 and 1.0 inclusive, where 

3 NEW FEATURES 3 



0.0 represents full lighf (no ink), and 1.0 represents dark (full 
ink). 

The following equations demonstrate the relationship between 
the RGB and CMYK color specifications. Since cyan is the ab
sence of red light, magenta is the absence of green light, and 
yellow is the absence of blue light, 

cyan= 1.0 - red 
magenta= 1.0 - green 
yellow.= 1.0 - blue 

A color that is 0.2 red, 0.7 green, and 0.4 blue can also be ex
pressed as 1.0 - 0.2 = 0.8 cyan, 1.0 - 0. 7 = 0.3 magenta, and 1.0 
- 0.4 = 0.6 yellow. To improve the fidelity of blacks and grays, a 
fourth process color, black, is often available on color printers. 
Just as red in the RGB specification is the opposite of cyan in the 
CMYK specification, a black value is the opposite to a 
Postscript language gray value; that is, 

black= 1.0 - gray. 

3.2 BLACK GENERATION AND UNDERCOLOR REMOVAL 

Logically, cyan, magenta, and yellow are all that are needed to 
generate a printing color completely. Thus an equal percentage 
of cyan, magenta, and yellow should create the equivalent per
centage of black. Ip. reality, colored printing inks do not mix per
fectly, and such combinations often form dark brown shades in
stead. Thus, it is often desirable to substitute real black ink for 
the mixed-black portion of a color to obtain a truer color ren
dition on a printer. 

Black generation is the process of calculating the amount of . 
black to be used when trying to print a particular color. 
Undercolor removal is the process of reducing the amount of 
cyan, magenta, and yellow components to compensate for the 
amount of black that was added by the black generation. 
Flexibility in performing these functions is important for achiev
ing good results under different printing conditions. 

The setblackgeneration * operator provides the functionality to 
generate extra black, no black, or a black value equal to all or a 

4 Postscript Language Color Extensions I Version of January 2~. 1990 



fraction of the minimum values of cyan, magenta and yellow. Its 
argument is a procedure that takes one numeric argument, the 
minimum value of user cyan, magenta, and yellow color com
ponents, and returns a single numeric result, the user black value 
(where a user color component value is that specified in the 
PostScript language program before application of the cor
responding transfer function). This procedure is automatically 
applied whenever setrgbcolor, the three-color case of 
colorimage *, or sethsbcolor specifies a color. This user black 
value is then mapped to a device black value by applying the 
gray transfer function to its difference from 1.0 and subtracting 
the result from 1.0 (see setcolortransfer*). The black generation 
function is not applied when setgray, setcmykcolor*, or the one
or four-color cases of colorimage specifies colors. This com
puted black value is used only when producing output on four
color devices. 

The setundercolorremoval* operator provides functionality to 
remove some amount of color from each of the cyan, magenta, 
and yellow components. This amount could be exactly the same 
amount as was generated to make the black component, zero (so 
no color is removed from the cyan, magenta and yellow 
components), some fraction of the black amount, or even a nega
tive amount. Like setblackgeneration, this operator permits 
considerable flexibility in color correction. 

The argument to setundercolorremoval is a procedure that takes 
one numeric argument, the minimum value of user cyan, 
magenta, and yellow color components, and returns a single 
numeric result that is subtracted from each of these original user 
color components. This procedure is applied whenever 
setrgbcolor, the three-color case of colorimage, or sethsbcolor 
specifies a color. After subtracting the value generated in the 
above mapping from the color components and resetting nega
tive values to 0.0 and values greater than 1.0 to 1.0, each com
ponent is subtracted from 1.0 to yield red, green, and blue com
ponents. Each of these components is mapped into a device color 
component using its respective transfer function (see 
setcolortransfer). Undercolor removal is not applied when 
setgray, setcmykcolor, or the one- or four-color cases of 
colorimage specifies a color. Undercolor removal is used only 
when outputting on four-color devices. 

3 NEW FEATURES 5 



The following three sets of equations define the complete color 
transformation process from RGB to CMYK. In the first set of 
equations, the values redu, grnu, and bluu are supplied by the 
user. gryu and blku are assigned the values 1.0 and 0.0, respec
tively. 

cynu = 1 .0 - red u 
magu = 1.0 - grn u 
yelu = 1.0 - bluu 
gryu = 1.0 
blku = 0.0 

In the second set of equations, k is the minimum value of cyn
0

, 

mag
0

, and yel
0

• u is the amount of undercolor removal; it is 
determined by the applying the undercolor removal procedure to 
the value of k. UCR() is the undercolor removal procedure. 

k = Min(cynu, magu, yelu) 
u = UCR(k) 

In the third set of equations, BG() is the black generation proce
dure. RedT, GrnT, BluT, and GryT are the red, green, blue, and 
gray transfer functions (see setcolortransfer), respectively. The 
result of applying these equations is to produce CMYK output 
values for the device. 

The values redd, grnd, blud, and gry d are intermediate values 
used to compute cynd, magd, yeld, and blkd, which can be sent to 
a CMYK device. 

redd = RedT(1.0 - Min(1.0, Max(O.O, cyn u - u))) 
grnd = GrnT(1.0 - Min(1.0, Max(O.O, mag u - u))) 
blud = BluT(1.0 - Min(1.0, Max(O.O, yel u - u))) 
gryd = GryT(1.0 - BG(k)) 
cynd = 1.0 - redd 
magd = 1.0 - grnd 
yeld = 1.0 - blu d 
blkd = 1.0 - gry d 

3.3 DIRECT CMYK COLOR SPECIFICATION 

For the most demanding cases, color matching can require more 
complicated methods than those described above. The 

6 Postscript Language Color Extensions I Version of January 23, 1990 



setcmykcolor operator and the four-color case of the 
colorimage operator bypass the black generation and undercolor 
removal operations, allowing the knowledgeable user to specify 
the cyan, magenta, yellow, and black color components for a 
particular device. These operators do not provide correction 
other than the transfer functions that setcolortransfer specifies; 
the results are device dependent. 

The following equations define the complete color transfor
mation process for the setcmykcolor operator and the four-color 
case of the colorimage operator. They are equivalent to those 
given in Section 3.2 except for the omission of the black genera
tion and undercolor removal steps. The values are the same as 
those defined in Section 3.2. 

redu = 1.0 - cyn u 
grnu = 1.0 - mag u 
bluu = 1.0 -yelu 
gryu = 1.0 - blku 
redd = RedT(redu) 
grnd = GrnT(grnu) 
blud = BluT(bluu) 
gryd = Gry~(gryu) 
cynd = 1. O - red d 
magd = 1.0 - grnd 
yeld = 1.0 - blu d 
blkd = 1.0 - gry d 

3.4 COLOR SCREENS, TRANSFER FUNCTIONS, AND IMAGES 

The operators setcolorscreen, currentcolorscreen, 
setcolortransfer, and currentcolortransfer provide an expan
sion of the operators setscreen, currentscreen, settransfer, and 
currenttransfer, respectively, by setting up a screen and a trans
fer function for each color component. The colorimage operator 
provides an expansion of the image operator to allow samples of 
one, three, or four color components. 

3 NEW FEATURES 7 



3.5 THE COLORIMAGE OPERATOR 

colorimage is the logical expansion of image to handle sampled 
images whose samples are composed of color components rather 
than gray values. The initial arguments to colorimage are the 
same as those for image. The final arguments differ according to 
the number of color components per sample and according to the 
encoding method. 

The arguments to colorimage are shown below; see Section 4 
for precise definitions of these arguments: 

width height bits/component matrix proc 0 [ ... procncolors-11 multiproc ncolors 

ncolors describes the number of color components in each 
sample. Legal values for ncolors are 1 (gray-level samples only), 
3 (ROB samples), or 4 (CMYK samples). multiproc is a boolean 
that· distinguishes between encoding methods. When multiproc is 
false, there is a single procedure and color components are 
bunched together; when multiproc is true, there are multiple 
procedures, one per color, and components are separated into 
strings of like colors. 

The legal variations of ncolors and multiproc allow the follow
ing possibilities (where proc subscripts have been changed to 
words to indicate the purpose of each procedure): 

w h b/c matrix proc gray false 1 
w h b/c matrix proc gray true 1 
w h b/c matrix proc rgb false 3 
w h b/c matrix proc red procgreen procblue true 3 
w h b/c matrix proc cmyk false 4 
w h b/c matrix proc cyan procmagenta procyellow procblack true 4 

The first two variations here are both equivalent to 

w h b/s matrix proc gray image 

Data formats for colorimage operator. As indicated above, the 
colorimage operator has two forms, distinguished by its 
multiproc argument. 

The single-procedure form is most useful if sample input is taken 
from a source that has already merged the color components. 
This form provides samples for which each ROB triple or 

8 Postscript Language Color Extensions I Version of January 23, 1990 



CMYK quadruple is packed together in the string result of the 
procedure, using one of the following bit formats (where the 
high-order bit is shown on the left): 

Bits/ 
comp. RGB Format 

1 RGBRGBRG BRGBRGBR GBRGBRGB RGBRGBRG 
2 RRGGBBRR GGBBRRGG BBRRGGBB RRGGBBRR 
4 RRRRGGGG BBBBRRRR GGGGBBBB RRRRGGGG 
8 RRRRRRRR GGGGGGGG BBBBBBBB RRRRRRRR 

or 
Bits/ 

comp. CMYK Format 
1 CMYKCMYK CMYKCMYK CMYKCMYK CMYKCMYK 
2 CCMMYYKK CCMMYYKK CCMMYYKK CCMMYYKK 
4 CCCCMMMM YYYYKKKK CCCCMMMM YYYYKKKK 
8 cccccccc MMMMMMMM YYYYYYYY KKKKKKKK 

The multiple-procedure form expects each procedure to return a 
string of values for only one color component per sample, using 
the same format as strings returned by the proc argument of the 
image operator. For a three-color image, proc0 returns red 
values, proc1 returns green values, and proc2 returns blue values. 
For a four-color image, proc0 returns cyan values, proc1 returns 
magenta values, proc2 returns yellow values, and proc3 returns 
black values. The colorimage operator calls each of these 
procedures in tum, starting with proc0 and continuing with 
proc1, proc2, and, if available, proc3. When the colorimage 
operator needs more samples, it calls these procedures again in 
the same order. The color procedures must use separate strings 
for the three or four results of the three or four procedures; that 
is, reusing the red string for the green values may cause some of 
the red values to be lost. Also, the three or four procedures must 
return strings of identical lengths within each cycle of three or 
four calls. 

The multiple-procedure form is most useful when color sample 
data are taken from separate color scanner passes. The 
colorimage operator requires the color data to be interleaved, 
since the operator requires all three or four components of any 
sample at the same time in order to do its work. The single
procedure form interleaves the data at the sample level; this may 
be convenient only if the data are already in that form when 
preparing the Postscript language page description. The 

3 NEW FEATURES 9 



multiple-procedure form allows interleaving at a much coarser 
level. Typically, each procedure of the multiple-procedure form 
returns components for some number of scan lines of samples, 
where the number of components returned at each call is limited 
by the string storage available in the PostScript interpreter. 

Examples of colorimage operator. The following examples il
lustrate the use of the colorimage operator: 

EXAMPLE 1: 

/rgbstr 192 string def % string to hold 256 two-bit samples 
% each of red, green, and blue data 

45 140 translate % locate lower left corner of image 
132 132 scale % map image to 132 point square 
256 256 2 % dimensions of source image 
[256 O O -256 O 256] % map unit square to source 
{currentfile % read image data from program file 

rgbstr readhexstring pop} 
false 3 % single proc, 3 colors, bit format: 

% rrggbbrr ggbbrrgg bbrrggbb ... 
colorimage 
94a1 bec8c0b371 a3a5c4d281 ... (98304 hex digits of image data) 

The code fragment above shows a one-procedure, 2-bit RGB image. 
The base-4 representation of the hexadecimal data is 

2110 2201 2332 ... 

which is composed of the following color samples: 

r=2 Q=1 b=1 r=O Q=2 b=2 r=O g=1 b=2 r=3 g=3 b=2 ... 

1 0 Postscript Language Color Extensions I Version of January 23, 1990 



EXAMPLE2: 
/rstr 256 string def 
/gstr 256 string def 

/bstr 256 string def 

% string to hold 256 8-bit red samples 
% string to hold 256 8-bit green samples 
% (distinct from rstr) 
% string to hold 256 8-bit blue samples 
% (distinct from rstr and bstr) 

45 140 translate % locate lower left corner of image 
132 132 scale % map image to 132 point square 
256 256 8 % dimensions of source image 
[256 0 O -256 0 256] % map unit square to source 
{currentfile rstr readhexstring pop} 

% read red data from program file 
{currentfile gstr readhexstring pop} 

% read green data from program file 
{currentfile bstr readhexstring pop} 

true 3 
colorimage 

% read blue data from program file 
% multiple proc, 3 colors 

7b5e606969615365556a6a66 ... (512 hex digits of red data) 
88868d848a92878578787a82 ... (512 hex digits of green data) 
62717c7b736e707d7b6a7c79 ... (512 hex digits of blue data) 
7d8b8d8c837d8b8e9284878e ... (512 hex digits of red data) 
2788b838b8e8e86868988908 ... (512 hex digits of green data) 
81817d857f85858290949487 ... (512 hex digits of blue data) 
... (390144 more hex digits of RGB data, cycling as above) 

The code fragment above shows a three-procedure, 8-bit RGB image. 
The initial samples for each color, in hexadecimal representation, are 

red: 
green: 
blue: 

7b 5e 
88 86 
62 71 

60 69 
8d 84 
7c 7b 

3 NEW FEATURES 11 



EXAMPLE3: 
/cstr 128 string def 
/mstr 128 string def 

/ystr 128 string def 

/kstr 128 string def 

% string to hold 256 4-bit cyan samples 
% string to hold 256 4-bit magenta samples 
% (distinct from cstr) 
% string to hold 256 4-bit yellow samples 
% (distinct from cstr and mstr) 
% string to hold 256 4-bit black samples 
% (distinct from cstr, mstr, and ystr) 

45 140 translate % locate lower left corner of image 
132 132 scale % map image to 132 point square 
256 256 4 % dimensions of source image 
[256 O O -256 O 256] % map unit square to source 
{currentfile cstr readhexstring pop} 

% read cyan data from program file 
{currentfile mstr readhexstring pop} 

% read magenta data from program file 
{currentfile ystr readhexstring pop} 

% read yellow data from program file 
{currentfile kstr readhexstring pop} 

true 4 
colorimage 

% read black data from program file 
% multiple proc, 4 colors 

e1 d8caa57b655b6779606b72 ... (256 hex digits of cyan data) 
6bdbb867b9fb6a4859569989 ... (256 hex digits of magenta data) 
996796e639cc0b29f94736c7 ... (256 hex digits of yellow data) 
c9cOcadOd3cad2b7c9e2d7d8 ... (256 hex digits of black data) 
5d2d6d7d4d3d1 d4d6c9d4d9d . . . (256 hex digits of cyan data) 
4cdcfd4d6d1d8d7d5d4d2d2d ... (256 hex digits of magenta data) 
d2b7c9e2d7d8d8cbbac2d9d8 . . . (256 hex digits of yellow data) 
88ae96632a70f6f4d8d9d9d8 ... (256 hex digits of black data) 
... (260096 more hex digits of CMYK data, cycling as above) 

The code fragment above shows a four-procedure, four-bit CMYK 
image. The initial samples for each color, in hexadecimal represen
tation, are 

cyan: 
magenta: 
yellow: 
black: 

e 1 d 8 c a a 5 
6 b d b b 8 6 7 
9 9 6 7 9 6 e 6 
c 9 c O c a d o 

12 Postscript Language Color Extensions I Version of January 23, 1990 



EXAMPLE 4: 
/cstr 1024 string def % string to hold 1024 8-bit cyan samples 
/mstr 1024 string def % string to hold 1024 8-bit magenta samples 

% (distinct from cstr) 
/ystr 1024 string def % string to hold 1024 8-bit yellow samples 

% (distinct from cstr and mstr) 
/kstr 1024 string def % string to hold 1024 8-bit black samples 

% (distinct from cstr, mstr, and ystr) 
/cfile (img/smp.c) (r) file def % binary file containing 1048576 8-bit 

% cyan samples 
/mfile (img/smp.m) (r) file def % binary file containing 1048576 8-bit 

% magenta samples 
/yfile (img/smp.y) (r) file def % binary file containing 1048576 8-bit 

% yellow samples 
/kfile (img/smp.k) (r) file def % binary file containing 1048576 8-bit 

% black samples 
36 126 translate % locate lower left corner of image 
540 540 scale % map image to 540 point square 
1024 1024 8 % dimensions of source image 
[1024 O O -1024 O 1 024] % map unit square to source 
{cfile cstr readstring pop} % read cyan data from img/smp.c 
{mfile mstr readstring pop} % read magenta data from img/smp.m 
{yfile ystr readstring pop} % read yellow data from img/smp.y 
{kfile kstr readstring pop} % read black data from img/smp.k 
true 4 % multiple proc, 4 colors 
colorimage 

The code fragment above shows a four-procedure, 8-bit CMYK 
image, with cyan, magenta, yellow, and black samples taken 
from the files img/smp.c, img/smp.m, img/smp.y, and img/smp.k, 
respectively. This example only applies to a PostScript inter
preter that has a file system. 

3.6 COLOR IMPLEMENTATIONS 

Each PostScript interpreter uses default color output methods 
that correspond to its target printer. If the printer is a direct-color 
binary device, the standard output method produces three- or 
four-color output. If the printer is a grayscale color device, the 
Postscript interpreter uses a grayscale three- or four-color output 
method. If the printer is a black-and-white device, the default 
output method produces a single black-and-white rendition of 
each page described. 

Some printers can also be used to produce color separations. A 

3 NEW FEATURES 13 



color separation consists of three or four black-and-white com
ponent pages for each color page to be described, with each 
black-and-white page corresponding to the output for one color 
component. Separations are normally prepared for use in a sub
sequent printing process in which a single page is overprinted 
three or four times to form the intended full-color output, each 
time using a different black-and-white component page and the 
ink color associated with it. 

4 OPERATORS 

The following pages contain an alphabetical listing of the new 
Postscript color operators. 

14 Postscript Language Color Extensions I Version of January 23, 1990 



colorimage width height bits/component matrix proc 0 [ ... procncolors-11 multiproc 
ncolors colorimage -

renders a sampled image on the current page. The samples can 
contain one, three, or four color components. The first four argu
ments are the same as those for the image operator. The 
bits/component argument applies equally to all color com
ponents. colorimage permits its proci arguments to return RGB 
or CMYK sample values rather than the single-color (gray) 
values returned by the proc argument of the image operator. 

The ncolors argument (1, 3, or 4) is the number of color com
ponents represented in the samples. If ncolors is 1, the samples 
have only one component, a gray component, and the operation 
of colorimage is equivalent to that of image with the same five 
initial arguments. If the ncolors argument is 3, the colorimage 
operator takes RGB (light-high) samples. If the ncolors argu
ment is 4, the colorimage operator takes CMYK (dark-high) 
samples. On a four-color (CMYK) machine, the Postscript inter
preter converts a three-color (RGB) image to CMYK using the 
black generation and undercolor removal procedures; a four
color (CMYK) image bypasses these operations. 

The multiproc argument is a boolean that distinguishes between 
two forms of the colorimage operator: false indicates the single
procedure form, which requires one procedure argument (proc0); 

true indicates the multiple-procedure form, which requires one 
procedure argument per sample color (proc0 ... procncolors-1) -
three procedure arguments for RGB samples or four-procedure 
arguments for CMYK samples. If the ncolors argument is 1, 
there is only one procedure argument, proc0, regardless of the 
value of the multiproc argument. For a detailed description of the 
data formats and how the proci procedures are called, see ''Data 
formats for colorimage operator'' on page 8. 

Use of setcolorscreen, setcolortransfer, setscreen, or 
settransfer by any of the proci procedures causes unpredictable 
results. Use of the colorimage operator after a setcachedevice 
within the context of a BuildChar procedure is not permitted (an 
undefined error results). 

ERRORS: 
Iimitcheck, rangecheck, stackunderflow, typecheck, 
undefined, undefinedresult 

4 OPERATORS 15 



currentblackgeneration - currentblackgeneration proc 

returns the current black generation function in the graphics state 
(see setblackgeneration ). 

ERRORS: 

stackoverflow 

currentcmykcolor - currentcmykcolor cyan magenta yellow black 

returns the four components of the current color in the graphics 
state according to the cyan-magenta-yellow-black color model 
(see setcmykcolor). 

Note that the currentgray operator returns a weighted average 
of all four color components. Applying it is the equivalent of the 
following use of currentcmykcolor: 

1.0 currentcmykcolor 4 1 roll 0.11 mul 3 1 roll 0.59 mul 
exch 0.30 mul add add add sub dup 0.0 It {pop 0.0} if 

ERRORS: 

stackoverflow 

currentcolorscreen - currentcolorscreen r/c-frequency r/c-angle r/c-proc g/m-frequency 
g/m-angle g/m-proc b/y-frequency b/y-angle b/y-proc g/k-frequency 
g/k-angle g/k-proc 

returns all 12 current halftone screen parameters in the graphics 
state (see setcolorscreen ). In the notation used here and in 
setcolorscreen, r/c is red/cyan, g/m is green/magenta, b/y is 
blue/yellow, and g/k is gray/black. 

The currentcolorscreen operator is the logical expansion of 
currentscreen to four color components. Applying the 
currentscreen operator returns the three parameters describing 
the gray/black screen. It is the equivalent of the following use of 
currentcolorscreen: 

currentcolorscreen 12 3 roll 9 {pop} repeat 

ERRORS: 

stackoverOow 

16 Postscript Language Color Extensions I Version of January 23, 1990 



currentcolortransfer - currentcolortransfer redproc greenproc blueproc grayproc 

returns the current transfer functions in the graphics state for 
each of the four color components (see setcolortransfer). 

The currentcolortransfer operator is the logical expansion of 
currenttransfer to four color components. Applying the 
currenttransfer operator returns the gray transfer function. It is 
the equivalent of the following use of currentcolortransfer: 

currentcolortransfer 4 1 roll pop pop pop 

ERRORS: 

stackovertlow 

currentundercolorremoval - currentundercolorremoval proc 

returns the current undercolor removal function in the graphics 
state (see setundercolorremoval). 

ERRORS: 

stackovertlow 

4 OPERATORS 17 



setblackgeneration proc setblackgeneration -

sets the current black generation function parameter in the 
graphics state. The proc operand must be a Postscript language 
procedure that can be called with a number in the range 0.0 to 
1.0 (inclusive) on the operand stack and that returns a number in 
the same range. This procedure maps the minimum of the user 
cyan, magenta, and yellow color components to user black 
values. 

For additional information, see Section 3.2. 

EXAMPLE: 
{dup .75 le {pop 0.0} {.75 sub 4.0 mul} ifelse} setblackgeneration 

This Postscript language code fragment sets the black component to 
zero when the minimum of cyan, magenta, and yellow is less than or 
equal to .75. Minima greater than .75 produce a black component that 
increases linearly from 0.0 (at a minimum of .75) to 1.0 (when user 
cyan, magenta, and yellow all have values of 1.0). 

The use of setblackgeneration after a setcachedevice operation 
within the scope of a BuildChar procedure is not permitted (an 
undefined error results). 

ERRORS: 

stackunderflow, typecheck 

18 Postscript Language Color Extensions I Version of January 23, 1990 



setcmykcolor cyan magenta yellow black setcmykcolor -

sets the current color parameter in the graphics state to a color 
described by the parameters cyan, magenta, yellow, and black, 
each of which must be a number in the range 0.0 to 1.0 inclusive. 
This establishes the color used subsequently to paint shapes such 
as lines, areas, and characters on the current page. This operator 
bypasses the black generation and undercolor removal opera
tions. 

For additional information, see Section 3.3. 

Note that applying the setgray operator sets the gray color com
ponent to its single argument value and the red, green, and blue 
color components to 1.0. It is the equivalent of the following use 
of setcmykcolor: 

0.0 0.0 0.0 1.0 5 -1 roll sub setcmykcolor 

The use of setcmykcolor after a setcachedeviceoperation within 
the scope of a Build Char procedure is not permitted (an 
undefined error results). 

ERRORS: 
stackunderflow, typecheck 

4 OPERATORS 19 



setcolorscreen r/c-frequency r/c-angle r/c-proc g/m-frequency g/m-angle g/m-proc 
b/y-frequency b/y-angle b/y-proc g/k-frequency g/k-angle g/k-proc 
setcolorscreen -

sets the current halftone screen definitions for red/cyan (r/c), 
green/magenta (g/m), blue/yellow (b/y), and gray/black (g/k) 
output color components in the graphics state. Each of the 
r/c-frequency, g/m-frequency, b/y-frequency, and g/k-frequency 
operands is a number that specifies the screen frequency for one 
output color component, measured in halftone cells per inch in 
device space. The r/c-angle, g/m-angle, b/y-angle, and g/k-angle 
operands specify the number of degrees by which their respec
tive halftone screens are rotated with respect to the device coor
dinate system. Each of the r/c-proc, g/m-proc, b/y-proc, and 
g/k-proc operands is a Postscript language procedure (as for 
setscreen). Each procedure defines one color component's spot 
function. (For more information on spot functions, see the sec
tion on halftone screens in the PostScript Language Reference 
Manual.) The red/cyan, green/magenta, and blue/yellow screens 
have no effect on a black-and-white device, the gray/black 
screen has no effect on an RGB or CMY device, and no screens 
have any effect on a full (8-bits-per-pixel) grayscale device. 

Color printers that use halftoning may require a different angle 
for each color component in order to produce attractive output. 
Each color printer containing a Postscript interpreter has a 
default.color screen chosen to look good on that printer. 

The setcolorscreen operator is the logical expansion of 
setscreen to four color components. It takes the same three types 
of arguments as setscreen, but repeated four times. Applying the 
setscreen operator in an environment with four color com
ponents sets all four screens equally. It is the equivalent of the 
following use of setcolorscreen: 

3 copy 6 copy setcolorscreen 

EXAMPLE: 
o/o 50 line dot screen with 75 degree cyan, 
o/o 15 degree magenta, 
o/o O degree yellow, and 45 degree black angled screens, 
o/o which are standard for color printing 
/sfreq 50 def o/o 50 halftone cells per inch 
/sproc {dup mul exch dup mul add 1 exch sub} def 

20 Postscript Language Color Extensions I Version of January 23, 1990 



sfreq 75 /sproc load 
sfreq 15 /sproc load 
sfreq O /sproc load 
sfreq 45 /sproc load 
setcolorscreen 

ERRORS: 

% dot-screen spot function 
% 75 degree red (cyan) screen 
% 15 degree green (magenta) screen 
% O degree blue (yellow) screen 
% 45 degree gray (black) screen 

limitcheck, rangecheck, stackunderflow, typecheck 

4 OPERATORS 21 



setcolortransfer redproc greenproc blueproc grayproc setcolortransfer -

sets the current transfer function parameters for red, green, blue, 
and gray in the graphics state. Each operand must be a Postscript 
language procedure that may be called with a number in the 
range 0.0 to 1.0 (inclusive) on the operand stack and that will 
return a number in the same range. These procedures map user 
values of the color components (that is, those specified by 
setrgbcolor and adjusted by setblackgeneration and 
setundercolorremoval, or 1.0 minus those specified by 
setcmykcolor) to device color components (for halftones, a 
weighted average of the lightness of pixels in a halftone cell). 
Only those transfer functions corresponding to color components 
supported by a device will have an effect on that device's output. 
For example, redproc, greenproc, and blueproc will have no ef
fect on a black-and-white device, while grayproo. will have no 
effect on an ROB device. 

The single-color settransfer operator takes a single procedure 
argument whose purpose is to provide correction for a printer's 
halftoning response. This operator is useful for a variety of ef
fects beyond its original intention as a gray response correction 
function, but it is useful only in the context of a single output 
color, as on black-and-white printers. The setcolortransfer 
operator is the logical expansion of settransfer to four color 
components; it takes four function arguments, each similar in 
purpose to the function argument of settransfer, but each func
tion separately controls the response for each of the red (1.0 
minus cyan), green (1.0 minus magenta), blue (1.0 minus 
yellow) and gray (1.0 minus black) components, respectively. 

Applying the settransfer operator sets all four transfer functions 
equally. It is the equivalent of the following use of 
setcolortransfer: 

dup dup dup setcolortransfer 

EXAMPLE: 
{} {} {dup mul} {} setcolortransfer 

This PostScript language code fragment sets device blue as the square 
of user blue and leaves the other color components unchanged. 

Calling settransfer with the argument 

22 Postscript Language Color Extensions / Version of January 23, 1990 



{1 exch sub} 

to invert an output image is not guaranteed to work if any of the 
following operators are used in generating the image: 
colorimage, setcmykcolor, setcolortransfer, sethsbcolor, and 
setrgbcolor. In the case of a device with four color components, 
inversion can be more complicated than merely inverting all of 
the components. 

The use of setcolortransfer after a setcachedevice operation 
within the scope of a BuildChar procedure is not permitted (an 
undefined error results). 

ERRORS: 

stackunderflow, typecheck 

setundercolorremoval proc setundercolorremoval -

sets the current undercolor removal function parameter in the 
graphics state. The proc operand must be a Postscript language 
procedure that can be called with a number in the range 0.0 to 
1.0 (inclusive) on the operand stack and that will return a number 
in the range -1.0 (to increase the color components) to +1.0 (to 
decrease the color components). This procedure maps the min
imum' of the cynu, magu, and yelu color components to a value to 
be subtracted from each of these same components. 

For additional information, see Section 3.2. 

EXAMPLE: 
{currentblackgeneration exec .5 mul} setundercolorremoval 

This Postscript language code fragment sets the undercolor removal to 
half the value of the black component from black generation. 

The use of setundercolorremoval after a setcachedevice opera
tion within the scope of a BuildChar procedure is not permitted 
(an undefined error results). 

ERRORS: 

stackunderflow, typecheck 

4 OPERATORS 23 



24 Postscript Language Color Extensions I Version of January 23, 1990 



A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 

Changes to PostScript Language Color Extensions from the 
document dated October 25, 1989, are noted in the paragraphs 
below. 

The formulas used in black generation and undercolor removal 
are more clearly explained. 

Minor amplifications and corrections have been made. 

The index has been enhanced. 

Changes to PostScript Language Color Extensions from the 
document dated October 7, 1988, are noted· in the paragraphs 
below. 

The introduction has been reorganized. 

Minor amplifications and corrections have been made. 

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 25 





black generation 4, 16, 17 
BuildChar 17, 18, 22 

CMYKcolor 3 
CMYK color components 16 
CMYK color parameters 18 
CMYK color specification 6 
CMYK from RGB 5 
color images 7 
color implementations 13 
color screens 7 
color separation 13 
color transfer functions 7 
colorimage 8, 22 
colorimage 16 
colorimage data 8 
colorimage examples 10 
curreritblackgeneration 16 
currentcmykcolor 16 
currentcolorscreen 16 
currentcolortransfer 17 
currentgray 16 
currentundercolorremoval 17 

data for colorimage 8 

equations 5 
examples of colorimage operator 10 

halftone screen parameters 16, 19 

image 8 
images 7 
implementations 13 

new features 3, 

RGB to CMYK 3, 5 

setblackgeneration 4 
setblackgeneration 18 

setcachedevice 17; 18, 22 
setcmykcolor 22 
setcmykcolor 19 
setcolorscreen 21 
setcolortransfer 22 
setcolortransfer 23 
sethsbcolor 22 
setrgbcolor 22 
settransfer 21 
setundercolorremoval 5 
setundercolorremoval 23 

transfer functions 7, 16, 21 

undercolor removal 4, 17, 23 

Index 

27 





Client Library 
Reference Manual 

ADOBE SYSTEMS 
INCORPORATED 



Client Library Reference Manual 

January 23, 1990 

Copyright© 1988-1990 Adobe Systems Incorporated. 
All rights reserved. 

Postscript and Display PostScript are registered trademarks of 
Adobe Systems Incorporated. 

Macintosh is a registered trademark of Apple Computer 
Incorporated. UNIX is a registered trademark of AT&T 
Information Systems. X Window System is a trademark of the 
Massachusetts Institute of Technology. 

The information in this document is furnished for informational use 
only, is subject to change without notice, and should not be construed 
as a commitment by Adobe Systems Incorporated. Adobe Systems 
Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in this document. The software 
described in this document is furnished under license and may only be 
used or copied in accordance with the terms of such license. 

No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, 
mechanical, recording, or otherwise, without the prior written 
permission of Adobe Systems Incorporated. 

Written by Amy Davidson. 



Contents 

About This Manual 1 

1.1 System-Specific Documentation 2 

1.2 Typographical Conventions 2 

2 About The Client Library 4 

3 Overview of the Client Library 6 
3.1 Phases of an Application 6 

3.2 Header Files 7 

3.3 Wrapped Procedures 8 

4 Basic Client Library Facilities 1 o 
4.1 Contexts and Context Data Structures 1 o 
4.2 System-Specific Context Creation 11 

4.3 Example of Context Creation 11 

4.4 The Current Context 14 

4.5 Sending Code and Data to a Context 14 

4.6 Spaces 19 

4.7 Interrupts 19 

4.8 Destroying Contexts 20 

5 Handling Output From the Context 21 

5.1 Call-Back Procedures 21 

5.2 Text Handlers 23 

5.3 Example Text Handler 23 

5.4 Error Handlers 25 

5.5 Error Recovery Requirements 26 

5.6 Backstop Handlers 27 

6 Additional Client Library Facilities 28 

6.1 Chained Contexts 28 

6.2 Encoding and Translation 30 

6.2.1 Encoding Postscript Language Code 30 

6.2.2 Translation 30 

6.3 Buffering 31 

6.4 Synchronizing Application and Context 32 

6.5 Forked Contexts 33 

7 Programming Tips 35 

7.1 Using the Imaging Model 37 

8 Example Application Program 39 
8.1 Example C Code 40 

8.2 Example Wrap 43 

8.3 Description of the Example Application 43 

iii 



iv 

9 The dpsclient.h Header File 46 

9.1 dpsclient.h Data Structures 46 

9.2 dpsclient.h Procedures 48 

1 O Single-Operator Procedures 56 

10.1 Setting the Current Context 57 

10.2 Types in Single-Operator Procedures 57 

10.2.1 Rules of Thumb 58 

10.2.2 Special Cases 60 

10.3 dpsops.h Procedure Declarations 61 

11 Runtime Support for Wrapped Procedures 73 

11.1 More About Sending Code For Execution 73 

11.2 Receiving Results 74 

11.3 Managing User Names 76 

11 .4 Binary Object Sequences 77 

11 .5 Extended Binary Object Sequences 79 

11.6 dpsfriends.h Data Structures 80 
11.7 dpsfriends.h Procedures 84 

A Changes Since Last Publication Of This Document 89 
B Example Error Handler 91 
B.1 Error Handler Implementation 91 
B.2 Description of the Error Handler 93 

B.3 Handling Postscript Language Errors 95 
C Exception Handling 97 

C.1 Recovering From Postscript Language Errors 101 

C.2 Example Exception Handler 103 

Index 107 



List of Figures 

Figure 1: The Client Library Link to the Display PostScript System 4 

Figure 2: Creating an Application 40 

v 





1 ABOUT THIS MANUAL 

This manual provides the application programmer with descrip
tions of Client Library procedures and conventions; these con
stitute the programming interface to the Display PostScript® sys
tem. The sections of the manual are listed below: 

• Section 2 introduces the Client Library and provides a 
diagram of its relationship to the Display PostScript sys
tem. 

• Section 3 provides a brief overview of the Client Library; 
describes the phases of an application program interacting 
with the Display Postscript system; introduces the C header 
files that represent the Client Library interface; and dis
cusses the use of wrapped procedures. 

• Section 4 describes the basic concepts an application pro
grammer needs to know before writing a simple application 
for the Display Postscript system. 

•Section 5 discusses call-back procedures of various kinds, 
including text and error handlers. 

• Section 6 contains advanced Client Library concepts in
cluding context chaining, encoding and translation, buffer
ing, application/context synchronization, and forked con
texts. 

• Section 7 provides programming tips and summarizes notes 
and warnings. 

• Section 8 lists and documents an application program that 
illustrates how to communicate with the Display Postscript 
system using the Client Library. 

• Section 9 documents the basic Client Library data struc
tures and procedures found in dpsclient.h. 

• Section 10 describes the single-operator procedures that 
implement Postscript® operators and lists the dpsops.h 
header file in which they are declared. 

• Section 11 describes the dpsfriends.h header file and its 
support of C-callable procedures produced by the pswrap 
translator. 

• Appendix A lists changes to the manual since the previous 
version. 

1 ABOUT THIS MANUAL 1 



• Appendix B provides an example error handler for the X 
Window System™ implementation of the Display 
Postscript system. 

• Appendix C describes how an application can recover from 
PostScript language errors and provides an example of an 
exception handler. 

For more information about the PostScript language, see the 
PostScript Language Reference Manual and PostScript Lan
guage Extensions for the Display PostScript System. For more 
information about using the pswrap translator to embed 
Postscript language code in C programs, see the pswrap Refer
ence Manual. 

1.1 SYSTEM-SPECIFIC DOCUMENTATION 

The term "system specific" is used throughout this manual. It 
refers to areas of the Client Library implementation that are 
necessarily customized to fit a given machine and operating
system environment. The Client Library Reference Manual 
describes those aspects of the Client Library that are common to 
all Display Postscript system implementations. 

You will find notes· and comments in this manual alerting you to 
system-specific issues. For more information about these system
specific aspects of your Client Library implementation, see the 
documentation provided by your Display PostScript system ven
dor. 

1.2 TYPOGRAPHICAL CONVENTIONS 

The typographical conventions used in this manual are as fol
lows: 

2 Client Library Reference Manual I Version of January 23, 1990 



Item Example of Typographical Style 

file dpsclient.h 

variable, typedef, code fragment 'ctxt', 'DPSContextRec', 'DPSrectstroke(ctxt, 0.0, 0.0, 10.0, 20.0)' 

procedure DPSSetContext 

Postscript operator rectfill 

new term "A wrapped procedure (wrap for short) consists of .... " 



2 ABOUT THE CLIENT LIBRARY 

The Client Library is the application programmer's link to the 
Display Postscript system, which makes the imaging power of 
the Postscript interpreter available for online displays as well as 
for printing. An application program can display text and images 
on the user's screen by calling Client Library procedures. These 
procedures are written with a C language interface. They 
generate Postscript language code and send it to the PostScript 
interpreter for execution, as shown in Figure 1. 

Figure 1 The Client Library Link to the Display Postscript System 

Application 

Display 

I 
Display 

Client LL __......... Postscript 

!Library """'" 
7 System 

Window System 

Application programmers can customize and optimize their ap
plications by writing Postscript language programs. The pswrap 
translator, described in the pswrap Reference Manual, produces 
application-defined PostScript language programs with C
callable interfaces. 

4 Client Library Reference Manual I Version of January 23, 1990 



Note: In this manual, the terms "input" and "output" apply to 
the execution context in the Postscript interpreter, not to the ap
plication. An application ''sends input'' to a context and 
"receives output" from a context. This usage prevents the am
biguity that would otherwise exist, since input with respect to the 
context is output with respect to the application, and vice versa. 

2 ABOUT THE CLIENT LIBRARY 5 



3 OVERVIEW OF THE CLIENT LIBRARY 

The Client Library is a collection of procedures that provide an 
application program with access to the Postscript interpreter. 
The Client Library includes procedures for creating, communi
cating with, and destroying Postscript execution contexts. A 
context consists of all the information (or ''state'') needed by the 
Postscript interpreter to execute a Postscript language program. 
In the Client Library interface, each context is represented by a 
'DPSContextRec' data structure pointed to by a 'DPSContext' 
handle. Postscript execution contexts are described in PostScript 
Language Extensions for the Display PostScript System. 

To the application programmer, it appears that Client Library 
procedures directly produce graphical output on the display. In 
fact, these procedures generate PostScript language statements 
and transmit them to the Postscript interpreter for execution; the 
PostScript interpreter then produces graphical output that is dis
played by device-specific procedures in the Display PostScript 
system. In this way, the Client Library makes the full power of 
the Postscript interpreter and imaging model available to a C 
language program. 

The recommended way of sending Postscript language code to 
the interpreter is to call wrapped procedures generated by the 
pswrap translator; these procedures are described in Section 3.3. 
For simple operations, an application program can send 
PostScript language fragments to the interpreter by calling 
single-operator procedures - each one the equivalent of a 
single PostScript operator - as described in Section 10. It is 
also possible for an application program to send Postscript lan
guage programs as ASCII text, as if to a laser printer with a 
PostScript interpreter. This technique can be used for develop
ment and debugging or for displaying PostScript language code 
imported by the application - for instance, from an EPS file. 

3.1 PHASES OF AN APPLICATION 

Here is how a typical application program, written in C, uses the 
Client Library in the different phases of its operation: 

6 Client Library Reference Manual I Version of January 23, 1990 



Initialization. First, the application establishes communication 
with the Display Postscript system. Then it calls 
Client Library procedures to create a context for 
executing PostScript language programs. It also 
performs other window-system-specific in
itialization. Some higher-level facilities, such as 
toolkits, do all of this initialization automati
cally. 

Execution. Once an application is initialized, it displays text 
and graphics by sending Postscript language 
programs to the interpreter. These programs may 
be of any complexity from a single-operator pro
cedure to a program that previews a full-color 
illustration. The Client Library sends the 
programs to the Postscript interpreter and 
handles the results received from the interpreter. 

Termination. When the application is ready to terminate, it 
calls Client Library procedures to destroy its 
contexts, free their resources, and end the com
munication session. 

3.2 HEADER FILES 

The Client Library procedures that an application can call are 
defined in C header files, also known as include files or interface 
files. There are four Client Library-defined header files and one 
or more system-specific header files. The Client Library inter
face represented by these header files may be extended in a given 
implementation, but the extensions are compatible with the 
definitions given in this manual. 

• dpsclient.h provides support for mdnaging contexts and 
sending PostScript language programs to the interpreter. It 
supports applications as well as application toolkits. Al
ways present. 

• dpsfriends.h provides support for wrapped procedures 
created by pswrap as well as data representations, conver
sions, and other low-level support for context structures. 
Always present. 

• dpsops.h provides the single-operator procedures that re
quire an explicit context parameter. Optional; at least one 

3 OVERVIEW OF THE CLIENT LIBRARY 7 



single-operator header file must be present; that is, 
dpsops.h or psops.h or both. 

• psops.h provides the single-operator procedures that im- / 
plicitly derive their context parameter from the current con
text. Optional; see dpsops.h. 

• One or more system-specific header files provide support 
for context creation. These header files may also provide 
system-specific extensions to the Client Library, such as 
additional error codes. 

3.3 WRAPPED PROCEDURES 

The most efficient way for an application program to send 
Postscript language code to the interpreter is to use the pswrap 
translator to produce wrapped procedures - that is, Postscript 
language programs that are callable as C procedures. A wrapped 
procedure (wrap for short) consists of a C language procedure 
declaration enclosing a PostScript language body. There are 
several advantages to using wraps: 

• Complex Postscript programs can be invoked by a single 
procedure call, avoiding the overhead of a series of calls to 
single-operator procedures. 

• You can insert C arguments into the PostScript language 
code at runtime instead of having to push the C arguments 
onto the Postscript operand stack in separate steps. 

• Wrapped procedures can efficiently produce custom graph
ical output by combining operators and other elements of 
the Postscript language in a variety of interesting ways. 

• The PostScript language code sent by a wrapped procedure 
is interpreted faster than ASCII text. 

An application developer prepares a PostScript language 
program for inclusion in the application by writing a wrap and 
passing it through the pswrap translator. The output of pswrap is 
a procedure written entirely in the C language. It contains the 
Postscript language body as data. This body has been compiled 
into a binary object sequence (an efficient binary encoding), with 
placeholders left for arguments to be inserted at execution time. 
The translated wraps can then be compiled and linked into the 
application program. 

8 Client Library Reference Manual I Version of January 23, 1990 



When a wrapped procedure is called by the application, the 
procedure's arguments are substituted for the placeholders in the 
PostScript language body of the wrap. 

Example: A wrap that draws a black box could be defined as 
follows: 

defineps PSWBlackBox(float x, y) 
gsave 

O O O setrgbcolor 
x y 72 72 rectfill 

grestore 
endps 

pswrap produces a procedure that can be called from a C lan
guage program as follows (the values shown are merely 
examples): 

PSWBlackBox{12.32, -56.78); 

This procedure replaces the x and y operands of recttillwith the 
corresponding procedure arguments, producing executable 
Postscript language code: 

gs ave 
O O 0 setrgbcolor 
12.32 -56.78 72 72 rectfill 

grestore 

Any wrapped procedure works the same way as the above ex
ample: the arguments of the C language procedure must cor
respond in number and type to the operands expected by the 
PostScript operator(s) in the body of the wrap. For instance, a 
procedure argument declared to be of type 'float' corresponds to 
a PostScript real object; an argument of type 'char *' cor
responds to a Postscript string object; and so on. 

The normal outcome of calling a wrapped procedure is the trans
mission of Postscript language code to the interpreter for execu
tion, normally resulting in display output. The Client Library 
may also provide means, on a system-specific basis, to divert 
transmission to another destination, such as a printer or a text 
file. 

For more information about how wraps are defined and used, see 
the pswrap Reference Manual. 

3 OVERVIEW OF THE CLIENT LIBRARY 9 



4 BASIC CLIENT LIBRARY FACILITIES 

This section introduces the concepts needed to write a simple 
application program for the Display Postscript system, includ
ing: 

• Creating a context. 

• Sending code and data to a context. 

• Destroying a context. 

The basic facilities provided by the Client Library to application 
programs are described in this section. 

The Client Library procedures and data structures that are 
referred to in this introduction are documented in the following 
places: 

Section 9. 

Section 10. 

Header file dpsclient.h. Provides general support 
for contexts; includes procedures that send 
Postscript language programs for execution and 
receive results. General applications and appli
cation support software (that is, toolkits) make 
use of this header file. 

Header files dpsops.h and psops.h. Declarations 
for single-operator procedures. 

System-specific documentation. 
Support for creating context records. An ex
ample of context creation is provided in Section 
4.3. 

4.1 CONTEXTS AND CONTEXT DATA STRUCTURES 

An application creates, manages, and destroys one or more con
texts. A typical application creates a single context in a single 
private VM (space). It then sends Postscript language code to 
the context to display text, graphics, and scanned images on the 
screen. 

The context is represented by a record of type 'DPSContextRec'; 
see Section 9.1 for the type definition. A handle to this record 
- a pointer of type 'DPSContext' - is passed explicitly or 

1 0 Client Library Reference Manual I Version of January 23, 1990 



implicitly with every Client Library procedure call. In essence, 
to the application programmer, the 'DPSContext' handle is the 
context. 

A context can be thought of as a destination to which_ Postscript 
language code is sent. The destination is set when the context is 
created. In most cases, the code draws graphics in a window or 
specifies how a page will be printed. Other possible destinations 
include a file (for execution at a later time) or the standard out
put; multiple destinations are permitted. The execution by the 
interpreter of PostScript language code sent to a context may be 
immediate or deferred, depending on which context creation pro
cedure was called and on the setting of certain 'DPSContextRec' 
variables. 

4.2 SYSTEM-SPECIFIC CONTEXT CREATION 

The system-specific interface1 contains, at minimum, procedures 
for creating the 'DPSContextRec' record for the given im
plementation of the Client Library. The system-specific interface 
also provides support for certain extensions to the Client Library 
interface, such as additional error codes. 

Every context is associated with a system-specific object such as 
a window or a file. The context is created by calling a procedure 
in the system-specific interface. Once the context has been 
created, however, a set of standard Client Library operations 
may be applied to it; these operations, including context destruc
tion, are defined in the standard header file dpsclient.h. 

4.3 EXAMPLE OF CONTEXT CREATION 

Context creation facilities are necessarily system specific. This is 
because they often need data objects that represent system
specific entities such as windows and files. However, most con
text creation facilities share a number of common attributes. In 
the text that follows, procedure parameters that are common to 
most systems are described in some detail, while system-specific 
parameters are listed without further discussion. The procedures 

1In Adobe's sample Xll/DPS extension implementation, the system-specific 
header file is dpsXclient.h. 

4 BASIC CLIENT LIBRARY FACILITIES 11 



described here were designed for the X Window System. They 
provide an example of an actual system implementation while at 
the same time demonstrating basic functions that all window 
systems must provide for context creation. 

The creation of a 'DPSContextRec' data structure is usually part 
of application initialization. Contexts persist until they are 
destroyed; see DPSDestroyContext and DPSDestroySpace in 
Section 9 .2. 

/*EXAMPLE CONTEXT CREATION FOR THE X WINDOW SYSTEM*/ 
DPSContext XDPSCreateSimpleContext(dpy, drawable, gc, x, y, textProc, errorProc, space) 

Display *dpy; 
Drawable drawable; 
GCgc; 
intx, y; 
DPSTextProc textProc; 
DPSErrorProc errorProc; 
DPSSpace space; 

typedef void (*DPSTextProc)( /* 
DPSContext ctxt, 
char *buf, 
long unsigned int count*/); 

typedef void (*DPSErrorProc) ( /* 
DPSContext ctxt, 
DPSErrorCode errorCode, 
long unsigned int arg1, arg2 */ ); 

XDPSCreateSimpleContext is a system-specific procedure that 
creates an execution context in the Postscript interpreter. The 
arguments 'dpy', 'gc', 'x', and 'y' have specific uses in the X 
Window System; discussion of these arguments is beyond the 
scope of this manual. The 'drawable' argument associates the 
'DPSContextRec' data structure with a system-specific imaging 
object - in this case, an X drawable object, which could be a 
window or a pixmap. 'DPSTextProc' and 'DPSErrorProc' are 
standard procedures types declared in dpsclient.h; their type 
definitions are included here for ease of reading. 

'space' identifies the private Postscript VM in which the new 
context executes. If 'space' is 'NULL', a new space is created for 
the context; otherwise, it will share the specified space with con-

12 Client Library Reference Manual I Version of January 23, 1990 



texts previously created in the space. A simple application that 
creates one space and one context can pass 'NULL' for the 
'space' argument. See the PostScript Language Reference 
Manual for a definition of VM. See Section 4.6 for more infor
mation about spaces. 

'textProc' and 'errorProc' point to customizable facilities for 
handling text and errors sent by the interpreter. Passing 'NULL' 
for these arguments is allowed but means that text and errors are 
ignored. For simple applications, it is sufficient to specify the 
system-specific default text procedure (DPSDefaultTextBackstop 
in the X Window System implementation) and 
DPSDefaultErrorProc. Use DPSGetCurrentTextBackstop to get 
the current default text procedure. See Section 5 for more infor
mation on text handlers and error handlers. 

XDPSCreateSimpleContext creates a context for which the 
Postscript interpreter is the destination of code and data sent to 
the context. It is sometimes useful to send the code and data 
elsewhere, such as to a file, to a terminal (UNIX® stdout), or to a 
printer; see DPSCreateTextContext. 

DPSContext DPSCreateTextContext(textProc, errorProc) 
DPSTextProc textProc; 
DPSErrorProc errorProc; 

DPSCreateTextContext creates a context whose input is con
verted to ASCII encoding (text that is easily transmitted and 
easily read by humans); see Section 6.2. The ASCII-encoded text 
is passed to the 'textProc' procedure rather than to the PostScript 
interpreter. Since the application provides the implementation of 
the 'textProc' procedure, it determines where the ASCII text 
goes from there. The text can be sent to a file, to a terminal, or 
perhaps to a printer's communication port. 

The 'errorProc' associated with a context handles errors that 
arise when a wrap or Client Library procedure is called with that 
context. The 'textProc' should call the 'errorProc' to handle an 
error only when an appropriate error code is defined. See the 
discussion of text and error handlers in Section 5. 

4 BASIC CLIENT LIBRARY FACILITIES 13 



4.4 THE CURRENT CONTEXT 

The current context is the one that was specified by the last call 
to DPSSetContext. If the application has only one context, 
DPSSetContext may be called once when the application is 
initialized. If the application manages more than one context, it 
must explicitly set the current context when necessary. 

Many Client Library procedures do not require the application to 
specify a context; they assume the current context. This is true of 
all of the single-operator procedures defined in the psops.h 
header file as well as any wrapped procedures that were defined 
to use the current context implicitly. 

An application can find out which is the current context by call
ing DPSGetCurrentContext. 

4.5 SENDING CODE AND DATA TO A CONTEXT 

Once the context has been created, the application can send 
Postscript language code to it by calling procedures such as: 

• Wraps (custom wrapped procedures developed for the 
application). 

• Single-operator procedures defined in dpsops.h and 
psops.h. 

• DPSPrintf, DPSWritePostScript, and DPSWriteData -
Client Library procedures provided for writing to a context. 

A wrapped procedure is a PostScript language program encoded 
as a binary object sequence; binary object sequences are 
described in Section 11.4 and in PostScrip•t Language Extensions 
for the Display PostScript System. The creation of wrapped 
procedures is discussed in the pswrap Reference Manual. Once 
the PostScript language program has been embedded in the body 
of a wrap by using the pswrap translator, it can be called like any 
other C procedure. 

Example 1: Consider a wrap that draws a small colored circle 
around the point where the mouse was clicked, given an RGB 
color and the x,y coordinate returned by a mouse-click event. 
The exact Postscript language implementation is left as an ex-

14 Client Library Reference Manual I Version of January 23, 1990 



ercise for the reader, but the C declaration of the wrap might 
look like this: 

extern void PSWDrawSmallCircle(/* 
DPSContext ctxt; int x, y; float r, g, b */); 

An application might call this procedure as part of the code that 
handles mouse clicks. Suppose the struct 'event' contains the x,y 
coordinate. To draw a bright green circle around the spot, call 
the wrapped procedure with the following arguments: 

PSWDrawSmallCircle(ctxt, event.x, event.y, 0.0, 1.0, 0.0); 

Example 2: If a wrap returns values, the procedure that calls it 
must pass pointers to the variables into which the values will be 
stored. Consider a wrap that, given a font name, tells whether the 
font is in the SharedFontDirectory. Define the wrap like this: 

defineps PSWFontLoaded( 
DPSContext ctxt; char *fontName I boolean *found) 

The corresponding C declaration is: 

extern void PSWFontLoaded(/* 
DPSContext ctxt; char *fontName; int *found */); 

Note that booleans are of C type 'int'. Call the wrapped proce
dure by providing a pointer to a variable of type 'int': 

int fontFound; 

PSWFontLoaded(ctxt, "Courier", &fontFound); 

Wraps are the most efficient way to specify any Postscript lan
guage program as a C-callable procedure. 

Example 3: Occasionally, a very small Postscript language 
program - on the order of one operator - is needed. This is a 
case where a single-operator procedure is appropriate. For ex
ample, to get the current gray level, simply provide a pointer to a 
float and call the single-operator procedure equivalent of the 
Postscript currentgray operator: 

4 BASIC CLIENT LIBRARY FACILITIES 15 



float gray; 

DPScurrentgray(ctxt, &gray); 

See Section 10.3 for a complete listing of single-operator proce
dure declarations. 

Example 4: DPSPrintf is one of the Client Library facilities 
provided for writing PostScript language code directly to a con
text. 

DPSPrintf is similar to the Standard C Library routine printf. It 
formats arguments into ASCII text and writes this text to the 
context. Small Postscript language programs or text data may be 
sent in this way. Here is an example that sends formatted text to 
the show operator to represent an author's byline: 

struct { 
int x, y; /* location on page for byline */ 
char *titleString; /*title of document*/ 
char *authorsName; /* name of author */ 
} byline; 

DPSPrintf(ctxt, 11%d %d moveto (%s by %s) show\n", 
byline.x, 
byline.y, 
byline. titleString, 

· byline.authorsName); 

The x,y coordinate is formatted in place of the two '%d' field 
specifiers, the title replaces the first '%s', followed by ''by'' fol
lowed by the author's name in place of the second '%s'. 

16 Client Library Reference Manual I Version of January 23, 1990 



Warning: When using DPSPrintf, it's important to leave some 
whitespace (newline with '\n ', or just a space) at the very end of 
the format string if the string ends with an operator. PostScript 
language code written to a context appears as a continuous 
stream. Thus, consecutive calls to DPSPrintfwill appear as if all 
the text were sent at once. For example, suppose the following 
calls were made: 

DPSPrintf(ctxt, 11gsave11
); 

DPSPrintf(ctxt, "stroke"); 
DPSPrintf(ctxt, 11grestore11

); 

The context will receive a single string 'gsavestrokegrestore', 
with all the operators run together. Of course, this effect may be 
useful for constructing a long string that isn't a part of a 
program. But when sending operators to be executed, don't for
get to put whitespace at the end of each format string; for ex
ample: 

DPSPrintf(ctxt, "gsave\n"); 

Example 5: The DPSWritePostScript procedure is a facility 
provided for writing Postscript language code of any encoding 
to a context. If DPSChangeEncoding is provided by the system
specific interface, DPSWritePostScript can be used to convert a 
binary-encoded PostScript language program into another binary 
form (for instance, binary object sequences to binary-encoded 
tokens) or into ASCII text. Code destined for immediate execu
tion by the interpreter should be sent as binary object sequences. 
Code that's intended to be read by a human should be sent as 
ASCII text. See Section 6.2 for a discussion of language encod
ings. 

4 BASIC CLIENT LIBRARY FACILITIES 17 



Warning: Although Postscript language of any encoding may 
be written to a context, unexpected results can occur when inter
mixing code of different encodings. This is particularly impor
tant when ASCII encoding is mixed with binary encoding. (See 
PostScript Language Extensions for the Display PostScript 
System for a discussion of encodings.) 

The following code, which looks correct, may fail with a syntax 
error in t~e interpreter, depending on the contents of the buffer: 

while (I* more buffers to send */) { 

} 

count = GetBuffer(file, buffer); 
DPSWritePostScript(ctxt, buffer, count); 
MyWrap(ctxt); 

GetBuffer reads a PostScript language program in the ASCII en
coding from a file. The call to My Wrap generates a binary ob
ject sequence. If the program in the buffer passed to 
DPSWritePostScript is complete, with no partial tokens, 
MyWrap works correctly. Imagine, however, that the end of the 
buffer contains a partial token, 'mov', and the next buffer starts 
with 'eto'. In this instance, the binary object sequence represent
ing MyWrap will be inserted immediately after the partial token, 
resulting in a syntax error. 

This warning applies to all procedures that send code or data to a 
context, including the Client Library procedures DPSPrintf, 
DPSWritePostScript, DPSWriteData, and DPSWaitContext. 

Example 6: To send any type of data to a context (such as 
hexadecimal image data), or to avoid the automatic conversion 
behavior built into DPSWritePostScript, use DPSWriteData. See 
Section 9 .2 for details on DPSWritePostScript and 
DPSWriteData. 

The following example reads hexadecimal image data line by 
line from a file and sends the data to a context: 

18 Client Library Reference Manual I Version of January 23, 1990 



while (lfeof(fp)) { 
fgets(buf, BUFSIZE, fp); 
DPSWriteData(ctxt, buf, strlen(buf)); 

} 

4.6 SPACES 

A context is created in a space. The space is either shared with a 
previously created context or is created when a new context is 
created. Multiple contexts in the same space share all data; care
ful coordination is required to ensure that they don't interfere 
with each other. Contexts in different spaces can operate more or 
less independently and still share data by using shared VM. See 
the discussion of VM and spaces in the PostScript Language 
Reference Manual. 

Destroying a space automatically destroys all of the contexts 
within it. DPSDestroySpace calls DPSDestroyContext for each 
context in the space. 

The parameters that define a space are contained in a record of 
type 'DPSSpaceRec'. 

4.7 INTERRUPTS 

An application may need to interrupt a Postscript language 
program running in the PostScript interpreter. Call 
DPSlnterruptContext for this purpose. (Note that although this 
procedure returns immediately, an indeterminate amount of time 
may pass before execution is actually interrupted.) 

An interrupt request causes the context to execute an interrupt 
error. Since the implementation of the interrupt error can be 
changed by the application, the exact results of requesting an 
interrupt cannot be defined here. The default behavior is that the 
stop operator will execute. For a discussion of the interrupt er
ror, see the PostScript Language Reference Manual; for a discus
sion of error handling in the Client Library, see Section 5.4. 

4 BASIC CLIENT LIBRARY FACILITIES 19 



4.8 DESTROYING CONTEXTS 

An application should destroy all the contexts it creates by call
ing DPSDestroyContext or DPSDestroySpace when they are no 
longer needed. Destroying a context does not destroy the space it 
occupies, but destroying a space destroys all of its contexts; see 
Section 4.6. 

If an application terminates abnormally, the Postscript inter
preter detects that the application has terminated and destroys 
any spaces and contexts that the application had created. 

20 Client Library Reference Manual I Version of January 23, 1990 



5 HANDLING OUTPUT FROM THE CONTEXT 

Output is information returned from the Postscript interpreter to 
the application. In the Display Postscript system, three kinds of 
output are possible: 

•Output parameters (results) from wrapped procedures. 

• ASCII text written by the context (for example, by the 
print operator). 

•Errors. 

Each kind of output is handled by a separate mechanism in the 
Client Library. The handling of results is discussed in Section 
11. The handling of text and errors is discussed in the remainder 
of this section. 

Note: You may not get text and error output when you expect 
it. 

For example, a wrap that generates text to be sent back to the 
application (for instance, with the print operator) may return be
fore the application actually receives the text. Unless the appli
cation and the interpreter are synchronized (see Section 6.4 ), the 
text may not appear until some other Client Library procedure or 
wrap is called. This is due to delays in the communication chan
nel or delays in scheduling execution of the context in the 
PostScript interpreter. 

These kinds of delays are a particularly important consideration 
for handling errors, since the notification of the error may be 
received by the application long after the code that caused the 
error was sent. 

Keep these issues in mind while reading the remainder of Sec
tion 5. 

5.1 CALL-BACK PROCEDURES 

The application programmer must specify call-back procedures 
to handle text and errors. A call-back procedure is code provided 
by an application and called by a system function. 

5 HANDLING OUTPUT FROM THE CONTEXT 21 



A text handler is a call-back procedure that handles text output 
from the context. It is specified in the 'textProc' field of the 
'DPSContextRec'. A system-specific default text handler may be 
provided; in the Display PostScript system extension for the X 
Window System, the default text handler is 
DPSDefaultTextBackstop. 

An error handler is a call-back procedure that handles errors 
arising when the context is passed as a parameter to any Client 
Library procedure or wrap. It is specified in the 'errorProc' field 
of the 'DPSContextRec'. DPSDefaultErrorProc is the default er
ror handler provided with every Client Library implementation. 

Text and error handlers are associated with a given context when 
the context is created, but the DPSSetTextProc and 
DPSSetErrorProc procedures, described in Section 9.2, give the 
application the flexibility to change these handlers at any time. 

Using a call-back procedure reverses the normal flow of control, 
which is as follows: 

• An application that is active calls the system to provide ser
vices; for example, to get memory or open a file. 

• The application then gives up control until the system has 
provided the service. 

• The system procedure returns control to the application, 
passing it the result of the service that was requested. 

In the case of call-back procedures, the application wants a cus
tom service provided at a time when it is not in control. It does 
this as follows: 

• The application notifies the system, often but not neces
sarily at initialization time, of the address of the call-back 
procedure to be invoked when the system recognizes a cer
tain condition, say, an error condition. 

• When the error is raised, the system gets control. 

• The system passes control to the error handler specified by 
the application - thus "calling back" the application. 

• The error handler does processing on behalf of the appli
cation. 

22 Client Library Reference Manual/ Version of January 23, 1990 



• When the error handler completes, it returns not to the ap
plication but to the system. 

In the Display PostScript system, the text and error handlers in 
the Client Library interface are designed to be used this way. 

Note: Client Library procedures and wraps should not be called 
from within a call-back procedure. This restriction protects the 
application against unintended recursion. 

5.2 TEXT HANDLERS 

A context generates text output with operators such as print, 
writestring, and ==. The application handles this text output 
with a text handler, which is specified in the 'textProc' field of 
the 'DPSContextRec'. The text handler is passed a buffer of text 
and a count of the number of characters in the buffer; what is 
done with this buffer is up to the application. The text handler 
may be called several times to handle large amounts of text. Note 
that the Client Library just gets buffers; it doesn't provide any 
logical structure for the text and it doesn't indicate (or know) 
where the text ends. 

The text handler may be called as a side effect of calling a wrap, 
a single-operator procedure, or a Client Library procedure that 
takes a context. You can't predict when the text handler for a 
context will be called unless the application is synchronized (see 
Section 6.4). 

5.3 EXAMPLE TEXT HANDLER 

Consider an application that normally displays a log window to 
which it appends plain text or error messages received from the 
interpreter. The handlers for this window were associated with 
the context when it was created. Occasionally, the application 
calls a wrapped procedure that generates a block of text intended 
for a file. Before calling the text-generating procedure, the appli
cation must install a temporary text handler for its output. The 
temporary text handler stores the text it receives in a file instead 
of in the log window. When the text-generating procedure com
pletes, the application restores the original text handler. 

5 HANDLING OUTPUT FROM THE CONTEXT 23 



An example of such an application, written for the X Window 
System, is shown below. 

/*EXAMPLE TEXT HANDLER FOR AN X WINDOW SYSTEM APPLICATION*/ 

/* wrapped procedure that generates text */ 

defineps WrapThatGeneratesText(DPSContext ctxt I boolean *done) 
% send a text representation of the contents of mydict 
mydict {== ==} forall 
% returning a value flushes output as a side-effect 
true done 

endps 

/* normal text proc appends to a log window */ 

void LogTextProc(ctxt, buf, count) 

{ 

DPSContext ctxt; 
char *buf; 
long unsigned int count; 

/* ... code that appends text to a log window ... */ 
} 

/* special text proc stores text to a file */ 

void StoreTextProc(ctxt, buf, count) 
DPSContext ctxt; 
char *buf; 
long unsigned int count; 

{ 
/* ... code that appends text to a file ... */ 

} 

/* application initialization */ 

ctxt = XDPSCreateSimpleContext(dpy, drawable, gc, x, y, 
LogTextProc, DPSDefaultErrorProc, NULL); 

/* main loop for application */ 

while (XPending(dpy)) > O { 
/* get an input event */ 
XNextEvent(dpy, &event); 
/* react to event */ 
switch (event.type) { 

/*any text that comes from processing EVENT_A or EVENT_B is logged*/ 
case EVENT_ A: .. . 
case EVENT _B: .. . 
/* but EVENT_ C means store the text in a file */ 
case EVENT_ C: { 

24 Client Library Reference Manual I Version of January 23, 1990 



} 
} 

} 

int done; 
DPSTextProc tmp = ctxt -> textProc; 

/*make sure interpreter is ready*/ 
DPSWaitContext(ctxt); 
/* temporarily install the other text proc */ 
DPSSetTextProc(ctxt, StoreTextProc); 
/*call the wrapped procedure*/ 
Wrap ThatGeneratesText( ctxt, &done); 
/* since wrap returned a value, we know the interpreter is 

ready when we get here; restore original textProc */ 
DPSSetTextProc(ctxt, tmp); 
/* close file by calling textProc with count = O */ 
StoreTextProc(ctxt, NULL, O); 
break; 

/* ... */ 
default:; 

5.4 ERROR HANDLERS 

The 'errorProc' field in the 'DPSContextRec' contains the ad
dress of a call-back procedure for handling errors. The error call
back procedure is called when there is a Postscript language er
ror or when an error internal to the Client Library, such as use of 
an invalid context identifier, is encountered. The standard error 
codes are listed under DPSErrorProc in Section 9.2. 

When the interpreter detects a PostScript language error, it in
vokes the standard handleerror procedure to report the error, 
then forces the context to terminate. The error call-back proce
dure specified in the 'DPSContextRec' is called with the 
'dps_err_ps' error code. 

After a PostScript language error, the context becomes invalid; 
further use of it will cause another error. See Section 5.5 for a 
discussion of error recovery issues. See Appendix B for an ex
ample of an error handler. See the Note on page 21 for a discus
sion of when error output is actually received. 

5 HANDLING OUTPUT FROM THE CONTEXT 25 



5.5 ERROR RECOVERY REQUIREMENTS 

For many applications, error recovery may not be considered an 
issue because an unanticipated PostScript language error or 
Client Library error represents a bug in the program that will be 
fixed during development. However, since applications do some
times go into production with undiscovered bugs, it is prudent to 
provide an error handler that allows the application to exit grace
fully. 

There are a small number of applications that require error 
recovery more sophisticated than simply exiting. If an applica
tion falls into one of the following categories, it is likely that 
some form of error recovery will be needed: 

•Applications that read and execute PostScript language 
programs generated by other sources (for example, a 
previewer application for Postscript language documents 
generated by a word-processing program). Since the exter
nally provided Postscript language program may have er
rors, the application must provide some sort of error 
recovery. 

• Applications that allow the user to enter Postscript lan
guage programs. This category is a subset of the one 
above. 

• Applications that generate Postscript language programs 
dynamically in response to user requests (for example, a 
graphics art program that generates an arbitrarily long path 
description of a graphical object). Since there are system
specific resource limitations on the interpreter, such as 
memory and disk space, the application should be able to 
back away from an error caused by exhausting a resource, 
and perhaps attempt to acquire new or reclaim used 
resources. 

Error recovery is complicated because both the Client Library 
and the context can be left in unknown states. For example, the 
operand stack may have unused objects on it. 

In general, if an application needs to intercept and recover from 
Postscript language errors, keep it simple. For some applica
tions, the best strategy when an error occurs is either to destroy 
the space and construct a new one with a new context or to res
tart the application. 

26 Client library Reference Manual / Version of January 23, 1990 



A given implementation of the Client Library may provide more 
sophisticated error recovery facilities; consult your system
specific documentation. Your system may provide the general
purpose exception-handling facilities described in Appendix C, 
which can be used in conjunction with DPSDefaultErrorProc. 

5.6 BACKSTOP HANDLERS 

Backstop handlers handle output when there is no other ap
propriate handler. The Client Library automatically installs back
stop handlers. 

To get a pointer to the current backstop text handler, call 
DPSGetCurrentTextBackstop. To install a new backstop text 
handler, call DPSSetTextBackstop. The text backstop may be 
used as a default text handler implementation. The exact defini
tion of what the default text handler does is system specific. For 
instance, for UNIX systems, it writes the text to stdout. 

To get a pointer to the current backstop error handler, call 
DPSGetCurrentErrorBackstop. To install a new backstop error 
handler, call DPSSetErrorBackstop. The backstop error handler 
processes errors internal to the Client Library, such as a lost 
server connection. These errors have no specific 'DPSContext' 
handle associated with them and therefore have no error handler. 

5 HANDLING OUTPUT FROM THE CONTEXT 27 



6 ADDITIONAL CLIENT LIBRARY FACILITIES 

The Client Library includes a number of utilities and support 
functions for applications. This section describes: 

• Sending the same code and data to a group of contexts by 
chaining them. 

• Encoding and translating PostScript language code. 

•Buffering and flushing the buffer. 

• Synchronizing an application with a context. 

• Communicating with a forked context. 

6.1 CHAINED CONTEXTS 

It is sometimes useful to send the same Postscript language 
program to several contexts. This is accomplished most con
veniently by chaining the contexts together and sending input to 
one context in the chain; for example, by calling a wrap with that 
context. 

Two Client Library procedures are provided for managing con
text cha~ning: 

• DPSChainContext links a context to a chain. 

• DPSUnchainContext removes a child context from its 
parent's chain. 

One context in the chain is specified as the parent context, the 
other as the child context. The child context is added to the 
parent's chain. Subsequently, any input sent to the parent is sent 
to its child, and the child of the child, and so on. Input sent to a 
child is not passed to its parent. A context can appear on only 
one chain. If the context is already a child on a chain, 
DPSChainContext returns a nonzero error code. However, you 
can chain a child to a context that already has a child. 

28 Client Library Reference Manual I Version of January 23, 1990 



Note: A parent context always passes its input to its child con
text. However, for a chain of more than two contexts, the order 
in which the contexts on the chain receive the input is not 
defined. Therefore an application should not rely on 
DPSChainContext to create a chain whose contexts process input 
in a particular order. 

For chained contexts, output is handled differently from input, 
and text and errors are handled differently from results. If a con
text on a chain generates text or error output, the output is 
handled by that context only. Such output is not passed to its 
child. When a wrap that returns results is called, all of the con
texts on the chain get the wrap code (the input), but only the 
context with which the wrap was called receives the results. 

The best way to build a chain is to identify one context as the 
parent. Call DPSChainContext to make each additional context 
the child of that parent. For example, to chain contexts A, B, C, 
and D, choose A as the parent and make the following calls to 
DPSChainContext: 

DPSChainContext(A, B); 
DPSChainContext(A,C); 
DPSChainContext(A,D); 

Once the chain is built, send input only to the designated parent, 
A. 

The most common use of chained contexts is in debugging. A 
log of Postscript operators executed may be kept by a child con
text whose purpose is to convert PostScript language programs 
to ASCII text and write the text to a file; this child is chained to a 
parent context that sends normal application requests to the inter
preter. The parent's calls to wrapped procedures will then be 
logged in human-readable form as a debugging audit trail. 

Chained contexts may also be used for duplicate displays. An 
application may want several windows, or even several different 
display screens, to show the same graphics without having to 
explicitly call the wrapped procedure in a loop for all of the con
texts. 

6 ADDITIONAL CLIENT LIBRARY FACILITIES 29 



6.2 ENCODING AND TRANSLATION 

PostScript language code may be sent to a context in three ways: 

• As a binary object sequence - typically for immediate 
execution on behalf of a context. 

•As binary-encoded tokens - typically for deferred execu
tion from a file. 

• As ASCII text - typically for debugging, display, or 
deferred execution from a file. 

PostScript Language Extensions for the Display PostScript 
System describes the encodings available in the Postscript lan
guage. 

Since the application and the PostScript interpreter can be on 
different machines, the Client Library automatically ensures that 
the binary representation of numeric values, including byte order 
and floating-point format, are correctly interpreted. 

6.2.1 Encoding Postscript Language Code 

On a system-specific basis, the Client Library supports a variety 
of conversions to and from the encodings and formats defined 
for the Postscript language: 

•Binary object sequence to binary object sequence. For ex
panding user name indices back to their printable names. 

• Binary object sequence to ASCII encoding. For backward 
compatibility with printers, for interchange, and for debug
ging. 

•Binary object sequence to binary-encoded tokens. For 
long-term storage. 

• Binary-encoded tokens to ASCII. For backward com-
patibility and interchange. 

'DPSProgramEncoding' defines the three encodings available to 
PdstScript language programs. 'DPSNameEncoding' defines the 
two possible encodings for user names in Postscript language 
programs. See Section 11.6 for the type definitions. 

6.2.2 Translation 

30 Client Library Reference Manual I Version of January 23, 1990 



Translation means the conversion of program encoding or name 
encoding from one form to another. 

Any code sent to the context is converted according to the setting 
of the encoding fields. For a context that was created with the 
system-specific routine DPSCreateTextContext, code is 
automatically converted to ASCII encoding. 

An application sometimes exchanges binary object sequences 
with another application. Since binary object sequences have 
user name indices by default, the sending application must 
provide name-mapping information to the receiving application; 
this information can be lengthy. Instead, some implementations 
allow the application to translate name indices back into user 
names by changing the 'nameEncoding' field to 'dps_strings'. In 
many implementations, DPSChangeEncoding performs this 
function. 

6.3 BUFFERING 

For optimal performance, programs and data sent to a context 
may be buffered by the Client Library. For the most part, the 
application programmer need not be concerned with this buffer
ing. Flushing of the buffer happens automatically as required, 
such as just before waiting for input events. 

However, in certain unusual situations, the application may ex
plicitly flush a buffer (see example below). DPSFlushContext al
lows the application to force any buffered code or data to be sent 
to the context. Note that flushing does not guarantee that code is 
executed by the context, only that any buffered code is sent to 
the context. See Section 6.4 and DPSWaitContext for informa
tion on how to force code to be executed. 

Unnecessary flushing is inefficient. It is unusual for the appli
cation to flush the buffer explicitly. Cases where the buffer 
might need to be flushed include the following: 

•Nothing to send to the interpreter for a long time (for ex
ample, ''going to sleep'' or doing a long computation). 

•Nothing expected from the interpreter for a long time. 
(Note that getting input automatically flushes the output 
buffers.) 

6 ADDITIONAL CLIENT LIBRARY FACILITIES 31 



When the client and· the server are separate processes and the 
buffered code need not be executed immediately, the application 
can flush the buffers with flush rather than synchronizing with 
the context; synchronizing is described in Section 6.4. 

6.4 SYNCHRONIZING APPLICATION AND CONTEXT 

The PostScript interpreter can run as a separate operating-system 
process (or task) from the application; it can even run on a 
separate machine. When the processes are separate, an applica
tion programmer must take into account the communication be
tween the application and the Postscript interpreter. This is im
portant when time-critical actions must be performed based on 
the current appearance of_ the display. Also, errors arising from 
the execution of a wrapped procedure may be reported long after 
the procedure returns. 

The application and the context are synchronized when all code 
sent to the context has been executed and it is waiting to execute 
more code. When the two are not synchronized, the status of 
code previously sent to the context is unknown to the applica
tion. Synchronization can be effected in two ways: as a side ef
fect of calling wraps that return values, or explicitly, by calling 
the DPSWaitContext procedure. 

A wrapped procedure that has no result values returns as soon as 
the wrap body is sent to the context. The data buffer is not neces
sarily flushed in this case. Sometimes, however, the application's 
next action depends on the completed execution of the wrap 
body by the PostScript interpreter. The following example 
describes the kind of problem that can occur when the assump
tion is made that a wrap's code has been executed by the time it 
returns: 

Example: An application calls a wrapped procedure to draw a 
large and complex picture into an off screen buffer (such as an 
Xl 1 pixmap). The wrapped procedure has no return value, so it 
returns immediately, although the context may not have finished 
executing the code. At this point, the application calls procedures 
to copy the screen buffer to a window for display. If the context 
has not finished drawing the picture into the buffer, only part of 
the image will be displayed on the screen. This is not what the 
application programmer had in mind. 

32 Client Library Reference Manual I Version of January 23, 1990 



Wrapped procedures that return results flush any code waiting to 
be sent to the context and then wait until all results have been 
received. Therefore they automatically synchronize the context 
with the application. The wrapped procedure will not return until 
the interpreter indicates that all results have been sent.2 In this 
case, the application knows that the context is ready to execute 
more code as soon as the wrapped procedure returns. 

The preceding discussion describes the side effect of calling a 
wrap that returns a value, but it is not always convenient, or 
indeed correct, to write wrapped procedures that return values. 
Forcing the application to wait for a return result for every wrap 
is inefficient and may degrade performance. 

If an application has a few critical points where synchronization 
must occur, and a wrap that returns results is not needed, 
DPSWaitContext may be used to synchronize the application 
with the context. DPSWaitContext flushes any buffered code, 
and then waits until the context finishes executing all code that 
has been sent to it so far. This forces the context to finish before 
the application continues. 

Like wraps that return results, DPSWaitContext should be used 
only when necessary. Performance may be degraded by exces
sive synchronization. 

6.5 FORKED CONTEXTS 

When the fork operator is executed in the Postscript interpreter, 
a new execution context is created, but the application has no 
way to communicate with it. In order to communicate with a 
forked context, it must create a 'DPSContextRec' for it. For ex
ample, DPSContextFromContextID is an X Window System pro
cedure that creates a 'DPSContextRec' for a forked context. 

2But the wrapped procedure may return prematurely if an error occurs, depend
ing on how the error handler works; see Section 5.4. 

6 ADDITIONAL CLIENT LIBRARY FACILITIES 33 



DPSContext DPSContextFromContextlD(ctxt, cid, textProc, errorProc) 
DPSContext ctxt; 
long int cid, 
DPSTextProc textProc, 
DPSErrorProc errorProc; 

'ct>ct' is the context that executed the fork operator. 

'cid' is the integer value of the new context's identifier. 'NULL' 
is returned if 'cid' is invalid. 

If 'textProc' or 'errorProc' are 'NULL', 
DPSContextFromContextID copies the corresponding procedure 
pointer from 'ctxt' to the new 'DPSContext'; otherwise the new 
context gets the specified 'textProc' and 'errorProc'. 

All other fields of the new context are initialized with values 
from 'ctxt', including the space field. 

34 Client Library Reference Manual I Version of January 23, 1990 



7 PROGRAMMING TIPS 

This section contains tips for avoiding mistakes commonly made 
by programmers using the Client Library interface. Some of the 
items listed here are brief summaries of Notes and Warnings 
emphasized elsewhere in this document. Section 7 .1 contains 
some pointers on how to make the best use of the PostScript 
language imaging model. 

•Don't guess what the arguments to a single-operator proce
dure call are - look them up in the listing. See Section 
10. 

• Make sure that variables passed to wrapped procedures and 
single-operator procedures are of the correct C type. A 
common mistake is to pass a pointer to a 'short int' (only 
16 bits wide) to a procedure that returns a boolean. A 
boolean is defined as an 'int', which can be 32 bits wide on 
some systems. 

• Make sure that PostScript language code is properly 
separated by whitespace when using DPSPrintf. Make sure 
that variables passed to DPSPrintf are of the right type. 
Passing type 'float' to a format string of '%d' will yield 
unpredictable results. See Section 4.5. 

• There are two means of synchronizing the application with 
the context: either call DPSWaitContext, which causes the 
application to wait until the interpreter has executed all the 
code sent to the execution context, or call a wrap that 
returns a result, which causes synchronization as a side ef
fect. If synchronization is not required, use a wrap that 
returns results only when results are needed. Unnecessary 
synchronization by either method will degrade perfor
mance. See Section 6.4. 

•Use of DPSFlushContext is usually not necessary. See 
Section 6.3. 

• Do not read from the file returned by the operator 
currenttile from within a wrap. In general, do not read 
directly from the context's standard input stream %stdin 
from within a wrap. Since a binary object sequence is a 
single token, the behavior of the code is different from 
what it would be in another encoding, such as ASCII. This 
will lead to unpredictable results. See the pswrap Refer-

7 PROGRAMMING TIPS 35 



ence Manual and PostScript Language Extensions for the 
Display PostScript System. 

• If the context is an execution context for a display, do not 
write PostScript language programs, particularly in wraps, 
that depend on reading the end-of-file (EOF) indicator. 
Support for EOF on the communication channel is system 
specific, and should not be relied upon. However, 
Postscript language programs that will be written to a file 
or spooled to a printer can make use of EOF indications. 

• Be careful when sending intermixed encoding types to a 
context. In particular, it's best to avoid mixing ASCII en
coding with binary encoding. See the warning on page 18 
for an example; see also the following tip on 
DPSWaitContext. 

•Before calling DPSWaitContext, make sure that code that 
has already been sent to the context is syntactically com
plete, such as a wrap or a correctly terminated Postscript 
operator or composite object. 

•Use of the fork operator requires understanding ofa given 
system's support for handling errors from the forked con
text. A common error while developing multiple context 
applications is to fail to handle errors arising from forked 
contexts. See Section 5.4. 

• To avoid unintended recursion, do not call Client Library 
procedures or wraps from within a call-back procedure. 

• To avoid confusion about which context on a chain will 
handle output, don't send input to a context that's been 
made the child of another context; send input only to the 
parent. (This doesn't apply to text contexts, since they 
never get output.) 

• Program wraps carefully. Copying the entire prologue 
from a Postscript printer driver into a wrap without change 
is probably not going to result in efficient code. 

• Avoid the temptation to do all of your programming in the 
Postscript language. Because the Postscript language is 
interpreted, not compiled, the application can generally do 
arithmetic computation and data manipulation such as sort
ing more efficiently in C. Reserve the Postscript language 
for what it does best - displaying text and graphics. 

36 Client Library Reference Manual I Version of January 23, 1990 



7.1 USING THE IMAGING MODEL 

The device-independent and resolution-independent imaging 
model defined by the Postscript language is described in the 
PostScript Language Reference Manual. For general advice on 
how to use the Postscript language efficiently and detailed ad
vice on how to write page descriptions, see Postscript Language 
Program Design. Although that book is primarily concerned 
with printer applications, much of its information on the imaging 
model can be applied to writing applications for the Display 
Postscript system. A thorough understanding of the imaging 
model is essential to writing efficient Display Postscript system 
applications. 

The imaging model helps make your application device and 
resolution independent. Device independence ensures that your 
application will work and look as you intended on any display or 
print media. Resolution independence lets you use the power of 
the PostScript language to do scaling, rotation, and transfor
mation of your graphical display without loss of quality. Use of 
the imaging model will automatically give you the best possible 
rendering for any device. 

Design your application with the imaging model in mind. Con
sider issues like converting coordinate systems, representing 
paths and graphics states with data structures, rendering colors 
and patterns, setting text, and accessing fonts (to name just a 
few). 

A few specific tips are listed below: 

•Coordinates sent to the PostScript interpreter should be in 
the user coordinate system (user space). Although it may 
be more convenient to express coordinates in the window 
coordinate system, this makes your code resolution depend
ent. Your application will run more efficiently if you com
pute the coordinate conversions to and from user space in C 
code, rather than letting the interpreter do it. 

•Think in terms of color. Avoid programming to the lowest 
common denominator (low-resolution monochrome). The 
imaging model will always give the best rendering possible 
for a device, so use colors even if you expect that your 
application may be run on monochrome or gray-scale 

7 PROGRAMMING TIPS 37 



devices. Avoid using setgray unless you really want black, 
white, or a gray level. Use setrgbcolor for all other cases. 
The imaging model will use a gray level or halftone pattern 
if the device does not support color, so objects of different 
colors will be distinguishable from one another. 

• Don't use setlinewidth with a width of zero to get thin 
lines. On high-resolution devices, the lines will be prac
tically invisible. To get lines narrower than one point, use 
fractions of 1 such as 0.3 or 0.25. 

38 Client Library Reference Manual I Version of January 23, 1990 



8 EXAMPLE APPLICATION PROGRAM 

This section provides a simple example of how to use the Dis
play PostScript system through the Client Library. The example: 

• Establishes communication with an Xl 1 server. 

• Creates a window and a context. 

• Draws an ochre rectangle in the window. 

• Waits for a mouse-button click. 

• Terminates when the button is pressed. 

To use the PostScript imaging model, an application must 
describe its graphical operations in the Postscript language. 
Therefore an application using the Display Postscript system is a 
combination of C code and Postscript language code. 

The pswrap program generates a C code file and a C header file 
that defines the interface to the procedures in the code file. The 
application source code and the pswrap output file are compiled 
and linked together with the program libraries of the Client 
Library to form the executable application program. Figure 2 il
lustrates the complete process. 

8 EXAMPLE APPLICATION PROGRAM 39 



Figure 2 Creating an Application 

/* 

examplewraps.psw 

8.1 EXAMPLE C CODE 

The following code is used in conjunction with the wrap in the 
next section. See the description that follows. 

example.c - simple X Window System application. Uses Display Postscript 
to draw an ochre box and uses X primitives to wait for a mouse click before 
terminating. 

*/ 

#include <stdio.h> 
#include <string.h> 
#include <X11/X.h> 
#include <X11 /Xlib.h> 
#include <X11/lntrinsic.h> 
#include "psops.h" 

/* Standard C library 1/0 routines */ 
/*Standard C library string routines*/ 

/* X definitions*/ 
/* Interface to X library */ 
/* X toolkit definitions */ 

/*Interface to Postscript single-op wraps*/ 

40 Client Library Reference Manual I Version of January 23, 1990 



#include "dpsXclient.h" 
#include "examplewraps.h" 

/* Interface to the DPS Client Library*/ 
/* Interface to user-defined "wrap" procedures */ 

/* Window geometry definitions */ 
#define XWINDOW_X_ORIGIN 100 
#define XWINDOW_Y_ORIGIN 100 
#define XWINDOW_WIDTH 500 
#define XWINDOW_HEIGHT 500 

void main(argc, argv) 

{ 

int argc; 
char *argva; 

Display *dpy; /* X display structure */ 
int screen; /* screen on display */ 
DPSContext ctxt; /* DPS drawing context*/ 
DPSContext txtCtxt; /* DPS text context for debugging */ 
Window xWindo\M; /* window where drawing occurs */ 
int blackPixel, whitePixel; 
int debug = { FALSE }; 
GCgc; 
XSetWindowAttributes attributes; 
unsigned long mask; 
DPSSpace space; 
float x, y, width, height; 

/*Connect to the window server by opening the display. Most of command 
line is parsed by XtOpenDisplay, leaving any options not recognized by 
the X toolkit: look for local -debug switch */ 

XtToolkitlnitialize(); 
dpy = XtOpenDisplay(NULL, (String) NULL, "example", "example", 

(XrmOptionDescRec *) NULL, 0, &argc, argv); 
screen= DefaultScreen(dpy); 
if (argc == 2) 

if (strcmp(argv[1], "-debug") == 0) 
debug = TRUE; 

else { 
printf("Usage: example [-display xx:O] [-sync] [-debug]\n"); 
exit(1); 
} 

/*Create a window to draw in: register interest in mouse button events.*/ 

blackPixel = BlackPixel (dpy, screen); 
whitePixel = WhitePixel (dpy, screen); 
attributes.background_pixel = whitePixel; 
attributes.border _pixel = blackPixel; 
attributes.bit_gravity = SouthWestGravity; 
attributes.event_mask = ButtonPressMask I ButtonReleaseMask; 
mask = CWBackPixel I CWBorderPixel I CWBitGravity I CWEventMask; 

8 EXAMPLE APPLICATION PROGRAM 41 



xWindow = XCreateWindow(dpy, DefaultRootWindow(dpy), 
XWINDOW_X_ORIGIN, XWINDOW_ Y _ORIGIN, XWINDOW_WIDTH, XWINDOW_HEIGHT, 
1, CopyFromParent, lnputOutput, CopyFromParent, mask, &attributes); 

XMapWindow(dpy, xWindow); 

gc = XCreateGC(dpy, RootWindow(dpy, screen), 0, NULL); 
XSetForeground(dpy, gc, blackPixel); 
XSetBackground(dpy, gc, whitePixel); 

/*Create a DPS context to draw in the window we just created. If the 
user has asked for debugging, create a text context chained to the 
'drawing' context. */ 

ctxt = XDPSCreateSimpleContext(dpy, xWindow, gc, 0, XWINDOW_HEIGHT, 
DPSDefaultTextBackstop, DPSDefaultErrorProc, NULL); 

if (ctxt == NULL) { 
fprintf(stderr, "Error attempting to create DPS context\n"); 
exit(1 ); 
} 

DPSSetContext(ctxt); 

if (debug){ 
txtCtxt = DPSCreateTextContext(DPSDefaultTextBackstop, DPSDefaultErrorProc); 
DPSChainContext(ctxt, txtCtxt); 
} 

/* Convert the X Window System coordinates at the lower right corner 
of the window to get the width and height in user space.*/ 

PSitransform ( 
(float) XWINDOW_WIDTH, 
(float) -XWINDOW_HEIGHT, 
&width, 
&height); 

/*Locate the box in the middle of the window.*/ 

x = width I 4.0; 
y = height I 4.0; 

/* Paint an ochre box. */ 

PSWDrawBox(0.77, 0.58, 0.02, x, y, width I 2.0, height I 2.0); 

/* Wait for a mouse click on any button then terminate */ 

while (NextEvent() != ButtonPress); 
while (NextEvent() I= ButtonRelease); 

space = DPSSpaceFromContext(ctxt); 
DPSDestroySpace(space); 
exit(O); 

42 Client Library Reference Manual I Version of January 23, 1990 



} /*main*/ 

int NextEvent() 
{ 

} 

XE vent event; 

XtNextEvent( &event); 
return(event.type); 

8.2 EXAMPLE WRAP 

This wrap provides the Postscript language routine used by the 
example application. It is shown as examplewraps.psw in Figure 
2 on page 40. 

/* wrap for example application */ 

defineps PSWDrawBox(float r, g, b, x, y, width, height) 
gs ave 
r g b setrgbcolor 
x y width height rectfill 
grestore 

endps 

8.3 DESCRIPTION OF THE EXAMPLE APPLICATION 

The example application demonstrates the use of Client Library 
functions and custom wraps in the Xll environment. The appli
cation is simple: it draws a rectangle in the middle of a window, 
waits for a mouse button click in the window, and terminates. 

The program starts by initializing the toolkit and connecting to 
the display device. Command-line options can include all op
tions recognized by the X Intrinsics resource manager plus a lo
cal '-debug' option, which demonstrates the use of a chained 
text context for debugging. 

The program creates a window that will contain the drawing 
produced by the PostScript operators. The window's attributes 
are set to indicate interest in mouse button events in that win
dow. 

8 EXAMPLE APPLICATION PROGRAM 43 



The program creates a context with 'xWindow' as its 'drawable'. 
The system-specific default handlers DPSDefaultTextBackstop 
and DPSDefaultErrorProc are specified in the 
XDPSCreateSimpleContext call. These handlers are adequate for 
this application. 

If the '-debug' option was selected, the program creates a con
text that converts binary-encoded PostScript language programs 
into readable text. The text is passed to 'PrintProc'. This context 
is then chained to the drawing context. The result is that any 
code sent to the drawing context will be also sent to the text 
context and displayed on stdout. This is a common technique for 
debugging wrapped procedures. 

Now that the application is completely initialized, Postscript lan
guage code can be executed to draw a rectangle into the window. 
This is done by using both a single-operator procedure and a 
customized wrapped procedure. 

The single-operator procedure PSitransform determines the 
bounds of the window in terms of Postscript user space; this 
allows the program to scale the size of the rectangle ap
propriate! y. 

The wrap procedure PSWDrawBox takes red, green, and blue 
levels to specify the color of the rectangle. It also takes x,y coor
dinates for the bottom left corner of the rectangle, and it takes 
the rectangle's width and height. Simple arithmetic computation 
is most efficiently done in C code by the application, rather than 
in PostScript language code by the interpreter. 

PSWDrawBox is called to draw a colored square. If the display 
supports color, you'll see a square painted in ochre (a dark shade 
of orange). The values 0.77 for red, 0.58 for green, and 0.02 for 
blue approximate the color ochre. If the display supports only 
gray scale or monochrome, you'll see a square painted in some 
shade of gray. 

The program now waits for events. Since the only events regis
tered in this window are mouse-button events, events such as 
window movement and resizing are not directed to the appli
cation. When a button-press event is followed by a button
release event, the program destroys the space used by the draw-

44 Client library Reference Manual I Version of January 23, 1990 



ing context. This destroys the context and its chained text con
text as well. The program then terminates normally. 

8 EXAMPLE APPLICATION PROGRAM 45 



9 THE DPSCLIENT.H HEADER FILE 

DPSContext 

This section documents the dpsclient.h procedures that constitute 
the core of the Client Library. They are system independent. 

9.1 DPSCLIENT.H DATA STRUCTURES 

This section documents: 

• The standard context record. 

• The standard error codes. 

The context record, 'DPSContextRec', is shared by the appli
cation and the Postscript interpreter. Except for its 'priv' field, 
this data structure should not be altered directly. The dpsclient.h 
header file provides procedures to alter it. 

When calling Client Library procedures, refer to the context 
record by its handle, 'DPSContext'. 

/*handle for context record*/ 

See 'DPSContextRec'. 

46 Client Library Reference Manual I Version of January 23, 1990 



DPSContextRec typedef struct _t_DPSContextRec { 
char *priv; 
DPSSpace space; 
DPSProgramEncoding programEncoding; 
DPSNameEncoding nameEncoding; 
DPSProcs procs; 
void (*textProc) (); 
void (*errorProc)(); 
DPSResults resultTable; 
unsigned int resultTablelength; 
struct _t_DPSContextRec *chainParent, *chainChild; 
} DPSContextRec, *DPSContext; 

defines the data structure pointed to by 'DPSContext'. 

Note: This record is used by dpsclient.h procedures but is ac
tually defined in the dpsfriends.h header file. 

'priv' is provided for use by application code. It is initialized to 
'NULL' and is not'touched thereafter by the Client Library im
plementation. 

Warning: Although it is possible to read all the fields of the 
'DPSContextRec' record directly, they should not be modified 
directly except for 'priv'. Data structures internal to the Client 
Library depend on the values in these fields and must be notified 
when they change. Call the procedures provided for this pur
pose, such as DPSSetTextProc. 

'space' identifies the space in which the context executes. 

'programEncoding' and 'nameEncoding' describe the encoding 
of the Postscript language that is sent to the interpreter. The 
values in these fields are established when the context is created. 
Whether or not the encoding fields can be changed after creation 
is system specific. 

'procs' points to a 'struct' containing procedures that implement 
the basic context operations, including writing, flushing, inter
rupting, and so on. 

The Client Library implementation calls the 'textProc' and 

9 THE DPSCLIENT.H HEADER FILE 47 



DPSErrorCode 

'errorProc' procedures to handle interpreter-generated ASCII 
text and errors. 

'resultTablelength' and 'resultTable' define the number, type, 
and location of results expected by a wrap. They are set up by 
the wrap procedure before any values are returned; see 
DPSSetResultTable in Section 11.7. 

'chainParent' and 'chainChild' are used for chaining contexts. 
'chainChild' is a pointer to the context that automatically 
receives code and data sent to the context represented by this 
'DPSContextRec'. 'chainParent' is a pointer to the context that 
automatically sends code and data to the context represented by 
this 'DPSContextRec'. See the discussion of chained contexts in 
Section 6.1 for more information. 

typedef int DPSErrorCode; 

defines the type of error code used by the Client Library. Here 
are the standard error codes: 

• 'dps_err_ps' identifies standard Postscript interpreter er
rors. 

• 'dps_err_nameToolong' flags user names that are too 
long. 128 characters is the maximum length for Postscript 
language names. 

• 'dps_err_resultTagCheck' flags erroneous result tags, most 
likely due to erroneous explicit use of the printobject 
operator. 

• 'dps_err_resultTypeCheck' flags incompatible result types. 

• 'dps_err_invalidContext' flags an invalid 'DPSContext' ar
gument. An attempt to send Postscript language code to a 
context that has terminated is the most likely cause of this 
error. 

For more information, see DPSErrorProc in Section 9.2. 

9.2 DPSCLIENT.H PROCEDURES 

This section contains descriptions of the procedures in the Client 
Library header file dpsclient.h, listed alphabetically. 

48 Client Library Reference Manual/ Version of January 23, 1990 



DPSChainContext int DPSChainContext(parent, child); 
DPSContext parent, child; 

links 'child' onto the context chain of 'parent'. This is the chain 
of contexts that automatically receive a copy of any code or data 
sent to 'parent'. A context appears on only one such chain. 

DPSChainContext returns zero if it successfully chains 'child' to 
'parent'. It fails if 'child' is on another context's chain; in that 
case it returns -1. 

See Section 6.1 for more information. 

DPSDefaultErrorProc 

DPSDestroyContext 

void DPSDefaultErrorProc(ctxt, errorCode, arg1, arg2); 
DPSContext ctxt; 
DPSErrorCode errorCode; 
long unsigned int arg1, arg2; 

is a sample DPSErrorProc for handling errors from the 
PostScript interpreter. See Appendix B for a listing of the code 
and a description of the procedure. 

The meaning of 'arg1' and 'arg2' depend on 'errorCode'. See 
DPSErrorProc. 

void DPSDestroyContext(ctxt) 
DPSContext ctxt; 

destroys the context represented by 'ctxt'. The context is first 
unchained if it is on a chain. 

What happens to buffered input and output when a context is 
destroyed is system specific; in the X Window System it is dis
carded. 

Destroying a context does not destroy its space; see 
DPSDestroySpace. 

9 THE DPSCLIENT.H HEADER FILE 49 



DPSDestroySpace 
void DPSDestroySpace(spc) 
DPSSpace spc; 

destroys the space represented by 'spc'. This is necessary for 
application termination and clean-up. It also destroys all contexts 
within 'spc'. 

I 

50 Client Library Reference Manual/ Version of January 23, 1990 



DPSErrorProc · typedef void (*DPSErrorProc) (/* 
DPSContext ctxt; 
DPSErrorCode errorCode; 
long unsigned int arg1, arg2;*/); 

handles errors caused by the context. These can be Postscript 
language errors reported by the interpreter or errors that occur 
when the Client Library is called with a context. 'errorCode' is 
one of the predefined codes that specify the type of error encoun
tered; see 'DPSErrorCode' in Section 9.1 for its type definition. 
'errorCode' determines the interpretation of 'arg1' and 'arg2'. 

The following list shows how 'arg1' and 'arg2' are handled for 
each 'errorCode': 

'dps_err_ps' Postscript language error. 'arg1' is the address 
of the binary object sequence sent by the 
handleerror operator to report the error. These
quence has one object, which is an array of four 
objects. 'arg2' is the number of bytes in the en
tire binary object sequence. 

'dps _err_ nameToolong' 
Error in wrap argument. The PostScript user 
name and its length are passed as 'arg 1 ' and 
'arg2'. A name of more than 128 characters 
causes an error. 

'dps_err_resultTagCheck' 
Error in formulation of wrap. The pointer to the 
binary object sequence and its length are passed 
as 'arg1' and 'arg2'. There is one object in the 
sequence. 

'dps _err _resultT ypeCheck' 
Incompatible result types. A pointer to the bi
nary object is passed as 'arg1 '; 'arg2' is unused. 

'dps _err _invalidContext' 
Stale context handle (probably terminated). 
'arg1' is a context identifier; 'arg2' is unused. 

9 THE DPSCLIENT.H HEADER FILE 51 



DPSFlushContext void DPSFlushContext(ctxt) 
DPSContext ctxt; 

forces any buffered code or data to be sent to 'ctxt'. Some Client 
Library implementations use buffering to optimize performance. 

DPSGetCurrentContext 
DPSContext DPSGetCurrentContext(); 

returns the current context. 

DPSGetCurrentErrorBackstop 
DPSErrorProc DPSGetCurrentErrorBackstop(); 

returns the 'errorProc' passed most recently to 
DPSSetErrorBackstop, or 'NULL' if none was set. 

DPSGetCurrentTextBackstop 
DPSTextProc DPSGetCurrentT extBackstop(); 

returns the 'textProc' passed most recently to 
DPSSetTextBackstop, or 'NULL' if none was set. 

DPSlnterruptContext 

DPSPrintf 

void DPSlnterruptContext(ctxt) 
DPSContext ctxt; 

notifies the interpreter to interrupt the execution of the context, 
resulting in the PostScript language interrupt error. The proce
dure returns immediately after sending the notification. 

void DPSPrintf(ctxt, fmt, [, arg ... ]); 
DPSContext ctxt; 
char "'fmt; 

sends string 'fmt' to 'ctxt' with the optional arguments converted, 
formatted, and logically inserted into the string in a manner iden
tical to the Standard C Library routine print{. It is useful for 
sending formatted data or a short PostScript language program to 
a context. 

52 Client Library Reference Manual I Version of January 23, 1990 



DPSResetContext void DPSResetContext( ctxt) 
DPSContext ctxt; 

DPSSetContext 

resets the context after an error occurs. It ensures that any buf
fered 1/0 is discarded and that the context is ready to read and 
execute more input. DPSResetContext works in conjunction with 
resynchandleerror. 

void DPSSetContext(ctxt) 
DPSContext ctxt; 

sets the current context. Call DPSSetContext before calling any 
procedures defined in psops.h. 

DPSSetErrorBackstop 
void DPSSetErrorBackstop(errorProc) 
DPSErrorProc errorProc; 

establishes 'errorProc' as a pointer to the backstop error handler. 
This error handler handles errors that are not handled by any 
other error handler. 'NULL' will be passed as the 'ctxt' argument 
to the backstop error handler. 

DPSSetErrorProc void DPSSetErrorProc(ctxt, errorProc) 
DPSContext ctxt; 
DPSErrorProc errorProc; 

changes the context's error handler. 

DPSSetTextBackstop 
void DPSSetT extBackstop(textProc) 
DPST extProc textProc; 

establishes the procedure pointed to by 'textProc' as the handler 
for text output for which there is no other handler. The text hand
ler acts as a backstop for text output. 

DPSSetTextProc void DPSSetTextProc(ctxt, textProc) 
DPSContext ctxt; 
DPSTextProc textProc; 

changes the context's text handler. 

9 THE DPSCLIENT.H HEADER FILE 53 



DPSSpaceFromContext 

DPSTextProc 

DPSSpace DPSSpaceFromContext(ctxt) 
DPSContext ctxt; 

returns the space handle for the specified context. It returns 
'NULL' if 'cbd' does not represent a valid execution context. 

typedef void (*DPSTextProc)(/* 
DPSContext ctxt; 
char *buf; 
long unsigned int count; */); 

handles text emitted from the interpreter - for example, by the 
==operator. 'buf' is a pointer to 'count' characters. 

DPSUnchainContext 
void DPSUnchainContext(ctxt) 
DPSContext ctxt; 

removes 'ctxt' from the chain that it is on, if any. The parent and 
child pointers of the unchained context are set to 'NULL'. 

DPSWaitContext void DPSWaitContext(ctxt) 
DPSContext ctxt; 

flushes output buffers belonging to 'cbd' and then waits until the 
interpreter is ready for more input to 'ctxt'. It is not necessary to 
call DPSWaitContext after calling a wrapped procedure that 
returns a value. 

Before calling DPSWaitContext, you must ensure that the last 
code sent to the context is syntactically complete, such as a wrap 
or a correctly terminated Postscript operator or composite ob
ject. 

54 Client Library Reference Manual I Version of January 23, 1990 



DPSWriteData 

DPSWritePostScript 

void DPSWriteData(ctxt, buf, count) 
DPSContext ctxt; 
char *buf; 
unsigned int count; 

sends 'count' bytes of data from 'buf' to 'ctxt'. 'ctxt' specifies 
the destination context. 'buf' points to a buffer that contains 
'count' bytes of data. The contents of the buffer will not be con
verted according to the context's encoding parameters. 

void DPSWritePostScript(ctxt, buf, count); 
DPSContext ctxt; 
char *buf; 
unsigned int count; 

sends Postscript language to a context in any of the three lan
guage encodings. 'ctxt' specifies the destination context. 'buf' 
points to a buffer that contains 'count' bytes of Postscript lan
guage code. The code in the buffer will be converted according 
to the context's encoding parameters as needed; refer to the 
system-specific documentation for a list of supported conver
sions. 

9 THE DPSCLIENT.H HEADER FILE 55 



10 SINGLE-OPERATOR PROCEDURES 

For each operator defined in the Postscript language, the Client 
Library provides a procedure to invoke the most common usage 
of the operator. These are called the single-operator procedures. 
(See the PostScript Language Reference Manual and PostScript 
Language Extensions for the Display PostScript System for com
plete information about how these Postscript operators work.) If 
the predefined usage is not the one you need, it's easy to write 
wraps for variant forms of the operators. 

There are two Client Library header files for single-operator 
procedures: dpsops.h and psops.h. The name of the Client 
Library single-operator procedure is the name of the Postscript 
operator preceded by either DPS or PS3: 

DPS prefix 

PS prefix 

Used when the context is explicitly specified; for 
example, DPSgsave. The first argument must be 
of type 'DPSContext'. These single-operator 
procedure·s are defined in dpsops.h. 

Used when the context is assumed to be the cur
rent context; for example, PSgsave. These 
single-operator procedures are defined in 
psops.h. The procedure DPSSetContext, defined 
in dpsclient.h, sets the current context. 

For example, to execute the Postscript operator translate, the 
application can call 

DPStranslate(ctxt, 1.23, 43.56) 

where 'ctxt' is a variable of type 'DPSContext', the handle that 
represents a PostScript execution context. 

The DPStranslate procedure sends the binary encoding of 

1.23 43.56 translate 

to execute in 'ctxt'. 

3Most PostScript operator names are lowercase, but some contain uppercase 
letters; for example FontDirectory. In either case, the name of the correspond
ing single-operator procedure is formed simply by prefixing PS or DPS. 

56 Client Library Reference Manual I Version of January 23, 1990 



10.1 SETTING THE CURRENT CONTEXT 

The single-operator procedures in psops.h assume the current 
context. The DPSSetContext procedure, defined in dpsclient.h, 
sets the current context. When the application deals with only 
one context it is convenient to use the procedures in psops.h 
rather than those in dpsops.h. In this case, the application would 
set the current context during its initialization phase: 

DPSSetContext(ctxt); 

In subsequent calls on the procedures in psops.h, 'ctxt' is used 
implicitly. For example: 

PStranslate(1.23, 43.56); 

has the same effect as 

DPStranslate(ctxt, 1.23, 43.56); 

The explicit method is preferable for situations that require inter
mingling of calls to multiple contexts. 

Note: It is important to pass the correct C types to the single
operator procedures. (See Section 10.3 for the procedure 
declarations.) In general, if a Postscript operator takes operands 
of arbitrary numeric type, the corresponding single-operator pro
cedure takes parameters of type 'float'. Coordinates are always 
type 'float'. Passing an integer literal to a procedure that expects 
a floating-point literal is a common error: 

incorrect: 

correct: 

PS1ineto(72, 72); 

PSlineto(72.0, 72.0); 

Procedures that appear to have no input arguments may actually 
take their operands from the operand stack - for example, 
PSdef and DPSdef. 

10.2 TYPES IN SINGLE-OPERATOR PROCEDURES 

When using single-operator procedures, be sure to inspect the 
calling protocol (that is, order and types of formal parameters) 
for every procedure to be called; these are listed in Section 10.3. 

10 SINGLE-OPERATOR PROCEDURES 57 



Note: Throughout Section 10.2, references to single-operator 
procedures with a DPS prefix are equally applicable to the equiv
alent procedures with a PS prefix. 

10.2.1 Rules of Thumb 

There is no completely consistent system for associating data 
types with particular single-operator procedures. In general, it's 
safest to look up the definition in Section 10.3 or in the header 
file. However, there are a few rules of thumb that can be applied. 
Note that all of these rules have exceptions. 

• Coordinates are specified as type 'float'. For example, all 
of the standard path construction operators (moveto, lineto, 
curveto, and so on), take type 'float'. 

•Booleans are always type 'int'. The comment'/* int *b */' 
or '/* int *it */' in the header file means that the procedure 
returns a boolean. 

• If the operator takes either integer or floating-point num
bers, the corresponding procedure takes type 'float'. If the 
operator specifies a number type (such as rand and 
vmreclaim), then the procedure takes arguments of that 
type (typically type 'int'). 

•Operators that return values must always be specified with 
a pointer to the appropriate data type. For example, 
currentgray returns the current gray value of the graphics 
state. You must pass DPScurrentgray a pointer to a vari
able of type 'float'. 

• If an operator takes a data type that does not have a directly 
analogous C type, such as dictionaries, graphic states, and 
executable arrays, the single-operator procedure takes no 
arguments. It is assumed that the programmer will arrange 
for the appropriate data to be on the operand stack before 
calling the procedure; see DPSsendchararray and 
DPSsendfloat, among others. 

• If a single-operator procedure takes or returns a matrix, the 
matrix is specified as 'float mO', which is an array of six 
floating-point numbers. 

• In gen·eral, the integer parameter 'size' is used to specify 

58 Client Library Reference Manual I Version of January 23, 1990 



the length of a variable-length array; see, for example, 
DPSxshow. For single-operator procedures that take two 
variable-length arrays as parameters, the length of the first 
array is specified by the integer 'n'; the length of the 
second array is specified by the integer 'I'; see, for ex
ample, DPSustroke. 

The following operators are worth noting for unusual order and 
types of arguments, or for other irregularities. After reading 
these descriptions, inspect the declarations in the listing in this 
document or in the header file: 

• DPSdefineuserobject takes no arguments. One would ex
pect it to take at least the index argument, but because of 
the requirement to have the arbitrary object on the top of 
the stack, it is probably better to send the index down 
separately, perhaps via DPSsendint. 

• DPSgetchararray, DPSgetfloatarray, and other "get 
array'' operators specify the length of the array first, fol
lowed by the array. (Mnemonic: Get the array last.) 

• DPSsendchararray, DPSsendfloatarray, and other "send 
array'' operators specify the array first, followed by the 
length of the array. (Mnemonic: Send the array first.) 

• DPSinfill, DPSinstroke, and DPSinufill support only the 
x,y-coordinate version of the operator. The optional second 
userpath argument is not supported. 

• DPSinueofill, DPSinufill, DPSinustroke, DPSuappend, 
DPSueofill, DPSufill, DPSustroke, and DPSustrokepath 
take a userpath in the form of an encoded number string 
and operator string. Note that the lengths of the strings 
follow the strings themselves, as arguments. See 
PostScript Language Extensions for the Display PostScript 
System for details. 

• DPSsetdash takes an array of numbers of type 'float' for the 
dash pattern. 

• DPSselectfont takes type 'float' for the font scale 
parameter. 

• DPSsetgray takes type 'float'. ('DPSsetgray(1)' is wrong.) 

• DPSxshow, DPSxyshow, DPSyshow take an array of num
bers of type 'float' for specifying the coordinates of each 
character. 

10 SINGLE-OPERATOR PROCEDURES 59 



• DPSequals is the procedure equivalent to the= operator. 

• DPSequalsequals is the procedure equivalent to the == 
operator. 

• DPSversion returns the version number in a character array 
'bufU' whose length is specified by 'bufsize'. 

10.2.2 Special Cases 

A few of the single-operator procedures have been optimized to 
take user objects for arguments, since they are most commonly 
used in this way. In the listing in Section 10.3, these user object 
arguments are specified as type 'int', which is the correct type of 
a user object. 

• DPScurrentgstate takes a user object that represents the 
gstate object into which the current graphics state should be 
stored. The gstate object is left on the stack. 

• DPSsetfont takes a user object that represents the font dic
tionary. 

• DPSsetgstate takes a user object that represents the gstate 
object that the current graphics state should be set to. 

60 Client Library Reference Manual I Version of January 23, 1990 



10.3 DPSOPS.H PROCEDURE DECLARATIONS 

The procedures in dpsops.h and psops.h are identical except for 
the first argument. dpsops.h procedures require the 'ct>ct' argu
ment; psops.h procedures do not. The procedure name is the 
lowercase Postscript operator name preceded by "DPS" or 
''PS'' as appropriate. For the sake of brevity, only the dpsops.h 
procedures are listed here. 

Note: DPSSetContext must have been called before calling any 
procedure in psops.h. 

extern void DPSFontDirectory( /* DPSContext ctxt; */ ); 

extern void DPSIS0Latin1 Encoding(/* DPSContext ctxt; */ ); 

extern void DPSSharedFontDirectory( /* DPSContext ctxt; */ ); 

extern void DPSStandardEncoding( /* DPSContext ctxt; */ ); 

extern void DPSUserObjects( /* DPSContext ctxt; */ ); 

extern void DPSabs( /* DPSContext ctxt; */ ); 

extern void DPSadd( /* DPSContext ctxt; */ ); 

extern void DPSaload( /* DPSContext ctxt; */ ); 

extern void DPSanchorsearch( /* DPSContext ctxt; int *truth;*/); 

extern void DPSand( /* DPSContext ctxt; */ ); 

extern void DPSarc( /* DPSContext ctxt; float x, y, r, angle1, angle2; */ ); 

extern void DPSarcn( /* DPSContext ctxt; float x, y, r, angle1, angle2; */ ); 

extern void DPSarct( /* DPSContext ctxt; float x1, y1, x2, y2, r; */ ); 

extern void DPSarcto( /* DPSContext ctxt; float x1, y1, x2, y2, r; float *xt1, *yt1, *xt2, *yt2; */ ); 

extern void DPSarray( /* DPSContext ctxt; int len; */ ); 

extern void DPSashow( /* DPSContext ctxt; float x, y; char *s; */ ); 

extern void DPSastore( /* DPSContext ctxt; */ ); 

extern void DPSatan( /* DPSContext ctxt; */ ); 

extern void DPSawidthshow( /* DPSContext ctxt; float ex, cy; int c; float ax, ay; char *s; */ ); 

extern void DPSbanddevice( /* DPSContext ctxt; */ ); 

extern void DPSbegin( /* DPSContext ctxt; */ ); 

10 SINGLE-OPERATOR PROCEDURES 61 



extern void DPSbind( /* DPSContext ctxt; */ ); 

extern void DPSbitshift( /* DPSContext ctxt; int shift;*/); 

extern void DPSbytesavailable( /* DPSContext ctxt; int *n; */ ); 

extern void DPScachestatiJs( /* DPSContext ctxt; */ ); 

extern void DPSceiling( /* DPSContext ctxt; */ ); 

extern void DPScharpath( /* DPSContext ctxt; char *s; int b; */ ); 

extern void DPSclear( /* DPSContext ctxt; */ ); 

extern void DPScleardictstack( /* DPSContext ctxt; */ ); 

extern void DPScleartomark( /* DPSContext ctxt; */ ); 

extern void DPSclip( /* DPSContext ctxt; */ ); 

extern void DPSclippath( /* DPSContext ctxt; */ ); 

extern void DPSclosefile( /* DPSContext ctxt; */ ); 

extern void DPSclosepath( /* DPSContext ctxt; */ ); 

extern void DPScolorimage( /* DPSContext ctxt; */ ); 

extern void DPSconcat( /* DPSContext ctxt; float mD; */ ); 

extern void DPSconcatmatrix( /* DPSContext ctxt; */ ); 

extern void DPScondition( /* DPSContext ctxt; */ ); 

extern void DPScopy( /* DPSContext ctxt; int n; */ ); 

extern void DPScopypage( /* DPSContext ctxt; */ ); 

extern void DPScos( /* DPSContext ctxt; */ ); 

extern void DPScount( /* DPSContext ctxt; int *n; */ ); 

extern void DPScountdictstack( /* DPSContext ctxt; int *n; */ ); 

extern void DPScountexecstack( /* DPSContext ctxt; int *n; */ ) ; 

extern void DPScounttomark( /* DPSContext ctxt; int *n; */ ); 

extern void DPScurrentblackgeneration( /* DPSContext ctxt; */ ); 

extern void DPScurrentcacheparams( /* DPSContext ctxt; */ ); 

extern void DPScurrentcmykcolor( /* DPSContext ctxt; float *c, *m, *y, *k; */ ); 

extern void DPScurrentcolorscreen( /* DPSContext ctxt; */ ); 

extern void DPScurrentcolortransfer( /* DPSContext ctxt; */ ); 

extern void DPScurrentcontext( /* DPSContext ctxt; int *cid; */ ); 

62 Client library Reference Manual I Version of January 23, 1990 



extern void DPScurrentdash( /* DPSContext ctxt; */ ); 

extern void DPScurrentdict( /* DPSContext ctxt; */ ); 

extern void DPScurrentfile( /* DPSContext ctxt; */ ); 

extern void DPScurrentflat( /* DPSContext ctxt; float *flatness;*/); 

extern void DPScurrentfont( /* DPSContext ctxt; */ ); 

extern void DPScurrentgray( /* DPSContext ctxt; float *gray;*/); 

extern void DPScurrentgstate( /* DPSContext ctxt; int gst; */ ); 

extern void DPScurrenthalftone( /* DPSContext ctxt;. */ ); 

extern void DPScurrenthalftonephase( /* DPSContext ctxt; float *x, *y; */ ); 

extern void DPScurrenthsbcolor( /* DPSContext ctxt; float *h, *s, *b; */ ); 

extern void DPScurrentlinecap( /* DPSContext ctxt; int *linecap; */ ); 

extern void DPScurrentlinejoin( /* DPSContext ctxt; int *linejoin; */ ); 

extern void DPScurrentlinewidth( /* DPSContext ctxt; float *width;*/); 

extern void DPScurrentmatrix( /* DPSContext ctxt; */ ); 

extern void DPScurrentmiterlimit( /* DPSContext ctxt; float *limit; */ ); 

extern void DPScurrentobjectformat( /* DPSContext ctxt; int *code;*/); 

extern void DPScurrentpacking( /* DPSContext ctxt; int *b; */ ); 

extern void DPScurrentpoint( /* DPSContext ctxt; float *x, *y; */ ); 

extern void DPScurrentrgbcolor( /* DPSContext ctxt; float *r, *g, *b; */ ); 

extern void DPScurrentscreen( /* DPSContext ctxt; */ ); 

extern void DPScurrentshared( /* DPSContext ctxt; int *b; */ ); 

extern void DPScurrentstrokeadjust( /* DPSContext ctxt; int *b; */ ); 

extern void DPScurrenttransfer( /* DPSContext ctxt; */ ); 

extern void DPScurrentundercolorremoval( /* DPSContext ctxt; */ ); 

extern void DPScurveto( /* DPSContext ctxt; float x1, y1, x2, y2, x3, y3; */ ); 

extern void DPScvi( /* DPSContext ctxt; */ ); 

extern void DPScvlit( /* DPSContext ctxt; */ ); 

extern void DPScvn( /* DPSContext ctxt; */ ); 

extern void DPScvr( /* DPSContext ctxt; */ ); 

extern void DPScvrs( /* DPSContext ctxt; */ ); 

10 SINGLE-OPERATOR PROCEDURES 63 



extern void DPScvs( /* DPSContext ctxt; */ ); 

extern void DPScvx( /* DPSContext ctxt; */ ); 

extern void DPSdef( /* DPSContext ctxt; */ ); 

extern void DPSdefaultmatrix( /* DPSContext ctxt; */ ); 

extern void DPSdefinefont( /* DPSContext ctxt; */ ); 

extern void DPSdefineusername( /* DPSContext ctxt; int i; char *username; */ ); 

extern void DPSdefineuserobject( /* DPSContext ctxt; */ ); 

extern void DPSdeletefile( /* DPSContext ctxt; char *filename; */ ); 

extern void DPSdetach( /* DPSContext ctxt; */ ); 

extern void DPSdeviceinfo( /* DPSContext ctxt; */ ); 

extern void DPSdict( /* DPSContext ctxt; int len; */ ); 

extern void DPSdictstack( /* DPSContext ctxt; */ ); 

extern void DPSdiv( /* DPSContext ctxt; */ ) ; 

extern void DPSdtransform( /* DPSContext ctxt; float x1, y1; float *x2, *y2; */ ); 

extern void DPSdup( /* DPSContext ctxt; */ ); 

extern void DPSecho( /* DPSContext ctxt; int b; */ ); 

extern void DPSend( /* DPSContext ctxt; */ ); 

extern void DPSeoclip( /* DPSContext ctxt;·*/ ); 

extern void DPSeofill( /* DPSContext ctxt; */ ); 

extern void DPSeoviewclip( /* DPSContext ctxt; */ ); 

extern void DPSeq( /* DPSContext ctxt; */ ); 

extern void DPSequals( /* DPSContext ctxt; */ ); 

extern void DPSequalsequals( /* DPSContext ctxt; */ ); 

extern void DPSerasepage( /* DPSContext ctxt; */ ); 

extern void DPSerrordict( /* DPSContext ctxt; */ ); 

extern void DPSexch( /* DPSContext ctxt; */ ); 

extern void DPSexec( /* DPSContext ctxt; */ ); 

extern void DPSexecstack( /* DPSContext ctxt; */ ); 

extern void DPSexecuserobject( /* DPSContext ctxt; int userObjlndex; */ ); 

extern void DPSexecuteonly( /* DPSContext ctxt; */ ); 

64 Client Library Reference Manual I Version of January 23, 1990 



extern void DPSexit( /* DPSContext ctxt; */ ); 

extern void DPSexp( /* DPSContext ctxt; */ ); 

extern void DPSfalse( /* DPSContext ctxt; */ ); 

extern void DPSfile( /* DPSContext ctxt; char *name, *access; */ ); 

extern void DPSfilenameforall( /* DPSContext ctxt; */ ); 

extern void DPSfileposition( /* DPSContext ctxt; int *pos; */ ); 

extern void DPSfill( /* DPSContext ctxt; */ ); 

extern void DPSfindfont( /* DPSContext ctxt; char *name; */ ); 

extern void DPSflattenpath( /* DPSContext ctxt; */ ); 

extern void DPSfloor( /* DPSContext ctxt; */ ); 

extern void DPSflush( /* DPSContext ctxt; */ ); 

extern void DPSflushfile( /* DPSContext ctxt; */ ); 

extern void DPSfor( /* DPSContext ctxt; */ ); 

extern void DPSforall( /* DPSContext ctxt; */ ); 

extern void DPSfork( /* DPSContext ctxt; */ ); 

extern void DPSframedevice( /* DPSContext ctxt; */ ); 

extern void DPSge( /* DPSContext ctxt; */ ); 

extern void DPSget( /* DPSContext ctxt; */ ); 

extern void DPSgetboolean( /* DPSContext ctxt; int *it; */ ); 

extern void DPSgetchararray( /* DPSContext ctxt; int size; char sO; */ ); 

extern void DPSgetfloat( /* DPSContext ctxt; float *it;*/); 

extern void DPSgetfloatarray( /* DPSContext ctxt; int size; float aO; */ ); 

extern void DPSgetint( /* DPSContext ctxt; int *it;*/); 

extern void DPSgetintarray( /* DPSContext ctxt; int size; int aO: */ ); 

extern void DPSgetinterval( /* DPSContext ctxt; */ ); 

extern void DPSgetstring( /* DPSContext ctxt; char *s; */ ); 

extern void DPSgrestore( /* DPSContext ctxt; */ ); 

extern void DPSgrestoreall( /* DPSContext ctxt; */ ); 

extern void DPSgsave( /* DPSContext ctxt; */ ) ; 

extern void DPSgstate( /* DPSContext ctxt; */ ); 

10 SINGLE-OPERATOR PROCEDURES 65 



extern void DPSgt( /* DPSContext ctxt; */ ); 

extern void DPSidentmatrix( /* DPSContext ctxt; */ ); 

extern void DPSidiv( /* DPSContext ctxt; */ ); 

extern void DPSidtransform( /* DPSContext ctxt; float x1, y1; float *x2, *y2; */ ); 

extern void DPSif( /* DPSContext ctxt; */ ); 

extern void DPSifelse( /* DPSContext ctxt; */ ); 

extern void DPSimage( /* DPSContext ctxt; */); 

extern void DPSimagemask( /* DPSContext ctxt; */ ); 

extern void DPSindex( /* DPSContext ctxt; inti;*/); 

extern void DPSineofill( /* DPSContext ctxt; float x, y; int *b; */ ); 

extern void DPSinfill( /* DPSContext ctxt; float x, y; int *b; */ ); 

extern void DPSinitclip( /* DPSContext ctxt; *I); 

extern void DPSinitgraphics( /* DPSContext ctxt; */ ); 

extern void DPSinitmatrix( /* DPSContext ctxt; */ ); 

extern void DPSinitviewclip( /* DPSContext ctxt; */ ); 

extern void DPSinstroke( /* DPSContext ctxt; float x, y; int *b; */ ); 

extern void DPSinueofill( /* DPSContext ctxt; float x, y; char numsO; int n; char opsO; int I; int *b; */ ); 

extern void DPSinufill( /* DPSContext ctxt; float x, y; char numsU; int n; char opsO; int I; int *b; */ ); 

extern void PPSinustroke( /* DPSContext ctxt; float X, y; char numsa; int n; char opsO; int I; int *b; */ ); 

extern void DPSinvertmatrix( /* DPSContext ctxt; *I); 

extern void DPSitransform( /* DPSContext ctxt; float x1, y1; float *x2, *y2; */ ); 

extern void DPSjoin( /* DPSContext ctxt; */ ); 

extern void DPSknown( /* DPSContext ctxt; int *b; */ ); 

extern void DPSkshow( /* DPSContext ctxt; char *s; *I); 

extern void DPSle( /* DPSContext ctxt; */ ); 

extern void DPSlength( /* DPSContext ctxt; int *len; */ ); 

extern void DPSlineto( /* DPSContext ctxt; float x, y; */ ); 

extern void DPSln( /* DPSContext ctxt; */ ); 

extern void DPSload( /* DPSContext ctxt; */ ); 

extern void DPSlock( /* DPSContext ctxt; */); 

66 Client Library Reference Manual I Version of January 23, 1990 



extern void DPSlog( /* DPSContext ctxt; */ ); 

extern void DPSloop( /* DPSContext ctxt; */ ) ; 

extern void DPSlt( /* DPSContext ctxt; */ ); 

extern void DPSmakefont( /* DPSContext ctxt; */ ); 

extern void DPSmark( /* DPSContext ctxt; */ ); 

extern void DPS matrix( /* DPSContext ctxt; */ ) ; 

extern void DPSmaxlength( /* DPSContext ctxt; int *len; */ ); 

extern void DPSmod( /* DPSContext ctxt; */ ); 

extern void DPS monitor( /* DPSContext ctxt; */ ) ; 

extern void DPSmoveto( /* DPSContext ctxt; float x, y; */ ); 

extern void DPSmul( /* DPSContext ctxt; */ ); 

extern void DPSne( /* DPSContext ctxt; */ ); 

extern void DPSneg( /* DPSContext ctxt; */ ); 

extern void DPSnewpath( /* DPSContext ctxt; */ ); 

extern void DPSnoaccess( /* DPSContext ctxt; */); 

extern void DPSnot( /* DPSContext ctxt; */ ); 

extern void DPSnotify( /* DPSContext ctxt; */ ); 

.extern void DPSnull( /* DPSContext ctxt; */ ); 

extern void DPSnulldevice( /* DPSContext ctxt; */ ); 

extern void DPSor( /* DPSContext ctxt; */ ); 

extern void DPSpackedarray( /* DPSContext ctxt; */ ); 

extern void DPSpathbbox( /* DPSContext ctxt; float *llx, *lly, *urx, *ury; */ ); 

extern void DPSpathforall( /* DPSContext ctxt; */ ); 

extern void DPSpop( /* DPSContext ctxt; */ ); 

extern void DPSprint( /* DPSContext ctxt; */ ); 

extern void DPSprintobject( /* DPSContext ctxt; int tag;*/); 

extern void DPSprompt( /* DPSContext ctxt; */ ); 

extern void DPSpstack( /* DPSContext ctxt; */ ); 

extern void DPSput( /* DPSContext ctxt; */ ); 

extern void DPSputinterval( /* DPSContext ctxt; */ ); 

10 SINGLE-OPERATOR PROCEDURES 67 



extern void DPSquit( /* DPSContext ctxt; */ ); 

extern void DPSrand( /* DPSContext ctxt; */ ); 

extern void DPSrcheck( /* DPSContext ctxt; int *b; */ ); 

extern void DPSrcurveto( i* DPSContext ctxt; float x1, y1, x2, y2, x3, y3; */ ); 

extern void DPSread( /* DPSContext ctxt; int *b; */ ); 

extern void DPSreadhexstring( /* DPSContext ctxt; int *b; */ ); 

extern void DPSreadline( /* DPSContext ctxt; int *b; */ ); 

extern void DPSreadonly( /* DPSContext ctxt; */ ); 

extern void DPSreadstring( /* DPSContext ctxt; int *b; */ ); 

extern void DPSrealtime( /* DPSContext ctxt; int *i; */ ); 

extern void DPSrectclip( /* DPSContext ctxt; float x, y, w, h; */ ); 

extern void DPSrectfill( /* DPSContext ctxt; float x, y, w, h; */ ); 

extern void DPSrectstroke( /* DPSContext ctxt; float x, y, w, h; */ ); 

extern void DPSrectviewclip( /* DPSContext ctxt; float x, y, w, h; */ ); 

extern void DPSrenamefile( /* DPSContext ctxt; char *old, *new;*/); 
I 

extern void DPSrenderbands( /* DPSContext ctxt; Ji); 

extern void DPSrepeat( /* DPSContext ctxt; */ ); 

extern void DPSresetfile( /* DPSContext ctxt; */ ); 

extern void DPSrestore( /* DPSContext ctxt; */ ); 

extern void DPSreversepath( /* DPSContext ctxt; */ ); 

extern void DPSrlineto( /* DPSContext ctxt; float x, y; */ ); 

extern void DPSrmoveto( /* DPSContext ctxt; float x, y; */ ); 

extern void DPSroll( /* DPSContext ctxt; int n, j; */ ); 

extern void DPSrotate( /* DPSContext ctxt; float angle; */ ); 

extern void DPSround( /* DPSContext ctxt; */ ); 

extern void DPSrrand( /* DPSContext ctxt; */ ); 

extern void DPSrun( /* DPSContext ctxt; char *filename; */ ); 

extern void DPSsave( /* DPSContext ctxt; */ ); 

extern void DPSscale( /* DPSContext ctxt; float x, y; */ ); 

extern void DPSscalefont( /* DPSContext ctxt; float size;*/); 

68 Client Library Reference Manual I Version of January 23, 1990 



extern void DPSscheck( /* DPSContext ctxt; int *b; */ ); 
extern void DPSsearch( /* DPSContext ctxt; int *b; */ ); 

extern void DPSselectfont( /* DPSContext ctxt; char *name; float scale;*/); 

extern void DPSsendboolean( /* DPSContext ctxt; int it; */ ); 

extern void DPSsendchararray( /* DPSContext ctxt; char sD; int size; */ ); 

extern void DPSsendfloat( /* DPSContext ctxt; float it;*/); 

extern void DPSsendfloatarray( /* DPSContext ctxt; float aD; int size;*/); 

extern void DPSsendint( /* DPSContext ctxt; int it; */ ); 

extern void DPSsendintarray( /* DPSContext ctxt; int aD; int size; */ ); 

extern void DPSsendstring( /* DPSContext ctxt; char *s; */ ); 

extern void DPSsetbbox( /* DPSContext ctxt; float llx, lly, urx, ury; */ ); 

extern void DPSsetblackgeneration( /* DPSContext ctxt; */ ); 

extern void DPSsetcachedevice( /* DPSContext ctxt; float wx, wy, llx, lly, urx, ury; */ ); 

extern void DPSsetcachelimit( /* DPSContext ctxt; float n; */ ); 

extern void DPSsetcacheparams( /* DPSContext ctxt; */ ); 

extern void DPSsetcharwidth( /* DPSContext ctxt; float wx, wy; */ ); 

extern void DPSsetcmykcolor( /* DPSContext ctxt; float c, m, y, k; */ ); 

extern void DPSsetcolorscreen( /* DPSContext ctxt; */ ); 

extern void DPSsetcolortransfer( /* DPSContext ctxt; */ ); 

extern void DPSsetdash( /* DPSContext ctxt; float patD; int size; float offset;*/); 

extern void DPSsetfileposition( /* DPSContext ctxt; int pos; */ ); 

extern void DPSsetflat( /* DPSContext ctxt; float flatness;*/); 

extern void DPSsetfont( /* DPSContext ctxt; int f; */ ); 

extern void DPSsetgray( /* DPSContext ctxt; float gray; */ ); 

extern void DPSsetgstate( /* DPSContext ctxt; int gst; */ ); 

extern void DPSsethalftone( /* DPSContext ctxt; */ ); 

extern void DPSsethalftonephase( /* DPSContext ctxt; float x, y; */ ); 

extern void DPSsethsbcolor( /* DPSContext ctxt; float h, s, b; */ ); 

extern void DPSsetlinecap( /* DPSContext ctxt; int linecap; */ ); 

extern void DPSsetlinejoin( /* DPSContext ctxt; int linejoin; */ ); 

10 SINGLE-OPERATOR PROCEDURES 69 



extern void DPSsetlinewidth( /* DPSContext ctxt; float width;*/); 

extern void DPSsetmatrix( /* DPSContext ctxt; */ ); 

extern void DPSsetmiterlimit( /* DPSContext ctxt; float limit; */ ); 

extern void DPSsetobjectformat( /* DPSContext ctxt; int code;*/); 

extern void DPSsetpacking( /* DPSContext ctxt; int b; */ ); 

extern void DPSsetrgbcolor( /* DPSContext ctxt; float r, g, b; */ ); 

extern void DPSsetscreen( /* DPSContext ctxt; */ ); 

extern void DPSsetshared( /* DPSContext ctxt; int b; */ ); 

extern void DPSsetstrokeadjust( /* DPSContext ctxt; int b; */ ) ; 

extern void DPSsettransfer( /* DPSContext ctxt; */ ); 

extern void DPSsetucacheparams( /* DPSContext ctxt; */ ); 

extern void DPSsetundercolorremoval( /* DPSContext ctxt; */ ); 

extern void DPSsetvmthreshold( /* OPSContext ctxt; inti;*/); 

extern void DPSshareddict( /* DPSContext ctxt; */ ); 

extern void DPSshow( /* DPSContext ctxt; char *s; */ ); 

extern void DPSshowpage( /* DPSContext ctxt; */ ); 

.extern void DPSsin( /* DPSContext ctxt; */ ); 

extern void DPSsqrt( /* DPSContext ctxt; */); 

extern void DPSsrand( /* DPSContext ctxt; */ ); 

extern void DPSstack( /* DPSContext ctxt; */ ); 

extern void DPSstart( /* DPSContext ctxt; */ ); 

extern void OPSstatus( /* DPSContext ctxt; int *b; */ ); 

extern void DPSstatusdict( /* DPSContext ctxt; */ ); 

extern void DPSstop( /* DPSContext ctxt; */ ); 

extern void DPSstopped( /* DPSContext ctxt; */ ); 

extern void OPSstore( /* DPSContext ctxt; */ ); 

extern void DPSstring( /* DPSContext ctxt; int len; */ ); 

extern void DPSstringwidth( /* DPSContext ctxt; char *s; float *xp, *yp; */ ); 

extern void DPSstroke( /* DPSContext ctxt; */ ); 

extern void DPSstrokepath( /* DPSContext ctxt; */ ); 

70 Client Library Reference Manual I Version of January 23, 1990 



extern void DPSsub( /* DPSContext ctxt; */ ); 

extern void DPSsystemdict( /* DPSContext ctxt; */ ); 

extern void DPStoken( /* DPSContext ctxt; int *b; */ ); 

extern void DPStransform( /* DPSContext ctxt; float x1, y1; float *x2, *y2; */ ); 

extern void DPStranslate( /* DPSContext ctxt; float x, y; */ ); 

extern void DPStrue( /* DPSContext ctxt; */ ); 

extern void DPStruncate( /* DPSContext ctxt; */ ); 

extern void DPStype( /* DPSContext ctxt; */ ); 

extern void DPSuappend( /* DPSContext ctxt; char numsa; int n; char opsD; int I; */ ); 

extern void DPSucache( /* DPSContext ctxt; */ ); 

extern void DPSucachestatus( /* DPSContext ctxt; */ ); 

extern void DPSueofill( /* DPSContext ctxt; char numsD; int n; char opsD; int I;*/); 

extern void DPSufill( /* DPSContext ctxt; char numsD; int n; char opsD; int I; */ ); 

extern void DPSundef( /* DPSContext ctxt; char *name;*/); 

extern void DPSundefinefont( /* DPSContext ctxt; char *name; */ ); 

extern void DPSundefineuserobject( /* DPSContext ctxt; int userObjlndex; */ ); 

extern void DPSupath( /* DPSContext ctxt; int b; */ ); 

extern void DPSuserdict( /* DPSContext ctxt; */ ); 

extern void DPSusertime( /* DPSContext ctxt; int *milliseconds; */ ); 

extern void DPSustroke( /* DPSContext ctxt; char numsD; int n; char opsD; int I;*/); 

extern void DPSustrokepath( /* DPSContext ctxt; char numsD; int n; char opsD; int I;*/); 

extern void DPSversion( /* DPSContext ctxt; int bufsize; char bufD; */ ); 

extern void DPSviewclip( /* DPSContext ctxt; */ ); 

extern void DPSviewclippath( /* DPSContext ctxt; */ ); 

extern void DPSvmreclaim( /* DPSContext ctxt; int code; */ ); 

extern void DPSvmstatus( /* DPSContext ctxt; int *level, *used, *maximum;*/); 

extern void DP Swait( /* DPSContext ctxt; */ ) ; 

extern void DPSwcheck( /* DPSContext ctxt; int *b; */ ); 

extern void DPSwhere( /* DPSContext ctxt; int *b; */ ); 

extern void DPSwidthshow( /* DPSContext ctxt; float x, y; int c; char *s; */ ); 

10 SINGLE-OPERATOR PROCEDURES 71 



extern void DPSwrite( /* DPSContext ctxt; */ ); 

extern void DPSwritehexstring( /* DPSContext ctxt; */ ); 

extern void DPSwriteobject( /* DPSContext ctxt; int tag; */ ); 

extern void DPSwritestring( /* DPSContext ctxt; */ ); 

extern void DPSwtranslation( /* DPSContext ctxt; float *x, *y; */ ); 

extern void DPSxcheck( /* DPSContext ctxt; int *b; */ ); 

extern void DPSxor( /* DPSContext ctxt; */ ); 

extern void DPSxshow( /* DPSContext ctxt; char *s; float numarrayD; int size; */ ); 

extern void DPSxyshow( /* DPSContext ctxt; char *s; float numarrayD; int size;*/); 

extern void DPSyield( /* DPSContext ctxt; */ ); 

extern void DPSyshow( /* DPSContext ctxt; char *s; float numarrayD; int size;*/); 

72 Client Library Reference Manual I Version of January 23, 1990 



11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 

This section describes the procedures in the dpsfriends.h header 
file that are called by wrapped procedures - the C-callable 
procedures that are output by the pswrap translator. This infor
mation is not normally required by the application programmer. 

A description of the dpsfriends.h header file is provided for ap
plication or toolkit programmers who need finer control over 
these areas: 

•Transmission of code for execution. 

• Handling of result values. 

• Mapping of user names to user name indices. 

This section also contains a discussion of the structure of binary 
object sequences. 

11.1 MORE ABOUT SENDING CODE FOR EXECUTION 

One of the primary purposes of the Client Library is to provide 
runtime support for the code generated by pswrap. Each wrapped 
procedure builds a binary object sequence that represents the 
PostScript language code to be executed. Since a binary object 
sequence is structured, the procedures for sending a binary object 
sequence are designed to take advantage of this structure. 

The following procedures efficiently process binary object se
quences generated by wrapped procedures: 

• DPSBinObjSeqWrite sends the beginning of a new binary 
object sequence generated by a wrapped procedure. This 
initial part includes, at minimum, the header and the entire 
top-level sequence of objects. It can also include sub
sidiary array elements and/or string characters if those ar
rays and strings are static - that is, if their lengths are 
known at compile time and there are no intervening arrays 
or strings of varying length. DPSBinObjSeq Write may 
convert the binary object sequence to another encoding, 
depending upon the 'DPSContextRec' encoding variables. 
For a particular wrapped procedure, DPSBinObjSeq Write is 
called exactly once. 

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 73 



• DPSWriteTypedObjectArray sends arrays (excluding 
strings) that were specified as input arguments to a 
wrapped procedure. It writes Postscript language code 
specified by the context's format and encoding variables, 
doing appropriate conversions as needed. For a particular 
wrapped procedure, DPSWriteTypedObjectArray is called 
zero or more times - once for each input array specified. 

• DPSWriteStringChars sends the text of strings or names. It 
appends characters to the current binary object sequence. 
For a particular wrapped procedure, DPSWriteStringChars 
is called zero or more times to send the text of names and 
strings. 

The overall length of arrays and strings sent by 
DPSWriteTypedObjectArray and DPSWriteStringChars must be 
consistent with the length information specified in the binary ob
ject sequence header sent by DPSBinObjSeqWrite. In particular, 
don't rely on 'sizeof()' to return the correct size value of the 
binary object sequence. 

11.2 RECEIVING RESULTS 

Each wrapped procedure with output arguments constructs an 
array containing elements of type 'DPSResultsRec'. This array 
is called the result table. The index position of each element cor
responds to the ordinal position of each output argument as 
defined in the wrapped procedure: the first table entry (index 0) 
corresponds to the first output argument, the second table entry 
(index 1) corresponds to the second argument, and so on. Each 
entry defines one of the output arguments of a wrapped proce
dure by specifying a data type, a count, and a pointer to the 
storage for the value. DPSSetResultTable registers the result 
table with the context. 

The interpreter sends return values to the application as binary 
object sequences. Wrapped procedures that have output argu
·ments use the printobject operator to tag and send each return 
value. (See the discussion of the printobject operator in 
PostScript Language Extensions for the Display PostScript 
System.) The tag corresponds to the index of the output argument 
in the result table. After the wrapped procedure finishes sending 
the PostScript language program, it calls DPSAwaitReturnValues 
to wait for all of the results to come back. 

7 4 Client Library Reference Manual / Version of January 23, 1990 



As the Client Library receives results from the interpreter, it 
places each result into the output argument specified by the 
result table. The tag of each result object in the sequence is used 
as an index into the result table. When the Client Library 
receives a tag that is greater than the last defined tag number, 
DPSAwaitReturnValues returns. This final tag is called the ter
mination tag. 

Certain conventions must be followed to handle return values for 
wrapped procedures properly: 

• The tag associated with the return value is the ordinal of the 
output parameter as listed in the definition of the wrapped 
procedure, starting from 0 and counting from left to right 
(see example below). 

•If the 'count' field of the 'DPSResultsRec' is -1, the ex
pected result is a single element, or "scalar," and return 
values with the same tag overwrite previous values. Other
wise, the 'count' indicates the number of array elements 
that remain to be received. In this case, a series of return 
values with the same tag are stored in successive elements 
of the array. If the value of 'count' is zero, further array 
elements of the same tag value are ignored. 

• DPSAwaitReturnValues returns when it notices that the 
'resultTable' pointer in the 'DPSContextRec' data object is 
'NULL'. The code that handles return values should note 
the reception of the termination tag by setting the 
'resultTable' to 'NULL' to indicate that there are no more 
return values to receive for this wrapped procedure. 

Here is an example of a wrap with return values: 

defineps Example(! int *x, *y, *z) 
10 20 30 x y z 

endps 

The code generated for this wrapped procedure is actually: 

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 75 



10 20 30 
0 printobject 

% pop integer 30 off the operand stack, 
% use tag= O (result table index= 0, first parameter 'x') 
% write binary object sequence 

1 printobject 
% pop integer 20 off the operand stack, 
% use tag = 1 (result table index = 1 , second parameter 'y') 
% write binary object sequence 

2 printobject 
% pop integer 10 off the operand stack, 
% use tag = 2 (result table index = 2, third parameter 'z') 
% write binary object sequence 

O 3 printobject 
% push dummy value O on operand stack 
% pop integer O off operand stack, 
% use tag = 3 (termination tag) 
% write binary object sequence 

flush 
% make sure all data is sent back to the application 

11.3 MANAGING USER NAMES 

Name indices are the most efficient way to specify names in a 
binary object sequence; refer to PostScript Language Extensions 
for the Display PostScript System for a full description. The 
Client Library manages the mapping of user names to indices. 
Wrapped procedures map user names automatically. The first 
time a wrapped procedure is called, it calls DPSMapNames to 
map all user names specified in the wrapped procedure into in
dices. The application may also call DPSMapNames directly to 
obtain name mappings. 

A name map is stored in a space. All contexts associated with 
that space have the same name map. The name mapping for the 
context is automatically kept up to date by the Client Library in 
the following way: 

•Every wrapped procedure calls DPSBinObjSeqWrite, 
which, in addition to sending the binary object sequence, 
checks to see if the user name map is up to date. 

• DPSBinObjSeqWrite calls DPSUpdateNameMap if the 
name map of the space does not agree with the Client 
Library's name map. DPSUpdateNameMap may send a 

76 Client Library Reference Manual I Version of January 23, 1990 



series of defineusername operators to the PostScript inter
preter. 

DPSNameFromlndex returns the text for the user name with the 
given index. The string returned is owned by the Client Library; 
treat it as read-only. 

11.4 BINARY OBJECT SEQUENCES 

Syntactically, a binary object sequence is a single token. The 
structure is described in detail in PostScript Language Exten
sions for the Display PostScript System. The definitions in this 
section correspond to the components of a binary object se
quence. 

#define DPS_HEADER_SIZE 4 

#define DPS_Hl_IEEE 128 
#define DPS_LO_IEEE 129 
#define DPS_Hl_NATIVE 130 
#define DPS_LO_NATIVE 131 

#ifndef DPS_DEF _ TOKENTYPE 
#define DPS_DEF _TOKENTYPE DPS_Hl_IEEE 
#endif DPS_DEF _ TOKENTYPE 

typedef struct { 
unsigned char tokenType; 
unsigned char nTopElements; 
unsigned short length; 
DPSBinObjRec objects[1 ]; 

} DPSBinObjSeqRec, *DPSBinObjSeq; 

A binary object sequence begins with a four-byte header. The 
first byte indicates the token type. A binary object is defined by 
one of the four token type codes listed above. 
'DPS_ DEF_ TOKENTYPE' defines the default token type for bi
nary object sequences generated by a particular implementation 
of the Client Library. 'DPS_DEF _ TOKENTYPE' must be consis
tent with the machine architecture upon which the Client Library 
is implemented. 

The 'nTopElements' byte indicates the number of top-level ob
jects in the sequence. A binary object sequence can have from 1 
to 255 top-level objects. If more top-level objects are required, 
use an extended binary object sequence (described in Section 
11.5). 

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 77 



The next two bytes form a nonzero 16-bit integer that is the total 
byte length of the binary object sequence. 

The header is followed by a sequence of objects. 

#define DPS_NULL 0 
#define DPS_INT 1 
#define DPS_REAL 2 
#define DPS_NAME 3 
#define DPS_ BOOL 4 
#define DPS_STRING 5 
#define DPS_IMMEDIATE 6 
#define DPS_ ARRAY 9 
#define DPS_MARK 10 

The first byte of an object describes its attributes and type. The 
types are listed above and correspond to the Postscript language 
objects that pswrap generates. 

#define DPS_ LITERAL 0 
#define DPS_ EXEC Ox080 

The high-order bit indicates whether the object has the literal (0) 
or executable (1) attribute. 

The next byte is the tag byte, which must be zero for objects sent 
to the interpreter. Result values sent back from the interpreter 
will use the tag field, as described in Section 11.2. 

The next two bytes form a 16-bit integer that is the length of the 
object. The unit value of the length field depends upon the type 
of the object. For arrays, the length indicates the number of ele
ments in the array. For strings, the length indicates the number of 
characters. 

The last four bytes of the object form the value field. The inter
pretation of this field depends upon the type of the object. 

78 Client Library Reference Manual I Version of January 23, 1990 



typedef struct { 
unsigned char attributedType; 
unsigned char tag; 
short length; 
long int val; 

} DPSBinObjGeneric; /* boolean, int, string, name and array */ 

typedef struct { 
unsigned char attributedType; 
unsigned char tag; 
short length; 
float realVal; 

} DPSBinObjReal; /*float*/ 

'DPSBinObjGeneric' and 'DPSBinObjReal' are defined for the 
use of wraps. They make it easier to initialize the static portions 
of the binary object sequence. 

typedef struct { 
unsigned char attributedType; 
unsigned char tag; 
short length; 
union { 

long int integerVal; 
float realVal; 
long int nameVal; /* offset or index */ 
long int booleanVal; 
long int stringVal; /* offset*/ 
long int arrayVal; /*offset*/ 

}val; 
} DPSBinObjRec; 

'DPSBinObjRec' is a general-purpose variant record for inter
preting an object in a binary object sequence. 

11.5 EXTENDED BINARY OBJECT SEQUENCES 

An extended binary object sequence is required if there are more 
than 255 top-level objects in the sequence. The extended binary 
object sequence is represented by 
'DPSExtendedBinObjSeqRec', as follows: 

ByteO 

Byte 1 

Same as for a normal binary object sequence; it 
represents the token type. 

Set to zero; indicates that this is an extended bi
nary object sequence. (In a normal binary object 

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 79 



Bytes 2-3 

Bytes 4-7 

sequence, this byte represents the number of top
level objects.) 

A 16-bit value representing the number of top
level elements. 

A 32-bit value representing the overall length of 
the extended binary object sequence. 

The byte order in numeric fields is according to the number rep
resentation specified by the token type. 

The layout of the remainder of the extended binary object se
quence is identical to that of a normal binary object sequence. 

11.6 DPSFRIENDS.H DATA STRUCTURES 

DPSBinObjGeneric 

This section describes the data structures used by the pswrap 
program as part of its support for wrapped procedures. 

Note: The 'DPSContextRec' data structure and its handle, 
'DPSContext', are part of the dpsfriends.h header file. They are 
documented in Section 9 .1 because they are also used by 
dpsclient.h procedures. 

typedef struct { 
unsigned char attributedType; 
unsigned char tag; 
unsigned short length; 
long int val; 

} DPSBinObjGeneric; /*boolean, int, string, name and array*/ 

is defined for the use of wraps. It is used to initialize the static 
portions of the binary object sequence. See 'DPSBinObjReal' for 
type 'real'. 

80 Client Library Reference Manual I Version of January 23, 1990 



DPSBinObjReal 

DPSBinObjRec 

DPSBinObJSeqRec 

typedef struct { 
unsigned char attributedType; 
unsigned char tag; 
unsigned short length; 
float realVal; 

} DPSBinObjReal; /* float */ 

is similar to 'DPSBinObjGeneric', but represents a real number. 

typedef struct { 
unsigned char attributedType; 
unsigned char tag; 
unsigned short length; 
union { 

long int integerVal; 
float realVal; 
long int nameVal; /* offset or index */ 
long int booleanVal; 
long int stringVal; /* offset*/ 
long int arrayVal; /* offset */ 

}val; 
} DPSBinObjRec; 

is a general-purpose variant record for interpreting an object in a 
binary object sequence. 

typedef struct { 
unsigned char tokenType; 
unsigned char nTopElements; 
unsigned short length; 
DPSBinObjRec objects[1 ]; 

} DPSBinObjSeqRec, *DPSBinObjSeq; 

This data type is provided as a convenience for accessing a bi
nary object sequence copied from an 1/0 buffer. 

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 81 



DPSDefinedType typedef enum { 
dps_tBoolean, 
dps_tChar, dps_tUChar, 
dps_tFloat, dps_tDouble, 
dps _ tShort, dps _ tUShort, 
dps_tlnt, dps_tUlnt, 
dps_tlong, dps_tULong} DPSDefinedType; 

enumerates the C data types used to describe wrap arguments. 

DPSExtendedBinObjSeqRec 

DPSNameEncoding 

DPSProcs 

typedef struct { 
unsigned char tokenType; 
unsigned char escape; /* zero if this is an extended sequence */ 
unsigned short nTopElements; 
unsigned long length; 
DPSBinObjRec objects[1]; 

} DPSExtendedBinObjSeqRec, *DPSExtendedBinObjSeq; 

This data type has a purpose similar to 'DPSBinObjSeqRec', but 
is used for extended binary object sequences. 

typedef enum { 
dps _indexed, dps _strings 
} DPSNa'meEncoding; 

defines the two possible encodings for user names in the 
'dps_binObjSeq' and 'dps_encodedTo~ens' forms of Postscript 
language programs. 

/*pointer to procedures record*/ 

See 'DPSProcsRec'. 

82 Client Library Reference Manual I Version of January 23, 1990 



DPSProcsRec typedef struct { 
void (*BinObjSeqWrite)( /* DPSContext ctxt, char *buf, unsigned int count*/); 
void (*WriteTypedObjectArray) ( /* 

DPSContext ctxt, 
DPSDefinedType type; 
char *array, 
unsigned int length */ ); 

void (*WriteStringChars) ( /* DPS Context ctxt; char *buf; unsigned int count; */); 
void (*Write Data)(/* DPSContext ctxt, char *buf, unsigned int count*/); 
void (*WritePostScript)( /* DPSContext ctxt, char *buf, unsigned int count*/); 
void (*FlushContext)( /* DPSContext ctxt */ ); 
void (*ResetContext)( /* DPSContext ctxt */ ); 
void (*UpdateNameMap)( r DPSContext ctxt */ ); 
void (*AwaitReturnValues)( /* DPSContext ctxt */ ); 
void (*Interrupt) ( /* DPSContext ctxt */ ); 
void (*DestroyContext)( /* DPSContext ctxt */); 
void (*WaitContext)( /* DPSContext ctxt */ ); 
} DPSProcsRec, *DPSProcs; 

defines the data structure pointed to by 'DPSProcs'. 

This record contains pointers to procedures that implement all of 
the operations that can be performed on a context. These 
procedures are analogous to the instance methods of an object in 
an object-oriented language. 

Note: Application developers need not be concerned with the 
contents of this data structure. Do not change the 'DPSProcs' 
pointer. Do not change the contents of 'DPSProcsRec'. 

DPSProgramEncoding 
typedef enum { 

dps_ascii, dps_binObjSeq, dps_encodedTokens 
} DPSProgramEncoding; 

defines the three possible encodings of Postscript language 
programs: ASCII encoding, binary object sequence encoding, 
and binary token encoding. 

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 83 



DPSResultsRec 

DP SS pace 

DPSSpaceRec 

typedef struct { 
DPSDefinedType type; 
int count; 
char *value; 
} DPSResultsRec, *DPSResults; 

Each wrapped procedure constructs an array called the result 
table, which consists of elements of type 'DPSResultsRec'. The 
index position of each element corresponds to the ordinal posi
tion of each output parameter as defined in the wrapped proce
dure; for example, index 0 (the first table entry) corresponds to 
the first output parameter, index 1 corresponds to the second out
put parameter, and so on. 

'type' specifies the formal type of the return value. 'count' 
specifies the number of values expected; this supports array for
mals. 'value' points to the location of the first value; the storage 
beginning there must have room for 'count' values of type 
'type'. If 'count' is -1, 'value' points to a scalar (single) result 
argument. If 'count' is zero, any subsequent return values are 
ignored. 

/* handle for space record */ 

See 'DPSSpaceRec'. 

typedef struct { 
DPSSpaceProcs procs; 
} DPSSpaceRec, *DPSSpace; 

typedef struct { 
void (*DestroySpace)(/* DPSSpace space*/); 
} DPSSpaceProcsRec, *DPSSpaceProcs; 

provides a representation of a space. See also DPSDestroySpace 
in Section 9.2. 

11.7 DPSFRIENDS.H PROCEDURES 

The following is an alphabetical listing of the procedures in the 
Client Library header file dpsfriends.h. These procedures are for 
experts only; most application programmers don't need them. 
The pswrap translator inserts calls to these procedures when it 

84 Client Library Reference Manual I Version of January 23, 1990 



creates C-callable wrapped procedures specified by the applica
tion programmer. 

DPSAwaitReturnValues 
void DPSAwaitReturnValues(ctxt) 
DPSContext ctxt; 

waits for all results described by the result table; see 
'DPSResultRec'. It uses the tag of each object in the sequence to 
find the corresponding entry in the result table. When 
DPSAwaitReturnValues receives a tag that is greater than the last 
defined tag number, there are no more return values to be 
received and the procedure returns. This final tag is called the 
termination tag. DPSSetResultTable must be called to set the 
result table before any calls to DPSBinObjSeqWrite. 

DPSAwaitReturnValues can call the context's error procedure 
with 'dps_err_resultTagCheck' or 'dps_err_resultTypeCheck'. It 
will return prematurely if it encounters a 'dps_err_ps' error. 

DPSBinObjSeqWrite 
void DPSBinObjSeqWrite(ctxt, buf, count) 
DPSContext ctxt; 
char *buf; 
unsigned int count; 

sends the beginning of a binary object sequence generated by a 
wrap. 'buf' points to a buffer containing 'count' bytes of a binary 
object sequence. 'buf' must point to the beginning of a sequence, 
which includes at least the header and the entire top-level se
quence of objects. 

DPSBinObjSeqWrite may also include subsidiary array elements 
and/or strings. It writes PostScript language as specified by the 
format and encoding variables of 'ctxt', doing appropriate con
versions as needed. If the buffer does not contain the entire bi
nary object sequence, one or more calls to 
DPSWriteTypedObjectArray and/or DPSWriteStringChars must 
follow immediately; 'buf' and its contents must remain valid un
til the entire binary object sequence has been written. 
DPSBinObjSeqWrite ensures that the user name map is up to 
date. 

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 85 



DPSMapNames void DPSMapNames(ctxt, nNames, names, indices) 
DPSContext ctxt; 
unsigned int nNames; 
char **names; 
long int **indices; 

maps all specified names into user name indices, sending new 
defineusername definitions as needed. 'names' is an array of 
strings whose elements are the user names. 'nNames' is the 
number of elements in the array. 'indices' is an array of pointers 
to '(long int *)' integers, which are the locations in which to store 
the indices. DPSMapNames is normally called automatically 
from within wraps. The application can also call this procedure 
directly to obtain name mappings. 

DPSMapNames calls the context's error procedure with 
'dps_err_nameTooLong'. 

Note: The caller must ensure that the string pointers remain 
valid after the procedure returns. The Client Library becomes 
the owner of all strings passed to it with DPSMapNames. 

The same name may be used several times in a wrap. To reduce 
string storage, these duplicates can be eliminated by using an 
optimization recognized by DPSMapNames. If the pointer to the 
string in the array 'names' is null - that is, '(char *)O' -
DPSMapNames uses the nearest non-null name that precedes the 
'(char *)O' entry in the array. The first element of 'names' must 
be non-null. This optimization works best if you sort the names 
so that duplicate occurrences are adjacent. 

Example: DPSMapNames treats the following arrays as equiv
alent, but the one on the right saves storage. 

{ 
"boxes", 
"drawMe", 
"drawMe", 
"init", 
"makeAPath", 
"returnAClip", 
"returnAClip", 
"returnAClip" 
} 

{ 
"boxes", 
"drawMe", 
(char *)O, 
"init", 
"makeAPath", 
"returnAClip", 
(char *)O, 
(char *)O 
} 

86 Client Library Reference Manual I Version of January 23, 1990 



DPSNameFromlndex 

DPSSetResultTable 

char *DPSNameFromlndex(index) 
long int index; 

returns the text for the user name with the given index. The 
string returned must be treated as read-only. 'NULL' will be 
returned if 'index' is invalid. 

void DPSSetResultTable(ctxt, tbl, len) 
DPSContext ctxt; 
DPSResults tbl; 
unsigned int len; 

sets the result table and its length in 'ct>d'. This operation must 
be performed before a wrap body that can return a value is sent 
to the interpreter. 

DPSUpdateNameMap 
void DPSUpdateNameMap(ctxt) 
DPSContext ctxt; 

sends a series of detineusername commands to the interpreter. 
This procedure is called if the name map of the context's space is 
not synchronized with the Client Library name map. 

DPSWriteStringChars 
void DPSWriteStringChars(ctxt, buf, count); 
DPSContext ctxt; 
char *buf; 
unsigned int count; 

appends strings to the current binary object sequence. 'buf' con
tains 'count' characters that form the body of one or more strings 
in a binary object sequence. 'buf' and its contents must remain · 
valid until the entire binary object sequence has been sent. 

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 87 



DPSWriteTypedObjectArray 
void DPSWriteTypedObjectArray(ctxt, type, array, length) 
DPSContext ctxt; 
DPSDefinedType type; 
char *array; 
unsigned int length; 

writes Postscript language code as specified by the format and 
encoding variables of 'ctxt', doing appropriate conversions as 
needed. 'array' points to an array of 'length' elements of type 
'type'. 'array' contains the element values for the body of a sub
sidiary array that was passed as an input argument to pswrap. 
'array' and its contents must remain valid until the entire binary 
object sequence has been sent. 

88 Client Library Reference Manual I Version of January 23, 1990 



A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 

Changes to the Client Library Reference Manual from the docu
ment dated October 25, 1989, are noted in the paragraphs below. 

Input sent to a child context is not passed to its parent. 

In calls to DPSWriteData, the contents of the buffer will not be 
converted according to the context's encoding parameters. 

A few additional minor amplifications and corrections have been 
made. 

Changes to the Client Library Reference Manual from the docu
ment dated October 7, 1988, are noted in the paragraphs below. 

The manual has been completely reorganized and rewritten. 

An example error handler program, DPSDefaultErrorProc, has 
been provided in Appendix B. This is the default error handler in 
the Display Postscript extension for the X Window System. 

The synchronization example in Section 6.4 has been replaced 
by an X-specific example. 

The specifications for dpsclient.h and dpsfriends.h procedures 
are now in separate chapters. 

Listings of the header files have been removed, except for 
dpsops.h (representing itself and psops.h), whose procedure 
declarations are not listed elsewhere in this manual. 

Numerous inconsistencies in the arguments to some of the 
single-operator procedures have been cleaned up. 

The document has been updated to be consistent with the latest 
versions of dpsfriends.h, dpsclient.h, dpsops.h, and psops.h. The 
following are no longer defined by Adobe: 

• DPSGetLastNamelndex 

• DPSLastNamelndex 

• DPSLastObjectlndex 

• DPSNewUserObject 

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 89 



References to system-specific issues have been added throughout 
the manual, including the following: 

• Context creation routines. 

• Behavior of default and backstop error and text handlers. 

• Automatic encoding translation (for example, binary object 
sequence to tokens). 

• Additional error codes. 

• Exception handling and error recovery. 

•Programming examples and code fragments. 

A section on programming tips has been added. 

The index has been enhanced. 

90 Client Library Reference Manual I Version of January 23, 1990 



B EXAMPLE ERROR HANDLER 

An error handler must deal with all errors defined in dpsclient.h 
as well as any additional errors defined in system-specific header 
files. 

This appendix contains an example of an error handler for the X 
Window System extension of the Display PostScript system. 

B.1 ERROR HANDLER IMPLEMENTATION 

An example implementation of an error handler, 
DPSDefaultErrorProc, follows. The code is followed by ex
planatory text. 

#include 11dpsclient.h 11 

void 
DPSDefaultErrorProc(ctxt, errorCode, arg1, arg2) 

DPSContext ctxt; 
DPSErrorCode errorCode; 
long unsigned int arg1, arg2; { 

DPSTextProc textProc = DPSGetCurrentTextBackstop(); 

char *prefix= 11%%[ Error: 11
; 

char *suffix= 11 ]%%\n"; 

char *infix = 11
; OffendingCommand: 11

; 

char *nameinfix = "User name too long; Name: "; 
char *contextinfix = "Invalid context: 11

; 

char *taginfix = "Unexpected wrap result tag: "; 
char *typeinfix = "Unexpected wrap result type; tag: "; 

switch (errorCode) { 
case dps_err_ps: { 

char *buf = (char *)arg1; 
DPSBinObj ary = (DPSBinObj) (buf+DPS_HEADER_SIZE); 
DPSBinObj elements; 
char *error, *errorName; 
integer errorCount, errorNameCount; 
boolean resyncFlg; 

Assert((ary->attributedType & Ox7f) == DPS_ARRAY); 
Assert(ary->length == 4); 

elements= (DPSBinObj)(((char *) ary) + ary->val.arrayVal); 

B.1 ERROR HANDLER IMPLEMENTATION 91 



errorName = (char *)(((char*) ary) + elements[1].val.nameVal); 
errorNameCount = elements[1].length; 

error= (char *)(((char*) ary) + elements[2].val.nameVal); 
errorCount = elements[2].length; 

resyncFlg = elements[3].val.booleanVal; 

if (textProc != NIL) { 
(*textProc)(ctxt, prefix, strlen(prefix)); 
(*textProc)(ctxt, errorName, errorNameCount); 
(*textProc)(ctxt, infix, strlen(infix)); 
(*textProc)(ctxt, error, errorCount); 
(*textProc)(ctxt, suffix, strlen(suffix)); 
} 

if (resyncFlg && (ctxt != dummyCtx)) { 
RAISE(dps_err_ps, ctxt); 
CantHappen(); 
} 

break; 
} 

case dps_err_nameTooLong: 
if (textProc I= NIL) { 

char *buf = (char *)arg1; 
(*textProc) ( ctxt, prefix, strlen (prefix)); 
(*textProc)(ctxt, nameinfix, strlen(nameinfix)); 
(*textProc)(ctxt, buf, arg2); 
(*textProc)( ctxt, suffix, strlen (suffix)); 
} 

break; 
case dps_err_invalidContext: 

if (textProc !=NIL) { 
char m[100]; 
(void) sprintf(m, 11%s%s%d%s", prefix, contextinfix, arg1, suffix); 
(*textProc)(ctxt, m, strlen(m)); 
} 

break; 
case dps_err_resultTagCheck: 
case dps _err _resultTypeCheck: 

if (textProc != NIL) { 
char m[100]; 
unsigned char tag= *((unsigned char*) arg1 +1 ); 
(void) sprintf(m, 11%s%s%d%s 11

, prefix, typeinfix, tag, suffix); 
(*textProc)(ctxt, m, strlen(m)); 
} 

break; 
case dps _err _invalidAccess: 

if (textProc != NIL) 
{ 
char m[100]; 

92 Client Library Reference Manual I Version of January 23, 1990 



(void) sprintf (m, 11%slnvalid context access.%s 11
, prefix, suffix); 

(*textProc) (ctxt, m, strlen (m)); 
} 
break; 

case dps_err_encodingCheck: 
if (textProc I= NIL) 

{ 
char m[100]; 
(void) sprintf (m, 11%slnvalid name/program encoding: %d/%d.%s 11

, 

prefix, (int) arg1, (int) arg2, suffix); 
(*textProc) (ctxt, m, strlen (m)); 
} 
break; 

case dps _err_ closedDisplay: 
if (textProc I= NIL) 

{ 
char m[100]; 
(void) sprintf (m, 11%sBroken display connection %d.%s 11

, 

prefix, (int) arg1, suffix); 
(*textProc) (ctxt, m, strlen (m)); 
} 
break; 

case dps _err_ dead Context: 
if (textProc I= NIL) 

{ 
char m[100]; 
(void) sprintf (m, 11%sDead context OxO%x.%s 11

, prefix, 
(int) arg 1 , suffix); 

(*textProc) (ctxt, m, strlen (m)); 
} 
break; 

default:; 
} 

} /* DPSDefaultErrorProc */ 

B.2 DESCRIPTION OF THE ERROR HANDLER 

DPSDefaultErrorProc handles errors that arise when a wrap or 
Client Library procedure is called for the context. The error code 
indicates what error occurred. Interpretation of the 'arg 1 ' and 
'arg2' values is based on the error code. 

The error handler initializes itself by getting the current backstop 
text handler and assigning string constants that will be used to 
formulate and report a text message. The section of the program 

B.2 DESCRIPTION OF THE ERROR HANDLER 93 



that deals with the various error codes begins with the 'switch' 
statement. Each error code can be handled differently. 

If a 'textProc' was specified, the error handler calls the text 
handler to formulate an error message, passing it the name of the 
error, the object that caused the error, and the string constants 
used to format a standard error message. For example, a 
typecheck error reported by the cvn operator would be reported 
as a 'dps_err_ps' error code and printed as follows: 

%%[Error: typecheck; OffendingCommand: cvn )%% 

The following error codes are common to all Client Library im
plementations: 

• 'dps_err_ps' represents all Postscript language errors 
reported by the interpreter; that is, the errors listed under 
each operator in the PostScript Language Reference 
Manual and PostScript Language Extensions for the Dis
play PostScript System. See Section B.3 for more infor
mation about this error code. 

• 'dps_err_nameTooLong' arises if a binary object sequence 
or encoded token has a name whose length exceeds 128 
characters. 'arg1' is the PostScript user name; 'arg2' is its 
length. 

• 'dps_err_invalidContext' arises if a Client Library routine 
was called with an invalid context. This can happen if the 
client is unaware that the execution context in the inter
preter has terminated. 'arg1' is a context identifier; 'arg2' 
is unused. 

• 'dps_err_resultTagCheck' occurs when an invalid tag is 
received for a result value. There is one object in the se
quence. 'arg1' is a pointer to the binary object sequence; 
'arg2' is the length of the binary object sequence. 

• 'dps_err_resultTypeCheck' occurs when the value returned 
is of a type incompatible with the output parameter (for 
example, a string returned to an integer output parameter). 
'arg1' is a pointer to the binary object (the result with the 
wrong type); 'arg2' is unused. 

The remainder of the error codes are specific to the X Window 
System: 

94 Client Library Reference Manual I Version of January 23, 1990 



• 'dps_err_invalidAccess' indicates that a shared context is 
being used improperly. For example, result values were 
erroneously sent to a sharing client other than the creator of 
the context. 'arg1' and 'arg2' are unused. 

• 'dps_err_encodingCheck' indicates that an undefined en
coding value has been passed to DPSChangeEncoding or 
that the application is trying to change the name encoding 
of a shared context. 'arg1' is the new name encoding; 
'arg2' is the new program encoding. 

• 'dps_err_closedDisplay' indicates that the connection to 
the server has been lost. 'arg1' is the index number of the 
display; 'arg2' is unused. 

• 'dps _err_ deadContext' indicates that a context has ter
minated in the interpreter, but the resources assigned to the 
context have not been freed. 'arg1' is the 'DPSContext' 
handle; 'arg2' is unused. 

8.3 HANDLING POSTSCRIPT LANGUAGE ERRORS 

The following discussion applies only to the 'dps_err_ps' error 
code. This error code represents all possible PostScript operator 
errors. Because the interpreter provides a binary object sequence 
containing detailed information about the error, more options are 
available to the error handler than for other client errors. 

'arg1' points to a binary object sequence that describes the error. 
The binary object sequence is a four-element array consisting of 
the name 'Error', the name that identifies the specific error, the 
object that was executed when the error occurred, and a boolean 
indicating whether the context expects to be resynchronized. For 
further details of the format of the binary object sequence, see 
PostScript Language Extensions for the Display PostScript 
System. 

The type and length of the array are checked with assertions. The 
body of the array is pointed to by the 'elements' variable. Each 
element of the array is derived and placed in a variable. 

DPSDefaultErrorProc raises an exception only if the context ex
ecuted resyncstart to install resynchandleerror. The 
'resyncFlag' variable contains the value of the fourth element of 

B.3 HANDLING POSTSCRIPT LANGUAGE ERRORS 95 



the binary object sequence array, the boolean that indicates 
whether resynchronization is needed. 'resyncFlag' will be false 
if the handleerror operator handled the error; it will be true if 
resynchandleerror handled the error. 

If 'resyncFlag' is true and the context handling the error is a 
context created by the application, the error handler raises the 
exception by calling RAISE. This call never returns. See Appen
dix C for a discussion of how RAISE works. 

96 Client Library Reference Manual I Version of January 23, 1990 



C EXCEPTION HANDLING 

This appendix describes a general-purpose exception-handling 
facility. It provides help for a narrowly defined problem area -
handling PostScript language errors that arise from the con
ditions listed on page 26. Most application programmers need 
not be concerned with exception handling. These facilities can be 
used in conjunction with PostScript language code and a sophis
ticated error handler such as DPSDefaultErrorProc to provide a 
certain amount of error recovery capability. Consult the system
specific documentation for alternative means of error recovery. 

Note: Avoid using exception handling with the X Window Sys
tem because lower levels of software, such as Xlib, are not 
prepared to handle exceptions or to have control taken away 
from them. 

An exception is an unexpected condition such as a Postscript 
language error that prevents a procedure from running to normal 
completion. The procedure could simply return, but data struc
tures might be left in an inconsistent state and returned values 
might be incorrect. Instead of returning, the procedure can raise 
the exception, passing a code that indicates what has happened. 
The exception is intercepted by some caller of the procedure that 
raised the exception (any number of procedure calls deep); ex
ecution then resumes at the point of interception. As a result, the 
procedure that raised the exception is terminated, as are any in
tervening procedures between it and the procedure that inter
cepted the exception, an action which is called ''unwinding the 
call stack.'' 

The Client Library provides a general-purpose exception
handling mechanism in dpsexcept.h. This header file provides 
facilities for placing exception handlers in application sub
routines to respond cleanly to exceptional conditions. 

C EXCEPTION HANDLING 97 



Note: Application programs may need to contain the following 
statement: 

#include "dpsexcept.h" 

As an exception propagates up the call stack, each procedure en
countered can deal with the exception in one of three ways: 

• It ignores the exception, in which case the exception con
tinues on to the caller of the procedure. 

•It intercepts the exception and handles it, in which case all 
procedure calls below the handler are unwound and dis
carded. 

• It intercepts, handles, and then reraises the exception, al
lowing handlers higher in the stack to notice and react to 
the exception. 

The body of a procedure that intercepts exceptions is written as 
follows: 

DURING 
statement1; 
statement2; 

HANDLER 
statement3 
statement4; 

END_HANDLER 

The statements between 'HANDLER' and 'END_HANDLER' 
comprise the exception handler for exceptions occurring between 
'DURING' and 'HANDLER'. The procedure body works as fol
lows: 

•Normally, the statements between 'DURING' and 
'HANDLER' are executed. 

•If no exception occurs, the statements between 'HANDLER' 
and 'END_HANDLER' are bypassed; execution resumes at 
the statement after 'END_HANDLER'. 

• If an exception is raised while executing the statements be
tween 'DURING' and 'HANDLER' (including any proce-

98 Client library Reference Manual I Version of January 23, 1990 



dure called from those statements), execution of those 
statements is aborted and control passes to the statements 
between 'HANDLER' and 'END_HANDLER'. 

In terms of C syntax, you must treat these macros as if they were 
C code brackets, as follows: 

Macro 

'DURING' 

'HANDLER' 

'END_HANDLER' 

C Equivalent 

{{ 

H 
}} 

In general, exception-handling macros should either entirely 
enclose a code block (the preferred method - see Example 1 
below) or should be entirely within the block (see Example 2). 

DURING 
while (/* Example 1 */) { 

} 
HANDLER 

END _HANDLER 

while(/* Example 2 */) { 
DURING 

HANDLER 

END_HANDLER 
} 

When a procedure detects an exceptional condition, it can raise 
an exception by calling RAISE. RAISE takes two arguments. The 
first is an error code (for example, one of the values of 
'DPSErrorCode'). The second is a pointer, 'char*', which may 
point to any kind of data structure, such as a string of ASCII text 
or a binary object sequence. 

The exception handler has two local variables, 'Exception.Code' 
and 'Exception.Message'. When the handler is entered, the first 

C EXCEPTION HANDLING 99 



argument that was passed to RAISE get assigned to 
'Exception.Code' and the second argument gets assigned to 
'Exception.Message'. These variables have valid contents only 
between 'HANDLER' and 'END_HANDLER'. 

If the exception handler executes 'END_HANDLER' or returns, 
propagation of the exception ceases. However, if the exception 
handler calls RERAISE, the exception along with 
'Exception.Code' and 'Exception.Message' - is propagated to 
the next outer dynamically enclosing occurrence of 'DURING ... 
HANDLER'. 

A procedure may choose not to handle an exception, in which 
case one of its callers must handle it. There are two common 
reasons for wanting to handle exceptions: 

•To deallocate dynamically allocated storage and clean up 
any other local state, then allow the exception to propagate 
further. In this case, the handler should perform its cleanup, 
then call RERAISE. 

•To recover from certain exceptions that might occur, then 
continue normal execution. In this case, the handler should 
compare 'Exception.Code' against the set of exceptions it 
can handle. If it can handle the exception, it should per
form· the recovery and execute the statement that follows 
'END_HANDLER'; if not, it should call RERAISE to 
propagate the exception to a higher-level handler. 

Warning: It is illegal to execute a statement between 'DURING' 
and 'HANDLER' that would transfer control outside of. those 
statements. In particular, 'return' is illegal: an unspecified error 
will occur. This restriction does not apply to the statements be
tween 'HANDLER' and 'END_HANDLER'. To return from the 
exception handler, call 'E_RETURN_ VOID()'; to perform 
'return(x)', call 'E_RETURN(x)'. 

100 Client Library Reference Manual I Version of January 23, 1990 



C.1 RECOVERING FROM POSTSCRIPT LANGUAGE ERRORS 

The example DPSDefaultErrorProc procedure can be used with 
the Postscript operator resyncstart to recover from Postscript 
language errors. If you use this strategy, an exception can be 
raised by any of the Client Library procedures that write code or 
data to the context: any wrap, any single-operator procedure, 
DPSWritePostScript, and so on. The strategy is as follows: 

• Send the operator resyncstart to the context immediately 
after it is created. resyncstart is a simple read-evaluate
print loop enclosed in a stopped clause which, on error, 
executes resynchandleerror. resynchandleerror reports 
PostScript errors back to the client in the form of a binary 
object sequence of a single object: an array of four ele
ments as described in PostScript Language Extensions for 
the Display PostScript System. The fourth element of the 
binary object sequence, a boolean, is set to true to indicate 
that resynchandleerror is executing. The stopped clause 
itself executes within an outer loop. 

• When a PostScript language error is detected, 
resynchandleerror writes the binary object sequence 
describing the error, flushes the output stream % stdout, 
then reads and discards any data on the input stream 
%stdio until EOF (an end-of-file marker) is received. This 
effectively clears out any pending code and data, and 
makes the context do nothing until the client handles the 
error. 

• The binary object sequence sent by resynchandleerror is 
eventually received by the client and passed to the 
context's error handler. The error handler formulates a text 
message from the binary object sequence and displays it, 
perhaps by calling the backstop text handler. It then in
spects the binary object sequence and notices that the 
fourth element of the array, a boolean, is true. This means 
that resynchandleerror is executing and is waiting for the 
client to recover from the error. At this point, the error 
handler may raise an exception by calling RAISE with 
'dps_err_ps' and the 'DPSContext' pointer, in order to al
low some exception handler to do specific error recovery. 

•The 'dps_err_ps' exception is caught by one of the hand
lers in the application program. This causes the C stack to 

C.1 RECOVERING FROM POSTSCRIPT LANGUAGE ERRORS 101 



be unwound, and the handler body to be executed. To 
handle the exception, the application can reset the context 
that reported the error, discarding any waiting code. 

• The handler body calls DPSResetContext, which resets the 
context after an error occurs. This procedure guarantees 
that any buffered 1/0 is discarded and that the context is 
ready to read and execute more input. Specifically, 
DPSResetContext causes EOF to be put on the context's 
input stream. 

•We have come full circle now. EOF is received by 
resynchandleerror, which causes it to terminate. The 
outer loop of resyncstart then reopens the context's input 
stream %stdin, which clears the end-of-file indication and 
resumes execution at the top of the loop. The context is 
now ready to read new code. 

Although the above strategy works well enough for some appli
cations, it leaves the context and the contents of its private VM 
in an unknown state. For example, the dictionary and operand 
stacks may be cluttered, or free-running forked contexts may 
have been created, or the contents of userdict may have been 
changed. Clearing the state of such a context may be very com
plicated. 

Note: You may not get Postscript language error exceptions 
when you expect them. Because of various delays related to 
buffering and scheduling, a PostScript language error may be 
reported long after the C procedure responsible for the error has 
returned. This makes it difficult to write an exception handler 
for a given section of code. If this code can cause a PostScript 
language error and will therefore cause DPSDefaultErrorProc to 
raise an exception, you can ensure that you get the exception in a 
timely manner by using synchronization, which is discussed in 
Section 6.4. 

1 02 Cli~nt Library Reference Manual I Version of January 23, 1990 



Warning: In multi-context applications that require error 
recovery, the code to recover from PostScript errors can get quite 
complicated. An exception reporting a Postscript error caused by 
one context can be raised by any call on the Client Library, even 
one on behalf of some other context, including calls made from 
wraps. Although DPSDefaultErrorProc does pass the context 
that caused the error as an argument to RAISE, it is difficult in 
general to deal properly with an exception from one context that 
arises while the application is working with another. 

When the standard handleerror procedure is called to report an 
error, no recovery is possible except to display an error message 
and destroy the context. 

C.2 EXAMPLE EXCEPTION HANDLER 

A typical application might have the following main loop. As
sume that a context has already been created with 
DPSDefaultErrorProc as its error procedure, and that 
resyncstart has been executed by the context. 

C.2 EXAMPLE EXCEPTION HANDLER 103 



#include <dpsexcept.h> 

while (/* the user hasn't quit */} { 
/* get an input event */ 

} 

event= GetEventFromQueue(); 
/* react to event */ 
DURING 

switch (event) { 
case EVENT_ A: 

UserWrapA(context, ... ); 
break; 

case EVENT_ B: 
UserWrapB(context, ... ); 
break; 

case EVENT_C: 
ProcThatCallsSeveralWraps(context); 
break; 

/* ... */ 
default:; 

} 
HANDLER 

/* the context's error proc has already posted an 
error for this exception, so just reset. 
Make sure the context we're using is the 
one that caused the error! */ 

if (Exception.Code== dps_err_ps) 
DPSResetContext((DPSContext)Exception.Message); 

END _HANDLER 

Most of the calls in the 'switch' statement are either direct calls 
to wrapped procedures or indirect calls (that is, calls to 
procedures that make direct calls to wrapped procedures or to the 
Client Library). All of the procedure calls between 'DURING' 
and 'HANDLER' can potentially raise an exception. The code be
tween 'HANDLER' and 'END_HANDLER' is executed only if an 
exception is raised by the code between 'DURING' and 
'HANDLER'. Otherwise, the handler code is skipped. 

Suppose ProcThatCallsSevera/Wraps is defined as follows: 

1 04 Client Library Reference Manual I Version of January 23, 1990 



void ProcThatCallsSeveralWraps(context) 
DPSContext context; 
{ 

} 

char *s = ProcThatAllocsAString( ... ); 
int n; 

DURING 
UserWrapC1 (context, ... ); 
UserWrapC2(context, &n); /*user wrap returns a value*/ 
DPSPrintf(context, 11/%s %d def\n 11

, s, n); /*client lib proc */ 
HANDLER 

if ((DPSContext)Exception.Message ==context) 
{ 
/*clean up the allocated string*/ 
free(s); 
s =NULL; 
} 

/* let the caller handle resetting the context */ 
RERAISE; 

END_HANDLER 

/*clean up, if we haven't already*/ 
if (s I= NULL) free(s); 

This procedure unconditionally allocates storage, then calls 
procedures that may raise an exception. If there were no handler 
here and the exception simply propagated to the main loop, the 
storage allocated for the string would never be reclaimed. The 
solution is to define a handler that frees the storage and then calls 
RERAISE to allow another handler to do the final processing of 
the exception. 

C.2 EXAMPLE EXCEPTION HANDLER 105 





%stdio 35, 102 

= 60 
== 23, 60 

abnormal termination 20 
advanced facilities 28 
ASCII conversion 29 
ASCII encoding 13, 30, 31 
ASCII text 16 

backstop error handler 52, 53 
backstop handler 27 
backstop text handler 53 
basic facilities 10 
binary object sequence 30, 73, 77, 80 
binary object sequence, extended 79, 82 
binary object sequence, writing 85 
binary-encoded tokens 30 
boolean 35 
buffer 32 
buffer, flushing 51 
buffering code and data 31 
byte order 30 

C types 57 
call stack, unwinding 97 
call-back procedures 21 
chaining contexts 28, 43, 47, 48 
changing the text handler 53 
child context 28, 47 
Client Library, introduction to 4 
code, sending 14 
code, writing 87 
communicating with a context 14 
communication channel 36 
context 6 
context creation 11 
context data structures 10 
context handle 10 
context record 46 

Index 

contexts 
chaining 28, 43, 4 7, 48 
child 28, 47 
communicating with 14 
current 14,52,53,57 
destination for code 11 
destroying 20, 49 
forked 33 
invalid 25 
multiple 57 
output from 21 
parent 28, 4 7 
resetting 52 
sending to 14 
setting 14, 53 
synchronizing 21, 32, 54, 102 
unchaining 54 
writing to 14, 54 

conversion 18, 30 
coordinate systems 37 
coordinates 58 
current context 14, 52, 53, 57 
currentfile 35 
currentgray 58 
curveto 58 
CVR 94 

data, sending 14 
debugging 6, 29, 35, 43, 58 
default error procedure 49 
default text procedure 13 
defineusername 76, 87 
destination for PostScript language code 11 
destroying a context 49 
destroying a space 49 
destroying contexts 20 
device independence 37 
Display Postscript system 4 
displays, multiple 29 
DPS_DEF _ TOKENTYPE 77 
dps_err_pserror 25,49,50,85, 101 

107 



dps_strings 31 
DPSAwaitReturnValues 74, 75, 85 
DPSBinObjGeneric 80 
DPSBinObjReal 81 
DPSBinObjRec 81 
DPSBinObjSeqRec 81 
DPSBinObjSeqWrite 73, 74, 76, 85 
DPSChainContext 28, 49 
DPSChangeEncoding 17, 95 
dpsclient.h 7, 46, 48, 80, 91 
DPSContext 46 
DPSContextFromContextID 33, 34 
DPSContextRec 33, 48 
DPSCreateTextContext 13, 31 
DPScurrentgray 58 
DPScurrentgstate 60 
DPSDefaultErrorProc 13, 22, 44, 49, 91, 95, 102 
DPSDefaultTextBackstop 13, 22, 44 
DPSDefinedType 82 
DPSdefineuserobject 59 
DPSDestroyContext 20, 49 
DPSDestroySpace 20, 49, 50 
DPSequals 60 
DPSequalsequals 60 
DPSErrorCode 48 
DPSErrorProc 12, 49, 51 
dpsexcept.h 97 
DPSExtendedBinObjSeqRec 82 
DPSFlushContext 31, 35, 52 
dpsfriends.h 7, 46, 84 
DPSgetchararray 59 
DPSGetCurrentContext 52 
DPSGetCurrentErrorBackstop 27, 52 
DPSGetCurrentTextBackstop 13, 27, 52 
DPSgetfloatarray 59 
DPSGetLastNamelndex 89 
DPSinfill 59 
DPSinstroke 59 
DPSinterruptContext 19, 52 
DPSinueofill 59 
DPSinufill 59 
DPSinustroke 59 
DPSLastNamelndex 89 
DPSLastObjectlndex 89 
DPSMapNames 76, 86 
DPSNameEncoding 30, 82 
DPSNameFromlndex 77, 87 
DPSNewUserObject 89 

1 08 INDEX January 23, 1990 

dpsops.h 7, 56, 61 
DPSPrintf 16, 17, 35, 52 
DPSProcs 82 
DPSProcsRec 83 
DPSProgramEncoding 30, 83 
DPSResetContext 53, 102 
DPSResultsRec 74, 84 
DPSselectfont 59 
DPSsendchararray 58, 59 
DPSsendfloat 58 
DPSsendfloatarray 59 
DPSsendint 59 
DPSSetContext 14, 53, 56, 57, 61 
DPSsetdash 59 
DPSSetErrorBackstop 27, 53 
DPSSetErrorProc 22, 53 
DPSsetfont 60 
DPSsetgray 59 
DPSsetgstate 60 
DPSSetResultTable 74, 85, 87 
DPSSetTextBackstop 27, 53 
DPSSetTextProc 22, 53 
DPSSpace 84 
DPSSpaceFromContext 54 
DPSSpaceRec 19, 84 
DPSTextProc 12, 54 
DPSuappend 59 
DPSueofill 59 
DPSufill 59 
DPSUnchainContext 28, 54 
DPSUpdateNameMap 76, 87 
DPSustroke 59 
DPSustrokepath 59 
DPSversion 60 
DPSWaitContext 17, 31, 32, 33, 35, 54 
DPSWriteData 17, 18, 55 
DPSWritePostScript 17, 18, 55 
DPSWriteStringChars 74, 85, 87 
DPSWriteTypedObjectArray 73, 74, 85, 88 
DPSxshow 58, 59 
DPSxyshow 59 
DPSyshow 59 
drawable object 12 
DURING 98 

E_RETURN(x) 100 
E_RETURN_VOID 100 
encoding 17, 30 



encoding Postscript language 30 
encoding, name 82 
encoding, program 83 
END_HANDLER 98 
EOF (end of file) 36 
errorcodes 25,48,50 
error handler 13, 21, 22, 25, 49, 50, 53 
error handler, backstop 27, 52, 53 
error handler, X example 91 
error messages 23, 49 
error procedure 85 
error recovery 26, 101 
errors commonly made by programmers 35 
example code 

context creation 11 
error handler 91 
exception handler 103 
generated by wrap 75 
HANDLER ... END _HANDLER 98 
sample application 39 
text handler 23 
wrap 43 
wrap with return values 75 

examples 
buffer with partial token 17 
calling a wrap 9 
converting the encoding 17 
DPSPrintf 16 
DPSWriteData and DPSWritePostScript 18 
draw into buffer 32 
drawing a black box 9 
mouse-click event 14 
returning font info 15 
sending formatted text 16 
single-operator procedure 15 
synchronizing 32 

exception handler 97 
exception, raising 97, 102 
Exception.Code 99, 100 
Exception.Message 99 
execution context 6, 10 
extended binary object sequence 79, 82 

facilities, basic 10 
file, as system-specific object 11 
files 7 

dpsclient.h 7, 46, 48, 80, 91 
dpsexcept.h 97 

dpsfriends.h 7, 46, 84 
dpsops.h 7, 56, 61 
psops.h 8, 53, 56, 61 
stdout 44 
system-specific 11 

floating-point format 30 
flow of control 22 
flush 32 
flushing a buffer 31, 33, 51 
font dictionary 60 
fork 33, 34, 36 
forked context 33 
format string 16 

GetBuffer 17 
graphics state 60 

handleerror 25, 96, 103 
HANDLER 98 
handler, backstop 27 
handler, error 50 
handler, text 23, 53 
handlers 21 
handling errors 21, 25 
handling exceptions 97 
header files 7 
help 35, 58 

imaging model 37 
initialization 7, 12, 14, 22 
interface 7 
interrupt 19, 52 
interrupts 19, 52 
invalid context 25 
invalid context error 50 

lineto 58 
linking the application 39 

moveto 58 
multiple calls to DPSPrintf 16 
multiple contexts 57 
multiple displays 29 
multiple windows 29 
MyWrap 17 

name encoding 30, 31, 82 
name mapping 31, 76, 85, 87 

109 



name too long error 50, 85 
Notes 4, 21, 23, 28, 46, 57, 58, 61, 80, 82, 85, 97, 102 

See also Warnings 
Notes and Warnings 97 
numeric literals 57 
numeric representation 30 

operand stack 57 
operator arguments 57 
operators 56 
output from a wrapped procedure 74 
output from context 21 

parent context 28, 4 7 
pixmap 12, 32 
pointer to context record 10 
Postscript 

destination for code 11 
encoding and translating 30 
execution context 6 
interpreter errors 48 
language errors 25, 50, 85, 97 
operand stack 57 
operator arguments 57 
operators 56 

previewer application 26 
print 23 
printers 30 
printf 16, 52 
printobject 48, 74 
private VM 12 
ProcThatCallsSeveralWraps 104 
program encoding 30, 83 
programming tips 35, 58 
PSoperator single-operator procedures are indexed un-

der DPSoperator. 
PSitransform 44 
psops.h 8, 53, 56, 61 
PSWDrawBox 44 
pswrap translator 8 

RAISE 96, 99, 101 
raising an exception 97 
rand 58 
rectflll 9 
removing context from a chain 54 
RERAISE 100 
resetting a context 52 

110 INDEX January 23, 1990 

resolution independence 37 
resource limitations 26 
result table 74, 83, 85 
result table, setting 87 
result values 32 
results 15, 33, 74 
resynchandleerror 52, 95, 96, 101 
resyncstart 101 
return values 15, 74 
returning from exception handler 100 
rules of thumb 58 
runtime support for wrapped procedures 73 

sample application 39 
sample wrap 43 
sending code 73 
sending data to a context 18, 54 
sending to a context 14, 52 
server connection, lost 27 
setgray 37 
setlinewidth 38 
setrgbcolor 38 
setting the current context 14, 53, 57 
setting the result table 87 
shared VM 19 
Single-operator procedures prefixed by PS are indexed 

under DPS. 
single-operator procedure, example of 15 
single-operator procedures 56 
sizeof 74 
space 12, 19 
space record 19, 84 
space, destroying 49 
standard error codes 25, 48 
stdout 44 
stop 19 
stopped 101 
string, writing 87 
synchronization 21, 32, 54, 102 
synchronization of name maps 87 
system-specific context creation 11 
system-specific documentation 2 
system-specific interface 11 

tag 74 
tag check error 50, 85 
temporary text handler 23 
termination 7, 20 



termination tag 75, 85 
text 13, 16, 29 
text handler 13, 22, 23, 53 
text handler, backstop 27 
tips 58 
tips for appplication programmers 35 
token 77 
tokens, binary-encoded 30 
translation 30 
troubleshooting 35 
type check error 50, 85 
typecheck 94 
types 57 

unchaining a context 54 
unwinding the call stack 97 
user name indices 30, 31, 84 
user names 76, 82, 84, 86 
user objects 60 
user space 37 
userdict 102 

VM, private 12 
VM, shared 19 
vmreclaim 58 

waiting 33 
Warnings 16, 17, 46, 100, 102 

See also Notes 
whitespace 16 
window, as system-specific object 11 
windows, multiple 29 
word-processing program 26 
wrap 8 

See also wrapped procedure 
wrapped procedure 

advantages of 8 
defined 14 
example code 43 
output from 74 
runtime support for 73 
with return values 75 

writestring 23 
writing a binary object sequence 85 
writing a string 87 
writing code 87 
writing data to a context 54 
writing to a context 14, 52 

X Window System 97 
context creation 11, 12, 13 
DPSCreateTextContext 13 
drawable object 12 
error handler 91 
example code 11, 12, 23 
pixmap 12 
XDPSCreateSimpleContext 12, 44 

Xl 1 example application 39 
XDPSCreateSimpleContext 12, 13, 44 

111 





X WINDOW SYSTEM 
PROGRAMMER'S 
SUPPLEMENT 
to the 
Client Library 
Reference Manual 

ADOBE SYSTEMS 
INCORPORATED 



X Window System Programmer's Supplement 
to the Client Library Reference Manual 

January 23, 1990 

Copyright© 1989-1990 Adobe Systems Incorporated. 
All rights reserved. 

Postscript and Display Postscript are registered trademarks of 
Adobe Systems Incorporated. 
X Window System is a trademark of the Massachusetts 
Institute of Technology. 
*Helvetica is a trademark of Linotype AG and/or its 
subsidiaries. 

The information in this document is furnished for informational use 
only, is subject to change without notice, and should not be construed 
as a commitment by Adobe Systems Incorporated. Adobe Systems 
Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in this document. The software 
described in this document is furnished under license and may only be 
used or copied in accordance with the terms of such license. 

No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, 
mechanical, recording, or otherwise, without the prior written 
permission of Adobe Systems Incorporated. 

Written by Amy Davidson. 



Contents 

About This Manual 1 

1. 1 Documentation 
1.2 What This Manual Contains 2 
1 .3 Typographical Conventions 2 

2 About the Display Postscript Extension to X 4 

3 Basic Facilities 5 

3.1 Initialization 5 

3.2 Creating a Context 5 

3.2.1 Using XDPSCreateSimpleContext 6 
3.2.2 Using XDPSCreateContext 8 
3.3 Execution 10 

3.3.1 Coordinate Systems 1 o 
3.3.2 Mixing Display Postscript and X Rendering 14 

3.3.3 Clipping and Repainting 15 

3.3.4 Resizing the Window 17 

3.3.5 User Object Indices 18 

3.3.6 Errors and Error Codes 21 

3.4 Termination 23 
4 Additional Facilities 25 

4.1 Identifiers 25 

4.2 Zombie Contexts 26 
4.3 Buffers 27 

4.4 Encodings 27 

4.5 Forked Contexts 29 
4.6 Multiple Servers 30 
4.7 Sharing Resources 30 
4.8 Status Events 32 

4.9 Synchronization 35 
4.9.1 Waiting 36 
4.9.2 Freezing 36 

5 Programming Tips 38 
5.1 Don't Use XlfEvent 38 
5.2 Include Files 38 
5.3 Coordinate Conversions 39 
5.4 Fonts 40 

5.5 Portability Issues 40 

5.5.1 Color 41 

5.5.2 Resolution 42 

iii 



5.5.3 Fonts 42 
6 X-Specific Data and Procedures 43 

6.1 Data Structures 43 
6.1.1 Extended Error Codes 43 
6.1.2 Status Event Masks 44 

6.1.3 Types and Global Variables 44 
6.2 Procedures 45 

7 X-Specific Postscript Operators 55 
A Changes Since Last Publication Of This Document 61 
B Advanced Exception Handling 63 
B.1 Deferred Error Handling Example 65 
B.2 Error Handler Interface 68 
B.3 Error Handler Implementation 70 

Index 75 

iv 



List of Figures 

Figure 1: User Space and Device Space 11 

Figure 2: Window Origin and Device Space Origin 13 

Figure 3: How Bit Gravity Affects Offsets 18 

Figure 4: Encoding Conversions 28 

Figure 5: Status Events 44 

Figure 6: The 'colorinfo' Array 57 

v 





1 ABOUT THIS MANUAL 

This manual contains information about the Client Library inter
face to the Display Postscript® system implemented as an exten
sion to the X Window System™. We sometimes refer to this ex
tension as DPS/X. DPS/X is the application programmer's 
means of displaying text and graphics on a screen using the 
Postscript® language. 

1.1 DOCUMENTATION 

The system-independent interface for DPS/X is documented in 
Adobe's Client Library Reference Manual. Only extensions to 
the interface are discussed here. The dpsXclient.h header file in
cludes both system-independent and X system-specific 
procedures. 

Before reading this manual, you should be familiar with the con
tents of the manuals listed below. This manual also assumes 
familiarity with the X Window System. 

If you're new to the PostScript language, you should first read 
the following manuals: 

• PostScript Language Reference Manual 

• PostScript Language Tutorial and Cookbook 

• PostScript Language Program Design 

Once you're acquainted with the Postscript language, read the 
following manuals: 

• PostScript Language Extensions for the Display PostScript 
System 

• pswrap Reference Manual 

• Client Library Reference Manual 

• PostScript Language Color Extensions 

1 ABOUT THIS MANUAL 1 



1.2 WHAT THIS MANUAL CONTAINS 

Section 2 briefly introduces the Display Postscript system exten
sion to the X Window System. 

Section 3 introduces concepts that will enable you to write a 
simple application, including connecting to the X server; creat
ing and terminating a context; differences in coordinate systems; 
issues of rendering in X versus Postscript language; clipping, 
repainting, and resizing; error codes; and user object indices. 

Section 4 describes advanced concepts that not all applications 
need, including client and server identifiers, encodings, status 
events, synchronization, shared resources, and multiple servers. 

Section 5 contains tips for the application programmer on files, 
fonts, coordinate conversions, and other issues that require spe
cial attention. 

Section 6 describes the X-specific data and procedures found in 
the dpsXclient.h header file. 

Section 7 describes the X-specific Postscript operators provided 
for the Display Postscript extension to X. 

Appendix A lists changes to the manual since the previous 
version. 

Appendix B provides a workaround for cases where X lower
level software does not permit the normal Client Library error
handling mechanisms. 

1.3 TYPOGRAPHICAL CONVENTIONS 

The typographical conventions used in this manual are as fol
lows: 

2 X Window System Programmer's Supplement I Version of January 23, 1990 



Item Example of Typographical Style 

file dpsXclient.h 

variable, typedef, code fragment 'cid', 'drawable', 'ctxt', 'x', 'y', 'DPSContextRec', 'XStandardColormap', 
'enableMask = PSFROZENMASK I PSZOMBIEMASK;' 

procedure XDPSCreateSimpleContext 

PostScript operator currentXgcdrawable 

new term or emphasis ''Protocol errors are generated when .... '' 

1 ABOUT THIS MANUAL 3 



2 ABOUT THE DISPLAY POSTSCRIPT EXTENSION TO X 

In order to understand the relationship of the Display PostScript 
system to the development of X applications, you should be 
familiar with the following concepts: 

• The PostScript imaging model allows the application 
developer to express graphical displays at a higher level of 
abstraction than is possible with Xlib. This improves 
device independence and portability. The integration of the 
imaging model with X requires consideration of several 
issues, including coordinate system conversions (see Sec
tion 3.3.1), event handling (see Section 4.8), and resource 
management (see Section 4.7). 

• The PostScript interpreter allows an application to execute 
PostScript language code. 

• Wrapped procedures allow PostScript language programs 
to be embedded in an application as C-callable procedures. 

4 X Window System Programmer's Supplement I Version of January 23, 1990 



3 BASIC FACILITIES 

The Client Library Reference Manual introduces the facilities 
needed to write a simple application program for the Display 
Postscript system. This section discusses Display PostScript sys
tem issues of particular concern in the X Window System en
vironment, in the following categories: 

• Initialization. 

• Creating a context. 

• Execution of Postscript language code. 

• Termination. 

3.1 INITIALIZATION 

Before performing any DPS/X operations, the application must 
establish a connection to the X server. You can connect to the 
server by using Xlib's XOpenDisplay routine or a standard 
toolkit's initialization process. Regardless of how the connection 
is established, an X 'Display' record will be defined for the con
nection. Subsequent Display Postscript system operations will 
use this 'Display' record to identify the server. Once the 
'Display' record is obtained, the application must create a 
'drawable' (window or pixmap) for DPS/X imaging operations, 
and an X 'GC' out of which certain fields are used by DPS/X. 
There are a number of facilities in Xlib for creating new win
dows and 'GC's, such as XCreateSimpleWindow and 
XCreateGC. 

3.2 CREATING A CONTEXT 

In DPS/X, a context (as described in the Client Library Refer
ence Manual) is a resource in the server that represents all of the 
execution state needed by the PostScript interpreter to run 
PostScript language programs. 

A 'DPSContextRec' is a data structure on the client side that 
represents all of the state needed by the Client Library to com
municate with a context. A pointer of type 'DPSContext' is a 
handle to this data structure. When the application creates a con-

3 BASIC FACILITIES 5 



text in the interpreter, a 'DPSContextRec' is automatically 
created for use by the client (except for forked contexts; see Sec
tion 4.5). The 'DPSContextRec' contains pointers to procedures 
that implement all of the basic operations that a context can per
form. 

There ~re two procedures that create both a context in the server 
and a 'DPSContextRec' for the client. The first, 
XDPSCreateSimpleContext, uses the default colormap, and is 
adequate for most applications. The second, 
XDPSCreateContext, is a more general function that allows you 
to specify colormap information. Other procedures for creating 
just the 'DPSContextRec' - for contexts that already exist in 
the server - are covered in Section 4. 

3.2.1 Using XDPSCreateSimpleContext 

To create a context using the default colormap, call 
XDPSCreateSimpleContext: 

DPSContext XDPSCreateSimpleContext(dpy, drawable, gc, 
x, y, textProc, errorProc, space); 

Display *dpy; 
Drawable drawable; 
GCgc; 
int x; 
int y; 
DPSTextProc textProc; 
DPSErrorProc errorProc; 
DPSSpace space; 

The Client Library Reference Manual contains a general discus
sion of XDPSCreateSimpleContext, but does not discuss the 
details that are relevant to X. These details are covered here. 

A context is created on the specified 'Display' and is associated 
with a 'Drawable' and 'GC' on that 'Display'. The context uses 
the following fields in the 'GC' to render text and graphics on 
the 'Drawable': 

6 X Window System Programmer's Supplement I Version of January 23, 1990 



• 'plane_mask' 

• 'subwindow_mode' 

• 'clip_x_origin' 

• 'clip_y_origin' 

• 'clip_mask' 

If the 'Drawable' or 'GC' is not specified (that is, passed as 
'None'), the context will execute programs correctly but will not 
render any text or graphics (it renders to the null device). A valid 
'Drawable' and 'GC' may be associated with such a context at a 
later time using the setXgcdrawable operator, documented in 
Section 7. 

The arguments 'x' and 'y' are offsets that specify where the 
device space origin is relative to the window origin. To place the 
device space origin (and thus the user space origin) in the stan
dard location, pass zero for 'x' and the height of the window in 
pixels for 'y'. See the discussion of coordinate systems in Sec
tion 3.3.1. 

The other arguments to XDPSCreateSimpleContext are described 
fully in the Client Library Reference Manual. To summarize: 
'textProc' is a call-back procedure that handles text output from 
the context, 'errorProc' is a call-back procedure that handles er
rors reported by the context, and 'space' is the private VM that 
the context uses for storage. If the space is passed as NULL, a 
new space is created. 

If all of the arguments are valid and the context is successfully 
created in the server, a 'DPSContext' handle is returned. Other
wise, NULL is returned. 

XDPSCreateSimpleContext uses the default colormap. A device
specific number of grays is reserved in the default colormap, 
which represents a gray ramp. If the device supports color, an 
RGB color cube is also reserved. If a requested RGB color is 
found in the color cube or gray ramp, the associated pixel value 
is used. Otherwise, the color is approximated by dithering pixel 
values from the colormap to give the best possible rendering of 
the color. 

3 BASIC FACILITIES 7 



XDPSCreateSimpleContext may allocate a substantial number of 
cells in the default colormap. For example, a typical allocation 
for an 8-plane PseudoColor device is 125 cells for the color 
cube, representing a 5x5x5 ROB cube. (The gray ramp typically 
uses the five grays that form the diagonal of the cube.) 
XDPSCreateSimpleContext checks the root window for the 
RGB_DEFAULT_MAP property. If the property exists, the 
color cells it specifies are used for the context's color cube. If the 
property does not exist, color cells are allocated and the property 
is defined. The allocated cells are typically treated as ''read-only 
retained" so that other DPS/X clients may share the allocated 
colors. The advantage of using the color allocation facilities 
provided by XDPSCreateSimpleContext is that the application 
has available a wide range of colors (many more than the num
ber of cells), each with a reasonable rendering, without having to 
provide for the possibility that colormap allocations may fail. 
The disadvantage is that a large number of color cells is al
located from the default colormap. 

3.2.2 Using XDPSCreateContext-

To create a context with specific color information, call 
XDPSCreateContext: 

DPSContext XDPSCreateContext(dpy, drawable, gc, x, y, 
eventmask, grayramp, ccube, actual, 
textProc, errorProc, space); 

Display *dpy; 
Drawable drawable; 
GCgc; 
int x; 
int y; 
unsigned int eventmask; 
XStandardColormap *grayramp; 
XStandardColormap *ccube; 
int actual; 
DPSTextProc textProc; 
DPSErrorProc errorProc; 
DPSSpace space; 

The 'dpy', 'drawable', 'gc', 'x', 'y', 'textProc', 'errorProc' and 
'space' arguments for XDPSCreateContext are the same as for 
XDPSCreateSimpleContext. The 'eventmask' is currently not 
implemented and should be passed as zero. The 'grayramp' and 

8 X Window System Programmer's Supplement I Version of January 23, 1990 



'ccube' arguments are pointers to 'XStandardColormap' data 
structures (defined fo the Xutil.h header file). An 
'XStandardColormap' specifies a colormap, a base pixel value, 
and multipliers and limits for red (or gray), green, and blue 
ramps. A valid gray ramp is required; 'ccube' is optional (may 
be passed as NULL). If a color cube is present and is specified 
by 'ccube', 'grayramp' may use pixel values in the color cube in 
order to conserve colormap entries. The · X colormap resource 
specified in the 'ccube' and 'grayramp' arguments must be iden
tical. The application must ensure that the specified colormap is 
installed - for example, by setting the colormap as an attribute 
of the window (using XSetWindowColormap). 

The application provides a colormap with a uniform distribution 
of colors. The colormap must provide a uniform distribution of 
grays (colors where red, green and blue are equal in intensity), 
which is described by 'grayramp'. However, the 'grayramp' may 
be as simple as two levels: black and white. The colormap may 
also contain a uniform distribution of RGB colors arranged as a 
color cube, which is described by 'ccube'. See X reference docu
ments for details about the 'XStandardColormap' data structure. 

The argument 'actual' can be used to conserve colormap entries 
as well as to display pure (non-dithered) colors. If the application 
knows which colors it is going to use, or if the number of colors 
to be used is relatively few (fewer than the default allocation that 
XDPSCreateSimpleContext would use for the device), the 
'actual' argument can be used. 'actual' is a hint about the num
ber of colors the context is going to request. It is considered a 
hint because the server cannot guarantee that the specified num
ber of colors will be available. The server will reserve the num
ber of cells specified by 'actual' or the number of cells available 
in the specified colormap, whichever is less. As the context 
makes color requests, colormap entries are defined on a "first 
come, first served" basis. For example, suppose 'actual' is given 
the value 3 and there are at least three cells available. The first 
time the context executes setrgbcolor, the requested color will 
be stored in the colormap, leaving two more cells reserved by 
'actual'. When the context executes setrgbcolor for a different 
color, the second cell reserved by 'actual' is used, and so on. The 
colors requested by the PostScript language program executed by 
the context will be rendered without dithering. 

3 BASIC FACILITIES 9 



Consider the characteristics of your application when deciding 
whether to use XDPSCreateSimpleContext, with its default al
location of colors, or XDPSCreateContext, with 'actual'. An ap
plication may allow the end user to define a variety of colors. 
Such an application - a graphics editor, for example - could 
use XDPSCreateSimpleContext. On the other hand, an applica
tion that allows the end user to specify only a few colors - the 
foreground and background colors of a performance meter, for 
example - should probably use XDPSCreateContext and set 
'actual' to the number of colors that can be requested by the end 
user. 

If all of the arguments are valid and the context is successfully 
created in the server, a 'DPSContext' handle is returned. Other
wise, NULL is returned. 

3.3 EXECUTION 

This section discusses the following DPS/X issues: coordinate 
systems, rendering, clipping, repainting, resizing a window, user 
object indices, and errors. 

3.3.1 Coordinate Systems 

The application must use user space coordinates when communi
cating with the PostScript interpreter and X coordinates when 
communicating with other parts of the X Window System. 
Therefore coordinate conversions may be necessary. This section 
describes: 

• How to specify the device space origin for the window at 
context creation time. 

• How to convert user space coordinates to X coordinates. 

• How to convert X coordinates to user space coordinates. 

The PostScript Language Reference Manual describes the coor
dinate system used by the Postscript imaging model. To sum
marize: Coordinates are specified in a user-defined space and are 
automatically converted to the output device space. The default 
user space unit is 1/72 of an inch. The default origin is in the 
lower left corner of the page, with X increasing to the right and 
Y increasing to the top (upwards). 

10 X Window System Programmer's Supplement I Version of January 23, 1990 



Figure 1 shows a linear transformation from user space to device 
space by means of the current transformation matrix (CTM). 
Note that this transformation is one way only. 

Figure 1 User Space and Device Space 

CTM 

I 
I 

I 

/ 
/ 

I 

,_A--

I y 
I 
I , 
' \ \ 
\ 
\ 
\ 
\ 

\~ 
', ...... _ 

USER SPACE-
Y increases upward. 

x 

origin 

DEVICE SPACE -
y increases downward. 

In Postscript language terminology, the window is the output 
device. In DPS/X, the window is treated as a page, with the con
ventional location of the origin in the lower left corner. The 
device space is equivalent to the X coordinate system for the 
window, except for the following: 

• The device space origin is offset from the window origin. 

• Device space is a real number space, whereas the X coordi
nate system is an integer space. 

As described in PostScript Language Extensions for the Display 
PostScript System, pixel boundaries fall on integer coordinates. in 
device space. A pixel is a half-open region, meaning that it in-

3 BASIC FACILITIES 



eludes half of its boundary points. For any point (x, y) in device 
space, let i = floor(x) and j = floor(y), where x and y are real 
numbers and i and j are integers. The pixel that contains this 
point is the one identified as (i, j), which is equivalent to the X 
coordinate for that pixel. 

To convert user space coordinates to X coordinates: 

1. Convert the user space coordinates to device space coordi
nates by computing a linear transformation using the cur
rent transformation matrix (CTM). 

2. Compute the X coordinates by applying an additional trans
lation to the device space coordinates derived in Step 1 to 
account for the offset of the device space origin from the 
window origin. 

Similarly, to convert X coordinates to user space coordinates: 

1. Translate the X coordinates to device space coordinates by 
applying the offset of the device space origin to the X coor
dinates. 

2. Convert the device space coordinates to user space coordi
nates by using the inverse of the current transformation 
matrix. 

See Section 5 .3 for examples of coordinate conversions. 

Figure 2 illustrates how the device space origin is located in the 
window as an offset from the window origin. The 'x' and 'y' 
offset values are established at context creation time (see Section 
3.2); they can be changed by X-specific Postscript operators 
such as setXoffset. 

12 X Window System Programmer's Supplement I Version of January 23, 1990 



Figure 2 Window Origin and Device Space Origin 

X window origin (0,0) 

~----~~~~~~~~~~~~ 

-;I 
x offset 

~ 

y offset 

. ~_______J 

;: device space origin (0,0) 

~ x increasing ~ -.·.... -

,, y increasing 

The device origin is offset in order to support the method of 
scrolling that involves copying areas of the window (as opposed 
to shifting a child window under an ancestor). You can put the 
device space origin anywhere in the window. Then, as you scroll 
the contents of the window, you can offset the origin from its 
original position to make coordinate conversions easier. The 
default location for the device space origin is in the lower left 
corner of the window. 

Coordinate conversions are required under the following con
ditions: 

• If you use the Postscript imaging model to render graphics 
using coordinates received from X events, the X coordi
nates must first be converted into user space coordinates. 

3 BASIC FACILITIES 13 



For instance, if you allow the user to select a line of text in 
a text editor, coordinate conversions will be required. 

•If X rendering is to be done in the same window as 
PostScript language rendering, it may be necessary to con
vert user space coordinates to X coordinates - for ex
ample, using XCopyArea to move a graphical object that 
was rendered by the Postscript interpreter. 

Coordinate conversions are not required under the following 
conditions: 

•If you use the Postscript imaging model for output only 
(rendering text and graphics without user interaction in the 
display area), no coordinate conversions are required. 
Simply express coordinates in user space. For example, 
assuming the default user space, the letter A shown at coor
dinate 'x=72, y=72' will appear upright 1 inch to the right 
and 1 inch above the bottom left corner of the window. 

• If the only rendering you do in response to X events is with 
X primitives, you don't have to perform coordinate conver
sions unless you are altering pixels that were rendered by 
the Postscript interpreter. 

See Section 5.3 for tips on how to efficiently convert X coordi
nates to user space coordinates and vice versa. 

Resizing the window may have an effect on the device space 
origin, and thus the offsets to that origin, depending upon the bit 
gravity of the window. See Section 3.3.4. 

3.3.2 Mixing Display Postscript and X Rendering 

X drawing requests and Postscript language code can be sent to 
the same drawable. For example, X primitives such as 
XCopyArea can be used to move, copy, and change pixels that 
have been painted with Postscript language programs. 

Interactive feedback, such as selection highlighting and control 
points, can be done with X drawing requests. For example, con
trol points on a graphics object in a graphics editor application 
can be displayed with X primitives as follows: 

• Copy the pixels that were painted by a Postscript language 

14 X Window System Programmer's Supplement I Version of January 23, 1990 



program to a pixmap with several XCopyArea calls. These 
pixels will temporarily be obscured by the control points, 
so they must be preserved. 

• Call XFillRectangle to paint the control points, which may 
be grabbed and stretched, rotated, moved, and so on. 

Now suppose a control point is moved. A series of mouse events 
would be handled as follows: 

• Copy the pixels underlying the control point back from the 
pixmap, effectively erasing the control point at the original 
location. 

• Compute the new position of the control point from the 
mouse event. 

•Copy the pixels at the new location to the pixmap. Call 
XFillRectangle to display the control point at the new loca
tion. 

Here are some considerations to keep in mind when mixing X 
and Display PostScript system imaging: 

•Their coordinate systems are different. See Section 3.3.1 
for more information on coordinate systems. 

• PostScript language programs run asynchronously with 
respect to other X requests. A PostScript language render
ing request is not guaranteed to be complete before a sub
sequent X request is executed, unless synchronized. See 
Section 4.9 for more information on synchronization. 

• X tends to be pixel and plane oriented; graphics operations 
that manipulate pixels and planes are necessarily device de
pendent. The PostScript imaging model deals with abstract 
graphical representations (paths) and abstract colors. The 
PostScript interpreter tries to give the best rendering pos
sible for the device. If device independence is important 
for your application, use X primitives sparingly, preserving 
device independence as much as possible. 

3.3.3 Clipping and Repainting 

Text and graphics rendered with the Postscript interpreter are 
subject to all of the X clipping rules as well as the clipping 
defined by the PostScript imaging model. 

3 BASIC FACILITIES 15 



The default clipping region is the window. When clipping other 
than to the default, the following considerations apply: 

•If you're drawing with Postscript language code only, use 
the clipping mechanism provided by the Postscript imaging 
model. This is sufficient for nearly all applications. 

•If you're also using X primitives and want to clip them as 
well as draw using DPS/X, use the clipping specified by the 
X'GC'. 

Exposure events may be handled with a variety of strategies: 

• Repaint all graphics for the window. 

• Repaint all graphics through composite view clip. 

• Repaint selected graphics through composite view clip. 

Repainting the entire window is the simplest strategy to imple
ment and is suitable for simple applications: 

• Ignore exposure events with counts greater than zero. 

• For exposure events with counts equal to zero, clear the 
window and then redisplay all of the text and graphics ob
jects by executing the PostScript language programs that 
describe them. 

Though simple to implement, this strategy makes the window 
flash or flicker every time it is repainted, which can be distract
ing. 

A somewhat more sophisticated strategy involves making a list 
of the rectangles specified in a series of exposure events until a 
zero count is detected: 

• Create a view clip (see PostScript Language Extensions for 
the Display PostScript System) by converting the coordi
nates of the list of exposure rectangles to user space coordi
nates and executing rectviewclip with this list. 

• Then redisplay all. of the text and graphics objects by ex
ecuting the Postscript language programs that describe 
them. Only those areas within the the view clip will ac
tually be repainted. 

This strategy reduces annoying window flicker, but may do more 

16 X Window System Programmer's Supplement/ Version of January 23, 1990 



work than is necessary since programs describing graphics ob
jects that are completely clipped are executed anyway. 

The most sophisticated technique, perhaps the optimal strategy, 
is similar to the one just described: 

•Use a list of rectangles from the exposure events to create a 
view clip. 

• Then, instead of running all of the Postscript language 
programs, redraw only those graphics objects whose 
bounding boxes intersect the view clip. 

This strategy requires that the application keep track of the 
bounding boxes and locations of each graphical object, but this 
task is usually necessary anyway, particularly for interactive ap
plications that allow selection and manipulation of objects. User 
paths are handy for this purpose (see PostScript Language Ex
tensions for the Display PostScript System), since they are com
pact data structures that contain their own bounding box infor
mation. The list of rectangles obtained from the exposure events 
can be enumerated and intersected with the bounding box of 
each user path. Bounding box intersection may still result in 
some code being executed unnecessarily, but it is a good com
promise between time spent deciding which graphical objects to 
redraw and time spent drawing the objects. 

3.3.4 Resizing the Window 

When the window is resized, the X server moves the window 
bits according to the bit gravity of the window. If the window is 
being use for imaging with the Postscript language, the origin of 
the device space is also moved according to the bit gravity of the 
window; see Section 3.3.1 for a discussion of coordinate 
systems. The result of this automatic movement is that the 'x' 
and 'y' offsets that were specified when the context was created 
(or that were last changed with the setXoffset operator) are 
changed. The application may need to keep track of these 
changes. 

Figure 3 shows the changes to the 'x' and 'y' offsets for each bit 
gravity type. 

3 BASIC FACILITIES 17 



Figure 3 How Bit Gravity Affects Offsets 

Symbol 

oldX 
oldY 
x 
y 
WC 
he 

Bit Gravity 

North West 
North 
NorthEast 
West 
Center 
East 
South West 
South 
SouthEast 

ForgetGravity 
Static 

Meaning 

original x offset 
original y offset 
new x offset 
new y offset 
Change in window size along the x axis (width) 
Change in window size along they axis (height) 

x y 

oldX oldY 
oldX + wc/2 oldY 
oldX +we oldY 
oldX oldY + hc/2 
oldX + wc/2 oldY + wc/2 
oldX +we oldY + hc/2 
oldX oldY +he 
oldX + wc/2 oldY +he 
oldX +WC oldY +he 

no change no change - appears as if North West 
oldX +WC oldY +he 

To get the current 'x' and 'y' offset, use currentXoffset. 

3.3.5 User Object Indices 

The Client Library provides a convenient and efficient way to 
refer to PostScript language objects. Some types of composite or 
structured objects, such as dictionaries, gstates, and user paths, 
are not visible as data outside the Postscript interpreter; that is, 
they cannot be represented directly in any encoding of the lan
guage, not even in binary object sequence encoding. Instead, an 
application must refer to such objects by means of surrogate ob
jects whose values can be encoded and communicated easily. 

18 X Window System Programmer's Supplement I Version of January 23, 1990 



The surrogate objects provided by the Client Library are called 
user objects. A user object is simply an integer ('long int') that 
represents an actual object (of any type) in the interpreter. To 
define a new user object, the application must first obtain a user 
object index from the Client Library. The procedure 
DPSNewUserObjectlndex returns a new user object index. The 
Client Library is the sole allocator of new user object indices in 
order to guarantee that indices are unique. User object indices 
are dynamic and should neither be used as arithmetic values -
for example, don't add 1 to get the next available index - nor 
stored in a file or other long-term storage. 

After obtaining a user object index, the application must as
sociate this index with an actual object: first execute a PostScript 
language program to create the object; then use the 
defineuserobject operator. 

Once a user object has been defined, the application may use 
wrapped procedures to manipulate it. User objects may be passed 
as input arguments to a wrapped procedure. 

User objects are typically employed under the following cir
cumstances: 

• When graphical objects or other application objects are 
created dynamically, such as the user path a graphics editor 
builds as the user draws an illustration. 

• When a user name should not be employed. A user object 
is a convenient and efficient substitute for a dynamically 
defined user name, which must be passed to a wrap as a 
string. 

See PostScript Language Extensions for the Display PostScript 
System and the pswrap Reference Manual for further discussion 
of user objects. 

Note that it is the responsibility of the application and any run
time facilities or support software (such as toolkits) to keep track 
of user object definitions. A user object must be defined before it 
is used. Unlike user name indices (which are defined automati
cally by the Client Library}, user objects must be defined ex
plicitly. To assist in keeping track of user object definitions, the 
last user object index assigned can be read from 

3 BASIC FACILITIES 19 



EXAMPLE 

'DPSLastUserObjectlndex', which should be treated as read
only. 

In the following example, a hypothetical toolkit implements a 
user interface that displays icons for files and programs. The user 
interface allows the end user to customize the label of the icon 
by changing the text and to specify the font of the label text. The 
icon is represented as a Postscript language dictionary. 

/*A wrapped procedure that defines an icon dictionary.*/ 

defineps New_lcon(long iconlndex; int x,y; long proglndex; char *font, *text) 
% Input Arguments: 
% iconlndex 
% user object index 
% provided by application 
% x,y coordinates of lower left 
% corner or icon 
% proglndex 
% user object index which 
% represents a Postscript 
% language program for drawing 
% the icon 
% font string to be used as a 
% font name 
% text label for icon 

5 diet dup % Create the icon diet. 
iconlndex exch defineuserobject % Define the user object for the diet. 

begin 
/icon_ x x def 
/icon_y y def 
/icon_prog 

% Begin the icon diet. 
% Assign x coordinate. 
% Assign y coordinate. 

UserObjects proglndex get % Get and def icon drawing procedure 
def % (assumes userdict is on diet stack). 

/icon_font /font def % Assign label font name. 
/icon_label (text) def % Assign label text. 
end % End icon dictionary. 

endps 

/*a wrapped procedure to draw an arbitrary icon*/ 

defineps Draw_lcon(userobject icon) 
% Input Arguments: 
% icon user object representing 
% and icon dictionary. 
% Note: since we are going 

20 X Window System Programmer's Supplement I Version of January 23, 1990 



% to execute the object, 
% we can declare it as 
% userobject to pswrap. 

icon begin % Gets and execs the user object 

gs ave 

% which is a dictionary, begins it. 
% Note that there is an implicit 
% execuserobject here since icon 
% was declared 'userobject'. 

icon_x icon_y translate % Put origin at specified coordinates. 

gsave 
icon _prog % Draw icon. 
grestore 

1 setgray 
icon_font 10 selectfont % Scale and set icon label font. 
O O moveto 
icon_label show % Show label. 
grestore 
end 

endps 

/* C procedure to create and display a new icon */ 

void MakeNewlcon(x, y, prog, label) 

{ 

} 

int x, y; 
long prog; /* user object defined by application code */ 
char *label; 

/* get a new user object index*/ 
long icon= DPSNewUserObjectlndexO; /*client library routine*/ 
char *defaultFontName = GetDefaultFontName(); 

/* icon is a user object index: define icon user object */ 
Newlcon(icon, x, y, prog, defaultFontName, label); 
/*icon is now a user object: draw it*/ 
Drawlcon(icon); 
/*The following procedure call is not defined in this example. 

It saves the user object created for the new icon 
so that the application can use the user object to refer to the icon.*/ 

SaveNewlconObject(icon); 

3.3.6 Errors and Error Codes 

There are two classes of errors that can occur while using 
DPS/X: protocol errors and context errors. 

3 BASIC FACILITIES 21 



Protocol errors are generated when invalid requests are sent to 
the server. The result of receiving a protocol error is that lower
level facilities in Xlib handle the error and perhaps print a mes
sage, while the higher-level facilities simply return NULL or do 
nothing. The default protocol error handler prints an error mes
sage and causes the application to exit. The application can sub
stitute its own error handler for protocol errors, but results are 
undefined if the handler returns rather than exiting. (Generally, 
an attempt to continue processing after a protocol error results in 
incorrect operation of procedures further up in the call stack.) 

Context errors can arise whenever a 'DPSContext' handle is 
passed to a DPS/X procedure or wrap. X-specific error codes are 
discussed in Section 6.1.1 on page 43. See the Client Library 
Reference Manual for a discussion of the standard Display 
Postscript system error codes. 

Because of various delays related to buffering and scheduling, a 
PostScript language error may be reported long after the C pro
cedure responsible for the error has returned. Consider the fol
lowing example: 

DPSPrintf(ctxt, "%d %d %s\n", x, y, operatorName); 
MyWrap1 (ctxt); 
MyWrap2(ctxt, &result); 

Suppose the string pointed to by 'operatorName' did not contain 
a valid operator and therefore generated an undefined error. The 
error may not be received when DPSPrintf returns. It may not 
even be received when MyWrapl returns. MyWrap2 returns a 
result, thereby forcing synchronization, so any errors caused by 
the call to DPSPrintf or My Wrap] will finally be received. 

If MyWrap2 is called several statements after My Wrap], it may 
be difficult to figure out where the error originated. However, 
you can determine where errors are likely to collect, such as 
places where the application and context will be forced into 
synchronization, and work backward from there. If you make a 
list of synchronization points in your code, say, A, B, C, D, and 
so on, an error received at point C must have been generated by 
code somewhere between Band C. This will help narrow down 
your debugging search. 

22 X Window System Programmer's Supplement I Version of January 23, 1990 



A debugging alternative is to have the application check for an 
error by forcing synchronization. (The synchronization should be 
removed in the final version of the software because of its nega
tive impact on performance.) For the details of implementing 
synchronization, see the section on synchronization in the Client 
Library Reference Manual. 

Example: This code has been simplified to make the principle 
clear; in an actual application, you would probably want to 
choose a less verbose means of including the debugging 
procedures. Every procedure call that sends PostScript language 
code is folloed by a call to 'DEBUG_SYNC'. If the macro 
'DEBUGGING' is true, 'DEBUG_SYNC' will force the context 
to be synchronized; if there are any errors, they will be reported. 
If 'DEBUGGING' is false, 'DEBUG_SYNC' will do nothing. 
Note that although a call to 'DEBUG_SYNC' after the call to 
MyWrap2 would be harmless, it is not needed because MyWrap2 
returns a value and is therefore automatically synchronized. 

#ifdef DEBUGGING 
#define DEBUG_SYNC(c) DPSWaitContext((c)) 
#else 
#define DEBUG_SYNC(c) 
#end if 

DPSPrintf(ctxt, 11%d %d %s\n 11
, x, y, operatorName); 

DEBUG_SYNC(ctxt); 
MyWrap1 (ctxt); 
DEBUG_ SYNC(ctxt); 
MyWrap2(ctxt, &result); 

3.4 TERMINATION 

When an application exits normally, all resources allocated on its 
behalf, including contexts and spaces, are automatically freed. 
(This actually depends upon the "close-down mode" of the 
server.) This is the most typical and convenient method of 
releasing resources. However, any storage allocated in shared 
VM (such as fonts loaded by the application) remains allocated 
even after the application exits. 

DPSDestroyContext and DPSDestroySpace are provided to al
low an application to release these resources without exiting. 

3 BASIC FACILITIES 23 



This might be needed if, for example, the context and space must 
be destroyed and recreated from scratch to recover from a 
Postscript language error. These procedures are described in 
detail in the Client Library Reference Manual. To summarize, 
DPSDestroyContext destroys the context resource in the server 
and the 'DPSContextRec' in the client. DPSDestroySpace 
destroys the space resource in the server and the 
'DPSSpaceRec' in the client as well as all contexts within the 
space, including their 'DPSContextRec' records. 

Note that closing the 'Display' - with XCloseDisplay, for ex
ample - destroys all context and space resources associated 
with that 'Display', but does not destroy the corresponding client 
data structures (' DPSContextRec' or 'DPSSpaceRec'). 

24 X Window System Programmer's Supplement I Version of January 23, 1990 



4 ADDITIONAL FACILITIES 

This section describes advanced features of the Display 
PostScript extension to the X Window System. 

4.1 IDENTIFIERS 

DPS/X defines two new server resource types: one for contexts, 
and another for spaces. A context or space resource in the server 
is defined by an X resource ID (XID). 

The client has its own representation of contexts and spaces. 
'DPSContext' is a handle to a 'DPSContextRec' allocated in the 
client's memory. 'DPSSpace' is a handle to a 'DPSSpaceRec' 
allocated in the client's memory. 

Applications need not use X resource IDs to refer to contexts or 
spaces. Instead, they can pass the appropriate handle to Client 
Library procedures. 

However, if the resource ID of a context or space is required, 
there are routines available for translating back and forth be
tween handles and IDs. 

• XDPSXIDFromContext returns an X resource ID, given a 
'DPSContext' handle. 

• XDPSXIDFromSpace returns an X resource ID, given a 
'DPSSpace' handle. 

• XDPSContextFromXID returns a 'DPSContext' handle, 
given an X resource ID. 

• XDPSSpaceFromXID returns a 'DPSSpace' handle, given 
an X resource ID. 

The PostScript interpreter uses a unique integer, the context 
identifier, to identify a context. The context identifier is defined 
by the Postscript language and is completely independent of X 
resource IDs. The currentcontext operator returns the context 
identifier for the current context. 

4 ADDITIONAL FACILITIES 25 



Note: A context created by an existing context with the fork 
operator has no identity other than the context identifier returned 
by the fork operator; the forked context has neither an X 
resource ID nor a 'DPSContext' handle. See Section 4.5 for 
more information on forked contexts. 

To get the 'DPSContext' handle associated with a particular con
text identifier, call XDPSFindContext. If the client knows about 
the specified context, a valid 'DPSContext' handle is returned; 
otherwise NULL is returned. 

There is no direct translation between the Postscript context 
identifier and the X resource ID. 

If a Postscript context terminates (either by request or as the 
result of an error), the resource allocated for it lingers in the 
server. The X resource ID for the context is still valid, but the 
context identifier is not. Such a context is called a zombie. See 
Section 4.2 for a discussion of zombie contexts. 

4.2 ZOMBIE CONTEXTS 

A context can die in a number of ways, most commonly as the 
result of a Postscript language error such as operand stack un
derflow or use of an undefined name. 

If a context is killed, or dies from an error, its server resource 
lingers. An X server resource that represents a terminated con
text is known as a zombie context. Requests made to a zombie 
context will fail. The resource associated with a zombie context 
may be freed with the DPSDestroyContext procedure. Alter
natively, the resources will be freed when the 'Display' is closed, 
typically at application exit. 

Any request made to a zombie context will generate a status 
event of type 'PSZOMBIE'. See Section 4.8 for more informa
tion about status events. 

26 X Window System Programmer's Supplement I Version of January 23, 1990 



4.3 BUFFERS 

As discussed in the Client Library Reference Manual, buffering 
is often used to enhance throughput. For the most part, an appli
cation need not be concerned with buffering of requests to a con
text or output from a context. However, facilities are provided to 
flush buffers if needed. 

All DPS/X requests sent to the server are buffered by Xlib, like 
any other X requests. DPSFlushContext (see the Client Library 
Reference Manual) will flush any code or data pending for a 
context, as well as any X requests that have been buffered. For 
portability and performance enhancement, use DPSFlushContext 
rather than XFlush if the application has sent code or data to a 
context since the last flush. 

Streams created by the Postscript interpreter are buffered, in
cluding the input and output streams associated with a PostScript 
execution context. Buffers are automatically flushed as needed. 
The automatic flushing is usually sufficient. However, should the 
application need to flush output from a context, the flush 
operator may be used. Note that wrapped procedures that return 
results include a flush operator at the end of the wrap code. 

4.4 ENCODINGS 

The Client Library Reference Manual discusses the general con
cept of encodings and conversions. A wrapped procedure always 
generates a binary object sequence, which is passed to the con
text for further processing. Typically, the binary object sequence 
is simply passed to the lowest level of the Client Library to be 
packaged into a request, without any change to its contents. 
However, by setting the encoding parameters of the 
'DPSContextRec' with the DPSChangeEncoding procedure, the 
binary object sequence can be converted to some other encoding 
before it is sent or written. 

DPS/X supports the conversions shown in Figure 4: 

4 ADDITIONAL FACILITIES 27 



Figure 4 Encoding Conversions 

Conversion Description 

binary object sequence to ASCII Makes a binary object sequence readable by humans. The output of wrapped 
procedures may be inspected and analyzed. Also useful for generating page 
descriptions to be printed. This is the default setting for text contexts. Execu
tion contexts may also be made to convert binary object sequences to ASCII, 
but there is little purpose in doing this. 

binary object sequence to binary-encoded tokens 
Binary-encoded token encoding is the most compact encoding for the 
PostScript language. This conversion is useful for storing code permanently, or 
for exchanging code with another application. Either a text context or an 
execution context may perform this conversion, but it is mainly used for text 
contexts. 

binary object sequence with user name indices to binary object sequence with user name strings 
This conversion is necessary if the binary object sequence is going to be stored 
permanently (for example, on a file) or if the binary object sequence is to be 
used by another client or with a shared context (see Section 4.7). User name 
indices are created dynamically and are unique only within a single "instance" 
of the Client Library - for example, in the application's process address 
space. In this case, user names must be represented by strings if they are to be 
used outside of the application's process address space. 

binary-encoded tokens to ASCII Binary-encoded tokens read from an external data source such as a file can be 
converted to ASCII for human inspection, sent to an intepreter, or stored in a 
page description for printing. After the context's encoding has been set using 
DPSChangeEncoding, buffers of binary-encoded tokens can be read and passed 
to DPSWritePostScript for conversion. Either a text context or an execution 
context can perform this conversion, but it is used mainly for text contexts. 

Example 1: To cause a text context to generate binary-encoded 
tokens, call: 

DPSChangeEncoding(textContext, dps_encodedTokens, 
textContext->nameEncoding); 

28 X Window System Programmer's Supplement I Version of January 23, 1990 



Example 2: To cause an execution context to convert user name 
indices to user name strings, call: 

DPSChangeEncoding(context, context->programEncoding, dps_strings); 

4.5 FORKED CONTEXTS 

The Postscript language allows an existing context to create 
another context by means of the fork operator. However, when a 
forked context is created, it has no 'DPSContext' handle or X 
resource ID associated with it (see Section 4.1). This is fine if the 
application does not need to communicate with the forked con
text. A context that was forked to do some simple task in the 
background may terminate without generating any output. If the 
application does need to communicate with a forked context, 
both a 'DPSContext' handle and an X resource ID must be 
created for the context. 

To create a resource ID and 'DPSContext' handle for a forked 
context, call DPSContextFromContext/D: 

DPSContext DPSContextFromContextlD(ctxt, cid, textProc, errorProc); 
DPSContext ctxt; 
ContextPSID cid; 
DPSTextProc textProc; 
DPSErrorProc errorProc; 

'ctxt' specifies the context that created the forked context. In 
other words, 'ctxt' is the context that executed the fork operator. 
'cid' is a 'long int' that specifies the Postscript context identifier 
(not the X resource ID) of the forked context. 

'textProc' and 'errorProc' are the usual context output handlers. 
If 'textProc' is NULL, the text handler from 'ctxt' is used. If 
'errorProc' is NULL, the error handler from 'ctxt' is used. 

DPSContextFromContextID returns a 'DPSContext' handle if 
'ctxt' and 'cid' are valid, otherwise it returns NULL. 

4 ADDITIONAL FACILITIES 29 



Note: Implementation limitations should be kept in mind when 
using the fork operator. A context can consume a significant 
amount of memory. Furthermore, the total number of contexts 
that can be created in a server is relatively small - on the order 
of 50to100. 

Warning: When using forked contexts, plan to use 
DPSContextFromContext/D to hook up with them for debug
ging, even if the eventual use of the forked context does not re
quire that the application communicate with it. If a forked con
text generates a PostScript language error but there is no 
resource ID or 'DPSContext' handle associated with it, the appli
cation will never see the error. 

Contexts created by fork exist until they are killed or joined 
(using the join operator). A context terminated by the detach 
operator, however, goes away as soon as it finishes executing. 

4.6 MULTIPLE SERVERS 

An application may create contexts on more than one server at 
the same time. If this is done, the application must process 
events from each server (display) to which it is connected. 

In order to support access to multiple servers, DPS/X procedures 
take a pointer to 'Display' records where appropriate. 

4.7 SHARING RESOURCES 

Execution contexts and spaces can be identified by their X 
resource identifiers. These identifiers can be passed to other 
clients to enable sharing of resources. 

30 X Window System Programmer's Supplement I Version of January 23, 1990 



Warning: There is no suppoirt in the Client Library for main
taining the consistency of shared resources. In general, applica
tions should not share resources because of the complexity of 
managing them. 

If an application needs to share execution context information 
with other clients, the shared VM facility and the mutual exclu
sion operators provided by the Postscript language (lock, 
monitor, and so on) may be adequate for that purpose. See 
PostScript Language Extensions for the Display PostScript 
System. 

If these facilities are not adequate, the procedures described in 
this section can be used. 

XDPSContextFromShared/D and XDPSSpaceFromShared/D are 
provided to allow a client to communicate with resources created 
by a different client. 

For the most part, a 'DPSContext' handle created for a shared 
resource can be. used like any other handle. However, there are 
some restrictions. The following list, though not exhaustive, 
presents some of the issues related to sharing resources: 

•User names in binary encodings of the PostScript language 
must be sent as strings. This is because the mapping of 
user name indices are not guaranteed to be unique across 
clients. The default 'DPSNameEncoding' of the 
'DPSContextRec' created for a shared context is 
'dps_string'. It cannot be changed to 'dps_indexed'. 

• Output from the context, including wrap result values, text, 
and errors, is sent only to the context's original creator, not 
to any clients sharing the context. Status events, however, 
are sent to clients sharing. the context, as specified by the 
status event mask (see Section 4.8). 

•When DPSDestroyContext or DPSDestroySpace is applied 
to a shared context or space, only the client-side data struc
tures are destroyed. The execution context, the space, and 
the resources associated with these objects can be destroyed 
only by the creator. 

• If the creator destroys resources, any reference to a 

4 ADDITIONAL FACILITIES 31 



destroyed resource will result in a protocol error, which is 
sent to the client sharing the resource. 

It is up to the application that allows resource identifiers to be 
shared, and the clients sharing those resources, to cooperate and 
maintain consistency. 

4.8 STATUS EVENTS 

At any given time, a context has a specific execution status. 
Status events are provided for low-level monitoring of context 
status. Most applications won't need this facility. 

Status events can be used to perform the following tasks: 

• Send code, using flow control, from the application to a 
context. 

• Control the suspension and resumption of execution. 

• Synchronize Postscript interpreter execution with X 
rendering requests. 

• Monitor a context to determine whether it is runaway, 
"wedged" (stuck), or zombie. 

A status event is generated whenever a context changes from one 
state to another. Status events can be masked in the server so that 
uninteresting events are not sent to the client (see 
XDPSSetStatusM ask). Furthermore, the application will not see 
any status events unless it registers a status event handler by call
ing XDPSRegisterStatusProc. The default is to have no status 
events enabled and no status event handler registered. 

The procedure XDPSGetContextStatus returns· the current status 
of a context (as a synchronous reply to a request, not as an 
asynchronous event). The status of a context may be one of the 
following states: 

32 X Window System Programmer's Supplement I Version of January 23, 1990 



'PSSTATUSERROR' 
The context is in a state that is not described by 
the other four status values. For example, a con
text that has been created but has never been 
scheduled to execute would return 
'PSSTATUSERROR' to 
XDPSGetContextStatus. No asynchronous status 
event will have this value. 

'PSRUNNING' The context has been running, has code to ex
ecute, or is capable of being run. Fine point: No 
context is running while the server processes re
quests or generates events, so this value really 
means that the context is runnable. 

'PSNEEDSINPUT' 
The context is waiting for code to execute, a 
condition commonly known as ''blocked on 
input.'' 

'PSFROZEN' The execution of the context has been suspended 
by the clientsync operator. A frozen context 
may be killed with DPSDestroyContext, inter
rupted with DPSinterruptContext, or reactivated 
with XDPSUnfreezeContext. 

'PSZOfVIBIE' The context is dead. The resource data allocated 
for the context still exists in the server, but the 
Postscript interpreter no longer recognizes the 
context. 

Except for 'PSSTATUSERROR', these status events may be dis
abled (see below). 

If an application is interested in one or more types of status 
events, a handler of type 'XDPSStatusProc' must be defined. 
Two arguments will be passed to the call-back procedure: the 
'DPSContext' handle for the context that generated the status 
event, and a code specifying the status event type. The 
XDPSRegisterStatusProc procedure associates a status event 
handler with a particular 'DPSContext'. Each context may have 
a different handler. 

Once a status event handler is established for the context, the 
application should set the status event masks for the context by 
calling XDPSSetStatusMask. The symbols for the mask values 
are: 

4 ADDITIONAL FACILITIES 33 



• .' PSRUNNINGMASK' 

• 'PSNEEDSINPUTMASK' 

• 'PSZOMBIEMASK' 

• 'PSFROZENMASK' 

A mask is constructed by applying a logical OR of the mask 
values to the appropriate mask; for example, 

enableMask = PSRUNNINGMASK I PSNEEDSINPUTMASK; 

sets the bits that indicate interest in the 'PSRUNNING' and 
'PSNEEDSINPUT' status event types. A 1-bit means interest in 
that type; a 0-bit means "no change" or "don't care." 

The context can handle a given status event type in one of three 
ways: 

• If the application wants to be notified of the event every 
time it occurs, the event should be enabled. 

• If the application never wants to be notified of the event, 
the event should be disabled. 

• If the application wants to be notified of only the next 
occurrence of the event, the event should be set to next. 

The application defines the method of handling each status event 
type by setting bits in three masks: 'enableMask', 'disableMask', 
and 'nextMask'. 

Call XDPSSetStatusMask to set the masks. Note that a particular 
bit may be set in only one mask. Bits set in the 'nextMask' en
able the events of that type. When the context changes state, an 
event is generated. If its type is specified in the 'nextMask', the 
application is notified of the event and all subsequent events of 
that type are automatically disabled. 

Example: An application currently has 'PSNEEDSINPUT' and 
'PSRUNNING' enabled and all other types disabled. It now 
wants to be notified of every transition to 'PSFROZEN' and 
'PSZOMBIE' and only the next transition to 'PSNEEDSINPUT'. 
The masks would be contructed as follows: 

34 X Window System Programmer's Supplement I Version of January 23, 1990 



enableMask = PSFROZENMASK I PSZOMBIEMASK; 
disableMask = PSRUNNINGMASK; 
nextMask = PSNEEDSINPUTMASK; 

XDPSSetStatusMask(ctxt, enableMask, disableMask, nextMask); 

Even though the previous setting for 'PSNEEDSINPUT' was en
abled, 'PSNEEDSINPUT' need not be disabled in order to 
change the treatment of this event to ''next only.'' 

See Section 4.9 for details on how the 'PSFROZEN' status event 
can be used. 

4.9 SYNCHRONIZATION 

As discussed in Section 3 .3 .2, X rendering primitives and 
PostScript language execution may, in most cases, be intermixed 
freely. However, in some situations PostScript language execu
tion needs to be synchronized with X. 

See the Client Library Reference Manual for a discussion of the 
general requirements for synchronization. To summarize, you 
can synchronize either by calling wraps that return results or by 
calling DPSWaitContext. Enforced synchronization is expensive 
and should be used only when absolutely necessary. 

Example: Suppose a previewer application displays a page of 
text and graphics that is represented by a PostScript language 
page description in a file. The user interface of the application 
may require the entire page to be imaged to a pixmap before it is 
realized on the physical display. The application reads the 
ASCII-encoded Postscript language code from the file and sends 
it to the server with the DPSWritePostScript procedure. The con
text executes the code as it is received, and renders to the pix
map. 

If the file contains only one page, and the page description is 
simple, the application knows that the pixmap is complete when 
it has read to the end of the input file and called 
DPSWaitContext. It may now call XCopyArea to copy the pix
map to the application display window. 

4 ADDITIONAL FACILITIES 35 



However, if the file contains more than one page, the application 
cannot know when the rendering to the pixmap is complete. If it 
calls XCopyArea too soon, the context may not have finished 
drawing. As a result, an incomplete image will be displayed on 
the screen. 

There are two main strategies for handling situations such as the 
one described above: waiting and freezing. The first is applicable 
if the application has sufficient knowledge of the content of the 
PostScript language code to know where the beginning and the 
end are located. The second is used only if the application has no 
reliable knowledge of the code content. 

4.9.1 Waiting 

Causing the context to wait is appropriate when the PostScript 
language code to be executed has a known structure. This is true 
in either of the following circumstances: 

•The application has complete control of the code to be ex
ecuted. That is, it uses wrapped procedures, single
operator procedures, or dynamically generated code frag
ments such as user path descriptions. No code comes from 
external sources such as end-user input. 

• The application reads external files with a known structure 
that can be parsed and understood, such as PostScript lan
guage page descriptions that are compliant with Adobe 
Systems Document Structuring Conventions. 

Most applications that require synchronization fall into one of 
the two categories described above. In both cases, the application 
knows exactly how much Postscript language code needs to be 
sent for a complete display. In these cases, the application sends 
the code and then forces all code to be executed, either with 
DPSWaitContext or as a side effect of calling a wrap that returns 
a value. When either of these procedures returns, the application 
knows that all rendering is done and that other X requests can 
now be sent. 

4.9.2 Freezing 

36 X Window System Programmer's Supplement I Version of January 23, 1990 



Freezing a context is appropriate if the application has insuf
ficient knowledge of the completeness of the Postscript language 
code to be executed. This can happen if an end user is allowed to 
enter arbitrary Postscript language programs (for instance, in an 
interactive interpreter executive) or if an input file lacks a well
defined structure. 

In this case, the input must contain an executable name that the 
application has defined. For example, the showpage operator ter
minates each page in a page description file. The application can 
take advantage of this, as shown in the following example. 

Example: The application has defined showpage to execute an 
operator that will notify the application that the page is done. 
The clientsync operator fulfils this function: 

/old_showpage /showpage load def 
/showpage {old_showpage clientsync} bind def 

When clientsync is executed, the context is put into the 
'PSFROZEN' state, and a 'PSFROZEN' event is generated. The 
application must have enabled the 'PS FROZEN' event and regis
tered a handler for that context; see Section 4.8 for more infor
mation on status events. The·handler may then set a flag indicat
ing that the image in the pixmap is complete. The next time the 
application goes around its main loop, it can test the flag and call 
XCopyArea. 

A frozen context can still receive interrupts. 
DPS/nterruptContext will interrupt a context whether it is frozen 
or not. 

4 ADDITIONAL FACILITIES 37 



5 PROGRAMMING TIPS 

This section contains tips for to help you program applications 
that use the Display Postscript system extension to the X Win
dow System. 

5.1 DON'T USE XIFEVENT 

Don't call XlfEvent in your application. This routine will cause 
events that were generated and queued by an execution context 
to be processed repeatedly (once for each call to XlfEvent) with
out being dequeued. This may result in wrap results or text out
put being erroneously duplicated or may cause false status events 
to be reported. UseXChecklfEvent instead. 

This restriction may not apply to future implementations of Xlib. 

Warning: If your toolkit uses XlfEvent, you may see the er
roneous effects described above even though your application 
does not use XlfEvent directly. 

5.2 INCLUDE FILES 

Include the dpsXclient.h header file when compiling DPS/X ap
plications. This header file includes the required header files 
described in the Client Library Reference Manual, dpsclient.h 
and dpsfriends.h. 

Include dpsops.h if your application uses single-operator 
procedures with explicit contexts. 

Include psops.h if your application uses single-operator 
procedures with implicit contexts. 

Include dpsexcept.h if your application uses exception handling 
as defined in the Client Library Reference Manual. 

38 X Window System Programmer's Supplement I Version of January 23, 1990 



5.3 COORDINATE CONVERSIONS 

The code examples in this section demonstrate an efficient 
method of doing coordinate conversions. (For an introduction to 
coordinate system issues, see Section 3.3.1.) 

At initialization, and immediately after any user space transfor
mation has been performed (for example, after scale, rotate, or 
setmatrix), the application should execute PostScript language 
code to get the CTM (current transformation matrix), the inverse 
of the CTM, and the current origin offset. The following 
wrapped procedure will return these values: 

defineps PSWGetTransform(DPSContext ctxt I float ctm[6], invctm[6]; 
int *xOffset, *yOffset) 

matrix currentmatrix dup ctm 
matrix invertmatrix invctm 
currentXoffset yOffset xOffset 

endps 

Call the PSWGetTransform wrap as necessary, saving the return 
values in storage associated with the window: 

DPSContext ctxt; 
float ctm[6], invctm[6]; 
int xOff~et, yOffset; 

PSWGetTransform(ctxt, ctm, invctm, &xOffset, &yOffset); 

To convert an X coordinate into a user space coordinate, perform 
the following calculations: 

#define A_COEFF 0 
#define B_COEFF 1 
#define C _ COEFF 2 
#define D_COEFF 3 
#define TX_ CONS 4 
#define TY_ CONS 5 
int x, y; /* X coordinate */ 
float ux, uy; /*user space coordinate*/ 

x -= xOffset; 
y -= yOffset; 
ux = invctm[A_COEFF] * x + invctm[C_COEFF] * y + invctm[TX_CONS]; 
uy = invctm[B_COEFF] * x + invctm[D_COEFF] * y + invctm[TY _CONS]; 

To convert a user space coordinate into an X coordinate, perform 
the following calculations: 

5 PROGRAMMING TIPS 39 



x = ctm[A_COEFF] * ux + ctm[C_COEFF] * uy + ctm[TX_CONS] + xOffset; 
y = ctm[B_COEFF] * ux + ctm[D_COEFF] * uy + ctm[TY_CONS] + yOffset; 

The equations listed above have the following limitations: 

• X coordinates must be positive. Otherwise, use the floor 
function to avoid the implicit truncation that happens when 
floating-point values are assigned to integers. 

•Beware of round-off error. Incorrect coordinates may be 
computed in either direction. 

5.4 FONTS 

The tilenameforall operator can be used to obtain a list of the 
fonts available to the server. See PostScript Language Exten
sions for the Display PostScript System for a description of 
filenameforall. Use the pattern '(%font%*)' to generate a list of 
fonts. The font file names may be sent back as ASCII text and 
processed with a customized text handler, or they may be stored 
in an array and then accessed one at a time by calling a wrapped 
procedure. 

Outline fonts are resources. Like any other resource, there's no 
guarantee that a given font will be present on any particular serv
er. The application must be written to deal with a tindfont or 
selectfont operator that fails because it can't find the font. It is 
possible to redefine tindfont and selectfont so that they sub
stitute some default font when the requested font is not available. 
Indeed, the default definition of tindfont in a given environment 
may already do this. 

5.5 PORTABILITY ISSUES 

Portability issues may arise under any of the following situa
tions: 

•Converting an existing X application to use the DPS/X ex
tension. 

•Porting a non-X window system application to use the 
DPS/X extension. 

• Writing a portable application that uses the DPS/X exten
sion. 

40 X Window System Programmer's Supplement I Version of January 23, 1990 



A major factor in portability is device independence. The DPS/X 
extension enhances the device independence of X applications 
by providing flexibility with respect to color, resolution, and 
fonts. 

5.5.1 Color 

Use Postscript operators such as setrgbcolor rather than X 
primitives to draw with color. The Postscript interpreter will 
provide the best rendering possible for the device. The Display 
PostScript system can produce a variety of halftone patterns 
representing gray values or colors, so that one color can be seen 
against the background of another color even on a monochrome 
device. Contrast this with the rendering facilities of the X Win
dow System, where a request for any color other than white on a 
monochrome device will give you black. 

DPS/X color rendering is device independent. Here's how 
DPS/X handles color requests: 

•On a monochrome device, you'll get a dithered (halftone) 
pattern of black and white pixels. For example, if you ask 
for red by specifying '1 0 0 setrgbcolor', you '11 get some 
halftone gray pattern composed of black and white pixels; 
this pattern will be distinct from other ''colors''. 

• On a grayscale device you '11 get a halftone pattern using 
gray levels; this offers greater distinction among "colors." 

• On a color device ( 4-plane, 8-plane, and so on), you'll get 
the requested color if it's one of those predefined for the 
context; otherwise you'll get a dithered pattern of RGB 
pixels that approximates the color. 

• If you've allocated solid colors beyond those predefined for 
the context, you'll get a non-dithered color just as you 
would with X (subject to the same restrictions). 

• A color request will never simply fail. 

X Window System color rendering, on the other hand, is device 
dependent: 

• On a monochrome device, a request for any color will give 
you black. There's no way to differentiate between "pink" 
and "olive green," as there is with DPS/X. 

5 PROGRAMMING TIPS 41 



• On a color device, you 'II get the color you requested only if 
there's space in the colormap or the device is a TrueColor 
device. 

•A color request can fail, and there's no recourse except to 
try requesting a different color. 

5.5.2 Resolution 

The Display PostScript extension offers you device indepen
dence with respect to resolution. 

In DPS/X, positions and extents are specified with resolution
independent units such as points. An inch is always an inch. 
Window elements will always have the same absolute size, 
regardless of the device. 

In the X Window System, positions and extents are specified in 
units of pixels. The size of a pixel depends on the device. One 
inch may be 75 pixels on one display and 100 pixels on another 
display. This causes strange distortions of size when creating 
windows on various display devices. 

5.5.3 Fonts 

In the X Window System, you can't rely on the availability of a 
given point size/typeface combination. If you request 9-point 
Helvetica, for example, and that point size is not available, you 
must make another request. 

The Display Postscript extension gives you added flexibility 
with respect to fonts: 

• You can have any point size as long as the typeface is 
present. If you request a size that's not available, DPS/X 
generates it for you. 

• The typeface can be rendered in any rotation or two
dimensional transformation. 

42 X Window System Programmer's Supplement I Version of January 23, 1990 



6 X-SPECIFIC DATA AND PROCEDURES 

This section describes the system-specific data types and 
procedures for DPS/X. 

6.1 DATA STRUCTURES 

Data structures defined in the dpsXclient.h header file are 
described below. 

6.1 .1 Extended Error Codes 

The following error codes for the X Window System are in ad
dition to those described under 'DPSErrorCode' in the Client 
Library Reference Manual: 

'dps _err _invalidAccess' 
An attempt was made to receive output from a 
context created by another client. Contexts send 
their output only to the original creator. If the 
application tries to get output from a context 
created by another client - for example, by 
calling a wrap that returns a result - this error 
is reported. 

'dps_err_encodingCheck' 
An attempt was made to change name or 
program encoding to unacceptable values. This 
error can occur when changing name encoding 
for a context created by another client or a con
text created in a space that was created by 
another client. Such contexts must have string 
name encoding ('dps_strings'). 

'dps _err_ closedDisplay' 
An attempt was made to send Postscript lan
guage code to a context whose 'Display' is 
closed. 

'dps _err_ dead Context' 
An attempt was made to get output from a zom
bie context (a context that has died in the server 
but still has its X resources active). 

6 X-SPECIFIC DATA AND PROCEDURES 43 



Figure 5 Status Events 

Status Event 

PSRUNNING 
PSNEEDSINPUT 
PSZOMBIE 
PS FROZEN 

PSSTATUSERROR 

6.1 .2 Status Event Masks 

The status event types supported in DPS/X are shown in Figure 
5. The first column shows the status event type that is reported 
by the server. The second column shows the associated single-bit 
status mask values that can be combined with logical OR to set a 
context's status mask. The third column describes the status 
event. 

Mask Value 

PSRUNNINGMASK 
PSNEEDSINPUTMASK 
PSZOMBIEMASK 
PSFROZENMASK 

Status Description 

Context is runnable. 
Context needs input to continue running. 
Context is dead, but its X resources remain. 
Context was frozen by PostScript language 
program. 
Could not reply to status request. 

For more information on status events, see Section 4.8. 

6.1 .3 Types and Global Variables 

DPSLastUserObjectlndex 
long int DPSLastUserObjectlndex; 

'DPSLastUserObjectlndex' is a global variable containing the 
last user object index assigned for this application. This variable 
should be treated as read-only. For more information about user 
object indices, see DPSNewUserObjectlndex and Section 3.3.5. 

44 X Window System Programmer's Supplement I Version of January 23, 1990 



XDPSStatusProc typedef void (*XDPSStatusProc) (/* 
DPSContext ctxt, 
int code*/); 

This is a procedure type for defining the call-back procedure that 
handles status events for the client. The procedure will be called 
with two parameters: the context it was registered with and the 
status code derived from the event. For more information about 
status events, see XDPSRegisterStatusProc and Section 6.1.2. 

6.2 PROCEDURES 

This section contains descriptions of the system-specific 
procedures in the dpsXclient.h header file, listed alphabetically. 

DPSChangeEncoding 
void DPSChangeEncoding(ctxt, newProgEncoding, newNameEncoding); 

DPSContext ctxt; 
DPSProgramEncoding newProgEncoding; 
DPSNameEncoding newNameEncoding; 

DPSChangeEncoding changes one or both of the context's en
coding parameters. See the Client Library Reference Manual for 
definitions of 'DPSNameEncoding' and 
'DPSProgramEncoding'. Supported conversions are described in 
Figure 4 on page 28. 

6 X-SPECIFIC DATA AND PROCEDURES 45 



DPSContextFromContextlD 
DPSContext DPSContextFromContextlD(ctxt, cid, textProc, errorProc); 

DPSContext ctxt; 
ContextPSID cid; 
DPSTextProc textProc; 
DPSErrorProc errorProc; 

DPSContextFromContext/D creates a 'DPSContextRec' and 
returns a 'DPSContext' handle for a forked context; it returns 
NULL if it is unable to create these data structures. 

The application must call this procedure before attempting to 
communicate with a forked context. DPSContextFromContext/D 
creates the client-side data structures for the context and associ
ates them with the server-side structures previously created by 
the fork operator. 'cid' is the context identifier (of type 'long 
int') that is assigned to the forked context by the Postscript inter
preter. 'ctxt' is the handle of the context that created the forked 
context; its 'DPSContextRec' will be used as a model for the 
'DPSContextRec' of the forked context, as described below. 

If a 'DPSContextRec' has already been created for 'cid', its 
handle is returned by DPSContextFromContextID. Otherwise, a 
new context record is created according to the following rules: 

•If supplied, the 'textProc' and 'errorProc' arguments are 
used for the forked context. 

•If 'textProc' or 'errorProc' are NULL, the missing values 
are copied from the 'DPSContextRec' of 'ctxt'. 

• The chaining pointers for the forked context are set to 
NULL. 

• All other fields in the new 'DPSContextRec' are copied 
from 'ctxt'. 

46 X Window System Programmer's Supplement I Version of January 23, 1990 



DPSCreateTextContext 
DPSContext DPSCreateTextContext(textProc, errorProc); 

DPST extProc textProc; 
DPSErrorProc errorProc; 

DPSCreateTextContext creates a text context and returns its 
'DPSContext' handle. When this handle is passed as the argu
ment to a Client Library procedure, all input to the context is 
passed to 'textProc'. If the input is Postscript language in a bi
nary encoding, the input is converted to ASCII encoding before 
being passed to 'textProc'. 'errorProc' is used to report any er
rors (such as 'dps_err_nameToolong') resulting from convert
ing binary encodings to ASCII encoding. 'textProc' is respon
sible for dealing with errors resulting from handling the text, 
such as file system or 1/0 errors. 

DPSDefaultTextBackstop 
void DPSDefaultTextBackstop(ctxt, buf, count); 

DPSContext ctxt; 
char *buf; 
unsigned count; 

DPSDefaultTextBackstop is the text backstop procedure 
automatically installed by DPS/X. Since it is of type 
'DPSTextProc', you may use it as your context 'textProc'. The 
text backstop procedure writes text to stdout and flushes stdout. 

6 X-SPECIFIC DATA AND PROCEDURES 47 



DPSDestroyContext 

DPSDestroySpace 

void DPSDestroyContext(ctxt) 
DPSContext ctxt; 

DPSDestroyContext is as defined in the Client Library Reference 
Manual, except as it pertains to shared contexts. 

Both the client and the server are affected by this procedure. On 
the client side, DPSDestroyContext destroys the 
'DPSContextRec'. On the server side, it destroys the Postscript 
execution context and the X resource associated with it. After a 
call to DPSDestroyContext, the 'DPSContext' handle for 'ctxt' is 
no longer valid. 

If the context is a shared context (that is, a 'DPSContextRec' 
allocated for a context created by another client), only the 
'DPSContextRec' is destroyed; the interpreter context and 
resource are unchanged. 

For text contexts, DPSDestroyContext destroys the 
'DPSContextRec'. 

void DPSDestroySpace(spc) 
DPSSpace spc; 

DPSDestroySpace is as defined in the Client Library Reference 
Manual except for shared spaces. 

For spaces created by the client, this procedure destroys the 
space and the X resource associated with it. Postscript execution 
contexts that use this space are also destroyed, along with their X 
resources and 'DPSContextRec' records. Finally, the 
'DPSSpaceRec' is destroyed. 

If the space is a shared space (a 'DPSSpaceRec' allocated by 
another client), the space and the X resource are not destroyed. 
Only the 'DPSSpaceRec' is destroyed, along with any 
'DPSContextRec' records for contexts associated with this 
space. See Section 4. 7 for a discussion of shared resources. 

If the client that created the space destroys it and there are other 
clients sharing it, the space is destroyed and the sharing clients 
will experience unpredictable results. 

48 X Window System Programmer's Supplement I Version of January 23, 1990 



DPSNewUserObjectlndex 
long int DPSNewUserObjectlndex(); 

DPSNewUserObjectlndex returns a new user object index. The 
Client Library is the sole allocator of new user object indices. 
The application should not attempt to compute them from a 
previously obtained index. Because user object indices are 
dynamic, they should not be used as numeric values for com
putation or saved in long-term storage such as a file. See Section 
3.3.5 for more information on user object indices. 

XDPSContextFromSharedlD 
DPSContext XDPSContextFromSharedlD(dpy, cid, textProc, errorProc); 

Display *dpy; 
ContextPSID cid; 
DPSTextProc textProc; 
DPSErrorProc errorProc; 

XDPSContextFromSharedID creates a 'DPSContextRec' for a 
context that was created by another client. 

'cid' specifies the context. ('cid' is the context identifier assigned 
by the PostScript interpreter, not the X resource ID.) 'dpy' is the 
'Display' that both clients are connected to. 'textProc' and 
'errorProc' are the context text and error handlers for the shared 
context. For information on sharing resources, see Section 4. 7. 

XDPSContextFromXID 
DPSContext XDPSContextFromXID(dpy, xid); 

Display *dpy; 
XIDxid; 

XDPSContextFromXID gets the context record for the given X 
resource ID on 'dpy'. It returns NULL if 'xid' is not valid. 

6 X-SPECIFIC DATA AND PROCEDURES 49 



XDPSCreateContext 
DPSContext XDPSCreateContext(dpy, drawable, gc, x, y, eventmask, 

grayramp, ccube, actual, textProc, errorProc, space); 
Display *dpy; 
Drawable drawable; 
GCgc; 
int x; 
int y; 
unsigned int eventmask; 
XStandardColormap *grayramp; 
XStandardColormap *ccube; 
int actual; 
DPSTextProc textProc; 
DPSErrorProc errorProc; 
DPSSpace space; 

XDPSCreateContext creates a context with a customized color
map; it returns NULL if there is any error. 

'dpy', 'drawable', 'gc', 'x', 'y', 'textProc', 'errorProc', and 
'space' are the same as for XDPSCreateSimpleContext. 
'eventmask' is reserved for future extensions and should be 
passed as zero. 

The colormap specified in 'grayramp' and 'ccube' must contain 
a range of uniformly distributed colors. 'grayramp' specifies the 
factors needed to compute a pixel value for a particular gray 
level. 'grayramp' is required. 'ccube' specifies the factors 
needed to compute a pixel value for a particular RGB color. 
'ccube' is optional; if it is passed as NULL, rendering will be 
done in shades of gray. The colormap specified in 'ccube' must 
be the same as the one specified in 'grayramp'. 'actual' specifies 
the upper limit of the number of additional RGB colors the appli
cation plans to request, beyond those specified in 'ccube' and 
'grayramp'. 

The following restrictions apply: 

•'drawable' and 'gc' must be on the same screen. 

• 'drawable' and 'gc' must have the same depth 'Visual'. 

• If the 'drawable' is a 'Window', any colormaps specified 
must have the same 'Visual'. 

• 'grayramp' must be specified, 'ccube' is optional, both 
must be valid. 

50 X Window System Programmer's Supplement I Version of January 23, 1990 



See Section 3.2 for additional information on creating a context. 

XDPSCreateSimpleContext 
DPSContext XDPSCreateSimpleContext(dpy, drawable, gc, 

x, y, textProc, errorProc, space); 
Display *dpy; 
Drawable drawable; 
GCgc; 
int x; 
int y; 
DPSTextProc textProc; 
DPSErrorProc errorProc; 
DPSSpace space; 

XDPSCreateSimpleContext creates a context with the default 
colormap; it returns NULL if there is any error. 

The procedure creates a context associated with 'dpy', 
'drawable' and 'gc'. 'x' and 'y' are offsets from the 'drawable' 
origin to the PostScript device space origin in pixels. 

'textProc' points to the procedure that will be called to handle 
text output from the context. 'errorProc' points to the procedure 
that will be called to handle errors reported by the context. 
'space' determines the private VM of the new context. A NULL 
space causes a new one to be created. 

The following restrictions apply: 

• 'drawable' and 'gc' must be on the same screen. 

• 'drawable' and 'gc' must have the same depth 'Visual'. 

See Section 3.2 for additional information on creating a context. 

XDPSFindContext DPSContext XDPSFindContext(dpy, cid); 
Display *dpy; 
long int cid; 

XDPSFindContext returns the 'DPSContext' handle of a context 
given its context identifier, 'cid'. It returns NULL if the context 
identifier is invalid. 

6 X-SPECIFIC DATA AND PROCEDURES 51 



XDPSGetContextStatus 
int XDPSGetContextStatus(ctxt); 

DPSContext ctxt; 

XDPSGetContextStatus returns the status of 'ctxt'. This proce
dure does not alter the mask established for 'ctxt' by 
XDPSSetStatusMask. For information on status events, see Sec
tions 4.8 and 6.1.2. 

XDPSRegisterStatusProc 
void XDPSRegisterStatusProc(ctxt, proc); 

DPSContext ctxt; 
XDPSStatusProc proc; 

XDPSRegisterStatusProc registers a status event handler, 'proc', 
to be called when a status event is received by the client for the 
context specified by 'ctxt'. The status event handler may be 
called by Xlib any time the client gets events or checks for 
events. 

'XDPSStatusProc' replaces the previously registered status 
event handler for the context, if any. 'proc' handles only status 
events generated by 'ctxt'; if the application has more than one 
context, XDPSRegisterStatusProc must be called separately for 
each context. 

52 X Window System Programmer's Supplement I Version of January 23, 1990 



XDPSSetStatusMask 
void XDPSSetStatusMask(ctxt, enableMask, disableMask, nextMask); 

DPSContext ctxt; 
unsigned long enableMask, disableMask, nextMask; 

XDPSSetStatusMask sets the status mask for the context: 

• 'enableMask' specifies status events for which continuing 
notification to the client is requested. 

• 'disableMask' specifies status events for which the client 
does not want to be notified. 

• 'nextMask' specifies status events for which the client 
wants to be notified of the next occurrence only. Setting 
'nextMask' is equivalent to setting 'enableMask' for a 
status event and, after being notified of the next occurrence, 
setting 'disableMask' for that event. 

A given status event type may be set in only one of the three 
status masks. If an event is set in more than one mask, a protocol 
error ('Value') is generated and the context is left unchanged. 
For more information on status events, see Sections 4.8 and 
6.1.2. 

XDPSSpaceFromSharedlD 
DPSSpace XDPSSpaceFromSharedlD(dpy, sxid); 

Display *dpy; 
SpaceXID sxid; 

XDPSSpaceFromSharedID creates a 'DPSSpaceRec' for the 
space identified by an X resource ID, 'sxid ', that was created by 
another client. 'dpy' is the 'Display' that both clients are con
nected to. XDPSSpaceFromSharedID returns NULL if 'sxid' is 
not valid. 

XDPSSpaceFromXID 
DPSSpace XDPSSpaceFromXID(dpy, xid); 

Display *dpy; 
XIDxid; 

XDPSSpaceFromXID gets the space record for the given X 
resource ID on 'dpy'. It returns NULL if 'xid' is not valid. 

6 X-SPECIFIC DATA AND PROCEDURES 53 



XDPSUnfreezeContext 
void XDPSUnfreezeContext(ctxt); 

DPSContext ctxt; 

XDPSUnfreezeContext notifies a context that is in the 
'PSFROZEN' state to resume execution. Attempting to unfreeze 
a context that is not frozen has no effect. 

XDPSXIDFromContext 
XID XDPSXIDFromContext(Pdpy, ctxt) 

Display **Pdpy; 
DPSContext ctxt; 

XDPSXIDFromContext gets the X resource ID for the given con
text record and returns its 'Display' in the location pointed to by 
'Pdpy'. 'Pdpy' is set to NULL if 'ctxt' is not a valid context. 

XDPSXIDFromSpace 
XID XDPSXIDFromSpace(Pdpy, spc); 

Display **Pdpy; 
DPSSpace spc ; 

XDPSXIDFromSpace gets the X resource ID for the given space 
record and returns its 'Display' in the location pointed to by 
'Pdpy'. 'Pdpy' is set to NULL if 'spc' is not a valid space. 

54 X Window System Programmer's Supplement I Version of January 23, 1990 



7 X-SPECIFIC POSTSCRIPT OPERATORS 

This section describes the X-specific Postscript operators for the 
Display Postscript system extension to the X Window System. 
The operators are organized alphabetically by operator name. 
Each operator description is presented in the following format: 

operator operand1 operand2 ... operandn operator result1 ... resultm 

Detailed explanation of the operator. 

ERRORS: 

A list of the errors that this operator might execute. 

At the head of an operator description, operand1 through 
operandn are the operands that the operator requires, with 
operandn being the topmost element on the operand stack. The 
operator pops these objects from the operand stack and con
sumes them. After executing, the operator leaves the objects 
result1 through resultm on the stack, with resultm being the top
most element. 

The notation '-' in the operand position indicates that the 
operator expects no operands; a '-' in the result position in
dicates that the operator returns no results. 

Error conditions include the following: 

rangecheck Invalid match: Either the 'drawable' and 'gc' 
have different depths or they don't have a 
'Visual' that matches the colormap associated 
with the context. 

stackundertlow 

typecheck 

undefined 

Not enough operands on the operand stack. 

Invalid X resource ID. 

The device associated with the context is not a 
display device. 

7 X-SPECIFIC POSTSCRIPT OPERATORS 55 



clientsync - clientsync -

The clientsync operator synchronizes the application with the 
current context. clientsync notifies the current context to stop 
executing, sets the context status to 'FROZEN', and causes a 
'PSFROZEN' status event to be generated. To resume execution, 
call the XDPSUnfreezeContext procedure. 

For an example of the use of clientsync, see Section 4.9.2. 

currentXgcdrawable - currentXgcdrawable gc drawable x y 

The currentXgcdrawable operator returns the X 'gc', 
'drawable', and offset from the origin of the 'drawable' to the 
device space origin for the current context. Results returned by 
this operator can be input to setXgcdrawable. 

ERRORS: 

undefined 

currentXgcdrawablecolor - currentXgcdrawablecolor gc drawable x y colorinfo 

The currentXgcdrawablecolor operator is similar to the 
currentXgcdrawable operator, except that it also returns an 
array of 12 integers describing the color cube, gray ramp, and 
other color variables used for the context. The 'colorinfo' array, 
described in Figure 6, has the following form: 

[maxgrays graymult firstgray maxred redmult maxgreen greenmult 
maxblue bluemult firstcolor colormap actual] 

56 X Window System Programmer's Supplement I Version of January 23, 1990 



Figure 6 The 'colorinfo' Array 

Value 

'maxgrays' 

'graymult' 

'firstgray' 

'maxred' 

'redmult' 

'maxgreen' 

'greenmult' 

'maxbll;le' 

'bluemult' 

'firstcolor' 

'colormap' 

'actual' 

ERRORS: 

undefined 

Description 

Maximum number of gray values. Equivalent to 
'red_max' field of 'XStandardColormap' for 
'Grayscale' colormaps. 
Scale factor to compute gray pixel. Equivalent to 
'red_mult' field of 'XStandardColormap' for 
'Grayscale' colormaps. 
First gray pixel value. Equivalent to 
'base_pixel' field of 'XStandardColormap' for 
'Grayscale' colormaps. 
Maximum number of red values. Equivalent to 
'red_max' field of 'XStandardColormap'. 
Scale factor to compute color pixel. Equivalent 
to 'red_mult' field of 'XStandardColormap'. 
Maximum number of green values. Equivalent 
to 'green_max' field of 'XStandardColormap'. 
Scale factor to compute color pixel. Equivalent 
to 'green_mult' field of 'XStandardColormap'. 
Maximum number of blue values. Equivalent to 
'blue_max' field of 'XStandardColormap'. 
Scale factor to compute color pixel. Equivalent 
to 'blue_mult' field of 'XStandardColormap'. 
First color pixel value. Equivalent to 
'base_pixel' field of 'XStandardColormap'. 
The colormap that these pixel values are al
located in. 
The upper limit of additional RGB colors, as in 
the 'actual' argument to XDPSCreateContext. 

7 X-SPECIFIC POSTSCRIPT OPERATORS 57 



currentXoffset - currentXoffset x y 

The currentXoffset operator returns the 'x' and 'y' coordinates 
representing the offset from the origin of the 'drawable' to the 
device space origin for the current context. This operator returns 
a subset of the variables returned by currentXgcdrawable. Its 
result values can be input to setXoffset. 

ERRORS: 

undefined 

setXgcdrawable gc drawable x y setXgcdrawable -

The setXgcdrawable operator sets the X 'gc', 'drawable', and 
offset from the origin of the 'drawable' to the device space 
origin for the current context. The specified values override any 
existing values. 

To temporarily change the values specified for setXgcdrawable, 
execute gsave before the operator and follow it with grestore. 

ERRORS: 

rangecheck stackunderOow typecheck undefined 

~etXgcdrawablecolor gc drawable x y colorinfo setXgcdrawablecolor -

The setXgcdrawablecolor operator changes 'gc', 'drawable', 
'offset', and 'colorinfo' for the context. The 'colorinfo' argument 
is described under currentXgcdrawablecolor. 

ERRORS: 

rangecheck stackunderOow typecheck undefined 

setXoffset x y setXoffset -

The setXoffset operator sets the default origin for the user space 
of the current context. This operator is a subset of 
setXgcdrawable. 

ERRORS: 

stackunderOow undefined 

58 X Window System Programmer's Supplement I Version of January 23, 1990 



setXrgbactual red green blue setXrgbactual bool 

The setXrgbactual operator attempts to allocate a new entry in 
the context's colormap. It takes three floating-point numbers be
tween 0.0 and 1.0 to specify the RGB color, as with setrgbcolor. 
The operator returns true if the color was successfully allocated 
in the colormap; it returns false if the color cannot be allocated 
or if an error occurs. 

Executing setXrgbactual is a way of ensuring that the color you 
request is actually allocated, not dithered. Colors specified by 
setXrgbactual do not count against the number of 'actual' 
colors that are allocated automatically; see Section 3.2.2. 
setXrgbactual may be called even if the context was created 
with 'actual' set to zero. 

setXrgbactual does not change the graphics state in any way; to 
paint with the specified color, execute setrgbcolor. 

ERRORS: 

stackunderflow typecheck undefined 

7 X-SPECIFIC POSTSCRIPT OPERATORS 59 



60 X Window System Programmer's Supplement I Version of January 23, 1990 



A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 

Changes to the X Window System Programmer's Supplement to 
the Client Library Reference Manual from the document dated 
August 17, 1989, are noted in the paragraphs below. 

An example error handler program for advanced error handling 
has been provided in Appendix B. 

The discussion of the X colormap resource has been clarified, 
including discussions of the use of XDPSCreateSimpleCont<;~t, 
the 'actual' parameter in XDPSCreateContext, and the 
setXrgbactual operator. 

The section on scan conversion has been removed. For infor
mation on this topic, please refer to PostScript Language Exten
sions for the Display PostScript System. 

Numerous additional amplifications and corrections have been 
made. 

~.· 

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 61 



62 X Window System Programmer's Supplement I Version of January 23, 1990 



B ADVANCED EXCEPTION HANDLING 

This appendix contains an example error handler procedure that 
can be used when DPSDefaultErrorProc, the default error hand
ler described in the "Example Error Handler" appendix of the 
Client Library Reference Manual, is not appropriate. The infor
mation in this appendix is not required by most programmers. 

Note: In general, you can't use exception handling with X be
cause lower levels of software, such as Xlib, are not prepared to 
handle exceptions or to have control taken away from them. Un
der certain conditions, however, you can work around the limita
tions of the lower-level software. Note that workarounds may be 
implementation dependent. The example in this appendix is a 
workaround designed to be as general as possible. 

Here is a brief review of how the default error handler works. 
The application installs the resynchhandleerror error procedure 
for the context and establishes an exception handler using the 
mechanism described in the Client Library Reference Manual. 
When a PostScript language error occurs, DPSDefaultErrorProc 
is invoked. It calls RAISE to raise an exception, allowing the 
application's .exception handler to intercept the error and attempt 
error recovery. 

DPSDefaultErrorProc, while sufficient for most DPS/X applica
tions, may not be suitable in cases where all procedures in the 
call stack must complete execution. The root of the problem is 
that DPSDefaultErrorProc returns control directly to the 
application's error handler at the top of the calling stack, bypass
ing all of the procedures in between, including any Xlib 
procedures that were called. This can result in loss of Xlib state. 
Because the default error handler does not allow Xlib procedures 
to terminate gracefully, it is unsafe for the context's client-side 
error procedure to raise exceptions when there are Xlib 
procedures on the call stack. In this case, a different error
handling mechanism must be used. 

The example below shows an instance in which 
DPSDefaultErrorProc cannot safely be used. 

B ADVANCED EXCEPTION HANDLING 63 



DURING 
while (fgets(linebuf, LINEBUF _LEN, psFile) I= NULL) 

DPSWritePostScript(c, linebuf, strlen(linebuf)); 
DPSWaitContext(c); 

HANDLER 
if (((DPSContext) Exception.Message == c) && 

(Exception.Code== dps_err_ps)) 
DPSResetContext(c); 

END_HANDLER 

In this example, the code between 'DURING' and 'HANDLER' 
attempts to read a PostScript language program from the psFile 
stream and pass the text of the program to a context for execu
tion. It sends the entire program and waits until its execution is 
complete. If an error occurs, the 'HANDLER' clause is invoked. 
The handler attempts to reset the context and allow it to continue 
execution. 

The error-handling strategy used in this example can fail if the 
context receives Postscript language code with an error in it. If 
Xlib processes output from the context while a previous request 
to the context remains incomplete because of a full X server re
quest buffer, an X protocol error will result. The sequence of 
events that leads to this error is explained below. 

If output from the context includes an error message, the Client 
Library calls the context's error procedure. Any error procedure 
that calls RAISE to raise exceptions, including 
DPSDefaultErrorProc, will cause all the Xlib stack frames to be 
unwound before returning control to the application's 
'HANDLER' code. Since the Xlib procedure that was composing 
a request to the context was not allowed to complete, the 
application's X Display structure is left in an inconsistent state. 
When the application calls DPSResetContext, a ''reset context'' 
protocol request is sent to the context that reported the error, but 
the X server interprets this request as part of the data of the pre
vious (incomplete) request. Subsequent messages from the appli
cation appear as garbage to the server, which rejects them as 
protocol errors. 

64 X Window System Programmer's Supplement I Version of January 23, 1990 



8.1 DEFERRED ERROR HANDLING EXAMPLE 

The following example employs a mechanism that buffers errors 
in a queue, thus deferring them so that the application can handle 
them synchronous~y, when it is safe and convenient to do so. 

ERRDeferredErrorProc implements the part of the mechanism 
that buffers errors; the sample program specifies this procedure 
as the context's error procedure in the call to 
XDPSCreateSimpleContext. ERRDeferredErrorProc is called by 
the Client Library whenever an error is detected. 

The sample program sends Postscript language code from an in
put file to a context for execution. The application's handling of 
errors queued by ERRDeferredErrorProc is separated in time 
from recognition of those errors by the Client Library; error han
dling is deferred until convenient to the application. After each 
DPSWritePostScript call in the 'while' loop, the application calls 
ERRErrorsPending to determine whether execution of any 
previously sent Postscript language code has resulted in an error. 
If ERRErrorsPending returns true, the application calls 
ERRProcessErrors to process the pending error. 
ERRProcessErrors does not dictate a particular way the appli
cation should handle errors. It simply provides a mechanism that 
allows the application to implement its own error-handling 
scheme by means of a call-back procedure that is called for each 
error dequeued. In this example, the call-back procedure 
(ErrorCallbackProc) calls ERRPrintErrorMsg to display a for
matted error message on the standard output. ErrorCallbackProc 
then determines whether the error was 'dps_err_ps'. If so, con
trol is returned to the application, which attempts to reset the 
context. If the error was not 'dps_err_ps', ErrorCallbackProc 
exits, causing the application to terminate abnormally. 

B.1 DEFERRED ERROR HANDLING EXAMPLE 65 



/*This program creates a context and passes it Postscript code read from a 
user-specified file. If a Postscript error occurs, a message is printed and 
the program continues with the next specified file. Any other errors result 
in abnormal termination. 

This program is a simplified example that illustrates the use of 
the deferred error-handling mechanism. A "real-world" application of this 
type would probably use a "clientsync I status event" type of synchronization 
rather than DPSWaitContext. */ 

#include 
#include 
#include 
#include 
#ifdef XDPS 
#include 
#endif XDPS 

<Stdio.h> 
"dpsclient.h" 
"dpsexcept.h" 
"errprocsample.h" 

"dpsXclient.h" 

char resyncStringD = "resyncstart\n"; 
char initStringD = "clear cleardictstack\n"; 

/* Forward declarations */ 

void ErrorO; 
int ErrorCallbackProc(); 

main() 
{ 

#define LINEBUF _LEN 512 
char linebuf[LINEBUF _LEN]; 
int len; 
DPSContext c; 
Display *dpy; 
FILE *psFile; 

dpy = XOpenDisplay(NULL); 
if (dpy == NULL) 

Error("Can't open display"); 

c = XDPSCreateSimpleContext(dpy, None, None, 0, 0, 
DPSDefaultTextBackstop, ERRDeferredErrorProc, NULL); 

if (c == NULL) 
Error("Can't create DPS context"); 

/* Set up context so it can recover after an error */ 
DPSWritePostScript(c, resyncString, strlen (resyncString)); 

while(1){ 
printf("File containing Postscript Code: "); 
scanf("%s", linebuf); 
if ((psFile = fopen(linebuf, "r")) == NULL) 

66 X Window System Programmer's Supplement I Version of January 23, 1990 



Error("Unable to open input file"); 
DPSWritePostScript(c, initString, strlen(initString)); 
while (fgets(linebuf, LINEBUF _LEN, psFile) != NULL) { 

len = strlen(linebuf); 
linebuf[len] = '\n'; line.buf[len+ 1] = '\0'; 
DPSWritePostScript(c, linebuf, len + 1 ); 
if (ERRErrorsPending()) 

break; 
} 

if(! ERRErrorsPending()) 
/* Wait for context to complete if no errors yet */ 
DPSWaitContext(c); 
/*Test for errors again -- they may have been queued by DPSWaitContext */ 

if (ERRErrorsPending()) { 

} 

} 

(void) ERRProcessErrors(ErrorCallbackProc, 
(unsigned long) dps_err_ps); 

DPSResetContext(c); 
} 

/* Print an error message and exit if the error was not 
the one expected*/ 

int ErrorCallbackProc(err, expected) 
ERRQueueEntry *err; 
unsigned long expected; 
{ 
ERRPrintErrorMsg(err); 
if ((DPSErrorCode) expected != err->errorCode) 

exit(2); 
return(O); 
} 

void Error(msg) 
char *msg; 
{ 
printf("sample: %s\n", msg); 
exit(2); 
} 

The procedures and data structures whose names start with 
''ERR'' are part of the deferred error-handling package that is 
described below. 

B.1 DEFERRED ERROR HANDLING EXAMPLE 67 



8.2 ERROR HANDLER INTERFACE 

/* errorproc.h */ 

The header file described in this section, errorproc.h, defines the 
procedures and data structures that comprise a deferred error
handling mechanism. 

A listing of the errorproc.h header file follows. 

!* Structure containing all relevant information about a Client 
library-generated error. This structure serves as a header 
for a potentially larger structure; some errors require 
additional information for optimal processing. In those cases, 
the 'arg1' element points to the additional information, 
which is appended to the entry header. See the Client Library 
Reference Manual for information on the structure of such 
additional information. */ 

typedef struct _t_ERRQueueEntry { 
struct _t_ERRQueueEntry *next; 
DPSContext ctxt; 
DPSErrorCode errorCode; 
long unsigned int arg1, arg2; 
} ERRQueueEntry; 

!* Queue of deferred error entries */ 

extern ERRQueueEntry ERRQueueHead; 

typedef int (*ERRCallBackProc)(/* ERRQueueEntry *error; 
unsigned long userArg */); 

extern void ERRDeferredErrorProc(/* DPSContext ctxt; DPSErrorCode errorCode; 
long unsigned int arg1, arg2; */); 

extern int ERRPrintErrorMsg(/* ERRQueueEntry *error;*/); 

extern int ERRProcessErrors(/* ERRCallBackProc proc; long int procArg; */); 

#define ERRErrorsPending() (ERRQueueHead.next != NULL) 

The header file is described in the paragraphs that follow. 

'ERRQueueEntry' is a structure that contains information about 
errors of type 'DPSErrorCode'. This structure serves as a header 
for a potentially larger structure; some errors require additional 
information for optimal processing. In those cases, the 'arg 1 ' 
element points to the additional information, which is appended 

68 X Window System Programmer's Supplement/ Version of January 23, 1990 



to the entry header. See DPSErrorProc in the Client Library Ref
erence Manual for information on the structure of such addi
tional information. 

'ERRQueueHead' is the head of a queue of deferred error 
entries of type 'ERRQueueEntry'. 

'ERRErrorsPending' is a macro that tests whether any errors 
need processing. It yields true if ERRProcessErrors should be 
called. 

ERRCallBackProc is the call-back procedure passed to 
ERRProcessErrors. The call-back procedure is passed an 
'ERRQueueEntry' pointer and an optional argument supplied by 
the caller of ERRProcessErrors. This argument is uninterpreted 
by ERRProcessErrors. The call-back procedure returns a 
boolean indicating whether ERRProcessErrors is to continue 
processing pending error entries. If it returns true, processing 
continues. 

ERRDeferredErrorProc is the 'DPSErrorProc' to be specified as 
the error handler for a context. Unlike DPSDefaultErrorProc, 
this procedure does not call RAISE to raise an exception. Instead, 
it encapsulates the relevant error information in an 
'ERRQueueEntry' and puts this error structure on the queue of 
error entries waiting to be processed by ERRProcessErrors. 

ERRPrintErrorMsg is the default 'ERRCallBackProc' called 
from ERRProcessErrors. It formats an error message from the 
information in the error queue entry passed to it. The error mes
sage is then passed to the application's text backstop procedure. 
ERRPrintErrorMsg always returns true, allowing 
ERRProcessErrors to continue to handle pending error entries. 

ERRProcessErrors is called by the application when it is ready 
to handle any pending errors queued by ERRDeferredErrorProc. 
It removes as many pending error entries from the error queue as 
is allowed by the call-back procedure; the actual processing of 
each error entry is left to the call-back procedure passed as an 
argument to ERRProcessErrors. An argument to be passed to the 
call-back procedure is also provided, allowing the application to 
specify the disposition of an error without having to manage the 
error entry queue. If ERRProcessErrors is called with a NULL 

B.2 ERROR HANDLER INTERFACE 69 



call-back procedure, ERRPrintErrorMsg is substituted. In other 
words, the default action is to print an error message. If the call
back procedure returns false, ERRProcessErrors returns im
mediately to the caller, potentially leaving unprocessed entries 
still on the error queue. ERRProcessErrors returns true if any 
errors were processed; it returns false if no error entries were 
found on the queue. 

8.3 ERROR HANDLER IMPLEMENTATION 

/* errprocsample.c */ 

#include 
#include 
#include 
#include 
#include 
#include 
#include 

<Stdio.h> 
<strings.h> 
<malloc.h> 
"dpsclient.h" 
"dpsexcept.h" 
"errprocsample.h" 
"dpsXclient.h" 

A sample implementation of the previously defined error
handling mechanism follows. The error handler procedure below 
is similar to the one provided in the ''Example Error Handler'' 
appendix of the Client Library Reference Manual, e~cept that 
this one doesn't call RAISE. 

/* ===== PUBLIC VARIABLES ===== */ 

/* Queue of error entries is headed by a dummy entry that 
acts as an anchor */ 

ERRQueueEntry ERRQueueHead = { NULL}; 

/* ===== PUBLIC PROCEDURES ===== */ 

void ERRDeferredErrorProc(ctxt, errorCode, arg1, arg2) 
DPSContext ctxt; 
DPSErrorCode errorCode; 
long unsigned int arg1, arg2; 
{ 
ERRQueueEntry *entry, *e; 
int objlen = O; 

/* Some error codes have extra data associated with them to 
help identify the problem. In each case, 'arg1' points to 
this extra data. Determine the byte length of the data 
(sometimes 'arg2' but not always).*/ 

70 X Window System Programmer's Supplement I Version of January 23, 1990 



switch (errorCode) { 
case dps_err_ps: 

objLen = ((DPSBinObj) arg1)->length; 
break; 

case dps_err_nameTooLong: 
objLen = arg2; 
break; 

case dps_err_resultTagCheck: 
objLen = arg2; 
break; 

case dps _err _resultTypeCheck: 
objLen = sizeof(DPSBinObjRec); 
break; 

default:; 
} 

/* Allocate a queue entry large enough to hold all the normal 
error stuff plus any auxilary data associated with the 
error. Fill in the generic entries. If extra data exists, 
copy it and make the 'arg1' element in the entry header 
point to the newly copied data. */ 

entry= (ERRQueueEntry *) malloc(sizeof(ERRQueueEntry) + objLen); 
if (entry== NULL) 

exit(2); 

entry->ctxt = ctxt; 
entry->errorCode = errorCode; 
entry->arg2 = arg2; 
if (objLen > O) { 

char *to= (char*) entry+ sizeof(ERRQueueEntry); 
bcopy((char *) arg1, to, objLen); 
arg1 = (long unsigned int) to; 
} 

entry->arg 1 = arg 1 ; 

/* Enqueue the new entry */ 

for (e = &ERRQueueHead; e->next I= NULL; e = e->next); 
e->next = entry; 
entry->next = NULL; 

} /* ERRDeferredErrorProc */ 

int ERRPrintErrorMsg(error) 
ERRQueueEntry *error; 
{ 
DPSContext ctxt = error->ctxt; 
DPSErrorCode errorCode = error->errorCode; 
long unsigned int arg1 = error->arg1; 
long unsigned int arg2 = error->arg2; 

B.3 ERROR HANDLER IMPLEMENTATION 71 



char m[100], str1[100], str2[100]; 
char *prefix="%%[ Error: 11

; 

char *suffix= 11 ]%%\n"; 

DPSTextProc textProc = DPSGetCurrentTextBackstopQ; 

if (ltextProc) 
return(1 ); 

switch (errorCode) { 
case dps_err_ps: { 

char *buf = (char *)arg1; 
DPSBinObj ary = (DPSBinObj) (buf+DPS_HEADER_SIZE); 
DPSBinObj elements; 
char *error, *errorName; 
int errorCount, errorNameCount; 

Assert((ary->attributedType & Ox7f) == DPS_ARRAY); 
Assert(ary->length == 4); 

elements = (DPSBinObj)(((char *) ary) + ary->val.arrayVal); 

errorName = (char *)(((char*) ary) + elements[1].val.nameVal); 
errorNameCount = elements[1 ].length; 
(void) strncpy(str1, errorName, errorNameCount); 
str1 [errorNameCount] = '\0'; 

error= (char *)(((char*) ary) + elements[2].val.nameVal); 
errorCount = elements[2].length; 
(void) strncpy(str2, error, errorCount); 
str2[errorCount] = '\O'; 

(void) sprintf(m, 11%s; OffendingCommand: %s", str1, str2); 
break; 
} 

case dps_err_nameTooLong: 
(void) strncpy(str1, (char*) arg1, (int) arg2); 
str1 [arg2] = '\O'; 
(void) sprintf(m, "User name too long; Name: %s", str1); 
break; 

case dps_err_invalidContext: 
(void) sprintf(m, "Invalid context: Ox%1x", arg1); 
break; 

case dps_err_resultTagCheck: { 
unsigned char tag = *((unsigned char*) arg1+1 ); 
(void) sprintf(m, "Unexpected wrap result tag: %d", tag); 
break; 
} 

case dps_err_resultTypeCheck: { 
unsigned char tag =*((unsigned char*) arg1+1); 
(void) sprintf(m, "Unexpected wrap result type; tag: %d", tag); 
break; 

72 X Window System Programmer's Supplement I Version of January 23, 1990 



} 
case dps _err _invalidAccess: 

(void) sprintf(m, "Invalid context access. 11
); 

break; 
case dps_err_encodingCheck: 

(void) sprintf(m, "Invalid name/program encoding: %d/%d.", 
(int) arg1, (int) arg2); 

break; 
case dps_err_closedDisplay: 

(void) sprintf(m, "Broken display connection %d. 11
, (int) arg1 ); 

break; 
case dps _err_ dead Context: 

(void) sprintf(m, "Dead context Ox%1x.", arg1); 
break; 

default: 
(void) sprintf(m, "Unknown error code: %d, context: %Ix, arg 1, 2: %Ix %Ix", 

errorCode, ctxt, arg1, arg2); 
} 

(*textProc)(ctxt, prefix, strlen(prefix)); 
(*textProc)(ctxt, m, strlen(m)); 
(*textProc)(ctxt, suffix, strlen(suffix)); 
return(1 ); 

} /* ERRPrintErrorMsg */ 

int ERRProcessErrors(proc, procArg) 
int (*proc)(); 
long int procArg; 
{ 
ERRQueueEntry *error; 
int foundError = O; 

if (proc == NULL) 
proc = ERRPrintErrorMsg; 

error = ERRQueueHead.next; 
while (error) { 

int cont; 
foundError = 1; 
ERRQueueHead.next = error->next; 
cont= (*proc)(error, procArg); 
free((char *) error); 
if (!cont) 

break; 
error = ERRQueueHead.next; 
} 

return(foundError); 
} /* ERRProcessErrors */ 

B.3 ERROR HANDLER IMPLEMENTATION 73 





actual 9 
advanced facilities 25 

basic facilities 5 
blocked on input 33 
buffers 27 

clientsync 33, 37 
clientsync 56 
clipping 15 
color 41 
connecting to the X server 5 
context identifier 25 
conversions 39 
conversions, encoding 27 
coordinate conversions 39 
coordinate systems 10 
creating a context 5, 49, 51 
currentcontext 25 
currentXgcdrawable 57 
currentXgcdrawable 56 
currentXgcdrawablecolor 57 
currentXoffset 18 
currentXoffset 58 

debugging 30, 38 
detach 30 
DPS/X 1 
DPSChangeEncoding 27, 28, 45 
dpsclient.h 38 
DPSContextFromContextID 29, 30, 46 
DPSCreateTextContext 47 
DPSDefaultErrorProc 63, 69 
DPSDefaultTextBackstop 47 
DPSDestroyContext 23, 26, 31, 33, 48 
DPSDestroySpace 23, 31, 48 
DPSErrorCode 68 
dpsexcept.h 38 
DPSFlushContext 27 
dpsfriends.h 38 
DPSinterruptContext 33, 37 

DPSLastUserObjectlndex 44 
DPSNewUserObjectlndex 19, 49 
dpsops.h 38 
DPSPrintf 22 
DPSResetContext 64 
DPSWaitContext 35, 36 
DPSWritePostScript 28, 35, 65 
dpsXclient.h 1, 38, 43, 45 

encoding conversions 27 
encodings 27 
ERRCallBackProc 69 
ERRDeferredErrorProc 65, 69 
ERRErrorsPending 69 
error conditions 55 
error handler, code example 65 
errorproc.h 68 
errors 21 
ERRPrintErrorMsg 69 
ERRProcessErrors 69 
ERRQueueEntry 68, 69 
ERRQueueHead 69 
example of error handler 65 

Index 

examples 6, 8, 20, 22, 28, 29, 34, 37, 39 
exception handling, advanced 63 
execution of PostScript language code 10 
exposure event 15 

facilities, basic 5 
filenameforall 40 
files 

dpsclient.h 38 
dpsexcept.h 38 
dpsfriends.h 38 
dpsops.h 38 
dpsXclient.h 1, 38, 43, 45 
errorproc.h 68 
psops.h 38 
Xutil.h 9 

findfont 40 
Oush 27 

75 



~\roots 40, 42 
fork 26, 29, 30, 45 
forked contexts 29 
freezing 36 

grestore 58 
gsave 58 

header files 38 

identifiers 25 
implementation 70 
include files 38 
jnitialization 5 
interface 68 
interrupts 37 

join 30 

lock 30 

masks, status event 44 
monitor 30 
multiple servers 30 
MyWrapl 22 

Notes 26, 29, 63 

offset 13 
operator 55 

portability issues 40 
PostScript identifier 25 
procedures 43 
programming tips 38 
psops.h 38 

" RAISE 64, 69 
rangecheck error 55 
rectviewclip 16 
registering a status event handler 52 
rendering 14 
repainting 15 
resizing the window 17 
resolution 42 
resource ID 25 
resources, sharing 30 
resynchhandleerror 63 

76 INDEX January 23, 1990 

rotate 39 

scale 39 
scrolling 13 
selectfont 40 
setmatrix 39 
setrgbcolor 41 
setXgcdrawable 7, 56 
setXgcdrawable 58 
setXgcdrawablecolor 58 
setXoffset 12, 17, 57 
setXoffset 58 
setXrgbactual 59 
sharing resources 30 
showpage 37 
stackunderflow error 55 
status event handler 52 
status event masks 44 
status events 32 
status mask, setting 52 
synchronization 35 

termination 23 
tips for appplication programmers 38 
transformations 39 
typecheck error 55 

undefined error 55 
user object indices 18, 48 
user_object_indices 44 

waiting 36 
Warnings 30, 38 
window, resizing 17 

XChecklfEvent 38 
XCloseDisplay 24 
XCopyArea 14, 35, 36, 37 
XCreateGC 5 
XCreateSimple Window 5 
XDPSContextFromSharedlD 31, 49 
XDPSContextFromXID 25, 49 
XDPSCreateContext 8, 51, 56 
XDPSCreateSimpleContext 6, 7, 51, 65 
XDPSFindContext 26, 51 
XDPSGetContextStatus 32, 33, 52 
XDPSRegisterStatusProc 32, 33, 52 
XDPSSetStatusMask 32, 33, 34, 51, 53 



XDPSSpaceFromSharedID 31, 53 
XDPSSpaceFromXID 25, 53 
XDPSStatusProc 45 
XDPSUnfreezeContext 33, 54, 55 
XDPSXIDFromContext 25, 54 
XDPSXIDFromSpace 25, 54 
XFillRectangle 15 
XFlush 27 
XID 25 
XlfEvent 38 
XOpenDisplay 5 
XSetWindowColormap 9 
Xutil.h 9 

zombie contexts 26 

77 





pswrap 
Reference Manual 

ADOBE SYSTEMS 
INCORPORATED 



pswrap Reference Manual 

January 23, 1990 

Copyright© 1988-1990 Adobe Systems Incorporated. 
All rights reserved. 

Postscript, Display Postscript, and Sonata are registered 
trademarks of Adobe Systems Incorporated. 
Serifa is a registered trademark of Fundicion Tipografica 
Neufville S.A. 

The infonnation in this document is furnished for infonnational use 
only, is subject to change without notice, and should not be construed 
as a commitment by Adobe Systems Incorporated. Adobe Systems 
Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in this document. The software 
described in this document is furnished under license and may only be 
used or copied in accordance with the tenns of such license. 

No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any fonn or by any means, electronic, 
mechanical, recording, or otherwise, without the prior written 
pennission of Adobe Systems Incorporated. 

Written by Amy Davidson. 



Contents 

1 About this Manual 
2 About pswrap 1 
3 Using pswrap 2 

3.1 Command-Line Options 3 
3.2 '#llne' Directives 4 

4 Writing a Wrap 5 
4.1 The Wrap Definition 5 
4.2 Comments 6 
4.3 The Wrap Body 7 

4.4 Arguments 7 

4.5 Input Arguments a 
4.6 Output Arguments 9 

5 Declaring Input Arguments 12 

5.1 Sending Boolean Values 13 

5.2 Sending User Object Values 13 

5.3 Sending Numbers 15 

5.4 Sending Characters 15 

5.4.1 Text Arguments 15 

5.5 Sending Arrays of Numbers or Booleans 17 
5.6 Sending a Series Of Numeric or Boolean Values 18 

5.6.1 Specifying the Size of an Input Array 19 
5. 7 Specifying the Context 20 

6 Declaring Output Arguments 20 
6.1 Receiving Numbers 21 

6.2 Receiving Boolean Values 22 

6.3 Receiving a Series of Output Values 22 
6.3.1 Receiving a Series of Array Elements 23 

6.3.2 Specifying the Size of an Output Array 24 

6.4 Receiving Characters 24 

6.5 Communication and Synchronization 25 
A Error Messages from the pswrap Translator 27 
B Syntax 29 

8.1 Semantic Restrictions 30 

8.2 Clarifications 30 

C Changes Since Last Publication Of This Document 31 

iii 



Index 33 

iv 



1 ABOUT THIS MANUAL 

This manual is the programmer's reference manual for the 
pswrap translator. It tells you how to use pswrap to create C
callable procedures that contain PostScript® language code. 

Section 2 introduces the pswrap translator. 

Section 3 tells you how to run pswrap and documents the options 
in the pswrap command line. 

Section 4 tells you how to write wrap definitions for pswrap. 

Section 5 tells you how to declare input arguments. 

Section 6 tells you how to declare output arguments. 

Appendix A lists error messages from the pswrap translator. 

Appendix B describes the syntax used in wrap definitions. 

Appendix C lists changes to the manual since the previous 
version. 

This manual does not provide information on the PostScript lan
guage, the Display PostScript® system, or the Client Library (the 
programming interface to the Display Postscript system). For 
more information regarding these topics, see the following 
manuals: 

• PostScript Language Reference Manual 

• PostScript Language Extensions for the Display PostScript 
System 

• PostScript Language Color Extensions 

•Client Library Reference Manual 

2 ABOUT PSWRAP 

The pswrap translator provides a natural way for an application 
developer or toolkit implementor to compose a package of C
callable procedures that send PostScript language code to the 
PostScript interpreter. These C-callable procedures are known as 

2 ABOUT PSWRAP 1 



wrapped procedures or wraps. (A wrap is a procedure that con
sists of a C declaration with a PostScript language body. A wrap 
body is the Postscript language program fragment in a wrap.) 

Here's how pswrap fits into the Display Postscript system: 

• You write the PostScript language programs required by 
your application, using the pswrap syntax described in this 
manual to define a C-callable procedure and specify input 
and output arguments. 

• You run pswrap to translate these Postscript language 
programs into wrapped procedures. 

• You compile and link these wraps with the application 
program. 

• When a wrap is called by the application, it sends encoded 
PostScript language to the Postscript interpreter and 
receives the values returned by the interpreter. 

A pswrap source file associates PostScript language code with 
declarations of C procedures; pswrap writes C source code for 
the declared procedures, in effect wrapping C code around the 
Postscript language code. Wrapped procedures can take input 
and output arguments: 

• Input arguments are values a wrap sends to the PostScript 
interpreter as Postscript objects. 

• Output arguments are pointers to variables where the wrap 
stores values returned by the PostScript interpreter. 

Wraps are the most efficient way for an application to commu
nicate with the Postscript interpreter. 

3 USING PSWRAP 

The form of the pswrap command line (UNIX- and C-specific) 
is: 

pswrap [-ar] [-o outputCfile] [-h outputHfile] [-s maxstring) [inputFile] 

where square brackets [ ] indicate optional items. 

2 pswrap Reference Manual I Version of January 23, 1990 



3.1 COMMAND-LINE OPTIONS 

The pswrap command-line options are described below. 

inputFile A file that contains one or more wrap defini
tions. pswrap transforms the definitions in 
inputFile into C procedure definitions. If no in
put file is specified, the standard input (which 
can be redirected from a file or pipe) is used. 
The input file can include text other than proce
dure definitions. pswrap converts procedure 
definitions to C procedures and passes the other 
text through unchanged; therefore, it is possible 
to intersperse C-language source code with wrap 
definitions in the input file. 

Note: Although C code is allowed in a pswrap input file, it is 
not allowed within a wrap body. In particular, C '#define' mac
ros cannot be used inside a wrap. 

-a Generates ANSI C procedure prototypes for pro
cedure declarations in outputCfile and, option
ally, outputHfile. (See the -h option.) The -a op
tion allows compilers that recognize the ANSI C 
Standard to do more complete typechecking of 
parameters. To save space, the -a option also 
causes pswra'p to generate 'const' declarations. 

Note: ANSI C procedure prototype syntax is not recognized by 
most non-ANSI C compilers, including many compilers based 
on the Portable C Compiler. Use the -a option only in 
conjunction with a compiler that conforms to the ANSI C Stan
dard. 

-h outputHFile Generates a header file that contains 'extern' 
declarations for nonstatic wraps. This file may 
be used in '#include' statements in modules that 
use wraps. If the -a option is specified, the 
declarations in the header file are ANSI C proce
dure prototypes. If the -h option is omitted, a 
header file is not produced. 

3 USING PSWRAP 3 



-o outputCFile Specifies the file to which the generated wraps 
and passed-through text are written. If omitted, 
the standard output is used. If the -a option is 
also specified, the procedure declarations 
generated by pswrap are in ANSI C procedure 
prototype syntax. 

-r Generates reentrant code for wraps that are 
shared by more than one process (as in shared 
libraries). Since the -r options causes pswrap to 
generate extra code, use it only when necessary. 

-s maxstring Sets the maximum allowable length of a 
PostScript string object or PostScript hex string 
object in the wrap body input. A syntax error 
will be reported if a string is not terminated with 
')' or'>' within maxstring characters. maxstring 
cannot be set lower than 80. The default is 200. 

3.2 '#LINE' DIRECTIVES 

Since the C source code generated for wrapped procedures 
usually contains more lines than the input wrap body does, 
pswrap inserts '#line' directives into the output wrap. These 
directives record input line numbers in the output wrap source 
file so that a source-code debugger can display them. Since a 
debugger displays C source code, not the PostScript language 
code in the wrap body, pswrap inserts #line directives for both 
the inputFile and the outputCfile. 

Note: Unless both the input and output files are named on the 
command line, the '#line' directives will be incomplete; in the 
latter case, they will lack the name of the C source file pswrap 
produces. Use of the standard input and standard output streams 
is discouraged. for this reason. 

pswrap writes diagnostic output to the standard error if there are 
errors in the command line or in the input. If pswrap encounters 
errors during processing, it reports the error and exits with a non
zero termination status. 

4 pswrap Reference Manual I Version of January 23, 1990 



4 WRITING A WRAP 

Here is a sample wrap definition. It declares the PSWGrayCircle 
procedure, which creates a solid gray circle with a radius of 5.0 
centered at (10.0, 10.0): 

Wrap definition: 

defineps PSWGrayCircle() 
newpath 
10.0 10.0 5.0 0.0 360.0 arc 
close path 
0.5 setgray 
fill 

endps 

Procedure call: 

PSWGrayCircle(); 

PostScript language code equivalent: 

newpath 
10.0 10.0 5.0 0.0 360.0 arc 
closepath 
0.5 setgray 
fill 

The rules for defining a wrapped procedure are given in the next 
section. 

4.1 THE WRAP DEFINITION 

Each wrap definition consists of four parts: 

'defineps' Begins the definition; must appear at the begin
ning of a line, without any preceding spaces or 
tabs. 

Declaration of the C-callable procedure 
The name of the procedure followed by a list in 
parentheses of the arguments it takes. The argu
ments are optional; the parentheses are required 
even for a procedure without arguments. (Note 
that wraps do not return values; they are 
declared 'void'.) 

4 WRITING A WRAP 5 



Wrap body 

'endps' 

Postscript language program fragment. This 
fragment is sent to the PostScript interpreter. It 
includes a series of PostScript operators and 
operands separated by spaces, tabs, and newline 
characters. 

Ends the definition. Like 'defineps', 'endps' 
must appear at the very beginning of a line. 

By default, wrap definitions introduce external (that is, global) 
names that can be used outside the file in which the definition 
appears. To introduce private (local) procedures, declare the 
wrapped procedure as static. For example, the PSWGrayCircle 
wrap shown above can be made static by substituting the follow
ing statement for the first line: 

defineps static PSWGrayCircle() 

Note: It is helpful for the application to use a naming conven
tion for wraps that identifies them as such; for example, 
PSWDrawBox, PSWShowTitle, PSWDrawSlider, and so on. 

4.2 COMMENTS 

C comments can appear anywhere outside a wrap definition. 
Postscript language comments can appear anywhere after the 
procedure is declared and before the definition ends. pswrap 
strips PostScript language comments from the wrap body. Com
ments cannot appear within Postscript string objects: 

/*This is a C comment* I 
defineps PSWNoComment() 

(/*This is not a comment* /)show 
(%Nor is this.)length 
% This is a PS comment 

endps 

Wraps cannot be used to send PostScript language comments 
that contain structural information (% % and %!). Use another 
Client Library facility such as DPSWriteData for this purpose. 

6 pswrap Referen~ Manual I Version of January 23, 1990 



4.3 THE WRAP BODY 

pswrap accepts any valid PostScript language code as specified 
in the PostScript Language Reference Manual, PostScript Lan
guage Extensions for the Display PostScript System, and 
PostScript Language Color Extensions. If the PostScript lan
guage code in a wrap body includes any of the following sym
bols, the opening and closing marks must balance. 

'{ }' 

'[ ]' 

' ( )' 

'< >' 

Braces (to delimit a procedure) 

Square brackets (to define an array) 

Parentheses (to enclose a string) 

Angle brackets (to mark a hexdecimal string) 

Parentheses within a string body must balance or be quoted with 
'\'according to standard PostScript language syntax. 

Note: pswrap does not check a wrap definition for valid or sen
sible PostScript language code. 

pswrap attempts to wrap whatever it encounters. Everything be
tween the closing parenthesis of the procedure declaration and 
the end of the wrap definition is assumed to be an element of the 
PostScript language unless it is part of a comment or matches 
one of the wrap arguments. 

Note: pswrap does not support the // PostScript language syntax 
for immediately evaluated names. See the PostScript Language 
Reference Manual for more information about immediately 
evaluated names. 

4.4 ARGUMENTS 

Argument names in the procedure header are declared using C 
types. For instance, the following example declares two vari
ables, 'x' and 'y', of type 'long int'. 

defineps PSWMyFunc(long int x,y) 

4 WRITING A WRAP 7 



There can be any number of input and output arguments. Input 
arguments must be listed before output arguments in the wrap 
header. Precede the output arguments, if any, with a vertical bar 
'I'. Separate arguments of the same type with a comma. Separate 
arguments of differing types with a semicolon. A semicolon is 
optional before a vertical bar or a right parenthesis; the two ex
amples below are equivalent: 

defineps PSWNewFunc(float x,y; int a I int *i) 
defineps PSWNewFunc(float x,y; int a; I int *i;) 

4.5 INPUT ARGUMENTS· 

Input arguments describe values that the wrap converts to en
coded PostScript objects at run time. When an element within 
the wrap body matches an input argument, the value that was 
passed to the wrap replaces the element in the wrap body. Input 
arguments represent placeholders for values in the wrap body. 
They are not PostScript language variables (names). Think of 
them as macro definitions that are substituted at run time. 

For example, the PSWGrayCircle procedure defined on page 5 
can be made more useful by providing input arguments for the 
radius and center coordinates: 

8 pswrap Reference Manual I Version of January 23, 1990 



Wrap definition: 

defineps PSWGrayCircle(float x,y, radius) 
newpath 
x y radius 0.0 360.0 arc 
close path 
0.5 setgray 
fill 

endps 

Procedure call: 

PSWGrayCircle(25.4, 17.7, 40.0); 

PostScript language code equivalent: 

newpath 
25.4 17.7 40.0 0.0 360.0 arc 
closepath 
0.5 setgray 
fill 

The value of input argument 'x' replaces every occurrence of 'x' 
in the wrap body. This version of PSWGrayCircle draws a circle 
of a specified size at a specified location. 

4.6 OUTPUT ARGUMENTS 

Output arguments describe values that PostScript operators 
return. For example, the standard PostScript operator 
currentgray returns the gray-level setting in the current graphics 
state. PostScript operators return values by placing them on the 
top of the operand stack. To return the value to the application, 
place the name of the output argument in the wrap body at a time 
when the desired value is on the top of the operand stack. For 
example, the following wrap gets the value returned by 
currentgray: 

4 WRITING A WRAP 9 



Wrap definition: 

defineps PSWGetGray( I float *level) 
currentgray level 

endps 

Procedure call: 

float alevel; 
PSWGetGray( &alevel); 

PostScript language code equivalent: 

currentgray 
% Pop current gray level off operand stack 
% and store in alevel. 1 

When an element within a wrap body matches an output argu
ment in this way, pswrap replaces the output argument with code 
that returns the top object on the operand stack. For every output 
argument, the wrap will perform the following operations: 

• Pop an object off the operand stack. 

• Send it to the application. 

• Convert it to the correct C data type. 

• Store it at the place designated by the output argument. 

Each output argument must be declared as a pointer to the loca
tion where the procedure stores the returned value. To get a 'long 
int' back from a pswrap-generated procedure, declare the output 
argument as 'long int*', as in the following example: 

1See the "Runtime Support" section of the Client Library Reference Manual 
for a discussion of how pswrap uses the printobject operator to return results. 

1 0 pswrap Reference Manual I Version of January 23, 1990 



Wrap definition: 

defineps PSWCountExecStack( I long int *n) 
countexecstack n 

endps 

Procedure call: 

long int aNumber; 
PSWCountExecStack( &aNumber); 

PostScript language code equivalent: 

countexecstack 
% Pop count of objects on exec stack 
% and return in aNumber. 

To receive information back from the PostScript interpreter, use 
only the syntax for output arguments described here. Do not use 
operators that write to the standard output (such as=,==, print, 
or pstack). These operators send ASCII strings to the application 
that pswrap-generated procedures cannot handle. 

4 WRITING A WRAP 11 



Warning: For an operator that returns results, the operator 
description shows the order in which results are placed on the 
operand stack, reading from left to right. (See the ''Operators'' 
chapters of the PostScript Language Reference Manual and 
PostScript Language Extensions for the Display PostScript 
System.) When you specify a result value in a wrap body, the 
result is taken from the top of the operand stack. Therefore the 
order in which wrap results are stated must be the reverse of their 
order in the operator description. 

For instance, the PostScript operator description for 
currentpoint returns two values, x and y: 

- currentpoint x y 

The corresponding wrap definition must be written: 

defineps PSWcurrentpoint (I float *x, *y) 
currentpoint y x % Note: y before x. 

endps 

Sections 5 and 6 discuss the details of input and output argu
ments, respectively. 

5 DECLARING INPUT ARGUMENTS 

This section defines the data types allowed as input arguments in 
a wrap. In the following list, square brackets indicate optional 
elements: 

12 pswrap Reference Manual I Version of January 23, 1990 



• 'DPSContext'. If the wrap specifies a context, it must ap
pear as the first input argument. ('DPSContext' is a handle 
to the context record; see the Client Library Reference 
Manual for more information.) 

•One of the following pswrap data types (equivalent to C 
data types except for 'boolean' and 'userobject', which are 
special to pswrap): 

'boolean' 
'int' 
'short [ int ]' 
'long [ int ] ' 
'float' 

'userobject' 
'unsigned [int]' 
'unsigned short [ int ] ' 
'unsigned long [int]' 
'double' 

• An array of a pswrap data type 

•A character string ('char*' or 'unsigned char*') 

•A character array ('char [ ]' or 'unsigned char [ ]') (The 
square brackets are part of C syntax.) 

A string ('char*') passed as input may not be more than 65,535 
characters. An array may not contain more than 65,535 elements. 

5.1 SENDING BOOLEAN VALUES 

If an input argument is declared as 'boolean', the wrap expects 
to be passed a variable of type 'int'. If the variable has a value of 
zero, it is translated to a PostScript boolean object with the value 
false. Otherwise it is translated to a PostScript boolean object 
with the value true. 

5.2 SENDING USER OBJECT VALUES 

Input parameters declared as type 'userobject' should be passed 
as type 'long int'. The value of a 'userobject' argument is an 
index into the UserObjects array. See PostScript Language Ex
tensions for the Display PostScript System for a description of 
user objects. 

When pswrap encounters an argument of type userobject, it will 
generate PostScript language code to obtain the object associated 
with the index. For example: 

5 DECLARING INPUT ARGUMENTS 13 



Wrap definition: 

defineps PSWAccessUserObject(userobject x) 
x 

endps 

Procedure call: 

long int aUserObject; 

I* assume aUserObject = 6 *I 
PSWAccessUserObject( aUserObject); 

PostScript language code equivalent: 

6 execuserobject 

If the object is executable, it will be executed; if it's not ex
ecutable, it will be pushed on the operand stack. 

If you want to pass the index of a user object without having it 
translated by pswrap as described above, declare the argument to 
be of type 'long int' rather than type 'userobject'. Here is an 
example of a wrap that defines a user object: 

Wrap definition: 

defineps PSWDefUserObject(long int d) 
d 1 O diet defineuserobject 

endps 

Procedure call: 

long int anlndex; 

I* assume anlndex = 12 */ 
PSWDefUserObject(anlndex); 

PostScript language code equivalent: 

12 1 O diet defineuserobject 

14 pswrap Reference Manual I Version of January 23, 1990 



5.3 SENDING NUMBERS 

An input argument declared as one of the 'int' types is converted 
to a 32-bit PostScript integer object before it is sent to the inter
preter. A 'float' or 'double' input argument is converted to a 32-
bit PostScript real object. These conversions follow the usual C 
conversion rules.2 

Note: Since the PostScript language does not support unsigned 
integers, unsigned integer input arguments are converted to 
signed integers in the body of the wrap. 

5.4 SENDING CHARACTERS 

An input argument composed of characters is treated as a 
Postscript name object or string object. The argument can be 
declared as a character string or as a character array. 

pswrap expects arguments that are passed to it as character 
strings ('char *' or 'unsigned char *') to be null terminated 
('\O'). Character arrays are not null terminated. The number of 
elements in the array must be specified as an integer constant or 
as an input argument of type 'int'. In either case, the integer 
value must be positive. See Section 5.5 for an example of this 
rule. 

5.4.1 Text Arguments 

An input argument declared as a character string or character 
array is converted to a single PostScript name object or string 
object. Such an argument is referred to as a text argument. 

The PostScript interpreter does not process the characters of text 
arguments. It assumes that any escape sequences ('\n', '\t', and 
so on) have been processed before the wrap is called. 

To make pswrap treat a text argument as a PostScript literal 

2See The C Programming Language, R. W. Kernighan and D. M. Ritchie 
(Englewood Cliffs, NJ: Prentice-Hall, 1978) or C: A Reference Manual, 
S. P. Harbison and G. L. Steele, Jr. (Englewood Cliffs, NJ: Prentice-Hall, 
1984). 

5 DECLARING INPUT ARGUMENTS 15 



name object, precede it with a slash, as in the PSWReadyFont 
wrap definition below. (Only names and text arguments can be 
preceded by a slash.) 

Wrap definition: 

defineps PSWReadyFont( char *fontname; int size) 
/fontname size selectfont 

endps 

Procedure call: 

PSWReadyFont("Sonata", 6); 

PostScript language code equivalent: 

/Sonata 6 selectfont 

To make pswrap treat a text argument as a PostScript string ob
ject, enclose it within parentheses. The PSWPutString wrap defi
nition below shows a text argument, '(str)': 

Wrap definition: 

defineps PSWPutString(char *str; float x, y) 
x y moveto 
(str) show 

endps 

Procedure call: 

PSWPutString("Hello World", 72.0, 72.0); 

PostScript language code equivalent: 

72.0 72.0 moveto 
(Hello World) show 

16 pswrap Ref~rence Manual I Version of January 23, 1990 



Note: Text arguments are recognized within parentheses only if 
they appear alone, without any surrounding whitespace or addi
tional elements. In the following wrap definition, only the first 
string is replaced with the value of the text argument. The 
second and third strings are sent unchanged to the interpreter. 

defineps PSWThreeStrings(char *str) 
(str) ( str ) (a str) 

endps 

If a text argument is not marked by either a slash or parentheses, 
pswrap treats it as an executable PostScript name object. In the 
following example, 'mydict' is treated as executable: 

Wrap definition: 

defineps PSWDoProcedure(char *mydict) 
mydict /procedure get exec 

endps 

Procedure call: 

PSWDoProcedure("lexicon"); 

PostScript language code equivalent: 

lexicon /procedure get exec 

5.5 SENDING ARRAYS OF NUMBERS OR BOOLEANS 

Each element in the wrap body that names an input array argu
ment represents a PostScript literal array object that has the same 
element values. In the PSWSetMyMatrix wrap definition below, 
the current transformation matrix is set using an array of six 
floating-point values: 

5 DECLARING INPUT ARGUMENTS 17 



Wrap definition: 

defineps PSWSetMyMatrix (float mtx[6]) 
mtx setmatrix 

endps 

Procedure call: 

static float anArray[] = {1.0, 0.0, 0.0, -1.0, 0.0, 0.0}; 
PSWSetMyMatrix( anArray); 

PostScript language code equivalent: 

[1 .0 0.0 0.0 -1.0 0.0 0.0] setmatrix 

The PSWDefineA wrap below sends an array of variable length 
to the Postscript interpreter: 

Wrap definition: 

defineps PSWDefineA (int data[x]; int x) 
IA data def 

endps 

Procedure call: 

static int d1 [] = {1, 2, 3}; 
static int d2[] = {4, 5}; 

PSWDefineA(d1, 3); 
PSWDefineA(d2, 2); 

PostScript language code equivalent: 

/A [1 2 3] def 
/A [4 5] def 

5.6 SENDING A SERIES OF NUMERIC OR BOOLEAN VALUES 

Occasionally, it is useful to group several numeric or boolean 
values into a C array and pass the array to a wrap that will send 
the individual elements of the array to the PostScript interpreter, 
as in the following example: 

18 pswrap Reference Manual I Version of January 23, 1990 



Wrap definition: 

defineps PSWGrayCircle(float nums[3], gray) 
newpath 
\nums[O] \nums[1] \nums[2] 0.0 360.0 arc 
close path 
gray setgray 
fill 

endps 

Procedure call: 

static float xyRadius = {40.0, 200.0, 55.0}; 
PSWGrayCircle(xyRadius, . 75); 

PostScript language code equivalent: 

newpath 
40.0 200.0 55.0 0.0 360.0 arc 
closepath 
.75 setgray 
fill 

In the example above, '\nums[ i ] ' identifies an element of an 
input array in the wrap body, where 'nums' is the name of an 
input boolean array or numeric array argument, i is a non
negative integer literal, and no whitespace is allowed between '\' 
and']'. 

5.6.1 Specifying the Size of an Input Array 

As the foregoing examples illustrate, you can specify the size of 
an input array in two ways: 

• Give an integer constant as the size when you define the 
procedure, as in the PSWGrayCircle wrap definition. 

• Give an input argument that evaluates to an integer at run 
time as the size, as in the PSWDefineA wrap definition on 
page 18. 

In either case, the size of the array must be a positive integer 
with a value not greater than 65,535. 

5 DECLARING INPUT ARGUMENTS 19 



5.7 SPECIFYING THE CONTEXT 

Every wrap communicates with a PostScript execution context. 
The current context is normally used as the default. The Client 
Library provides operations for setting and getting the current 
context for each application. To override the default, declare the 
first argument as type 'DPSContext' and pass the appropriate 
context as the first parameter whenever the application calls the 
wrap. Here is an example of a wrap definition that explicitly 
declares a context: 

Wrap definition: 

defineps PSWGetGray(DPSContext c I float *level) 
currentgray level 

endps 

Procedure call: 

DPSContext myContext; 
float alevel; 

PSWGetGray(myContext, &alevel); 

PostScript language code equivalent: 

currentgray 
% Pop current gray level off operand stack 
% and store in alevel 

Warning: Do not refer to the name of the context in the wrap 
body. 

6 DECLARING OUTPUT ARGUMENTS 

To receive information back from the PostScript interpreter, the 
output arguments of a wrap must refer to locations where the 
information can be stored. An output argument can be declared 
as one of the following: 

•A pointer to one of the pswrap data types listed on page 13, 
except for 'userobject'. 

20 pswrap Reference Manual I Version of January 23, 1990 



•An array of one of these types. 

•A character string ('char*' or 'unsigned char*'). 

•A character array ('char [ ]' or 'unsigned char [ ]'). 

If an output argument is declared as a pointer or character string, 
the procedure writes the returned value at the location pointed to. 

For an output argument declared as a pointer, previous return 
values are overwritten if the output argument is encountered 
more than once in executing the wrap body. For an output argu
ment declared as a character string ('char *'), the value is stored 
only the first time it is encountered. 

If an output argument is declared as an array of one of the 
pswrap data types (see page 13 for a list) or as a character array, 
the wrap fills the slots in the array (see Section 6.3). 

Note: Whenever an array output argument is encountered in the 
wrap body, the values on the Postscript operand stack are placed 
in the array in the order in which they would be popped off the 
stack. When no empty array elements remain, no further storing 
of output in the array is done. No error is reported if elements 
are returned to an array that is full. 

You can specify ou~put arguments in the 'defineps' statement in 
any order that is convenient. The order of the output arguments 
has no effect on the execution of the PostScript language code in 
the wrap body. 

pswrap does not check whether the wrap definition provides 
return values for all output arguments, nor does it perform type 
checking for declared output arguments. 

6.1 RECEIVING NUMBERS 

PostScript integer objects and real objects are 32 bits long. When 
returned, these values are assigned to the variable provided by 
the output argument. On a system where the size of an 'int' or 
'float' is 32 bits, pass a pointer to an 'int' as the output argument 
for a PostScript integer object; pass a pointer to a 'float' as the 
output argument for a PostScript real object: 

6 DECLARING OUTPUT ARGUMENTS 21 



defineps PSWMyWrap ( I float *f; int *i) 

A Postscript integer object or real object can be returned as a 
'float' or 'double'. Other type mismatches cause a typecheck er
ror (for example, attempting to return a PostScript real object as 
an 'int'). 

6.2 RECEIVING BOOLEAN VALUES 

A procedure can declare a pointer to a 'boolean' as an output 
argument: 

Wrap definition: 

defineps PSWKnown(ehar *Diet, *x I boolean *ans) 
Diet /x known ans 

endps 

Procedure call: 

int found; 

PSWKnown("statusdict", "duplex", &found); 

PostScript language code equivalent: 

statusdict /duplex known found 

This wrap expects to be passed the address of a variable of type 
'int' as its output argument. If the PostScript interpreter returns 
the value true, the wrap places a value of 1 in the variable 
referenced by the output argument. If the interpreter returns the 
value false, the wrap places a value of zero in the variable. 

6.3 RECEIVING A SERIES OF OUTPUT VALUES 

To receive a series of output values as an array, declare an array 
output argument; then write a wrap body in the PostScript lan
guage to compute and return its elements, one or more elements 
at a time. The example below declares a wrap that returns the 
256 font widths for a given font name at a given font size: 

22 pswrap Reference Manual I Version of January 23, 1990 



Wrap definition: 

defineps PSWGetWidths(char *fn; int size I float wide[256]) 
/fn size selectfont 
0 1 255 { 

} for 
endps 

Procedure call: 

(X) dup O 4 -1 roll put 
stri ngwidth pop wide 

float widths[256]; 
PSWGetWidths("Serifa", 12, widths); 

PostScript language code equivalent: 

/Serita 12 selectfont 
0 1 255 { 

(X) dup 0 4 -1 roll put 
stringwidth pop 
% Pop width for this character and insert width 
% into widths array at current element; 
% point to next element. 

} for 

In the above example, the loop counter is used to assign succes
sive ASCII values to the scratch string '(X) '. The stringwidth 
operator then places both the width and height of the string on 
the PostScript operand stack. (Here it operates on a string just 
one character long.) The pop operator removes the height from 
the stack, leaving the width at the top. The occurrence of the 
output argument 'wide' in this position triggers the width to be 
popped from the stack, returned to the application, and inserted 
into the output array at the current element. The next element 
then becomes the current element. · 

The for loop (the procedure enclosed in braces followed by for) 
repeats these operations for each character in the font, beginning 
with the 0th and ending with 255th element of the font array. 

6.3.1 Receiving a Series of Array Elements 

A Postscript array object can contain a series of elements to be 

6 DECLARING OUTPUT ARGUMENTS 23 



stored in an output array. The output array is filled in, one ele
ment at a time, until it's full. Therefore the PSWTest wrap 
defined below will return '{1, 2, 3, 4, 5, 6}': 

defineps PSWTest(I int Array[6]) 
[1 2 3] Array 
[4 5 6] Array 

endps 

The PSWTestMore wrap defined below will return '{1, 2, 3, 4}': 

defineps PSWTestMore(I int Array[4]) 
[123] Array 
[4 5 6] Array 

endps 

6.3.2 Specifying the Size of an Output Array 

The size of an output array is specified in the same manner as the 
size of an input array. Use a constant in the wrap definition or an 
input argument that evaluates to an integer at run time. If more 
elements are returned than fit in the output array, the additional 
elements are discarded. 

6.4 RECEIVING CHARACTERS 

To receive characters back from the PostScript interpreter, 
declare the output argument either as a character string or as a 
character array,, 

If the argument is declared as a character string, the wrap copies 
the returned string to the location indicated. Be careful to 
provide enough space for the maximum number of characters 
that might be returned, including the null character ('\0') that 
terminates the string. Only the first string encountered will be 
returned. For example, in the PSWStrings procedure defined 
below, the string '123' will be returned: 

defineps PSWStrings(I char *str) 
(123) str 
(456) str 

endps 

24 pswrap Reference Manual I Version of January 23, 1990 



Character arrays, on the other hand, are treated just like arrays of 
numbers. In the PSWStrings2 procedure, the value returned for 
'str' will be '123456': 

defineps PSWStrings2(1 char str[6]) 
(123) str 
(456) str 

endps 

If the argument is declared as a character array (for example, 
'char s'[num]), the procedure copies up to num characters of the 
returned string into the array. Additional characters are dis
carded. The string is not null terminated. 

6.5 COMMUNICATION AND SYNCHRONIZATION 

The PostScript interpreter can run as a separate process from the 
application; it can even run on a separate machine. When the 
application and interpreter processes are separated, the applica
tion programmer must take communication into account. This 
section alerts you to communication and synchronization issues. 

A wrap that has no output arguments returns as soon as the wrap 
body is transferred to the client/server communication channel. 
In this case, the communication channel is not necessarily 
flushed. Since the wrap body is not executed by the PostScript 
interpreter until the communication channel is flushed, errors 
arising from the execution of the wrap body can be reported long 
after the wrap returns. 

In the case of a wrap that returns a value, the entire wrap body is 
transferred to the client/server communication channel, which is 
then flushed. The client-side code awaits the return of output 
values followed by a special termination value. Only then does 
the wrap return. 

See the Client Library Reference Manual for information con
cerning synchronization, run-time errors, and error handling. 

6 DECLARING OUTPUT ARGUMENTS 25 



26 pswrap Reference Manual I Version of January 23, 1990 



A ERROR MESSAGES FROM THE PSWRAP TRANSLATOR 

The following is a list of error messages the pswrap translator 
can generate: 

input parameter used as a subscript is not an integer 

output parameter used as a subscript 

char input parameters must be starred or subscripted 

hex string too long 

invalid characters 

invalid characters in definition 

invalid characters in hex string 

invalid radix number 

output arguments must be starred or subscripted 

out of storage, try splitting the input file 

-s 80 is the minimum 

can't allocate char string, try a smaller -s value 

can't open file for input 

can't open file for output 

error in parsing 

string too long 

usage: pswrap [-s maxstring] [-ar] [-h headerfile] [-o outfile] [infile] 

endps without matching defineps 

errors in parsing 

A ERROR MESSAGES FROM THE PSWRAP TRANSLATOR 27 



errors were encountered 

size of wrap exceeds 64K 

parameter reused 

output parameter used as a subscript 

non-char input parameter 

not an input parameter 

not a scalar type 

wrong type 

parameter index expression empty 

parameter index expression error 

end of input file/missing endps 

28 pswrap Reference Manual I Version of January 23, 1990 



B SYNTAX 

Square brackets [] mean that the enclosed form is optional. Curly 
brackets { } mean that the enclosed form is repeated, possibly 
zero times. A vertical bar I separates choices in a list. 

Unit= 
ArbitraryText {Definition ArbitraryText} 

Definition = 
NLdefineps ["static"] Ident "(" [Args] ["I" Args]")" Body NLendps 

Body= 
{Token} 

Token= 
Number I PSident I SlashPSident 
I "("StringLiteral")" 
I "<"StringLiteral">" 
I " {" Body " } " 
I "[" Body "]" 
I Input Element 

Args = 
ArgList {";" ArgList} [";"] 

ArgList = 
Type ItemList 

Type= 
"DPSContext" I "boolean" I "float" I "double" 
I ["unsigned"] "char" I ["unsigned"] ["short" I "long"] "int" 

ItemList = 
Item {","Item} 

Item= 
"*" Ident I Ident ["["Subscript"]"] 

Subscript= 
Integer I Ident 

B SYNTAX 29 



8.1 SEMANTIC RESTRICTIONS 

• DPSContext must be the first input argument if it appears at 
all. 

• A simple char argument (char Ident) is never allowed (must 
be* or [ ]). 

• A simple Ident item is not allowed in an output item list 
(must be* or [ ]. 

8.2 CLARIFICATIONS 

• NLdefineps matches the terminal defineps at the beginning 
of a new line. 

• NLendps matches the terminal endps at the beginning of a 
new line. 

• Ident follows the rules for C names; PSident follows the 
rules for PostScript language names. 

• SlashPSident is a PostScript language name preceded by a 
slash. 

• StringLiteral tokens follow the PostScript language conven
tions for string literals. 

•Number tokens follow the PostScript language conventions 
for numbers. 

•Integer subscripts follow the C conventions for integer con
stants. 

• Input Element is \n[i] where n is the name of an input array 
argument, i is a non-negative integer literal, and no white 
space is allowed between\ and ] . 

30 pswrap Reference Manual I Version of January 23, 1990 



C CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 

Changes to the pswrap Ref ere nee Manual from the document 
dated October 25, 1989, are noted in the paragraphs below. 

A string ('char*') passed as input may not be more than 65,535 
characters. An array may not contain more than 65,535 elements. 

The examples were expanded to include, in each case, the wrap 
definition, the corresponding procedure call, and the equivalent 
Postscript language code. 

Changes to the pswrap Reference Manual from the document 
dated October 6, 1988, are noted in the paragraphs below. 

The manual was rewritten and reorganized. Numerous technical 
clarifications and corrections were made. 

C CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 31 





#define 3 
#include 3 
#line directives 4 

%! 6 
%% 6 

() 7 

II 7 

11 

== 11 

[] 7 

angle brackets 7 
ANSIC 3 
arguments 7 

context 12 
declaring 12 
input 2, 8, 9 
names 7 
output 2,9, 10,20,25 
text 15 

array size, output 24 
arrays 17, 23 
ASCII strings 11 

boolean 13 
booleans 17, 18, 22 

C code not allowed in wrap 3 
C, ANSI 3 
character array 25 
·characters 15 
characters, 

receiving 24 
command line 2 
comments 6 

sending 6 

communication 25 
context 20 
context, as wrap argument 12 
context, specifying 20 
currentgray 9 
currentpoint 11 

data types 13 
debugging, with #line directives 4 
declaration 5 
defineps 5 
delimiters in wrap body 7 
DPSContext 13, 20 
DPSWriteData 6 

endps 6 
execution context 20 
extern declarations 3 

flushing 25 
font widths 22 
for 23 
for 23 

grouping values 18 

immediately evaluated names 7 
input 

arguments 2, 9 
input arguments 8 
input array, 

size 19 
input data types 13 
input file 3 
integer 21 

names, immediately evaluated 7 
naming convention 6 
nonstatic wraps 3 

Index 

Notes and Warnings 3, 4, 6, 7, 11, 15, 16, 20, 21 
numbers 15, 17, 21 

33 



numeric values 18 

options 3 
-a 3 
-h 3 
·0 4 
-r 4 
·S 4 

output 
arguments 2, 9, 10 
diagnostic 4 

output arguments 9, 20, 25 
output C file 4 
output header file 3 
output, receiving 22 

parentheses 7 
pointer, for output argument 10 
pop 23 
PostScript array, returning 23 
PostScript operators 9 
print 11 
printobject 10 
procedure 

definition 5 
example definition 5 
pswrap-generated 20 

procedure prototypes in ANSI C 3 
pstack 11 
PSWGrayCircle 5, 6 
pswrap data types 13 
PSWSetMyMatrix 17 

real 21 
receiving a series of output values 22 
receiving boolean values 22 
receiving characters 24 
receiving numbers 21 
reentrant wraps 4 
result values 11 

size of output array 24 
square brackets 7 
standard error 4 
standard input 4 
standard output 4, 11 
static procedures 6 
string length 4 

34 INDEX January 23, 1990 

stringwidth 23 
synchronization 25 
syntax 7 

text arguments 15, 16 
typecheck 22 

unsigned integers 15 
user objects 13 
userobject 20 
UserObjects 13 

,values, 
returning 9 

whitespace 16 
wrap 1 
wrap body 2, 6, 7 
wrap definition 5 
wrap header 7 
wrap that returns a value 25 
writing a wrap 5 

{ } 7 



POSTSCRIPr 

ENCAPSULATED POSTSCRIPT® FILES 
Specification 
Version 2.0 

June 5, 1989 
Postscript® Developer Support Group 

Adobe Systems Incorporated 
1585 Charleston Road PO Box 7900 
Mountain View, CA 94039-7900 
(415) 961-4400 

PN LPS5002 



Copyright© 1989, 1988, 1987 by Adobe Systems Incorporated. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, 
without the prior written permission of the publisher. 

PostScript is a registered trademark of and the PostScript logo is a trademark of Adobe Systems Incor
porated. Macintosh is a registered trademark of and QuickDraw is a trademark of Apple Computer, 
Inc. Microsoft is a registered trademark of Microsoft Corporation. 

The information herein is furnished for informational use only, is subject to change without notice, and 
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo
rated assumes no responsibility or liability for any errors or inaccuracies that may appear in this book. 
The software described in this book is furnished under license and may only be used or copied in ac
cordance with the terms of such license. 



POSTSCRIPT® 

ENCAPSULATED POSTSCRIPT® FILES 
Specification 
Version 2.0 

June 5, 1989 
Postscript® Developer Support Group 
(415) 961-4111 

This document specifies the format required for import of Encapsulated Postscript (EPS) 
Files into an application. This specification suggests a standard for importing PostScript 
"language files in all environments, and contains specific information about both the 
Macintosh® and MS-DOS environments. This format conforms to Adobe Systems' 
Document Structuring Conventions, Version 2.0. 

The rules that should be followed in creating importable PostScript language files are a 
subset of the structuring conventions proposed by Adobe Systems Incorporated; refer to the 
PostScript Language Reference Manual, Appendix C, and Document Structuring 
Conventions, version 2.0, available from Adobe Systems. Files must also be "well
behaved" in their use of certain PostScript language operators, manipulation of the graphics 
state, and manipulation of the PostScript interpreter's stacks and any global dictionaries. 
These conventions are designed to allow cooperative sharing of files between many 
systems using the PostScript language. 

Fundamentally, an EPS file is a standard Postscript language file with a bitmap screen 
preview included optionally in the format. The purpose of an EPS file is to be included into 
other document makeup systems as an illustration, and the screen representation is intended 
to aid in page composition. The bitmap is normally discarded when printing, and the 
Postscript language segment of the file is used instead. Typically any manipulation of the 
screen image that is performed by the user (such as scaling, translating, or rotation on 
screen) should be tracked by the page layout application and an appropriate transformation 
should precede the EPS file when it is sent to the printer. 

1. EPS FILE FORMAT GUIDELINES 

An EPS file should conform to at least Version 2.0 of the Adobe Document Structuring 
Conventions. This does not explicitly require any of the structuring comments to be 
employed, but if used, they should be in accordance with that specification. Additionally, 
an EPS file is required to contain the %%BoundingBox comment, and is required to be 
"well-behaved" (see pages 3-4). An EPS file may optionally contain a bitmap image 
suitable for WYSIWYG screen display, as discussed herein. 

The structure of an EPS file is marked by PostScript language comments, according to the 
PostScript Document Structuring Conventions. These are covered briefly here for 
reference. Structuring comment lines must begin with"%!" or"%%" and terminate with 
a newline (either return or linefeed) character. EPS file conventions require that a comment 
line be no longer than 256 bytes. A comment line may be continued by beginning the 
continuation line with " % % +". The EPS file should begin with a header of structuring 
comments, as specified in the PostScript Structuring Conventions. 

©1989 Adobe Systems Incorporated. All rights reserved. 3 



2. REQUIRED PARTICIPATION 

In order to support Encapsulated PostScript files effectively, some cooperation is required 
on the parts of those who produce BPS files and those who use BPS files (typically by 
including them into other documents). 

2.1 WHEN PRODUCING EPS FILES 

There are certain required comments and several recommended ones that must be provided 
in the BPS file. These are detailed in Section 3. The file must also be a single page (not a 
multiple-page document) and must be a conforming PostScript language document. 
Conformance requirements are mostly detailed here, but for the full specification, please 
refer to the Document Structuring Conventions from Adobe Systems. 

2.2 WHEN READING AND USING EPS FILES 

When including an EPS file into your document, you should basically think of that piece of 
code as having been generated by your program. After all, that is what all programs (and 
users) who encounter your print file will think. In particular, you must find out enough 
about the file to intelligently make it part of your document. The only tricky part of this 
relates to font usage. This is also the most difficult part of this specification to understand. 
Basically, you just have to figure out what the requirements of the illustration are and 
incorporate them into your own requirements (pass them downstream). Then all issues of 
font management are essentially the same as they were before you included the illustration 
(and are beyond the scope of this document). 

As long as you don't remove relevant information from a file, and as long as you update 
your global view of font usage and resource requirements to reflect those that you just 
imported, the rest is fairly easy. The intent behind the BPS specification, in fact, is to make 
the most of cooperation between producers and consumers of PostScript language files so 
that neither has to do much, but the combined advantage is great. 

3. REQUIRED COMMENTS 

4 

The first comment in the header (and the first line in the file) should be the version 
comment: 

%!PS-Adobe-2.0 EPSF-2.0 
This indicates to an application that the PostScript language file conforms to this standard. 
The version number following the word "Adobe-" indicates the level of adherence to the 
standard PostScript Document Structuring Conventions. The version number following the 
word "EPSF" indicates the level of EPSF-specific comments. 

The following comment must be present in the header; if it is not present then an importing 
application may issue an error message and abort the import: 

%%BoundingBox: LLx LLy URx URy 
The values are in the PostScript default user coordinate system, in points {l/72 of an inch, 
or 0.3527 mm), with the origin at the lower left comer. The bounding box must be 
expressed in default user coordinate space. This seems to be a big question among 
implementors of this specification. Regardless of the coordinate system in which your 

©1989 Adobe Systems Incorporated. All rights reserved. 



application operates, here is a foolproof way of determining the correct bounding box: 
print the page, get out a point ruler, and measure first to the lower left corner, then to the 
upper right corner, using the lower-left corner of the physical paper as your origin. This 
works because it measures the end result (the marks on the page), and none of the 
computation matters. 

4. OPTIONAL COMMENTS 

The following header comments are strongly recommended in EPS files. They provide 
extra information about the file that can be used to identify it on-screen or when printing. 

%% Title: included document title 
%%Creator: creator name -
%%CreationDate: date_and_time 
The % % Creator, % % Title, and % %CreationDate comments may be used by an 
application or spooler to provide human-readable information about a document, or to 
display the file name and creator on the screen if no bitmapped screen representation was 
included in the EPS file. 

%%EndComments 
This comment indicates an explicit end to the header comments, as specified in the 
structuring conventions. 

4.1 HOW TO USE THESE COMMENTS (PHILOSOPHY) 

All of the comments in EPS files provide information of some sort or another. Exactly how 
you use this information is up to you, but you are encouraged not to reduce the amount of 
information in a file (when you import it or include it, for example) by removing or altering 
comments. In general, the comments tell you what fonts and files are used, and where. Not 
everybody cares about these things, but if you do care, then the information is available. 

The whole issue of Encapsulated PostScript files is that they are "final form" print files that 
may be far from the printer that they will actually be imaged on. If they have specific needs, 
particularly in terms of font usage, these needs must be carefully preserved and passed on 
downstream, and the program that actually prints the composite document must take pains 
to make sure the fonts are available at print time. 

Any piece of software that generates PostScript language code is potentially both a 
consumer and a producer of Encapsulated PostScript files. It is probably best not to think 
that you are at either end of the chain. In particular, if you import an Encapsulated 
PostScript file, integrate it into your document somehow, and then go to print your 
document, you are responsible for reading and understanding any of the font needs of the 
EPS file you imported. These should then be reflected in your own font usage comments. 
If the illustration on page 3 uses the Bodoni font but the rest of your document is set in 
Times, suddenly your document now also uses the Bodoni font (you included the 
illustration, after all). This should be reflected in the outermost % %DocumentFonts 
comments and any other appropriate ones. 

©1989 Adobe Systems Incorporated. All rights reserved. 5 



4.2 FONT MANAGEMENT COMMENTS 

6 

If fonts are used, the following two comments (which are defined in version 2.0 of the 
PostScript Document Structuring Conventions) should be included in the header of the EPS 
file. The % %IncludeFont and% %Begin/% %EndFont comments should be thought of 
as inverses of one another. That is, if you encounter an % % IncludeFont comment and 
actually include a font file at that point, you should enclose the font in % % BeginFont and 
% % EndFont comments. Conversely, if you see fit to remove a font from a print file (one 
that presumably had been delimited with comments), you should always replace it with an 
% % IncludeFont comment rather than completely stripping it. This guarantees the 
reversibility of your actions. 

%%DocumentFonts: font1 font2 .... 
%%+ font3 font4 
The % % DocumentFonts comment provides a full list of all fonts used in the file. Font 
names should refer to non-reencoded printer font names and should be the valid PostScript 
language names (without the leading sl~shes). An application that imports an EPS file 
should be responsible for satisfying these font needs, or at least updating its own 
% %DocumentFonts list to reflect any new fonts. 

%%DocumentNeededFonts: font1 font2 
The % % DocumentNeededFonts comment lists all fonts that are to be included at specific 
points within the EPS file as a result of the % % lncludeFont comment. These fonts must 
also be listed in the % % DocumentFonts comment, but an application Ill~Y or may not pre
load these at the beginning of the job. The responsibility should be taken, however, by any 
program that thinks it is actually printing the file, to make sure the fonts requested will be 
available when the file is printed. This may mean that the individual % %IncludeFont 
comments may be satisfied and the fonts placed in-line, or they may simply be ignored, if 
the fonts are determined to be already available on the printer. As a third possibility, there 
may be enough memory to download all the fonts in front of the job and avoid processing 
the individual requests. This % %DocumentNeededFonts comment provides 
foreshadowing of the % % IncludeFont comments to follow, to give printing managers 
enough information to make these choices intelligently. 

%%1ncludeFont: fontname 
The % % lncludeFont comment signals to an application that the specified font is to be 
loaded at that precise location in the file. It is analogous to the familiar #include syntax in 
the C language. An application should load the ·specified font regardless of whether the 
same font has been loaded already by other preceding % % IncludeFont comments, since 
the font may have been embedded within a PostScript language save and restore construct. 
However, if the font is determined to be available prior to the entire included EPS file (for 
instance, it may be in ROM in the printer or might have been downloaded prior to the entire 
print job) the %%IncludeFont comment may be ignored by printing manager software. 

When an application satisfies an % % IncludeFont request, it should always bracket the 
font itself with the % %BeginFont and % %EndFont comments. 

A font that is wholly contained, defined, and used within the EPS file (a downloaded font) 
should be noted in the % % DocumentFonts comment, but not the 
% %D9cumentNeededFonts comment. The font should follow conventions listed in the 
Document Structuring Conventions in order to retain full compatibility with print spoolers. 

©1989 Adobe Systems Incorporated. All rights reserved. 



%%Beginfont: fontname 
%%Endfont 
The % % BeginFont and % % EndFont comments bracket an included downloadable font. 
The fontname is the simple PostScript language name for the font. These fonts may be 
stripped from the included file if they are determined to be available (but should be replaced 
by an %%IncludeFont comment). 

4.3 FILE MANAGEMENT COMMENTS 

% %1ncludefile: filename 
This comment, which can occur only in the body of an EPS file, allows a separate file to be 
inserted at any point within the EPS file. The file might not be searched for or inserted until 
printing actually occurs, so user care is required to ensure its availability. If it is used, the 
%%DocumentFiles comment should be used as well. See the Structuring Conventions for 
more information. 

%%Beginfile: filename 
%%Endfile 
The % % BeginFile and % % EndFile comments bracket an included file. They are the 
"inverse" of the % % lncludeFile comment. The filename is evaluated in the context of the 
local file system. These files may not be stripped from the included file at print time, 
because they undoubtedly contain executable code. However, they may be temporarily 
removed, or "factored out" to save space during storage. They should always be replaced 
by the % % IncludeFile comment. 

4.4 COLOR COMMENTS 

%%DocumentProcessColors: keyword keyword ... 
This comment marks the use of process colors within the document. Process colors are 
defined to be cyan, magenta, yellow, and black. These four colors are indicated in this 
comment by the keywords Cyan, Magenta, Yellow, and Black. This comment is used 
primarily when producing color separations. The (atend) conventions is allowed. 

%%DocumentCustomColors: name name ... 
This indicates the use of custom colors within a document. These colors are arbitrarily 
named by an application, and their CMYK or RGB approximations are provided through 
the % %CMYKCustomColor or % %RGBCustomColor comments within the body of 
the document. The names are specified to be any arbitrary PostScript language string except 
(Process Cyan), (Process Magenta), (Process Yellow), and (Process Black), which need to 
be reserved for custom color implementation by applications. The (atend) specification is 
permitted. 

%%BeginProcessColor: keyword 
%%EndProcessColor 
The keyword here is either Cyan, Magenta, Yellow, or Black. During color separation, 
the code between these comments should only be downloaded during the appropriate pass 
for that process color. Intelligent printing managers can save considerable time by omitting 
code within these bracketing comments on the other three separations. Extreme care must 
be taken by the document composition software to correctly control overprinting and 
"knockouts" if these comments are employed, since the code may or may not actually be 
executed. 

©1989 Adobe Systems Incorporated. All rights reserved. 7 



%%BeginCustomColor: keyword 
%%EndCustomColor 
The keyword here is any PostScript language string except (Process Cyan), (Process 
Magenta), (Process Yellow), and (Process Black). During color separation, the code 
between these comments should only be downloaded during the appropriate pass for that 
custom color. Intelligent printing managers can save considerable time by omitting code 
within these bracketing comments on the other three separations. Extreme care must be 
taken by the document composition software to correctly control overprinting and 
knockouts if these comments are employed, since the code may or may not be executed. 

%%CMYKCustomColor: cyan magenta yellow black keyword 
This provides an approximation to the custom color specified by keyword. The four 
components of cyan, magenta, yellow, and black must be specified as numbers from 0 to 
1 representing the percentage of that process color. These numbers are exactly analogous 
to the arguments to the setcmykcolor PostScript language operator. The keyword follows 
the same custom color naming conventions for the % % DocumentCustomColors 
comment. 

%%RGBCustomColor: red green blue keyword 
This provides an approximation to the custom color specified by keyword. The three 
components of red, green, and blue must be specified as numbers from 0 to 1 representing 
the percentage of that process color. These numbers are exactly analogous to the arguments 
to the setrgbcolor PostScript language operator. The keyword follows the same custom 
color naming conventions for the % % DocumentCustomColors comment. 

5. "WELL-BEHAVED" RULES 

An application should encapsulate the imported EPS code in a save I restore construct, 
which will allow all printer VM (memory) to be recovered and all graphics state restored. 
Since the code in the imported EPS file will be embedded within the PostScript language 
that an application will generate for the current page, it is necessary that it obey the 
following rules, in order to keep from disrupting the enclosing document: 

5.1 OPERATORS TO AVOID 

The following Postscript operators should not be included in a PostScript language file for 
import; the result of executing any of these is not guaranteed (see the PostScript Document 
Structuring Conventions for more on this): 

grestoreall 
erase page 
nulldevice 
exitserver 

initgraphics 
copypage 
renderbands 
setscreen* 

initmatrix 
banddevice 
setpageparams 
settransfer* 

initclip 
framedevice 
note 

5.2 THE 'SETSCREEN' AND 'SETTRANSFER' OPERATORS 

8 

The setscreen operator is tmublesome when one file is included within another. setscreen 
is a system-level command that is appropriate for changing the halftone machinery to 
compensate for marking engine tendencies, but when used for "special effects" can cause 
problems. For EPS files, the setscreen and settransfer operators are permitted only under 
restricted terms. 

©1989 Adobe Systems Incorporated. All rights reserved. 



THE'SETTRANSFER'AND'SETCOLORTRANSFER' 
OPERATORS 
The settransfer operator changes the gray-level and color response curves over the interval 
from 0to1. There are two basic uses of it: to invert an image (typically flipping blacks and 
whites, less often colors), or to adjust the response curve for a particular output device. 

The best (and required) approach for using settransfer is to combine your function with 
the existing one. Here is the recommended way to do this: 

{ dummy exec 1 exch sub } dup O currentransfer put settransfer 

In .this example, the desired transfer function is the code 1 exch sub. The dummy exec 
essentially executes the existing transfer function before executing the new code. The name 
dummy is replaced by the actual procedure body from the existing transfer function 
through the put instruction. The result is conceptually equivalent to this: 

{ { original proc } exec 1 exch sub } settransfer 

This approach is better than "concatenating" procedures because it does not require the 
existing transfer function to be duplicated (consuming memory). 

5.3 THE 'SHOWPAGE' OPERATOR 

The showpage operator is permitted in BPS files primarily because it is present in so many 
Postscript language files. It is reasonable for an BPS file to use the showpage operator if 
needed (although it is not necessary if the file is truly imported into another document). It 
is the including application's responsibility to disable showpage if needed. The 
recommended method to accomplish this is as follows: 

TEMPORARILY DISABLING 'SHOWPAGE' 

/BEGINEPSFILE { %def 
/EPSFsave save def 
O setgray O setlinecap 1 setlinewidth O setlinejoin 1 O setmiterlimit [] O setdash 
newpath 
/showpage { } def 

} bind def 
/ENDEPSFILE { %def 

EPSFsave restore 
} bind def 

BEGINEPSFILE 
1 00 300 translate 
.5 .5 scale 
% include the EPS file here, which may execute showpage with no effect 

ENDEPSFILE % restore state and continue 

This method will only disable the showpage operator during the execution of the BPS file, 
and will restore the previous semantics of showpage afterward. It is the responsibility of 
the BPS file itself to avoid the operators listed in the previous section that might cause 
unexpected behavior when imported. They need not be redefined along with showpage, 
although it is permissible to do so. 

©1989 Adobe Systems Incorporated. All rights reserved. 9 



5.4 STACKS AND DICTIONARIES 

All of the PostScript interpreter's stacks (including the dictionary stack) should be left in 
the state that they were in before the imported PostScript language code was executed. This 
is normally the case for. well-written Postscript language programs, and this is still the best 
way to keep unanticipated side-effects to a minimum. Please avoid unnecessary clear and 
"countdictstack 2 sub {end} repeat" cleanup techniques. If you have accidentally left 
something on one of the stacks, it is best to understand your program well enough to get rid 
of it, rather than issuing a wholesale cleanup instruction at the end, which will not only clear 
your operands from the stack, but perhaps will clear other objects as well. 

It is recommended that the imported EPS file create its own dictionary instead of writing 
into whatever the current dictionary might be. Make sure that this dictionary is removed 
from the dictionary stack when through (using the Postscript language end operator) to 
avoid the possibility of an invalidrestore error. Also, no global string bodies should be 
changed (with either put or putinterval). 

If a special dictionary (like statusdict) is required in order for the imported Postscript 
language code to execute properly, then it should be included as part of the EPS file. 
However, it should be enclosed in very specific % %BeginFeature and % %EndFeature 
comments as specified in the Document Structuring Conventions. No dictionary should be 
assumed to be present in the printer, and fonts should be reencoded as needed by the EPS 
file itself. 

5.5 THE GRAPHICS STATE 

10 

When a PostScript language program is imported into the middle of another executing 
program, the state of the interpreter may not be exactly in its default state. The EPS file 
should assume that the graphics state is in its default state, even though it may not be. An 
importing application may choose to scale the coordinate system or to change the transfer 
function to change the behavior of the EPS file somewhat. If the EPS file makes 
assumptions about the graphics state (like the clipping path) or explicitly sets something it 
shouldn't (the transformation matrix), the results may not be what were expected. 

The importing application is responsible for returning the color to be black, the current dash 
pattern, line endings, and other miscellaneous aspects of the graphics state to their default 
condition (as specified in the PostScript Language Reference Manual). This can be done in 
either of two ways: the initial graphics state can be restored from variables, or the state can 
be explicitly set: 

/BEGINEPSFILE { %def 
/EPSFsave save def 
O setgray 0 setlinecap 1 setlinewidth O setlinejoin 1 O setmiterlimit [] O setdash 
newpath 
/showpage { } def 

} bind def 

/ENDEPSFILE {%def 
EPSFsave restore 

} bind def 

©1989 Adobe Systems Incorporated. All rights reserved. 



6. FILE TYPES AND FILE NAMING 

APPLE MACINTOSH FILES 
The Macintosh file type for application-created PostScript language files is EPSF. Files of 
type TEXT will also be allowed, so that users can create EPS files with standard editors, 
although the Structuring Conventions must still be strictly followed. A file of type EPSF 
should contain a PICT resource in the resource fork of the file containing a screen 
representation of the PostScript language code. The file name itself may follow any naming 
convention as long as the file type is EPSF. If the file type is TEXT, the extensions .epsf 
and .epsi, respectively, should be used for the Macintosh-specific format and EPSI 
interchange format. 

MS-DOS AND PC-DOS FILES 
The recommended file extension is .EPS. For EPSI files, the extension should be .EPI. 
Other file extensions also can be used, but it will be assumed that these files are text-only 
files with no screen metafile included in them. 

OTHER FILE SYSTEMS 
In general, the extension .epsf is the preferred way to name an EPS file, and .epsi for the 
interchange format. In systems where lower-case letters are not recognized or are not 
significant, all upper-case can be used. 

7. SCREEN REPRESENTATIONS 

The EPS file will usually have a graphic screen representation so that it can be manipulated 
and displayed on a workstation's screen prior to printing. The user may position, scale, 
crop or rotate this screen representation, and the composing software should keep track of 
these manipulations and reflect them in the PostScript language code that is ultimately sent 
to the printing device. 

The exact format of this screen representation is machine-specific. That is, each computing 
environment may have its own preferred bitmap format, and that is typically the appropriate 
screen representation for that environment. An interchange representation is specified that 
should be implemented by everyone, and any environment-specific formats can be 
supported in addition, as deemed appropriate. 

7.1 APPLE MACINTOSH: PICT RESOURCE 

A QuickDraw ™ representation of the PostScript language file can be created and stored as 
a PICT in the resource fork of the file. It should be given resource number 256. If the PICT 
exists, the importing application may use it for screen display. If the picframe is 
transformed to PostScript language coordinates, it should agree with the 
% % BoundingBox comment. 

Given the size limitations on PICT images, this may not always agree for large illustrations. 
If there is a discrepancy, the % %BoundingBox always should be taken as the "truth", 
since it accurately describes the area that will be imaged by the PostScript language code 
itself. In this situation, applications producing the preview PICT must all take the same 
action so that the importing application knows what to do. 

©1989 Adobe Systems Incorporated. All rights reserved. 11 



Since it is more important to have a reasonable facsimile of the image than it is to have any 
particular part of it be high quality, the PICT image should be scaled to fit within the 
constraints of the PICT format. That is, the picture will all be there (it will not be cropped), 
but it will actually be smaller than the real image. The importing application should then 
scale the PICT to a size which matches the bounding box as expressed in the 
% % BoundingBox comment. 

7.2 PC/DOS: WINDOWS METAFILE OR TIFF FILE 

Either a Microsoft® Windows Metafile or a TIFF (Tag Image File Format) section can be 
included as the screen representation of an EPS file. 

The EPS file itself has a binary header added to the beginning that provides a sort of "table 
of contents" to the file. This is necessary since there is not a second "fork" within the file 
system as there is in the Macintosh file system. 

NOTE: 
It is always permissible to have a pure ASCII PostScript language file as an EPS 
file in the DOS environment, as long as if does not contain the preview section. 
The importing application should check the first three bytes of the file. If they 
match the header as shown below, the binary header should be expected. If the 
first two match%!, it should be taken to be an ASCII PostScript language file. 

DOS EPS Binary File Header 

Bytes 
0-3 
4-7 

8-11 
12-15 

16-19 
20-23 
24-27 
28-29 

Note: 

Description 
Must be hex C5DOD3C6 (byte 0=C5) 
Byte position in file for start of 
Postscript language code section. 
Byte length of Postscript language section 
Byte position in file for start of Metafile 
screen representation. 
Byte length of Metafile section (PSize) 
Byte position of Tl FF representation 
Byte length of TIFF section 
Checksum of header (XOR of bytes 0-27) 
NOTE: if Checksum is FFFF then it is to be ignored. 

It is assumed that either the Metafile or the TIFF position and lengthfields are 
zero; that is, only one or the other of these two formats is included in the EP S file. 

The Metafile should follow the guidelines set forth by the Windows specification. In 
particular, it should not set the viewport or mapping mode, and it should set the window 
origin and extent. The application should scale the picture to fit within the 
% % BoundingBox comment specified in the Postscript language file. 

8. DEVICE-INDEPENDENT INTERCHANGE FORMAT 

12 

This last screen representation is intended as an interchange format between widely varied 
systems. In particular, the bitmap preview section of the file is very simple and is 
represented as ASCII hexadecimal in order to be more easily transportable. This format is 
dubbed Encapsulated PostScript Interchange format, or "EPSI." 

©1989 Adobe Systems Incorporated. All rights reserved. 



This format wins no prizes for compactness, but it should be truly portable and requires no 
special code for decompressing or otherwise understanding the bitmap portion, other than 
the ability to understand hexadecimal notation. 

It is expected that applications that support EPSF will gradually head toward supporting 
only two formats: the first is the "native" format for the environment in which the 
application runs (where the preview section is Macintosh PICT or TIFF or Sun raster files 
or whatever); the second format should simply be this interchange format. Then files can 
be interchanged between widely varying systems without each having to know the 
preferred bitmap representation of the others. 

o/oo/oBeginPreview: width height depth lines 
o/o%EndPreview 
These comments bracket the preview section of an EPS file in Interchange format (EPSI). 
The width and height fields provide the number of image samples (pixels) for the preview. 
The depth field provides how many bits of data are used to establish one sample pixel of 
the preview (1, 2, 4, or 8). An image which is 100 pixels wide will always have 100 in the 
width field, although the number of bytes of hexadecimal needed to build that line will vary 
if depth varies. The lines field tells how many lines of hexadecimal are contained in the 
preview, so that they may be easily skipped by an application that doesn't care. All the 
arguments are integers. 

8.1 SOME RULES AND GUIDELINES FOR "EPSI" FILES 

The following guidelines attempt to clarify a few basic assumptions about the EPSI format. 
It is intended to be extremely simple, since its purpose is interchange. No system should 
have to do much work to decipher one of these files, and the preview section is mostly just 
a convenience to begin with. This format is accordingly deliberately kept simple and 
option-free. 

• The preview section must be after the header comment section but before the document 
prologue definitions. That is, it should immediately follow the % % EndComments line 
in the EPS file. 

• In the preview section, 0 is white and 1 is black, in deference to the majority. Arbitrary 
transfer functions and "flipping" black and white are not supported. 

• The Preview image can be of any resolution. The size of the image is determined solely 
by its bounding box, and the preview data should be scaled to fit that rectangle. Thus, the 
width and height parameters from the image are not its measured dimensions, but 
simply describe the amount of data supplied for the preview. The dimensions are 
described only by the bounding rectangle. 

• The hexadecimal lines must never exceed 255 bytes in length. In cases where the preview 
is very wide, the lines must be broken. The line breaks can be made at any even number 
of hex digits, since the dimensions of the finished preview are established by the width, 
height, and depth values. 

• All non-hexadecimal characters should be ignored when collecting the data for the 
preview, including tabs, spaces, newlines, percent characters, and other stray ASCII 
characters. This is analogous to the Postscript language readhexstring operator. 

©1989 Adobe Systems Incorporated. All rights reserved. 13 



14 

• Each line of hexadecimal will begin with a percent sign (' % '). This makes the entire 
preview section into a PostScript language comment, so that the file can be printed 
without modification. 

• If the % % lncludeFile or % % BeginFile I % % EndFile comments are ever used to 
extract the preview section from the EPS file, then the lines argument to the 
% %BeginPreview comment must be adjusted accordingly. The lines value specifies 
only the number of lines to skip if you're not the least bit interested. 

• If the width of the image is not a multiple of 8 bits, the hexadecimal digits are padded 
out to the next highest multiple of 8 bits. 

©1989 Adobe Systems Incorporated. All rights reserved. 



EXAMPLE "EPSI" FILE 

Here is a sample file showing the EPS Interchange (EPSI) format. The preview section is 
expressed in user space and the correct comments are included. Remember that there are 8 
bits to a byte, and that it requires 2 hexadecimal digits to represent one binary byte. 
Therefore the 80-pixel width of the image requires 20 bytes of hexadecimal data, which is 
(80 I 8) * 2. The PostScript language segment itself simply draws a box, as can be seen in 
the last few lines. 

%! PS-Adobe-2.0 EPSF-2.0 
%%BounqingBox: 0 O 80 24 
%%Pages: O 
%%Creator: Glenn Reid 
%%CreationDate: September 19, 1988 
%%EndComments 
%%BeginPreview: 80 24 1 24 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFOOOOOOOOOOOOOOOOFF 
% FFOOOOOOOOOOOOOOOOFF 
% FFOOOOOOOOOOOOOOOOFF 
% FFOOOOOOOOOOOOOOOOFF 
% FFOOOOOOOOOOOOOOOOFF 
% FFOOOOOOOOOOOOOOOOFF 
% FFOOOOOOOOOOOOOOOOFF 
% FFOOOOOOOOOOOOOOOOFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
% FFFFFFFFFFFFFFFFFFFF 
%%EndPreview 
%%EndProlog 
%%Page: "one" 1 

4 4 moveto 72 o rlineto o 16 rlineto -72 O rlineto closepath 
8 setlinewidth stroke 

%%Trailer 

©1989 Adobe Systems Incorporated. All rights reserved. 15 





POSTSCRIPT" 

DOCUMENT STRUCTURING CONVENTIONS 
Specification 
Version 2.1 

January 16, 1989 
Postscript® Developer Tools & Strategies Group 

Adobe Systems Incorporated 
1585 Charleston Road PO Box 7900 
Mountain View, CA 94039-7900 
(415) 961-4400 

PN LPS5001 



Copyright © 1989, 1988, 1987 by Adobe Systems Incorporated. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other
wise, without the prior written. permission of the publisher. 

PostScript and Adobe are registered trademark of and the PostScript logo is a trademark of Adobe 
Systems Incorporated. 

The information herein is furnished for informational use only, is subject to change without notice, 
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems 
Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in 
this book. The software described in this book is furnished under license and may only be used or 
copied in accordance with the terms of such license. 



POSTSCRIPT® 

DOCUMENT STRUCTURING CONVENTIONS 
Specification 
Version 2.1 

January 16, 1989 
Postscript® Developer Tools and Strategies Group 

1. INTRODUCTION 

This document provides an extension to the published PostScript language document 
structuring conventions (Version 1.0). These extended comment conventions will 
provide print spoolers, servers and post-processors (known collectively in this 
document as document managers) with additional information about the structural 
organization and resource requirements of a PostScript language document file. 

The Document Structuring Conventions are provided to address issues of PostScript 
language resource management at a site-wide level, and to allow software systems 
to maintain print files independent of printer-specific issues such as available paper 
sizes, fonts, output bins or file systems. The structuring conventions are also 
designed to work with the Adobe PostScript Printer Description files (PPD files), 
which provide the PostScript language extensions for specific printer features in a 
regular, parsable format. For example, these files will include information about 
how to invoke manual feed or different paper sizes, and they will also include 
information about the fonts that are built into the ROM of each printer. The 
structuring conventions will work in tandem with these files to provide a method 
of specifying and invoking· printer features. 

The Adobe Document Structuring Conventions allow complete cooperation between 
document handling mechanisms at all levels. They provide a layer of structural 
information which is, in a sense, superimposed on a PostScript language document 
file. This level of structure is used by document handling software without the need 
for parsing the Postscript language directly. This layer is cooperative rather than 
enforced, in that the comments themselves are always ignored by the PostScript 
interpreter, and they may or may not be interpreted by other software. A document 
is said to be conj orming if it observes the Adobe® Document Structuring 
Conventions, and the conforming document can be expected to adhere to specific 
structuring constraints in that event. 

It is assumed that document managers may be capable of producing prologue, font 
and disk file resources, although that is not required to make effective use of the 
structuring conventions. It is also assumed that the reader is mostly familiar with 
the motivation, goals and design of the existing structuring conventions. For further 
information, consult Appendix C in the PostScript Language Reference Manual. 
All of the existing comment conventions have been included in this document for 
reference and continued use. 

©1988 Adobe Systems Incorporated. All rights reserved. 3 



2. HISTORY AND MOTIVATION 

One of the most important levels of document structuring in the PostScript 
language is the distinction between the Document Prologue and the Document Script. 
The prologue is typically a set of procedure definitions appropriate for the set of 
operations required by a document composition system, and the script is the 
software-generated data that represents a particular document. A conforming 
PostScript language document description will usually have a clearly defined 
prologue and script (see the % %EndProlog structure convention) which should be 
distinct within a given print file. In other words, there should be nothing 
"executed" in the prologue, and "no definitions" in the script. Furthermore, a 
document script may be divided again into several pages, each of which will be 
functionally independent of the other pages. This means that the individual pages 
should be able to execute in any order and may be physically rearranged without 
affecting the resulting document. Pages may be printed in parallel as long as the 
prologue definitions are made available to each page. Note further that one document 
description may wholly contain another document description as part of its script 
without disrupting the semantics of the structuring. For instance, a PostScript 
language document may be placed into another document as an illustration with no 
effect on the functionality of the containing document as a whole. In fact, this is 
one of the primary strengths of Postscript language document descriptions: the 
ability to completely merge documents from different sources at the final printing 
stage. 

3. POSTSCRIPT LANGUAGE COMMENTS 

4 

The comment conventions are divided roughly into the following three areas: 

• Structure Comments 

• Resource Requirements 

• Query Conventions 

Structure Comments are used to delimit the various structural components of a 
PostScript language page description, including its prologue, script, and trailer, and 
where the page breaks fall (if there are any). These comments have been expanded in 
this version to include document and page setup information, and to provide a 
markup convention for noting the beginning and end of particular pieces of the page 
description that might need to be identified for further use. In particular, embedded 
fonts files, and procedure definitions will have begin/end comment constructs 
around them to facilitate removing them from the print job (if necessary) or re
structuring the document. Resource Requirements are comments used to specify 
resources which are required by the PostScript language page description, but which 
have not been included within its text (such as prologues, fonts and included files). 
These requirement conventions may also specify other document requirements, which 
may vary from a particular stock form to a specific paper color or collating order. 
Requirements for individual printer features such as paper trays will also fall into 
this category. Query comments are used to delimit parts of a PostScript language 
program which query the current state or characteristics of a printer, including the 
availability of prologues, fonts, files, virtual memory and any printer-specific 
features and enhancements. 

©1988 Adobe Systems Incorporated. All rights reserved. 



Any or all of these conventions may be used within a single document description, 
but typically some subset of them will be used consistently within a particular 
printing environment. The Structuring Conventions have been designed with 
maximum flexibility in mind, and with a minimum amount of interdependency 
between the conventions themselves. Thus one may employ only Structure 
Conventions in an environment where the presence of a spooler may not be 
guaranteed, or may freely use only the Resource Requirement comments on a highly 
spooled network. See the section on Using the Document Structuring 
Conventions for more information. 

4. CONFORMING FILES 

A Postscript language document file is said to be conforming if it obeys a proper 
subset of these structuring conventions. In addition, there are several other 
constraints which apply to conforming PostScript language documents that will 
allow document handling software to deal reasonably with the document files. They 
may be· thought of as "promises" that the document description observes certain 
standard usage and structuring constraints. Primarily these boil down to avoidance 
of "system-level" PostScript language operators which may cause attempts at 
processing the documents to fail (see Postscript language operators to avoid, at 
the end of this section). If these structuring conventions are employed, care should 
be taken to use them correctly and in accordance with their intended goals. Failure 
to do so may result in unexpected behavior of document files within some document 
handling systems. A simple example of this is a document file which results in an 
execution error when the pages are re-ordered by a document spooler. This can result 
simply from the improper employment of the % % Page: comment convention. 

Here are some general constraints which apply to all conforming PostScript 
language documents: 

prologue and script: When a document is divided into a prologue and script 
(with the % %EndProlog comment and/or the % %BeginProcSet comments), 
there must be nothing executed in the prologue (make only definitions) and no 
definitions in the script. The former of these is the more important; the prologue 
should always be such that it can be removed from a document and downloaded 
only once (permanently) into the printer. All subsequent documents that are 
downloaded with this prologue stripped out should still execute correctly. 

• % % Page: If this comment is used within the body of a document, then the pages 
shall not have any inter-dependencies. Each page may rely on certain PostScript 
language operations having been defined by the document prologue, but it is not 
acceptable to have any "state" set in one page of a document that is relied upon by 
another page in the document. The reason for this is to allow document managers 
to physically rearrange the document's pages without affecting· the execution of 
the document description, or even to print different pages in parallel on more 
than one printer. It is better to omit the % %Page comment than to employ it 
without conforming to this constraint. 

• line length: To provide compatibility with a large body of existing software, a 
conforming PostScript language document description will not have lines 
exceeding 255 characters, excluding line termination characters. The intent is to 
be able to read lines into a 255-character buffer without overflow (Pascal strings 
are a common example of this sort of buffer). The Postscript interpreter imposes 

©1988 Adobe Systems Incorporated. All rights reserved. 5 



6 

no constraints as to where line breaks occur (even in string bodies and 
' hexadecimal bitmap representations) and this level of conformance should not 
pose a· problem for software development. Any document structuring comment 
which needs to be continued on another line to avoid violating this convention 
should use the " % % +" notation to indicate that a comment line is being 
continued. This notation may be used after any of the document comment 
conventions, but may only be necessary in those comments which provide a list of 
font names (such as % %DocumentFonts). Here is an example of its use: 

%%DocumentFonts: Palatino-Roman Palatino-Bold 
%%+ Palatino-ltalic Palatino-Boldltalic Courier 
%%+ Optima LubalinGraph-DemiOblique 

• line endings: Lines may be terminated with any combination of carriage return or 
linefeed characters (decimal ASCII 13 and 10, respectively). 

• showpage If the showpage operator is used with save and restore, the showpage 
shall occur after the page-level restore operation. The motivation for this is to 
be able to handily redefine the showpage operator to have side effects in the 
printer VM such as maintaining page counts for printing n-up copies on a single 
sheet of paper. If the showpage is executed within the confines of a page-level 
save/restore, then attempts to redefine showpage to perform extra operations 
will not work as intended. 

• copypage If multiple copies of a page are needed, this should be specified by 
using the #copies convention. The showpage operator in all PostScript interpreter 
implementations will check for the existence of the name #copies in the current 
dictionary context, and will print as many copies of the page as this name 
reflects. A typical use of this is as follows: 

/#copies 3 store 
showpage 

Postscript language operators to avoid. There are some Postscript language 
operators that are intended for system-level jobs which are not appropriate in the 
context of a conforming document description. A restriction is placed on their use 
subject to very careful consideration: a document may be said to be non
conforming if any ~f these operations are used, but if they are used carefully for a 
very specific reason, they may not actually disturb reasonable handling by 
document managers. Operations listed with an asterisk (*) should especially be 
avoided. Others should be used only with extreme care. The risks of using these 
operators involve either rendering a document device-dependent or to 
unnecessarily inhibit constructive post-processing of document files for different 
printing needs (for example, embedding one PostScript language document within 
another). Here is a list of Postscript language operators that should be avoided by 
conforming document files: 

exitserver* 
initgraphics* 
framedevice 
setsccbatch 

quit* 
grestoreall* 
banddevice 
setmatrix 

erasepage* 
initmatrix* 
nulldevice 
setscreen 

copypage* 
initclip* 
setdevice 
settransfer 

©1988 Adobe Systems Incorporated. All rights reserved. 



Note: There is a distinction between a Postscript language document and a print job 
(or session). A document is a data representation that may be transmitted, edited, 
stored, spooled, or otherwise processed. A print job is an active session with a 
PostScript printer, which may entail querying the printer, dynamically including (or 
removing) resources or fonts, even reordering the pages, and may or may not 
preserve the document exactly as it was originally stored. This is an important 
distinction, because a conforming document is just a document file, and in that 
context may be asked to conform to use constraints that are not appropriate for an 
actual PostScript language print job (for instance, the restriction on use of device 
setup procedures). This affects primarily programs which act as both document 
composition programs and as printing managers. If a job is actually printed (a 
connection is opened with a printer), then the printing session will need to perform 
certain document management tasks like querying the printer, but if the Postscript 
language file is saved to disk instead of being sent to the printer (a useful feature of 
any document manager) then the file should conform to the Document Structuring 
conventions (which may mean stripping out all queries, device-dependent PostScript 
language code, etc.). 

4.1 PARSING RULES 

Here are a few explicit rules that should apply when parsing these comments (and 
which should be observed when creating conforming documents). There are also 
some general rules specified in the previous section on conforming documents that 
should be followed. 

• Many comments have a colon separating the comment from its arguments. This 
colon is not present in all comments (witness % %EndProlog) and should be 
considered part of the comment itself for parsing purposes. It is not an optional 
character. 

.. Comments with arguments (like % % Page) should have a space separating the 
colon from the first argument. Unfortunately, due to existing software, this 
space must be considered optional. 

• "white space" characters within comments may be either spaces or tabs (decimal 
ASCII 32 and 9, respectively). 

• Comments are case-sensitive, as are all of the arguments following a comment. 

The character set for comments is limited to printable ASCII characters. The 
comments themselves will only contain alphabetic characters (with the exception 
of the ? used to introduce query comments). The arguments may include any 
character valid in the PostScript language character set, especially where 
procedure names, font names, and strings are represented. 

When looking for the % %Trailer comment (or any (atend) comments), make 
sure to allow for nested documents. Observe % % BeginDocument and 
%%EndDocument comments, as well as %%BeginBinary and %%EndBinary. 

The header comments can be explicitly terminated by an instance of 
% % End Comments or implicitly by any line that does not begin with % % . 

Lines should never exceed 255 characters, and may be terminated with any 
combination of carriage return and linefeed characters (decimal ASCII 13 and 10). 

©1988 Adobe Systems Incorporated. All rights reserved. 7 



• The order of some comments within the document is significant, but within a 
section of the document, they may appear in any order (for example, within the 
header section, % %DocumentFonts, % %Title, and % %Creator may appear in 
any order). 

4.2 USING THE DOCUMENT STRUCTURING CONVENTIONS 

The Adobe Document Structuring Conventions are designed to facilitate 
communication between document composition systems and network document 
handlers. To some extent this will be installation-dependent. Ideally, a document 
composition system should be able to compose a document without regard to 
available resources (for instance, paper sizes and font availability), and should be 
able to rely on a document management system at printing time to determine the 
availability of the resources and to provide the user with reasonable alternatives. 

In keeping with this, the Structuring Conventions contain a certain amount of 
redundancy. In particular (and as an example), there are two philosophically distinct 
ways in which a paper size might be specified: in one, the document composition 
system will trust its environment to handle the resource requirements appropriately, 
and will merely specify what its particular requirements are. On the other hand, a 
document composer may not know what the network environment holds, and 
therefore will include all the necessary resources (and perhaps printer-specific 
Postscript language code), but will delimit these included resources or code 
segments in such a way that a document manager may recognize and replace them. It 
is up to the software implementor to determine which of these methods is 
appropriate for a given environment. In some cases, both may be used. 

These two distinct philosophies for using the Structuring Conventions are mirrored 
in the comments themselves. Many of the new Structure comments provide BEGIN 
and END constructs intended to identify any printer-specific elements of a 
document. The document itself should thus be impervious to the presence (or 
absence) of a document manager or spooler. Many of the Requirement Conventions 
provide a mechanism to specify a need for some resource or printer-specific feature, 
but to leave the invocation of that feature up to the document manager. This is an 
example of complete network cooperation, where a document can forestall some 
printing decisions and pass them to the next layer of document management. In 
general, this latter approach is the preferred one. 

4.3 MINIMALLY REQUIRED COMMENTS 

8 

In the Version 1.0 conventions, there were several comment conventions that were 
required in order to minimally conform to that version of the specificatioIJ.. These 
were % % DocumentFonts, % % EndProlog, % % Page, and % % Trailer. In version 
2.0, the rules are being changed somewhat. There are no longer any required 
comments. All the comments are "optional," in the sense that they may not be 
appropriate in a given situation, and therefore need not be employed. However, if a 
comment is used, then it must be used according to this specification. For example, 
the % %BoundingBox comment should be employed if it is appropriate (for 
instance, if the document is to be used as an illustration in another document), but it 
is not required if the PostScript language file does not make marks on the page. 
Similarly, the % % DocumentFonts comment is not required if no fonts are used. 
There are no comments which are strictly required since there are so many different 
types of PostScript language documents possible. The rule is to make sure to use 
them correctly if you use them. The secondary rule is that you should use as many of 

©1988 Adobe Systems Incorporated. All rights reserved. 



these structuring conventions as are appropriate, as they will greatly enhance the 
ability to use the document in many environments, under many document 
management systems. 

4.4 EXISTING VERSION 1.0 STRUCTURE COMMENTS 

PostScript language page descriptions conforming to Version 1.0 of the comment 
conventions look something like the following example: 

%!PS-Adobe-1 .0 
%% Title: title 
%%Creator: text 
%%CreationDate: text 
%%For: text 
%%DocumentFonts: (atend) 
%%Pages: pagecount 
%%BoundingBox: Llx Lly URx URy 
%%EndComments 

%%EndProlog 
%%Page: label 1 
%%PageFonts: fontname fontname 

%%Trailer 

5. STRUCTURE COMMENTS 

What follows in this document is a list of the comment conventions which comprise 
Version 2.0 of the Adobe Document Structuring Conventions. All of the existing 
Version 1.0 conventions aie included here, both as a reference and because they are 
technically also part of the full Version 2.0 specification. These extensions are 
designed to provide the maximum amount of information and flexibility to a 
document management system, and can be ignored by any software that does not 
know how to interpret them. The structure comments are grouped into three types 
of conventions: 

• Header Comments: these occur once in a document, and may be thought of as a 
"table of contents." 

Body Comments: these may appear anywhere in a document, and generally 
consist of BEG/MEND constructs to delimit specific ingredients of a document 
file (such as fonts). 

• Page Comments: these are page-level structure comments which are analogous to 
the header comments in purpose. 

All of the comments are listed in alphabetical order in the Index at the end of this 
document for reference. Version 1.0 comments are flagged with an asterisk (I'). 

©1988 Adobe Systems Incorporated. All rights reserved. 9 



5.1 HEADER COMMENTS 

10 

The first set of Structure Comments are historically called "header" comments. That 
means that they appear first in a document file, before any of the executable 
PostScript language code (and before the prologue). In order to simplify a document 
manager's job in parsing these header comments, there are two rules that apply to 
them: 

• The first rule is that if there is more than one instance of a header comment in a 
document file, the first one encountered is considered to be the truth. The reason 
for this is to simplify nesting documents one within another without having to 
remove the header comments. 

The second rule is that header comments should be contiguous. That is, if a 
document manager comes across a line that does not begin with " % % ", then it 
may quit parsing for header comments. This is important, and easy enough to 
adhere to. The comments may also be explicitly ended with the 
%%EndComments convention (see below). 

Note that all instances of lines beginning with "% !" after the first instance are 
ignored by document managers, although to avoid confusion this notation should not 
appear twice within the block of header comments. 

%!PS-Adobe-2.0 
This comment differs from the previous % !PS-Adobe-1.0 comment only in version 
number. It indicates that the PostScript language page description fully conforms to 
Version 2.0 of the Adobe Structuring Conventions. This comment must occur as the 
first line of the Postscript language file. 

There are three keywords that may follow this comment on the same line. They are 
designed to flag the entire print job as a particular type of job so that document 
managers may immediately switch gears to some appropriate mode of processing. 
Currently the following types of jobs are recognized: 

• EPS files. These are known as "encapsulated PostScript files," and primarily are 
PostScript language files which produce illustrations. The format is designed to 
facilitate including these files in other documents. The exact format of these EPS 
files is described in another document. The version number of the EPS format may 
also be specified here (see example below). 

Query job. This indicates that the entire job consists of PostScript language 
queries to which replies are expected. See also the discussion of this under the 
Query Comments section of this document. 

ExitServer job. This flags a job that will execute the PostScript language 
exitserver command to permanently register the contents in the PostScript 
language device. This is needed by some document managers to effectively handle 
these special jobs. See also the discussion under % %BeginExitServer. 

The format for these comments is as follows: 

%!PS-Adobe-2.0 EPSF-1.2 
%1PS-Adobe-2.0 Query 
%1PS-Adobe-2.0 ExitServer 

©1988 Adobe Systems Incorporated. All rights reserved. 



% % Title: text* 
This comment provides a text title for the document that is useful for pnntmg 
banner pages and for routing or recognizing documents. This comment is part of the 
existing Version 1.0 structuring conventions, as the"*" notation indicates. 

%%Creator: text* 
Indicates the document creator (usually the name of the document composition 
software). 

%%CreationDate: text* 
Indicates the time that the document was created. The time is expressed as a text 
string, and can be in any format. It is meant to be used purely for informational 
purposes, such as printing on banner pages, and need not be in a standardized form. 

%%For: text* 
Indicates for whom the document is intended. This is frequently the "user name" of 
the individual who composed the document (as determined by the document 
composition software). This can be used for banner pages or for routing the 
document after printing. 

%%Routing: text 
This comment provides information about how to route a document back to its 
owner after printing. It may contain information about mail addresses or office 
locations, at the discretion of the system administrator. 

%%ProofMode: keyword 
This comment provides information about the level of accuracy that is required for 
printing. It is intended to provide guidance to the printing manager for appropriate 
tactics when error conditions arise or when resource shortages are encountered. There 
are three modes which are currently defined: 

Trust Me 
Substitute 
Notify Me 

These modes may be thought of as instructions to the pnntmg manager. If the 
printing manager detects a resource shortage (such as a missing font or paper size), it 
should take action based on these proof modes. 

The TrustMe mode means that the printing manager should take no special action. 
The intent is that the document formatting programs (or the user) knows more than 
the printing manager. For example, fonts may be available on a network font server 
that the printing manager does not know about. Even with something like 
% % IncludeFile, if the % % ProofMode is TrustMe, the printing manager should 
proceed, even if a file cannot be found. The assumption is that the document itself 
can compensate for the file not being included. 

The Substitute mode means that the printing manager should do the best it can to 
supply missing resources with alternatives. This may mean similar fonts (or 
bitmapped screen fonts), scaling pages (or tiling) when paper sizes are not available, 
etc. 

©1988 Adobe Systems Incorporated. All rights reserved. 11 



12 

The last mode, NotifyMe, means that the file should not be printed at all if there 
are any mismatches or resource shortages noted by the printing manager. An example 
of this might be expensive printing on a color printer. If the correct font is not 
available, then the user probably does not want a default font. 

These modes are intended for the printing manager to consider before it actually 
prints the file, based on its own research into available fonts, paper sizes, and other 
resources. If the file is printed and an error occurred, that is a separate issue. 

%%BoundingBox: Llx Lly URx URy* 
This specifies the bounding box that encloses all the marks painted· on the virtual 
page that encompasses all pages of a document. That is, it must be a "high water 
mark" in all directions for marks made on any page. All four values must be 
integers; (LLx, LLy ) and (URx , URy) are the coordinates of the lower left and 
upper right comers of the bounding box in the def a ult user coordinate system. The 
specification (atend) is permitted, in which case the deferred comment must occur 
after the %%Trailer comment. See the PostScript Language Reference Manual, 
Appendix C for more details on the (atend) notation. 

%%Pages: integer [page order]* 
This comment takes an integer argument that represents the total number of pages 
that the document will print, and optionally an argument to indicate the page order. 
The page count should correspond to the number of pages that would be produced by 
the execution of showpage or copypage. If the document produces no ·pages (for 
instance, if it represents an included illustration which does not use showpage), then 
the page count should be 0. The page order argument is intended to help document 
managers to determine the order in which the pages are presented in the document 
file, which in tum will allow a document manager to optionally reorder the pages. 
It will consist of any of three potential values: -1, O, or 1. A value of -1 is taken to 
mean that the pages are in descending (or n-1) order, a value of 1 means ascending 
(or 1-n) order, and a 0 represents a special order (for instance, signature order). The 
distinction between a page order code of 0 and no page order at all is as follows: in 
the absence of the page order argument, any assumption can be made about the page 
order, and any reordering of the pages is permitted; however, if the page order 
argument is present and 0, then the pages should be left intact in the order given. See 
also the % %Page comment. The specification '(atend)' is permitted. 

%%Requirements:.keyword keyword ... 
This comment is used to indicate document requirements such as duplex pnntmg, 
hole punching, collating, sorting, or other physical document processing needs. The 
keyword parameter may correspond to a specific printer feature, or it may be used to 
designate processing requiring "human intervention." A recommended initial set of 
values for this comment follows: 

duplex 
colorprinter 

simplex 
fold 

punch3 
staple 

punchS 

These keywords may be used together in any combination, or others may be added to 
compensate special document processing neeqs. It is up to the document manager to 
ensure that these requirements are met. 

©1988 Adobe Systems Incorporated. All rights reserved. 



Note: For documents that require duplex prmtmg, some printers will be able to 
handle this directly, while other printers may require human intervention to feed the 
paper. The document management system must make a decision based on this 
keyword as to whether or not a printer can be found that will support duplex 
printing (based on the information provided in the Printer Description files or 
through querying the printer). If not, some reordering of the document pages may be 
required. In this case, the % % Pages comment should be consulted to provide more 
information about the existing ordering of pages. 

5.2 FONT AND FILE MANAGEMENT 
Please read the following section carefully. There are several comments which seem 
to "interact" with one another, especially within the font handling area. Keep in 
mind that the % % DocumentFonts comment is always the superset of any other 
font comments, and should always contain a list of all fonts used by the documents. 
Other comments comprise special subsets of this list which may be used for font 
management. There are analogous comments for file and prologue management, as 
well. 

o/oo/oDocumentFonts: fontname fontname ... * 
This comment is already present in Version 1.0 of the comment conventions, but is 
included here for reference. It indicates that all the fonts listed are used by the print 
job. In particular, there will be at least one invocation of the findfont operator for 
each of the font names listed. The notation (atend) is permitted here, as specified in 
the version 1.0 format. If (atend) is used, then the list must be supplied in the 
% % Trailer section of the document, in the same format as it would normally have 
appeared in the header comments. See also % %DocumentNeededFonts and 
% % DocumentSuppliedFonts. 

o/oo/oDocumentNeededFonts: fontname fontname ... 
This comment (if present) will provide a list of PostScript font names that are 
required by the document (and not contained within the document file). It is 
assumed that there will be at least one corresponding instance of the 
% % lncludeFont directive for each font listed in this section. The purpose of this 
comment is to allow spoolers to make a decision as to whether the file needs to be 
parsed to provide font files within the body of the document. See also 
% % DocumentFonts and % % DocumentSuppliedFonts. 

o/oo/oDocumentSuppliedFonts: fontname fontname ... 
This convention will provide a list of all the font files that have been provided 
within the document print file as downloaded fonts. There will be at least one 
corresponding % % BeginFont and % % EndFont pair within the document 
description for each of the listed font names. See also % % DocumentFonts and 
% %DocumentNeededFonts. 

o/oo/oDocumentProcSets: name version revision ... 
This comment provides a list of all the ProcSets referenced within the document. It 
is similar to the % %DocumentFonts comment in use. The notation (atend) is 
permitted here, as specified in the version 1.0 format. If (atend) is used, then the 
list must be supplied in the % % Trailer section of the document, in the same format 
as it would normally have appeared in the header comments. The revision field 

©1988 Adobe Systems Incorporated. All rights reserved. 13 



14 

should be taken to be upwardly compatible with procedure sets of the same version 
number. That is, if "myprocs 1.0 O" is requested, then "myprocs 1.0 2" should be 
compatible, although the converse (backward compatibility) is not necessarily true. 

%%DocumentNeededProcSets: name version revision ... 
This comment indicates that the document requires the ProcSets listed (for more 
information, see % %BeginProcSet. The name, version, and revision fields should 
uniquely identify the ProcSet. If a version numbering scheme is not used, these 
fields should still be filled with a "dummy" value (such as "" or 0). These 
comments are always used with the % %IncludeProcSet comment. 

%%DocumentSuppliedProcSets: name version revision ... 
This comment indicates that the document contains (or supplies) the ProcSets listed. 
This corresponds to later use of the % % BeginProcSet and % % EndProcSet 
comments. The name, version, and revision fields should uniquely identify the 
ProcSet. 

%%DocumentNeededFiles: filename filename ... 
Lists the included files needed by a document description. Each file mentioned in 
this list will appear later in the document as the argument of a % % IncludeFile 
comment. 

%%DocumentSuppliedFiles: filename filename ... 
Lists the files included in a document description. Each file mentioned in this list 
will appear later in the document in the context of a % % BeginFile and 
% % EndFile comment construct. 

NOTE: 
There are now header comments which make reference to the fonts, files, 
or procedure sets either needed or supplied by a document. These must be 
carefully used to provide the correct information to a document 
management program. In particular, they have a specific relationship to 
each other. The %%DocumentNeeded comments are intended to help a 
document manager decide whether further parsing of a document file is 
necessary to provide these included resources. They should only be used if 
the corresponding %%Include comment is used. The %%Document
Supplied comments are extra information for spoolers which wish to 
"cache" the resources, and provide helpful directories of the resources 
contained within the print file. They are optional, while the 
%%DocumentNeeded comments are not optional if the %%Include 
mechanism is employed. Notice that the %%DocumentFonts comment is 
special. It existed in Version 1.0, and still is valid, but is treated somewhat 
differently than the others. The reason for this is that a document may use a 
font which is believes is permanently loaded into the printer (or in ROM), 
and therefore need not be explicitly loaded by a server through the 
%%Include mechanism, nor need be supplied in the document. If mention 
is made of a f ant in the %%DocumentF onts line which is determined not 
to be present in the printer, it should be provided by the font manager, and 
may be loaded at any point prior to its use by the document file (typically 
these will be downloaded f ants which are downloaded prior to the 
document file, but which are not permanently resident in the printer. 

NOTE also: 
These comments which provide lists of font or file names may grow longer 
than the 256 character line length convention. In this case it is permissible 

©1988 Adobe Systems Incorporated. All rights reserved. 



(and recommended) to employ the %%+ comment to indicate the 
continuation of a comment on the following line (see above). 

These conventions (since they are document level comments) should be present in the 
header of a document, if they are used. That is, they should appear before the first 
instance of % % End Comments, or the first non-comment line (which is interpreted 
as an implicit %%EndComments). 

%%DocumentPaperSizes: size size ... 
Lists all the paper sizes needed by this print job. These sizes will correspond to the 
nominal size names as specified in the Printer Description file format keywords (see 
the discussion under % % BeginPaperSize for more information). 

%%DocumentPaperForms: formname formname ... 
Lists all the forms needed by this print job. These form names will correspond to 
notions of particular forms as understood by a document manager. They might, for 
instance, include company letterhead, tax forms, or other special forms. They will 
be explicitly called for by each page that requires them through the use of the 
%%PaperForm comment (see). 

%%DocumentPaperColors: colorname colorname ... 
Indicates particular colors of paper required by a print job. For example, colorname 
might be "goldenrod." Again, this comment will be supported by corresponding 
% %PaperColor comments for the particular pages requiring these paper colors. 

%%DocumentPaperWeights: integer integer ... 
Indicates a weight of paper (in pounds or other measure) expressed as an integer 
value. For example, the value might be 20. There should be at least one instance of 
the %%PaperWeight comment for each weight listed here. See also 
% %PaperWeight. 

%%DocumentPrinterRequired: printer product [version 
revision] 
This directs that the PostScript language page description is intended for a particular 
printer, identified by its network printer name and/or product string and optionally 
by its version and revision strings, as defined by the printer's PPD file (and as 
returned by the product, version, and revision Postscript language operators. This 
may be used to request a particular printer in a highly networked environment where 
that printer may be more convenient, to override spooler defaults, or perhaps if the 
PostScript language file itself contains printer-specific elements. This last case 
should rarely be necessary, as most documents that require particular features of a 
PostScript printer can provide Requirement Conventions indicating a need for that 
feature, rather than requiring a particular brand of printer. Then, if other printers 
are available which have the necessary features, the page inay still be printed as 
desired. Two examples follow: 

%%DocumentPrinterRequired: "Local Print" (LaserWriter) 23.0 
%%DocumentPrinterRequired: """(Linotype}" 

©1988 Adobe Systems Incorporated. All rights reserved. 15 



%%DocumentProcessColors: keyword keyword ... 
This comment marks the use of process colors within the document. Process colors 
are defined to be cyan, magenta, yellow, and black. These four colors are indicated in 
this comment by the keywords Cyan, Magenta, Yellow, and Black. This comment 
is used primarily when producing color separations. See also 
% %PageProcessColors. The (atend) conventions is allowed. 

%%DocumentCustomColors: name name ... 
This indicates the use of custom colors within a document. These colors are 
arbitrarily named by an application, and their CMYK or RGB approximations are 
provided through the % %CMYKCustomColor or % %RGBCustomColor 
comments within the body of the document. The names are specified to be any 
arbitrary Postscript language string except (Process Cyan), (Process Magenta), 
(Process Yellow), and (Process Black), which need to be reserved for custom color 
implementation by applications. The (atend) specification is permitted. 

o/oo/oEndComments* 
This indicates an explicit end to the header comments of the document. Any line 
that does not begin with " % % " also constitutes an implicit end of the header 
comment block. 

%%EndProlog* 
This comment marks the boundary between the document's prologue and its script. 
This convention is already widely observed, and should be included in all documents 
which have a distinct prologue and script. Note: breaking a document into a prologue 
and a script is conceptually important, although not all document descriptions will 
fall neatly into this model. If your document represents free form Postscript 
language fragments which might entirely be considered a "script", you should still 
include the % % EndProlog comment, although there may be nothing in the 
prologue part of the file. This will effectively make the entire document a "script." 
Be careful, still, in employing the % % Page comment, because document managers 
may make assumptions about page reversal based on these comments. See the 
discussion of % %Page in the section entitled Page Structure and Requirement 
Comments for more information. 

5.3 BODY COMMENTS 

16 

Body comments may appear anywhere in a document. They are designed to provide 
structural information about the document file's organization, and should match any 
related information provided in the header comments section. 

%%BeginSetup 
o/oo/oEndSetup 

These comments delimit the part of the document that does device setup for a 
particular printer or document. There may be procedures for setting page size, 
invoking manual feed, establishing a scale factor (or "landscape" mode), or other 
document-level setup procedures. There may also be general initialization code such 
as executing save or setting some aspects of the graphics state. These delimiters are 
useful for a document manager to be able to detect an entire section of initialization 

©1988 Adobe Systems Incorporated. All rights reserved. 



procedures. If present, this comment will fall after the % % EndProlog directive 
but before the first % %Page (In other words, it is not part of the prologue. It 
should be in the first part of the script, before any pages are specified. 

Note: Specification of some of the page-level comments are permitted within this 
section of the document, such as % %PaperColor. If found in the document setup 
section, then they are taken to be in effect for the entire document, rather than for a 
single page. See the discussion under Page Comments in the Resource 
Requirements section of this document. 

%%BeginDocument: name [version] [type] 
%%EndDocument 

These comments are used to delimit an entire file that is imported as part of another 
PostScript language document or print job. This comment is required to allow 
multiple occurrences of the % % EndProlog and % % Trailer comment in the body of 
a document. Any existing document file that is embedded within another document 
file must be surrounded by these comments. The version and type fields are 
optional, and if used should provide extra information for recognizing specific 
documents. 

Note: When a document file is printed, usually a certain amount of PostScript 
language code is added to the file that may deal with font downloading issues, with 
paper sizes, or other aspects of printing once a printer has been selected for the 
document. At that stage, the printing manager should embed the original document 
(along with all the structuring conventions which may fall within that file) within 
% % BeginDocument and % % EndDocument comments. 

%%BeginFile: filename 
%%EndFile 

The enclosed segment resulted from having included a file in the PostScript language 
stream. The file server component of a document manager may perhaps extract a 
copy of this file for later use by the % % DocumentFiles, % % PageFiles or 
% %IncludeFile comments. The file name will usually correspond to the original 
disk file name on the host system. 

%%BeginFont: fontname [ printername ] 
%%EndFont 

These comments delimit a downloaded font. The font server component of a 
document manager may remove the font from the print file (for instance, if the 
chosen printer already has the font resident), or it may simply keep a copy of it for 
later use by the % % IncludeFont comment. The fontname field should be the 
valid PostScript language name of the font (as used by the definefont operator), and 
the optional printername field may contain the network name of the printer, in an 
environment where fonts may be tied to particular printers. 

%%BeginProcSet: name version revision 
%%EndProcSet 

The PostScript language code enclosed by the % % BeginProcSet and 
% % EndProcSet comments typically represents some subset of the document 
prologue. The prologue may be broken down into many sub-packages, or procedure 
sets, which may define groups of routines appropriate for different imaging 

©1988 Adobe Systems Incorporated. All rights reserved. 17 



18 

requirements. These individual "ProcSets" are identified by name, version, and 
revision numbers for reference by a document management system. A document 
manager may choose to extract these ProcSets from the print file in order to manage 
them separately for a whole family of documents. Note that an entire document 
prologue may be an instance of a ProcSet, in that it is a body of procedure 
definitions used by a document description file. (See also the 
% % DocumentProcSets, % % lncludeProcSet and % % IncludeFile comments). 
The name, version, and revision fields should uniquely identify the ProcSet. The 
name may consist of a disk file name or it may use a PostScript language name 
under which the prologue is stored in the printer. In any case, these fields are used 
to identify the ProcSet to the document manager. See also the 
% % ?BeginProcSetQuery comment convention, with which one may query the 
PostScript server for the prologue name and version fields. 

Notice that this does not replace the % %EndProlog comment used in the original 
(version 1.0) document structuring conventions. It should still be used in the same 
manner, although now it is optional to provide the additional % %BeginProcSet 
and % % EndProcSet comments as well. A document manager may assume that the 
document prologue consists of everything from the beginning of the print file 
through the % %EndProlog comment, which may encompass several instances of the 
% BeginProcSet/% % EndProcSet comments. 

o/oo/oBeginBinary: bytecount 
%%EndBinary 

These comments are designed to provide information about embedded bodies of 
binary data. When a PostScript language document file is being parsed, encountering 
raw data can complicate the parsing process immensely. These comments are designed 
to allow a document manager to effectively ignore anything encapsulated within 
these comments. In fact, the data may be anything, including hexadecimal 
representations of binary data or any other data which should be ignored by a 
document manager. Since a bytecount field is provided, the material may be skipped 
even if it contains embedded comment strings. If a PostScript language print job 
embeds binary data, it should be encapsulated within these % % BeginBinary and 
% % EndBinary comments so that parsing software can safely ignore it. 

Note: In order to read data directly from the input stream in the PostScript 
language (using currenttile, for instance), it is necessary to invoke a procedure 
followed immediately by the data to be read. If the data is embedded in the 
% %BeginBinary/% %EndBinary construct, then those comments will effectively 
be part of the data, which is typically not what is desired. In order to avoid this 
problem, the procedure invocation should fall inside the comments (even though it 
is not binary), and the bytecount should reflect this, so that it can be skipped 
correctly. Make sure to· allow for carriage returns, if any. In the example below 
(taken from the PostScript Language Reference Manual, there are 131072 bytes of 
binary data, but the call to the image operator is also encompassed within the 
% % BeginBinary and % % EndBinary comments. The resulting byte count includes 
6 additional bytes, for the string "image" plus the newline character. Note: The 
entire % % BeginBinary comment line should be read before acting on the byte 
count. 

/picstr 256 string def 
25 140 translate 
132 132 scale 
256 256 8 [256 O O -256 O 256] { currentfile picstr readhexstring pop} 

©1988 Adobe Systems Incorporated. All rights reserved. 



%%BeginBinary: 131078 
image 
4c47494b3187c237d237b137438374a 
213769876c8976985a5c98767587575 % 131072 bytes binary 
%%EndBinary 

o/oo/oBeginPaperSize: sizename 
o/oo/oEndPaperSize 

These comments delimit a PostScript language sequence that will invoke a particular 
paper size. This comment is provided specifically for environments where simplicity 
is needed; that is, where the full functionality and generality of the Printer 
Description files keyword replacement mechanism is not necessary. The 
% % BeginFeature and % % Feature comments will allow more specific control 
over invoking .features as found in the Printer Description files. For the purposes of 
%%BeginPaperSize and %%PaperSize (see below under Resource Requirements), 
any valid method of securing that particular paper size is acceptable (whether by 
invoking a particular input bin, a paper tray, or by setting the page size). The 
appropriate keyword for the nominal paper size should be used as specified in the 
Printer Description file. Examples of these are: "Letter, Legal, A3, A4, AS, B4, 
BS, Ledger, Statement, Tabloid." An example follows: 

%%Page: 1 1 
%%BeginPaperSize: Ledger 
statusdict begin ledgertray end 

%%EndPaperSize 

o/oo/oBeginFeature: featuretype ( option ] 
o/oo/oEndFeature 

These comments are used to delimit a PostScript language code segment that will 
invoke a . particular feature on a PostScript printer as specified in the Printer 
Description File format (described in another document). The featuretype will 
correspond to one of the keywords in the Printer Description file, and the 
"featuretype option" sequence should be exactly as found in the Printer Description 
file, in order to cooperate effectively with these conventions. The 
% % BeginFeature and % % EndFeature comments should delimit any PostScript 
language fragments that invoke a printer-specific feature on a printer. A document 
manager may choose to replace the enclosed PostScript language code with the 
proper sequence of instructions if the document is sent to a different printer than 
originally intended. This is, in a sense, the inverse of the % %Feature comment (see 
the Resource Requirements section of this document), which indicates that the 
specified printer feature needs to be invoked by the document manager at that 
position in the print file. The % % Begin/EndFeature comments are used when the 
printer feature is being explicitly invoked for a particular printer, and are intended 
to convey information about this decision to the document manager. This comment 
can be used instead of using the % % BeginPaperSize comment (or even in addition 
to, if nested properly). Three examples follow. The first example illustrates a 
PostScript language file in which an assumption is made about the presence of a file 
system. If a document manager were to send this document to a printer which did 
have a file system, it might actually replace the encapsulated "false" with the value 
of that feature (from the Printer Description file) for the chosen printer: 

©1988 Adobe Systems Incorporated. All rights reserved. 19 



20 

% example 1 
%%BeginFeature: *FileSystem 
false 
%%EndFeature 
{ %ifelse 

(logfile) (w) file dup (message) writestring closefile }{%else 
(message) print flush 

} ifelse 

%example2 
%%BeginFeature: *lnputSlot Upper 
statusdict begin 1 setpapertray end 

%%EndFeature 

% example 3 
%%BeginPaperSize: Ledger 
%%BeginFeature: *PaperTray Ledger 
statusdict begin ledgertray end 
%%EndFeature 
%%EndPaperSize 

o/oo/oBeginExitServer: password 
%%EndExitServer 

These comments delimit the PostScript language sequence that will cause the rest of 
the file to be registered outside the normal server loop save/restore context. This 
convention is used to flag any code that will set up or execute the exitserver 
instruction, so that it can be caught and removed as necessary by a document 
manager. It may be used in conjunction with the % %EOF requirement convention to 
pinpoint where an end-of-file indication should be sent by the document manager. 
Please see also the discussion under %!PS-Adobe-2.0 which can be found in the 
Structure Comments section of this document. PostScript language jobs which 
employ exitserver should be specially flagged by use of the % !PS-Adobe-2.0 
ExitServer notation. An example of its appropriate employment follows: 

%!PS-Adobe-2.0 ExitSeNer 
%%CreationDate: Mon Feb 2 10:34:36 1987 
%%EndComments 
%%BeginExitSeNer: 000000 

seNerdict begin 000000 exitseNer 
%%EndExitSeNer 
% ... 
%%EOF 

%%BeginProcessColor: keyword 
o/oo/oEndProcessColor 

The keyword here is either Cyan, Magenta, Yellow, or Black. During color 
separation, the code between these comments should only be downloaded during the 
appropriate pass for that process color. Intelligent printing managers can save 
considerable time by omitting code within these bracketing comments on the other 
three separations. Extreme care must be taken by the document composition 
software to correctly control overprinting and knockouts if these comments are 
employed, since the code may or may not be executed. 

©1988 Adobe Systems Incorporated. All rights reserved. 



o/oo/oBeginCustomColor: keyword 
o/oo/oEndCustomColor 

The keyword here is any PostScript language string except (Process Cyan), (Process 
Magenta), (Process Yellow), and (Process Black). During color separation, the code 
between these comments should only be downloaded during the appropriate pass for 
that custom color. Intelligent printing managers can save considerable time by 
omitting code within these bracketing comments on the other three separations. 
Extreme care must be taken by the document composition software to correctly 
control overprinting and knockouts if these comments are employed, since the code 
may or may not be executed. 

%%CMYKCustomColor: cyan magenta yellow black keyword 

This provides an approximation to the custom color specified by keyword. The four 
components of cyan, magenta, yellow, and black must be specified as numbers from 
0 to 1 representing the percentage of that process color. These numbers are exactly 
analogous to the arguments to the setcmykcolor PostScript language operator. The 
keyword follows the same custom color naming conventions for the 
% % DocumentCustomColors comment. 

%%RGBCustomColor: red green blue keyword 

This provides an approximation to the custom color specified by keyword. The three 
components of red, green, and blue must be specified as numbers from 0 to 1 
representing the percentage of that process color. These numbers are exactly 
analogous to the arguments to the setrgbcolor PostScript language operator. The 
keyword follows the same custom color naming conventions for the 
% % DocumentCustomColors comment. 

%%Trailer* 

This comment should occur once at the end of the document script. Any post
processing or "cleanup" should be contained in the trailer of the document, which is 
anything that follows this % % Trailer comment. Additionally, any of the 
document-level structure comments that were deferred by using the (atend) 
convention (permissible in % % DocumentFonts, % % Pages, % % PageFonts, 
% %BoundingBox, etc.) should be mentioned in the trailer of the document (i.e. 
after the% %Trailer comment). 

Note: When entire documents are embedded in another document file, there may be 
more than one % % Trailer comment as a result. In order to avoid ambiguity, 
embedded documents should be delimited by the % % BeginDocument and 
% % EndDocument comments. 

5.4 PAGE COMMENTS 

The page-level comments will usually occur once for each page (with the exception 
of the %%Begin0bject and %%End0bject comments), and provide information 
about that page's requirements or structure. 

©1988 Adobe Systems Incorporated. All rights reserved. 21 



22 

%%Page: label ordinal* 
This comment is used to mark the beginning of the PostScript language code 
describing a particular page. It requires two arguments: a page label and a sequential 
page number. The label may be anything, but the ordinal page number should reflect 
the position of that page within the body of the PostScript language file (and should 
start with 1, not 0). This convention is widely used and very important. You must 
make sure that your pages do not rely on each other, but only on definitions made in 
the prologue of the document. A document manager should be able to physically 
rearrange the contents of the print file into a different order based on the % % Page 
comment (or the pages may be printed in parallel, if desired). Please do not include 
these comments if the document does not conform to these use constraints. See also 
the % % Pages comment. 

%%PageFonts: fontname fontname ... * 
Indicates the names of all fonts used on the current page. The notation (atend) is 
permissible here, but the list must be provided before the next instance of % % Page 
or % % Trailer. In other words, it must be supplied by the end of that page. 

%%PageFiles: filename filename ... 
Indicates the names of all files used on the current page. This should be used only if 
file inclusion is required of the document manager (i.e. there are subsequent 
instances of the % % lncludeFile directive on that particular page). 

%%PageBoundingBox: Llx Lly URx URy 
This is a body comment, in that it will appear in the body of a document, analogous 
to the % % PageFonts comment. It specifies the bounding box that encloses all the 
marks painted on that particular page (not the whole document-see the 
% % BoundingBox convention). All four values must be integers; (LLx, LLy ) and 
(URx , URy) are the coordinates of the lower left and upper right comers of the 
bounding box in the default user coordinate system. The specification (atend) is 
permitted, in which case the deferred comment must occur before the next % % Page 
or % % Trailer comment. 

%%PageProcessColors: keyword keyword ... 
This comment marks the use of process colors within the page. Process colors are 
defined to be cyan, magenta, yellow, and black. These four colors are indicated in 
this comment by the keywords Cyan, Magenta, Yellow, and Black. See also 
% %DocumentProcessColors. The (atend) conventions is allowed. 

%%PageCustomColors: name name ... 
This indicates the use of custom colors within a document. These colors are 
arbitrarily named by an application, and their CMYK or RGB approximations are 
provided through the %%CMYKCustomColor or %%RGBCustomColor 
comments within the body of the document. The (atend) conventions is allowed. 

©1988 Adobe Systems Incorporated. All rights reserved. 



%%BeginPageSetup 
%%EndPageSetup 

These directives are analogous to the % % BeginSetup comments, except that they 
will fall within the body of a document, right after a % %Page comment. Use them 
to delimit areas where manual feed is set, margins are established, landscape mode is 
chosen, particular paper colors are invoked, etc. 

%%Begin0bject: [name] [code] 
%%End0bject 

These comments are used to delimit individual graphic elements of a page. In a 
context where it is desirable to be able to recognize individual page elements, this 
comment will provide a mechanism to label and recognize them at the PostScript 
language level. This can be especially useful for a document printing system that 
may have the capability of only printing selected objects in a document (or on a 
page). For instance, the code field of this comment may be used to represent 
proofing levels for a document (or color separations). Then the printing manager 
may be requested to "only print those objects with proofing levels less than, say, 4. 
This can save printing time when proofing various different elements of a document. 
It can also be useful in systems which allow PostScript language segments to be 
parsed in and reedited, to allow convenient grouping and categorization of graphic 
page elements. In a document production system which is highly object-oriented, 
this comment is strongly recommended. 

%%PageTrailer 
This comment marks the end of a page. Any page comments that may have been 
deferred by the (atend) convention should follow the% %PageTrailer comment. 

6. RESOURCE REQUIREMENTS 

These comments may appear anywhere in a document, and indicate that the named 
resource (whether it is a font, a disk file, or other) should be included in the 
document at the point where the comment is encountered. These should not appear 
in the body of a document without a corresponding comment in the header of the 
document indicating that the files are required by the document as a whole. 

%%1ncludeFont: fontname 
Indicates that the specified font must be included at this point in the document by 
the document manager. The fontname specified should be the correct Postscript 
language name for the font (without the leading slash). Due to the presence of 
multiple save/restore contexts, a font server may have to supply a specific font 
more than once within a single document, and should do so whenever this comment 
is encountered. 

%%1ncludeProcSet: name version revision 
This is a special case of the more general % % lncludeFile directive. It requires that 
a PostScript language ProcSet with the given name, version, and revision be inserted 
into the print file at the current position. If a version numbering scheme is not used, 
these fields should still be filled with a "dummy" value (such as "" or 0). See the 
%% BeginProcSet comment for more information. 

©1988 Adobe Systems Incorporated. All rights reserved. 23 



%%1ncludeFile: filename 

Provides a directive that the specified file must be inserted by the document manager 
at the current position in the document. 

%%ExecuteFile: filename 

This is much like the % % lncludeFile directive except that it specifies that the 
included file is an executable Postscript language file, rather than perhaps a ProcSet 
or prologue file. This means that in all probability it will contain at least one 
instance of showpage, and means that it can (and should) be wrapped with a save 
and restore. This convention should usually be used to include whole PostScript 
language documents within other documents, and should be used whenever the 
enclosed file is entirely self-contained (and especially when it can be nested in a 
save/restore context without difficulty). In particular, illustrations and files 
which have no effect other than to make marks on a page are perfectly suited for the 
% % ExecuteFile convention. 

%%ChangeFont: fontname 

This comment is being phased out as of version 2.1 of this specification. It is not 
very useful, and is fraught with problems. Please don't use it or feel that you have 
to support it. 

6.1 PAPER COMMENTS 

24 

Note: The following comments which request particular paper forms, colors, or 
sizes may appear either in the document setup area or on a particular page. If these 
comments fall within the document setup section of the document file, then they 
may be construed to be in effect for the entire print job. If they are found within the 
page-level comments for a page, then they should only be in effect for that page. 

%%PaperForm: formname 

This requests a particular form for printing. For example, a page may be printed on 
company letterhead, on an order form, or other particular form specified within a 
document handling system. There are no clearly defined values for formname; it 
may vary from one siie to another. 

%%PaperColor: colorname 

The syntax is like % % DocumentPaperColors. This comment will appear in the 
body of a document description after an instance of % %Page, and will only remain 
in effect for that particular page. 

%%Paperweight: integer 

The syntax is like %%DocumentPaperWeights. This comment will appear in the 
body of a document description after an instance of % % Page, and will only remain 
in effect for that particular page. 

©1988 Adobe Systems Incorporated. All rights reserved. 



%%PaperSize: sizename 
Specifies a particular page size (see % %BeginPaperSize) to be set. The sizename 
should be a simple keyword as found in the Printer Description file, and which 
basically consists of the nominal paper size expressed in lowercase letters (for 
example: ledger, legal, a4). This will only remain in effect for that particular page. 

%%Feature: featuretype [ option ] 
This comment specifies the need for a particular printer feature as specified in the 
Printer Description file format. Its use specifies a requirement that must be 
fulfilled by a document manager before printing (see also the discussion under 
% %BeginFeature). The document file may make the assumption that the 
% % Feature line in the file will be replaced by the appropriate Postscript language 
fragment from the appropriate Printer Description file, and the execution of the file 
may be contextually dependent upon this replacement. This offers a very powerful 
way of making a document behave differently on different printers in a device
independent manner. An example follows. This example will request that the 
appropriate page dimensions for B4 paper be inserted into the document, and will 
then use these for a call to the setpageparams operator, if it is present. The 
*lmageableArea keyword in the Printer Description file always produces four 
numbers representing the bounding box of the imageable region of a particular paper 
size. Two of these numbers can be used as arguments to setpageparams, as in the 
example. The entire invocation is contained within % % BeginPaperSize I 
% % EndPaperSize comments, and may be replaced by entirely different code for a 
different printer. 

%%BeginPaperSize: A4 
mark 595 842 
%%Feature: *lmageableArea A4 
statusdict begin 
/setpageparams where { 

pop O O setpageparams pop pop 
} if 
end 
cleartomark 

%%EndPaperSize 

%%EOF 
This comment is used to request that an end-of-file indication be sent to the 
Postscript device. It may be used, for instance, with the % % BeginExitServer 
comment (see above). 

7. QUERY CONVENTIONS 

A query is defined to be any PostScript language segment that will generate some 
returned information back to the host across the communications channel that is 
expected before a document can be formatted or created. This might result from the 
execution of any of the =, ==, print or pstack operators, for instance. In particular, 
this definition covers information which is expected back from the PostScript 
printer for decision-making purposes. This might include the generation of font 
lists, inquiries as to the availability of resources, printer features, or the like. 

©1988 Adobe Systems Incorporated. All rights reserved. 25 



All of the query conventions consist of a BEGIN and END construct, with the 
keywords reflecting the type of query. For all of them, the % % ?End Query 
comment should include a field for a default value, which should be returned by 
document managers if they cannot understand or do not support query comments. 
The value of the default (see below for examples) is entirely application dependent, 
and can be used by an application to determine specific information about the 
spooling environment (if any), and to take appropriate default action. 

Any print file which embeds Postscript language queries within the job should 
adhere very carefully to these query conventions, to allow the document to be 
spooled properly. 

7.1 SPOOLER QUERY RESPONSIBILITIES 
A spooler which expects to be able to interpret and correctly spool documents 
conforming to version 2.0 of the Adobe Document Structuring Conventions must, at 
a minimum, perform certain tasks in response to these query conventions. In general, 
the spooler must recognize the queries, remove them from the print stream, and send 
some reply back to the host. If a spooler cannot interpret the query, it is expected to 
return the value provided as the argument to the % % ?EndQuery comment (see 
below). A query can be minimally recognized by the sequence "%%?Begin" 
followed by any number of characters (up to 256 maximum per line, by convention) 
through the end-of-line indication (the "%" is decimal ASCII 37, and the "?" is 
decimal ASCII 63). The end of the query will be delimited (minimally) by the 
sequence "%%?End" followed by some keywords and optionally by a colon ":" 
(decimal ASCII 58) and the default response to the query (any text through end-of
line ). A spooler should make attempts to recognize the full query keyword (like 
% %?BeginProcSetQuery) if it can, but it is obligated at least to respond to any 
validly formed query. 

7.2 QUERY COMMENTS 

26 

%!PS-Adobe-2.0 Query 
A PostScript language query must be sent as a separate job to the printer in order to 
be fully spoolable. This means that an end-of-file indication should be sent 
immediately after the query job. A job which is a query job should always begin 
with this % !PS-Adobe-2.0 Query convention, which further qualifies the file as 
being a special case of a version 2.0 conforming PostScript language file. A query 
job will contain only query comments, and need not contain any of the other 
standard structuring conventions. A document manager should be prepared to extract 
query information from any print file which begins with this comment convention. 
A document manager should fully parse a query job file until the EOF indication is 
reached. 

Note: It is permissible to include more than one query in a single print job, but not 
to include queries within the body of a regular print job. It cannot be guaranteed 
that a print job with embedded queries will be handled properly by a document 
manager. 

©1988 Adobe Systems Incorporated. All rights reserved. 



%%?BeginQuery: identifier 
%%?EndQuery: default 

These comments are very general-purpose, and may serve any function that is not 
adequately covered by the rest of this specification. The reader will notice that the 
query keywords in this section are very specific, since in order to understand and 
intelligently respond to a query, a document manager must semantically understand 
the query. Therefore specific keywords like % % ?BeginPrinterQuery were used. 
When this generic % % ?BeginQuery comment is encountered, a spooler may be 
forced to return the default value. The comment is included primarily for large 
installations which need to implement specific additional queries that are not 
covered here, and which will likely implement both the document composition 
software and the spooling software themselves. 

%%?BeginPrinterQuery 
%% ?EndPrinterQuery: default 

This comment delimits PostScript language code that will return information 
describing the printer's product name, version and revision numbers. The standard 
response consists of the printer's product name, version, and revision strings, each of 
which should be followed by a newline character, which should match the 
information in the printer's Printer Description file. This comment may be used also 
to identify the presence of a spooler, if necessary. In the following example the 
def a ult response as represented in the % % ?EndPrinterQuery line is the word 
spooler, which would be returned by spooling software that did not have a specific 
printer type attached to it: 

%% ?BeginPrinterQuery statusdict begin revision== version == productname ==flush 
end %% ?EndPrinterQuery: spooler 

%%?BeginVMStatus 
%%?EndVMStatus: default 

This comment delimits PostScript language code to return the state of the 
PostScript interpreter's virtual memory. The standard response consists of a line 
containing the results of the Postscript language vmstatus operator. 

%% ?BeginVMStatus vmstatus = = = flush 
%% ?EndVMStatus: unknown 

%%?BeginFeatureQuery featuretype option 
%% ?EndFeatureQuery: default 

This query provides information describing the state of some specified printer
specific feature, as defined by the printer's Printer Description file. The featuretype 
field identifies the keyword as found in the Printer Description file specification. 
The standard response will vary with the feature and is defined by the printer's 
Printer Description file. In general, the keyword associated with the feeture should 
be returned. In the example that follows, the Printer Description File keywords 
True or False are returned: 

%% ?BeginFeatureQuery: *lnputSlot manualfeed 
statusdict /manualfeed known { 

statusdict /manualfeed get {(True}}{ (False}} ifelse 
}{ 

©1988 Adobe Systems Incorporated. All rights reserved. 27 



28 

(None) 
} ifelse = flush 
%% ?EndFeatureQuery: Unknown 

%% ?BeginFileQuery: filename 
%% ?EndFileQuery: default 

The PostScript language code between these comments causes the printer to respond 
with information describing the availability of the specified file. This presumes the 
existence of a file system that is available to the Postscript interpreter, which is 
not available on all implementations.· The standard response consists of a line 
containing the file name, a colon, and either Yes or No, indicating whether or not 
the file is present. Look at the example below for the font query, which works the 
same way. 

%% ?BeginFontQuery: fontname fontname ... 
%%?EndFontQuery: default, 

This provides a Postscript language query that should be combined with a particular 
list of font names being sought. It looks for any number of names on the stack, and 
will print a list of values depending on whether or not the font is known to the 
Postscript interpreter. The font names should be provided on the operand stack by 
the Document Manager, This is done by simply emitting the names, with leading 
slash "/" characters, before emitting the query itself. 

To keep the Document Manager from having to keep track of the precise order in 
which the values are returned, and to guard against errors from dropped information, 
the syntax of the returned value will be /FontName: Yes or /FontName:No, 
where each font in the list is returned in this manner. The slashes delimit the 
individually returned font names, although newlines should be expected (and 
ignored) between them: A final '*' character will follow the returned values. 

%% ?BeginFontQuery: Times-Roman Optima CircleFont Adobe-Garamond 
mark 
/Times-Roman 
/Optima 
/Circle Font 
I Adobe-Garamond 
{%loop 
counttomark 0 gt { o/oifelse 
dup (/) print (1234567890123456789012345678901234567890) cvs print 
FontDirectory exch known {(:Yes)} {(:No)} ifelse = 

}{%else 
pop exit 
} ifelse 

} bind loop (*) = flush 
%% ?EndFontQuery: Unknown 
%%EOF 

/Times-Roman:Yes 
/Optima:Yes 
/CircleFont:No 
I Adobe-Garamond :No 

©1988 Adobe Systems Incorporated. All rights reserved. 



%%?BeginFontlistQuery 
%%?EndFontlistQuery: default 

Provides a PostScript language sequence to return a list of all available fonts. It 
should consult the FontDirectory dictionary as well as any mass storage devices 
available to the device. The list need be in no particular order, but each name should 
be returned separated by a slash "/" character. This is normally the way the 
PostScript == operator will return a font name. All white space characters should 
be ignored. The end of the font list should be indicated by a trailing "*" sign on a 
line by itself (decimal ASCII 42). Here is a look at two valid returns from the 
query: 

/Optima/Optima-Bold/Optima-Oblique/Optima-BoldOblique/Courier/Symbol 
* 

/Courier 
/Symbol 
/Times-Roman 

Note: 
In previous versions of this document, it was recommended to use flush to 
separate names into packets. This turns out to result in major peiformance 
degradation, and is hereby and subsequently disrecommended. 

%% ?BeginProcSetQuery: name version.revision 
%%?EndProcSetQuery: default 

These comments delimit a ProcSet query. The combination of the name, version and 
revision fields should uniquely identify the ProcSet. The standard response to this 
query will consist of a line containing any of the values "O, 1, 2" where a value of 0 
means that the ProcSet file is missing, a value of 1 means that the ProcSet is present 
and OK, and a value of 2 indicates that the ProcSet is present but is an incompatible 
version. 

%% ?BeginProcSetQuery: adobe_distill 1.1 
/adobe_distill_dict where { 

begin VERSION (1.) anchorsearch {(1 )}{(2)} ifelse clear 
end 

}{ 
(0) 

} ifelse print flush 
%% ?EndProcSetQuery: unknown 

EXAMPLE 1: QUERY COMMENTS 

This is an example of a query job. It is a separate PostScript language job that is 
sent before a print file is generated, its purpose being to obtain information about 
the state of the printer that can be used to generate the print file. Notice the Query 
keyword on the first line of the file, and the use of the query comments. 

©1988 Adobe Systems Incorporated. All rights reserved. 29 



30 

%!PS-Adobe-2.1 Query 
%% Title: Query job to find out if some fonts exist 
%% ?BeginFontQuery: Palatino-Roman Palatino-Bold 
mark 
/Palatino-Roman 
/Palatino-Bold 
{ 
counttomark O gt { 
dup (/) print (1234567890123456789012345678901234567890) cvs print 
FontDirectory exch known {(:Yes)} {(:No)} ifelse = 
}{ 
pop exit 
} ifelse 
} bind loop (*) = flush 
%% ?EndFontQuery: Unknown 
%%EOF 
% send the appropriate EOF indication, depending on protocol 

EXAMPLE 2: STRUCTURE COMMENTS 

This is an example of an actual print file generated by a document manager. It is a 
representative document with a short prologue and script, a special paper size, and a 
downloaded font. It does not employ any of the Requirement Conventions, and 
will function properly with no intervention from a document manager or spooler. 
Since it uses setpageparams, it will only run on a PostScript language device that 
supports this operator unless a spooler changes the PostScript language code for that 
paper size. 

%!PS-Adobe-2.1 
%% Title: Example print file 
% %Creator: /usr/local/bin/emacs 
%%CreationDate: Mon Dec 1 09:24:58 1986 
%%For: Software Developers 
%%BoundingBox: O O 612 792 
%%Pages: 1 
%%DocumentFonts: Palatino-Roman Special 
%%DocumentSuppliedFonts: Special 
%%DocumentProcSets: /usr/lib/ps/draw.prologue 1.00 O 
%%DocumentPaperSizes: ledger 
%%EndComments · 
%%BeginProcSet: "/usr/lib/ps/draw.prologue" "(1.00)" "'' 
%! 
% draw.prologue Mon Dec 1 09:56:09 1986 
/VERSION (1.00) def 
IS /save load def 
/RS { restore save } bind def 
/R /restore load def 
lg lsetgray load def 
Im /moveto load def 
Is /show load def 
/I /lineto load def 
le /closepath load def 
If { findfont exch scalefont setfont } bind def 

©1988 Adobe Systems Incorporated. All rights reserved. 



%%EndProcSet 
%%EndProlog 

%%BeginSetup 
%%BeginFeature: *PageSize Ledger 
statusdict begin 
792 1224 O O setpageparams 
end 
%%EndFeature 
%%EndSetup 
%%BeginFont: Special 
%! 
% downloaded font file for the "Special" font 
70 diet begin 
/FontName /Special def 
/etc (more definitions) def 
currentdict end 
dup /FontName get exch definefont pop 
%%EndFont 

%%Page: one 1 
%%PageFonts: Palatino-Roman Special 
%%PaperColor: buff 
s 
100 100 m 
147.5 318.0 I 
301.7 77.0 I 
0.9 g 
c fill 
RS 
110110m 
24 /Palatino-Roman f 
(Example) s 
40 500 m 
24 /Special f 
(Special Stuff) s 
R 
showpage 
%%Trailer 

EXAMPLE 3: RESOURCE REQUIREMENTS 

This example shows use of the Requirement Conventions. This file is dependent on 
a document manager or spooler to supply it with additional resources. This kind of 
file is common in large, distributed networks where print spooling is taken for 
granted and resource management may be centralized. 

%!PS-Adobe-2.1 
%%Title: Example print file 
% %Creator: /usr/local/bin/emacs 
%%CreationDate: Mon Dec 1 09:24:58 1986 
%%For: Software Developers 
%%Bounding8ox: 0 O 612 792 
%%Pages: 1 

©1988 Adobe Systems Incorporated. All rights reserved. 31 



32 

%%DocumentFonts: Palatino-Roman Palatino-Bold Sonata 
%%DocumentNeededFonts: Sonata Palatino-Roman 
%%+ Palatino-Bold 
%%DocumentNeededProcSets: "draw.prologue" (1.00) O 
%%DocumentPaperSizes: ledger 
%%DocumentPaperColors: buff 
%%Requirements: duplex punch3 
%%EndComments 

%%1ncludeProcSet: "draw.prologue" (1.00) 0 
%%EndProlog 

%%BeginSetup 
%%Feature: *PageSize Ledger 
%%EndSetup 

%%Page: one 1 
% %PageFonts: Palatino-Roman 
%%PaperColor: buff 
s 
100 100 m 
147.5 318.0 I 
301.7 77.0 I 
0.9 g 
c fill 
RS 
110110m 
%%1ncludeFont: Palatino-Roman 
24 /Palatino-Roman f 
(Example) s 
R 
showpage 
%%Page: two 2 
%%PageFonts: Palatino-Bold Sonata 
%%PaperColor: white 
s 
% %1ncludeFont: Palatino-Bold 
100 100 m 

24 /Palatino-Bold f 
(Print something in bold) s 
RS 
%%1ncludeFont: Sonata 
24 /Sonata f 

gsave (=======)show grestore 
{&Q ql372) show 
R 
showpage 
%%Trailer 

©1988 Adobe Systems Incorporated. All rights reserved. 



©1988 Adobe Systems Incorporated. All rights reserved. 33 



34 

% Comments 

%!PS-Adobe-2.0 IO 
%!PS-Adobe-2.0 Query 26 
%% ?BeginFeatureQuery 27 
%% ?BeginFileQuery 28 
%% ?BeginFontListQuery 28 
%% ?BeginFontQuery 28 
%% ?BeginPrinterQuery 27 
%%?BeginProcSetQuery 18, 28 
%% ?BeginQuery 27 
%% ?Begin VMStatus 27 
%% ?EndFontListQuery 28 
%%?EndFontQuery 28 
%% ?EndPrinterQuery 27 
%%?EndProcSetQuery 28 
%% ?EndQuery 27 
%%?EndVMStatus 27 
%%BeginBinary 18 
%%BeginCustomColor 21 
%%BeginDocument 17, 21 
%%BeginExitServer 20 
%%BeginFeature 19 
%%BeginFile 17 
%%BeginFont 17 
%%Begin0bject 23 
%%BeginPageSetup 23 
%%BeginPaperSize 19 
%%BeginProcessColor 20 
%%BeginProcSet 14, 17, 23 
%%BeginSetup 16 
%%BoundingBox 12, 22 
%%ChangeFont 24 
%%CMYKCustomColor 21 
%%CreationDate 11 
%%Creator 11 
%%DocumentCustomColors 16 
%%DocumentFonts 13 
%%DocumentNeededFiles 14 
%%DocumentNeededFonts 13 
%%DocumentNeededProcSets 14 
%%DocumentPaperColors 15, 24 
%%DocumentPaperForms 15 
%%DocumentPaperSizes 15 
%%DocumentPaperWeights 15, 24 
%%DocumentPrinterRequired 15 
%%DocumentProcessColors 16 
%%DocumentProcSets 13, 18 
%%DocumentSuppliedFiles 14 
%%DocumentSuppliedFonts 13 
%%DocumentSuppliedProcSets 14 
%%EndBinary 18 
%%EndComments 16 
%%EndCustomColor 20, 21 
%%EndDocument 17 
%%EndExitServer 20 
%%EndFeature 19 

INDEX 

%%EndFile 17 
%%EndFont 17 
%%End0bject 23 
%%EndPageSetup 23 
%%EndPaperSize 19 
%%EndProcSet 17 
%%EndProlog 16 
%%EndSetup 16 
%%EOF 20,25 
%%ExecuteFile 24 
%%Feature 19, 25 
%%For 11 
%%IncludeFile 23, 24 
%%IncludeFont 17, 23 
%%IncludeProcSet 14, 23 
%%Page 22 
%%PageBoundingBox 22 
%%PageCustomColors 22 
%%PageFonts 22 
%%PageProcessColors 22 
%%Pages 12 
%%PageTrailer 23 
%%PaperColor 15, 24 
%%PaperForm 15, 24 
%%PaperSize 25 
%%PaperWeight 15, 24 
%%ProotMode 11 
%%Requirements 12 
%%RGBCustomColor 21 
%%Routing 11 
%%Title 11 
%%Trailer 21 
%EndDocument 21 
%IncludeFile 18 
%IncludeProcSet 18 
(atend) 12,21,22 

N 

Notify Me 12 

s 
Substitute 11 

T 

TrustMe 11 

©1988 Adobe Systems Incorporated. All rights reserved. 



POSTSCRIPT® 

CHARACTER BITMAP DISTRIBUTION FORMAT 
Specification 
Version 2.1 

January 16, 1989 
Postscript® Developer Support Group 

Adobe Systems Incorporated 
1585 Charleston Road PO Box 7900 
Mountain View, CA 94039-7900 
(415) 961-4400 

PN LPS5005 



Copyright© 1989, 1988, 1987 by Adobe Systems Incorporated. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, 
without the prior written permission of the publisher. 

PostScript is ~registered trademark of and the Postscript logo is a trademark of Adobe Systems Incor
porated. 

The information herein is furnished for informational use only, is subject to change without notice, and 
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo
rated assumes no responsibility or liability for any errors or inaccuracies that may appear in this book. 
The software described in this book is furnished under license and may only be used or copied in ac
cordance with the terms of such license. 



POSTSCRIPT® 

1. 

CHARACTER BITMAP DISTRIBUTION FORMAT 
Specification 
Version 2.1 

January 16, 1989 
Postscript® Developer Support Group 
( 415) 961-4111 

INTRODUCTION 

This document describes Adobe Systems' s character bitmap distribution format. The 
format is intended to be easily understood by both humans and computers. The format 
described in this document is subject to change without prior notification. 

1.1 TAPE FORMAT 

These character bitmaps are typically distributed on magnetic tape. Each tape is 1600 BPI, 
nine track, unlabeled, and contains two or more files. Each file is followed by an EOF mark. 
The last file on the tape is followed by two EOF marks. Physical records contain 512 bytes. 
The last physical record in a file (preceding an EOF mark) may contain fewer than 512 
bytes. 

Each file is encoded in the printable characters (octal 40 through 176) of USASCII plus 
carriage return and linefeed. Each file consists of a sequence of variable-length lines. Each 
line is terminated by a carriage-return (octal 015) and line-feed (octal 012). The first file on 
the tape is the Adobe Systems Copyright notice. Following files are font files. The format 
of font files is described in the following sections. 

Note: 
Font tapes may also be obtained in UNIX tar format. Be sure to specify tar format 
if desired. No other tape formats are currently supported by Adobe Systems. 

1.2 FILE FORMAT 

Character bitmap information is distributed in an USASCII encoded, human readable form. 
The information about a particular family and face at one size and orientation is contained 
in one file. The file begins with information pertaining to the face as a whole, followed by 
the information and bitmaps for the individual characters. 

A font bitmap description file has the following general form, where each item is contained 
on a separate line of text in the file. Items on a line are separated by spaces. 

GLOBAL HEADER INFORMATION 

• The word STARTFONT followed by a version number indicating the exact file format 
used (for example, 2.1) 

• One or more lines beginning with the word COMMENT. These lines may be ignored by 
any program reading the file. 

• The word FONT followed by the family name and the face name separated by a 
hyphen. This should exactly match the PostScript outline font name. 

©1989 Adobe Systems Incorporated. All rights reserved. 3 



4 

• The word SIZE followed by the point size of the characters, the x resolution, and the y 
resolution of the device for which these characters were intended. All are represented 
as integers. 

• The word FONTBOUNDINGBOX followed by the width in x, height in y, and the x 
and y displacement of the lower left corner from the origin. (See the examples in 
section 1.3). These are all integers. 

• Optionally the word STARTPROPERTIES followed by the number of properties (p) 
that follow. This is a recent addition to the format. Within the properties list, there may 
be p lines consisting of a word for the property name followed by either an integer or 
string surrounded by ASCII double quotes (ASCII octal 042). Internal quote characters 
are indicated (or "quoted") by using two in a row. The property section, if it exists, is 
terminated by ENDPROPERTIES 

THE INDIVIDUAL CHARACTER INFORMATION 

The character section is introduced by the word CHARS followed by the number of 
character segments ( c) that follow. This is an integer value. Error checking is recommended 
at the end of the file, to make sure that c characters were actually read and processed. Each 
of the c characters is then represented by the following: 

• The word ST AR TCHAR followed by up to 14 bytes (no blanks) containing the name of 
the glyph. This should correspond to its name in the PostScript outline font's encoding 
vector. 

• The word ENCODING followed by a positive integer representing the Adobe Standard 
Encoding value. If the character is not a member of the Adobe Standard Encoding, 
ENCODING is followed by -1 and optionally by another integer specifying the glyph 
index. 

The word SWIDTH followed by the scalable width in x and y of character. Scalable 
widths are in units of 1/1 OOOth of the size of the character, and correspond to the widths 
found in AFM files (for outline fonts). If the size of the character is p points, the width 
information must be scaled by p/1000 to get the width of the character in printer's points. 
This width information should be considered as a vector indication the position of the 
next character's origin relative to the origin of this character. To convert the scalable 
width to the width in device pixels, multiply SWIDTH times p/1000 times r/72 where r 
is the device resolution in pixels per inch. The result is a real number giving the ideal 
print width in device pixels. The actual device width must of course be an integral 
number of device pixels and is given in the next entry. 

• The word DWIDTH followed by the width in x and y of the character in device units 
(pixels). Like the SWIDTH, this width information is a vector indicating the position of 
the next character's origin relative to the origin of this character. 

• The word BBX followed by the width in x (BBw), height in y (BBh) and x and y 
displacement (BBxoff, BByojf) of the lower left corner of the bitmap from the origin of 
the character. 

• The word BITMAP. This introduces the hexadecimal data for the character bitmap. 

• From the BBX value for h, find h lines of hex-encoded bitmap, padded on the right with 
zero's to the nearest byte (i.e., multiple of 8). Hex data can be turned into binary by 

©1989 Adobe Systems Incorporated. All rights reserved. 



taking two bytes at a time, each of which represents 4 bits of the 8-bit value. For 
example, the byte 01101101 is two hex digits: 6 (0110 in hex) and D (1101 in hex). 

• The word ENDCHAR. 

• The entire file is terminated with the word ENDFONT. If this is encountered before c 
characters have been read, it is an error condition. 

1.3 METRIC INFORMATION 

The font metrics include both the scalable width (really the width of the corresponding 
printer font character) and the character width of the screen font glyph, expressed in pixels. 
The scalable width is more accurate, and can be used by applications for keeping track of 
roundoff error and compensating in placement. 

The following figures best illustrate the bitmap format and character metric information: 

STARTCHARj 
ENCODING 106 
SWIDTH 355 0 
DWIDTH 80 
BBX 9 22 -2 -6 

The Bounding Box is 
expressed differently than 
other Postscript language 
files; the first two are the 
width and height, the second 
two are the offsets in x and y. 
This can bee seen in the 
illustration at right. 

The character width from the 
origin (between + indicators) 
is 8 pixels, which has nothing 
to do with the actual bits, but 
is how far the current point 
moves after rendering the 
character. 

BByolff 

BBh 

~BBxoff 

( BBw) 

••• ••• ••• ••• 
••• ••• ••• ••• • •• ••• ••• • •• ••• ••• +::: + 

••• •••• •••• •••• ••• 
The bounding box of the bitmap character can be used to predict how much data to read in 
the BITMAP section; the first two numbers give the width and height of the bitmap, and 
correspond exactly to how much data is supplied. The offset then allows positioning 
without repeating lots of white bits (look at the following quoteright character, which 
doesn't have very many bits, but is located far above the baseline. That is what the offset 
fields are for): 

©1989 Adobe Systems Incorporated. All rights reserved. 5 



6 

STARTCHAR quoteright 
ENCODING 39 
SWIDTH 2230 
DWIDTH 5.0 
BBX 4 5 212 

Here the actual bitmap is 
much smaller, and the offset 
(2 in x, 12 in y) positions the 
glyph with respect to its 
origin. These bitmaps are 
actually both from an italic 
font; notice that the character 
width of the quoteright leaves 
the origin still to the left of 
the actual bits after the 
character is drawn. Since all 
the characters are slanted, the 
next one will not interfere. 

~ BBxoff 

( BBw) 

I . ::: ..... 
BBh •••• •• 

BByo + + 

The bitmap itself is started by the BITMAP keyword and finished with the ENDCHAR 
keyword. It is best to "predict" the amount of data needed (using the BBX information) and 
use the ENDCHAR as an error-checking method: if you have consumed what you think is 
the appropriate amount of data, the very next thing in the file should be ENDCHAR. If not, 
either your parser is in error or the file is not complete (or is incorrect). 

The bitmap itself is represented as hexadecimal digits, where each row corresponds to one 
row of the character bitmap. The bits are padded out to the nearest byte boundary with O's, 
and the BBX bounding box information should be carefully consulted to determine how to 
extract the data. 

©1989 Adobe Systems Incorporated. All rights reserved. 



The following is an abbreviated example of a bitmap file containing the specification of two 
characters (the j and quoteright from the previous examples): 

ST A RTF ONT 2.1 
COMMENT This is a sample font in 2.1 format. 
FONT Helvetica-BoldOblique 
SIZE 8 200 200 
FONTBOUNDINGBOX 9 24 -2 -6 
STARTPROPERTIES 2 
MinSpace 4 
Copyright "Copyright (c) 1987 Adobe Systems, Inc." 
ENDPROPERTIES 
CHARS 2 
STARTCHARj 
ENCODING 106 
SWIDTH 355 0 
DWIDTH 8 0 
BBX 9 22 -2 -6 
BITMAP 
0380 
0380 
0380 
0380 
0000 
0700 
0700 
0700 
0700 
OEOO 
OEOO 
OEOO 
OEOO 
OEOO 
1COO 
1COO 
1COO 
1COO 
2COO 
7800 
FOOO 
EOOO 
EN DC HAR 
ST ARTCHAR quoteright 
ENCODING 39 
SWIDTH 223 0 
DWIDTH 50 
BBX 4 5 212 
BITMAP 
70 
70 
60 
EO 
co 
EN DC HAR 
END FONT 

©1989 Adobe Systems Incorporated. All rights reserved. 7 





--------- ----- - -- - ---- - ------- · ---- ·-
© IBM Corp. 1990 

International Business Machines 
Corporation 
11400 Burnet Road 
Austin, Texas 78758-3493 

Printed in the 
United States of America 
All Rights Reserved 

SC23-2211-00 

SC23-2211-00 


