
WRITING A DEVICE DRIVER
FOR AIX VERSION 3

GG24-3629-00

Writing a Device Driver
for AIX Version 3

Document Number GG24-3629

May, 1991

International Technical Support Center
Austin, Texas

Take Note -----------------------------------,

Before using this information and the product it supports, be sure to read the general information
under "Special Notices" on page xv.

First Edition (May, 1991)

This edition applies to Version 3, Release Number 1 of Advanced Interactive Executive, Program
Number 5756-030 (the AIX 3.1 Operating System).

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, International Technical Support Center
11400 Burnet Road
Dept. 948, Building 983
Austin, TX 78758 USA

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

AIX

co Copyright IBM Corp. 1991

This document describes the writing and debugging of device drivers for the
RISC/BOOO running under the AIX Version 3.1 operating system.

This document is intended for programmers and software support personnel
who need to know detailed information on writing device drivers. A knowledge
of device drivers, device hardware, and the C programming language is
assumed.

(435 pages)

Iii

Iv

Contents

Chapter 1. Introduction .. 1-1
1.1 Device Driver Concepts 1-1

1.1.1 Special Files in AIX 1-1
1.1.2 Major and Minor Numbers 1-2

1.2 Device Driver Types 1-3
1.2.1 Block Mode Device Drivers 1-3
1.2.2 Character Mode Device Drivers 1-3

1.3 Device Driver Roles 1-4
1.3.1 Device Head Role 1-4
1.3.2 Device Handler Role 1-4
1.3.3 Combining the Roles 1-4

1.4 Device Driver Structure 1-6
1.4.1 Device Driver Top Half Routines 1-7
1.4.2 The Device Driver Bottom Half 1-7

Chapter 2. Programmer's model of the hardware 2-1
2.1 Micro Channel Overview 2-1
2.2 System lID Structure 2-3

2.2.1 Overview 2-3
2.2.2 RISC System/6000 Addressing Model 2-3

2.3 lID Data Transfer Protocols 2-9
2.3.1 Programmed lID Mode 2-9
2.3.2 DMA Transfers 2-9

2.4 Interrupt Processing 2-11
2.4.1 Priority Assignment 2-12
2.4.2 Off-Level Interrupts 2-13

2.5 Addressing Micro Channel Adapters 2-13
2.5.1 Identifying an Adapter 2-13
2.5.2 Setting Adapter Attributes 2-14
2.5.3 Enabling an Adapter 2-14
2.5.4 lID Macros 2-14
2.5.5 Sample lID on the RISC System/6000 2-18
2.5.6 Byte Reversal from the System Bus to the Micro Channel Bus .. 2-19
2.5.7 Additional PIO Macro Information 2-21

Chapter 3. Interface to Device Drivers .. 3-1
3.1 Aix Version 3.1 Structure 3-1

3.1.1 AIX and the Interrupt and Process Environments 3-1
3.1.2 The AIX Interrupt Handler Environment 3-3
3.1.3 The AIX Process Environment .. 3-4
3.1.4 Preemption in the AIX Operating System 3-5

3.2 Kernel Interface 3-6
3.2.1 The Device Switch Table 3-7
3.2.2 Entry Points Common to Character and Block Device Drivers 3-8
3.2.3 Entry Points for Character and Raw Access to Block Device Driver 3-9
3.2.4 Entry Points Unique to Character Device Drivers 3-9
3.2.5 Entry Points Unique to Block Device Drivers 3-9
3.2.6 Entry, Points for Trusted Computing Path Device Drivers 3-9
3.2.7 Miscellaneous Entry Points NOT Found in the Device Switch Table 3-9

3.3 Kernel Services .. 3-10
3.3.1 I/O Services 3-10

@ Copyright I BM Corp. 1991 V

vi

3.3.2 Memory Services
3.3.3 Other Services .

Chapter 4. Overview of a Character Device Driver
4.1 Implementation

4.1.1 ddconfig Device Driver Entry Point
4.1.2 ddmpx Device Driver Entry Point
4.1.3 ddopen Device Driver Entry Point
4.1.4 ddclose Device Driver Entry Point
4.1.5 ddread Device Driver Entry Point
4.1.6 ddwrite Device Driver Entry Point
4.1.7 ddioctl Device Driver Entry Point
4.1.8 ddselect Device Driver Entry Point
4.1.9 dddump Device Driver Entry Point

3-13
3-15

4-1
4-1
4-1

4-12
4-19
4-24
4-29
4-34
4-42
4-46
4-52

Chapter 5. Overview of a Block Device Driver 5-1
5.1 Introduction 5-1

5.1.1 Block I/O Device Driver Entry Points . 5-1
5.1.2 Character Access to Block Device Drivers 5-6
5.1.3 Block I/O Device Device Summary . 5-7

Chapter 6. Device Drivers Configuration 6-1
6.1 Introduction 6-1

6.1.1 General Structure of the Device Configuration Subsystem 6-1
6.1.2 Device Configuration Database Overview .,. 6-5
6.1.3 Device Configuration Procedure Overview 6-7

6.2 Configuring an Unsupported Device to the System 6-13
6.2.1 Modifying the Predefined Database 6-13
6.2.2 Writing Device Methods 6-14

Chapter 7. SMIT Interface
7.1 Introduction
7.2 SMIT Screens

7.2.1 Menu Screens
7.2.2 Selector Screens
7.2.3 Dialog Screens

7.3 SMIT Database
7.4 Command Building and Running

7.4.1 Task Building
7.4.2 Command Execution

7.5 Dialogs Example
7.5.1 List All Defined Ric Ports
7.5.2 Add a Ric Port

7.6 Additions to the SMIT Database
7.6.1 Database Creation
7.6.2 SMIT Extensions Debugging
7.6.3 Task Additions

Chapter 8. Device Drivers Packaging
8.1 Introduction
8.2 DeSign Guidelines
8.3 The installp Command
8.4 Ensuring installp Command Compatibility
8.5 Files for installp Operation

8.5.1 LPP Option List File: Ipp_name

7-1
7-1
7-3
7-3
7-3
7-4
7-5

7-12
7-12
7-12
7-14
7-14
7-15
7-20
7-20
7-20
7-21

8-1
8-1
8-1
8-1
8-2
8-2
8-3

8.S.2 Instal Script .. 8-4
8.S.3 al (Option.al) 8-4
8.S.4 size (Option.size) 8-4
8.S.S copyright 8-4
8.S.6 Ipp.cleanup 8-4
8.S.7 Prereq (Option.prereq) 8-4
8.S.8 config (Option.config) 8-S
8.S.9 Ipp.deinst 8-S
8.S.10 inventory (Option.inventory) 8-S
8.S.11 productid 8-S
8.S.12 Ipp.acf 8-S

8.6 Installp Example 8-S
8.6.1 Introduction 8-6
8.6.2 How to Use the Makefile 8-6
8.6.3 Rootllpp_name File 8-8
8.6.4 Apply List Files 8-8

Chapter 9. Tools for Debugging Device Drivers 9-1
9.1 Debugging Overview , 9-1
9.2 System Dump 9-1

9.2.1 Initiating a System Dump 9-1
9.2.2 Including Device Driver Information in a System Dump 9-2
9.2.3 Formatting a System Dump , 9-S

9.3 The crash Command 9-6
9.3.1 crash Subcommands 9-7

9.4 The Kernel Debugger 9-18
9.4.1 The Kernel Debug Program Commands 9-20

9.S Using the Kernel Debugger to Debug Device Drivers 9-29
9.S.1 Setting Breakpoints in Device Driver Routines 9-29
9.S.2 Setting Breakpoints in System Routines 9-30
9.S.3 Displaying Registers on a Micro Channel Adapter 9-30
9.S.4 How to read/write Data Variables in your Device Driver 9-31

9.6 Error Logging 9-3S
9.6.1 Pre-Coding Steps to Consider 9-37
9.6.2 Coding Steps 9-38
9.6.3 What Really Happens in /dev/error 9-44

9.7 Performance Tracing for AIX 9-44
9.7.1 Introduction 9-44
9.7.2 Use of the trace Facility 9-48
9.7.3 Controlling trace , 9-S0
9.7.4 Producing a trace Report 9-S3
9.7.S Defining trace Events 9-S6
9.7.6 Usage Hints .. 9-74

Chapter 10. Hints and Tips
10.1 Crash and Kernel Debugging Addresses
10.2 Pinning Device Driver Code
10.3 Compiling Device Drivers . .-
10.4 Working with Kernel Processes

10.4.1 Writing a Kernel Process
10.4.2 Compiling a Kernel Process
10.4.3 Linking a Kernel Process
10.4.4 Loading a Kernel Process
10.4.S Starting a Kernel Process

10-1
10-1
10-1
10-3
10-3
10-3
10-3
10-4
10-4
10-4

Contents vii

viii

Appendix A. AIX Devices A-1
A.1 Device Classes, Subclasses, and Types Overview A-1
A.2 Device Dependencies and Child Devices A-1
A.3 The Run Time Configuration Commands A-3

A.3.1 The mkdev Command A-3
A.3.2 The chdev Command A-3
A.3.3 The rmdev Com mand A-3
A.3A The cfgmgr Command A-3

A.4 Devices Location Codes " A-3
AA.1 Printer and Plotter Devices A-4
AA.2 TTY Devices A-4
A.4.3 Direct-Attached Disks and SCSI Devices A-5
AAA Diskette Drive Devices A-5
A.4.5 Adapter Devices A-5
AA.6 Multiprotocol Port Devices A-5

Appendix B. OOM 8-1
8.1 ODM Object Classes 8-1

8.1.1 Predefined Devices (PdDv) 8-1
8.1.2 Predefined Attribute (PdAt) 8-6
8.1.3 Predefined Connection (PdCn) 8-9
8.104 Customized Devices (CuDv) 8-10
8.1.5 Customized Attribute (CuAt) 8-13
8.1.6 Customized Dependency (CuDep) 8-15
8.1.7 Customized Device Driver (CuDvDr) 8-15
8.1.8 Customized VPD (CuVPD) 8-16
8.1.9 Configuration Rules (Config_Rules) 8-17

8.2 ODM Commands 8-19
8.2.1 ODM Commands That Handle Objects 8-19
8.2.2 ODM Commands That Handle Object Classes 8-19

8.3 ODM Routines 8-20
8.3.1 ODM Subroutines That Handle Objects 8-20
8.3.2 ODM Subroutines That Handle Object Classes 8-20
8.3.3 ODM Subroutines That Handle Other ODM Functions 8-20

804 Device Configuration Library Routines 8-21
8.5 Real Time Interface Co-Processor Adapter Configuration Files 8-22

8.5.1 ODM Stanzas (ric.add) 8-22
8.5.2 Message Catalog for Ric Adapter and Ports 8-27
8.5.3 Adapter Configuration Method (cfgrica.c) 8-28
8.5.4 Ric Port Configuration Method (cfgricp.c) 8-37
8.5.5 Header File for Configuration Methods (debug.h) 8-52
8.5.6 Makefile for Configuration Methods and Message Catalog 8-53

Appendix C. SMIT C-1
C.1 Object Classes C-1

C.1.1 Menu Object 'Class (sm_menu_opt) C-1
C.1.2 Menu Object Class (sm_menu_opt) Used for Aliases C-2
C.1.3 Selector Header Object Class (sm_name_hdr) C-3
C.1A Dialog Header Object Class (sm_cmd_hdr) C-5
C.1.5 Dialog/Selector Command Option Object Class (sm_cmd_opt) .. C-7

C.2 Additional Information C-12
C.2.1 Information Retrieval C-12
C.2.2 Default Values Setting C-12
C.2.3 Flags and Parameters Setting C-13
C.2A Aliases and Fast Paths C-14

C.3 Examples
C.3.1 OOM Stanzas for Ric Dialogs (sm_ric.add file)
C.3.2 SMIT Log File

Appendix D. Installp/Updatep Files
0.1 Required Files for Creating Compatible Application Programs

0.1.1 The Ipp_name File
0.1.2 The Jiblpp.a File
0.1.3 The instal Script File
0.1.4 The al File
0.1.5 The copyright File
0.1.6 The size File
0.1.7 The Ipp.cleanup File
0.1.8 The special File
0.1.9 The service_num File
0.1.10 The arp File
0.1.11 The update Script File
0.1.12 The ai_Level File

0.2 Optional Files for Creating Compatible Application Programs
0.2.1 The config File and Option.config File
0.2.2 The prereq and Option.prereq File
0.2.3 The Ipp.doc File
0.2.4 The Filename.err File
0.2.5 The Filename.trc File
0.2.6 The Filename.evt File
0.2.7 The Ipp.acf File
0.2.8 The productid File
0.2.9 The inventory File
0.2.10 The Ipp.deinst File
0.2.11 The rename File
0.2.12 The Ipp.instr File

0.3 Real Time Interface Co-Processor Device Driver Package
0.3.1 Makefile
0.3.2 Instal
0.3.3 ricdd.driver.config
0.3.4 Lpp.cleanu p
0.3.5 Ricc.src.cleanup
0.3.6 Ricc.driver.cleanup
0.3.7 Lpp.deinst

Appendix E. Sample Character Device Driver
E.1 Device Driver Main Body
E.2 Device Driver Header Files

E.2.1 ric.h
E.2.2 ricstruct.h
E.2.3 ricsmisc.h

E.3 Device Driver Makefile

Appendix F. Device Driver Miscellaneous
F.1 The busresolve system call ...

Index

C-15
C-15
C-35

0-1
0-1
0-1
0-2
0-2
0-4
0-4
0-5
0-5
0-6
0-7
0-7
0-7
0-9

0-10
0-10
0-10
0-12
0-12
0-12
0-13
0-13
0-14
0-14
0-14
0-14
0-15
0-16
0-16
0-19
0-23
0-24
0..;25
0-26
0-28

E-1
E-1

E-21
E-21
E-25
E-32
E-32

F-1
F-1

X-1

Contents ix

x

Figures

© Copyright I BM Corp. 1991

1-1.
1-2.
1-3.
1-4.
2-1.
2-2.

2-3.
2-4.
2-5.
2-6.
2-7.
3-1.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.

4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.

5-1.
5-2.
6-1.
6-2.
6-3.
6-4.
6-5.
7-1.
7-2.
7-3.
7-4.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.

Extract from the Result of Is -I /dev.
Major and Minor Numbers Typical Example
The HFT Subsystem
The SCSI Subsystem
System Block Diagram
RISC System/6000 Addressing for Bus-Attached and System
Memory
Address Translation - Bus Memory, 110, and I/O Control
I/O Segment Register
RISC System/6000 Addressing Model

1-1
1-3
1-5
1-6
2-3

2-5
2-6
2-7
2-8

Data Transfer to a 16-Bit Micro Channel Device 2-20
Data Transfer to a 32-Bit Micro Channel Device
AIX Interrupt Handlers and Processes

. ... , 2-21

Device Driver ddconfig Entry Point ..
Code Sample of the ricconfig Routine
Example of a DDS
Device Driver ddmpx Entry Point for an open
Relationship of Major Numbers, Minor Numbers and Channels
ddmpx for open and create
ddmpx for close
Code Sample of the ricmpx Routine
Device Driver ddopen Entry Point
Code Sample of the ricopen Routine
Device Driver ddclose Entry Point
Device Driver ddclose Program Flow
Code Sample of the ricclose Routine
Device Driver ddread Entry Point
Code Sample of the ricread Routine
Device Driver ddwrite Entry Point
Code Sample of the ricwrite Routine 0

Device Driver ddioctl Entry Point ..
Code Sample of the ricioctl Routine .
Device Driver ddselect Entry Point ..
Code Sample of the ricselect Routine
Entry Points for a Block Device Driver
The mbuf structure
Structure of the Configuration Subsytem
Device States
Example of Devices Graph

3-2
4-2
4-5

4-11
4-12
4-14

.' 4-15
4-16
4-18
4-19
4-22
4-25
4-26
4-28
4-30
4-32
4-35
4-37
4-43
4-45
4-47
4-50

5-2
5-4
6-2
6-4
6-9

How cfgmgr Executes Config_Rules .,.
How Device Methods Get Invoked

. 6-12

. 6-16
Some Relationships among SMIT Menus, Selectors and Dialogs
Hierarchy of sm_menu_opt Objects
SMIT Dialogs
SMIT Screen Example
System Dump Flow ...
Kernel Dump Image
Flow of the Error Logging Facility
dderr.h
errlog_ex
Flow Involved in Starting/Stopping Trace

7-2
7-9

7-10
7-14
9-3
9-5

9-36
9-42
9-43
9-45

xi

9-7. Trace Formatting 9-46
9-8. Trace Hook Summary 9-47
9-9. Trace Example Using Subcommands 9-51

9-10. Sample Code - trace Triggers 9-53
9-11. Format of a trace Event Record 9-57
9-12. Syntax of Stanza in Format File 9-61
9-13. Trace Format File Syntax 9-65
9-14. Sample C Code---Trace Program Loop 9-72
9-15. Sample Trace Event Stanza 9-73
9-16. Formatted Trace Results 9-74

xII

Tables

@ Copyright IBM Corp. 1991

7-1.
7-2.
7-3.
9-1.
8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.
8-8.
8-9.

8-10.
8-11.

SMIT Screen Types
Object Used to Create Screens ..
sm_cmd_hdr Relationships
Kernel Debugger Commands List
PdDv Object Class Descriptors
PdAt Object Class Descriptors
PdCn Object Class Descriptors
CuDv Object Class Descriptors
CuAt Object Class Descriptors
CuDep Object Class Descriptors
CuDvDr Object Class Descriptors
Contents of Value1, Value2, and Value3 Descriptors
CuVPD Object Class Descriptors
Config_Rules Object Class Descriptors
Rule Values

7-1
7-5

7-11
9-20
8-2
8-7

8-10
8-11
8-14
8-15
8-15
8-16
8-16
8-17
8-18

xIIi

xiv

Special Notices

@ Copyright I BM Corp. 1991

This publication is intended to help the programmer to write device drivers for
the AIX 3.1 operating system that runs on the IBM RISC/BOOO hardware.

The information in this publication is not intended as the specification of the
programming interfaces that are provided by the AIX 3.1 operating system. This
information is to serve as an example of a device driver. For information
relating to the actual programming interfaces for AIX 3.1, please see the
PUBLICATIONS SECTION of the IBM Programming Announcement for AIX 3.1.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used.
Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program or
service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license
to these patents. You can send license inquiries, in writing, to the IBM Director
of Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AIX
AIXWindows
IBM
InfoExplorer
Information Retrieval Symbol
InfoTrainer
InfoWindow
PS/2
RISC System/BODO
RT
RT PC
RT Personal Computer

xv

xvi

The following terms, which are denoted by a double asterisk (* *) in this
publication, are trademarks of other companies.

UNIX is a trademark of UNIX System Laboratories, Inc.
Goofy is a trademark of the Walt Disney Corporation

/

Preface

© Copyright IBM Corp. 1991

This document is intended to assist the programmer in the development of a
device driver by presenting detailed information and examples.

Topics presented include:

• Introductory device driver concepts

• Overview of RISe/6000 hardware as it relates to device drivers with
adapters residing on the Micro Channel bus

• Examples of a character device driver

• A menu driven interface for device driver configuration (SMIT)

• Device driver packaging concepts

• Tools for device driver debugging

• Information on the Object Data Manager (ODM)

The document is organized as follows:

• "Introduction"

This provides the programmer with a brief overview of device driver
concepts.

• "Programmer's model of the hardware"

This provides the programmer with the understanding of how addressing is
used to access memory and I/O in tthe RISC/6000.

• "Interface to Device Drivers"

This chapter describes AIX 3.1 kernel concepts and how device drivers are
integrated into it. It also describes the main kernel services used to
accomplish this.

• "Overview of a Character Device Driver"

This documents the organization of a character device driver, complete with
an example.

• "Overview of a Block Device Driver"

This documents the organization of a block device driver.

• "Device Drivers Configuration"

This describes how the device configuration is accomplished with AIX 3.1.

• "SMIT Interface"

This describes how menus can be added to the System Management
Interface Tool (SMIT) to provide a high level user interface for the addition
and deletion of a new device.

• "Device Drivers Packaging"

This describes how you would create an install diskette for the packaging of
a device driver.

xvii

xviii

• "Tools for Debugging Device Drivers"

This describes the tools for debugging device drivers including the kernel
debugger, crash, trace and error logging.

• "Hints and Tips"

This describes miscellaneous hints and tips on compiling and linking device
drivers.

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Prerequisite Publications
RISC System/6000 CD-ROM Hypertext Base Library, SC23-2163

Kernel Extensions and Device Support Programming Concepts, SC23-2207

Calls and Subroutines Reference, SC23-2198

RISC Systeml6000 General Programming Concepts, SC23-2205

RISC Systeml6000 Hardware Technical Reference General Information
SC23-2643

RISC Systeml6000 Performance Monitoring and Tuning Guide SC23-2365

Additional Publications

© Copyright I BM Corp. 1991

Micro Channel Architecture Bus Master Rt.t, GG24-3477

Plain Man's View of Micro Channel Architecture, GG24-3584

Micro Channel Architecture, IBM Personal Systems Technical Journal
G325-5004

xix

xx

Acknowledgments

© Copyright I BM Corp. 1991

The advisor for this project was:

Ron Smetana
International Technical Support Center, Austin

The authors of this document are:

Luc Smolders, IBM Belgium
Susan C. Williams, IBM UK
Ron Smetana, IBM Austin

This publication is the result of a residency conducted at the International
Technical Support Center, Austin.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Virgil Albaugh, IBM Austin
Greg Birgen, IBM Austin
Tim Boyce, IBM Austin
Jan Brown, IBM Austin
Mikey Buratti, IBM Austin
Sam Drake, IBM Almaden
Elizabeth Francis, IBM Austin
Bob Kovacs, IBM Austin
Dr. Rhys Lewis, IBM, UK
Sergio Perrone, IBM Italy
Cheryl Pervier, IBM Austin

A special thanks for our friends at ACSC who developed a device
driver class for AIX Version 3 and provided indirect influence for
our book.

Editor's Note ------------------------,

It is virtually impossible to thank everyone who has contributed to this
publication. The authors hope that this document will pull together
information that was originally shipped with AIX version 3. In this spirit, we
would like to thank everyone who has contributed to the original AIX
documentation. We have gathered much information from the shipped
manuals and clarified, rewrote and added as we saw fit. A special thanks to
the developers and contractors who reviewed the material.

xxi

xxii

Chapter 1. Introduction

1.1 Device Driver Concepts
A device driver is a section of code that provides support for a device. Device
drivers run in a privileged state, as AIX kernel extensions, and have access to a
number of functions that are unavailable to normal application programs. They
shield the user from device-specific details and provide a common liD model
for accessing the devices for which they provide support.

In general, user application programs do not wish to manipulate the Micro
Channel bus or the liD capabilities of the RISC System/BOOO directly.1 As such,
device drivers are often written to handle specialized or otherwise unsupported
equipment.

1.1.1 Special Files in AIX

brw-rw-rw- 1 root
brw-rw---- 1 root
crw-rw-rw- 1 root
crw-rw-rwT 1 root

The system interface to devices, which is supported by device drivers, is
through the file system. Each device that is accessible to a user-mode
application has a file name and can be accessed as if it was an ordinary file.
By convention this device file name is found in the Idev directory in the root file
system. This device name along with the associated inode is known as a device
special file. A special file appears to applications to be a standard AIX disk file;
it has a name, resides in a directory, and can be opened, read, written and be
manipulated by other standard system calls. But a special file is not a disk file;
rather, it is a method by which an application program can cause a device
driver to be invoked. Application programs open the special files and use read,
write and ioctl calls to communicate with the device driver.

Special files are created by the AIX mknod command and by the mknod()
system call. These create a special file with a given name, in a given directory.
Instead of having a standard disk file associated with the file name, three
pieces of information are kept:

• Major device number

• Minor device number

• Type of special file: character or block

system
system
system
system

14, 0 Aug 11 20:17 fd0
10, 9 Jul 17 08:50 hd1
15, 0 Jul 12 15:26 rmt0
20, 0 Jul 12 15:26 tok0

Figure 1-1. Extract from the Result of Is -i/dev.

1 The exception is via the machine device driver, called Idev/busO.

© Copyright IBM Corp. 1991 1-1

The major device number is the fifth field from the result of Is·1 (see
Figure 1-1), the minor is the sixth field, and c or b in the first column indicates a
character or a block device.

1.1.2 Major and Minor Numbers

1-2

Devices are generally identified in the kernel through major and minor
numbers. Usually, a major number identifies a particular device driver. Minor
numbers identify various device instances known to the device driver.
However, a device driver may be assigned multiple major numbers. Also,
minor numbers can be used to identify different modes of operation for a device
as well as different device instances.

Programs do not need to understand these major and minor numbers to access
devices. A program accesses a device as though it were a file by opening the
device's corresponding special file located in the Idev directory. The special
file's inode contains a particular major and minor number combination
specified when the special file was created. This relationship remains constant
until the special file is deleted.

The major number uniquely identifies the relevant device driver and thus is
used to uniquely identify the device to the kernel. The interpretation of the
minor number is entirely dependent on the particular device driver. Most
frequently, the minor number is used to select one of multiple subdevices
supported by the device driver. As a minor device number, it usually serves as
an index into a device driver-maintained array of information about each of
several devices or subdevices supported by the device driver.

To see a typical use of major and minor device numbers, let's assume a Micro
Channel adapter that can drive up to three printers. Since all the printers are
driven by the same device driver, the special files for the printers all share the
same major device number. Since the printers are all separate entities, they
would each have their own minor device number. If each printer had multiple
personalities (if a single printer could print files using two different datastreams
... PostScript and HPGL, perhaps), then each physical printer might be
represented by more than one special file, with multiple minor device numbers
being assigned to each physical printer. This is shown in Figure 1-2 on
page 1-3. Figure 9-1 on page 9-3 shows the flow of a system dump.

(X,Y) where X= major number

Y = minor number

(1,0)

Figure 1-2. Major and Minor Numbers Typical Example

1.2 Device Driver Types

Printer2

(1,1)

device driver

hardware

(1,2) Postscript

(1,3) HPGL

There are two major families of device drivers in AIX, known as character mode
drivers and block mode drivers. These classes of device driver are
distinguished by the type of devices they support and the interfaces that are
presented to the kernel.

1.2.1 Block Mode Device Drivers
The block device interface is suitable for random access storage devices with
fixed-size addressable data blocks. Devices supported by block device drivers
can also potentially support a mounted file sytem. Block device drivers can
provide character device interfaces and access to their block devices by
providing a character special file, as well as the block special file. For example
fdO is the floppy disk device, and rfdO gives a character interface access to the
same device. Character device interfaces to block devices are called raw /10,
and the corresponding device is called a raw device (rfdO).

1 ~2.2 Character Mode Device Drivers
The character device interface is more suitable to non-random access devices,
such as terminals, printers and networks. These devices cannot directly
support mounted file systems.

Chapter 1. Introduction 1-3

1.3 Device Driver Roles
Device drivers can play two roles in the AIX operating system: the device head
role and the device handler role. Most simple device drivers will in fact act in
both roles, but other configurations are possible. An entry point for a device
driver is either in a device head or in a device handler.

1.3.1 Device Head Role
A device head is a device driver or a portion thereof that provides interfaces to
application programs via the standard open, close, read, write, and related
system calls A device driver acting in this role takes lID requests from
application programs and communicates them to a device handler.

The interface between application programs and a device head is rigidly
defined by the AIX kernel itself2.

Device head routines are responsible for the following functions:

• They convert the request from the form of the file lID function call to a form
that the routines acting in the corresponding device handler role
un d e rsta n d.

• They perform the appropriate data blocking and buffering.

• They manage the device. This includes such actions as maintaining queues
of I/O requests and handling error recovery and error logging.

1.3.2 Device Handler Role
A device handler is the portion of a device driver that communicates with the
actual device or adapter. The device handler takes requests from a device
head and implements the requests on real hardware.

The interface between a device head and a device handler is essentially
undefined by AIX, though a large number of primitive functions are provided by
AIX to assist in constructing an interface. The details, however, are left to the
driver author. The interface between the device handler and the device itself is
naturally dependent on the hardware being manipulated, though AIX again
provides a set of functions which assist in performing the hardware interfacing.

1.3.3 Combining the Roles
A simple device driver will provide both a device head and device handler, and
will be a self-contained entity. But more complex scenarios are possible.

For example, it is possible that a large number of different adapters and
devices could provide the same interface to application programs. For
example, it might be desirable to have a large number of different types of
plotters appear identically to user programs, while in reality they might attach
to the system in very different ways (and might even take different datastreams,
which are to be hidden from the application programs).

2 Routines providing the device head role must conform to the programming model for system calls described in
Chapter 4 of Kernel Extensions and Device Support Programming Concepts.

1-4

KTSM
Driver

Keyboard

One way to implement this is to have a single driver operating as a device
head, with multiple drivers acting as device handlers (one handler for each real
adapter). This is how the hft subsystem on the RISC System/6000 operates; for
example, many different adapters can all be configured to appear as hfts, and a
single device head communicates to the appropriate device handlers for the
adapter in use. Separate keyboard, mouse, and display drivers all interact with
the hft device head under the covers. These low level drivers only interface to
hardware and to the hft device head; there is no way for applications to
interface with the keyboard driver except via the hft interface. See Figure 1-3
for a diagram of this.

I-FT
I:FlIVEFII
Major 15

Tablet

MOD
Driver

Mouse

GIO
Driver

~

LPFK

2-D
Driver

Figure 1-3. The HFT Subsystem. This is an example of a complex system of device drivers. The HFT driver
provides only the device head role, while the others act only as device handlers.

A somewhat opposite example is the support of the SCSI bus on the RISC
System/6000 (see Figure 1-4 on page 1-6). One Micro Channel adapter
interfaces the SCSI bus to the Micro Channel; a generic SCSI device driver
provides the device handler for this adapter. This generic SCSI driver handles
sending commands on the SCSI bus, but does not know what commands to
send. Numerous different device drivers operate in the device head role
interface between applications and the SCSI device handler; these drivers
support specific devices such as disk, tape, and CD-ROM, which exist on the
SCSI bus itself. In addition, the SCSI device driver contains a "generic" device
head, which allows applications to manipulate other unsupported devices on
the SCSI bus directly. Figure 1-4 on page 1-6 shows the SCSI subsystem.

Chapter 1. Introduction 1-5

/dev/scsi /dev/rhdiskO /cJev/rcdO /dev/rhdiskl /dev /rmtf.> major 10 /dev/rhdisk2 minor 0

J
maj()r 11
minor 0,1,2

Qlajor12
minor 0 major 13

minor 0

generic
device hard disk CD-ROM Magtape head driver driver driver ¢ device heads

---------~--~

Generic SCSI Adapter Device Driver

(device handler)

SCSI Adapter __ ,> To SCSI Devices

Inn-

Figure 1-4. The SCSI Subsystem. This is an example of a complex system of device drivers. In this case, the
generic SCSI driver provides both a device head and a device handler; the other drivers only
provide the device head function. They call the generic SCSI driver for device handler operations.

1.4 Device Driver Structure

1-6

Device driver routines providing support for physical devices typically execute
in two different types of environment, thus leading to a two-part structure. One
part, referred to as the top half of the device driver, always executes in the
process environment. Routines in this part typically provide the device head
role, since they are always executed in the environment of the calling process.

The other part, referred to as the bottom half of the device driver, executes in
the process or interrupt environment. Routines in this part normally provide
the device handling role, since they deal with actual device I/O typically driven
by hardware interrupts.

1.4.1 Device Driver Top Half Routines
Since routines in the top half of a device driver are only called in the process
environment, the code and data accessed in this environment is normally
pageable. The AIX kernel is designed to allow large portions of kernel code
and data to be pageable in order to decrease the amount of physical memory
required by the kernel. This is very important for the AIX kernel, because the
design philosophy is to create fairly large data structures in pageable virtual
memory. These large data structures can then support a wide range of system
loads and configurations.

1.4.2 The Device Driver Bottom Half
The second half of the device driver structure is referred to as the bottom half.
This half of the device driver typically consists of a routine that starts 1/0
operations, an interrupt handler, and (optionally) off-level interrupt handling and
device time-out routines. The device driver's strategy and dump routines are
also considered part of the bottom half.

This part of the device driver executes in both the interrupt handler
environment and in the environment of the calling process. Both the code for
this part of the device driver and the data it accesses must be pinned so that
page faults are not taken in the interrupt execution environment. In addition,
routines in the bottom half can utilize only kernel services that are speCified as
callable in the interrupt environment.

Please refer te "Pinning Device Driver Code" on page 10-1 for a discussion on
how to pin device drivers.

Chapter 1. Introduction 1-7

1-8

Chapter 2. Programmer's model of the hardware

2.1 Micro Channel Overview
The Micro Channel architecture provides a standardized hardware interface for
adding lID devices to a computer. Implementations of this architecture provide
a number of slots, which are electrical connectors into which circuit cards
(commonly called adapters) may be inserted.

Each Micro Channel adapter provides addressable resources that reside in
either the lID address space, Bus Memory address space or the IOCC1 address
space.

1. An adapter may provide a set of registers (also called ports). These ports
are each identified by an address, which is a 16-bit number. No two ports in
a computer system can have the same address. These port addresses are
said to make up the machine's 1/0 address space. As we will see, many
adapters can be configured with the adapter's ports at a number of different
addresses.

Ports may be read and written. They are one byte wide. Some ports on
some adapters may be read but not written; some ports may be written but
not read; others may be both read and written. Each adapter's designer
determines what ports the adapter will provide and what functions it will
provide.

In a simple adapter, writing a byte to a certain port might result in the byte
being written to some media controlled by the adapter ... a printer, perhaps.
Most adapters also provide ports that control the operation of the attached
devices; the "baud rate" of a communications line, for example, might be
changeable by software by writing to a port on the machine's serial
adapter.

In many computers, ports are manipulated using special lID instructions. In
the RISC System/6000 the lID address space appears to be main memory to
the central processor, and is accessed in that fashion. Certain actions must
be taken by software to map the lID address space into virtual memory;
these will be described in further detail later.

2. Adapters may also provide memory resources to the computer system. In
the PS/n families of computers, these memory resources may be used by
the system as primary main memorY for the main processor. Adapter
memory is configured to be present in a given address range; this range
may frequently be assigned by software.

Memory resources are often provided by adapters other than "memory
cards." For example, display adapters often provide access to each pel
displayed on the screen via memory resources.

1 The IOCC is the RISC/6000 interface between the high-speed processor bus and the Micro Channel bus. The
IOCC is responsible for data buffering and protection.

© Copyright I BM Corp. 1991 2-1

2-2

In the RISC System/BODO, the Micro Channel is not used to provide main
memory for the processor. Memory resources provided by Micro Channel
adapters may be mapped into virtual memory using mechanisms similar to
those used for the I/O address space. Note that memory provided by Micro
Channel adapters resides neither in the processor's real memory address
space, nor in I/O space; rather, it resides in a third memory address space,
called Bus Memory address space. This address space uses 32-bit
addresses, and has therefore a potential size of 4 GB.

3. POS : Programmable Option Select

One major design goal of the Micro Channel is to allow devices to be
configured entirely through software; no DIP switches or jumpers may be
manipulated on Micro Channel adapters to set interrupt levels, memory
addresses or other options. Additionally, host software must be able to
determine which adapters are installed in a particular machine without
manual configuration. These goals are accomplished through the
Programmable Option Select (POS) features of the Micro Channel.

Each Micro Channel adapter provides a set of POS Registers which may be
read (and sometimes written) to query and set various options. A separate
set of POS registers is provided for each Micro Channel slot provided in the
machine in question. There are, in general, a maximum of eight POS
registers for each adapter.

POS registers are in a fourth address space called loee address space.

Refer to the RISC/6000 Technical Reference Manual for additional information on
the Micro Channel.

2.2 System 1/0 Structure

2.2.1 Overview

Processor
ehip set

General I/O bus support functions for load and store instructions, interrupt, and
channel control are provided by the 1/0 Channel Controller (lOCC). The Micro
Channel is attached to the 10CC. Also attached to the 10CC and to the Micro
Channel is the Standard I/O. Figure 2-1 describes the logical view of the IOCC
in the Risc System/6000 machine.

,...-__ "' • ..,../ System
..,.. Memory

V
I

I

(System Memory

address space)

Micro Channel rt. --(lOCe Address loce - Adapters ~
space)

Serial Optical
Channel

U

-

I .rL

(110 Address space,

Bus memory address spa ce)

1----:... Standard 1/0
.......

-
(mouse, keyboard, serial

and parallel ports)

Figure 2-1. System Block Diagram

The 10CC architecture also includes support for DMA slave transfers, DMA
master address translation and data buffering, load and store data buffering.

2.2.2 RiSe System/6000 Addressing Model
What we have seen in "Micro Channel Overview" on page 2-1 can be
summarized, and completed as follows:

• The RISC System/6000 can access up to 4 GB of system memory (32-bit
physical addresses), grouped in 16 segments of 256 MB each.

Chapter 2. Programmer view 2-3

2-4

• Next to that, the RISC System/6000 can also access 16 segments of 256 MB
of memory on the Micro Channel bus (bus-attached memory).

• One other address space is also available: the IOCC address space.

The RISC/6000 addressing for system memory and for the (Micro Channel) bus
attached memory is shown in Figure 2-2 on page 2-5.

32 Bit Effective Address

0 3 4 19 20 31

U

*
*
* 1

¥ ~ ___ ¥"----d

4 bits + 28 bits = 32 bits __ ------~~ Bus~emory
Bus I/O

-OR-

24 bit segment ID + 16 bit virtual page ID

~~======~~~========~d
40 bit virtual page number ,

Translation Look Aside Buffer

(hardware cache) and

Page Frame Table

1t

20 bits +

12 bit index

12 bit index c;::>

or
IOCC Control

32 bit index

to

System Memory

Figure 2-2. RISC System/6000 Addressing for Bus-Attached and System Memory

A 32-bit effective address is used to translate into a 32-bit real address in both
cases.

For Micro Channel bus memory, liD, or 10CC control, a 4-bit extention from a
segment register is used to form this 32-bit address. This, in addition to proper

Chapter 2. Programmer view 2-5

Seg.
Reg. #

0 3 4

control bits in the segment register, is used to decode the loee control mode
from the bus memory and I/O modes.

For system memory, a 24-bit extention from a segment register is appended to
16 bits from the effective address to form a 40-bit virtual page address. This
40-bit address is then mapped by either hardware (TLB) or software (page
frame table) to form a 20-bit real page address. This 20-bit page address is then
concatenated with a 12-bit index from the effective address to get the 32-bit real
address.

Effective Address

7 8 11 12 15 16 19 20 23 24 27 28 31

I

Segment Register_ EXT ~

~

T 28 bit offset
"

I 32

Figure 2-3. Address Translation - Bus Memory, I/O, and I/O Control

2-6

Load and Store instructions can be issued to devices on the I/O bus in a similar
manner to those issued to system memory. The programmer specifies a
segment register identifying a specific address space and supplies an offset
into that space. The offset is obtained from the effective address and is not
translated prior to being applied as a bus address. Figure 2-3 shows that
address translation mechanism.

The bit meaning of the segment register (see Figure 2-4 on page 2-7) when
using loee and I/O bus addresses (Le. when T = 1--NOT system memory
address space) are:

T K

Bits

o

1

2·3

4 ·11

12· 13

14·23

24

25

26

27

28·31

BUID

Description

This bit defines if the Load or Store instruction is targeted to
system memory or I/O address spaces (T =0 means system
memory access).

Privilege key: this bit is generally set to 0 when the operating
system is in control, and 1 when in the user mode.

These bits are reserved and should be set to O.

Bus Unit Identification (BUID): the field is decoded to select the
10CC. Addresses between x'20-23' are assigned to the 10CC, but
the present version of the IOCC is cabled for a BUID of x'20. This
field should thus be set to x'20.

Address check and increment: should be set to 1.

These bits are reserved and must be set to O.

IOCC Select: this bit selects the 10CC control mode when set to 1.

RT Compatibility Select: this bit selects the RT compatibility mode
when set to 1 and when the IOCC Select bit equals O.

Bypass: this bit should be set to 1.

This bit is reserved and must be set to O.

Bus Memory Extent: this field is concatenated with effective
address bits 4 to 31 to form a 32-bit I/O bus address when working
in bus memory mode.

Ctr. 1MB EXT

1 0 0 0 e 0 1 0 0 000 1 1 000 0 000 000 x 0 1 0 x X X X

o 1 2 3 4 11 1213 14

"L "L
privileged key

1
o

I/O address spaces
system memory access

BUID = Bus Unit Identification

EXT = Bus Memory Extent

Figure 2-4. I/O Segment Register

23 24 26 27 28 31

.~ t L bypass
address incr.

RT
address check

IOCC

Chapter 2. Programmer view 2-7

System Address (T=O)

f--Jt----..'

256M r---~--""

192M

128M

64M

I=X
M=X

256M

192M

128M

64M

64k
o

64KI/O

space

I/O Address (T= 1 ,BUID=X'20)

F---------~--------~~
Bus Memory Mode

I

1=0
M=O

I

-
-

RT Compo Mode

256M

80M

64M

64k
0

16MB

1=0
M=1

256M

192M

128M

64M

64k
0

IOCC
Control
Mode

1=1
M=X

Figure 2-5. RiSe System/6000 Addressing Model

2-8

Figure 2-5 gives a complete view of the different possible addressing modes.
These address spaces are selected by way of control bits in the Segment
register resulting in five different effective address operating modes as follows:

1. System address mode: when T=O in the segment register, the system
memory is accessed.

2. Bus memory mode: when T=1, 1=0, and M=O, the memory on the Micro
Channel is accessed. The 32-bit bus memory address is formed by
concatenating 28 bits of the effective address with the 4 extent bits from the
segment register. This partitions the bus memory address into 16 segments
of 256 MS, for a total of 4 GS. Separate segment registers must be used for
addressing different segments.

3. 1/0 devices mode: the 16-bit device address is taken directly from the lower
16 bits of the effective address. To address a device within the 64 KS Micro
Channel I/O space, effective address bits 4 through 15, and segment
register bits 28 through 31 must all be set to O. Effective addresses are not
translated, but are used as real addresses into the I/O space. Note that
these 64 KS can be accessed when utilizing bus memory mode, RT
compatibility mode, and loee control mode as illustrated in Figure 2-5.

4. RT compatibility mode: this addressing mode assists in the simulation of the
RT system allowing for 24-bit addressing. In this mode, the segment
register control bits are in the following state, T=1, 1=0, M=1. In this
mode, the 16 MB of bus memory are mapped into the effective address
range going from 64 MB to 80 MB. Please refer to the RISe/60D0 Hardware
Technical Reference Manual for more information on the RT compatibility
mode.

5. IOCC Control mode: when T = 1 and 1=1. Included in this address space
are 10CC registers, address translation tables for Bus Master and DMA
Slave transfer (TCW and TAG tables), and Non-Volatile Random Access
Memory (NVRAM). Access to the adapters' P~S registers is also achieved
by using this address space.

2.3 1/0 Data Transfer Protocols

2.3.1 Programmed 1/0 Mode
This mode provides data transfer capability between processor General
Purpose Registers and memory (system or bus), I/O space or 10CC space. Up
to 128 bytes can be transferred with one command. The 10CC contains a
128-byte Pia buffer to handle the data width mismatch between the 8-byte
System Bus and 1-byte, 2-byte or 4-byte target device.

See "I/O Macros" on page 2-14 for the commands that perform the
programmed I/O operations.

2.3.2 DMA Transfers

2.3.2.1 Types of DMA Adapters
The Micro Channel supports two types of DMA adapters. These are DMA
slaves and DMA masters.

A DMA slave adapter is the simpler form of adapter. It requires extensive
system support to generate addresses and control the transfer length. The
system hardware limits a DMA slave adapter to performing only one sequential
transfer at a time.

A DMA master generates its own bus address and controls its own transfer
length. A DMA master adapter is therefore only limited by its own hardware in
the number and type of transfers that it can perform. For example, a DMA
master disk adapter can support one or more concurrent DMA transfers for
each disk connected to it. A DMA master LAN adapter can support having the
header at one location in system memory and the data at another location.

2.3.2.2 Block DMA Transfers
A block DMA transfer consists of transferring data between sequential locations
on the adapter and sequential locations in memory. All DMA slaves are
essentially limited to this type of transfer.

A DMA slave can have only one contiguous block transfer in progress at any
one time. The maximum size of this transfer is currently x'100000 bytes, as
defined in the < sys/sysdma.h > header file.

Chapter 2. Programmer view 2-9

A DMA master can have one or more block transfers in progress at anyone
time. Each transfer must be assigned part of that DMA master's fixed-size
window into system memory. This window is assigned to the adapter during
system configuration.

A device driver must call either the d_slave service to set up a DMA slave
transfer or the d_master service to set up a DMA master transfer. The device
driver should then set up the device to perform the DMA transfer. The device
transfers data when it is available and interrupts the processor upon
completion of the DMA transfer. The device driver then calls the d_complete
service to clean up after the DMA transfer. These steps are typically repeated
each time a DMA transfer is to occur. See "DMA Management" on page 3-11
for more information on using the DMA kernel services.

2.3.2.3 DMA Processing .
Direct memory access (DMA) allows a device to access memory without going
through the processor. Using DMA consists of the following steps:

1. Allocating a DMA channel.

2. Initializing the DMA channel.

3. Enabling the DMA channel.

4. Performing one or more DMA transfers.

5. Disabling the DMA channel.

6. Freeing the DMA channel.

The DMA transfer itself, in Step 4 above, consists of the following steps:

1. Arbitrating for the bus.

2. Generating an address.

3. Performing the data transfer.

The AIX kernel provides a set of services that assist in performing DMA
operations. "DMA Management" on page 3-11 will provide more information
on how to use these services.

2.3.2.4 DMA Channels and How They Are Assigned

2-10

A DMA channel is the means by which DMA transfers for different adapters are
distinguished from each other. A DMA channel is a resource that cannot be
shared simultaneously by two adapters.

The Micro Channel allows for assignment of DMA channels at system
configuration time. Each time the RISC System/6000 is booted, the Micro
Channel bus configuration method scans the bus and creates a list of all
adapter cards plugged into the slots. For each adapter plugged into a slot, the
method uses the adapter 10 (sensed from the POS registers) to look up the
adapter's assignable resources in the device's database. (This is known as the
"predefined attributes" (PdAt) of the ODM database.)

If the adapter uses a DMA channel, the database describes all possible DMA
channels to which the adapter can be programmed and a default or preferred
choice. The bus configuration method then selects a unique DMA channel for
each adapter requiring DMA in the system. The assigned DMA channel

numbers are written into the Customized Attributes (CuAt) database object for
each adapter if the adapter's default value is not used. (If the default value is
used, the CuAt database does not get modified.)

The busresolve system call is used from the device's configuration method. This
system call is used to resolve the resource (DMA and interrupt) conflicts on the
Micro Channel bus. If the resources cannot be resolved at this time, the
configuration method should return a failure return code. See "The busresolve
system call" on page F-1 for more details.

When the adapter's specific configuration method is called later in the
configuration process, it reads the assigned DMA channel or channels from the
database for the specific adapter being configured. The adapter's configuration
method then puts these channels in a device-dependent structure used to
initialize the device driver supporting the adapter.

When the device driver for the adapter in the specified slot is initialized, the
information in the device-dependent structure is written to the adapter's POS
registers. This is done by the configuration routine of the device driver. This
action properly configures the adapter.

Please see "Device Drivers Configuration" on page 6-1 for more information on
device driver configuration.

2.4 Interrupt Processing
Adapters on the Micro Channel can generate interrupts to the host cpu. Each
interrupt is associated with a particular "Interrupt Request Level" (IRQ), which
is a small positive integer. One adapter might generate interrupts on IRQ2,
while another might generate interrupts on IRQ3. ASSignment of IRQ levels to
adapters is done by setting POS registers on the adapter during device
initialization. Adapter interrupt levels are assigned in the same manner as the
DMA levels.

CAUTION --~

Do not change the Predefined Attributes (PdAt) of the RISe/6000 by
removing information that was shipped with the base AIX product.

IRQ levels may be shared; i.e. more than one adapter may generate interrupts
at the same IRQ level. Each adapter will provide a register which may be
interrogated to determine if the current interrupt is due to this particular
adapter; this allows software to determine which adapter actually generated the
interrupt.

Note that interrupt sharing on a particular level gives you worse performance
than having each adapter on a separate interrupt level.

Each adapter also provides a procedure, which software must follow, that will
reset an interrupt indication; this must be done before any more interrupts will
be generated by the adapter.

Chapter 2. Programmer view 2-11

A device driver may provide an interrupt handler. This is a C function that will
be called by the AIX kernel whenever an interrupt occurs on a given IRQ level.
The interrupt handler must first determine if the interrupt was indeed caused by
the adapter this driver is managing; if not, the handler exits immediately. The
interrupt handler then performs whatever processing is needed to deal with the
interrupt; it then resets the interrupt both in the adapter and in the Micro
Channel and returns to its caller.

Interrupt handlers, like most of the AIX kernel, are preemptable. They run with
some interrupts enabled. When a device driver configures itself, it specifies the
priority of interrupts from its associated adapter. When an interrupt occurs,
only interrupts from devices at that priority level and below are disabled; higher
priority interrupts may still occur. This allows interrupt handlers for low priority
devices (a printer, for example) to be preempted if an interrupt occurs on a high
priority device (an unbuffered high-speed communications link, perhaps).

Routines are provided by AIX that allow interrupts to be disabled and enabled
at higher levels during the operation of the interrupt handler. This should be
kept to a minimum and used with caution so that the higher priority interrupts
can be serviced.

2.4.1 Priority Assignment

2-12

A device's interrupt priority is selected based on two criteria: its maximum
interrupt latency requirements and the device driver's interrupt execution time.
The interrupt latency requirement is the maximum time within which an
interrupt must be serviced. (If it is not serviced in this time, some event is lost
or performance is degraded seriously.) The interrupt execution time is the
number of machine cycles required by the device driver to service the interrupt.
A device with a short interrupt latency time must have a short interrupt service
time. In other words, a device that will "Iose" data if not serviced quickly must
have a higher priority interrupt level. This in turn requires that it spends less
time in the interrupt handler. The general rule for interrupt service time is
based on the following interrupt priority table:

Interrupt Priority Versus Interrupt Service Times

Priority

INTCLASSO

INTCLASS1

INTCLASS2

INTCLASS3

INTOFFLO

INTOFFL1

INTOFFL2

INTOFFL3

Service Time (machine cycles)

less than 200 cycles

greater than 200 but less than 400 cycles

greater than 400 but less than 600 cycles

greater than 600 but less than 800 cycles

less than 1500 cycles (off-level priority)

greater than 1500 but less than 2500 cycles (off-level priority)

greater than 2500 but less than 5000 cycles (off-level priority)

5000 cycles or greater. (off-level priority)

Two other predefined priorities are available: INTMAX which corresponds to all
interrupts disabled, and INTBASE which corresponds to all interrupts enabled.

See < sys/mJntr.h > for the associated priority levels of these interrupts.

HINT ------------------------,

A method for finding out your interrupt class could be as follows. Put a
trace hook with a time stamp into both the entry and the exit points of your
interrupt handler. (Please see" Performance Tracing for AIX" on page 9-44
for trace hook information.) The resulting trace will tell you the cumulative
time that was spent in the handler. Dividing this time by the cycle speed of
your RiSe System/6000 system will give you the number of cycles used.

2.4.2 Off-Level Interrupts
The INTOFFLn interrupt priorities are for off-level interrupt processing.
Typically, they are used when the interrupt service time for an operation
exceeds the time allowed at that interrupt priority. For example, if a device
interrupts and you know that it will take more than 800 cycles to service, your
interrupt handler should reschedule it so that it will use one of the off-level
routines.

The i_sched service is used to schedule off-level processing. The operation is
then set up to be performed at an off-level interrupt priority. This allows other
device interrupts to preempt the operation of the off-level handler at a small
cost of additional system overhead.

Operations that do not meet the off-level service time requirements must be
scheduled to be performed under a kernel process in order to maintain
adequate system real-time performance. Device driver routines providing the
device handler role often include an off-level processing routine. The kernel
calls the off-level routine to perform device-specific processing after the
following events have taken place:

• The interrupt handler has completed its processing.

• The interrupt has been reset.

The processing associated with a device interrupt can be time consuming. The
off-level routine allows a device to perform this processing at a less favored
priority. This in turn enables interrupt handlers to run as fast as possible by
avoiding interrupt-processing delays and device overrun conditions.

This routine must be part of the bottom half of the device driver when present.

2.5 Addressing Micro Channel Adapters

2.5.1 Identifying an Adapter
The first two POS registers for each adapter define what kind of adapter it is.
These two bytes contain a read-only number which uniquely identifies the
functions and capabilities of the adapter. A particular make and model of
Ethernet adapter might be identified by number Ox1234, while a particular
variety of sesl disk controller might be identified by number Ox9876. IBM
maintains a central registry for these numbers; even adapters produced by
other companies are guaranteed to be uniquely identified by the value of their
first two POS registers.

Chapter 2. Programmer view 2-13

The AIX Version 3 boot process uses the adapter 10 to determine what type of
Micro Channel adapter resides in each of the machine's expansion slots; this
determines which device drivers are loaded as part of the system.

Note: --------------------~--------------------------~

The unique instance of an adapter (if there are more than one of that same
type of adapter) is by the POS 10 and SLOT NUMBER.

Also, the POS 10 identifies only the base adapter and NOT a "daughter
board" that may be plugged into that adapter. Therefore, an adapter with
more that one kind of daughter board cannot be differentiated unless the
POS IDs are different.

2.5.2 Setting Adapter Attributes
The first two POS registers for each Micro Channel slot in the system (POS
register a and POS register 1) contain the adapter 10, described above. The
other POS registers control various attributes of the adapter. These attributes
vary from adapter to adapter, but some typical attributes are:

• The Interrupt ReQuest level (IRQ) on which the adapter will generate
interrupts (discussed later).

• The beginning I/O address of the adapter's ports.
• The beginning "memory" address of the adapter's RAM and/or ROM (if

any).

Other specialized attributes may also be set using the POS registers. The
exact bit values used to set various options is dependent on the adapter in
question; see the technical information provided with the adapter for specific bit
assignments.

2.5.3 Enabling an Adapter

2.5.4 1/0 Macros

2-14

The low order bit of POS register 2 (the third register) indicates whether the
adapter is enabled or not. If this bit is set to zero (as it is when the system is
booted or powered up) then the adapter is disabled; it may not generate
interrupts or otherwise make use of the system's resources, nor may the
system make use of the adapter's resources. After the adapter has been
correctly configured by the device driver and once the device driver is ready to
process interrupts from the device, the device driver must modify POS register
2 to set this bit. Once the bit is set, the adapter may generate interrupts and
may be the target of input and output requests from the host CPU.

(Note that you should disable your adapter when you are unconfiguring it as
well as for detected adapter error conditions that result in the shutdown of your
adapter.)

As discussed before ("Micro Channel Overview" on page 2-1), in the RISC
System/BOOO, POS registers appear to be virtual memory. They are maintained
in a memory segment which is managed by the IOCC hardware component
(see "Overview" on page 2-3).

Kernel services exist to manipulate virtual memory, but they should never be
used because very convenient C language macros can also be used to do the
same job (examples will be given in "Setting POS Registers from within a
Device Driver" on page 2-18 and "Simple I/O" on page 2-19). For instance,
IOCC_ATT will map the 10CC segment into the device driver's virtual address
space and IOCC_DET will unmap (delete) the 10CC segment from that address
space. Another macro, POSREG(n,m), will return the address of the nth POS
register of the adapter in slot m. This address can be used quite easily as a
pOinter to the POS register. Fetching the byte at that address, using the
BUSIO_GETC macro, will give the current value of the register, while setting
the byte (with the BUSIO_PUTC macro) at that address will modify the POS
register.

See < sys/mdio.h > for POSREG and < sys/ioacc.h > for BUSIO _ GETC and
BUSIO _PUTC.

As discussed above, most Micro Channel adapters provide a number of ports
through which they can communicate with host software. Like POS registers,
these registers are also memory mapped in the RISC System/6000. The
BUSIO_ATT macro will map the I/O segment into a device driver's virtual
address space; the address of the port in question (set by the POS process) is
used as a displacement within that segment to determine the memory mapped
address of the port. Once the address is determined by reading the dds, the
port may be accessed through a number of convenient macros provided by AIX
Version 3. When the accesses are complete, the BUSIO_DET macro will
remove the I/O segment from the virtual address space.

Memory provided on Micro Channel adapters can also be manipulated using
the BUSMEM_ATT and BUSMEM_DET macros.

Note that for code running in user mode, like a configuration method (see
"Device Drivers Configuration" on page 6-1), the machine device driver is used
to access the 10CC and I/O address spaces. With that device driver, you can
directly read or write a POS register, or any adapter port by using the system
call 10CTl on /dev/busO with different commands:

• MIOCCGET and MIOCCPUT allow you to read or write in the 10CC address
space

• MIOBUSGET and MIOBUSPUT allow you to read or write in the I/O bus
address space.

We will see later an example (see "Querying POS Registers from a
Configuration Method" on page 2-18) of how to use this device driver.

2.5.4.1 Attach/Detach Macros
In order to access I/O resources with the BUSMEM_ATT, BUSIO_ATT, or
IOCC_ATT macros you must supply what is unfortunately called a bus ID. The
bus 10 is in fact the value you need to load to a segment register (Le. the whole
word shown in Figure 2-4 on page 2-7). This word should not be confused with
the Bus Unit IDentification which is the 10 of the 10CC you want to talk to
(should always be x'20), and which is part of the bus ID!

The bus 10 value to use when manipulating 10CC resources (POS registers,
etc.) is defined in /usrlinclude/sys/iocc.h by the name IOCC_BID. The bus 10 to
use when accessing resources on the Micro Channel is never defined in any

Chapter 2. Programmer view 2-15

documentation; but if you choose the recommended values (see again
Figure 2-4 on page 2-7), you will find that:

#define BUS ID 0x820C0020

will work for bus memory and bus I/O access.

The fol/owing list describes aI/ the Attach/Detach macros:

• BUSIO_ATT{bid,io_addr)

• BUSIO_DET{io_addr)

• BUSMEM_ATT{bid,mem_addr)

• BUSMEM_DET{mem_addr)

• 10CC_ATT{bid,iocc_addr)

• 10CC_DET(iocc_addr)

The above macros are defined in /usr/include/sys/adspace.h.

The purpose of the Attach macro is to give you an index (Le. segment register
content) to use to access a certain address space (bus memory, bus 110, or
10CC).
They are all basically doing the same job:

1. Allocate a segment register.

2. Load the segment register with the specified value (bid).

3. Modify the specified address so that it will select the proper segment
register at address translation time (see Figure 2-3 on page 2-6).

4. Return the modified address.

This is done by calling the same kernel service (vm_att) in all macros. The
difference comes from the "protection" (by use of masks2 before Step 2) that is
used between the bid you give and the one passed to the vm_att service.

The Detach macros are all the same (they simply call the vm_det service to
deallocate the segment register), but are convenient for writing readable code:
something_attach should always be followed by something_detach.

IMPORTANT--------------------------------------~

Although segment registers are saved whenever another process or
interrupt handler executes, it is always important to use the proper Detach
macro (BUSIO_DET, BUSMEM_DET, or 10CC_DET) when your access is
complete. This will free the segment register that you have used. The
system will crash if you issue a BUSIO_ATT, BUSMEM_ATT, or 10CC_ATT
macro and there are not any available segment registers.

2 For instance, the IOCC_ATT macro masks every bit except the buid (the "'IOCC number"') part. If you consider
the fact that so far only x'20 is valid as a buid, and the fact that the predefined IOCC_BID has a value of
x'820COOEO, you will see that the macro is really secure!

2-16

2.5.4.2 Data Transfer Macros

These macros are defined in lusrlincludelsyslioacc.h.

1. Read or write the specified data to or from bus memory

BUS _P UTS(p ,v)

BUS _PUTC(p, v)

BUS_ GETL(p)

BUS_GETS(p)

BUS_GETC(p)

Write the specified unsigned long value (v) to
the supplied bus memory address (p).

Same, but v is a short.

Same, but v is a char.

Read an unsigned long value from the supplied
bus memory address (p).

Read a short.

Read a char.

2. Read or write the specified data to or from bus I/O including the 10CC

BUSIO_PUTS(p,v)

BUSIO_PUTC(p,v)

BUSIO_GETL(p)

BUSIO_GETS(p)

BUSIO_GETC(p)

3. Multi-byte (string) macros

BUS_PUTSTR(d,s,l)

BUSIO_PUTSTR(d,s,l)

BUS _ GETSTR(d,s,l)

BUSIO_GETSTR(d,s,l)

Write the specified unsigned long value (v) to
the supplied bus 1/0 address {pl.

Same, but v is a short.

Same, but v is a char.

Read an unsigned long value from the supplied
bus 1/0 address {pl.

Read a short.

Read a char.

Write the specified number of bytes (I) to the
destination bus memory address (d) from the
source system memory address (s).

Same to 1/0 address.

Read the specified number of bytes (I) from the
destination bus memory address (d) from the
source system memory address (s).

Same from I/O address.

Look at lusr/include/sys/ioacc.h -----------------,

To use the data transfer macros, it is helpful to look at their definition in
lusr/include/sys/ioacc.h. Included in this header file are some additional
declarations of macros for bus memory and bus I/O that also perform byte
reversal operations.

Chapter 2. Programmer view 2-17

2.5.5 Sample I/O on the RiSe System/6000

2.5.5.1 Querying P~S Registers from a Configuration Method
From a configuration method the machine device driver is used to examine the
P~S registers. The following code, taken from the samples shipped with AIX
Version 3, returns in cardid the adapter 10 from the adapter in the specified
slot.

#include <sys/mdio.h>
int slot;
ushort cardid;
MACH DD 10 mddRecord;
uchar pos[2];
int fd;

pos[0] = 0xff;
pos [1] = 0xff;

fd = open("/dev/buse ll
, O_RDWR)

mddRecord.md_size = 2;
mddRecord.md_incr = MV_BYTE;
mddRecord.md_data = pos;
mddRecord.md_addr = POSREG(e, slot);

ioctl(fd, MIOCCGET, &mddRecord)

close(fd);

cardid == ((pos[S] «8) I pos[l]))

2.5.5.2 Setting P~S Registers from within a Device Driver

2-18

To manipulate P~S registers from within a device driver a different method is .
used. Here is some code from a device driver that sets POS register 2 to Ox32.

#include <sys/mdio.h>
#include <sys/adspace.h>
#include <sys/iocc.h>
#include <sys/ioacc.h>
int bus_val;
char pos2;

pos2 = 0x32;

/* Gain access to the bus */
bus_val = IOCC_ATT(IOCC_BID, e); /* bus_val is now a pointer to

the beginning of the iocc address space */

pptr = bus_val + IO_IOCC + POSREG(2, slot_number);
/* IO_IOCC is an index to the start of all POS registers
in the IOCC address space */

BUSIO_PUTC(pptr, pos2); . /* Load the contents into POS2 */
IOCC_DET(bus_val);

2.5.5.3 Simple 110

Note that the POS registers are not at the beginning of the loee address space.
They begin at the IO_loee 3 address. Therefore, you have to add that value to
the addres$ returned by IOee_ATT.

Writing the value Ox12 to the liD port at I/O address Ox9876 could be done via
the following code:

#define BUS 10 0x820c0020 /* Micro Channel Bus 10 */

unsigned char* p;
ulong bus_val;

bus_val = BUSI0_ATT(BUS_IO, 0);
p = (unsigned char*) (bus_val + 0x9876);
BUSIO_PUTC(p, 0x12);
BUSIO_OET(bus_val);

2.5.6 Byte Reversal from the System Bus to the Micro Channel Bus
As Figure 2-1 on page 2-3 shows, data from the processor chip set or the
system memory to (or from) the Micro Channel adapters passes through the
10CC. The 10CC translates this data from the IBM system bus to the Micro
Channel bus by performing byte swapping.

When programs write (or read) data to the hardware residing on the Micro
Channel, they need not be concerned with this byte swapping. This is done
automatically by the 10CC. Care must be taken when passing data structures
tolfrom the hardware adapters that have vendor microprocessors resident. In
this case, it may be necessary to swap bytes so that the bytes will reside where
you expect them to.

Figure 2-6 on page 2-20 shows how the 10CC swaps bytes for a transfer to a
16-bit Micro Channel device.

Figure 2-7 on page 2-21 shows how a transfer is done to a 32-bit Micro Channel
device.

3 ,o_,oee is defined in lusrlincludelsysliocc.h.

Chapter 2. Programmer view 2-19

o 1 2 3

Byte reversal done by

theIOCC

1 0

3 2

system memory address

(A,B,C AND D represent data in memoxy)

Note that byte reversal is automatically done

(one 4 byte transfer appears as

two 2 byte transfers)

Figure 2-6. Data Transfer to a 16-Bit Micro Channel Device

2-20

o 2 3 system memory address

Byte reversal done by

the IOCC

(A,B,C AND D represent data in memory)

Note that byte reversal is automatically done

Data on the Micro Channel bus

A o Micro Channel memory

2

3

Figure 2-7. Data Transfer to a 32-Bit Micro Channel Device

2.5.7 Additional PIO Macro Information
In AIX version 3.1.5 and later, TWO versions of macros that provide access to
the liD bus are provided in the < sys/ioacc.h > header file. A version of the
macros without an X as the last character of their name has no error handling
built into it and should be used in conjunction with the pioass.ist or setjmpx I
clrjmpx services for handling I/O errors. (This version also exists in the earlier
levels of AIX version 3.) A second version of I/O macros (which was added in
the AIX 3.1.5 release) is denoted by an X in the last character of th~ir name,
has a low overhead error catching mechanism built into it. These macros
provide an alternate mechanism for performing programmed liD by utilizing a
very fast kernel mechanism for catching liD errors that occur during the
programmed liD transfer. These macros return a 0 return value if no error
occurred, or return a non-zero value if an error occurred during the lID transfer.
These macros utilize kernel routines that provide much faster exception handler
setup than the setjmpx, clrjmpx exception catching services utilized by
pioassist. In many cases where a small amount of liD is performed at one time,
this method will result in a much faster execution time due to the low exception
catching setup mechanism utilized by each macro invocation. In other cases
where there are large number of programmed liD macros used in a block of
code, the pioassist mechanism used in conjunction with the macros without
built-in error catching may result in better performance due to the utilization of
a single exception handler for all programmed liD instructions contained within
the block of code.

Chapter 2. Programmer view 2-21

2.5.7.1 Macros performing programmed 110 writes
The first set of programmed I/O macros write the specified data to bus memory
or bus I/O address space. The BUS_PUTC (put character) macro may also be
used to write POS registers.

BUS_PUTL(long *ioaddr, long data)

Write the specified long value (data) to the supplied bus memory or bus I/O
address (ioaddr) without error handling.

int BUS_PUTLX(long *ioaddr, long data)

Write the specified long value (data) to the supplied bus memory or bus I/O
address (ioaddr) with built-in exception catching. The return value will be 0 for
success, otherwise an error (exception) occurred during the transfer.

BUS_PUTS(short *ioaddr, short data)

Write the specified short value (data) to the supplied bus memory or bus I/O
address (ioaddr) without error handling.

int BUS_PUTSX(short *ioaddr, ushort data)

Write the specified short value (data) to the supplied bus memory or bus I/O
address (ioaddr) with built-in exception catching. The return value will be 0 for
success, otherwise an error (exception) occurred during the transfer.

BUS_PUTC(char *ioaddr, char data)

Write the specified character value (data) to the supplied bus memory, bus I/O
or POS address (ioaddr) without error handling.

int BUS_PUTCX(char *ioaddr, char data)

Write the specified character value (data) to the supplied bus memory, bus I/O
or POS address (ioaddr) with built-in exception catching. The return value will
be 0 for success, otherwise an error (exception) occurred during the transfer.

int BUS_PUTSTRX(char*ioaddr, char *saddr, int count)

Copy count bytes from memory specified by saddr to bus memory or bus I/O
address starting atthe address specified by ioaddr with built-in exception
catching. The return value will be 0 for success, otherwise an error (exception)
occurred during the transfer.

2.5.7.2 Macros performing byte reversed 110 writes

2-22

int BUS_PUTLRX(long *ioaddr, long data)

Write the speCified long value (data) to the supplied bus memory or bus I/O
address (ioaddr) in byte reversed format with built-in exception catching. The
return value will be 0 for success, otherwise an error (exception) occurred
during the transfer. Note: The 10CC (I/O controller) on the RISC System / 6000
automatically converts 32 bit transters from big end ian format on the system
into little endian format as seen by the device, therefore this macro will undo
this conversion. This macro should be used when the device or the data on the

device is stored in BIG ENDIAN format instead of the ususal LITTLE ENDIAN
format found on most microchannel adapters.

int BUS _PUTSRX(short *ioaddr, short data)

Write the specified short value (data) to the supplied bus memory or bus I/O
address (ioaddr) in byte reversed format with built-in exception catching. The
return value will be a for success, otherwise an error (exception) occurred
during the transfer. Note: The loee (I/O controller) on the RISC System / 6000
automatically converts 16 bit transters from big end ian format on the system
into little end ian format as seen by the device, therefore this macro will undo
this conversion. This macro should be used when the device or the data on the
device is stored in BIG ENDIAN format instead of the ususal LITTLE ENDIAN
format found on most microchannel adapters.

2.5.7.3 Macros performing programmed 1/0 reads
The following macros read the specified data from bus memory or bus I/O
address space. The BUS_GETC (get character) macro may also be used to read
POS registers.

long BUS _ GETL(long *ioaddr)

Read the specified long value from the supplied bus memory or I/O address
(ioaddr). This macro is an expression.

int BUS_GETLX(long *ioaddr, long *data)

Reads the specified long value into the variable data from the supplied bus
memory or I/O address (ioaddr) with built-in exception catching. The return
value will be a for success, otherwise an error (exception) occurred during the
transfer.

short BUS _ GETS(short *ioaddr)

Reads the specified short value from the supplied bus memory or I/O address
(ioaddr) without error handling. This macro is an expression.

int BUS_GETSX(short *ioaddr, short *data)

Reads the specified short value (data) from the supplied bus memory or I/O
address (ioaddr) with built-in exception catching. The return value will be a for
success, otherwise an error (exception) occurred during the transfer.

char BUS_GETC(char *ioaddr)

Reads the specified character value (data) from the supplied bus memory, bus
I/O or POS address (ioaddr) without error handling. This macro is an
expression.

int BUS_GETCX(char *ioaddr, char *data)

Reads the specified character value (data) from the supplied bus memory, bus
I/O or POS address (ioaddr) with built-in exception catching. The return value
will be a for success, otherwise an error (exception) occurred during the
transfer.

Chapter 2. Programmer view 2-23

int BUS_GETSTRX(char *ioaddr, char *daddr, int count)

Copy count bytes from bus memory or bus 1/0 address starting at the address
specified by ioaddr to memory starting at daddr with built-in exception
catching. The return value will be 0 for success, otherwise an error (exception)
occurred during the transfer.

2.5.7.4 Macros performing byte reversed 1/0 reads
int BUS_GETLRX(long *ioaddr, long *data)

Read the specified long value (data) from the supplied bus memory or bus 1/0
address (ioaddr) in byte reversed format with built-in exception catching. The
return value will be 0 for success, otherwise an error (exception) occurred
during the transfer. Note: The 10CC (I/O controller) on the RISC System I 6000
automatically converts 32 bit transters from little endian format on the device
into big end ian format, therefore this macro will undo this conversion. This
macro should be used when the device or the data on the device is stored in
BIG ENDIAN format instead of the ususal LITTLE ENDIAN format found on most
microchannel adapters.

int BUS_GETSRX(short *ioaddr, short data)

Write the specified short value (data) to the supplied bus memory or bus I/O
address (ioaddr) in byte reversed format with built-in exception catching. The
return value will be 0 for success, otherwise an error (exception) occurred
during the transfer. Note: The 10CC (lID controller) on the RISC System I 6000
automatically converts 16 bit transters from little end ian format on the device
into big endian format, therefore this macro will undo this conversion. This
macro should be used when the device or the data on the device is stored in
BIG ENDIAN format .instead of the ususal LITTLE ENDIAN format found on most
microchannel adapters.

2.5.7.5 PIO Error Recovery Considerations

2-24

In general, all 1/0 operations must include provisions to handle detectible
errors. Except for Programmable Option Select (POS) accesses, it is possible
for all PIO operations to have a variety of synchronous errors. These generally
require the device driver to support synchronous 1/0 error exception handling.

When utilizing the programmed I/O macros with built in exception catching, a
non-zero return code indicates that an exception or error occurred during the
operation. If the operation was a read, the contents of the destination data area
are invalid. If the return code is non-zero it will have one of the exception
values defined in < sys/except.h >. If the value is EXCEPT JO then the
exception is an error caused by programmed I/O and should be handled. If the
return code is non-zero and not EXCEPT _10 some other error (usually a
programming error) has occurred and an assert should be coded to stop the
system and provide a dump. If the operation is to be retried, it should be
retried up to PIO_RETRY _COUNT times (see < sys/except.h ». If the operation
still fails, it should be considered a permanent error and handled accordingly,
usually by returning EIO to the caller of the device driver.

POS operations, unlike other PIO operations, cannot detect synchronous 1/0
errors. It is suggested that device driver programmers implement an algorithm
which reads back the data after a read or write and compares it to see if a
simple data error occurred. If the data miscompares, the POS operation should

be retried, and the data read back again to see if the miscompare recurred.
This should be repeated up to PIO_RETRY_COUNT (see <sys/except.h»
times. If the operation still fails, it should be considered a permanent error and
handled accordingly.

2.5.7.6 Programmed I/O Examples w/o error catching
Examples of typical Pia operations follow. To simplify the examples, error
catching has been omitted, however must never be omitted in operational code.
When using these macros, ploassist or setJmpx kernel services should be used
to catch and handle I/O errors. For more information on error handling of this
type refer to Device Handler Error Recovery. I/O errors that are not handled by
device drivers will cause a kernel exception to occur, resulting in a system
crash. While error handling is required, error recovery is optional but strongly
advised. Error recovery involves retrying the failing operations one or more
times before shutting down the device.

Perform a 32-bit read of system bus I/O space at address Ox3FO.

caddr_t addr;
ulong io_addr, buid, bid, data_read_from_device;
/* note that buid and base io_address is typically known to the

device driver via its configuration parameters */
buid = 0x82000000; /* hard coded only for example */
io_addr = 0x3F0; /* hard coded only for example */
bid = buid I 0x000C0020; /* enable bus access modes */
addr = BUSIO_ATT(bid, io_addr);
data_read_from_device = BUS_GETL(addr);
BUSIO_DET(addr);

Perform a 16-bit write of OxE010 to system bus memory space at address
OxE0082.

caddr_t addr;
ulong mem_addr, buid, bid;
ushort data to write to device;
/* note that buid and base bus memory address is typically known

to the device driver via its configuration parameters */
buid = 0x82000000; /* hard coded only for example */
mem_addr = 0xE0082; /* hard coded only for example */
bid = buid I 0x000C0020; /* enable bus access modes */
data to write to device = 0xE010;
addr-= BUSMEM=ATT(bus_id, mem_addr);
BUS_PUTS(addr, data_to_write_to_device);
BUSMEM_DET(addr);

Perform a read of both pas address 0 and 1 registers for the Micro Channel
Adapter in slot 3. Note: refer to the Rise System/6000 Hardware Technical
Reference for information regarding generating pas effective addresses.

caddr_t bus_addr;
ulong bus_id, slot;
uchar value0, valuel;
/* note that bus_id is typically known to the

device driver via its configuration parameters */
slot = 3;
bus_addr = IOCC_ATT(bus_id, 0);
value0 = BUS_GETC(bus_addr + ((slot - 1) « 16) + 0x400000);
valuel = BUS_GETC(bus_addr + ((slot - 1) « 16) + 0x400001);
IOCC_DET(bus_addr);

Chapter 2. Programmer view 2-25

Perform a 32 byte string write to bus memory address Ox3000 from system
memory.

caddr_t addr;
sys_string charffl32";
ulong mem_addr, buid, bid;
int rc, length;

/* note that buid and base bus memory address is typically known
to the device driver via its configuration parameters */
buid = 0x82000000; /* hard coded only for example */
mem_addr = 0x3000; /* hard coded only for example */
bid = buid I 0x000C0020; /* enable bus access modes */
length = 32;
addr = BUSMEM_ATT(bus_id, mem_addr);
rc = BUS_PUTSTRX(addr, sys_string, length);
BUSMEM_DET(addr);

2.5.7.7 Programmed 1/0 Example with error catching

2-26

An example of a typical PIO operation follows. This example uses an error
catching macro to catch any errors and calls a common error handling routine
in the device driver to retry the operation, perform the error logging and return
with either a permanent error status, or a successfully recovered status if an
error occurs. Note that error handling is performed by a separate routine
instead of using inline code so that instruction caching is optimized for the
normal path.

Perform a 32-bit read of system bus 1/0 space at address Ox3FO.

enum pio_func { GETC, GETS, GETSR, GETl, GETlR,

} ;
struct deY_regs {

long status_reg;
short cmd_reg;

} ;

PUTC, PUTS, PUTSR, PUTl, PUTlR

struct deY_regs *devaddr;
long io_addr, bid, buid, status;
buid = 0x82S000e0; /* hard coded only for example */

io_addr = 0x3F0; /* hard coded only for example */
bid = buid I 0x000C0020;
/* note that buid and io_addr are typically known to the

device driver via its configuration parameters (dds) */
devaddr = (struct deY_regs *) BUSIO_ATT(bid, io_addr);
if (rc = BUS_GETlX(&devaddr->status_reg, &status))

rc=pio_recov(GETl, &dds, rc, &devaddr->status_reg , (long) &status);
BUSIO_DET(devaddr); .
return (rc);

/* pio_recov - general pio error handling and recovery routine example */
int pio_recov (enum pio_func iofunc, struct dds *ddsp, int exception,

void *ioaddr, void *ioparam)

int retry count= PIO RETRY COUNT;
while (TRUE) - -

{

assert(exception == EXCEPT_IO);
if (retry_count <= 0)

/* log permanent error here - out of retries */
/* dds pointer is used for error logging to determine which device the

error is reported against */
return (EIO) ;

else
{

}

/* log temporary error here */
retry_count--;

/* retry the PIO function and return if successful */
switch (iofunc)
{
case GETL:

exception = BUS_GETLX ((long *)ioaddr, (long *)ioparam);
break;

case GETS:
exception = BUS_GETSX ((short *)ioaddr, (short *)ioparam);
break;

. /* case entries for all enumerated I/O functions */

} /* end of switch */
if (exception == 0)
return (0);

} /* end of while TRUE*/

Chapter 2. Programmer view 2-27

2-28

Chapter 3. Interface to Device Drivers

3.1 Aix Version 3.1 Structure

3.1.1 AIX and the Interrupt and Process Environments

© Copyright IBM Corp. 1991

The AIX 3.1 kernel is a collection of processes, interrupt handlers, device
drivers, and system calls that provide an environment in which application
programs can execute. There are two types of execution states, two types of
processes and two types of execution environments. There are also other
characteristics, such as whether or not the process is pageable or preemptible.
Figure 3-1 on page 3-2 shows a overview of processes and their characteristics
for AIX in Version 3.

3-1

Process TYpes and execution Modes

USER
MODE

KERNEL

KERNEL
MODE

USER
PROCESS

(USER MODE)

System
Call

USER
PROCESS

(KERNEL MODE)

INTERRUPT HANDLER

KERNEL
PROCESS

(KERNEL MODE)

PAGEABLE
AND

PREEMPTIBLE

(GIVEN LARGE
PAGABLE
STACK)

NON
PAGEABLE

Figure 3-1. AIX Interrupt Handlers and Processes

3-2

At the hardware level, the processor can be in one of two execution states:
privileged or unprivileged. The execution state determines what instructions the
processor allows.

Programs execute in one of two modes, similar to the processor execution
states; they are user and kernel mode. A program running in user mode can
only affect its own execution environment and runs in the processor
unprivileged state. Programs running in kernel mode can affect the execution
environments of all programs because they can call kernel services and run in
privileged state. The execution mode changes when a system call is made.

In order to provide facilities for a real-time environment and to improve system
efficiency, there are two types of execution environments. First, there is the
process environment. This environment is independent of external events and
must share the processor in a way that is fair to all. Processes that run in this
environment are time sliced and can be preempted by a higher priority process.
This includes both user and kernel processes. In the process environment, a
process is pageable and preemptible. That means it can· be interrupted by
another process. Secondly, there is the interrupt handler environment. In this
environment, a process must respond to external events quickly. It is not time
sliced, and runs to completion. It can be preempted by a higher priority
interrupt handler. It cannot be paged out.

A user process is usually connected with an end user and is usually running
some application or command. It usually runs in user execution mode, where it
can only affect its own environment. If it has the proper authority, it may
execute a system call, which temporarily changes to kernel or privileged mode,
to access some restricted system resource. A user process is a process
created primarily to execute a user program and usually doesn't need
privileged operations. A user process is the environment that a user program
executes in. Most processes are user processes. When the process requires a
function performed by the system, it uses the system subroutines, called
system calls or kernel calls. When the user process issues a system call, the
execution environment switches from user to kernel mode.

A kernel process is primarily created to execute a kernel program. It is always
running in kerilel mode and may affect the environments of other processes. A
kernel process in one that executes in kernel mode all the times.

3.1.2 The AIX Interrupt Handler Environment
An interrupt handler executes in a restrictive type of program environment.
They must not page fault or wait and can only use a restricted set of kernel
services. All data access is typically in global memory to avoid paging. The
path length must be short - 100 instructions is often the guideline for those with
high priority, 1000 cycles for those with relatively low priority. By having these
restrictions, the context switch time (the time required to dispatch a process) is
small.

An interrupt handler may change its interrupt priority by enabling/disabling
interrupts, masking interrupts, or scheduling to run code at an off-level priority.
It can only be preempted by a higher priority interrupt handler. There are
services (i_disable and i_enable) to enable and disable interrupts. The i_mask
and Cumask will mask off interrupts below a specified priority.

For an interrupt handler to schedule additional interrupt handler code to be run
at a lower interrupt priority use the i_sched kernel service. An example of
off-level scheduling would be an interrupt handler for asynchronous terminals.
They can receive keystroke data from the terminal at a very high priority to
ensure that overrun of the device does not occur. Once the keystroke data is
buffered in the operating system, the rest of the character processing can be
done at a lower level.

Interrupt handlers are not time sliced, so they run to completion unless
interrupted by a higher priority interrupt. They cannot wait on events or
dispatch processes. The path length has to be short because they are not time

Chapter 3. Device Drivers Interface 3-3

sliced. They can change their interrupt priorities and can disable other
interrupts. The stack is always small and pinned to increase the efficiency.

In AIX Version 3, there are 12 interrupt priorities defined for the RISC/BOOO. See
/usr/include/sys/mJntr.h for their definition.

Please see "Priority Assignment" on page 2-12 for a more detailed discussion
of interrupt handler priorities.

Interrupt Handler Characteristics -----------------,

Interrupt handlers have the following characteristics:

• Preemptible by higher priority interrupts only

• Cannot wait or dispatch processes

• Must have short path length

• May change interrupt priority

• Interrupt handlers are pinned in memory

• Must only access pinned data (page faults are not allowed).

3.1.3 The AIX Process Environment

3-4

This section describes the process type of environment. There are 128 process
priorities in Version 3. Process priorities are always of lower priority than
interrupt handler priorities. The priority may be changed with either the setprio
system call or the nice command.

The scheduler in AIX Version 3 is similar to the one in AIX 2.2.1, (which was
AT&T based) except for one primary item: most processes are now
preemptible, including kernel processes. Also, a process can make itself
exempt from being preempted, such as a real-time process. The scheduler is
exempt along with some other critical pieces of the kernel.

User process priorities are assigned by the standard Unix algorithm based on
the ratio of the amount of compute time to real-time recently used by the
process. At every tick of the system timer, the p_cpu field (processor usage) in
the process table for the running process is incremented. The compute time to
real-time ratio is updated every second. Using a negative exponential
distribution, the kernel decreases p_cpu by half its value for every process at or
above the base user level and recalculates the priority of the processes.
Processes that accumulated a lot of execution time are less favored than
processes with very litte execution time. A user process can execute the nice
system call to induce a bias in the calculation. A setprio system call can also
be executed to bypass the calculation.

The priority of a process is determined by the following formula:

min ((real-time-f1ag ? 0 : cpu-usage) + nice-value, wake-up-priority,
lock-priority, 127)

The real-time-f1ag means that this process executes at a fixed priority and is
exempt from having its priority recomputed due to CPU usage.

The wake-up-priority is the priority at which the process should be dispatched
once its sleep ends.

The lock-priority is set for a process which holds a lock by those requesting the
lock to ensure that the lock holder executes at a higher priority equal to that of
the most favored lock requester until it relinquishes the lock.

This means the priority is the lowest of the following numbers: the cpu-usage
(or 0 if it's a real-time program), the nice-value, the wake-up priority, lock
priority, or 127.

Process Characteristics ---------------------,

Processes have the following characteristics:

• Preemptible by higher priority process or ANY interrupt

• Can wait and/or dispatch processes

• Has large pagable stack

• Page faults are allowed

• Has one of 128 process priorities (0 is highest, 127 is lowest)

• Process priority may be fixed (exempt from scheduling) or normal.

3.1.4 Preemption in the AIX Operating System
The AIX kernel is designed to allow preemption by other processes while
executing in kernel mode. This change to allow preemption was made in order
to enhance support for real-time processes and large multiuser systems.

Most existing Unix device drivers do not expect to be preempted. The effects of
preemption on existing Unix device drivers are from redispatching another
process before the preempted process is allowed to finish a request. Instead, a
higher priority process may start running. This higher priority process may
update the same data areas as the preempted process which causes data
inconsistencies.

Kernel mode processes that update global kernel data are not considered
reentrant. Reentrant means the routine does not modify itself or its data.
Routines that are reentrant are not a problem. However, if you are modifying
global kernel data structures or private structures that are shared between
processes then some form of serialization is required. A serially reusable
routine must provide serialization using one of two methods available in the
kernel. One way is to priortize processes accessing the data. The highest
priority process is guaranteed to finish its work before a lower level process.

This is difficult to achive on systems that provide paging unless the system
does not dispatch another process until the page for the waiting process comes
in allowing the higher priority process to complete. In a paging system it is
better to be able to dispatch another process during the page in process. In
AIX, locks are used for this reason. Serialization is accomplished by using the
lockl kernel service with the kernel_lock parameter. Therefore a process with
the kernelJock will not be preempted by another kernel mode process (unless
the original process waits on I/O). Locks provide a serialization mechanism for

Chapter 3. Device Drivers Interface 3-5

processes executing in kernel mode. A lock is not an enforceable policy. A lock
is a request to the system to serialize your use of a resource with other
processes. If all processes do not adhere to this policy, data inconsistencies
will occur.

Programming Hint ------------------------,

The lock word is nothing but a unique token. All processes which share a
data structure typically use the address of the data structure as their unique
token when calling lockl.

The process currently owning the lock may update the information agreed
among the other processes. For example, process A wishes to insert a new
structure into a doubly linked list. Process A obtains the lock head_pointer
which is the address of the start of the list and proceeds to insert element x
onto the list. During this time most Unix systems would not allow another
process in the kernel to be dispatched, because the pointers may not be
completely updated. With AIX, however, page faulting or handling of external
interrupts may halt the execution of process A and allow another more favored
process to execute. If the new process also alters the head_pointer list it may
find the data structure inconsistent and result in a data exception in the kernel.
Locks avoid this scenario and allow kernel mode processes to page fault and
support real-time.

Kernel extensions release a lock using unlockl. If you call unlockl your
extension believes it owns a lock. If you do not own the lock and call unlockl
chances are your process was not serialized during some critical update. The
kernel will then crash the system.

Please see "Process Management Kernel Services" on page 3-19 for a
discussion on the lockl/unlockl system calls.

3.2 Kernel Interface

3-6

A device driver at the user application level supports the same user interface
as the file system, namely; open, close, read, and write routines. A device
driver implements this concept through the use of kernel services.

In its simplest form, a device driver moves data between hardware devices and
user applications where the user applications supply and consume information.
It may also be involved in the translation of information. Presenting information
to the application that is translated from the tty services is an example of this.

In addition to supplying a user with information, a computer employs numerous
types of devices for storing and collecting data. Device drivers provide a
transparent method for managing information storage and retrieval.

For example, a device driver moves keystrokes to a program and moves
characters to the screen for display. In this simple view a device driver is
trivial. However, because there is typically more time spent waiting for devices
to input and output information on Unix machines, the design is to allow
multiple users to input/output data. This complicates the system dramatically.

The kernel services provide services for moving data, serializing the use of
data, data integrity and notification of data delivery. With these mechanisms a
device driver can satisfy the need for information among many users while
optimizing the resources of the machine.

3.2.1 The Device Switch Table
The device switch table binds the device driver to the system and extends the
kernel. The kernel however needs to advertise that the service is available.
Advertisement is accomplished through the file system and the mknod
command. The special file provides a name which is translated to a device
number. The device number is then used to index the switch table.

The order of operations in your device driver configuration routine should make
sure that the mknod is issued as the last command, allowing the driver to be
completely set up before any user is able to access the device driver. See
"Adapter Configuration Method (cfgrica.c)" on page 8-28 for sample
configuration code.

The AIX device switch table provides services for collecting and storing device
driver location information. In addition, kernel services are provided for
querying the entries.

devswqry query to see if a device and associated routines and
configuration information are available.

devswadd adds information for a device driver to the device switch
table.

devswdel deletes information for a device driver from the device
switch table.

The kernel services listed above are the only method for accessing the device
switch table. This is different than other Unix systems that provide direct
access to the switch table. Direct access to the switch table on AIX would be
potentially a problem because it is a global data structure. Any number of users
could be adding a device driver and so the problems of serialization exist.

There are other global kernel data structures that are also implemented using a
service to alter and read information instead of providing a global variable. That
is why some kernel services exist - to serialize the access and changing of
global data structures.

The following entry points exist in the device switch table. These entry paints
(routines) will be discussed in subsequent sections:

• open routine entry point

• close routine entry point

• read routine entry point

• write routine entry paint

• ioctl routine entry point

• strategy routine entry point

• select routine entry point

• config routine entry point

Chapter 3. Device Drivers Interface 3-7

• print routine entry point

• dump routine entry point

• mpx routine entry point

• revoke routine entry point.

Note that not all routines are required. If a routine is not required, the entry in
the device switch table can call one of two special kernel routines nodevor
nulldev. An entry point can be assigned a null value. This will result in a call to
a dummy kernel routine called nulldev which will always return a successful
return code. An entry point can also be assigned a value of nodev. This will
result in a return code value of ENODEV.

3.2.2 Entry Points Common to Character and Block Device Drivers

3-8

Please refer to "Overview of a Character Device Driver" on page 4-1 for
detailed information on character device driver entry points and to "Overview of
a Block Device Driver" on page 5-1 for detailed information on block device
driver entry points.

The names of entry points (like ddconfig, ddopen, ddread, etc.) do not mean
anything in terms of symbols exported by the kernel. They are place holder
names purely for description. Your driver is ONLY bound to the kernel through
the switch table. The device switch table expects an entry in each field whether
or not your driver supports such a routine. See nodev or nulldev if you do not
have a routine. Your driver may export symbols but please see" Pinning Device
Driver Code" on page 10-1 for a description of possible problems that can be
caused by referencing code that is not pinned.

The following entry points are common for both character and block device
drivers:

• ddconfig

The ddconfig routine is an AIX innovation and is not part of standard Unix.
This routine supports run time and IPL time configuration of the device
driver. Typically, it is the first routine in your driver but may be placed
elsewhere. ddconfig is responsible for reading the configuration information
requested by the user/administrator, setting the driver up according to this
information and binding the routines in the driver to the switch table so that
the user level configuration routine (configuration method) can complete.
This makes the user interface available (open, close, read, write) for use.

• ddopen

The ddopen routine binds a user to the device driver. Some drivers wait
until open to finish configuring additional device parameters. Also, some
drivers support multiple users per device (for example, the token-ring and
Ethernet device drivers do this). Others handle multiplexing through
user-written routines such as the printer backend services (piobe). The
open routine determines whether one or more users may be allowed to
access the device concurrently.

• ddclose

The ddclose routine is responsible for deallocating resources associated
with a particular user.

• ddioctl

The ddioctl routine provides control commands and parameters to the
device.

• dddump

The dddump routine allows the device driver to use the device as the target
of a system dump. Usually hard disks or tape devices will have this
capability.

3.2.3 Entry Points for Character and Raw Access to Block Device Driver
• ddread

Allows data to be read from a device. This is sequential data specified as
one or more bytes.

• ddwrite

Allows sequential data to be written to a device.

3.2.4 Entry Points Unique to Character Device Drivers
• ddselect

Allows a user to poll a hardware device to determine whether specific
events should have occurred.

• ddmpx

Allows for multiple users to share a resource on a hardware adapter. For
example, this could be a port on a communications adapter.

3.2.5 Entry Points Unique to Block Device Drivers
• ddstrategy

Allows block-oriented reads or writes to be performed on a block-oriented
device (like a hard disk).

3.2.6 Entry Points for Trusted Computing Path Device Drivers
• ddrevoke

Allows a character device driver to disable a device for all users. This
results in a particular user having exclusive access to a device. This entry
point is only required for devices that are supported in the trusted
computing path.

3.2.7 Miscellaneous Entry Points NOT Found in the Device Switch Table
The following routines do not have entries in the device switch table. They are
registered using kernel services.

The start 1/0 routine is typically known only to other routines within the device
driver, such as the strategy and interrupt-handling routines.

Interrupt handling routines are also registered using kernel services. Note that
some character device drivers, particularly pseudo-device drivers, may not
have a bottom half if they have no need to execute in the interrupt environment.

Chapter 3. Device Drivers Interface 3-9

The entry pOint for the component dump routine is registered with the kernel at
initialization time. This is registered by using the dmp_add kernel service. The
purpose of the component dump routine is to allow your device driver to save
tables and information if something causes a system dump to happen. See
"Including Device Driver Information in a System Dump" on page 9-2 for more
information.

HINT --~

Writing and registering a component dump routine for your device driver
can be very useful for tracing the cause of abnormal system dumps related
to your driver.

3.3 Kernel Services
This section contains a non-exhaustive list of AIX V3 kernel services. The
complete list can be found in in Chapter 6 of Kernel Extensions and Device
Support Programming Concepts.

3.3.1 1/0 Services

3.3.1.1 Programmed 1/0 Macros
See "I/O Macros" on page 2-14

3.3.1.2 Interrupt Management

3-10

The eight Interrupt Management services are:

Removes an interrupt handler from the system.

Cdisable Disables all of the interrupt levels at a particular interrupt priority
and all interrupt levels at a less-favored interrupt priority.

Cenable Enables all of the interrupt levels at a particular interrupt priority and
all interrupt levels at a more-favored interrupt priority.

i_init Defines an interrupt handler to the system, connects it to an
interrupt level, and assigns an interrupt priority to the level.

i_mask Disables a bus interrupt level.

i_reset Resets a bus interrupt level.

i_sched Schedules off-level processing.

i_unmask Enables a bus interrupt level.

Additional considerations for interrupt handlers:

• Code and data referenced should be pinned in memory.

• Code should be prepared to handle preemption by equal or higher priority
interrupts.

• Code should execute on a small stack.

3.3.1.3 DMA Management
The AIX operating system kernel provides 10 services for managing DMA
channels and performing DMA operations:

Initializes a DMA channel.
Flags to be used:

• For bus master: MICRO_CHANNEL_DMA

• For bus slave: MICRO_CHANNEL_DMA and DMA_SLAVE

d_clear Frees a DMA channel.

d_master Initializes a block-mode DMA transfer for a DMA master.
Flags to be used:

• For system memory to device: DMA_WRITE_ONLY

• For device to system memory: DMA_READ

• For bus memory to device: BUS_DMA

• For device to bus memory: DMA_READ and BUS_DMA

d_slave Initializes a block-mode DMA transfer for a DMA slave.
The flags to be used are the same as for DMA master transfer.

d_complete Cleans up after a DMA transfer.

d_mask Disables a DMA channel.

d_unmask Enables a DMA channel.

d_move Provides consistent access to system memory that is accessed
asynchronously by a device and by the processor on a RISC
System/BOOO.

d_align Assists in allocation of DMA buffers.

d_roundup Assists in allocation of DMA buffers.

A device driver must call the d_slave service to set up a DMA slave transfer or
call the d_master service to set up a DMA master transfer. The device driver
then sets up the device to perform the DMA transfer. The device transfers data
when it is available and interrupts the processor upon completion of the DMA
transfer. The device driver then calls the d_complete service to clean up after
the DMA transfer. This process is typically repeated each time a DMA transfer
is to occur.

The d_align service returns the alignment value required for starting a buffer on
a processor cache line boundary. The d_roundup service can be used to round
the desired DMA buffer length up to a value that is an integer number of cache
lines. These two services allow buffers to be used for DMA to be aligned on a
cache line boundary and allocated in whole multiples of the cache line size so
that the buffer is not split across processor cache lines. This reduces the
possibility of consistency problems because of DMA and also minimizes the
number of cache lines that must be flushed or invalidated when used for DMA.
For example, these services can be used to provide alignment as follows:

align = d_align();
buffer_length = d_roundup(required_length);
buf_ptr = xmalloc(buffer_length, align, pinned_heap);

Chapter 3. Device Drivers Interface 3-11

3.3.1.4 Block I/O

Data must be carefully accessed when a DMA operation is in progress. The
d_move service provides a means of accessing the data while DMA transfer is
being performed on it. This service uses the same 110 controller data buffers
that the DMA master does when accessing data from the shared data area
in system memory. Using the same buffer keeps the processor data accesses
and device data access consistent. On the RISC System/6000 platform, this is
necessary since the 1/0 controller provides buffer caching of data accessed by
bus master devices.

The three Block 1/0 kernel services are:

iodone Performs block 1/0 completion processing.

iowa it Waits for block I/O completion.

uphysio Performs character lID for a block device using a uio structure.

3.3.1.5 Buffer Cache
The 14 Buffer Cache kernel services are:

bawrite Writes the speCified buffer's data without waiting for I/O to complete.

bdwrite Releases the specified buffer after marking it for delayed write.

bflush Flushes all write-behind blocks on the specified device from the
buffer cache.

binval Invalidates all of the specified device's blocks in the buffer cache.

blkflush Flushes the specified block if it is in the buffer cache.

bread Reads the speCified block's data into a buffer.

breada Reads in the specified block and then starts I/O on the read-ahead
block.

brelse Frees the specified buffer.

bwrite Writes the specified buffer's data.

clrbuf Sets the memory for the specified buffer structure's buffer to all
zeros.

getblk Assigns a buffer to the specified block.

geteblk Allocates a free buffer.

geterror Determines the completion status of the buffer.

purblk Purges the specified block from the buffer cache.

3.3.1.6 Character 1/0

3-12

The 13 Character I/O kernel services are:

getc

getcb

getcbp

getcf

Retrieves a character from a character list.

Removes the first buffer from a character list and returns the
address of the removed buffer.

Retrieves multiple characters from a character buffer and places
them at a designated address.

Retrieves a free character buffer.

getex

plnef

pute

puteb

putebp

putef

putefl

putex

Returns the character at the end of a designated list.

Manages the list of free character buffers.

Places a character at the end of a character list.

Places a character buffer at the end of a character list.

Places several characters at the end of a character list.

Frees a specified buffer.

Frees the specified list of buffers.

Places a character on a character list.

waltefree Checks the availability of a free character buffer.

3.3.2 Memory Services
The Memory kernel services provide kernel extensions with the ability to:

• Dynamically allocate and free memory

• Pin and unpin code and data

• Access user memory and transfer data between user and kernel memory

• Create, reference, and change virtual memory objects.

3.3.2.1 Memory Management Kernel Services
The three Memory Management services are:

IniCheap Initializes a new heap to be used with kernel Memory Management
services.

xmalloe Allocates memory. Two heaps are provided in the kernel segment
for use by kernel extensions: kernel_heap which is not pinned, and
pinned_heap which is pinned.

xmfree Frees allocated memory.

3.3.2.2 Memory Pinning
The six Memory Pinning services are:

pin Pins the address range in the system (kernel) space.

pineode Pins the code and data associated with an object file.

pinu Pins the specified address range in user or system memory.

unpin Unpins the address range in system (kernel) address space.

unpineode Unpins the code and data associated with an object file.

unpinu Unpins the specified address range in user or system memory.

3.3.2.3 User Memory Access
In a system call or kernel extension running under a user process, data in the
user process can be moved in or out of the kernel using the eopyin or eopyout
services. The uimove service is used for scatter/gather operations. If user
data is to be referenced asynchronously, such as from an interrupt handler or a
kernel process, the cross memory services must be used.

The 10 user Memory Access services are:

Chapter 3. Device Drivers Interface 3-13

copyin Copies data between user and kernel memory.

copyinstr Copies a character string (including the terminating null character)
from user to kernel space.

copyout Copies data between user and kernel memory.

fubyte Fetches, or retrieves, a byte of data from user memory.

fuword Fetches, or retrieves, a word of data from user memory.

subyte Stores a byte of data in user memory.

suword Stores a word of data in user memory.

uiomove Moves a block of data between kernel space and a space defined by
a uio structure.

ureadc Writes a character to a buffer described by a uio structure.

uwritec Retrieves a character from a buffer described by a uio structure.

3.3.2.4 Cross Memory Kernel Services

3-14

The Cross Memory services allow data to be moved between the kernel and an
address space other than the current process address space. A data area
within one region of an address space is attached by calling the xmattach
service. As a result, the virtual memory object cannot be deleted while data is
being moved in or out of pages belonging to it. A cross memory descriptor is
filled out by the xmattach service. The attach operation must be done while
under a process. When the data movement is completed, the xmdetach service
can be called. The detach operation can be done from an interrupt handler.

The xmemin service can be used to transfer data from an address space to
kernel space. The xmemout service can be used to transfer data from kernel
space to an address space. These routines may be called from interrupt
handler level routines if the referenced buffers are in memory.

Cross memory services provide the xmemdma service to prepare a page for
DMA processing. The xmemdma service flushes any data from cache into
memory and hides the page. A page is hidden by invalidating processor
access to the page. Any processor references to the page result in page faults
with the referencing process waiting on the page to be unhidden. The
xmemdma service returns the real address of the page for use in preparing
DMA address lists. When the DMA transfer is completed, the xmemdma
service must be called again to unhide the page.

Data movement by DMA or an interrupt handler requires that the pages remain
in memory. This is ensured by pinning the data areas using the pinu service.
This can only be done under a process, since the memory pinning services
page fault on pages not present in memory.

The unpinu service unpins pinned pages. This can be done by an interrupt
handler if the data area is the global kernel address space. It must be done
under the process if the data area is in user process space.

The five Cross-Memory services are:

xmattach Attaches to a user buffer for cross-memory operations.

xmdetach Detaches from a user buffer used for cross-memory operations.

xmemin Performs a cross-memory move by copying data from the specified
address space to kernel global memory.

xmemout Performs a cross-memory move by copying data from kernel global
memory to a specified address space.

xmemdma Prepares a page for OMA liD or processes a page after DMA liD is
complete.

3.3.3 Other Services

3.3.3.1 Device Driver Management
The AIX kernel provides a relatively complete set of program and device driver
management services. These services include general kernel extension
loading and binding services and device driver binding services. Also provided
are services that allow kernel extensions to be notified of base kernel
configuration changes, user mode exceptions, and system wide process state
changes.

The kmod_load, kmod_entrypt, kmod_unload services provide kernel extension
loading and binding services. The sysconfig subroutine makes these services
available to user mode programs. However, kernel-mode callers executing in a
kernel process environment can also use them. These services provide the
same kernel object-file load, unload, and query functions provided by the
sysconfig subroutine as well as the capability to obtain a module's entry point
with the kernel module 10 assigned to the module.

The kmodJoad, kmod_entrypt, kmod_unload services can be used to
dynamically alter the set of routines loaded into the kernel based on system
configuration and application demand. Subsystems and device drivers can use
these services to load large, seldom-used routines on demand. Device driver
binding services include the devswadd, devswdel, devswqry services, which are
used to add or remove a device driver entry from the dynamically managed
device switch table. They also query for information concerning a specific entry
in the device switch table.

Some kernel extensions may be sensitive to the settings of base kernel run
time configurable parameters that are found in the var structure defined' in the
syslvar.h header file. These parameters can be set during system boot or run
time by a privileged user performing system configuration commands that use
the sysconfig subroutine to alter values in the var structure. Kernel extensions
may register or remove a configuration notification routine with the cfgnadd and
cfgndel kernel services. This routine is called each time the sysconfig
subroutine is used to change base kernel tunable parameters found in the var
structure. In addition, the prochadd and prochdel kernel services allow kernel
extensions to be notified when any process in the system has a state transition,
such as being created, exiting, being swapped in or swapped out.

The uexadd and uexdel kernel services give kernel extensions the capability to
intercept user mode exceptions.1 The default action when an exception occurs
is, in user mode, to send a signal, and in kernel mode to halt the system. These

1 An exception is a synchronous event directly associated with the instruction that is executing when the
exception occurs.

Chapter 3. Device Drivers Interface 3-15

3-16

user mode exception handlers may use this capability to dynamically reassign
access to single-use resources or to clean up after some particular user mode
error. Note that on user mode exceptions, all registered handlers are invoked
until one claims the exception. Therefore, handlers must return either
EXCEPT_HANDLED or EXCEPT_NON_HANDLED. The associated uexblock and
uexclear services can be used by these handlers to block and resume process
execution when handling these exceptions. Section" Process Management
Kernel Services" on page 3-19 talks about dealing with kernel mode
exceptions.

The pioassist and getexcept kernel services are typically used by device drivers
to obtain detailed information about exceptions that occur during I/O bus
access. The getexcept service can also be used by any exception handler
requiring more information about an exception that has occurred. The selnotify
kernel service replaces the traditional Unix se/wakeup kernel function and is
used by device drivers supporting the poll or select functions when
asynchronous event notification is requested. The iostadd and iostdel services
are used by tty and disk device drivers to register device activity reporting
structures to be used by the iostat and vmstat commands.

Finally, the getuerror and setuerror services can be used by kernel extensions
that provide or use system calls to access the u.u_error field for the current
process. This is typically used by kernel extensions providing system calls to
return error codes, and is used by other kernel extensions to check error codes
upon return from a system call (Since there is no errno global variable in the
kernel).

NOTE --~

Return values from kernel entry points get put into u.u_error. Therefore,
when you return from your device driver routines (ddopen, ddclose,ddread,
etc.) you should always specify a return value.

The 23 Kernel Program/Device Driver Management kernel services are:

cfgnadd Registers a notification routine to be called when
system-configurable variables are changed.

cfgndel Removes a notification routine for receiving broadcasts of changes
to system configurable variables.

devdump Calls a device driver dump-to-device routine.

devstrat Calls a block device driver's strategy routine.

devswadd Adds a device entry to the device switch table.

devswdel Deletes a device driver entry from the device switch table.

devswqry Checks the status of a device switch entry in the device switch table.

getexcept Allows kernel exception handlers to retrieve additional exception
information.

getuerror Allows kernel extensions to retrieve the current value of the u_error
field.

iostadd

iostdel

Registers an 1/0 statistics structure used for updating 1/0 statistics
reported by the iostat subroutine.

Removes the registration of an 1/0 statistics structure used for
maintaining 1/0 statistics on a particular device.

kmod_entrypt Returns a function pointer to a kernel module's entry point.

kmodJoad Loads an object file into the kernel or queries for an object file
already loaded.

kmod_unload Unloads a kernel object file.

pio_assist Provides a standardized programmed 1/0 exception handling
mechanism for all routines performing programmed 1/0.

prochadd Adds a system wide process state-change notification routine.

prochdel Deletes a process state change notification routine.

selnotify Wakes up processes waiting in a poll or select subroutine or the
fp_poll kernel service.

setuerror Allows kernel extensions to set the u_error field in the u area.

uexadd Adds a system wide exception handler for catching user mode
process exceptions.

uexblock Makes a process non-runnable when called from a user mode
exception handler.

uexclear Makes a process blocked by the uexblock service runnable again.

uexdel Deletes a previously added system wide user mode exception
handler.

3.3.3.2 Logical File System Kernel Services
The Logical File System services (also known as the fp_services) allow
processes running in kernel mode to open and manipulate files in the same
way that user mode processes do. Data access limitations make it
unreasonable to accomplish these tasks with system calls, so a subset of the
file system calls has been provided with an alternate kernel-only interface.

The Logical File System services are one component of the logical file system,
which provides the functions required to map system call requests to virtual file
system requests. The logical file system is responsible for resolution of file
names and file descriptors. It tracks all open files in the system using the file
table. The Logical File System services are lower level entry paints into the
system call support within the logical file system.

Routines in the kernel that must access data stored in files or that must set up
paths to devices are the primary users of these services. This occurs most
commonly in device drivers, where a lower level device driver must be
accessed or where the device requires microcode to be downloaded. Use of
the Logical File System services is not, however, restricted to these cases.

A process can use the Logical File System services to establish access to a file
or device by calling:

• The fp_open service with a path name to the file or device it must access.

• The fp_opendev service with the device number of a device it must access.

Chapter 3. Device Drivers Interface 3-17

3-18

• The fpJJetf service with a file descriptor for the file or device.

If the process wants to retain access past the duration of the system call, it
must then call the fp_hold service to acquire a private file pointer.

These three services return a file pointer that is needed to call the other
Logical File System services. The other services provide the functions that are
provided by the corresponding system calls.

Other Considerations: The Logical File System services are available only in
the process environment. In addition, calling the fp_open service at certain
times can cause a deadlock. The lookup on the file name must acquire file
system locks. If the process is already holding any lock on a component of the
path, the process will be deadlocked. Therefore, do not use the fp_open
service when the process is already executing an operation that holds file
system locks on the requested path. The operations most likely to cause this
condition are those that create files.

There are 17 Logical File System kernel services.

fp_access Checks for access permission to an open file.

fp_close Closes a file.

fp_fstat Gets the attributes of an open file.

fp_getdevno Gets the device number and/or channel number for a device.

fp_getf Retrieves a pointer to a file structure.

fp_hold Increments the open count for a specified file pointer.

fp_ioctl Issues a control command to an open device or file.

fpJseek Changes the current offset in an open file.

fp_open Opens a regular file or directory.

fp_opendev Opens a device special file.

Checks the 110 status of multiple file pointers/descriptors and
message queues.

fp_read Performs a read on an open file with arguments passed.

fp_readv Performs a read operation on an open file with arguments passed in
iovec elements.

fp_rwuio Performs read and write on an open file with arguments passed in a
uio structure.

fp_select Provides for cascaded, or redirected, support of the select or poll
request.

fp_write Performs a write operation on an open file with arguments passed.

fp_writev Performs a write operation on an open file with arguments passed in
iovec elements.

3.3.3.3 Process Management Kernel Services
The Process and Exception Management kernel services provided by the base
AIX kernel provide the capability to:

• Create kernel processes

• Reg ister exception handlers

• Provide process serialization

• Generate and handle signals

• Support event waiting and notification.

Kernel extensions can use the creatp and initp services to create and intialize a
kernel process. Kernel processes are sheduled like user mode processes, but
execute only within the kernel protection domain and have all security
privileges. They can use the sig_chk service to poll for signals that have been
sent to the kernel process.2

Kernel processes are usually created as follows:

• A user mode process loads the kernel extension containing the process
code (using sysconfig).

• A user mode process invokes the kernel extension's config entry point
(using sysconfig again). The config entry point uses creatp and initp to
make the process ready to run.

• The user process becomes the parent.

The setpinit kernel service allows a kernel process to change its parent process
from the one that created it to the init process, so that the creating process
does not receive the death-of-child signal upon kernel process termination.

The setjmpx, clrjmpx, and longjmpx kernel services allow a kernel extension to
register an exception handler by:

• Saving the exception handler's context with the setjmpx kernel service

• Removing its saved context with the clrjmpx kernel service if no exception
occurred

• Invoking the next registered exception handler with the longjmpx kernel
service if it was unable to handle the exception.

The typical sequence of operation should be:

• Extension uses setjmpx to save state.

• setjmpx returns zero.

• The exception occurs.

• The kernel first-level exception handler arranges for longjmpx to be called
after the retrun to the interrupted code.

• longjmpx executes in the environment of the interrupted code.

2 Kernel processes are not preemptable by signals.

Chapter 3. Device Drivers Interface 3-19

3-20

• Execution continues at the return from sefjmpx, but with a non-zero return
code.

The lockl and unlockl kernel services allow kernel extensions executing in the
process environment to acquire or release locks that are typically used to
serialize access to a resource. This provides a method to access and update
global memory. The AIX kernel processes are preemptable. This means that
even though you own a lock on a data structure in global memory, a kerne.l
process of higher priority may preempt your process. That higher priority
process will not preempt your process IF it tries to lock the data structure that
you have locked. In that case, your process will execute at this higher priority
until you release the lock (and then the other process will preempt you.)

CAUTION: TO AVOID DEADLOCK ---------------,

No deadlock detection is available.

To avoid deadlock, you must obey the following rules:

• Your system call (kernel service) should never return with locks still
being held. (If you write a kernel process and use locks, do not return
back to the calling process until you have released all locks.)

• Nesting locks (using more than one at a time) is permitted only if the
nested lock has a finer granularity.

• Order of locks:

The kernel_lock has the coarsest granularity.

The file system locks (private to the filesystem).

Device driver locks (private to a device driver).

Private fine granularity locks.

• Locks must be unlocked in the reverse order of obtaining them.

The getpid kernel service can be used by a kernel extension in either the
process or interrupt environment to determine the current execution
environment and obtain the process 10 of the current process if in the process
environment.

The event notification services provide support for primitive interprocess
communications where there can be only one process waiting on the event or
shared event interprocess communications where there can be multiple
processes waiting on the event. The traditional sleep and wakeup kernel
services are also provided for code that is being ported from other Unix
operating systems or previous versions of the AIX operating system. These
compatibility services require that the Galler have the global kerne,-'ock
(defined in lusr/include/sys/lockl.h), which is released before waiting in the
sleep routine and re-acquired upon wakeup.

NOTE --~

For performance reasons, use the e_sleep and e_wakeup kernel services
instead of the traditional sleep and wakeup calls from the kernel.

The e_wait and e_post kernel services support single waiter event notification
by using mutually agreed upon event control bits for the process being posted.
There are a limited number of control bits available for use by kernel
extensions. If the kernel_lock is owned by the caller of the e_wait service, it is
released and re-acquired upon wakeup.

The e_wakeup, e_sleep and e_sleepl kernel services support a shared event
notification mechanism that allows for multiple processes to be waiting on the
shared event. These services support an unlimited number of shared events
(by using caller-supplied event words). All processes waiting on the shared
event are awakened by the e_wakeup service. If the caller of the e_sleep
service owns the kernel lock, it is released before waiting and is reacquired
upon wakeup. The e_sleepl service provides the same function as the e_sleep
service except that a caller-specified lock is released and reacquired instead of
the kernelJock.

There are 19 Process and Exception Management kernel services:

clrjmpx Removes a saved context by popping the most recently saved jump
buffer from the list of saved contexts.

creatp Creates a new kernel process.

e_post Notifies a process of the occurrence of one or more events.

e_sleep Forces a process to wait for the occurrence of a shared event.

e_sleepl Forces a process to wait for the occurrence of a shared event.

e_wait Forces a process to wait for the occurrence of an event.

e_wakeup Notifies processes waiting on a shared event of the event's

getpid

initp

lockl

occurrence.

Gets the process 10 of the current process.

Changes the state of a kernel process from idle to ready.

Locks a conventional process lock.

longjmpx Allows exception handling by causing execution to resume at the
most recently saved context.

pdsignal Sends a signal to a process group.

pidsig Sends a signal to a process.

setjmpx Allows saving the current execution state or context.

setpinit Sets the parent of the current kernel process to the init process.

sig_chk Provides a kernel process the ability to poll for receipt of signals.

sleep Forces the calling process to wait on a specified channel.

unlockl Unlocks a conventional process lock.

wakeup Activates processes sleeping on the speCified channel.

Chapter 3. Device Drivers Interface 3-21

3-22

Chapter 4. Overview of a Character Device Driver

The purpose of this chapter is to describe in detail the components and makeup
of a character device driver. The way this will be done is that a topic will be
discussed, then it will be illustrated with an example of working code. The code
is from the sample device driver found in "Sample Character Device Driver" on
page E-1. This device driver will drive one port on the Real Time Interface
Co-Processor with an optional interface board containing eight RS232 serial
communications ports. This example is to demonstrate a method of writing a
device driver. The device driver itself has not been extensively tested.

The name of the driver is ric (ffrom Real Time Interface Co-Processor),
therefore the various entry points will be prefixed with this name. However, in
the discussion of the general features of an entry point, the prefix dd will be
used.

4.1 Implementation

4.1.1 ddconfig Device Driver Entry Point
Figure 4-1 on page 4-2 shows the device driver entry point.

© Copyright IBM Corp. 1991 4-1

device configure method

device unconfigure method

device change method

. open close mpx

These device methods are discussed in the
Configuration chapter.

DD top half: p~.able

read write ioctl select

DD Bottom half:pinned

starCio interrupt handler off-level interrupt handler

User Space

Kernel Space

Figure 4-1. Device Driver ddconfig Entry Point

4-2

The ddconfig entry point is used to configure the device driver. It is called to
do the following tasks:

• Initialize the device driver

• Terminate the device driver

• Request configuration data for the supported device

• Perform other device-specific configuration functions.

The ddconfig routine and its operations are called in the process environment
only. Refer to Figure 4-2 on page 4-5 for the ricconfig code sample.

The ddconfig routine is called by the device's Configure, Unconfigure, or
Change method. Typically, it is called once for each minor device number
which is supported. This is determined by the specific device method. (A
device method is a process that goes about configuring/unconfiguring or
changing a device. It does this via a call to sysconfig---see the example in
Ius r/l pp/bosl sa m pI esl cfgyyy. c.)

Additional device-specific functions relating to configuration could also be
provided by ddconfig, such as returning device vital product data {VPD)1.
ddconfig is invoked through the sysconfig subroutine' by the Configure method.
(sysconfig actually calls an SVC which in turn calls ddconfig so that the
supervisor state is entered.) A discussion of device methods is included in
"Device Drivers Configuration" on page 6-1.

Three parameters are expected by ddconfig. These are devno, cmd, and uiop,
where:

devno

cmd

specifies the major and minor device numbers

specifies the function to be performed

uiop points to a uio structure describing the relevant data area for
configuration information.

The following example shows the syntax of a ddconfig entry point.

#include <sys/device.h>
#include <sys/types.h>

int ddconfig(devno, cmd, uiop)
dev_t devno;
int cmd;
struct uio *uiop;

The values for the cmd parameter which are usually supported by device
drivers and their associated methods are:

CFG_INIT Initialize the device driver and internal data areas.

CFG_TERM Terminate the device driver associated with devno.

CFG_QVPD Query device-specific vital product data (VPD).

The data area pointed at by the uiop parameter has two different purposes,
depending on the cmd function. If the CFG_INIT command ,has been requested,
the uiop structure describes the location and length of the device-dependent
data structure, DDS, from which to read the information. If the CFG_QVPD
command has been requested, the uiop structure describes the area in which
to write vital product data information. The content and format of this
information is established by the specific device methods in conjunction with
the device driver.

The uiomove kernel service may be used to facilitate the copying of information
into or out of this data area. The format of the uio structure is defined in the
<sys/uio.h> header file.

The ddconfig routine sets the return code to 0 if no errors are detected for the
operation specified. If an error is to be returned to the caller, a nonzero return

1 (Vital Product Data is device specific information that is specific to an adapter and can include information such
as the engineering change level of the adapter, etc.) ,

Chapter 4. Chardd view 4-3

4-4

code should be provided. The return code used should be one of the values
defined in the <sys/errno.h> header file. If this routine was invoked by a
sysconflg subroutine call, the return code is passed to its caller (typically a
device method). It is passed by presenting the error code in the errno external
variable and providing a ·1 return code to the subroutine.

1
2
3
4
5
6
7
8
9

18
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46
47
48
49
58
51
52
53
54
55
56
57
58
59
68

/***

ricconfig: performs operations necessary for the intitialisation
of an individual port on the adapter. ricconfig will be
called for each valid port during the bus/device config
phase of the boot procedure.

***/
int ricconfig(devno, cmd, uiop)
dev t devno;
int-cmd;
struct uio *uiop;
{

int port_num;
int adapt_num;
int minor num;
t ric dds
t=acb-
int ret;
unsigned long
unsigned long
unsigned long

/* port number */
/* adapter number */
/* minor device number */

dds_ptr;/ pointer to DDS */
acb_ptr;/ pointer to ACB */

/* return values */
bus sri /* 10 Seg Reg number mask */
iob; /* io base address */
memb; /* bus memory base */

/* get minor number. macro defined in /usr/include/sys/sysmacros.h */
minor_num = minor(devno);

/* if the minor number is bad, return */
if (minor num >= (MAX ADAP*NUM PORTS»
{ - - -

return(EINVAL);
}

/* get a DDS pointer */
dds_ptr = dds_dir[minor_num];

switch(cmd) /* switch on command type */
{

/* initialise device driver and internal data areas */
case CFG INIT:
{ -

/* first check whether dds exists */
if (dds_ptr != (t_ric_dds *)NULL)
{

return(EINVAL);
}

/* now, if this is the first time through CFG_INIT, certain
* things must be done. no active adapters means first time
*/

if (act_adap == 8)
{

/* pin ric into memory */
if « ret = pincode(ricconfig» !=8)
{

/* return if pin fails */
return(ret);

}
/* ok, so now it is pinned */

Figure 4-2 (Part 1 of 5). Code Sample of the ricconfig Routine

Chapter 4. Chardd view 4-5

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
Hl5
106
107
188
189
118
111
112
113
114
115
116
117
118
119
120

/* add entry points to the devsw table */

ricsw.d_open = ricopen;
ricsw.d_close = ricclose;
ricsw.d_read = ricread;
ricsw.d_write = ricwrite;
ricsw.d_ioctl = ricioctl;
ricsw.d_strategy = nodev;
ricsw.d_ttys = NULL;
ricsw.d_select = ricselect;
ricsw.d_config = ricconfig;
ricsw.d_print = nodev;
ricsw.d_dump = nodev;
ricsw.d_mpx = ricmpx;
ricsw.d_revoke = nodev;
ricsw.d_dsdptr = NULL;
ricsw.d_selptr = NULL;
ricsw.d_opts = 8;

/* if adding the entry points to devsw fails, return */
if((ret = devswadd(devno, &ricsw)) != 8)
{

}

unpincode(ricconfig);
return(ret);

} /* end first time through */
/* For this example we are allocating pinned space and */
/* then we will copy the dds data structure */
/* allocate space for dds */

dds ptr = (t ric dds *)xmalloc (sizeof(t_ric_dds),
- 2: pinned_heap);

/* if the xmalloc fails, return */
if(dds_ptr == (t_ric_dds *)NULL)
{

}

free_it_up(act_adap, devno, NULL, NULL);
return(ENOMEM);

/* zero out dds */
bzero((char *)dds_ptr, sizeof(t_ric_dds));

/* copy input struct into dds */
ret = uiomove(dds_ptr, sizeof(t_ric_dds), UIO_WRITE,

uiop);

/* if uiomove is bad */
if(ret)
{

}

free_it_up(act_adap, devno, dds_ptr, NULL);
return(ret);

/* set port number from dds */
port_num = dds_ptr->dds_dvc.port_num;

/* adapter number ;s slot number */
adapt_num = dds_ptr->dds_hdw.slot_num;
acb_ptr = acb_dir[adapt_num];

Figure 4-2 (Part 2 of 5). Code Sample of the ricconfig Routine

4-6

121
122
123
124
125
126
127
128
129
139
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
146
147
148
149
159
151
152
153
154
155
156
157
158
159
169
161
162
163
164
165
166
167
168
169
179
171
172
173
174
175
176
177
178
179
189
181
182

/* if no ACB for this device */
if(acb_ptr == (t_acb *)NULL)
{

/* allocate memory for the acb */
acb_ptr = (t_acb *)xmalloc(sizeof(t_acb),

2, pinned_heap);

/* if the allocation fails */
if(acb_ptr == (t_acb *)NULL)
{

}

free_it_up(act_adap, devno, dds_ptr,
NULL);

return(ENOMEM);

/* zero out acb */
bzero«char *)acb_ptr, sizeof(t_acb»;

/* now fill it in */
acb_ptr->p_port_dds[port_numJ = dds_ptr;

/* now set up the POS register settings */
acb_ptr->int_lvl = dds_ptr->dds_hdw.bus_intr_lvl;
acb_ptr->slot_num = (unsigned

char) (dds_ptr->dds_hdw.slot_num);
acb_ptr->arb_lvl = dds_ptr->dds_hdw.dma_lvl;
acb_ptr->io_base = dds_ptr->dds_hdw.bus_io_addr;
acb_ptr->mem_base = dds_ptr->dds_hdw.bus_mem_addr;
acb_ptr->dma_base = dds_ptr->dds_hdw.tcw_bus_mem_addr;
acb_ptr->io_segreg_val = IO_SEG_REG;
acb_ptr->adapter_state = 9;
acb_ptr->cpu_page = 8xFF;

/* invoke set POS to set POS registers */
set_POSe aCb_ptr);

/* set up segment register for next phase */
bus_sr = BUSIO_ATT(acb_ptr->io_segreg_val, 8);

/* set up the busio and bus memory base address for the card */
iob = acb_ptr->io_base + bus_sri
memb = acb ptr->mem base + bus sri
ret = reset_card (aCb_ptr, bus_sr, iob, memb);

/* free up segment register */
BUSIO_DET(bus_sr);

if /* reset failed ••• */
(ret)

{

}

free_it_up(act_adap, devno, dds_ptr, acb_ptr);
return(EIO);

/* zero interrupt count */

/* now we set up our DMA channel by calling d_init */
acb_ptr->dma_channel_id =

d_init«int)acb_ptr->arb_lvl, MICRO_CHANNEL_DMA,
acb_ptr->io_segreg_val);

Figure 4-2 (Part 3 of 5). Code Sample of the ricconfig Routine

Chapter 4. Chardd view 4-7

183 /* free up resources if d_init failed */
184 if (acb_ptr->dma_channel_id == DMA_FAIL)
185 {
186 free_it_up(act_adap, devno, dds_ptr, acb_ptr);
187 return(EIO);
188 }
189
199 /* enable DMA channel */
191 d_unmask(acb_ptr->dma_channel_id);
192
193 act_adap++; /* adapter is now active */
194 acb_dir[adapt_numJ = acb_ptr;
195
196 } /* end of no existing acb if */
197
198 acb_ptr->n_cfg_ports++;
199 acb_ptr->p_port_dds[port_numJ = dds_ptr;
299 dds_dir[minor_numJ = dds_ptr;
291 break;
292
293 } /* end case CFG_INIT */
294
295 /* terminate the device driver associated with the specified devno */
296 case CFG TERM:
297 {-
298 if (dds_ptr == NULL)
299 return(EACCES);
219
211 if (dds_ptr->dds_dvc.port_state != CLOSED)
212 return(E8USY);
213
214 port_num = dds_ptr->dds_dvc.port_num;
215 adapt_num = dds_ptr->dds_hdw.slot_num;
216 acb_ptr = acb_dir[dds_ptr->dds_hdw.slot_numJ;
217
218 /* decrement number of configured ports on this adapter */
219 acb_ptr->n_cfg_ports--;
229
221 /* if last configured port on adapter, free adapter resources */
222 if (acb_ptr->n_cfg_ports == 9)
223 {
224 /* Release the dma_channel */
225 d_mask(acb_ptr->dma_channel_id);
226 d_clear(acb_ptr->dma_channel_id);
227
228 /* decrement number of active adapters */
229 act_adap--;
239
231 free_it_up(act_adap, devno, dds_ptr, acb_ptr);
232 acb_dir[adapt_numJ = (t_acb *)NULL;
233 }
234 else
235 {
236 /* free up allocated resources. If number */
237 /* of active adapters now zero, */
238 /* delete switch table entry and unpin the driver */
239 free_it_up(act_adap, devno, dds_ptr, NULL);
249 acb_ptr->p_port_dds[port_numJ = NULL;
241 }
242
243 dds_dir[minor_numJ = NULL;
244 break;
245 } /* end case CFG_TERM */

Figure 4-2 (Part 4 of 5). Code Sample of the ricconfig Routine

4-8

246
247 /* query device specific VPD */
248 case CFG QVPD:
249 break;
25e
251 default:
252 return(EINVAL);
253 } /* end switch statement */
254 returnee);
255 } /* end ricconfig */
256

Figure 4-2 (Part 5 of 5). Code Sample of the ricconfig Routine

4.1.1.1 A Brief Discussion of the DDS
The Device Dependent Structure, or DDS, contains information that describes a
device instance to the device driver. It typically contains information about
device-dependent attributes as well as any other information the driver needs
to communicate with the device. The device driver writer defines what
information is to go into the DDS. In many cases, information about a device's
parent is included. For instance, a driver needs information about the adapter,
and the bus the adapter is plugged into, to communicate with a device
connected to an adapter.

A device's DDS is built each time the device is configured. The Configure
method can fill in the DDS with fixed values, computed values, and information
from the Configuration database. Most of the information from the
Configuration database usually comes from the attributes for the device in the
Customized Attribute, or CuAt object class, but it can come from any of the
object classes. Information from the database for the device's parent device or
parent's parent device can also be included. The DDS is passed to the device
driver with the SYS_CFGDD option of the sysconfig subroutine, which calls the
device driver's ddconfig routine with the CFG_INIT command.

The Change method is invoked when changing the configuration of a device.
The Change method must ensure consistency between the Configuration
database and the view that any device driver may have of the device. This is
accomplished by:

1. Not allowing the configuration to be changed if the device has configured
children, that is, children in either the Available or Stopped states. This
ensures that a DDS that has been built using information in the database
about a parent device will remain valid because the parent cannot be
changed.

2. If a device has a device driver and the device is in either the Available or
Stopped states, the Change method must communicate to the device driver
any changes that would affect the DDS. This may be accomplished with
ioctl operations, if the device driver provides the support to do so. It can
also be accomplished by taking the following steps:

a. Terminating the device instance by calling the sysconfig subroutine with
the SYS_CFGDD option. The SYS_CFGDD operation calls the device
driver's ddconfig routine with the CFG_ TERM command.

b. Rebuilding the DDS using the changed information.

Chapter 4. Chardd view 4-9

4-10

c. Passing the new DDS to the device driver by calling the sysconflg
SYS_CFGDD operation. This operation then calls the ddconfig routine
with the CFG_INIT command.

Many Change methods simply invoke the device's Unconfigure method, apply
changes to the database, then invoke the device's Configure method. This
process ensures the two stipulated conditions since the Unconflgure method,
and thus the change, will fail, if the device has Available or Stopped children.
Also, if the device has a device driver, its Unconfigure method terminates the
device instance. Its Configure method also rebuilds the DDS and passes it to
the driver.

There is no single defined DDS format. Writers of device drivers and device
methods must agree upon a
particular device's DDS format. When obtaining information about a parent

device, you may want to group that information together in the DDS.

When building a DDS for a device connected to an adapter card, you will
typically need to pick up the following adapter information:

slot number Obtained from the connwhere descriptor of the adapter's
Customized Device, or CuDv, object.

bus resources Obtained from attributes for the adapter in the Customized
Attribute, or CuAt, or Predefined Attribute, or PdAt object classes.
These include attributes for bus interrupt levels, interrupt priorities,
bus memory addressed, bus I/O addresses, and DMA arbitration
levels.

These two attributes must be obtained for the adapter's parent bus device:

busJd Identifies the I/O bus. This field is needed by the device driver to
access the I/O bus.

bus_type Identifies the type of bus, such as a Micro Channel bus, or a PC AT
bus.

Note --~

The getattr device configuration subroutine should be used whenever
attributes are obtained from the Configuration database. This routine
returns the Customized attribute value if the attribute is represented in the
Customized Attribute (CuAt) object class. Otherwise, it returns the default
value from the Predefined Attribute (PdAt) object class.

Finally, a DDS generally includes the device's logical name. This is used by the
device driver to identify the device when logging an error for the device.

Figure 4-3 on page 4-11 shows an example of a ric DDS.

1
2
3
4
5
6
7
8
9

18
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46
47
48
49
58
51
52
53
54

/**
* Define Device Structure *
**/

typedef struct RICDDS
{

struct DDS_HOW
{

unsigned int

unsigned int

unsigned short

slot_num;

bus_intr_lvl;

intr_priority;

unsigned short dma_lvli

/* slot number of adapter */

/* interrupt level */

/* interrupt priority */

/* this is the bus arbitration level */
/* for this adapter */

unsigned int bus_io_addr; /* base of Bus I/O area for this */
/* adapter */

unsigned int bus_mem_addr; /* base of Bus Memory */
/* addressability for this adapter */

unsigned int tcw_bus_mem_addr; /* base of Bus Memory DMA */

struct DDS DVC
{ -

unsigned char port_num;

unsigned char port_state;

unsigned short rdto;

int

struct DDS RAS
{ -

t cio stats cio stats;
t-err-threshold-err thresh;

} dds=ras; -

struct DDS VPD
{ -

unsigned
unsigned
char
char

} dds_vpd;

short card_id;
short ver num;

devname[16];
adpt_name[16];

/* addressability for this adapter */

/* Port Number for this port */

/* Port State */

/* Receive Data Transfer Offset */

/* Network 10 */

/* number of receives for port */
/* number of transmits for port */

/* Card ID ••• POS8 & POSI */
/* Version Number */

/* logical device name */
/* logical adapter name */

figure 4-3 (Part 1 of 2). Example of a DDS

Chapter 4. Chardd view 4-11

55 struct DDS WRK
56 { -
57 unsigned short field1; /* put whatever you want here */
58 unsigned short field2;
59 unsigned char field3;
69 } dds_wrk;
61
62 } t_ric_dds;
63

Figure 4-3 (Part 2 of 2). Example of a DDS

4.1.2 ddmpx Device Driver Entry Point
Figure 4-4 shows the device driver ddmpx entry point for an open (or create)
system call.

config

open("/dev/ric", ..) or,

create("/dev/ric", ..)

(the kernel calls mpx to allocate a channel)

DD top half: pagable

read write ioctl select

DD Bottom half:pinned

intenupt handler off-level intenupt handler

User Space

Kernel Space

Figure 4-4. Device Driver ddmpx Entry Point for an open

4-12

The ddmpx device driver entry point allocates or deallocates a channel for a
multiplexed device driver. This routine is called in the process environment
only. See Figure 4-8 on page 4-18 for the ricmpx code sample.

The following example shows the syntax of a ddmpx entry point.

*include <sys/device.h>
*include <sys/types.h>

int ddmpx (devno, chanp, channame)
dev_t devno;
chan_t *chanp;
char *channame;

The values passed to the ddmpx entry point are:

devno Specifies the major and minor device numbers.

channame Points to the path name extension for the channel to be allocated.

chanp Address of the channel 10, passed by reference. The channel 10 will
be allocated by the ddmpx.

A multiplexed device driver is a character class device driver that supports the
assignment of channels to provide finer access control to a device or virtual
subdevice. This type of device driver has the capability to decode special
channel-related information appended to the end of the path name of the
special file for the device. This path name extension is used to identify a
logical or virtual subdevice or channel.

Figure 4-5 on page 4-14 shows the relationship that exists between major
numbers, minor numbers, and multiplexed channels. A major number can be
used to indicate a certain port on an adapter. A channel can be used to indicate
a certain process that has access to a port (minor number) on an adapter.
Multiple processes can therefore share a port - hence the term "Multiplexed" is
used.

Chapter. 4. Chardd view 4-13

Channel number
(A number of concurrent

users using a port.)

Major Numbers

Adapter

o
o
o

Adapter

Port

Figure 4-5. Relationship of Major Numbers, Minor Numbers and Channels

4-14

Only multiplexed character: class device drivers may provide the ddmpx
routine, and every multiplexed driver must do so. The ddmpx routine may not
be provided by block device drivers even when providing raw read/write
access. A multiplexed device driver is a character class device driver that
supports the assignment of channels to provide finer access control to a device
or virtual subdevice. This type of device driver has the capability to decode
special channel-related information appended to the end of the path name of
the special file for the device. This path name extension is used to identify a
logical or virtual subdevice or channel.

When an open or creat subroutine call is issued to a device instance supported
by a multiplexed device driver, the kernel calls the device driver's ddmpx
routine to allocate a ch~nnel. Upon allocation, the kernel dynamically creates
in-core inodes; or gnodes, for channels on a multiplexed device to allow the
protection attributes to be different for various channels.

To allocate a channel, the ddmpx routine is called with a channame pointer to
the path name extension. The path name extension starts after the first I
character that follows the special file name in the path name. The ddmpx
routine should perform the following actions:

• Parse this path name extension.

• Allocate the corresponding channel.

• Return the channel 10 through the chanp parameter.

If no path name extension exists, the channame pointer points to a null
character string. In this case, an available channel should be allocated and its
channel 10 returned through the chanp parameter.

If no error is returned from the ddmpx routine, the returned channel 10 is used
to determine if the channel was already allocated. If already allocated, the
gnode for the associated channel has its reference count incremented. If the
channel was not already allocated, a new gnode is created for the channel. In
either case, the device driver's ddopen routine is called with the channel
number assigned by the ddmpx routine. If a nonzero return code is returned by
the ddmpx routine, the channel is assumed not to have been allocated, and the
device driver's ddopen routine is not called. Refer to Figure 4-6.

open(..) or create(..)

specific
channel

ddmpx

rc=O

any
available
channel

rcf=O

channel previously
allocated?

Do not allocate

an open channel

gnode<-gnode+l create new gnode

ddopen

Figure 4-6. ddmpx for open and create

done by the kernel

Chapter 4. Chardd view 4-15

close(..)

When a close subroutine call is issued to a device instance supported by a
multiplexed device driver, the kernel decrements the channel's gnode reference
count and if this count is now equal to zero, it calls the ddmpx routine (Le.
ddmpx is called when the channel is no longer used). The ddmpx routine
deallocates the channel after the ddclose routine was called to close the last
use of the channel. If a nonzero return code is returned by the ddclose routine,
the ddmpx routine is still called to deallocate the channel. The ddclose
routine's return code is saved, to be returned to the caller. If the ddclose
routine returned no error, but a nonzero return code was returned by the
ddmpx routine, the channel is assumed to be deallocated, although the return
code is returned to the caller. Refer to Figure 4-7.

gnode<-gnode-l

done by the kernel

Figure 4-7. ddmpx for close

4-16

To deallocate a channel, the ddmpx routine is called with a null channame
pointer and the channel 10 passed by reference in the chanp parameter. If the
channel gnode reference count has gone to 0, the kernel calls the ddmpx

routine to deallocate the channel after invoking the ddclose routine to close it.
The ddclose routine should not itself deallocate the channel.

If the allocation or deallocation of a channel is successful, the ddmpx routine
should return a return code of O. If an error occurs on allocation or deallocation,
a nonzero return code should be returned. The return code should conform to
the return codes described for the open and close subroutines in the POSIX
1003.1 standard, where applicable. Otherwise, the return code should be one
defined in the <sys/errno.h> header file.

REMEMBER --~

The ddmpx routine should allocate an unused channel if:

channame = (char *) NULL;o

The ddmpx routine should close a channel if:

channame = NULL;

Chapter 4. Chardd view 4-17

1
2
3
4
5
6
7
8
9

18
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46
47
48
49
58
51
52
53
54
55
56
57
58
59

/***
*
*
*
*

ricmpx is the mpx entry point to allocate or deallocate a
channel.

**/
ricmpx(devno, chanp, channame)
dev_t devno;
int *chanp;
char *channame;
{

t_acb *acb_ptr;
/* ACB is the adapter control block.
/* adapter in the system */

/* pointer to ACB */
There is one ACB for each */

t_ric_dds *dds_ptr;
int tmp_chan;

/* pointer to DDS */
/* local chan storage */

/* if minor number is
if (minor(devno) >=
{

return(EINVAL);
}

bad, return */
(MAX_ADAP*NUM_PORTS»

/* Note: in our sample program, a port on the RIC will be allocated if */
/* the minor device number that is passed in has not been previously */
/* allocated a port. (port 8 is always allocated here) Whatever process */
/* opens the port totally owns the port until a ricmpx call is made to */
/* deallocate that port. */

/* set up DDS pointer */
dds_ptr = dds_dir[minor(devno»);

/* if dds pointer is null, return error */
if (dds_ptr == NULL)

return(EINVAL);

/* get the acb pointer */
acb_ptr = acb_dir[dds_ptr->dds_hdw.slot_num);

/* see if we've been called to deallocate the channel */
if (channame == (char *)NULL)
{

}

/* Deallocate the channel */
dds_ptr->dds_wrk.cur_chan_num = 8;

/* on a deallocate, always set diag flag to 8 */
acb_ptr->diag_flag = 8;

else
{

/* get channel allocated indicator */
tmp_chan = (int)dds_ptr->dds_wrk.cur_chan_num;

/* if channel number already allocated,
if (tmp chan> 8)
{ -

return(ENXIO);
}

return error */

Figure 4-8 (Part 1 of 2). Code Sample of the ricmpx Routine

4-18

68
61 /* not diagnostics open */
62 acb_ptr->diag_flag = 8;
63
64 dds_ptr->dds_wrk.cur_chan_num = 1; /* allocate channel e */

/* channel returned is 8 */ 65 *chanp = 8;
66 }
67 return(8);
68 } /* end ricmpx */
69

Figure 4-8 (Part 2 of 2). Code Sample of the ricmpx Routine

4.1.3 ddopen Device Driver Entry Point

config

Figure 4-9 shows the device driver ddopen entry point.

open("/dev/ric) or,

creat("/dev /ric n)

,-Multiplexed device driver (open or create) shown
I with dotted lines

I User Space

KemelSpace

DDtophalf:

mpx read write ioctl

(open the device handler)

DDBottom

starcio. interrupt handler, off-level interrupt handler. etc.

Figure 4-9. Device Driver ddopen Entry Point

The ddopen device driver entry point prepares a device for reading, writing, or
control functions. The ddopen routine is executed only in the process
environment. It should provide the required serialization of its data structures
by using the locking kernel services in conjunction with a private lock word
defined in the driver.

Chapter 4. Chardd view 4-19

4-20

Locking Device Driver Data structures ---------------,

Please refer to page 3-20 for a discussion on the lockl and unlockl kernel
services and why you need to use them for global data structures.
(Remember, the AIX kernel is preemptable.)

See Figure 4-10 on page 4-22 for the ricopen sample code.

The ddopen routine expects four parameters. These are devno, devflag, chan,
and ext, where:

devno

devflag

chan

ext

Indicates major and minor device numbers.

Specifies open file control flags.

Specifies the channel number.

Specifies the extension parameter.

The following example shows the syntax of a ddopen entry point.

#include <sys/device.h>

int ddopen (devno, devflag, mpxchan, ext)
dev_t devno;
ulong devflag;
chan_t mpxchan;
int ext;

The kernel calls the ddopen routine of a device driver when a program issues
an open or creat subroutine call. It can also be called when a system call,
kernel process, or other device driver uses the fp_opendev or fp_open kernel
service to use the device.

The ddopen routine must first ensure exclusive access to the device, if
necessary. Many character devices, such as printers and plotters, should be
opened by only one process at a time. The ddopen routine can enforce this by
maintaining a static flag variable, which is set to 1 if the device is open and 0 if
not. Each time the ddopen routine is called, it checks the value of the flag. If
the value is other than zero, the ddopen routine returns with a return code of
EBUSY to indicate that the device is already open. Otherwise, the routine sets
the flag and returns normally. The ddclose entry point later clears the flag
when the device is closed. Since most block devices can be used by several
processes at once, a block driver should not try to enforce opening by a single
user.

The ddopen routine must initialize the device if this is the first open that has
occurred. Initialization involves the following steps:

• The ddopen routine should allocate the required system resources to the
device, such as DMA channels, interrupt levels, and priorities. It should, if
necessary, register its device interrupt handler for the interrupt level
required to support the target device. The ijnit and dJnit kernel services
are available for initializing these resources.

• If this device driver is providing the head role for a device and another
device driver is providing the handler role, the ddopen routine should open
the device handler by using the fp_opendev kernel service.

Note: The fp_opendev kernel service requires a devno parameter to identify
which device handler to open. This devno value, taken from the appropriate
DDS, should have been stored in a special save area when the device driver's
ddconfig routine was called.

The flag word devflag has the following flags, as defined in the <sys/devlce.h>
header file:

DKERNEL Entry point called by kernel routine using the fp_opendev or fp_open
kernel service.

DREAD Open for reading.

DWRITE Open for writing.

DAPPEND Open for appending.

DNDELAY Device open in non-blocking mode.

The ddopen entry point can indicate an error condition to the user mode
application program by returning a nonzero return code. Returning a nonzero
return code causes the open or creat subroutines to return a value of·1 and
makes the return code available to the usermode application in the errno
external variable. The return code used should be one of the values defined in
the <sys/errno.h> header file.

If a nonzero return code is returned by the ddopen routine, the open request is
considered to have failed. No access to the device instance is available to the
caller as a result. In addition, for non-multiplexed drivers, if the failed open
was the first open of the device instance, the kernel calls the driver's ddclose
entry point to allow resources and device driver state to be cleaned up. If the
driver was multiplexed, the kernel does not call the ddclose entry point on an
open failure. When applicable, the return values defined in the POS/X 1003.1
standard for the open subroutine should be used.

Chapter 4. Chardd view 4-21

1
2
3
4
5
6
7
8
9

IE)
11
12
13
14
15
16
17
18
19
20
2L"
2i
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

/**
*
* ri copen sets up the interrupt and dma servi ces, as well as
* checking that everything is in order for an open to occur
*
***/

ricopen(devno, devflag, mpxchan, ext_ptr)
dev t devno;
ulong devflag;
int mpxchan;
struct kopen ext *ext_ptr;
{ -

int ricintr(); /* interrupt handler */
int ricoffl(); /* offlevel */
int port_num; /* port number */
int adapt num; /* adapter number */
int ilev;- /* adapter interrupt level */
int old_pri; /* interrupt level */
int counter; /* loop control counter */
struct intr *intr_ptr;/* interrupt pointer */
t_sel_que *sqelml_ptr;/* select queue element pointer */
t_sel_que *sqelm2_ptr;/* select queue element pointer */
t chan info *tmp_chnptr;/* temp channel info pointer */
t=ric_dds *dds_ptr;/* pointer to DDS */
t_acb *acb_ptr;/* pointer to ACB */
int ret; /* return values */
unsigned long bus_sr; /* 10 Seg Reg number mask */
unsigned char io_ptr; /* io base pointer */
unsigned char comreg; /* COMREG on Portmaster */

/* if minor number is bad, return */
if (minor(devno) >= (MAX ADAP*NUM PORTS»
{ --

return(EINVAL);
}

/* if the channel number out of range, return */
/* Note that we are not really a multiplexed device */

if (mpxchan != 0)
{

return(ECHRNG);
}

/* get dds pointer from dds directory */
dds_ptr = dds_dir[minor(devno)J;

/* if port not configured, return error */
if (dds ptr == NULL)
{ -

return(EINVAL);
}

adapt_num = dds_ptr->dds_hdw.slot_num;
acb_ptr = acb_dir[adapt_numJ;

Figure 4-10 (Part 1 of 3). Code Sample of the ricopen Routine

4-22

58
59 /* check to see whether any ports have been opened on
68 * the indicated adapter. If not, register the
61 * interrupt handler and fill in the off level
62 * interrupt structures.
63 */
64 /* no registration has occured for this adapter */
65 if(acb_ptr->n_open_ports == 8)
66 {
67
68 /* first initialise the offlevel intr structures */
69 acb_ptr->arq_sched = FALSE;
78 aCb_ptr->offl.p_acb_intr = (struct t_acb *)acb_ptr;
71 intr_ptr = &(acb_ptr->offl.offl_intr);
72 INIT_OFFL3(intr_ptr, ricoffl, IO_SEG_REG);
73
74 acb_ptr->slih_intr.next = NULL;
75 acb_ptr->slih_intr.handler = ricintr;
76 acb_ptr->slih_intr.bus_type = BUS_MICRO_CHANNEL;
77 acb_ptr->slih_intr.flags = 0;
78 aCb_ptr->slih_intr.level = acb_ptr->int_lvl;
79 acb_ptr->slih_;ntr.priority = INTCLASS1;
80 acb_ptr->slih_intr.bid = IO_SEG_REG;
81
82 acb_ptr->cmd_queue_lock = LOCK_AVAIL;
83
84 /* registration of interrupt handler fails */
85 if«ret = i_init(&acb_ptr->slih_intr» != 0)
86 {
87 return(ENXIO);
88 }
89
ge
91 /* enable interrupts on the adapter */
92 bus_sr = BUSIO_ATT(acb_ptr->io_segreg_val, 0);
93
94 io_ptr = (unsigned char *)(acb_ptr->io_base + bus_sr);
95
96 comreg = PIO_GETC(io_ptr + COMREG);
97
98 PIO_PUTC(io_ptr + COMREG, comreg I COM_IE);
99

199 BUSIO_DET(bus_sr);
191
192 } /* end of no open ports loop */
193
194 /* first time through successfully, allocate channel structure */
185 if(dds_ptr->dds_wrk.p_chan_info[mpxchan] == NULL)
196 {
197 /* allocate memory for channel related structures */
198 dds_ptr->dds_wrk.p_chan_info[mpxchan] = tmp_chnptr =
199 (t_chan_info *)xmalloc«uint)sizeof(t_chan_info),(uint)2,
l1e pinned_heap);
111
112 /* memory allocation failed, return */
113 if(tmp_chnptr == NULL)
114 {
115 return(ENOMEM);
116 }
117
118 bzero«vo;d *)tmp_chnptr, (uint)sizeof(t_chan_info»;

Figure 4-10 (Part 2 of 3). Code Sample of the ricopen Routine

Chapter 4. Chardd view 4-23

119
1213 /* set major/minor device number */
121 tmp_chnptr->devno = devno;
122 tmp_chnptr->rcv_event_lst = EVENT_NULL;
123 tmp_chnptr->xmt_event_lst = EVENT_NULL;
124 acb_ptr->txfl_event_lst = EVENT_NULL;
125
126 }
127
128 /* now fetch the temporary channel info pointer */
129 tmp_chnptr = dds_ptr->dds_wrk.p_chan_info[mpxchan];
1313
131 /* set common values for user and kernel llc calls */
132 tmp_chnptr->devflag = devflag; /* device flags opened with */
133
134 /* set port state variable to open */
135 dds_ptr->dds_dvc.port_state = OPEN;
136
137 /* increment number of open ports */
138 acb_ptr->n_open_ports++;
139
1413 returnee);
141 } /* end ricopen */
142

Figure 4-10 (Part 3 of 3). Code Sample of the ricopen Routine

4.1.4 ddclose Device Driver Entry Point
Figure 4-11 on page 4-25 shows the device driver ddclose entry point.

4-24

close("/dev/ric" ••.•)

UscrSpace

Kernel Space

ddmpx called on last close for multiplexed device drivers

DO half: paglilble

config open read write iocd select

(close the device handler)

DO Bottom

off-level interrupt handler. etc.

Hardware

Figure 4-11. Device Driver ddclose Entry Point

The ddclose device driver entry routine closes a previously open device
instance. (A device instance is a specific port on a communications adapter or
a hard disk on a SCSI adapter, etc.) The ddclose routine is executed only in the
process environment. It should provide the required serialization of its data
structures by using the locking kernel services in conjunction with a private lock
word defined in the driver. Refer to Figure 4-13 on page 4-28 for the ricclose
sample code.

The ddclose routine expects two parameters. These are devno and chan,
where:

devno

chan

Specifies the major and minor device numbers of the device
instance to close.

Specifies the channel number (for multiplexed devices only).

The following example shows the syntax of a ddclose entry point.

Chapter 4. Chardd view 4-25

#include <sys/dev;ce.h>
#include <sys/types.h>

int ddclose (devno, chan)
dev_t devno;
chan_t chan;

Please refer to Figure 4-12 for ddclose program flow for multiplexed and
non-multiplexed device drivers.

non-multiplexed device driver

called when the last process
having the instance open
closes it

,t ddclose

-flush data buffers to device
(if necessary)

-reset the device to the idle
state

-change device driver state
to closed

-close device handler (fp_close)

-free DMA and interrupt levels
used by device

return

multiplexed device driver

called for each close
associated with an open

,t ddclose

-do not deallocate the
channel- this is done
in the ddmpx routine

(do not close the
device handler)

return

(ddmpx is called by the kernel
when the last channel is no
longer in use. The ddmpx routine
then deallocates the channel.)

Figure 4-12. Device Driver ddclose Program Flow

4-26

The ddclose entry point is called when a previously opened device instance is
closed by the close subroutine or fp_close kernel service. The kernel calls the
routine under different circumstances for non-multiplexed and multiplexed
device drivers. For non-multiplexed device drivers, the ddclose routine is
called by the kernel when the last process having the device instance open
closes it. This causes the gnode reference count to be decremented to 0, and
the gnode to be deallocated. For multiplexed device drivers, the ddclose
routine is called for each close associated with an explicit open. In other

words, the device driver's ddclose routine is invoked once for each time its
ddopen routine was invoked for the channel.

In some instances, data buffers should be written to the device before returning
from the ddclose routine. These are buffers containing data to be written to the
device that have been queued by the device driver but not yet written.

Non-multiplexed device drivers should reset the associated device to an idle
state and change the device driver state to closed. This can involve calling the
fp_close kernel service to issue a close to an associated open device handler
for the device. Returning the device to an idle state prevents the device from
generating any more interrupts or DMA requests. DMA channels and interrupt
levels allocated for this device should be freed until the device is re-opened, to
release limited system resources used by this device.

Multiplexed device drivers should provide the same device quiescing, but not in
the ddclose routine. Returning the device to the idle state and freeing its
resources should be delayed until the ddmpx routine is called to deallocate the
last channel allocated on the device.

In all cases, the device instance is considered closed once the ddclose routine
has returned to the caller, even if a nonzero return code is returned.

The ddclose entry point can indicate an error condition to the user mode
application program by returning a nonzero return code. This causes the
subroutine call to return a value of -1. It also makes the return code available
to the user mode application in the errno external variable. The return code
used should be one of the values defined in the <sys/errno.h> header file.
The device is always considered closed even if a nonzero return code is
returned. When applicable, the return values defined in the POSIX 1003.1
standard for the close subroutine should be used.

Chapter 4. Chardd view 4-27

1
2
3
4
5
6
7
8
9

IE)
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46
47
48
49
58
51
52
53
54
55
56
57
58

/**
*
*
*

ricclose closes a single port.

***/
ricclose(devno, mpxchan, ext)
dev t devno;
int-mpxchan;
int ext;
{

i nt adapt_num; /* adapter number */
int port_num; /* port number */
t acb *acb_ptr; /* pointer to ACB */
t-chan info *tmp_chanptr; /* temp channel info pointer
t-ric dds
unsigned int

dds_ptr; / pointer to DDS */
ret; /* return values */

i nt old_pri; /* interrupt level
unsigned long bus_sr; /* bus segment reg
unsigned char *io_ptr; /* pointer to io reg
unsigned char comreg; /* COMREG on ric
unsigned int sleep_flag; /* que_cmd sleep flag

/* if minor number is invalid, return error */
if (minor(devno) >= (MAX_ADAP*NUM_PORTS»
{

return(EINVAL);
}

/* if the channel number out of range, return */
if (mpxchan 1= e)
{

return(ECHRNG);
}

/* get dds pointer from dds directory */
dds_ptr = dds_dir[minor(devno)];

/* if port not configured,
if (dds_ptr == NULL)
{

return(EINVAL);
}

return error */

adapt_num = dds_ptr->dds_hdw.slot_num;
acb_ptr = acb_dir[adapt_num];

/* remove the select queue data structure, the channel

*/

*/
*/

*/

* information data structure and zero out the dds pointer
* to the channel ds
*/

/* remove device flags */
tmp_chanptr->devflag = 8;

*/

*/

Figure 4-13 (Part 1 of 2). Code Sample of the ricclose Routine

4·28

59
60 /* last close for this adapter. notify kernel the adapter
61 *is no longer generating interrupts
62 */
63 if (--acb_ptr->n_open_ports == 0)
64 {
65 /* First disable interrupts from the adapter. */
66 bus_sr = BUSIO_ATT(acb_ptr->io_segreg_val,0);
67
68 io_ptr = (unsigned char *)(acb_ptr->io_base + bus_sr);
69
70 comreg = PIO_GETC(io_ptr + COMREG);
71
72 PIO_PUTC(io_ptr + COMREG, comreg & COM_IE);
73
74 BUSIO_DET(bus_sr);
75
76 i_clear(&acb_ptr->slih_intr);
77 }
78
79 /* set port state to closed */
80 dds_ptr->dds_dvc.port_state = CLOSED;
81
82 returnee);
83 } /* end ricclose */
84

Figure 4-13 (Part 2 of 2). Code Sample of the ricclose Routine

4.1.5 ddread Device Driver Entry Point
Figure 4-14 on page 4-30 shows the ddread entry point.

Chapter 4. Chardd view 4-29

config open close mpx

read,
readx

user data area

,
I ~ (uiomove)

I
I User Space

KemelSpace

write iocd select

DD Bottom halt:pi,nnc~

starCio, interrupt handler, off-level interrupt handler, etc.

Hardware

Figure 4-14. Device Driver ddread Entry Point

4-30

The ddread device driver entry point reads in data from a character device.
The ddread routine is executed only in the process environment. It should
provide the required serialization of its data structures by using the locking
kernel services in conjunction with a private lock word defined in the driver.
Refer to Figure 4-15 on page 4-32 for the ricread sample code.

The ddread routine expects four parameters. These are devno, uiop, chan, and
ext, where:

devno

uiop

chan

ext

Specifies the major and minor device numbers.

Points to a uio structure describing the data area or areas to be
written into.

Specifies the channel number.

Specifies the extension parameter.

The following example shows the syntax of a ddread entry pOint.

#include <sys/device.h>
#include <sys/types.h>

int ddread (devno, uiop, chan, ext)
dev_t devno;
struct uio *uiop;
chan_t chan;
int ext;

When a program issues a read or readx subroutine call or when the fp_rwuio
kernel service is used, the kernel calls the ddread entry point. This entry point
receives a pOinter to a uio structure that provides variables used to specify the
data transfer operation. Character device drivers can use the ureadc and
uiomove kernel services to transfer data into and out of the user buffer area
during a read subroutine call. These services receive a pointer to the uio
structure and update the fields in the structure by the number of bytes
transferred. The only fields in the uio structure that cannot be modified by the
data transfer are the uio_fmode and uio_segflg fields.

For most devices, the ddread routine sends the request to the device handler
and then waits for it to finish. The waiting can be accomplished by calling the
e_sleep kernel service. This service suspends the driver and the process that
called it and permits other processes to run until a specified event occurs.

When the I/O operation completes, the device usually issues an interrupt,
causing the device driver's interrupt handler to be called. The interrupt handler
then calls the e_wakeup kernel service specifying the awaited event, thus
allowing the ddread routine to resume.

The uio_resid field initially contains the total number of bytes to read from the
device. If the device driver supports it, the uio_offset field indicates the byte
offset on the device from which point the read should start. If no error occurs,
the uio_resid field should be 0 on return from the ddread routine to indicate that
all requested bytes were read. If an error occurs, this field should contain the
number of bytes remaining to be read when the error occurred.

If a read request starts at a valid device offset but extends past the end of the
device's capabilities, no error should be returned. However, the uio_resid field
should indicate the number of bytes not transferred. If the read starts at the end
of the device's capabilities, no error should be returned. However, the
uio_resid field should not be modified, indicating that no bytes were transferred.
If the read starts past the end of the device's capabilities, an ENXIO return code
should be returned, without modifying the uio_resid field.

When the ddread entry point is provided for raw I/O to a block device, this
routine usually translates requests into block I/O requests using the uphysio
kernel service.

The ddread entry point can indicate an error condition to the caller by returning
a nonzero return code. This causes the subroutine call to return a value of -1.
It also makes the return code available to the user mode program in the errno
external variable. The error code used should be one of the values defined in
the <sys/errno.h> header file. When applicable, the return values defined in
the POSIX 1003.1 standard for the read subroutine should be used.

Chapter 4. Chardd view 4-31

1
2
3
4
5
6
7
8
9

19
11
12
13
14
15
16
17
18
19
29
21
22
23
24
25
26
27
28
29
39
31
32
33
34
35
36
37
38
39
49
41
42
43
44
45
46
47
48
49
59
51
52
53
54
55
56
57
58
59

/**
*
*
*

ricread reads the adapter

***/
ricread(devno, uiop, mpxchan, rdext_ptr)
dev t devno;
struct uio *uiop;
int mpxchan;
struct read extension *rdext_ptr;
{ -

int adapt num; /* adapter number */
int port_"um; /* port number */
int old_pri; /* interrupt level */
u short pkt_hdr_len; /* packet header length */
u-short pkt_length; /* receive data length */
u=short pkt_status; /* receive packet status */
t acb *acb_ptr; /* pointer to ACB */
t-ric dds *dds_ptr; /* pointer to DDS */
struct mbuf *mbuf_ptr; /* pointer to mbuf */
caddr_t p_pkt; /* pointer to the received packet */
u short *p_shrt_pkt; /* pointer to the received packet */
t=sel_que *p_rcv_elem; /* pointer to the receive entry */
volatile t_chan_info *tmp_chnptr; /* temp channel info pointer */
int ret; /* return code */
int sleep_ret; /* return code from e_sleep */

/* if minor number is invalid, return error */
if (minor(devno) >= (MAX ADAP*NUM PORTS»
{ --

return(EINVAL);
}

/* if the channel number out of range (only 9 is valid for now) */
if (mpxchan t= 9)
{

return (ECHRNG);
}

/* get dds pointer from dds directory */
dds_ptr = dds_dir[minor(devno)];

/* if port not configured, return error */
if (dds ptr == NULL)
{ -

return(ENXIO);
}

adapt_num = dds_ptr->dds_hdw.slot_num;
acb_ptr = acb_dir[adapt_num];

/*
* go get the channel information data struct pointer from
* the DDS.
*/

tmp_chnptr = dds_ptr->dds_wrk.p_chan_info[mpxchan];

Figure 4-15 (Part 1 of 3). Code Sample of the ricread Routine

4-32

60
61 /* disable interrupts to single thread */
62 old_pri = i_disable(INTOFFL3);
63
64 /* no packets are available on the queue */
65 while(tmp_chnptr->p_rcv_head == NULL)
66 {
67 /* DNDELAY set, return at once */
68 if(tmp_chnptr->devflag & DNDELAY
69 {
70 /* end single thread */
71 i_enable(old_pri);
72
73 /* set length to zero */
74 uiop->uio_resid = 8;
75
76 /* no data, return zero */
77 return(8);
78 }
79 else
88 /* NDELAY not set, wait until data is received */
81 {
82 /* do an e_sleep */
83 sleep_ret = e_sleep(&(tmp_chnptr->rcv_event_lst),
84 EVENT_SIGRET);
85
86 if sleep_ret!= EVENT_SUCC
87 {
88 i_enable(old_pri);
89 return(EINTR);
98 }
91 }
92 }
93 /*
94 * message waiting. de que it and copy to userls buffer
95 */
96 /* point to first element */
97 p_rcv_elem = tmp_chnptr->p_rcv_head;
98
99 /* copy the code field to the status field of read extension */

108 if (rdext ptr != NULL)
181 { -
102 rdext_ptr->status = (ulong) p_rcv_elem->stat_block.code;
183 }
184
185 tmp_chnptr->p_rcv_head = p_rcv_elem->p_sel_que; /* deque it */
186
187 /* get mbuf pointer */
188 mbuf_ptr = (struct mbuf *)p_rcv_elem->stat_block.option[8];
189
118 /* receive head ptr is null, make receive tail ptr null */
111 if(tmp_chnptr->p_rcv_head == NULL)
112 {
113 tmp_chnptr->p_rcv_tail = NULL;
114 }

Figure 4-15 (Part 2 of 3). Code Sample of the ricread Routine

Chapter 4. Chardd view 4-33

115
116 /*
117 * zero out the select queue element and add it back
118 * to the select queue available chain
119 */
120 p_rcv_elem->rqe_value = 0;
121 p_rcv_elem->stat_block.code = 0;
122 p_rcv_elem->stat_block.option[0J = 0;
123 p_rcv_elem->p_sel_que = tmp_chnptr->p_sel_avail;
124 tmp_chnptr->p_sel_avail = p_rcv_elem;
125
126 i_enable(old_pri);
127
128 /* if mbuf ptr is NULL, there is a status, not a receive buffer */
129 if (mbuf_ptr == NULL)
130 {
131 return (0);
132 }
133
134 /* get buffer address */
135 p_pkt = MTOO(mbuf_ptr, caddr_t);
136
137 p_shrt_pkt = (u_short *)p_pkt;
138
139 /* get information from packet header */
140 pkt_hdr_len = PIO_GETSR(p_shrt_pkt++);
141 pkt_length = PIO_GETSR(p_shrt_pkt++);
142 pkt_status = PIO_GETSR(p_shrt_pkt);
143
144 /* point packet address to start past header */
145 p_pkt = p_pkt + pkt_hdr_len;
146
147 /* attempt to move the packet contents to the user area */
148 ret = uiomove(p_pkt, (unsigned int)pkt_length, UIO_REAO, uiop);
149
150 /* free the mbuf */
151 m_free(mbuf_ptr);
152
153 return(ret);
154
155 } /* end ricread */
156

Figure 4-15 (Part 3 of 3). Code Sample of the ricread Routine

4.1.6 ddwrite Device Driver Entry Point
Figure 4-16 on page 4-35 shows the ddwrite entry point.

4-34

User Space

KemelSpace

write
writex

: (uiomove)

I
I

DO top haH: pagable

config open close mpx read ioctl select

DO Bottom haH:pinned

starCio, interrupt handler, off-level interrupt handler, etc.

Hardware

Figure 4-16. Device Driver ddwrite Entry Point

The ddwrite device driver entry point writes out data to a character device. The
ddwrite routine is executed only in the process environment. It should provide
the required serialization of its data structures by using the locking kernel
services in conjunction with a private lock word defined in the driver. See
Figure 4-17 on page 4-37 for the ricwrite sample code.

The ddwrite routine expects four parameters. These are devno, uiop, chan, and
ext, where:

devno

uiop

chan

ext

Specifies the major and minor device numbers.

Points to a uio structure describing the data area or areas to be
written from.

Specifies the channel number.

Specifies the extension parameter.

Chapter 4. Chardd view 4-35

4~6

The following example shows the syntax of a ddwrlte entry pOint.

#include <sysjdevice.h>
#include <sysjtypes.h>

int ddwrite (devno, uiop, chan, ext)
dev_t devno;
struct uio *uiop;
chan_t chan;
int ext;

When a program issues a write or writex subroutine call or when the fp_rwuio
kernel service is used, the kernel calls the ddwrite entry point. This entry point
receives a pointer to a uio structure, which provides variables used to specify
the data transfer operation. Character device drivers can use the uwritec and
ulomove kernel services to transfer data into and out of the user buffer area
during a write subroutine call. These services are passed a pointer to the uio
structure. They update the fields in the structure by the number of bytes
transferred. The only fields in the uio structure that are not potentially modified
by the data transfer are the ulo_fmode and uio_segflg fields.

For most devices, the ddwrite routine queues the request to the device handler
and then waits for it to finish. The waiting is typically accomplished by calling
the e_sleep kernel service to wait for an event. The e_sleep service suspends
the (top-half) driver and the process that called it, and permits other processes
to run.

When the I/O operation is completed, the device usually causes an interrupt,
which causes the device driver's interrupt handler to be called. The interrupt
handler then calls the e_wakeup kernel service specifying the awaited event,
thus allowing the ddwrite routine to resume.

The uio_resid field initially contains the total number of bytes to write to the
device. If the device driver supports it, the uio_offset field indicates the byte
offset on the device from which point the write should start. If no error occurs,
the uio_resid field should be 0 on return from the ddwrlte routine to indicate
that all requested bytes were written. If an error occurs, this field should
contain the number of bytes remaining to be written when the error occurred.

If a write request starts at a valid device offset but extends past the end of the
device's capabilities, no error should be returned. However, the uio_resid field
should indicate the number of bytes not transferred. If the write starts at or past
the end of the device's capabilities, no data should be transferred. An error
code of ENXIO should be returned, and the uio_resid field should not be
modified.

When the ddwrite entry point is provided for raw I/O to a block device, this
routine usually translates requests into block I/O requests using the uphysio
kernel service.

The ddwrite entry point can indicate an error condition to the caller by returning
a nonzero return code. This causes the subroutine to return a value of -1. It
also makes the return code available to the user mode program in the errno
external variable. The error code used should be one of the values defined in

1
2
3
4
5
6
7
8
9

18
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46
47
48
49
58.
51
52
53
54

the <sys/errno.h> header file. When applicable, the return values defined in
the POS/X 1003.1 standard for the write subroutine should be used.

/**
*
* ricwrite allows write or transmit for user level or kernel
* level users of the ric.
*
***/

ricwrite(devno, uiop, mpxchan, ext_ptr, sleep_flag)
dev_t devno;
struct uio *uiop;
int mpxchan;
t_write_ext *ext_ptr;
unsigned int sleep_flag;

{
int adapt_num; /* adapter number */
int port_num; /* port number */
t_acb *acb_ptr; /* pointer to ACB */
t_ric_dds *dds_ptr; /* pointer to DDS */
t_write_ext lc ext; /* local copy of write extension */
int data_len; - /* total length of chained mbuf */
unsigned short lc_flags; /* local copy of flag bits */
unsigned short lc_seq_num;
unsigned short 1 c_xmt_length;
char *lc bus buf;
char *lc=bus=base;
char *lc_host_buf;
struct mbuf *lc xmt mbuf;
unsigned int old=pri; /*
t_xmt_chain *xchn_ptr; /*
t_xmt_map *xmap_ptr; /*
struct mbuf *mbuf_ptr;
struct mbuf *freembuf_ptr;

interrupt priority save element */
pointer to the xmit chain */
pointer to current xmit map */

/* pointer to the mbuf */

struct mbuf *freembufc_ptr;
/* pointer to mbuf to free */

/* ptr to mbuf chain to free */
struct mbuf *allocmbuf ptr;
unsigned char *mbufdata_ptr;
struct mbuf *tmpmbuf_ptr;
int ret;
struct xmem xmd;
t_adap_cmd xmt_adap_cmd;
unsigned char tmp_cntrl;

/* mbuf allocated by us */
/* pointer to mbuf data to be sent */
/* temp pointer to mbuf */
/* return code */

/* cross memory descriptor for dma */
/* on stack adapter command buffer */
/* temp var for filling in cmd blk */

/* if minor number is bad, return error */
if (minor(devno) >= (MAX_ADAP*NUM_PORTS»
{

return(EINVAL);
}

/* if the channel number out of range, return */
if (mpxchan != 8)
{

return (ECHRNG);
}

Figure 4-17 (Part 1 of 6). Code Sample of the ricwrite Routine

Chapter 4. Chardd view 4-37

55 /* get dds pointer from dds directory */
56 dds_ptr = dds_dir[minor(devno)];
57
58 /* if port not configured, return error */
59 if (dds_ptr == NULL)
60 {
61 return(EINVAL);
62 }
63
64 adapt_num = dds_ptr->dds_hdw.slot_num;
65 acb_ptr = acb_dir[adapt_num];
66
67 port_num = dds_ptr->dds_dvc.port_num;
68
69 /* initialize local mbuf pointers */
70 freembuf_ptr = NULL;
71 freembufc_ptr = NULL;
72 allocmbuf_ptr = NULL;
73
74 bzero((char *)&xmt_adap_cmd , sizeof(t_adap_cmd»;
75
76 /* if write extension provided, copyin if from user space.
77 * else copy directly (bcopy) if from kernel space.
78 */
79 bzero(&lc ext, sizeof(t write ext »;
80 if (ext_ptr) --
81 if (uiop->uio_segflg == UIO_USERSPACE)
82 copyin(ext_ptr, &lc_ext, sizeof(t_write_ext »;
83 else
84 bcopy (ext_ptr, &lc_ext, sizeof(t_write_ext »;
85
86 /* initialize local flags */
87 if (lc_ext.cio_write.flag & CIO_ACK_TX_DONE) {
88 lc_flags = XMT_STAT_REQ;
89 }
ge else
91 {
92 lc_flags = ej
93 }
94
95 /* get pointer to transmit chain */
96 xchn_ptr = dds_ptr->dds_wrk.p_xmt_chn;
97
98 /* if no available transmit map elements, then return */
99 if«xchn_ptr->elts_in_use +1) >= xchn_ptr->length)

1e0 {
101 return(EAGAIN);
102 }
103

Figure 4-17 (Part 2 of 6). Code Sample of the ricwrite Routine

4-38

194
1e5
1e6
1e7
1e8
1e9
119
111
112
113
114
115
116
117
118
119
129
121
122
123
124
125
126
127
128
129
139
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
146
147
148
149
159
151
152
153
154
155

/* a user process called the write */
if(uiop->uio_segflg == UIO_USERSPACE)
{

lc_xmt_length = (unsigned int)uiop->uio_resid;

/* data length is 48 bytes or less */
if(lc xmt length <= 48)
{ --
/* do uiomove to get data into command block */

if«ret = uiomove(&(xmt_adap_cmd.u_data_area.d_ovl.data[e]),
u;op->u;o_res;d, UIO_WRITE, uiop» != e)

{

}

/* uiomove failed, return an error */
return(ret);

} /* end of transmit <= 48 bytes */
else
{

/* if request for more than one page, return */
if(lc_xmt_length > PAGESIZE)
{

return(EINVAL);
}

/* allocate an mbuf and copy the data into it */
mbuf_ptr = m_get(M_DONTWAIT, MT_DATA);

/* if no mbuf available, return */
if(mbuf_ptr == (struct mbuf *)NULL)
{

return(ENOMEM);
}

/* try to get an mbuf cluster */
m_clget(mbuf_ptr);

/* no mbuf clusters available */
if(IM_HASCL(mbuf_ptr»
{

}

m_free(mbuf_ptr);
return(ENOMEM);

/* save pointer to mbuf */
allocmbuf_ptr = mbuf_ptr;

/* set local flags */
lc flags 1= (XMT FREE MBUF 1

- XMT:OMA_REQ);
/* mbuf to be freed */
/* will be doing dma */

/* now get a pointer to the actual data */
mbufdata_ptr = MTOO(mbuf_ptr, char *);

Figure 4-17 (Part 3 of 6). Code Sample of the ricwrite Routine

Chapter 4. Chardd view 4-39

156
157 /* now do uiomove to get data into mbuf or mbuf extension */
158 if«ret = uiomove(mbufdata_ptr, uiop->uio_resid, UIO_WRITE,
159 uiop» 1= 8)
168 {
161 /* uiomove failed, free the mbuf and return */
162 m_free(mbuf_ptr);
163 return(ret);
164 }
165 }
166 }
167
168 if (lc ext. transparent)
169 - tmp_cntrl = (ADAP_TX_ACK I ADAP_TRANSP);
178 else
171 tmp_cntrl = ADAP_TX_ACK;
172
173 lc_seq_num = ++dds_ptr->dds_wrk.cmd_seq_num;
174
175 /* need to do a DMA */
176 if(lc flags & XMT DMA REQ)
177 {- - -
178 /* will be doing a XMIT_LONG command */
179
188 /* already running max number of dma's */
181 if(xchn_ptr->num_active_dma >= XMT_TCWS_PORT)
182 {
183 if (allocmbuf ptr)
184 m_free(allocmbuf_ptr);
185 return(EAGAIN);
186 }
187
188 lc_xmt_mbuf = mbuf_ptr;
189 lc_host_buf = MTOD(mbuf_ptr, char *);
198 lc_bus_base = reg_alloc (dds_ptr->dds_wrk.p_reg_list, PAGESIZE);
191 lc_bus_buf =lc_bus_base + «unsigned int)lc_host_buf % PAGESIZE);
192
193 /* make the buffer visible to the adapter */
194 xmd.aspace_id = XMEM_GLOBAL;
195 xmd.subspace id = NULL;
196 d_master(acb=ptr->dma_channel_id, DMA_WRITE_ONLV, lc_host_buf,
197 1 c_xmt_l ength, &Xmd, lc_bus_buf);
198
199 /* fill in command block */
288 xmt_adap_cmd.cmd_typ = XMIT_LONG;
281 xmt_adap_cmd.port_nmbr = (unsigned char)port_num;
292 xmt_adap_cmd.seq_num = SWAPSHORT(lc_seq_num);
283 xmt_adap_cmd.u_data_area.c_ovl.tst_length =
284 SWAPSHORT(lc xmt length);
285 xmt_adap_cmd.u_data_area.c_ovl.tst_addr = - -
286 SWAPLONG«unsigned int)lc bus buf);
287 xmt_adap_cmd.u_data_area.c_ovl.cntl = tmp_cntrl; --
288 }

Figure 4-17 (Part 4 of 6). Code Sample of the ricwrite Routine

4-40

2C:l9 else
21C:l {
211 /* will be doing a XMIT SHORT command */
212 1 c xmt mbuf = NULL; -
213 lc-host buf = NULL;
214 lc-bus base = NULL;
215 lc:bus:buf = NULL;
216
217 /* fill in command block */
218 xmt_adap_cmd.cmd_typ = XMIT_SHORT;
219 xmt_adap_cmd.port_nmbr = (unsigned char)port_num;
220 xmt_adap_cmd.seq_num = SWAPSHORT(lc_seq_num);
221 xmt_adap_cmd.lngth = (unsigned char)lc_xmt_length;
222 xmt_adap_cmd.cntrl = tmp_cntrl;
223 }
224
225 /* get pointer to next available transmit map element */
226 xmap_ptr = &(xchn_ptr->xmt_map_chn[(int)xchn_ptr->tail]);
227
228 /* fill it in */
229 xmap_ptr->seq_num = lc_seq_num;
230 xmap_ptr->xmt_elem_flags = lc_flags;
231 xmap_ptr->xmt_length = 1 c_xmt_length;
232 xmap_ptr->write_id = lc_ext.cio_write.write_id;
233 xmap_ptr->p_xmt_mbuf = lc_xmt_mbuf;
234 xmap_ptr->p_host_buf = lC_host_buf;
235 xmap_ptr->p_bus_base = lc_bus_base;
236 xmap_ptr->p_bus_buf = lc_bus_buf;
237
238 /* send the command down */
239 old_pri = i_disable(INTOFFL3);
24C:l
241 /* if unable to get available command block, return */
242 if«ret = que_command (acb_ptr, &xmt_adap_cmd, sleep_flag» < 0)
243 {
244 i_enable(old_pri);
245 /* have d_mastered stuff here, d_complete it */
246 if(lc flags & XMT DMA REQ)
247 {- - -
248 /* d_complete the transmit information */
249 xmd.aspace_id = XMEM_GLOBAL;
250 xmd.subspace_id = NULL;
251 ret = d_complete(acb_ptr->dma_channel_id, 0, lc_host_buf,
252 lc_xmt_length, &Xmd, lc_bus_buf);
253 }
254
255 /* free any mbuf allocated in this routine */
256 if (allocmbuf_ptr)
257 m_free(allocmbuf_ptr);
258
259 return(EAGAIN);
260 } /* cmd queued to adapter */

-Figure 4-17 (Part 5 of 6). Code Sample of the ricwrite Routine

Chapter 4. Chardd view 4-41

261
262 /* successfully started transmit */
263
264 /* increment number of outstanding active dma's */
265 if (lc_flags & XMT_DMA_REQ)
266 xchn_ptr->num_active_dma++;
267
268 /* incrment transmit map tail pointer */
269 xchn_ptr->elts_in_use++;
278 xchn_ptr->tail = (xchn_ptr->tail + 1) % XMT_CHN_ELEM;
271
272 i_enable(old_pri);
273
274 /* free any LLC mbufs that can be freed now */
275 if (freembufc ptr)
276 m_free(freembufc_ptr);
277 if (freembuf_ptr)
278 m_free(freembuf_ptr);
279
288 /* accumulate the transmit stats here, and have a nice day! */
281 DDS_STAT.tx_port_cnt++;
282 if (ULONG_MAX - xmt_adap_cmd.lngth < DDS_STAT.tx_byte_lcnt)
283 {
284 DDS STAT.tx byte mcnt++;
285 DDS-STAT.tx-byte-lcnt =
286 - ULONG MAX - DDS STAT.tx byte lcnt;
287 DDS STAT.tx byte lcnt =- --
288 - xmt=adap=cmd.lngth - DDS_STAT.tx_byte_lcnt;
289 }
298 else
291 {
292 DDS_STAT.tx_byte_lcnt += xmt_adap_cmd.lngth;
293 }
294 if (xmt_adap_cmd.cmd_typ == XMIT_SHORT)
295 {
296 DDS STAT.tx short++;
297 DDS=STAT.tx=shortbytes += xmt_adap_cmd.lngth;
298 }
299 else
388 if «xmt_adap_cmd.cmd_typ == XMIT_LONG) I I
381 (xmt_adap_cmd.cmd_typ == XMIT_GATHER»
382 {
383 DDS STAT.tx dma++;
384 DDS=STAT.tx=dmabytes += xmt_adap_cmd.lngth;
385 }
386
387 return(8);
388 } /* end ricwrite */
389

Figure 4-17 (Part 6 of 6). Code Sample of the ricwrite Routine

4.1.7 ddioctl Device Driver Entry Point
Figure 4-18 on page 4-43 shows the ddioctl entry point.

4-42

UscrSpace

KemelSpace

iocd
ioctlx

DD top half: able

config open close mpx read

DD Bottom half:pinned

starCio, interrupt handler, off-level interrupt handler, etc.

Hardware
adapter

Figure 4-18. Device Driver ddioctl Entry Point

The ddioctl device driver entry point performs the special I/O operations
requested in an ioctl or ioctlx subroutine call. The ddioctl routine is executed
only in the process environment. It should provide the required serialization of
its data structures by using the locking kernel services in conjunction with a
private lock word defined in the driver. See Figure 4-19 on page 4-45 for the
ricioctl sample code.

Six parameters are passed to the ddioctl entry point. They are devno, cmd,
arg, devflag, chan, and ext, where:

devno

cmd

arg

Specifies the major and minor device numbers.

The parameter from the ioctl subroutine call that specifies the
operation to be performed.

The parameter from the ioctl subroutine call that specifies an
additional argument for the cmd operation.

Chapter 4. Chardd view 4-43

4-44

devflag

chan

ext

Specifies the device open or file control flags.

Specifies the channel number.

Specifies the extension parameter.

The following example shows the syntax of ddioctl.

#include <sys/device.h>

int ddioctl (devno, cmd, arg, devflag, chan, ext)
dev_t devno;
i n t cmd, a rg ;
ulong devflag;
chan_t chan;
int ext;

When a program issues an ioctl subroutine call, the kernel calls the ddioctl
routine of the specified device driver. The ddioctl routine is responsible for
performing whatever functions are requested. In addition, it must return
whatever control information has been specified by the original caller of the
ioctl subroutine. The cmd parameter contains the name of the operation to be
performed. Most ioctl operations depend on the specific device involved.
However, all ioctl routines must respond to the following command:

IOCINFO Returns a devinfo structure, defined in the <sys/devinfo.h >, that
describes the device. Only the first two fields of the data structure
need to be returned if the remaining fields of the structure do not
apply to the device.

The devflag parameter indicates one of several types of information. It can give
conditions in which the device was opened. (These conditions can
subsequently be changed by the fcntl subroutine call.) Alternatively, it can tell
which of two ways the entry point was, invoked:

• By the file system on behalf of a using application.

• Directly by a kernel routine using the fpJoctl kernel service.

Thus, flags in the devflag parameter have the following definitions, as defined in
the < sys/device.h > file:

DKERNEL Entry point called by kernel routine using the fpJoctl service.

DREAD Open for reading.

DWRITE Open for writing.

DAPPEND Open for appending.

DNDELAY Device open in non-blocking mode.

The ddioctl entry point can indicate an error condition to the user mode
application program by returning a nonzero return code. This causes the ioctl
subroutine to return a value of -1 and makes the return code available to the
user mode application in the errno external variable. The error code used
should be one of the values defined in <sys/errno.h >. When applicable, the
return values defined in the POS/X 1003.1 standard for the ioctl subroutine
should be used.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/**
*
* r;c;octl
*
***/

arg, flag, mpxchan, ext) r;cioctl(devno, cmd,
dev_t devno;
;nt cmd;

/* major and minor device number */
/* command to be performed */

caddr_t arg;
int flag;

/* address of parm block for ioctl system call*/
/* flag from last open system call */
/* mpx channel number */ chan_t mpxchan;

caddr text;
{ -

/* value of "ext" passed to WRITEX */

int adapt_num; /* adapter number */
int port_num; /* port number */
int ret; /* return value */
t ric dds .*dds_ptr; /* dds pointer */
t=acb- *acb_ptr; /* pointer to ACB
struct devinfo *devinfo_ptr;
volatile unsigned long bus_sr;
int error;
unsjgned long iob;
unsigned long memb;
unsigned int sleep_flag;

struct */

/* 10 Seg Reg number mask */
/* return value */
/* adapter io base addr */
/* adapter bus memory base */
/* sleep flag for que_command */

/* if minor number is invalid, return error */
if (minor(devno) >= (MAX ADAP*NUM PORTS»
{ --

return(EINVAL);
}

/* if the channel number out of range (only e is valid for now) */
if (mpxchan != e)
{

return(ECHRNG);
}

/* get dds pointer from dds directory */
dds_ptr = dds_dir[minor(devno)];

/* if port not configured, return error */
if (dds_ptr == NULL)
{

return(EINVAL);
}

adapt_num = dds_ptr->dds_hdw.slot_num;
acb_ptr = acb_dir[adapt_num];

Figure 4-19 (Part 1 of 2). Code Sample of the ricioctl Routine

Chapter 4. Chardd view 4-45

53 /* use the cmd parameter to switch for various operations */
54
55 ret = 0;
56 switch (cmd)
57 {
58 case IOCINFO:/* Standard request for devinfo */
59 devinfo_ptr = (struct devinfo*)arg;
60 devinfo_ptr->devtype = DO_RIC;
61 devinfo_ptr->flags = 0;
62 break;
63
64 case RIC RASW: /* Reload adapter software */
65 {-
66 /* invoke reload_asw to actually do adapter software */
67 /* reload */
68 sleep_flag = 0;
69 error = reload_asw(acb_ptr, dds_ptr, mpxchan, arg, bus_sr, iob,
70 memb, sleep_flag);
71
72 break;
73 }
74
75 default:
76 return(EINVAL);
77 }
7,8
79 } /* end ricioctl */
80

Figure 4-19 (Part 2 of 2). Code Sample of the ricioctl Routine

4.1.8 ddselect Device Driver Entry Point
Figure 4-20 on page 4-47 shows the ddselect entry pOint.

4-46

User Space

Kernel Space

DDtophalf:

config open close mpx read write ioctl

select, or
poll

DD Bottom half:pinned

starCio, interrupt handler, off-level interrupt handler, etc.

• Hardware
adapter

I.n..

Figure 4-20. Device Driver ddselect Entry Point

The ddselect device driver entry pOint checks to see if one or more events has
occurred on the device. The ddselect routine is executed only in the process
environment. It should provide the required serialization of its data structures
by using the locking kernel services in conjunction with a private lock word
defined in the driver. See Figure 4-21 on page 4-50 for the ricselect sample
code.

The ddselect routine can be called with four parameters. They are devno,
events, reventp, and chan, where:

devno Specifies the major and minor device numbers.

events Specifies the events to be checked.

reventp Returned events pointer. This parameter, passed by reference, is
used by the ddselect routine to indicate which of the selected events
are true at the time of the call. The returned events location pOinted
to by the reventp parameter is set to 0 before entering this routine.

Chapter 4. Chardd view 4-47

4-48

chan Specifies the channel number.

The following example shows the syntax of ddselect.

#include <sysjdevice.h>
#include <sysjpoll.h>

int ddselect (devno, events, reventp, chan)
dev_t devno;
ushort events;
ushort *reventp;
int chan;

The ddselect entry point is called when the select or poll subroutine is used, or
when the fp_select kernel service is invoked. It determines whether a specified
event or events have occurred on the device. The ddselect routine can be
provided only by character class device drivers. It cannot be provided by block
device drivers even when providing raw read/write access.

Possible events to check for are represented as flags, or bits, in the events
parameter. There are three basic events defined for the select and poll
subroutines, when applied to devices supporting select or poll operations:

POLLIN Input is present on the device.

POLLOUT The device is capable of output.

POLLPRI An exceptional condition has occurred on the device.

A fourth event flag is used to indicate whether the ddselect routine should
record this request for later notification of the event using the selnotify kernel
service. This flag can be set in the events parameter if the device driver is not
required to provide asychronous notification of the requested events:

POLLSYNC This request is a synchronous request only. The routine need not
call the selnotify service for this request even if the events later
occur.

Additional event flags in the events parameter are left for device-specific events
on the poll subroutine call.

If one or more events specified in the events parameter are in fact true, the
ddselect routine should indicate this by setting the corresponding bits in the
reventp parameter. Note that the returned events parameter reventp is passed
by reference. If none of the requested events are true, then the ddselect routine
sets the returned events parameter to 0 , which is passed by refer~nce through
the reventp parameter. It also checks the POLLSYNC flag in the events
parameter. If this flag is true, the ddselect routine should simply return, since
the event request was a synchronous request only. However, if the POLLSYNC
flag is false, the ddselect routine needs to notify the kernel when one or more of
the specified events later happen. For this purpose, the routine should set
separate internal flags for each event requested in the events parameter.
When any of these events become true, the device driver routine should use the
selnotify service to notify the kernel. The corresponding internal flags should
then be reset to prevent renotification of the event.

Sometimes the device can be in a state in which a supported event or events
can never be satisfied (such as when a communication line is not operational).

In this case, the ddselect routine should simply set the corresponding reventp
flags to 1. This prevents the select or poll subroutine from waiting indefinitely.
As a result however, the caller will not in this case be able to distinguish
between satisfied events and unsatisfiable ones. Only when a later request
with an NDELAY option fails will the error be detected.

Note: Other device driver routines, such as the ddread or ddwrite routines,
may require logic to support select or poll operations.

The ddselect routine should return with a return code of 0 if the select/poll
operation requested is valid for the resource specified. Requested operations
are invalid, however, if either of the following is true:

1. The device driver does not support a requested event.

2. The device is in a state in which poll and select operations are not
accepted.

In these cases, the ddselect routine should return with a nonzero return code,
typically EINVAL, and without setting the relevant reventp flags to 1. This
causes the poll subroutine to return to the caller with the POLLERR flag set in
the returned events parameter associated with this resource. The select
subroutine indicates to the caller that all requested events are true for this
resource. When applicable, the return values defined in the POS/X 1003.1
standard for the select subroutine should be used.

Chapter 4. Chardd view 4-49

1
2
3
4
5
6
7
8
9

18
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46

/**
*
* ricselect
*
**/

ricselect(devno, events, revent_ptr, mpxchan)
dev_t devno;
unsigned short events;
unsigned short *revent_ptr;
int mpxchan;
{

int
i nt
t_acb

/* adapter number */
/* port number */

/* pointer to ACB */
/* pointer to DDS */ t ric dds

t=chan_info
unsigned char

adapt_num;
port_num;
*acb_ptr;
*dds_ptr;
*tmp chnptr;
done;

/* temporary channel info pointer */

/* if minor number bad, return */
if (minor(devno) >= (MAX_ADAP*NUM_PORTS»
{

return(EINVAL);
}

/* if the channel number out of range, return */
if (mpxchan != 8)
{

return(ECHRNG);
}

/* get dds pointer */
dds_ptr = dds_dir[minor(devno)];

/* if port not configured, return */
if (dds_ptr == NULL)
{

return(ENXIO);
}

adapt_num = dds_ptr->dds_hdw.slot_num;
acb_ptr = acb_dir[adapt_num];

Figure 4-21 (Part 1 of 2). Code Sample of the ricselect Routine

4-50

/*
* get the channel information data structure
* pointer from the dds for this channel.
*/

tmp_chnptr = dds_ptr->dds_wrk.p_chan_info[mpxchan];

done = TRUE;
while (done == TRUE)
{

/* check for requested selections. one at a time */

/* select on receive data available */
if(events & POLLIN)
{

/* at least one event on the rcv queue */
if(tmp_chnptr->p_rcv_head != NULL)
{

*revent_ptr 1= POLLIN;
}
else
{

if(!(events & POLLSYNC))

47
48
49
58
51
52
53
54
55
56
57
58
59
68
61
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
88
81
82
83
84
85
86
87
88
89
98
91
92
93
94
95
96
97
98
99

{
tmp_chnptr->sync_flags 1= POLLIN;

}
}

} /* end check for POLLIN flag */

/* select on status available */
if(events & POLLPRI)
{

/* at least one event on the status queue */
if(tmp_chnptr->p_stat_head != NULL)
{

}
else
{

}

*revent_ptr 1= POLLPRI;

if(!(events & POLLSYNC))
{

}

} /* end check for POLLPRI flag */

} /* end while */

/* return of zero tells poll/select to sleep if necessary */
return(8);

} /* end ricselect */

Figure 4-21 (Part 2 of 2). Code Sample of the ricselect Routine

Chapter 4. Chardd view 4-51

4.1.9 dddump Device Driver Entry Point

4-52

The dddump entry point. is called by the kernel dump routine to set up and send
dump requests to the device. The dddump routine is optional for a device
driver. It is required only when the device driver supports a device as a target
for a possible kernel dump.

The dddump writes system dump data to a device. The DUMPINIT dddump
operation is called in the process environment only. The DUMPQUERY,
DUMPSTART, DUMPWRITE, DUMPEND, and DUMPTERM dddump operations
can be called in both the process environment and interrupt environment.

NOTE --~

This entry point is for making your device the target of a system dump, i.e.
system data will be transferred to your device when the dump is executed.
For information on including your device's own data into the system dump,
please refer to "System Dump" on page 9-1.

dddump can be called with six paramters. These are devno, uiop, cmd, arg,
chan, and ext, where:

devno

uiop

cmd

arg

chan

ext

Specifies the major and minor device numbers.

Points to the uio structure describing the data area or areas to be
dumped.

The parameter from the kernel dump function that specifies the
operation to be performed.

The parameter from the caller that specifies the address of a
parameter block associated with the kernel dump command.

Specifies the channel number.

Specifies the extension parameter.

The following example shows the syntax for dddump.

#include <sysjdevice.h>

int dddump (devno, uiop, cmd, arg, chan, ext)
dev_t devno;
struct uio *uiop;
int cmd, arg;
chan_t chan;
int ext;

It is important that the system state change as little as possible when
performing the dump. As a result, the dddump routine should use the minimal
number of services in writing the dump data to the device.

The cmd parameter can specify any of the following dump commands:

DUMPINIT Initialization in preparation for supporting a system dump.

DUMPQUERY Query minimum and maximum data transfer sizes.

DUMPSTART Device setup in preparation for doing a system dump.

DUMPWRITE Write dump data to the device.

DUMPEND Cleanup of the device state after completing dump.

DUMPTERM Release resources allocated for dump support.

The dddump entry point can indicate an error condition to the caller by
returning a nonzero return code.

Chapter 4. Chardd view 4-53

4-54

Chapter 5. Overview of a Block Device Driver

5.1 Introduction
A block device driver interacts with a special facility in the kernel called the
buffer cache. Special entry points in the driver are provided because of this
interaction. This driver may also support character type interaction through
read and write operations refered to as raw 1/0. The principal characteristic of
block devices is to perform I/O operations using system facilities such as buffer
cache management and paging.

Data read from character devices is not stored in a cache for subsequent
reading from system buffers. For block device drivers, data is stored in a cache.
Block devices interact with the system to keep the cache containing information
that a process (or multiple processes) can read from at any time. If the
information is not in the cache, the system (not the user) requests the data from
the block device driver.

Like all devices, the interaction with block devices is through shared memory.
In addition, there are routines to indicate when data in the shared memory
(called buf structures) has completed 10 processing.

The following sections cover the entry points responsible for the movement of
data to and from block devices. This includes control information, the shared
memory facilites, the mechanisms for programs to share the information, and
the use of the Kernel cache.

Finally, it may be necessary to talk to the device directly without interacting
with the system buffer cache. This topic is presented in "Character Access to
Block Device Drivers" on page 5-6.

5.1.1 Block 110 Device Driver Entry Points

© Copyright IBM Corp. 1991

The device switch table contains the entry point addresses of the interface
routines for each device driver in the system, just as it does for for the
character device drivers. Figure 5-1 on page 5-2 shows the entry pOints for a
block device driver. Like the character device driver, the block device driver
must supply a config routine for configuration support as well as an open and a
close routine. The open routine is called each time the device is opened and
the close routine is called only on the final close of the device. Instead of
having a separate read and write routines, like character device drivers, each
block device driver has a strategy routine. This routine is called with a pOinter
to a buffer header, known as the buf structure, which contains the I/O request
parameter.

The strategy routine handles requests as buffers to be written or read from the
device.

5-1

Device Switch 'fable

contig
select,

open close dump read write strategy mpx revoke poll. iocO

, r

ddconfig:
called when
a device is
configured

, ,
ddioctl:
entry point
for device
specific
operations

~ not supported
'----~: (nulldev) -

..... _--... :: ddstrategy:

----.. ::. ddwrite:

block reads and writes
are done here

(optional) This character based
request is CODverted into a block and
sent to the ddstrategy routine. System
buffers are not used. System buffers
are not used-buffers are allocated
by the device driver resulting in less
system overhead and better perf •

..... ___ ddread:
(optional) This character based
request is simDar to the ddwrite •

.... -----.. ::. dddump: Used if this block device
will be a device where system data
can be dumped to •

.... - ... : ddclose: Called on final close of a device

.... _-.. --. ddopen: Called on each open of a device

Figure 5-1. Entry Points for a Block Device Driver

5.1.1.1 ddconfig Entry Point

5-2

The configuration routine of a block device driver creates /dev entries for a
block device. The device may support raw access. Raw access is character
access to a block device. In which case, it must create /dev entries for a raw
device. They both will use the same major number but the raw device will have
names are used with a prefix of'r' before the device name. For example, a
block device named /dev/hdiskO would also have a /dev/rhdiskO device if it
supported raw access. The system will call the read and write routines of the

raw device if /dev/rhdiskO is opened. Notice that the raw device and block
device s'hare the same major number. Other vendor's UNIX systems may not
allocate the same major number for both character and block devices.

5.1.1.2 ddopen/ddclose Entry Points
AIX supports only a few block devices 'in normal installation. These devices are
capable of random access such as the hard disks and cdrom. When these
devices are opened, they are opened by system services such as the buffer
cache and paging subsystem. They should not be opened directly by user
space applications during normal system operations but may be opened during
maintenance by appli,cations suc~ as fsck.

The ddopen routine in AIX should verify that the device that is requested is
opened by only one user. It should also verify the device is a valid device and
that it is online and available.

Most of the block devices are attached to the SCSI adapter, therefore you
should open the SCSI adapter device driver to communicate with the device.
Please see Kernel Extentions and Device Support Programming Concepts for
the section on the SCSI subsystem.

ddclose processing is performed by the device to release the resource. If the
device is attached to the SCSI bus you should refer to Kernel Extentions and
Device Support Programming Concepts in the SCSI Subsystem section for
details.

5.1.1.3 ddstrategy Entry Point
The I/O requests to the physical device are accomplished through the strategy
routine. The strategy routine provides a 'Strategy' for mapping I/O requests to
the device so that it minimizes requests to the device and maximizes data
transfer. When the strategy routine (ddstrategy device driver entry point) is
invoked, a pOinter to a buffer header or a chain of buffer headers specifies the
request for device I/O. The strategy entry point is invoked in a user process
context when the buffer cache does not contain the buffer requested by the
user. The strategy routine however does not know or care about the user
process.

The buffer header contains the following information:

• The major and the minor number of the device

• The description of the memory buffer to be used for the data transfer

• The direction of the transfer

• The transfer count

• The block number on the device for which the transfer is targeted

• The operation flag

The strategy routine returns to the caller as soon as the buffer headers are
queued to the appropriate device queue. Note that the strategy routine
provides no return code to the caller and never waits for the I/O completion
before returning. This means that all requests are assumed valid in terms of
parameters and that the request is asynchronous. Normal errors are caught
such as out of range blocks but not returned directly as a return code.

Chapter 5. Blocdd view 5-3

The execution of the request completes som'e time later. Again, the buf struct
contains fields for reporting the completion of the request.

busych

-........ free chain

lodone

devno

block nurn

data addr

size

error

resid

work area

extension

buf structure

Chain of but structures In use

Chain of available buf structures

The buf structure

Figure 5-2. The mbuf structure

5-4

A buf header contains all the information required to perform block I/O. The buf
structure is shown in Figure 5-2 It is the primary interface to the bottom half of
block device drivers. In AIX version 3, the traditional strategy interface is
extended as follows:

1. The device driver strategy routine is called with a list of buf structures,
chained using the av_forw pointer. The last entry in this list has a NULL
av_forw pointer.

2. When the operation is completed, and the driver calls iodone, the b_iodone
function defined by the caller is scheduled to run as a software interrupt
handler.

The buf struct and its associated data page must be pinned before calling
the strategy routine. This is by definition in the < sys/buf.h > include file.

The buf stucture contains the operation to be performed and status
information to be returned to the caller and is more like a message
exchanged between requestor and service provider.

The caller is notified of I/O completion (or of an error associated with the
request) by the device driver's call to iodone kernel sevices. A residual
count of the number of bytes requested but not tranfered by the operation is
placed in the b_resid field of the buf structure by the device driver before
the I/O is marked as complete for the buffer header. If all the requested
bytes are transfered then this count will be set to O.

5.1.1.4 Reordering Block 1/0 Requests
Multiple I/O request can also be presented to the strategy routine, where the
additional buffer headers may be chained to the first by using the av_Iorw
pointers. While the device strategy routine is free to rearrange the buffers on
it's device queue with respect to the processing of single request, the ordering
of the buffer headers provided in a chain to the strategy routine cannot be
modified. The strategy routine also determine if the block number requested is
valid for the device. In the case of a read only operation, a block number at the
end-of-media is not considered as an error, but no data is transfered. For a
write operation, if the block number is at the end-of-media, it is considered as
an error and the B_ERROR flag in the buf structure should be set, and the
b_error field should also contain the ENXIO value.

5.1.1.5 Categorizing Requests To The Start 1/0 Routine
To maintain the state of the device and it's I/O requests, the device driver will
typically allocate a private data structure in the system memory associated with
the device. The data structure contains device status along with the device
error information and the device queue pOinters. Some device drivers will
maintain more than one queue of buffer headers, for example, one queue for
the requests that are waiting for I/O start and another queue for the request
that are currently in process.

For SCSI, the queueing process scans the pending queue for the requested
device so that the number of SCSI operations is minimized. The requests will
be grouped by one of the following rules:

1. Contiguous write operations

2. Operations larger than maximum transfer size

3. Operations requiring special processing

The coalesced (grouped) requests will be removed from the pending queue and
placed in the inyrogress queue so that a single command may be built to
satisfy the requests. These requests are then queued and the start I/O routine
is called.

5.1.1.6 Starting Processing With The Start 1/0 Routine
The start 1/0 routine checks to make sure that the device is not busy, and then
scans the request queues in an attempt to find an operation to start. First the
command stack is checked to see if a command needs to be restarted, and
then the inyrogress queue is checked to start any operations that have already
been coalesced. Finally, the pending queue is checked. If it is not empty, the
coalesce routine is called to group the operations into the inyrogress queue.
When a request has been found and built, the adapter device driver is called
via the strategy routine in order to begin processing of the operation. While the

Chapter 5. Blocdd view 5-5

queues are being scanned and an operation is in progress, the device busy flag
is set. It is then reset if no request is found.

Once the I/O handling routine has completed an I/O transfer it calls the iodone
routine that determines if the indicated operation has completed successfully or
if it has failed. If the operation was successful and complete, then the next
request is processed via the start I/O routine. If the operation has failed. your
general failure processing routine is called in an attempt to clear the error
(retry. etc).

5.1.1.7 dddump Entry Point
The dddump entry point is supplied by a block device driver if it is to be
capable of supporting system dumps. It is invoked by devdump. (See "System
Dump" on page 9-1 for information on supporting the system dump.) The
dddump routine provides a return code to devdump. See "dddump Device
Driver Entry Point" on page 4-52 for information on the dddump entry point.

5.1.1.8 ddloctl Entry Point
In addition to supplying statistical information about the device, the ioctl can be
used for a block device to control operations of the device. However, when the
strategy routine is invoked. it should not be depe.ndent upon any ioctl
operations.

5.1.2 Character Access to Block Device Drivers
As previously mentioned. character access to block device drivers is known as
raw 110. While a character device driver can only be accessed by a character
special file. most block device drivers provide both a block and a character
special file. This dual interface supports a user being able to access the device
in either block or character mode. Note that the block device driver must have
a read and a write entry point as well as a strategy entry point if it is to support
both character and block mode access. (If only block mode is supported, only a
stategy entry point need be supported.)

Examples of the duality provided by a block device drivers are the diskette or
the hard-disk device drivers. The diskette is accessed by /dev/fdO for block
mode and by /dev/rfdO for raw mode. The hard disk is accessed by /dev/hdiskO
for block mode and /dev/rhdiskO for raw mode.

5.1.2.1 Raw 110 Processing

5-6

The raw I/O processing is a mechanism by which a block device driver has the
ability to transfer data without using the I/O buffer cache. Instead the raw I/O
request is converted into a block and then sent to the the device driver strategy
entry point to be processed while the read and the write routines are typically
waiting for the I/O completion.

When your device driver is configured it will contain entries for both read/write
(raw access) and strategy (block access). In addition, the configuration entry
point must set up the /dev entries for both. (See "ddconfig Entry Point" on
page 5-2.)

If there is no buffer cache and the user is making the request directly then a
different buffering facility is involved. Namely. the user is providing a buffer
passed in through the uio services. Therefore the read and write entry points
are talking to a user process and translating the requests into strategy requests

but still using buf.h. Because the buf.h structure is a header that contains a
pointer to the data area it can be mapped to point to a user data area.

In fact, the user buffer could come out of user data, text segments, shared
memory segments or the system segment. The different areas are defined in
the uio structure through the iovecs.

The read/write routines of the raw device driver use the uphysio services to
map the uio areas into buf structs used by the strategy routines. This is
discussed in Understanding Raw I/O Support in Kernel Extensions and
Concepts.

5.1.3 Block 1/0 Device Device Summary
A block I/O device contains a device name for it's block device and it's optional
character device. Block devices support strategy and read and write routines.
mkfs and fsck use the read and write interfaces to perform maintenance on the
device while the AIX file system, and virtual memory management work
together to provide the traditional Unix Kernel cache.

The kernel cache speeds up access to data by allowing mulitple processes to
use the same data and keeping data that is referenced often in the cache.
However the cache is based on buffer sizes compatible with Unix file system
block sizes and is not efficient for applications that may want to use larger
block sizes. To help performance a block device driver should also provide raw
access or character access to block devices.

More information ---------------------.....,

For more information on block device drivers and block I/O kernel services,
please refer to the Kernel Extensions and Device Support Programming
Concepts manual.

Chapter 5. Blocdd view 5-7

5-8

Chapter 6. Device Drivers Configuration

6.1 Introduction
Unlike classic Unix device drivers, in AIX Version 3, device drivers are
dynamically loaded either at or after system boot time. They are not statically
linked into the kernel on disk. This eliminates a great deal of administrative
overhead associated with maintaining the AIX kernel, and makes the system
simpler to administer and extend. However, it does add to the complexity of
the device driver and associated routines.

At system boot time AIX automatically examines the configuration of the system
and loads the appropriate device drivers. It also resolves conflicts between
various adapters (for I/O port addresses, IRQ levels, etc.). This is called the
AIX device configuration subsystem and it performs a variety of functions:

• It scans the Micro Channel bus to determine the two-byte unique POS code
for the adapter in each slot.

• It examines the OOM database to determine the characteristics of these
adapters.

• It assigns resources (IRQ levels, buffer addresses, DMA levels, I/O port
addresses) to each adapter to avoid conflicts.

• It calls the configuration method for each device to be configured; this loads
and initializes the device driver. Every device must have a configuration
method. This will be described later in this chapter.

In the AIX device configuration subsystem, the term device has a wider range of
meaning than it does in traditional Unix systems.

In both AIX and Unix systems, the term "device" refers to hardware components
such as disk drives, tape drives, printers, and keyboards. Pseudo-devices, such
as the console, error, and the null special file, are also included. For AIX, all of
these devices are referred to as the kernel devices, that is, the devices with
device drivers and known to the system by major and minor numbers.

However, in the AIX operating system, hardware components such as buses,
adapters, and even enclosures (including racks, drawers, and expansion boxes)
are also considered devices (Figure 6-3 on page 6-9 shows an example of
connections and dependencies between these components).

Note that the system cannot use any device unless it is configured.

6.1.1 General Structure of the Device Configuration Subsystem

© Copyright I BM Corp. 1991

The Device Configuration Subsystem can be viewed from three different
administration levels: the High Level Administration Perspective, the Device
Method Level, and the Low Level Perspective (Figure 6-1 on page 6-2 illustrates
the general structure of the configuration subsystem).

6-1

Boot SMIT/Shell Runtime

....---- cfgmgr -----'

Config. Mgr. Ffighlevelconunands

Device Methods -

Low Level Conunands
and library routines

LJ
-
-

Configuration
Database (ODM) -~-------------------------~

EXAMPLES

mkdev
rmdev
chdev

.... lsdev

Defme
Configure
Change
Unconfigure
Undefme
Start
Stop

loadext
genmajor
genminor
inknod
restbase

Config_Rules
Predefmed
Customized

Figure 6-1. Structure of the Configuration Subsytem

6.1.1.1 High Level Perspective

6-2

From a high level, user-oriented perspective, four basic tasks comprise device
configuration:

1. Adding a device to the system. (mkdev)

2. Deleting a device from the system. (rmdev)

3. Changing the attributes of a device. (chdev)

4. Showing information about a device. (lsdev)

A set of high level commands accomplish these tasks during run time: mkdev,
rmdev, chdev, and Isdev. (see "The Run Time Configuration Commands" on
page A-3 for a description of mkdev, chdev, and rmdev).

The Configuration database stores all information relevant to support the device
configuration process. It has two components: the Predefined Database (PdDv)
and the Customized Database (CuDv). The Predefined database contains
configuration data for all devices that could possibly be supported by the
system. The Customized database contains configuration data for the devices
actually defined and configured in that particular system.

The Configuration Manager (cfgmgr) supervises the configuration of a system's
devices when the system is booted (or at run time).

6.1.1.2 Device Method Level
Beneath the high level devices commands or the Configuration Manager is a
set of functions called device methods. These methods perform well-defined
configuration steps, including these five functions:

1. Defining a device in the configuration database.

2. Configuring a device to make it available.

3. Changing a device to make a change in its characteristics.

4. Unconfiguring a device to make it unavailable.

5. Undefining a device from the configuration database.

Device methods also provide two optional functions for devices that need them:

1. Starting a device to take it from the Stopped state to the Available state.

2. Stopping a device to take it to the Stopped state.

Device methods are responsible for changing the state of a device in the
system. Figure 6-2 on page 6-4 illustrates all possible device states and how
the various methods affect device state changes.

Chapter 6. Device Drivers Configuration 6-3

Undefined

0
undefin emethod ~ t define method

Defined

• ~ unconfigure configure

method method

I Stopped I
H

stop start
method 0 method H

Available

Figure 6-2. Device States

6-4

Defined The device instance is represented in the Customized database, but
is not configured and not available for use in the system.

Available Configured and available for use by the user.

Undefined The device instance is not represented in the Customized database.

Stopped Configured, but not available for use by applications (optional state).

The define method is responsible for creating the device instance in the
Customized database and setting the state to defined. The configure method
performs all operations necessary to make the device usable and then sets the
state to available.

The change method usually does not change the state of the device. If the
device is in the defined state, the change method applies all changes to the
database and leaves the device defined. If the device is available, the change
method attempts to apply the changes to both the database and the actual
device and again leave the device in the same state. However, if an error
occurs when applying the changes to the actual device, the change method may
need to unconfigure the device, thus changing the state to defined.

The unconfigure method must perform the operations necessary to make the
device no longer usable. Basically, this is to undo the operations performed by
the configure method. It will set the device state to defined. Finally, the
undefine method actually deletes all information for a device instance from the
Customized database, thus reverting the instance to the undefined state.

The stopped state is an optional state that some devices may need to use. A
device that supports this state needs start and stop methods. The stop method
changes the state from available to stopped. The start method changes it from
stopped back to available.

Both the high level device commands and the Configuration Manager can use
the device methods. These methods are implemented to insulate higher level
configuration programs from kernel-specific, hardware-specific, and
device-specific configuration steps.

6.1.1.3 Low Level Perspective
Beneath the device methods is a set of low level device configuration
commands and library routines that can be directly called by device methods
as well as by higher level configuration programs. Examples of these
commands are defdev, udefdev, cfgdev, ucfgdev, chgdev, sttdev and stpfdev. In
these commands, the dey is the name or your hardware device. These low level
commands are usually put in /etc/methods. The device driver programmer
writes these methods. They are described in more detail in "Writing Device
Methods" on page 6-14.

6.1.2 Device Configuration Database Overview
The Configuration database is an object-oriented database. The Object Data
Manager (ODM) provides facilities for accessing and manipulating it. The sets
of objects, or object classes, contain different pieces of configuration
information about the AIX system. The names of the different object classes
are found in the /etc/objrepos directory. Although there are many different
object classes, we will only be concerned with classes that deal with
predefining, customizing and establishing configuration rules for the hardware
device.

MORE INFORMATION --------------------.

For a more extensive description of those object classes please see "ODM
Object Classes" on page B-1.

Class Name Definition

PdDv Predefined Devices. This class contains an entry for each piece of
hardware that could exist in the AIX system. Each entry contains
information such as:

• The POS-ID of the adapter

• The name of the adapter

• The code to flash in the machine LEDs as this adapter is being
configured

• The name of the configuration method for this adapter.

PdAt Predefined Attributes. This class contains specific information about
each attribute of each device that could exist in the system. If an
adapter can run at three different interrupt levels, for example, then
the adapter will have an entry in the PdAt class specifying what
those three levels are. Some attributes which might be defined are:

Chapter 6. Device Drivers Configuration 6-5

6-6

bus_addr _start
Address where this adapter's I/O ports will start. The
number of ports is also specified.

bus_mem_start
Address where this adapter's memory will reside. The
size (length) of the memory is also specified.

intJevel The IRQ level(s) on which this adapter can generate
interrupts.

PdCn Predefined Connections. This class contains connection information
for intermediate devices (see "Device Classes, Subclasses, and
Types Overview" on page A-1 for an overview of the AIX
classification of the devices). This object class also includes
predefined dependency information. For each connection location,
there are one or more objects describing the subclasses of devices
that can be connected. This information is useful, for example, in
verifying whether a device instance to be defined and configured can
be connected to a given device.

CuDv Configured Devices. The boot process creates this class when the
system is started. It contains information about the devices that are
actually present in the system at this time.

CuAt Configured Attributes. The boot process creates this class when the
system is started. If the boot process selects a non-default value for
a device's parameters (I/O address, for example) the boot process
records the setting to be used here.

CuDep Customized Dependency. This class describes device instances that
depend on other device instances. Dependency does not imply a
physical connection. This object class describes the dependence
links between logical devices and physical devices, as well as
dependence links between logical devices. Physical dependencies
of one device on another device are recorded in the CuDv object
class.

CuDvDr Customized Device Driver. This class stores information about
critical resources that need concurrency management through the
use of the device configuration library routines. You should only
access this object class through these five device Configuration
Library routines: the genmajor, genminor, relmajor, reldevno, and
getminor routines.

CuVPD

These routines exclusively lock this class so that accesses to it are
serialized. The genmajor and genminor routines return the major
and minor number to the calling method. Similarly, the reldevno or
relmajor routine releases the major or minor number from this
object class.

Customized VPD. This class contains the Vital Product Data (V PO)
for customized devices. VPD can be either machine-readable VPD
or manually-entered user VPD information.

Config_Rules Configuration Rules. This class contains rules that define in
which phase of configuration each hardware device is to be added to
the system. Also included is the order in which devices are added. A
program that the Configuration Manager must execute is also
defined.

(This program is typically the configuration program for the device at
the top of the nodes. When these programs are invoked, the names
of the next lower level devices that need to be configured are
returned. The Configuration Manager configures the next lower level
devices by invoking the configuration methods for those devices. In
turn, those configuration methods return a list of to-be-configured
device names. The process is repeated until no more device names
are returned. As a result, all devices in the same node are
configured in transverse order.) The following section will explain
this in more detail.

For the configuration process to run correctly, then, each adapter in the
machine must be defined in the PdDv and PdAt classes of the ODM database.
The author of a new device driver must determine which options can be set for
the device and must cause this information to be added to the ODM database.
The PdDv and PdAt classes come preloaded with information about all devices
which AIX supports. The odmadd command can be used to add new
information to these classes; the information to be added to the database is
placed in a file whose name ends in .add, and this file is used as input by the
odmadd program.

For a device to be in the defined state, the Configuration database must contain
a complete description of it. This information includes items such as the device
driver name, the device major and minor numbers, the device method names,
the device attributes, connection information, and location information.

6.1.3 Device Configuration Procedure Overview
At system boot time, the Configuration Manager is automatically invoked to
configure all devices detected and devices whose device information is stored
in the Configuration database. At run time, you can configure a specific device
by directly invoking a shell command or by using SMIT. This is illustrated in
Figure 6-1 on page 6-2.

The system is dynamically configurable. Therefore, it needs a set of rules that
defines how to build the system. This building is done by the configuration
manager. When the configuration manager is invoked, it reads rules from the
Config_Rules object class and performs the indicated actions.

The Config_Rules object class is described in more detail in "Configuration
Rules (Config_Rules)" on page B-17.

During system boot time, the Configuration Manager is run in two phases. In
phase 1 1 it configures the base devices needed to successfully startup the
system. These devices include the root volume group, which permits the
Configuration database to be read in from the root file system.

In phase 2 2 the Configuration Manager configures the remaining devices using
the Configuration database from the root file system. During this phase,

1 In Phase 1 the Configuration Manager is called as N cfgmgr _fN

2 In Phase 2 the Configuration Manager is called as Ncfgmgr _SN

Chapter 6. Device Drivers Configuration 6-7

6-8

different rules are used depending on the key switch position on the front panel.
If the key position is in service position, the rules for service mode are used.
Otherwise, the normal startup (phase 2) rules are used.

When invoked during run time, the Configuration Manager only uses the phase
2 rules.

Devices in the system are organized in clusters of tree structures known as
nodes (Figure 6-3 on page 6-9 provides an example of connections and
dependencies of devices in a system).

I
SCSI
adapter

I
Tape

I

Disk

I
Token-Ring
adapter

TR-IF

TCP/IP

system

system

planar

I/O planar

I bus

I

tty

I
printer

RS232
adapter

System Node

I I
Display SIO
adapter (Standard I/O)

I
I

keyboard mouse

adapter adapter

I
display keyboard I mouse

I

HFf

Fjgure 6-3. Example of Devices Graph

Eac.h tree is a logical subsystem by itself, for example, the System node
consists of all the physical devices in the system. The top of the node is the
system device. Below the bus are the adapters, which are connected to the
bus. The bottom of the hierarchy contains the devices to which no other devices
are connected. Most of the pseudo-devices, including HFT and pty, are
organized as separate tree structures or nodes.

Chapter 6. Device Drivers Configuration 6-9

Each rule in the Config_Rules object class specifies a program name that the
Configuration Manager must execute.

HOW TO LOOK AT Config_Rules ----------------,

To see the Config_Rules object class you need to use the OOM editor. This
is done by issuing the "odme Config_Rules" command. The OOM editor is
menu driven. Use the cursor keys so that the "Retrieve/Edit objects"
selection is highlighted. Press Enter and the rules are displayed. Press PF3
twice to exit back to an AIX prompt.

The Configuration Manager invokes the programs in the order specified by the
sequence value in the rule. In general, the lower the sequence number within
a given phase, the higher the priority 3. These programs are typically the
configuration programs for the top of the nodes. In invoking these programs,
the names of the next lower level devices that need to be configured are
returned. This is shown below.

phase
1
1
2
2
2
2
2
2
3
3
3
3
3

sequence
1
2
5
10
15
20
25
30
5
10
15
20
25

rule
/etc/methods/defsys
/etc/methods/deflvm
/bin/sysdumpdev -q
/etc/methods/defsys
/etc/methods/ptynode
/etc/methods/starthft
/etc/methods/starttty
/etc/rc.net -2
/bin/sysdumpdev -q
/etc/methods/defsys
/etc/methods/ptynode
/etc/methods/starthft
/etc/methods/starttty

The Configuration Manager begins by invoking a Node Configuration program
listed in one of the rules. The Node Configuration program is responsible for
starting the configuration process for a node. It does this by querying the
Custom.ized database to see if the device at the top of the node is represented
in the database. If so, the program writes the logical name of the device to the
stdout file and then returns to the Configuration Manager.

The Configuration Manager intercepts the Node Configuration program's stdout
file to obtain the names of the devices that were written. It then invokes the
configure method for those devices. The device's configure method performs
the steps necessary to make the device available. If the device is not an
intermediate one, the configure method simply returns to the Configuration
Manager. However, if the device is an intermediate device that has child
devices, the configure method must determine whether any of the children need
to be configured. If so, the configure method writes the names of all the child
devices to be configured to the stdout file and then returns to the Configuration
Manager.

3 Except for zero, which indicates a don't care condition. Any rule with a sequence number of zero is executed
last.

6-10

The Configuration Manager intercepts the configure method's stdout file to
retrieve the names of the children. It then invokes, one at a time, the configure
methods for each child device. Each of these configure methods operate as
described for the parent device. For example, they might simply exit when
complete, or write to their stdout file a list of additional device names to be
configured and then exit. The Configuration Manager will continue to intercept
the device names written to the stdout file and to invoke the configure methods
for those devices until the configure methods for all the devices have been run
and no more names are written to the stdout file.

When a specific device is defined through its define method, the information
from the Predefined database for that type of device is used to create the
information describing the specific device instance. This specific device
instance information is then stored in the Customized database.

The process of configuring a device is often highly device-specific. The
configure method for a kernel device needs to:

• Load the device's driver into the kernel

• Pass the Device-Dependent Structure (DDS) describing the device instance
to the driver

• Create a special file for the device in the /dev directory.

Of course, many devices do not have device drivers. For this type of device the
configured state is not as meaningful. However, it still has a configure method
that simply marks the device as configured.

QUICK CONFIGURATION SUMMARY --------------,

The following is a quick summary of the configuration process:

• Phase 1 configuration only runs at boot time and it configures base
devices and logical volume groups.

• Phase 2 configuration runs at boot time and also on demand from the
SMIT menus (via the cfgmgr command).

• All configuration phases read the rules in the Config_Rules object class
of the ODM database.

• Config_Rules object class defines nodes. The system node as shown in
Figure 6-3 on page 6-9 is configured in phase 1 when the Configuration
Manager executes the /etc/methods/defsys rule.

• All undetectable devices, i.e. pseudo-devices (pty and HFT) must have a
node configuration program so that they can be configured.

• The Configuration Manager calls the config methods of all the devices
listed in the node entry of the Config_Rules.

• All devices that have children (i.e. intermediate devices) write their
children's names (if they are to be configured) to stdout.

• The Configuration Manager calls the configuration method for all device
names that have been written to stdout.

Chapter 6. Device Drivers Configuration 6-11

The following figure summarizes how your device would get configured at boot
time (assuming you have an entry in the Config_Rules object class of the OOM
database).

If your device has a parent:

Config _mgr using rules from the
ConfiLRules object class calls a
/etc/methods/nodeconfiguration program

which calls ...

derme method of
some node

writes child device out to
stdout which confi&...mgr

'---~-----"" intercepts ...

and calls ...

derme method of
some other node
(your parent node
in this example)

~----------~--~

writes child device out to
stdout which confi&...mgr
intercepts ..•

If your device does not have a parent

Config _mgr using rules from the
Confi&...Rules object class calls a
/etc/methods/yournodeconfiguration program

define method of
your node

and calls ...

derme method of
your node

Figure 6-4. How cfgmgr Executes Config_Rules

6-12

6.2 Configuring an Unsupported Device to the System
To configure a currently unsupported device to your system, you need to:

• Modify the ODM database

• Write appropriate device methods.

6.2.1 Modifying the Predefined Database
To add a device to your system, you must modify the Predefined database. To
do this, you must add information about your device to three Predefined object
classes:

• Predefined Devices (PdDv) object class

• Predefined Attribute (PdAt) object class

• Predefined Connection (PdCn) object class.

To describe the device, you must add one object to the PdDv object class to
indicate the class, subclass, and device type (see "Device Classes, Subclasses,
and Types Overview" on page A-1). You must also add one object to the PdAt
object class for each device attribute, such as interrupt level or block size.
Finally, you must add objects to the PdCn object class if the device is an
intermediate device. (An intermediate device is a device like a SCSI adapter
that is used to run other "children" devices like disks and tapes.) If the device is
an intermediate device, you must add an object for each different connection
location on the intermediate device.

You can use the odmadd ODM (Object Data Manager) command from the
command line or in a shell script to populate the necessary Predefined object
classes from stanza files.

See "ODM Stanzas (ric.add)" on page 8-22 for the stanzas necessary to
populate the ODM database to support the character device driver used an
example in "Overview of a Character Device Driver" on page 4-1.

6.2.1.1 Accessing Device Attributes
The predefined device attributes for each type of predefined device are stored
in the PdAt object class. The objects in the PdAt object class identify the
default values as well as other possible values for each attribute. The CuAt
object class contains only attributes for customized device instances that have
been changed from their default values.

When a customized device instance is created by a define method, its attributes
assume the default values. As a result, no objects are added to the CuAt object
class for the device. If an attribute for the device is changed from the default
value by the change method, an object to describe the attribute's current value
will be added to the CuAt object class for the attribute. If the attribute is
subsequently changed back to the default value, the change method deletes the
CuAt object for the attribute.

Any device methods that need the current attribute values for a device must
access both the PdAt and CuAt object classes. If an attribute appears in the
CuAt object class, then the associated object identifies the current value.

Chapter 6. Device Drivers Configuration 6-13

Otherwise, the default value from the PdAt attribute object identifies the current
value.

6.2.1.2 Modifying an Attribute Value
When modifying an attribute value, your methods must also obtain the objects
for that attribute from both the PdAt and CuAt object classes.

Here are four scenarios that your methods must be able to handle:

1. If the new value differs from the default value and no object currently exists
in the CuAt object class, your method must add an object into the CuAt
object class to identify the new value.

2. If the new value differs from the default value and an object already exists
in the CuAt object class, your method must update the CuAt object with the
new value.

3. If the new value is the same as the default value and an object exists in the
CuAt object class, your method must delete the CuAt object for the
attribute.

4. If the new value is the same as the default value and no object exists in the
CuAt object class, your method does not need to do anything.

NOTE --~

Your methods can use the getattr and putattr subroutines to g-et and modify
attributes.

The getattr subroutine checks both .the PdAt and CuAt object classes before
returning an attribute to you. It always returns the information in the form of
a CuAt object even if returning the default value from the PdAt object class.

The putattr routine is used to modify attribute.s and it correctly handles the
four cases that are described above. See the softcopy publications for more
details.

6.2.2 Writing Device Methods

6-14

You will obviously have to write some device methods for your device.
Because AIX is dynamically configurable, these methods are necessary in order
to use your devices. By convention, these methods are put in /etc/methods.

Your device can have all of the following device methods:

Method

define method

undefine method

configure method

unconfigure method

change method

stop method

Purpose

Make device ready for configuration.

Remove device.

Put device in ready to use state.

Remove device from ready to use state.

Alter device parameters.

Stop device from being used by users so that
diagnostics may be run on it.

start method Allow users to use the device again.

It is helpful to see how these device methods actually get called. Please see
Figure 6-5 on page 6-16 for information on how the high and low level
commands may be used to invoke the various device methods.

Chapter 6. Device Drivers Configuration 6-15

How device methods get called During Runtime

mOH LEVEL COm1AND METHOD(S) CALLED

mkdev --------------~ .. ~ define method

mkdev .. define method
change method

mkdev .. define method
change method
config method

mkdev .. config method

chdev . -------... ~ change method

rmdev .. undefine method
unconfig method

-or-
unconfig method
undefine method

cfgmgr .. define method
config method

LOW LEVEL COm1AND

defdev
udefdev
ucfgdev
cfgdev
chgdev
sttdev
stpdev

-----------....... derme method
-------------....... undefine method

.. unconfig method
-----------....... config niethod
----------....... change method
-------.... ~ start device
---------....... stop device

Figure 6-5. How Device Methods Get Invoked

6-16

ACTION PERFORMED

derme device

derme device with
different attributes

derme device and
configure with
different attributes

configure previously
dermed device

change attruibutes
on device

remove device

define and configure
all detectable devices
not configured at
boot time

6.2.2.1 Getting Some Help
So far, the reader might think that to add support for a new device driver, he
will have to write five or seven different methods (if you need start/stop
methods).

Most of the time, this is not true. First, very often, you don't need a change
method. Second, for the define, undefine, and unconfigure methods, as well as
for the change method, you can try to use the generic methods provided in
/ etc/ methods:

• chggen

• undefine

• ucfgdevice

• define.

It is only when these fail that you will have to write such methods. And in that
case, you should use the sample methods provided in /usrl/pp/bos/samp/es as
a starting point. All you have to do then is to make them work for your device!

CAUTION --~

The generic methods that are found in /usr/lpp/bos/samples (chggen,
undefine, ucfgdevice and define) may work now, but may be changed by
IBM in subsequent releases of AIX. IBM does not support this as an official
programming interface. Therefore, if you are writing a device driver for real
customers, do NOT use these generic methods.

Concerning the configuration method, you always need one, and you always
need to write it yourself. Of course some examples are provided in
/usrl/pp/bos/sampJes. Another source of information is "Adapter Configuration
Method (cfgrica.c)" on page B-28 and "Ric Port Configuration Method
(cfgricp.c)" on page B-37, which are the configuration methods, respectively for
the Real Time Interface Co-Processor Portmaster adapter, and for a port on the
adapter.

NOTE --,

The following sections describe various device methods. The syntax
specifies the options that your device method may be expected to handle.
Note that the "dev" should be replaced by your device name. For example,
we would use "ric" for the "Real time Interface Controller" adapter.
Therefore, "defric" would be the name of our define method for this adapter.

6.2.2.2 Writing a Define Method

1. Syntax

defdev -c class -s subclass -t type [-p parent -w connection] [-I name]
(where "dev" is the name of your device)

Chapter 6. Device Drivers Configuration 6-17

6-18

-c class

-s subclass

-t type

-p parent

Specifies the class of the device being defined. Class, subclass,
and type are required to identify the Predefined Device object in
the PdDv object class for which a customized device instance is
to be created.

Specifies the subclass of the device being defined. Class,
subclass, and type are required to identify the Predefined
Device object in the PdDv object class for which a customized
device instance is to be created.

Specifies the type of the device being defined. Class, subclass,
and type are required to identify the predefined device object in
the PdDv object class for which a customized device instance is
to be created.

Specifies the logical name of the parent device. This logical
name is required for devices that connect to a parent device.
This option does not apply to devices that do not have parents
for example, most pseudo-devices.

-w connection Specifies where the device connects to the parent. This op~ion
applies only to devices that connect to a parent device.

-I name

2. Description

This option is passed in by the mkdev command if the user
invoking the command is defining a new device and wants to
select the name for the device. The define method assigns this
name as the logical name of the device in the CuDv object, if the
name is not already in use. If this option is not specified, the
define method generates a name for the device. Not all devices
support or need to support this option.

The define method is responsible for creating a customized device instance of a
device in the Customized database. It does this by adding an object for the
device into the CuDv object class. The define method is invoked either by the
mkdev configuration command, by a node configuration program, or by the
configure method of a device that is detecting and defining child devices.

By convention, the first three characters of the name of the define method
should be def. The remainder of the name can be any characters that identify
the device or group of devices that use the method, subject to AIX file name
restrictions.

The define method uses information supplied as input, as well as information in
the Predefined database, for filling in the CuDv object. If the method is written
to support a single device, it can ignore the class, subclass, and type options.
In contrast, if the method supports multiple devices, it may need to use these
options to obtain the PdDv device object for the type of device being
customized.

3. Guidelines

The following list of tasks is meant to serve as a guideline for writing a define
method. In writing a method for a specific device, you may be able to leave out
some of the tasks. For instance, if your device does not have a parent, there is
no need to include all of the parent and connection validation tasks. You may
also find that your device has special needs that are not listed in these tasks.

Your define method must:

1. Validate input parameters.

2. Initialize the ODM.

3. Retrieve the predefined PdDv object for the type of device being defined.

4. Ensure that the parent device exists.

5. Validate that the device being defined can be connected to the specified
parent device.

6. Assign a logical name to the device.

7. Determine the device's location code.

S. Create the new CuDv object.

9. Write the name of the device to standard output.

10. Ensure all object classes are closed and terminate the ODM.

Validate the Input Parameters

The define method should ensure that all of the options it requires have been
supplied to it. For example, if the define method expects parent and connection
options for the device being defined, it should ensure that the options are
indeed supplied. Also, a define method that does not support the -I name
specification option may want to exit with an error if the option is supplied.

Initialize the ODM

You should initialize the ODM using the odm_initialize subroutine and lock the
Configuration database using the odmJock subroutine. The following code
fragment illustrates this process:

:/Ii ncl ude <cf. h>

if (odm_initialize() < 0)
exit(E_ODMINIT); /* initialization failed */

if (odm_lock(l/etc/objrepos/config_'ock",0) == -1)
odm_terminate();
exit(E_ODMLOCK); /* database lock failed */
}

Retrieve the Predefined PdDv Object for the Type of Device Being Defined

This is done by obtaining the object from the PdDv object class whose Class,
Subclass, and Type descriptors match the class, subclass, and type options
supplied to the define method. If no match is found, the define method should
exit with an error. Information will be taken from the PdDv device object in
order to create the CuDv device object.

Ensure That the Parent Device Exists: If the device being defined connects to a
parent device and the name of the parent has been supplied, the define method
must ensure that the specified device actually exists. It does this by retrieving
the CuDv object whose Device Name descriptor matches the name of the
parent device supplied using the -p flag. If no match is found, the define
method should exit with an error.

Chapter 6. Device Drivers Configuration 6-19

6-20

Validate That the Device Being Defined Can Be Connected to the Specified
Parent Device

If the device has a parent and that parent device exists in the CuDv object
class, you must next validate that the device being defined can be connected to
the specified parent device. To do this, retrieve the predefined connection
object from the PdCn object class whose UniqueType, Connection Key, and
Connection Location descriptors match the Link to Predefined Devices Object
Class descriptor of the parent's CuDv object obtained in the previous step and
the subclass and connection options input into the define method, respectively.
If no match is found, an invalid connection has been specified. This may be
because the specified parent is not an intermediate device, does not accept the
type of device being defined (as described by subclass), or does not have the
connection location identified by the connection option.

Assign a Logical Name to the Device

Each newly assigned logical name must be unique to the system. If a name
has been supplied using the ·1 flag, you must make sure it is unique before
assigning it to the device. This is done by checking the CuDv object class for
any object whose Device Name descriptor matches the desired name. If a
match is found, the name is already used and the define method must exit with
an error.

If the define method is to generate a name, it can do so by obtaining the prefix
name from the Prefix Name descriptor of the device's PdDv device object and
invoking the genseq subroutine to obtain a unique sequence number for this
prefix. By appending the sequence number to the prefix name, a unique name
results. The genseq routine looks in the CuDv object class to ensure that it
assigns a sequence number that has not been used with the specified prefix to
form a device name.

In some cases, a define method may need to ensure that only one device of a
particular type has been defined. For example, there can only be one PTY
device customized in the CuDv object class. The PTY define method does this
by querying the CuDv object class to see if a device by the name ptyO exists. If
it does, the PTY device has already been defined. Otherwise, the define
method proceeds to define the PTY device using the name ptyO.

Determine the Device's Location Code

If the device being defined is a physical device, it has a location code (see
"Devices Location Codes" on page A-3 for more information about location
codes).

Create the New CuDv Object.

Set the CuDv descriptors as follows:

device name
Use the name as determined above.

device status flag
Set to the Defined state.

change status flag
Set to the same value as that found in the Change Status Flag
descriptor in the device's PdDv object.

device driver instance
Typically set to the same value as the Device Driver Name
descriptor in the device's PdDv object. It may be used later by the
configure method.

device location code
Set to a null string if the device does not have a location code.
Otherwise, set it to the value computed.

parent device logical name
Set to a null string if the device does not have a parent. Otherwise
set it to the parent name as specified by the parent option.

location where connected on parent device
Set to a null string if the device does not have a parent. Otherwise,
set it to the value specified by the connection option.

link to predefined devices object class
Set to the value obtained from the Unique Type descriptor of the
device's PdDv object.

Write the Name of the Device to Standard Output: A blank should be appended
to the device name to serve as a separator in case other methods write device
names to standard output. Either the mkdev command or the configure method
that invoked the define method will intercept standard output to obtain the
device name assigned to the device.

Ensure That All Object Classes Are Closed and Terminate the ODM

Exit with an exit code of zero if there were no errors.

6.2.2.3 Writing an Undefine Method

1. Syntax

udefdev ·1 name
(where "dev is the name of your device)

·1 name Identifies the logical name of the device to be undefined.

2. Description

The undefine method is responsible for deleting a Defined device from the
Customized database. Once a device is deleted, it cannot be configured until it
is once again defined by the define method.

The undefine method is also responsible for .releasing the major and minor
number assignments for the device instance and deleting the device's special
files from the /dev directory. If minor-number assignments are registered with
the genminor subroutine, the undefine method can release the major and

Chapter 6. Device Drivers Configuration 6-21

6-22

minor number assignments and delete the special files by simply calling the
reldevno subroutine.

By convention, the first four characters of the name of the undefine method are
to be udef. The remainder of the name can be any characters, subject to AIX
file-name restrictions, that identify the device or group of devices that use the
method.

3. Guidelines

The following list of tasks is meant to serve as a guideline for writing an
undefine method. You may find that your device has special needs that are not
listed in these tasks.

Your undefine method must:

1. Validate the input parameters. The·1 flag must be supplied to identify the
device that is to be undefined.

2. Initialize the ODM using the odmJnitialize subroutine and lock the
configuration database using the odm_lock subroutine.

3. Retrieve the CuDv object for the device to be unconfigured. This is done by
getting the CuDv object whose Device Name descriptor matches the name
supplied with the·1 flag. If no object is found with the specified name, exit
with an error.

4. Check the device's current state. If the Device Status descriptor indicates
that the device is not in the Defined state, then it is not ready to be
undefined. If this is the case, exit with an error.

5. Check for any child devices. This check is accomplished by querying the
CuDv object class for any objects whose Parent Device Logical Name
descriptor matches this device's name. If the device has any children at all,
regardless of the states they are in, the undefine method must fail. All
children must be undefined before the parent can be undefined.

6. Check to see if this device is listed as a dependency of another device.
This is done by querying the CuDep object class for objects whose
Dependency descriptor matches this device's logical name. If a match is
found, exit with an error. A device may not be undefined if it has been
listed as a dependency by another device (see "Device Dependencies and
Child Devices" on page A-1 for more information about device
dependencies).

7. If no errors have been encountered, the method can begin deleting
customized "information. First, delete the special files from the Idev
directory. Next, delete all minor number assignments. If the last minor
number has been deleted for a particular major number, release the major
number as well, using the relmajor subroutine. The undefine method
should never delete objects from the CuDvDr object class directly, but
should always use the routines provided. If the minor-number assignments
are registered with the genminor subroutine, all of the above can be
accomplished by the reldevno subroutine.

8. Delete all attributes for the device from the CuAt object class. Simply
delete all CuAt objects whose Device Name descriptor matches this
device's logical name. It is not an error if the ODM routines used to delete
the attributes indicate that no objects were deleted. This simply indicates

that the device has no attributes that had been changed from the default
values.

9. Delete the CuDv object for the device.

10. Make sure all object classes are closed and terminate the OOM via the
odm_terminate call. Exit with an exit code of zero if there are no errors.

6.2.2.4 Writing a Configure Method

1. Syntax

cfgdev -I name [-1 I -2]
(where "dev" is the name of your device)

-I name Identifies the logical name of the device to be configured.

-1 Specifies that the device will be configured in phase 1 of system boot.
This -1 option cannot be specified along with the -2 option. If neither
the -1 nor the -2 options are specified, the configure method is invoked
at run time.

-2 Specifies that the device will be configured in phase 2 of system boot.
This -2 option cannot be specified along with the -1 option. If neither
the -1 nor the -2 options are specified, the configure method is invoked
at run time.

The options specifying the phase of system boot can be used to limit certain
functions to specific phases.

2. Description

The configure method is responsible for configuring a device, that is, making it
available for use in the system. It changes a device's state from Defined to
Available. If the device has a device driver, the configure method is
responsible for loading the device driver into the kernel and describing the
device characteristics to the driver. For an intermediate device (for example, a
SCSI bus adapter), this method also determines which attached children are to
be configured and writes their logical names to standard output.

The configure method is invoked by either the mkdev configuration command or
by the Configuration Manager. Because the Configuration Manager runs a
second time in phase 2 system boot, and can also be invoked repeatedly at
runtime, a device's configure method can be invoked to configure an already
available device. This is not an error condition. In the case of an intermediate
device, the configure method should check again for the presence of child
devices. If the device is not an intermediate device, the method simply returns.

By convention, the first three characters of the name of the configure method
should be cfg. The remainder of the name can be any characters, subject to
AIX file-name restrictions, that identify the device or group of devices that use
the method.

In general, the configure method obtains all the information it needs about the
device from the Configuration database (made up of the CuOv, CuOvDr, CuAt,
Cu ... object classes).

Chapter 6. Device Drivers Configuration 6-23

6-24

If the device has a parent device, the parent must be configured first. The
configure method for a device should fail if its parent is not already in the
Available state.

3. Guidelines for Writing a Configure Method

This list of tasks is meant to serve as a guideline for writing a configure
method. In writing a method for a specific device, you may be able to leave out
some of the tasks. For instance, if your device is not an intermediate device or
does not have a device driver, your method can be written accordingly. You
may also find that your device has special needs that are not listed in these
tasks.

Your configure method must:

1. Validate the input parameters. The·1 logical name option must be supplied
to identify the device that is to be configured. The·1 and ·2 options cannot
be supplied at the same time.

2. Initialize the Object Data Manager (ODM) using the odm_initialize
subroutine and lock the Configuration database using the odm_lock
subroutine.

3. Retrieve the CuDv object for the device to be configured. This is done by
getting the CuDv object whose Device Name descriptor matches the name
supplied with the ·1 logical name option. If no object is found with the
specified name, exit with an error.

4. Retrieve the PdDv object for the device to be configured by getting the PdDv
object whose Uniquetype descriptor matches the Link to Predefined Devices
Object Class descriptor of the device's CuDv object.

5. If either the ·1 or·2 option is specified, the configure method should obtain
the LED Value descriptor of the device's PdDv object and display the value
on the system LEDs using the setleds subroutine. This specifies when the
configure method will execute at boot time. If the system hangs during
configuration at boot time, the displayed LED value indicates which
configure method the hang occurred in.

6. If the device is already configured (that is, the Device State descriptor of the
device's CuDv object indicates that the device is in the Available state), and
is an intermediate device, the configure method should skip to the task of
detecting children devices. If the device is configured but is not an
intermediate device, the configure method should simply exit with no error.

7. If the device is still in the Defined state, the following tasks should be
performed:

a. If the device has a parent, the configure method must ensure that the
parent device exists and is in the available state. The method can look
at the Parent Device Logical Name descriptor of the device's CuDv
object to obtain the parent name. If the device does not have a parent,
this descriptor should be a null string.

Assuming that the device does have a parent, the configure method
should obtain the parent device's CuDv object and check the Device
State descriptor. If the object does not exist or is not in the Available
state, exit with an error. Another check must be made if the device
has a parent device. The configure method must make sure that no

other device connected to the same parent at the same connection
location has been configured. This case could arise, for example, when
different printers are connected to the same port using a switch box.
Each of the printers would have the same parent and connection, but
only one could be configured at any given time.

The configure method can make this check by querying the CuDv object
class for objects whose Device State descriptor is set to available and
whose Parent Device Logical Name and Location Where Connected on
Parent Device descriptors match those for the device being configured.
If a match is found, exit with an error.

b. If the device is an adapter card and the configure method has been
invoked at run time (indicated by the absence of both the ·1 and ·2
options), the configure method should ensure that the adapter card is
actually present.

This can be done by reading POS registers from the card. This is
essential, because if the card is present, the configure method must
invoke the busresolve library routine to assign bus resources to the
card and ensure that bus resources for the adapter do not conflict with
other adapter cards in the system. If the card is not present or the
busresolve routine fails to resolve bus resources, exit with an error.

busresolve information -------------------,

For more information on the busresolve system call, see "The
busresolve system call" on page F-1.

The POS registers are obtained by opening and accessing the IdevlbusO
special file.

c. Determine whether or not the device has a device driver. The configure
method obtains the name of the device driver from the Device Driver
Name descriptor of the device's PdDv object. If this descriptor is a null
string, the device does not have a device driver.

d. If the device has a device driver, the configure method will need to
perform the following tasks:

• First, load the device driver. The loadext subroutine can be used to
do this. Loading a Device Driver in InfoExplorer has more
information on loading the device driver.

• Determine the device's major number using the genmajor
subroutine.

• Determine the device's minor number, possibly by using the
getminor and genminor subroutines.

• Create the device special files in the Ide v directory if they do not
already exist. Special files are created with the mknod subroutine.

• Build the device-dependent structure (DDS) for the device. This
structure contains the information that describes the device's
characteristics to the device driver. The information is usually
obtained from the device's attributes in the Configuration database.
You may need to refer to the appropriate device driver information
to determine what the device driver expects the DDS to look like

Chapter 6. Device Drivers Configuration 6-25

6-26

(see" A Brief Discussion of the DDS" on page 4-9 for more
information).

• Use the sysconfig subroutine to initialize and pass the DDS to the
device driver.

• If there is code to be downloaded to the device, read in the required
file and pass the code to the device through the interface provided
by the device driver. The file to be downloaded might possibly be
identified by a PdAt or CuAt object. By convention, microcode files
should be in the fetc/microcode directory.

e. After the tasks relating to the device driver are complete, or if the
device did not have a device driver, the configure method should
determine if it needs to obtain vital product data (VPD) from the device.
The VPD Flag descriptor of the device's PdDv object specifies whether
or not it has VPD. (See the next section for more details.)

f. At this point, if no errors have been encountered, the device is
configured. The configure method should update the Device Status
descriptor of the device's CuDv object to indicate that it is available.

8. If the device being configured is an intermediate device, the configure
method has one final task to perform. If the child devices actually attached
can be detected, the configure method is responsible for defining any new
children not currently represented in the CuDv object class. This is .
accomplished by invoking the define method for each new child device. For
each detected child device that is already in the CuDv object class, the
configure method Il)ust look at the child device's CuDv Change Status Flag
descriptor to see if it needs to be updated. If the descriptor's value is
DONT_CARE, nothing needs to be done. If it has any other value, it must be
set to SAME and the child device's CuDv object must be updated. The
Change Status Flag descriptor is used by the system to indicate
configuration changes.

If the device is an intermediate device but cannot detect attached children,
it can query the CuDv object class for children. The value of the Change
Status Flag descriptor for these child devices should be DONT_CARE since
the parent device cannot detect them. Sometimes a child device has an
attribute specifying to the configure method whether the child is to be
configured. The autoconfig attribute of TTY devices is an example of this
type of attribute.

Regardless of whether the child devices are detectable, the configure
method should write the device logical names of the children to be
configured to standard output, separated by space characters. If the
method was invoked by the Configuration Manager, the Manager invokes
the configure method for each of the child device names written to standard
output.

9. Finally, ensure that all object classes are closed and terminate the CDM.
Exit with an exit code of 0 (zero) if there are no errors.

4. Handling Device Vital Product Data (VPD)

Devices that provide vital product data (VPD) should be identified in the PdDv
object class by setting the VPD Flag descriptor to TRUE in each of the device's
PdDvobjects. The configure method must obtain the VPD from the device and
store it into the Customized VPD (CuVPD) object class. The appropriate

hardware documentation for the device should be consulted to determine how
to retrieve VPD from the device. (In many cases, VPD can be obtained for a
device from the device driver with the sysconfig subroutine.)

Once the VPD is obtained from the device, the configure method should query
the CuVPD object class to see if the device already has hardware VPD stored
there. If there is, the method should compare the VPD obtained from the device
with that from the CuVPD object class. If the VPD is the same in both cases, no
further processing is needed. If they are different, update the VPD in the
CuVPD object class for the device. If there is no VPD in the CuVPD object class
for the device, add the device's own VPD into it.

Comparing the device's VPD with that in the CuVPD object class first helps
make modifications to the CuVPD object class less frequent. This results from
the fact that the VPD from a device typically does not change. Reducing the
number of database writes increases performance and minimizes the possibility
of data loss.

5. Configure Method Errors

For many of the errors detected by the configure method, the method can
simply exit with the appropriate exit code. In other cases, the configure method
may need to undo some operations it has performed. For instance, after
loading the device's device driver and defining the device to the device driver
by passing it the device-dependent structure (DDS), the configure method may
subsequently encounter an error while downloading microcode. If this
happens, the method should terminate the device from the device driver with
the sysconfig subroutine and unload the driver with the loadext subroutine.

The configure method does not need to delete the special files or unassign the
major and minor numbers if the major and minor numbers were successfully
allocated and the special file created before the error was encountered.

This is because the AIX configuration scheme allows both major and minor
numbers and special files to be maintained for a device even though the device
is unconfigured. If the device is configured again, the configure method should
recognize that the major and minor numbers are already allocated and that the
special files already exist.

By the time the configure method checks for child devices, it has already
successfully configured the device that it was called to configure. Errors that
occur while checking for child devices are indicated with the E_FINDCHILD exit
code. The mkdev command detects whether the configure method completed
successfully. It can still display a message indicating that an error occurred
while looking for child devices.

6.2.2.5 Writing an Unconfigure Method

1. Syntax

ucfgd ev ·1 name
(where "dev" is the name of your device)

·1 name Identifies the logical name of the device to be unconfigured.

Chapter 6. Device Drivers Configuration 6-27

6-28

2. Descri ption

The unconfigure method is responsible for unconfiguring an available device.
This means taking a device that is available for use by the system and making
it unusable. All the customized information about the device is to be retained
in the database so that the device can be configured again exactly as it was
before.

The actual operations required to make a device no longer available for use
depend on what the configure method did to make the device available in the
first place. For instance, if the device has a device driver, the configure method
will have loaded a device driver into the kernel and described the device to the
driver through a device-dependent structure (DDS). The unconfigure method
thus needs to tell the driver to delete the device instance and then request an
unload of the driver.

If the device is an intermediate device, the unconfigure method must check the
states of the child devices. If any child is in the Available state, the unconfigure
method will fail and leave the device configured. To ensure proper system
operation, all children must be unconfigured before the parent can be
unconfigured.

Although the unconfigure method must check child devices, it does not need to
check for device dependencies recorded in the CuDep object class (see "Device
Dependencies and Child Devices" on page A-1 for more information).

The unconfigure method must also fail if the device is currently open. In this
case, the device driver must return a value for the errno variable of EBUSY to
the unconfigure method when the method requests the driver to delete the
device. The device driver is the only component at that instant that knows the
device is open. As in the case of configured children, the unconfigure method
will fail and leave the device configured.

When requesting the device driver to terminate the device, errno values other
than EBUSY can be returned. The driver should return ENODEV if it does not
know about the device. Under the best circumstances, however, this case
should not occur. If ENODEV is returned, the unconfigure method should go
ahead and unconfigure the device with respect to the database so that the
database and device driver are in agreement. If the device driver chooses to
return any other errno value, it must still delete any stored characteristics for
the specified device instance. The unconfigure method should also indicate
that the device is unconfigured by setting the state to Defined.

The unconfigure method does not generally release the major number and
minor number assignments for a device, nor does it delete the device's special
files in the /dev directory.

By convention, the first four characters of the name of the unconfigure method
should be ucfg. The remainder of the name can be any characters, subject to
AIX file-name restrictions, that identify the device or group of devices that use
the method.

3. Guidelines

This list of tasks is meant to serve as a guideline for writing an unconfigure
method. In writing a method for a specific device, you may be able to leave out
some of the tasks. For instance, if your device is not an intermediate device or
does not have a device driver, your method can be written accordingly. You
may also find that your device has special needs that are not listed in these
tasks.

Your unconfigure method must:

1. Validate the input parameters. The·1 flag must be supplied to identify the
device that is to be unconfigured.

2. Initialize the Object Data Manager (ODM) using the odmJnitialize
subroutine and lock the Configuration database using the odmJock
subroutine.

3. Retrieve the CuDv object for the device to be unconfigured. This is done by
getting the CuDv object whose Device Name descriptor matches the name
supplied with the ·1 flag. If no object is found with the specified name, exit
with an error.

4. Check the device's current state. If the Device Status descriptor indicates
that the device is in the Defined state, then it is already unconfigured. You
should exit as for a successful completion.

5. Check for child devices in the Available state. This can be done by
querying the CuDv object class for objects whose Parent Device Logical
Name descriptor matches this device's name and whose Device Status
descriptor is not defined. If a match is found, exit with an error.

6. Retrieve the predefined PdDv object for the device to be configured by
getting the PdDv object whose UniqueType descriptor matches the Link to
Predefined Devices Object Class descriptor of the device's CuDv object.
This object will be used to get the device driver name.

7. Determine whether the device has a device driver. The unconfigure method
obtains the name of the device driver from the Device Driver Name
descriptor of the device's PdDv object. If this descriptor is a null string, the
device does not have a device driver. In this case, skip to the task of
updating the device's state.

8. If the device has a device driver, the unconfigure method will need to
perform the following tasks:

a. Determine the devicels major and minor numbers using the genmajor
and getminor subroutines. These are used to compute the device's
devno, using the makedev macro defined in the sysmacros.h header file,
in preparation for the next task.

b. Use the sysconfig subroutine to tell the device driver to terminate the
device. If a value of EBUSY for the errno variable is returned, exit with
an error.

c. Use the loadext routine to unload the device driver from the kernel. The
loadext routine will not actually unload the driver if there is another
device still configured for the driver.

9. The device is now unconfigured. The unconfigure method should update
the Device Status descriptor of the device's CuDv object to defined.

Chapter 6. Device Drivers Configuration 6-29

10. Ensure that all object classes are closed and terminate the ODM. If there
are no errors, exit with an exit code of 0 (zero).

6.2.2.6 Writing a Change Method

6-30

1. Syntax

chgdev -I name [-p parent] [-w connection] [-P I -T] [-a
attr = value]
(where "dev" is the name opf your device)

-I name Identifies the logical name of the device to be changed.

-p parent Identifies the logical name of a new parent for the device. This
option is used to move a device from one parent to another.

-w connection
Identifies a new connection location for the device. This option
either identifies a new connection location on the device's existing
parent, or if the -p option is also used, it identifies the connection
location on the new parent device.

-P Indicates that the changes are to be recorded in the Customized
database without those changes being applied to the actual device.
This is a useful option for a device which is usually kept open by the
system such that it cannot be changed. Changes made to the
database with this option are later applied to the device when it is
configured at system reboot.

-T Indicates that the changes are to be applied only to the actual device
and not recorded in the database. This is a useful option for
allowing temporary configuration changes that will not apply once
the system is rebooted.

-a attr=value
Identifies an attribute to be changed and the value to which it should
be changed.

2. Description

The change method is responsible for applying configuration changes to a
device. If the device is in the Defined state, the changes are simply recorded in
the Customized database. If the device is in the Available state, the change
method must also apply the changes to the actual device by reconfiguring it.

Your change method does not need to support all the options described for
change methods. For instance, if your device is a pseudo-devices with no
parent, it need not support parent and connection changes. Even for devices
that have parents, it may be desirable to disallow parent and connection
changes. For a printer, such changes may make sense since a printer is easily
moved from one port to another. An adapter card, by contrast, is not usually
moved without first shutting off the system. It is then automatically configured
at its new location when the system is rebooted. Consequently, there may not
be a need for a change method to support parent and connection changes.

In deciding whether to support the ·T and -P flags, remember that these options
will allow a device's configuration to get out of sync with the Configuration

database. The·P flag can often be useful for devices that are typically kept
open by the system. The change methods for most IBM-supported devices do
not support the ·T flag.

In applying changes to a device in the Available state, your change method
could terminate the device from the driver, rebuild the device-dependent
structure (DDS) using the new information, and define the device again to the
driver using the new DDS. Your method may also need to reload adapter
software or perform other device-specific operations. An alternative is to
simply invoke the device's unconfigure method, update the Customized
database, and invoke the device's configure method.

By convention, the first three characters of the name of the change method
should be chg. The remainder of the name can be any characters, subject to
AIX file-name restrictions, that identify the device or group of devices which use
the method.

3. Guidelines

The following list of tasks is meant to serve as a guideline for writing a change
method. In writing a method for a specific device, you may be able to leave out
some of the tasks. For instance, if your device does not support the changing
of parent or connection, there is no need to include those tasks. You may also
find that your device has special needs that are not listed in these tasks.

If your change method is written to invoke the unconfigure and configure
methods, it must:

1. Validate the input parameters. The·1 flag must be supplied to identify the
device that is to be undefined. You may want to exit with an error if options
that your method does not support are specified.

2. Initialize the Object Data Manager (ODM) using the odm_initialize
subroutine and lock the Configuration database using the odm_lock
subroutine.

3. Retrieve the CuDv object for the device to be changed by getting the CuDv
object whose Device Name descriptor matches the name supplied with the
·1 option. If no object is found with the specified name, exit with an error.

4. Validate all attributes being changed. Make sure that the attributes apply to
the specified device, that they can be set by the user, and that they are
being set to valid values. The attrval subroutine can be used for this
purpose. If you have attributes whose values depend on each other, you
need to write the code to cross check them. If invalid attributes are found,
your method needs to write information to standard error describing them
(See the next section for more explanations.)

5. If a new parent device has been specified, find out whether it exists by
querying the CuDv object class for an object whose Device Name descriptor
matches the new parent name. If no match is found, exit with an error.

6. If a new connection has been specified, validate that this device can be
connected there. Do this by querying the PdCn object class for an object
whose UniqueType descriptor matches the Link to the Predefined Devices.
Object Class descriptor of the parent's CuDv object, whose Connection Key
descriptor matches the subclass name of the device being changed, and

Chapter 6. Device Drivers Configuration 6-31

6-32

whose Connection Location descriptor matches the new connection value.
If no match is found, exit with an error.

If a match is found, the new connection is valid. If the device is currently
available, then it should still be available after being moved to the new
connection. Since only one device can be available at a particular
connection, the change method wi" need to check for other available
devices already at that connection. If one is found, exit with an error.

7. If the device state is Available and the -P flag was not specified, invoke the
device's unconfigure method using the odm_run_method command. This
fails if the device has available children, which is why the change method
does not need to check explicitly for children.

8. Record new attribute values in the database. If parent or connection
changed, update the Parent Device Logical Name, Location Where
Connected on Parent Device, and Location Code descriptors of the device's
CuDvobject.

9. If the device state was Available before being unconfigured, invoke the
device's configure method via the odm_run_method command. If this
returns in error leaving the device unconfigured, you may want your change
method to restore the Customized database for the device to its pre-change
state.

10. Ensure that all object classes are closed and terminate the ODM. Exit with
an exit code of 0 (zero) if there were no errors.

4. Handling Invalid Attributes

If the change method detects attributes that are in error, it must write
information to the stderr file to identify them. This consists of writing the
attribute name followed by the attribute description. Only one attribute and its
description is to be written per line. If an attribute name was mistyped so that
it does not match any of the device's attributes, write the attribute name
supplied on a line by itself.

The mkdev and chdev configuration commands intercept the information written
to standard error by the change method. They in turn write it out following an
error message describing that there were invalid attributes. Both the attribute
name and attribute description are needed to identify the attribute. If you
invoked the mkdev or chdev command directly, you can recognize the attributes
by attribute name. If you are using 8MIT, these comands recognize attributes
by description.

The attribute description is obtained from the appropriate message catalog. A
message is identified by catalog name, set number, and message number. The
catalog name and set number are obtained from the device's PdDv object. The
message number is obtained from the NLS Index descriptor in either the PdAt
or CuAt object corresponding to the attribute.

6.2.2.7 Writing Start/Stop Methods

1. Syntax

sttdev ·1 name

stpdev ·1 name
(where "dev" is the name of your device)

·1 name Identifies the logical name of the device to be started or stopped.

2. Description

The start and stop methods are optional methods. (Most devices do not have
start and stop methods.) The purpose of these methods is to allow the device
to be put into a state where they are available or unavailable to users.

The start method takes the device from the Stopped state to the Available state.
The stop method takes the device from the Available state to the Stopped state.

The Stopped state provides a state in which the device is configured in the
system but unusable by applications. In this state, the device's driver is loaded
and the device is defined to the driver. This might be implemented by having
the stop method issue a command telling the device driver not to accept any
normal I/O requests. If an application subsequently issues a normal I/O
request to the device, it will fail. The start method can then issue a command
to the driver telling it to start accepting I/O requests once again.

If you write start and stop methods for your device, your other methods must be
written to account for the Stopped state. For instance, if one of your methods
checks for a device state of Available, it might now need to check for both
Available and Stopped states.

Additionally, write your configure method so that it takes the device from the
Defined state to the Stopped state. However, you can have the configure
method invoke the start method, thus taking the device to the Available state.
The unconfigure method should be able to take the device to the Defined state
from either the Available or Stopped states.

By convention, the first three characters of the name of the start method should
be stt. The first three characters of the name of the Stop method should be stp.
The remainder of the names can be any characters, subject to AIX file-name
restrictions, that identify the device or group of devices that use the methods.

Start and stop methods, when they are used, are usually highly device-specific.

Chapter 6. Device Drivers Configuration 6-33

6-34

Configuration: What you need to do -----------------,

The previous sections described what was needed to configure your device
into the RISC/6000. The following is both a summary and an example of how
to configure a new device into the system.

1. Create an ASCII file that will be used to update the OOM for the
Predefined Devices (PdDv), Predefined Attributes (PdAt) and Predefined
Connections (PdCn) object classes. For the following three steps, refer
to "ODM Stanzas (ric.add)" on page 8-22 for an example of how our
stanzas were written.

2. Add the PdDv object class stanza. See Table 8-1 on page 8-2 for a
table that lists the possible PdDv descriptors.

3. Add the PdAt object class stanza. See Table 8-2 on page 8-7 for a table
that lists the possible PdAt descriptors.

4. Add the PdCn object class stanza. See Table 8-3 on page 8-10 for a
table that lists the possible PdCn descriptors.

5. Add the information from the ASCII file into the OOM by using the
odmadd command or by using the odm_add_obj subroutine.

6. Write the device configuration method. See "Writing a Configure
Method" on page 6-23 for a description. Also see "Adapter
Configuration Method (cfgrica.c)" on page 8-28 for an example of the
device configuration method that we wrote for the RIC device driver.

7. Write the device unconfiguration method. See "Writing an Unconfigure
Method" on page 6-27 for a description. Also see
JusrJlpp/bosJsamples/ucfgxxx.c for an example of a device
unconfiguration method. (Please note that this is not the one that we
used for our device driver.)

8. Write the device define method. See "Writing a Define Method" on
page 6-17 for a description. Also see /usrJlppJbosJsamplesJdefxxx.c for
an example of a device define method. (Please note that this is not the
one that we used for our device driver.)

9. Write the device undefine method. See "Writing an Undefine Method" on
page 6-21 for a description. Also see /usrJlppJbos/samples/udefxxx.c for
an example of an device undefine method. (Please note that this is not
the one that we used for our device driver.)

10. Write the device change method. This can be optional. For this device
driver, we have not included it. Refer to "Writing a Change Method" on
page 6-30 for a description. Also see /usr/lppJbosJsamples/chgyyy.c for
an example.

11. Write the device start method. This is optional. For our example device
driver, we have not included it.

12. Write the device stop method. This is optional. For our example device
driver, we have not included it.

Configuration: How you actually do It --------------,

The following is a procedure for actually configuring your device:

1. Do all applicable adding of stanzas and writing of device methods as
defined in the previous box.

2. Issue the "mkdev " command.

Your device should now be defined and configured.

Chapter 6. Device Drivers Configuration 6-35

6-36

Chapter 7. SMIT Interface

7.1 Introduction

© Copyright I BM Corp. 1991

SMIT (System Management Interface Tool) is an interactive and extensible
screen-oriented command interface. It prompts users for the information
needed to construct command strings and presents appropriate predefined
selections or run time defaults where available. This shields users from many
sources of extra work or error, including the details of complex command
syntax, valid parameter values, system command spelling, or custom shell path
names.

New tasks consisting of one or more commands or inline ksh shell scripts can
be added to SMIT at any time by adding new instances of predefined screen
objects to SMIT's database. These screen objects (described by stanza files)
are used by the ODM (Object Data Manager) to update SMIT's database. This
database controls SMIT's run time behavior. Items that can be specified
include:

• The sequence of screens presented to the user

• The data displayed for the user

• The method for generating default entry field values

• The input requested from the user

• The method in which user input is used to build and run auxiliary and task
command strings.

You can also build and use alternate databases instead of modifying SMIT's
default system database.

There are three main screen types that a user can traverse in order to perform
a task, any of which can be optional in certain cases. These occur in a
hierarchy consisting of menu screens, selector screens, and dialog screens. In
performing a task, a user typically traverses one or more menus, then zero or
more selectors, and finally one dialog.

Table 7-1. SMIT Screen Types

Screen What the user sees on What SMIT does internally
type the screen

menu a list of choices uses the choice to select the next
screen display

selector either a list of choices obtains a datavalue for subsequent
or an entry field screen, optionally selects

alternative dialogs or selectors

dialog a sequence of entry uses data from the entry fields to
fields construct and run the target task

command string

7-1

I
menu

I
I

dialog

The table above shows SMIT screen types, what the user sees on each screen,
and what SMIT does internally with each screen. Menus present a list of
alternative subtasks; a selection can then lead to another menu screen, or to a
selector or dialog screen. A selector is generally used to obtain one item of
information that is needed by a subsequent screen and which can also be used
to select which of several selector or dialog screens to use next. A dialog
screen is where any remaining input is requested from the user and where the
chosen task is actually run.

The Figure 7-1 shows some possible relationships among SMIT menus,
selectors, and dialogs. A menu is the basic entry pOint into SMIT and can be
followed by another menu, a selector, or a dialog. A selector can be followed
by a dialog. A dialog is the final entry panel in a SMIT sequence.

menu

I

I
selector dialog

I I
dialog dialog selector

I
dialog

Figure 7-1. Some Relationships among SMIT Menus, Selectors and Dialogs

7-2

7.2 SMIT Screens

7.2.1 Menu Screens
A SMIT menu is a list of user-selectable items. Menu items are typically tasks
or classes of tasks that can be performed from SMIT. A user starting with the
main SMIT menu selects an item defining a broad range of system tasks. A
selection from the next and subsequent menus progressively focuses the user's
choice, until finally a dialog is typically displayed to collect information for
performance of a particular task.

You design menus to help a user of SMIT narrow the scope of choice to a
particular task. Your design can be as simple as a new menu and dialog
attached to an existing branch of SMIT, or as complex as an entire new
hierarchy of menus, selectors, and dialogs starting at the SMIT applications
menu.

At run time, SMIT retrieves all menu objects with a given 10 (10 descriptor
value) from the specified object repository. Therefore, to add an item to a
particular menu of SMIT, you add a menu object having an 10 value equal to the
value of the 10 descriptor of other non-title objects in the same menu. See
"Menu Object Class (sm_menu_opt)" on page C-1 for a detailed explanation of
the class of menu objects.

7.2.2 Selector Screens
A SMIT selector prompts a user to specify a particular item, typically a system
object (such as a printer) or attribute of an object (such as a printer mode of
serial or parallel). This information is then generally used by SMIT in the
following dialog.

You design a selector to request a single piece of information from the user. A
selector, when used, falls between menus and dialogs. Selectors can be strung
together in a series to gather several pieces of information before a dialog is
displayed.

Selectors should usually contain a prompt displayed in user-oriented language
and either a response area for user input or a pop-up list from which to select a
value, i.e., one question field and one answer. Typically the question field is
displayed and the SMIT user enters a value in the response area by typing the
value or by selecting a value from a list or an option ring.

To give the user a run time list of choices, the selector object can have an
associated command that lists the valid choices. The list is not hand-coded; it
is developed by the command in conjunction with stdout. The user gets this list
by invoking the F4=List function of the SMIT interface. See "Selector Header
Object Class (sm_name_hdr)" on page C-3 for a detailed explanation of the
selector object classes.

Chapter 7. SMIT Interface 7-3

7.2.3 Dialog Screens

7-4

A dialog in SMIT is the interface to a command or task a user performs. Each
dialog executes one or more commands, shell functions, and so on. A
command can be run from any number of dialogs.

To design a dialog, you need to know the command string you want to build
and the command options and operands for which you want user-specified
values. In the dialog display, each of these command options and operands is
represented by a prompt displayed in user-oriented language and a response
area for user input. Each option and operand is represented by a dialog
command option object in the OOM database. The entire dialog is held
together by the dialog header object.

The SMIT user enters a value in the response area by typing the value, or by
selecting a value from a list or an option ring. To give the user a run time list
of choices, each dialog object can have an associated command that lists the
valid choices. The user gets this list by invoking the F4=List function of the
SMIT interface. See "Dialog Header Object Class (sm_cmd_hdr)" on page C-5
for a detailed explanation of the selector object classes.

7.3 SMIT Database
An object class created with OOM defines a common format or record data type
for all individual objects that are instances of that object class. Therefore a
SMIT object class is basically a record data type and a SMIT object is a
particular record of that type.

SMIT menu, selector, and dialog screens are described by objects that are
instances of one of four object classes:

• sm_menu_opt

• sm_name_hdr

• sm_cmd_hdr

• sm_cmd_opt

The following table shows the objects used to create each screen type:

Table 7-2. Object Used to Create Screens

Screen Type Object Objecfs Use (typical case)
Class

menu sm_menu_opt 1 for title of screen

sm_menu_opt 1 for first item

sm_menu_opt 1 for second item

... . ..

sm_menu_opt 1 for last item

selector sm_name_hdr 1 for title of screen and other attribute

sm_cmd_opt 1 for entry field or pop-up list

dialog sm_cmd_hdr 1 for title of screen and command string

sm_cmd_opt 1 for first entry field

sm_cmd_opt 1 for second entry field

... . ..
sm_cmd_opt 1 for last entry field

Each object consists of a sequence of named fields and associated values.
These are represented in stanza format in ASCII files that can be used by the
odmadd command to initialize or extend SMIT databases. Stanzas in a file
should be separated with one or more blank lines.

1 Note: comments in an OOM input file (ASCII stanza file) used by the odmadd command must be alone on a line
with a # (pound sign) in column one. A comment cannot be on the same line as a line of the stanza.
Comments in the following examples that are at the end of a stanza line are there only to clarify this
documentation; such comments should not be included in your object stanzas.

Chapter 7. SMIT Interface 7-5

7-6

The following is an example 1 of a stanza for an sm_menu_opt object:

sm_menu_opt:
id
id_seq_num
next_id
text
text_ms9_file
text_ms9_set
text_ms 9_id
next_type
alias
help_ms9_id
help_ms9_loc

#name of object class
"top_menu" #object1s (menu screen) name
"050"
"commo" lid of objects for next menu screen
"Communi cati ons Appl i cati ons & Servi ces"
""

= 0
= 0
= "m" #next id specified another menu

""
""
""

The notation ObJectClass.Descriptor is commonly used to describe the value of
the fields of an object. For instance, in the preceeding sm_menu_opt object, the
value of sm_menu_opt.id is "top_menu".

See "Menu Object Class (sm_menu_opt)" on page C-1 for a detailed
explanation of each item in the sm_menu_opt object stanza.

The following is an example of a stanza for an sm_name_hdr object:

sm name hdr:
id
next id
option_id
has name select
name
name_ms9_file
name_ms9_id
type
ghost
cmd_to_classify
cmd_to_classify_postfix
raw field name - -cooked_field_name
next_type
help_ms9_id
help_msg_loc

#---- used for selector screens
#the name of this selector screen

"" #next sm_name_hdr or sm_cmd_hdr screen object
'"' #speci fi es one associ ated sm_cmd_opt object
""
"" #title for this screen
'"'

= 0
'III

See "Selector Header Object Class (sm_name_hdr)" on page C-3 for a detailed
explanation of each item in the sm_name_hdr object stanza.

The following is an example of a stanza for an sm_cmd_hdr object:

sm cmd hdr:
id
option_id
has name select
name
name_ms9_file
name_ms9_set
name_ms 9_id
cmd to exec
ask
exec_mode
9host
cmd to discover
cmd_to_discover_postfix
name size
value size
help_ms9_id
help_ms9_loc

= 1111
1111
1111
1111
1111

= 0
= 0
= 1111

1111
1111
1111
1111
1111

= 0
= 0
= 1111
= 1111

#---- used for dialo9 screens
#the name of this dialo9 screen
#defines associated set of sm_cmd_opt objects

#title for this screen

See "Dialog Header Object Class (sm_cmd_hdr)" on page C-5 for a detailed
explanation of each item in the sm_cmd_hdr object stanza.

The following is an example of a stanza for an sm_cmd_opt object:

sm_cmd_opt:
id
id_seq_num
disc field name
name
name_ms9_ fil e
name_ms9_set
name_ms 9_id
op_type
entry_type
entry_size
required
prefix
cmd to list mode

1111
1111
1111
1111
1111

= 0
= 0
= 1111
= 1111
= 0
= 1111

1111
= 1111

cmd to list = 1111
cmd_ to_l i st_post fi x = 1111
multi select = 1111
value index = 0
disp_values = 1111
values_ms9_file = 1111
values_ms9_set = 0
values_ms9_id = 0
aix values = 1111
help_ms9_id = 1111
help_ms9_loc = 1111

#---- used for both selector and dialo9 screens
#name of this object
#110 11 if associated with selector screen

#text describing this entry

See "Dialog/Selector Command Option Object Class (sm_cmd_opt)" on
page C-7 for a detailed explanation of each item in the sm_cmd_opt object
stanza.

All SMIT objects have an "id" field that provides a name used for looking up
that object. The sm_menu_opt objects used for menu titles are also looked up
using their next_id field. The sm_menu_opt and sm_name_hdr objects also
have nexCid fields that point to the "id" fields of other objects. These are how

Chapter 7. SMIT Interface 7-7

7-8

the links between screens are represented in the SMIT database. Likewise,
there is an option_id field in sm_name_hdr and sm_cmd_hdr objects that pOints
to the "id" fields of their associated sm_cmd_opt object{s).

The Figure 7-2 on page 7-9 shows a hierarchy of sm_menu_opt objects and the
menu screens displayed for these objects. Note that the value of each
sm_menu_opt.id field that is part of the same menu screen is equal to the value
of the immediately-preceding sm_menu_opt.nexCid field (and this object serves
as the title). This provides a link between a menu item and the items in a
menu that immediately follow selection of the item.

id nexCid text

entry xyz

id id_seq..num nexCid text nexCtype

10 entry 123
entryxyz

aaa m

20 entry 456
entry 123

m
entry 456

entry 789

30 ccc entry 789 m

id id_seq..num nexCid text next_type

10 ml menuml
entry 456

m

menuml
20 dl dialog dl m

dialog dl

menum2
30 menum2 m

selector nl

just info

40 nl selector nl m

50
menum2

m just info

Figure 7-2. Hierarchy of sm_menu_opt Objects

The Figure 7-3 on page 7-10 shows a dialog using a sm_cmd_hdr object and
three sm_cmd_opt objects, and the resulting dialog screen. Note that the
sm_cmd_hdr.option_id object field is equal to each sm_cmd_optid object field;

Chapter 7. SMIT Interface 7-9

id

id

this defines the link between the sm_cmd_hdr object and its associated
sm_cmd_opt objects.

name

dlcmd

name

10 aaa entry 123 m

20 bbb entry 456 m

30 ccc entry 789 m

dlcmd

size <10> #

color <blue> +

brightness <99> #

Figure 7-3. SMIT Dialogs

7-10

Two or more dialogs can share common sm_cmd_opt objects since SMIT uses
the OOM LIKE operator to look up objects with the same sm_cmd_opt.id field
values. SMIT allows up to five IDs (separated by commas) to be specified in a
sm_cmd_hdr.option_id field, so that sm_cmd_opt objects with any of five
different sm_cmd_opt.id field values can be associated with the sm_cmd_hdr
object.

The following table shows how the value of an sm_cmd_hdr.option_id field
relates to the values of sm_cmd_opt.id and sm_cmd_opt.id_seq_num fields.
Note that the values in the sm_cmd_opt.id_seq_num fields are used to sort the
retrieved objects for screen display.

Table 7-3. sm_cmd_hdr Relationships

IDs of the Objects to Objects Display Sequence of
Retrieve Retrieved Retrieved Objects
(sm_cmd_hdr .option_id) (sm_cmd_opt.id) (sm_cmd_opt.id_seq_num)

"demo.[AS]" "demo.A" "10"

"demo.S" "20"

"demo.A" "30"

"demo.A" "40"

"demo.[ACO]" "demo.A" "10"

"demo.C" "20"

"demo.A" "30"

"demo.A" "40"

"demo.O" "50"

"demo.X,demo.Y,demo.Z" "demo.Y" "20"

"demo.Z" "40"

"demo.x" "60"

"demo.x" "80"

SMIT objects are generated with OOM creation facilities and stored in files in a
designated database. The default SMIT database consists of eight files:

1. The sm_menu_opt file

2. The sm_menu_opt.vc file

3. The sm_name_hdr file

4. The sm_name_hdr.vc file

5. The sm_cmd_hdr file

6. The sm_cmd_hdr.vc file

7. The sm_cmd_opt file

8. The sm_cmd_opt.vc file.

The files are stored by default in the /etc/objrepos directory. They should
always be saved and restored together.

Chapter 7. SMIT Interface 7-11

7.4 Command Building and Running
Each dialog in SMIT builds and executes a version of a standard command.
The command to be executed by the dialog is defined by the cmd_to_exec
descriptor in the sm_cmd_hdr object that defines the dialog header.

7.4.1 Task Building
In building the command defined in an sm_cmd_hdr.cmd_to_exec descriptor,
SMIT uses a two-pass scan over the dialog's set of sm_cmd_opt objects to
collect prefix and parameter values. The parameter values collected include
those that the user changed from their initially displayed values and those with
the sm_cmd_opt.required descriptor set to "y".

The first pass gathers all of the values of the sm_cmd_opt objects (in order) for
which the prefix descriptor is either an empty string ("") or starts with a • (a
dash, such as with a flag: ·f). These parameters are not position-sensitive and
are added immediately following the command name, together with the
contents of the prefix descriptor for the parameter.

The second pass gathers all of the values of the remaining sm_cmd_opt objects
(in order) for which the prefix descriptor is •• (two dashes). These parameters
are position-sensitive and are added after the flagged options collected in the
first pass.

Command parameter values in a dialog are filled in automatically when the
disc_field_name descriptors of its sm_cmd_opt objects match names of values
generated by preceding selectors or a preceding discovery command. These
parameter values are effectively default values and are normally not added to
the command line. Initializing an sm_cmd_opt.required descriptor to "y" or "+"
causes these values to be added to the command line even when they are not
changed in the dialog. These parameter values are built into the command line
as part of the regular two-pass process.

Leading and trailing white space (spaces and tabs) are removed from
parameter values except when the sm_cmd_opt.entry _type descriptor is set to
"r". If the resulting parameter value is an empty string, no further action is
taken unless the sm_cmd_opt.prefix descriptor starts with an option flag.
Surrounding Single quotation marks are added to the parameter value if the
prefix descriptor is not set to "--" (two dashes). Each parameter is placed
immediately after the associated prefix, if any, with no intervening spaces.
Also, if the multCselect descriptor is set to "m", tokens separated by white
space in the entry field are treated as separate parameters.

7.4.2 Command Execution

7-12

SMIT runs the command string specified in a sm_cmd_hdr.cmd_to_exec
descriptor by first creating a child process. The stderr (standard error) and
stdout (standard output) of the child process are handled as specified by the
contents of the sm_cmd_hdr.exec_mode descriptor. SMIT next runs a
setenv{"ENV = ") subroutine in the child process to prevent commands specified
in the $HOME/.env file of the user from being run automatically when a new
shell is invoked. Finally, SMIT calls the execl subroutine to start a ksh shell,
using the command string as the ksh -c parameter value.

You can override 8MIT default output redirection of the (child) task process by
setting the sm_cmd_hdr.exec_mode field to "i", This setting gives output
management control to the task, since the task process simply inherits the
standard error and standard output file descriptors.

You can cause 8MIT to shut down and replace itself with the target task by
setting the sm_cmd_hdr.exec_mode field to "e".

Chapter 7. SMIT Interface 7-13

7.5 Dialogs Example

7.5.1 List All Defined Ric Ports
First the Real Time Interface Co-Processor Adapter menu is called (from
"System Management"/"Oevices"/"Communication Devices"). The following
screen will be another menu (next_type = m), and the 10 will be ric (nextJd
field).

sm_menu_opt:
id
id_seq_num
next_id
text
text_ms9_ fil e
text_ms9_set
text_ms9_id
next_type
alias
help_ms9_id
help_ms9_loc

= "commodev"
= "070"
= "ric"
= "Realtime Interface Co-Processor Portmaster Adapter"
= 1111

= 0
= 0
= "m"
= "II

= 1111

= ""

On the screen, you will see the different choices (see Figure 7-4). The
corresponding objects all have the same 10 (ric), but with different id_seq_num.

Realtime Interface Co-Processor Portmaster Adapter

Move cursor to desired item and press Enter

List All Defined Ric Ports
Add a New Ric Port
Move a Ric Port Definition to Another Port
Change/Show characteristics of a Ric Port
Remove a Ric Port
Configure a Defined Ric Port

Figure 7-4. SMIT Screen Example

7-14

They are shown on the screen in ascending order according to their
id_seq_num.

The first one is:

sm_menu_opt:
id
id_seq_num
next_id
text
text_ms9_file
text_ms9_set
text_ms 9_id
next_type
alias
help_ms9_id
help_ms9_loc

= Ilric il
"010"
"lsdric"
"List All Defined Ric Ports"
1111

= 0
= 0

= 1111

= 1111

= IIII

The following stanza represents the final dialog screen of this chain. It is a
ghost dialog, which means that there is actually no new screen displayed; it just
executes the Isdev ·C ·c ricport ·H command.

sm cmd hdr:

7.5.2 Add a Ric Port

id
option_id
has_name_select
name
name_ms9_file
name_ms9_set
name_ms 9_id
cmd to exec
ask
exec mode
9host
cmd_to_discover

name_size
value size
help_ms9_id
help_ms9_loc

Illsdric"
IIII
Iln"
"List All Defined Ric Ports"
"ric.cat"
3

= 0
"lsdev -C -c ricport -H"
1111

1111

1111

1111

= 0
= 0

1111

IIII

The beginning of this chain is the same as in the previous example, up to the
commodev menu (with id = 070). We start here with the next available choice
on the screen: to add a port. This object has id_seq_num = 020. Note that the
next object is a dialog (next_type = d) with id = makric.

sm_menu_opt:
id "ric"
id_seq_num "020"
next id "makric"
text "Add a Ric Ports"
text_ms9_file 1111

text_ms9_set = 0
text_ms9_id = 0
next_type lin II
alias 1111

help~ms9_id 1111

help_ms9_1oc 1111

The following object is a ghost selector with one option (second stanza). It is
used to put up a list of defined ric adapters for the user to select from:

Chapter 7. SMIT Interface 7-15

7-16

sm_name_hdr:
id
next id
option_id
has_name_select
name
name_ms9_fil e
name_ms9_set
rame_ms9_id
type
9host
cmd_to_classify
cmd_to_classify_postfix
raw_fie1d_name
cooked_fie1d_name
next_type
help_ms9_id
help_ms9_1oc

=
"makric"
"makric_hdr"
"ric_mk_parentll
"n"
"Add a Ric PortH
"ric.cat"
3
1
1111

llyn
III'

1111

"parent"
1111

lid"
1111

1111

* Name selector command option for parent adapter
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_ms9_fi1e
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_1ist_mode
cmd to list
cmd_to_1ist_postfix
multi_select
value index
disp_values
values_ms9_file
values_ms9_set
values_ms9_id
aix_va1ues
help_ms 9_id
help_ms9_1oc

"ric_mk_parent"
"0"
1111

"Parent Adapter"
"ric.cat"
3

= 8
= "1"
= "t"
= 0

"y"
1111

"1"
"1sparent -C -k ricp"
1111

1111

= 0
= ""
= III'

= 0
= 0

1111

1111

III'

The next five stanzas represent a dialog which puts up a list of four user
configurable attributes. It then executes the mkdev command to create the
port.

sm cmd hdr:
id
option_id
has name select
name
name_ms9_file
name_ms9_set
name_ms9_id
cmd to exec
ask
exec mode
9host
cmd to discover

name size
value_size
help_ms9_id
help_ms9_1oc

Displays rdto attribute.
sm_cmd_opt:

id
id_seq_num
disc field name - -
name
name_ms9_file
name_ms9_set
name_ms 9_id
op_type
entry_type
entry_size
required
prefix
cmd to list mode - - -
cmd to list
cmd_to_list_postfix
multi select
value index
disp_values
values_ms9_file
values_ms9_set
values_ms9_id
aix values
help_ms 9_id
help_ms9_1oc

"makric hdr"
Ilri c_add, ri c_common"
"y"
"Add a Ric Port"
"ric.cat"
3
1
"mkdev -c ricport -s ricp -t port II

1111

1111

lin II
1I1sattr -c ricport -s ricp -t port -0 -011

1111

= 0
= 0

1111

1111

IIric common"
"010"
"rdto"
"RECEIVE DATA TRANSFER OFFSET"
"ric.cat"

= 2
= 2
= "1"
= "#"
= e

lin II

"-a rdto="
"r"
"1sattr -c ricport -s ricp -t port -a rdto -R"
1111

lin II
= 0
= 1111

= 1111

= e
= e

1111

1111

1111

Chapter 7. SMIT Interface 7-17

7-18

Display~ autoconfi9 attribute.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_ms9_file
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefi x
cmd_to_list_mode
cmd to list
cmd_to_list_postfix
multi_select
value index
disp_values
values_ms9_file
values_ms9_set
values_ms9_id
aix values
help_ms 9_id
help_ms9_1oc

= "ric common"
11020"

= lautoconfi 9"
= "STATE to be confi9ured at boot time"
= "ric.cat"
= 2
= 3
= "1"
= "t"
= 0

lin II

"-a autoconfi9="
"1"
"lsattr -c ricport -s ricp -t port -a autoconfi9 -R"
1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

Displays ric portis parent adapter.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_ms9_ fil e
name_ms9_set
name_ms 9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd to list
cmd_to_list_postfix
multi_select
value_index
disp_values
val ues_ms9_file
values_ms9_set
values_ms9_id
aix_values
help_ms 9_id
help_ms9_loc

"ric add"
"001"
"parent"
"Parent Adapter"
"ric.cat"

= 3
= 8
= 1111

= "n"
= 0

"y"
"_p II

1111

1111

IIII

= 1111

= 0
= 1111

= 1111

= 0
= 0

""
1111

1111

* Displays physical port number bein9 defined.
sm_cmd_opt:

i d "ri c add"
id_seq_num
disc_field_name
name
name_ms9_file
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefix
cmd to list mode - - -

"00211

1111

= IIPORT number ll

"ric.cat"
= 3
= 9
= III II

= IItli
= 0

11+11

II_W II

"1"
cmd_to_list
cmd_to_list_postfix
multi select

"lsconn -k ricp II
-. "_p parent"

value index
disp_values
values_ms9_file
values_ms9_set
values_ms9_id
aix values
help_ms9_id
help_ms9_loc

= 1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

Chapter 7. SMIT Interface 7-19

7.6 Additions to the SMIT Database

7.6.1 Database Creation
Whenever you are developing new objects for the SMIT database, it is
recommended that you set up a separate test database for development.

TESTING HINT ---------------------,

To create a test database, do the following:

1. Create a directory for testing use. For example, the following command
creates a /u/smitltest directory:

mkdir jujsmit jujsmitjtest

2. Make the test directory the current directory:

cd jujsmitjtest

3. Define the current directory as the default object repository by setting
the ODMDIR environment variable to "."

export ODMDIR=.

4. Take a copy of all the SMIT object classes from /etc/objrepos.

cp jetcjobjreposjsm_* .

You have now a copy of the original database on which you can try your
additions without destroying anything. You could also create an empty
database to test your dialogs with the following command (to be used instead of
Step 4):

odmcreate -c jusrjlppjsmitjsamplesjsmit_class.cre

7.6.2 SMIT Extensions Debugging

7-20

You can test and debug newly-created SMIT menus, selectors, and dialogs by
starting and running SMIT with one or more of the following command options,
as appropriate:

v Produces a more verbose log file showing command strings and output
from auxiliary commands.

t Provides more information about what objects were read from the SMIT
database.

o Specifies a directory for use as an alternate SMIT object database. For
example, you can start SMIT with the command smit -0. to specify the
current directory.

Specifies an alternate log file path. For example, you can enter the
command smit ·1 log to start SMIT and specify a short file name in the
current directory for use as the log file for the session.

x Prevents the command string in the command_to_exec field from being run.
This can be useful when the target command has a major impact on the
system, because SMIT logs, but does not run, the command string.

7.6.3 Task Additions
To add tasks to the 8MIT database:

1. Design the dialog for the command you want 8MIT to build.

2. Design the hierarchy of menus and, optionally, selectors, needed to get a
8MIT user to the dialog, and determine where and how this hierarchy
should be linked into the existing 8MIT database. The following strategy
may save you time if you are developing 8MIT database extensions for the
first time:

a. 8tart 8MIT (run the smit command); look for existing menu, selector,
and dialog screens that perform tasks similar to the one you want to
add, and find the menu screen(s) to which you will add the new task.

b. Exit from 8MIT, then remove the existing 8MIT log file. Instead of
removing the log file, you can use the ·1 flag of the smit command to
specify a different log file when starting 8MIT in the following step. This
enables you to isolate the trace output of your next 8MIT session.

c. 8tart 8MIT again with the ·vt command flags and again look at the
screen(s) to which you will add the new task. This logs the object IDs
accessed for each screen for the next step.

d. Look at the 8MIT log file to determine the 10 for each object class used
as part of the menu(s) (see "8MIT Log File" on page C-35 for a trace of
the example exposed in "List All Defined Ric Ports" on page 7-14).

e. Use the object class IDs with the odmget command to retrieve the
stanzas for these objects. The stanzas can be used as rough examples
to guide your implementation and to learn from the experience of
others.

f. Look in the 8MIT log file for the command strings used when running
through the screens to see if special tools are being utilized behind the
scenes (such as sed or awk scripts, ksh shell functions, environment
variable assignment, and so on). When entering command strings,
keep in mind that they are processed twice: the first time by the
odmadd command and the second time by the ksh shell. Therefore, be
careful when using special escape meta-characters (such as \) or
quotation characters (' and H). Note also that the output of the odmget
command does not always match the input to the odmadd command,
especially when these characters or mUlti-line string values are used.

3. Code the dialog, menu, and selector objects by defining them in the A8CII
object stanza file format required by the odmadd command. For examples
of stanzas used to code 8MIT objects, see" List All Defined Ric Ports" on
page 7-14, "Add a Ric Port" on page 7-15, and "ODM 8tanzas for Ric
Dialogs (sm_ric.add file)" on page C-15.

4. Add the dialog, menu, and selector objects to the 8MIT test database with
the odmadd command, using the name of your A8CII object stanza file in
place of tesCstanzas:

odmadd test stanzas

5. Test and debug your additions by running 8MIT using the local test
database:

smit -0.

Chapter 7. SMIT Interface 7-21

7-22

Chapter 8. Device Drivers Packaging

8.1 Introduction
The objective of the installp procedure is to make installation of application
programs as painless as possible, while maintaining a high degree of
functionality. This is certainly something highly desirable for a device driver
installation where the following tasks have to be done:

• Installation of the device driver code under letcldrivers.

• Installation of the different methods under letclmethods.

• Populating of different Predefined object classes.

• Installation of new SMIT dialogs.

• Optionally, installation of error and trace report templates.

In this chapter, we will present a summary of the installp procedure, illustrated
with the files necessary to install the ric device driver used as an example in
this book.

8.2 Design Guidelines
The installation procedures for any two application programs are never exactly
the same. However, there are general guidelines that should be used by every
installation procedure:

• Ensure that the prereq file is set correctly for the order in which installation
procedures should occur.

• Require minimal user interaction.

• Select least disruptive state that permits installation.

• Ensure that the system is in the required state. Reject the installation if the
state is not correct.

• Make sure error recovery is comprehensive.

8.3 The installp Command
Usage:

installp [-d Device] [-F] [-X] {[-f File] I Options}
installp -I [-d Device]
installp -C

The command has a standard interface through SMIT. The following tools are
available to installp programmers:

inuumsg for displaying messages.

inurest for restoring files from medium.

© Copyright I BM Corp. 1991 8-1

ckprereq for checking prerequisites.

sysck for entering inventory information.

8.4 Ensuring installp Command Compatibility
For programs to be installed, they must be compatible with the instaJlp
command. This command implements the following processing for an
application program:

• Restores list of program options from distribution medium (.Ilpp_name file).

• Verifies that specified program options exist.

• Checks the level of the program to be installed.

• Restores files that installp needs from medium.

• Checks that disk space suffices for specified options.

• Echoes copyright file.

• Executes the instal script file (instal Device Filename), where Device is the
device name to pass to the installp command and Filename is the name of
the file that contains the list of installable options to pass to the installp
command.

• Checks the status of each option's installation: If instal is successful,
updates the Vital Product Data (VPD) database using information from the
Ipp_name file and the prereq file; otherwise, execute the Ipp.cleanup file
(Ipp.cleanup Device Filename), where Device is the device name passed to
the installp command and Filename is the name of the file that contains the
list of installable options that failed.

• Delete installp files from .Iusrl/ppIProgram(ali files without Ipp. prefix,
subdirectories excepted).

8.5 Files for installp Operation

8-2

NOTE --~

We give here a list of the most commonly used files for installp operations,
but a complete list of required and optional files for installp and updatep
commands can be found in "lnstalip/Updatep Files" on page 0-1 .

.Ilpp_name (required)
list of program options

.Iusr/lpp/liblpp.a (required)
archive containing installp files:

instal (required)
script to perform installation

config or Option.config (optional)
script for configuring program

prereq or Option.prereq (optional)
list of prerequisites for program

Other files

Ipp.doc (optional)
document pages for the program

Filename.err (optional)
error report templates

Filename.trc (optional)
trace report templates

Filename.evt (optional)
trace event types

al or Option.al (required)
apply list (of files in program option)

Ipp.acf (optional)
names of files and libraries updated by installation

copyright (required)
can be empty

productid (optional)
line of text to enter into VPD database

size or Option.size (required)
size file (of each file in option)

inventory (optional)
information about each application file

Ipp.cleanup (required)
script to clean up after failure of an option

Ipp.deinst (optional)
script for de-installing program.

Any other file that needs to be updated, named relative to the top of
the file system (for example ./usrl/iblsendmai/).

8.5.1 LPP Option List File: Ipp_name
Syntax of entries

<format> <platform> <medium_type>
<Program> <level> <vol> <quiesce> <type> <lang> <descr> #<comment>
<Program> <level> <vol> <quiesce> <type> <lang> <descr> #<comment>

}

<format> = 1
<platform> = R
<medium_type> = I (installation) or M (multiple updates)

<Program> = Program or Option name (string)
<level> = version, release, modification and fix levels (string)
<vol> = volume number where files for this option are located
<quiesce> = Y (subsystem should be stopped prior to installation)

<type>
<lang>

= N (not necessary to stop subsystem)
= type of information on medium (code/documentation/ •••)
= NLS language token of language used

Chapter 8. Device Drivers Packaging 8-3

<descr> = description of Program Option (string)
<comment> = everything following a # sign after <descr>

8.5.2 Instal Script
In order to be compatible with the installp command, the user-provided instal
script file for an application program must perform the following procedures:

• Verify compatibility of the program (Program file) or program option
(Program. Option file) with other installed programs via the ckprereq
command.

• Perform pre-installation processing.

• Restore all required files from the medium via the inurest command.

• Execute the configuration procedure (config file) if it exists.

• Create a status file indicating success or failure for each program option.

• Return an exit code indicating the status of the installation or update.

8.5.3 al (Option.al)
This file contains a list of files for program (Program.Option), one name per
line, with path given relative to root.

8.5.4 size (Option.size)

8.5.5 copyright

This file contains a list of major directories and how many 512-byte blocks are
. required by program (Program.Option) in each directory.

This file contains any ASCII text.

8.5.6 Ipp.cleanup
This file is a script or executable to handle failed installation attempt. It must at
least remove files that were restored, but other actions may be necessary (e.g.,
undoing changes to files).

8.5.7 Prereq (Option.prereq)

8-4

This file contains a list of prerequisites for installing program (Program.Option).
Two types of prerequisites are possible:

1. Required program level prerequisite

<prog-name> <lev-expr> <lev-expr> •••

where < lev-expr> is v (version), r (release), m (modification), or f (fix),
followed by an equality or inequality sign, and a number. For example:

database v=l r>3

means that Version 1, Release 4 or later of the program database is
required.

2. Relational prerequisites

> <int> {
<prereq type 1>
<prereq type 1>

For example:

>1 {
Prog1 v=2
Prog2 v>3
}

means that Prog1, Version 2, and Prog2, Version 4 or later are required.

8.5.8 config (Option.config)

8.5.9 Ipp.deinst

This file is an executable for configuring system after installation (this is done
after error templates are updated).

This file is a script for manually de-installing program. It must restore prior
state which may require saving copies of files that have been modified for
installation (in this case, the size of these files must be included in the size file).

8.5.10 inventory (Option.inventory)

8.5.11 productid

8.5.12 Ipp.acf

This is a highly recommended file which contains specific information about
each file in the program (Program.Option). It is an ASCII text in stanza format,
to be entered into the VPD database. Installp automatically calls sysck to do
this.

This file contains the part number of the program. It contains one line of text to
be entered into the VPD database at the time of installation.

The archive control file is needed whenever the application adds to or modifies
a library owned by another application. It is recommended that files to be
archived in the library ILibPathlLib be placed in ILibPathlinst_updtILib. The
files are entered into Ipp.acf as follows:

Filename ArchiveName

where Filename is the complete path name of the file (relative to root), and
ArchiveName is the complete path name of the archive where the file is to be
archived. These names are to be separated by one or more white spaces, and
each entry must occur on a new line.

8.6 InstaUp Example

Chapter 8. Device Drivers Packaging 8-5

8.6.1 Introduction
As an example, we have packaged the device driver for the Real Time Interface
Co-processor Adapter. The package contains two options. First, it is possible
to install the device driver (ricdd), and the configuration methods (cfgrica and
cfgricp), and update the ODM database from stanza files (ric.add for PdDv, PdAt
and PdCn, and sm_ric.add for the SMIT dialogs). The second option consists of
the sources of the device driver and the methods. If installed, they are put
respectively in the directories lusr/lpplricdd/srcldriver and
I usr/ /ppl ricddl srcl methods.

Most of the files necessary for the package are listed in "Real Time Interface
Co-Processor Device Driver Package" on page 0-16. Inthe same section, you
will also find a listing of the Makefile used to create the package from the
individual files. To use it, you need to put all the files necessary to create the
liblpp.a archive file used by the installp command in the same directory as the
Makefile. The files to be installed (and Ipp_name) should be in another
directory (referenced as $(ROOT) in the Makefile). For convenience, this
directory is a sub-directory named root under the first one.

8.6.2 How to Use the Makefile

8-6

In order to generate a package, you need first to modify a certain number of
variables inside the Makefile:

1. DEV: points to the destination of image of distribution medium.

2. PROG: name of application program (ricdd).

3. ROOT: application files directory. It is assumed that every file below $ROOT
other than $ROOT/lpp_name and $ROOT/usr/lpp/$PROG/liblpp.a is part of
the application program package.

The Makefile needs the following files:

1. Ipp_name (the list of options) (must be in directory $(ROOT))

2. instal (installation script)

3. Ipp.cleanup and Option.cleanup (cleanup scripts if installation fails)

4. al or Option.al (apply list for each option)

5. size or Option.size (size of file for each option).

If the package to build has different options, those options must be listed, one
per line in a file called Options. Thus, for this package, we have an Options file:

ricdd.src
ricdd.driver

an Option.al (Le. ricdd.driver.a/ and ricdd.src.a/) and an Option.size (Le.
ricdd.driver.size and ricdd.src.size) files. The Makefile is also ready for a
package with no options (no Option file, but an al and a size file).

The Makefile will try to build files that could be missing. It knows how to make
al (everything under $(ROOT)), and can calculate size from al or Option.size or
from Option.al. In this case the files ricdd.driver.size and ricdd.src.size are
therefore optional.

The following two files are also required for an installp package, but Makefile
knows how to supply them:

1. liblpp.a (archive containing all installp files except Ipp_name): Makefile will
create or remake it if it is out of date.

2. copyright: if missing, Makefile will supply an empty file.

It is possible to add a certain number of optional files. In this example, we
have a config file (configuration of the installed package, named
ricdd.driver.config), prereq (list of prerequisites), and /pp.deinst (a deinstallation
script). Both ricdd.driver.config and /pp.deinst are listed in "Real Time Interface
Co-Processor Device Driver Package" on page 0-16, while prereq contains the
following lines:

bes.ebj v>0
besext2.games.ebj v>0

In other words, we need the Base Operating System, and the Games to be
installed before we can install the ricdd package.

All the optional files to be included in distribution must be listed in the file
optiona/files, one per line. The file used in this case thus contains three lines
with:

prereq
lpp.deinst
ricdd.driver.config

Finally, you need the following files to be under the root sub-directory:

./reet:
etc
lpp_name
usr

./reet/etc:
drivers
metheds

./reet/etc/drivers:
ricdd

Chapter 8. Device Drivers Packaging 8-7

./root/etc/methods:
cfgrica
cfgricp

./root/usr:
lpp

./root/usr/lpp:
ricdd

./root/usr/lpp/ricdd:
1 i b 1 pp. a
ric. add
ric.msg
sm_ric.add
src

./root/usr/lpp/ricdd/src:
driver
methods

./root/usr/lpp/ricdd/src/driver:
ric.h
ricmisc.h
ri cstruct. h
riccfg.c
ricdd.c
ri cutil . c

./root/usr/lpp/ricdd/src/methods:
Makefile
cfgrica.c
cfgricp.c
debug.h
ric. add
ric.h
ric.msg
ricmisc.h
ricstruct.h
sm_ric.add

Then, just type "make". The package will be created on the specified medium.

8.6.3 Root/lpp_name File
1 R I {
ricdd.src 01.00.0000.0000 1 N 0 US_ENG ric device driver sources
ricdd.driver 01.00.0000.0000 1 N 0 US ENG ric device driver
} -

8.6.4 Apply List Files

8.6.4.1 Ricdd.driver.al

8-8

./etc/drivers/ricdd

./etc/methods/cfgrica

./etc/methods/cfgricp

./usr/lpp/ricdd/ric.add

./usr/lpp/ricdd/sm_ric.add

./usr/lpp/ricdd/ric.msg

8.6.4.2 Ricdd .src.at
./usr/lpp/ricdd/src/methodsjMakefile
./usr/lpp/ricdd/src/methods/cfgrica.c
./usr/lpp/ricdd/src/methods/cfgricp.c
./usr/lpp/ricdd/src/methods/debug.h
./usr/lpp/ricdd/src/methods/ric.add
./usr/lpp/ricdd/src/methods/sm_ric.add
./usr/lpp/ricdd/src/methods/ric.msg
./usr/lpp/ricdd/src/driver/ric.h
./usr/lpp/ricdd/src/driver/ricmisc.h
./usr/lpp/ricdd/src/driver/ricstruct.h
./usr/lpp/ricdd/src/driver/riccfg.c
./usr/lpp/ricddjsrcjdriverjricdd.c
./usr/lppjricddjsrc/driver/ricutil.c

INSTALL PACKAGE EXAMPLE -----------------,

Please see "Real Time Interface Co-Processor Device Driver Package" on
page 0-16 for an example of the install package that we have done for the
RIC device driver.

Chapter 8. Device Drivers Packaging 8-9

8-10

Chapter 9. Tools for Debugging Device Drivers

9.1 Debugging Overview
This chapter provides information regarding the available procedures for
debugging a device driver which is under development. The procedures
discussed include:

• How to save device driver information in a system dump

• How to use the "crash" command to interpret and format system structures

• How to use the kernel debugger to set breakpoints and display variables
and registers

• How to use Trace to monitor entry/exit of device drivers and selectable
system events

• Error logging to record device-specific hardware or software abnormalities.

The system kernel dump routine contains all the vital structures of the running
system, such as the process table. the kernel's global memory segment, each
process' data segment and stack segment. Be sure to refer to the source of
the system header files in /usrlinclude/sys. The various system structures are
defined in files with a suffix of ".h". The name of the file tells which structure
and associated information it contains. For example, the user block is defined
in /usr/include/sys/user.h. The process block is defined in
/usr/include/sys/proc.h. When you examine system data which maps into these
structures, you will be able to gain valuable kernel information that may explain
why the dump was called.

9.2 System Dump
The system dump copies selected kernel structures to the dump device when
an unexpected system halt occurs, when the reset button is pressed, or when
the special system dump key sequences are entered. You can also initiate a
system dump through 8MIT. The dump device can be dynamically configured,
which means that either the sysdumpdev, tape or logical volumes on hard disk
can be used to receive the system dump. Dynamic configuration can be
achieved using the sysdumpdev command. Primary and secondary dump
devices can be defined. A primary dump device is a dedicated dump device,
while a secondary dump device is a shared one. .

9~2.1 Initiating a System Dump

© Copyright IBM Corp. 1991

A system dump initiated by a kernel panic is written to the primary dump
device. If you initiate a system dump by pressing the reset button (be sure the
key is in the service position!), the system dump is written to the primary dump
device. You can determine whether the write of a system dump goes to the
primary dump device or to the secondary dump device by use of the special
key sequences. To use the special key sequences the key must be in the
service position. To write to the primary dump device, use the sequence
<Ctrl> <Alt> <NumPad 1>. To write to the secondary dump device, use the
sequence <Ctrl> <Alt> <NumPad 2>.

9-1

To use SMIT, select Problem Determination from the main menu, then select
System Dump. This presents a menu which allows you to not only elect to
initiate a system dump to either the primary or secondary device, but also
options for manipulating the dump devices and the system dump files. If you
prefer to initiate the system dump from the command line, use the
sysdumpstart command. This command used with the -p flag will write to the
primary device, while the -s flag will write to the secondary device.

Note: The system halts after system dump completes.

9.2.2 Including Device Driver Information in a System Dump

9-2

The system dump is table driven. It consists of a master dump table and a
component dump table. A master dump table entry is a pointer to a function
which is provided by the device driver. The function is called by the kernel
dump routine when a system dump occurs. The function must return a pointer
to a component dump table The component dump table specifies memory areas
to be included in a system dump. Both the master dump table and the
component dump table must reside in pinned global memory.

When a dump occurs, the kernel dump routine calls the function pointed to in
the master dump table twice. On the first call, an argument of 1 indicates that
the kernel dump routine is starting to dump the data specified by the
component dump table. On the second call, an argument of 2 indicates that the
kernel dump routine has finished dumping the data specified by the component
dump table. ' The component dump table should be allocated and pinned during
initialization. The entries in the component dump table can be filled in later.
The function pointed to in the master dump table must not attempt to allocate
memory when it is called. Figure 9-1 on page 9-3 shows the flow of a system
dump.

sysdumpstart

command

kernel
component

Component
Dump
Table

.,

--

smit
menu

sysdumpdev
command

I

--

/
MASTER
DUMP
TABLE

ldev/dump --

'--------II kernel abend I
L....------..... l key sequence I

Figure 9-1. System Dump Flow

dump
media
device
driver

crash
command

h
APPL

KERNEL

-- dump

device

In order to have your device driver data areas included in a system dump, you
must register the' data areas in the master dump table. Use the dmp_add
service to add an entry to the master dump table. Conversely, use the dmp_del
service to delete an entry from the master dump table. The syntax is as
follows:

Chapter 9. Debugging Tools 9-3

9-4

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

int dmp_add(cdt_func) or int dmp_del(cdt_func)
int cdt * ((*cdt_func) ());

The structure type (struet edt) is defined in /usr/include/sys/dump.h. A edt
structure consists of a fixed-length header (edt_head structure) and an array of
one or more edt_entry structures. The edt_head structure contains a
component name field, which should be filled in with the name of the device
driver, and the length of the component dump table. Each edt_entry structure
describes a contiguous data area, giving a pointer to the data area, its length, a
segment register, and a name for the data area. The name supplied for the
data area can be used to refer to it when the erash command formats the
dump. Refer to Figure 9-2 on page 9-5 for an illustration of the dump image.

Component Dump Table -A

Bitmap for 1 st data area

1st data area for component A

Bitmap for 2nd data area

2nd data area for component A

Component Dump Table -B

Bitmap for 1st data area

1 st data area for component B

*

*
*

Component Dump Table -N

Bitmap for 1st data area

1 st data area for component N

Bitmap for 2nd data area

2nd data area for component N

Figure 9-2. Kernel Dump Image

9.2.3 Formatting a System Dump
Each device driver that includes data in a system dump can install a unique
formatting routine in the lusr/adm/ras/dmprtns directory. A formatting routine
is a command that is called by the crash command. The name of the
formatting routine must match the component name field of the corresponding
component dump table. The crash command forks a child process that
executes the formatting routines. If a formatting routine is not provided for a

Chapter 9. Debugging Tools 9-5

component name, the crash command executes the _default_dmp_fmt default
formatting routine, which prints out the data areas in hex.

The crash command calls the formatting routine as a command, passing the file
descriptor of the open dump image file as a command line argument. The
syntax for this argument is -ffile_descriptor.

The dump image file includes a copy of each component dump table used to
dump memory. Before calling a formatting routine, the crash command
positions the file pointer for the dump image file to the beginning of the relevant
component dump table copy.

The memory dumped is laid out in the dump image file with the component
dump table followed by a bit map for the first data area, then the first data area
itself. Then will follow a bit map for the next data area, the next data area
itself, and so on.

The bit map for a given data area indicates which pages of the data area are
actually present in the dump image and which are not. Pages that were not in
memory when the dump occurred were not dumped. The least significant bit of
the first byte of the bit map is set to 1 if the first page is present. The next least
significant bit indicates the presence or absence of the second page and so on.
A macro for determining the size of a bit map is provided in
/usr/include/sys/dump.h.

9.3 The crash Command

9-6

The crash command is a particularly useful tool for device driver development
and debug which interprets and formats the system structures. The crash
command is interactive and allows you to examine an operating system image
or an active system. An operating system image is held in a system dump file
existing either as a file or on the dump device. When you examine an active
system the crash command opens /dev/mem; therefore, you must be running
with root user permissions.

To invoke the crash command on the active system, simply type crash on the
command line. To invoke the crash command on a system image file, type
crash system image. The system image parameter can be either a file name or
the name of the dump device. The default is /dev/mem. You may also specify
a kernel symbol definition as a parameter following the system image. The
default is /unix.

Note that by convention the symbol names for function entry points always
begin with a period (.), while symbol names for data areas always begin with an
underscore {~. There is usually a data address corresponding to an external
entry point address, and the od subcommand will display the data address for a
name with no prefix. To be safe, be sure to use the proper prefix when looking
for addresses.

There is a flag which can be used with the crash command to generate a list of
data structures without using subcommands. This is the -a flag. Use of this
flag will generate a huge listing to standard out, so it is wise to redirect the
output to either a file or to a printer.

In order to view the system structures a variety of subcommands may be used.
These subcommands may have flags which can modify the format of the data.
If you do not use a flag to specify what you want to see, all valid entries will be
displayed.

9.3.1 crash Subcommands
Once you initiate the crash command, you will receive a line prompt which uses
the ">" character. For a list of the subcommands available in the crash
command, type "?" after the prompt. This will generate the subcommand list
with a brief description of each. Some of the subcommands have aliases, or
short forms, which will be noted with the subcommand descriptions. To exit the
crash command, type q to quit.

Any shell command can be executed from within the crash command by
preceding it with "!". Note that many structures displayed are longer than one
screen length. Make sure that you can halt scrolling if it is important to view
something in detail. To do this, first set the terminal with the stty command. To
do this from within the crash command, type "!stty ixon ixany " after the prompt.
Then you may type "<Ctrl> <s>" to stop scrolling and " <Ctrl> <q>" to
resume scrolling.

• buffer[Format][BufferHeaderNumber]
The buffer subcommand displays the data in a system buffer
according to the Format parameter. When specifying a buffer header
number, the buffer associated with that buffer header is displayed. If
you do not provide a Format parameter, the previous Format is used.
Valid options are decimal, octal, hex, character, byte, directory and
write. The write creates a file in the current directory containing the
buffer data.

Aliases = b

> buffer hex 3

BUFFER FOR BUF HDR 3
00000: 41495820 4c564342 00006a66 73000000
00020: 00000000 00e0e0e0 eeee00ee 0e000000
ee04e: 00000000 00e0e0e0 e0003030 30303033

and so on

• buf[BufferHeaderNumber]
The buf subcommand displays the system buffer headers. A buffer
header contains the information required to perform block I/O. If you
type the buf subcommand with no BufferHeaderNumber, a summary
of the system buffer headers will be displayed:

Aliases = bufhdr, hdr

> buf
BUF MAJ MIN BLOCK FLAGS

o 000a 000b 8 done stale
1 000a 000b 243 done stale
2 e00a 000b 24 done stale

Chapter 9. Debugging Tools 9-7

9-8

• callout

and so on

If you type the buf subcommand with a BufferHeaderNumber a single
complete header is displayed:

> buf 3

BUFFER HEADER 3:
b forw: 0x014d052B, b back: 0x014d0160, b_vp: 0x0000000e
av_forw: 0x014d0160, av back: 0x014d052B, b iodone: 0x0001B5fB
b dev: 0x000a000b, b blkno: 0, b addr: 0x014e9000
b bcount: 4096, b error: 0, b resid: 0
b work: 0xB0000000, b_options: 0x00000000, b event: 0xffffffff
b_start.tv_sec: 0, b_start.tv_nsec: 0
b_xmemd.aspace_id: 0x00000000, b_xmemd.subspace_id: 0x00000000
b_flags: read done stale

Please refer to lusr/include/sys/buf.h for the structure definition.

The callout subcommand displays all active entries on the active
trblist. When the kernel extension time-out is used in a device
driver, this timer request will be entered on a system-wide list of
active timer requests. This list of timer requests is the trblist. Any
timer which is active will be on this list until it expires.

Aliases = c, call, calls, time, timeout, tout

> call out
TRB #1 on Active List

Timer address: 0x01Bd70a0
Timer flags: 0x00000002
Timeout function: 0x00e273dc
Timeout function data: 0x01ad70a0
Scheduled timeout (sees): 02702B6ad
Scheduled timeout (nanosecs): 0x1935a300
trb.timerid: 0x00000000
trb. timeout. it_interval. tv_sec: 0x00000000
trb.timeout.it interval.tv nsec: 0x00000000 - -
trb.knext: 0x01Bd71B0
trb.kprev: 0x00000000

TRB #2 on Active List

and so on

Please refer to lusr/include/sys/timer.h for the structure definitions,
and to InfoExplorer for a description of the time-out mechanism.

• cm[SlotNumber SegmentNumber]
The cm is used by the od subcommand to change the current
segment map. The cm subcommand changes the map of the crash
command internal pointers for any segment of a process not

swapped out, if you specify the process SlotNumber and
SegmentNumber. This allows the od subcommand to display data
relative to the beginning of the segment desired. The following
example sets the map to process S/otNumber 3 to SegmentNumber
2, then displays ten words starting from the offset 0:

Aliases = none

> em 3 2
p3,2 » od e 1e
eeeeeeee: eeeeeeee eeeeeeee eeeeeeee eeeeeeee
eeeeee1e: eeeeeeee eeeeeeee eeeeeeee eeeeeeee
eeeeee2e: eeeeeeee eeeeeeee
p3,2 »

and so on
Typing the em subcommand without any parameters resets the map
of internal pOinters. Use this subcommand only when analyzing the
currently running system.

• ds[Address]
The ds subcommand returns the symbols closest to the given
address. The ds subcommand can take either a text address or a
data address as input.

Aliases = none

> ds e12345
.ioet'_systraee + exeeeee1b5

When a number such as OxOOOOO1b5 is displayed, it shows the
number of assembly language instructions by which the given
address is offset from the routine's entry point.

• du[SlotNumber]

• dump

The du subcommand uses the specified process S/otNumber to
display a combined hex and ASCII dump of the user block for any
process that is not swapped out. The default is the current process.

Aliases = none

> du 3
eeeeeeee eeeeeeee eeeeeeee 2ff7feee eeeeeeee * / *
eeeeeele eeeee3e3 eeeeeeee eee3e644 eeeelebe * D *
eeeeee2e 22222828 eee3e644 eeee6244 eeeeeeeg *""((... D .. bD *

and so on

The dump subcommand displays the name of each component for
which there is data present. After you select a component name
from the list, the crash program loads and runs the associated
formatting routine contained in the lusr/adm/ras/dmprtns directory.
If there is more than one data area for the selected component, the

Chapter 9. Debugging Tools 9-9

9-10

formatting routine displays a list of the data areas and allows you to
select one. The crash command then displays the selected data
area. You may enter the quit subcommand to return to the
previously displayed list and make another selection or enter quit a
second time to leave the dump subcommand loop.

Aliases = none

• file [File TableEn try]
The file subcommand displays the file table. Unless specific file
entries are requested, only those with a non-zero reference are
displayed.

Aliases = files, f

> f 3
SLOT REF INOOE FLAGS

3 1 0x018e53f0 read

Please refer to lusr/include/sys/file.h for the structure definition.

• fs[SlotNumber]
The fs subcommand traces a kernel stack for the process specified
by the process SlotNumber for any process that has not been
swapped out. The fs subcommand displays the called subroutines
with a hex dump of the stack frame for the subroutine that contains
the parameters passed to the subroutine. If no S/otNumber is
enterred, the currently running process is displayed. If the process
specified is swapped out, the message number 0425-074 will be
displayed, and it will tell you that the frame pointer is not valid.

Aliases = none

> fs
STACK TRACE:

**** .e wait ****
2ff97e78 2FF97EOB 00800568 00000000 018F4C60
2ff97e88 2FF97EE8 00800568 000828C0 0008A020
2ff97e98 2FF97E08 28008044 00082418 2FF98000
2ff97ea8 00000000 00088468 00000000 00000000
2ff97eb8 2FF97F38 00000008 00000004 00000004
2ff97ec8 00000005 010FE258 00000000 E3000600

• inode[-][<MAJ> <MIN> <INUMB>]

/ h •••••• L
/ h •• + ••••
/ (.. 0 .. 8./ ...
••••••• h ••••••••
/ •• 8 ••••••••••••
•••••• • X ••••••••

The inode subcommand displays the i-node table and the i-node
data block addresses. A specific inode can be displayed by
specifying the major and minor device numbers of the device where
the inode resides and the inode number. The inode will only be
displayed if it is currently on the system hash list.

Aliases =ino, i

>inode
ADDRESS MAJ MIN INUMB REF LINK UID GID SIZE MODE SMAJ SMIN FLAG

exe18e4e5e e1e eee7 11264 e 1 2 2 3e ----777
exe18f9fde e1e eee9 16384 1 6 2e1 e 512 d---755

addr: 16448 e e e e e e e
exe18ea94e e1e ee11 e 1 e e e e ---- e

and so on

• kfp[FramePointer]
If the kfp subcommand is entered without parameters, it displays the
last kernel frame pOinter address that was set using kfp. If a frame
pointer address is provided, then it sets the kernel frame pointer to
the new address. This subcommand is used in conjunction with the
·r flag on the trace subcommand.

Aliases = fp, rl

> kfp

• knlist[Symbo/]
The knlist subcommand displays the addresses of all the symbol
names given. If the symbol is not found, a no match message is
returned. This subcommand runs on an active system only. The
knlist subcommand runs a subroutine to the active kernel to obtain
the address from the system's knlist. The nm subcommand provides
the same function but searches the symbol table in the Kernel Image
File for the address and therefore can be used on a dump.

Aliases = none

> knlist open
open:exeeebbc98

• mbuf[-] [Clusters I < Address> ... J
The mbuf subcommand displays the system mbuf structures. mbuf
structures are memory buffers which are chained and which can be
manipulated by the Memory Buffer Kernel Services. If the "." flag is
used, the data associated with the mbuf is also displayed. The mbuf
subcommand with no additional arguments will display the chain of
mbufs pointed to by the mbuf pointer. If the Clusters argument is
supplied, then the chain of mbufs pointed to by the kernel
mbclusters pointer is displayed. If the Address argument is given,
then the mbuf at the given address is displayed. Note that valid
mbuf pOinters must be on a 128-byte boundary.

Aliases = mbuff

> mbuf
ADDRESS SIZE TYPE LINK DATAPTR

exe1a67eee e free exeeeeeeee exe1a67eee
DATA: exeeeeeeee exeeeeeeee exeeeeeeee exeeee0eee

Refer to lusr/include/sys/mbuf.h for the structure definition.

Chapter 9. Debugging Tools 9-11

9-12

• nm[Symbol]
The nm subcommand displays symbol value and type as found in
Kernel/mage.

Aliases = none

> nm open
00095484 000C70 PR SD
00095484 PR LD
000BBC98 00000C SV SD

·od[SymboINameOrAddress][Count] [Format]

<.open>
.open
open

The od subcommand dumps Count number of data values starting at
Symbol value or Address according to Format. Possible formats are
octal, longoct, decimal, longdec, character, hex, and byte. The
default is hex. Note that if you use the Format parameter, you must
also use Count.

The od subcommand is especially useful during program
development in order to see structure values at a given pOint in
time.

Aliases = none

> od open 10
00095484: 7c0802a6 bf21ffe4 90010008 9421ff30
00095494: 609c0000 832202e0 607b0000 60bd0000
000954a4: 63230000 38800080

> od open 10 byte
00095484: 0174 0010 8002 8246 0277 0041 0377 0344
0009548c: 0220 B001

> od 12345
warning: word alignment performed
00012344: 480001d8

• pcb[ProcessTableEntry]
The pcb subcommand displays the mstsave portion of the user
structure of the named Process, or process control block. If you do
not specify an entry, information about the last running process is
displayed. If you attempt to display a paged process, you will
receive the message Cannot read uarea for this process. Note that
the Segment Registers, the General Purpose Registers, and the
Floating Point Registers are displayed by this subcommand, but
this data is too lengthy for this example.

Aliases = none

> pcb
USER AREA FOR crash (ProcTable Address 0xe3003700)

SAVED MACHINE STATE
curid:0x00003727 m/q:0x70000000 iar:0x00005fd8 cr:0x28442888
msr:0x000090b0 lr:0x0004d170 xer:0x00000001

ctr:exeee1c7a4 *bus:exeeeeeeee
*prevmst:exeeeeeeee *stackfix:exeeeee000 intpri:0x0e0000eb
backtrace:0x00 tid:0xe0e00000 fpeu:0x00 ecr:0xe00ee000
Exception Struct

0x30035d00 ex42000000 0x40001acc 0x30035d00

and so on

> pcb 30
USER AREA FOR cron (ProcTable Address 0xe3001eee)

SAVED MACHINE STATE
curid:exeee01e7e m/q:0xe00ee067 iar:ex0e03e644 cr:ex2S42402S
msr:0x00e010b0 lr:0x00e30644 xer:0x00e00e0S
ctr:ex0009a6e4 *bus:ex0ee00000
*prevmst:0x00000000 *stackfix:ex2ff97bdS intpri:0x0e000000
backtrace:0x00 tid:0x00e00000 fpeu:0xe0 ecr:0x00e000e0
Exception Struct

0x00000000 0x2200000e 0x2000343a 0xc00Sd7S0

and so on

Please refer to lusrlinclude/sys/user.h and
/usr/include/sys/mstsave.h for the relevent structure definitions.

• proc[-][-r][ProcessTableEntry] .
The proc subcommand displays the process table. The·r displays
only runnable processes. The "." flag displays a longer listing of the
process table.

Aliases = PS, P

> P
SLT ST

o s

1 s

2 r

> p 30
SLT ST

30 s

> p -

PID PPID PGRP UID EUID PRI CPU EVENT NAME
0 0 0 0 0 16 120 swapper

FLAGS: swapped_in no_swap fixed_pri kproc wake/sig
1 0 0 0 0 60

FLAGS: swapped_in no_swap wake/sig
2e2 0 e 0 0 127

FLAGS: swapped_in no_swap fixed_pri

and so on

PID PPID PGRP UID EUID PRI
le70 1 le7e 0 0 26

FLAGS: swapped_in wake/sig

0 init

106 wait
kproc

CPU EVENT NAME
o 00leS3bc cron

Chapter 9. Debugging Tools 9-13

9-14

• socket[-]

SLT ST
13 s

PIO PPIO PGRP UIO EUIO PRI CPU EVENT NAME
13 13 13 13 13 16 1213 swapper

FLAGS: swapped_in no_swap fixed_pri kproc wake/sig

Links: *child:exe3eeS1SS *siblings:SxSSSSSSSS *uidl:Sxe3ee33eS
*wchan1(real):exeeeeeeee *lcklst:exeeeeesee
selchn:exeeeeeees

Dispatch Fields: *prior:exe3eSSeSe *next:exe3eSeSee
pevent:exeeeeee2S wevent:exseeSeSS3
polevel:exSSessses *lockwait:SxSSseesee
*eventlst:Sxeeeeeeee *wchan(hashed):exeeeessee suspend:ex7fff
process waiting for: event(s)

and so on

Please refer to lusr/include/sys/proc.h for the structure definition.

The socket subcommand displays the system socket structures. If
the "." flag is used, the socket buffers are also displayed.

Aliases = sock

> sock
SLOT: 26 type:exeee2 opts:exseee linger:exseee

state:Sxee80 pcb:ex01d32d8c proto:0x01c65cf0
q0:0xe00eSeee qelen: 0 q:0x00000S0S
qlen: 0 qlimit: 0 head:Sx000S0000
timeo: 0 error: 0 oobmark: 0 pgrp: S

and so on

Please refer to lusr/include/sys/socket.h for structure definitions.

• stack[ProcessTableEntry]
The stack subcommand displays a dump of the kernel stack of a
process. The addresses shown are virtual data addresses rather
than true physical addresses. If you do not specify an entry,
information about the last running process is displayed. You cannot
trace the stack of the current running process on a running system.

Aliases = s, stk, k, kernel

> s 313
KERNEL STACK:

2ff97a50:
2ff97a60:
2ff97a70:

8eaa4
90bS

1

16 2ff97ac8 2
8e8b4 2ff97ad8 0

26 2ff97ac8 2ff98938

• stat

and so on

The stat subcommand displays statistics found in the dump. These
statistics include the panic message (if there is one), time of crash,
and system name.

Aliases = none

> stat
sysname: AIX
nodename: funk
release: 1
version: 3
machine: 000003961000
time of crash: Fri Sep 28 17:50:38 1990
age of system: 15 day, 6 hr., 25 min.

• trace[-r][ProcessTableEntry]
The trace subcommand displays a kernel stack trace of the current
process. The trace starts at the bottom of the stack and attempts to
find valid stack frames deeper in the stack. If you do not specify a
ProcessTableEntry, information about the current process is
displayed. The -r flag will cause trace to use the kernel frame
pointer set up by the kfp subcommand as its starting address
instead of the frame pointer found in the SystemlmageFile. The trace
subcommand will stop and an error will be reported if an invalid
frame pointer is encountered.

Aliases = t

> t 30
STACK TRACE:

• ts[TextAddress]

• e_wai t ()
~e_sleep ()
.e_sleepl ()
• sl eepx ()
• fi fo read ()
• fi fo rdwr ()
• vno_rw ()
• rwui 0 ()

• rdwr ()
• kreadv ()

The ts subcommand finds the text symbols closest to the given
address.

Aliases = none

> ts 012345
.ioctl_systrace

Chapter 9. Debugging Tools 9-15

9-16

etty[a I 0 I ResourceName I major[minor[channe/]]]
The tty subcommand displays the tty structures. Entering tty without
parameters defaults to the 0 option and displays abbreviated data
for all the open tty structures. The a option displays abbreviated
data for all tty structures. A ResourceName is the name by which a
device is known to the system. For tty devices this is typically ttyO,
tty 1 , etc. Therefore entering the tty subcommand with a
ResourceName option will produce a detailed display of the tty
structure for the device known to the system by the name.
Combinations of major, minor, and channel numbers also give
detailed data for the corresponding devices. For example, to get a
detailed display of the tty structures for all devices associated with
major device 4, type:

>tty 4

To get a detailed display of the tty structures for all devices
associated with minor device 8 on major device 4, type:

>tty 4 8

To get a detailed display of the tty structure for the device on
channel 0 of minor device 8 on major device 4, type:

>tty 4 8 0

Aliases = term, dz, dh

> tty
(maj,min) [chan]: sid grp raw can out flags

> tty ttye

tty0:00002833 00002833 e e e isopen iaslp ccnt=e
hft/e:eeee151a eee0151a e 0 0 isopen iaslp ccnt=0
pts/0:0eee2949 eee0325f e e 0 isopen iaslp ccnt=0
pts/l:0ee02c4e e0ee2f76 e 0 e isopen ccnt=0

ttye: tp=ex01b348f8, dev:(27,e) chan:(0xe)
sid:0xe0e02833 group:0xeee02833 tsm:exe0e0e00e id:e
port status: isopen iaslp ccnt=e
ctl=0xe137724e lctl=exela853ee hptr=ex01b348e0 evt=0x00002833 lck=0xfffff
rbuf: cc=0 1 1

tbuf: cc=58 % 8lks Cp Rnk~M~J------- ____________ 11

raw queue: cc=0, actual=0: II

can queue: cc=0, actual=0: II

out queue: cc=e, actual=0: II

and so on

Please refer to lusr/include/sys/tty.h for the structure definition.

e user[ProcessTableEntry]
The user subcommand displays the user structure of the named
process as determined by the information contained in the process
entry table. If you do not specify the entry, the information about the
last running process is displayed. If you attempt to display a paged
process, an error message is displayed.

• var

Aliases = u, uarea, u_area

> u 3e
USER AREA FOR biod (ProcTable Address 0xe3001e00)

SAVED MACHINE STATE
curid:ex00001e08 m/q:0x00000039 iar:0x0003e644 cr:0x28424028
msr:0x000010b0 lr:0x00e30644 xer:0x0000000c
ctr:0x000303b8 *bus:0x000e000e
*prevmst:0x0e000e00 *stackfix:0x2ff97d48 intpri:0x00000000
backtrace:0x00 tid:ex0e00e000 fpeu:0x00 ecr:0x00000000
Exception Struct

0x0000e000 0x4000e00e 0x4000172b 0x20045134
Segment Regs
0:0x00000000
4:0x007fffff
8:0xe07fffff

12:0x007fffff

1:0x400e0522 2:0x0000172b 3:0x007fffff
5:0x007fffff 6:0x007fffff 7:0x007fffff
9:0x0e7fffff 10:0x0e7fffff 11:0x007fffff

13:0x400e14ea 14:0x00000c06 15:0x0e7fffff

and so on

Please refer to /usrlinclude/sys/user.h for the structure definition.

The var subcommand displays the tunable system parameters.

Aliases = tune, tunable, tunables

> var
buffers 2e
files 328
e fil es 328
procs 131071
e_procs 64
clists 16384
maxproc 4e
iostats 1
locks 2ee
e locks 8456344

• vfs[-][Vfs SlotNumber]
The vfs uses the specified Vfs SlotNumber to display an entry in the
vfs table. The "." displays the vnodes associated with the vfs. The
default is to display the entire vfs table.

Aliases = m, mnt, mount

> vfs 3
VFS ADDRESS

3 1a62494

flags:

> vfs - 3

TYPE OBJECT STUB NUMBER FLAGS PATHS
jfs 1a6d47c 1a6d650 5 D /dev/hd1 mounted over /u

C=disconnected D=device I=remote P=removable
R~readonly S=shutdown U=unmounted Y=dummy

VFS ADDRESS TYPE OBJECT STUB NUMBER FLAGS PATHS

Chapter 9. Debugging Tools 9-17

3 1a62494 Ji3 1a6d47c 1a6d650 5 D jdevjhd1 mounted over ju
VSLOT ADDRESS VFS MVFS VNTYPE FSTYPE COUNT ISLOT INODE FLAGS

83 1a6e0ac 3 vreg jfs 1 - 18f82c0
84 1a6e218 3 vreg jfs 1 - 18f877e
85 1a6e24c 3 vreg jfs 1 - 18f85ge
86 1a6e17c 3 vdir jfs 3 - 18f7f0e
87 1a6dea4 3 vreg jfs 2 - 18f65b0
88 1a6dfa8 3 vdir jfs 5 - 18f610e
89 1a6d47c 3 vdir jfs 1 - 18ea580 vfs_root

Please refer to lusr/include/sys/vfs.h for structure definitions.

• vnode[VNodeSlotNumber]

• xmalloe

The vnode subcommand uses the specified VNodeSlotNumber to
display an entry in the vnode table. The default is to display the
entire vnode structure.

Aliases = none

> vnode 3
VSLOT ADDRESS VFS MVFS VNTYPE FSTYPE COUNT ISLOT DATAPTR FLAGS

3 1a6e078 0 vreg jfs 4 - 18f6790
Total VNODES printed 1

Please refer to lusr/include/sys/vnode.h for the structure definition.

The xmalloe subcommand displays information concerning the
allocation and usage of kernel memory (the pinned_heap and the
kernel_heap).

Aliases = xm, malloe

> xmall oc
Kernel heap usage
heap size = 247803904 amount used = 0
Pinned heap usage
heap size = 247803904 amount used = 0
Kernel and pinned heap usage

9.4 The Kernel Debugger

9-18

The kernel debug program helps determine errors in code running in the
kernel. The kernel debug program is used throughout the kernel development
area. One important use of the kernel debug program is debugging device.
drivers.

The kernel debug program can run in any configuration that includes an
asynchronous terminal connected to a serial adapter. The kernel debug
program does not support any displays connected to any of the IBM graphics
adapters.

You might find it useful to have listings of the various kernel structures, such as
the process block or the user block. You can find these in lusr/include/sys.
You should also have a symbol map of your device driver. The way to get a
symbol map is to use the binder option map at the link step of compiling your
driver. Refer to the Id command on how to do this.

You may enter the kernel debug program through a key sequence from the
keyboard, or by using breakpoints. To enter the kernel debug program from the
keyboard the key must be in service position! To invoke the kernel debug
program from a native keyboard press the key sequence
<Ctrl> <Alt> < NumPad 4>. While you can invoke the kernel debug program
from the native keyboard, the kernel debug program will come up on an
asynchronous terminal rather than on the display associated with the native
keyboard. To invoke the kernel debug program from an IBM 3151
Asynchronous Terminal, use the key sequence <Ctrl> <\>. To invoke the
kernel debug program from an IBM 3161 Asynchronous Terminal, use the key
sequence <Ctrl> <4>.

You can use the crash command to determine whether the kernel debug
program is available. Type:

#crash
>od dbg_avail

The string that is returned will indicate whether the kernel debug program is
available. A 0 or 1 indicates that the kernel debug program is available. A 2
indicates that the kernel debug program is not available.

If the kernel debug program is not available, i.e., nothing happens when you
type in the appropriate key sequences, you must load it. To do this, type
bosboot -a -0 or bosboot -a -I. The -0 flag causes the kernel debug program to
be loaded. The -I flag also causes the kernel debug program to be loaded, but
it also is invoked at system initialization time. This means that at boot-up the
system will trap the kernel debug program. Type <go> <Enter> to get to the
login screen. Note that you must shut down and reboot the system after the
bosboot command completes in order to make the changes available.

There are two ways to enter the kernel debug program using breakpoints. One
way is to set a static debug program trap, or SOT in the compiled code. This is
done by placing the assembly language instruction t Ox4, r1, r1 at the desired
address.

NOTE ---~

A way to do this is to make an assembly language routine that does this,
then call it from your driver code. There is no way to generate an assembly
language instruction from your C code.

The second way is to set a breakpoint by issuing a break command from within
the kernel debug program. You can set breakpoints only in memory that is
currently paged into RAM.

The kernel debug program has other major functions besides that of setting
breakpoints. You may also use it to display and change processor memory and

Chapter 9. Debugging Tools 9-19

registers or memory manager segment registers. Note that the crash
command allows you to display these structures, but it does not allow you to
change them. You may use the kernel debug program to format kernel data
structures or display formatted trace buffers. Conventional debugger features
such as stepping, looping, searches, and variables are also available.

9.4.1 The Kernel Debug Program Commands
When you enter the kernel debug program, it is the only process running on the
machine. Every other process is suspended until you leave the debugger.
Interrupts are disabled. The the kernel debug program maintains its own
mstsave (machine state save) area. Once in the kernel debug program, use the
commands to investigate and make alterations. Each command has an alias or
a shortened form. This is the minimum number of letters required by the kernel
debug program to recognize the alias as unique. See Table 9-1 for a complete
list of the kernel debugger commands and for a summary of the command
function.

9.4.1.1 Commands List and Summary

Table 9-1 (Page 1 of 2). Kernel Debugger Commands List

Command Alias Description

alter: a Alter memory

back b Decrements the IAR

break br Sets a breakpoint

breaks b List currently set breakpoints

clear c Clears (removes) breakpoints

display d Displays a specified amount of memory

drivers dr Displays the contents of the device driver (devsw)
table

find f Finds a pattern in memory

float fl Displays the floating point registers

go 9 Starts execution of the program

? or help h Displays the list of valid commands

loop I Execute until control returns to this point

map m Displays the system loadlist

next n Increments the IAR

origin 0 Sets the origin

proc p Displays the formatted process table

quit q Ends a debugging session

reset r Releases a user-defined variable

screen s Displays a screen containing registers and
memory

set se Define or initialize a variable

9-20

Table 9-1 (Page 2 of 2). Kernel Debugger Commands List

Command

sregs

st

stack

stc

step

sth

swap

trace

trb

tty

user

vars

vmm

xlate

Alias Description

sr Displays segment registers

st Stores a fullword in memory

sta Displays a formatted kernel stack trace

stc Stores one byte in memory

ste Performs an instruction single-step

sth Stores a halfword in memory

sw Switches from the current display & keyboard to
another RS232 port

tr Displays formatted trace information

trb Displays the timer request blocks

tt Displays the tty structure

u Displays a formatted user area

v Displays a listing of the user-defined variables

vm Displays the virtual memory data structure

x Translates a virtual address to a real address

Note that help is available by typing "?" at the debugger prompt. The following
represents a quick guide to the kernel debugger.

• Alter address data

alter 1000 ffff
a 1000 2C

Store the 16 bit value ffff at address 1000
Store the 8 bit value 2C in the high order
byte at address 1000

Modifies the contents of memory, replacing the old value with the
new specified value. If data is only one byte, then it is stored in the
high order byte of the word at address. If data is a halfword, it is
stored in the high order halfword at address. Alter is normally used
to change data while a program is running.

• Back [byte-count]

back
b 16

Decrement the IAR by 4 bytes
Decrement the IAR by 16 bytes

Decrements the IAR by the specified amount.

• Break [address]

break
break 521a
br 8300+A0
break +A0
break lr

Set a breakpoint at the IAR
Set a breakpoint at address 521A
Set a breakpoint at A0 + 8300
Set a breakpoint at the origin + A0
Set a breakpoint at address in the link
register

Sets a breakpoint which will cause the debugger to be entered when
the instruction at the target address is next executed. There is a
maximum of 32 breakpoints.

Chapter 9. Debugging Tools 9-21

9-22

• Breaks

breaks List breakpoints

Displays the breakpoints as a combination of segment register
values, and offsets into the segment. Since the segment registers
may change during program execution, an address such as
1000052C may refer to different regions of memory. The segment
register value is needed, therefore, to specify a unique address.

• Clear [address]

clear
cl 10000200

Clear breakpoint at IAR
Clear ~reakpoint at address
10000200

Removes a previously set breakpoint. If more than one breakpoint
has the specified offset into the segment (low order 28 bits of
address), then the user will be prompted with the segment values for
each of the breakpoints, and asked which to clear.

• Display address [byte-count]

display iar
d 152f 12
display +87
disp r3
d r3>

Display 16 bytes at the IAR
Display 12 bytes at address 152F
Display 16 bytes at the origin + 87
Display 16 bytes at the address in r3
Display from the address contained in the
address in r3 (1 level of indirection)

Displays memory in hexadecimal (base 16) and ASCII (characters).
The byte-count is the number of bytes to display, and is used to
determine how memory is to be accessed. A byte-count of 1 will
cause a single byte to be loaded, a byte-count of 2 will cause a
halfword to be loaded, a byte-count of 4 will cause a word to be
loaded; any other byte-count (including none) will cause memory to
be loaded one byte at a time.

• Drivers [slot I address]

drivers
drivers 10
dr 130000f

Display device driver (devsw) table
Display slot 10 of the device driver table
Display last entry point before address
130000F

Displays the contents of a devsw table entry. Each devsw entry
consists of a number of entry pOints (Read, Write, loctl, etc) into the
specified driver. Each entry consists of a function descriptor, and the
address of the function. If no arguments are given to the drivers
command, the entire devsw table is displayed. If an argument is
given, and that argument is a valid slot number, the corresponding
entry is displayed. If the argument is not a valid slot, it is taken to
be an address and the slot with the last entry point before the
address is displayed (along with the name of the entry point).

• Find patternl* [startl*] [endl* [alignl*]]

• Float

find 7c81

find "AIX"
f 7c81 1eeee
f 7c81 e top

find 7c81 *

f 7c81 * * 2
f 7c fx+1 * 2

Find first occurence of 7C81 in virtual
memory starting at e
Find first occurence of string AIX
Find first 7C81 after address 1eeee
Find first 7C81 between e and
user-de fined variable "top"
Find first 7C81 starting at last address
used
Same as above, but aligned on halfword
Find next 7c starting at 1 + last address
find stopped at

Locates instances of the specified pattern in the current virtual
address space. If, for any argument to find, an asterisk (*) is used
instead of specifying a value then the previous value is used. For
example "find *" searches for the last pattern used. Find sets a
variable, fx, to the address of the last item found. This feature
coupled with the asterisk can be used to continue the search for the
pattern, e.g., "f * fx + 1" searches for the last pattern starting at the
next location. Find remembers the alignment which was used in the
previous search.

float Display floating point registers

Float will display the floating point registers.

• Go [address]

• Help

go
g 1eee

Continue execution at the IAR
Set the IAR to 1eee and begin execution
there

Go will resume execution after a breakpoint. It can be used to set
the IAR to a new address and begin execution there.

help Display the list of valid commands

Help displays one line for each debugger command.

• Loop [iterations]

loop 2 Execute until the second time the IAR has
the current value

Loop is similar to setting a breakpoint at the current IAR, but allows
you to stop, for example, on the sixth time the IAR returns to the
current point. If the IAR is at the beginning of a function, entering
the command "Ioop 6" will cause the program to continue execution
and allow the IAR to return to the current point five times without
entering the debugger. Upon returning for a sixth time, execution
stops and the debugger is entered.

• Map [addresslsymbol]

map
m e3eeeeee

map execexit

Display the system loadlist
Display symbol with value closest to
E3eeeeee
Display the value of the symbol "execexit"

Chapter 9. Debugging Tools 9-23

9-24

Displays information from the system loadlist (the list of symbols
exported from the kernel). If the map command is given with no
arguments, then the entire loadlist is displayed one page at a time. If
an address is given as an argument then the symbol value which is
closest to, but less than, the address is displayed. Since map only
knows of symbols which were exported from the kernel, this
information may not be exact. If a symbol name is given as an
argument, then the loadlist is searched for the symbol, and any
entries (there may be more than one) which match are displayed.

NOTE: The symbol value for a data structure will be the address of
the data structure. The symbol value for a function will NOT be the
address of the function, it will instead be the address of the function
descriptor for that function. The first word of the function descriptor
will be the address of the function. For example: if "map execexit"
displays Ox1000, then "display 1000" will display the address of the
fu nction execexit.

• Next [byte-count]

next
n 20

Increment the IAR by 4
Increment the IAR by 20

Increments the IAR by the speCified amount.

• Origin expression

origin 178D
o S92cc

Set the origin to 178D
Set the origin to S92cc

Sets the origin variable to the value of the specified expression.
Origins are used to match addresses with assembly language
listings (which express addresses as offsets from the start of the
file). Set the origin to the address in the executable of the first
function in the assembly listing. Offsets from the origin are
equivalent to offsets into the assembly listing. This is useful if you
wish to know where the instruction you are about to execute is in the
listing.

• Proc [pid]

p
proc 1

Display the process table
Display the process table entry for
process with process id 1

The proc command with no arguments displays one line for each
process in the process table (similar to the ps command). If a
process 10 is passed as an argument then a long listing of the
process table entry is displayed. This listing shows every field in
use in the process table for that process table entry

• Quit [dump]

quit dump Dump the kernel data structures

Quiting the debugger frees the memory that the debugger occupied.
When the debugger has been entered due to a fatal system error the
argument "dump" instructs the system to dump kernel data
structures to the primary dump device

• Reset variable

reset foo Deletes the user-defined variable "foo"

Resetting a variable effectively deletes it, and allows the variable
slot to be re-used. Currently 16 user-defined variables are allowed,
and when they are all in use no more may be set. Variables which
are not user-defined (such as registers) may not be reset. The
value of a non user-deifined variable is passed to the reset
command and an error message of the form "invalid parameter
14C5" is displayed.

• Screen [track] [+ I - I address I on half I off I on]

screen +
screen -
s 20000ff7
s 200>

screen on
screen off
screen on half
sc track r3

Display the next 112 bytes of memory
Display the previous 112 bytes of memory
Display memory starting at 20000ff7
Display memory at address contained in
location 200 (one level of indirection)
Turns on the display
Turns off the display
Display format uses about 1/2 the screen
Tracks memory starting at the value in
general purpose register 3

The screen command controls the display: which information is
displayed, and how much at a time. The screen command by itself
shows the current screen format (which may have been scrolled by
some other command). Arguments may select another area of
memory to display, may modify the format of the screen so that only
half of the physical screen is used, or even turn off the screen
display entirely. The format modification arguments are useful if
important information may be scrolled off the screen when the
debugger is entered. The default screen may be restored by
entering the "screen on" command, which restores the full screen.
The track option changes the address that the screen displays as the
expression which is being tracked changes. This is useful in a case
where at each stop, at a breakpoint, the memory to be displayed is
addressed by a register.

• Set variablel register value

set start 100
set r12 0

Assign value 100 to variable "start"
Set general purpose register 12 to 0
Set segment register 3 to 10000
Assign 45F0 to the IAR

• Sregs

se s3 10000
set iar 45F0
se name "AIX" Assign string "AIX" to variable "name"

Debugger variables are set via the set command. Set will create
new variables or modify the value of old variables. Certain
debugger variables are symbolic names for machine registers,
which may also be modified using the set command. They are iar,
rO through r31 (for general purpose registers), Ir (link register), sO
through s15 (segment registers), frpO through fpr31 (floating piont
registers), fpscr, dsisr, dar, eimO, eim1, eisO,eis1, mq, msr, cr, ctr,
tid, xer, sdrO, sdr1, rtcu, rtel and dec.

sregs Display the segment registers

Sregs creates a display similar to the screen command, but shows
the segment registers along with certain other registers.

Chapter 9. Debugging Tools 9-25

9-26

• St address word

st 1eee 5 Store the 32-bit value 5 at address
1eee

Stores a 32-bit value to memory. This is similar to the alter
command, but the word size is implicit in the command.

• Stc address byte

stc 1eee ff Store the 8 bit value FF at address 1eee

Similar to the st command, stc stores a single byte at the specified
address.

• Sth address halfword

sth 1eee ee14 Store the 16 bit value 14 at address 1eee

Similar to the st command, sth stores a halfword at the specified
address.

• stack [pid]

stack
sta 251

Format any existing stack frames
Format stack frames for process with process id 251

Formats the stack frames for the specified process. If no process 10
is given, the currently running process is used. Stack frames show
return addresses and may be used to trace the program's calling
sequence. Be aware that the first few parameters to the called
functions are passed in registers, and will not usually be available
on the stack. Generally, only the chain (stack back-chain pointer)
and return address (caller of the owner of this stack frame) are valid.
To thoroughly interpret the stack, it is necessary to use the assembly
language listing for a procedure to determine what has been stored
on the stack. Stack frames for the specified process may not always
be accessible.

• Step [s I instructions]

step
step s
ste 2e

Single step the processor
Single step (skip over a subroutine call)
Step for 20 instructions

Step allows the processor to single step (execute a single
instruction). The argument "s" will cause step to skip over
subroutine calls, so that the main flow of control may be followed.
An integer argument will be used as the number of instructions to
execute before returning control to the debugger.

• Swap port

• Trace

swap 1 Switch display to RS-232 port 1

The swap command allows control of the debugger to be transferred
to another terminal. sO is port 1, s1 is port 2.

trace Display the kernel trace buffers

The trace command displays the last 128 entries of the kernel trace
buffers. Currently there are eight trace channels which may trace
any combination of events. Event entries are placed in a trace buffer
before they are written out to disk (if they are logged to disk), or the

• Trb

buffers are used in a circular fashion and reused when full. The
trace command allows examination of the trace headers which
contain pOinters into the trace buffers. Also the trace entries are
shown (the hook IDs are given in text form, all data is displayed in
hex).

trb Display timer request block information

A menu of commands to display timer request block information is
given.

• Tty [v] [major [minor [channel]]]

tty
tty v
tty 7

Display all open ttys
Verbose listing of all open ttys
Display all open ttys with major number 7

The tty structure is displayed. Major and minor specify which device
to look at. If minor is omitted, all open ttys for the specified major
number are listed. If both major and minor are omitted, all open ttys
are listed. The argument "v" specifies a more verbose output.

• User [pid]

• Vars

·Vmm

user Display current user area
u 315 Display user area for process with process 10 315

The user command with no arguments displays the user area for the
currently running process. If an optional process 10 is given, then
the user area for that process is displayed instead.

vars Display current user-defined variables

A list of the user-defined debugger variables is displayed. Each
variable's name and value is displayed, and an indication of what
the base of the value might be is also given. Since the value 10 may
be either decimal or hexadecimal it will be displayed as HEX/DEC.
String variables are displayed, but there are no quotes around the
string value.

vmm Display virtual memory data structures

Displays a menu of commands for examining the virtual memory
data structures. Useful information such as the number of free pages
is available.

• Xlate virtual-address

xlate 10054000 Translate virtual 10054000 to a real
address

Translates a virtual address to a real address.

Please refer to the Commands Reference volumes (all three) for more detailed
information on these commands.

Chapter 9. Debugging Tools 9-27

9.4.1.2 Numeric Values and Strings

9.4.1.3 Variables

Numeric arguments are required to be hex for all commands except the loop
and step commands, which take decimal. Decimal numbers must either be
decimal constants, variables or expressions involving constants and variables.

A string is either a hex constant or character constant of the form "String".
Double quotes seperate the string from other data.

Variable names must start with a letter and may be up to eight characters long.
Variable names may not contain special symbols. Variables usually represent
locations or values which are used again and again. A variable must not
represent a valid number. Use the set command to define and initialize
variables. Variables may contain from 1 to 4 bytes of numeric data or up to 32
characters of string data. You can release a variable with the reset command.
Note that the reset command cannot be used with reserved variables.

ex: set name 1234
set s8 820c00e0

(sets your variable called name=1234)
(sets seg reg 8 to point to the IaCC)

Note that s8 is a reserved variable (see below).

9.4.1.4 Reserved Variables

9-28

There is a set of variables which have a reserved meaning for the kernel debug
program. These variables may be referenced and changed, but they do
represent the actual hardware registers. There are also two variables reserved
for use by the kernel debug program which may be changed or set. If you
change the segment registers or the general purpose registers while in the
kernel debug program, the change will remain in effect when you leave the
kernel debug program.

r9-r31
s9-s15
fp9-fp31
iar
mq
msr
cr
lr
ctr
tid
xer
fpscr
srr9
srrl
disr
dar
eim9
eiml
eis9
eisl
sdr9
sdrl
rtcu
rtcl
dec

General purpose registers 0 - 31
Segment registers 0 - 15
Floating point registers 0 - 31
Instruction address register (program counter)
Multiply quotient
Machine state register
Condition register
Li nk regi ster
Count register
Transaction 10 register
Exception register (fixed point)
Floating point status and control register
Machine status save/restore 0
Machine status save/restore 1
Data storage interrupt status register
Data address register
External interrupt mask (low)
External interrupt mask (high)
External interrupt summary (low)
External interrupt summary (high)
Storage description register 0
Storage description register 1
Real time clock (seconds)
Real time clock (nanoseconds)
Decrementer

fx
org

Address of the item found by the find command
Current value of the origin

9.4.1.5 Expressions
The kernel debug program does not allow full expression processing.
Expressions may only contain certain terms:

• Decimal or hex constants

• Variables
Variable operators include:

+ (addition)

• (subtraction)

* (multiplication)

I (division)

> (dereference)

The > operator indicates that the value of the prec~ding expression is to be
taken as the address of the target value. The contents of the address specified
by the evaluated expression are used in place of the expression.

Expressions can be entered in the form Expression(Expression). This form
causes the two expressions to be evaluated separately and then added
together. This is similar to the base address syntax used in the assembler.

Expressions are processed from left to right only. The type of data specified
must be the same for all terms in the expression.

9.4.1.6 Pointer Dereferences
A pOinter dereference may be used to refer indirectly to the contents of a
memory location. For example, assume location OxcSO contains a counter.
Then an expression of the form cSO> may be used to refer to the counter. Any
expression may be placed before the>, including an expression involving
another>. In this case, multiple levels of indirection are used. To extend the
previous example, if location ff7 contains the value cSO, the expression ff7> >
will refer to the previously discussed counter.

9.S Using the Kernel Debugger to Debug Device Drivers

9.5.1 Setting Breakpoints in Device Driver Routines
You need a map file or an assembler listing file for the device driver to get
relative addresses within the device driver routines (e.g. read, write, open,
close, config). The map file can be generated by the map option of the loader
(Id) command. For example, in our device driver this is done by:

ld -0 ourdd ricdd.o ricutil.o riccfg.o -T512 -ericconfig \
~bimport:/lib/my.exp -bimport:/lib/syscalls.exp -lsys -lcsys \
.;.bmap:ourmap

Chapter 9. Debugging Tools 9-29

After you load your driver with sysconfig, you must find out the address of its
entry pOints. You can use the kernel debugger to find out where the device
driver routines are loaded in the kernel. First you must know the major number
for it. This can be found by the Ii -i/dev command. The device drivers are
indexed by the major number. Use the drivers command in the kernel debugger
to reveal the entry points. (Make sure that you look for your major number.)
The func addr field will have the starting address of the routine.

One way to compute a breakpoint address is based on the assumption that
config is the first routine in the device driver map. From the device switch table
get the address of where config is loaded in the kernel. Since config is the first
routine in the device driver, all other routine addresses in the map file will be
relative to the load point of config. So, in order to set a break point, add the
address of config to the displacement in the map or assembler listing file.

Another way to compute a breakpoint address is to find the absolute address of
the device driver function in the device switch table. Add the displacement
value corresponding to the instruction you wish to stop at (from the assembler
listing) to the address in the device switch table.

9.5.2 Setting Breakpoints in System Routines
Sometimes it is desirable to set breakpoints in a system routine. Here is an
example of how to set a breakpoint in the getpid system routine. (You can
easily extend this example to set a breakpoint wherever you desire.)

• Use the nm -xv lunix > unix.m command to create a map file of the kernel.

• Search for the getpid entry point.

• An alternate way of getting this entry point is to get into the kernel
debugger and use the kernel map command. Then by reading the function
descriptor for the getpid routine, use the d function descriptor command to
get the entry point address.

• Use the break xxxxxxxx command to set the breakpoint.

• Type g (for go) to exit the debugger. The kernel debugger will trap
whenever the getpid entry point is called.

• Remember clear xxxxxxxx will clear the breakpoint at the xxxxxxxx
address.

9.5.3 Displaying Registers on a Micro Channel Adapter

9-30

When writing a device driver for a new Micro Channel adapter, it is often
desirable to be able to read and write to registers that reside on the adapter.
This gives the programmer the feeling that the hardware is functioning
correctly. For example, let us look at a register on the token-ring adapter. First,
we need to see where this adapter resides in the bus I/O space. You can do
this in the following manner:

$Isdev -c

sys0 Available 00-00
sysunit0 Available 00-00
sysplanar0 Available 00-00

scsi0
tok0
ent0

*
*
*

Available 00-01
Avail abl e 00-02
Avail abl e 00-03

System Object
RISC System/6000 System Unit
CPU Planar

SCSI I/O Controller
Token-Ring High-Performance Adapter
Ethernet High-Performance LAN Adapter

$Isattr ·1 tokO -E

bus intr lvl 3
intr_priority 3

Bus interrupt level
Interrupt priority

False
False

rdto
bus io addr
dma 1 vl
dma bus mem

*
*
*

92 RECEIVE DATA TRANSFER OFFSET True
0x86a0 Bus I/O address False
0x5 DMA arbitration level False
0x202000 Address of bus memory used for DMA False

We now know that the token-ring adapter is located at Ox86aO.

• Get into the kernel debugger.

• Use sregs to display the segment registers. Find an unused segment
register (=007FFFFF). For example, say s9 is unused.

• set s9 82OCOO20 This enables the Micro Channel bus addressing.

• sregs will now display the segment register values so you know that you
typed it incorrectly.

• From the Hardware Technical Reference, we know that the address of the
Adapter Communication and Status register is P6a6. From above, we know
that P = 8, therefore the address is 86a6.

• d 900086a6 2 will now display the two-byte register.

The key is to load a segment register with 82OCOO20 and then use that segment
register to reference registers/memory on your adapter. You may use the same
method to access registers resident on the 10CC. In that case, you would load
the segment register with a value of 82OcOOeO.

9.5.4 How to read/write Data Variables in your Device Driver
The following method is general enough to be applicable to both device drivers
(dd) and application code. Of course when it comes to debug application code,
you want to use some symbolic debugger instead of the Kernel Debugger
(Kdbg). Nevertheless for the sake of simplicity and because the steps in both
cases are the same, we will use a short and easy-to-compile application
program as an example. For the RISe/6000 the best way of debugging your dd
is probably the tracing tool but those of you still inquisitive about the obscure
world of Kdbg hopefully will find these lines illuminating.

In our example, we just use simple integers. When you deal with complex data
structures you have just one additional concern: to find out how the compiler
resolves the structures in terms of byte alignment. (See note in STEP 3.)

Chapter 9. Debugging Tools 9-31

9-32

The objective of this example is to find out the Effective Address of our
variables. Once this is done, Kdbg will take care of translating it, using segment
regs, to the virtual address first and eventually to the physical address. To build
the Effective Address, some sort of Base Address and Offsets are needed. We
will obtain the offsets from the symbol table and the Base Addresses from the
stack via Kdbg. Once we have the Effective Address we can use the Kdbg
commands to read/write at that address.

STEP 1) write your code, e.g. pippo.c

=================== pippo.c file ===================
int pippo_init=0x5a5a5a5a;
int pippo_not_init;
struct pippo_struct_type{

int fieldl;
char field2;
int field3;

}pippo_struct_var;
rnai n ()
{
int pippo_stack=0x3e3e3e3e;

printf("ADDRESS OF TEXT: %x0,rnain);
printf("ADDRESS OF pippo_init: %x0,&pippo_init);
printf(IIADDRESS OF pippo_not_init: %x0,&pippo_not_init);
printf(IIADDRESS OF pippa_stack: %x0,&pippo_stack);

pippo_data_not_init = 0x88888888;
wh i 1 e (1) ;
}

In Italian, Pippo means "Goofy" ** the Walt Disney character.

STEP 2) compile and link it

cc -9 pippo.c -0 pippo

Compiling and Binding directives for a device driver will be different (see
"Compiling Device Drivers" on page 10-3) but but do not forget to add the "-g"
option, otherwise you will not be able to have a symbol table information for
pippo_stack.

STEP 3) read the symbol table of our executable into a file:

nm -xv pippa> pippo.nrn

We are interested in the following entries:

TOC
pippo_stack:-l
pippo_init
pippo_init
pi ppo_not_init
pippo_not_init

Notes:

10x000002e41unarnexl
10x00000038 I 1 syrn I
10x000000881externl
10x000002fc I unarnex I
10x000003201externl
10x000003001unarnexl

I·data
I
I·data
I·data
I·bss
I·data

-) there are 2 values per each global variable: one identifies the
variable the other is a pointer to that variable (see step 7)

-) for data structures you may want to consider also the type
declaration line:

pippo_struct_type:T9 =s12field1:-1,O,32;field2:-5,32,8;field3:-1,64,32;;1 Idecl

This will help to find out for each field the offset relative to the beginning of the
structure and the size of the field, both in bits. In our example, field2 is at offset
32 and its size is 8.

STEP 4) Run your executable and break into the Kdbg. This is done via
keyboard with the key in SERVICE position, and hopefully the running process is
pippo (you can check it using "proc" Kdbg). In a device driver environment you
add the brkpoint(MyParm) function call exactly where you want. Note that
MyParm is an integer that will be displayed in GPR03 to help keeping track of
the calling brkpointO in case you have more than one in your code.

STEP 5) Use the Kdbg command "stack". You will see information about the last
Stack Frame pushed into the stack before invoking the Kdbg (see figure below).
From there we need two Effective Addresses: the saved TOC and the
Beginning Stack.

In our example typing "stack" we obtained:
Beginning IAR: 0x10000558 Beginning Stack: 0x2FF7FBF8
Chain: 0x2FF7FC48 CR:0x22222088 Ret Addr: 0x10000538 TOC: 0x2003EAE4
P1:0x2003E864 P2:0x2FF7FC30 P3:0xDEADBEEF P4:0xDEADBEEF
P5:0xDEADBEEF P6:0xDEADBEEF P7:0xDEADBEEF P8:0x00000000
2FF7FC30 3EjE3E3E 00000000 00000000 00000000
2FF7FC40 DEADBEEF DEADBEEF 00000000 00000000

Low
Addresses

Callee's stack --> 0
pointer 4

8
12-16

20

Space for P1-P8
is always reserved

-8*nfprs-4*ngprs -->
save

RISC SYSTEM/6000
RUN- TIME STACK

I Stack grows at
I this end.

--------------------1
Back chain I
Saved CR I
Saved LR I
Reserved I<---LINK AREA (callee)
SAVED TOC I

--------------------1
P1 I OUTPUT ARGUMENT AREA

I<---(Used by cal lee to
Pn I construct argument

Callee's I
stack I <--- LOCAL STACK AREA
area I

1--------------------1
I . I (Possible word wasted
1--------------------1 for alignment.)
I Caller's GPR I Rfirst = R13 for full
I save area I save
I max 19 words I R31

»

Chapter 9. Debugging Tools 9-33

9-34

-8*nfprs -->

Caller's stack --> e
pointer 4

8
12-16

2e

Space for P1-P8 24
is always reserved

High
Addresses

1--------------------1
I Caller's FPR 1 Ffirst = F14 for a

save area I full save
max 18 dblwds 1 F31

--------------------1
Back chain 1

Saved CR 1
Saved LR 1
Reserved I<---LINK AREA (caller)
Saved TOC 1

-------------~--~---I
P1 1 INPUT PARAMETER AREA

I
Pn 1

--------------------1
Caller's 1
stack I
area I

I

<---(Callee's input
parameters found
here. Is also

caller's arg area.)

STEP 6) Just for clarity, use the "set" Kdbg command to set mnemonics for
base addresses and offsets from steps 3 and 5.

Base Addresses (see step 5):
set toc_r
set sp

Offsets (see step 3):
set TOC
set pippo_init
set pippo_not_init
set pippo_init_P
set pippo_not_init_P
set pippo_stack

Notes:

2ee3EAE4
2FF7FBF8

eeeee2e4
eeeeee88
eeeee32e
eeeee2fc
eeeee3ee
eeeeee38

-) toc_r (alias the saved TOC) is the relocated value of TOC.
-) the suffix H_pH stands for pointer.

STEP 7) Read pippoJnit and pippo_notJnit using "display" and write them
using "alter" Kdbg commands. (Hopefully our variables are in real memory.)

The base address is toc_r, for the offset we have two alternatives:
(pippoJnit_P-TOC) and (pippoJnit-TOC); the first one locates a pointer to
pippoJnit while the second one locates pippoJnit itself. They are both
allocated in the DATA section. Same for pippo_notJnit_p and pippo_notJnit but
in this case (pippo_notJnit-TOC) will be allocated in the BSS section.

For pippo_init:
you type
or
you type
Kdbg output
you type

d toc_r+pippo_init-TOC
2ee3E888 5A5A5A5A eeeeeeee eeeeeeee eeeeeeee
a 2ee3E888 77777777

Similar sequence for pippo_not_init.

Note: the ">" which stands for "indirect addressing" in the Kdbg syntax.

STEP 8) Read pippo_stack using "display" and write it using "alter" Kdbg
commands. The base address is sp, the offset is pippo_stack.

you type
Kdbg output
you type

9.6 Error Logging

d sp+pippo_stack
2FF7FC30 3E3E3E3E 00000000 00000000 00000000
a 2FF7FC30 77777777

The error logging facility allows a device driver to have entries recorded in the
system error log. These error log entries record any software or hardware
failures which need to be available either for informational purposes or for fault
detection and corrective action. The device driver, using the errsave kernel
service, adds error records to the special file /dev/error. The errdemon will
then pick up the error record and create an error log entry. When the error log
is accessed either through SMIT or with the errpt command, the error record is
formatted according to the error template in the error template repository and
presented in either a summary or detailed report. Refer to Figure 9-3 on
page 9-36 for the flow of the error logging facility.

Chapter 9. Debugging Tools 9-35

alert
agent

configuration

(diagnostics)

concurrent
error notification

database -

VPD
database

error record
templates

detecting
application

errlogO

errsaveO

detecting module

-

error
daemon

-- (timestamp)

/dev/error

Figure 9-3. Flow of the Error Logging Facility

9-36

smit
menu

--- enpt

-- error
log

User

Kernel

9.6.1 Pre-Coding Steps to Consider

9.6.1.1 Review the Error Logging Documentation
The first thing to do is to review the error logging documentation. It is
beneficial to understand what services are available to developers, and what
the customer, service person and defect organization will see.

9.6.1.2 Determine the Importance of the Error
Secondly, determine the importance of the error. The developer should
determine whether a particular error should be logged. This may seem a trivial
point but it is very important. There is no point in using system resources, i.e.
service time and cost, or machine storage, for logging information which is
unimportant or confusing to the intended audience. It is, however, a worse
mistake not to log an error that merits logging. The device driver writer should
work in concert with the hardware developer, if possible, to identify detectable
errors and the information which should be relayed concerning those errors.

9.6.1.3 Determine the Text of the Message
Next, determine the text of the message. The developer should use the errmsg
command with the -w flag to browse the system error messages file for a list of
available messages. If messages are needed that are not already defined,
additional steps are required. If your product is an IBM logo product, contact
the the AWD Error Logging Component owner who will allocate new message
identifiers. Otherwise you have the option of contacting the Error Logging
Component owner or allocating your own within the user-defined range of each
message set. The drawback of this is that customer-defined error messages
could be overwritten.

9.6.1.4 Determine the Correct Level of Thresholding
Finally, determine the correct level of thresholding. Each error to be logged,
regardless of whether it is a software or hardware error, would be limited by
thresholding to avoid filling the error log with duplicate information. Side
effects of runaway error logging include overwriting existing error log entries
and unduly alarming the end user. The error log is not unlimited in size. When
its size limit is reached, the log wraps. If a particular error is repeated many
times needlessly, existing information will be overwritten, possibly causing
inaccurate diagnostic analyses. The end user or service person may believe
that a situation is more serious or pervasive than it really is if hundreds of
identical or nearly identical error entries are seen. The developer is
responsible for implementing the proper level of thresholding in the device
driver code. The levels should be determined by the device driver developer
and the hardware developer, if possible.

The error log is now 1 MB long. As shipped, it will clean up any entries older
than 30 days. Therefore, in order to ensure that your error log entries are
actually informative, that they are noticed, and that they remain intact, please
test your driver thoroughly ff

Chapter 9. Debugging Tools 9-37

9.6.2 Coding Steps

9.6.2.1 Solidifying the Error Text
The first task is to solidify the error text. After browsing the contents of the
system message file (using the errmsg -w command), three possible paths exist
for solidifying the error text. Either all of the desired messages for the new
errors exist in the message file, none of the messages exist, or some
combination exists.

1. If all of the messages to be used exist in the system message file, make a
notation of what the four-digit hex identification number associated with it
is, as well as the message set identification letter. For instance, a desired
error description may be:

SET E
EBS9"The wagon wheel is broken."

2. If none of the system error messages meet requirements, determine the
text of the new messages and contact the AWD Error Log owner who will
allocate the new message identifiers. After the new message numbers
have been allocated, build an input file suitable for use by the errinstall
command. InfoExplorer explains the command syntax and construction of
the necessary input file.

3. It is also possible to use a combination of existing messages and new
messages within the same error record template definition. If new
messages are needed, follow the instructions given in the previous section.

9.6.2.2 Construct Error Record Templates

9-38

Next, construct your error record templates. An error record template defines
the text that appears in the error report. Each error record template has the
following general form:

Error Record Template
+LABEL:

Comment =
Class =
Log =
Report =
Alert =
Err_Type =
Err Desc =
Probable Causes =
User Causes =
User Actions =
Inst Causes =
Inst Actions =
Fail Causes =
Fail Acti ons =
Detail_Data = <data_len>, <data_id>, <data_encoding>

Each field in this stanza has well defined criteria for input values. Excerpted
information may be found in InfoExplorer in the discussion of the errupdate
command.

Label A unique lable must be provided for each entry to be added. It must
follow C-Ianguage rules for identifiers and must not exceed 16
characters in length.

Comment This is a comment field. The comment must be enclosed in double
quotes and must not exceed 40 characters.

Class

Log

Report

Alert

Class values are either H (hardware) or S (software).

The values for this field are either TRUE or FALSE. If the failure
occurs, the error will only be logged if this field value is set to TRUE.
When this value is FALSE the Report and Alert fields are ignored.

The values for this field' are TRUE or FALSE. If the logged error is to
be displayed using error report, the value of this field must be TRUE.

Errors that need to be forwarded to the Network Management Alert
Manager program for Alert generation should have this field set to
TRUE. For non-alertable errors, this field should be set to FALSE.

Err_Type This field describes the severity of the failure that occurred. The
allowable values in this field include PERM, TEMP, PERF, PEND, and
UNKN, where:

PERM

TEMP

PERF

PEND

UNKN

A permanent failure is defined as a condition that could
not be recovered from, e.g. an operation was retried a
prescribed number of times without success.

A temporary failure is defined to be a condition that was
recovered from, yet the number of unsuccessful attempts
exceeded a predetermined threshold.

A condition in which the performance of a device or
component was degraded below an acceptable level.

A condition in which it has been determined that the loss
of availability of a device or component is imminent.

A condition in which it is not possible to assess the
severity of a failure.

Err_desc This field describes the failure that occurred. Proper input for this
field would be the four-digit hex identifier of the error description
message to be displayed from SET E in the message file.

Prob_Causes This field describes one or more probable causes for the failure
that occurred. A list of up to four probable cause identifiers
separated by commas may be specified. A probable cause identifier
identifies a probable cause text message from SET P in the message
file. Probable causes should be listed in the order of decreasing
probability. At least one probable cause identifier is required.

User_Causes A user cause is defined to be a condition that an operator can
resolve without contacting any service organization. A list of up to
four user causes identifiers separated by commas may be specified.
A user cause identifier identifies a user cause text message from
SET U in the message file. User causes should be listed in the order
of decreasing probability. This field may be left blank if it does not
apply to the failure that occurred. If this field is left blank, either the
Inst_Causes or the Fail_Causes field must be non-blank.

User_Actions This field describes recommended actions for correcting a failure
that resulted from a user cause. A list of up to four recommended
action identifiers separated by commas may be specified. A
recommended action identifier identifies a recommended action text
message, SET R in the message file. This field must be left blank if

Chapter 9. Debugging Tools 9-39

9-40

User_Causes was left blank. The order in which the recommended
actions are listed is determined by the expense of the action and the
probability that the action will correct the failure. Actions that have
little or no cost and little or no impact on system operation should
always be listed first. When actions for which the probability of
correcting the failure is equal or nearly equal, the least expensive
action should be listed first. Remaining actions should be listed in
order of decreasing probability.

InsCCauses An install cause is defined to be a condition that resulted from the
intitial installation or setup of a resource. A list of up to four install
cause identifiers separated by commas may be specified. An install
cause identifier identifies an install cause text message, SET I in the
message file. The install causes should be listed in the order of
decreasing probability. This field may be left blank if it is not
applicable to the failure that occurred. If this field is left blank, either
the User_Causes or the Failure_Causes field must be non-blank.

Inst_Actions This field is used to describe recommended actions for correcting
a failure that resulted from an install_cause. A list of up to four
recommended action identifiers separated by commas may be
specified. A recommended action identifier identifies a
recommended action text message, SET R in the message file. This
field must be left blank if the Inst_Causes field was left blank. The
order in which the recommended actions are listed is determined by
the expense of the action and the probability that the action will
correct the failure. See User_Actions for the list criteria.

Fail_Causes A failure cause is defined to be a condition that resulted from the
failure of a resource. A list of up to four failure cause identifiers
separated by commas may be specified. A failure cause identifier
identifies a failure cause text message, SET F in the message file.
The failure causes should be listed in the order of decreasing
probability .. This field may be left blank if it is not applicable to the
failure that occurred. If this field is left blank, either the
User_Causes or the Inst_Causes fields must be non-blank.

Fail_Actions This field is used to describe recommended actions for correcting
a failure that resulted from a failure cause. A list of up to four
recommended action identifiers separated by commas may be
specified. The identifiers must correspond to recommended action
messages found in SET R of the message file. This field must be left
blank if the Fail_Causes field was blank. Refer to the description of
User_Actions for criteria in listing these recommended actions.

Detail_Data This field is used to describe the detailed data, such as detecting
module name, sense data, or return codes, that will be logged with
the error when the failure occurs. This field must be left blank if no
detailed data will be logged with the error. Three values are
required for each detail data entry:

dataJen The number of bytes of data to be associated with the
dataJd. dataJen is interpreted as a decimal value.

data_id A detailed data identifier identifies a text message to be
printed in the error report in front of the detailed data.
These identifiers refer to messages in SET D of the
message file.

data_encoding Describes how the detailed data is to be printed in
the error report. Valid values for this field are:

ALPHA The detailed data is a printable ASCII
character string.

DEC The detailed data is the binary representation
of an integer value, the decimal equivalent is
to be printed.

HEX The detailed data is to be printed in hex.

The Detail_Data field may be repeated. The amount of
data logged with an error must not exceed the maximum
error record length defined in lusr/include/sys/erec.h.
Failure data that cannot be contained in an error log entry
should be saved elsewhere, e.g. in a file, and the detailed
data in the error log entry should contain information that
can be used to correlate the failure data to the error log
entry.

An example of an error record template is:

+ MISC ERR:
Comment = "Interrupt:IjO bus timeout or channel check"
Class = H
Log = TRUE
Report = TRUE
Alert = FALSE
Err_Type = UNKN
Err Desc = E856
Prob_Causes = 3300, 6300
User Causes =
User Actions =
Inst Causes =
Inst Actions =
Fail_Causes = 3300, 6300
Fail Actions = 0000
Detail_Data = 4, 8119, HEX
Detail_Data = 4, 811A, HEX
Detail_Data = 4, 8118, HEX

*IOCC bus number
*8us Status Register
*Misc. Interrupt Register

Construct the error templates for all new errors to be added in a file suitable for
entry in the errupdate command. Execute the errupdate command with the -h
flag and the input file. The new errors are now part of the error record
template repository. A new header file is also created (file. h) in the same
directory in which the errupdate was executed. This header file must be
included in the device driver code at compile time. Note that the errupdate
command has a built-in syntax checker for the new stanza which may be
invoked with the -c flag.

9.6.2.3 Put Error Logging Calls into the Device Driver Code
Now put error logging calls into the device driver code. The errsave kernel
service allows the kernel and kernel extensions to write to the error log. The
syntax for this command can be found in InfoExplorer and in Calls and
Subroutines Vol. 5. Typically you will define a routine in the device driver which
can be called by other device driver routines when a loggable error is

Chapter 9. Debugging Tools 9-41

encountered. This function will take the data passed to it, put it into the proper
structure and call errsave. The syntax for errsave is as follows:

#include <sys/errids.h>

void errsave(buf, cnt)
char *buf;
unsigned int cnt;

where,

but pOinter to a buffer that contains an error record as described in
/usr/include/sys/errids.h

cnt specifies the number of bytes in the error record contained in the
buffer pOinted to by but.

In the example of a device driver error logging routine (Figure 9-5 on
page 9-43), the data to be passed to errsave has been defined in a structure,
dderr and defined in a local header file, dderr.h (refer to Figure 9-4). You do
not have to do it this way; you could simply list the fields to be filled within the
function.

typedef struct dderr {
struct err _recD err;
int data1; /* use data1 and data2 to show detail */
int data2; /* data in the errlog report. Define */

} dderr;

/* these fields in the errlog template */
/* These fields may not be used in all */
/* cases. */

Figure 9-4. dderr.h. An example of an error logging structure defined in a header file.

In Figure 9-4, the first field of dderr.h is comprised of the err_recO structure,
which is defined in lusr/include/sys/err_rec.h. This structure contains the 10, or
label, and a field for the resource name. The two data fields will hold the detail
data for the error log report.

void
errsv_ex(int errjd, unsigned int port_num,

{
int line, char *file, uint data1, uint data2)

dderr
char
ddex_dds

log;
errbuf[255];

*p_dds;

p_dds = dds_dir[port_num];
log.err.errorjd = errjd;

if (port_num = BAD_STATE) {
sprintf(log.err.resource_name, "%s :%d",

p_dds- > dds_ vpd.adpt_name, data1);
data1 = 0;

}
else

sprintf(log.err.resource_name, "%s",
p_dds- > dds_ vpd.devname);

sprintf(errbuf, "line: %d file: %s", line, file);

strncpy(log.file, errbuf, (size_t)sizeof{log.file»;

log.data1 = data1;
log.data2 = data2;

errsave(&log, (uint)sizeof(dderr»; 1* execute actual logging */

} 1* end errlog_ex */

Figure 9-5. errlog_ex. An example of using errsave from a device driver routine.

In Figure 9-5, the error logging routine takes data passed to it from some part
of the main body of the device driver. All this code does is fill in the structure
with the pertinent information, then pass it on with errsave.

By the way, you can log a message into the error log from the command line.
To do this you use the errlogger command. Refer to InfoExplorer or Commands
Reference Vol. 1 for a description and syntax.

After the templates have been added using errupdate, the device driver code
should be compiled along with the new header file. The error should be
simulated enabling a check that it was written to the error log correctly. Some
details to check for include:

1. Is the error demon running? This can be verified by executing ps -af and
checking for lusr/llb/errdemon as part of the output.

2. Is the error part of the error template repository? This can be verified by
running errpt -at.

Chapter 9. Debugging Tools 9-43

3. Was the new header file, which was created by errupdate and which
contains the error label and unique error identification number, included in
the device driver code when it was compiled?

9.6.3 What Really Happens in /dev/error
Once the errsave information arrives at /dev/error, the first thing that happens
is that the errdemon time stamps it. Then the errdemon looks for a match in
the error template repository. A match is determined by the label and/or the
eight digit hex 10 found in /usr/include/sys/errids.h. It is possible to have errors
which are not loggable, such as an a/ertab/e error. If the error is loggable, it is
written to the error log.

The errdemon also checks to see if the system is set to be concurrently
notifiable. This means that the error will be written to the screen as well as to
the error log. The system is shipped with notify on, but you can turn it off with
SMIT.

9.7 Performance Tracing for AIX

9.7.1 Introduction

9-44

The AIX 3.1 trace facility is very useful for observing device driver and system
execution. The trace facility captures a sequential flow of time-stamped system
events, providing a fine level of detail on system activity. Events are shown in
time sequence and in the context of other events. The trace facility is useful in
expanding the trace event information to understand who, when, how, and even
why the event happened.

The operating system is shipped with permanent trace event points. These
events provide general visibility to system execution. Users can extend the
visibility into their applications by inserting additional events and providing
formatting rules.

Care was taken in the design and implementation of this facility to make the
collection of trace data efficient, so that system performance and flow would be
minimally altered by activating trace. Because of this, the facility is extremely
useful as a performance analysis tool and as a problem determination tool.

The trace facility is more flexible than traditional system monitor services that
access and present statistics maintained by the system. With traditional
monitor services, data reduction (conversion of system events to statistics) is
largely coupled to the system instrumentation. For example, the system can
maintain the minimum, maximum and average elapsed time observed for
executions of task A and permit this information to be extracted. The trace
facility does not strongly couple data reduction to instrumentation, but provides
a stream of system events. It 'is not required to presuppose what statistics will
be needed; the statistics or data reduction is to a large degree separated from
the instrumentation. The user may choose to develop the minimum, maximum
and average time for task A from the flow of events. But it is also possible to
extract the average time for task A when called by process B; or the average
time for task A when conditions XYZ are met; or develop a standard deviation
for task A; or even decide that some other task, recognized by a stream of

Take trace data:

events, is more meaningful to summarize. This flexibility is invaluable for
diagnosing performance or functional problems.

The trace facility generates large volumes of data. This data cannot be
captured for extended periods of time without overflowing the storage device.
This allows two practical ways that the trace facility can be used natively. First,
the trace facility can be triggered in multiple ways to capture small increments
of system activity. It is practical to capture seconds to minutes of system
activity in this way for post processing. This is sufficient time to characterize
major application transactions or interesting sections of a long task. Secondly,
the trace facility can be configured to direct the event stream to standard
output. This allows a real-time process to connect to the event stream and
provide data reduction in real-time, thereby creating long-term monitoring
capability. A logical extension for specialized instrumentation is to direct the
data stream to an auxiliary device that can either store massive amounts of
data or provide dynamic data reduction.

There are three methods of starting the system trace. You can start the trace
from the command line, from SMIT or from software. As shown in Figure 9-6,
trace causes predefined events to be written to a trace log. The tracing action
is then stopped. Tracing from a command line is discussed in "Controlling
trace" on page 9-50. Tracing from a software application is discussed and an
example is presented in "Examples of Coding Events and Formatting Events" on
page 9-72.

I invoke trace from command line, SMIT or through software I
H

trace command

H

defmed trace

events get written ... ttaee
to trace log - log

H

I stop trace

Figure 9-6. Flow Involved in Starting/Stopping Trace

Chapter 9. Debugging Tools 9-45

Format trace data

After a trace has been taken (Le. started and stopped), it must be formatted
before it can be viewed. This is shown in Figure 9-7 on page 9-46. To format
the trace events that you have defined, you must provide a stanza that
describes how the trace formatter is to interpet the data that has been
collected. This is described in "Syntax for Stanzas in the trace Format File" on
page 9-60.

I Invoke formatter from command line or SMIT I

trcIpt command

trcrpt filters the

trace log according

to entries in your

fonnat file

formatted
output file

-- trace
log

Figure 9-7. Trace Formatting

9-46

For an event to be traced, an event hook (sometimes called a trace hook) must
be written into the code that you want to trace. Tracing can be done on either
the system channel (channel 0) or on a generic channel (channels 1-7). All
preshipped trace pOints are output to the system channel. Usually, when you
want to show interaction with other system routines, the system channel is
used. The generic channels are provided so that you can control how much
data is written to the trace log. Only your data is written to one of the generic
channels. The trace hooks for both the system and the generic channels are
summarized in Figure 9-8 on page 9-47.

Defining trace events

Use the following trace macros to define trace events in your software:

For the system trace channel (channel 0):

TRCHKLOT(hw)
TRCHKL1T(hw,Dl)
TRCHKL2T(hw,Dl,D2)
TRCHKL3T(hw,Dl,D2,D3)
TRCHKlAT(hw,Dl,D2.o3,D4)
TRCHKL5T(hw,Dl,D2,D3,D4,n5)

TRCHKI.O(hw)
TRCHKL1(hw,Dl)
TRCHKL2(hw,Dl,D2)
TRCHKL3(hw,Dl,D2,D3)
TRCHKL4(hw,Dl,D2,D3,D4)
TRCHKL5(hw,Dl,D2,D3,D4,D5)

For the generic trace channels (channels 1-7):

TRCGEN(ch,hw.dl,1en,buf)
TRCGENT(ch,hw,dl,len,buf)

Figure 9-8. Trace Hook Summary

A general-purpose report facility is provided by the trcrpt command. The report
facility provides little data reduction, but converts the raw binary event stream
to a readable ASCII listing of the event stream. Data can be visually extracted
by a reader, or tools can be developed to further reduce the data.

Chapter 9. Debugging Tools 9-47

9.7.2 Use of the trace Facility
The following sections describe the use of the AIX 3.1 trace facility.

9.7.2.1 Configuring and Starting trace Data Collection

9-48

The trace facility is configured and data collection optionally started by the
trace command. The syntax of this command is as follows:

trace [-fl] [-ad] [-s] [-h] [-j k events] [-m message] [-0 outfil e]
[-1234567] [-T buf_sz] [-L log_sz]

The various options of th~ trace command are described as follows:

·f or·1

-a

Controls the capture of trace data in system memory. If neither the
-f nor -I option is specified, the trace facility creates two buffer areas
in system memory to capture the trace data. These buffers are
alternately written to the log file (or standard output if specified) as
they become full. The -f or -I flag provides the user with the ability
to prevent data from being written to the file during data collection.
The options are to collect data only until the memory buffer becomes
full (-f for first), or to use the memory buffer as a circular buffer that
will capture only the last set of events that occurred before trace
was terminated (-I). The -f and -I options are mutually exclusive.
With either the -f or -I option, data is not transferred from the
memory collection buffers to file until trace is terminated.

Specifies that the trace collection is to run asynchronously (as a
background task), returning a normal command line prompt to the
user. Without this option, the trace command runs in a subcommand
mode (similar to crash) and returns a prompt of >. Subcommands
and regular shell commands can be issued from the trace
subcommand mode by preceding the shell commands with an
exclamation point "!".

Specifies that data collection is to be delayed. That is, the trace
facility is only configured. Data collection is delayed until one of the
collection trigger events occurs. Various methods for triggering data
collection on and off are provided. These include the following:

• trace subcommands

• trace commands

• ioctls to Idev/systrctl.

-) events or -k events
Allows the user to specify a specific set of events to include (-I) or
exclude (-k) from the collection process. A list of events to include
or exclude is specified by a series of three-digit hexadecimal event
IDs separated by a space.

·s Specifies that trace data collection should terminate if the trace log
file reaches its maximum specified size. The default without this
option is to wrap and overwrite the data in the log file on a FIFO
basis.

-h Suppresses writing a date/sysname/message header to the trace log
file.

-m message
Allows the user to specify a text string (message) to be included in
the trace log header record. The message is included in reports
generated by the trcrpt command.

-0 outfile Allows the user to specify a file to use as the log file. When the -0

option is not specified, the default log file is lusr/adm/ras/trcfile.
The trace data can be directed to standard output by coding the -0

option as -0 -. This technique should be used only to pipe the data
stream to another process since the trace data contains raw binary
events that are not displayable.

-1234567 The trace design is duplicated for multiple channels. Channel 0 is
the default channel and is always used for recording system events.
The other channels are generic channels, and their use is not
predefined. There are various uses of generic channels in the
system. The generic channels are also available to user
applications. Each created channel is a separate events data
stream. Events recorded to channel 0 are mixed with the predefined
system events data stream. The other channels have no predefined
use and are assigned generically. A program can request that a
generic channel be opened by using the trcstart subroutine. A
channel number is returned, similar to the way a file descriptor is
returned when it opens a file. The program can record events to this
channel and, thus, have a private data stream. The trace command
allows a generic channel to be specifically configured by defining the
channel number with this option. However, this is not generally the
way a generic channel is started. It is more likely to be started from
a program using the trcstart subroutine, which uses the returned
channel 10 to record events.

-T size and -L size
Permit the user to specify the size of the collection memory buffers
and the maximum size of the log file in bytes. The trace facility pins
the data collection buffers, making this amount of memory
unavailable to the rest of the system. It is important to be aware of
this, because it means that the trace facility can impact performance
in a memory-constrained environment. If the application being
monitored is not memory-constrained, or if the percentage of
memory consumed by the trace routine is small compared to what is
available in the system, the impact of trace "stolen" memory should
be small. If no value is specified, a default size is used. The trace
facility pins a little more than the specified buffer size. This
additional memory is required for the trace facility itself. A little
more than the amount specified is pinned for first buffer mode (-f
option). A little more than twice the amount specified is pinned for
trace configured in alternate buffer or last (circular) buffer mode.

The trace command can be initiated from a command line. trace can also be
initiated from a program with a subroutine call. The subroutine is trcstart and
is in the librts.a library. The syntax of the trcstart subroutine is as follows:

int trcstart(char *args)

where args is simply the options list desired that you would enter using the
trace command if starting a system trace (channel 0). If starting a generic
trace, a -g option should be included in the arg string. On successful

Chapter 9. Debugging Tools 9-49

completion trcstart returns the channel 10. For generic tracing this channel 10
can be used to record to the private generic channel.

See the example of using this subroutine in Figure 9-10 on page 9-53.

When compiling a program using this subroutine, the link to the librts.a library
must be specifically requested (use -I rts as a compile option).

9.7.3 Controlling trace
Once trace is configured by the trace command or the trcstart subroutine,
controls to trace exist to trigger the collection of data on, trigger the collection
of data off, and to stop the trace facility (stop deconfigures trace and unpin
buffers). These basic controls are surfaced as subcommands, commands,
subroutines, and ioctl controls to the trace control device, /dev/systrctl. These
controls are described in the following sections.

9.7.3.1 Controlling trace In Subcommand Mode

9-50

If the trace routine is configured without the -a option, it runs in subcommand
mode. Instead of the normal shell prompt, "->" is given as a prompt. In this
mode the following subcommands are recognized:

trcon Triggers collection of trace data on.

trcoff Triggers collection of trace data off.

q or quit Stops collection of trace data (like trcoff) and terminates trace
(deconfigures).

!command Runs the specified shell command.

Figure 9-9 on page 9-51 shows an example of a trace session in which the
trace subcommands are used. First, the system trace points have been
displayed. Second, a trace on the system calls have been selected. Of course,
you can trace on more than one trace point. Be aware that trace takes a lot of
data. After the trace has been taken, a trace format has been displayed. The
actual formatted file was 759 lines long and only the first few lines have been
displayed.

trcrpt -j Ipg
994 TRACEID IS ZERO
199 FLIH
299 RESUME
192 SLIH
193 RETURN FROM SLIH
191 SYSTEM CALL
194 RETURN FROM SYSTEM CALL
196 DISPATCH
19C DISPATCH IDLE PROCESS
11F SET ON READY QUEUE
134 EXEC SYSTEM CALL
139 FORK SYSTEM CALL
1e7 FILENAME TO VNODE (lookuppn)
15B OPEN SYSTEM CALL
139 CREAT SYSTEM CALL
19C WRITE SYSTEM CALL
163 READ SYSTEM CALL
19A KERN_PFS
1eB LVM BUF STRUCT FLOW
116 XMALLOC size,align,heap
117 XMFREE address,heap
118 FORKCOPY
11E ISSIG
169 SBREAK SYSTEM CALL

trace -d -j 181 -m "system calls trace example" -> trcon
-> !cp /tmp/xbugs • -> trcoff
-> quit
trcrpt -0 "exec=on,pid=on" >cp.trace # pg cp.trace pr 3 11:e2:e2 1991
System: AIX smetco Node: 3
Machine: ge92479931SS
Internet Address: eessesse 9.e.9.e

system calls trace example

trace -d -j lS1 -m -m system calls trace example

ID PROCESS NAME PID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

9el trace 13939 s.seseessss s.sesses TRACE ON channel
1el trace 13939 S.S99251392 9.251392 kwritev
191 trace 13939 9.999949899 9.6894e8 sigprocmask
lSl trace 13939 9.991961888 9.121988 kreadv
191 trace 13939 9.991591952 9.449S64 kreadv
un trace 13939 9.991919488 9.417536 kioctl
191 trace 13939 9.992395648 9.476169 kreadv
lS1 trace 13939 9.9S2785664 9.319916 kioctl

Figure 9-9. Trace Example Using Subcommands

9.7.3.2 Controlling trace by Commands

S

If the trace routine is configured to run asynchronously (the -a option). trace can
be controlled by the following commands:

trcon

trcoff

trcstop

Triggers collection of trace data on.

Triggers collection of trace data off.

Stops collection of trace data (like trcoff) and terminates the trace
routine.

Chapter 9. Debugging Tools 9-51

9.7.3.3 Controlling trace by Subroutines
The controls for the trace routine are available as subroutines from the librts.a
library. The subroutines return int =0 on successful completion. The
subroutines are:

trcon

trcoff

trcstop

Triggers collection of trace data on.

Triggers collection of trace data off.

Stops collection of trace data (like trcoff) and terminates the trace
routine.

9.7.3.4 Controlling trace with ioctls Calls

9-52

The subroutines for controlling trace open the trace control device
(/dev/systrctl), issue the appropriate ioctl, close the control device and return.
To control tracing around sections of code, it may be more efficient for a
program to issue the ioctl controls directly. This avoids the unnecessary,
repetitive opening and closing of the trace control device, at the expense of
exposing some of the implementation details of trace control. To use the ioctls
in a program, include < sys/trcctl.h > to define the ioctl commands. The syntax
of the ioctl is as follows:

ioctl (fd, CMD, Channel)

where:

fd is the file descriptor returned from opening /dev/systrctl

CMD is the requested CMD TRCON TRCOFF or TRCSTOP

Channel is the trace channel (O for system trace).

Figure 9-10 on page 9-53 shows how to start a trace from a program and only
trace around a specified section of code.

*include <sys/trcctl.h>
extern int trcstart(char *arg);
char *ctl_dev ="/dev/systrctl";
int ctl fd
rnai n () -
{

printf("configuring trace collection \n");
if (trcstart("-ad")){

perror("trcstart");
exit(l) ;

}
if((ctl_fd =open (ctl_dev))<0){

perror("open ctl_dev");
exit(l);

}
printf("turning trace collection on \n");
if(ioctl (ctl_fd,TRCON,0)){

}

perror("TRCON");
exi t (1) ;

/* code between here and trcoff ioctl will be traced */
printf("turning trace off\n");
if (ioctl (ctl_fd,TRCOFF,0)){

perror("TRCOFF");
exit(l);

}
exit(0);

Figure 9-10. Sample Code - trace Triggers

9.7.4 Producing a trace Report

9.7.4.1 Introduction
A trace report facility formats and displays the collected event stream in
readable form. This report facility displays text and data for each event
according to rules provided in the trace format file. The default trace format file
is letc/trcfmt and contains a stanza for each event 10. The stanza for the event
provides the report facility with formatting rules for that event. This technique
allows users to add their own events to programs and insert corresponding
event stanzas in the format file to have their new events formatted. This report
facility does not attempt to extract summary statistics (such as CPU utilization
and disk utilization) from the event stream. This can be done in several other
ways. To create simple summaries, consider using awk scripts to process the
output obtained from the trcrpt command.

9.7.4.2 The trcrpt Command
The syntax of the trcrpt command is as follows:
trcrpt [-hcrj q] [-d i d_l ist] [-k i dl ; st] [-p process_l ; st] [-n symbolfil e]
[-t format_file] [-0 option], [option], •.. [logfile]

Normally the trcrpt output goes to standard output. However, it is generally
more useful to redirect the report output to a file. The trcrpt options are
described in the following sections:

Chapter 9. Debugging Tools 9-53

9-54

-h Causes the trcrpt command to omit the column headings of the
report.

-c Causes the trcrpt command to check the syntax of the trace format
file.' The trace format file checked is either the default (/etc/trcfmt)
or the file specified by the -t flag with this command. The user can
check the syntax of the new or modified format files with this option
before attempting to use them.

-r Produces a raw binary format of the trace data. Each event is output
as a record in the order of occurrence. This is not necessarily the
order in which the events are in the trace log file since the logfile
can wrap. If this option is used, the output should be directed to a
file (or process), since the binary form of the data is not displayable.

-j Causes the trcrpt command ,to produce a list of all the defined
events from the specified trace format file. This option is useful in
creating an initial file that the user can edit to use as an include or
exclude list for the trcrpt or trace command.

-q Suppresses detailed output of syntax error messages. This is not an
option the user typically uses.

-d idJlst Permits the user to specify a list of events to be included in the
trcrpt output. This is useful for eliminating information that is
superfluous to a given analysis and making the volume of data in the
report more manageable. A user may have commonly used event
profiles, which are lists of events that are useful for a certain type of
analysis.

-k idJist Similar to the -d flag, but specifies a list of events to exclude from
the trcrpt output.

-p process_list
Permits the user to limit the trcrpt output to events that occurred
during the execution of specific processes. The processes may be
listed by process name or process 10.

-n symbolfile
Allows the user to specify a symbolfile to be used by trcrpt to
convert kernel addresses to routine names. If not specified, the
report facility uses the symbol table in lunix. A symbolfile that
matches the system the data was collected on is necessary to
produce an accurate trace report. A symbolfile can be created for a
given level of system with the trcnm command as follows:

trcnm /unix > symbolfile

-t format_file
Allows the user to specify a trace format file other than the default
(/etc/trcfmt) .

-0 option, option, II.

Allows the user to specify formatting options to the trcrpt command
in a comma-separated list. (Do not put spaces after the commas.)
These options take the form of option =selection. If unspecified, the
default selection for the option is used. The possible options are
discussed in the following sections. Each option is introduced by
showing its default selection.

timestamp =0
The report can contain two time columns. One column is
elapsed time since the trace command was initiated. The
other possible time column is the delta time between
adjacent events. This option controls if and how these
times are displayed. The selections are as follows:

=0 Provides both an elapsed time from the start of
trace and a delta time between events. The
elapsed time is shown in seconds and the
delta time is shown in milliseconds. Both
fields show resolution to a nanosecond.

= 1 Provides only an elapsed time column
displayed as seconds with resolution shown to
microseconds.

= 2 Provides both an elapsed time and delta time
column; elapsed time shown in seconds with
nanosecond resolution, and delta time shown
in microseconds with microsecond resolution.

= 3 Omits all time stamps from the report.

pagesize=O
Permits the user to specify how often the column
headings should be reprinted. The default selection of 0
displays the column headings initially only. A selection of
10 displays the column heading every 10 lines.

ids=on Permits the user to specify whether to display a column
that contains the event IDs. If the selection is on, a three
digit hex 10 is shown for each event. The alternate
selection is off.

exec = off Lets the user specify whether a column showing the path
name of the current process should be displayed. This is
useful in showing what process (by name) was active at
the time of the event. The user typically wants to specify
this option. It is recommended that the exec =on and
PIO =on be specified.

pid=off Lets the user specify whether a column showing the
process 10 of the current process is displayed. It is useful
to have the process 10 displayed to distinguish between
several processes with the same executable name. It is
recommended that exec=on and pid =on be specified.

svc=off Lets the user specify whether the report should contain a
column that indicates the active system call for those
events that occur while a system call is active.

starttime = nnn.nnnnnnnnn
The starttime and endtime option permit the user to
specify an elapsed time interval in which the trcrpt
produces output. The elapsed time interval is specified in
seconds with nanosecond resolution.

Chapter 9. Debugging Tools 9-55

endtime = nnn.nnnnnnnnn
The starttime and endtime option permit the user to
specify an elapsed time interval in which the trcrpt
produces output. The elapsed time interval is specified in
seconds with nanosecond resolution.

2line=off The 2line option lets the user specify whether the lines in
the event report are split and displayed across two lines.
This is useful when more columns of information have
been requested than can be displayed on the width of the
output device.

logfile The logfile specifies the name of the file that contains the
event data to be processed by trcrpt. The default is the
lusr/adm/ras/trcfile file.

9.7.5 Defining trace Events
. The operating system is shipped with predefined trace hooks (events). The

user need only activate trace to capture the flow of events from the operating
system. Device driver developers may want to define trace events in their
program code during development for tuning purposes. This provides them
with insight into how their program is interacting with the system. The
fol/owing sections provide the information that is required to do this.

9.7.5.1 Possible Forms of a trace Event Record

9-56

A trace event can take several forms. An event consists of a hook word,
optional data words, and an optional time stamp. This is pictured in
Figure 9-11 on page 9-57. A four-bit type is defined for each form the event
record can take. The type field is imposed by the recording routine so that the
report facility can always skip from event to event when processing the data,
even if the formatting rules in the trace format file are incorrect or missing for
that event.

12 bit 4 bit 16 bit

hookid type data field

01 Optional data word 1

02 Optional data word 2

03 Optional data word 3

04 Optional data word 4

05 Optional data word 5

Optional Timestamp

Figure 9-11. Format of a trace Event Record

An event record should be as short as possible. Many system events use only
the hookword and timestamp. There is another event type that is mentioned
but should seldom be used because it is less efficient. It is a long format that
allows the user to record a variable length of data. In this long form, the 16-bit
data field of the hookword is converted to a length field that describes the
length of the event record.

9.7.5.2 Macros for Recording trace Events
There is a macro to record each possible type of event record. The macros are
defined in the <sys/trcmacros.h> header file. The event IDs are defined in the
<sys/trchkid.h> header file. These two include files should be in any program
that is recording trace events. The macros to record system (channel 0) events
with a time stamp are listed as follows:

• TRCHKLOT(hw)

• TRCHKL 1T(hw,01)

• TRCHKL2T(hw,01,02)

• TRCHKL3T(hw,01,02,03)

• TRCHKL4T(hw,01,02,03)

• TRCHKL5T(hw,01,02,03,04,05).

Similarly, to record non-time stamped system events (channel 0), the following
macros should be used:

• TRCHKLO(hw)

• TRCHKL 1(hw,01)

Chapter 9. Debugging Tools 9-57

• TRCHKL2{hw,D1,D2)

• TRCHKL3{hw,D1,D2,D3)

• TRCHKL4{hw,D1,D2,D3,D4)

• TRCHKL5{hw,D1,D2,D3,D4,DS).

There are only two macros to record events to one of the generic channels
(channels 1-7). These are as follows:

• TRCGEN(ch,hw,dl,len,buf)

• TRCGENT(ch,hw,d1,len,buf).

These macros record a hookword (hw), a data word (d1) and a length of data
(len) specified in bytes from the user's data segment at the location specified
(buf) to the event stream specified by the channel (ch).

9.7.5.3 Use of Event IDs (hookids)
Event IDs are 12 bits (or 3-digit hexadecimal), for a possibility of 4096 IDs.
Event IDs that are permanently left in and shipped with code need to be
permanently assigned by IBM. Permanently assigned event IDs are defined in
the <sys/trchkid.h> header file. To allow users to define events in their
environments or during development, a range of event IDs has been set aside
for temporary use. The range of event IDs for temporary use is hex 010 through
hex Off. No permanent (shipped) events are assigned in this range. Users can
freely use this range of IDs in their own environment. It is important that users
who make use of this event range do not let the code leave their environment.

Permanent events must have event IDs assigned by the current owner of the
trace component. Event IDs should be conserved because they are limited.
Event IDs can be extended by the data field. The only reason to have a unique
10 is that an 10 is the level at which collection and report filtering is available in
the trace facility. An 10 can be collected or not collected by the trace collection
process and reported or not reported by the trace report facility. Whole
applications can be instrumented using only one event 10; the only restriction
is that the granularity on choosing visibility is to choose whether events for that
application are visible.

A new event can be formatted by the trace report facility (trcrpt command) if a
stanza is created for the event in the trace format file. The trace format file is
an editable ASCII file. The syntax for a format stanza "Syntax for Stanzas in
the trace Format File" on page 9-60. All permanently assigned event IDs
should have an appropriate stanza in the default trace format file shipped with
the base operating system.

9.7.5.4 Suggested Locations and Data for Permanent Events

9-58

The intent of permanent events is to give an adequate level of visibility to
determine execution, and data flow and have an adequate accounting for how
CPU time is being consumed. During code development, it may be desirable to
make very detailed use of trace for a component. For example, one may
choose to trace the entry and exit of every subroutine in order to understand
and tune pathlength. However, this would generally be an excessive level of
instrumentation to ship for a component. It is suggested that a performance
analyst be consulted for decisions regarding what events and data to capture

as permanent events for a new component. The following paragraphs provide
some guidelines for these decisions.

Events should capture execution flow and data flow between major components
or major sections of a component. For example, there are existing events that
capture the interface between the virtual memory manager and the logical
volume manager. If work is being queued, data that identifies the queued item
(a handle) should be recorded with the event. When a queue element is being
processed, the "dequeue" event should provide this identifier as data also, so
that the queue element being serviced is identified.

Data or requests that are identified by di-fferent handles at different levels of the
system should have events and data that allow them to be uniquely identified at
any level. For example, a read request to the physical file system is identified
by a file descriptor and a current offset in the file. To VMM the same request is
identified by a segment 10 and a virtual page address. At the disk device driver
level this request is identified as pointer to a structure (which contains pertinent
data for the request). The file descriptor or segment information is not available
at the device driver level. Events must provide the necessary data to link these
identifiers so that, for example, when a disk interrupt occurs for incoming data
the identifier at that level (which may simply be the buffer address for where
the data will be copied) can be linked to the original user request for data at
some offset into a file.

Events should provide visibility to major protocol events such as requests,
responses, acknowledgements, errors, retries, etc. If a request at some level is
fragmented into multiple requests, a trace event should indicate this and supply
linkage data to allow the multiple requests to be tracked from that point. If
multiple requests at some level are coalesced into a single request a trace
event also should indicate this and provide appropriate data to track the new
request.

Events should be used to give visibility to resource consumption. Whenever
resources are claimed, returned, created or deleted an event should record the
fact. For example, claiming or returning buffers to a buffer pool or growing or
shrinking the number of buffers in the pool.

Chapter 9. Debugging Tools 9-59

TRACE HOOK GUIDELINES -----------------,

The following represent some guidelines in determining where and when
you should have trace hooks in your code:

• Tracing entry and exit pOints of every function is not necessary. Provide
only key actions and data.

• Show linkage between major code blocks or processes.

• If work is queued, associate a name (handle) with it and output it as
data.

• If a queue is being serviced, the trace event should indicate the unique
element being serviced.

• If a work requesVresponse is being referenced by different handles as it
passes through different software components, trace the transactions so
the action/receipt can be identified.

• Place trace hooks so that requests, responses, errors and retries can be
observed.

• Identify when resources are claimed, returned, created or destroyed.

Please note:

• A trace 10 can be used for a group of events by "switching" on one of
the data fields. This means that a particular data field can be used to
identify where the trace point was called from. The trace format routine
can be made to format the trace data for that unique trace point.

• The trace hook is the level at which a group of events can be enabled or
disabled.

9.7.5.5 Syntax for Stanzas in the trace Format File

9-60

The intent of the trace format file is to provide rules for presentation and
display of the expected data for each event 10. This allows new events to be
formatted without changing the report facility. Rules for new events are simply
added to the format file. The syntax of the rules provide flexibility in the
presentation of the data.

It may be helpful to refer to /etc/tcrfmt for examples of the syntax described
below.

APPL __ \n ___ _
I_SV C __ \ 1 __ \t \

event_id V.R L= ~_KERN __ '-event_label~ _____ starttimer(#,#) __ ,-
'-INT--f '---- endtimer(#,#) I

\ _ data_descriptor_ I

data_descriptor = ~ '- format_

I
I

'-data_label~

I I \
I I _match_label~ '-'----
I~ I '- data_descriptor~ I I

,-, match_val_1 I I
A \ I I
I '----data_descriptor I I
I I

Figure 9-12. Syntax of Stanza in Format File

Figure 9-12 is a syntax diagram for a stanza in the trace format file. A trace
format stanza can be as long as required to describe the rules for any
particular event. The stanza can be continued to the next line by terminating
the present line with a "\" character. The syntax looks complex, but is readily
explainable. The descriptions of the fields follow:

eventJd Each stanza begins with the three-digit hexadecimal event 10 that
the stanza describes, followed by a space.

V.R This field describes the version (V) and release (R) that the event
was first assigned. Any integers will work for V and R, and users
may want to keep their own tracking mechanism.

L= The text description of an event can begin at various indentation
levels. This improves the readability of the report output. The
indentation levels correspond to the level at which the system is
executing. The recognized levels are application level (APPL), a
transitioning system call (SVC), kernel level (KERN), and interrupt
(INT).

event_label
The eventJabel should be an ASCII text string that describes the
overall use of the event 10. This is used by the -j option of the trcrpt
to provide a listing of events and their first level description. The
event label also appears in the formatted output for the event unless
the event-'abel starts with an @ character.

\n The event stanza describes how to parse, label and present the data
contained in an event record. The \n (newline) function can be
embedded in the event stanza to continue data presentation of the ,

Chapter 9. Debugging Tools 9-61

9-62

data on a new line. This allows the presentation of the data for an
event to be several lines long.

\t The \t (tab) function inserts a tab at the point it is encountered in
parsing the description. This is similar to the way the "\n" function
inserts new lines. Spacing can also be inserted by spaces in the
dataJabel or matchJabel fields.

starttlmer(#,#)
The starttimer and endtimer fields work together. The (#,#) field can
be thought of as a unique identifier that associates a particular
starttimer with an endtimer with the same identifier. By convention,
if possible, the identifiers should be (10 of starting event, 10 of
ending event). When the report facility encounters a starttimer
directive while parsing an event, it associates the starting events
time with the unique identifier. When an endtimer with the same
identifier is encountered, the report facility outputs the delta time
(this appears in brackets) that elapsed between the starting event
and ending event. The begin and end system call events make use
of this capability. On the return from system call event, a delta time
is shown that indicates how long the system call took.

encltimer(#,#)
See the starttimmer field in the preceding paragraph.

data_descriptor
The data_descriptor field is the fundamental field that describes how
the data should be consumed, labeled, and presented by the report
facility. The syntax of the data_descriptor field is expanded in the
second part of Figure 9-12 on page 9-61. The various fields of the
data_descriptor are described as follows:

format Review the format of an event record depicted in
Figure 9-11 on page 9-57. The user can think of the
report facility as having a pointer into the data portion of
an event. This data pointer is initialized to point to the
beginning of the event data (the 16-bit data field in the
hookword). The format field describes how much data
the report facility should consume from this point and
how the data should be considered. For example, a
format field of Bm.n tells the report facility to consume m
bytes and n bits of data and to consider it as binary data.
(The possible format fields are described in following
sections.) If the format field is not followed by a comma,
the report facility outputs the consumed data in the format
specified. If, however, the format field is followed by a
comma, it signifies that the data is not to be displayed but
instead compared against the following match_values.
The data descriptor associated with the matching
match_value is then applied to the remainder of the data.

data_label The data label is an ASCII string that can optionally
precede the output of data consumed by the following
format field.

match_value
The match value is data of the same format described by
the preceding format fields. Several match values

typically follow a format field that is being matched. The
successive match fields are separated by commas. The
last match val'ue is not followed by a comma. A \ * is
used as a pattern-matching character to match anything.
A pattern-matching character is frequently used as the
last match_value field to specify default rules if the
preceding match_values field did not occur.

matchJabel
The match label is an ASCII string that will be output for
the corresponding match.

Each of the possible format fields are described in the comments of the
letc/trcfmt file. A brief introduction to the possibilities is provided here:

Format field descriptions

Am.n This specifies that m bytes of data should be consumed as ASCII
text, and that it should be displayed in an output field that is n
characters wide. The data pointer is moved m bytes.

S1, S2, S4 Left justified string. The length of the field is defined as 1 byte (S1), 2
bytes (S2), or 4 bytes (S4). The data pointer is moved accordingly.

8m.n

Xm

02,04

U2,U4

F4, F8

Gm.n

Om.n

Rm

Binary data of m bytes and n bits. The data pointer is moved
accordingly.

Hexadecimal data of m bytes. The data pointer is moved
accordingly.

Signed decimal format. Data length of 2 (02) bytes or 4 (04) bytes is
consumed.

Unsigned decimal format. Data length of 2 or 4 bytes is consumed.

Floating point of 4 or 8 bytes.

This format field merely positions the data pointer. It specifies that
the data pointer should be positioned m bytes and n bits into the
data.

This format field skips or omits data. It omits m bytes and n bits.

This reverses the data pointer m bytes.

Some macros are provided that can be used as format fields to quickly access
data. For example:

$01, $02, $03, $04, $05
These macros access data words 1 through 5 of the event record
without moving the data pointer. The data accessed by a macro is
hexadecimal by default. A macro can be cast to a different data type
(X,D, U, B) by using a % character followed by the new format
code. For example:

$D1%82.3

This macro causes data word one to be accessed, but to be
considered as 2 bytes and 3 bits of binary data.

Chapter 9. Debugging Tools 9-63

9-64

SHD This macro accesses the first 16 bits of data contained in the
hookword, in a similar manner as the $01 through $05 macros
access the various data words. It is also considered as hexadecimal
data, and also can be cast.

You can define other macros and use other formatting techniques in the trace
format file. This is shown in Figure 9-13 on page 9-65.

Licensed Materials - Property of IBM

US Government ~sers Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

I. General Information

A.

B.

Binary format for the trace hook calls. (1 column = 4 bits)
trchk MMmTDDDD
trchkt MMmTDDDDtttttttt
trchk1 MMmTDDDD11111111
trchk1t MMmTDDDD11111111tttttttt
trchkg MMmTDDDD1111111122222222333333334444444455555555
trchkg MMmTDDDD1111111122222222333333334444444455555555tttttttt
trcgen MMmTLLLL11111111vvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxx
trcgent MMmTLLLL11111111vvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxxtttttttt

legend:
MM = major id
m = minor id
T = hooktype
o = hookdata
t = nanosecond timestamp
1 = d1 (see trchkid.h for calling syntax for the tracehook routines)
2 = d2, etc.
v = trcgen variable length buffer
L = length of variable length data in bytes.

The DATA_POINTER starts at the third byte in the event, ie.,
at the 16 bit hookdata DODD.

The trcgen() type (6,7) is an exception. The DATA_POINTER starts at
the fifth byte, ie., at the 'd1' parameter 11111111.

Indentation levels
The left margin is set per template using the 'L=XXXX' command.
The default is L=KERN, the second column.
L=APPL moves the left margin to the first column.
L=SVC moves the left margin to the second column.
L=KERN moves the left margin to the third column.
L=INT moves the left margin to the fourth column.
The command if used must go just after the version code.

Example usage:
#113 1.7 L=INT "stray interrupt"

... \

C.

Continuation code and delimiters.
A '\1 at the end of the line must be used to continue the template

on the next line.
Individual strings (labels) can be separated by one or more blanks

or tabs. However, all whitespace is squeezed down to 1 blank on
the report. Use I\tl for skipping to the next tabstop, or use
A0.X format (see below) for variable space.

Figure 9-13 (Part 1 of 7). Trace Format File Syntax

Chapter 9. Debugging Tools 9-65

/I
/I II. FORMAT codes
/I
/I A. Codes that manipulate the DATA_PONTER
/I Gm.n
/I "Goto" Set DATA_POINTER to byte.bit location m.n
/I
/I Om.n
/I
/I

"Omit" Advance DATA_POINTER by m.n byte.bits

/I Rm
/I
/I

"Reverse" Decrement DATA_POINTER by m bytes. R0 byte aligns.

/I B. Codes that cause data to be output.
/I Am.n

Left justified ascii.
m=length in bytes of the binary data.
n=width of the displayed field.

/I
/I
/I
/I
/I
/I
/I
/I
/I

The data pointer is rounded up to the next byte boundary.
Example

DATA_POINTER I
V

xxxxxhello world\0xxxxxx

/I i. A8.16 results in:
/I DATA_POINTER--------I
/I V
/I
/I

xxxxxhello world\0xxxxxx

/I ii. A16.16 results in:
/I DATA_POINTER----------------I
/I V
/I
/I

xxxxxhello world\0xxxxxx

/I iii. A16 results in:
/I DATA_POINTER----------------I
/I V
/I
/I

xxxxxhello world\0xxxxxx

/I iv. A0.16 results in:
/I DATA_POINTER I
/I V
/I xxxxxhello world\0xxxxxx

Figure 9-13 (Part 2 of 7). Trace Format File Syntax

9-66

I hell 0 wo

Ihello world

Ihello worldl

S1,

S2, S4
Left justified ascii string.

The length of the string is in the first byte (half-word, word) of
the data. This length of the string does not include this byte.

The data pointer is advanced by the length value.
Example

DATA_POINTER\
V
xxxxxBhello worldxxxxxx

i. S1 results in:
DATA_POINTER-----------\
V

$reg%S1

xxxxBhello worldxxxxxx

(B = hex 0x0b)

\hello world\

A register with the format code of ISXI works "backwards" from
a register with a differnet type. The format is Sx, but the length
of the string comes from $reg instead of the next n bytes.

Bm.n

Binary format.
m = length in bytes
n = length in bits

The length in bits of the data is m * 8 + n. B2.3 and B0.19 are the same.
Unlike the other printing FORMAT codes, the DATA_POINTER

can be bit aligned and is not rounded up to the next byte boundary.

Xm

Hex format.
m = length in bytes. m=0 thru 16
The DATA_POINTER is advanced by m.

02, 04
Signed decimal format.
The length of the data is 2 (4) bytes.
The DATA POINTER is advanced by 2 (4).

U2, U4
Unsigned decimal format.
The length of the data is 2 (4) bytes.
The DATA_POINTER is advanced by 2 (4).

F4
41
#I
"Ii

#-
F8

Floating point format. (like %0.4E)
The length of the data is 4 bytes.
The format of the data is that of C type 'float ' .
The DATA_POINTER is advanced by 4.

Floating point format. (like %0.4E)
The length of the data is 8 bytes.
The format of the data is that of C type 'double ' .
The DATA_POINTER is advanced by 8.

Figure 9-13 (Part 3 of 7). Trace Format File Syntax

Chapter 9. Debugging Tools 9-67

HB
Number of bytes in trcgen() variable length buffer.
This is also equal to the 16 bit hookdata.
The DATA_POINTER is not changed.

HT
The hooktype. (0 - E)
trcgen = 0, trchk = 1, trchl = 2, trchkg = 6
trcgent = 8, trchkt = 9, trchlt = A, trchkgt = E
HT & 0x07 masks off the timestamp bit
This is used for allowing multiple, different trchkx() calls with
the same template.
The DATA_POINTER is not changed.

C. Codes that interpret the data in some way before output.
T4
I Output the next 4 bytes as a data and time string,
in GMT timezone format. (as in ctime(&seconds))
The DATA_POINTER is advanced by 4.
I
E1,E2,E4
I Output the next byte (half_word, word) as an 'errno' value, replacing
the numeric code with the corresponding Idefine name in
I /usr/include/sys/errno.h
I The DATA_POINTER is advanced by 1, 2, or 4.
I
I P4
Use the next word as a process id (pid), and
output the pathname of the executable with that process ide
Process ids and their pathnames are acquired by the trace command
I at the start of a trace and by trcrpt via a special EXEC tracehook.
I The DATA_POINTER is advanced by 4.
I
I \t
I Output a tab. \t\t\t outputs 3 tabs. Tabs are expanded to spaces,
using a fixed tabstop separation of 8. If L=0 indentation is used,
I the first tabstop is at 3.
I The DATA_POINTER advances over the \t.
I
I \n
I Output a newline. \n\n\n outputs 3 newlines.
I The newline is left-justified according to the INDENTATION LEVEL.
I The DATA_POINTER advances over the \n.
I
$macro
I The value of 'macro' is output as a %04X value. Undefined macros
I have the value of 0000.
I The DATA_POINTER is not changed.
An optional format can be used with macros:
$v1%X4 will output the value $v1 in X4 format.
I $zz%B0.8 will output the value $v1 in 8 bits of binary.
Understood formats are: X, D, U, B. Others default to X2.
I

Figure 9-13 (Part 4 of 7). Trace Format File Syntax

9-68

* "string" 'string' data type
* Output the characters inside the double quotes exactly. A string
, is treated as a descriptor. Use "" as a NULL string.

* string format $macro If a string is backquoted, it is expanded * * * *

as a quoted string, except that FORMAT codes and $registers are
expanded as registers.

, III. SWITCH statement
* A format code followed by a comma is a SWITCH statement.
* Each CASE entry of the SWITCH statement consists of
* 1. a 'matchvalue' with a type (usually numeric) corresponding to
* the format code.
, 2. a simple 'string' or a new 'descriptor' bounded by braces.
* A descriptor is a sequence of format codes, strings, switches,
* and loops.
, 3. and a comma delimiter.
* The switch is terminated by a CASE entry without a comma delimiter.
, The CASE entry is selected to as the first entry whose matchvalue
, is equal to the expansion of the format code.
* The special matchvalue '*' is a wildcard and matches anything.
, The DATA_POINTER is advanced by the format code.

* ,
* IV.

* ,
* , ,
* * * ,
* ,

LOOP statement
The syntax of a 'loop' is
LOOP format_code { descriptor}
The descriptor is executed N times, where N is the numeric value

of the format code.
The DATA_POINTER is advanced by the format code plus whatever the

descriptor does.
Loops are used to output binary buffers of data, so descriptor is

usually simply Xl or X0. Note that X0 is like Xl but does not
supply a space separator ' , between each byte.

* V. macro assignment and expressions
* 'macros' are temporary (for the duration of that event) variables
* that work like shell variables.
, They are assigned a value with the syntax:
* {{ $xxx = EXPR }}
, where EXPR is a combination of format codes, macros, and constants.
* Allowed operators are + - / *
, For example:
*{{ $dog = 7 + 6 }} {{ $cat = $dog * 2 }} $dog $cat

* , will output:
,eeeD ee1A ,
, Macros are useful in loops where the loop count is not always
* just before the data:
*Gl.5 {{ $count = Be.5 }} G11 LOOP $count {Xe}

*
Figure 9-13 (Part 5 of 7). Trace Format File Syntax

Chapter 9. Debugging Tools 9-69

Up to 25 macros can be defined per template.

VI. Special macros:
$RELLINENO line number for this event. The first line starts at 1.
$D1 - $D5 dataword 1 through dataword 5. No change to datapointer.
$HD hookdata (lower 16 bits)
$SVC Output the name of the current SVC
$EXECPATH Output the pathname of the executable for current process.
$PID Output the current process ide
$ERROR Output an error message to the report and exit from the
.template after the current descriptor is processed.
The error message supplies the logfile, logfile offset of the
start of that event, and the traceid.
$LOGIDX Current logfile offset into this event.
$LOGIDX0 Like $LOGIDX, but is the start of the event.
II $LOGFILE Name of the logfile being processed.
II $TRACEID Traceid of this event.
II $DEFAULT Use the DEFAULT template 008
II $STOP End the trace report right away
II $BREAK End the current trace event
II $SKIP Like break, but don't print anything out.
II $DATAPOINTER The DATA_POINTER. It can be set and manipulated
II like other user-macros.
II {{ $DATAPOINTER = 5 }} is equivalent to G5
II $BASEPOINTER Usually 0. It is the starting offset into an event. The actual
II offset is the DATA_POINTER + BASE_POINTER. It is used with
II template subroutines, where the parts on an event have the
II same structure, and can be printed by the same template, but
II may have different starting points into an event.
II

II VII. Template subroutines
II If a mac~o name consists of 3 hex digits, it is a "template subroutine".
II The template whose traceid equals the macro name is inserted in place
II of the macro.
II
II
II
II
II
II
II
II
II
II

The data pointer is where is was when the template
substitution was encountered. Any change made to the data pointer
by the template subroutine remains in affect when the template ends.

Macros used within the template subroutine correspond to those in the
calling template. The first definition of a macro in the called template
is the same variable as the first in the called. The names are not
related.

Figure 9-13 (Part 6 of 7). Trace Format File Syntax

9-70

Example:
Output the trace label ESDI STRATEGY.
The macro 'lstat ' is set to bytes 2 and 3 of the trace event.

* * * * * * * * *

Then call template 90F to interpret a buf header. The macro I$return l

corresponds to the macro I$rv', since they were declared in the same
order. A macro definition with no 1=1 assignment just declares the name
like a place holder. When the template returns, the saved special
status word is output and the returned minor device number.

*900 1.0 "ESDI STRATEGY" {{ $rv = 0 }} {{ $stat = X2 }} \
* $90F \n\
*special_esdi_status=$stat for minor device $rv

* *90F 1.0 "" G4 {{ $return }} \
* block number X4 \n\
* byte count X4 \n\
* B0.1, 1 B_FLAG0 \
* B0.1, 1 B_FLAG1 \
* B0.1, 1 B_FLAG2 \
* G15 {{ $return = X2 }}

* * * *
Note: The $DEFAULT reserved macro is the same as $008

* VII. BITFLAGS statement
* The syntax of a 'bitflags ' is
* BITFLAGS [format_codelregister],
* flag_value string {optional string if false},
* 1&1 mask field_value string,

* *

or

* * * * * * * * *

This statement simplifies expanding state flags, since it look
a lot like a series of *defines.

The 1&1 mask is used for interpreting bit fields.
The mask is anded to the register and the result is compared to

the field_value. If a match, the string is printed.
The base is 15 for flag_values and masks.
The DATA POINTER is advanced if a format code is used.
Note: the default base for BITFLAGS is 15. If the mask or field value
has a leading 0, the number is octal. 0x or 0X makes the number hex.

* A 000 traceid will use this template
* This id is also used to define most of the template functions.
* filemode(omode) expand omode the way 1s -1 does. The
* call to setdelim() inhibits spaces between the chars.

*
Figure 9-13 (Part 7 of 7). Trace Format File Syntax

Chapter 9. Debugging Tools 9-71

9.7.5.6 Examples of Coding Events and Formatting Events
There are five basic steps involved in generating a trace from your software
program.

Step 1: Enable and disabling of trace

Enable the trace from your software that has the trace hooks defined.
Figure 9-14 shows the use of trace events to time the execution of a program
lo~p:

#include <sys/trcctl.h>
#include <sys/trcmacros.h>
#include <sys/trchkid.h>
char *ctl_file = "/dev/systrctl";
int ctl fd;
int i;
mai n ()
{

printf("configuring trace collection \n");
if (trcstart("-ad")){

perror("trcstart");
exit(l);

}
if((ctlfd = open(ctl_file,0))<0){

perror(ctl_file);
exit(l) ;

}
printf("turning trace on \n");
if(ioctl(ctlfd,TRCON,0)){

}

per~or("TRCON");
exit(l);

/* here is the code that is being traced */
for(i=l;i<ll;i++){

TRCHKLIT(HKWD_USERl,i);
/* sleep(l) */
/* you can uncomment sleep to make the loop take longer */

/* If you do you will want to filter the output */
/* Or you will be overwhelmed with 11 seconds of data */

}
/* stop tracing code */
printf("turning trace off\n");
if(ioctl(ctlfd,TRCSTOP,0)){

perror("TRCOFF");
exi t (1);

}
exit(0);

Figure 9·14. Sample C Code---Trace Program Loop

9·72

Step 2: Compile your program

When you compile the sample program, you need to link to the librts.a library
as follows:

cc -0 sample sample.c -1 rts

Step 3: Run the program

Run the program. In this case, it can be done with the following command:

./sample

(Note that you need to be "su" to do this if the default file is used to collect the
trace information (lusr/adm/ras/trcfile)).

Step 4: Add stanza to format file

This provides the report generator with the information to correctly format your
file. The report facility does not know how to format the HKWD_USER1 event,
unless rules are provided in the trace format file. The following example of a
stanza for HKWD_USER1 could be used. HKWD_USER1 is event ID 010
hexadecimal (you can verify this by looking at the <sys/trchkid.h> file.

User event HKWD_USERl Formatting Rules Stanza
An example that will format the event usage of the sample program
010 1.0 L=APPL IIUSER EVENT - HKWD_USERP 02.0 \n\

liThe # of loop iterations =11 U4\n\
liThe elapsed time of the last loop = "\
endtimer(0x0l0,0x0l0) starttimer(0x0l0,0x0l0)

Figure 9-15. Sample Trace Event Stanza

PROGRAMMING HINT ------------------,

When entering the example stanza (Figure 9-15), do not modify the master
format file letc/trcfmt. Instead, make a copy and keep it in your own
directory. This will enable you to always have the original trace format file
available.

Step 5: Run the format/filter program

You probably want to filter the output report to get only your events. To do this,
run the trcrpt command as follows:

trcrpt -d 010 -t mytrcfmt -0 exec=on -0 sample.rpt

See the results in Figure 9-16 on page 9-74.

Chapter 9. Debugging Tools 9-73

ID PROCESS NAME I ELAPSED_SEC

818 sample 8.808105984

818 sample 8.808113928

818 sample 8.888119296

818 sample 8.808124672

818 sample 8.888129792

818 sample 8.888135168

818 sample 8.880148288

818 sample 0.800145488

818 sample 8.880151848

818 sample 8.889156168

DELTA_MSEC

8.185984

8.887936

8.885376

8.885376

8.885120

8.885376

8.885128

8.885128

8.885632

8.885128

APPL SYSCALL KERNEL INTERRUPT

USER HOOK 1
The data field for the user hook = 1
USER HOOK 1
The data field for the user hook = 2 [7 usee]
USER HOOK 1
The data field for the user hook = 3 [5 usee]
USER HOOK 1
The data field for the user hook = 4 [5 usee]
USER HOOK 1
The data field for the user hook = 5 [5 usee]
USER HOOK 1
The data field for the user hook = 6 [5 usee]
USER HOOK 1
The data field for the user hook = 7 [5 usee]
USER HOOK 1
The data field for the user hook = 8 [5 usee]
USER HOOK 1
The data field for the user hook = 9 [5 usee]
USER HOOK 1
The data field for the user hook = 18 [5 usee]

Figure 9-16. Formatted Trace Results

9.7.6 Usage Hints
The following sections provide some examples and suggestions for use of the
trace faci lity.

9.7.6.1 Viewing trace Data
Include several optional columns of data in the trace output. This causes the
output to exceed 80 columns. It is best to view the reports on an output device
that supports 132 columns.

9.7.6.2 Bracketing Data Collection
trace data accumulates rapidly. Bracket the data collection as closely around
the area of interest as possible. One technique for doing this is to issue
several commands on the same command line. For example:

trace -a; cp /etc/trcfmt /tmp/junk; trcstop

captures the total execution of the copy command.

Note: This example is more educational if the source file is not already cached
in system memory. The trcfmt file may be in memory if you have been
modifying it or producing trace reports. In that case, choose as the source file
some other file that is 50 to 100 KB and has not been touched.

9.7.6.3 Reading a trace Report

9-74

The trace facility displays system activity. It is a useful learning tool to observe
how the system actually performs. The output from the above copy is a very
interesting example to browse. To produce a report of the copy use the
following:

trcrpt -0 "exec=on,pid=on" > cp.rpt

In cp.rpt you can see the following activities:

• The fork, exec, and page fault activities of the cp process.

• The opening of the letc/trcfmt file for reading and the creation of the
Itmp/Junk file.

• The successive read/write system calls to accomplish the copy.

• The process cp becoming blocked while waiting for I/O completion, and the
wait process being dispatched.

• How logical volume requests are translated to physical volume requests.

• The files are mapped rather than buffered in traditional kernel buffers and
that the read accesses cause page faults that must be resolved by the
virtual memory manager.

• The virtual memory manager senses sequential access and begins to
prefetch the file pages.

• That the size of the prefetch becomes larger as sequential access
continues.

• That the writes are delayed until the file is closed (unless you captured
execution of the sync daemon that periodically forces out modified pages).

• That the disk device driver coalesces multiple file requests into one I/O
request to the drive when possible.

The trace output looks a little overwhelming at first. This is a good example to
use as a learning aid. If you can discern the activities described, you are well
on your way to being able to use the trace facility to diagnose system
performance problems.

9.7.6.4 Effective Filtering of the trace Report
The full detail of the trace data may not be required. You can choose specific
events of interest to be shown. For example, it is sometimes useful to find the
number of times a certain event occurred. Answer the question "how many
opens occurred in the copy example?" First, find the event 10 for the open
system call. This can be done as follows:

trcrpt -j Ipg

You should be able to see that event 10 15b is the open event. Now, process
the data from the copy example (data is probably still in the log file) as follows:

trcrpt -d 15b -0 Uexec=on u

The report is written to standard output and you can determine the number of
opens that occurred. If you want to see only the opens that were performed by
the cp process, run the report command again using the following:

trcrpt -d 15b -p cp -0 Uexec=on"

Only the opens performed by the cp process are shown.

Chapter 9. Debugging Tools 9-75

9-76

Chapter 10. Hints and Tips

10.1 Crash and Kernel Debugging Addresses
The virtual addresses for different memory objects such as the process table
and the file table, are not likely to be the same for two debugging tools such as
the kernel debugger and crash. Both utilities read the target process' u-area
into a buffer allocated from entirely different segments in memory. Therefore
the virtual addresses referenced by the two utilities are different.

10.2 Pinning Device Driver Code

@ Copyright IBM Corp. 1991

The plncodeO call allows portions of a device driver to be explicitly locked in
real memory. This function takes as its input the address of a C function which
is to be pinned. All code and static data associated with this function will be
pinned in memory.

One appropriate strategy is for the ddopen routine to pin the interrupt handler
via pincodeO, as well as any buffers that the interrupt handler will touch. The
ddclose routine, of course, would unpin all pinned storage. This pinning should
occur before the device is initialized enough to generate any interrupts.

Unfortunately, plncodeO actually pins significantly more memory than just the
referenced function; in fact, it pins the entire a.out in which that function
appears. This has implications on the proper packaging of device drivers.

A simple device driver is packaged on disk as a single a.out file, created via
the cc command. This file is loaded into kernel memory by the configuration
procedure at boot time. If the entire device driver is bound into a single a.out
file, then when the open routine uses plncodeO to lock the interrupt handler into
memory the entire device driver will actually be pinned. This is normally
unnecessary and wasteful.

The solution to this problem is to package the device driver as two separate
a.out files: one containing code to be pinned and one containing code that
should not be pinned. These two files can be constructed so that they are
cross-linked; loading one file will automatically load the other one, and
references in one file to functions in the other file will be automatically
resolved. This powerful feature of the AIX 3 loader is well described elsewhere;
a brief how-to discussion follows.

To split a device driver:

1. Determine which functions should be pinned. Move those functions into a
II .c" file together, or into a single set of ".C" files away from those functions
that should not be pinned.

2. Determine what static external data should be pinned; move such data
items into the C files containing the pinned functions.

3. Compile both the pinned and the unpinned routines (but do not link them
yet).

10-1

10-2

/* compile the .c files */
cc -c ddpin.c
cc -c dd.c

4. Construct an export file listing the functions and external static variables
from the pinned portion that the unpinned portion needs to have access to.
An example of an export file follows.

#!jpathjnamejofjthejpinnedjportionjofjthejdriver
*
* This is file "dd.exp"
*
function_to_be_seen_by_the_pageable_part
another_function
another function
*
* Another comment
*
static external variable name - - -
another static external - -

5. Link the pinned portion into its a.out file, telling the linker to explicitly export
the functions listed in the export file:

cc -0 ddpin ddpin.o -e ddintr -bexport:.jdd.exp ••.

6. Link the unpinned portion into its a.out file, telling the linker to explicitly
import the functions listed in the export file:

cc -0 dd dd.o -e ddconfig -bimport:.jdd.exp .•.

As a result of this procedure, whenever the dd file is loaded, the ddpin file will
automatically be loaded and linked with it. This happens "magically" without
any involvement by the user, programmer or configuration routine. Yet when
the pincode() function is used, it will only pin data in the ddpin file, not the code
in the dd file. As a result, portions of the driver that do not need to be pinned
will not be, at a potentially large savings in memory consumption.

BE CAREFUL --------------------.,

It is technically possible for the unpinned routine to export functions and
data areas for the pinned portion to reference. However, this is bad form;
the pinned portion of the device driver should have no dependencies on
unpinned code or data. If you decode to export symbols in both directions,
do so with extreme caution.

While this procedure isn't strictly necessary for small and simple drivers, it
should be strongly considered for large drivers and drivers that will be active
for long periods of time. If a "quick-and-dirty" job is all that is required, the
driver can be left in one executable file and can be written without concern for
paging considerations, with the following caveats:

• Allocate all data from the pinned_heap.

• Explicitly issue pincode() to lock the interrupt handler (and thus the entire
device driver) in real memory.

10.3 Compiling Device Drivers
While sample device drivers and configuration routines are supplied with AIX,
no sample Makefiles are provided. Building these programs involves some
compexities not seen in normal programming.

In general, compiling a device driver involves no special considerations.
Linking one, however, requires some special flags. If the device driver has
been split into a pageable portion and a pinned portion, see the discussion
above about some flags to use.

A simple command for linking a single-piece device driver is given below.

cc -0 mydd mydd.o -emyconfig -bimport:/lib/kernex.exp \
-bimport:/lib/syscalls.exp -lsys -lcsys

The -emyconfig clause specifies that the myconfigO function is the entry point
for this program; this will be the function called as the configuration routine at
boot time.

The two -bimport clauses define lists of functions that are exported from the AIX
kernel. These lists insure that the various AIX functions used by your device
driver are properly bound at run time and are not reported as unresolved
references at link time.

The two -I clauses list libraries of subroutines which may be used in kernel
mode. The standard libc.a library cannot be used.

Configuration methods have no special compilation or link time dependencies.

10.4 Working with Kernel Processes
The following section is included for those programmers who will be writing
kernel processes. Kernel processes are similar to device drivers. The
similarities and differences are discussed in the following sections.

10.4.1 Writing a Kernel Process
A kernel process is written more like a device driver than a user program. Like
a device driver its entry point is not (normally) named "main". A device driver
has several entry points (config, read, open, etc ...) and a kernel process may
have only one which the programmer may name as he pleases. The name of
that entry point (which is the name of a function) must be made available to the
program (device driver, user process, etc ..) that will call it.

,to.4.2 Compiling a Kernel Process
Device drivers and kernel processes should be compiled with the -c flag and
linked in a separate step. If compiled and linked in the same step then the
standard c library will be linked to the device driver or kernel process. Many
functions in the standard c library (such as printf) will not work in the kernel
environment. A command to compile a kernel process may look like this:

cc -c my_kproc.c

Chapter 10. Hints 10-3

10.4.3 Linking a Kernel Process
The name of the entry point to a kernel process must be available to the calling
entity. This is done by exporting the entry point name at kernel process link
time and importing this name at the "calling entity" link time. An export file
needs to be generated that contains the name of the entry point. We could call
such an export file "my_kproc.exp" and it may look like this:

#!

*
* kproc entry point (this is a comment)
*

The link command for the kernel process could then look like this:

ld -0 my_kproc my_kproc.o -emy_kproc_main \
-bimport:/lib/kernex.exp -bimport:/lib/syscalls.exp \
-bexport:./my_kproc.exp \
-lsys -lcsys

Notice that the -e flag (specifies an entry point) indicates the same symbol that
is in the export file. The -bexport flag indicates the my _kproc.exp file which
should be in the current directory.

10.4.4 Loading a Kernel Process
Before the kernel process can be executed it must be loaded into the kernel.
There are at least three ways to do this:

1. sysconfig subroutine

2. loadext subroutine

(loading from user space)

(loading from user space)

3. kmod-,oad kernel service (loading from kernel space).

The same or similar functions provide for unloading kernel processes.

When a kernel process should be loaded and unloaded depends on the
requirements of the application and the resources that may be dedicated to that
application. Kernel processes that are loaded and then not used consume
memory, while kernel processes that are not loaded until they are absolutely
needed may affect throughput. The most popular places to load a kernel
process are in a configure method, the driver config entry point, the driver mpx
entry point, the driver open entry point and maybe the driver ioctl entry pOint.

10.4.5 Starting a Kernel Process

10-4

A loaded kernel process is started by using both the creatpO and then the
initpO functions. Both of these kernel services are called from the process
environment. creatpO creates a slot in the kernel process table and puts the
process in an "idle" state. initpO initializes the process and puts it in a "ready"
state.

The initpO function requires the name of the kernel process entry point. This
name must have been imported by the calling program at link time. The link
command for a process that would call the above example of a kernel process
would be as follows:

ld -0 mydd mydd.o -emy_config \
-bimport:./my_kproc.exp \
-bimport:/lib/kernex.exp -bimport:/lib/syscalls.exp \
-lsys -lcsys

Note that the mydd program is importing the file that contains the name of the
entry point of the kernel extention. (In fact, the same file that the kernel
extention used for exporting can be used to import this entry point name.)

Chapter 10. Hints 10-5

10-6

Appendix A. AIX Devices

A.1 Device Classes, Subclasses, and Types Overview
To manage its wide variety of devices more easily, the AIX Operating System
classifies them hierarchically. One advantage of this arrangement is that
device methods and high level commands can operate against a whole set of
similar devices.

Devices are categorized into these three main groups:

• Functional classes

• Functional subclasses

• Device types.

Devices are organized into a set of functional classes at the highest level.
From a user's point of view, all devices belonging to the same class perform
the same functions. For example, all printer devices basically perform the
same function of generating printed output.

However, devices within a class can have different interfaces. A class can
therefore be partitioned into a set of functional subclasses where devices
belonging to the same subclass have similar interfaces. For example, serial
printers and parallel printers form two subclasses of the class of printer
devices.

Finally, a device subclass is a collection of device types. All devices belonging
to the same device type share the same manufacturer's model name and/or
number. For example, IBM 3812-2 (Model 2 Pageprinter) and IBM 4201
(Proprinter) printers comprise two types of printers.

Devices of the same device type can be managed by different drivers if the type
belongs to more than one subclass. For example, the IBM 4201 printer belongs
to both the serial interface and parallel interface subclasses of the printer class,
and there are different drivers for the two interfaces. But a device of a
particular class, subclass, and type can be managed by only one device driver.

A.2 Device Dependencies and Child Devices

co Copyright IBM Corp. 1991

The dependencies that one device has on another can be represented in the
Configuration database in two ways. One way usually represents physical
connections such as a keyboard device connected to a particular keyboard
adapter. The keyboard device has a dependency on the keyboard adapter in
that it cannot be configured until after the adapter is configured. This
relationship is usually referred to as a parent-child relationship with the adapter
as parent and the keyboard device as child. These relationships are
represented with the Parent Device Logical Name and Location Where Device
Is Connected descriptors in the CuDv objects.

A-1

A-2

A device method can also add to the CuDep object class an object identifying
both a dependent device and the device upon which it depeods. The dependent
device is considered to have a dependency, and the depended-upon is
considered to be a dependency. Customized Dependency objects are usually
added to the database to represent a situation in which one device requires
access to another device. For example, the hftO device depends upon a
particular keyboard or display device.

These two types of dependencies differ significantly. The configuration process
uses parent-child dependencies at boot time to configure all devices that make
up a node. The CuDep dependency is usually only used by a device's configure
method to retrieve the names of the devices on which it depends. The
configure method can then check to see if those devices exist.

For device methods, the parent-child relationship is the more important.
Parent-child relationships affect device-method activities in these ways:

• A parent device cannot be unconfigured if it has a configured child.

• A parent device cannot be undefined if it has a defined or configured child.

• A child device cannot be defined if the parent is not defined or configured.

• A child device cannot be configured if the parent is not configured.

• A parent device's configuration cannot be changed if it has a configured
child. This guarantees that the information about the parent which the
child's device driver may be using remains valid.

However, when a device is listed as a dependency for another device in the
CuDep object class, the only effect is to prevent the depended-upon device from
being undefined. The name of the dependency is important to the dependent
device. If the depended-upon device were allowed to be undefined, a third
device could be defined and be assigned the same name.

Writers of unconfigure and change methods for a depended-upon device need
not worry about whether the device is listed as a dependency. If the
depended-upon device is actually opened by the other device, the unconfigure
and change operations will fail because their device is busy. But if the
depended-upon device is not currently open, the unconfigure or change
operations can be performed without affecting the dependent device.

The possible parent-child connections are defined in the PdCn object class.
Each predefined device type that can be a parent device is represented in this
object class. There is an object for each connection location (such as slots or
ports) describing the subclass of devices that can be connected at that location.
Subclass is used to identify the devices since it indicates the devices'
connection type (e.g., SCSI or rs232).

There is no corresponding predefined object class describing the possible
CuDep dependencies. A device method can be written so that it already knows
what the dependencies are. If predefined data is required, it can be added as
predefined attributes for the dependent device in the PdAt object class.

A.3 The Run Time Configuration Commands

A.3.1 The mkdev Command
The mkdev command is invoked to define or configure, or define and configure,
devices at run time. If just defining a device, the mkdev command invokes the
define method for the device. The define method creates the customized device
instance in the CuDv object class and writes the name assigned to the device
to the stdout file. The mkdev command intercepts the device name written to
the stdout file by the Define method to learn the name of the device. If
user-specified attributes are supplied with the -a flag, the mkdev command then
invokes the change method for the device.

If defining and configuring a device, the mkdev command invokes the define
method, gets the name written to the stdout file by the define method, invokes
the change method for the device if user-specified attributes were supplied, and
finally invokes the device's configure method.

If only configuring a device, the device must already exist in the CuDv object
class and its name must be specified to the mkdev command. In this case, the
mkdev command simply invokes the configure method for the device.

A.3.2 The chdev Command
The chdev command is used to change the characteristics, or attributes, of a
device. The device must already exist in the CuDv object class, and the name
of the device must be supplied to the chdev command. The chdev command
simply invokes the change method for the device.

A.3.3 The rmdev Command
The rmdev command can be used to undefine or unconfigure, or unconfigure
and undefine, a device. In all cases, the device must already exist in the CuDv
object class and the name of the device must be supplied to the rmdev
command. The rmdev command then invokes the undefine method, the
unconfigure method, or the unconfigure method followed by the undefine
method, depending on the function requested by the user.

A.3.4 The cfgmgr Command
The cfgmgr command can be used to configure all detectable devices that did
not get configured at boot time. This might occur if the devices had been
powered off at boot time. The cfgmgr command is the Configuration Manager
and operates in the same way at run time as it does at boot time.

A.4 Devices Location Codes
The location code for a device is a path from the adapter in the CPU drawer or
system unit, through the signal cables and the asynchronous distribution box, if
there is one, to the device or workstation. This code is another way of
identifying physical devices.

The location code consists of four fields of information: Drawer, Slot, Connector,
and Port. The format for a location code is AA-BB-CC-DD, where AA
corresponds to drawer, BB to slot, CC to connector, and DD to port.

Appendix A. AIX Devices A-3

A.4.1 Printer and Plotter Devices
For the printer and plotter class, the location code format is AA-BB-CC-OO. The
AA-BB field is the location code of the adapter card controlling the printer or
plotter.

A value of 00 for the AA field identifies that the card is located in the CPU
drawer or system unit, depending on the type of system. Any other value for
the AA field indicates that the card is located in an 1/0 expansion drawer; in
which case, the value identifies the slot number in the CPU drawer that
contains the asynchronous expansion adapter.

The BB field identifies the slot number of the slot containing the card. A value
of 00 for this field indicates the Standard 1/0 planar.

For a serial printer and plotter attached to a Standard 1/0 serial port, the CC-OD
field is either a value of S1-00 or S2-00, depending on whether the device is
attached to port s1 or port s2. Otherwise, the CC field identifies the connector
on the adapter card to which the asynchronous distribution box is connected.
Possible values are 01, 02, 03, and 04. The DO field identifies the port number
on the asynchronous distribution box to which the printer or plotter is attached.

For a parallel printer attached to the Standard 1/0 parallel port, the value for
the CC-OO field is always OP-OO.

In order to find the physical connection to cable the printer or plotter device to,
use the first three fields of the location code. Look for these fields on a label
found on the async distribution box. If you are configuring the device to S1, S2,
or P, you will find the connector on the back of the RISC System/6000 system
unit.

A.4.2 TTY Devices

A-4

For the tty device class, the location code format is AA-BB-CC·DO. The AA-BB
field is the location code of the adapter card controlling the tty device.

A value of 00 for the AA field identifies that the card is located in the CPU
drawer or system unit, depending on the type of system. Any other value for
the AA field indicates that the card is located in an 1/0 expansion drawer; in
which case, the value identifies the slot number in the CPU drawer that
contains the asynchronous expansion adapter.

The BB field identifies the slot number of the slot containing the card. A value
of 00 for this field indicates the Standard 1/0 planar.

For a tty device attached to a Standard 1/0 serial port, the CC-OO field is either
a value of 51-00 or S2-00, depending on whether the device is attached to port
s1 or port s2. Otherwise, the CC field identifies the connector on the adapter
card to which the asynchronous distribution box is connected. Possible values
are 01, 02, 03, and 04. The DO field identifies the port number on the
asynchronous distribution box to which the tty device is attached.

In order to find the physical connection to cable the tty device to, use the first
three fields of the location code. Look for these fields on a label found on the
asynchronous distribution box. If you are configuring the device to 51 or S2,
you will find the connector on the back of the RISC System/6000 system unit.

A.4.3 Direct-Attached Disks and SCSI Devices
For a direct-attached disk device, the location code format is AA·BB where the
AA field is a value of 00 indicating that the disk is located in the system unit.
The BB field indicates the slot number.

For all SCSI devices, including disks, CD-ROMs, and tapes, the location code
format is AA·BB·CC·DD. The AA·BB field identifies the location code of the
SCSI adapter controlling the SCSI device.

A value of 00 for the AA field identifies that the card is located in the CPU
drawer or system unit, depending on the type of system.

The BB field identifies the slot number of the slot containing the card.

The CC field is always a value of 00.

The DO field identifies the SCSI 10 and logical unit number (LUN) of the SCSI
device. The first number is the SCSI 10, and the second number is the LUN.

For an external SCSI device, the device is attached to the slot specified by the
value in the field, and the device physical address is set to the SCSI 10 shown
in the DD field.

A.4.4 Diskette Drive Devices
For diskette drives attached to the Standard I/O planar, the possible values of
the location codes are 00-00-00-01 and 00-00-00-02 for diskette ports 0 and 1,
respectively.

A.4.S Adapter Devices
The location code for all adapter cards consists of just the first two fields:
AA-BB. A value of 00 for the AA field identifies that the card is located in the
CPU drawer or system unit, depending on the type of system. Any other value
for the AA field indicates that the card is located in an 110 expansion drawer; in
which case, the value identifies the slot number in the CPU drawer that
contains the asynchronous expansion adapter.

The BB field for an adapter card identifies the slot number of the slot containing
the card. A value of 00 indicates the Standard lID planar.

A.4.6 Multiprotocol Port Devices
For a multiprotocol port, the location code format is AA·BB·CC·DD. The AA·BB
field identifies the location code of the multiprotocol adapter to which the port
corresponds. A value of 00 for the AA field identifies that the card is located in
the CPU drawer or system unit, depending on the type of system. The BB field
identifies the slot number of the slot containing the card. The CC field is always
a value of 01. It identifies the connector on the adapter where the multi protocol
distribution box is connected. The DO field indicates the physical port number
on the multiprotocol distribution box. Possible values are 00, 01, 02, and 03.

In order to find the physical connection to cable the multiprotocol device to, use
the first three fields of the location code. Look for these fields on a label found
on the asynchronous distribution box.

Appendix A. AIX Devices A-S

A-6

Appendix B. ODM

B.1 ODM Object Classes

B.1.1 Predefined Devices (PdDv)

© Copyright IBM Corp. 1991

The Predefined Devices (PdDv) object class contains entries for all known
device types supported by the system. The term devices is used in the general
sense in this context. Devices include intermediate devices (for example,
adapters) and terminal devices (for example, disks, printers, display terminals,
and keyboards). Pseudo-devices, including pseudo terminals, logical volumes,
and TCP/IP, are also included under devices. Pseudo-devices can either be
intermediate or terminal devices.

Each device type, as determined by class-subclass-type information, is
represented by an object in the PdDv object class. These objects contain basic
information about the devices, such as device method names and how to
access information contained in other object classes. The PdDv object class is
referenced by the CuDv object class by a link that keys into the unique type
descriptor. This descriptor is uniquely identified by the class-subclass-type
information.

Typically, the Predefined database is conSUlted, but never modified during
system boot or run time. One exception occurs when a new device is to be
added to the Predefined database. In this case, the predefined information for
the new device must be added into the Predefined database.

You build a Predefined Device object by defining the objects in a file in stanza
format and then processing the file with the odmadd command or the
odm_add_obj subroutine.

NOTE --~

When coding an object in this object class, set unused empty strings to ""
(two double quotation marks with no separating space) and unused integer
fields to 0 (zero).

Each Predefined Device object corresponds to an instance of the PdDv object
class. The descriptors for this class are:

8-1

B-2

Table 8-1. PdDv Object Class Descriptors

Descriptor name Description Descriptor status

type Device Type Required

class Device class Required

subclass Device subclass Required

prefix Prefix name Required

devid Device 10 Optional

base Base device flag Required

has_vpd VPD flag Required

detectable Detectable/nondetectable Required
flag

chgstatus Change status flag Required

bus_ext Bus extender flag Required

inventory_only Inventory only flag Required

fru FRU flag Required

led LED value Required

setno Set number Required

msgno Message number Required

catalog Catalog file name Required

DvDr Device driver name Optional

Define Define method Required

Configure Configure method Required

Change Change method Required

Unconfigure Unconfigure method Optional

Undefine Undefine method Optional

Start Start method Optional

Stop Stop method Optional

uniquetype Unique type Required

These fields have the following descriptions:

Device Type
The Device Type descriptor is derived from the product name or
model number. For example, IBM 3812-2 Model 2 Pageprinter and
IBM 4201 Proprinter are two types of printer device types. Each
device type supported by the system should have an entry in the
PdDv object class.

Device Class
Associated functional class name. A Functional class is a group of
device instances sharing the same high-level function. For example,

a printer is a functional class name representing all devices that
generate hardcopy output.

Device Subclass
Identifies the device subclass associated with the device type. A
device class can be partitioned into a set of device subclasses
whose members share the same interface and typically are
managed by the same device driver. For example, parallel and
serial printers form two subclasses within the class of printer
devices. .

The configuration process uses the subclass to determine valid
parent-child connections. For example, an rs232 8-port adapter has
information that indicates that each of its eight ports only supports
devices whose subclass is rs232. Also, the subclass for one device
class can be a subclass for a different device class. In other words,
several device classes can have the same device subclass.

Prefix Name
The Assigned Prefix in the Customized database, used to derive the
device instance name and /dev name. For example, tty is a Prefix
Name assigned to the tty port device type. Names of tty port
instances would then look like ttyO, tty 1 , or tty2. The rules for
generating device instance names are given in the CuDv object
class under the Device Name descriptor.

Device 10 Device 10 describes card IDs for Micro Channel adapter cards.
These card IDs are read from POS registers and uniquely identify
the card type. The bus configure method obtains the card IDs from
the Micro Channel adapter cards and uses this descriptor to find the
predefined information corresponding to the cards. The format is
OxAA where AA identifies the POS(O) value and the POS(1) value.

Base Device Flag
A base device is any device that forms part of a minimal base
system. During the first phase of system boot, a minimal base
system is configured to permit access to the root volume group and
hence to the root file system. This minimal base system can
include, for example, the standard I/O diskette adapter and a SCSI
hard drive.

This flag is not used to determine which devices are to be
configured in the first phase of system boot. It serves only to identify
at run time which devices need to be updated in the boot image
when configuration changes are made. A value of TRUE means that
the device is a base device, and a value of FALSE that it is not.

VPD Flag Certain devices contain Vital Product Data (VPD) that can be
retrieved from the device itself. This attribute specifies whether
device instances belonging to the device type contain extractable
VPD or not. A value of TRUE means that the device has extractable
VPD, and a value of FALSE that it does not.

Detectable/Nondetectable Flag
Specifies whether the device instance is detectable or
nondetectable. A device whose presence and type can be
electronically determined, once it is actually powered on and
attached to the system, is said to be detectable. A value of TRUE

Appendix B. OOM B-3

means that the device is detectable, and a value of FALSE that it is
not.

Change Status Flag
Indicates the initial value of the Change Status flag to be used in the
CuDv object class. Refer to the corresponding descriptor in the
CdDv object class for a complete description of this flag. A value of
NEW means that the device is to be flagged as new, and a value of
FALSE that it is to be flagged as don't care.

Bus Extender Flag
Indicates that the device is a bus extender. The Bus Configurator
uses the Bus Extender Flag descriptor to determine whether it
should directly invoke the device's configure method. A value of
TRUE means that the device is a bus extender, and a value of FALSE
that it is not a bus extender.

Inventory Only Flag
Distinguishes devices that are represented solely for their
replacement algorithm from those that actually manage the system.
There are several devices that are represented solely for inventory
or diagnostic purposes. Racks, drawers, and planars represent such
devices. A value of TRUE means that the device is used solely for
inventory or diagnostic purposes, and a value of FALSE that it is not
used solely for diagnostic or inventory purposes.

FRU Flag Identifies the type of FRU (Field Replaceable Unit) for the device.

LED Value

The three possible values for this field are:

Indicates that there is no FRU (for pseudo-devices).

Indicates that the device is its own FRU.

PARENT_FRU Indicates that the FRU is.the parent.

Indicates the hex value to be displayed on the LEOs when the
configure method executes 1.

Catalog File Name
Identifies the file name of the NLS message catalog that contains all
messages pertaining to this device. This includes the device
description and its attribute descriptions. All NLS messages are
identified by a catalog file name, set number, and message number.

Set Number
Identifies the set number that contains all the messages for this
device in the specified NLS message catalog. This includes the
device description and its attribute descriptions.

Message Number
Identifies the message number in the specified set of the NLS
message catalog. The message corresponding to the message
number contains the textual description of the device.

1 Refer to RiSe Systeml6000 System Problem-Solving Guide for a list of valid LED values.

8-4

Device Driver Name
Identifies the base name of the device driver associated with all
device instances belonging to the device type. For example, a
device driver name for a keyboard could be ktsdd. For the tape
device driver, the name could be tapedd. The Device Driver Name
can be passed as a parameter to the loadext routine to load the
device driver, if the device driver is located in the fete/drivers
directory. If the driver is located in a different directory, the full path
must be appended in front of the Device Driver Name before passing
it as a parameter to the load ext subroutine.

Define Method
Name of the define method associated with the device type. All
define method names start with the prefix def.

Configure Method
Name of the configure method associated with the device type. All
configure method names start with the prefix cfg.

Change Method
Name of the change method associated with the device type. All
change method names start with the prefix chg.

Unconfigure Method
Name of the unconfigure method associated with the device type. All
unconfigure method names start with the prefix ucfg. This field is
optional for those devices (for example, the bus) that are never
unconfigured or undefined. For all other devices, this descriptor is
required.

Undefine Method
Name of the undefine method associated with the device type. All
undefine method names start with the prefix udef. This field is
optional for those devices (for example, the bus) that are never
unconfigured or undefined. For all other devices, this descriptor is
required.

Start Method
Name of the start method associated with the device type. All start
method names start with the prefix stt. The start method is optional
and only applies to devices that support the Stopped device state.

Stop Method
Name of the stop method associated with the device type. All stop
method names start with the prefix stp. The stop method is optional
and only applies to devices that support the Stopped device state.

Unique Type
A key that is referenced by the PdDvLn link in CdDv object class.
The key is a concatenation of the Device Class, Device Subclass,
and Device Type values with a / (backslash) used as a separator.
For example, for a class of disk, a subclass of SCSI, and a type of
670MB, the Unique Type is disk/SCSI/670MB.

This descriptbr is needed so that a device instance's object in the
CdDv object class can have a link to its corresponding PdDv object.
Other object classes in both the Predefined and Customized
databases also use the information contained in this descriptor.

Appendix B. OOM 8-5

B.1.2 Predefined Attribute (PdAt)

8-6

The Predefined Attribute (PdAt) object class contains an entry for each existing
attribute for each device represented in the PdDv object class. An attribute, in
this sense, is any device-dependent information not represented in the PdDv
object class. This includes information such as interrupt levels, bus I/O
address ranges, baud rates, parity settings, block sizes, and microcode file
names.

Each object in this object class represents a particular attribute belonging to a
particular device class-subclass-type. Each object contains the attribute name,
default value, list or range of all possible values, width, flags, and an NLS
description. The flags provide further information to describe an attribute.

Note: for a device being defined or configured, only the attributes that take a
nondefault value are copied into the CuAt object class. In other words, for a
device being customized, if its attribute value is the default value in the PdDv
object class, then there will not be an entry for the attribute in the CuAt object
class.

Types of Attributes: there are three types of attributes. Most are regular
attributes, which typically describe a specific attribute of a device. The group
attribute type provides a grouping of regular attributes. The shared attribute
type identifies devices that must all share the given attribute.

A shared attribute identifies another regular attribute as one that must be
shared. This attribute is always a bus resource. Other regular attributes (for
example, bus interrupt levels) can be shared by devices but are not themselves
shared attributes. Shared attributes require that the relevant devices have the
same values for this attribute. The Attribute Value descriptor for the shared
attribute gives the name of the regular attribute that must be shared.

A group attribute specifies a set of other attributes whose values are chosen as
a group, as well as a group attribute number used to choose the default values.
Each attribute listed within a group has an associated list of possible values it
can take. These values must be represented as a list, not as a range. For
each attribute within the group, the list of possible values must also have the
same number of choices. For example, if the possible number of values is n,
the group attribute number itself can range from 0 to n-1. The particular value
chosen for the group indicates the value to pick for each of the attributes in the
group. For example, if the group attribute number is 0, then the value for each
of the attributes in the group is the first value from their respective lists.

The PdAt object class contains the following fields:

Table B-2. PdAt Object Class Descriptors

Descriptor name Description Descriptor status

uniquetype Unique type Required

attribute Attribute name Required

deflt Default value Required

values Attribute values Required

width Width Optional

type Attribute type flags Required

generic Generic attribute flags Optional

rep Attribute Required
representation flags

nlsJndex NLS index Optional

These fields are described as follows:

Unique Type
Identifies the class-subclass-type name of the device to which this
attribute is associated. This descriptor is the same as the Unique
Type descriptor in the PdDv object class.

Attribute Name
Identifies the name of the device attribute. This is the name that can
be passed to the mkdev and chdev configuration commands and
device methods in the attribute-name and attribute-value pairs.

Default Value
If there are several choices or even if there is only one choice for
the attribute value, the default is the value that the attribute is
normally set to. For groups, the default value is the group attribute
number. For example, if the possible number of choices in a group
is n, the group attribute number is a number between 0 and n-1. For
shared attributes, the default value is set to a null string.

When a device is defined in the system, attributes that take
nondefault values are found in the CuAt object class. Attributes that
take the default value are found in this object class. Attributes that
take on the default value are not copied over to the CuAt object
class. Therefore, both attribute object classes must be queried to
get a complete set of customized attributes for a particular device.

Possible Values
Identifies the possible values that can be associated with the
attribute name. The format of the value is determined by the
Attribute Representation flags. For regular attributes, the possible
values can be represented as a string, hexadecimal, octal, or
decimal. In addition, they can be represented as a range or an
enumerated list. If there is only one possible value, then the value
can be represented either as a single value or as an enumerated list
with one entry. The latter is recommended, since the use of
enumerated lists allows the attrval subroutine to check that a given
value is in fact a possible values.

Appendix B. ODM B-7

8-8

Width

If the value is hexadecimal, then it is prefixed with the Ox notation. If
the value is octal, the value is prefixed with a leading zero. If the
value is decimal, the value is its significant digits. If the value is a
string, the string itself should not have embedded commas since
commas are used as separators of items in an enumerated list.

A range is represented as a triplet of values: lowerlimit-upperlimit,
increment value. The lowerlimit variable indicates the value of the
first possible choice. The upperlimit variable indicates the value of
the last possible choice. The lowerlimit and upperlimit values are
separated by a - (hyphen). Values between the lowerlimit and
upperlimit values are obtained by adding multiples of the increment
value variable to the lowerlimit variable. The upperlimit and
increment value variables are separated by a comma.

Only numeric values are used for ranges. Also, discontinuous
ranges (for example, 1-3, 6-8) are disallowed. A combination of list
and ranges is not allowed. An enumerated list contains values that
are comma-separated.

If the attribute is a group, the Possible Values descriptor contains a
list of attributes composing the group, separated by commas.

If the attribute is shared, the Possible Values descriptor contains the
name of the bus resource regular attribute that must be shared with
another device.

If the attribute is a regular attribute, the Width descriptor identifies
the amount of resource used by the attribute. For example, if the
attribute indicates the starting bus memory address for an adapter
card, this field indicates the range of bus memory that must be
allocated to the adapter. Width only applies to attributes with the M
(bus memory address) and the 0 (bus I/O address) Attribute Types.
For all other attributes, a null string is used to fill in this field.

Attribute Type
Identifies the attribute type. Only one Attribute Type must be
specified. The characters A, M, I, 0, and P represent bus resources
that are regular attributes.

For regular attributes, the following Attribute Types are defined:

R Indicates a regular attribute that is not a bus resource.

The following are the bus resources types for regular attributes:

A Indicates DMA arbitration level.

M Indicates bus memory address.

Indicates bus interrupt level.

o Indicates bus I/O address.

P Indicates priority class.

For non-regular attributes, the following Attribute Types are defined:

G Indicates a group.

S Indicates a shared attribute.

Generic Attribute Flags
Identifies the flags that can apply to any regular attribute. Any
combination, one, both, or none, of these flags is valid. This
descriptor should be a null string for group and shared attributes.

These are the defined Generic Attribute flags:

D Indicates a displayable attribute. The Isattr command displays
only attributes with this flag.

U Indicates an attribute whose value can be set by the user.

Attribute Representation Flags

NLS Index

Indicates the representation of the regular attribute values. For
group and shared attributes, which have no associated attribute
representation, this descriptor is set to a null string. Eith~r the n or
s flag, both of which indicate value representation, must be
specified.

The r and I flags indicate, respectively, a range and an enumerated
list, and are optional. If neither r nor I is specified, then the attrval
subroutine will not verify that the value falls within the range or the
list.

These are the defined Attribute Representation flags:

n Indicates that the attribute value is numeric, either decimal, hex,
or octal.

s Indicates that the attribute value is a character string.

r Indicates that the attribute value is a range of the form:
lowerlimit-upperlimit,increment value.

Indicates that the attribute value is an enumerated list of values.

Identifies the message number in the NLS message catalog of the
message containing a textual description of the attribute. Only
displayable attributes, as identified by the Generic Attribute flags
descriptor, need an NLS message. If the attribute is not displayable,
the NLS Index can be set to a value of O. The catalog file name and
the set number associated with the message number are stored in
the PdDv object class.

8.1.3 Predefined Connection (PdCn)
The Predefined Connection (PdCn) object class contains connection information
for intermediate devices. This object class also includes predefined
dependency information. For each connection location, there are one or more
objects describing the subclasses of devices that can be connected. This
information is useful, for example, in verifying whether a device instance to be
defined and configured can be connected to a given device.

The PdCn object class contains the following descriptors:

Appendix B. OOM 8-9

Table 8-3. PdCn Object Class Descriptors

Descriptor name Description Descriptor status

unlquetype unique type Required

conn key connection key Required

connwhere con nectionlocation Required

These fields are described as follows:

Unique Type
Identifies the intermediate device's class-subclass-type name. For a
device with dependency information, this descriptor identifies the
unique type of the device on which there is a dependency. This
descriptor contains the same information as in the Unique Type
descriptor in the PdDv object class.

Connection Key
Identifies a subclass of devices that can connect to the intermediate
device at the specified location. For a device with dependency
information, this descriptor serves to identify the device indicated by
the Unique Type field to the devices that depend on it.

Connection Location
Identifies a specific location on the intermediate device where a
child device can be connected. For a device with dependency
information, this descriptor is not always required and consequently
may be filled in with a null string.

The term location is used in a generic sense. For example, for a bus
device, the location can refer to a specific slot on the bus, with .
values 1, 2, 3... For a multiport serial adapter device, the location
can refer to a specific port on the adapter with values 0, 1, .. ,

8.1.4 Customized Devices (CuDv)

8-10

The Customized Devices (CuDv) object class contains entries for all device
instances defined in the system. As the name implies, a defined device object
is an object that a define method has created in the CuDv object class. A
defined device instance mayor may not have a corresponding actual device
attached to the system.

A CuDv object contains attributes and connections specific to the device
instance. Each device instance, distinguished by a unique logical name, is
represented by an object in the CuDv object class. The Customized database is
updated twice, during system boot and at run time, to define new devices,
remove undefined devices, or update the information for a device whose
attributes have been changed.

The CuDv object class contains the following fields:

Table B-4. CuDv Object Class Descriptors

Descriptor name Description Descriptor status

name Device name Required

status Device status flag Required

chgstatus Change status flag Required

ddins Device driver instance Optional

location Location code Optional

parent Parent device logical Optional
name

connwhere Location where device Optional
is connected

PdDvLn LINK to Predefined Required
Devices object class

These fields have the following descriptions:

Device Name
A Customized Device object for a device instance is assigned a
unique logical name to distinguish the instance from other device
instances. The device logical name of a device instance is derived
during define method processing. The rules for deriving a device
logical name are:

1. The name should start with a prefix name pre-assigned to the
device instance's associated device type. The prefix name can
be retrieved from the Prefix Name descriptor in the PdDv object
associated with the device type.

2. To complete the logical device name, a sequence number is
usually appended to the prefix name. This sequence number is
unique among all defined device instances using the same prefix
name. Use the following subrules when generating sequence
numbers:

a. A sequence number is a non-negative integer represented in
character format. Therefore, the smallest available
sequence number is a (zero).

b. The next available sequence number relative to a given
prefix name should be allocated when deriving a device
instance logical name.

c. The next available sequence number relative to a given
prefix name is defined to be the smallest sequence number
not yet allocated to defined device instances using the same
prefix name.

For example, if ttyO, tty 1 , tty3, tty5 and tty6 are currently
assigned to defined device instances, then the next available
sequence number for a device instance with the tty prefix
name is 2. This results in a logical device name of tty2.

Appendix B. ODM 8-11

8-12

The genseq subroutine can be used by a define method to
obtain the next available sequence number.

Device Status Flag
Identifies the current status of the device instance. The device
methods are responsible for setting the Device Status flags of device
instances. When the define method defines a device instance, the
device's device status is set to defined. When the configure method
configures a device instance, the device's device status is typically
set to available. The configure method takes a device to the
Stopped state only if the device supports the Stopped state.

When the start method starts a device instance, its device status is
changed from the stopped state to the available state. Applying a
stop method on a started device instance changes the device status
from the available state to the stopped state. Applying an
unconfigure method on a configured device instance changes the
device status from the available state to the defined state. If the
device supports the stopped state, the unconfigure method takes the
device from the stopped state to the defined state.

The possible status values are:

DEFINED Identifies a device instance in the defined state.

AVAILABLE Identifies a device instance in the available state.

STOPPED Identifies a device instance in the stopped state.

Change Status Flag
This flag tells whether the device instance has been altered since
the last system boot. The diagnostics facility uses this flag to
validate system configuration. The flag can take on these values:

NEW Specifies whether the device instance is new to the
current system boot.

DONT_CARE Identifies the device as one whose presence or
uniqueness cannot be determined. For these devices,
the new, same, and missing states have no meaning.

SAME

MISSING

Device Driver Instance

Specifies whether the device instance was known to the
system prior to the current system boot.

Specifies whether the device instance is missing. This
is true if the device is in the CuDv object class, but is
not physically present.

This field typically contains the same value as the Device Driver
Name descriptor in the PdDv object class if the device driver
supports only one major number. For a driver that uses multiple
major numbers (for example, the logical volume device driver),
unique instance names must be generated for each major number.
Since the logical volume uses a different major number for each
volume group, the volume group logical names would serve this
purpose. This field is filled in with a null string if the device instance
does not have a corresponding device driver.

Location Code
Identifies the location code of the device. This field provides a
means of identifying physical devices. The location code format is
defined as AB·CD·EF·GH where:

AB Is the drawer 10 used to identify the CPU and asynchronous
drawers.

CD Is the slot 10 used to identify the location of an adapter, memory
card, or SLA (Serial Link Adapter).

EF Is the connector 10 used to identify the adapter connector that
something is attached to.

GH Is the port or device or FRU 10 used to identify a port, device, or
FRU, respectively.

Parent Device Logical Name
Identifies the logical name .of the parent device instance. In the case
of a real device, this indicates the logical name of the parent device
to which this device is connected. More generally, the specified
parent device is the device whose configure method is responsible
for returning the logical name of this device to the Configuration
Manager for configuring this device. This field is filled in with a null
string for a node device.

Location Where Device Is Connected
Identifies the speCific location on the parent device instance where
this device is connected. The term location is used in a generic
sense. For some device instances such as the AIX bus, location
indicates a slot on the bus. For device instances such as the SCSI
adapter, the term indicates a logical port (that is, a SCSI 10 and
Logical Unit Number combination).

For example, for a bus device, the location can refer to a specific
slot on the bus, with values 1, 2, 3... . For a multiport serial adapter
device, the location can refer to a specific port on the adapter, with
values 0,1,

LINK to Predefined Devices Object Class (PdDvLn)
Provides a link to the device instance's predefined information
through the Unique Type descriptor in the PdDv object class.

8.1.5 Customized Attribute (CuAt)
The Customized Attribute (CuAt) object class contains customized
device-specific attribute information.

Device instances represented in the CuDv object class have attributes found in
either the PdAt object class or the CuAt object class. There is an ,entry in the
CuAt object class for attributes that take non-default values. Attributes taking
the default value are found in the PdAt object class. Each entry describes the
current value of the attribute.

When changing the value of an attribute, the Predefined Attribute object class
must be referenced to determine other possible attribute values.

Appendix B. OOM 8-13

8-14

Both attribute object classes must be queried to get a complete set of current
values for a particular device's attributes. Use the getattr and putattr routines
to retrieve or modify customized attributes.

Table 8-5. CuAt Object Class Descriptors

Descriptor name Description Descriptor status

name Device name Required

attribute Attribute name Required

value Attribute value Required

type Attribute type Required

generic Generic attribute flags Optional

rep Attribute Required
representation flags

nlsJndex NLS index Optional
-

These fields are described as follows:

Device name
Identifies the logical name of the device instance to which this
attribute is associated.

Attribute name
Identifies the name of a customized device attribute.

Attribute value
Identifies a customized value associated with the corresponding
Attribute Name. This value is a non-default value.

Attribute type
Identifies the attribute type associated with the Attribute Name. This
field is copied from the Attribute Type descriptor in the
corresponding Predefined Attribute object when the Customized
Attribute object is created.

Generic attribute flags
Identifies the Generic Attribute flag or flags associated with the
Attribute Name. This field is copied from the Generic Attribute Flags
descriptor in the corresponding Predefined Attribute object when the
Customized Attribute object is created.

Attribute representation flags

NLS index

Identifies the Attribute Value's representation. This field is copied
from the Attribute Representation flags descriptor in the
corresponding Predefined Attribute object when the Customized
Attribute object is created.

Identifies the message number in the NLS message catalog that
contains a textual description of the attribute. This field is copied
from the NLS Index descriptor in the corresponding Predefined
Attribute object when the Customized Attribute object is created.

B.1.6 Customized Dependency (CuDep)
The Customized Dependency (CuDep) object class describes device instances
that depend on other device instances. Dependency does not imply a physical
connection. This object class describes the dependence links between logical
devices and physical devices as well as dependence links between logical
devices. Physical dependencies of one device on another device are recorded
in the CuDv object class.

Figure 6-3 on page 6-9 demonstrates instances of dependency and connection
between devices.

The CuDep object class contains the following descriptors:

Table B-6. CuDep Object Class Descriptors

Descriptor name Description Descriptor status

name Device name Required

dependency Dependency (device Required
logical name)

These descriptors have the following descriptions:

Device Name Identifies the logical name of the device having a dependency.

Dependency Identifies the logical name of the device instance on which there
is a dependency. For example, a mouse, keyboard, and display
might all be dependencies of a device instance of hftO.

B.1.7 Customized Device Driver (CuDvDr)
The Customized Device Driver (CuDvDr) object class stores information about
critical resources that need concurrency management through the use of the
Device Configuration Library routines. You should only access this object class
through these five Device Configuration Library routines: the genmajor,
genminor, relmajor, reldevno, and getminor routines.

These routines exclusively lock this class so that accesses to it are serialized.
The genmajor and genminor routines return the major and minor number to
the calling method. Similarly, the reldevno or relmajor routine releases the
major or minor number from this object class.

The CuDvDr object class contains the following fields:

Table B-7. CuDvDr Object Class Descriptors

Descriptor name Description Descriptor status

resource Resource name Required

value1 Value1 Required

value2 Value2 Required

value3 Value3 Required

Appendix B. ODM 8-15

The Resource descriptor determines the nature of the values in the Value1,
Value2, and Value3 descriptors. Possible values for the Resource descriptor
are the strings devno and ddins.

The following table specifies the contents of the Value1, Value2, and Value3
descriptors, depending on the contents of the Resource descriptor.

Table 8-8. Contents of Value1, Value2, and Value3 Descriptors

Resource Value1 Value2 Value3

devno Major number Minor number Device instance
name

ddins dd instance Major number Null string
name

When the resource field contains the devno string, the Value1 field contains the
device major number, Value2 the device minor number, and Value3 the device
instance name. These value fields are filled in by the genminor subroutine,
which takes a major number and device instance name as input, and generates
the minor number and resulting devno CuDvDr object.

When the resource field contains the ddins string, the Value1 field contains the
device driver instance name. This is typically the device driver name obtained
from the Device Driver Name descriptor of the PdDv object. However, this
name can be any unique string and is used by device methods to obtain the
device driver major number. The Value2 field contains the device major
number and the Value3 field is not used. These value fields are set by the
genmajor subroutine, which takes a device instance name as input, and
generates the corresponding major number, and resulting ddins CuDvDr object.

8.1.8 Customized VPD (CuVPD)

B-16

The Customized VPD (CuVPD) object class contains the Vital Product Data
(V PO) for customized devices. VPD can be either machine-readable VPD or
manually-entered user VPD information.

The CuVPD object class contains the following descriptors:

Table. 8-9. CuVPD Object Class Descriptors

Descriptor name Description Descriptor status

name Device name Required

vpd_type VPD type Required

vpd VPD Required

These fields are described as follows:

Device Name
Identifies the device logical name to which this VPO information
belongs.

VPD Type Identifies the VPD as either machine-readable or manually-entered.
The possible values:

Identifies machine-readable VPD.

USER_VPD Identifies manually-entered VPD.

VPD Identifies the Vital Product Data for the device. For
machine-readable VPD, an entry in this field might
include such information as serial numbers,
engineering change levels, and part numbers.

Manually-entered VPD is intended for accounting
purposes. For example, the user may want the name
of the individual responsible for the device as well as
his or her office number.

8.1.9 Configuration Rules (Config_Rules)
The Config_Rules object class contains the following descriptors:

Table B-10. Confi9_Rules Object Class Descriptors

OOM type Descriptor name Description Descriptor
status

aDM_SHORT phase Confi g u ration Required
manager phase

aDM_SHORT seq Sequence value Required

ODM_VCHAR rulevalue[RSIZE] Rule value Required

These descriptors are described as follows:

Cfgmgr Phase This descriptor indicates which phase a rule should be
executed under: phase 1, phase 2, or phase 2 service.

1 Indicates that the rule should be executed in phase 1.

2 Indicates that the rule should be executed in phase 2.

3 Indicates that the rule should be executed in phase 2 service
mode.

Sequence Value In relation to the other rules of this phase, seq indicates the
order in whkh to execute this program. In general, the lower
the seq number, the higher the priority. For example, a rule
with a seq number of 2 is executed before a rule with a seq
number of 5. There is one exception to this: a value of 0
indicates a DON'T_CARE condition, and any rule with a seq
number of 0 will be executed last.

Rule Value This is the full path name of the program to be invoked. The
Rule Value descriptor may also contain any options that
should be passed to that program. However, options must
follow the program name, as the whole string will be executed
as if it has been typed in on the command line.

Note: there is one rule for each program to execute. If
multiple programs are needed, then multiple rules must be
added.

Appendix B. OOM 8-17

Table 8-11. Rule Values

phase sequence rule value

1 1 letc/methods/defsys

1 5 letc/methods/defJvm

2 1 letc/methods/defsys

2 5 /etc/methods/ptynode

2 10 letc/methods/starthft

2 15 letc/methods/starttty

2 20 letc/methods/netstart.sh

3 1 letc/methods/defsys

3 5 /etc/methods/ptynode

3 10 letc/methods/starthft

3 15 letc/methods/starttty

B-18

B.2 ODM Commands
OOM commands are entered on the command line. You can create, add,
change, retrieve, display, delete, and remove objects and object classes with
ODM.

B.2.1 ODU Commands That Handle Objects
odmadd Adds objects to an object class. The odmadd command takes

an ASCII stanza file "as input and populates object classes with
objects found in the stanza file.

odmchange Changes specific objects in a specified object class.

odmdelete Removes objects from an object class.

odmget Retrieves objects from object classes and puts the object
information into odmadd command format.

B.2.2 ODM Commands That Handle Object Classes
odmcreate Creates empty object classes. The odmcreate command takes an

ASCII file describing object classes as input and produces C
language .h and .c files to be used by the application accessing
objects in those object classes.

odmdrop Removes an entire object class.

odmshow Displays the description of an object class. The odmshow
command takes an object class name as input and puts the object
class information into odmcreate command format.

Appendix B. OOM 8-19

8.3 ODM Routines
OOM subroutines can be put in a C language program to handle objects and
object classes. An OOM subroutine returns a value of -1 if the subroutine is
unsuccessful. The specific error diagnostic is returned as the odmerrno
external variable (defined in the odmi.h include file). OOM error diagnostic
constants are also included in the odmLh include file.

B.3.1 ODM Subroutines That Handle Objects
odm_add_obj Adds a new object to the object class.

odm_change_obj Changes the contents of an object.

odm-get_by_id Retrieves an object by specifying its 10.

odm_get_first Retrieves the first object that matches the specified criteria
in an object class.

odm_get_list Retrieves a list of objects that match the specified criteria in
an object class.

odm_get_next Retrieves the next object that matches the specified criteria
in an object class.

odm-get_obj Retrieves an object that matches the specified criteria from
an object class.

odm_rm_by_id Removes an object by specifying its 10.

odm_rm_obj Removes all objects that match the specified criteria from
the object class.

odm_run_method Invokes a method for the specified object.

B.3.2 ODM Subroutines That Handle Object Classes
odm_close_class Closes an object class.

odm_create_class Creates an empty object class.

odmJock Locks an object class or group of classes.

odm_mount_class Retrieves an object class description.

odm_open_class Opens an object class.

odm_rm_class Removes an object class.

odm_set_path Sets the default path for object classes.

odm_set_perms Sets default permissions for object class creation.

odm_unlock Unlocks an object class or group of classes.

B.3.3 ODM Subroutines That Handle Other ODM Functions
odm_err_msg Retrieves a message string.

odm_freeJist Frees memory allocated for the odm_getJist subroutine.

odmJnitialize Initializes an OOM session.

odm_terminate Ends an OOM session.

8-20

B.4· Device Configuration Library Routines
Following are the pre-existing conditions for using the device configuration
library routines:

• The caller has initialized the ODM before invoking any of these library
routines. This is done using the initialize_odm routine. Similarly, the caller
must terminate the ODM (using the terminate_odm routine) after these
library routines have completed. The only one of these routines that does
not require initialization and termination is the attrval routine.

• Since all of these library routines (except attrval, getattr, and putattr) access
the Customized Device Driver object class, this class must be exclusively
locked and unlocked at the proper times. The application does this by
using the odm_lock and odm_unlock routines. In addition, those library
routines that access the Customized Device Driver object class exclusively
lock this class with their own internal locks.

• The caller has set the path to /etc/objrepos (where all the Device
Configuration object classes reside) by using the odm_set_path ODM
routine.

Following are the 11 device configuration library routines:

attrval Verifies that attributes are within range.

genmajor Generates the next available major number for a device.

genminor Generates the smallest unused minor number or a requested minor
number for a device.

genseq

getattr

Generates a sequence number.

Returns attribute objects from the Predefined Attribute object class
or the Customized Attribute object class, or from both.

getminor Gets from the Customized Device Driver object class the minor
numbers for a given major number.

load ext Loads or unloads and binds or unbinds device drivers to or from the
kernel.

putattr Updates attribute information in the Customized Attribute object
class or creates a new object for the attribute information.

reldevno Releases the minor number or major number, or both, for a device
instance.

rei major Releases the major number associated with a specific device driver
instance.

rei seq Releases the specified sequence number.

Appendix B. OOM 8-21

B.5 Real Time Interface Co-Processor Adapter Configuration Files

8.5.1 ODM Stanzas (ric.add)

8-22

Stanzas for populating PdDv

PdDv:
* device is of class adapter

class = "adapter"
* device is of subclass mca, indicating its connection type

subclass = "mca"
* device is an ric type of adapter card

type = IIri Cll
* prefix to be used when naming customized devices of this type

prefi x = Ilri ca II
* the card id obtained from pos(0) and pos(l)

devid = 110x708f ll

* this devices is not a base device
base = 0

* this devices has no VPD
has_vpd = 0

* this device is detectable
detectable = 1

* change status is to be set to NEW when defining a device of this type
chgstatus = 0

* this device is not a bus extension
bus ext = 0

* this device is a FRU (field replacable unit)
fru = 1

* the LED value to be displayed when being configured at boot time
1 ed = 0x777

* the NLS message catalog containing text descriptions of adapter
catalog = IIric.cat ll

* the NLS message set number containing text descriptions of adapter
setno = 1

* the NLS message number of the text description of the adapter
msgno = 1

* there is no device driver to be loaded when the adapter is configured
DvDr = 1111

* the name of the define method
Defi ne = II /etc/methods/def; nell

* the name of the configure method
Configure = II/etc/methods/cfgrica ll

* this device does not have a change method
Change = 1111

* the name of the unconfigure method
Unconfi gure = II /etc/methods/ucfgdev; cell

* the name of the undefine method
Undefi ne = II /etc/methods/undefi ne

* this device does not have a start method
Start = 1111

* this device does not have a stop method
Stop = 1111

* this device does not provide inventory information
inventory_only = 0

* the adapters unique type consisting of class, subclass, and type
uniquetype = lIadapter/mca/ric ll

PdDv:
* device is of class ricport

class = "ricport"
* device is of subclass ricp, indicating its connection type

subclass = "ricp"
* device is a port type

type = II port"
* prefix to be used when naming customized devices of this type

prefix = "ric"
* this devices does not have a card id

devid = e
* this devices is not a base device

base = e
* this devices has no VPD

has_vpd = e
* this devices is not detectable

detectable = e
* change status is to be set to NEW when defining a device of this type

chgstatus = e
* this device is not a bus extension

bus ext = e
* this device is a FRU (field replacable unit)

fru = 1
* the LED value to be displayed when being configured at boot time

led = ex778
* the NLS message catalog containing text descriptions of device

catalog = "ric.cat"
* the NLS message set number containing text descriptions of device

setno = 2
* the NLS message number of the text description of the device

msgno = 1
* the name of the device driver in /etc/drivers directory

DvDr = "ricdd"
* the name of the define method

Define = "/etc/methods/define"
* the name of the configure method

Configure = "/etc/methods/cfgricp"
* the name of the change method

Change = "/etc/methods/chggen"
* the name of the unconfigure method

Unconfigure = "/etc/methods/ucfgdevice"
* the name of the undefine method

Undefine = "/etc/methods/undefine"
* this device does not have a start method

Start = ""
* this device does not have a stop method

Stop = 1111

* this device does not provide inventory information
inventory_only = e

* the devices unique type consisting of class, subclass, and type
uniquetype = IIricport/ricp/port ll

Stanzas for populating PdAt

PdAt:

* the adapters unique type consisting of class, subclass, and type
uniquetype = lIadapter/mca/ric ll

* attribute name

Appendix B. OOM 8-23

attribute = "bus_intr_lvl"
* default value for attribute

defl t = "3"
* possible values the attribute can be set to

values = "3,4,7,9,10,11,12"
* width not used for this type of attribute

width = ""
* this is a bus interrupt level attribute

type = "I"
* this attribute is displayable but not user changeable

generic = "0"
* this attribute is numeric and possible values are represented as a list

rep = "nl"
* the NLS message number of the text description for this attribute

nls_index = 5

PdAt:
uniquetype = "adapter/mca/ric"
attribute = "bus_io_addr"
deflt = "0x2a0"
val ues = ",0x2a0-0x1ea0,0x400"

* range of addresses to be assigned (8 bytes)
width = "0x08"

* this is a bus I/O address attribute
type = "0"
generic = "0"

* this attribute is numeric and possible values are represented as a range
rep = "nr"

PdAt:

nls_index = 4

uniquetype = "adapter/mca/ric"
attribute = "dma_lvl"
deflt = "0"
values = "0-14,1"
width = ""

* this is a dma level attribute
type = "A"

PdAt:

generic = "0"
rep = "nr"
nls_index = 7

uniquetype = "adapter/mca/ric"
attribute = "bus_mem_addr"
deflt = "0x10000"
values = "0x10000-0xff0000,0x10000"
width = "0x10000"

* this is a bus memory address attribute
type = "M"

PdAt:

generic = "0"
rep = "nr"
nls_index = 2

uniquetype = "adapter/mca/ric"
attribute = "dma_bus_mem"
deflt = "0x100000"
values = "0x100000-0xfffc0000,0x1000"

PdAt:

width = "0x40000"
type = "M"
generic = "0"
rep = "nr"
nls_index = 3

uniquetype = "adapter/mca/ric"
attribute = "intr_priority"
defl t = 113"

values = "3"
wi dth = 111I

* this is an interrupt priority class attribute
type = "P"

PdAt:

generic = "0"
rep = "n"
nls index = 6

uniquetype= "ricport/ricp/port"
attribute= "rdto"
deflt= "92"
values= "6-128,1"
width= ""

* this is a regular attribute that is not a bus resource
type= "R"

* this attribute is displayable and user changeable
generic= "DU"

PdAt:

rep= "nr"
nls index= 2

un i q uetype= "adapter /mca/ri c II
attribute= "ucode"
deflt="/etc/asw/ricasw"
values= "mpqpasw"
width= ""
type= "R"
generic= "0"
rep = "s"
nls_index= 8

III Stanzas for populating PdCn

I
I These identify eight connection locations on the ric adapter
I and that devices of subclass ricp can be attached.
I

PdCn:
* the adapters unique type consisting of class, subclass, and type

uniquetype = "adapter/mca/ric"
* the subclass (connection type) of devices that can be attached

connkey = "ricp"
* the connection location where a device can be attached

connwhere = "0"

PdCn:
uniquetype = "adapter/mca/ric"

Appendix B. OOM 8-25

PdCn:

PdCn:

PdCn:

PdCn:

PdCn:

PdCn:

8-28

connkey • -ricp
connwhere • -1-

uniquetype = -adapter/mca/ric
connkey • -ricp-
connwhere • -2-

uniquetype = -adapter/mca/ric
connkey = -ricp-
connwhere = -3-

uniquetype = -adapter/mca/ric
connkey = -ricp-
connwhere = 11411

uniquetype = -adapter/mca/ric
connkey • -r;cp"
connwhere = -5-

un;quetype = "adapter/mca/ric
connkey = -ricp-
connwhere = -6"

uniquetype = -adapter/mca/ric
connkey = "ricp·
connwhere = u7u

8.5.2 Message Catalog for Ric Adapter and Ports
$
$ ric.msg
$
$ Realtime Interface Co-Processor configuration message catalog
$
$quote "
$
$ RIC adapter
$set 1
1 "Realtime Interface Co-Processor Portmaster Adapter"
2 "Bus memory address"
3 HAddress of bus memory used for DMA"
4 "Bus I/O address"
5 "Bus interrupt level"
6 "Interrupt priority"
7 "DMA arbitration level"
8 "Adapter micro-code file name"
$
$ RIC Ports
$set 2
1 "Ric Adapter Port"
2 "Receive Data Transfer Offset"
3 "STATE to be configured at boot time"
$
$set 3
o "List All Defined Ric Ports"
1 "Add a Ric Port"
2 "Move a Ric Port Definition to Another Port"
3 "Change / Show Characteristics of a Ric Port"
4 "KEEP definition in database"
5 "Remove a Ric Port"
6 "Configure a Defined Ric Port"
7 "Ric Port"
8 "Parent Adapter"
9 II PORT number"
10 "Status"
11 "Locati on"
12 "yes,no"
13 "Apply change to DATABASE only"

Appendix B. ODM 8-27

8.5.3 Adapter Configuration Method (cfgrica.c)

8-28

1 /*
2 *
3 * FUNCTION: Configure method for Realtime Interface
4 * Co-Processor Portmaster Adapter/A
5 *
6 * INTERFACE: cfgrica -1 <logical_name> [-<112>]
7 *
8 */
9

18 /* header files needed for compilation */
11 #inc1ude <stdio.h>
12 #inc1ude <sys/types.h>
13 #inc1ude <sys/cfgdb.h>
14 #inc1ude <sys/cfgodm.h>
15 #inc1ude <sys/sysconfig.h>
16 #inc1ude <sys/device.h>
17 #inc1ude <cf.h>
18 #include <fcnt1.h>
19 #inc1ude <sys/mdio.h>
28
21 /* local header files */
22 #inc1ude "debug.h"
23
24 /* main function code */
25 main(argc, argyl
26 int argcj
27 char *argv [] j
28 {
29 char *logica1_namej /* logical name to configure */
38 char *phasel, *phase2j /* ipl phase flags */
31 char sstring[256]j /* search criteria pointer */
32 char conflist[1824]j /* busresolve() configured devices */
33 char not_resolved[1824];/* busresolve() not resolved devices */
34
35 struct cfg_dd cfgj /* sysconfig command structure */
36 struct Class *cusdev; /* customized devices class ptr */
37 struct Class *predevj /* predefined devices class ptr */
38 struct CuDv cusobjj /* customized device object storage */
39 struct PdDv preobjj /* predefined device object storage */
48 struct CuDv parobjj /* customized device object storage */
41 struct CuDv dmyobj; /* customized device object storage */
42
43 ushort devidj /* Device id - used at run-time */
44 int ipl_phasej /* ipl phase: 8=run,l=phasel,2=phase2 */
45 int slot; /* slot of adapters */
46 int rCj /* return codes go here */
47 int errflg,c; /* used in parsing parameters */
48
49 extern int optind; /* for getopt function */
58 extern char *optargj /* for getopt function */

51
52
53
54
55
56
57
58
59
68
61
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
88
81
82
83
84
85
86
87
88
89
9G
91
92
93
94

/***** */
/***** Parse Parameters */
/***** */
ipl_phase - RUNTIME_CFG;
errflg - G;
logical_name - NULL;

while «c - getopt(argc,argv,"l:12 H» 1- EOF) {
sw;tch (c) {

}

case '1 ':
if (logical_name t- NULL)

errflg++;
logical_name - optarg;
break;

case '1':
if (ipl_phase 1- RUNTIME_CFG)

errflg++;
ipl_phase • PHASE1;
break;

case '2':

default:

}

if (ipl_phase 1- RUNTIME_CFG)
errflg++;

ipl_phase • PHASE2;
break;

errflg++;

if (errflg) {

}

/* error parsing parameters */
DEBUG_G("cfgrica: command line error\n");
exit(E_ARGS);

/***** */
/***** Validate Parameters */
/***** */
/* logical name must be specified */
if (logical_name -- NULL) {

DEBUG_G("cfgrica: logical name must be specified\n");
ex;t (E_LNAME);

}

DEBUG_1 ("Configuring device: %s\n", logical_name)

Appendix B. OOM B·29

8-30

95
96
97
98
99

HI8
181
182
183
le4
185
186
187
188
le9
118
III
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
169

/* start up odm */
if (odm initialize() == -1) {

-/* initialization failed */

}

DEBUG_8(" cfgrica: odm_initializeO failed\n")
exit(E_ODMINIT);

/* lock the database */
if (odm_lock(l/etc/objrepos/config_lock",8) == -1) {

DEBUG_8("cfgrica: odm_lockO failed\n"}
err_exit(E_ODMLOCK};

}
DEBUG_8 ("0DM initialized and locked\n")

/* open customized devices object class */
if «int) (cusdev = odm_open_class(CuDv_CLASS» == -I} {

DEBUG_8("cfgrica: open class CuDv failed\n"};
err_exit(E_ODMOPEN};

}

/* search for customized object with this logical name */
sprintf(sstring, "name = '%S'", logical_name);
rc = (int)odm_get_first(cusdev,sstring,&cusobj);
if (rc==8) {

}

/* No CuDv object with this name */
DEBUG_1 ("cfgrica: failed to find CuDv object for %s\n", logical_name);
err_exit(E_NOCuDv);

else if (rc==-l) {

}

/* ODM failure */
DEBUG_8("cfqrica: ODM failure getting CuOv object ");
err_exit(E_JOMGET);

/* open predefined devices object class */
if «int) (predev = odm_open_class(PdOv_CLASS» == -1) {

DEBUG_8("cfgrica: open class PdOv failed\n");
err_exit(E_ODMOPEN);

}

/* get predefined device object for this logical name */
sprintf(sstring, "uniquetype = '%S'", cusobj.PdDvLn_Lvalue);
rc = (int)odm_get_first(predev, sstring, &preobj);
if (rc==8) {

}

/* No PdDv object for this device */
DEBUG_8("cfgrica: failed to find PdOv object for this device\n"};
err_exit(E_NOPdOv);

else if (rc==-l) {

}

/* OOM failure */
OEBUG_8("cfgrica: OOM failure getting PdOv object"};
err_exit(E_OOMGET);

/* close predefined device object class */
if (odm close class(predev) == -1) {

-OEBU(8("cfgrica: close object class PdDv failed"};
err_exit(E_ODMCLOSE);

}

/**
If ric adapter is being configured during an ipl phase, then
display this device's LED value on the system LEOs.
**/

if (ipl_phase 1= RUNTIME_CFG)
setleds(preobj.led};

/**
Check to see if the device is already configured (AVAILABLE).
We actually go about the business of configuring the device
only if the device is not configured yet. Configuring the
device in this case refers to the process of checking parent
and sibling status, checking for attribute consistency
**/

if (cusobj.status == DEFINED) {

17e
171
172
173
174
175
176
177
178
179
18e
181
182
183
184
185
186
187
188
189
1ge
191
192
193
194
195
196
197
198
199
2ee
2e1
2e2
2e3
2e4
2e5
206
2e7
2e8
209
2ie
211
212
213
214
215
216
217
218
219
22e
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
24e
241
242
243
244

/***
The device is not available to the system yet. Now
check to make sure that the device's relations will
allow it to be configured. In particular, make sure
that the parent is configured (AVAILABLE), and that
no other devices are configured at the same location.
***/

/* get the device's parent object */
sprintf(sstring, "name .. '%S"', cusobj.parent)j
rc = (int)odm_get_first(cusdev,sstring,&parobj)j
if (rc e) {

}

/* Parent device not in CuOv */
OEBUG_e("cfgrica: no parent CuOv object\n")
err_exit(E_NOCuOvPARENT)j

else if (rc==-l) {

}

/* OOM failure */
OEBUG_O("cfgrica: OOM failure getting parent CuOv object\n")
err_exit(E_OOMGET)j

/* parent must be available to continue */
if (parobj.status != AVAILABLE) {

}

OEBUG_e("cfgrica: parent is not AVAILABLE")
err_exit(E_PARENTSTATE)j

/* make sure that no other devices are configured */
/* at this location */
sprintf(sstring, "name = '%s' AND parent = '%s' AND

connwhere = '%s' AND status = %d",
cusobj.name, cusobj.parent, cusobj.connwhere, AVAILABLE);

rc = (int)odm_get_first(cusdev,sstring,&dmyobj);
if (rc == -1) {

/* odm failure */
err exit(E ODHGET);

} else if (rc) { -

}

/* Error: device config'd at this location */
OEBUG_e("cfgrica: device already AVAILABLE at this connection\n")
err_exit(E_AVAILCONNECT)j

/***
If ric adapter is being configured at RUN TIME,
then we must resolve any bus attribute conflicts
before configuring device to the driver.
If being configured at boot time, the bus
configurator will have already resolved conflicts.

***/
if (ipl_phase == RUNTIME_CFG) {

if (!strcmp(preobj.subclass,"mca"» {

}

/* Make sure card is in specified slot */
slot = atoi(cusobj.connwhere);
DEBUG_l("cfgrica: slot = %d\n", slot)
devid = (ushort) strtol(preobj.devid, (char **) NULL,e)j
sprintf (sstring,"/dev/%s",cusobj.parent);
rc = chkslot(sstring,slot,devid)j
if (rc != e) {

}

DEBUG_2("cfgrica: card %s not found in slot %d\n",
logical_name,slot)j

err_exit(rc);

DEBUG_2(lIcfgrica: card %s found in slot %d\n",
logical_name,slot)j

/* Invoke Bus Resolve */
rc = busresolve(logical_name,(int)e,conflist,

not_resolved, cusobj.parent)j
if (rc != 0) {

}

DEBUG_e("cfgrica: bus resources could not be resolved\n")
err_exit (rc);

Appendix B. OOM 8-31

8-32

245
246
247
248
249
259
251
252
253
254
255
256
257
258
259
26G
261
262
263
264
265
266
267
268
269
279
271
272
273

}

/* update customized device object with a change operation */
cusobj.status • AVAILABLE;
if (odm_change_obj(cusdev, &cusobj) •• -1) {

/* OOM failure */

}

DEBUG_G(lIcfgrica: OOM failure updating CuDv object\n");
err_exit(E_OOHUPOATE);

} /* end if (device is not AVAILABLE) then ••• */

/* call device specific routine to detect/manage child devices */
OEBUG_9(Ucfgrica: Calling define_childrenO\n")
if (define_children(logfca1_name, ip1_phase) !. 9) {

/* error defining children */
OEBUGJ:l(Ucfgrica: error defining children\n");
err_exit(E_FINOCHILO);

}
OEBUG_9(" cfgrica: Returned from define_chfldrenO\n")

/* close customized device object class */
if (odm_close_class(cusdev) •• -1) {

}

DEBUG_9("cfgrica: error closing CuDv object class\n");
err_exit(E_ODMCLOSE);

odm terminateO;
exit(9);

274
275
276
277
278
279
28G
281
282
283
284
285
286
287
288
289
29G
291
292
293
294
295
296
297
298
299
3Ge
3el

}
/*
* NAME: err_exit
*
* FUNCTION: Closes any open object classes and terminates ODM. Used to
* back out on an error.
*
* NOTES:
*
* err exit(exitcode)
* eXitcode • The error exit code.
*
* RETURNS:
* None
*/

err exit(exitcode)
char exitcode;
{

}

/* Close any open object class */
odm close class(CuOv CLASS);
odm-close-class(PdOv-CLASS);
odm:close:class(CuAt:CLASS);

/* Terminate the OOM */
odm terminate 0 ;
eXit(exitcode);

Appendix B. OOM 8-33

8-34

392
393
394
395
396
397
398
399
319
311
312
313
314
315
316
317
318
319
329
321
322
323
324
325
326
327
328
329
339
331
332
333
334
335
336
337
338
339
34a
341
342
343
344
345
346
347
348
349
35a
351
352
353
354
355
356
357
358
359
369
361
362
363
364
365
366
367
368
369
379
371
372
373
374
375
376

/*
*
* NAME: define_children
*
* FUNCTION: To invoke the generic define method for each child device not
* already in the customized database. This will result in all
* children that are not AVAILABLE being created in the customized
* data base with status DEFINED. To then output on stdout the name
* of each DEFINED child device in order to cause that child's
* configuration.
*
*
* NOTES: For the RIC adapter, there are eight children (ports 9 through 7)
* which are specifically looped over.
*
* RETURNS: 9 - Success
* <9 - Failure
* E ODMOPE - Open of PdDv or CuDv failed.
* (ODMGET - Get of an object from ODM failed.
* E FINOCHILD - The Define method for a child returned in error.
* E:OOMUPDATE - Update of an object in OOM failed.
* E_OOMCLOSE - Close of an object class failed.
*
*/

int define_children(lognam, iplphs)
char *lognam; /* logical name of device instance */
int iplphs; /* phase if ipl */
{

long
char
char
long
struct
struct

rc, port;
string[512] ;
*out_p;
objtest • 9;
CuOv cudvport;
PdDv pddvport;

/* return code, port counter */
/* working string */

/* existance test, 1-test, a-don't */
/* Object structures */

/* read Predef object for RICP ports */

if « rc • odm_get_obj(PdOv_CLASS, "uni que type .. 'ri cport/ri cp/port "',
&pddvport, ODM_FIRST » •• 9) {
DEBUG_2("def_ch1 1: get failed lname=%s rc=%d\n" ,

lognam,rc)
return E NOPdDv;

} else if (rc =; -1) {

}

DEBUG l("def chil: odmget error 1 nmae=%s\n " , lognam)
return E_OOMGET;

DEBUG_a("deCchil: got pddv object\n")

for (port·a; port<8; ++port)
{

/* for each port on the adapter */

objtest • 1;

/* retrieve current CuDv port object */
sprintf(string, "parent .. '%s' AND connwhere .. '%d''', lognam,

port);
DEBUG_1 ("def _chil: str-*%s*\n", string)
rc -(long)odm_get_obj(CuDv_ClASS,string,&cudvport,ODM_FIRST);
DEBUG_1("def_chi1: after get rc=%d\n",rc)

if (rc •• a) /* if current port is not defined ••• */
/* invoke the generic define method */
/* retrieve current CuDv port object */
{

sprintf(string,
n_c ricport -s ricp -t %s -p %5 -w %d",
"port", lognam, port);

DEBUG_2("def_chfl: call 1ng %s %5\n" ,pddvport. Define,
string) .

if(odm_run_method(pddvport.Define,5tring,&out_p,NUll»{
fprintf(stderr,"cfgrica: can't run %s\n",

pddvport.Define);
return E_ODMRUNMETHOD;

377
378
379
388
381
382
383
384
385
386
387
388
389
399
391
392
393
394
395
396 }

}

}

}
fpr1ntf(stdout, -%s\n-, out-p);
obJtest • 8;

else if (re > 8) {
eudvport.chgstatus • SAME;

}

I'"
* Change Customized Device Object Class
*/
if «rc • odm_change_obj(CuDv_CLASS,acudvport» < 9) {

fprintf(stderr,-def_chil: change failed\n-);
return E_ODHUPDATE;

}
fprintf (stdout, -%s\n-, cudvport.name);

return 8;

Appendix B. OOM 8·35

B-36

397
398
399
4ElEl
4El1
4El2
4El3
4El4
4El5
4El6
4El7
4El8
4El9
41El
411
412
413
414
415
416
417
418
419
42El
421
422
423
424
425
426
427
428
429
43El
431
432
433
434
435
436
437
438
439
44El
441
442
443
444
445
446
447
448
449
45El
451
452
453
454
455
456
457

/'"
'" NAME: chkslot
'"
'" FUNCTION:
'" Return zero value if cardid is in desired slot.
'" '" INPUTS:
'" bus
'" slot
'"
'"
'" cardid
'"

- The name of the bus device, for example, busEl.
- The slot number from the parent connection descriptor.

It should be a value of 1 through 8, with El being used
for the Standard I/O Planar.

- The card Id composed as «POSe«8) II POS1).

.,. RETURNS: Returns El on success, >e Error code.
"'/

int
chkslot(bus, slot, cardid)
char "'bus;
int slot;
ushort cardid;
{

MACH DO 10 mddRecord;
uchar pas [2] ;
int fd;
int i;

pos [El] = Elxff;
pos [1] = Elxff;

/* decrement slot number found in database "'/
if (slot == El)

else

/'" checking standard I/O planar */
slot = 15;

slot--;

if (El > (fd • open(bus, O_ROWR») {
OEBUG_l("cfgrica: open %s failed\n", bus)
return(E_NOOETECT);

}

mddRecord.md size" 2;
mddRecord.md-incr .. MV BYTE;
mddRecord.md:data = pos;
mddRecord.md_addr .. POSREG(El, slot);

if (El > ioctl(fd, MIOCCGET, &mddRecord» {
OEBUG_El("cfgrica: ioctl failed\n")
return(E_NODETECT);

}

close(fd);

if (cardid .11: «pos[S] «8) I pos[l]»
return(El);

else
DEBUG_2("cfgrica: cardid .. Elx%x pos • Elx%x\n", cardid,

((pos [El] «8) I pos [1]))
return(E_NOOETECT);

1.5.4 Ric Port Configuration Method (cfgricp.c)
1 1*
2 *
3 * FUNCTION: Configure method for a RIC Adapter Port
4 *
5 * INTERFACE: cfgricp -1 <logical_name> [-<112>]
6 *
7 */
8
9 /* header files needed for compilation *1

19 'include <stdl0.h>
11 'include <sys/types.h>
12 'include <sys/cfgdb.h>
13 'include <sys/cfgodm.h>
14 'include <cf.h>
15 'include <sys/sysconfig.h>
16 *include <sys/sysmacros.h>
17 'include <sys/device.h>
18 'include <sys/stat.h>
19 'include <sys/errno.h>
29
21 1* Local header -files */
22 'include "debug.h"
23 'include "ric.h"
24 'include "ricmisc.h"
25 *inc1ude "ricstruct.h"
26
27 1* external functions */
28 extern long genmajor();
29
39 /* main function code */
31 main(argc t argv t envp)
32 int argc;
33 char *argv[];
34 char *envp[];
35 {
36 char *10gica1_name; /* logical name to configure */
37 char *phasel t *phase2; /* ip1 phase flags *1
38 char sstring[256]; /* search criteria pointer */
39 char conf1ist[1924]; /* busreso1ve() configured devices */
49 char not_resolved[1924]; 1* busreso1ve() not resolved devices */
41
42 struct cfg_dd cfg; 1* sysconfig command structure */
43 struct Class *cusdev; /* customized devices class ptr */
44 struct Class *predev; /* predefined devices class ptr *1
45 struct CuDv cusobj; /* customized device object storage *1
46 struct PdDv preobj; /* predefined device object storage */
47 struct CuDv parobj; /* customized device object storage *1
48 struct CuDv dmyobj; /* customized device object storage */

Appendix B. OOM 8-37

8-38

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Hie
101
102
103
104
la5
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

int
int
long
int
ushort
int
int
int
int

majorno;
minorno;
*minor list;
how many;

/* major number assigned to device */
/* minor number assigned to device */
/* list returned by getminor */
/* number of minors in list */

devid;
ipl_phase;
slot;

/* Device id - used at run-time */
/* ipl phase: 0=run,1=phase1,2=phase2 */
/* slot of adapters */
/* return codes go here */ rc;

errflg,c; /* used in parsing parameters */

extern int
extern char

optind;
*optarg;

/* for getopt function */
/* for getopt function */

/*****
/***** Parse Parameters
/*****
ipl_phase = RUNTIME_CFG;
errflg = 0;
logical_name = NULL;

while «c = getopt(argc,argv,"1:12"» != EO F) {
switch (c) {

}

case '1':
if (logical_name != NULL)

errflg++j
logical_name = optargj
breakj

case '1':
if (ipl_phase != RUNTIME_CFG)

errflg++j
ipl_phase = PHASE1j
breakj

case '2':

default:

}

if (ipl phase != RUNTIME CFG)
-errflg++j -

ipl_phase = PHASE2j
breakj

errflg++;

if (errflg) {

}

/* error parsing parameters */
DEBUG_O("cfgricp: command line error\n");
exit(E_ARGS);

*/
*/
*/

/***** */
/***** Validate Parameters */
/***** */
/* logical name must be specified */
if (logical_name == NULL) {

}

DEBUG_O("cfgricp: logical name must be specified\n");
exit(E_LNAME);

DEBUG_1 ("Configuring device: %s\n", logical_name)

/* start up odm */
if (odm initialize() == -1) {

-/* initialization failed */

}

OEBUG_O("cfgricp: odm_initializeD failed\n")
exit(E_ODMINIT);

/* lock the database */
if (odm_lock("/etc/objrepos/confiLlock",O) == -1) {

OEBUG_O("cfgricp: odm_lockO failed\n")
err_exit(E_OOMLOCK)j

}

OEBUG_O ("OOM initialized and locked\n")

/* open customized devices object class */
if «int) (cusdev = odm_open_class(CuOv_CLASS» == -1) {

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
191

-198

}

OEBUG_0("cfgricp: open class CuOv failed\n");
err_exit(E_OOMOPEN)j

/* search for customized object with this logical name */
sprintf(sstring, "name = '%s '", logical_name);
rc = (int)odm_get_first(cusdev,sstring,&cusobj);
if (rc==0) {

}

/* No CuOv object with this name */
OEBUG_1("cfgricp: failed to find CuOv object for %s\n", logical_name);
err_exit(E_NOCuDv)j

else if (rc==-l) {

}

/* OOM failure */
OEBUG_0("cfgricp: OOM failure getting CuOv object ") ;
err_exit(E_OOMGET)j

/* open predefined devices object class */
if «int) (predev = odm_open_class(PdDv_CLASS» == -1) {

DEBUG_8("cfgricp: open class PdOv failed\n");
err_exit(E_ODMOPEN)j

}

/* get predefined device object for this logical name */
sprintf(sstring, "uniquetype = '%s'", cusobj.PdDvLn_Lva1ue)j
rc = (int)odm_get_first(predev, sstring, &preobj)j
if (rc==8) {

}

/* No PdDv object for this device */
DEBUG_8("cfgricp: failed to find PdDv object for this device\n");
err_exit(E_NOPdDv);

else if (rc==-l) {

}

/* ODM failure */
DEBUG_8("cfgricp: ODM failure getting PdDv object");
err_exit(E_ODMGET)j

/* close predefined device object class */
if (odm close class(predev) == -1) {

-OEBU(8("cfgricp: close object class PdDv failed");
err_exit(E_ODMCLOSE);

}

/**
If this device is being configured during an ip1 phase, then
display this device's LED value on the system LEOs.
**/

if (ip1_phase != RUNTIME_CFG)
set1eds(preobj.1ed)j

/**
Check to see if the device is already configured (AVAILABLE).
We actually go about the business of configuring the device
only if the device is not configured yet. Configuring the
device in this case refers to the process of checking parent
and sibling status, checking for attribute consistency, building
a DDS, loading the driver, etc •••
**/

if (cusobj.status == DEFINED) {

/***~*******
The device is not available to the system yet. Now
check to make sure that the device!s relations will
allow it to be configured. In pa~ticu1ar, make sure
that the parent is configured (AVAILABLE), and that
no other devlces are configured at the same location.
*****~*-**/

-/* get the device's parent object */
sprintf(sstring, "name = '%S'", cusobj.parent);
rc = (int)odm get first(cusdev,sstring,&parobj)j
if (rc==0) {- -

/* Parent device not in CuDv */

Appendix B. OOM 8-39

8·40

199
2ElEl
2Ell
2El2
2El3
2El4
2El5
2El6
2El7
2El8
2El9
219
211
212
213
214
215
216
217
218
219
229
221
222
223
224
225
226
227
228
229
239
231
232
233
234
235
236
237
238
239
249
241
242
243
244
245
246
247
248
249
259
251
252
253
254
255
256
257
258
259
269
261
262
263
264
265
266
267
268
269
27El
271
272
273

}

DEBUG_9("cfgricp: no parent CuDv object\n");
err_exit(E_NOCuDvPARENT);

else if (rc··-I) {

}

1* ODM failure *1
DEBUG_9("cfgricp: ODM failure getting parent CuDv object\n")
err_exit(E_ODMGET);

if (parobj.status !- AVAILABLE) {

}

DEBUG_El("cfgricp: parent is not AVAILABLE")
err_exit(E_PARENTSTATE);

1* make sure that no other devices are configured *1
1* at this location *1
sprintf(sstring, "parent • '%s' AND connwhere " '%s' AND status • %d",

cusobj.parent, cusobj.connwhere, AVAILABLE);
rc " (int)odm_get_first(cusdev,sstring,&dmyobj);
if (rc •• -1) {

1* odm failure *1
err exit(E ODMGET);

} else if (rc) { -

}

1* Error: device config'd at this location *1
DEBUG_9("cfgricp: device already AVAILABLE at this connection\n")
err_exit(E_AVAILCONNECT);

1***
Load device driver, get major number, and call
device dependent routines to get minor number,
make special files, and build DDS.
This code then passes the DDS to the driver.

***1
1* call loadext to load the device driver *1
if «cfg.kmid = loadext(preobj.DvDr, TRUE, FALSE» =" NULL) {

1* error loading device driver *1

}

DEBUG_l("cfgricp: error loading driver %s\n", preobj • DvDr)
err_exit(E_LOADEXT);

1* get major number *1
DEBUG_9(" cfgricp: Calling genmajorO\n")
if «majorno = genmajor(preobj.DvDr» c= -1) {

DEBUG_9("cfgricp: error generating major number");
err_undo(preobj.DvDr);
err_exit(E_MAJORNO);

}

DEBUG_I ("cfgricp: Returned major number: %d\n",majorno)

1* get minor number *1
DEBUG_9("cfgricp: Calling getminorO\n")
minor_list .. getminor(majorno,&how_many, logical_name);
if (minor_list == NULL I I how_many =c El) {

}
else

DEBUG_9(" cfgricp: Calling generate_minorO\n")
rc = generate_minor(10gica1_name, majorno, &minorno)j
if (rc) {

}

DEBUG_l("cfgricp: error generating minor number, rc"%d\n",rc)
1* First make sure any minors that might have *1
1* been assigned are cleaned up *1
reldevno(logical_name, TRUE);
err undo(preobj.DvDr);
if (rc < 9 I I rc > 255)

rc = E MINORNO;
err_exit(rc); -

DEBUG_9("cfgricp: Returned from generate_minorO\n")

minorno .. *minor list;
DEBUG_l ("cfgricp: minor number: %d\n",minorno)

1* create devno for this device *1
cfg.devno .. makedev(majorno, minorno);

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
3e6
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343 }

/* make special files */
DEBUG_O("cfgri cp: Calling make_speci a l_fil es 0 \n ")
rc = make_special_files(logical_name, cfg,devno);
if (rc) {

}

/* error making special files */
DEBUG_1("cfgricp: error making special file(s), rc=%d\n",rc)
err_undo(preobj,DvDr);
if (rc < 0 II rc > 255)

rc = E MKSPECIALj
err_exit(rc); -

DEBUG_O("cfgricp: Returned from make_speci~l_fi1esO\n")

/* build the DDS */
DEBUG_O("cfgricp: Calling build_ddsO\n")
rc = build_dds(logical_name, &cfg,ddsptr, &cfg,ddslen)j
if (rc) {

}

/* error building dds */
DEBUG_l("cfgricp: error building dds, rc=%d\n",rc)
err_undo(preobj,DvDr)j
if (rc < 0 I I rc > 255~

rc = E DDS;
err_exit (rc); -

DEBUG_O(" cfgricp: Returned from build_ddsO\n")

/* call sysconfig to pass DDS to driver */
DEBUG_O("cfgricp: Pass DDS to driver via sysconfigO\n")
cfg.cmd = CFG_INIT;
if (sysconfig(SYS CFGDD, &cfg, sizeof(struct cfg dd » == -1) {

/* error configuring device */ -

}

DEBUG_O("cfgricp: error configuring device\n")
err_undo(preobj,DvDr)j
err_exit(E_CFGINIT)j

/* download microcode if necessary */
DEBUG_O ("cfgdevi ce: Ca 11 ing down 1 oad_mi crocode 0 \n ")
rc = down1oadjmicrocode(logical_name)j
if (rc) {

}

/* error downloading microcode */
DEBUG_1("cfgdevice: error downloading microcode, rc=%d\n",rc)
err_undo2(cfg,devno);
err_undo(preobj,DvDr)j
if (rc < 0 II rc > 255)

rc = E UCODEj
err_exit(rc)j -

DEBUG_O("cfgdevice: Returned from download_microcodeD\n")

/* update customized device object with a change operation */
cusobj,status = AVAILABLEj
if (odm_change_obj(cusdev, &cusobj) == -1) {

/* ODM failure */

}

DEBUG_O(" cfgricp: ODM failure updating CuDv object\n") j
err_exit(E_ODMUPDATE)j

} /* end if (device is not AVAILABLE) then '" */

/* close customized device object class */
if (odm close class(cusdev) == -1) {

-DEBU(O("cfgricp: error closing CuDv object class\n")j
err_exit(E_ODMCLOSE)j

}
odm terminate 0 j
exit(O)j

Appendix B. OOM 8-41

8-42

344
345
346
347
348
349
359
351
352
353
354
355
356
357
358
359
369
361
362
363
364
365
366
367
368
369
370

/*
* NAME: err_exit
*
* FUNCTION: Closes any open object classes and terminates ODM. Used to
* back out on an error.
*
* NOTES:
*
* err exit(exitcode)
* eXitcode • The error exit code.
*
* RETURNS:
* None
*/

err_exit(exitcode)
char exitcode;
{

}

/* Close any open object class */
odm close class(CuDv CLASS);
odm-close-class(PdDv-CLASS);
odm:close:class(CuAt:CLASS);

/* Terminate the OOM */
odm_terminateO;
exit(exitcode);

371
372
373
374
375
376
377
378
379
389
381
382
383
384
385
386
387
388
389
399
391
392

1*
* NAME: err_undo
*
* FUNCTION: Unloads the device's device driver. Used to back out on an
* error.
*
* err undo(DvDr)
* OvDr = pointer to device driver name.
*
* RETURNS:
* None
*1

err undo (DvDr)
char *DvDr; 1* pointer to device driver name *1
{

}

1* unload driver *1
if (loadext(DvDr,FALSE,FALSE) == NULL) {

DEBUG_8(" cfgricp: error unloading driver\n");
}
return;

Appendix B. OOM 8-43

8-44

393
394
395
396
397
398
399
4(;)(;)

4a1
4(;)2
4(;)3
4(;)4
4(;)5
4(;)6
4(;)7
4(;)8
4(;)9
41(;)
411
412
413
414
415
416
417
418
419
42(;)
421
422

/*
* NAME: err_und02
*
* FUNCTION: Terminates the device. Used to back out on an error.
*
*
* err_und02(devno)
* devno • The device's devno.
*
* RETURNS:
* None
*/

err und02(devno)
dev-t devno; /* The device's devno */
{ -

}

struct cfg_dd cfg; /* sysconfig command structure */

/* terminate device */
cfg.devno • devno;
cfg.kmid = (mi d_t) (;);
cfg.ddsptr = (caddr_t) NULL;
cfg.ddslen • (int)(;);
cfg.cmd • CFG_TERM;

if (sysconfig(SYS_CFGDD,&cfg,sizeof(struct cfg_dd» == -1) {
DEBUG_(;)("cfgdevice: error unconfiguring device\n");

}
return;

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

/*
* NAME: build_dds
*
* FUNCTION: Builds the DDS (Defined Data Structure) for the
* Realtime Interface Co-Processor Portmaster adapter
*
* RETURNS: 0 - success
* >0 - failure
*
*/

int build dds(lognam, addr, len)
char *lognam; /* logical name of device */
uchar **addr; /* receiving pointer for DDS address */

/* receiving variable for DDS length */ int *len;
{

int rc, /* return code */
result; /* work variable */

long objtest = 0;
char sstring[512];

/* existance test, 1-test, a-don't */
1* working string */

struct CuDv cudvport,
cudvadap; /* object class records */

t_ric_dds *dds; /* pointer to DDS structure */

dds = (t ric dds *) malloc(sizeof(t ric dds));
if (dds ';= NULL) - -

return(E_MALLOC)j /* report allocation error */

/* Driver requires dds be cleared: */
memset(dds, 0, sizeof(t_ric_dds));

sprintf(sstring, "name = '%s'", lognam);
if((rc = odm_get_obj(CuDv_CLASS, sstring, &cudvport, ODM_FIRST »·-0)

return(E NOCuDv);
else if (rc == -1)

return(E_ODMGET);

/* fill in resource name fields */
strcpy(dds->dds_vpd.devname,lognam);
strcpy(dds->dds_vpd.adpt_name,cudvport.parent);

/* scan field to extract port number */
if (sscanf(cudvport.connwhere, "%d" , &result) != 1)

return(E_INVCONNECT);

dds->dds_dvc.port_num = result;

DEBUG_1("PORT NUMBER IS %d\n", dds->dds_dvc.port_num)

/* read the parent adapter object */
sprintf(sstring, "name = '%s''', cudvport.parent);
if((rc = odm_get_obj(CuDv_CLASS, sstring, &cudvadap, ODM_FIRST »··0)

return(E NOCuDv);
else if (rc == -1)

return(E_ODMGET)j

/* scan field to extract slot number */
if (sscanf(cudvadap.connwhere, "%d", &dds->dds_hdw.slot_num) !- 1)

return(E INVCONNECT);
dds->dds_hdw.slot_num--j /* connwhere = 1,2, •• slot_num = 0,1, •• */

DEBUG_I("Slot number is %d after decrement\n", dds->dds_hdw.slot_num)

/* the following values should be obtained from the PdAt and CuAt */
/* object classes, these are just the default values... */
dds->dds hdw.bus mem addr = Ox10000;
dds->dds=hdw.tcw=bus=mem_addr = Ox100000j
dds->dds hdw.bus intr lvl = 3;
dds->dds-hdw.bus-io addr = Ox2aOj
dds->dds-hdw.dma-lvl = OJ
dds->dds-dvc.rdto = 92;
dds->dds=hdw.intr~priority = 3;

addr = (caddr_t) (dds)j / output the DDS address and length */

Appendix B. OOM 8-45

8-46

498
499
5(;)(;)

5(;)1 }

SEl2
SEl3
SEl4
5(;)5
SEl6
5(;)7
5(;)8
S(;)g
51El
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

1'*
'* NAME: generate_minor
'*
'* FUNCTION: Routine for generating the device minor number
'*
'* RETURNS:
'*
'*
'*1

int

minor number success
E_MINORNO on failure

generatejMinor(lname, majno, minorno)
char '*1 name; 1'* logical device name '*1
long majno; 1'* device major number '*1
long *minorno; 1'* device minor number '*1
{

}

long *minorptr;

1'*
'* use genminor() to create and reserve the minor
'* numbers used by this device.
'*1

minorptr = genminor(lname, majno, -1, 1, 1, 1);

if (minorptr == (long '*)NULL)
1'* error generating minor number '*1
return(E_MINORNO);

'*minorno = '*minorptr;
return (E_OK) ;

Appendix B. OOM 8-47

8-48

534
535
536
537
538
539
54e
541
542
543
544
545
546
547
548
549
55e
551
552
553
554
555
556
557
558
559
56e
561
562
563
564
565
566
567
568
569
57e
571
572
573
574
575
576
577
578
579
58e
581
582
583
584
585
586
587
588
589
59a
591
592
593
594
595
596
597
598
599
6ae
6e1
6e2
6e3
6e4
6e5
6e6
6e7
6e8

/*
*
* NAME: download_microcode
*
* FUNCTION: To download the micro code for the RIC adapter.
*
* NOTES: If this is the FIRST port configured on an adapter, the microcode
* file named by the "microcode file" attribute of the CuAt object
* class will be opened, read into a buffer and then ioctl 'd down to
* the adapter through the current port.
*
* RETURNS: e - success
* >e - failure
*
*/

int download_microcode{ lognam)
char *lognamj
{

char
char
char
uchar
int
long
long
int

struct CuDv

struct CuAt
t_rw_cmd
int

port fn[PATH MAX]j
*mcode fn' -
sstring[5iZ] j
*bufferj
rc;
lengthj
objtest = aj
port_fd = a,
mcode_fd = aj
cudvport,
cudvsibj
*cuatptrj
iocbj
how_manYj

/* port file name */
/* microcode file name */
/* working string */
/* microcode buffer */
/* return code */
/* microcode length */
/* existance test, 1-test, e-don't */
/* port file descriptor */
/* uCode file descriptor */
/* CuDv record for port */
/* CuDv record for adapter */

/* communications block for foctl */

/* read CuDv record for current port */
sprintf{ sstring, "name = '%s''', lognam) j
if« rc = odm_get_obj{ CuDv_CLASS, sstring, &cudvport, ODM_FIRST »==a)

return{ E NOCuDv)j
else if (rc == -I)

return{ E_ODMGET)j
/* if 1 or more sibling ports exist, then the microcode for the */
/* adapter has already been loaded */
sprfntf{ sstring, "parent = '%s' AND status = %d", cudvport.parent,

AVAILABLE)j
if({ rc = odm_get_obj{ CuDv_CLASS, sstring, &cudvsfb, ODM_FIRST »==-1)

return{ E ODMGET)j
else if (rc != a-)

return aj
objtest = aj

cuatptr = getattr{ cudvport.parent, "ucode", FALSE, &how_many)j

if(cuatptr == (struct CuAt *)NULL)
return E NOATTRj

if« mcode_fd = open{ cuatptr->value, O_RDONLY)) == -1)
return E NOUCODEj

if({length = lseek(mcode fd, aL, 2 »==-1)
return E_NOUCODEj-

DEBUG_1{"Microcode length is %d\n", length)
if{lseek{ mcode fd, aL, e)==-1)

return E NOUCODEj
if«buffer = malloc(length »==NULL)

return E MALLOCj
if(read{ mcode_fd, buffer, length)==-1)

return E NOUCODEj
if(c10se(mcode fd)==-1)

return E_NOUCODEj
sprintf(port_fn, "/dev/%s", lognam)j
DEBUG_1("OPENING %s\n", port_fn)
if({port_fd = open(port_fn, O_RDWR » == -1)
{

}

DEBUG_a("OPEN FAILED\n")
return E_DEVACCESSj

61:19
611:1
611
612
613
614
615
616
617 }

iocb.length • lengthj /* set control block for ioctl */
iocb.mem off • I:1x19199j
iocb.usr:buf • buffer;
/* call ioctl to download micro code */
if(ioctl(port fd, Q RASW, &1ocb) <1:1)

return E UCODEj
free(buffer); - /* free the buffer area */
return 1:1;

Appendix B. OOM 8-49

8-50

618
619
629
621
622
623
624
625
626
627
628
629
639
631
632
633
634
635
636
637
638
639
649
641
642
643
644
645
646
647
648
649
659
651
652
653
654
655
656
657
658
659
669
661
662
663
664
665
666
667
668
669
679
671
672
673
674
675
676
677
678
679
689
681
682
683
684
685
686
687
688
689
699
691
692

/*
* NAME: make_special_file
*
* FUNCTION: Creates, or alters a special file as required
*
*
* NOTES:
* make_special_file(suffix,devno)
*
*
*
*
*
*
*
*
*
*
*
*

suffix = suffix part of the special file name. For most cases
this will be the device logical name. For devices with
more than one special file, this routine will be called
one time for each special file needed, passing the file
name required for the special file.

If the special file already exists, then the major/minor numbers
are checked. If they are incorrect, the old file is deleted, and
a new one created. If the numbers were correct, no action is
taken, and 9 is returned.

* RETURNS: 9 For success, errno for failure.
*/

extern int errno;

int make special files(suffix,devno)
char - *suffixj
dey t devno;
{ -

/* suffix for special file name */
/* major and minor numbers */

long cflags; /* create flag / mode & type indicator */
struct stat buf;
char spfilename[128]j
int
long

rc;
filetypej /* character or block device */

cflags = S IRUSR
I S-IRGRP
I S-IWUSR
I (IWGRP

S IFCHR
(IROTH
S IFMPX
(IWOTHj

/* set type for char special file */
/* set mode for rw------- permisions */

filetype=cflags&(S_IFBLKIS_IFCHR)j

if(devno<9 I *suffix=='\9' I !filetype)
return(E_MKSPECIAL)j /* error in parameters */

sprintf(spfilename,"/dev/%s",suffix)j /* file name =/dev/[suffix] */

if(stat(spfilename,&buf» {

/* stat failed, check that reason is ok */

} else {

if(errno != ENOENT) {

}

DEBUG 9("stat failed\n")
return(E_MKSPECIAL)j

/* file does not exist, so make it */

if(mknod(spfilename,filetype,devno» {
DEBUG_9("mknod failed\n")
return(E_MKSPECIAL)j

}

/* stat succeeded, so file already exists */

if(buf.st rdev==devno) /* major/minor #s are same, */
return(9)j /* leave special file alone */

if(unlink(spfilename» { /* unlink special file name */
DEBUG_9("un 1 ink fa 11 ed\n")
return(E_MKSPECIAL)j

}
if(mknod(spfilename,filetype,devno» {

/* create special file */

693
694
695
696
697
69B
699
799
791
792
793
794
795
796 }

}
}

DEBUG 9("mknod failed\n")
return(E_HKSPECIAL);

/* change mode of special file. This is not in the same step as */
/* creating the special file because of an error in mknod(). */
if (chmod (spfi lename, (cflags&(filetype»» {

}

DEBUG_9("chmod failed\n")
return (E_HKSPECIAL);

return (9);

Appendix B. OOM 8-51

B.5.5 Header File for Configuration Methods (debug.h)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

8-52

/*
* DEBUGGING AIDS
*/

#ifdef DEBUG
#include <stdio.h>
#define DEBUG 0(A)
#define DEBUG-1(A.B)
#define DEBUG-2(A.B.C)
#define DEBUG-3(A.B.C,D)
#define DEBUG-4(A.B,C.D,E)
#define DEBUG-5(A.B,C;D,E~F)
#define DEBUG=6(A,B.C,D,E,F.G)
#define DEBUG_7(A)
#define DEBUG_8(A,B)
#define DEBUG_9(A.B,C)
#define DEBUGELSE
#else
#define DEBUG 0(A)
#define DEBUG-1(A,B)
#define DEBUG=2(A.B.C)
#define DEBUG 3(A.B,C.D)
#define DEBUG-4(A.B,C,D,E)
#define DEBUG-5(A,B,C,D.E,F)
#define DEBUG=6(A.B,C,D.E,F,G)
#define DEBUG_7(A)
#define DEBUG 8(A,B)
#define DEBUG=9(A,'B,C)
#define DEBUGELSE
#endif

{fprintf(stderr,A);fflush(stderr);}
{fprintf(stderr,A,B);fflush(stderr);}
{fprintf(stderr,A,B,C);fflush(stderr);}
{fprintf(stderr,A,B,C,D);fflush(stderr);}
{fprintf(stderr,A.B.C.D.E);fflush(stderr);}
{fprintf(stderr,A.B,C.D.E.F);fflush(stderr);}
{fprintf(stderr,A.B.C,D,E.F,G);fflush(stderr);}
{printf(A);}
{printf(A,B);}
{printf(A,B,C);}
else

B.5.6 Makefile for Configuration Methods and Message Catalog

II
II Makefile for cfgrica and cfgricp
II

CC= cc
CFLAGS= -DDEBUG
LIBS= -lodm -lcfg
DEST=/etc/methods

all: cfgrica cfgricp ric.cat

ric. cat: ric.msg
gencat ric.cat ric.msg

cfgrica: cfgrica.c
$(CC) $(CFLAGS) -0 cfgrica cfgrica.c $(LIBS)

cfgricp: cfgricp.c
$(CC) $(CFLAGS) -0 cfgricp cfgricp.c $(LIBS)

install: all

clean:

mv cfgrica $(DEST)
mv cfgricp $(DEST)
cp ric. cat /usr/lpp/msg/C
mv ric. cat /usr/lpp/msg/En_US

rm -f *.0 *.map core
rm -f $(DEST)/cfgric*
rm -f /usr/lpp/msg/*/ric.cat

Appendix B. OOM B-53

8-54

Appendix C. SMIT

C.1 Object Classes

C.1.1 Menu Object Class (sm_menu_opt)
Each item on a menu is specified by an sm_menu_opt object. The displayed
menu represents the set of objects that have the same value for id plus the
sm_menu_opt object used for the title, which has a nextJd value equal to the 10
value of the other objects.

The descriptors for sm_menu_opt objects are 1 :

id The 10 or name of the object. The value of id is a string with a
maximum length of 64 characters. IDs should be unique both to
your application and unique within the particular SMIT database
used.

id_seq_num The position of this item in relation to other items on the menu.
Non-title sm_menu_opt objects are sorted on this string field.
The value of id_seq_num is a string with a maximum length of
16 characters.

nextJd The fast path name of the next menu, if the value for the
next_type descriptor of this object is "m" (menu). All non-alias
sm_menu_opt objects with id values matching the value of
nextJd form the set of selections for that menu. The value of
nextJd is a string with a maximum length of 64 characters.

text The description of the task that is displayed as the menu item.
The value of text is a string with a maximum length of 1024
characters. This string can be formatted with embedded \n
(newline) characters.

text_msg_file The file name (not the full path name) that is the Message
Facility catalog for the string, text. The value of text_msg_file is
a string with a maximum length of 1024 characters. Message
catalogs required by an application program can be developed
with the Message Facility. Set to '"' if you are not using the
Message Facility.

text_msg_set The Message Facility set 10 for the string, text. Set IDs can be
used to indicate subsets of a single catalog. The value of
text_msg_set is an integer. Set to 0 (zero) if you are not using
the Message Facility.

text_msg_id The Message Facility 10 for the string, text. The value of
text_msgJd is an integer. Set to 0 (zero) if you are not using
the Message Facility.

1 Note: when coding an object in this object class, set unused empty strings to ION (two adjacent double quotation
marks) and unused integer fields to 0 (zero).

~ Copyright IBM Corp. 1991 C-1

The type of the next object if this item is selected. Valid values
are:

"m" Menu: the next object is a menu.

"d" Dialog: the next object is a dialog.

"n" Name: the next object is a selector.

"i" Info: this object is used to put blank or other separator lines
in a menu, or to present a topic that does not lead to an
executable task but about which help is provided via the
help_msgJoc descriptor of this object.

alias Defines whether or not the value of the id descriptor for this
menu object is an alias for another eXisting fast path specified in
the nextJd field of this object. The value of the alias descriptor
must be "n" for a menu object.

help_msgJd For internal use only; set to "" (empty string).

help_msgJoc The file name sent as a parameter to the man command for
retrieval of help text. The output of the man command is
displayed by SMIT as the help message. The value of
help_msgJoc is a string with a maximum length of 1024
characters. Set to '''' (empty string) means no help is provided.

C.1.2 Menu Object Class (sm_menu_opt) Used for Aliases
A SMIT alias is specified by an sm_menu_opt object.

C-2

The descriptors for the sm_menu_opt object class and their settings to specify
an alias are:

id

id_seq_num

nextJd

text

The 10 or name of the new or alias fast path. The value of id is
a string with a maximum length of 64 characters. IDs should be
unique to your application and unique within the SMIT database
in which they are used.

Set to 1111 (empty string).

Specifies the id_seq_num of the menu object pointed to by the
alias. The value of nextJd is a string with a maximum length of
64 characters.

Set to '''' (empty string).

text_msg_file Set to "" (empty string).

text_msg_set Set to 0 (zero).

text_msgJd Set to 0 (zero).

next_type The fast path screen type. The value of next_type is a string.

alias

Valid values are:

"m" Menu: the nextJd field specifies a menu screen fast path.

"d" Dialog: the nextJd field specifies a dialog screen fast path.

"n" Name: the nextJd field specifies a selector screen fastpath.

Defines this object as an alias fast path. The alias descriptor for
an alias must be set to "y" (yes).

help_msgJd Set to "" (empty string).

help_msgJoc Set to "" (empty string).

C.1.3 Selector Header Object Class (sm_name_hdr)
A selector screen is specified by two objects: an sm_name_hdr object that
specifies the screen title and other information, and an sm_cmd_opt object that
specifies what type of data item is to be obtained.

The descriptors for the sm_name_hdr object class are 2 :

id The 10 or name of the object. The id field can be externalized as a
fast path 10 unless has_name_select is set to "y" (yes). The value of
id is a string with a maximum length of 64 characters. IDs should be
unique to your application and unique within your system.

Specifies the header object for the subsequent screen; set to the
value of the id field of the sm_cmd_hdr object or the sm_name_hdr
object that follows this selector. The next_type field described below
specifies which object class is indicated. The value of nextJd is a
string with a maximum length of 64 characters.

option_id Specifies the body of this selector; set to the id field of the
sm_cmd_opt object. The value of optionJd is a string with a
maximum length of 64 characters.

has_name_select

name

Specifies whether this screen must be preceded by a selector
screen. Valid values are:

"" or "n" No; this is the default case. The 10 of this object can be
used as a fast path, even if preceded by a selector screen.

"y" Yes; a selector must precede this object. This setting
prevents the 10 of this object from being used as a fast path
to the corresponding dialog screen.

The text displayed as the titl9 of the selector screen. The value of
name is a string with a maximum length of 1024 characters. The
string can be formatted with embedded \n (newline) characters.

name_msg_file
The file name (not the full path name) that is the Message Facility
catalog for the string name. The value of name_msg_file is a string
with a maximum length of 1024 characters. Message catalogs
required by an application program can be developed with the
Message Facility.

name_msg_set
The Message Facility set 10 for the string name. Set IDs can be
used to indicate subsets of a single catalog. The value of
name_msg_set is an integer.

2 Note: when coding an object in this object class, set unused empty strings to HH (two adjacent double quotation
marks) and unused integer fields to 0 (zero).

Appendix C. SMIT C-3

C-4

name_msg_ld
The Message Facility 10 for the string name. The value of
name_msgJd is an integer.

type The method to be used to process the selector. The value of type is
a string with a maximum length of one character. Valid values are:

ghost

"" or "I" Just next 10: the object following this object is always the
object specified by the value of the nextJd descriptor. The
nextJd descriptor is a fully-defined string initialized at
development time.

"r" Cat raw name: in this case, the nextJd descriptor is defined
partially at development time and partially at run time by
user input. The value of the nextJd descriptor defined at
development time is concatenated with the value selected
by the user to create the 10 value to search for next (that of
the dialog or selector to display).

"c" Cat cooked name: the value selected by the user requires
processing for more information. This value is passed to
the command named in the cmd_to_classify descriptor, and
then output from the command is concatenated with the
value of the nextJd descriptor to create the 10 descriptor to
search for next (that of the dialog or selector to display).

SpeCifies whether to display this selector screen or only the list
pop-up panel produced by the command in the cmd_to-'ist field.
The value of ghost is a string. Valid values are:

"" or "n" No; display this selector screen.

"y" Yes; display only the pop-up panel produced by the
command string constructed using the cmd_to-,ist and
cmd_to-'ist_postfix fields in the associated sm_cmd_opt
object. If there is no cmd_to-'ist, then SMIT assumes this is
a "super ghost" (nothing is displayed), runs the
cmd_to_classify command and proceeds.

cmd_to_classlfy
The command string to be used, if needed, to classify the value of
the name field of the sm_cmd_opt object associated with this
selector. The value of cmd_to_classify is a string with a maximum
length of 1024 characters. The input to the cmd_to_classify taken
from the entry field is called the "raw name" and the output of the
cmd_to_classify is called the "cooked name".

cmd_to_classify_postfix
The postfix to interpret and add to the command string in the
cmd_to_classify field. The value of cmd_to_classify_postfix is a
string with a maximum length of 1024 characters.

raw _field_name
The alternate name for the raw value. The value of raw_field_name
is a string with a maximum length of 1024 characters. The default
value is "_rawname".

cooked_field_name
The alternate name for the cooked value. The value of
cooked_field_name is a string with a maximum length of 1024
characters. The default value is "_cookedname".

next_type The type of screen that follows this selector. Valid values are:

"n" Name: a selector screen follows. See the description of nextJd
above for related information.

"d" Dialog: a dialog screen follows. See the description of nextJd
above for related information.

help_msgJd
For internal use only; set to "" (empty string).

help_msg_loc
The file name sent as a parameter to the man command for retrieval
of help text. The value of help_msgJoc is a string with a maximum
length of 1024 characters. The output of the man command is
displayed by SMIT as the help message. Set to "" (empty string) if
no help is provided.

C.1.4 Dialog Header Object Class (sm_cmd_hdr)
A dialog header object is an sm_cmd_hdr object. A dialog header object is
required for each dialog, and pOints to the dialog command option objects
associated with the dialog.

The descriptors for the sm_cmd_hdr object class are 3 :

Id The 10 or name of the object. The value of id is a string with a
maximum length of 64 characters. The id field can be used as a fast
path 10 unless there is a selector associated with the dialog. IDs
should be unique to your application and unique within your system.

optionJd The 10 of the sm_cmd_opt objects (the dialog fields) to which this
header refers. The value of optionJd is a string with a maximum
length of 64 characters.

has_name_select
Specifies whether this screen must be preceded by a selector
screen or a menu screen. Valid values are:

"" or "n" No; this is the default case.

"y" Yes; a selector precedes this object. This setting prevents
the 10 of this object from being used as a fast path to the
corresponding dialog screen.

name The text displayed as the title of the dialog screen. The value of
name is a string with a maximum length of 1024 characters. The text
describes the task performed by the dialog. The string can be
formatted with embedded \n (newline) characters.

3 Note: when coding an object in this object class, set unused empty strings to "" (two adjacent double quotation
marks) and unused integer fields to 0 (zero).

Appendix C. SMIT C-5

C-6

name_msg_file
The file name (not the full path name) that is the Message Facility
catalog for the string, name. The value of name_msg_fiIe is a string
with a maximum length of 1024 characters. Message catalogs
required by an application program can be developed with the
Message Facility.

name_msg_set
The Message Facility set 10 for the string, name. Set IDs can be
used to indicate subsets of a single catalog. The value of
name_msg_set is an integer.

name_msgJd
The Message Facility 10 for the string, name. Message IDs can be
created by the message extractor tools owned by the Message
Facility. The value of name_msgJd is an integer.

cmd_to_exec
The initial part of the command string, which can be the command or
the command and any fixed options that execute the task of the
dialog. Other options are automatically appended through user
interaction with the command option objects (sm_cmd_opt)
associated with the dialog screen. The value of cmd_to_exec is a
string with a maximum length of 1024 characters.

ask Defines whether or not the user is prompted to reconsider the choice
to execute the task. Valid values are:

"" or "n" No; the user is not prompted for confirmation; the task is
performed when the dialog is committed. This is the default
setting for the ask descriptor.

"y" Yes; the user is prompted to confirm that the task be
performed; the task is performed only after user
confirmation. Prompting the user for execution confirmation
is especially useful prior to performance of deletion tasks,
where the deleted resource is either difficult or impossible
to recover, or when there is no displayable dialog
associated with the task (when the ghost field is set to "y").

exec_mode
Defines the handling of stdin, stdout, and stderr during task
execution. The value of exec_mode is a string. Valid values are:

"" or "p" Pipe mode: the default setting for the exec_mode
descriptor. The command executes with stdout and stderr
redirected through pipes to SMIT. SMIT manages output
from the command. The output is saved and is scrollable
by the user after the task finishes running. While the task
runs, output is scrolled as needed.

"n" No scroll pipe mode: works like the "p" mode, except that
the output is not scrolled while the task runs. The first
screen of output will be shown as it is generated and then
remains there while the task runs. The output is saved and
is scrollable by the user after the task finishes running.

ghost

"I" Inherit mode: the command executes with stdin, stdout, and
stderr inherited by the child process in which the task runs.
This gives input and output control to the executed
command.

"e" Exit/exec mode: causes 8MIT to run (do an execl subroutine
call on) the specified command string in the current
process, which effectively terminates 8MIT.

Indicates if the normally displayed dialog should not be shown. The
value of ghost isa string. Valid values are:

"" or "n" No; the dialog associated with the task is displayed. This is
the default setting.

"y" Yes; the dialog associated with the task is not displayed
because no further information is required from the user.
The command specified in the cmd_to_exec descriptor is
executed as soon as the user selects the task.

cmd_to_discover
The command string used to discover the default or current values
of the object being manipulated. The value of cmd_to_discover is a
string with a maximum length of 1024 characters. The command is
executed before the dialog is displayed, and its output is retrieved.
Output of the command must be in colon format.

cmd_to_discover_postfix
The postfix to interpret and add to the command string in the
cmd_to_discover field. The value of cmd_to_discover_postfix is a
string with a maximum length of 1024 characters.

help_msg_id
For internal use only; set to "" (empty string).

help_msgJoc
The file name sent as a parameter to the AIX man command for
retrieval of help text. The value of help_msg-'oc is a string with a
maximum length of 1024 characters. The output of the man
command is displayed by 8MIT as the help message. 8et to ""
(empty string) if no help is availabe.

C.1.S Dialog/Selector Command Option Object Class (sm_cmd_opt)
Each object in a dialog except the dialog header object normally corresponds to
a flag, option, or attribute of the command that the dialog performs. One or
more of these objects is created for each 8MIT dialog; a ghost dialog can have
no associated dialog command option objects.

Each selector screen is composed of one selector header object and one
selector command option object.

The dialog command option object and the selector command option object are
both sm.;..cmd_opt objects. The descriptors for the sm_cmd_opt object class
and their functions are 4 :

4 Note: when coding an object in this object class, set unused empty strings to Iflf (two adjacent double quotation
marks) and unused integer fields to 0 (zero).

Appendix C. SMIT C-7

C-8

id The 10 or name of the object. The 10 of the associated dialog or
selector header object can be used as a fast path to this and other
dialog objects in the dialog. The value of id is a string with a
maximum length of 64 characters. All dialog objects that appear in
one dialog must have the same 10. Also, IDs should be unique to
your application and unique within the particular SMIT database
used.

id_seq_num
The position of this item in relation to other items on the dialog;
sm_cmd_opt objects in a dialog are sorted on this string field. The
value of id_seq_num is a string with a maximum length of 16
characters. When this object is part of a dialog screen, the string "0"
is not a valid value for this field. When this object is part ofa
selector screen, the id_seq_num descriptor must be set to "0" (zero).

disc_field_name

name

A string that should match one of the name fields in the output of the
cmd_to_discover command in the associated dialog header. The
value of disc_field_name is a string with a maximum length of 64
characters.

The value of the disc_field_name descriptor can be defined using the
raw or cooked name from a preceding selector instead of the
cmd_to_discover command in the associated header object. If the
descriptor is defined with input from a preceding selector, it must be
set to either "_rawname" or "_cookedname", or to the corresponding
sm_name_hdr.cooked_field_name value or
sm_name_hdr.raw_field_name value if this was used to redefine the
default name.

The string that appears on the dialog or selector screen as the field
name. It is the visual questioning or prompting part of the object, a
natural language description of a flag, option or parameter of the
command specified in the cmd_to_exec field of the associated dialog
header object. The value of name is a string with a maximum length
of 1024 characters.

name_msg_file
The file name (not the full path name) that is the Message Facility
catalog for the string, name. The value of name_msg_file is a string
with a maximum length of 1024 characters. Message catalogs
required by an application program can be developed with the
Message Facility. Set to '"' (empty string) if not used.

name_msg_set
The Message Facility set 10 for the string, name. The value of
name_msg_set is an integer. Set to 0 (zero) if not used.

name_msg_id
The Message Facility message 10 for the string, name. The value of
name_msgJd is an integer. Set to 0 (zero) if not used.

op_type The type of auxiliary operation supported for this field. The value of
op_type is a string. Valid values are:

"" or "n" This is the default case. No auxiliary operations (list or ring
selection) are supported for this field.

entry_type

entry_size

"I" List selection operation provided. A pop-up window
displays a list of items produced by running the command
in the cmd_toJist field of this object when the user selects
the F4 = List function of the SMIT interface.

"r" Ring selection operation provided. The string in the
disp_values or aix_values field is interpreted as a
comma-delimited set of valid entries. The user can tab or
backtab through these values to make a selection. Also,
the F4 = List interface function can be used in this case,
since SMIT will transform the ring into a list as needed.

The values "N", "L", and "R" can be used as op_type values just as
the lowercase values "n", "I", and "r". However, with the uppercase
values, if the cmd_to_exec command is run and returns with an exit
status of 0 (zero), then the corresponding entry field will be cleared
to an empty string.

The type of value required by the entry field. The value of entry_type
is a string. Valid values are:

"" or "n" No entry: the current value cannot be modified via direct
type-in. The field is informational only.

"f' Text entry: alphanumeric input can be entered.

"#" Numeric entry: numeric input only can be entered.

"x" Hex entry: hexidecimal input only can be entered.

"f" File entry: a file name only should be entered. SMIT checks
to make sure the file exists and is accessable by the user.
SMIT will not allow the user to run the task until this
condition is satisified.

"r" Alphanumeric input can be entered. Leading and trailing
spaces are considered significant and are not stripped off
the field.

Limits the number of characters the user can type in the entry field.
The value of entry_size is an integer. A value of 0 defaults to the
maximum allowed value size.

required Defines if a command field must be sent to the cmd_to_exec
command defined in the associated dialog header object. The value
of required is a string. If the object is part of a selector screen, the
required field should normally be set to "" (empty string). If the
object is part of a dialog screen, valid values are:

"" or "n" No; the option is added to the command string in the
cmd_to_exec field only if the user changes the
initially-displayed value. This is the default case.

fly"~ Yes; the value of the prefix field and the value of the entry
field are always sent to the cmd_to_exec command.

"+" The command field is always sent to the cmd_to_exec
command and must contain at least one non-blank
character. SMIT will not allow the user to run the task until
this condition is satisified.

Appendix C. SMIT e-9

C-10

prefix In the simplest case, it defines the flag to send with the entry field
value to the cmd_to_exec command defined in the associated dialog
header object. The value of prefix is a string with a maximum length
of 1024 characters. The use of this field depends on the setting of
the required field, the contents of the prefix field, and the contents of
the associated entry field.

cmd_toJlst_mode
Defines how much of an item from a list should be used. The list is
produced by the command specified in this object's cmd_toJist field.
The value of cmd_toJist_mode is a string with a maximum length of
one character. Valid values are:

"" or "a" Get all fields. This is the default case.

"1" Get the first field.

"2" Get the second field.

"r" Range: running the command string in the cmd_toJist field
returns a range (such as 1 .. 99) instead of a list. Ranges are
for information only; they are displayed in a list pop-up, but
do not change the associated entry field.

cmd_to_lIst
The command string used to get a list of valid values for the value
field. The value of cmd_toJist is a string with a maximum length of
1024 characters. This command should output values that are
separated by \n (newline) characters.

cmd_toJist_postfix
The postfix to interpret and add to the command string specified in
the cmd_toJist field of the dialog object. The value of
cmd_toJist_postfix is a string with a maximum length of 1024
characters. Each line should not exceed 70 characters. If the first
line starts with "# " (pound sign, space), that entry will be made
non-selectable. This is useful for column headings. Subsequent
lines that start with a "#", optionally preceded by spaces, are treated
as a comment and as a continuation of the preceding entry.

multi_select
Defines if the user can make multiple selections from a list of valid
values produced by the command in the cmd_toJist field of the
dialog object. The value of multi_select is a string. Valid values are:

"" No; a user can select only one value from a list. This is the
default case.

"y" Yes; a user can select multiple values from the list or option
ring. When the command is built, the option prefix is inserted
once before the string of selected items.

"m" Yes; a user can select multiple items from the list or option ring.

valueJndex

When the command is built, the option prefix is inserted before
each selected item.

For an option ring, the zero-origin index to the array of disp_value
fields. The valueJndex number indicates the value that is displayed
as the default in the entry field to the user. The value of entry_size
is an integer.

disp_values
The array of valid values in an option ring to be presented to the
user. The value of disp_values is a string with a maximum length of
1024 characters. The field values are separated by , (commas) with
no spaces preceding or following the commas.

values _msg_file
The file name (not the full path name) that is the Message Facility
catalog for the values in the disp_values fields, if the values are
initialized at development time. The value ,of values_msg_file is a
string with a maximum length of 1024 characters. Message catalogs
required by an application program can be developed with the
Message Facility.

values_msg_set
The Message Facility set 10 for the values in the disp_values fields.
Set to 0 (zero) if not used.

values_msg_id

aix_values

The Message Facility message 10 for the values in the disp_values
fields. Set to 0 (zero) if not used.

If for an option ring, an array of AIX values specified so that each
element corresponds to the element in the disp_values array in the
same position; use if the natural language values in disp_values are
not the actual options to be used for the command. The value ,of
aix_values is a string with a maximum length of 1024 characters.

help_msg_id
For internal use only; set to "" (empty string).

help _msg_loc
The file name sent as a parameter to the AIX man command for
retrieval of help text. The value of help_msgJoc is a string with a
maximum length of 1024 characters. The output of the man
command is displayed by SMIT as the help message. Set to ""
(empty string) if no help is available.

Appendix C. SMIT C-11

C.2 Additional Information

C.2.1 Information Retrieval
SMIT can use several descriptors defined in its objects to get information, such
as current run time values, that is required for continuation through the SMIT
interface structure. Each of these descriptors is assigned some form of
command string to run and retrieve the needed data.

The descriptors that can be set to a command for discovery of required
information are:

• The cmd_to_discover descriptor that is part of the sm_cmd_hdr object class
used to define a dialog header

• The cmd_to_classify descriptor that is part of the sm_name_hdr object class
used to define a selector header

• The cmd_toJlst descriptor that is part of the sm_cmd_opt object class used
to define a selector option list associated with a selector or a dialog
command option list associated with a dialog entry field.

SMIT executes a command string specified by a cmd_toJist, cmd_to_classlfy,
or cmd_to_discover descriptor by first creating a child process. The stderr
(standard error) and stdout (standard output) of the child process are redirected
to SMIT via pipes. SMIT next executes a setenv("ENV = ") subroutine in the
child process to prevent commands specified in the $HOME/.env file of the user
from being run automatically when a new shell is invoked. Finally, SMIT calls
the execl system subroutine to start a new ksh shell, using the command string
as the ksh -c parameter value. If the exit status is not 0 (zero), SMIT notifies
the user that the command failed.

C.2.2 Default Values Setting

C-12

When SMIT puts up a dialog, it gets the dialog header (the sm_cmd_hdr object)
and its associated dialog body (one or more sm_cmd_opt bjects) from the
object repository. However, the sm_cmd_opt objects can also be initialized
with current run time values. If the sm_cmd_hdr.cmd_to_discover field is not
empty (""), SMIT runs the command specified in the field to obtain current run
time values.

Any valid ksh command string can be used as a cmd_to_discover descriptor
value. The command should generate the following output format as its stdout
(standard output):

#name_l:name_2: .•• :name_n\n
val ue_l:val ue_2: ••• :value_n

In the stdout of a command, the first character is always a # (pound sign). a \n
(newline character) is always present to separate the name line from the value
line; multiple names and values are separated by : (colons), and any name or
value can be an empty string (which in the output format appears as two colons
with no space between them). SMIT maintains an internal current value set in
this format that is used to pass name-value pairs from one screen to the next.

When SMIT runs a command specified in a cmd_to_discover field, it captures
the stdout of the command and loads these name-value pairs (name_f and
value_f, name_2 and value_2, and so on) into the disp_values and aix_values

descriptors of the dialog command option (sm_cmd_opt) objects by matching
each name to a sm_cmd_opt.disc_field_name descriptor in each sm_cmd_opt
object.

For a dialog command option (sm_cmd_opt) object that displays a value from a
preceding selector, the disc_field_name descriptor for the dialog command
option object must be set to "_rawname" or "_cookedname" (or whatever
alternate name was used to override the default name) to indicate which value
to use. In this case, the disc_field_name descriptor of the dialog command
option (sm_cmd_opt) object should normally be a no-entry field. If a particular
.value should always be passed to the command, the required descriptor for the
dialog command option (sm_cmd_opt) object must be set to "y" (yes), or one of
the other alternatives.

A special case of option ring field initialization permits the current value for a
cmd_to_discover descriptor (Le., any name-value pair from the current value set
of a dialog) of a ring entry field to specify which pre-defined ring value to use
as the default or initial value for the corresponding entry field. At dialog
initialization time, when a dialog entry field matches a name in the current
value set of the dialog (via sm_cmd_opt.disc_field_name), a check is made to
determine if it is an option ring field (sm_cmd_opt.op_type = "r") and if it has
predefined ring values (sm_cmd_opt.aix_values ! = ""). If so, this set of option
ring values is compared with the current value for disc_field_name from the
current value set. If a match is found, the matched option ring value becomes
the default ring value (sm_smd_opt.value_index is set to its index). The
corresponding translated value (sm_cmd_opt.disp_va/ues), if available, is
displayed. If no match is found, the error is reported and the current value
becomes the default and only value for the ring.

In many cases, discovery commands already exist. In the devices and storage
areas, the general paradigms of add, remove, change, and show exist. For
example, to add (mk), a dialog is needed to solicit characteristics. The dialog
can have as its discovery command the show (Is) command with a parameter
that requests default values. 8MIT uses the standard output of the show (Is)
command to fill in the suggested defaults. However, for objects with default
values that are constants known at development time (Le., that are not based
on the current state of a given machine), the defaults can be initialized in the
dialog records themselves; in this case, no cmd_to_discover is needed. The
dialog is then displayed. When all fields are filled in and the dialog is
committed, the add (mk) command is executed.

As another example, a change (ch) dialog can have as its discovery command
a show (Is) command to get current values for a given instance such as
particular device. 8MIT uses the standard output of the show (Is) command to
fill in the values before displaying the dialog. The show (Is) command used for
discovery in this instance can be the same as the one used for discovery in the
add (mk) example, except with a slightly different set of options.

C.2.3 Flags and Parameters Setting
Associated with each occurrence of a cmd_to_discover, cmd_to_classify, or
cmd_to _list descriptor is a second descriptor that defines the postfix for the
command string defined by the cmd_to_discover, cmd_to_classify, or
cmd_to_list descriptor. The postfix is a character string defining the flags and
parameters that are appended to the command before it is executed.

Appendix C. SMIT C-13

The descriptors that can be used to define a postfix to be appended to a
command are:

• The cmd_to_discover J)ostfix descriptor that defines the postfix for the
cmd_to_discover descriptor in an sm_cmd_hdr object defining a dialog
header.

• The cmd_to_classify J)ostfix descriptor that defines the postfix for the
cmd_to_classify descriptor in an sm_name_hdr object defining a selector
header.

• The cmd_to_listJ)ostfix descriptor that defines the postfix for the cmd_to_list
descriptor in an sm_cmd_opt object defining a selector entry field
associated with a selector or an dialog entry field associated with a dialog.

The following is an example of how the postfix descriptors are used to specify
parameter flags and values. The * (asterisk) in the example can be list,
classify, or discover.

Assume that:

cmd_to_* equals "DEMO -a"

cmd_to_*_postfix equals "-1 rawname -n stuff -R cookedname"

and the current value set is:

#namel:_rawname:_cookedname::stuff\n
valuel:gigatronicundulator:paral1e1:xxx:47

Then the constructed command string would be:

DEMO -a -1 'gigatronicundu1ator ' -n 1471 -R 1 paralle11

Surrounding' , (single quotation marks) can be added around postfix descriptor
values to permit handling of parameter values with embedded spaces.

C.2.4 Aliases and Fast Paths

C-14

A SMIT sm_menu_opt object can be used to define a fast path that, when
entered with the smit command to start SMIT, can get a user directly to a
specific menu, selector, or dialog; the alias itself is never displayed. Use of a
fast path allows a user to bypass the main SMIT menu and other objects in the
SMIT interface path to that menu, selector, or dialog. Any number of fast paths
can point to the same menu, selector, or dialog.

An sm_menu_opt object is used to define a fast path by setting the
sm_menu_opt.a/ias field to "y". In this case, the sm_menu_opt object is used
exclusively to define a fast path. The new fast path or alias name is specified
by the value in the sm_menu_opt.id field. The contents of the
sm_menu_opt.next_id field points to another menu object,i selector header
object, or dialog header object, depending on whether the value of the
sm_menu_opt.next_type field is "m" (menu), "n" (selector), or "d" (dialog).

C.3 Examples

C.3.1 ODM Stanzas for Ric Dialogs (sm_ric.add file)
* sm ric. add .

* * The seven first stanzas (sm_menu_opt) attach the Realtime Interface * Co-Processor Portmaster Adapter dialogs to the * Iisystem management"/"devices"/"communication devices" menu

* * The next stanzas are supporting the

*
following SMIT functions

* * * #

* * *

List All Defined Ric Ports
Add a Ric Port
Move a Ric Port Definition to Another Port
Change/Show Characteristics of a Ric Port
Remove a Ric Port
Configure a Defined Ric Port

sm_menu_opt:
id
id_seq_num
next id

"commodev"
"070"

"ric"
text
text_msg_ fil e
text_msg_set
text_msg_id
next_type
alias
help_msg_id
help_msg_loc

"Realtime Interface Co-Processor Portmaster Adapter"

sm_menu_opt:
id
id_seq_num
next id
text
text mS9_file
text_ms9_set
text_ms 9_id
next_type
alias
help_ms 9_id
help_ms9_loc

sm_menu_opt:
id
id_seq_num
next id
text
text_ms9_ fil e
text_ms9_set
text_ms 9_id
next_type
al i as
help_msg_id
help_ms9_loc

1111

= 0
= 0
= "m"
= 1111

1111

1111

= "ric"
"010"
Illsdric"
"List All Defined Ric Ports"
1111

= 0
= 0

"d ll
1111

1111

1111

= IIric ll
= 11020

11

= IImakric"
= IIAdd a Ric Portsll
= 1111

= 0
= 0

1111

1111

Appendix C. SMIT C-15

C-16

sm_menu_opt:
id
id_seq_num
next_id
text
text_ms9_ fil e
text_ms9_set
text_ms9_id
next_type
alias
help_ms 9_id
help_ms9_loc

sm_menu_opt:
id
id_seq_num
next_id
text
text_ms9_file
text_ms9_set
text_ms 9_id
next_type
alias
help_ms 9_id
help_ms9_loc

sm_menu_opt:
id
id_seq_num
next_id
text
text_ms9_file
text_ms9_set
text_ms 9_id
next_type
alias
help_ms 9_id
help_ms9JoC

sm_menu_opt:
id
id_seq_num
next id
text
text_ms9_ fil e
text_ms9_set
text_ms 9_id
next_type
alias
help_ms 9_id
help_ms9_1oc

"ricll
11(33(311

"movric"
"Move a Ric Port Definition to Another Port"
IIII

= (3

= (3

lin II
IIII
1111

1111

"ric"
11(34(311

"ch9ric l

"Change/Show Characteristics of a Ric Port"
IIII

= (3

= (3

II nil
1111

1111

1111

IIric"
11(35(311

"rmvric ll
IIRemove a Ric Port"
1111

= (3

= (3
Ilnll
1111

1111

IIII

IIri ell
11(36(311

IIcfgric ll
IIConfi9ure a Defined Ric Port"
1111

= (3

= (3

IInll
1111

1111

1111

41
41 List All Defined Ric Ports
41 This uses a ghost dialogue to list all the defined Ric ports.
41 The lsdev command is executed from this dialogue.
41

id
option_id
has_name_select
name
name_msg_file
name_msg_set
name_msg_id
cmd to exec
ask
exec mode
ghost
cmd_to_discover

name size
value size
help_msg_id
hel p_msgJ oc

"lsdric"
1111

"n"
"List All Defined Ric Ports"
"ric.cat"
3

= e
"lsdev -C -c ricport -H"
IIII

IIII

"yll
1111

1111

= e
= e

IIII

IIII

Appendix C. SMIT C-17

C-18

II

II Add a Ric Port
II This allows a ric port to be added by defining and configuring
II it. There is one name selector followed by the dialogue. The name
II selector is used to put up a list of defined ric adapters
II for the user to select from. The dialogue then puts up a list of the
II user configurable attributes.

II Select parent adapter
sm_name_hdr:

id
next_id
option id
has_name_select
name
name_msg_fil e
name_msg_set
name_msg_id
type
ghost
cmd_to_c1assify
cmd_to_classify_postfix
raw_field_name
cooked_field_name
next type
help-msg id
help=msg=loc

= "makric"
= "makric_hdr"
= "ric_mk_parent"
= "nil
= "Add a Ri c Port II
= "ric.cat"
= 3
= 1
= 1111

= "y"
= 1111

= 1111

= "parent"
= 1111

= "d"
1111

= 1111

II Name selector command option for parent adapter
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_msg_fil e
name_msg_set
name_msg_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd_toJ ist
cmd_to_list_postfix
multi_select
value_index
disp_values
values_msg_file
va1ues_msg_set
values_msg_id
aix_va1ues
help msg id
help=msg=loc

II The dialogue header.
sm_cmd_hdr:

id
option_id

= "ric_mk_parent"
= "0"
= 1111

= "Parent Adapter"
= "ric.cat"
= 3
= 8
= "1"
= "t"
= 0
= "yll
= 1111

= "1"
= "lsparent -c -k ricp"
= 1111

= 1111

= 0
= 1111

= 1111

= 0
= 0
= 1111

1111

1111

"makric_hdr"
"ric_add t ric_common"

has_name_select
name
name_ms9_file
name_ms9_set
name_ms9_id
cmd_to_exec
ask
exec_mode
9host
cmd_to_discover
cmd_to_discover_postfix
name_size
value_size
help_ms9_id
help_ms9_1oc

= "y"
= "Add a Ric Port"
= "ric.cat"
= 3
= 1
= "mkdev -c ricport -s ricp -t port •

nn

= .11.

= "n"
= "lsattr -c ricport -s ricp -t port -0 _on

= .11.

= 0
= 0

.11.
•• 11

Appendix C. SMIT C-19

C-20

II

II Move a Ric Port Definition to Another Port
II This allows a ric port definition to be moved to another port
II or another adapter. There are two name selectors followed by the
II dialogue. The first name selector is used to put up a list of defined
II ric ports for the user to select from. The second name selector
II puts up a list of defined ric adapters which can have the
II selected port definition moved to. The dialogue then allows for a new
II port to be selected.

II Select ric port by logical name
sm name hdr:

id
next id
option_id
has name select
name
name_msg_file
name_msg_set
name_msg_id
type
ghost
cmd_to_classify
cmd_to_classify_postfix
raw_field_name
cooked_field_name
next_type
help_msg_id
help_msg_loc

II Select parent adapter
sm name hdr:

id
next id
option_id
has name select
name
name_msg_file
name_msg_set
name_msg_id
type
ghost
cmd_to_classify
cmd_to_classify_postfix
raw field name - -
cooked_field_name
next_type
help_msg_id
help_msg_loc

"movric"
"movri c _parent II
"ric_ln_opt"

"Move a Ric Port Definition to Another Port"
"ric.cat"

= 3
= 2

""

""
"logicname"
""

""

"movric_parent"
"movric_hdr"
"ric_mv_parent"
"y"
"Move a Ric Port Definition to Another Port"
"ric. cat"

= 3
= 2

""
"y"

""
""
"parent"
""

""
""

II Name selector command option for parent adapter
sm_cmd_opt:

id
id_seq_num
disc field name - -
name
name_msg_file
name_msg_set
name_msg_id

= "ric_mv_parent"
"0"
""
"Parent Adapter"
"ric. cat"
3

= 8

op_type
entry_type
entry_size
required
prefix
cmd_to_1ist_mode
cmd_to_1ist
cmd_to_1ist_postfix
multi_select
value_index
disp_va1ues
val ues_ms9_file
va1ues_ms9_set
va1ues_ms9_id
aix_va1ues
he1p_ms9_id
he1p_ms9_1oc

* Dia109ue header
sm cmd hdr:

id
option_id
has_name_se1ect
name
name_ms9_fi1e
name_ms9_set
name_ms9_id
cmd_to_exec
ask
exec mode
9host
cmd_to_discover
cmd_to_discover_postfix
name size
value size
help_ms 9_id
help_ms9_1oc

= °1"
= lit"~

= El
"y"
""
"1"
"lsparent -c "
"-1 l09icname"
""

= El
= ""
= ""
= El
= El

""
""
""

"ric mv"
"y"
"Move a Ric Port Definition to Another Port"
';ri c. cat"
3

= 2
"chdev "
""
""
"n"
""
""

= El
= El

""
""

Appendix C. SMIT C-21

C-22

II
II Change/Show Characteristics of a Ric Port
II This allows a ric portis characteristics to be shown and,
II if desired, changed. First, there is a name selector used
II list of the defined ric ports for the user to select from.
II dialogue then shows all of the characteristics.

to put up a
The

II Select ric port by logical name
sm_name_hdr:

id
next id
option_id
has_name_se1ect
name
name _ msg_ fil e
name_msg_set
name_msg_id
type
ghost
cmd_to_c1assify
cmd_to_classify_postfix
raw field name - -cooked_field_name
next_type
help_msg_id
help_msg_loc

II The dialogue header.
sm_cmd_hdr:

id
option_id
has name select
name
name_msg_ fil e
name_msg_set
name_msg_id
cmd to exec
ask
exec mode
ghost
cmd to discover

name size
value_size
help_msg_id
help_msg_loc

IIchgric ll
IIchgric_hdr ll
IIric_ln_opt"
lin II

= IIChange/Show Characteristics of a Ric Port ll
= IIric.cat"
= 3

3
"II
"yll
"lsdev -C -F \lIparent:connwhere:location:status\" -1 ~
II 1 ogi cname II
"logicname ll
"parent:port:1oc:statell
lid"
IIII
1111

IIchgri c_hdrll
Ilri c_chg, ri c_common ll
"y"
"Change/Show Characteristics of a Ric Port ll
"ric.catll

= 3
= 3

"chdev "
"II
"PII
lin II
IIlsattr II
11-1 logicname -E -011

= 0
= 0

1111
1111

II

II Remove a Ric Port
II This allows a ric port to be removed, including its definition
II in the database, from the system. A name selector is used to put up a
II list of the "defined" and "configured" ric ports for the user
II to select from. The dialogue then uses the rmdev command to remove the
II selected device.

II Select ric port by logical name
sm_name_hdr:

id
next_id
option_id
has_name_se1ect
name
name_msg_file
name_msg_set
name_msg_id
type
ghost
cmd_to_c1assify
cmd_to_c1assify_postfix
raw field name - -
cooked field name - -next type
he1p=msg_id
he1p_msg_10c

II Dialogue header
sm cmd hdr:

id
option_id
has_name_se1ect
name
name_msg_fi1e
name_msg_set
name_msg_id
cmd_to_exec
ask
exec_mode
ghost
cmd_to_discover
cmd_to_discover_postfix
name size
value_size
he1p_msg_id
'he 1 p _msg_1 oc

II Command options
sm_cmd_opt:

id
id_seq_num
disc field name - -name
name_msg_ fil e
name_msg_set
name_msg_id
op_type
entry_type

"rmvric"
= "rmvric_hdrH

"ric_1n_opt"
"nIl

= "Remove a Ric
"ric.cat"

= 3
= 5

1111

"y"
""
""
"logicname"
""

""
1111

"rmvric_hdr"
"rmvric_opt"
"y"

Port II

"Remove a Ric Port"
"ric. cat"

= 3
= 5

"rmdev "
"y"
""
"nil

""
""

= 0
== e

""
""

= "rmvric_opt"
"010"
"logicname"
"Ric Port"
"ric.cat"

= 3
= 7

""
""

Appendix C. SMIT C-23

C-24

entry_size
required
prefix
cmd to list mode - - -
cmd_to_list
cmd_to_list_postfix
multi select
value index
disp_values
val ues_ms9_fil e
values_ms9_set
val ues_ms9_i d
aix values
help_ms9_id
help_ms9_loc

sm_cmd_opt:
id
id_seq_num
disc_field_name
name
name_ms9_fil e
name_ms9_set
name_ms 9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd to list
cmd_to_list_postfix
multi select
value index
disp_values
values_ms9_file
values_ms9_set
values_ms 9_id
aix values
help_ms9_id
help_ms9_loc

= 0
lIyll
"-1 II

= 1111

""
""

= ""
= 0
= II"
= ""
= 0
= 0

""
""
""

"rmvric_opt"
"020"

""
IIKEEP definition in database"
"ric. cat"
3

= 4
= "r"
= "n"
= 0

lin"

""
""
""
""
""

= 0
"yes,no"
"ric.cat"
3
12
",-d "
1111

""

II
II Configure a Defined Ric Port
II This allows a ric port that is defined but not configured to
II be configured. A name selector is used to put up a list of the "defined"
II ric ports for the user to select from. The dialogue then uses
II the mkdev command to configure the selected device.

II Select ric port by logical name
sm_name_hdr:

id
next id
option_id
has_name_se1ect
name
name_msg_fi1e
name_msg_set
name_msg_id
type
ghost
cmd_to_classify
cmd_to_classify_postfix
raw_fie1d_name
cooked field name - -next_type
help_msg_id
he1p_msg_loc

II Dialogue header
sm cmd hdr:

id
option_id
has name select
name
name_msg_fi1e
name_msg_set
name_msg_id
cmd to exec
ask
exec_mode
ghost
cmd_to_discover

name_size
value size
help_msg_id
he1p_msQ_10c

II Command option
sm_cmd_opt:

id
id_seq_num
disc_fie1d_name
name
name_msg....;fi1e
name_msg_set
name_msg_id
op_type
entry_type
entry_size

"cfgric ll
IIcfgric_hdrll
IIric_1n_optll
Ilnll

IIConfigure a Defined Ric Port ll

= 3
= 6

IIII

1111

"logicname"
IIII

1111

1111

"cfgric_hdr"
IIcfgric_opt"
"yll
"Configure a Defined Ric Port"
"ric.caP

= 3
= 6

"mkdev II

1111

IIH
"y"
IIII

1111

= 13
= 13

1111

1111

= "cfgric_opt"
= "13113"

111 ogi cname II
= "Ric Port ll
= IIric.cat ll
= 3
= 7
= 1111

= 1111

= 13

Appendix C. SMIT C-25

required = "y"
prefix "-1 II

cmd_to_1ist_mode = 1111

cmd_to_1ist = 1111

cmd_to_1ist_postfix = 1111

multi select = 1111 -value_index = e
disp_va1ues = 1111

val ues_ms9_fi 1e = 1111

va1ues_ms9_set = e
va1ues_ms9_id = e
ai x_val ues 1111

he1p_ms9_id 1111

he1p_ms9_1oc 1111

C-26

1#
1# Name selector command option for listing ric ports by
1# logical name.
1# Used by: move, change/show, remove, and configure functions.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_msg_ fil e
name_msg_set
name_msg_id
op_type
entry_type
entry_size
required
prefix
cmd to list mode - - -
cmd to list
cmd_to_list_postfix
multi select
value index
disp_values
values_msg_file
values_msg_set
values_msg_id
aix values
help_msg_iu
help_msg_loc

"ri c_ 1 n_opt II
"0"
1111

"Ric Port"
"ric.cat"

= 3
= 7
= "1"
= "t"
= 13

1111

"1"
"lsdev -C -c ricport"
1111

1111

= 13
= 1111

= 1111

= 13

= 13
1111

1111

1111

Appendix C. SMIT C-27

C-28

1#
1# Dialo9 header command options. Specific to add.
1# Used by: add function.

1# Displays ric port's parent adapter.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_ms9_ fil e
name_ms9_set
name_ms 9_id
op_type
entry_type
entry_size
required
prefix
cmd to list mode - - -cmd to list
cmd_to_list_postfix
multi select
value_index
disp_values
values_ms9_file
values_ms9_set
values_ms9_id
aix values
help_ms 9_id
help_ms9JOC

= "ric add"
= "001"

Ilparent"
= "Parent Adapter"
= "ric.cat"
= 3
= 8
= 1111

= 0
"y"

= II_p II
1111

= 1111

= 1111

= 1111

= 0
= 1111

= 1111

= 0
= 0

1111

= 1111

1111

1# Displays physical port number bein9 defined.
sm_cmd_opt:

id "ric add"
id_seq_num
disc_fie1d_name
name
name_ms9_ fil e
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_1ist_mode
cmd to list
cmd_to_list_postfix
multi select
value index
disp_values
values_ms9_file
values_ms9_set
values_ms9_id
aix values
he1p_ms9_id
he1p_ms9_1oc

1111

"PORT number"
"ri c. cat II
3

= 9
= 11111

= "t"
= 0

"+"
II_W II
111"
IIlsconn -k ricp II

"_p parent"
1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

4#

4# Dialog header command options. Specific to show/change.
4# Used by: show/change function.

4# Displays the ric portis logical name.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_msg_ fil e
name_msg_set
name_msg_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd_to_list
cmd_to_list_postfix
multi select
value index
disp_values
val ues_msg_ fil e
values_msg_set
values_msg_id
aix_values
help_msg_id
help_msg_loc

4# Displays devicels state.
sm_cmd_opt:

id
id_seq_num
disc field name - -
name
name_msg_ fil e
name_msg_set
name_msg_id
op_type
entry_type
entry_size
required
prefix
cmd to list mode - - -
cmd to list
cmd_to_l ist_postfi x
multi select
value index
disp_values
val ues_msg_ fil e
values_msg_set
values_msg_id
aix values
help_msg_id
help_msg_loc

IIric_chgll
1100111

IIlogicname ll
IIRic Port ll
IIric.cat"
3

= 7
= IIII

= IInll
= 0

lIyll
"-1 II

1111

IIII

1111

IIII

= 0
= 1111

= 1111

= 0
= 0

IIII

IIII

IIII

IIric_chgll
11002"

"state"
IIStatus"
"ric.cat"

= 3
10

= 1111

= "nll
= 0

lin II
IIII

1111

1111

IIII

1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

Appendix C. SMIT C·29

C-30

* Displays device's location.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_ms9_file
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_1ist_mode
cmd_to_list
cmd_to_1ist_postfix
multi_select
value_index
disp_values
val ues_ms9_file
va1ues_ms9_set
va1ues_ms 9_id
aix values
help mS9 id
help_ms9_loc

* Displays parent adapter.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_ms9_file
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd_to_1ist
cmd_to_list_postfix
multi_select
value_index
disp_values
val ues_ms9_file
values_ms9_set
va1ues_ms9_id
aix_values
he1p_ms9_id
he1p_ms9_loc

= Iric_ch9"
"003

11

1110c ll

"Location"
= Ilric.cat"
= 3
=11
= 1111

= 0

1111

1111

= 1111

1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

IIri C_ch911

= 1100411

Ilparent"
"Parent adapter II
Ilric.caP

= 3
= 8
= 1111

= 0

1111

1111

= 1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

* Displays physical port number bein9 defined.
sm_cmd_opt:

id
id_seq_num
disc_field_name

= Ilri C_ch9"
= 11005 11

Ilportil

name
name_msQ_ fil e
name_msQ_set
name_msQ_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd_to_list
cmd_to_list_postfix
multi_select
value index
disp_values
values_msQ_file
values_msQ_set
values_msQ_id
aix values
help_msQ_id
help_msQJoc

"PORT number"
= "ric.cat"
= 3
= 9
= 111"

= "til
= 0

Un"
"_W "
"1"

= ulsconn II

"_p parent -1 10Qicname"
1111

= 0
= 1111

= 1111

= 0
= e

1111

1111

1111

* Display database only question (last item on screen).
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_msQ_ fil e
name_msQ_set
name_msQ_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd_to_list
cmd_to_list_postfix
multi_select
value_index
disp_values
values_msQ_file
values_msQ_set
values_msQ_id
aix_values
help_msQ_id
help_msQ_loc

Iric_chQ"
"050"
1111

"Apply chanQe to DATABASE onlyll
= "ric.cat"
= 3
= 13
= "r"
= "nil
= 0

"n"
= ""

""
""
""
lin II

1
= "yes,no"
= "ric.cat"
= 3
= 12
= "_p ,"
= 1111

1111

Appendix C. SMIT C-31

C-32

Dialo9 header command options. Common to add and show/change.
Used by: add and show/change functions.

Displays rdto attribute.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_ms9_ fil e
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd to list
cmd_to_list_postfix
multi select
value index
disp_values
val ues_ms9_fil e
values_ms9_set
values_ms9_id
aix_values
help_ms 9_id
help_ms9_1oc

"ri c common II
"010"
"rdto"
"RECEIVE DATA TRANSFER OFFSET"
"ri c. cat II

= 2
= 2
= 11111

= 11#"

= 0
lin II

II_a rdto="
"r ll

"lsattr -c ricport -s ricp -t port -a rdto -R"
1111

Ilnll

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

Displays autoconfi9 attribute.
sm_cmd_opt:

id
id_seq_num
disc_field_name
name
name_ms9_ fil e
name_ms9_set
name_ms 9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_list_mode
cmd_to_list
cmd_to_list_postfix
multi select
value index
disp_values
val ues_ms9_fil e
values_ms9_set
values_ms9_id
aix_values
help_ms9_id
help_ms9_1oc

"ric common"
"020"
lautoconfi9"
"STATE to be confi9ured at boot time ll

"ric.cat"
= 2
= 3
= "111

= IItll

= 0
lin II

II-a autoconfi9="

"lsattr -c ricport -s ricp -t port -a autoconfi9 -RI
1111

= "n ll

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

1#
1# Dial09 header command options. Specific to move.
1# Used by: move function.

1# Displays the ric portis 109ical name.
sm_cmd_opt:

id
id_seq_num
disc field name - -
name
name_ms9_file
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefix
cmd to list mode - - -
cmd to list
cmd_to_list_postfix
multi select
value index
disp_values
val ues_ms9_fi le
values_ms9_set
val ues_ms9_i d
aix values
help_ms 9_id
help_ms9_10c

1# Displays parent adapter.
sm_cmd_opt:

id
id_seq_num
disc field name - -
name
name_ms9_file
name_ms9_set
name_ms9_id
op_type
entry_type
entry_size
required
prefix
cmd to list mode - - -
cmd to list
cmd_to_list_postfix
multi select
value index
disp_values
val ues_ms9_fi le
values_ms9_set
values_ms 9_id
aix values
help_ms 9_id
help_ms9_10c

"ric mv"
"001"
1109icname"
"Ric Port"
"ric.cat"

= 3
= 7
= 1111

= "nll

= 0
"yll
"-1 II

1111

1111

1111

1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

"ric mv"
"002"
"parent"
"Parent Adapter"
"ric.cat ll

3
= 8
= 1111

= "nll
= 0

"y"
"_p II

1111

1111

1111

1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

Appendix C. SMIT C-33

C-34

Displays physical port number bein9 defined.
sm_cmd_opt:

id
id_seq_num
disc_fie1d_name
name
name_ms9_file
name_ms9_set
name_ms 9_id
op_type
entry_type
entry_size
required
prefix
cmd_to_1ist_mode
cmd_to_list
cmd_to_1ist_postfix
multi sel ect
value index
disp_va1ues
val ues_ms9_fi le
values_ms9_set
values_ms9_id
aix_values
he1p_ms 9_id
he1p_ms9_loc

"ric mv"
"003"
"port"
"PORT number"
"ric.cat"

= 3
= 9
= "111

= "t"
= 0

"+11

II_W II

"1"
"lsconn II

"_p parent -1 l09icname"
1111

= 0
= 1111

= 1111

= 0
= 0

1111

1111

1111

C.3.2 SMIT Log File
Starting SMIT

(Menu screen selected as FastPath,
id ROOT " - -' i d_seq_num "0",
next id "top_menu",
title "System Management".)

Object class: sm_menu_opt,
i d = "_ROOT _II, i d_seq_num = "0", next i d = "top_menu",

text = "System Management"

(Menu screen selected,
FastPath "top_menu",
i d_seq_num "0",
next i d "top_menu ",
title "System Management".)

Object class: sm_menu_opt,
id = "top_menu", id_seq_num = "010", next id "install",

text = "Installation and Maintenance"
Object class: sm_menu_opt,

id = "top_menu", id_seq_num = "020", next id = "dev",
text = "Devices"

Object class: sm_menu_opt,
id = "top_menu", id_seq_num = "030", next_id "storage",

text = "Physical and Logical Storage II
Object class: sm_menu_opt,

id = "top_menu", id_seq_num = "040", next id "security",
text = "Security and Users"

Object class: sm_menu_opt,
id = "top_menu ll

, id_seq_num = "050", next_id = "common,
text = "Communications Applications and Services"

Object class: sm_menu_opt,
id = "top_menu", id_seq_num = "060", next_id = "spooler",

text = "Spooler (Print Jobs and Printer) II

Object class: sm_menu_opt,
id = "top_menu", id_seq_num = "070", next id = "problem",

text = "Problem Determination"
Object class: sm_menu_opt,

id = "top_menu ll
, id_seq_num = "080", next id = "performance",

text = "Performance and Resource Scheduling"
Object class: sm_menu_opt,

id = "top_menu ll
, id_seq_num = "090", next_id "system",

text = "System Environments and Processes"
Object class: sm_menu_opt,

id = "top_menu", id_seq_num = "100", next id "apps",
text = "Applications"

Object class: sm_menu_opt,
id = "top_menu", id_seq_num = "999", next_id 1111,

text = "Using SMIT (information only)"

1 aSl_screen() returned action/index = 7 / 2
Object class: sm_menu_opt,

id = "top_menu", id_seq_num = "020", next id "devll,
text = "Devices"

Appendix C. SMIT C-35

C-36

(Menu screen selected,
FastPath "dev",
i d_seq_num "021:)11,
next id "dev",
title "Devices".)

Object class: sm_menu_opt,
id = "devil, id_seq_num = "010", next_id "printer",

text = "Printer/Plotter Devices"
Object class: sm_menu_opt,

id = "dev", id_seq_num = "030", next id "tty",
text = "TTY"

Object class: sm_menu_opt,
id = "dev", id_seq_num = "040", next id "ptyll,

text = "PTY"
Object class: sm_menu_opt,

id = "dev", id_seq_num = "050", next_id "disk",
text = "Fixed Disk"

Object class: sm_menu_opt,
id = "dev", id_seq_num = "060", next id "cdrom",

text = "CD ROM Drive"
Object class: sm_menu_opt,

id = "dev", id_seq_num = "070", next id "diskette",
text = "Diskette Drive"

Object class: sm_menu_opt,
id = "dev", id_seq_num = "080", next id "tape",

text = "Tape Drive"
Object class: sm_menu_opt,

id = "deVil, id_seq_num = "100", next id = "commodev",
text = "Communication Devices"

Object class: sm_menu_opt,
id = "dev", id_seq_num = "110", next id = "hft",

text = "High Function Terminal (HFT)II
Object class: sm_menu_opt,

id = "dev", id_seq_num = "120", next id "lssdev",
text = "List All Supported Devices"

Object class: sm_menu_opt,
id = "dev", id_seq_num = "130", next_id "lsddev",

text = "List All Defined Devices"
Object class: sm_menu_opt,

id = "dev", id_seq_num = "135", next_id = "cfgmgr",
text = "Configure Devices Added After IPL"

Object class: sm_menu_opt,
id = "dev", id_seq_num = "140", next id = "_dump_link",

text = "System Dump"

1 aSl_screen() returned action/index = 7 / 8
Object class: sm_menu_opt,

id = "dev", id_seq_num = "100", next id "commodev",
text = "Communication Devices"

(Menu screen selected,
FastPath "commodev" ,
i d_seq_num = 11100",
next_id "commodev",
title "Communication Devices".)

Object class: sm_menu_opt,
id = "commodev", id_seq_num = "010", next id = "ethernet",

text = "Ethernet Adapter"
Object class: sm_menu_opt,

id = "commodev", id_seq_num = "020", next id = "token",
text = "Token Ring Adapter"

Object class: sm_menu_opt,
id = "commodev", id_seq_num = "030", next id = "multiprotocol",

text = "Multiprotocol Adapter"
Object class: sm_menu_opt,

id = "commodev", id_seq_num = "040", next_id = "3270con",
text = "3270 Connection Adapter"

Object class: sm_menu_opt,
id = "commodev", id_seq_num = "050", next_id = "5085",

text = "5085/86/88 Attachment Adapter"
Object class: sm_menu_opt,

id = "commodev", id_seq_num = 11060", next id = "x25",
text = "X.25 Adapter"

Object class: sm_menu_opt,
id = "commodev", id_seq_num = "070", next_id = "ric",

text = "Realtime Interface Co-Processor Portmaster Adapter"

1 asl_screen() returned action/index = 7 / 7
Object class: sm_menu_opt,

id = "commodev", id_seq_num = "070", next_id = "ric",
text = "Realtime Interface Co-Processor Portmaster Adapter"

Appendix C. SMIT C-37

c-38

(Menu screen selected,
FastPath "ric",
i d_seq_num "13713",
next id "ric",
title "Realtime Interface Co-Processor Portmaster Ada~ter".)

Object class: sm_menu_opt,
id = "ric", id_seq_num = "13113", next id = "lsdric",

text = "List All Defined Ric Ports"
Object class: sm_menu_opt,

id = "ric", id_seq_num = "13213", next id "makric",
text = "Add a Ric Ports"

Object class: sm_menu_opt,
id = "ric", id_seq_num = "13313", next_id = "movric",

text = "Move a Ric Port Definition to Another Port"
Object class: sm_menu_opt,

id = "ric", id_seq_num = "13413", next_id = "chgric",
text = "Change/Show Characteristics of a Ric Port"

Object class: sm_menu_opt,
id = "ric", id_seq_num = "13513", next id = "rmvric",

text = "Remove a Ric Port"
Object class: sm_menu_opt,

id = "ric", id_seq_num = "13613", next id "cfgric",
text = "Configure a Defined Ric Port"

1 aSl_screen() returned action/index = 7 / 1
----entering smit_dialog (lsdric, #
, e)

Object class: sm_cmd_hdr,
id = "lsdric", option_id ",
name = "List All Defined Ric Ports"

(Dialogue screen selected,
FastPath "lsdric",
id = "lsdric",
title = "List All Defined Ric Ports".)

Command to Execute follows below:
» lsdev -C -c ricport -H

Appendix D. Installp/Updatep Files

D.1 Required Files for Creating Compatible Application Programs
The files described in the following paragraphs are required for the installation
or update of an application program.

0.1.1 The Ipp_name File

@ Copyright IBM Corp. 1991

The application program name file, .Ilpp_name, provides the installp. command
and the updatep command with information about each program and program
option contained on the installation or update medium. This file is a variable
record length file containing one record (line of text) for each program or
program option in the same order as the programs and options appear on the
distribution medium. This list is enclosed by { } (curly braces). Information that
is not contained within the braces applies to the medium and the platform.

The first line contains three tokens that specify the format, platform, and type of
media followed by the left brace delimiter for the list of programs. The tokens
are delimited by one or more blank characters. The current format token is 1
(one), the platform token is R, and the media type token is I for an installation
or M for multiple updates.

Each line within the braces is made up of information about a single program
option. With the exception of the description and comment, all of the items of
information are separated by one or more blank characters. Each line contains
the following items:

Program

Level

Location

Identifies the program or program option. This value is a
character string.

Identifies the version, release, modification, and fix levels at
which the program will be when installed or updated. This
value is a character string.

Indicates the volume location where the files belonging to this
option can be found on the media. This value is a character an
integer.

QuiesceValue Indicates whether or not the subsystem should be stopped prior
to installation or update of the program or option. This value is
either Y or N.

Type

Language

Description

#Comment

Indicates the type of information contained on the media, such
as object code or documentation.

The NLS language token that indicates the language. This value
is US_ENG, to indicate U.S. English.

Describes the program. This value is a character string that
extends to the end of the line or until a pound symbol (#) is
encountered.

All text from a pound symbol until the end of the line is
considered to be a comment.

0-1

For example, the following application program name file specifies information
about the bosdev program, which contains three options, send mail, ftp, and tn.
All of the options will be at the same level when installed; all are on the same
volume of media; none require the system to be stopped before installation; all
contain object code; and all are in U.S. English.

1 R I {
bosdev.tcpip.sendmail 03.01.0010.0000 1 N 0 US_ENG Sendmail progrm
bosdev.tcpip.ftp 03.01.0010.0000 1 N 0 US_ENG FTP program#Bug fix
bosdev.tcpip.tn 03.01.0010.0000 1 N 0 US_ENG Telnet program
}

The application program name file is displayed when the installp -I command or
updatep -I command is invoked.

D.1.2 The liblpp.a File
The application program installation library file, lusr/lpp/Program/liblpp.a,
contains the library of the program's installation related files. The application
program installation files are extracted from a single file on the distribution
medium (in the backup -i format), which is initially restored into the application
program installation library file by the installp command. Program is the name
of the program.

D.1.3 The instal Script File

0-2

An application program to be installed must provide an installation script
named instal. The installation script can be either a shell script or an
executable file in the a.out file format. The installp command invokes the
installation script and waits for a return code from it.

The installation script is required for an application program even if the
program has separately installable options. The program installation script
should know how to process the program's options. For example, bosext has
one top-level installation script that processes the installation for all of its
options based upon the installation files associated with each option. It is also
possible to have a top-level installation script that invokes a different
installation script for each option.

The installation script for an application program should do any processing
necessary to facilitate the installation of the program, such as checking
prerequisites, restoring all files associated with the program, performing any
configuration necessary for the program, and updating the error and trace
templates. The installp and updatep subcommands as well as any of the AIX
commands are valid for use in the installation script. The following commands
are available to help with installation processing:

inusave Saves all files specified by the apply list (al) into the save directory
belonging to the application program. This is not required for an
installation.

inurest Restores files from the distribution media onto the system using the
apply list as input.

inuumsg Issues translated messages for the application program being
installed.

ckprereq Verifies compatibility of the application program with any
dependencies using the history information found in the VPD and the
supplied prereq file.

The path to these commands is letc/command.

The installp command invokes the installation script and passes two arguments
to it. The first argument is the name of the device from which the installation is
being done or the path name of a backup format file on the distribution
medium. The installation script should pass this argument to the inurest
command in order to identify the device to be used for the restore. The second
argument is the name of the file that contains a list of the options to install.

For example, a user chooses to install the acct and ate options of the bosext
program from the Idev/rfdO device. The installp command invokes the
installation script, passing to it the device name, Idev/rfdO, and the name of a
file that contains the following option names:

bosext.acct.obj
bosext.ate.obj

The installation script reads the file to determine which options are being
installed. An installation script must perform the following procedures:

• Use the ckprereq command to verify compatibility of the application
program with other installed programs using the history information of the
other programs The history information can be found in the Vital Product
Data (VPD) database and the prereq file.

• Verify that the required files exist and that information contained in them is
in the expected format.

• Use the inurest command to restore all of the required files from the
distribution medium.

• Execute the configuration procedure if it exists.

• Return an exit code indicating the status of the installation. The installp
command issues an appropriate error message based on this exit code.

The installp command can continue the installation of an application program
even if some of the program options do not install successfully. If no
information other than the error return code is given, the installp command
assumes that the entire application program installation was unsuccessful. If
the installation procedure returns a nonzero return code to the installp
command, the installp command looks for a file called status. If none is found,
then all options are considered to have failed.

The status file informs the installp command when certain application program
options install successfully and certain options do not. The installation script
must create the status file to specify this information. The format of the status
file is two items per line. The first item is a single character, either s (success)
or f (failure). The second item is the name of the program or option.

When an application program or option installs successfully, information about
it is entered into the Vital Product Data (VPD) database. If an application
program or option does not install successfully, the cleanup procedure is
carried out for it and no information is entered into the VPD database.

Appendix D. Installp/Updatep Files 0-3

D.1.4 The al File

The following example of a status file indicates to the installp command that the
installations for the sendmail option and the ftp option are successful and the
installation for the telnet option is not successful. VPD entries for the sendmail
option and the ftp option are created. The cleanup procedure is carried out for
the telnet option, for which no VPD entries are created.

s bosdev.tcpip.sendmail
f bosdev.tcpip.telnet
s bosdev.tcpip.ftp

Refer to the sample installation script for the extended base operating system
program that is provided as an example of an installation script.

The installation apply list file, ai, contains an apply list for the entire application
program. The installation apply list contains the names of all of the files to be
restored from the distribution medium during the installation of an application
program. The files must be listed as relative file specifications from the root
directory (for example, ./usrllib/sendmail). The inurest command, which
archives and restores files for the installp command, restores these files to the
appropriate system directories. The current directory is always set to root by
the inurest command

The entries in the installation apply list file(s) can be used to locate the
corresponding entries in an archive control file (/usr/lpp/Program/lpp.acf) when
a restored file is being archived.

If the application program has separately installable options, an installation
apply list file (Option.al) can be supplied for each program option. The apply
list files for each of the individual program options can be used instead of the al
file. The installation script must know how to call the inurest command for each
of the apply list files. If the program does not require a more specific method of
specifying file names, it is not necessary to provide an apply list file for each
option that is being installed.

If only an al file is present, the information applies to the application program
as a whole. If various Option.al files are present, they each apply to a specific
program option.

D.1.5 The copyright File

D~

The copyright file contains the copyright information associated with each
application program included on the installation or update distribution medium.
This file can be empty, but it must be present. If copyright information is
included for an application program, it contains the full name of the program
followed by the copyright notice. For a program update, the copyright file must
be the first file on the update distribution medium. If more than one program
update is contained on the medium, the copyright file contains a copy of the
copyright information for each of the programs.

D.1.6 The size File
The application program size file, size, contains size specifications for the
installation or update of the entire program. If the program has separately
installable options, supply a size file (Option.size) for each option. The size
files for each of the individual program options can be used instead of the size
file.

If only a size file is present, the information applies to the application program
as a whole. If various Option.size files are present, they each apply to a
specific program option.

The installp command uses the information in the size file to ensure that the
system as currently configured has enough mass storage space to allow
installation or update of the program or option. It is important to determine
how much space is required in the user's system with the file systems that are
defined. Each major directory is listed along with how many 512-byte blocks
the program requires in the directory. A major directory refers to any directory
that is not split across logical volumes.

Each separate directory that functions as a unit or is large enough that it might
be split must be specified in the size file. The size file should specify the
lowest level of directories that is feasible. For example, specify
lusr/lpp/Program rather than lusr/lpp; specify lusrllib and lusr/bin rather than
simply lusr.

The format of the size file is one record (ASCII text line) for each directory. The
full path name of the directory is followed by the amount 0 information (in
512-byte blocks) that the installation will attempt to put there. The directory
name and the size are separated by one or more blank spaces. It is not
necessary for the directories to exist already; they can be directories that are to
be added during the installation or update.

For example, the size file can include the following entries to specify that the
lusrllib directory being installed or updated will require 200 512-KB blocks
(102,400 KB or might look something like this:

/usr/lib 200
/usr/bin 30
/lib 40

The size file should also include any old files (to be replaced) that will be
moved into the lusr/lpp/Program/inst_updt.save file so that these files can be
restored if the update is later rejected.

D.i.7 The Ipp.cleanup File
The application program cleanup file, Ipp.cleanup, provides a procedure to
recover from a failed program installation attempt. The installp command
carries out this procedure when an error occurs or when the -C flag is specified
for the installp command. The cleanup procedure can be either a shell script or
an executable file in the a.out file format.

The cleanup procedure can call the installp and updatep subcommands as well
as AIX commands. The contents of the Ipp.cleanup file depend upon what
procedures were implemented by the program during installation. At the very
minimum, the cleanup procedure must remove any files that were restored. If

Appendix D. Instalip/Updatep Files D-5

the program has a configuration procedure, then the cleanup procedure must
be able to undo the configuration procedures. If the program has separately
installable options, the cleanup procedure must be able to clean up separate
options or carry out a separate cleanup procedure for each option.

The installp command calls the program cleanup procedure if the installation of
the program or one or more of the program's installable options fails. Two
arguments are passed to the cleanup procedure. The first argument is the
device name, which can generally be ignored. The second argument is the
name of the file that contains a list of the options that failed to install. These
arguments are the same as those passed into the installation script.

For example, a user attempts to install the acct and ate options in bosext from
Idev/rfdO. The acct option installs successfully but ate fails. The installp
command then invokes the Ipp.cleanup script, passing in Idev/rfdO and the
name of a file whose contents are: bosext.ate.obj.

If this application program is an option of a larger program, the cleanup file
must be put into a directory of its own so that other options of the larger
program do not write over it with their own Ipp.cleanup files. In this case, the
primary cleanup procedure should know that other cleanup procedures exist
and how to access them.

D.1.8 The special File

0-6

The application update program special file, .Ispecial, describes any special
update requirements of an program. This file can be empty if there are no
special requirements, but it must exist on the update distribution medium. The
following two types of special requirements are included in this file:

ras

config

RAS template updates are included.

Configuration updates are included.

The formats for each of the respective types of records are single lines of text
containing the following information delimited by one or more spaces or tabs:

ras Program Level

A ras entry indicates that the updates for the program or program option
specified by Program at the level indicated by Level include changes for a ras
trace or error template. If a program or option includes a ras entry in the
special file, the updates for the program or option must be applied and
committed or rejected without being grouped with any other program. A
specific update instruction must be included with any ras update to inform the
user how to recover the ras templates that were saved during the installation or
update.

config Program Level

A config entry indicates that the updates for the program or program option
specified by Program at the level indicated by level include configuration
changes. If an program or option includes a config entry in the special file, the
updates for the program or option must be applied and committed or rejected'
without being grouped with any other program. A config entry supercedes any
ras requirements.

D.1.9 The service_"um File
The service number file, ./service_num, contains the corrective service number
of the update distribution medium. The service number can be as many as 10
characters. This information is entered into the Vital Product Data (VPD)
database.

D.1.10 The arp File
The update archive file, .Iusrllpp/Program/inst_updtlarp, contains the
procedures to be used to perform the update. Each program named in the
update control list requires a separate update archive file. The update archive
file is in the archive format.

D.1.11 The update Script File
An update to an application program must provide an update script named
update. The update script can be either a shell script or an executable file in
the a.out file format. The updatep command invokes the update script and
waits for a return code from it.

The update script is required to update an application program even if the
program has separately installable options. The program update script should
know how to process the program's options.

The update script for an application program should do any processing
necessary to facilitate the update of the program, such as checking
prerequisites, restoring all files associated with the program, performing any
configuration necessary for the program, and updating the error and trace
templates. The installp and updatep subcommands as well as any of the AIX
commands are valid for use in the update script. The following commands are
available to help with update processing:

inusave Saves all files specified by the apply list (al) into the save directory
belonging to the program. This must be used for an update.

inurest Restores files from the distribution media onto the system using the
apply list as input.

inuumsg Issues translated messages for the program being updated.

ckprereq Verifies compatibility of the program with any dependencies using
the history information found in the VPD and the supplied prereq file.

The path to these commands is letc/command.

The updatep command invokes the update script and passes three arguments
to it. The first argument is the name of the device from which the update is
being done or the path name of a backup format file on the distribution
medium. The update script should pass this argument to the inurest command
in order to identify the device to be used for the restore. The second argument
is the name of the file that contains a list of the options to update. The list
contains the option name and the level that is currently installed. The third
argument is the name of the apply list generated by the updatep command.

For example, a user chooses to update the acct and ate options of the bosext
program from the Idev/rfdO device. The updatep command invokes the update
script, passing to it the device name, Idev/rfdO, and the name of a file that
contains the following option names:

Appendix D. Installp/Updatep Files D-7

D-8

bosext.acct.obj 03.01.0010.0000
bosext.ate.obj 03.01.0020.0000

The update script reads the file to determine which options are being updated.
An update script must perform the following procedures:

• Use the ckprereq command to verify compatibility of the program with other
installed programs using the history information of the other programs. The
history information can be found in the Vital Product Data (VPD) database
and the prereq file.

• Verify that the required files exist and that information contained in them is
in the expected format.

• Use the inusave command to back up any files that will be changed or
replaced.

• Use the inurest command to restore all of the required files (according to
the apply list) from the distribution medium.

• Execute the configuration procedure if it exists.

• Return an exit code indicating status of the update. The updatep command
issues an appropriate error message based on this exit code.

The updatep command can continue the update of an application program even
if some of the program options do not update successfully. If no information
other than the error return code is given, the updatep command assumes that
the entire program update was unsuccessful. If the update procedure returns a
nonzero return code to the updatep command, the updatep command looks for
a file called status. If none is found, then all options are considered to have
failed.

The status file informs the updatep command when certain program options
update successfully and certain options do not. The update script must create
the status file to specify this information. The format of the status file is two
items per line. The first item is a single character, either s (success) or f
(failure). The second item is the name of the program or option.

When an program or option updates successfully, information about it is
entered into the Vital Product Data (VPD) database. If an program or option
does not update successfully, the cleanup procedure is carried out for it and no
information is entered into the VPD database.

The following example of a status file indicates to the updatep command that
the updates to the sendmail option and the ftp option are successful and the
update to the tel net option is not successful. VPD entries for the sendmail
option and the ftp option are created. The cleanup procedure is carried out for·
the telnet option, for which no VPD entries are created.

s bosdev.tcpip.sendmail
f bosdev.tcpip.telnet
s bosdev.tcpip.ftp

D.1.12 The ai_Level File
The update apply list file, ai_Level (where Level refers to the program version
level in vv.rr.mmmm.ffff format), contains an apply list for this level of the
application program. The update apply list contains the names of all of the files
to be restored from the distribution medium during the update of an application
program. The files must be listed as relative file specifications from the root
directory (for example, .Iusr/lib/sendmail). The inurest command, which
archives and restores files for the updatep command, restores these files to the
appropriate system directories. The current directory is always set to root by
the inurest command.

The entries in the update apply list file{s) can be used to locate the
corresponding entries in an archive control file (/usr/lpp/Program/lpp.acf) to
determine if a restored file is to be archived.

If the program has separately instalJable options, an update apply list file
(Option.al_Level) can be supplied for each program option. The apply list files
for each of the individual program options can be used instead of the ai_Level
file. The update script must know how to call the inurest command for each of
the apply list files. If the program does not require a more specific method of
specifying file names, it is not necessary to provide an apply list file for each
option that is being updated.

If only an ai_Level file is present, the information applies to the program as a
whole. If various Option.aLLevel files are present, they each apply to a specific
program option.

It is customary to include on the distribution medium an apply list for all
previous updates that are released for an application program. There can be
several files for different versions, releases, modifications, or fixes of the
program. For example, if a program will be at level 01.01.0030.0000 after
application of the current update, then the following three apply lists might be
included on the distribution medium:

al_01.01.0010.oooo The first set of updates.

al_01.01.0020.oooo The second set of updates.

al_01.01.0030.oooo The current updates.

In order to apply the following fix to a particular program, the program must be
at the appropriate level. For example, the program must be at level 30 in order
to apply the following fix.

at01.01.0030.0010 Fixes to the current updates.

Each apply list contains the target paths for all of the files that must be restored
by the update to bring this program to the level shown.

The updatep command concatenates all of the apply lists from the current level
to the new level and passes the name of the concatenated file to the update
script. If an Option.al_Level file exists for an option, the updatep command
creates an Option.al file, which contains all of the files from the current level to
the new level for each option.

Appendix D. Instalip/Updatep Files D-9

D.2 Optional Files for Creating Compatible Application Programs
The files described in the following paragraphs are optional for each program.

D.2.1 The config File and Option.config File
The configuration file is a shell procedure or C program that performs special
configuration actions needed by the program (the config file) or a program
option (the Option.config file) to complete the installation or update. If only a
config file is present, it is assumed to apply to the entire program. The
installation or update script should execute the configuration procedure at the
end of installation or update processing (after all the files have been restored,
the error templates updated, the trace templates updated, and so forth). Some
steps that might be included in a configuration file are:

• Add a user ID or group ID that your program requires to the system

• Adding ODM objects

• Add SMIT dialogs.

If the program has separately installable options, then supply a configuration
script file (Option.config) for each option. The installation (instal file) or update
(update file) script must know how to carry out an option's configuration
procedure.

D.2.2 The prereq and Option.prereq File

D-10

The prerequisites file, prereq, contains prerequisite information for the
installation or update of the entire application program. If a program has any
dependencies on other programs being installed or at a certain level, you must
supply a prerequisites file. An update prerequisite file can reference a
particular fix level. The installation (instal file) or update (update file) script
should call the ckprereq command prior to restoring the files associated with
the program. The installation or update script must know how to call the
ckprereq command, which uses the prerequisites files to verify that the
program dependencies are met.

If the application program has separately installable options, supply a
prerequisites file (Option.prereq) for each option whose prerequisites differ from
those of the program. The individual program options prerequisites files can be
used instead of the prereq file. The installation or update script must know how
to call the ckprereq command for each of the prerequisites files. If all of the
program's options have the same prerequisites, it is not necessary to provide a
prerequisites file for each option.

If only a prereq file is present, the information applies to the program as a
whole. If various Option.prereq files are present, they each apply to a specific
program option.

Note that the entry for the prerequisites string in the Vital Product Data (VPD)
database is limited to 1020 characters. Therefore, because the exact contents
of the prerequisites file are entered into the VPD, a prerequisites file cannot
contain more than 1020 characters.

Each record (line of text) in a prerequisites file is line of text that describes a
single prerequisite. There are two types of prerequisite records. The first type

describes the required program level prerequisites. The second type describes
the relational prerequisites between programs.

The first record type describes the specific version (v), release (r), modification
(m), and fix (f) levels that are required of a specified program. A program level
record lists the name of the program required, followed by one or more
expressions of equality or inequality between the letters v, r, m, and f and a
numeric expression of those values. The fields in each record are separated by
one or more spaces or tabs.

Note that the I (level) value in an AIX Version 2 prerequisites file is now
regarded as the m (modification) value. If the I key letter exists in an old
prerequisites file, it should be updated to the m key letter.

For example, the following record indicates that Version 1, Release 3 or later of
an application program named database is required.

database v=l r>2

In the following example, the record indicates that Version 2 or later of an
application program named spreadsheet is required.

spreadsheet v>l

It is also possible to specify more than one version, release, modification, or fix
level for a certain program by specifying the or option (0) between the values
for a particular specification. For example, the following record indicates that
Version 1, Release 3, and either Modification 1 or 2 of the application program
named timemgr is required.

timemgr v=l r=3 m=l 0=2

The second record type allows programs to be specified in relation to each
other. A relational prerequisites record begins with a logical expression (>
followed by an integer) and then a left brace. One or more program level
records, each on a new line, follows. A} (right brace) ends the relational
prerequisites record. In this way, it is possible to declare how many of the
programs listed are required as well as what logical relationships are required
between the programs.

For example, the following relational prerequisites record specifies that more
than one of the programs specified must be installed. Because only two are
listed, both the program named spreadsheet and the program named database
must be installed. In addition, the spreadsheet program must be Version 1,
Release 2, and the database program version must be later than Version 1.

>1 {
spreadsheet v=l r=2
database v>l
}

In the following example, the relational prerequisites record specifies that more
than none (at least one) of the programs specified must be installed. Any the
specified programs can be installed. However, any program that is installed
must meet the specified version, release, modification, and fix level
requirements.

Appendix D. Installp/Updatep Files D-11

>0 {
custmenu v>2
menus v=l r=2 m=2
scrnmgr v=l
grphint v>2
}

When a relational prerequisites expression fails, the ckprereq command enters
the appropriate error code before the> symbol in the first column of the first
line.

It is possible to state any sort of relationship with this format, however, a
complex relationship will require a complex set of statements and checking.
Note that it is perfectly reasonable to include statements in your prerequisites
file that are mutually exclusive and check for a certain number of failures. It is
not necessary that an program specifically look for a return of zero from the
ckprereq command. A combination of statements can be written such that a
return code less than some value n is acceptable.

Note that while this version of AIX is backwardly compatible with Version 2
prerequisites files, additional features have been added in the current version.
Further, error codes are now entered into column 1 of a prerequisites file
(rather than column 18), making the output format different. It is recommended
that any old program prerequisites files be updated to the current file format.

D.2.3 The Ipp.doe File
The documentation file, Ipp.doc, contains any document pages for the program
that have changed from a previous version or that should be installed.

If this program is an option of a larger application program, the documentation
file must be put into a directory of its own so that other options of the larger
program do not write over it with their own Ipp.doc files.

D.2.4 The Filename.err File
The Filename.err file contains error report format templates for the program. If
an program has to add error report format templates during installation, a
Filename.err file must be supplied. The program installation script must call
the errinstall command or the errupdate command and pass the Filename.err
file to it.

The name of a file that contains information to undo what is changed by this file
(to be used if an update is rejected) should be begin with Ipp. so that the
updatep command leaves it in the lusr/lpp/Program directory and does not
delete it.

D.2.S The Filename.tre File

0-12

The Filename.trc file contains trace report format templates and event numbers
for the program. If an application program has to add trace report format
templates during installation, a Filename.trc file must be supplied. The
program installation script must call the trcupdate command and pass the
Filename.trc file to it.

D.2.6 The Filename.evt File
The Filename.evt file contains trace event types and event their hook 10
relationships. If an application program has to add trace report format
templates during installation, a Filename.evt file must be supplied. The
program installation script must call the trcupdate command and pass the
Filename.evt file to it.

D.2.7 The Ipp.acf File
The archive control file, Ipp.acf, describes library archive requirements for an
application program. This file is necessary only if the program is adding or
updating one or more files to a library that is owned by some other program.
The archive control file consists of one or more entries, each identifying a file
that is to be archived into a particular library. Each entry must be in the
following format:

Filename ArchiveFilename

Filename Refers to the complete path name, relative to root, for the file that is
owned by the other program when it is restored by the installation or
update procedure. Any unique path name is valid; for consistency
however, the file should conform to the following format:

./LibPath/inst_updt/LibName/Filename

In this format, LibPath refers to the full path to the directory that
normally contains the library; inst_updt is a special directory used by
the installp command and the updatep command; LibName refers to
the library (the archive file) where the file that is owned by the other
program is archived; and Filename is the name of the file that is
owned by the other program.

ArchiveFilename
Refers to the full path name of the target archive file into which this
file will be archived by the installation or update process. The two
file names must be separated by one or more spaces or tabs.

For example, a file named doprnt.o that is archived in the Ilibllibc.a library
would be referred to in the archive control file by the following entry:

./lib/inst_updt/libc.a/doprnt.o /lib/libc.a

The archive control file entry for a file named doprnt.o that is archived in the
lusr/lib/libcurses library would be as follows:

./usr/lib/inst_updt/libcurses/doprnt.o /usr/lib/libcurses

If this program is an option of a larger application program, the archive control
file must be put into a directory of its own so that other options of the larger
program do not write over it with their own Ipp.acf files.

If an existing archive control file is present, the existing file is moved from
lusr/lpp/Program/inst_updt/lpp.acf to lusr/lpp/Program/lpp.acf. If there is also
an old archive control file with that name, it is replaced.

Appendix D. Instalip/Updatep Files D-13

D.2.8 The productid File
The product ID file, productid, contains the part number of the program. This
file contains one line of text that is entered into the Vital Product Data (VPD)
database at installation time.

D.2.9 The inventory File
. The inventory file contains specific information about each file that remains in
an application program or program option after the installation or update is
complete. Much of the inventory information is entered into the Vital Product
Data (VPD) database and the /etc/security/sysck.cfg file by the sysck command.

If the program has separately installable options, an inventory file
(Option.inventory) can be supplied for each program option. The inventory files
for each of the individual program options can be used instead of the inventory
file. The update script must know how to call the sysck command for each of
the inventory files. Because the installp command automatically calls the sysck
command, this is not required of an installation script.

If only an inventory file is present, the information applies to the program as a
whole. If various Option. inventory files are present, they each apply to a
specific program option.

The inventory file consists of ASCII text in a stanza format.

Note that while the inventory file is not strictly required, it is recommended so
that commands such as Islpp and Ippchk (which provide information about the
program and check consistency) function properly.

D.2.10 The Ipp.deinst File
The application program deinstall file, Ipp.deinst, contains a procedure for
manually deinstalling an program.

If this program is an option of a larger application program, the deinstall file
must be put into a directory of its own so that other options of the larger
program do not write over it with their own Ipp.deinst files.

D.2.11 The rename File

0-14

The rename file, rename, contains the mv commands necessary to rename
abbreviated file names to the appropriate names for the program installation or
update. Because the file names of many of the installation and update files
include an application program option name, the file names are frequently
longer than 14 characters, which was the limit for a file name length in Version
2 of the AIX operating system. During the program installation, the installp
command carries out the rename file if it exists and renames abbreviated file
names using the current installation naming conventions.

When the liblpp.a file is extracted on the target machine during an installation,
the rename script file is carried out before the instal script file is carried out.
Similarly, when the arp file is extracted on the target machine during an update,
the rename script file is carried out before the update script file is carried out.

If this file is not present, the installp command expects the file names to be
correct.

D.2.12 The Ipp.instr File
The application program update instructions file, Ipp.instr, describes specific
instructions that must be followed in order to apply an update. The file must be
written in a simple text format so that it can be printed by a standard system
print command. The instructions should include specific update information for
each version, release, modification, and fix of the program. This file was
referred to as the Programjnstr file in AIX Version 2.

Appendix D. Instalip/Updatep Files D-15

D.3 Real Time Interface Co-Processor Device Driver Package

D.3.1 Makefile

D-16

* Makefile to create installp compatible package for ricdd

* * * A. Required files:

* H
H
H
H

--> The first three are a must -- make will fail otherwise.

1. lpp_name (the list of options) (must be in directory $(ROOT)),
2. instal (installation script),
3. lpp.cleanup (cleanup script if installation fails),
4a. Option.a1 (apply list for each option),
4b. a1 (apply list),
5a. Option.size (size file for each option);
5b. size (size file),

--> NOTES: - If 4a and 5a are used, a file named Options is required,
it contains the list of options.

- In this case, there is an Options file containing

ricdd.driver
ricdd.src

- Makefile knows how to make a1 (everything under $(ROOT)),
and can calculate size or Option.size from a1 or Option.a1.

--> These two files are required, but Makefi1e knows how to supply them:

6. 1iblpp.a (archive containing all insta11p files except 1pp_name)
(Makefi1e will be create or remake it if it is out of date),

7. copyright (if missing, Makefile will supply a default file).

H B. Optional files:
H
H
H
H

* H
H
H
H
H

- config, prereq, 1pp.acf -- various requirements for installation;
- inventory, productid, 1pp.doc -- documentary files;
- *.err, *.trc, *.evt -- for error recovery;
- lpp.deinst -- to remove an installation;
- rename -- for renaming files if names are too long.

-> ALL THE OPTIONAL FILES to be included in distribution must be
listed in the file "optional files", one per line.

H destination of image of distribution medium
HDEV = /u/1uc/devdriver/installp/TAPE
*DEV = /usr/1pp.instal1
DEV = /dev/fd0

H Name of application program
PROG = ricdd

* File containing list of LPP options
LPPOPTIONS = Options

* The root of the application files directory is $(ROOT); it is assumed * that every file below $ROOT other than $ROOT/1pp_name and * $ROOT/usr/lpp/$PROG/lib1pp.a is part of the application program package.
ROOT = /u/luc/devdriver/installp/root

* files to be backed up
BACKFILELIST = backup_files

* list of optional files
OPTIONALS = 'if [-f optional files] ; then cat optional files ; fi'

* The files a1_fi1es, size_files and cleanup_files contain list of
* the a1, size and cleanup files.
* Makefile will make a1_files, size_files and cleanup_files if missing.
AL = 'cat a1 files'
SIZE = 'cat size files'
CLEANUP= 'cat cleanup_files'

create the insta11p package

$(OEV): $(ROOT)/lpp_name al_files size_files cleanup_files \

$(ROOT)/usr/1pp/$(PROG)/lib1pp.a $(BACKFILELIST) chk_inv
@echo Making insta11p format distribution on $(OEV)
@cd $(ROOT) ; backup -vi -f $(OEV) < •• /$(BACKFILELIST)

* * the 1pp archive file contains the required and optional files for PROG

* $(ROOT)/usr/lpp/$(PROG)/liblpp.a: instal $(AL) $(SIZE) $(CLEANUP) \

*

lpp.c1eanup copyright $(OPTIONALS)
@if [-f $@] ; then echo Updating $@ archive; ar ru $@ $? ;\

else echo Making $@ archive; ar cq $@ $? ; fi

* check if al_files, size_files and cleanup_files are up-to-date

* a1_files: \
'if [-f $(LPPOPTIONS)] ; then echo $(LPPOPTIONS) ; else echo size fi'

@echo a1 files is out-of-date, recreating it
@if [-f-$(LPPOPTIONS)] ;\

then cat $(LPPOPTIONS)\awk I{ printf "%s.a1\n", $$1 }I >a1 files ;\
else echo al > a1_fi1es ;fi

size_files:\
'if [-f $(LPPOPTIONS)] ; then echo $(LPPOPTIONS) else echo size fi'

@echo size files is out-of-date, recreating it
@if [-f $(LPPOPTIONS)] ;\

then cat $(LPPOPTIONS)\awk I{ printf "%s.size\n", $$1 }I >size files ;\
else echo size> size_files ;fi

cl eanup _ fil es: \
'if [-f $(LPPOPTIONS)] ; then echo $(LPPOPTIONS);e1se echo 1pp.c1eanup fi'

@echo cleanup files is out-of-date, recreating it
@if [-f $(LPPOPTIONS)] ;\

then cat $ (LPPOPTIONS) \awk I{ printf l%s.c1eanup\n", $$1 } I >cleanup_files ;\

Appendix D. Instalip/Updatep Files D-17

D-18

else echo lpp.cleanup > cleanup_files ;fi

I
I If al file is missing, assume that everything below $(ROOT) is in.
I
al:

@echo No apply list, making one
@cd $(ROOT) ; find. \(! -name lpp_name \)\

\(! -name usr/lpp/$(PROG)/liblpp.a \) -type f -print> •• /al

I
I The same for size file; cheat a little: includes size of lpp_name, liblpp.a
I
size:

@echo No size file, making one
@cd $(ROOT) ; find. -type d -exec du {} \; > •• /size

I
I If any Option.size file is missing, Makefile will create it
I from the corresponding Option.al.
I
.SUFFIXES: .size .al
.al • si ze :

@echo $@ is missing, making it
@cd $(ROOT) ; for fl in 'cat .• /$<' ;do du -a $$fl 1\

awk I{ printf "%S %d\n", $$2, $$1*2 }I » •• /$@ ;done

I
I copyright file is required -- if not present, make an empty one
I
copyright:

I

@echo No copyright file, making an empty one
@echo > copyright

I list of files to backup
I
$(BACKFILELIST): $(AL)

I

@echo Making list of files to backup
@echo ./lpp_name > $(BACKFILELIST)
@echo ./usr/lpp/$(PROG)/liblpp.a » $(BACKFILELIST)
@for alf in $(AL) ;do cat $$alf » $(BACKFILELIST) ;done

I Check that the application files specified are actually present.
I
chk i nv:

@echo Checking inventory
@for file in 'cat $(BACKFILELIST)' ;do if [! -f $(ROOT)/$$file] ;\

then echo $$file is missing! ;exit 1; fi ;done
@echo All files present!

D.3.2 Instal
I#!/bin/sh
1#
1# instal script to install ricdd
1#

1# set the device and lpp name
DEVICE=$l
OPTIONLIST=$2
CWD='pwd'
LPPNAME='basename $CWD'

1# setup error codes
RC_PREREQ=3 1# prereq error number for inuumsg
RC_INUREST=25 1# restore error number for inuumsg
RC=0 1# return code
FAILED="false" 1# true if installation fails

1# remove the status file
rm -f ./_status

1#
1# Check prereqs for LPP if prereq file exists
1#
if [-s prereq]
then
/etc/ckprereq -v -f prereq
RC=$?

fi

1# if prereqs for LPP are not met exit with return code from chkprereq
if [$RC -ne 0] ; then

fi

/etc/inuumsg $RC_PREREQ 1# "prereqs are not met"
exit $RC

Appendix D. Installp/Updatep Files D-19

D-20

Now, loop through the option names: for each option, do any
processing that needs to take place before the files are restored; if
there are no errors add that option to the $OPTIONLIST.new file.

rm -f $OPTIONLIST.new
exec < $OPTIONLIST
while read LPPOPTION
do

Check for necessary prerequisites, if the prereqs are not met
call inuumsg to issue an error message, set failed to true,
echo the option name and status to the status file

echo installing $LPPOPTION ..•
if [-s $LPPOPTION.prereq]
then

fi

/etc/ckprereq -v -f $LPPOPTION.prereq
if [$? -ne e] ; then

fi

/etc/inuumsg $RC_PREREQ # "prereqs are not met"
FAILED=ltrue"
echo "$LPPOPTION fll »./_status
continue

Execute the options pre_instal procedure (if it exists)

if [-x $LPPOPTION.pre_i] ; then

$LPPOPTION.pre_i "$1"

fi

if [$1 -ne e] ; then
FAILED="true"

fi

echo "$LPPOPTION fll »./_status
continue

if the option doesn't have an apply list, and al file doesn't
exist, set failed to true and mark the option's status as failed.

if [! -s $LPPOPTION.al] ; then

FAILED="true"

fi

echo "$LPPOPTION f" ». / _status
continue

restore files from apply list.
echo $LPPOPTION >./.option_list
/etc/inurest -d $DEVICE -q 'pwd'/$LPPOPTION.al $LPPNAME 'pwd'/.option_list
RC=$?
rm -f ./.option_list

if inurest failed exit with the return code from inurest
if [$RC -ne e]
then

fi

/etc/inuumsg $RC_INUREST
exit $RC

if no errors so far, add this option to the new option list

echo $LPPOPTION » $OPTIONLIST.new

done # end while read LPPOPTION #

exec < $OPTIONLIST.new
while read LPPOPTION
do

Execute the optionls post_instal procedure (if it eXists)

if [-x $LPPOPTION.post_i] ; then

$LPPOPTION.post i "$1" "$2"
if [$? -ne 0]-; then

FAILED="true"

fi
fi

echo "$LPPOPTION f" »./_status
continue

Execute the errupdate command if the $LPPOPTION.err file exists

if [-s $LPPOPTION.err] ; then

lusr/bin/errupdate -f $LPPOPTION
if [$? -ne 0] ; then

FAILED="true"

fi
fi

echo "$LPPOPTION fll »./_status
continue

Execute the trcupdate command if the $LPPOPTION.trc file exists

if [-s $LPPOPTION.trc] ; then

/usr/bin/trcupdate -0 $LPPOPTION
if [$? -ne 0] ; then

FAILED="true"

fi
fi

echo "$LPPOPTION f" »./_status
continue

Execute the optionls config procedure (if it eXists)

if [-x $LPPOPTION.config] ; then

$LPPOPTION.config

fi

if [$? -ne 0] ; then
FAILED=ltrue"

fi

echo "$LPPOPTION fll »./_status
continue

update the status file

echo "$LPPOPTION S" »./_status

done # end while read OPTION ##

Appendix D. Instalip/Updatep Files D-21

D-22

Execute the lpp's config procedure (if it exists)

if [-xconfig] ; then

config

fi

if [$? -ne e] ; then
FAILEO="true"
echo "$LPPNAME f" »./_status

fi

if any of the options failed, exit with a non-zero return code

if [II$FAILEO" = "true"]
then

exit lee
else

exit e
fi

D.3.3 ricdd.driver.config
#!/bin/sh

ric device driver installation configuration script

set the ODMDIR var just to make sure

Rc=e
ODMDIR=/etc/objrepos

echo configuring ricdd.driver .•.

Add ricdd definition in PdDv, PdAt and PdCn object classes

/usr/bin/odmadd /usr/lpp/ricdd/ric.add
RC=$?
if [$RC -ne e] ; then

exit $RC
fi

Add SMIT dialogs for ricdd in ODM

/usr/bin/odmadd /usr/lpp/ricdd/sm_ric.add
RC=$?
if [$RC -ne e] ; then

exit $RC
fi

First generate ricdd message catalog

/usr/bin/gencat ric.cat ric.msg
RC=$?
if [$RC -ne e] ; then

exit $RC
fi

Then put the catalog in C and $LANG catalog repositories

/bin/cp ric.cat /usr/lpp/msg/C
/bin/cp ric.cat /usr/lpp/msg/$LANG

Cleanup

/bin/rm ric.cat ric. add sm_ric.add

Appendix D. Installp/Updatep Files D·23

D.3.4 Lpp.cleanup

'!/bin/bsh ,
, script called from installp to cleanup ricdd ,
, set option list and lpp name
OPTIONLIST=$2
LPPNAME='pwd'
LPPNAME='basename $LPPNAME'

, setup global vars
RC=0 , return code
ERR INUCLEN=18 , cleanup error number for inuumsg

,
, loop thru the option names, for each option, invoke the option.cleanup
'provided for that option ,
exec < $OPTIONLIST
while read LPPOPTION
do

done

if [-s $LPPOPTION.cleanup]
then

./$LPPOPTION.cleanup
if [$? -ne 0] ; then

fi

/etc/inuumsg $ERR_INUCLN $LPPOPTION
RC=l
continue

else /etc/inuumsg $LPPOPTION.cleanup is missing
fi

, erase LPP directory
echo erasing /usr/lpp/$LPPNAME
rm -rf /usr/lpp/$LPPNAME

exit $RC

D-24

D.3.5 Ricc.src.cleanup

II!/bin/bsh
I
I script to cleanup ricdd.src
I

echo cleaning up ricdd.src .••

cd /usr/lpp/ricdd

I remove the src dir
rm -rf src

I remove odm entry
odmdelete -0 lpp -q "name = 'ricdd.src'll 2>/dev/null l>/dev/null

I always succeed
exit e

Appendix D. Installp/Updatep Files D-25

D.3.6 Ricc.driver.cleanup
/I!/bin/bsh
/I

D-26

/I script to cleanup ricdd.driver
/I

echo cleaning up ricdd.driver ...

cd /usr/lpp

trap ":" 0 1 2 3

/I remove the device driver
rm -f /etc/drivers/ricdd

/I remove the two configuration methods
rm -f /etc/methods/cfgrica
rm -f /etc/methods/cfgricp

/I remove the catalogue
rm -f /usr/lpp/msg/$LANG/ric.cat
rm -f /usr/lpp/msg/C/ric.cat

/I

/I remove odm entries
/I

/I in lpp object class
odmdelete -0 lpp -q "name = Iricdd.driverl" 2>/dev/null l>/dev/null

/I in Predefined Devices object class
odmdelete -0 PdDv -q "uniquetype = ladapter/mca/ric l" 2>/dev/null l>/dev/null
odmdelete -0 PdDv -q "uniquetype = Iricport/ricp/port l" 2>/dev/null l>/dev/null

/I in Predefined Attributes object class
odmdelete -0 PdAt -q "uniquetype = ladapter/mca/ric l" 2>/dev/null l>/dev/null
odmdelete -0 PdAt -q "uniquetype = Iricport/ricp/port l" 2>/dev/null l>/dev/null

/I in Predefined Connections object class
odmdelete -0 PdCn -q "uniquetype = ladapter/mca/ricIII 2>/dev/null l>/dev/null

* in SMIT object classes
odmdelete -0 sm_menu_opt -q "next id = 'ric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q Iinext id = 'lsdric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'makric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'movric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'chgric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'rmvric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'cfgric 'll 2>/dev/null l>/dev/null

odmdelete -0 sm_name_hdr -q "i d = 'cfgric 'll 2>/dev /null l>/dev/null
odmdelete -0 sm_name_hdr -q "id = 'chgric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_name_hdr -q "id = 'makric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_name_hdr -q "id = 'movric 'll 2>/dev/null 1> /dev /null
odmdelete -0 sm_name_hdr -q "id = 'movri c _parent I II 2> /dev /null l>/dev/null
odmdelete -0 sm_name_hdr -q "i d = I rmvri c III 2>/dev /null l>/dev /null

odmdelete -0 sm_cmd_hdr -q "id = 'cfgric_hdr'll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_hdr -q "id = 'chgric_hdr'll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_hdr -q "id = Ilsdric lll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_hdr -q "id = 'makric_hdr'll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_hdr -q "id = 'movric hdr 'll 2>/dev /null l>/dev/null
odmdelete -0 sm_cmd_hdr -q "id = 'rmvric hdr 'll 2>/dev/null l>/dev/null

odmdelete -0 sm_cmd_opt -q "id = 'cfgric_opt'll 2>/dev/null l>/dev /null
odmdelete -0 sm_cmd_opt -q "id = Iric_add lll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_opt -q "i d = Iric_chglll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_opt -q "id = I ri c _common III 2>/dev /null l>/dev /null
odmdelete -0 sm_cmd_opt -q "id = 'ric_ln_opt'll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_opt -q "id = 'ric_rnk_parent'll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_opt -q "id = 'ric_rnv'll 2>/dev/null l>/dev/null
odrndelete -0 sm_cmd_opt -q "id = 'ric_rnv_parent'll 2>/dev/null l>/dev /null
odmdelete -0 sm_cmd_opt -q "id = I rmvri c_opt III 2>/dev /null l>/dev/null

* always succeed
exit 0

Appendix D. Instalip/Updatep Files D-27

D.3.7 Lpp.deinst

0-28

#Ijbinjksh

script to de-install ricdd

Make sure the user wants this I
dspmsg Program.cat -s 6 6 "Are you sure? (yjn)[nJ"
read x < jdevjtty
case $x .i n

y*IY*) dspmsg Program.cat -s 6 7 "Deinstalling Program ••• \n"
continue ;;

*) dspmsg Program.cat -s 6 8 "Quitting without de-installing Program.\n"
exit 1 ;;

esac

final_msg= dspmsg Program.cat -s 6 9 "Program deinstalled successfully.\n"

trap ":" e 1 2 3

First try to de-install ricdd.src

check if ricdd.src is installed
odmget -q "name = 'ricdd.src'" lpp I grep name> jdev/null
RC=$?
if [$RC -ne e J
then

ricdd.src not installed.
echo ricdd.src not installed.
continue

else

fi

OK let's de-install ricdd.src
echo De-installing ricdd.src ...

cd jusrjlppjricdd

remove the src dir
rm -rf src

remove odm entry
odmdelete -0 lpp -q "name = 'ricdd.src'" 2>jdevjnull l>jdevjnull

II
II Then try to de-install ricdd.driver
II

II check if ricdd.driver is installed
odmget -q "name = 'ricdd.driver 'll lpp I grep name> /dev/null
RC=$?
if [$RC -ne 0]
then

II ricdd.driver not installed.
echo ricdd.driver not installed.
continue

else
II OK let's de-install ricdd.driver
echo De-installing ricdd.driver ••.

cd /usr/lpp

II remove the device driver
rm -f /etc/drivers/ricdd

II remove the two configuration methods
rm -f /etc/methods/cfgrica
rm -f /etc/methods/cfgricp

II remove the catalogue
rm -f /usr/lpp/msg/$LANG/ric.cat
rm -f /usr/lpp/msg/C/ric.cat

II
II remove odm entries
II

II in lpp object class
odmdelete -0 lpp -q "name = 'ricdd.driver 'll 2>/dev/null l>/dev/null

II in Predefined Devices object class
odmdelete -0 PdDv -q "uniquetype = 'adapter/mca/ric 'll 2>/dev/null l>/dev/null
odmdelete -0 PdDv -q "uniquetype = Iricport/ricp/port lll 2>/dev/null l>/dev/null

II in Predefined Attributes object class
odmdelete -0 PdAt -q "uniquetype = 'adapter/mca/ric 'll 2>/dev/null l>/dev/null
odmdelete -0 PdAt -q "uniquetype = 'ricport/ricp/port 'll 2>/dev/null l>/dev/null

II in Predefined Connections object class
odmdelete -0 PdCn -q "uniquetype = 'adapter/mca/ric 'll 2>/dev/null l>/dev/null

II in SMIT object classes
odmdelete -0 sm_menu_opt -q "next id = 'ric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'lsdric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'makric ' " 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'movri c III 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'chgri c III 2>/dev /null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'rmvri c III 2>/dev/null l>/dev/null
odmdelete -0 sm_menu_opt -q "next id = 'cfgric III 2>/dev/null l>/dev/null

odmdelete -0 sm_name_hdr -q Ilid = Icfgric lll 2>/dev/null l>/dev/null
odmdelete -0 sm_name_hdr -q Ilid = 'chgric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_name_hdr -q "id = Imakric lll 2>/dev/null l>/dev/null

Appendix D. Instalip/Updatep Files D-29

D-30

odmdelete -0 sm_name_hdr -q "id = 'movric'll 2>/dev/null l>/dev/null
odmdelete -0 sm_name_hdr -q "id = 'movric_parent'll 2>/dev/null l>/dev/null
odmdelete -0 sm_name_hdr -q "id = 'rmvric 'll 2>/dev/null l>/dev/null

odmdelete -0 sm cmd hdr -q "id = 'cfgric_hdr 'll 2>/dev/null l>/dev/null
odmdelete -0 sm cmd hdr -q "id = 'chgric_hdr'll 2>/dev/null l>/dev/null
odmdelete -0 sm cmd hdr -q "id = 'lsdric 'll 2>/dev/null l>/dev/null
odmdelete -0 sm cmd hdr -q "id = 'makric_hdr'll 2>/dev/null 1> /dev /null
odmdelete -0 sm cmd hdr -q "id = 'movric hdr'll 2>/dev /null l>/dev/null
odmdelete -0 sm cmd hdr -q "id = 'rmvric hdr 'll 2>/dev/nllll l>/dev/null

odmdelete -0 sm_cmd_opt -q "id = 'cfgric_opt'll 2>/dev/null 1> /dev /null
odmdelete -0 sm_cmd_opt -q "id = 'ric_add 'll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_opt -q "id = 'ric_chg'll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_opt -q lIid = 'ric_common 'll 2>/dev/null l>/dev/null
odmde'l ete -0 sm_cmd_opt -q "; d 'ric_ln_opt'll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_opt -q "id = I ri c_mk_parent III 2>/dev /null l>/dev/null
odmdelete -0 sm_cmd_opt -q lIid = Iric_mvlll 2>/dev/null l>/dev /null
odmdelete -0 sm_cmd_opt -q lIid = Iric_mv_parentlll 2>/dev/null l>/dev/null
odmdelete -0 sm_cmd_opt -q lIid = Irmvric_opt III 2>/dev/null l>/dev/null

fi

now we can delete /usr/lpp/ricdd
rm -rf /usr/lpp/ricdd

echo $final_msg

always succeed
exit 8

Appendix E. Sample Character Device Driver

E.1 Device Driver Main Body

C Copyright I BM Corp. 1991

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

/***/
/* Sample Device Driver for the "Writing a Device Driver" Redbook */
/* */
/* Name: ricdd.c */
/* */
/* Device Type: Realtime Interface Co-Processor */
/* with an optional interface board containing */
/* eight serial communications ports, each capable */
/* of operating at full duplex, independent of */
/* each other. Each of the ports can support */
/* various electrical interfaces and protocols. */
/* */
/* Entry Points: ricopen, ricclose, ricioctl, ricintr, */
1* ricconfig, ricread, ricwrite, ricmpx, */
1* ricselect */
/* */
/***/
#include <fcntl.h>
#include <sys/device.h>
#include <sys/uio.h>
#include <sys/mdio.h>
#include <sys/ioacc.h>
#include <sys/sleep.h>
#include <sys/ldr.h>
#include <sys/pin.h>
#include <sys/malloc.h>
#include <sys/pri.h>
#include <sys/poll.h>
#include <sys/lockl.h>
#include <sys/errno.h>
#include <sys/dma.h>
#include <sys/ioctl.h>
#include <sys/intr.h>
#include "ric.h"
#include "ricmisc.h"
#include "ricstruct.h"
#include <sys/syspest.h>
#include <sys/watchdog.h>
#include <sys/iocc.h>
#include <sys/adspace.h>
#include <sys/comio.h>
#include <sys/devinfo.h>

int ricconfig() j
int ricopenO;
int riccloseO j
int ricreadO i
int ricwrite () i
int ricioctlO;
int ricintrO j
int ricmpxO j
int ricselectOi
extern int nodev()j

/* logical file system */
/* dey switch table */
/* Details of user's I/O request */
/* Macros for accessing I/O hardware */
/* Macros for accessing I/O hardware */
/* Post/wait and other routines */
/* Kernel extension loader */
/* Pin/unpin calls */
/* Memory allocation routines */
/* Interrupt priorities */
1* Select */
/* preemption synchronization */
/* error codes */
/* dma external interface definition */
/* ioctl definitions */
/* interrupt services interface def */
/* ric driver defines */
/* miscellaneous structs and defs */
/* device structs */
/* kerrel debug macros */
/* watchdog timers */
/* IOCC register file mapping */
/* Address space manipulation */
/* common communications code */
/* 10 structure definitions */

t_ric_dds *dds dir[]j /* DDS directory */
t acb *acb-dir[]j /* ACB directory */
extern void rictimer(t ric dds *); /* handles expired timers */
static struct devsw -ricsw; /* dev switch table entry for ric driver */
static int act_adap = 0j /* number of active adapters */
extern int stop_port()j
extern int flush_port()i

/***

ricconfig: performs operations necessary for the intitialisation

E-1

E-2

66
67
68
69
7G
71
72
73
74
75
76
77
78
79
8G
81
82
83
84
85
86
87
88
89
9G
91
92
93
94
95
96
97
98
99

1GG
1G1
1G2
1G3
1G4
1G5
1G6
1G7
1G8
1G9
11G
III
112
113
114
115
116
117
118
119
12G
121
122
123
124
125
126
127
128
129
13G
131
132
133
134
135
136
137
138
139
14G

of an individual port on the adapter. ricconfig will be
called for each valid port during the bus/device config
phase of the boot procedure.

***/
int ricconfig(devno, cmd, uiop)
dev t devno;
int-cmd;
struct uio *uiopj
{

int port num;
int adapt_num;
int minor num;
t ric dds
(acb-
int ret;
unsigned long
unsigned long
unsigned long

/* port number */
/* adapter number */
/* minor device number */

dds_ptr;/ pointer to DDS */
acb_ptrj/ pOinter to ACB */

/* return values */
bus srj /* 10 Seg Reg number mask */
iob; /* io base address */
memb; /* bus memory base */

/* get minor number. macro defined in /usr/inc1ude/sys/sysmacros.h */
minor_num = minor(devno)j

/* if the minor number is bad, return */
if (minor num >= (MAX ADAP*NUM PORTS»
{ - - -

return(EINVAL)j
}

/* get a DDS pointer */
dds_ptr = dds_dir[minor_num]j

switch (cmd) /* switch on command type */
{

/* initialise device driver and internal data areas */
case CFG INIT:
{ -

/* first check whether dds exists */
if (dds_ptr != (t_ric_dds *)NULL)
{

return(EINVAL);
}

/* now, if this is the first time through CFG_INIT, certain
* things must be done. no active adapters means first time
*/

if (act_adap == G)
{

/* pin ric into memory */
if « ret = pincode(ricconfig» I=G)
{

/* return if pin fails */
return(ret)j

}
/* ok, so now it is pinned */

/* add entry points to the devsw table */

ricsw.d_open = ricopenj
ricsw.d close = ricclosej
ricsw.d-read = ricread;
ricsw.d-write = ricwrite;
ricsw.d-ioctl = ricioctlj
ricsw.d=strategy = nodevj
ricsw.d ttys = NULLj
ricsw.d-se1ect = ricse1ectj
ricsw.d=config = ricconfigj
ricsw.d print = nodevj
ricsw.d=dump = nodevj
ricsw.d_mpx = ricmpxj
ricsw.d revoke = nodevj
ricsw.d-dsdptr = NULL;
ricsw.d-se1ptr = NULL;
ricsw.d=opts = Gj

141
142
143
144
145
146
147
148
149
159
151
152
153
154
155
156
157
158
159
169
161
162
163
164
165
166
167
168
169
179
171
172
173
174
175
176
177
178
179
189
181
182
183
184
185
186
187
188
189
199
191
192
193
194
195
196
197
198
199
299
291
292
293
294
295
286
297
298
299
219
211
212
213
214
215

/* if adding the entry points to devsw fails, return */
if{(ret = devswadd{devno, &ricsw» !- 9)
{

}

unpincode{ricconfig)i
return{ret)j

} /* end first time through */
/* For this example we are allocating pinned space and */
/* then we will copy the dds data structure */
/* allocate space for dds */

dds_ptr = (t_ric_dds *)xmalloc (sizeof{t_ric_dds),
2, pinned_heap);

/* if the xmalloc fails, return */
if{dds_ptr == (t_ric_dds *)NULL)
{

}

free_it_up{act_adap, devno, NULL, NULL);
return(ENOMEM)j

/* zero out dds */
bzero{(char *)dds_ptr, sizeof(t_ric_dds»j

/* copy input struct into dds */
ret = uiomove{dds_ptr, sizeof(t_ric_dds), UIO_WRITE,

uiop)j

/* if uiomove is bad */
if(ret)
{

}

free it up(act adap, devno, dds_ptr, NULL)j
return (ret) j -

/* set port number from dds */
port_num = dds_ptr->dds_dvc.port_numj

/* adapter number is slot number */
adapt_num = dds_ptr->dds_hdw.slot_numj
acb_ptr = acb_dir[adapt_num]j

/* if no ACB for this device */
if(acb ptr == (t acb *)NULL)
{- -

/* allocate memory for the acb */
acb_ptr = (t_acb *)xmalloc(sizeof{t_acb),

2, pinned_heap);

/* if the allocation fails */
if(acb_ptr == (t_acb *)NULL)
{

}

free_it_up{act_adap, devno, dds_ptr,
NULL) j

return(ENOHEM)j

/* zero out acb */
bzero{(char *)acb_ptr, sizeof(t_acb»i

/* now fill it in */
acb_ptr->p_port_dds[port_num] = dds_ptr;

/* now set up the POS register settings *J
acb_ptr->int_lvl = dds_ptr->dds_hdw.bus_intr_lvl;
acb ptr->slot num = (unsigned

- - char) (dds_ptr->dds_hdw.slot_num);
acb_ptr->arb_lvl = dds_ptr->dds_hdw.dma_lvlj
acb_ptr->io_base = dds_ptr->dds_hdw.bus_io_addrj
acb_ptr->mem_base = dds_ptr->dds_hdw.bus_mem_addrj
acb_ptr->dma_base = dds_ptr->dds_hdw.tcw_bus_mem_addr;
acb_ptr->io_segreg_val = I O_SEG_REGj
acb_ptr->adapter_state = 9j
acb_ptr->cpu_page = 9xFFj

Appendix E. Sample Character Device Driver E-3

E-4

216
217
218
219
22a
221
222
223
224
225
226
227
228
229
23a
231
232
233
234
235
236
237
238
239
24a
241
242
243
244
245
246
247
248
249
25a
251
252
253
254
255
256
257
258
259
26a
261
262
263
264
265
266
267
268
269
27a
271
272
273
274
275
276
277
278
279
28a
281
282
283
284
285
286
287
288
289
29a

/* invoke set_POS to set P~S registers */
set_POSe acb_ptr);

/* set up segment register for next phase */
bus_sr = BUSIO_ATT(acb_ptr->io_segreg_val, a);

/* set up the busio and bus memory base address for the card */
iob • acb_ptr->io_base + bus_sr;
memb • acb_ptr->mem_base + bus_sr;
ret • reset_card (acb_ptr, bus_sr, iob, memb);

/* free up segment register */
BUSIO_DET(bus_sr);

if /* reset failed ••• */
(ret)

{
free_it_up(act_adap, devno, dds_ptr, acb_ptr};
return(EIO);

}

/* zero interrupt count */

/* now we set up our DMA channel by calling d_init */
acb ptr->dmachannel id =

- d_inlt«int)acb_ptr->arb_lvl, MICRO_CHANNEL_DHA,
acb_ptr->io_segreg_val);

/* free up resources if d init failed */
if (acb_ptr->dma_channel_ld == DNA_FAIL)
{

}

free_it_up(act_adap, devno, dds_ptr, acb_ptr);
return(EIO);

/* enable DNA channel */
d_unmask(acb_ptr->dma_channel_id);

act adap++; /* adapter is now active */
acb:dir[adapt_num] = acb_ptr;

} /* end of no existing acb if */

acb_ptr->n_cfg_ports++;
acb_ptr->p_port_dds[port_num] = dds_ptr;
dds_dir[minor_num] = dds_ptr;
break;

} /* end case CFG_INIT */

/* tenninate the device driver associated with the specified devno */
case CFG TERM:
{ -

if (dds_ptr == NULL)
return(EACCES);

if (dds_ptr->dds_dvc.port_state f= CLOSED)
return(EBUSY);

port_num = dds_ptr->dds_dvc.port_num;
adapt num = dds ptr->dds hdw.slot num;
acb_ptr = acb_dlr[dds_ptr->dds_hdw.slot_num];

/* decrement number of configured ports on this adapter */
acb_ptr->n_cfg_ports--;

/* if last configured port on adapter, free adapter resources */
if (acb_ptr->n_cfg_ports == a)
{

/* Release the dma channel */
d_mask(acb_ptr->dma_channel_id);
d_clear(acb_ptr->dma_channel_id);

/* decrement number of active adapters */
act_adap--;

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

}
else
{

}

free_it_up(act_adap, devno, dds_ptr, acb_ptr)j
acb_dir[adapt_num] • (t_acb *)NULL;

1* free up allocated resources. If number *1
1* of active adapters now zero, *1
1* delete switch table entry and unpin the driver *1
free_it_up(act_adap, devno, dds_ptr, NULL)j
acb_ptr->p_port_dds[port_num] - NULL;

dds dir[minor num] • NULL;
break; -

} 1* end case CFG_TERM *1

1* query device specific VPD *1
case CFG QVPD:

break;

default:
return(EINVAL);

} 1* end switch statement *1
return(O);

} 1* end ricconfig *1

1***
*
*
*
*

ricmpx is the mpx entry point to allocate or deallocate a
channel.

**1
ricmpx(devno, chanp, channame)
dev t devno;
int-*chanp;
char *channame;
{

t_acb *acb_ptr;
1* ACB is the adapter control block.
1* adapter in the system *1

t_ric_dds *dds_ptr;
int tmp..;.chan;

1* pointer to ACB *1
There is one ACB for each *1

1* pointer to DDS *1
1* local chan storage *1

1* if minor number is bad, return *1
if (minor(devno) >- (MAX_ADAP*NUM_PORTS»
{

return(EINVAL)j
}

1* 'Note: in our sample program, a port on the RIC will be allocated if *1
1* the minor device number that is passed in has not been previously *1
1* allocated a port. (port 0 is always allocated here) Whatever process */
1* opens the port totally owns the port until a ricmpx call is made to *1
1* deallocate that port. *1

/* set up DDS pointer *1
dds_ptr • dds_dir[minor(devno)];

1* if dds pointer is null, return error *1
if (dds_ptr == NULL)

return(EINVAL);

1* get the acb pointer *1
acb_ptr = aCb_dir[dds_ptr->dds_hdw.slot_num];

1* see if we've been called to deallocate the channel *1
if (channame == (char *)NULL)
{

}

/* Deallocate the channel *1
dds_ptr->dds_wrk.cur_chan_num = 0;

1* on a deallocate, always set diag flag to 0 *1
acb_ptr->diag_flag = 0;

Appendix E. Sample Character Device Driver E·5

E-8

366
367
368
369
379
371
372
373
374
375
376
377
378
379
389
381
382
383
384
385
386
387
388
389
399
391
392
393
394
395
396
397
398
399
499
491
492
493
494
495
496
497
498
499
419
411
412
413
414
415
416
417
418
419
429
421
422
423
424
425
426
427
428
429
439
431
432
433
434
435
436
437
438
439
449

else
{

/* get channel allocated indicator */
tmp_chan ~ (int) dds_ptr->dds_wrk. cur_chan_numj

/* if channel number already allocated,
if (tmp_chan > 9)
{

}
return(ENXIO)j

/* not diagnostics open */
acb_ptr->diag_flag = 9j

dds_ptr->dds_wrk.cur_chan_num = Ij
*chanp = 9j

}
return(9)j

return error */

/* allocate channel 9 */
/* channel returned is 9 */

} /* end ricmpx */

/**
*
*
*
*

ricopen sets up the interrupt and dma services, as well as
checking that everything is in order for an open to occur

***/
ricopen(devno, devflag, mpxchan, ext_ptr)
dev t devnoj
ulong devflagj
int mpxchanj
struct kopen_ext *ext_ptrj
{

int ricintr()j /* interrupt handler */
int ricoffl(); /* offlevel */
int port num; /* port number */
int adapt_num; /* adapter number */
int ilev; /* adapter interrupt level */
int old prij /* interrupt level */
int counter; /* loop control counter */
struct intr *intr_ptrj/* interrupt pOinter */
t_sel_que *sqelml_ptr;/* select queue element pointer */
t_sel_que *sqelm2_ptrj/* select queue element pointer */
t chan info *tmp_chnptrj/* temp channel info pointer */
t-ric dds *dds_ptr;/* pointer to DDS */
t=acb- *acb_ptr;/* pointer to ACB */
int ret; 1* return values */
unsigned long bus_sri /* 10 Seg Reg number mask */
unsigned char io_ptr; /* io base pointer */
unsigned char comregj /* COMREG on Portmaster */

/* if minor number is bad, return */
if (minor(devno) >= (MAX ADAP*NUM PORTS»
{ --

return(EINVAL)j
}

/* if the channel number out of range, return */
/* Note that we are not really a multiplexed device */

if (mpxchan 1= 9)
{

return(ECHRNG)j
}

/* get dds pointer from dds directory */
dds_ptr = dds_dir[minor(devno)]j

/* if port not configured,
if (dds_ptr == NULL)
{

return (EINVAL) j
}

return error */

adapt_num = dds_ptr->dds_hdw.slot_num;
acb_ptr = acb_dir[adapt_num]j

441
442
443
444
445
446
447
448
449
45e
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
49S
499
5a0
501
502
503
504
505
506
507
50S
509
511:)
511
512
513
514
515

/* check to see whether any ports have been opened on
* the indicated adapter. If not, register the
* interrupt handler and fill 1n the off level
* interrupt structures.
*/

/* no registration has occured for this adapter */
if(acb_ptr->n_open_ports =. e)
{

/* first initialise the offlevel intr structures */
acb_ptr->arq_sched = FALSE;
acb_ptr->offl.p_acb_intr = (struct t_acb *)acb_ptr;
intr_ptr = &(acb_ptr->offl.offl_intr)j
INIT_OFFL3(intr_ptr, ricoffl, IO_SEG_REG);

acb_ptr->slih_intr.next = NULL;
acb ptr->slih intr.handler = ricintr;
acb=ptr->slih=intr.bus_type = BUS_MICRO_CHANNEL;
acb_ptr->slih_intr.flags = a;
acb_ptr->slih_intr. level = acb_ptr->int_lvl;
acb_ptr->slih_intr.priority = INTCLASS1;
acb_ptr->slih_intr.bid = IO_SEG_REG;

/* registration of interrupt handler fails */
H((ret = i_init(&acb_ptr->slih_intr» 1= 0)
{

return(ENXIO);
}

/* enable interrupts on the adapter */
bus_sr = BUSIO_ATT(acb_ptr->io_segreg_val, a);

comreg = PIO_GETC(io_ptr + COMREG);

PIO_PUTC(io_ptr + COMREG, comreg I COM_IE);

BUSIO_DET(bus_sr);

} /* end of no open ports loop */

/* first time through successfully, allocate channel structure */
if(dds_ptr->dds_wrk.p_chan_info[mpxchan] == NULL)
{

}

/* allocate memory for channel related structures */
dds_ptr->dds_wrk.p_chan_info[mpxchan] = tmp_chnptr =

(t chan info *)xmalloc«uint)sizeof(t chan info),(uint)2,
- - pinned_heap); - -

/* memory allocation failed, return */
if(tmp_chnptr == NULL)
{

return(ENOMEM);
}

bzero«void *)tmp_chnptr, (uint)sizeof(t_chan_info»;

/* set major/minor device number */
tmp_chnptr->devno = devno;
tmp_chnptr->rcv_event_1st = EVENT_NULL;
tmp_chnptr->xmt_event_1st = EVENT_NULL;
acb_ptr->txf1_event_1st = EVENT_NULL;

/* now fetch the temporary channel info pointer */
tmp_chnptr = dds_ptr->dds_wrk.p_chan_info[mpxchan];

/* set common values for user and kernel 11c calls */

Appendix E. Sample Character Device Driver E-7

E-8

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

tmp_chnptr->devf1ag = devf1agj /* device flags opened with */

1* set port state variable to open */
dds_ptr->dds_dvc.port_state = OPENj

/* increment number of open ports */
acb_ptr->n_open_ports++j

return (0) j
} /* end ricopen */

/**
*
*
*

ricc10se closes a single port.

***/
ricc1ose(devno, mpxchan, ext)
dey t devnoj
int-mpxchanj
int extj
{

int
int
t acb
t-chan info
t-ric dds
unsigned int
int
unsigned long
unsigned char
unsigned char
unsigned int

adapt_numj
port_num;
*acb_ptrj
*tmp_chanptr;
*dds_ptr;
ret;
old_prij
bus_sri
*io_ptrj
comregj
sleep_f1agj

/* adapter number */
/* port number */

/* pOinter to ACB */
/* temp channel info pointer */

/* pOinter to DDS */
1* return. va 1 ues */

1* interrupt 1 eve 1 */
/* bus segment reg */

/* pointer to io reg */
/* COMREG on ric */
/* que_cmd sleep flag */

/* if minor number is invalid, return error */
if (minor(devno) >= (MAX ADAP*NUM PORTS»
{ --

return(EINVAL)j
}

/* if the channel number out of range, return */
if (mpxchan != 0)
{

return(ECHRNG)j
}

/* get dds pointer from dds directory */
dds_ptr = dds_dir[minor(devno)]j

/* if port not configured, return error */
if (dds_ptr == NULL)
{

return(EINVAL);
}

adapt_num = dds_ptr->dds_hdw.s10t_numj
acb_ptr = acb_dir[adapt_num]j

1*
*
*
*/

remove the select queue data structure, the channel
information data structure and zero out the dds pointer
to the channel ds

/* remove device flags */
tmp_chanptr->devf1ag = 0;

/* last close for this adapter. notify kernel the adapter
*is no longer generating interrupts
*/

if (--acb_ptr->n_open_ports == 0)
{

/* First disable interrupts from the adapter. */

591
592
593
594
595
596
597
598
599
699
691
692
693
694
695
696
6El7
6El8
6El9
61El
611
612
613
614
615
616
617
618
619
629
621
622
623
624
625
626
627
628
629
639
631
632
633
634
635
636
637
638
639
649
641
642
643
644
645
646
647
648
649
659
651
652
653
654
655
656
657
658
659
669
661
662
663
664
665

}

bus_sr • BUSIO_ATT(acb_ptr->io_segreg_val,9);

io_ptr • (unsigned char *)(acb_ptr->io_base + bus_sr);

comreg • PIO_GETC(io_ptr + COMREG };

PIO_PUTC(io_ptr + COMREG, comreg & COM_IE);

BUSIO_OET(bus_sr);

i_clear(&acb_ptr->slih_intr);

/* set port state to closed */
dds_ptr->dds_dvc.port_state • CLOSED;

return{El);
} /* end ricclose */

/**
*
*
*

ricread reads the adapter

***/
ricread(devno, uiop, mpxchan, rdext_ptr)
dev t devno;
struct uio *uiop;
int mpxchan;
struct read extension *rdext_ptr;
{ -

int adapt_num; /* adapter number */
int port_numj /* port number */
i nt 01 d_pri j /* interrupt 1 eve 1 * /
u short pkt_hdr_len; /* packet header length */
u-short pkt_length; /* receive data length */
u-short pkt_status; /* receive packet status */
t -a'cb *acb_ptr; /* pointer to ACB */
t-ric dds *dds_ptr; /* pointer to DOS */
struct mbuf *mbuf_ptr; /* pointer to mbuf */
caddr t p_pkt; /* pointer to the received packet */
u short *p_shrt_pkt; /* pointer to the received packet */
t:sel_que *p_rcv_elem; /* pointer to the receive entry */
volatile t_chan_info *tmp_chnptr; /* temp channel info pointer */
int ret; /* return code */
int sleep_ret; /* return code from e_sleep */

/* if minor number is invalid, return error */
if (minor(devno) >= (MAX_AOAP*NUM_PORTS»
{

return{EINVAL);
}

/* if the channel number out of range (only El is valid for now) */
if (mpxchan 1= 9)
{

return (ECHRNG)j
}

/* get dds pOinter from dds directory */
dds_ptr • dds_dir[minor(devno)];

/* if port not configured,
if (dds_ptr •• NULL)
{

return(ENXIO);
}

return error */

adapt_num = dds_ptr->dds_hdw.slot_num;
acb_ptr = acb_dir[adapt_num];

1*
* go get the channel information data struct pointer from
* the ODS.

Appendix E. Sample Character Device Driver E-9

666 */
667 tmp_chnptr = dds_ptr->dds_wrk.p_chan_info[mpxchan];
668
669 /* disable interrupts to single thread */
67e old_pri = i_disable(INTOFFL3)j
671
672 /* no packets are available on the queue */
673 while(tmp_chnptr->p_rcv_head == NULL)
674 {
675 /* DNDELAY set, return at once */
676 if(tmp_chnptr->devflag & DNDELAY)
677 {
678 /* end single thread */
679 i_enable(old_pri)j
68e
681 /* set length to zero */
682 uiop->uio_resid = ej
683
684 /* no data, return zero */
685 return(e)j
686 }
687 else
688 /* NDELAY not set, wait until data is received */
689 {
6ge /* do an e_sleep */
691 sleep_ret = e_sleep(&(tmp_chnptr->rcv_event_lst),
692 EVENT_SIGRET)j
693
694 if (sleep_ret != EVENT_SUee)
695 {
696 i_enable(old_pri)j
697 return(EINTR);
698 }
699 }
7ee }
7e1 /*
7e2 * message waiting. deque it and copy to user's buffer
7e3 */
7e4 /* point to first element */
7e5 p_rcv_elem = tmp_chnptr->p_rcv_head;
7e6
7e7 /* copy the code field to the status field of read extension */
7e8 if (rdext ptr 1= NULL)
709 { -
710 rdext_ptr->status = (ulong) p_rcv_elem->stat_block.codej
711 }
712
713 tmp_chnptr->p_rcv_head = p_rcv_elem->p_sel_quej /* deque it */
714
715 /* get mbuf pointer */
716 mbuf_ptr = (struct mbuf *)p_rcv_elem->stat_block.option[0]j
717
718 /* receive head ptr is null, make receive tail ptr null */
719 if(tmp_chnptr->p_rcv_head == NULL)
720 {
721 tmp_chnptr->p_rcv_tail = NULLj
722 }
723
724 /*
725 * zero out the select queue element and add it back
726 * to the select queue available chain
727 */
728 p_rcv_elem->rqe_value = 0j
729 p rcv elem->stat block.code = 0;
730 p=rcv=elem->stat=block.option[0] = Elj
731 p_rcv_elem->p_sel_que = tmp_chnptr->p_sel_avail;
732 tmp_chnptr->p_sel_avail = p_rcv_elemj
733
734 i_enable(old_pri)j
735
736 /* if mbuf ptr is NULL, there is a status, not a receive buffer */
737 if (mbuf_ptr == NULL)
738 {
739 return (e);
740 }

E-10

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
8el
802
803
804
805
806
807
808
809
810
811
812
813
814
815

/* get buffer address */
p_pkt = MTOO(mbuf_ptr, caddr_t);

p_shrt_pkt = (u_short *)p_pktj

/* get information from packet header */
pkt_hdr_len = PIO_GETSR(p_shrt_pkt++);
pkt_length = PIO_GETSR(p_shrt_pkt++);
pkt_status = PIO_GETSR(p_shrt_pkt);

/* point packet address to start past header */
p_pkt = p_pkt + pkt_hdr_len;

. /* attempt to move the packet contents to the user area */
ret = uiomove(p_pkt, (unsigned int)pkt_length, U 10_READ , uiop);

/* free the mbuf */
m_free(mbuf_ptr);

return(ret);

} /* end ricread */

/**
*
* ricwrite allows write or transmit for user level or kernel
* level users of the ric.
*
***/

ricwrite(devno, uiop, mpxchan, ext_ptr, sleep_flag)
dev_t devno;
struct uio *uiop;
int mpxchanj
t write ext *ext ptr;
unsigned int sleep_flag;

{
int adapt_num; /* adapter number */
int port_num; /* port number */
t_acb *acb_ptr; /* pointer to ACB */
t_ric_dds *dds_ptr; /* pOinter to DOS */
t_write_ext lc_ext; /* local copy of write extension */
int data_len; /* total length of chained mbuf */
unsigned short lc_flags; /* local copy of flag bits */
unsigned short lc_seq_num;
unsigned short lc_xmt_length;
char *lc bus buf;
char *lc:bus:base;
char *lc host bUf;
struct mbuf *lc-xmt mbuf;
unsigned int old:pri; /* interrupt priority save element */
t_xmt_chain *xchn_ptr; /* pointer to the xmit chain */
t_xmtjffiap *xmap_ptr; /* pointer to current xmit map */
struct mbuf *mbuf_ptr; /* pointer to the mbuf */
struct mbuf *freembuf_ptr; /* pointer to mbuf to free */
struct mbuf *freembufc_ptr; /* ptr to mbuf chain to free */
struct mbuf *allocmbuf_ptr; /* mbuf allocated by us */
unsigned char *mbufdata_ptr; /* pointer to mbuf data to be sent */
struct mbuf *tmpmbuf_ptr; /* temp pOinter to mbuf */
int ret; /* return code */
struct xmem xmd; /* cross memory descriptor for dma */
t_adap_cmd xmt_adap_cmd; /* on stack adapter command buffer */
unsigned char tmp_cntrlj /* temp var for filling in cmd blk */

/* if minor number is bad, return error */
if (minor(devno) >= (MAX ADAP*NUM PORTS»
{ --

return(EINVAL);
}

/* if the channel number out of range, return */
if (mpxchan 1= 0)
{

return (ECHRNG);

Appendix E. Sample Character Device Driver E-11

E-12

816
817
818
819
82a
821
822
823
824
825
826
827
828
829
83a
831
832
833
834
835
836
837
838
839
84a
841
842
843
844
845
846
847
848
849
858
851
852
853
854
855
856
857
858
859
868
861
862
863
864
865
866
867
868
869
878
871
872
873
874
875
876
877
878
879
888
881
882
883
884
885
886
887
888
889
89a

}

/* get dds pointer from dds directory */
dds_ptr = dds_dir[minor(devno)];

/* if port not configured, return error */
if (dds_ptr a= NULL)
{

return(EINVAl)j
}

adapt_num • dds_ptr->dds_hdw.slot_num;
acb_ptr • acb_dir[adapt_num];

port_num • dds_ptr->dds_dvc.port_numj

/* initialize local mbuf pointers */
freembuf_ptr = NULL;
freembufc_ptr = NUll;
allocmbuf_ptr = NUllj

bzero((char *)&xmt_adap_cmd , sizeof(t_adap_cmd»;

/* if write extension provided, copyin if from user space.
* else copy directly (bcopy) if from kernel space.
*/

bzero(&lc ext, sizeof(t write ext »;
if (ext_ptr) --

if (uiop->uio_segflg == UIO_USERSPACE)
copyin(ext_ptr, &lc_ext, sizeof(t_write_ext »j

else
bcopy (ext_ptr, &lc_ext, sizeof(t_write_ext »j

/* initialize local flags */
if (lc_ext.cio_write.flag & CIO_ACK_TX~DONE) {

lc_flags = XMT_STAT_REQj
}
else
{

}

/* get pointer to transmit chain */
xchn_ptr = dds_ptr->dds_wrk.p_xmt_chn;

/* if no available transmit map elements, then return */
if«xchn_ptr->elts_in_use +1) >= xchn_ptr->length)
{

return(EAGAIN)j
}

/* a user process called the write */
if(uiop->uio_segflg == UIO_USERSPACE)
{

lc_xmt_length = (unsigned int)uiop->uio_residj

/* data length is 48 bytes or less */
if(lc_xmt_length <= 48)
{
/* do uiomove to get data into command block */

if«ret = uiomove(&(xmt_adap_cmd.u_data_area.d_ovl.data[a]),
uiop->uio]esid, UIO_WRITE, uiop» != a)

{

}

/* uiomove failed, return an error */
return(ret)j

} /* end of transmit <= 48 bytes */
else
{

/* if request for more than one page,
if(lc_xmt_length > PAGESIZE)
{

return(EINVAl)j
}

return */

891
892
893
894
895
896
897
898
899
91313
9el
9132
9133
9134
9135
9136
9137
9138
9139
9113
911
912
913
914
915
916
917
918
919
921:)
921
922
923
924
925
926
927
928
929
9313
931
932
933
934
935
936
937
938
939
9413
941
942
943
944
945
946
947
948
949
9513
951
952
953
954
955
956
957
958
959
9613
961
962
963
964
965

}
}

/* allocate an mbuf and copy the data into it */
mbuf_ptr • m_get(H_DONTWAIT, HT_DATA);

/* if no mbuf available, return */
if(mbuf_ptr •• (struct mbuf *)NULL)
{

return(ENOHEH);
}

/* try to get an mbuf cluster */
m_clget(mbuf_ptr);

/* no mbuf clusters available */
if(!H_HASCL(mbuf_ptr»
{

}

m_free(mbuf_ptr);
return(ENOHEH);

/* save pOinter to mbuf */
a110cmbuf_ptr = mbuf_ptr;

/* set local flags */
1c_f1ags I- (XHT_FREE_HBUF I

XHT_DMA_REQ);
/* mbuf to be freed */
/* will be doing dma */

/* now get a pointer to the actual data */
mbufdata_ptr = HTOD(mbuf_ptr, char *);

/* now do uiomove to get data into mbuf or mbuf extension */
if«ret = uiomove(mbufdata_ptr, uiop->uio_resid, UIO_WRITE,

uiop» != 0)
{
/* uiomove failed, free the mbuf and return */

m_free(mbuf_ptr);
return(ret);

}

if (lc_ext.transparent)
tmp_cntr1 = (ADAP_TX_ACK I ADAP_TRANSP);

else

/* need to do a DHA */
if(lc_f1ags & XHT_DHA_REQ)
{
/* will be doing a XHIT_LONG command */

/* already running max number of dma's */
if(xchn_ptr->num_active_dma >= XHT_TCWS_PORT)
{

}

if (allocmbuf_ptr)
m_free(a1locmbuf_ptr)j

return(EAGAIN);

lc_xmt_mbuf = mbuf_ptr;
lc_host_buf = HTOD(mbuf_ptr, char *);
lc_bus_base - reg_a110c (dds_ptr->dds_wrk.p_reg_'ist, PAGESIZE);
lc_bus_buf =lc_bus_base + «unsigned int)lc_host_buf % PAGESIZE);

/* make the buffer visible to the adapter */
xmd.aspace_id = XHEH_GLOBAL;
xmd.subspace_id = NULL;
d_master(acb_ptr->dma_channel_id, DHA_WRITE_ONLV, 1c_host_buf,

1c_xmt_length, &xmd, lc_bus_buf);

/* fill in command block */
xmt_adap_cmd.crrod_typ = XHIT_LONG;
xmt_adap_cmd.port_nmbr = (unsigned char)port_num;
xmt_adap_cmd.seq_num = SWAPSHORT(lc_seq_num)j

Appendix E. Sample Character Device Driver E-13

966 xmt_adap_cmd.u_data_area.c_ov1.tst_1ength =
967 SWAPSHORT(lc_xmt_length);
968 xmt_adap_cmd.u_data_area.c_ov1.tst_addr =
969 SWAPlONG«unsigned int)lc_bus_buf);
978 xmt_adap_cmd.u_data_area.c_ovl.cntl = tmp_cntrl;
971 }
972 else
973 {
974 /* will be doing a XMIT SHORT command */
975 1c xmt mbuf = NUll; -
976 1c-host buf = NUllj
977 lc-bus base = NUlLj
978 1c=bus=buf = NULLj
979
98e /* fill in command block */
981 xmt_adap_cmd.cmd_typ = XMIT_SHORTj
982 xmt_adap_cmd.port_nmbr = (unsigned char)port_numj
983 xmt_adap_cmd.seq_num = SWAPSHORT(lc_seq_num)j
984 xmt_adap_cmd.1ngth = (unsigned char)lc_xmt_1ength;
985 xmt_adap_cmd.cntrl = tmp_cntr1j
986 }
987
988 /* get pointer to next available transmit map element */
989 xmap_ptr = &(xchn_ptr->xmt_map_chn[(int)xchn_ptr->tai1]);
998
991 /* fill it in */
992 xmap-ptr->seq_num = lc_seq_num;
993 xmap_ptr->xmt_elem_flags = 1c_flagsj
994 xmap_ptr->xmt_length = 1 c_xmt_1ength;
995 xmap_ptr->write_id = lc_ext.cio_write.write_id;
996 xmap_ptr->p_xmt_mbuf = lc_xmt_mbuf;
997 xmap_ptr->p_host_buf = lc_host_buf;
998 xmap_ptr->p_bus_base = lc_bus_basej
999 xmap_ptr->p_bus_buf = 1c_bus_bufj

1888
1881 /* send the command down */
1882 old_pri = i_disab1e(INTOFFL3)j
1883
1884 /* if unable to get available command block, return */
1885 if«ret = que_command (acb_ptr, &xmt_adap_cmd, sleep_flag» < 8)
1886 {
1887 i_enable(old_pri)j
1888 /* have d_mastered stuff here, d_comp1ete it */
1889 if(1c_f1ags & XMT_DMA_REQ)
1818 {
1811 /* d complete the transmit information */
1812 xmd.aspace_id = XMEM_GlOBAlj
1813 xmd.subspace id = NULL;
1814 ret = d_complete(acb_ptr->dma_channe1_id, a, lc_host_buf,
1815 1c_xmt_1ength, &xmd, lc_bus_buf);
1816 }
1817
1818 /* free any mbuf allocated in this routine */
1e19 if (a110cmbuf_ptr)
1828 m_free(al10cmbuf_ptr)j
1821
1822 return(EAGAIN)j
1823 } /* cmd queued to adapter */
1824
1e25 /* successfully started transmit */
1826
1827 /* increment number of outstanding active dma's */
1828 if (lc_f1ags & XMT_DMA_REQ)
1829 xchn_ptr->num_active_dma++;
1838
1831 /* incrment transmit map tail pointer */
1832 xchn_ptr->e1ts_in_use++;
1833 xchn_ptr->tail = (xchn_ptr->tail + 1) % XMT_CHN_ElEM;
1834
1835 i_enable(old_pri)j
1836
1837 /* free any llC mbufs that can be freed now */
1838 if (freembufc ptr)
1839 m_free(freembufc_ptr)j
1848 if (freembuf_ptr)

~4

1941
1942
la43
1944
1945
1946
1947
1948
1949
1958
1851
1952
1853
1954
1855
1856
1957
1958
1959
la68
11:)61
1862
la63
1864
la6S
la66
1967
la68
11:)69
1978
19n
la72
1973
la74
la7S
la76
la77
1978
la79
1988
la81
la82
1983
la84
la8S
1986
la87
la88
1989
1898
la91
1892
1993
la94
11:)95
1896
1997
1898
1999
1198
1181
1182
1183
1194
1185
1186
1187
1188
1189
1111:)
1111
1112
1113
1114
1115

/* accumulate the transmit stats here, and have a nice day! */
DDS_STAT.tx_port_cnt++j
if (ULONG_MAX - xmt_adap_cmd.lngth < DDS_STAT.tx_byte_lcnt)
{

}
else
{

}

DDS STAT.tx byte mcnt++j
DDS-STAT.tx-byte-lcnt =

- ULONG MAX - DDS STAT.tx byte lcntj
DDS_STAT.tx_bYte_lcnt :- --

xmt_adap_cmd.lngth - DDS_STAT.tx_byte_lcntj

if (xmt_adap_cmd.cmd_typ •• XMIT_SHORT)
{

}
else

return(8)j

DDS STAT.tx short++;
DDS=STAT.tx=shortbytes += xmt_adap_cmd.lngthj

if «xmt_adap_cmd.cmd_typ == XMIT_LONG) I I
(xmt_adap_cmd.cmd_typ == XMIT_GATHER»

{
DDS STAT.tx dma++j
DDS=STAT.tx=dmabytes += xmt_adap_cmd.lngthj

}

} /* end r;cwrite */

/**
*
* ricioctl
*
***/

arg, flag, mpxchan, ext) ricioctl(devno, cmd,
dev t devnoj
int- cmd;

/* major and minor device number */
/* command to be performed */

caddr t argj
int - flagj

/* address of parm block for ioct1 system ca11*/
/* flag from last open system call */
/* mpx channel number */ chan_t mpxchanj

caddr text;
{ - /* va 1 ue of "ext" passed to WRITEX * /

int adapt numj /* adapter number */
int port_numj /* port number */
int ret; /* return value */
t_ric_dds *dds_ptrj /* dds pointer */
t_acb *acb_ptr; /* pointer to ACB struct */
struct devinfo *devinfo_ptr;
volatile unsigned long bus_sri
int errorj
unsigned long iobj
uns i gned long memb j
unsigned int sleep_flag;

/* 10 Seg Reg number mask */
/* return value */
/* adapter io base addr */
/* adapter bus memory base */
/* sleep flag for que_command */

/* if minor number is invalid, return error */
if (minor(devno) >= (MAX ADAP*NUM PORTS»
{ --

return(EINVAL)j
}

/* if the channel number out
if (mpxchan != 8)
{

return(ECHRNG)j
}

of range (only 8 is valid for now) */

/* get dds pointer from dds directory */
dds_ptr = dds_dir[minor(devno)];

/* if port not configured, return error */
if (dds_ptr == NULL)
{

Appendix E. Sample Character Device Driver E-15

E-16

1116
1117
1118
1119
1129
1121
1122
ll23
ll24
ll25
ll26
1127
ll28
1129
1139
1131
1132
1133
1134
ll35
1136
1137
1138
1139
1149
1141
1142
1143
1144
1145
1146
1147
1148
1149
1159
1151
1152
1153
1154
1155
1156
1157
1158
1159
1169
1161
1162
1163
1164
1165
1166
1167
1168
1169
1179
1171
ll72
1173
ll74
ll75
ll76
ll77
ll78
1179
ll89
1181
ll82
1183
1184
1185
ll86
1187
ll88
ll89
ll99

return(EINVAL);
}

adapt_num K dds_ptr->dds_hdw.slot_num;
acb_ptr • acb_dir[adapt_num];

/* use the cmd parameter to switch for various operations */

ret • 9;
switch (cmd)
{

}

case IOCINFO:/* Standard request for devinfo */
devinfo_ptr = (struct devinfo*)arg;
devinfo_ptr->devtype • DO_RIC;
devinfo ptr->flags • 9;
break; -

case RIC RASW: /* Reload adapter software */
{ -

}

/* invoke reload_asw to actually do adapter software */
/* reload */
sleep_flag • G;
error • reload_asw(acb_ptr, dds_ptr, mpxchan, arg, bus_sr, fob,

memb, sleep_flag);

break;

default:
return(EINVAL);

} /* end ricioctl */

/**
*
* ricselect
*
**/

ricselect(devno, events, revent_ptr, mpxchan)
dey t devno;
unsigned short events;
unsigned short *revent-ptr;
int mpxchan;
{

int
int
t acb

/* adapter number */
/* port number */

/* pointer to ACB */
/* pointer to· DDS */ t-ric dds

t-chan info
unsigned char

adapt_num;
port_num;
*acb_ptr;
*dds_ptr;
*tmp_chnptr;
done;

/* temporary channel info pointer */

/* if minor number bad, return */
if (minor(devno) >= (MAX ADAP*NUM PORTS»
{ --

return(EINVAL);
}

/* if the channel number out of range, return */
if (mpxchan != 9)
{

return(ECHRNG);
}

/* get dds pointer */
dds_ptr = dds_dir[minor(devno)];

/* if port not configured, return */
if (dds_ptr •• NULL)
{

return(ENXIO);
}

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
12le
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

/*

adapt_num = dds_ptr->dds_hdw.slot_numj
acb_ptr = acb_dir[adapt_num]j

* get the channel information data structure
* pOinter from the dds for this channel.
*/

tmp_chnptr = dds_ptr->dds_wrk.p_chan_info[mpxchan]j

done = TRUEj
while (done == TRUE)
{

/* check for requested selections, one at a time */

/* select on receive data available */
if(events & POLLIN)
{

/* at least one event on the rcv queue */
if(tmp_chnptr->p_rcv_head != NULL)
{

}
else
{

}

*revent_ptr 1= POLLINj

if(!(events & POLLSYNC))
{

tmp_chnptr->sync_flags 1= POLLINj
}

} /* end check for POLLIN flag */

/* select on status available */
if(events & POLLPRI)
{

/* at least one event on the status queue */
if(tmp_chnptr->p_stat_head != NULL)
{

*revent_ptr 1= POLLPRlj
}
else
{

if(!(events & POLLSYNC))
{

tmp_chnptr->sync_flags 1= POLLPRlj
}

}
} /* end check for POLLPRI flag */

} /* end while */

/* return of zero tells poll/select to sleep if necessary */
return(0)j

} /* end ricse1ect */

/**
*
* ricintr
*
**/

ricintr(intr ptr)
struct intr -*intr_ptrj
{

unsigned long
t acb
unsigned char
unsigned char
unsigned char
unsigned char
unsigned int

bus srj
*acb_ptrj
*io_ptrj
serviced = 0j
taskregj
comregj
old_prij

/* adapter control block pointer */

Appendix E. Sample Character Device Driver E-17

E-18

1266
1267
1268
1269
1279
1271
1272
1273
1274
1275
1276
1277
1278
1279
1289
1281
1282
1283
1284
1285
1286
1287
1288
1289
1299
1291
1292
1293
1294
1295
1296
1297
1298
1299
1399
1391
1392
1393
1394
1395
1396
1397
1398
1399
1319
1311
1312
1313
1314
1315
1316
1317
1318
1319
1329
1321
1322
1323
1324
1325
1326
1327
1328
1329
1339
1331
1332
1333
1334
1335
1336
1337
1338
1339
1349

serviced = 9;

/* set up bus access and get io base addr */
bus_sr = BUSIO_ATT(acb_ptr->io_segreg_val,9)j
io_ptr = (unsigned char *)(acb_ptr->io_base + bus_sr);

/* check if interrupt pending before reading taskreg */
comreg = PIO_GETC(io_ptr + COMREG);

if (comreg & COM_IP)
{

}

/* read interrupt register, TASKREG, on adapter */
taskreg = PIO_GETC(io_ptr + TASKREG);

/* switch based on the value of the interrupt register */
switch (taskreg)
{

case TR_WDE:/* watchdog timer expired */
serviced = 1;
acb_ptr->c_intr_rcvd++; /* increment into count */
break; /* ignore this interrupt */

case TR NOI:
break;

case TR DMA9:
case T(DMAl:
case TR DMA2:
case TR-DMA3:

/* no int from this adapter */

/* Port 9 DMA Complete */
/* Port 1 DMA Complete */
/* Port 2 DMA Complete */
/* Port 3 DMA Complete */

serviced = 1;
acb_ptr->c_intr_rcvd++; /* increment into count */

/* save taskreg val */
acb_ptr->cur_intr_val = taskreg;

break;

case TR TXFL: /* command blocks available */
serviced = 1;
acb_ptr->c_intr_rcvd++; /* increment into count */

/* save taskreg val */
acb_ptr->cur_intr_val = taskreg;
acb_ptr->adapter_state &= SUSPENDED;

/* wake up ports waiting for command blocks */
e_wakeup(&acb_ptr->txfl_event_lst);
break;

default: /* most real ints caught here */
serviced = 1;
acb_ptr->c_intr_rcvd++; /* increment into count */

/* save taskreg val */
acb_ptr->cur_intr_val = taskreg;

/* sched the offlevel */
if (acb_ptr->arq_sched != TRUE)
{

acb ptr->arq sched = TRUE;
i_sched(&acb=ptr->offl.offl_intr);

}
break;

} /* end switch on taskreg value */

/* restore addressing on bus */
BUSIO_DET(bus_sr);

/* if interrupt fielded, tell FLIH */
if(serviced)

1341
1342
1343
1344
1345
1346
1347
1348
1349
135e
1351
1352
1353
1354
1355
1356
1357
1358
1359
136e
1361
1362
1363
1364
1365
1366
1367
1368
1369
13713
1371
1372
1373
1374
1375
1376
1377
1378
1379
13813
1381
1382
1383
1384
1385
1386
1387
1388
1389
13913
1391
1392
1393
1394
1395
1396
1397
1398
1399
1413e
14131
14132
14133
14134
14135
14136
14137
14138
14139
14113
1411
1412
1413
1414
1415

{
/* reset to catch other interrupts */

i_reset(intr_ptr);
return (INTR_SUCC);

}
else
{

return (INTR_FAIL); /* not our interrupt, tell the FLIH */
}

} /* end ricintr */

ricoff1(t_off1_intr *off1_ptr)
{

volatile unsigned long
volatile t acb
t ric dds -
unsigned int
unsigned int
unsigned int
unsigned short
unsigned int
unsigned int
unsigned int

bus sri
*acb_ptrj

*dds_ptr;
resp_e1em;
rqe_cmd;
rqe_port;
rqe_seqno;
rqe_stat;
rqe_typej
sleep_flag;

/* get pointer acb for interrupting adapter */
if (acb_ptr != NULL)
{

/* 10 Seg Reg number mask */
/* pointer to ACB */

/* pointer to DDS */
/* response queue element */
/* RQE command field */
/* RQE port field */
/* RQE status field */
/* RQE status field */
/* RQE type field */
/* que_cmd sleep flag */

acb_ptr = (t_acb *)offl_ptr->p_acb_intr;
acb_ptr->arq_sched = FALSE;

}
else
{
/* Spurrious interrupt? acb_ptr not defined */

BUSIO_DET(bus_sr);
return;

while «resp_e1em = get_rqe (acb_ptr, bus_sr» != -2)
{

if(resp_e1em == -1)
{

}

BUSIO_DET(bus_sr)j
return;

/* isolate response type */
rqe_type = RQE_TYPE(resp_elem);

/* isolate the port number */
rqe_port = RQE_PORT(resp_e1em);

/* isolate the status/command field */
rqe_stat = RQE_XESTATUS(resp_e1em)j
rqe_cmd = RQE_COHHAND(resp_e1em);

/* isolate the sequence number */
rqe_seqno = RQE_SEQUENCE(resp_elem)j

/* get dds pointer for the port */

/* port not configured (dds pointer is null) */
if «dds_ptr = acb_ptr->p_port_dds[rqe_port]) == (t_ric_dds *)NULL)
{

}

BUSIO_DET(bus_sr);
return;

/* invalid port number in the rqe */
if((rqe_cmd != STRT_CARD_RST) && (rqe_port >= NUH_PORTS)
{

BUSIO_DET(bus_sr);
returnj

Appendix E. Sample Character Device Driver E-19

E-20

1416
1417
1418
1419
1428
1421
1422
1423
1424
1425
1426
1427
1428
1429
1431:1
1431
1432
1433
1434
1435
1436
1437
1438
1439
1441:1
1441
1442
1443
1444
1445
1446
1447
1448
1449
1458
1451
1452
1453
1454
1455
1456
1457
1458
1459
1468
1461
1462
1463
1464
1465
1466
1467
1468
1469
1478
1471
1472
1473
1474
1475
1476
1477
1478
1479
1488
1481
1482
1483

}

if(dds_ptr->dds_dvc.port_state == CLOSED)
{

}

BUSIO_DET(bus_sr)j
return;

/* flag set when there is a response q elem. cleared by mpqselect */
dds_ptr->dds_wrk.cmd_avail_flag = TRUE;

switch (rqe_type)
{

case XMIT_COMPLETE:/* TX acknowledgement */
{

}
break;

case RECV COMPLETE DMA:/* RX data ready */
{ - -

}
break;

case COMMAND_SUCCESS:/* Command complete */
{

}
break;

case SOL_STATUS:/* Solicited port status response */
break;

case XMIT ERROR:/* TX Error response */
{ -

}
break;

case RECV_COMPLETE:/* RX Error response */
{

}
break;

case COMMAND_FAILURE:/* Command Failure response */
{

ric_cmd_fail (acb_ptr, dds_ptr, rqe_cmd, resp_elem);
}
break;

case UNSOL STATUS:/* Unsolicited Port Status */
{ -

}
break;

default:/* invalid response */
break;

} /* end switch based on response type */
} /* end while more response queue elements queued */

BUSIO_DET(bus_sr);
return;

} /* end ricoffl */

E.2 Device Driver Header Files

E.2.1 ric.h
1
2
3
4
5
6
7
8
9

HI
11
12
13
14
15
16
17
18
19
2B
21
22
23
24
25
26
27
28
29
3a
31
32
33
34
35
36
37
38
39
4B
41
42
43
44
45
46
47
48
49
5a
51
52
53
54
55
56
57
58
59
6a
61
62
63
64
65
66
67
68

1*
* Header file for the ric device driver
*/

#define DO RIC '8'
#define RIC RASW
#define Q AASW
#define MAx ADAP
#define NUM-PORTS
#define IOCC SEG REG
#define 10 SEG REG
#define LOCK LIST
#define DDS STAT
#define ACMD ELT FREE
#define ACMD-ACQ
#define ACMD:TXF

#define INITREG1
#define INITREG2
#define CPUPAGE
#define GAID
#define DREG
#define CAD EN
#define PCPARa
#define PCPAR1
#define PCPAR2

/* driver for ric Sport */
axaBec /* Reload adapter software */

axBaec /* Reload adapter software */
S /* max number of adapters/machine */

/ S / max number of ports/adapter
axa2aElElElElEl
ElxS2acaEl2a
(unsigned char)axff
dds ptr->dds ras.cio stats
(unsigned char)axfa -
(unsigned short)El
(unsigned short)l

ax HI
axEl8
axEl5
axElF
Elxa3
ax15
axaA
axaB
ax 11

/* Init. Register 1
/* Init. Register 2
/* CPU Page Register
/* Gate Array 10
/* Data Register
/* Host Reset Enable
/* Parity Register a
/* Parity Register 1
/* Parity Register 2

(INITREG1) */
(INITREG2) */

(CPUPAGE) */
(GAID) */
(DREG) */

(CAD EN) */
(PCPARa) */
(PCPAR1) */
(PCPAR2) */

#define PCP2 SYNC CHCK ax4a
#define PCP2:EN_CHCK ax2a

/* Synchronous IOCHCK .PCPAR2 */
/* Enable IOCHCK .PCPAR2 */

#define N RXFREE
#define N:TXFREE

#define posa
#define pa F
#define POS1
#define P1J

#define POS2
#define P2 ENABLE
#define P2-INT3
#define P2-INT4
#define P2-INT7
#define P2-INT9
#define P2-INTla
#define P2-INT11
#define P2-INT12
#define P2:SYNC_CHCK

#define POS3

#define POS4
#define P4 WSIZ SK
#define P4-WSIZ-16K
#define P4-WSIZ-32K
#define P4-WSIZ-64K
#define P4-WSIZ-128K
#define P4-WSIZ-512K
#define P4-WSIZ-1M
#define P4:WSIZ:2M

#define POS5
#define P5 FAIRNESS
#define PS-PAREN
#define PS-CHCKS
#define PS:CHCKI

#define POS6

4S
52

axlea
ax7a

Elx1e!
ax8F

axle2
axe!
axaa
axa2
axa4
exa6
axas
axBA
axBC
ax8a

ax1B3

ax1B4
axaB
ax2a
ax4a
ax6B
ax80
axAB
axCB
axEB

axle5
axel
ax2El
ax4a
axsa

axle6

/* */
/* */

/* POS Register a IOCC offset */
/* POS Card 10 low, MPQP */
/* POS Register 1 IOCC offset */
/* POS1 Card 10 high, MPQP */

/* POS Register 2 IOCC offset */
/* -sleep/+ENABLE */
/* interrupt level 3 mask */
/* interrupt level 4 mask */
/* interrupt level 7 mask */
/* interrupt level 9 mask */
/* interrupt level 1B mask */
/* interrupt level 11 mask */
/* interrupt level 12 mask */
/* Channel Check Mode = Sync */

/* POS Register 3 IOCC offset */

/* POS Register 4 IOCC offset */
/* POS4 Window Size 8K */
/* POS4 Window Size 16K */
/* POS4 Window Size 32K */
/* POS4 Window Size 64K */
/* POS4 Window Size 12SK */
/* POS4 Window Size 512K */
/* POS4 Window Size 1M */
/* POS4 Window Size 2M */

/* POS Register 5 IOCC offset */
/* POS5 Fairness Enable */
/* POS5 Data Parity Enable */
/* POS5 I/O Channel Check Status */
/* POS5 I/O Channel Check Indicator */

/* POS Register 6 IOCC offset */

Appendix E. Sample Character Device Driver E-21

E-22

69
79
71
72
73
74
75
76
77
78
79
89
81
82
83
84
85
86
87
88
89
99
91
92
93
94
95
96
97
98
99

199
191
192
193
194
195
196
197
198
199
119
III
112
113
114
115
116
117
118
119
129
121
122
123
124
125
126
127
128
129
139
131
132
133
134
135
136
137
138
139
149
141
142
143

#define POS7 9x107 /* POS Register 7 IOCC offset

#define RXREL_THRESH 16 /* Receive buffer release
/* threshold

#define WINDOW_SIZE 9x10090 /* adapter window size, 64K

/*
* Access DDS
*/

define DVC
define HOW
define WRK
define XMITMAP

/*

dds_ptr->dds_dvc
dds ptr->dds hdw
dds=ptr->dds=wrk
WRK.p_xmt_chn->xmt_map_chn

* internal port states for port_state variable in dds
*/

#define DORMANT STATE
#define OPEN REQUESTED
#define OPEN-
#define START REQUESTED
#define STARTED
#define DATA XFER
#define HALT-REQUESTED
#define HALTED
#define CLOSE REQUESTED
#define CLOSED

9x99 /* initial state */
9x91 /* Open in progress */
9x92 /* Port opened */
9x03 /* Start in progress */
9x94 /* Port started */
9x94 /* Data tranfer state */
9x95 /* Halt in progress */
9x92 /* Port halted */
9x97 /* Close requested */
Ox99 /* Port closed */

*/

*/
*/
*/

#define COMREG
#define PTRREG
#define INTCOM

9x96
Ox02
9x99

/* Command Register
/* Pointer Register
/* Adapter Interrupt

(COMREG) */
(PTRREG) */
(INTREG) */

#define RIC ROY FOR MAN DIAL
#define RIC=ERR=THRESHLD_EXC

#define RIC TX FAILSAFE TIMEOUT Oxb1
#define RIC-DSR ON TIMEOUT 9xa1
#define RIC=X21=RETRIES_EXC 9xce

#define RIC X21 TIMEOUT 9x21
#define RIC=X21=CLEAR 9xD2

#define RIC RCV TIMEOUT
#define RIC-AR RCV TIMEOUT
#define RIC-DSR DROPPED
#define RIC-ASY-LOST RTS
#define RIC-TX UNDERRUN
#define RIC-CTS UNDERRUN
#define RIC-CTS-TIMEOUT
#define RIC-TX FS TIMEOUT
#define RIC-RX-OVERRUN
#define RIC-RX-ABORT

9xa7
9xa8
9x41
9x42
9x89
9x88
9x15
9x16
9xS991
9x18
9x1991
9xC91H
9xAe91
9xA992
9xS992
9x8993
9x8994
Ox1b
9x1c

ax2219
ax82

/*Transmit command did not complete*/
/*DSR fails to come on */
/* X21 Retries exceeded call

not completed */
/* X.21 timer expired */
/* Unexpected Clear received from DCE*/

#define RIC-BUF STAT OVFLW
#define RIC-RX FRAME-ERR
#define RIC-RX-BSC FRAME ERR
#define RIC-RX-BSC-PAD ERR
#define RIC-RX-PARITY ERR
#define RIC-FRAME CRC
#define RIC-LOST SYNC
#define RIC-RX BAD SYNC
#define RIC-RX-DMA-BFR ERR
#define RIC-ADAP NOT FUNC
#define RIC-TOTAL TX-ERR
#define RIC-TOTAL-RX-ERR
#define RIC-TX PERCENT
#define RIC-RX-PERCENT
#define RIC-DSR ALRDY ON
#define RIC=RESET_CMPL

9x39 /* Adapter not functioning */
9x31
9x32
9x33
9x34
9x49
9x29 /* Reset Completed */

#define RIC XT1 TIMER
#define RIC=X_DCE_READY_TIMER

9xc1 /* X.21 Timer that expired */
9xcb /* X.21 Timer that expired */

(unsigned short)9x29a1 /* --- ETB : 9 1 */

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

#define RIC DISC
#define RIC-STX ENQ
#define RIC=SOH=ENQ

(unsigned short)Ox200F /* --- DSC : 0 F */
(unsigned short)Ox202C /* STX ENQ : 2 C */
(unsigned short)Ox203C /* SOH ENQ : 3 C */

/**
* RIC COMREG VALUES
***/

#define COM RC
#define COM-IE
#define CO(IP

Ox01
Ox10
Ox20

/* Reset Card
/* Interrupt Enable
/* Interrupt Pending

.COMREG */

.COMREG */

.COMREG */

/**
* RIC TRANSMIT CHAIN FLAG VALUES
**/

(unsigned short)Ox01
(unsigned short)Ox02
(unsigned short)Ox04
12 /* number TCWs/port */

#define XMT DMA REQ
#define XMT-FREE MBUF
#define XMT-STAT-REQ
#define XMT-TCWS-PORT
#define XMT=CHN_ELEM (2*XMT_TCWS_PORT) /* number xmit chain elements */

/* Port Control Commands */
#define XMIT SHORT Ox HI /* Transmit Short */
#define XMIT-LONG Ox 11 /* Transmit Long */
#define XMIT-GATHER Ox12 /* Transmit Gather */
#define RCV BUF INDC Ox 13 /* Receive Buffer Indicate */
#define SET-PARAM Ox21 /* Set Parameters */
#define START PORT 8x22 /* Start Port */
#define STOP PORT 8x23 /* Stop Port */
#define TERM-PORT 8x24 /* Terminate Port */
#define FLUSH PORT 8x25 /* Flush Port */
#define QURY_MDM_INT 8x2a /* Query Modem Interrupts */
#define STRT AUTO RSP 8x2b /* Start Auto Response */
#define STOP-AUTO-RSP 8x2c /* Stop Auto Response */
#define CHG_PARAM- 8x2d /* Change Parameters */

/* Port Command Modifiers */

#define ADAP TX ACK 8x88 /* Tx ack for Transmit command */
#define ADAP-TRANSP 8x48 /* Transparent mode */
#define ADAP=DMA_ACK 8x81 /* DMA ack for Transmit command */

/*. Adapter Constants */

#define ADAP TX AREA 8x5888e /* Adapter TX buffer area */
#define ADAP=BUF_SIZE 4896 /* Size of TX and RX buffers */

/*--*/
/* Adapter Reset: */
/*--*/

define RESET_TIMEOUT 8 /* eight seconds */

/* Adapter States: */

define UNKNOWN
define RESET
define INITIALIZED
define RESETTING
define SUSPENDED

1*

8
1
2
3
8x88

/* adapter is in an unknown state */
/* adapter has been reset */
/* adapter is reset and initialized */
/* adapter is being reset */
/* adapter is waiting for command blocks */

* The following macro will be used exchange the supplied character
* with the one which exists in bus memory at the specified address
*/

#define BUS_XCHGC(p,v) (BusXchgC(p,v»

/*
* BUS accessors
*/

#define PUTSR(p,v)
#define PUTLR(p,v)

«void)BusPutSR(p,v»
«void)BusPutLR(p,v»

Appendix E. Sample Character Device Driver E-23

E-24

219
22C:l
221
222
223
224
225
226
227
228
229
23C:l
231
232
233
234
235
236
237
238
239
24C:l
241
242
243
244
245
246
247
248
249
25C:l
251
252
253
254
255
256
257
258
259
26C:l
261
262
263
264
265
266
267
268
269
27C:l
271
272
273
274
275
276
277
278
279
28C:l
281
282
283
284
285
286
287
288
289
29C:l
291
292
293

II define C
II define S
II define SR
II define L
II define LR

1
2
3
4
5

/* Character type of PIO access */
/* Short type of PIO access */
/* Short-reversed type of PIO access */
/* Long type of PIO access */
/* Long-reverse type of PIO access */

II define PIO_GETC(a) «int) PioGet(a, C »
II define PIO_GETS(a) ((int) PioGet(a, S »
II define PIO_GETSR(a) «int) PioGet(a, SR »
II define PIO_GETL(a) ((int) PioGet(a, L »
II define PIO_GETLR(a) « int) PioGet(a, LR »

II define PIO_PUTC(a, v) ((int) PioPut(a, v, C»
II define PIO_PUTS(a, v) «int) PioPut(a, v, S »
II define PIO_PUTSR(a, v) « int) PioPut (a, v, SR »
II define PIO_PUTL(a, v) ((int) PioPut(a, v, L »)
II define PIO_PUTLR(a, v) ((int) PioPut(a, v, LR »
II define PIO_GETSTR(d, s, «int) PioBusCopy(d, s,))
II define PIO_PUTSTR(d, s, ((int) PioBusCopy(d, s, ,)
II define PIO_XCHGC(a, v) «int) PioXchgC(a, v »

II define PIO_RETRY_COUNT 3

/**
* RIC TASKREG VALUES *
**/

IIdefine TASKREG
IIdefine TR ARQ I
IIdefine TR-TXFL
IIdefine TR-DMA8
IIdefine TR-DMAl
IIdefine TR-DMA2
IIdefine TR-DMA3
IIdefine TR-WDE
IIdefine TR)OI

IIdefine GA CNTNDR 3
IIdefine GA-CNTNDR-4
IIdefine GA=CNTNDR=5

C:lxC:l4 /* Mailbox Register (TASKREG) */
(unsigned char)C:lxC:lC:l /* ARQ Now non-empty (int) */
(unsigned char)C:lxC:l1 /* Tx Free List non-empty */
(unsigned char)C:lx8C:l /* DMA TX Ack, Port C:l */
(unsigned char)C:lx81 /* DMA TX Ack, Port 1 */
(unsigned char)C:lx82 /* DMA TX Ack, Port 2 */
(unsigned char)C:lx83 /* DMA TX Ack, Port 3 */
(unsigned char)C:lxFE /* Watchdog timer expired */
(unsigned char)C:lxFF /* No interrupt pending */

C:lx88
C:lx81
C:lx82

/* GAID, Contender 3
/* GAID, Contender 4
/* GAID, Contender 5

.GAID */
• GAID */
.GAID */

* RIC Power On Self test definitions
*/

IIdefine IF BLK
IIdefine ERRLOG PTR
IIdefine STATOFF
IIdefine ROSREADY

/* RQE Types: */

define XMIT COMPLETE

C:lx48C:l
8x14
8x7c
C:lx4C:l

define RECV-COMPLETE DMA
define COMMAND SUCCESS
II define SOL STATUS
define FATAL ERROR
define XMIT ERROR
define RECV-COMPLETE
define COMMAND FAILURE
define UNSOL STATUS
define RECOV-ERROR
define DIAGNOSTIC_ERROR

define RQE TYPE(rqe)
II define RQE-PORT(rqe)
II define RQE-COMMAND(rqe)
II define RQE=SEQUENCE(rqe)
II define RQE_STATUS(rqe)
II define RQE_XESTATUS(rqe)

/*

8xC:l
8x1
C:lx2
8x3
C:lx6
C:lx8
C:lx9
C:lxA
C:lxB
C:lxE
C:lxF

/* Page C:l address, Interface Block*/
/* Offset, Error Log for POST */
/* Offset, primary & secondary stat */
/* ROS Ready Bit, INITREGI */

/* Transmit complete */
/* Receive complete, DMA */
/* Command complete, success */
/* Solicited status */
/* Adapter error, fatal */
/* Transmit error */
/* Recv complete, no DMA */
/* Command complete, failure */
/* Unsolicited status */
/* Adapter error, recoverable */
/* Diagnostic error */

«(rqe) » 4) & C:lx8F)
«rqe) & C:lxC:lF)
«unsigned char)«rqe»> 8»
«unsigned short) «rqe) » 16»
«unsigned short) «rqe) » 16»
«unsigned char)«rqe»> 8»

* These two macros allow the setting of values for the
* CPUPAGE register and ACMDREG value
*/

E.2.2 ricstruct.h

294
295
296
297
298
299
3ee
3e1
3e2
3e3
3e4
3e5
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

1
2
3
4
5
6
7
8
9

Ie
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
313
31
32
33
34
35
36
37
38
39
413
41
42
43

#define SET_CPUPAGE(p, s, v } {\
if (p->cpu_page != v)\
{\

p->cpu_page = v;\
PIO_PUTC((unsigned long) (p->io_base) I s + CPUPAGE, v);\

}}

#define SET_ACMDREG(p, s, v) {\
if (p->adap cmd reg != v)\
{\ --

p->adap_cmd_reg = Vi\
PIO_PUTS((unsigned long) (p->p_adap_cmd_reg) I s, v);\

}}

/*
* M_INPAGE determines if the data portion of an mbuf resides within
* one page
*/

define M_INPAGE(m)

define SWAPSHORT(x)
define SWAPLONG(x)

#include <sys/intr.h>
#include <sys/types.h>
#include <sys/lockl.h>
#include "ricfixup.h"
#include <sys/mbuf.h>
#include <sys/mpqp.h>

««int)MTOD«m), uchar *) \
& (PAGESIZE - 1» + PAGESIZE) > \

«int)MTOD«m), uchar *) + (m)->m_len»

« «x) & exFF) «8) I «x) » 8»
««x) & exFF)«24) I «(x) & exFFOO)«8) I \
«(x) & exFFeeOO»>8) I «(x) & exFFeOeeee»>24»

/**
* Define Device Structure *
**/

typedef struct RICDDS
{

struct DDS_HOW
{

unsigned int

unsigned int

unsigned short

unsigned short

unsigned int

unsigned int

unsigned int

slot_num; /* slot number of adapter */

bus_ intr _1 v1; /* interrupt level */

intr_prioritYi /* interrupt priority */

dma_lvl; /* this is the bus arbitration level
/* for this adapter */

bus_io_addr; /* base of Bus I/O area for this */
/* adapter * /

bus_mem_addr; /* base of Bus Memory "Shared" */
/* addressability for this adapter */

tcw_bus_mem_addrj /* base of Bus Memory DHA */

*/

/* addressability for this adapter */

struct DDS DVe
{ -

unsigned char port_numj /* Port Number for this port */

unsigned char port_state; /* Port State */

unsigned short rdto; /* Receive Data Transfer Offset */

Appendix E. Sample Character Device Driver E-25

44 int net_id; /* Network 10 */
45
46 } dds_dvC;
47
48 struct DDS_RAS
49 {
59 t_cio_stats cio_stats; /* number of receives for port */
51 t_err_threshold err_thresh; /* number of transmits for port */
52 } dds_ras;
53
54 struct DDS_VPD
55 {
56 unsigned short card_id; /* Card ID ••• POS9 & POS1 */
57 unsigned short ver_num; /* Version Number */
58 char devname[16]; /* logical device name */
59 char adpt_name[16]; /* logical adpater name */
69 } dds_vpd;
61
62 struct DDS_WRK
63 {
64 unsigned short cmd_seq_num; /* sequence number of command */
65 unsigned short cur_chan_num; /* current channel number */
66 unsigned char num_starts; /* number of starts issued on port */
67 /* incremented by successful ioctl */
68 /* with CIa_START operator. */
69 /* decremented by successful loctl */
79 /* with CIa_HALT operator. */
71
72 unsigned char xmt_ld_flg; /* flag indicating that the transmit */
73 /* chain has been loaded ..• */
74
75 struct mbreq mbreq; /* mbuf requirements */
76
77 t_chan_info *p_chan_info[MAX_CHAN]; /* open/select info */
78
79 t_xmt_chain *p_xmt_chn; /* pointer to transmit chain for port */
89
81 t_reg_list *PJeLl ist; /* pointer to region manager list */
82
83 unsigned char modem_intr_maskj
84
85 unsigned char phys_l ink;
86
87 unsigned char field_selectj
88
89 unsigned char dial_proto;
99
91 unsigned char dial_flags;

• 92
93 unsigned char data_proto;
94
95 unsigned char data_flags;
96
97 unsigned char modem_flags;
98
99 unsigned char poll_addr;

le9
leI unsigned char se 1 ect_addr;
le2
193 unsigned char baud_rate;
194
le5 unsigned char modem_status;
le6
le7 unsigned short rcv_timeout;
le8
199 unsigned char cmd_avail_fl agj
ll9
III struct trb *ndelay_timerj
ll2
ll3 unsigned int ndelay_timer_pop;
ll4
ll5 int halt_sleep_event;
ll6
ll7 int sleep_on_halt;
ll8

E-26

119
121:)
121
122
123
124
125
126
127
128
129
131:)
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
151:)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

int /* rx buffer counter */

union
{

t x21 data
t-auto data

} t_dial;- -

x21 data;
auto_data;

} dds_wrk;

/* number of TCWs per RIC adapter */

/*--*/
/* Adapter Queue definitions: */
/*--*/
typedef struct {

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

} BYTE_Q;

typedef struct {
unsigned char
unsigned char
unsigned char
unsigned char
unsigned long

} LONG_Q;

1*

length;
end;
out;
in;
q_elem[l] ;

length;
end;
out;
in;
q_elem[l] ;

/* length of queue */
/* last el~ment of queue */
/* first item to remove */
/* last item inserted */

/* queue elements */

/* length of queue */
/* last element of queue */
/* first item to remove */
/* last item inserted */

/* queue elements */

* Old RIC Byte and Word queue structure types:
*/

typedef struct
{

unsigned char length; /* length of queue */

unsigned char end; /* last element of queue */

unsigned char out; /* first item to remove */

unsigned char in; /* last item inserted */

unsigned char bqueue[l]j /* byte queue elements */

}t_byte_queuej

typedef struct
{

unsigned char length; /* length of queue */

unsigned char end; 1* last element of queue */

unsigned char out; /* first item to remove */

unsigned char in; /* last item inserted */

unsigned int wqueue [1]; /* word queue elements */

/**
* Receive Queue Chain Oata Structure *
**/

typedef struct RCVMAP
{

struct mbuf /* pointer to associated mbuf */

Appendix E. Sample Character Device Driver E-27

E-28

194
195
196
197
198
199
2E1E1
2E11
2E12
2E13
2E14
2E15
2E16
2E17
2E18
2E19
21E1
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
23E1
231
232
233
234
235
236
237
238
239
24E1
241
242
243
244
245
246
247
248
249
25E1
251
252
253
254
255
256
257
258
259
26E1
261
262
263
264
265
266
267
268

char

char

} t]cv-",ap;

typedef struct RCVCHAIN
{

int

int

int

length;

head;

tail;

/* host memory mbuf extension ptr */

/* bus address for above */

/* Number of elements in chain */

/* index of oldest element sent */
/* to the adapter */

/* index of latest element sent */
/* to the adapter */

/* receive chain which contains */
/* mbuf pointers and TCW mapping */
/* information */

rcv_map_chn[NUM_RIC_TCWS/4];

1*
* RIC Adapter Command Block
*/

typedef struct ADCMDB
{

unsigned char cmd_typ; /* diagnostic command */

unsigned char port_nmbr; /* port number for command

unsigned short seq_num; /* command sequence number

unsigned short rsrvd_l; 1* filler

unsigned char lngth; /* byte length for data

unsigned char cntrlj /* control information

/* pointer to response region

unsigned int rsrvd_2; 1* filler

union
{

struct
{

char data[48]; /* data area associated with

*/

*/

*/

*/

*/

*/

*/

/* this command. */
}d_ovl;

struct
{

unsigned int
unsigned short
unsigned char
unsigned char

}c ovlj
}u data area;

}t_adap_cmd; -

1*

tst addr;
ts(length;
cntl;
fyller[41] j

* RIC Transmit Gather Adapter Command Block Overlay
*/ .

typedef struct TX_GTHR_CMD
{

unsigned char cmd_type;

unsigned char port_num;

unsigned short seq_numj

*/

269
279
271
272
273
274
275
276
277
278
279
289
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

unsigned short bongo_1;

unsigned char nurn_blocks;

uns i gned char controlj

unsigned long bongo_2;

unsigned long bongo_3;

unsigned char *p_gthr_blk[8]j

unsigned short gthr_len[8]j

/*
* RIC Offlevel Intr Structure
*/

typedef struct OFFL_INTR
{

struct intr

/*
* RIC Adapter Control Block
*/

typedef struct ACB
{

struct intr

int

offl;

dmaoffl;

/* system wide bit */

/* pOinter to acb for i_sched */

/* interrupt handler structure */

/* offlevel interrupt structure */

/* dma offlevel intr structure */

/* reload adapter software sleep cell */

char *p_dma_tst_buf; /* pOinter to test for bus master dma */

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

int

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

offl_pri;

txfl_event_l st;

posO;

posl;

pos2;

pos3;

pos4j

pos5;

pos6;

pos7;

slot_nurn;

/* MicroChannel Arbitration Level */

/* interrupt level this adapter */
/* responds to */

/* interrupt priority */

/* offlevel level for interrupts */
/* from this adapter */

/* offlevel priority */

/* transmit free list event list */

/* POS Register 0 Value */

/* POS Register 1 Value */

/* POS Register 2 Value */

/* POS Register 3 Value */

/* POS Register 4 Value */

/* POS Register 5 Value */

/* POS Register 6 Value */

/* POS Register 7 Value */

/* slot nurnber adapter is in */

Appendix E. Sample Character Device Driver E-29

E-30

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
379
371
372
373
374
375
376
377
378
379
389
381
382
383
384
385
386
387
388
389
399
391
392
393
394
395
396
397
398
399
491:1
491
492
493
41:14
495
41:16
497
498
41:19
419
411
412
413
414
415
416
417
418

unsigned char adapter_statej /* 0 - uninitialized */
/* 1 - initialization begun */
/* 2 - initialization complete */
/* 3 - reset requested */
/* 9x89 - Suspended: Or Mask */

unsigned char diaLflagj /* e - no diagnostic mode */
/* 1 - diagnostic open requested*/
/* 2 - opened for diagnostics */
/* Note: value of 1 set in */
/* mpqmpx on request for open */
/* and value of two set in */
/* mpqopen upon successful open */
/* for diagnostics. */

unsigned char asw_10ad_f1agj /* e - Adapter software is not */
/* loaded */
/* 1 - Load completed */
/* 9xff - locked */

unsigned char cur_intr_va1j /* current interrupt value */

unsigned char n_cfg_portsj /* number of ports configured */
/* on this adapter */

unsigned char n_open_portsj /* number of ports opened on */
/* this adapter */

unsigned char ds_base_pagej /* CPUPAGE value for data struct-*/
/* ures on adapter */

unsigned char cpu_pagej /* BUSIO Addr - 5 */
/* cpu_page is a copy of the */
/* last value written in shared */
/* memory of the adapter. */

unsigned char nurn_startsj /* aggregate number of starts */
/* on this adapter. incremented */

unsigned char

unsigned char

/* on successful start, decremented */
/* on successful halt. used to */
/* determine when to allocate and */
/* deallocate receive mbuf/tcw(s)*/
/* ## JULY 90 - This is now a flag */
/* ## 1 = Yes & 0 = No for a start */
/* ## on the adapter. */

rcv buf ind snt;/* receive buffer indicates sent */
- - - /* to the adapter ••. this flag */

/* should be set when the first */
/* successful start port takes */
/* place and reset when adapter */
/* software is reloaded */

adap cmd que inj/* index to the next place to */
- - - /* rec~ive a command nurnber in */

/* the adapter command queue */

cmd_queue_lock; /* lock to access cmd queue */

unsigned short adap_cmd_regj /* adap_cmd_reg is a copy of the */
/* last value written in shared */
/* memory of the adapter. */

int dma_channe1_id; /* DMA Channel 10 returned from */
/* d_init call */

unsigned long io_base; /* base io address */

unsigned long mem_base; /* base memory address */

unsigned long dma_base; /* base address of bus memory */
/* for this adapter, set in */
/* mpqconfig */

unsigned long io_segreg_va1j /* Segment register value for */

419
42(;)
421
422
423
424
425
426
427
428
429
43(;)
431
432
433
434
435
436
437
438
439
44(;)
441
442
443
444
445
446
447
448
449
451:)
451
452
453
454
455
456
457
458
459
461:)
461
462
463
464
465
466
467
468
469
471:)
471
472
473
474
475
476
477
478
479
481:)
481
482
483
484
485
486
487
488
489
491:)
491
492
493

/* io space indicator */

p_port_dds[NUM_PORTS]; / an array of pointers to */
/* device data structures */
/* for all the ports for */
/* this current adapter */

/* pointer to the transmit free */
/* buffer queue data structure */

p_adap_cmd_que; / pointer to the adapter com- */
/* mand queue data structure */

p_adap_rsp_quej / pointer to the adapter re- */
/* sponse queue data structure */

unsigned short *p_adap_cmd_regj /* pointer the the adapter command */
/* register */

unsigned short *p_num_cmdj /* pOinter to number of commands */

unsigned short *p_num_rcv_buf; /* pointer to number of receive */
/* buffers */

unsigned short *p_rcv_buf_siz; /* pOinter to receive buffer size */

unsigned short *p_rcv_buf_para_numj /* pointer to receive buffer */
/* paragraph number (addr) */

unsigned short *p_num_xmit_buf; /* pointer to number of xmit */
/* buffers */

unsigned short *p_xmit_buf_siz; /* pointer to xmit buffer size */

unsigned short *p_xmit_buf_para_num; /* pointer to xmit buffer */
/* paragraph number (addr) */

unsigned char

unsigned char

/* Per port pointer to extended */
*p edrr[NUM PORTS];

- - /* diagnostic response region */

p_adap_trc_data; / pointer to adapter trace data */

/* pOinter to port trace data */
unsigned char *p_port_trc_data[NUM_PORTS];

unsigned int

unsigned long

unsigned char

unsigned char

struct trb

unsigned int

/* pointer to an array of adapter */
/* command block data structures */

/* local TX free buffer queue */
*p_lcl_txfree_buf_qj

p_rcv_chain; / pointer to receive mbuf */
/* managment chain */

cJcv; /* receive count */

c_intrJcvd; /* interrupt counter */

dma_schedj /* flag for dma sched pending */

arq_schedj /* flag for arq sched pending */

sleep_timer; / timer structure for sleep */

sleep_timer_popj /* timer pop flag */

typedef struct
{

int length;
char *usr buf;
unsigned long mem_off;

/* length of transfer */
/* address of user buffer */
/* offset in adapter memory where */
/* transfer will begin */

Appendix E. Sample Character Device Driver E-31

494 }t_rw_cmdj
495

E.2.3 ricsmisc.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

E.3

E-32

/*

*/

Region management functions. These services create a control
structure for managing a region of memory. Additionally, they
provides lookup/retrieval and return services which enable a
user to request any contiguous size of that memory region.

typedef struct REG_LIST
{

unsigned char
unsigned long
unsigned
unsigned
unsigned char

*_p_region;
rsize;

=12rsize;
n region;

=free [1];

/* Region Base Address */
/* Region size, bytes */
/* Log2, Region Size */
/* Number of regions */
/* Usage map, n_region long */

} t_reg_list;

/*
Region management function prototypes. Aid parameter checking of callers.

*/

extern t reg list *reg init(unsigned char *, unsigned, unsigned);
#define reg_releasee p_reg)- xmfree(p_reg, pinned_heap)

extern unsigned char
extern int

*reg alloc(t reg list *, unsigned);
reg-free(t reg list *, unsigned, unsigned char *);
reg-clear(t reg list *); extern void

extern int

#define REG_FREE
#define REG_USED

reg=avail(t=reg=list *);

0xFF
0xee

Device Driver Makefile

1 #---
2 # Makefile for ric device driver
3 #---
4 KOEFS = -0 AIX -0 KERNEL
5
6
7
8
9

10
11
12
13
14
15
16
17

- -
LIBRARIES = -ericconfig -bimport:/lib/my.exp \

-bimport:/lib/syscalls.exp -lsys -lcsys

ricdd_obj = \
ricdd.o

ricdd: ricdd.c ric.h ricstruct.h
cc $(KOEFS) -c -0 ricdd.c
cc -0 ricdd $(ricdd_obj) $(LIBRARIES)

18
19

Appendix E. Sample Character Device Driver E-33

E-34

Appendix F. Device Driver Miscellaneous

F.1 The busresolve system call

© Copyright IBM Corp. 1991

busresolve Device Configuration Subroutine

Purpose

Allocates bus resources to Micro Channel adapters.

Syntax

#i ncl ude <cf. h>

int busresolve(logname, flags, conf_list, not_res_list, busname)
char *logname;
char *conf_list;
char *not_res_list;
int flags;
char *busname;

Parameters

logname

flags

conf_list

not_res_list

busname

Description

Specifies the device logical name.

Specifies the boot phase or O.

Pointer to an array of characters of at least 512 characters.

Pointer to an array of characters of at least 512 characters.

Specifies the logical name of the bus.

The "busresolve" device configuration subroutine allocates bus resources for
devices having predefined bus resource attributes. It queries the Customized
Attribute and Predefined Attribute object classes to get a list of current bus
resource attribute settings and a list of possible settings for each attribute. It
adjusts the values for attributes of devices in the Defined state as necessary to
resolve all conflicts. It does this by modifying the values in the Customized
Attribute object class. It will never modify attributes of devices that are already
in the Available state. "busresolve" will ignore devices in the Defined state if
their "change status" indicates that they are Missing.

When "log name" is set to the logical name of a device, "busresolve" will adjust
that device's bus resource attributes if necessary to resolve any conflicts with
already Available devices. A device's configuration method should invoke .
"busresolve" to ensure that its bus resources are allocated properly when
configuring the device at run time. The configuration method need not do this
when run as part of the boot process as this will already have been done for
the device by the bus device's configuration method.

F-1

F·2

If "Iogname" is set to a Null string, "busresolve" will allocate bus resources for
aU devices that are not already in the Available state. This is how "busresolve"
is invoked by the bus device's configuration method during the boot process.

The "flags" parameter is to be set to 1 for boot phase 1, 2 for boot phase 2, and
o when "busresolve" is invoked during run time. "busresolve" can only be
invoked to resolve a specific device's bus resources at run time, i.e. "flags"
must be 0 when "Iogname" specifies a device logical name.

If the return code is E_OK, all attributes were resolved successfully. If the return
code is E_BUSRESOURCE, "busreolve" was not able to resolve all conflicts. In
this case, "confJist" contains a list of the logical names of the devices for which
it successfully resolved attributes and "not_resJist" contains a list of the logical
names of the devices for which it could not successfully resolve all attributes.
Devices whose names appear in the "not_resJist" must not be configured into
the Available state. A configure method that is invoked at run time for a device
having bus resources should fail and return E_BUSRESOURCE if "busresolve"
does not return E_OK. Both the "confJist" and "not_resJist" strings must be
at least 512 characters or there may not be enough space to hold the device
names.

lIib/libcfg.a

Return Values

E_OK All bus resources were resolved and allocated successfully.

E_ARGS Invalid parameters to busresolve, Le. "Iogname" specifies a
device logical name but "flags" is not set to 0 for run time.

E_MALLOC malloc of necessary memory storage failed.

E_NOCuDv No customized device data for the bus device whose logical
name is specified by "busname".

E_ODMGET An ODM error occurred while retrieving data from the
configuration database.

E_PARENTSTATE The bus device whose name is specified by "busname" is not
in the Available state.

E_BUSRESOURCE A bus resource for the device specified by "Iogname", or any
device with bus resources if "Iogname" is Null, could not be
resolved.

Index

A
address space

addressing model 2-3
bus memory address space 2-2
10CC address space 2-2
I/O address space 2-1
real memory address space 2-2

addressing modes 2-8
bus memory mode 2-8
10CC control mode 2-9
I/O devices mode 2-8
RT compatibility mode 2-9
system address mode 2-8

AIX
avoiding deadlock 3-20
device classes A-1
device subclasses A-1
device types A-1
interrupt environment 3-1
process environment 3-1
process preemption 3-5

AIX Commands
bosboot 9-19
ckprereq 8-4
crash 9-1, 9-4, 9-5, 9-6
errlogger 9-43
errupdate 9-43
installp 8-1, 8-2, 8-5
inurest 8-4
mkdev 6-18, 6-21, 6-23, 6-27, 6 .. 32, 6-35, 7-17
mknod 1-1, 3-7
nice 3-4
odmadd 7-21
odmcreate 7 -20
sysdumpdev 9-1
updatep 8-2

AIX kernel services
bawrite 3-12
bdwrite 3-12
bflush 3-12
binval 3-12
blkflush 3-12
bread 3-12
bread a 3-12
brelse 3-12
,bwrite 3-12
'cfgnadd 3-15, 3-16
cfgndel 3-15,3-16
-clrbuf 3-12
clrjmpx 3-19, 3-21
copyin 3-14
copyinstr 3-14
copyout 3-14

© Copyright I BM Corp. 1991

AIX kernel services (continued)
creatp 3-19, 3-21
devdump 3-16
devstrat 3-16
devswadd 3-7, 3-15, 3-16
devswdel 3-7, 3-15, 3-16
devswqry 3-7, 3-15, 3-16
dmp_add 9-3
dmp_del 9-3
d_align 3-11
d_clear 3-11
d_complete 3-11
djnit 3-11
d_mask 3-11
d_master 3-11
d_move 3-11
d_roundup 3-11
d_slave 3-11
d_unmask 3-11
errsave 9-35, 9-41, 9-42, 9-43, 9-44
e_post 3-21
E)_sleep 3-21, 4-31, 4-36
e_sleepl 3-21
e_wait 3-21
e_wakeup 3-21,4-31,4-36
fp _ access 3-18
fp_close 3-18, 4-26, 4-27
fp_fstat 3-18
fp _getdevno 3-18
fp _getf 3-18
fp_hold 3-18
fp joctl 3-18
fpJseek 3-18
fp_open 3-17, 3-18,4-20
fp_opendev 3-17, 3-18, 4-20, 4-21
fp_poll 3-18
fp _read 3-18
fp_readv 3-18
fp_rwuio 3-18,4-31, 4-36
fp_select 3-18
fp_writev 3-18
fubyte 3-14
fuword 3-14
getblk 3-12
getc 3-12
getcb 3-12
getcbp 3-12
getcf 3-12
getcx 3-13
getebl k 3-12
geterror 3-12
getexcept 3-16
getpid 3-20, 3-21
getuerror 3-16

X-1

AIX kernel services (continued)
initp 3-19, 3-21
iniCheap 3-13
iodone 3-12, 5-4
iostadd 3-16, 3-17
iostdel 3-16, 3-17
iowait 3-12
i_clear 3-10
i_disable 3-3, 3-10
i_enable 3-3,3-10
i_init 3-10
i_mask 3-10
i_reset 3-10
i_sched 3-3,3-10
i_sched kernel service 2-13
i_umask 3-3
i_unmask 3-10
kmod_ entrypt 3-15, 3-17
kmodJoad 3-15,3-17
kmod_unload 3-15,3-17
lockl 3-6, 3-20, 3-21
longjmpx 3-19, 3-21
nodev 3-8
nulldev 3-8
pdsignal 3-21
pidsig 3-21
pin 3-13
pincf 3-13
pincode 3-13,10-1, 10-2
pinu 3-13
pioassist 3-16
pio_assist 3-17
proch add 3-15, 3-17
prochdel 3-15, 3-17
purblk 3-12
putc 3-13
putcb 3-13
putcbp 3-13
putcf 3-13
putcfl 3-13
putcx 3-13
selnotify 3-16, 3-17,4-48
setjmpx 3-19,3-21
setpinit 3-19, 3-21
setuerror 3-16, 3-17
sig_chk 3-19,3-21
sleep 3-21
subyte 3-14
suword 3-14
sysconfig 3-19
uexadd 3-15, 3-17
uexblock 3-16, 3-17
uexclear 3-16, 3-17
uexdel 3-15,3-17
uiomove 3-14, 4-3, 4-31, 4-36
unlockl 3-20, 3-21
unpin 3-13
unpincode 3-13

X-2

AIX kernel services (continued)
unpinu 3-13
uphysio 3-12, 4-31
ureadc 3-14, 4-31
uwritec 3-14, 4-36
waitcfree 3-13
wakeup 3-21
xmalloc 3-13
xmattach 3-14
xmdetach 3-14
xmemdma 3-14,3-15
xmemin 3-14,3-15
xmemout 3-14, 3-15
xmfree 3-13

AIX system calls
attrval 6-31
busresolve 2-11, 6-25, F-1
close 4-16
creat 4-14
create 4-21
genmajor 6-25, 6-29
genminor 6-22,6-25
genseq 6-20
getattr 4-10
getminor 6-25, 6-29
ioctl 4-43, 4-44
loadext 6-25, 6-27, 6-29
mknod 6-25
odmadd 6-13,6-34
odm_add_obj 6-34
odm_initialize 6-19, 6-22, 6-24, 6-29, 6-31
odmJock 6-19, 6-22, 6-24, 6-29, 6-31
odmJun_method 6-32
odm_terminate 6-23
open 4-14, 4-21
poll 4-48
read 4-31
readx 4-31
reldevno 6-22
relmajor 6-22
select 4-48
setleds 6-24
setprio 3-4
sysconfig 3-15,4-2,4-4,4-9,6-26, 6-27
write 4-36
writex 4-36

attrval routine B-21
attrval subroutine 6-31

B
Bibliography xix
block 110

iodone 3-12
iowait 3-12
uphysio 3-12

block 110 kernel services 3-12

bosboot command 9-19
breakpoints 9-29, 9-30
buffer cache 3-12

br.twrite 3-12
bflush 3-12
binval 3-12
blkflush 3-12
bread 3-12
breada 3-12
brelse 3-12
bwrite 3-12
clrbuf 3-12
getblk 3-12
getebl k 3-12
geterror 3-12
purblk 3-12

BUID 2-7
bus memory address space 2-2
busresolve system call 2-11, 6-25, F-1
byte reversal on Micro Channel bus 2-19

C
cfgdev command 6-5
cfgmgr command A-3
cfgnadd 3-15
cfgndel 3-15
change method 6-4, 6-14
character 1/0 3-12
character 1/0 kernel services

getc 3-12
getcb 3-12
getcbp 3-12
getcf 3-12
getcx 3-13
pincf 3-13
putc 3-13
putcb 3-13
putcbp 3-13
putcf 3-13
putcfl 3-13
putcx 3-13
waitcfree 3-13

chdev command A-3
chgdev command 6-5
ckprereq command 8-4
compiling device drivers 10-3
component dump table 9-2
component dump table routine entry point 3-10
configuration manager 6-7, 6-10
configuration method 6-17
configuration rules (Config_Rules) B-17
configure method 6-4, 6-14
crash command 9-1, 9-4, 9-5, 9-6
crash subcommands 9-7

buf 9-7
buffer 9-7
callout 9-8
cm 9-8

crash subcommands (continued)
ds 9-9
du 9-9
dump 9-9
file 9-10
fs 9-10
inode 9-10
kfp 9-11
knlist 9-11
mbuf 9-11
nm 9-12
od 9-12
pcb 9-12
proc 9-13
socket 9-14
stack 9-14
stat 9-15
trace 9-15
ts 9-15
tty 9-16
user 9-16
var 9-17
vfs 9-17
vnode 9-18
xmalloc 9-18

cre~t subroutine call 4-14
create subroutine 4-21
cross memory kernel services

xmattach 3-14
xmdetach 3-14
xmemdma 3-14,3-15
xmemin 3-14,3-15
xmemout 3-14,3-15

customized attribute (CuAt) B-13
customized dependency (CuDep) B-15
customized device driver (CuDvDr) B-15
customized devices (CuDv) B-10
customized VPD (CuVPD) B-16

D
ddclose 3-8, 5-3
ddclose device driver entry point 4-24, 4-26
ddconfig 3-8, 5-2
ddconfig device driver entry point 4-1, 4-2, 4-3, 4-12
dddump 3-9, 5-6
dddump device driver entry point 4-52
ddioctl 3-9, 5-6
ddioctl device driver entry point 4-42,4-43
ddmpx 3-9
ddmpx device driver entry point 4-12
ddopen 3-8, 5-3
ddopen device driver entry point 4-19
ddopen entry point 4-15
ddread 3-9
ddread device driver entry point 4-29
ddrevoke 3-9

Index X-3

ddselect 3-9
ddselect device driver entry point 4-46, 4-47
ddstrategy 3-9, 5-3
ddwrite 3-9
ddwrite device driver entry point 4-34,4-35
defdev command 6-5
define method 6-4,6-14
device configuration library routines 8-21

attrval 8-21
genmajor 8-21
genmi nor 8-21
genseq 8-21
getattr 8-21
getminor 8-21
loadext 8-21
putattr 8-21
reldevno 8-21
rei major 8-21
rei seq 8-21

device dependent structure (dds) 4-9
device driver

bottom half 1-6
compiling 10-3
linking 10-3
multiplexed ddclose routine 4-26
non-multiplexed ddclose routine 4-26
packaging 8-1
setting breakpoints 9-29
top half 1-6, 1-7

device driver entry points
ddclose 4-16,4-24,4-26, 5-3
ddconfig 4-1, 4-2, 4-3, 4-12, 5-2
dddump 4-52, 5-6
ddioctl 4-42, 5-6
ddmpx 4-12,4-16
ddopen 4-15, 4-19, 5-3
ddread 4-29
ddselect 4-46, 4-47
ddstrategy 5-3
ddwrite 4-34, 4-35

device driver management services
kmod_entrypt 3-15
kmodJoad 3-15
kmod_unload 3-15
sysconfig 3-19

device handler role 1-4
device head role 1-4
device methods 6-14

change 4-9, 6-14, 6-30
change method 6-4
configure 4-9, 6-14, 6-23
configure method 6-4
define 6-14, 6-17
define method 6-4
start 6-15, 6-33
start method 6-5
stop 6-14, 6-33
stop method 6-5

X-4

device methods (continued)
unconfigure 4-10,6-14,6-27
unconfigure method 6-4
undefine 6-14, 6-21
undefine method 6-4

Device Switch Table 3-7
devswadd 3-15
devswdel 3-15
devswqry 3-15
dma (direct memory access)

assignment of dma channels 2-10
bawrite 3-12
dma master 2-9
dma slave 2-9
d_align 3-11
d_clear 3-11
d_complete 3-11
d_complete kernel service 2-10
d_init 3-11
d_mask 3-11
d_master 3-11
d_master kernel service 2-10
d_move 3-11
d_roundup 3-11
d_slave 3-11
d_slave kernel service 2-10
d_unmask 3-11

dmp_add kernel service 9-3
dmp _del kernel service 9-3

E
error logging 9-35
errsave command 9-35, 9-41, 9-42, 9-43
errupdate command 9-43
e_sleep kernel service 4-31,4-36
e _wakeup kernel service 4-31, 4-36

F
fp_close kernel service 4-26,4-27
fp _open kernel service 4-20
fp_opendev kernel service 4-20,4-21
fp_rwuio kernel service 4-31,4-36

G
genmajor subroutine 6-25, 6-29, 8-21
genminor subroutine 6-22, 6-25, 8-21
genseq subroutine 6-20, 8-21
getattr subroutine 4-10, 8-21
getexcept 3-16
getminor subroutine 6-25, 6-29, 8-21
getuerror 3-16
gnode 4-14,4-16,4-26

H
hft subsystem 1-5

installp command 8-1, 8-2, 8-5
installp/updatep files 0-1

al File 0-4
ai_Level File 0-9
arp File 0-7
config File 0-10
copyright File 0-4
Filename.err File 0-12
Filename.evt File 0-13
Filename. trc File 0-12
instal Script File 0-2
inventory File 0-14
Iiblpp File 0-2
Ipp.acf File 0-13
Ipp.c1eanup File 0-5
Ipp.deinst File 0-14
Ipp.doc File 0-12
Ipp.instr File 0-15
Ipp_name File 0-1
Option.config File 0-10
Option.prereq File 0-10
prereq File 0-10
productid File 0-14
rename File 0-14
service_num File 0-7
size Fi Ie 0-5
special File 0-6
upr.late Script File 0-7

interrupt
i disable kernel service 3-3
i=enable kernel service 3-3
iJnit 3-10
i_mask 3-10
i_reset 3-10
i_sched 3-10
i_sched kernel service 2-13, 3-3
i_umask kernel service 3-3
i_unmask 3-10
off-level 2-13
priority assignment 2-12
processing 2-11

interrupt handling routine entry point 3~9

inurest command 8-4
loee 2-3
loce address space 2-2
ioctl subroutine call 4-43,4-44
iodone 5-4
iostadd 3-16
iostdel 3-16
I/O address space 2-1
I/O macros 2-14

BUSIO_ATT(bid,io_addr) 2-16
BUSIO_OET(io_addr) 2-16

I/O macros (continued)
BUSIO_GETC 2-15

K

BUSIO pure 2-15
BUSMEM ATT 2-15, 2-16
BUSMEM=OET 2-15, 2-16
loee ATT 2-15
10ee=ATT(bid,iocc_addr) 2-16
loce OET 2-15
10Ce=OET(iocc_addr) 2-16
POSREG 2-15

kernel debugger 9-1, 9-18
kernel debugger commands

alter 9-21
back 9-21
break 9-21
breaks 9-22
clear 9-22
di spl ay 9-22
drivers 9-22
find 9-22
float 9-23
go 9-23
help 9-23
loop 9-23
map 9-23
next 9-24
origin 9-24
proc 9-24
quit 9-24
screen 9-25
set 9-25
sregs 9-25
st 9-26
stack 9-26
stc 9-26
step 9-26
sth 9-26
swap 9-26
trace 9-26
trb 9-27
tty 9-27
user 9-27
vars 9-27
vmm 9-27
xlate 9-27

kernel dump routine 4-52
kernel processes 10-3

compiling a kernel processs 10-3
linking a kernel processs 10-4
loading a kernel processs 10-4
starting a kernel processs 10-4
writing a kernel processs 10-3

kernel program/device driver management services
cfgnadd 3-16
cfgndel 3-16
devdump 3-16

Index X-5

kernel program/device driver management services
(continued)

devstr at 3-16
devswadd 3-16
devswdel 3-16
devswqry 3-16
getexcept 3-16
getuerror 3-16
iostadd 3-17
iostdel 3-17
kmod_entrypt 3-17
kmodJoad 3-17
kmod_unload 3-17
pio_assist 3-17
prochadd 3-17
prochdel 3-17
selnotify 3-17
setuerror 3-17
uexadd 3-17
uexblock 3-17
uexclear 3-17
uexdel 3-17

kernel system dump 9-1
kernelJock 3-20
kernel Jock. 3-5

L
linking device drivers 10-3
loadext subroutine 6-25, 6-27, 6-29, B-21
lockl kernel service 3-20
logical file system kernel services 3-17

fp_access 3-18
fp_close3-18
fp_fstat 3-18
fp _getdevno 3-18
fp _getf 3-18
fp_hold 3-18
fpJoctl 3-18
fpJseek 3-18
fp_open 3-17, 3-18
fp_opendev 3-17,3-18
fp_poll 3-18
fp _read 3-18
fp _readv 3-18
fp_rwuio 3-18
fp_select 3-18
fp_writev 3-18

M
macros

attach/detach 2-16
BUSIO_GETC 2-17
BUSIO_GETL 2-17
BUSIO_GETS 2-17
BUSIO_GETSTR 2-17
BUSIO_PUTC 2-17
BUSIO_PUTS 2-17

X-6

macros (continued)
BUSIO_PUTSTR 2-17
BUS_GETC 2-17
BUS_GETL 2-17
BUS_GETS 2-17
BUS_PUTCL 2-17
BUS_PUTL 2-17
BUS_PUTS 2-17
BUS_PUTSTR 2-17
data transfer 2-17

makefile 8-6, 0-16
master dump table 9-2, 9-3
memory access services 3-13

copyin 3-14
copyinstr 3-14
copyout 3-14
fubyte 3-14
fuword 3-14
subyte 3-14
suword 3-14
uiomove 3-14
ureadc 3-14
uwritec 3-14

memory access to/from user space 3-13
memory management kernel services 3-13

init_heap 3-13
pin 3-13
pi ncode 3-13
pinu 3-13
unpin 3-13
unpincode 3-13
unpinu 3-13
xmalloc 3-13
xmfree 3-13

Micro Channel
adapter identification by software 2-13
byte reversal 2-19
displaying registers on 9-30
overview 2-1
querying POS registers 2-18
setting p~s registers 2-18
unique identification of adapter 2-14

mkdev command 6-18,6-21,6-23,6-27,6-32,6-35,
7-17, A-3

mknod subroutine 6-25

N
nodev 3-8
nulldev 3-8

o
object classes 6-5
object classes in odm

configuration rules (Config_Rules) B-17
Config_Rules 6-6, 6-7
CuAt 6-6
CuOep 6-6

object classes in odm (continued)
CuOv 6-6
CuOvOr 6-6
customized attribute (CuAt) 8-13
customized dependency (CuOep) 8-15
customized device driver (CuOvOr) 8-15
customized devices (CuOv) 8-10
customized VPO (CuVPO) 8-16
CuVPO 6-6
PdAt 6-5, 6-10
PdCn 6-6
PdOv 6-5
predefined attributes (PdAt) 8-6
predefined connection (PdCn) 8-9
predefined devices (PdOv) 8-1

OOM 7-1
OOM commands 8-19

odmadd 8-19
odmchange 8-19
odmcreate 8-19
odmdelete 8-19
odmdrop 8-19
odmget 8-19
odmshow 8-19

OOM object classes 8-1
OOM subroutines 8-20

odm_add_obj 8-20
odm_change_obj 8-20
odm_close_class 8-20
odm_create_class 8-20
odm_err _msg 8-20
odm_freeJist 8-20
odm_get_by Jd 8-20
odm_get_first 8-20
odm_getJist 8-20
odm_get_next 8-20
odm_get_obj 8-20
odm_initialize 8-20
odm_lock 8-20
odm_mount_class 8-20
odm_open_class 8-20
odm_rm_by Jd 8-20
odm_rm_class 8-20
odm_rm_obj 8-20
odm_run_method 8-20
odm_set_path 8-20
odm_set_perms 8-20
odm_terminate 8-20

·odm_unlock 8-20
odm .(Object Data Manager) 6-5

=.Odmadd command 6-34, 7-21, 8-19
. oomadd system call 6-13
-gdmchange command 8-19
odnlcreate command 7-20, 8-19
odmdelete command 8-19
odmdrop command 8-19
odmget command 8-19

odmshow command 8-19
odm_add_obj command 6-34
odm_add_obj subroutine 8-20
odm_change...:obj subroutine 8-20
odm_close_class subroutine 8-20
odm_create_class subroutine 8-20
odm_err_msg subroutine 8-20
odm_freeJist subroutine 8-20
odm_get_byJd subroutine 8-20
odm_get_first subroutine 8-20
odm_getJist subroutine 8-20
odm_get_next subroutine 8-20
odm_get_obj subroutine 8-20
odmJnitialize subroutine 6-19,6-22,6-24,6-29,6-31,

8-20
odmJock subroutine 6-19,6-22,6-24,6-29,6-31,

8-20
odm_mount_class subroutine 8-20
odm_open_class subroutine 8-20
odm_rm_by Jd subroutine 8-20
odm_rm_class subroutine 8-20
odm_rm_obj subroutine 8-20
odm_run_method command 6-32
odm_run_method subroutine 8-20
odm_set_path subroutine 8-20
odm_set_perms subroutine 8-20
odm_terminate subroutine 6-23, 8-20
odm_unlock subroutine 8-20
open subroutine 4-21
open subroutine call 4-14

p
pincode kernel service 10-1,10-2
pioassi st 3-16
poll subroutine 4-48
predefined attributes (PdAt) 8-6
predefined connection (PdCn) 8-9
predefined devices (PdOv) 8-1
process management kernel services 3-19

clrjmpx 3-19, 3-21
creatp 3-19, 3-21
e_post 3-21
e_sleep 3-21
e_sleepl 3-21
e_wait 3-21
e_wakeup 3-21
getpid 3-20, 3-21
initp 3-19, 3-21
lockl 3-21
longjmpx 3-19,3-21
pdsignal 3-21
pidsig 3-21
setjmpx 3-19, 3-21
setpinit 3-19, 3-21
sig_chk 3-19,3-21
sleep 3-21
unlockl 3-21
wakeup 3-21

Index X-7

proch add 3-15
prochdel 3-15
programmed I/O 2-9
publications xix
putattr routine 8-21

R
raw I/O 5-1, 5-6
raymond chiang
read subroutine call 4-31
readx subroutine call 4-31
real memory address space 2-2
reldevno subroutine 6-22, 8-21
relmajor subroutine 6-22, 8-21
rei seq routine B-21
rmdev command A-3
run time configuration commands A-3

S
select subroutine 4-48
selnotify kernel service 3-16,4-48
setleds subroutine 6-24
setuerror 3-16
smetco world headquarters
SMIT 7-1, 7-21
SMIT database 7-5
SMIT (System Management Interface Tool)

database 7-5
database creation 7 -20
Dialog header Object Class (sm_cmd_hdr) C-5
dialog screens 7-1, 7-2, 7-4
Dialog/selector command option Object Class

(sm_cmd_opt) C-7
extentions debugging 7-20
Menu Object Class (sm_menu_opt) C-1
Menu Object Class (sm_menu_opt) used for

aliases C-2
menu screens 7-1, 7-2, 7-3
object classes C-1
Selector header Object Class (sm_name_hdr) C-3
selector screens 7-1, 7-2, 7-3
task additions 7-21

special file 1-1
start I/O routine entry point 3-9
start method 6-5,6-15
stop method 6-5, 6-14
stpfdev command 6-5
strategy routine 5-1
sttdev command 6-5
sysconfig subroutine 3-15,4-2,4-4,4-9,6-26,6-27
sysdumpdev command 9-1
system dump formatting 9-5

U
ucfgdev command 6-5

X-8

udefdev command 6-5
uexadd 3-15
uexblock 3-16
uexclear 3-16
uexdel 3-15
uio structure 4-31, 4-36
uiomove 4-3
uiomove kernel service 4-31, 4-36
unconfigure method 6-4, 6-14
undefine method 6-4,6-14
unlockl kernel service 3-20
updatep command 8-2
uphysio kernel service 4-31
ureadc kernel service 4-31
uwritec kernel service 4-36

W
write subroutine 4-36
writex subroutine 4-36
writing a change method 6-30
writing a configure method 6-23
writing a define method 6-17
writing a start method 6-33
writing a stop method 6-33
writing a unconfigure method 6-27
writing a undefine method 6-21

Title: Writing a Device Driver for AIX Version 3
GG24-3629-00

READER'S
COMMENT
FORM

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever infonnation you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A .. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition K otice on the back of the title page.)

Reader's Comment Form

F.14 Ind lip.

ruu

Return address:

PI a. 1.1 Sllpl.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:
IBM Corporation, International Technical Support Center
11400 Burnet Road
Internal Zip 2201
Austin, Texas 78758
U.S.A.

flU .. 4 rap.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

YourlValne __________ ~---

COlnpany Nalne ________________ _ Departlnent ___ _

Street Address _____________________ _

City

State

IBj\ll Branch Office serving you

---. -------
~ --- ---- - ---

-~- .. ------ ,
®

Zip Code

n
C

J
n
C
CJ
~

GG24-3629-00
~
:I. -sr
~

--..-------- ----- -- ~ ---- - - --------------_ . - GG24-3629-00
(I)

