GA34-0022-1

File No. S1-01

IBM Series/1
Model 3 4953 Processor
and Processor Features
Description

o #5070 ||O

i

:

R

j
. J
?
T
o - —

4953 PROCESSOR DESCRIPTION

f=5 Series/1

GA34-0022-1

File No. S1-01

IBM Series/1
Model 3 4953 Processor
and Processor Features
Description

4953 PROCESSOR DESCRIPTION

Second Edition (March 1977)

This is a major revision of, and obsoletes GA34-0022-0. Significant changes in this new edition include
(1) rearrangement of chapters to provide a more logical flow of information and (2) removal of 4 chapters
that are now included in other publications.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters. Before using this publication in connection with the
operation of IBM systems, have your IBM representative confirm editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative or the IBM branch
office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been removed,
send your comments to IBM Corporation, Systems Publications, Department 27T, P. O. Box 1328, Boca
Raton, Florida 33432. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1976, 1977

ii GA34-0022

"y

LJ

Preface vii
Summary of Publication vii
Related Publications vii

Chapter 1. Introduction 1-1

IBM 4953 Processor 1-3
Processor Options 1-3
Processor Description 1-3
Input/Output Units and Features 1-6
Communications Features 1-6
Sensor Input/Output Options 1-6
Packaging and Power Options 1-6
Other Options 1-6

Chapter 2. Processing Unit Description 2-1
Main Storage 2-1
Addressing Main Storage 2-3
Arithmetic and Logic Unit (ALU) 2-3
Numbering Representation 2-3
Registers 2-6
Per-system Registers 2-6
Per-level Registers 2-6
Indicator Bits 2-7
Even, Negative and Zero Result Indicators 2-7
Even, Carry, and Overflow Indicators — Condition Code for
Input/Output Operations 2-8
Carry and Overflow Indicators — Add and Subtract
Operations 2-8
Carry and Overflow Indicators — Shift Operations 2-8
Indicators — Compare Operations 2-8
Indicators — Multiple Word Operands 2-9
Testing Indicators with Conditional Branch and Jump
Instructions 2-10
Supervisor State Bit 2-11
In-process Bit 2-11
Trace Bit 2-11
Summary Mask Bit 2-11
Program Execution 2-11
Instruction Formats 2-11
Effective Address Generation 2-13
Processor State Control 2-20
Initial Program Load (IPL) 2-22
Sequential Instruction Execution 2-23
Jumping and Branching 2-23
Level Switching and Interrupts 2-23
Stack Operations 2-23

Chapter 3. Interrupts and Level Switching 3-1
Introduction 3-1
Interrupt Scheme 3-1
Automatic Interrupt Branching 3-2
1/O Interrupts 3-3
Prepare I/O Device for Interrupt 3-3
Present and Accept 1/O Interrupt 3-3
Class Interrupts 3-5
Priority of Class Interrupts 3-S5
Present and Accept Class Interrupt 3-5
Summary of Class Interrupts 3-8

Contents

Recovery from Error Conditions 3-8
Program Check 3-8
Storage Parity Check 3-8
CPU Control Check 3-8
1/O Check 3-9
Soft Exception Trap 3-9
Processor Status Word 3-9
Program Controlled Level Switching 3-10
Selected Level Lower Than Current Level and In-process
Flag On 3-11
Selected Level Equal to Current Level and In-process
Flag On 3-11
Selected Level Higher Than Current Level and In-process
Flag On 3-11
Selected Level Lower Than Current Level and In-process
Flag Off 3-12
Selected Level Equal to Current Level and In-process
Flag Off 3-12
Selected Level Higher Than Current Level and In-process
Flag Off 3-12
Interrupt Masking Facilities 3-13
Summary Mask 3-13
Interrupt Level Mask Register 3-13
Device Mask (I-bit) 3-13

Chapter 4. Input/Output Operations 4-1
Operate 1/O Instruction 4-1
Immediate Device Control Block (IDCB) 4-3
Device Control Block (DCB) 4-5
I/O Commands 4-6
DPC Operation 4-¢
Cycle Steal 4-10
Start Operation 4-10
Start Cycle Steal Status Operation 4-12
Cycle-steal Device Options 4-13
Burst Mode 4-13
Chaining 4-13
Programmed Controlled Interrupt (PCI) 4-13
Suppress Exception (SE) 4-13
Cycle-steal Termination Conditions 4-15
I/O Condition Codes and Status Information 4-15
10 Instruction Condition Codes 4-19
Interrupt Condition Codes 4-19
1/0 Status Information 4-20

Chapter 5. Console 5-1

Basic Console 5-2
Keys and Switches 5-2
Indicators 5-2

Programmer Console 5-3
Console Display 5-3
Indicators 54
Combination Keys/Indicators 5-5
Keys and Switches 5-8
Displaying Main Storage Locations 5-12
Storing Into Main Storage 5-12
Displaying Registers 5-13
Storing Into Registers 5-13

Contents

iii

Chapter 6. Instructions 6-1
Exception Conditions 6-1

Program Check Conditions 6-1

Soft Exception Trap Conditions 6-1
Instruction Termination or Suppression 6-2
Compatibility 6-2

Soft Exception Trap 6-2

No Operation 6-2

Program Check 6-2

Instruction Descriptions 6-3

Add Byte (AB) 6-3

Add Byte Immediate (ABI) 6-3

Add Carry Register (ACY) 64

Add Double Word (AD) 6-5
Register/Storage Format 6-5
Storage/Storage Format 6-5

Add Word (AW) 6-6
Register/Register Format 6-6
Register/Storage Format 6-6
Storage to Register Long Format 6-7
Storage/Storage Format 6-7

Add Word With Carry (AWCY) 6-8

Add Word Immediate (AWI) 6-9
Register Immediate Long Format 6-9
Storage Immediate Format 6-9

Branch Unconditional (B) 6-10

Branch and Link (BAL) 6-10

Branch and Link Short (BALS) 6-11

Branch On Condition (BC) 6-12

Branch On Condition Code (BCC) 6-13

Branch On Not Condition (BNC) 6-14

Branch On Not Condition Code (BNCC) 6-15

Branch On Not Overflow (BNOV) 6-16

Branch On QOverflow (BOV) 6-16

Branch Indexed Short (BXS) 6-17

Compare Byte (CB) 6-18
Register/Storage Format 6-18
Storage/Storage Format 6-18

Compare Byte Immediate (CBI) 6-19

Compare Double Word (CD) 6-20
Register/Storage Format 6-20
Storage/Storage Format 6-20

Compare Byte Field Equal and Decrement (CFED) 6-21
Compare Byte Field Equal and Increment (CFEN) 6-21
Compare Byte Field Not Equal and Decrement (CFNED) 6-22
Compare Byte Field Not Equal and Increment (CFNEN) 6-22

Complement Register (CMR) 6-23

Copy Current Level (CPCL) 6-23

Copy Console Data Buffer (CPCON) 6-24

Copy Interrupt Mask Register (CPIMR) 6-24

Copy In-process Flags (CPIPF) 6-25

Copy Level Block (CPLB) 6-26

Copy Level Status Register (CPLSR) 6-27

Copy Processor Status and Reset (CPPSR) 6-27

Compare Word (CW) 6-28
Register/Register Format 6-28
Register/Storage Format 6-28
Storage/Storage Format 6-28

Compare Word Immediate (CWI) 6-29
Register Immediate Long Format 6-29
Storage Immediate Format 6-29

Divide Byte (DB) 6-30

Divide Doubleword (DD) 6-31

Diagnose (DIAG) 6-32

Disable (DIS) 6-33

Divide Word (DW) 6-34

iv. GA34-0022

Enable (EN) 6-35

Fill Byte Field and Decrement (FFD) 6-36

Fill Byte Field and Increment (FFN) 6-36

Operate I/0 (10) 6-37

Interchange Registers (IR) 6-37

Jump Unconditional (J) 6-38

Jump and Link (JAL) 6-38

Jump On Condition (JC) 6-39

Jump On Count (JCT) 640

Jump On Not Condition (JNC) 641

Level Exit (LEX) 6-41

Load Multiple and Branch (LMB) 642

Multiply Byte (MB) 6-43

Multiply Doubleword (MD) 644

Move Address (MVA) 645
Storage Address to Register Format 645
Storage Immediate Format 645

Move Byte (MVB) 6-46
Register/Storage Format 6-46
Storage/Storage Format 6-46

Move Byte Immediate (MVBI) 647

Move Byte and Zero (MVBZ) 647

Move Doubleword (MVD) 648
Register/Storage Format 648
Storage/Storage Format 6-48

Move Doubleword and Zero (MVDZ) 649

Move Byte Field and Decrement (MVFD) 6-50

Move Byte Field and Increment (MVFN) 6-50

Move Word (MVW) 6-51
Register/Register Format 6-51
Register/Storage Format 6-51
Register to Storage Long Format 6-51
Storage to Register Long Format 6-52
Storage/Storage Format 6-52

Move Word Immediate (MVWI) 6-53
Storage to Register Format 6-53
Storage Immediate Format 6-53

Move Word Short (MVWS) 6-54
Register to Storage Format 6-54
Storage to Register Format 6-54

Move Word and Zero (MVWZ) 6-55

Multiply Word (MW) 6-56

No Operation (NOP) 6-57

And Word Immediate (NWI) 6-57

OR Byte (OB) 6-58
Register/Storage Format 6-58
Storage/Storage Format 6-58

OR Doubleword (OD) 6-59
Register/Storage Format 6-59
Storage/Storage Format 6-59

OR Word (OW) 6-60
Register/Register Format 6-60
Register/Storage Format 6-60
Storage to Register Long Format 6-61
Storage/Storage Format 6-61

OR Word Immediate (OWI) 6-62
Register Inmediate Format 6-62
Storage Immediate Format 6-62

Pop Byte (PB) 6-63

Pop Doubleword (PD) 6-63

Push Byte (PSB) 6-64

Push Doubleword (PSD) 6-64

Push Word (PSW) 6-65

Pop Word (PW) 6-65

Reset Bits Byte (RBTB) 6-66
Register/Storage Format 6-66
Storage/Storage Format 6-66

)

Reset Bits Double Word (RBTD) 6-67
Register/Storage Format 6-67
Storage/Storage Format 6-67

Reset Bits Word (RBTW) 668
Register/Register Format 6-68
Register/Storage Format 6-68
Storage to Register Long Format 6-69
Storage/Storage Format 669

Reset Bits Word Immediate (RBTWI) 6-70
Register Immediate Long Format 6-70
Storage Immediate Format 6-70

Subtract Byte (SB) 6-71

Subtract Carry Indicator (SCY) 6-71

Subtract Doubleword (SD) 6-72
Register/Storage Format 6-72
Storage/Storage Format 6-72

Set Console Data Lights (SECON) 6-73

Set Interrupt Mask Register (SEIMR) 6-73

Set Indicators (SEIND) 6-74

Set Level Block (SELB) 6-75

Scan Byte Field Equal and Decrement (SFED) 6-76

Scan Byte Field Equal and Increment (SFEN) 6-76

Scan Byte Field Not Equal and Decrement (SFNED) 6-77

Scan Byte Field Not Equal and Increment (SFNEN) 6-77

Shift Left Circular (SLC) 6-78
Immediate Count Format 6-78
Count in Register Format 6-78

Shift Left Circular Double (SLCD) 6-79
Immediate Count Format 6-79
Count in Register Format 6-80

Shift Left Logical (SLL) 6-81
Immediate Count Format 6-81
Count in Register Format 6-81

Shift Left Logical Double (SLLD) 6-82
Immediate Count Format 6-82
Count in Register Format 6-82

Shift Left and Test (SLT) 6-83

Shift Left and Test Double (SLTD) 6-83

Shift Right Arithmetic (SRA) 6-84
Immediate Count Format 6-84
Count in Register Format 6-84

Shift Right Arithmetic Double (SRAD) 6-85
Immediate Count Format 6-85
Count in Register Format 6-85

Shift Right Logical (SRL) 6-86
Immediate Count Format 6-86
Count in Register Format 6-86

Shift Right Logical Double (SRLD) 6-87
Immediate Count Format 6-87
Count in Register Format 6-87

Store Multiple (STM) 6-88

Stop (STOP) 6-89

Supervisor Call (SVC) 6-89

Subtract Word (SW) 6-90
Register/Register Format 6-90
Register/Storage Format 6-90
Storage to Register Long Format 6-91
Storage/Storage Format 6-91

Subtract Word With Carry (SWCY) 6-92

Subtract Word Immediate (SWI) 6-93
Register Immediate Long Format 6-93
Storage Immediate Format 6-93

Test Bit (TBT) 6-94

Test Bit and Reset (TBTR) 6-94

Test Bit and Set (TBTS) 6-95

Test Bit and Invert (TBTV) 6-95

Test Word Immediate (TWI) 6-96
Register Immediate Long Format 6-96
Storage Immediate Format 6-96

Invert Register (VR) £-97

Exclusive OR Byte (XB) 6-97

Exclusive OR Doubleword (XD) 698

Exclusive OR Word (XW) 6-99
Register/Register Format 6-99
Register/Storage Format 6-99
Storage to Register Long Format 6-100

Exclusive OR Word Immediate (XWI) 6-100

Appendix A. Instruction Execution Times A-1
Appendix B. Instruction Formats B-1

Appendix C. Assembler Syntax C-1
Coding Notes C-1
Legend for Machine Instruction Operands C-1

Appendix D. Numbering Systems and Conversion Tables D-1

Binary and Hexadecimal Number Notations D-1
Binary Number Notation D-1
Hexadecimal Number System D-1

Hexadecimal — Decimal Conversion Tables D-2
Appendix E. Character Codes E-1

Appendix F. Carry and Overflow Indicators F-1
Signed Numbers F-1
Unsigned Numbers F-2
Carry Indicator Setting F-4
Add Operation Examples F4
Subtract Operation Examples F-4
Overflow Indicator Setting F-5
Examples F-6

Appendix G. Reference Information G-1
Condition Codes G-1
I/O Instruction Condition Codes G-1
Interrupt Condition Codes G-1
General Registers G-2
Interrupt Status Byte (ISB) G-2
DPC Devices G-2
Cycle Steal Devices G-2
Level Status Register (LSR) G-2
Process Status Word (PSW) G-2

Index X-1
Index of Instructions by Format X-10

Index of Instructions by Name X-13

Contents

vi GA34-0022

LJ

This publication describes the functional characteristics of
the IBM 4953 Processor and the features associated with this
processor. It assumes that the reader understands data
processing terminology and is familiar with binary and
hexadecimal numbering systems. The publication is intended
primarily as a reference manual for experienced programmers
who require machine code information to plan, correct, and
modify programs written in the assembler language.

Summary of Publication

® Chapter 1. Introduction is an introduction to the
system architecture. It contains a general description of
the processor, storage, features, and a list of attachable
I/0O devices.

® Chapter 2. Processing Unit Description contains a
description of the processor hardware including registers
and indicators. The section on indicators includes
examples of indicator results when dealing with signed
and unsigned numbers.

Main storage data formats and addressing are presented
in this chapter.
A section titled “Program Execution” is included and

covers:
— Basic instruction formats

Effective address generation

Processor state control

— Initial program load (IPL)

Jumping and branching
— Level switching and interrupts
— Stack operations

® Chapter 3. Interrupts and Level Switching describes
the priority interrupt levels and the interrupt processing
for (1) I/O devices, and (2) class interrupts. Related
topics are:
— Program controlled level switching
— Interrupt masking facilities
— Recovery from error conditions

® Chapter 4. Input/Output Operations describes the I/O
commands and control words that are used to operate
the I/O devices. Condition codes and status information
relative to the I/O operation are also explained. Specific
command and status-word bit structures are contained
in the I/O device description books.

|

Preface

® Chapter 5. Console describes the keys, switches, and
indicators for the basic console and the optional pro-
grammer console. Typical manual operations such as
storing into and displaying main storage are presented.
® Chapter 6. Instructions describes the basic instruction
set, including indicator settings and possible exception
conditions. Individual instruction word formats are
included and contain bit combinations for the operation
code and function fields. The instructions are arranged
in alphabetical sequence based on assembler mnemonics.
® Appendixes:
— Instruction execution times
— Instruction formats
— Assembler instruction syntax
— Numbering systems and conversion tables
— Character codes
— Carry and overflow indicators
— Reference information

Related Publications

® [BM Series/1 System Summary, GA34-0035.

® [BM Series/1 Installation Manual — Physical Planning,
GA34-0029.

® [BM Series/l1 4962 Disk Storage and 4964 Diskette Unit
Description, GA34-0024.

® [BM Series/1 4973 Line Printer Description, GA34-0044.

® [BM Series/1 4974 Printer Description, GA34-0025.

® [BM Series/1 4979 Display Station Description,
GA34-0026.

® [BM Series/1 4982 Sensor Input/Output Unit Descrip-
tion, GA34-0027.

® [BM Series/] Communications Features Description,
GA34-0028.

® [BM Series/1 Attachment Features Description,
GA34-0031.

® [BM Series/1 Battery Backup Unit Description,
GA34-0032.

® [BM Series/1 User’s Attachment Manual, GA34-0033.

Preface vii

viii GA34-0022

\J

Four models of the 4953 Processor are available.

® Model A
— 1/2 rack width unit
— 16K bytes main storage
— Additional storage in 16K byte increments
— 64K bytes maximum
® Model B
— Full rack width unit
— 16K bytes main storage
— Additional storage in 16K byte increments
— 64K bytes maximum
® Model C
— 1/2 rack width unit
— 32K bytes main storage
— Additional storage in 16/32K byte increments
— 64K byte maximum
® Model D
— Full rack width unit
— 32K bytes main storage
— Additional storage in 16/32K byte increments
— 64K bytes maximum

The IBM 4953 Processor is a compact, general purpose
computer and has the following general characteristics:

o Four priority interrupt levels — independent registers
and status indicators for each level. Automatic and
program controlled level switching.

Chapter 1. Introduction

Main storage — read or write time is 600 nanoseconds

maximum (minimum 800 nanoseconds required between

two storage access cycles). Odd parity by byte is main-

tained throughout storage.

TTL (transistor-transistor logic) processor technology

Microprogram control — microcycle time: 200

nanoseconds.

Instruction set that includes: stacking and linking

facilities, multiply and divide, variable field-length byte

operations, and a variety of arithmetic and branching

instructions.

Supervisor and problem states.

Packaged in a 19-inch rack mountable unit — full width

or half width.

Basic console standard in processor unit. Programmer

console optional.

Channel capability

— Asynchronous, multidropped channel

— 256 1/0 (input/output) devices can be addressed

— Direct program control and cycle steal operations

— Maximum burst data rate is 666K words per second
(1.332 megabytes if transmitted in pairs). When
multiple cycle stealing devices are interleaved, the
aggregate data rate is also 666K words.

The processor unit contains power and space for

additional features and storage. The IBM 4959 Input/Out-
put Expansion Unit is also available for additional features.

The processor is described in the following sections of

this chapter.

Introduction 1-1

IBM 4953 Processor
Channel
Processor Channel Repower
Storage 1/0
Console .
(64K maximum) Attachment
IBM 4959 I/O Expansion Unit
1/O Device
I/O Device I/O Attachment I/O Attachment
1/O Device
Figure 1-1. Block diagram of IBM 4953 Processor and an IBM 4959 I/O Expansion Unit

12 GA34-0022

CJ

IBM 4953 Processor

Processor Options

e Storage Addition — 16,384 bytes
— Provides additional storage in 16K byte increments
for all models
— 64K bytes maximum
e Storage Addition — 32,768 bytes
— Provides additional storage in 32K byte increments
for models C and D
— 64K bytes maximum
e Programmer Console

Processor Description

The basic IBM 4953 Processor includes the processor, 16K
bytes of storage for models A and B (32K bytes of storage
for models C and D), and a basic console. These items are
packaged in a unit, called the processor unit. Figure 1-1
shows a block diagram of an IBM 4953 Processor and an
IBM 4959 Input/Output Expansion Unit.

The processor is microprogram controlled, utilizing a
200 nanosecond microcycle. Circuit technology is TTL.

Four priority interrupt levels are implemented in the
processor. Each level has an independent set of machine
registers. Level switching can occur in two ways: (1) by
program control, or (2) automatically upon acceptance of
an I/O interrupt request. The interrupt mechanism provides
256 unique entry points for I/O devices.

The processor instruction set contains a variety of
instruction types. These include: shift, register to register,
register immediate, register to (or from) storage, bit manipu-
lation, multiple register to storage, variable byte field, and
storage to storage. Supervisor and problem states are
implemented, with appropriate privileged instructions for
the supervisor.

The basic console is intended for dedicated systems that
are used in a basically unattended environment. Only
minimal controls are provided. A programmer console can
be added as a feature; this console provides a variety of
indicators and controls for operator-oriented systems.

Basic storage supplied is 16K bytes for models A and B;
32K bytes for models C and D. Models A and B can add
additional storage in 16K byte increments up to 64K bytes
maximum. Models C and D can add additional storage in
16K and/or 32K byte increments up to 64K bytes maximum.
The maximum read/write access time for main storage is
600 nanoseconds. However, the minimum duration of time
between successive storage cycles is 800 nanoseconds.

I/O devices are attached to the processor through the pro-
cessor I/O channel. The channel directs the flow of infor-
mation between the I/O devices, the processor, and main
storage. The channel accommodates a maximum of 256
addressable devices.

The channel supports:

e Direct program control operations. Each Operate I/O
instruction transfers a byte or word of data between
main storage and the device. The operation may or may
not terminate in an interrupt.

e Cycle steal operations. Each Operate I/O instruction
initiates multiple data transfers between main storage
and the device (65,535 bytes maximum). Cycle steal
operations are overlapped with processing operations
and always terminate in an interrupt.

e [Interrupt servicing. Interrupt requests from the devices,
along with cycle steal requests, are presented and polled
on the interface concurrently with data transfers.

The processor is packaged in a standard 48.3 cm (19 inch)
rack-mountable unit, called the processor unit. All processor
units contain an integral power supply, fans, and the basic
console.

Refer to the Series/1 Installation Manual—Physical
Planning, GA34-0029, for environmental characteristics.

Four processor models are available. Figure 1-2 shows
the IBM 4953 Processor Model A, Figure 1-3 shows the IBV
4953 Processor Model B, Figure 1-4 shows the IBM 4953
Processor Model C, and Figure 1-5 shows the IBM 4953
Processor Model D.

Introduction 1-3

IBM 4953 Processor Model A

This model occupies one-half the width of the standard
rack and has 16K bytes of storage. It has the capacity for
storage cards and/or I/O feature cards in any combination
up to 4 additional cards. See Figure 1-2.

Note. Additional storage may be added in 16K byte
increments up to 64K bytes maximum.

i

Power

Supply
125W

LProcessor

Storage 16KB

Any 1/O or 16KB storage card

Repower card or any 1/O card

Figure 1-2. IBM 4953 Processor Model A with a Programmer
Console

14 GA34-0022

IBM 4953 Processor Model B

This model occupies the full width of the standard rack and
has 16K bytes of storage. It has the capacity for storage
cards and/or I/O feature cards in any combination up to 13
additional cards. See Figure 1-3.

Note. Additional storage may be added in 16K byte
increments up to 64K bytes maximum.

uuumlmmmummmnummnmnmm

ABCDE FGHIJK LMNPQ

N

Power
Supply
300W
M/\
A 1
I/O cards T
Processor
Any I/O or 16KB

storage card Storage 16KB

If the A position is not used for the Channel Repower card, the
following feature cards may be plugged in this position:

e Teletypewriter Adapter Feature using TTL voltage levels
Teletypewriter Adapter Feature using isolated current loop
where user supplies external £12V power

Timer Feature

Customer Direct Program Control Adapter Feature

4982 Sensor Input/Output Unit Attachment Feature

Integrated Digital Input/Output Non-Isolated Feature

Figure 1-3. IBM 4953 Processor Model B with a Programmer
Console

(

i

)

IBM 4953 Processor Model C

This model occupies one-half the width of the standard
rack and has 32K bytes of storage. It has the capacity for
storage cards and/or I/O feature cards in any combination
up to 4 additional cards. See Figure 1-4.

Note. Additional storage may be added in 16K/32K bvte
increments up to 64K bytes maximum.

(T

ABCDEF

NN

Power
Supply
125W

\-Processor

Storage 32KB

Any I/O or storage card

Any I/O or 16KB
storage card

Any I/O
card

Repower card or any I/O card

Figure 1-4. IBM 4953 Processor Model C with a Programmer
Console

IBM 4953 Processor Model D

This model occupies the full width of the standard rack and
has 32K bytes of storage. It has the capacity for storage
cards and/or 1/O feature cards in any combination up to

13 additional cards. See Figure 1-5.

Note. Additional storage may be added in 16K/32K byte
increments up to 64K bytes maximum.

ABCDE FGHIJK LMNPQ

NANSERRNY

Power

Supply
300W

44
Processor
Storage 32KB
Any I/O or
storage card

1/O cards

Any I/O or 16KB
storage card

If the A position is not used for the Channel Repower card, the
following feature cards may be plugged in this position:

e Teletypewriter Adapter Feature using TTL voltage levels
Teletypewriter Adapter Feature using isolated current loop
where user supplies external +12V power

Timer [Feature

Customer Direct Program Control Adapter Feature

4982 Sensor Input/Output Unit Attachment Feature

Integrated Digital Input/Output Non-Isolated Feature

Figure 1-5. IBM 4953 Processor Model D with a Programmer
Console

Introduction 1-5

Input/Output Units and Features
® IBM 4962 Disk Storage Unit (4 models)

— Requires 4962 Disk Storage Unit Attachment Features
® [BM 4964 Diskette Unit

— Requires 4964 Diskette Unit Attachment Feature
® [BM 4979 Display Station

— Requires 4979 Display Station Attachment Feature
¢ IBM 4973 Line Printer (2 models)

— Requires 4973 Printer Attachment Feature
¢ IBM 4974 Printer

— Requires 4974 Printer Attachment Feature
® Timers Feature (2 timers)
® Teletypewriter Adapter Feature
® Customer Direct Program Control Adapter Feature

The feature cards for attaching the I/O units can be
housed in either the processor unit or the I/O expansion
unit. Information about these units and features can be
found in separate publications. The order numbers for
these publications are listed in the preface of this manual.

Communications Features

® Asynchronous Communications Single Line Control

® Binary Synchronous Communications Single Line
Control

® Binary Synchronous Communications Single Line

Control/High Speed

Synchronous Data Link Control Single Line Control

Asynchronous Communications 8 Line Control

Asynchronous Communications 4 Line Adapter

Binary Synchronous Communications 8 Line Control

Binary Synchronous Communications 4 Line Adapter

Communications Power Feature

Communications Indicator Panel

Refer to the publication /BM Series/1 Communications
Features Description, GA34-0028, for a description of these
features.

Sensor Input/Output Options
o Integrated Digital Input/Output Non-Isolated Feature
e IBM 4982 Sensor Input/Output Unit
— 4982 Sensor Input/Output Unit Attachment Feature
® Features for the 4982 Sensor I/O Unit
— Digital Input/Process Interrupt Non-Isolated
— Digital Input/Process Interrupt Isolated
— Digital Output Non-Isolated
Analog Input Control
Amplifier Multirange
Analog Input Multiplexer — Reed Relay
Analog Input Multiplexer — Solid State
— Analog Output

[

|

1-6 GA34-0022

The integrated digital input/output non-isolated feature
provides digital sensor 1/O and simple attachment for non-
IBM equipment. This feature card can be housed in either
the processor unit or the I/O expansion unit.

The 4982 sensor input/output attachment unit feature
card is housed in either the processor unit or the I/O expan-
sion unit. Refer to the publication IBM Series/1, 4982
Sensor Input/Output Unit Description, GA34-0027, for a
description of the 4982 and associated features.

Packaging and Power Options

IBM 4959 Input/Output Expansion Unit

IBM 4999 Battery Backup Unit

IBM 4997 Rack Enclosure (1-metre) — 2 models
IBM 4997 Rack Enclosure (1.8-metre) — 2 models

The IBM 4959 Input/Output Expansion Unit is available
for adding I/O feature cards beyond the capacity of the
processor unit. The capacity of the I/O expansion unit is
either (1) fourteen I/O cards, or (2) thirteen I/O cards plus
a channel repower card. A channel repower card is required
to power each additional I/O expansion unit.

The IBM 4999 Battery Backup Unit permits the processor
unit (excluding external devices) to operate from a user-
supplied battery when a loss or dip in line power occurs.

Other Options

Additional options such as communications cables, customer
access panel, and a channel socket adapter are also available.

For a list and description of system units and features, refer

to the IBM Series/1 System Summary, GA34-0035.

M

\.J

Chapter 2.

Figure 2-1 shows the general data flow for the IBM 4953
Processor. The major functional units shown in the data

flow are discussed in the following sections.

Main Storage

Main storage holds data and instructions for applications to
be processed on the system. The data and instructions are
stored in units of information called a byte. Each byte
consists of eight binary data bits. Associated with each
byte is a parity bit. Odd parity by byte is maintained
throughout storage; even parity causes a machine check
error. Formats shown in this manual exclude the parity
bit(s) because they are not a part of the data flow manipu-
lated by the instructions.
The bits within a byte are numbered consecutively, left
to right, 0 through 7. When a format consists of multiple
bytes, the numbering scheme is continued; for example, the
bits in the second byte would be numbered 8 through 15.
Leftmost bits are sometimes referred to as high-order bits
and rightmost bits as low-order bits.
Bytes can be handled separately or grouped together. A
word is a group of two consecutive bytes, beginning on an
even address boundary, and is the basic building block of
instructions. A doubleword is a group of four consecutive
bytes beginning on an even address boundary.

Byte

0 00 O0O0O00O0

—

Processing Unit Description

0 7

Word

00 0O0O0OOOOO0OO0O0OOOOTI1O0

0 7 8 15

Doubleword

00 0O0O0OOOOOOOOOOOOO)J0OOO0OOOOOIOO0OO0OOTL1TO0O0
0 7 8 15 16 23 24 31

Processing Unit Description 2-1

Processor Bus

Bus .
Reg Display
Y
—————
|
|
: Console
|
|
-
Bus
Reg

I |

Local Storage

Level 0
IAR
LSR

Registers 0—7

Reg

Level 1
IAR
LSR

Registers 0—7

Level 2
IAR
LSR

Registers 0—7

Level 3
IAR
LSR

Registers 0—7

ALU

CIAR

PSW

Mask Reg

SAR BU

Console
Data Buffer

Status
Reg

Address
Compare

)

SDR

SAR

Channel Address

Main
Storage

Channel Data

[——

op
Reg

22 GA34-0022

ALU - Arithmetic and logic unit
IAR - Instruction address register

LSR - Level status register

Mask - Interrupt level mask register

OP - Operation register

Bus

PSW - Processor status word
SAR - Storage address register

SAR BU - Storage address back-up register

SDR - Storage data register

Figure 2-1. Data flow for the IBM 4953 Processor

)

Addressing Main Storage

Each byte location in main storage is directly addressable.
Byte locations in storage are numbered consecutively,
starting with location zero; each number is considered the
address of the corresponding byte. Storage addresses are
16-bit unsigned binary numbers. This permits a direct
addressing range of 65,536 bytes:

Address Range

16-bit binary address Hexadecimal Decimal
0000 0000 0000 0000 0000 0

to to to

1111 11111111 1111 FFFF 65,535

Note. Addresses that overflow or underflow the addressing
range address wrap modulo 65,536.

Instruction and Operand Address Boundaries

As previously stated, all storage addressing is defined by
byte location. Instructions can refer to bits, bytes, byte
strings, words, or doublewords as data operands. All word
and doubleword operand addresses must be on even byte
boundaries. All word and doubleword operand addresses
point to the most significant (leftmost) byte in the operand.
Bit addresses are specified by a byte address and a bit
displacement from the most significant bit of the byte.

To provide maximum addressing range, some instructions
refer to a word displacement that is added to the contents
of a register. In these cases, the operand is a word and the
register must contain an even byte address for valid results.
Effective address generation is described in a subsequent
section of this chapter.

All instructions must be on an even byte boundary. This
implies that the effective address for all branch type instruc-
tions must be on an even byte boundary to be valid.

If any of the aforementioned rules are violated, a program
check interrupt occurs with specification check set in the
processor status word (PSW). The instruction is terminated.

Arithmetic and Logic Unit (ALU)

The arithmetic and logic unit (ALU) contains the hardware
circuits that perform: addition; subtraction; and logical
operations such as AND, OR, and exclusive OR. The ALU
performs address arithmetic as well as the operations
required to process the instruction operands. Operands may
be regarded as signed or unsigned by the programmer. How-
ever, the ALU does not distinguish between them. Number-
ing representation is discussed in a subsequent section of
this chapter. For many instructions, indicators are set to
reflect the result of the ALU operation. The indicators are
discussed in a subsequent section of this chapter.

Numbering Representation
Operands may be signed or unsigned depending on how they
are used by the programmer. An unsigned number is a
binary integer in which all bits contribute to the magnitude.
A storage address is an example of an unsigned number. A
signed number is one where the high-order bit is used to
indicate the sign, and the remaining bits define the magni-
tude. Signed positive numbers are represented in true binary
notation with the sign bit (high-order bit) set to zero.
Signed negative numbers are represented in two’s comple-
ment notation with the sign bit (high-order bit) set to one.
The two’s complement of a number is obtained by inverting
each bit of the number and adding a one to the low-order
bit position. Two’s complement notation does not include
a negative zero. The maximum positive number consists of
an all-one integer field with a sign bit of zero; whereas, the
maximum negative number (the negative number with the
greatest absolute value) consists of an all-zero integer field
with a one-bit for the sign.

The following examples show: (1) an unsigned 16-bit
number, (2) a signed 16-bit positive number, and (3) a
signed 16-bit negative number.

Processing Unit Description 2-3

Example of an unsigned 16-bit number:

1111111111111 111 Binary number

0 15 Bit position
Decimal value 65535 (The largest unsigned number
Hexadecimal value FFFF representable in 16 bits.)

Example of a signed 16-bit positive number:

011111111111 1111 Binary number

0 15 Bit position

l— Sign (+)
Decimal value +32767 (The largest positive signed
Hexadecimal value 7FFF number representable in 16 bits.)

When the number is positive, all bits to the left of the
most significant bit of the number, including the sign bit,
are zero:

000O0OOOOOOOOOOOOOO1 Binary number

0 15 Bit position
I— Sign (+)

Decimal value +1

Hexadecimal value 0001

Example of a signed 16-bit negative number:

100000O0OO0COO0OOCOCOOO0OODO Binary number

0 15 Bit position

l— Sign (—)
Decimal value —32768 (The largest negative signed
Hexadecimal value 8000 number representable in 16 bits.)

Note. This form of representation yields a negative range
of one more than the positive range.

2-4 GA34-0022

When the number is negative, all bits to the left of the most
significant bit of the number, including the sign bit, are set
to one:

111111111111 1110 Binary number
0 15 Bit position

l—Sign ()

Decimal value -2
Hexadecimal value FFFE

When a signed-number operand must be extended with
high-order bits, the expansion is achieved by prefixing a
field in which each bit is set equal to the high-order bit of
the operand.

Example of an 8-bit field extended to a 16-bit field:

11111 1 01 Binary number

0 7 Bit position
‘—-Sign (—)
Decimal value -3
Hexadecimal value FD

11111111 11111101 Binary number
0 15 Bit position

I——Sign —)

Decimal value -3
Hexadecimal value FFFD

It must be emphasized that when performing the add and
subtract operations, the machine does not regard the number
as either signed or unsigned, but performs the designated
operation on the values presented. Whether a given add or
subtract operation is to be regarded as a signed operation
or an unsigned operation is determined by the programmer’s
view of the values being presented as operands. The carry
indicator and the overflow indicator of the LSR are changed
on various operations to reflect the result of that operation.
This allows the programmer to make result tests for the
number representation involved. The carry and overflow
indicator settings are explained in a subsequent section.

Processing Unit Description 2-5

Registers
Registers in the processor are provided in two categories:

1. Per-system register (the register is provided only once
and is used by all priority interrupt levels)

2. Per-level register (the register is duplicated for each
priority interrupt level)

Information that must be saved when a level is preempted
is retained in registers supplied for a specific level. Informa-
tion that pertains only to the current process is kept in
registers common to all levels. The registers in each cate-
gory are listed in this section. Descriptions for each of the
registers appear in subsequent sections. Only registers
accessible to the program or the operator (via console
operations) are discussed.

Registers supplied on a per-system basis:
Console data buffer

Current-instruction address register (CIAR)
Mask register (interrupt level)

Processor status word (PSW)

Storage address register (SAR)

Registers supplied on a per-level basis:
® General registers (8 per level)

® Instruction address register (IAR)
® [evel status register (LSR)

Note. For a specific level, the contents of the AR, LSR,
and the general registers are known as a level status block
(LSB). The LSBis a 22 byte entity used by hardware and
software for task control and task switching.

Per-system Registers

Console Data Buffer

The console data buffer is a 16-bit register associated with
the programmer console feature. Details of how the buffer
is used are explained in the programmer console section of
Chapter 5. The contents of the console data buffer can be
loaded into a specified general register by using the Copy
Console Data Buffer (CPCON) instruction (see Chapter 6).

Current-Instruction Address Register (CIAR)

When the processor enters the stop state, the current-instruc-

tion address register (CIAR) contains the address of the last
instruction that was executed. The CIAR is not addressable
by software. It may be displayed from the optional
programmer console. Refer to Stop State in this chapter
for methods of entering stop state.

Mask Register

The mask register is a 4-bit register used for control of
interrupts. Bit O controls level 0, bit 1 controls level 1, and
so on.

2-6 GA34-0022

A one bit enables interrupts on a level, while a zero bit
disables interrupts. For example if bit 3 is set to a one,
interrupts are enabled on level 3.

Processor Status Word (PSW)

The processor status word (PSW) is a 16-bit register used to
(1) record error or exception conditions that may prevent
further processing, and (2) hold certain flags that aid in
error recovery. Error or exception conditions recorded in
the PSW result in a class interrupt. Each bit in the PSW is
described in detail in Chapter 3. The PSW can be accessed
by using the Copy Processor Status and Reset (CPPSR)
instruction (see Chapter 6).

Storage Address Register (SAR)

The storage address register (SAR) is a 16-bit register that
contains the main-storage address for the last attempted
processor storage cycle. This register is addressable by the
Diagnose instruction and may be altered or displayed from
the optional programmer console.

Per-level Registers

General Registers

Subsequently referred to simply as registers, the general
registers are 16-bit registers available to the program for
general purposes. Eight registers are provided for each level.
The R and RB fields in the instructions control the selection
of these registers.

Instruction Address Register (IAR)

The instruction address register (IAR) is a 16-bit register
that holds the main storage address used to fetch an instruc-
tion. After an instruction has been fetched, the IAR is
updated to point to the next instruction to be fetched.

Note. These registers are sometimes referred to as IARO,
IAR1,IAR2, and IAR3. The numbers represent the
priority level associated with the register.

Level Status Register (LSR)
The level status register (LSR) is a 16-bit register that holds:

® Indicator bits
— Set as a result of arithmetic, logical, or I/O operations
® A supervisor state bit
® An in-process bit
® A trace bit
® A summary mask bit.

These bits are further discussed in the following sections.
Seven other bits in the LSR are not used and are always set
to zero.

BN

Indicator Bits

The indicators are located in bits 0—4 of the level status
register (LSR). Figure 2-2 shows the indicators and how
they are set for arithmetic operations. The indicator bits
are changed or not changed depending on the instruction
being executed. Some instructions do not affect the
indicators, other instructions change all of the indicators,
and still other instructions change only specific indicators.
Refer to the individual instruction descriptions in Chapter
6 for the indicators changed by each instruction.

Level status register (LSR)

E|C|O|NIZ
01 2 3 4
I—Zero

Negative

Overflow

Carry

Even

15

Set to 1 if result 1s all zeros;
otherwise, set to 0.

Set to 1 if bit-0 of result is 1;
otherwise, set to 0.

Set to 1 if result of arithmetic
operation (with the operands
regarded as signed numbers)
cannot be represented as a signed
number in the operand size
specified; otherwise set to 0.

Set to 1 if the result of add or
subtract operations (with the
operands regarded as unsigned
numbers) cannot be represented
as an unsigned number in the
operand size specified; otherwise,
set to 0.

Set to 1 if the low-order bit of the
result is 0; otherwise, set to O.

Figure 2-2. How indicators are set for signed and unsigned (logical)

operations

The indicators are changed in a specialized manner for

certain operations. These operations are described briefly.
Additional information is provided in subsequent sections
for those operations where more detail is required.

Add, subtract, or logical operations. The even, negative,
and zero indicators are result indicators. For add and
subtract operations, the carry and overflow indicators
are changed to provide information for both signed and
unsigned number representations.

Multiply and divide operations. Signed number operands
are always assumed for these operations. The carry
indicator is used to provide a divide by zero indication
for the divide instruction. The overflow indicator defines
an unrepresentable product for multiply operations.
Refer to the individual instruction descriptions in
Chapter 6.

Priority interrupts and input/output operations. The
even, carry and overflow indicators are used to form a
three-bit condition code that is set as a binary value.
Compare operations. The indicators are set in the same
manner as a subtract operation.

Shift operations. The carry and overflow indicators have
a special meaning for shift left logical operations.
Complement operations. The overflow indicator is set if
an attempt is made to complement the maximum nega-
tive number. This number is not representable.

Set Indicators (SEIND) and Set Level Block (SELB)
instructions. All indicators are changed by the data
associated with these instructions.

Even, Negative, and Zero Result Indicators

The even, negative, and zero indicators are called the result
indicators. A positive result is indicated when the zero and
negative indicators are both off (set to zero). These
indicators are set to reflect the result of the last arithmetic,
or logical operation performed. A logical operation in this
sense includes data movement instructions. See the
individual instruction descriptions in Chapter 6 for the
indicators changed for specific instructions.

Processing Unit Description 2-7

Even, Carry, and Overflow Indicators — Condition
Code for Input/Output Operations
The even, carry, and overflow indicators contain the I/O
condition code: (1) following the execution of an Operate
I/0 instruction and (2) following an I/O interrupt.

These indicators are used to form a 3-bit binary number
that results in a condition code value. For additional
information about condition codes, refer to:

1. Branch on Condition Code (BCC) and Branch on Not
Condition Code (BNCC) instructions in Chapter 6.
2. Condition codes in Chapter 4.

Carry and Overflow Indicators — Add and Subtract
Operations

A common set of add and subtract integer operations per-
forms both signed and unsigned arithmetic. Whether a given
add or subtract operation is to be regarded as a signed opera-
tion or an unsigned operation is determined by the pro-
grammer’s view of the values being presented as operands.
The carry and overflow indicators are set to reflect the result
for both cases.

Carry Indicator Setting

The carry indicator is used to signal overflow of the result
when operands are presented as unsigned numbers.

Overflow Indicator Setting

The overflow indicator is used to signal overflow of the
result when the operands are presented as signed numbers.

Note. Appendix F explains the meaning of these indicators
for signed and unsigned numbers. The appendix also pro-
vides examples for setting the carry indicator and for setting
the overflow indicator.

Carry and Overflow Indicators — Shift Operations
The carry and overflow indicators are changed for shift left
logical operations and shift left and test operations. These
operations affect the indicators as follows:

1. The carry indicator is set to reflect the value of the last
bit shifted out of the target register (register where
bits are being shifted).

2. The overflow indicator is set to one if bit-0 of the
target register was changed during the shift. Otherwise
it is set to zero.

2-8 GA34-0022

Indicators — Compare Operations

A compare operation sets the indicators in the same manner
as a subtract operation. The even, negative, and zero
indicators reflect the result. The carry and overflow indica-
tors are set as described previously.

Compare instructions provide a test between two oper-
ands (without altering either operand) so that conditional
branch and jump instructions may be used to control the
programming logic flow. The conditions specified in branch
and jump instructions are named such that, when the condi-
tion of the “subtracted from” operand relative to the other
operand is true the jump or branch occurs. Otherwise, the
next sequential instruction is executed. This is illustrated
in the following example.

e Compare operation example

Instruction Assembler

name mnemonic Operands

Compare word Ccw R3,R4
Operation code R1 R2 Function
011 10}011{1 0 0J0O 01 01
0 4 5 7 8 10 11 15

————— ———
R3 R4

In this example, the contents of register 3 are subtracted
from register 4:

Decimal

Unsigned Signed
R4 contents 0000 0000 0000 0010 2 +2
R3 contents 11111111 11111011 65531 =5
Subtract result -65529 +7
Machine operation:
Minuend 0000 0000 0000 0010
Subtrahend 0000 0000 0000 0100 one’s complement
Constant 1 for two’s complement
Result 0000 0000 0000 0111

Indicator Settings:
¢c o N z
0

‘— Result is not zero.

Result is positive.

[=]

Result fits operand size as a
signed number.

A negative result for an un-
signed number.

Result is not even (low-order
bit = 1).

C

If the programmer is comparing unsigned numbers, such
as storage addresses, he should use the logical conditional
tests (refer to Figure 2-3). In this example, assuming
unsigned number representation, R4 is logically less than
R3 and unequal to R3. Therefore, the following branch
instructions would cause a transfer to symbolic location A
(assuming register values shown in the example).

Ccw R3,R4
BLLT A

or

CwW R3,R4
BNE A

The complementary tests (BLGT and BE) would not cause
a transfer in this case.

If the programmer is comparing signed numbers, he
should use the arithmetic conditional tests (refer to Figure
2-3). In the previous compare word example, assuming
signed number representation, R4 is greater than R3 and
unequal to R3. The following branch instructions would
cause a transfer to symbolic location A.

Cw R3,R4
BGT A

or

Cw R3,R4
BNE A

The complementary tests (BLT and BE) would not cause
a transfer.

Note. Jump instructions are also available for the logical
and arithmetic conditional tests.

It must be emphasized again that the machine does not
regard the numbers as either signed or unsigned. The com-
pare word instruction results in a subtract operation being
performed on the values presented. The programmer must
then choose the correct conditional test (logical or arith-
metic) for the number representation involved.

Indicators — Multiple Word Operands

A programmer may desire to work with numbers that can-
not be represented in one word or in a doubleword. It may
take three or more words to represent the number.

Certain register to register instructions allow the program-
mer to add or subtract these multi-word operands and then
have the indicators reflect the multi-word result. These
instructions are:

Add Carry Register (ACY)

Add Word With Carry (AWCY)
Subtract Carry Register (SCY)
Subtract Word With Carry (SWCY)

The following two examples show how the add instruc-
tions are used. A subtract operation would be similar. See
Chapter 6 for details of the individual instructions.

Example 1. (Equal length operands)

Operand 1/Result

Onerand 2
perand 2

R1 R2 R3
R4 RS R6&
Program steps:
AW R6,R3
AWCY RS,R2
AWCY R4,R1
Explanation:
Step 1: The contents of R6 are added to the contents of R3.
Step 2: The contents of RS are added to the contents of R2 plus
any carry from the previous operation.
Step 3: The contents of R4 are added to the contents of R1 plus

Example 2. (Unequal length operands)

any carry from the previous operation.

R1

R2

R3

RS

R6

Operand 1/Result

Operand 2

Note. In this example, operand 2 must be an unsigned

number or must be positive.

Program Steps:
AW R6,R3
AWCY R5,R2
ACY R1
Explanation:
Step 1:

Step 2:

Step 3:

The contents of R6 are added to the contents of R3.
The contents of R5 are added to the contents of R2 plus

any carry from the previous operation.

Any carry from the previous operation is added to the

contents of R1.

Note. In both examples the final indicator settings reflect
the status of the 3-word result.

Even
Carry

Overflow

Negative
Zero

Set on if the result low-order bit of R3 is zero.

Set on if the result cannot be represented as an
unsigned 3-word number.

Set on if the result cannot be represented as a signed

3-word number.

Set on if the result high-order bit of R1 is one.
Set on if all three result registers contain zeros.

Processing Unit Description 2-9

Testing Indicators with Conditional Branch and
Jump Instructions

The indicators are tested according to a selected condition
when a conditional branch or a conditional jump instruc-
tion is executed. The conditions and the indicators tested
for each condition are shown in Figure 2-3.

The conditional instructions are:

Branch on Condition (BC)
Branch on Not Condition (BNC)
Jump on Condition (JC)

Jump on Not Condition (JNC)

The assembler also provides extended mnemonics for the
conditions shown in Figure 2-3. Refer to the individual
instructions in Chapter 6.

2-10 GA34-0022

Indicators
tested
Condition tested by Assembler ol1(2]3|4
conditional branch or extended
Jjump instruction mnemonics
Zero or equal BE,BZ,JE,JZ 1
Not zero or unequal BNE, BNZ, JNE, INZ 0
Positive and not zero BP,JP 0
Not positive BNP, INP 1
Negative BN, JN
Not negative BNN, JNN
Even BEV,JEV
Not even BNEV,JNEV
Arithmetically less than BLT,JLT 011
1{o0
Arithmetically less than BLE, JLE o1
or equal 110
Arithmetically greater than | BGE, JGE 111
or equal 0|0
Arithmetically greater than | BGT, JGT 11110
0l0f0

Logically less than or equal | BLLE, JLLE
Logically less than (carry) BLLT,JLLT
Logically greater than BLGT, JLGT
Logically greater than or BLGE, JLGE
equal (no carry)
Legend: LSR bit Indicator

0 E — Even

1 C — Carry

2 O - Overflow

3 N — Negative

4 Z — Zero

Figure 2-3. Indicators tested by conditional branch and jump instructions

o

Supervisor State Bit

LSR bit 8, when set to one, indicates that the processor is
in the supervisor state. This state allows privileged instruc-
tions to be executed. It is set by any of the following:

1. Class interrupt
Machine check condition
. Program check condition
. Power/thermal warning
. Supervisor Call (SVC) instruction,
. Soft exception trap condition
Trace
g. Console interrupt
2. I/O interrupt
3. Initial program load (IPL)

When LSR bit 8 is set to zero, the processor is in problem
state. For a selected priority level, the supervisor can alter
the supervisor state bit by using a Set Level Block (SELB)
instruction. For additional information, refer to Processor
State Control in this chapter.

Class interrupts and I/O interrupts are described in
Chapter 3. IPL is discussed in a subsequent section of this
chapter.

o a6 o

In-process Bit

LSR bit 9, when set to one, indicates that a priority level is
currently active or was preempted by a higher priority level
before completing its task. Bit 9 is turned off by a Level
Exit (LEX) instruction. Bit 9 can also be turned on or off
by a Set Level Block (SELB) instruction. The in-process

bit also affects level switching under program control. Refer
to Chapter 3. Interrupts and Level Switching.

Trace Bit

LSR bit 10, when set to one, causes a trace class interrupt
at the beginning of each instruction. The bit can be turned
on or off with the Set Level Block (SELB) instruction. The
trace bit aids in debugging programs. See Class Interrupts
in Chapter 3.

Summary Mask Bit

LSR bit 11, when set to zero (disabled), inhibits all priority
interrupts on all levels. When this bit is set to one (enabled),
normal interrupt processing is allowed. Refer to Summary
Mask in Chapter 3 for details relating to control of the
summary mask.

Program Execution

Instruction Formats

The processor instruction formats are designed for efficient
use of bit combinations to specify the operation to be
performed (operation code) and the operands that partici-
pate. Some formats also include (1) an immediate data
field or word, (2) an address displacement or address word,
and (3) a function field that further modifies the operation
code. Various combinations of these fields are used by the
individual instructions. Some typical instruction formats
are presented in this section. All formats are shown in the
section Instruction Formats in Appendix B.

One Word Instructions

The basic instruction length is one word (16 bits). The
operation code field (bits 0—4) is the only common field
for all formats. This field, unless modified by a function
field, specifies the operation to be performed. For a format
without a function field, bits 5—15 specify the location of
operands or data associated with an operand:

Example:
Instruction Assembler
name mnemonic Syntax
Add Byte Immediate ABI byte,reg
Operation code R Immediate
00000
0 4 5 7 8 15
Bits 0—4 Operation code (specifies ABI instruction).
Bits 5-7 General register (0—7).
This register contains data for the second operand.
Bits 8—15 Immediate data for the first operand.

In some cases the operation code is the same for a group
of instructions. The format for this group includes a func-
tion field. The bit combinations in the function field then
determine the specific operation to be performed.

Processing Unit Description 2-11

Example:

Instruction Assembler

name mnemonic Syntax

Add Word AW reg,reg
Operation code R1 R2 Function
01110 01000

0 4 5 7 8 10 11 15
Bits 0—4 Operation code for a group of instructions.

Bits 5-7 General register (0—7).

This register contains data for the first operand.
Bits 8—10 General register (0—7).

This register contains data for the second operand.
Bits 11-15 Function field.

Modifies the operation code to specify the Add Word
instruction.
Note. For other instruction groups, the function field may
vary as to location withinthe format, and also the number
of bits used.

Two Word Instructions

The first word of this format is identical to the one-word
format. The second word (bits 16—31) contains either
immediate data, an address, or a displacement. This word

is used to (1) provide data for an operand, or (2) provide a
main storage address or displacement for effective address
generation (see Effective Address Generation in this chapter).

Example:
Instruction Assembler
name mnemonic Syntax
Branch and Link BAL longaddr,reg
Operation code R1 R2 X| Function
01101 0011
0 4 5 7 8 10 11 12 15
Address or displacement
16 31
Bits 0—4 Operation code
Bits 5—-7 General register (0—7) for the second operand
Bits 8—10 General register (0—7) for the first operand
Bit 11 Indirect addressing bit
Bits 12—15 Function field
Bits 16—31 A main storage address used for the first operand

Note. In this example, the register designated R1 is
associated with the second operand in assembler syntax.

2-12 GA34-0022

Variable Length Instructions

Some instructions use a selectable encoded technique for
generating effective addresses. This method is referred to
as an address argument technique in subsequent sections.
These instruction formats contain a base register (RB) field
and an address mode (AM) field. If both operands are using
this technique, the format contains an RB and associated
AM field for each. These fields are in the first instruction
word. The AM field consists of two bits and is referred to
in binary notation (AM=00, 01, 10, or 11). If AM is equal
to 10 or 11 an additional word is appended to the normal
instruction word. For a format that contains two AM
fields, two additional words may be appended. See Effec-
tive Address Generation in this chapter for a description of
the appended words and how they are used.

For instructions with a single storage address argument,
the RB field consists of two bits. An RB field of two bits
with its associated AM field of two bits are referred to as a
4-bit address argument or addr4 in assembler syntax.

Example:

Instruction Assembler

name mnemonic Syntax
Compare byte CB addr4, reg
Operation code R RB | AM |Function
11000 0100
0 4 5 7 8 9 101112 15

A ppended word, AM=10 or 11

16 31
Bits 0—4 Operation Code.
Bits 57 General register (0—7) for the second operand.
Bits 8—9 Base register (0—3).
Bits 10—11 Address mode.
Bits 12—15 Function.
Bits 16—31 Appended word for the first operand.

Note. The register specified by the RB field is a general
register that is used as a base register for effective address
generation.

Some instruction formats have two storage address argu-
ments. In this case, the first operand has a 3-bit RB field
giving a 5-bit address argument (addr5 in assembler syntax)
and the second operand has a 4-bit address argument.

(

3

;

Example:

Instruction Assembler
name menmonic Syntax
Add Word AW addr5,addr4

Operation code RB1 RB2 |AMI |AMZ | Fun
10101 00
0 4 5 7 8 9 10111213 1415

Appended word for operand 1

16 31

Appended word for operand 2

32 47
Bits 0—4 Operation code.
Bits 5-7 Base register (0—7) for the first operand.
Bits 8—9 Base register (0—3) for the second operand.
Bits 10—11 Address mode for the first operand.
Bits 12—-13 Address mode for the second operand.
Bits 14—15 Function.
Bits 16—31 Appended word for the first operand.
Bits 32—-47 Appended word for the second operand.

Notes.

1. If there is no appended word for the first operand
(AM1=00 or 01), the second operand word is appended
to the instruction word in bits 16—31.

2. Registers specified by the RB fields are general registers.

Names of Instruction Formats

Names have been established for several categories of
instructions. Each category has the same basic instruction
format, therefore, the name is related to the format. In
most cases, the name indicates the location of the operands
or the type of instruction.

Examples:

® Register/Register Instructions
General registers are used by both operands.

® Storage/Storage Instructions
Both operands reside in main storage.

® Register/Storage Instructions
One operand uses a general register. The other operand
resides in main storage.

® Register Immediate Instructions
One operand uses a general register. The other operand
uses an immediate data field. The immediate data field
is the low order byte of a one-word format or the second
word of a two-word (long) format.

® Shift Instructions with Immediate Count
This is a shift instruction with the count field contained
within the instruction word.

® Storage Immediate Instructions
One operand is in main storage. The other operand uses
an immediate data field. The immediate data field is the
second word of a two-word format

® Parametric Instructions
For this instruction format, a parameter field (bits
8—15) is contained within the instruction word.

Effective Address Generation

For purposes of storage efficiency, certain instructions
formulate storage operand addresses in a specialized manner.
These instructions have self-contained fields that are used
when generating effective addresses. Standard methods for
deriving effective addresses are included in this section.
Other methods such as bit displacements, are explained in
the individual instruction descriptions in Chapter 6.

Programming Note. For certain instructions, the effective
address points to a control block rather than an operand.
These instructions are:

Copy Level Block (CPLB)

Load Mutltiple and Branch (LMB)
Pop Byte (PB)

Pop Doubleword (PD)

Push Byte (PSB)

Push Doubleword (PSD)

Push Word (PSW)

Pop Word (PW)

Set Level Status Block (SELB)
Store Multiple (STM)

Base Register Word Displacement Short

Instruction format

Operation code RB wD

0 4 & 9 11 15
——

Base register —_l

00 Register 0
01 Register 1
10 Register 2
11 Register 3

Word displacement
Range 0 to 31 (decimal)

The five-bit unsigned integer (WD) is doubled in magnitude
to form a byte displacement then added to the contents of
the specified base register to form the effective address.
The contents of the base register must be even.

Processing Unit Description 2-13

Example:

Operation code RB wD
01 001900
0 4 8 9 11 15

Hex Dec

Contents of register 1 (RB) 0000 0000 0110 0000 0060 0096
Word displacement (WD)
doubled +

Effective address

01000 8 8
0000 00000110 1000 0068 0104

Base Register Word Displacement

Instruction format

Operation code| RB WD

0 45 78 15
Mm

Base register __j

000 Register 0
001 Register 1
010 Register 2
011 Register 3
100 Register 4
101 Register 5
110 Register 6
111 Register 7

Word displacement
Range +127 to —128 (decimal)

The eight-bit signed integer (WD) is doubled in magnitude
to form a byte displacement then added to the contents of
the specified base register to form the effective address.
The contents of the base register must be even.

The word displacement can be either positive or negative;
bit 8 of the instruction word is the sign bit for the displace-
ment value. If this high-order bit of the displacement field
is a 0, the displacement is positive with a maximum value
of +127 (decimal). If the high-order bit of the displacement
field is a 1, the displacement is negative with a maximum
value of -128. The negative number is represented in
twos-complement form.

2-14 GA34-0022

Example:
(\
#
Operation code| RB wD
1 1 011101001
0 4 5 78 15

Note. This example uses a negative word displacement
(~17 hex) shown in two’s complement.

Hex Dec
Contents of register 6 (RB) 0000 0000 1000 0110 0086 0134
Word displacement (WD)
doubled

(sign bit is propagated left)+ 1111 1111 1101 0010 - 2E- 46
Effective address 0000 0000 0101 1000 0058 0088

Four-Bit Address Argument

Instruction format

Operation code RB AM

0 4 8 9 1011 15

Base register ———J

00 Register 0
(AM=00 or 01) i

00 No register L
(AM=10or 11)

01 Register 1

10 Register 2

11 Register 3

Address mode

The Address Mode (AM) has the following significance:

AM=00. The contents of the selected base register form
the effective address.

AM=01. The contents of the selected base register form
the effective address. After use, the base register contents
are incremented by the number of bytes in the operand.
For some instructions the effective address points to a
control block rather than an operand. When the effective
address points to a control block, the base register contents
are incremented by two.

i

Example:

Operation code RB AM
0 1§01
0 4 8 9 10 11 15
Hex Dec
Effective address

(contents of register 1) 0000 0000 1000 0000 0080 0128

Contents of register 1

after instruction execution
Byte operand 0000 0000 1000 0001 0081 0129
Word operand 0000 0000 1000 0010 0082 0130
Double word operand 0000 0000 1000 0100 0084 0132

Notes.

1.

For register to storage instructions, if the register
specified is the same for both operands then the register
will be incremented prior to using it as an operand.
Certain instructions (storage-to-storage) have two
address arguments. Operand 1 has a 3-bit RB field with
its associated AM field. Operand 2 has a 2-bit RB field
with its associated AM field. If both RB fields specify
the same register and both AM fields are equal to 01,
the base register contents are incremented prior to
fetching operand 2 and again after fetching operand 2.
Assuming the same conditions but with the operand 2
AM field not equal to 01, the base register contents

are incremented prior to calculating the effective
address for operand 2.

If the effective address points to a control block rather
than an operand, the base register contents are incre-
mented by two.

AM=10. An additional word is appended to the instruction.
The word has the following format.

Address or displacement

16

31

If RB is zero, the appended word contains the effective
address.

If RB is non-zero, the contents of the selected base
register and the contents of the appended word (displace-
ment) are added to form the effective address.

Processing Unit Description

2-15

Example:

Operation code RB | AM Address
1 111 0 0 0000001 00O0O0O0OO0OO0O0O
0 4 8§ 9 101112 1516 31
Hex Dec

Contents of register 3 0000 1000 0000 0000 0800 2048

Contents of appended

word + 0000 0001 0000 0000 0100 0256

Effective address 0000 1001 0000 0000 0900 2304

AM=11. An additional word is appended to the instruction.

e If RBis zero, the appended word has the format:

Indirect address
16 31
This address points to a main storage location, on an
even byte boundary, that contains the effective address.

Example:

Operation code RB | AM Indirect address

0 0]1 1 0000000001 0100O00O0
0 4 8 9 101112 1516 31
Hex Dec
Contents of appended
word 0000 0000 0101 0000 0050 0080

Effective address equals
contents of storage at
address 0080 (decimal) 0000 0100 0000 0000 0400 1024

e If RB is non-zero, the appended word has the format:

Displacement 1 Displacement 2

16 23 24 31

The two displacements are unsigned eight-bit integers.
Displacement 2 is added to the contents of the selected
base register to generate a main storage address. The
contents of this storage location are added to Displace-
ment 1 resulting in the effective address.

2-16 GA34-0022

Example:

Operation code RB AM Displacement 1 Displacement 2
1 041 1 0 0100101101 000010
0 4 8 9 101112 1516 23 24 31
Hex Dec
Contents of register 2 0000 0101 0011 0101 0535 1333
Displacement 2 + 0100 0010 42 66
Storage address 0000 0101 0111 0111 0577 1399
Contents of storage at
address 1399 (decimal) 0000 0100 0001 0000 0410 1040
Displacement 1 + 0010 0101 25 37
Effective address 0000 0100 0011 0101 0435 1077
Note. This example is invalid for other than a byte operand.
Programming Note. This addressing mode (AM=11, RB is
non-zero) is useful for the directorized data concept. For
the addr4 or addr5 assembler syntax, the programmer
codes the form displacement 1 (register, displacement 2)*.
For addr4, the specified register is 1—3. For addr5, the
specified register is 1—7. The asterisk denotes indirect
addressing.
Register Directory Data sets
Address of | Address of A
directory [} data set A
]
. ! Address of
dlsplacelment 2 data set B
; Address of
data set C
B
—>‘ C
I
]
displacement 1
|
|
v
—— Data

Processing Unit Description 2-17

Five-Bit Address Argument

Instruction format

Operation code| RB AM
0 4 5 7 1011 15
—————— N ——
Base register——-J
000 Register 0
(AM=00 or 01)
000 No register
(AM=10or 11)
001 Register 1
010 Register 2
011 Register 3
100 Register 4
101 Register 5
110 Register 6
111 Register 7
Address mode

Operation of this mode is identical to the four-bit argument,
but provides additional base registers.

Base Register Storage Address

Instruction format

Operation code RB X Address/displacement

0 4 8 1011 12 15 16 31
N W

Base register———] Address field

000 No register

001 Register 1

010 Register 2

011 Register 3 0 = direct address

100 Register 4 1 = indirect address

101 Register §

110 Register 6

111 Register 7

® If RBis zero, the address field contains the effective
address.

o If RB is non-zero, the contents of the selected base
register and the contents of the address field are added

together to form the effective address.

Note. Bit 11, if a one, specifies that the effective addressing
is indirect.

2-18 GA34-0022

e

Example: Indirect address

Operation code

RB
1 00

1

Address

0000010000010000O0

0 4

Contents of register 4

Address field
Storage address

Effective address

8 1011 12

1516

Hex Dec

0000 0001 0000 0000 0100 0256

+0000 0100 0001 0000 0410 1040

0000 0101 0001 0000 0510 1296

Contents of storage at

address 1296 (decimal)

00000110 0100 0000 0640 1600

Instruction Length Variations for Address Arguments

® One-word instructions that contain a single AM field
become two words in length if AM is equal to 10 or 11.
The AM appended word follows the instruction word.

Example:

AM=00 or 01

AM=10 or 11

Instruction word

0

15

No appended word

Instruction word

AM appended word

third word of the instruction.

Example:

AM=00 or 01

AM=10 or 11

31

0 1516 31
® Two-word instructions that contain a single AM field
become three words in length if AM is equal to 10 or
11. The AM word is appended to the first instruction
word. The data or immediate field then becomes the
Instruction word Immediate field
0 1516 31
Instruction word AM appended word Immediate field
0 1516 3132 47

® One-word instructions that contain two AM fields (AM1
and AM2) may be one, two, or three words in length
depending on the values of AM1 and AM2. The AM1
word is appended first, then the AM2 word is appended.

Processing Unit Description 2-19

Example:

AM1=00 or 01
AM2=00 or 01 Instruction word No appended word
0 15
AM1=10or 11
AM2=00 or 01 Instruction word AM]1 appended word
0 15 16 31
AM1=00 or 01
AM2=10or 11 Instruction word AM?2 appended word
0 15 16 31
AMI1=10 or 11
AM2=10or 11 Instruction word AMI1 appended word AM2 appended word
0 15 16 31 32 47

Processor State Control

The processor is always in one of the following mutually
exclusive states:

® Power off

Stop

Load

Wait

Run — when in run state, programs can be executed in
either:

— Supervisor state or

— Problem state

Stop State
The stop state is entered when:

1. The Stop key on the programmer console is pressed.

2. The STOP instruction is executed and the mode switch
on the basic console is in the Diagnostic position.

3. An address-compare occurs-and the rate control on
the programmer console is in the Stop on Address
position.

4. An instruction has completed execution and the rate
control on the programmer console is in the Instruc-
tion Step position.

5. An error occurs and the error control on the program-
mer console is in the Stop on Error position.

6. The Reset key on the programmer console is pressed.

7. Power-on reset occurs. For conditions 1—6, the display
buffer contains the contents of the IAR.

Note. Any manual entry into Stop State is via the pro-
grammer console. The STOP instruction performs no
operation if the programmer console is not installed.

220 GA34-0022

While the processor is in the stop state: (1) the Stop
light on the programmer console is on, (2) the functions
provided on the console can be activated, and (3) no inter-
rupt requests can be accepted by the processor.

If, when accessing main storage through the console
while in stop state, a check condition arises:

1. Program check is suppressed.

2. The PSW bit(s) is set.

3. The check light is turned on.

4. The Display Register will be set to a default value of s
0025.

The processor exits the stop state when:

The Load key on the basic console is pressed.

The Start key on the programmer console is pressed.
When the Start key is pressed, the processor returns

to the state that was exited before entering stop state.
If the run state is entered, one instruction is executed
before interrupts are accepted by the processor. If the
stop state was entered because of a reset (power-on
reset or reset key), pressing the Start key causes pro-
gram execution to begin on level zero with the instruc-
tion in location zero of main storage. If the stop state
was entered because of an error, with the Stop on
Error switch turned on, (1) a system reset clears the
error condition, or (2) pressing the Start key allows the
error interrupt to be handled as if the Stop on Error
switch were not on. For more information about
system reset, see State of Processor Following a Reset.

[N

Wait State

The processor enters wait state when: (1) Level Exit (LEX)

instruction is executed and no other level is pending, or
(2) a Set Level Block (SELB) instruction is executed that
sets the current in-process bit off and no level is pending.
While the processor is in the wait state, (1) the Wait light
on the basic console 1s on and (2) interrupts can pe
accepted under control of the system mask register and
the summary mask as defined by the LSR of the last active
level. The processor exits the wait state when:

1. The Stop key on the programmer console is pressed.

2. The Reset key on the programmer console is pressed.

3. An /O interrupt is accepted (the level must be enabled
by the mask register).

4. A class interrupt occurs. (See Class Interrupts in
Chapter 3.)

Load State

The processor enters the load state when initial program
load (IPL) begins. This occurs:

1. When the Load key on the basic console is pressed.

2. After a power-on reset if the Mode switch is in the
Auto IPL position.

3. Asignal from a host system.

While the processor is in load state, the Load light on the
basic console is on.

The processor exits the load state and enters the run
state upon successful completion of the IPL. See Initial
Program Load (IPL).

Run State

The processor enters the run state when not in the stop,
wait, or load state. Run state is entered:

1. From load state upon successful completion of IPL.

2. From wait state when an interrupt is accepted.

3. From stop state when the start key is pressed. (See
Stop State.)

The processor exits run state when entering stop, wait, or
load states as previously described.

Supervisor State and Problem State

While in run state, instructions can be executed in either
supervisor state or problem state. This is determined by
bit 8 of the level status register (LSR):

State LSR bit 8
Supervisor 1
Problem 0

Supervisor and problem states are discussed in the following
sections.

Supervisor State. The processor enters supervisor state
when:

1. A class interrupt occurs. This type of interrupt is
caused by the following:

. Machine check condition

. Program check condition

Power/Thermai warning

. Supervisor Call (SVC) instruction

Soft exception trap condition

Trace bit (LSR bit 10) set to one
g. Console Interrupt key on the programmer console.

2. An1/Ointerrupt is accepted.

3. After initial program load (IPL) has completed.

- o Q0 o

Class interrupts and I/O interrupts are discussed in
Chapter 3. Initial program load is discussed in a subsequent
section of this chapter.

When the processor is in supervisor state, the full instruc-
tion set may be executed. The following privileged instruc-
tions may only be executed in supervisor state:

Copy Console Data Buffer (CPCON) Note 1
Copy Current Level (CPCL)

Copy In-Process Flags (CPIPF)

Copy Interrupt Mask Register (CPIMR)
Copy Level Status Block (CPLB)

Copy Processor Status and Reset (CPPSR)
Diagnose (DIAG)

Disable (DIS)

Enable (EN)

Level Exit (LEX)

Operate 1/0 (I0)

Set Console Data Lights (SECON) Note 2
Set Interrupt Mask Register (SEIMR)

Set Level Status Block (SELB)

Notes.

1. The resultant data is unpredictable if the programmer
console feature is not installed.

2. Performs no operation if the programmer console
feature is not installed.

Problem State. This is a state that does not allow the
processor to execute the privileged instructions. The
processor enters the problem state when the supervisor

state bit (LSR bit 8) is turned off. This can be accomplished
with a Set Level Status Block (SELB) instruction. This
instruction can change the contents of the registers for a
selected processor level.

While the processor is in problem state, privileged instruc-
tions cannot be executed. If a privileged instruction execu-
tion is attempted, the instruction is suppressed and a pro-
gram check class interrupt occurs, with privilege violate
(bit 2) set in the processor status word.

Processing Unit Description 2-21

State of Processor Following a Reset

The term reset used in the following sections denotes the
reset action that occurs during:

1. Power-on reset

2. Initial program load (IPL) reset

3. System reset initiated by pressing the Reset key on
the programmer console

The following registers and conditions are not initialized
by a reset and require program or operator action before
they become valid:

Console data buffer (Programmer Console Feature)
General registers

IAR on levels 1-3

Main storage (above 16K)

Address Compare Register

The following registers and conditions are initialized by
areset:

o Level Zero Indicator (turned on)
e CIAR - set to zeros
o IAR on level zero — set to zeros
® Mask register — set to ones (all levels enabled)
o LSR on level zero
— Indicators — set to zeros
-- Supervisor state (bit 8) — set on
In-process (bit 9) — set on
-~ Trace (bit 10) — set to zero (disabled)
— Summary mask (bit 11) — set on (enabled)
— All other bits — set to zeros
® PSW — set to zeros except as noted
— Auto-IPL (bit 13) — set to zero unless the reset was
caused by an Auto-IPL
— Power/Thermal (bit 15) reflects the status of the
power/thermal condition
® LSR on levels 1-3 — set to zero
® SAR — set to zeros
e Display buffer — set to all ones by Power-on Reset only
(Programmer Console Feature)
Main storage (0—16K, verified good parity Power-on
Reset only)
Check Restart (Note 1)
Instruction Step (Note 1)
Stop on Address (Note 1)
Stop on Error (Note 1)

Note 1. This condition is reset by a Power-on Reset.

2-22 GA34-0022

Initial Program Load (IPL)

An initial program load function is provided to (1) read an C
IPL record (set of instructions) from an external storage 4
media, and (2) automatically execute a start-up program.
An IPL record is read into storage from a local I/O device
or host system. The I/O attachments for the desired IPL
sources are prewired at installation time. Two local sources,
primary and alternate, can be wired and either can be
selected by using the IPL Source switch on the console.
IPL can be started by three methods:

1. Manually, by pressing the Load key on the console.
Automatically, after a power-on condition.

3. Automatically, when a signal is received from a host
system. The host system can be connected through a
communications adapter.

The automatic power-on IPL is selected by a mode

switch on the console. When the Mode switch is in the
Auto-IPL position, IPL occurs whenever power turns on
(either initially or after a power failure). Power must be
good to all attachments before the IPL sequence begins.
Auto IPL is useful for unattended systems. A manual IPL
can be initiated at any time by pressing the load key on the
console (even when in run state). The mode switch has no
effect on the manual IPL. For Auto-IPL and manual IPL,
the local IPL source (primary or alternate) is selected. IPL
from a host system can occur at any time and is initiated
by the host system. The IPL record is transferred through
the host-system device; for example, the communications
adapter. When an auto-IPL occurs, bit 13 of the PSW is
turned on to indicate the condition to the software. When
a manual or host-system IPL occurs, this bit is set to zero.

During IPL main storage is loaded starting at location
zero. The length of the IPL record depends on the media
used by the IPL source.

Upon successful completion of an IPL, the processor
enters supervisor state and begins execution on priority level
zero. The summary mask is enabled and all priority
interrupt levels in the mask register are enabled. The first
instruction to be executed is at main storage location zero.
The IPL source has a pending interrupt request on level zero.
The system program must:

1. Perform housekeeping; for example, load vector table
addresses in the reserved area of storage (see Automatic
Interrupt Branching in Chapter 3).

2. Issue a Level Exit (LEX) instruction. This allows the

processor to accept the interrupt from the IPL source.

When the interrupt is accepted, a forced branch is

taken using the device-address vector table. The vector

table entry is determined by the device address of the

IPL source and results in a branch to the proper pro-

gram routine for handling the interrupt. The device -
address of the IPL source is set into bits 8—15 of ()
register 7 on level zero. Condition code 3, device end, ”
is reported by the IPL source. For additional informa-

tion, see I/O Interrupts in Chapter 3.

A system reset always occurs prior to an IPL. However,
if any errors occur during the IPL, the results are
unpredictable.

Sequential Instruction Execution

Normally, the operation of the processor is controlled by
mstructions taken in sequence. An instruction is fetcied
from the main storage location specified in the instruction
address register (IAR). The instruction address in the IAR
is then increased by the number of bytes in the instruction
just fetched. The IAR now contains the address of the
next sequential instruction. After the current instruction
is executed, the same steps are repeated using the updated
address in the IAR.

A change from sequential operation can be caused by
branching, jumping, interrupts, level switching, or manual
intervention.

Jumping and Branching

The normal sequential execution of instructions is changed
when reference is made to a subroutine; when a two-way
choice is encountered; or when a segment of coding, such
as a loop, is to be repeated. All of these tasks can be
accomplished with branching and jumping instructions.
Provision is also made for subroutine linkage, permitting not
only the introduction of a new instruction address, but also
the preservation of the return address and associated
information.

The conditional branch and jump instructions are used
to test the indicators in the LSR. These indicators are set
as the result of I/O operations and most arithmetic or logical
operations. Single or multiple indicators are tested as
determined by the value in a three-bit field within the
instruction. Refer to: (1) Indicators and (2) Testing
Indicators with Conditional Branch and Jump Instructions.

Jumping

Jump instructions are used to specify a new instruction
address relative to the address in the IAR. The new address
must be within -256 to +254 bytes of the byte following
the jump instruction.

Note. The jump instruction contains a word displacement
that is converted to a byte displacement when the instruc- .
tion is executed. However, when using the assembler, the
programmer specifies a byte value that is converted to a
word displacement by the assembler.

Branching

Branch instructions are used to specify a new full-width
16-bit address. A 16-bit value, range 0 to 65535, is con-
tained in the second word of the instruction or in a
register. The value in the second word can be used as the
effective branch address or added to the contents of a
base register to form an efieciive addiess. (Sce Buse
Register Storage Address in this chapter.)

Level Switching and Interrupts

The processor can execute programs on four different
interrupt priority levels. These levels, listed in priority
sequence, are numbered 0, 1, 2, and 3 with level 0 having
highest priority. The processor switches from one level to
another in two ways:

1. Automatically, when an interrupt request is accepted
from an 1/O device operating on a higher priority level
than the current level.

2. Under program control, by using the Set Level Block
(SELB) instruction.

Both types of level switching are discussed in detail in
Chapter 3. Class Interrupts and Interrupt Masking Facilities
are also discussed in Chapter 3.

Stack Operations

The processing unit provides two types of stacking facilities.
Each facility is briefly described in this section. Additional

information appears in subsequent sections. The two types

of stacking facilities are:

1. Data Stacking. This facility provides an efficient and
simple way to handle last-in first-out (LIFO) queues
of data items and/or parameters in main storage. The
data items or parameters are called stack elements. For
a given queue (or stack), each element is one, two, or
four bytes wide. Instructions for each element size
(byte, word, or doubleword) are provided to:

a. Push an element into a stack (register to storage).
b. Pop an element from a stack (storage to register).

2. Linkage stacking. This facility provides an easy method
for linking subroutines to a calling program. A word
stack is used for saving and restoring the status of
general registers and for allocating dynamic work areas.
The Store Multiple (STM) instruction stores the con-
tents of the registers into the stack and reserves a
designated number of bytes in the stack as a work area.
The Load Multiple and Branch (LMB) instruction re-
loads the registers, releases the stack elements, and
causes a branch via register 7 back to the calling
program.

Processing Unit Description 2-23

Data Stacking Description

Any contiguous area of main storage can be defined as a
stack. Each stack is defined by a stack control block.
Figure 2-4 shows a data stack and its associated stack
control block. Stack control blocks must be aligned on a
word boundary.

The words in the stack control block are used as follows:

High Limit Address (HLA). This word contains the address
of the first byte beyond the area being used for the stack.
All data in the stack has a lower address than the contents
of the HLA. Note that the HLA points to the first byte
beyond the bottom of an empty stack.

Low Limit Address (LLA). This word designates the lowest
storage location that can be used for a stack element. Note
that the LLA points to the top of a stack.

Top Element Address (TEA). This word points to the
stack element that is currently on top of the stack. For

empty stacks, the TEA points to the same location as the
high limit address (HLA).

Note. For word stacks or double word stacks, the HLA,
LLA, and TEA must all contain an even address to ensure
data alignment on a word boundary.

Main Storage

Address 0000

(72

»
@©
)

Stack control block

Top element address (TEA) Word 0
High limit address (HLA) Word 1
Low limit address (LLA) Word 2
Stack

Full stack TEA" Stack element

Stack element

Empty
stack TEA
— 15
The TEA for an empty Stack clement shown is 1
stack points to the word; element can be 1,
same place as the HLA 2, or 4 bytes wide

Figure 2-4. Relationship of stack control block to data stack

2-24 GA34-0022

S

Push Operation. When a new element is pushed into a
stack, the address value in the TEA is decremented by the
length of the element (one, two, or four bytes) and com-
pared against the LLA. If the TEA is less than the LLA, a
stack overflow exists. A soft exception trap interrupt
occurs with stack exception set in the PSW. The TEA is
unchanged. If the stack does not overtlow, the 1EA 1s
updated and the new element is moved to the topic loca-
tion defined by the TEA.

The following diagram shows how elements are pushed
into a stack. Note that each push operation always places
an element at a lower address in the stack than the preceding
element.

Empty
Stack

TEA —_— |
and HLA

Refer to Chapter 6 for descriptions of the following
instructions:

® Push Byte (PSB)
® Push Word (PSW)
e Push Doubleword (PSD)

Pop Operation. When an element is popped from a stack,
the TEA is compared against the HLA. If it is equal to or
greater than the HLA, an underflow condition exists. A
soft exception trap interrupt occurs with stack exception
set in the PSW. If the stack does not underflow, the stack
element defined by the TEA is moved to the specified
register and the TEA is incremented by the length of the
element,

The following diagram shows how elements are popped
from a stack.

Processing Unit Description

2-25

LLA

HLA =

Refer to Chapter 6 for descriptions of the following
instructions:

e Pop Byte (PB)
® Pop Word (PW)
e Pop Doubleword (PD)

Data Stacking Example — Allocating Fixed Storage Areas

Many programs require temporary main storage work areas.
It is very useful to be able to dynamically assign such work-
area storage to a program only when that storage is needed.
Conversely, when work-area storage is no longer needed by
a program, it is desirable to free that resource so it may be
used by other programs. Use of the stacking mechanism
can assist in the programming of the dynamic storage
management function.

The following is an example of how storage areas could
be allocated using the stacking mechanism.

A stack is initialized with addresses that point to a fixed
area of storage. Each element in the stack represents the
starting address of a block of storage consisting of 512
bytes; e.g., addresses 0200 through O3FF. As storage is
needed, the starting address for a block of storage is popped
from the stack. When the block of storage is no longer
needed, the starting address is pushed back into the stack.

The stack control block, stack, and storage areas appear
initially as follows:

2-26 GA34-0022

Empty
stack

O

Stack control block

TEA =] 0B0O

HLA ——> 0B08

LLA ——» 0B00

Full stack

TEA = LLA = 0B00 — 0200
0400

0600

0800

HLA = 0B0O8 =

Storage areas

0200
Available
storage
0400 ~—»
Available
storage
0600 Available
storage
0800 ‘ Available
storage

Notice that each stack element is one word long; addresses
of storage areas are the stack elements; the TEA points to
the lowest location of the last element because the
initialized stack is full. Contrast this with an empty stack,
in which the TEA points to the same location as the HLA.

Now assume that program A requires a block of storage.
Program A (or a storage management function at the request
of program A) issues a pop word instruction against the
stack control block. The TEA is updated as follows:

Stack control block

TEA 0B02 - TEA after 1 Pop
HLA—> 0B08
LLA = 0B0O

Stack

To the register
— specified by
Pop instruction

LLA = 0BO0 =~

TEA = 0B02 —> 0400

0600

0800

HLA = 0B08 ——»

Storage areas

Available
storage

0600 ——s
Available
storage

0800——
8 Available

storage

The word element popped is placed in the register speci-
fied by the pop word instruction executed by program A.
This is the address of the 512-byte storage area beginning
at address 0200.

Processing Unit Description 2-27

At this time, assume that program B (operating on a
different hardware level than program A) also requires a
storage area. It too executes a pop word instruction against
the stack. The next element is moved to the register speci-
fied and points to the next available storage area and the

TEA is updated:
Stack control block
TEA —— 0B04
HLA — 0BOS
LLA — 0BO0O
Stack

-«—— TEA after
second Pop

LLA = 0BO0 ———

TEA = 0B04 ——~

0600

0800

HLA = 0B08§—>

Storage areas

0200 ——
0400 —
0600 —
Available
storage
0800 —
Available
storage

Now, before any further requests occur, program A
terminates its need for a work area. Program A then issues
a push word instruction against the stack and returns the
address of the area it was using for use by other programs:

2-28 GA34-0022

Stack control block

TEA =]

0B02

HLA ==

0BO8

LLA e

0B0OO

Stack

LLA = 0BO0——>]

TEA = 0B02 ——

0200

0600

0800

HLA = 0B08 i

Storage areas

0200 ———31

Available
storage

0600 ———>

Available
storage

0800 ——

Available
storage

fe— TEA after

program A
Push operation

A similar operation will be performed by program B when
it releases its storage to the stack, popping address 0400
into location 0B0O. While the addresses are obviously
shuffled in the stack (from the values initially established),
this presents no problem since each program requires only
an area of storage — it is not important where that area is

located.

C

¥

Linkage Stacking Description Stack control block

As previously described a word-stack mechanism may be
used for subroutine linkage. This mechanism saves and
restores registers and allocates dynamic work areas.
The letters in the following description correspond to HLA
the letters in Figure 2-5.
The Store Multiple (STM) instruction specifies: LLA

Stack control block address
B Limit register (RL) number Stack
Number (N) of words to allocate for work areas B

TEA

When the STM instruction is executed, the allocate value New TEA |RL N

V'd
(N) plus the number of registers saved plus one control word 0 2|3 15
is the requested block size in words. This times 2 is the size New RL —— }

in bytes. The block size is used to decrement the TEA Dynamic

before an overflow check is made. If no overflow occurs work
area

4

the operation proceeds. The link register (R7) and register
0 through the specified limit register (RL) are saved
sequentially in the stack. If register 7 is specified as the R7 contents
limit register, only register 7 is stored in the stack. The
dynamic work space is allocated and a pointer to the work
area is returned in register RL. If no work area is specified,
the returned pointer contains the location of R7 in the
stack. The values of RL and N are saved as an entry in the
stack. The TEA is updated to point to the new top of the
stack location.

When a Load Multiple and Branch (LMB) instruction is RL contents
executed, the values of RL and N are retrieved from the
stack and an underflow check is made. The value of RL

RO contents

. . Old TEA —>
controls the reloading of the registers; the values of RL and and HLA
N are used to restore the stack pointer (TEA) to its former
status. The contents of register 7 are then loaded into the Figure 2-5, Word stack for subroutine linkage

instruction address register, returning program control to
the calling routine.

Processing Unit Description 2-29

Linkage Stacking Example — Reenterable Subroutine

A subroutine may be used by programs that operate on
different interrupt levels. Rather than providing copies of
the subroutine, one copy for each program that needs it,
the subroutine can be made reenterable. Here, only one
copy of the subroutine is provided; the single copy is used
by all requesting programs. Two items must be considered
in the reenterable subroutine code:

Saving the register contents of each calling program. The
subroutine is then free to use the same registers, restor-
ing their contents to the calling-program’s values just
prior to returning to the calling program.

Preserving the applicable variable data (generated by the
subroutine) that is related to each call of the subroutine.
That is, data associated with one call must not be
disturbed when subroutine execution is restarted due to
another call from a higher priority program.

The stacking mechanism, by means of the STM and

LMB instructions, handles the two items just mentioned.
As an example, operation could proceed as follows:

l.

Program A calls the subroutine by means of a branch
and link instruction (return address is in R7).

BAL SUBRT,7

The subroutine, in this example, uses registers R3 and
R4 during its execution. The subroutine receives (from
program A) a parameter list address in RO and the
address of the stack control block in R1. Also, the
subroutine requires 20 bytes of work space. Thus, the
subroutine executes, upon entry, the following store
multiple instruction:

SUBRT STM 4,(1),20

After execution of the STM, the stack contains the
following:

2-30 GA34-0022

LLA —

TEA=—> 4 10

R4 —>

Stack

20 bytes N=10

RO

R1

R2

R3

R4

HLA —

* The last word contains a value that specifies the
last register stored (e.g., R4 in this example) and the
size of the dynamic work area (in words).

R4 (the last register stored in the stack) is auto-
matically loaded, during the STM operation, with the
address of the work area to be used by the subroutine
to hold its work data.

When subroutine processing for this call is completed,
the subroutine executes a single load multiple instruc-
tion in order to reload the registers and return (via R7)
to the calling program:

LMB (1)

If a second call to the subroutine has occurred prior

to execution of the LMB, action similar to that just
stated would occur again. However, another stack area
would be used. Then, when subroutine execution is
completed for the second call, and all higher priority
interrupt level processing is completed, a return would
be made to the interrupted subroutine for completion
of processing for the first call.

Thus, multiple calls to a single subroutine are processed

without interfering with the integrity of data associated
with any other call to the subroutine.

®

Introduction

Efficient operation of a central processor depends on
prompt response to I/O device service requests. This is
accomplished by an interrupt scheme that stops the current
processor operation, branches to a device service routine,
handles device service, then returns to continue the inter-
rupted operation. One processor can control many I/O
devices; therefore, an interrupt priority is established to
handle the more important operations before those of
lesser importance. Certain error or exception conditions
(such as a machine check) also cause interrupts. These are
called class interrupts and are processed in a manner similar
to I/O interrupts. Both I/O and class interrupts are
explained further in the following sections.

Interrupt priority is established by four priority levels of
processing. These levels, listed in priority sequence, are

numbered 0, 1, 2, and 3 with level 0 having highest priority.

Interrupt levels are assigned to I/O devices via program
control. This provides flexibility for reassigning device
priority as the application changes.

Each of the four priority levels has its own set of
registers. These consist of a level status register (LSR),
eight general registers (RO—R?7), and an instruction address
register (IAR). Information pertaining to a level is auto-
matically preserved in these hardware registers when an
interrupt occurs.

Processor level switching, under program control, may
be accomplished by use of the Set Level Block (SELB)
instruction. Details of this method are presented in a
separate section of this chapter.

1/0O and class interrupts cause automatic branching to a
service routine. Fixed locations in main storage are
reserved for branch addresses or pointers which are refer-
enced during interrupt processing. This storage allocation
is shown in the section Automatic Interrupt Branching in
this chapter.

Chapter 3. Interrupts and Level Switching

Interrupt masking facilities provide additional program
control over the four priority levels. System and level
masking are controlled by the Summary Mask and the
Interrupt Level Mask Register. Device masking is controlled
by the Device Mask. Manipulation of the mask bits can
enable or disable interrupts on all levels, a specific level, or
for a specific device. See Interrupt Masking Facilities in
this chapter.

Interrupt Scheme

As previously stated, four priority interrupt levels exist.
Each 1/0 device is assigned to a level, dependent on the
application. When an interrupt on a given level is accepted,
that level remains active until (1) a Level Exit (LEX)
instruction is executed, (2) a Set Level Block (SELB)
instruction causes a level switch, or (3) a higher priority
interrupt is accepted. In the first two cases, the active level
at the time is cleared. In the latter case, the processor
switches to the higher level, completes execution (including
a LEX instruction), then automatically returns to the
interrupted-from level. This automatic return can be
delayed by other higher priority interrupts.

If an interrupt request is pending on the currently active
level, it will not be accepted until after exécution of a LEX
instruction by the current program. If no other level of
interrupt is pending when a Level Exit instruction is exe-
cuted, the processor enters the wait state. In the wait state
no processing is performed, but the processor can accept
interrupts that are expected to occur. See Figure 3-1.

Class interrupts do not change priority levels. They are
processed at the currently active level. If the processor is
in the wait state when a class interrupt occurs, priority
level O is used to process the interrupt.

Interrupts and Level Switching 3-1

Requests for interrupts

Level 0 L
Level 1 Mo
Level 2 1

Level 3 l—l f* | I

Priority level processing

Priority {1f[]LEX
level 0 A

Priority MTro----—- 11 ILEX

level 1 3 \ i

Priovity {10y _ o __. [[LEX
level 2 4

pioity [~ "~~~ "~~~ """ """ "T°—77~ LEX LEX

level 3 Wait state

* This interrupt request cannot be honored until
after a LEX instruction has been executed on
level 3 to clear the previous interrupt service.

Figure 3-1. Interrupt priority scheme

Automatic Interrupt Branching Main storage
Hardware processing of an interrupt includes automatic address (Hex) Contents of word
branching to a service routine. The processor uses a
reserved storage area for branch information. The reserved 022E Device FF DDB pointer
area begins at main storage address 0000. The total size of ¥ ¥
the area depends on the number of interrupting devices 0032 Device 01 DDB pointer
attached. One word (two bytes) is reserved for each gg;g Ilz evice 30 DDB pointer
interrupting device and is related to a particular device by 003C RZZZ:: 3
the device address. For example: device 00 causes a 002A Reserved
reference to location 0030, device 01 to location 0032, 0028 Reserved
and so on. The device area begins at address 0030 (Hex); 0026 Reserved
the reserved area is 0000 through 022F (Hex) if 256 0024 Reserved
devices (maximum number) are attached. These storage 0022 Soft exception trap SIA
locations and contents are shown in Figure 3-2. 0020 Soft exception trap LSB pointer
001E Console interrupt SIA
001C Console interrupt LSB pointer
001A Trace SIA
0018 Trace LSB pointer
0016 Power failure SIA
0014 Power failure LSB pointer
0012 SVC SIA
0010 SVC LSB pointer
000E Program check SIA
000C Program check LSB pointer
000A Machine check SIA
0008 Machine check LSB pointer
0006 Reserved
0004 Reserved
0002 Restart instruction word 2
0000 Restart instruction word 1

Figure 3-2. Reserved storage locations

3-2 GA34-0022

The reserved storage locations are described as follows:

Storage Location Contents

(Hex))

0000-0003 Restart instruction. Following IPL a forced
branch is made to location 0000.

0004--0005 Reserved.

0006-0007 Reserved.

0008-0023 Addresses used for class interrupts. The Level
Status Block (LSB) pointer is the first address
of an area where a level status block will be
stored. The Start Instruction Address (SIA)
points to the first instruction of a service
routine.

0024-002F Reserved.

0030-022F Addresses used for I/O interrupts. The Device

Data Block (DDB) pointer is the address of the
first word of a device data block. This word is
used to obtain the start instruction address for
the service routine. See I/O Interrupts in this
chapter.
Note. The area reserved for I/O devices varies in size
depending on the number of devices. The device address
determines the fixed location to be accessed. For example:
Interrupts for device 01 always vector to main storage
address 0032.
A device address is established by installing the appropri-
ate connectors on the I/O feature card for the device.

1/O Interrupts

Prepare 1/0 Device for Interrupt

1/0O device interrupt parameters are established via program
control. The Operate I/O (10) instruction initiates the
device operation and in conjunction with the “Prepare”
1/0 command tells the device:

1. If the device can interrupt.

2. What priority level to use for interrupts. See Chapter
6 Instructions and Chapter 4 Input/Qutput Operations
for details of the Operate I/O instruction.

Execution of the Prepare command transfers a word to
the addressed device that controls its interrupt parameters.
This word has the format:

| Zero I Level Ill
0 10 11 14 15

Bits Contents

0-10 Set to zeros.

11-14 Level. A four-bit encoded field that assigns an interrupt
priority level to the device (see note).
Example: 0000 — level 0, 0001 — level 1, 0010 — level 2,
0011 — level 3.

15 Device mask or I-bit. This bit sets the interrupt mask in
the device. When set to one, the device can interrupt.
When set to zero, the device cannot request an interrupt.

Note. The 4953 Processor does not recognize priority levels
other than zero through three; therefore, bits 11 and 12
must always be set to zero or the interrupt is lost.

An interrupting device is always able to accept and exe-
cute a Prepare command, even if it is presently busy or has
an interrupt request pending from a previous command.
This allows the software to change the device mask and
interrupt level at any time. Any pending interrupt request
is then serviced on the new interrupt level.

Present and Accept I/0 Interrupt

The I/O device presents an interrupt request on its assigned
priority level. This request is applied to the interrupt
algorithm for acceptance determination.

For an I/O interrupt to be serviced, the following condi-
tions must exist:

1. The summary mask must be on (enabled).

2. The mask bit (Interrupt Level Mask Register) for the
interrupting level must be on (enabled).

3. For 1/O interrupts the device must have its Device
Mask bit on (enabled).

4. The interrupt request must be the highest priority of
the outstanding requests and higher than the current
level of the processor.

5. The processor must not be in the stop state.

Supervisor state is entered upon acceptance of all priority
interrupts.

Following acceptance, the device sends an interrupt ID
word and a condition code to the processor. The condition
code is placed in the even, carry, and overflow indicators
for the interrupted-to level. The ID word is placed into
register 7 of the interrupted-to level. The interrupt ID word
consists of an interrupt information byte (IIB) and the
device address. Bits 0—7 of this word contain the interrupt
information; bits 8—15 contain the device address. See
Chapter 4 for condition codes and interrupt information
byte (IIB) details. Hardware causes the following events
to occur after the processor receives the interrupt ID word
and the condition code (Figure 3-3):

® The processor hardware switches from the registers and
status of the interrupted-from level to those of the
interrupted-to level.
® The interrupt ID word is placed in register 7 of the
interrupted-to level.
® The condition code is placed in LSR positions 0—2.
Supervisor state is entered (LSR bit 8 is set to one).
® The processor executes an automatic branch.
— The device address is used by hardware to fetch the
DDB pointer from reserved storage.
— The DDB pointer is placed in register 1 of the
interrupted-to level.
— The DDB pointer is used by hardware to fetch the
start instruction pointer.
— The Start Instruction Address (SIA) is loaded into
the IAR of the interrupted-to level.
® Execution begins on the new level.

Interrupts and Level Switching 3-3

Device 01

: | New level 2 | Next
interrupts | re::tei‘s,e | Main storage ‘ instruction I }:vt:lr r; pted
on level 2 | | _I_ address l
—————— T E e e A
I ' ' I IAR3
| | '
Interrupt ID | : : 0900 [ee-c--- | 0900
)
1B ! Dev=01 ' I
! | | ' |
N~
| | I |
l | | |
| |
| Reg 7 I ' |
1
| IIB | Dev=01 I | |
I |M | I l
	DDB pointer :	
L oos2d o100		
	I	
Reg 1 l DDB : I		
: 0100 ——'—0100J 0200	(SIA)	I
—		
l b - I I		
	7T	
l		
I I		
l IAR2 § : I/O routine I !		
I 0200 e e 1.0200 . L I 0200 I		
l	¥ -	
:	0240 LEX t e 0240 I	
: : IAR3 :		
I 0900 0900		
l		

Figure 3-3. Example of I/0 interrupt with automatic branching

34 GA34-0022

Class Interrupts

System error or exception conditions can cause seven types
of class interrupts:

1. Machine check, caused by a hardware error.

2. Program check, caused by a programming error.

3. Power/therma!l warning, caused by a power or thermal
irregularity.

4. Supervisor call, caused by execution of an SVC
instruction.

5. Soft exception trap, caused by software.

6. Trace, caused by instruction execution (trace enabied
in the current LSR).

7. Console, caused by a console interrupt when the
optional programmer console is installed.

Machine check, program check, soft exception trap, and
power/thermal warning are defined by bits in the processor
status word. Software can refer to the processor status
word for a specific condition and any related status informa-
tion. See Processor Status Word in this chapter.

Class interrupts do not cause a change in priority level.
The interrupt is serviced on the level that is active when
the condition occurs. If the processor is in the wait state,
the interrupt is serviced on priority level zero. Independent
routines are used to handle each type of class interrupt
regardless of priority level.

All class interrupts cause the processor to enter super-
visor state. Refer to a subsequent section, Present and
Accept Class Interrupt, for details of the hardware
processing.

Programming Notes.

1. Two class interrupts (power/thermal warning and
console) can be disabled by the summary mask.

2. If the optional programmer console is installed and
Check Restart or Stop on Error are selected, machine
check, power/thermal warning, and program check
interrupts do not occur. See Programmer Console
Feature in Chapter 5.

Priority of Class Interrupts

Although class interrupts are serviced on the current
priority level, they are serviced according to an exception
condition priority.

The following table lists the exception conditions in
priority sequence with zero being the highest priority. Two
exception conditions of the same priority, such as invalid
storage address and specification check, may be reported
to the PSW simultaneously. The table also shows the

associated class interrupt vector for the exception conditions.

Class Interrupt
Priority | Exception Condition Routine
0 CPU control check Machine check
1/O check
1 Invalid function (Note 1)
2 Privilege violate
3 Invalid function (Note 2)
4 Not applicable on Program check
4953 Processor
5 Invalid storage address
Specification check
6 Storage parity Machine check
7 Power warning Power/thermal
Thermal warning warning
8 Supervisor call Supervisor call
9 Invalid function (Note 3)
10 Not applicable on 4953 Processor tSr(;lp: exception
11 Stack exception
12 Trace Trace
13 Console Console

Note 1. Caused by an illegal operation code or function combina-
tion.

Note 2. A Copy Segmentation Register (CPSR) or Set Segmenta-
tion Register (SESR) instruction is attempted. The translator
feature is not available in the 4953 Processor.

Note 3. A floating-point instruction is attempted. The floating-
point feature is not available on the 4953 Processor.

Present and Accept Class Interrupt

When a class interrupt occurs, it is serviced on the currently
active level or on level zero (if in the wait state). Hardware
processing of the interrupt causes the following:

® Register contents are saved

® Supervisor state is entered (LSR bit 8 is set to one)
® Trace is reset (LSR bit 10 is set to zero)

® Summary mask is disabled (LSR bit 11 is set to zero)
® An automatic branch is taken to a service routine.

Each type of class interrupt has an associated LSB
pointer and SIA in the reserved area of main storage (see
Figure 3-2). Reference is made to the reserved area to:

1. Store current level IAR, registers, and LSR into a level
status block (LSB) in main storage.

2. Automatically branch to a service routine by using the
start instruction address (SIA).

Note. Priority level zero is forced active when a class inter-
rupt occurs in the wait state. The level zero LSB is stored
into main storage. The in-process flag (LSR bit 9) is zero
in the stored LSB.

Interrupts and Level Switching 3-5

Contents of the level status block are as follows:

Main storage
address (LSB)

pointer) Instruction address register

Zero

Level status register

Register 0

Register

Register

Register

Register

Register

Register

RNl Kol RO R [F N OSY §\O) B

+14 (Hex)| Register

0

The instruction address (contents of IAR) stored in the
LSB depends on the type of class interrupt and is shown in
the following chart.

Type of Class Contents of IAR
Interrupt (Stored in LSB)
Program check Address of instruction that

Soft exception trap caused the interrupt.

Address of the next
instruction.

Supervisor call
Trace
Console

Power/thermal warning

Machine check (with Address of instruction
Sequence indicator that caused the
off) interrupt.

Machine check (with Address of instruction
Sequence indicator that was being executed
on) at the time of the error.

3-6 GA34-0022

Machine Check

A machine check interrupt is caused by a hardware mal-
function and is considered a system-wide incident. The
three types are:

1. Storage parity check (PSW bit 08)
2. CPU control check (PSW bit 10)
3. 1/O check (PSW bit 11)

A level status block is stored, starting at the location in
main storage designated by the machine check LSB pointer
(contents of storage locations hex 0008 and 0009). The
contents of the storage address register (SAR) are loaded
into register seven. The machine check SIA (contents of
storage locations hex 000A and 000B) is then loaded into
the IAR, becoming the address of the next instruction to
be fetched.

Note. When the error condition occurs, the IAR contains
the true address of the first word of the instruction; it is
not incremented if the error occurs in the second or third
word of a long instruction.

Program Check

A program check interrupt is caused by a programming
error. The types are:

1. Specification check (PSW bit 00).

2. Invalid storage address (PSW bit 01).
3. Privilege violate (PSW bit 02).

4. Invalid function (PSW bit 04).

A level status block is stored, starting at the location in
main storage designated by the program check LSB pointer
(contents of storage locations hex 000C and 000D). The
contents of the storage address register (SAR) are loaded
into register seven. The program check SIA (contents of
storage locations hex O00E and O0OF) is then loaded into
the IAR, becoming the address of the next instruction to
be fetched.

Note. A program check interrupt condition on one priority
level does not affect software on other levels.

¢

ey

Power/Thermal Warning (PSW Bit 15)
A power/thermal warning class interrupt is initiated by:

1. A power warning signal that is generated when the
power line decreases to about 85% of its rated value.

2. A thermal warning that occurs if the temperature
limits inside the closure are exceeded.

In both cases, the instruction address that is stored in
the LSB points to the next instruction to be executed.

A level status block is stored, starting at the location in
main storage designated by the power failure LSB pointer
(contents of storage locations hex 0014 and 0015). The
power failure SIA (contents of storage locations hex 0016
and 0017) is then loaded into the IAR, becoming the
address of the next instruction to be fetched.

A power/thermal warning interrupt can occur when the
system is running or in the wait state, assuming (1) the
summary mask is enabled and (2) the programmer console
is not set to Check Restart or Stop on Error. These inter-
rupts are not taken by the processor if either of the two
conditions are not met.

If the optional battery backup unit is installed and a
power warning occurs, PSW bit 15 remains on as long as
power is supplied by the battery. If a thermal warning
occurs, the processor will power down regardless of the
battery backup unit. The minimum time before the
processor powers down is 20 milliseconds. The IBM 4999
Battery Backup Unit is explained in a separate publication;
IBM Series/1 Battery Backup Unit Description,
GA34-0032.

Power/thermal warning interrupts are not taken by the
processor until the first instruction is executed following
a power-on reset, an IPL, or exit from stop state.

Note. If the processor is in the wait state when the
power/thermal condition occurs:

1. The interrupt is serviced on priority level 0. The level
0 LSB is stored into main storage. Additional power/
thermal interrupts are disabled at this time because the
summary mask is set to zero by the class interrupt.

2. The instruction address stored in the LSB is
unpredictable.

Supervisor Call

A supervisor call class interrupt is initiated by executing an
SVC instruction. The SVC instruction is described in
Chapter 6. A level status block is stored, starting at the
main storage location designated by the supervisor call
LSB pointer (contents of storage locations hex 0010 and
0011). The supervisor call SIA (contents of storage loca-
tions 0012 and 0013) is then loaded into the IAR, becom-
ing the address of the next instruction to be fetched.

Soft Exception Trap

A soft exception trap interrupt is caused by software. The
types are:

1. Invalid function (PSW bit 4)
2. Stack exception (PSW bit 6)

These exception conditions may be handled by software;
therefore, they do not constitute an error condition.

A level status block is stored, starting at the location in
main storage designated by the soft-exception-trap LSB
pointer (contents of storage locations hex 0020 and 0021).
The contents of the storage address register (SAR) are
loaded into register seven. The soft-exception-trap SIA
(contents of storage locations hex 0022 and 0023) is then
loaded into the IAR, becoming the address of the next
instruction to be fetched.

Note. The contents of register seven are unpredictable.

Trace

The trace class interrupt provides an instruction trace
facility for software debugging. Instruction tracing may
occur on any priority level, and is enabled by the trace bit
(LSR bit 10). The tracing occurs when bit 10 of the
current LSR is set to one. When trace is enabled, a trace
class interrupt occurs at the beginning of each instruction.
A level status block is stored, starting at the location in
main storage designated by the trace LSB pointer (contents
of storage locations hex 0018 and 0019). The trace SIA
(contents of storage locations hex 001A and 001B) is then
loaded into the IAR, becoming the address of the next
instruction to be fetched.

Note. After the LSB is stored, and before the next instruc-
tion is fetched, supervisor state is set on (LSR bit 8), trace
is turned off (LSR bit 10), and the summary mask is
disabled (LSR bit 11).

Programming Note. When trace is enabled, a trace class
interrupt occurs prior to executing each instruction. Hard-
ware processing of the interrupt provides an automatic
branch to the programmer’s trace routine. To prevent
retracing the same instruction, the program should exit the
trace routine by using the Set Level Block (SELB) instruc-
tion with the inhibit trace (IT) bit set to one. The inhibit
trace bit prevents a trace interrupt from occurring for the
duration of one instruction (see SELB instruction in
Chapter 6). A double trace of an instruction can also occur
when the instruction is interrupted and must be reexecuted.
For example: a class interrupt occurs during execution of
a variable field length instruction. Under this condition,
exit from the class interrupt routine should be via a SELB
instruction with the inhibit trace bit set to one.

The occurrence of any class interrupt or priority interrupt
causes the trace bit (LSR bit 10) to be set to zero. This
action permits tracing only problem state code. If the
programmer desires to trace supervisor code, he must make
provisions within the service routine to enable the trace bit.

Interrupts and Level Switching 3-7

The following three conditions inhibit a trace class
interrupt:

1. A Set Level Block (SELB) instruction sets the trace bit
on and the in-process bit on in the LSR of a selected
level lower than the current level; then, when the
selected level becomes active, the first instruction
executed is not preceded by a trace interrupt.

2. The programmer console is in diagnose mode and a stop
instruction is encountered while tracing; then, when
the Start Key is depressed, a trace interrupt does not
occur prior to executing the first instruction.

3. When a level is exited by either a LEX or a SELB
instruction and processing is to continue on a pending
level, one instruction is executed on the pending level
prior to sampling for a trace interrupt.

Console

A console interrupt function is provided when the optional
programmer console is installed. To recognize the interrupt,
the processor must have the summary mask enabled and be
in the run state or wait state. A level status block is stored,
starting at the main storage location designated by the
console interrupt LSB pointer (contents of storage locations
hex 001C and 001D). The console interrupt SIA (contents
of storage locations hex 001E and 001F) is then loaded into
the IAR, becoming the address of the next instruction to

be fetched.

Note. 1If the processor is in the wait state when a console
interrupt occurs, the interrupt is serviced on priority level 0.

Summary of Class Interrupts

The following chart is a summary of class interrupt process-
ing. Each class interrupt is fully explained in separate sec-
tions of this chapter.

Error or Branch
o tion Store Set to
xoeptia LSB R7 service
condition .
routine
. . . .
® [J [] [
[] [] [] [)
° . ® .
LSB Reg SLA
Class Interrupt Pointer 7 Pointer
Machine check 0008-0009 SAR 000A-000B
Program check 000C-000D SAR 000E-000F
Power/thermal 0014-0015 0016-0017
warning
SvC 0010-0011 0012-0013
Soft exception 0020-0021 SAR 0022-0023
trap
Trace 0018-0019 001A-001B
Console 001C-001D 001E-001F

3-8 GA34-0022

Recovery from Error Conditions

Error recovery procedures, initiated by software, depend
on several factors:

1. Application involved.
2. Type of error.
3. Number of recommended retries.

The error class interrupt provides an automatic branch to

a service routine. This routine can interrogate the PSW for
specific error and status information. The routine can then
initiate corrective action or retry the failing instruction(s).
If an error occurs during a priority interrupt sequence, the
priority level switch is completed before the error class
interrupt is processed. This facilitates automatic register
retention. A reset is generated by machine check class
interrupts caused by an I/O check or a CPU control check.
No reset is generated by program check or power/thermal
warning class interrupts. Error conditions along with error
recovery information are presented in the following sections.

Program Check

A program check is caused by a programming error and
initiates a program check class interrupt. Error retry
depends on the application. All necessary parameters are
made available for locating and, if required, correcting the
invalid condition. There is no change to operands or
priority level during a program check class interrupt. The
stored LSB reflects conditions at the time the interrupt
occurred and contains:

® The contents of all general registers.
e Status information (LSR contents).
® The address of the failing instruction (IAR contents).

The contents of the storage address register (SAR) are
loaded into R7. The programmer must reference the PSW
to determine the type of program check.

Storage Parity Check

A storage parity error initiates a machine check class inter-
rupt. The error may occur when accessing a storage location
that has not been validated since power on. Any retry
procedure should include refreshing data in the failing
location. Two unsuccessful retries are considered a perman-
ent failure and the storage location should not be used. An
IPL should be initiated.

CPU Control Check

A CPU control check occurs if hardware detects a malfunc-
tion of the processor controls. It is a machine-wide error
and initiates a machine check class interrupt. A reset is
generated to the channel, the I/O attachment features, and
all attached I/O devices. The processor, sensor-based output
points, and timer values are not reset. The generated reset
should clear the error condition, but validity of any previous
execution is not guaranteed. No retry is recommended. An
IPL should be initiated.

I/O Check

An I/O check condition occurs if a hardware error is
detected that may prevent further communication with 1/O
devices. A machine check class interrupt is initiated and a
reset is generated to the I/O attachment features, the
channel, and all I/O devices. Error recovery from an I/O
check depends on the sequence indicator setting (PSW bit
12).

Sequence Indicator Set to Zero. The error occurred during
an Operate 1/0 instruction. The address of the failing
instruction (IAR contents) is available in the stored LSB.
Retry should be attempted twice. After two unsuccessful
retries, use of the device should be discontinued.

Sequence Indicator Set to One. The error occurred during
an interrupt or cycle steal operation. The instruction
address (IAR contents) stored in the LSB is not related to
the error. The sequence of events leading to the I/O check
is lost, along with all pending interrupt requests within the
devices. Retry is not recommended.

Soft Exception Trap

A soft exception trap interrupt is the result of an exception
condition that software may choose to handle dynamically.
All necessary parameters are available to locate and correct
the condition. The address of the instruction (IAR contents)
causing the exception is preserved in the level status block

in main storage. The processor is not reset. The programmer
must reference the PSW to determine the soft-exception
type.

Processor Status Word

The processor status word (PSW) is used to record error or
exception conditions in the system that may prevent
further processing. It also contains certain status flags
related to error recovery. Error or exception conditions
recorded in the PSW cause four of the possible seven class
interrupts to occur. These are machine check, program
check, soft exception trap, and power/thermal warning.
See Class Interrupts in this chapter.)

The Copy Processor Status and Reset (CPPSR) instruc-
tion can be used to examine the PSW. This instruction
stores the contents of the PSW into a specified location in
main storage.

The PSW is contained in a 16-bit register with the follow-
ing bit representation:
Class
Interrupt

Program check
Program check
Program check

Bit Condition

00 Specification check
01 Invalid storage address
02 Privilege violate

u3 Not used

04 Invalid function

Remarks

alWays Z6io
Program check or
Soft exception trap

05 Not used always zero
06 Stack exception Soft exception trap

07 Not used always zero
08 Storage parity check Machine check

09 Not used always zero

10 CPU control check
11 1/0 check

Machine check
Machine check

12 Sequence indicator None Status flag
13 Auto-IPL None Status flag
14 Not used always zero
15 Power/thermal warning Power/thermal Note 1

Note 1. The power/thermal warning class interrupt is controlled by
the summary mask.

Bit 00 Specification Check. Set to one if the storage address
violates the boundary requirements of the specified data
type.

Bit 01 Invalid Storage Address. Set to one when an attempt
is made to access a storage address outside the storage size
of the system. This can occur on an instruction fetch, an
operand fetch, or an operand store.

Bit 02 Privilege Violate. Set to one when a privileged
instruction is attempted in the problem state (supervisor
state bit in the level status register is not on).

Bit 04 Invalid Function. Set to one by one of the following
conditions:

1. Attempted execution of an illegal operation code or
function combination. These are:

Op code Function

00111 All

01000 0001, 0010, 0011, 0101, 0110, 0111
01011 0001, 1001 (When in supervisor state)
01011 0101, 0111

01100 111

01110 11000, 11010, 11011, 11100, 11110, 11111
01111 1X1XX, 01XXX, 1X011, 10001
10110 All

11011 All

11101 1100, 1101, 1110, 1111

Note. The preceding illegal conditions cause a program check
class interrupt to occur.

2. The processor attempts to execute reserved operation
codes or function combinations. These are:

Op code Function
00100 All
01011 0011, 1011 (When in supervisor state)

Note. The preceding condition causes a soft-exception-trap
class interrupt to occur.

Interrupts and Level Switching 3-9

Bit 06 Stack Exception. Set to one when an attempt has
been made to pop an operand from an empty main storage
stack or push an operand into a full main storage stack. A
stack exception also occurs when the stack cannot contain
the number of words to be stored by a Store Muliple (STM)
instruction.

Bit 08 Storage Parity. Set to one when a parity error has
been detected on data being read out of storage by the
processor. This error may occur when accessing a storage
location that has not been validated since power on.

Bit 10 CPU Control Check. A control check will occur if
no levels are active but execution is continuing. This is a
machine-wide error. (See I/O check note.)

Bit 11 I/O Check. Set to one when a hardware error has
occurred on the I/O interface that may prevent further
communication with any 1/O device. PSW bit 12 (sequence
indicator) is a zero if the error occurred during an Operate
I/0 instruction and is set to one if the error occurred during
a non-DPC transfer. The sequence indicator bit is not an
error in itself but reflects the last interface sequence at any
time. An I/O check cannot be caused by a software error.
(See note.)

Note. The machine check class interrupt initiated by a
CPU control check or I/O check causes a reset. The I/O
channel and all devices in the system are reset as if a Halt
I/0O (channel directed command) had been executed. The
processor, sensor-based output points, and timer values are
not reset.

Bit 12 Sequence Indicator. This bit reflects the last I/O
interface sequence to occur. See “I/O Check” described
above.

Bit 13 Auto IPL. Set to one by hardware when an auto-
matic IPL occurs.

Bit 15 Power Warning and Thermal Warning. Set to one
when these conditions occur (see Power/Thermal Warning
class interrupt in this chapter). The power/thermal class
interrupt is controlled by the summary mask.

Program Controlled Level Switching

Level switching under program control may be accomplished
by using the Set Level Block (SELB) instruction. This
instruction is covered in detail in Chapter 6, Instructions,
and in general it will:

® Specify the location of a level status block (LSB) at an
effective address in main storage.

® Specify a selected priority level associated with the main
storage LSB.

® [oad the main storage LSB into the hardware LSB for
the selected level.

3-10 GA34-0022

Note. The hardware LSB consists of the following hardware
registers for the selected level:

1. Instruction address register
2. Level status register
3. Eight general registers (0—7)

The system programmer should become thoroughly familiar
with other effects on the processor caused by execution of
the SELB instruction. These effects are determined by
three factors:

1. The current execution level.

2. The selected level specified in the SELB instruction.

3. The state of the in-process flag (Bit 9 of the LSR) con-
tained in the main storage LSB.

Note. Interrupt masking, provided by the summary mask
and the interrupt level mask register, does not apply to
program controlled level switching.

The main storage LSB and the location of the in-process
flag bit are shown in the following diagram:

Main storage
effective

address IAR

Zero

LSR [+

Register

Register

Register

Register

Register

Register

Register

NN | lWIN I~ O

EA+14 (Hex) Register

*In-process flag (bit 9)
0 = off
1 = on

Execution of the SELB instruction may result in level
switching or a change in the pending status of a level as
described in the following sections.

Selected Level Lower Than Current Level and
In-process Flag On

These conditions cause the selected level to be pending. The
main storage LSB is loaded into the hardware LSB for the
selected level. Execution of a LEX instruction on the
current level causes the selected level to become active
providing no higher priority interrupis are being requesied.

Currentlevel[s ELFrl 1] |J l | | l l |LE X

1 |

Selected level (\ E ______ Pending HEEEEEEEEEN

Selected Level Equal to Current Level and
In-process Flag On

These conditions cause the selected level to become the

current level. The main storage LSB is loaded into the hard-
ware LSB for the selected level.

Load
LSB

Current and

Selected level Lt 1 | 1 | 111 ISCIE:)L sl [T T T TT1]

Selected Level Higher Than Current Level and
In-process Flag On

These conditions cause the selected level to become the
current level. The main storage LSB is loaded into the
hardware LSB for the selected level. This is a level switch
to the higher (selected) level and causes the lower level to

be pending.

Selected fve Y EEEEEEEEEEEE RN
Load
LSB

Current level [II r[l l I LI IS E L BI —_——_l-’e;di;g —————— J|

Interrupts and Level Switching 3-11

Selected Level Lower Than Current Level and
In-process Flag Off

These conditions cause the selected level to be not pending.
The main storage LSB is loaded into the hardware LSB for
the selected level.

Cumentdevel [| [[JJ [[[] {seuvel [J]PTTT 1]

Load
LSB

r : -
Selected level | _ _ _ Pending ;ltn,)} Not pending

Selected Level Equal to Current Level and
In-process Flag Off

These conditions cause an exit from the current level. This
exit is identical to executing a LEX instruction with the
exception that the main storage LSB is loaded into the
hardware LSB for the selected level. See LEX instruction
in Chapter 6.

Load
LSB

(S:;?:tr;tl alZSe] [I r IT J I I l IS E(:L/Tlﬂ Exit current level

Selected Level Higher Than Current Level and
In-process Flag Off

The main storage LSB is loaded into the hardware LSB for
the higher (selected) level.

______________ e N, e e e . e —— ——— —
Selected level :: _____ Not pending ___l:_ J_ _ _ _Notpending _ __ __ _ 3
Load
LSB

Camenttevel | | | | | J I]][] [seve] [[]]]]]TT]]

3-12 GA34-0022

C

Interrupt Masking Facilities

Three levels of priority interrupt masking are provided to
the programmer for control of the interrupt processing.
These consist of:

1. Summary Mask (LSR bit 11)
2. Interrupt Level Mask Register
3. Device Mask (I-bit)

Each masking facility has specific control as explained in
the following sections.

Summary Mask
The summary mask provides a masking facility for priority
interrupts and certain class interrupts. The state of the
summary mask (enabled or disabled) is controlled by bit 11
in the level status register (LSR) of the active priority level.
When bit 11 is set to zero, the summary mask is disabled
and prevents (1) all priority interrupts regardless of
priority level, and (2) power/thermal and console class
interrupts. All other class interrupts are not masked. When
bit 11 is set to one, the mask is enabled and the interrupts
are allowed.

The summary mask is disabled and enabled as follows:

e Disabled (Set to Zero)

1. When a Supervisor Call (SVC) instruction is executed,
the summary mask for the active level is disabled.

2. Execution of a Disable (DIS) instruction, with bit 15
of the instruction equal to one, causes the summary
mask for the active level to be disabled.

3. All class interrupts disable the active level summary
mask.

4. The summary mask for a selected level is disabled by
executing a Set Level Block (SELB) instruction with
bit 11 of the LSR to be loaded equal to zero.

5. The summary mask bits for priority levels 1—3 are
set to zero by a system reset, power-on reset, or IPL.

® Enabled (Set to One)

1. Execution of an Enable (EN) instruction, with bit 15
of the instruction equal to one, causes the active level
summary mask to be enabled.

2. The summary mask for a selected level is enabled by
executing a Set Level Block (SELB) instruction with
bit 11 of the LSR to be loaded equal to one.

3. The level zero summary mask is enabled by a system
reset, power-on reset, or [PL.

4. The summary mask for the interrupted-to level is
enabled by a priority interrupt.

Note. 1f the processor is in the wait state, the summary
mask is enabled or disabled as defined by bit 11 in the LSR
of the last active priority level.

Interrupt Level Mask Register

The interrupt level mask register is a 4-bit register used for
control of interrupts on specific priority levels. Each level
is controlied by a separate bit of the mask register as shown
below:

Interript Tevel Mask Register

Bit position 01 2 3
Priority level 012 3

With a bit position set to one, the corresponding priority
level is enabled and permits interrupts. With a bit position
set to zero, the corresponding priority level is disabled.
The Set Interrupt Mask Register (SEIMR) instruction is
used to control bit settings in the interrupt level mask
register. The Copy Interrupt Mask Register (CPIMR)
instruction may be used to interrogate the register.

Note. All levels are enabled (set to one) by a system reset,
power-on reset, or IPL.

Device Mask (I-bit)

Each interrupting device contains a one-bit mask called the
device mask or interrupt bit (I-bit). Interrupts by the device
are permitted when its device mask is enabled (set to one).
With the device mask bit disabled (set to zero), that device
cannot cause an interrupt. The device mask is controlled by
a Prepare command in conjunction with an Operate I/O
instruction. See Chapter 6, Instructions, and Chapter 4,
Input/Output Operations.

Interrupts and Level Switching 3-13

3-14 GA34-0022

C

Input/output (1/0) operations involve the use of input/out-
put devices. These devices are attached to the processor

and main storage via the I/O channel with the channel direct-
ing the flow of information. The I/O channel can accom-
modate a maximum of 256 addressable devices. The general
data flow is shown in Figure 4-1.

Chapter 4. Input/Output Operations

Processor Channel Main 1/O Device 1/O Device
Controls Storage 01 FF
1/0 Channel

Figure 4-1. Block diagram of Series/1 Model 3 system

The channel supports three basic types of operations:

® Direct Program Control (DPC) Operations — An immedi-
ate data transfer is made between main storage and the
device for each Operate 1/O instruction. The data may
consist of one byte or one word. The operation may or
may not terminate with an interrupt.

® (Cycle Steal Operations — An Operate I/O instruction can
initiate cycle-stealing data transfers of up to 65,535 bytes
between main storage and the device. Cycle steal opera-
tions are overlapped with processing operations. Word
or byte transfers, DCB chaining, burst mode, and program
controlled interrupt can be supported. All cycle stealing
operations terminate with an interrupt.

® Interrupt Servicing — Four preemptive priority interrupt
levels are available to facilitate device service. The device
interrupt level is assignable by the program. In addition,
the device interrupt capability may be masked under
program control. Interrupt requests, along with cycle
steal requests, are presented and polled concurrently
with DPC and cycle-steal data transfers.

The channel provides comprehensive error checking
including time-outs, sequence checking, and parity checking.
Error, exception, and status reporting are facilitated by: (1)
recording condition codes in the processor during execution
of Operate I/O instructions, and (2) recording condition
codes and an Interrupt Information Byte (IIB) in the
processor during interrupt acceptance. Additional status
words may be used by the device as necessary to describe
its status (see 1/0 Condition Codes and Status Information
in this chapter).

Input/Output Operations 4-1

Operate I/O Instruction

The Operate 1/0 instruction initiates all I/O operations
from the processor. It is a privileged instruction and is
independent of specific I/O parameters. The generated
effective address points to an immediate device control
block (IDCB) in main storage. The IDCB consists of two
words that contain an I/0 command, a device address, and
an immediate data field. For DPC operations, the immedi-
ate data field is used as a device data word. For cycle steal
operations, the immediate data field points to a device
control block (DCB) that provides additional information
needed for the operation. For more details of the Operate
I/0 Instruction refer to Chapter 6.

Operate 1/O Instruction

R2 Address
0110 110 00 *tT 1 0 0

Effective address

IDCB
Command Device address Immediate data field
0 7 8 15 16 31
Cycle steal operations
e

C
|

[4

Y

*Indirect addressing bit

4-2 GA34-0022

P
b

O

Immediate Device Control Block (IDCB)

The location in storage specified by the Operate 1/0
instruction contains the first word of the IDCB. The IDCB
contains an [/O command that describes the specific nature
of the I/O operation. This command is used by the channel
for execution of the operation. The IDCB must always be
on a word address boundary and has the following tormat:

IDCB (immediate device control block)
Command field Device address field

0 7 8 15

Immediate data field

16 31

Command field (bits 0—7)

Bit 0 Channel directed. 1f this bit is equal to one, the [/O
command is directed to the channel rather than to a
specific device. The Halt I/O command is the only
valid channel directed command. Any other command
with bit 0 set to one causes a command reject excep-
tion condition.

Bit 1 Read/Write. If this bit is equal to one, the data con-
tained in the immediate field is transferred to the
addressed 1/O device. If this bit is equal to zero, the
immediate field contains the data received from the
1/O device at the conclusion of the IO instruction.

Bits 2-3 ° Function. This field specifies the general type of 1/O
operation to be performed (see Figure 4-2).

Bits 4—7 Modifier. This field contains four bits for further
specification of a function, if required (see Figure 4-2).

Device address field (bits 8—15)

This byte contains the I/O device address. The address
range is 00 through FF (hex).

Immediate data field (bits 16—31)

This field contains a device data word for DPC operations.
It contains the address of a device control block for cycle
steal operations.

Figure 4-2 shows the relationship of the IDCB and the
Operate I/0 instruction. It also contains a chart of the
various I/O commands. The Start command and the Start
Cycle Steal Status command are used to initiate cycle steal
operations. The remaining commands are used for DPC
operations only.

Input/Output Operations

43

44 GA34-0022

Operate I/O Instruction

R2 Address
011010 00 *I1' 1 00
0 4 5 7 8 1011 12 15 16 31
I Effective address
IDCB (immediate device control block)
Command Device address Immediate field
31

01 2 34 7 8 1516

Chan R/W F

Hex' Specific command

0 0 00 Read XXXX 0X Read

0 0 01 Read XXXX I1X Read

0 0 10 Read status 0000 20 Read ID

0 0 10 Read status XXXX 2X Read status
0 0 11 3X Unuséd***
0 1 00 Write XXXX 4X Write

0 1 01 Write XXXX 5X Write

0 1 10 Control 0000 60 Prepare

0 1 10 Control XXXX 6X Control

0 1 10 Control 1111 6k Device resct
0 1 11 Start XXXX 7X Start

0 1 11 Start 1111 s Start cycle steal status
1 1 11 Channel 0000 0 Halt 1/O

*Indirect addressing bit.
**Modifier XXXX is device dependent. Other modifiers are system defined.
***To avoid future code obsolescence, this command format must not be used.

Figure 4-2. IDCB and 1/O commands

Type of operation

DPC

DPC

DPC

DPC
Unused
DPC

DPC

DPC

DPC

DPC

Cycle steal
Cycle steal
Channel

O

Device Control Block (DCB)

This section describes the device control block that is used
for a cycle steal operation. The actual cycle steal operation
is explained in a later section of this chapter. The DCB is
an eight-word control block residing in the supervisor area
of main storage. It contains the specific parameters of a
cycle steal operation. The device fetches the DCB using

the cycle steal mechanism. The format of the DCB is shown
in Figure 4-3.

DCB (device control block)

Word
0 | Control word -

] Device parameter word 1

2 | Device parameter word 2

3 Device parameter word 3

4 | Device parameter word 4

5 | Device parameter word 5

6 | Count

7 | Data address

Control word format (DCB word 0)
Addr key{Moddficr bits

15

Burst mode * -——-l

Suppress exception (SE)*

Reserved

Input flag

Program controlled interrupt (PCI)*
Chaining flag *

~
to
A
s
W~
9%
~
e
~
BN

*Device option bits

Figure 4-3. Device control block

The DCB words have the following meanings:

Control word

Bit 0* Chaining flag. If this bit is equal to one, a DCB chain-
ing operation is indicated.
Bit 1* Programmed controlled interrupt (PCI). 1f this bit is

equal to one, the device presents a programmed
controiied inierrupi (FCiy ai the complction of the
DCB fetch.

Bit 2 Input flag. The setting of this bit tells the device the
direction of data transfer.
0 = Output (main storage to device)
1 = Input (device to main storage)
For bidirectional data transfers under one DCB opera-
tion, this bit must be set to one. For control opera-
tions involving no data transfer, this bit must be set to

Zero.

Bit 3 Reserved. This bit must be set to zero to avoid future
code obsolescence.

Bit 4* Suppress exception (SE). If this bit is equal to one,

the device is allowed to suppress the reporting of
certain exception conditions. The device can then
take alternative action depending on the condition.

Bits 5-7 Cycle steal address key. Not used on the 4953
Processor.
Bits 8—-15 Modifier. These are device dependent bits with one

exception. When a device uses burst mode, it is speci-
fied in bit 15. These bits may be used for functions
that are unique to a particular device.

*Chaining, PCI, and SE are device options that are available on a
device feature basis. Any bit not used by the device should be set
to zero although it is not checked by the device.

Refer to the Cycle-Steal Device Options section of this chapter.

Device Parameter Words 1-2

These parameter words are device-dependent control words
and are implemented as required. Refer to the individual
device publications for definition.

Device Parameter Word 3

When PCI is specified, the high-order byte (bits 0—7) of
this word is used for a DCB identifier. The device places
the identifier in the interrupt information byte when the
PCI is processed. The low-order byte (bits 8—15) is always
device dependent. The high-order byte is device dependent
when PCI is not specified.

Input/Output Operations 4-5

Device Parameter Word 4

If suppress exception (SE) is used by a device, this word
specifies a 16-bit main storage address called the status
address. This address points to a residual status block that
is stored by the device following completion of the DCB
operation.

If suppress exception is not used by a device, a residual
status block is not stored. In this case, parameter word 4 is
device dependent. Refer to Cycle-Steal Device Option in
this chapter.

Device Parameter Word 5

If the DCB chaining bit (bit 0 of the control word) is equal
to one, this word specifies a 16-bit main storage address of
the next DCB in the chain. If chaining is not indicated, this
parameter word is device dependent.

Count

The count word contains a 16-bit unsigned integer represent-

ing the number of data bytes to be transferred for the
current DCB. Count is specified in bytes with a range of O
through 65,535. The count specification must be even for
word-only devices.

Data Address

This word contains the starting main storage address for the
data transfer.

Programming Considerations When Using the DCB

1. Only those words required for the cycle stealing opera-
tion are fetched by the device and they may be fetched
in any order. Contents of the words must be specified
correctly; if not, the device records a DCB specification
check in the interrupt status byte and terminates the
cycle steal operation with an exception interrupt.

2. The DCB address (in the DCB), the chain address, and
the status address must be even (word boundary). If
the DCB address is odd, the device records a command
reject condition code and terminates the cycle steal
operation. An odd chain address or status address
results in a DCB specification check.

Note. Condition code and status recording are explained
in detail in a separate section of this chapter.

1/O Commands

This section describes each I/O command and shows the
related IDCB. The command field (bits 0—7) of the IDCB
contains the binary value of the command. An X in this
field means the value is device dependent.

4-6 GA34-0022

Read

IDCB (immediate device control block)

Command field Device address field
0 0 0 X XXXXIXXXXXXXX
0 7 &8 15
0X 00—FF
01

Immediate data field
Data word
16 31

This command transfers a word or byte from the addressed
device to the data word of the IDCB. If a single byte is
transferred, it is placed in bits 2431 of the data word with
bits 16—23 set to zeros. Correct parity is always main-
tained and checked for both bytes on the 1/O channel. The
individual devices may use either the 0X or 1X type of read
command. The two commands operate the same in the
channel.

Read ID

IDCB (immediate device control block)

Command field Device address field

001 0O0O0OO0IO0]IXXXXXXXX

0 7 8 15
20 00-FF

Immediate data field
Data word
16 31

This command transfers an identification (ID) word from
the device to the data word of the IDCB. The device
identification word contains physical information about
the device and may be used to determine the devices that
are attached to the system. This word is not related to

the interrupt ID word associated with interrupt processing.
The device ID word format is:

Assigned code C |CS|D
0 121314 15

Bits 0—12 Unique identification code for the device

Bit 13 Zero — not a controller device or the device does not
report delayed command reject
One — controller device or any device that reports
delayed command reject

Bit 14 Zero — not a cycle steal device
One — cycle steal device
Bit 15 Zero — IBM device

One — OEM device

O

®)

Note. A controller may control more than one I/O device
and is not directly addressable, but is not transparent to
software. That is, the controller may cause busy or excep-
tion conditions as opposed to those caused by an attached
1/0 device.

Read Status

IDCB (immediate device control block)

Command field Device address field

001 0 XXXXIXXXXXXXX

0 7 8 15
2X 00-FF

Immediate data field
Data word
16 31

This command transfers a device status word from the
device to the data word of the IDCB. Contents of the
status word are device dependent.

Write

IDCB (immediate device control block)

Command field Device address field
01 0 X XX XX|IXXXXXXXX
0 7 8 15
4X 00—FF
5X

Immediate data field
Data word
16 31

This command transfers a word or byte to the addressed
device from the data word of the IDCB. The individual
device may use either format of the command. If a single
byte is to be transferred, it must be placed in bits 24—31
of the data word and bits 16—23 must be set to zero. A
byte oriented device may ignore bits 16—23 (including the
parity bit on the I/O channel) but these bits should be
zeros to avoid future code obsolescence.

Note. Both bytes of the IDCB data word are fetched by
the channel and placed on the I/O data bus (in good parity)
even if not required by the device.

Prepare

IDCB (immediate device control block)

Command field Device address field

0110000 O0QXXXXXXXX

0 7 8 15
60 00-FF

Immediate data field

Zeros 4L Level l I

16 26 27 30 31

This command transfers a word (to the addressed device)
that controls the device interrupt parameters. The word is
transferred from the immediate data field of the IDCB in
the format shown. A priority interrupt level is assigned to
the device by the level field. The I-bit (device mask)
controls the device interrupt capability. If the I-bit equals
1, the device is allowed to interrupt. If the I-bit equals O,
the device cannot interrupt. See Prepare I/O Device for
Interrupt in Chapter 3.

Note. The IBM 4953 Processor does not recognize a
priority level other than 0—3. Lost interrupts result if a
device is prepared for a level other than 0—3.

Control

IDCB (immediate device control block)

Command field Device address field

0110 XXXXIXXXXXXXX

0 7 8 15
6X 00—FF

Immediate data field
Data word
16 31

This command initiates a control action in the addressed
device. A word, or byte, transfer from the data word of
the IDCB to the addressed device may or may not occur,
depending on device requirements. If a single byte is to
be transferred it must be placed in bits 24—31 of the data
word and bits 16—23 must be set to zero.

Note. Both bytes of the IDCB data word are fetched by
the channel and placed on the I/O data bus (in good parity)
even if not required by the device.

Input/Output Operations 4-7

Device Reset

IDCB (immediate device control block)

Commend field Device address field

0110111 1IXXXXXXXX

0 7 8 15
6F 00—FF

Immediate data field

Zeros
16 31

This command resets the addressed device. A pending inter-
rupt from this device (or a busy condition) is cleared. The
device mask (I-bit) is not changed. A device must always
accept and execute this command. There is no change to
the assigned priority level for the device. The residual
address (device status) and output sensor points are not
affected. Parity checking of the IDCB data word is not
performed.

Start

IDCB (immediate device control block)

Command field Device address field

0111 XXXX|IXXXXXXXX

0 7 &8 15
7X 00-FF

Immediate data field
DCB address
16 31

This command initiates a cycle steal operation for the
addressed device. The second word of the IDCB is trans-
ferred to the device. It contains a 16-bit logical storage
address of a device control block (DCB) to be used by the
device. See Cycle Steal in this chapter.

4-8 GA34-0022

Start Cycle Steal Status

IDCB (immediate device control block)

Command field Device address field

0111111 1IIXXXXXXXX

0 7 8 15
7F 00-FF

Immediate data field
DCB address
16 31

This command initiates a cycle steal operation for the
addressed device. Its purpose is to collect status informa-
tion from the addressed device. The second word of the
IDCB is transferred to the device and contains a 16-bit
logical address of a device control block (DCB). See Start
Cycle Steal Status Operation in this chapter.

Halt 1/O

IDCB (immediate device control block)

Command field Device address field

1 1110000

0 7 8 15
FO

Immediate data field

16 31

This is a channel directed command that causes a halt of

all I/O activity on the I/O channel and resets all devices. No
data is associated with this command. All pending device
interrupts are cleared. Device priority-interrupt-level assign-
ments and device masks (I-bits) are unchanged. The residual
address (device status) and output sensor points are not
affected.

Notes.
1. The channel is always able to accept and execute this
command.

2. Halt I/O is the only valid channel directed command.

DPC Operation

A DPC operation causes an immediate transfer of data or
control information to or from an 1/O device. An Operate
1/0 instruction must be executed for each data transfer and
causes the following events to occur (refer to Figure 4-4).

1. Tha Onarate !/

Lav wptial |~

storage. Y
2. The I/O channel uses the IDCB to select the addressed

device and to determine the operation to perform. [
3. The 1/O channel sends data to the device from main
storage, or from the device to main storage.
4. The device sends an 10 instruction condition code to
the level status register (LSR) in the processor. [

ingtruction points to an INCR in main

Operate 1/O Instruction

Notes.

1. The DPC operation may end with a priority interrupt if
the device has this capability. Refer to I/O Interrupts
in Chapter 3.

2. There are two types of condition codes: the first is an
1/O instruction condition code and is available
immediateiy after compieiion oi an Operaie I/ G wistiuc-
tion; the second is an interrupt condition code and is
presented upon acceptance of a priority interrupt. The
code significance is different for the two cases. Refer
to I/O Condition Codes and Status Information in this
chapter.

R2

Address

L

Effective address

Hex Conumand IDCB immediate field
0X, 1X Read Data (word or byte)
20 Read ID Device 1D word
2X Read status Device status word
4X,5X Write Data (word or byte)
60 Prepare Interrupt parameters
6X Control Data (word or byte)
6l Device reset Zero
J

IDCB

Command Device address Immediate field

0o 1 2 3 4 7 & 1516 31

1/O device

LSR (note 1)

LIC|O

51

S —

t 10 instruction CC E

Note, LSR Bit 0 even indicator
Bit 1 carry indicator
Bit 2 overtlow indicator

Figure 4-4. Direct program

control 1/O operation

Input/Output Operations 4-9

Cycle Steal

The cycle steal mechanism allows data service to or from
an I/O device while the processor is processing instructions.
This overlapped operation allows multiple data transfers
to be started by one Operate I/O instruction. The processor
executes the Operate I/O instruction, then continues
processing instructions while the I/O device steals main
storage data cycles when needed. The channel resolves
contention among multiple devices requesting cycle steal
transfers. The operation always ends with a priority inter-
rupt from the device.

The cycle steal operation includes certain capabilities
that are provided on a device feature basis:

Burst mode

DCB chaining

Programmed controlled interrupt (PCI)

Suppress exception (SE)

Storage addresses and data transfers by byte or word

YA W=

See the Cycle-Steal Device Options section of this chapter
for details of these facilities.

All cycle steal operations terminate with a priority
interrupt, providing, the device has executed a successful
Prepare command, with the device mask (I-bit) enabled. If
the device mask is disabled, the interrupt presentation is
blocked and the device remains busy until (1) the condition
is cleared by a reset, or (2) the proper Prepare command is
executed.

All cycle steal operations are started by an Operate 1/O
instruction that points to an IDCB. The immediate data
field of the IDCB contains the address of a device control
block (DCB). The DCB is fetched by the device using the
cycle-steal mechanism. Within the DCB are specific param-
eters of the cycle steal operation. See Device Control Block
in this chapter.

There are two types of cycle steal commands:

® Start
e Start Cycle Steal Status.

Start Operation

A cycle steal operation begins after successful execution of
the Start command. The IDCB, pointed to by an Operate
I/0 instruction, has the format:

IDCB (immediate device control block)

Command field Device address field

01 1 1 XXXX|IXXXXXXXX
0 7 8 15

~

7X 00—FF

Immediate data field

DCB address
16 31

4-10 GA34-0022

The command modifier (X) is device dependent. The DCB
address always specifies a word boundary and is the starting
storage address of the DCB. This address is used by the
device to fetch the DCB, using the cycle steal mechanism.

A cycle steal operation is presented in the following
chart. Use Figure 4-5 in conjunction with this chart.
Condition codes used in the chart are fully explained in
the section 1/0 Condition Codes and Status Information
in this chapter.

Note. An I/0O device must be properly prepared (using a
Prepare command), before it is allowed to interrupt.

Cycle steal major steps Remarks

Start cycle steal 1. Execute IO instruction.
2. IDCB contains Start command and
points to a DCB. The DCB address
is sent to the device. g}
3. Device presents condition code 7
(bits 02 in the LSR). [}

Device fetches DCB 1. Device uses cycle steal mechanism
to fetch DCB.
Data transfer 1. Data is transferred to or from the

device in word or byte format. E
2. Transfer continues until count in
DCB is exhausted.

Termination (no 1. Device presents interrupt request.
error condition) . Channel polls I/O attachment feature
and accepts request.

3. Device sends interrupt ID word and
interrupt condition code 3 (device
end).

Termination 1. Device presents interrupt request.
(Exception condition) Channel polls I/O attachment feature
and accepts request.

3. Device sends interrupt ID word and
interrupt condition code 2
(exception).

[

L

Note. Other events that might occur during the cycle steal
operation are:

Chaining 1. Device completes the current DCB
operation but does not present an
interrupt request.

2. Device fetches next DCB in the
chain,

Program Controlled 1. Device fetches DCB (PCI bit = 1).

interrupt 2. Device initiates an interrupt and sends
an interrupt ID word and interrupt
condition code 1 (PCI).

Suppress exception 1. Device completes current operation.
2. Device stores status at the main stor-
age location defined by DCB param-

eter word 4.

o

Operate I/O Instruction

Device

Y R2 Address
C, 01 101[000 11100
Effective address
IDCB
Command Device address DCB address
0200 0500
0 7 8 15 16 31
LSR
0 2 3 15 S
——
DCB
,
0500 Control word
—~_ —~-
- —
Data area
0S0A 0600 7 0800 E .
Count I E
| L L
050K 0800 1 T~ B
I
I
I
I Chained DCB
L w0600
~_ —~_
I~ I

*[ndirect addressing bit

Figure 4-5. Example of cycle steal control information

Input/Output Opcrations

4-11

Start Cycle Steal Status Operation

The purpose of this operation is to obtain data from the
device if the previous cycle steal operation terminates due
to an error or exception condition. The operation is
initiated by a Start Cycle Steal Status command. The IDCB
format is:

IDCB (immediate device control block)

Command field Device address field

011 1111 1IXXXXXXXX

0 7 8 15
7F 00—FF

Immediate data field

DCB address
16 31

This command uses a special DCB format with some words
and fields to set to zeros (see Figure 4-6).

DCB (device control block)
Control word

0 010 0ofo 0o oJOoOODOOTOOO

Word

1 Not used (zeros)

2 | Not used (zeros)

3 | Not used (zeros)

4 | Not used (zeros)

5 | Not used (zeros)

6 Byte count

7 | Data address

0 15

Figure 4-6. DCB for start cycle steal status operation

4-12 GA34-0022

Programming Note.
Concerning the DCB for the start cycle steal status (A Y

operation: y

1. Bits designated as zero are not checked by hardware
(see Figure 4-6).

2. The count is specified in bytes.

The maximum count is device dependent.

4. The validity of a count value less than the maximum
value is device dependent.

5. If the maximum count is exceeded, or a count value is
specified that indicates the partial storing of a word
length parameter, the device records a DCB specification
check in the ISB and terminates the operation.

6. An odd data address also results in a DCB specification
check.

Data is transferred to main storage starting at the data
address specified in the DCB. This data consists of residual
parameters and device dependent status information and
has the following format:

w

Word 0 Residual address
Word 1 Device cycle steal status word 1
Word 2 Device dependent status word
¢ 0 15
: /V /‘/ f E
L 2

Residual Address. This word contains the main storage
address of the last attempted cycle steal transfer associated
with a Start command. It may be a data address, a DCB
address, or a residual-status-block address. It is updated to
the current cycle-steal storage address upon execution of
cycle steal transfers. For word transfers, the residual
address points to the high-order byte of the word. If an
error occurs during a start cycle steal status operation, this
address (as contained within the device) is not altered.
Device reset, Halt I/O, machine check, and system reset
have no effect on the residual address in the device. It

is cleared by a power-on reset. Following a power-on reset
the residual address is:

® (0000 (Hex) for a byte-oriented device.
e (001 (Hex) for a word-oriented device.

Device Cycle-Steal-Status Word 1. This word contains the
residual byte count of the previous cycle steal operation
associated with a start command. The byte count is
initialized by the count field of a DCB associated with a
Stert command, and is updated as each byte of data is
successfully transferred via a cycle steal operation. It is
not updated by cycle-steal transfers into the residual status
block. The residual byte count is not altered if an error
occurs during a start cycle steal status operation. It is
reset by (1) power-on reset, (2) system reset, (3) device
reset, (4) Halt I/O, and (5) machine check condition.

Note. The contents of the device cycle-steal-status word

1 are device dependent if the device does not: (1) imple-
ment suppress exception (SE), or (2) store a residual byte
count as part of its cycle-steal status.

Device Dependent Status Words. The number and contents
of these words are specified by the individual device. Three
conditions can cause bits to be set in the device dependent
status words (refer to individual device publications).

1. Execution of an I/O command that causes an exception
interrupt.

2. Asynchronous conditions in the device that indicate an
error, exception, or a state condition.

3. As defined by the individual device.

The bits are reset as follows:

1. For the first condition listed above, the bits are reset by
the acceptance of the next I/O command (except Start
Cycle Steal Status) following the exception interrupt.
These bits are also reset by a power-on reset, system
reset, or execution of a Halt I/O command.

2. For the second condition, the bits are reset on a device
dependent basis.

3. For the third condition, the bits are reset as defined by
the individual device.

Cycle-steal Device Options

The 1/O channel supports operations such as burst mode
and chaining when required by individual devices. Bits in
the DCB control word are used to activate these operations.
Refer to the individual device publications for the device
options used. The following sections explain the operations.

Burst Mode

Burst mode, when used by a device, is specified in bit 15 of
the DCB control word. If bit 15 is equal to one, the transfer
of data takes place in burst mode. This mode dedicates the
I/O channel to the device until the last data transfer for the
DCB is completed. Cycle steal interleave, by other devices,
is prevented. Burst mode also prevents any priority inter-
rupt request from being accepted by the processor.

The maximum burst rate for the 4953 channel is 1.332
megabytes per second.

Chaining

The purpose of chaining is to allow the programmer to
sequence an 1/0 device through a set of operations by using
a chain of DCBs. Bit 0 of the DCB control word (when set
to one) indicates a chaining operation. This means that the
chained DCB, fetched by the device, is interpreted as a new
operation (or function) to be performed. The DCB may

be equal to_but not a continuation of the operation speci-
fied by the previous DCB.

When the current DCB indicates a chaining operation,
device parameter word 5 of the DCB must contain a main
storage address that points to the next DCB in the chain.
The device completes the current operation but does not
present an interrupt request (excluding PCI) to the
processor. Instead, the device fetches the next DCB in the
chain and continues operation.

Note. The chaining operation has no effect on programmed
controlled interrupt (PCI). These interrupts, when specified
in the DCB, still occur at the completion of the DCB fetch
operation.

Programmed Controlled Interrupt (PCI)

Bit 1 of the DCB control word (when set to one) tells the
device to present a PCI to the processor at the completion
of the DCB fetch prior to data transfer.

When the PCI is serviced, a DCB identifier byte is
returned to the processor in the interrupt information byte
(IIB). Refer to DCB device parameter word 3 in this
chapter. Two conditions should be noted by the
programmer:

1. Chaining and data transfers associated with the DCB
may commence even if the PCI is pending.

2. If the PCI is pending when the device encounters the
next interrupt causing condition, the PCI condition is
discarded by the device and replaced with the new
interrupt condition.

Suppress Exception (SE)

When a device uses this option it is allowed to suppress the
reporting of certain exception conditions that would
normally cause an exception interrupt. The device is then
allowed to take alternative action depending on the condi-
tion. The suppressed exception conditions are reported to
the programmer as status information upon completion of
the operation. Refer to a subsequent section, Suppression
of Exceptions, for details of the various actions a device
might take.

The suppress exception option also provides for auto-
matic logging of status information (including suppressed
exceptions) into main storage. When the SE bit for a DCB
is set to one, the device always stores a residual status block
into main storage after successful completion of the data
transfer for the DCB. Device parameter word 4 of the DCB

Input/Output Operations 4-13

must be used to specify the starting main storage address
for the residual status block. Note that a residual status
block is stored even if there are no exception conditions to
be suppressed.

The following section shows the residual status block that
is stored.

Residual Status Block

The residual status block is stored into main storage at the
location pointed to by the status address (DCB word 4).
The size of a residual status block is fixed for each device
with a limit of 8 words total. The format is:

Word — . —
0 residual count
1 EOC] reserved [status flags NE
10 1 7 8 14 151
} Maximum
L lof 8 words
L
H T
e I
:_device dependent status -jl

Word 0 Contains the residual byte count associated with the DCB.

Word I EOC is the End of Chain bit and is set to one for all condi-
tions that would terminate a chaining operation. NE is
the No Exception bit and is set to one when the operation
is completed and no exceptions are reported. The Status
Flags are device dependent flags that indicate suppressed
exception conditions.

Any additional words are device dependent as to number
and content. Refer to the individual device publications for
the additional status information and, also, the bit signifi-
cance of the status flags.

Suppression of Exceptions

An exception condition can be suppressed by a device only
when it occurs during a data transfer operation. It cannot
be suppressed if it occurs during (1) a DCB fetch, (2) storing
of a residual status block, or (3) a cycle steal status opera-
tion. A second requirement of a suppressible exception is
that the device be capable of continuing operation in a
normal and predictable manner after occurrence of the
exception. If these conditions are not met, the exception
condition causes an exception interrupt. When a suppres-
sible exception is encountered, the device initiates one of a
possible three types of action depending on the device and
the exception condition. Note that the number of action
types used by a device and the suppressible exceptions for
each type are a device specification. Refer to the individual
device publication. The three action types are:

4-14 GA34-0022

1. Suppress Exception and Continue. The exception
condition occurs but data transfer is allowed to pro-
ceed. At the completion of the data transfer (defined i
by the DCB) a residual status block is stored with word (
one set as follows:

® A status flag for this exception is set to one.

® [f the DCB specifies chaining, then the EOC bit is
set to zero. Otherwise, it is set to one.

® The NE bit is set to zero.

The device may then continue with the next DCB if
chaining is specified.

2. Suppress Exception and Terminate Data Transfer.
Upon detecting the exception condition, the device
terminates the data transfer for this DCB. It then stores
a residual status block containing:

® A status flag for the exception condition.

® EQOC bit set to zero, if chaining. Otherwise, set to
one.

® NE bit set to zero.

The device may then continue with the next DCB if
chaining is specified.

Programming Note. For some devices, the most common
exception condition of this type is incorrect length
record (ILR). For example, the data transfer is com-
pleted prior to the count reaching zero.

In certain communications devices a short ILR is
considered normal operation. When a short ILR occurs
in this type device, the residual byte count is sufficient A W
to indicate the condition; therefore, the NE bit may be
set to indicate no exception.

3. Suppress Exception and Terminate Chain. Upon
detecting this exception condition, the device termi-
nates the data transfer for this DCB. It ignores any
commands specifying further chaining.

The device stores a residual status block containing:

® A status flag for the exception condition
e EOC bit set to one
® NE bit set to zero.

The device then presents a device end interrupt.
Refer to Interrupt Condition Codes in a subsequent
section of this chapter.

Programming Note. In certain communication devices a
change-of-direction character is considered normal opera-
tion. When a change-of-direction character occurs in this
type device, the EOC bit is sufficient to indicate the condi-
tion; therefore, the NE bit may be set to indicate no
exception.

Priority of Suppress Exception Actions. Multiple excep-
tions that are suppressible can occur during an operation.
They are noted .in the residual status block by setting
muitiple status flags. The type of action taken by a device
depends on the exception/action combination with highest
priority. The priority sequence is type 3, type 2, and type

1 writh 4vremn 2 hnwvina thn hinhact rariarito
1 Wiud ¢y pl O idvilig uiv dugnlou priliay .

Cycle-steal Termination Conditions

The following chart shows the action that occurs at the
end of a DCB operation depending on the function specified
and the exception conditions encountered:

Suppressible Non-Suppressible No
CHN SE exception exception exception
0 0 1 (XCT) 1 (XCT) I (DE)
0 1 I (PDE) I (XCT) I (DE)
1 0 1 (XCT) 1 (XCT) cC
1 1 *[(PDE)/CC 1 (XCT) 1 (DE)

CC — DCB chaining

CHN - Chaining flag (bit 0 of the DCB control word)

I (DE) — Device end interrupt

I (PDE) — Permissive device end interrupt (see device end interrupt)
1 (XCT) — Exception interrupt

SE — Suppress exception (bit 4 of the DCB control word)

*Dependent on the specific exception condition in the individual
device.

I/O Condition Codes and Status Information

Each time an Operate I/O instruction is issued, the device,
controller, or channel immediately reports to the processor
one of seven condition codes pertaining to execution of the
I/0O command. These codes are called /O instruction condi-
tion codes. Three bits are used to encode a condition code
value (range U through /). 'L'he bits are recorded in the
even, carry, and overflow positions of the LSR and may be
interrogated by specific instructions such as Branch on
Condition Code and Branch on Not Condition Code. (See
BCC and BNCC in Chapter 6.)

For interrupting devices, condition codes are also reported
during a priority interrupt. These codes are called Interrupt
condition codes and pertain to operations that continue
beyond execution of the Operate I/O instruction (such as
cycle stealing of data). The interrupt condition codes are
recorded in the LSR and interrogated in the same manner
as the I/O instruction codes. Along with the interrupt
condition code, the device also transfers an interrupt ID
word to the processor. Bits 0 through 7 of the interrupt
ID word contain status information related to the interrupt
processing and are called the interrupt information byte
(see Interrupt ID Word in this chapter).

Figure 4-7 presents an overall view of condition code
reporting along with status information. Details of the
condition codes and status information are discussed in
the following sections. Note that there are two unique sets
of condition codes (IO instruction and interrupt) and that
most status information is device dependent.

Input/Output Operations 4-15

Operate [/0 (10)
instruction

o000 00 Device dependent status
Device dependent status word 0 Ts
Betumed by the devnce. if this IDCB l
is a Read Status operation
Immediate data field

LSR bits 0-2

Device reports 10 cC Device not attached
instruction condition Busy
code Busy after reset

Command reject
Intervention required
Interface data check
Controller busy
Satisfactory

NN s W = O

Interrupt
causing
command

No

End operation

Figure 4-7. Condition codes, status words, and status bytes received
from a device (Part 1)

4-16 GA34-0022

oy

DPC or DPC
cycle steal B
operation
Cycle steal
. DCB word 7 data address
Residual parameters
and device dependent l
status
Returned by the device eesee I "
if this isa Start Cycle residual address
Steal Status operation cycle steal status word 1
| device dependent status I
1 device dependent status :
A
0 15
DCB word 4 status address
Residual status block l
Stored into main storage l
o000 0O

if the device uses SE and
the SE bit is set to one

residual byte count

ﬁiOC I reserved] status ﬂagslNE}

|)

0 15

Figure 4-7. Condition codes, status words, and status bytes received
from a device (Part 2)

Input/Output Operations

4-17

4-18 GA34-0022

/O Interrupt

The device reports an
interrupt condition
code

Interrupt ID word

Presented by the device
and placed in register 7
of the interrupted-to
level

*The available status is returned
by the device when the following
commands are used:

Read Status—DPC
Start Cycle Steal Status—cycle steal

0000000000 OCQOOONOSNOSOOOOS

LSR bits 0—2

CcC

Controller end

PCI

Exception

Device end

Attention

Attention and PCI
Attention and exception
Attention and device end

NN LN =O

CC # 2 or 6 (DPC or cycle steal)

device address

0

78 15

Bits 0—7 Device dependent status

or special meaning for
CC2, CC3, and CC7

CC=2o0r6 (DPC)

ISB device address

0
Bit

78 15

0 Device status available*
1 Delayed command reject

2—7 Device dependent

CC =2 or 6 (cycle steal)

ISB device address

Bit

78 15

0 Device status available*
1 Delayed command reject
2 Incorrect length record
3 DCB specification check
4 Storage data check

5 Invalid storage address

6 Not used

7 Interface data check

Figure 4-7. Condition codes, status words, and status bytes received

from a device (Part 3)

L—

:! -w]

10 Instruction Condition Codes

These codes are reported during execution of an Operate
I/O instruction.

Condition
code (CC)
value

NN UL bA LW~ O

CC=0

CC=3

CC=4

CC=5

CC=6

CC=7

LSR position
Over- Reported

Even Carry flow by Meaning

0 0 0 channel Device not attached
0 0 1 device Busy

0 1 0 device Busy after reset

0 1 1 chan/dev Command reject

1 0 0 device Intervention required
1 0 1 chan/dev Interface data check
1 1 0 controller Controller busy

1 1 1 chan/dev Satisfactory

Device not attached. Reported by the channel when
the addressed device is not attached to the system.

Busy. Reported by the device when it is unable to
execute a command because it is in the busy state.
The device enters the busy state upon acceptance of
a command that requires an interrupt for termination.
It exits the busy state when the processor accepts the
interrupt. Certain devices also enter the busy state
when an external event occurs that results in an inter-
rupt. When this condition code is reported, a subse-
quent priority interrupt from the addressed device
always occurs.

Busy after reset. Reported by the device when it is

unable to execute a command because of a reset and

the device has not had sufficient time to return to the

quiescent state. No interrupt occurs to indicate

termination of this condition.

Command Reject. Reported by the device or the

channel when:

1. A command is issued (in the IDCB) that is outside
the device command set.

2. The device is in an improper state to execute the
command.

3. The IDCB contains an incorrect parameter. For
example: an odd byte DCB address, or an incorrect
function/modifier combination.

When a cycle-steal device reports command reject,
it does not fetch the DCB.
Intervention required. Reported by the device when
it is unable to execute a command due to a condition
requiring manual intervention to correct.

Interface data check. Reported by the device or the
channel when a parity error is detected on the I/O
data bus during a data transfer.

Controller busy. This condition is reported by a device
controller, not the addressed device, when the con-
troller is busy. It is reported only by controllers that
have two or more devices attached (each device having
a unique address). When this condition code is
reported, a subsequent controller-end interrupt always
occurs.

Satisfactory. Reported by the device on the channel
when it accepts the command.

These condition codes are mutually exclusive and have a
priority sequence. That is, beginning with CC=7, each
successive condition code through CC=0 takes precedence
over the previous code. For example, if a device cannot
accept a command because it is busy, it reports CC=1,
irrespective of error conditions encountered.

Note. The only exception is CC=6 (controller busy). This
condition code may have a variable priority depending on
the particular controller.

Interrupt Condition Codes

These condition codes are reported by the device or con-
troller during priority interrupt acceptance.

Condition
code(CC)
value

0

1

AN D W

CC=0

CC=1

CC=2

CC=3

LSR position
Over- Reported

Even Carry flow by Meaning

0 0 0 controller Controller end

0 0 1 device Program controlled
interrupt (PCI)

0 1 0 device Exception

0 1 1 device Device end

1 0 0 device Attention

1 0 1 device Attention and PCI

1 1 0 device Attention and
exception

1 1 1 device Attention and
device end

Controller end. Reported by a controller when
controller busy (10 instruction condition code) has
been previously reported one or more times. It
signifies that the controller is now free to accept I/O
commands for devices under its control. The device
address reported with controller end is always the
lowest address (numerical value) of the group of
devices serviced by the controller. The interrupt
information byte, in the interrupt ID word, is set to
zero.

Program controlled interrupt. Reported when the
interrupt indicates that a DCB with the PCI bit set

to one has been transferred by cycle steal to the
device and no error or exception condition has
occurred. The device places a DCB identifier into the
interrupt information byte.

Exception. Reported when an error or exception
condition is associated with the interrupt. The condi-
tion is described in the interrupt status byte (ISB) or
in device dependent status words.

Device end. Reported when no error, exception, or
attention condition has occurred during the 1/O opera-
tion, and the interrupt is not the result of a PCI. For
example: an operation has terminated normally.

Note. If the device has come to a normal end while
using suppress exception (SE bit set to one) and an
exception was suppressed since the last Start command,
then bit zero of the interrupt status byte is set to one.
The condition is called permissive device end (PDE)
and indicates that errors or exceptions have been
suppressed. Related status information is contained

in the residual status block.

Input/Output Operations 4-19

CC=4 Attention. Reported when the interrupt was caused
by an external event rather than execution of an
Operate 1/0 instruction. Additional status informa-
tion is not provided unless the event requires further
definition; for example, code bits for a keyboard

function.

Attention and PCI. Reported when attention and PCI
are both present. In this case the interrupt information
byte contains the DCB identifier, and the attention
must be singular in meaning.

CC=5

CC=6 Attention and exception. Reported when attention
and exception are both present.

CC=7 Attention and device end. Reported when attention
and device end are both present. For this condition
code, device end could also mean permissive device
end. Refer to interrupt condition code 3.

The interrupt condition codes are mutually exclusive with

each other but have no priority sequence.

1/O Status Information

Some form of status information is transferred from the
device to the processor as a result of:

® A read status operation (see Read Status command in this
chapter).

o A start cycle steal status operation (see Start Cycle Steal
Status Operation in this chapter).

@ Storing a residual status block (see Cycle-Steal Device
Options in this chapter).

® A priority interrupt.
The interrupt status information is detailed in the follow-

ing two sections (Interrupt ID Word and Interrupt Status
Byte).

Interrupt ID Word

Acceptance of an I/O interrupt causes the device to present
an interrupt ID word to the processor. Presentation of the
interrupt ID word is explained in Chapter 3 (see I/O
Interrupts). This word has the following format:

Interrupt ID word

IIB Device address
0 7 8 15

Bits 0—7 Interrupt information byte (IIB). For interrupt condi-
tion codes 2 and 6, the IIB has a special format and is
called an interrupt status byte (ISB). Refer to inter-
rupt status byte in this section. For most other
interrupt condition codes, implementation of the IIB

is device dependent. Exceptions are:

1. CC=0. The IIB is set to zero.
2. CC=3 or 7. Bit zero may be set to one if suppress
exception is in effect.

Bits 8—15 Device address. This byte contains the address of the

interrupting device.

4-20 GA34-0022

Interrupt Status Byte (ISB)

The ISB is a special format of the interrupt information
byte (IIB) and contains detailed information on the nature
of the interrupt. The ISB is reported only for error or
exception conditions (interrupt condition codes 2 or 6).
The ISB bits are normally set as a result of:

1. Status errors that occur during a DPC operation that
cannot be indicated via a condition code.
2. Status errors that occur during a cycle steal operation.

The ISB is never reported as zero unless the condition code
presentation of 2 or 6 is singular in meaning for devices that
do not cycle steal. After the processor has accepted the
interrupt request, the device resets the ISB.

Bits 0—7 of the two special formats are explained in the
following sections.

ISB (devices that do not cycle steal):
Bit 0 Device dependent status available. This bit set to one
signifies that additional status information is available
from the device. The information content and method
of reading is described in the individual device
publications.

Delayed Command reject. This bit is set to one if the
device cannot execute the command (specified in the
IDCB) due to an incorrect parameter in the IDCB, or

it cannot execute the command due to its present

state. For example: (1) the IDCB specifies an incorrect
function/modifier combination, or (2) the device is
temporarily not ready. The operation in progress is
terminated. Command reject is set in the ISB only

if the device cannot report IO instruction condition
codes for the condition.

Device dependent. These bits, if used, are described
in the individual device publications.

Bit 1

Bits 27

ISB (cycle stealing device):

Bit 0 Device dependent status available. This bit, when set
to one, signifies that: (1) additional status informa-
tion is available from the device, or (2) the device is
in an improper state to execute a function specified
by a DCB.

The operation is terminated. The content and
method of reading the additional status information
is described in the individual device publications.

Note. When bit 0 of the ISB is equal to one and bits
2-7 are zeros, the contents of the residual-address
word (cycle steal status) are defined by the device.
Delayed command reject. This bit is set to one if the
device cannot execute the command due to one of the
following conditions:

Bit 1

1. The IDCB contains an incorrect parameter.
Examples are (a) an odd-byte DCB address, or (b)
an incorrect function/modifier combination.

2. The present state of the device, such as a not ready
condition, prevents execution of an I/O command
specified in the IDCB.

Delayed command reject is set in the ISB only if
the device cannot report IO instruction condition
codes for the condition. The operation is terminated.
The DCB is not fetched.

RN

(

"Wn» J

Bit 2

Bit 3

Bit 4

Bit 5

Incorrect length record. This bit is set to one when
the device encounters a mismatch between byte count
and actual record length after beginning execution of
the DCB. For example: the byte count is reduced to
zero (with chaining flag off) and no end of record
encountered. Incorrect length record is not reported
when the SE bit in the control word is set to one.
Reporting of incorrect length record i 2 device
dependent feature and may be implemented regardless
of the suppress exception feature. The operation is
terminated.
DCB specification check, This bit is set to one when
the device cannot execute a command due to an
incorrect parameter specification in the DCB. Examples
are (1) an odd-byte DCB chaining or status address,
(2) the byte count is odd for a word-only device, (3)
an odd-byte data address for a word-only device, (4)
an invalid command or invalid bit settings in the con-
trol word, or (5) an incorrect count.

The operation is terminated.
Storage data check. This error condition applies to
cycle steal output operations only. If the bit is set to
one, it indicates that the main storage location
accessed during the current output cycle contained bad
parity. Parity in main storage is not corrected. The
device terminates the operation. The bad parity data
is not transferred to the I/O data bus. No machine
check condition occurs. See Figure 4-8 for other
bits that may be present.

Invalid storage address. When set to one, this bit
indicates that, during a cycle steal operation, the
device has presented a main storage address that is
outside the storage size of the system.

Invalid storage address can occur on a data transfer
or on a DCB fetch operation. In either case, the cycle
steal operation is terminated. See Figure 4-8 for other
bits that may be present.

Bit 6 Not used.

Bit 7 Interface data check. This bit set to one indicates that
a parity error has been detected on the I/O data bus
during a cycle steal data transfer. The condition may
be detected by the channel or the 1/O device. In
either case, the operation is terminated. See Figure
4-8 for other bits that may be present.

Conditions

Invalid Incorrect Bit It
I/0 storage data 1 reswits
operation address parity 4 5 7
Write No No 0 0 0
Write Yes No 0 1 0
Read No No 0 0 0
Read Yes No 0 1 0 *
Write No Yes 0 0 1
Write Yes Yes 0 1 1
Read No Yes 1 0 1
Read Yes Yes 1 1 1

*This condition not possible.

Figure 4-8. Bit result chart

Input/Output Operations 4-21

4-22 GA34-0022

PN

st/

rd

E »m)

Chapter 5. Console

There are twa confignrations of consales available for the
IBM 4953 Processor. The Basic Console is standard, and
remains with the processor. The Programmer Console is an
optional feature that is added to the processor when the
option is selected.

Configuration 2
Basic Console and
Programmer Console

Configuration 1
Basic Console

(mm][Wm(Hnm] IPL Source Loat Wart Run IPL Source Power On
cJoJo J U o [
Alternate on Alternate On
Load Mode Load Mode
Auto IPL ot Auta IPL ot
Normai Normal
Diaanostic Diagnostic
0 1 2 3 4 5 7 9 10 m 12 13 14 15
000000 0000 6OJlGO 60
Check Reset Store Data Console Start Stop
Buffer Interrupt
O N L e
N
Level 0 Level 1 Level 2 Level 3 Stop On ﬂns!ruct Check Stop On
Address Slep Res\avl Error
o Jlo Jo Jo

N

diadaass

degceuaw
[

\

Ianaan
il BEEE;

,
z)
S
X =\
;uj(
AN

Console 5-1

Configuration 1 is primarily intended for those systems
that are totally dedicated to a particular application, where
operator intervention is not needed during the execution of
the application.

Configuration 2 is aimed at operator oriented systems
where various programs are entered and executed during
the day. This type of environment requires a more versatile
console arrangement for program and machine problem
determination, and for manual alteration of data and pro-
grams in storage.

Basic Console

Each IBM 4953 Processor comes equipped with the standard
Basic Console. The Basic Console provides the following
capabilities:

® Power On/Off switch for the processor card file

® 1l.oad key for IPL (initial program load)

® L oad, Wait, Run, and Power On indicators

® Mode switch to select: Diagnostic mode, Auto IPL, or
Normal mode

® JPL source switch to select a primary or alternate IPL
device.

Keys and Switches

Power On/Off When this switch is placed in the On posi-
tion, power is applied to the processor card
file. After all power levels are up, the
Power On indicator is turned on. When
this switch is placed in the Off position,
power is removed from the processor card
file and the Power On indicator is turned
off.

This switch selects the I/O device to be used
for program loading. In the Primary posi-
tion, the device that was pre-wired as the
primary IPL device is selected. In the
Alternate position, the device that was pre-
wired as the alternate IPL device is selected.

B L Source

Load

Pressing this key causes a system reset, then
the initial program load (IPL) sequence is’
started. The Load indicator is turned on
and remains on until the IPL sequence is
completed. When the IPL is completed,
instruction execution begins at location
zero on level zero.

5-2 GA34-0022

E Mode

Indicators

Pow

er On

Load
Wait

m Run

This switch has the following positions:

® Auto IPL — In this position, an IPL is
initiated after a successful power-on
sequence. Bit 13 of the PSW is set to
indicate to the software that an auto-
matic IPL was performed. In this mode
STOP instructions are treated as no-ops.

® Normal — This position is for attended
operation. In this mode STOP instruc-
tions are treated as no-ops.

@® Diagnostic — This position has no func-
tion without the Programmer Console.
This position places the processor in a
diagnostic mode if the Programmer Con-
sole is attached. When the processor is
in diagnostic mode, STOP instructions
cause the processor to enter stop state.

On when the proper power levels are
available to the system.

On when the machine is performing an initial
program load (IPL).

On when an instruction that exits the active
level has been executed and no other levels
or interrupts are pending.

On when the machine is executing

Load

H
m Run

instructions.
IPL Source
Primary

e

© _Jo J

Load

®o .
Alternate

Mode
Auto IPL Off
Diagnostic

P 4

Programmer Console

The Programmer Console is an optional feature that can be
ordered with the IBM 4953 Processor or may be field
installed at a later date. The Programmer Console provides
the following capabilities:

Start and stop the processor.

® Display or alter any storage location.

® System reset.

® Select any of the four interrupt levels for display or
alter purposes.

Display or alter the storage address register (SAR),
instruction address register (IAR), console data buffer,
or any general purpose register.

Display but not alter the level status register (LSR),
current instruction address register (CIAR), op register,
or processor status word (PSW).

Stop-on-address.

Stop-on-error.

Instruction step.

Check restart.

Request a console interrupt.

Check indicator, on when a machine check or program
check class interrupt has occurred.

-
IPL Source
g D
Pamary
. m m m m On

Alternate

Load Mo
Auto IPL ot
Normal

Dragnostie

3 a4 5 9 10 11 12 13 14 15

OO0 00000000 0OJlOO OO

Check Reset Store Data Console Start Stop
Buffer interrupt
O
(Tevel 0)(Tevel 1)(tevei2){Level 3)(Stop On)finstruct){Check Stop On
Error
O JO _JO _J© @)

Address Step Restart

(esw) (0o Rey ‘[:sAR Y\ (sar [o m z—jm
VAN J A\ Y, (-

(s){axr AR van)4 5 5 7

Storage

RO R1 Iﬂz) R3 8 [9 '
-

R4 RS R6 R7 (c][y

) _

L

/

()
L

The Programmer Console is touch sensitive with a tone
generator providing an audio response tone whenever a key
depression has been accepted and serviced by the processor.

Console Display
When the processor is in run state or wait state, the console

daia bufler is displayed in the data display indicators. The
only exception to this is when in run state a Set Console
Data Lights instruction writes a message to the data display.
This message remains displayed until the processor enters
stop state or the Data Buffer Key is pressed. When the Data
Buffer Key is pressed, the console data buffer is again dis-
played in the data display indicators.

When the processor enters stop state, the IAR is dis-
played in the data display indicators. Any system resource
that has a corresponding select key on the console can be
displayed while in stop state. Once data has been entered
into the console data buffer, it remains there until other
data is entered. The console data buffer can be displayed
at any time, during either run state, wait state, or stop
state, by pressing the Data Buffer key.

After a power-on reset, the data display indicators are all
set on, and the level indicators are set off.

In run state and

wait state, displayed
all the time. In stop
state, displayed when
the Data Buffer key

is pressed.
Display
Buffer
Console
Data
Buffer IAR displayed in

Stop state

Displayable areas

or
Message from Set Console
Data Lights Instruction.

Console 5-3

Indicators
Data Display

B cCheck

® When the processor is in run state, the
console data buffer is displayed in the
data display indicators.
® When the processor enters stop state,
the IAR is displayed unless another
system resource is selected.
® To display the contents of the console
data buffer after a system resource has
been displayed, press the Data Buffer
key.
On when a machine check, program check,
or powet/thermal warning class interrupt
has occurred while in process mode or in
stop-on-error mode. The check indicator
remains on until either the check condition
is cleared, or any console key is pressed
while in the stop state. The check condition
is cleared by the Reset key, Load key, or the
execution of a Copy Processor Status and
Reset instruction (which resets the check
bits). If a main storage display of a location
causes a parity error, an invalid storage
address, or a specification check, the check
indicator is turned on, or appears to stay on.

Load [w.m ”Run ' 1PL Source
Primary

~

Load

el

el ™ ®

Alternate
Mode

Auto IPL oft
Normal
Diagnostic.

)

o)

1 2

w
IS

10 11 12 13 14 16 *

©
O
O
©

O

O OO0J0OO 0OJloo 0O

Checx Reset
et

_ e

O

Level O Level 1 Level 2 Level 3 Stoj Instruct
Adc Step

Store Data Console Start Stop
Buffer Interrupt
-_/
p On o
dress

PSW Op Rey I CIAR] SAR [0 [w :
AKR

—
R1](RZ‘

3
S

R5 R6

C

5-4 GA34-0022

(

o

»

Combination Keys/Indicators
There are nine combination key/indicators:

Level 0,1,2,and 3
Stop

Stop On Address
Instruct Step
Check Restart
Stop On Error

Level 0—3 The current active level is always displayed
by one of the level indicators. When in the
stop state, pressing any of the level keys
causes that level to be selected and the
associated indicator is turned on.
This indicator is on when the processor is
in the stop state. Stop state is entered in
the following ways:
® By pressing the Stop key.
— In run state the current instruction
is completed.
— In wait state, stop state is entered
directly.
® By execution of the Stop instruction
(diagnostic mode only).
® When an address compare occurs in
stop-on-address mode.
® When an error occurs in stop-on-error
mode.
® By pressing the Reset key.
When a power-on reset occurs.
® By selecting the Instruction step mode
while in run state.

Stop

IPL Source

Primary
Alternate

Mode

Auto IPL
Normal
Diagnostic

o)

Ott

)
)

9 10

1"

12 13 14 15

AgLoo@@oow@ooo

rS!ore Data) Console Start Stop
Buffer interrupt
_ O E
Lovel 0 Y Level 1)(Lever 2 Y(Level 3){Stop On Y(tnstruct){Check Stop On
Address Step Restart Error
oo Jo Jlo Jo Jo Jo Jo
PSW CIAR ” 1 2 l 3 j
- I\ Y, _ Y,
LSR akR (AR Y Man) s e)7
Storage
L DA J L_ _J Q

[A (e

O

It
J J

N

Console 5-§

The Stop On Address key and the Instruct Step key are
mutually exclusive. When one is pressed, the other is reset
if it was on.

Stop on
Address

This key places the processor in stop on
address mode. Pressing the Stop On Address
key a second time resets stop on address
mode and turns off the indicator.

Instruct Step Pressing the Instruct Step key places the pro-

cessor in instruction step mode and turns the
Instruct Step indicator on. The Stop On
Address indicator is turned off if it was on.

If the processor is in run state, pressing this key causes
the processor to enter stop state. Pressing the Instruct
Step key a second time resets instruction step mode, the
processor remains in stop state.

To operate in instruction step mode:

® Key the desired starting address and store into the IAR.

® Press the Instruct Step key.

® Press the Start key. The instruction located at the
selected address is executed, the processor returns to
stop state. The IAR is updated to the next instruction
address, this address is displayed in the data display
indicators.

e FEach subsequent depression of the Start key causes one
instruction to be executed and the IAR is updated to
the next instruction address.

Stop On Address Mode
Processor must be in stop state to set the compare address.

1. Press Stop On Address Key.

2. Key in selected address.

3. Press Store Key. The selected address is placed in the
stop on address buffer.

4. Press Start Key. Execution begins at current IAR
address on the current level.

When the selected address is loaded into the IAR, the
processor enters stop state. To exit stop state press the
Start key; execution begins at the next sequential address.

Note. When running in Stop on Address Mode, instruction
execution time is increased by 7.8 microseconds per
instruction.

5-6 GA34-0022

IPL Source

Run
Primary
Alternate
Mode
Auto IPL.

Normal

Diagnostic @

o _JT..

Off

10 11

12 13 14 !a

060 0O 0

00

(0O 00O

Level 1

Op Reg

>
Pl
o

0 £

[S(ore \\
—

Data
Buffer

Console
Interrupt
+ot

Start ' Stop

o_Jo Jc

Stop On Instruct
Address Step,

(Check]
Restart
ol/llo Jo

Stop On
Error

B

]

)

AR Main
Storage

il

]
N

ﬁﬁ.@

A\ J\
P
e

;_/

L

SENE
EEE

-
oy 1"'

P
. o

C

The Check Restart key and the Stop On Error key are
mutually exclusive. When one is pressed the other is reset

if it was on.

Check Restart

Stop On
Error

Pressing this key places the processor in
check restart mode. While in this mode, a
program check, or machine check, or a
powei/illerinai warning ciass inierrupi
causes the processor to be reset and execu-
tion to restart at address zero on level zero.

Note. The power/thermal warning class
interrupt is controlled by the summary mask.

Pressing the Stop On Error key places the
processor in stop on error mode. Any pro-
gram check, machine check, or power/
thermal warning causes the processor to
enter stop state. To determine the cause

of the error, display the PSW (see table).

To restart the processor, press the Reset

key then the Start key. Pressing only the
Start key allows the processor to proceed
with the class interrupt as if stop mode has
not occurred. Note that the check indicator
may have been turned off while in stop state.
After the class interrupt routine is completed,
control may be returned to the instruction
that caused the error and an attempt to re-
execute the instruction may be made. Note
that some instructions are not re-executable
because operand registers or storage locations
were changed before the instruction was
terminated because of the initial error. In
these cases, the operator must be familiar
with the program because manual restoration
of affected locations must be made before
restart is attempted.

Note. The power/thermal warning class
interrupt is controlled by the summary mask.

Processor Status Word (PSW) Table

Mode

M

Alternate
Auntn 1P}
Normal
Diagnosuic

FE e
I Primary
] canl

E

9

10 1 12 13 14 15

J
—

O O OO0JJOO 0 0JO

O 00Jl0O 00O

Check

Bit Meaning Category

0 Specification check Program check

1 Invalid storage address Program check

2 Privilege violate Program check

3 Not used

4 Invalid function Soft exception
(may be program check)

5 Not used

6 Stack exception Soft exception

7 Not used

8 Storage parity check Machine check

9 Not used

10 CPU control check Machine check

11 I/O check Machine check

12 Sequence indicator Status flag

13 Auto-IPL Status flag

14 Not used

15 Power/thermal warning Power/Thermal

Bits not used are always zero.

Reset Store Data Console Start R Stop
Butfer Interrupt
O . v O
—___/
Level 0 Y Level t){ Levei 2 Level 3)(Stop On Y[tnstruct) Check W Stop On
Address Step Restart Error .
o Jo Jo Jo Jo Jo Joach
PSwW lo., Reg) [CIAR \(sAr][) \[1 ” 2 [3
— J\
=
(s ([AkRr ag) wain a 5 R E
Storage
- AN L AN J J L“_J L_J
—
RO l R1 (w2]Eﬂ [8][9 A B
J
R4 (rs R6 \rw W[c) (e l F]
e J J VAN

Console

57

Keys and Switches . A
Reset This key initiates a system reset that per-

forms the following functions: Loa War un IPL Source wer On
® [nterrupt mask set to all levels enabled. o o JLO J m
® LSR on level zero — indicators set to Alternate On
zero, summary mask enabled, supervisor Load Mode
state and in-process flag turned on, trace :;:'“:‘LTL ott
disabled. Diagnostic
® LSRs for levels 1-3 set to zeros.
® PSW set to zero.
® SAR set to zeros. N /
® CIAR set to zeros.
® IAR on level zero ~ set to zeros. 4)
. - Y
After the system reset is completed, the processor is placed 6 1 2 3 4 5 6 1 8 9 w0 n 1213 a1
in the stop state with stop indicator on. © O OOJOO O OO0 0OJIOO 0O
The following resources are not effected by system
reset . Check Reset Store Data asa le Start Stop
Butfer Interrupt
® General registers (all levels) O B | ﬂJ O
L J IARS (lCVels 1“3) Level 0) rLevel 1 Level 2 Y Level 3 Stop On (ms!ruc((Check Stop On
H Address Step Restart Error

® Main storage O e e) O J o Jlo O O

e Console data buffer g — =

e Stop on Address buffer. o) (oo (ar O\ (orm]6 N7 J —

S . . .

ﬂ tore :I‘l}xs key is effective (?nly VS{hen the processor L L U L L
is in stop state. Pressing this key causes the r\—‘LSR e o (2 e (e)
last data entry to be stored in the last Storage
selected resource. L L U)L

Data Buffer Pressing this key causes the contents of the TR ICERICERTE) (9 A e)
console data buffer to be displayed in the
data display indicators. 4 > L < < <4 L-—<

Console The effect of this key depends on the state [FM RS J RO R [C [D [E F

Interrupt of the processor. If t]?e processor is in the L))) y
stop or load states, this key has no effect. L

If the processor is in the run or wait state
and the summary mask is enabled, a console
class interrupt occurs.

Note. If the summary mask is enabled by
the program while the key is being activated,
a console class interrupt occurs.

Start Effective in stop state only. Stop state is
exited and the processor resumes execution
at the address in the IAR on the current
level. If stop state was entered from system
reset, execution begins at address zero,
level zero. If stop state was entered from
wait state, the processor returns to wait
state.

Note. The Reset and Console Interrupt keys have an indica-
tion (+++) on the face of the keys. This signifies that addi-
tional pressure must be used to activate these keys. This is
to minimize the possibility of the operator inadvertently
activating these functions.

5-8 GA34-0022

e/

PSW

!m . :

Op Reg

CIAR

SAR

Main

Storage

Pressing this key selects the processor status
word. The contents of the PSW are displayed
in the data display indicators. Data cannot
be stored into the PSW from the console.

Pressing this key selects the Op register and
displays the contents in the data display
indicators. Data cannot be stored into the
Op register irom iie cousvio.

Pressing this key after entering stop state
causes the address of the instruction just
executed to be displayed. Data cannot be
stored into the CIAR from the console.

Pressing this key while in stop state dis-
plays the contents of the storage address
register. An address can be stored into the
SAR to address main storage for display or
store operations. Bit 15 of the SAR cannot
be set from the console.

Pressing this key selects main storage as the
facility to be accessed by the console. When
this key is pressed, the contents of the main
storage location addressed by the SAR is
displayed in the data display indicators.
Procedures for displaying and storing main
storage are provided in subsequent sections
of this chapter.

Primary

Alternate
Load Mode
Auto IPL ott
) NIl
Diagnostic SO
T
(0 2 3 4 7 9 10 1N 1213 14 15

00 00000000 00O 60

Check Reset Store Data Console Start Stop
Buffer fnterrupt
.
(Level 0)(Level 1 LeveIZ ((Lever 3)(stop On Y[tnstruct) (Check Stop On
Address S(ep Reslarl Error
o o JO IO

\'@Q

aane
.
0

[O

RO R1 ’ R2 R3 9 B
R4 ‘RS (Rre \I R7 llc l 0
— _J -

Console 5-9

Level Dependent Keys

The following keys select registers that are duplicated in
hardware for each of the four interrupt levels:

e [SR
e JAR
® General purpose registers 0—7

Pressing any of these keys, once a level has been selected,
causes the contents of that register to be displayed in the
data display indicators.

The level status register (LSR) is displayable only; data
cannot be stored into this register.

The AKR key is not functional on the 4953 Processor
and does not respond with an audio tone when pressed.

Bit 15 of the [ARs cannot be changed from the console.

Pressing the Store key after selecting an LSR or AKR
results in no action taken and no audio tone response.

5-10 GA34-0022

¢

Sy,

P

Data Entry Keys

C The sixteen data entry keys are used to enter data into the
s selected resource.

Example:
Data to be entered: F3AS8

Action

Press data entry key F
Press data entry key 3
Press data entry key A

Press data entry key 8
C Legend:
@ - Indicator on

QO - Indicator off

Datra display indicators

4 5 9 n 12 13

14 1ﬂ

OO 00000000 O0jee

o0

r
0 1 2 3

9 10 1 1213

14 15

J0000jee 0800

o0

9 100 1 1213

14 15}

00 0600 0000

00

~
®

9 10 11 12 13

14 15,

o0 00CO0000 00/@0

o)e)

Console

5-11

Displaying Main Storage Locations
® Processor must be in stop state.

Storing Into Main Storage
® Processor must be in stop state.

The current contents of the SAR are displayed in the

Key in the selected address (four hex characters). The
address is displayed in the data display indicators.

The address displayed in the data display indicators is

The contents of the addressed storage location are
displayed in the data display indicators.

Key in the data that is to be stored into main storage.
This data is displayed in the data display indicators.

The data that is displayed is stored at the selected stor-
age location. Each subsequent pressing of the Store key
causes the SAR to be incremented by +2, and the data

~

1. Press the SAR key.m 1. Press the SAR key.
The contents of the SAR are displayed in the data
display indicators. data display indicators.
2. Key in the selected address (four hex characters). 2.
This address is displayed in the data display indicators.
3. Press the Store key.ﬂ 3. Press the Store key. B
The address that is displayed is stored into the SAR.
4. Press the Main Storage key. stored into the SAR.
The contents of the addressed storage location are 4. Press the Main Storage key.
displayed in the data display indicators. To display
sequential main storage locations, continue pressing the
Main Storage key. The storage address is incremented S.
by +2 each time the Main Storage key is pressed, and
the contents of the addressed location are displayed. 6. Press the Store key.ﬂ
stored at that location is displayed.
-
Load) Wait | Run l p”ma(v\PL Source

©_Jo Jo)

Diagnost

-

Alternate O
«

Load Mol
Auto IPL
Normal
1

J

-

J

1 4 5 6

9

1011 12 13 14 13

(Oo\

5 OJlo O oojLo 00Jloo 00)

Check [eset Store
o 8]

J

Data
Buffer

Console Start Stop
Interrupt
O

Level 0) r_evel 1)(Lever2)f Level 3

o Jo Jo J©

Stop Onj
Address

@)

(Tnstruct) (Check Stop On
Step Restart

Error
©o_J©

PSW Op Reg)(CIAR)(SAR)
N

ﬁ | | 13
A J
Y4 \[7 N

S

SR AKR Main)
Storage
achy
ro N\ (ri J]{

—

Lr—m RS J]

&
&

a8
Ean

5-12 GA34-0022

ity
»

C

O

Displaying Registers
® Processor must be in stop state.
1.

2.

Storing Into Registers
® Processor must be in stop state.

Select the proper level by pressing the appropriate 1. Select the proper level by pressing the appropriate Level

Level key.

key.ﬂ

The contents of any register associated with the 2. Press the key for the register where data is to be stored.

selected level can now be displayed by pressing the

register key.

The contents of that register are displayed in the data
display indicators. B}

Press the desired register key. The contents of that 3. Key in the data that is to be stored. This data is dis-

register are displayed in the data display indicators.

played in the data display indicators.
4. Press the Store key.

The data that is displayed is stored into the selected
register.

~

@

o Jo]

i

On
Load

Auto IPL O

)u s

(1[_\] P
" LO” h

_/

3 4 5 6 7 8 9 10 " 1213 14 15

(0 1
[@Xe)

50@0@@@0 oJloo 00

Check

Qg

Reset (Store (Data)[Console Y(Start Stop
Butter Interrupt

Level O

ol

evel 1 (Lw el 2 Level 3 Stop On Instruct Check (S(op On
Address lu Restart Error
o Jo Jo JI©)

(O keq Y{Clag SAR 0 [1
L -
N

8
e
Bl BEEN
TOOOo000

Console 5-13

5-14 GA34-0022

o,
~

The instructions for the IBM 4953 Processor are described
in this chapter. A complete listing of instruction formats
is contained in Appendix B. Instruction timings are con-
tained in Appendix A. Indicator settings are listed for
each instruction. For additional indicator information,
refer to Indicators in Chapter 2.

Exception Conditions
Exception conditions that might occur during instruction

execution are shown in abbreviated form with each instruc-

tion description. Refer to the following sections for a
detailed description of these conditions.

Program Check Conditions

Invalid Function
(1) An illegal operation code or function combination is
encountered during instruction execution, or (2) while in
supervisor state, the processor attempts to execute one of
the following instructions: operation code 01011 with a
function of 0001 or 1001.

A program check class interrupt occurs with invalid
function (bit 4) set in the PSW. See Processor Status Word
in Chapter 3 for a list of invalid functions.

Invalid Storage Address

Instruction Word or Operand. One or more words of the
instruction or the effective address is outside the installed
storage size of the system. The instruction is suppressed
unless otherwise noted in the individual instruction
description.

A program check class interrupt occurs with invalid
storage address (bit 1) set in the PSW.

Privilege Violate

Privileged Instruction. A privileged instruction is encoun-

tered while in problem state. The instruction is suppressed.

A program check class interrupt occurs with privilege
violate (bit 2) set in the PSW. See Processor Status Word
in Chapter 3 for a list of privileged instructions.

Chapter 6. Instructions

Specification Check

Operand Address. The generated effective address has
violated an even-byte boundary requirement.

Indirect Address. When using addressing mode (AM=11),
the indirect address is not on an even-byte boundary.

The instruction is suppressed unless otherwise noted in
the individual instruction description. A program check
class interrupt occurs with specification check (bit 0) set
in the PSW.

Note. A specification check can also occur during a Super-
visor Call (SVC) instruction if the SVC LSB pointer or the
SVC SIA pointer violates an even-byte boundary
requirement.

Soft Exception Trap Conditions

Invalid Function

(1) Operation code 00100 is attempted

(2) operation code 10110 is attempted or

(3) in supervisor state, operation code 01011 with a func-
tion of 0011 or 1011 is attempted. The instruction is
suppressed. A soft-exception-trap class interrupt occurs
with invalid function (bit 4) set in the PSW. See
Processor Status Word in Chapter 3 for a list of invalid
functions.

Stack Exception
(1) The stack is full and a Push instruction or a Store
Multiple (STM) instruction is attempted, (2) the stack is
empty and a Pop instruction or a Load Multiple and Branch
(LMB) instruction is attempted, or (3) the stack cannot
contain the number of words to be stored by a Store
Multiple instruction.

The instruction is suppressed. A soft-exception-trap
class interrupt occurs with stack exception (bit 6) set in
the PSW.

Note. When the AM field is equal to 01, the register speci-
fied by the RB field is incremented before the class interrupt
occurs.

Instructions 6-1

Instruction Termination or Suppression

Exception conditions that occur during instruction process-
ing might cause the instruction to be terminated or sup-
pressed. When an instruction is terminated, partial execu-
tion has taken place and may have caused a change to
registers, indicators, or main storage. When an instruction
is suppressed, there has been no execution, therefore, no
changes. Refer to Exception Conditions in the previous
section.

Compatibility
The IBM 4955 Processor has more features and instructions
than the IBM 4953 Processor. Consideration should be
given to the differences between the processors when writing
programs to permit possible future replacement with a larger
system.

The following section describes the action taken by the
IBM 4953 Processor when instructions that apply to the
IBM 4955 Processor are encountered.

Soft Exception Trap
The following instructions cause a soft exception trap class
interrupt with invalid function, bit 04 in the PSW, set to 1.

Op Code Function
00100 all
01011 0011, 1011 (supervisor state only)

6-2 GA34-0022

No Operation

In supervisor state the following instructions are recognized
and executed as a No Operation instruction.

Op Code Function

01011 0010, 0100, 1010, 1100
01100 110

01111 10010, 11010

Program Check

1. In supervisor state the following instructions cause a
program check class interrupt with invalid function,
bit 04 in the PSW, set to 1.

Op Code Function
01011 0001, 1001
10110 all

2. In problem state the following instructions cause a
program check class interrupt with privilege violate,
bit 02 in the PSW, set to 1.

Op Code Function

01011 0001, 0010, 0011, 0100, 1001, 1010, 1011,
1100

01100 110

01111 10010, 11010

Instruction Descriptions

The following descriptions are in alphabetical sequence
based on assembler mnemonics. However, extended

mnemonics are listed under the appropriate machine instruc-

tion. For example: branching and jumping instructions.

Add Byte (AB)
AB reg,addrd
addr4,reg

Operation Code R RB | AM |X |Function
11000 110
0 4 5 7 8 9 10111213 15

1 = result to storage } ‘

0 = result to register

l‘: =T T T T TAddress/Displacement :
L _Displacement 1 | Displacement2 _
16 23 24 31

An add operation is performed between the least significant
byte of the register specified by the R field and the location
specified by the effective address in main storage. (See
Effective Address Generation in Chapter 2.) Bit 12 of the
instruction specifies the destination of the result. The
source operand and high-order byte of the register are
unchanged.

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the byte. If no carry is detected, the
carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one byte; i.e., if the sum is less than -27 or
greater than +27-1.

If an overflow occurs, the result contains the correct
low-order eight bits of the sum; the carry indicator con-
tains the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address).

AB
ABI

Add Byte Immediate (ABI)
ABI byte,reg

Operation code R Immediate
00000

0 4 5 7 R 15

The immediate field is expanded to 16 bits by sign propaga-
tion to the eight high-order bits. The field is then added

to the contents of the register specified by the R field. The
result is placed in the register specified by the R field.

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the word. If no carry is detected,
the carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one word; i.e., if the sum is less than -2!5
or greater than +215-1.

If an overflow occurs, the result contains the correct
low-order 16 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
No program checks occur.

Instructions 6-3

ACY

Add Carry Register (ACY)

ACY reg
Operation code R2 Function
011 10]00°0 01100
0 4 5 7 8 10 11 15

The value of the carry indicator on entry is added to the
contents of the register specified by the R2 field, and the
result is placed in the register specified by the R2 field.
Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

Programming Note. This instruction can be used when
adding multiple word operands. See Indicators — Multiple
Word Operands in Chapter 2.

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the word. If no carry is detected,
the carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one word; i.e., if the sum is less than -2!5
or greater than +215-1,

If an overflow occurs, the result contains the correct
low-order 16 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even. Unchanged.
Negative. Changed to reflect the result.
Zero. If on at entry, changed to reflect the result. If off

at entry, it remains off.

Program Check Conditions
No program checks occur.

64 GA34-0022

PrETY

Add Doubleword (AD)

Register/Storage Format

AD reg,addr4
addr4 reg

Operation Code R RB | AM | X |Function
11010 110

0 4 5 7 8 9 10111213 15

1 = result to storage } l

0 = result to register

{: T 7 7 7 7 Taddress/Displacement |
L Displacement 1 J_ Displacement 2 JI
16 23 24 31

An add operation is performed between the register pair
specified by the R field (R and R+1) and the doubleword
in main storage specified by the effective address. (See
Effective Address Generation in Chapter 2.) Bit 12 of the
instruction specifies the destination of the result. The
source operand is unchanged.

If the R field equals 7, register 7 and register 0 are used.

Indicators

Carry. Turned on if a carry is detected out of the high-order
bit position of the doubleword. If no carry is detected, the
carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in the doubleword;i.e., if the sum is less than
-231 or greater than +231-1.

If an overflow occurs, the result contains the correct
low-order 32 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

AD

Storage/Storage Format
AD addr5,addr4

Operation code RBI |RB2 |AMI |AM2 | Fun
1 01 01 10

0 4 5 7 8 9 101112131415

o Address/Displacement | _]
bo o o o SIS |
L Displacement 1 _ J_ _ Displacement2 _
16 2324 31

r———= ";“;j— T Premaoooy T |
_rgis/Dl.zla_cann_t_ _————n

L _Displacement 1"~ T °_ "Displacement2 _ |
32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (See Effective Address
Generation in Chapter 2.) Doubleword operand 1 is added
to doubleword operand 2. The result replaces operand 2.
Operand 1 is unchanged.

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the doubleword. If no carry is
detected, the carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in the doubleword; i.e., if the sum is less than
-23! or greater than +231-1.

If an overflow occurs, the result contains the correct
low-order 32 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand. The
instruction is terminated. If RB1 and RB2 specify the same
register and AM1=01, the register is incremented before the
program check interrupt occurs.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-5

AW

Add Word (AW)
Register/Register Format

AW reg,reg
Operation code R1I R2 Function
01110 01 000
0 4 5 7 8 10 11 15

The contents of the register specified by the R1 field are
added to the contents of the register specified by the R2
field. The result is placed in the register specified by the
R2 field. The contents of the register specified by the R1
field remain unchanged if R1 and R2 do not specify the
same register.

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the word. If no carry is detected, the
carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one word;i.e., if the sum is less than -213
or greater than +215-1.

If an overflow occurs, the result contains the correct
low-order 16 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
No program checks occur.

6-6 GA34-0022

Register/Storage Format .
AW reg,addrd (Y
addr4 reg

Operation Code R RB |AM | X |Function
11001 110

0 4 5 7 8 9 10111213 15

1 = result to storage
0 = result to register

== = = e Diplacement T 1
b~ pmcemenii] Displacemeni2
L _Displacement 1 | ____ Jisplacement & J
16 23 24 31

An add operation is performed between the register,
specified by the R field and the location specified by the
effective address in main storage. (See Effective Address
Generation in Chapter 2.) Bit 12 of the instruction speci-
fies the destination of the result. The source operand is
unchanged.

Indicators

o

Carry. Turned on if a carry is detected out of the high-
order bit position of the word. If no carry is detected, the
carry indicator is reset.

ot
A

Overflow. Cleared, then turned on if the sum cannot be
represented in one word; i.e., if the sum is less than -21°
or greater than +215-1.

If an overflow occurs, the result contains the correct
low-order 16 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

C

Storage to Register Long Format

AW longaddr,reg
Operation code R1I R2 X | Function
011 01 1110
o EAN 78 01112 15
0 = direct address
1 = indirect address
Address
16 31

The contents of the main storage location specified by an
effective address are added to the contents of the register
specified by the R1 field. The result is placed in the
register specified by the R1 field.

The effective main storage address is generated as
follows:

1. The address field is added to the contents of the
register specified by the R2 field. If the R2 field equals
zero, no register contributes to the address generation.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11=0 (direct address). The result from step 1 is
the effective address.

Bit 11=] (indirect address). The result from step 1 is
the address of the main storage location that contains
the effective address.

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the word. If no carry is detected, the
carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one word; i.e., if the sum is less than -2!5
or greater than +2'5-1.

If an overflow occurs, the result contains the correct low-
order 16 bits of the sum; the carry indicator contains the
high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

AW

Storage/Storage Format
AW addrS,addr4

Operation code RB1 |RB2 |AM1 |AM2 | Fun

1 0101 00
0 15 7 8 0 101112121415
e T _Ac;:irf.:.;s/_D-is;.laz-em—en.-lT ————— !
U iplacement || Displacerment 2 |
L Displacement 1] __ D! isplacement 2 _
16 2324 31
O™ ™ 77 T AddressDisplacement 1
- “Displcement 1 [Displacement2 |
L Displacement T _ [_ Displacement2"__
32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (See Effective Address
Generation in Chapter 2.) Word operand 1 is added to
word operand 2. The result replaces operand 2. Operand
1 is unchanged. '

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the word. If no carry is detected, the
carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one word;i.e., if the sum is less than -2!5
or greater than +215-1.

If an overflow occurs, the result contains the correct
low-order 16 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
The instruction is terminated. If AM1 equals 01 and the
operand 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-7

AWCY

Add Word With Carry (AWCY)
AWCY reg,reg

Operation code R1 R2 Function
01110 01001
0 4 5 7 8 10 11 15

This instruction adds three terms together:

(R1) the contents of the register specified by the R1 field.
(R2) the contents of the register specified by the R2 field.

C the value of the carry indicator at entry.

The contents of the register specified by the R1 field are
unchanged if R1 and R2 do not specify the same register.
The final result replaces the contents of the register speci-
fied by the R2 field.

Programming Note. This instruction can be used when
adding multiple word operands. See Indicators — Multiple
Word Operands in Chapter 2.

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the word. If no carry is detected,
the carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one word;i.e., if the sum is less than -2!5
or greater than +215-1.

If an overflow occurs, the result contains the correct
low-order 16 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even. Unchanged.

Zero. If on at entry, set to reflect the result. If off at
entry, remains off.

Negative. Changed to reflect the result.

Program Check Conditions
No program checks occur.

6-8 GA34-0022

i,
N

Em ity 1

Add Word Immediate (AWI)
Register Inmediate Long Format
AWI word,reg|,reg]
Operation code R1 R2 Function
0 i 1 11 5 0 6 0 1
0 45 7 8 10 11 15
Immediate
16 31

The immediate field is added to the contents of the register
specified by the R1 field. The result is placed in the register
specified by the R2 field. The contents of the register
specified by the R1 field are unchanged if R1 and R2 do
not specify the same register.

Indicators

Carry. Tumed on if a carry is detected out of the high-
order bit position of the word. If no carry is detected, the
carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one word; i.e., if the sum is less than -2*3
or greater than +215-1.

If an overflow occurs, the result contains the correct
low-order 16 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word.

AWI

Storage Immediate Format
AWI word,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

Operation code RB | AM | Function

U1 UV 0fo OO0 i 6031

0 4 5 7 8 9 101112 15
Immediate

16 31

Format with appended word for
effective addressing (AM = 10 or 11)

Operation code RB | AM | Function
0100 0j0 00 1 001
0 4 5 7 8 9 1011 12 15

Address/Displacement |
Displacement 1 I Displacement 2
16 2324 31

Immediate

32 47

The immediate field is added to the contents of the loca-
tion specified by the effective address. (See Effective
Address Generation in Chapter 2.) The result replaces the
contents of the storage location specified by the effective
address.

Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

The immediate operand is unchanged.

Indicators

Carry. Turned on if a carry is detected out of the high-
order bit position of the word. If no carry is detected, the
carry indicator is reset.

Overflow. Cleared, then turned on if the sum cannot be
represented in one word; i.e., if the sum is less than -2'3
or greater than +2'5-1.

If an overflow occurs, the result contains the correct
low-order 16 bits of the sum; the carry indicator contains
the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-9

B
BAL

Branch Unconditional (B)

B longaddr
Extended Assembler Mnemonic
BX veon Branch External
Operation code R2 X | Function
0110 1]0 00 0010
0 4 5 7 8 101112 15
0 = direct address
1 = indirect address [
Address
16 31

An effective branch address is generated and loaded into
the instruction address register, becoming the next instruc-
tion to be fetched.

The effective branch address is generated as follows:

1. The address field is added to the contents of the
register specified by the R2 field to form a main stor-
age address. If the R2 field equals zero, no register
contributes to the address generation. The contents
of R2 are not changed.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bir 11=0. The result from step 1 is a direct address and
is loaded into the instruction address register.
Bit 11=]. The result from step 1 is an indirect address.
“The contents of the main storage location specified by
the result are loaded into the instruction address
register.

Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word or effective
branch address.

Specification Check. Even byte boundary violation
(indirect address or branch address).

6-10 GA34-0022

Branch and Link (BAL)
BAL longaddr reg C
Extended Assembler Mnemonic o
BALX vcon,reg Branch and Link External
Operation code | p; R2 x | Function
01101 0011
0 4 5 7 8 1011 12 15
0 = direct address } I
1 = indirect address
Address
16 31

The updated value of the instruction address register (the

address of the next sequential instruction) is stored into

the register specified by the R1 field. An effective branch

address is then generated and loaded into the instruction

address register, becoming the next instruction to be fetched.
The effective branch address is generated as follows:

1. The address field is added to the contents of the
register specified by the R2 field to form a main stor-
age address. If the R2 field equals zero, no register {
contributes to the address generation. The contents of L}
R?2 are not changed.

2. Instruction hit 11 is tested for direct or indirect
addressing:

Bit 11=0. The result from step 1 is a direct address
and is loaded into the instruction address register.

Bit 11=1. The result from step 1 is an indirect address.
The contents of the main storage location specified by
the result are loaded into the instruction address
register.

N W

Programming Note. If R1 and R2 specify the same register
the initial contents are used in effective address computa-
tion and subsequently overwritten by the return data.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word or effective
branch address. No branch is taken, but the contents of
the register specified by the R1 field are still changed.

Specification Check. Even byte boundary violation
(indirect address or branch address). No branch is taken \
but the contents of the R1 register are changed. C

Branch and Link Short (BALS)
BALS (reg,jdisp)*

(reg)*
addr*

Operation code R Word displacement
11111
0 4 5 7 8 15

The updated contents of the instruction address register
(the location of the next sequential instruction) are stored
in register 7.

Bit 8 of the word displacement field is propagated left
by 7 bit positions and a zero is appended at the low order
end, resulting in a 16-bit word. (Word displacement is
converted to a byte displacement.) This value is added to
the contents of the register specified by R to form an
effective address. The contents of the storage location
specified by the effective address are stored into the instruc-
tion address register, and become the address of the next
instruction to be fetched.

Programming Note. If the implied register (R7) is used as a
base register, the initial contents of R7 are used in effective
address computation and subsequently overwritten by the
return data.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Effective address. Branching does
not occur but storing of the updated instruction address
into R7 does occur.

Specification Check. Even byte boundary violation (effec-
tive address). Branching does not occur but storing of the
updated instruction address into R7 does occur.

BALS

Instructions

6-11

BC

Branch On Condition (BC)

Operand
Mnemonic syntax Instruction name
BC cond,longaddr Branch on Condition
Extended Operand
Mnemonic syntax Instruction name
BE longaddr Branch on Equal
BOFF longaddr Branch if Off
BZ longaddr Branch on Zero
BP longaddr Branch on Positive
BMIX longaddr Branch if Mixed
BN longaddr Branch if Negative
BON longaddr Branch if On
BEV longaddr Branch on Even
BLT longaddr Branch on Arith-
metically Less Than
BLE longaddr Branch on Arith-
metically Less
Than or Equal
BLLE longaddr Branch on Logically
Less Than or Equal
BCY longaddr Branch on Carry
BLLT longaddr Branch on Logically

Less Than

6-12 GA34-0022

Condition
field

bits (see)
Any value
listed below

Condition
field

bits (see)
000

000

000

001

001

010

010

011

100

101

110

111
111

Operation code | Cond R2 x | Function ;
01101 0000 (A
0 4 5 7 8 1011 12 15 "
0 = direct address
1 = indirect address
Address
16 31

This instruction tests the condition of the various indicators
(LSR bits 0—4). If the condition tested is met, the effective
branch address is loaded into the instruction address
register and becomes the next address to be fetched.

If the condition tested is not met, the next sequential
instruction is fetched.

The effective branch address is generated as follows:

1. The address field is added to the contents of the
register specified by the R2 field to form a main stor-
age address. If the R2 field equals zero, no register
contributes to the address generation. The contents
of R2 are not changed.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11=0. The result from step 1 is a direct address
and is loaded into the instruction address register.

Bit 11=1. The result from step 1 is an indirect address.
The contents of the main storage location specified by
the result are loaded into the instruction address
register.

PNETN
A

Indicators
All indicators are unchanged.

Program Check Conditions

Invalid Storage Address. Instruction word or effective
address.

Specification Check. Even byte boundary violation
(indirect address or branch address).

O

Branch On Condition Code (BCC)

BCC cond,longaddr
Extended mnemonic
BNER longaddr Branch on Not Error

(CC field = 111)

Operation code cC R2 X | Function
01101 0100
0 4 5 7 8 1011 12 15

0 = direct address
1 = indirect address

Address

16 31

The value of the CC field is compared to the even, carry,
and overflow indicators. These indicators hold the I/O
condition code: (1) following an I/O instruction or (2)
following an I/O interrupt.

CC bit Indicator
5 Even
6 Carry
7 Overflow

If the conditions match, an effective branch address is
generated and loaded into the instruction address register,
becoming the next instruction to be fetched.

If the conditions do not match the next sequential
instruction is fetched.

The effective branch address is generated as follows:

1. The address field is added to the contents of the register

specified by the R2 field to form a main storage address.

If the R2 field equals zero, no register contributes to
the address generation. The contents of R2 are not
changed.

2. Instruction bit 11 is tested for direct or indirect
addressing:
Bit 11=0. The result from step 1 is a direct address and
is loaded into the instruction address register.
Bit 11=1. The result from step 1 is an indirect address.
The contents of the main storage location specified by
the result are loaded into the instruction address
register.

BCC

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word or effective
address.

Specification Check. Even byte boundary violation
(indirect address or branch address).

1/0 Condition Codes

The I/O condition codes are summarized in the following
tables. Refer to Chapter 4 for a detailed description of
each condition code value. Also refer to the specific I/O
device descriptions because some devices do not report all
condition codes.

Condition Codes Reported After 1/0 Instruction.

Condi-

tion Indicators

Code Even Carry Overflow Meaning

0 0 0 0 Device not attached
1 0 0 1 Busy

2 0 1 0 Busy after reset

3 0 1 1 Command reject

4 1 0 0 Intervention required
5 1 0 1 Interface data check
6 1 1 0 Controller busy

7 1 1 1 Satisfactory

Condition Codes Reported During an I/O Interrupt.

Condi.

tion Indicators

Code Even Carry Overflow Meaning

0 0 0 0 Controller end

1 0 0 1 PCI (program control
interrupt)

2 0 1 0 Exception

3 0 1 1 Device end

4 1 0 0 Attention

5 1 0 1 Attention and PCI

6 1 1 0 Attention and exception

7 1 1 1 Attention and device end

Instructions 6-13

BNC

Branch On Not Condition (BNC)

Condition
Operand field bits
Mnemonic syntax Instruction name (see)
BNC cond,longaddr Branch on Not Any value
Condition listed below
Condition
Extended Operand field bits
Mnemonic syntax Instruction name (see)
BNE longaddr Branch on Not Equal 000
BNZ longaddr Branch on Not Zero 000
BNOFF longaddr Branch if Not OFF 000
BNP longaddr Branch on Not Positive 001
BNMIX longaddr Branch on Not Mixed 001
BNN longaddr Branch on Not 010
Negative
BNON longaddr Branch if Not On 010
BNEV longaddr Branch on Not Even 011
BGE longaddr Branch on Arith- 100
metically Greater
Than or Equal
BGT longaddr Branch on Arith- 101
metically
Greater Than
BLGT longaddr Branch on Logically 110
Greater Than
BLGE longaddr Branch on Logically 111
Greater Than or Equal
BNCY longaddr Branch on No Carry 111

Operation code | Cond R2 X | Function

01101 00 01
0 4 5 7 8 1011 12 15
0 = direct address
1 = indirect address
Address
16 31

6-14 GA34-0022

This instruction tests the various indicators (LSR bits
0--4). If the condition tested is met, the effective branch
address is loaded into the instruction address register and
becomes the next address to be fetched.

If the condition tested is not met, the next sequential
instruction is fetched.

The effective branch address is generated as follows:

1. The address field is added to the contents of the

register specified by the R2 field to form a main stor-

age address. If the R2 field equals zero, no register
contributes to the address generation. The contents
of R2 are not changed.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11=0. The result from step 1 is a direct address and

is loaded into the instruction address register.

Bit 11=1. The result from step 1 is an indirect address.
The contents of the main storage location specified by

the result are loaded into the instruction address
register.

Indicators
All indicators are unchanged.

Program Check Conditions

Invalid Storage Address. Instruction word or effective
address.

Specification Check. Even byte boundary violation
(indirect address or branch address).

(

| —

PR
A\ ¥

E.qm . }

Branch On Not Condition Code (BNCC)
BNCC

Extended mnemonic
BER longaddr

cond,Jongaddr

Branch on Error
(CC Field=111)

Operation code cC R2 X | Function
01101 01 0 1
0 4 5 7 8 101112 15

0 = direct address } I

= {ndirect address

Address

16 31

The value of the CC field is compared to the even, carry,
and overflow indicators. These indicators hold the I/O
conditions code: (1) following an I/O instruction or (2)
following an I/O interrupt.

CC bit Indicator
S Even
6 Carry
7 Overflow

If the conditions do not match, an effective branch address
is generated and loaded into the instruction address register,
becoming the next instruction to be fetched.

If the conditions match, the next sequential instruction
is fetched.

The effective branch address is generated as follows:

1. The address field is added to the contents of the
register specified by the R2 field to form a main storage
address. If the R2 field equals zero, no register
contributes to the address generation. The contents
of R2 are not changed.

2. [Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11=0. The result from step 1 is a direct address and
is loaded into the instruction address register.

Bit 11=1. The result from step 1 is an indirect address.
The contents of the main storage location specified by
the result are loaded into the instruction address
register.

BNCC

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word or effective
address.

Specification Check. Even byte boundary violation
(indirect address or branch address).

I/0 Condition Codes

The I/O condition codes are summarized in the following
tables. Refer to Chapter 4 for a detailed description of
each condition code value. Also refer to the specific I/O
device descriptions because some devices do not report all
condition codes.

Condition Codes Reported After I/O Instruction.

Condi-

tion Indicators

Code Even Carry Overflow Meaning

0 0 0 0 Device not attached
1 0 0 1 Busy

2 0 1 0 Busy after reset

3 0 1 1 Command reject

4 1 0 0 Intervention required
5 1 0 1 Interface data check
6 1 1 0 Controller busy

7 1 1 1 Satisfactory

Condition Codes Reported During an 1/0 Interrupt.

Condi-

tion Indicators

Code Even Carry Overflow Meaning

0 0 0 0 Controller end

1 0 0 1 PCI (program controlled
interrupt)

2 0 1 0 Exception

3 0 1 1 Device end

4 1 0 0 Attention

5 1 0 1 Attention and PCI

6 1 1 0 Attention and Exception

7 1 1 1 Attention and device end

Instructions 6-15

BNOV
BOV

Branch On Not Overflow (BNOV)

BNOV longaddr
Operation code R2 X | Function
01 101]0 00 0 1 1 1
0 4 5 7 8 1011 12 15

0 = direct address }

1 = indirect address

Address

16 31

The overflow indicator is tested. If the indicator is off,
the effective branch address is loaded into the instruction

address register and becomes the next address to be fetched.

If the overflow indicator is on, the next sequential
instruction is fetched.
The effective branch address is generated as follows:

1. The address field is added to the contents of the
register specified by the R2 field to form a main stor-
age address. If the R2 field equals zero, no register
contributes to the address generation. The contents
of R2 are not changed.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11=0. The result from step 1 is a direct address and
is loaded into the instruction address register.

Bit 11=1. The result from step 1 is an indirect address.
The contents of the main storage location specified by
the result are loaded into the instruction address
register.

Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

Indicators
All indicators are unchanged.

Program Check Conditions

Invalid Storage Address. Instruction word or effective
address.

Specification Check. Even byte boundary violation
(indirect address or branch address).

6-16 GA34-0022

Branch On Overflow (BOV)
BOV longaddr

Operation code R2 X | Function
01 101|000 0110
0 4 5 7 8 1011 12 15

0 = direct address } \

1 = indirect address

Address

16 31

The overflow indicator is tested. If the indicator is on, the
effective branch address is loaded into the instruction
address register and becomes the next address to be fetched.
If the overflow indicator is off, the next sequential
instruction is fetched.
The effective branch address is generated as follows:

1. The address field is added to the contents of the
register specified by the R2 field to form a main stor-
age address. If the R2 field equals zero, no register
contributes to the address generation. The contents of
R2 are not changed.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11=0. The result from step 1 is a direct address and
is loaded into the instruction address register.

Bit 11=1. The result from step 1 is an indirect address.
The contents of the main storage location specified by
the result are loaded into the instruction address
register.

Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

Indicators
All indicators are unchanged.

Program Check Conditions

Invalid Storage Address. Instruction word or effective
address.

Specification Check. Even byte boundary violation
(indirect address or branch address).

Branch Indexed Short (BXS)
BXS (reg! 7 jdisp)

(reg""")
addr

Operation code R Word displacement

01 010

0 4 5 7 8 15
N——

1-7

Bit 8 of the word displacement field is propagated left
seven bit positions and a zero is appended at the low order
end, resulting in a 16-bit word. (Word displacement is con-
verted to a byte displacement.) This value is added to the
contents of the register specified by the R field, and the
result is stored into the instruction address register, becom-
ing the address of the next instruction to be fetched.

Note. The hardware format of this instruction is identical
to the format used for the Jump Unconditional (J) and No
Operation (NOP) instructions.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Effective address.

Specification Check. Even byte boundary violation (branch
address).

BXS

Instructions

6-17

CB

Compare Byte (CB)
Register/Storage Format
CB addr4,reg
Operation code R RB | AM | Function
11000 0100
0 45 7 8 9 101112 15
O = T 7 T "Address/Displacement _ — —
L __ Displacement 1| Displacement2__ _ |
16 23 24 31

The contents of the location specified by the effective
address in main storage are subtracted from the least
significant byte of the register specified by the R field.
(Effective Address Generation is explained in Chapter 2.)
Neither operand is changed.
Bit 12 of the instruction is not used and must be set to
zero to avoid future code obsolescence.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the byte. If no borrow is detec-
ted, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one byte;i.e., if the difference is less than
-27 or greater than +27-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address).

6-18 GA34-0022

Storage/Storage Format
CB addr5 ,addr4

Operation code | RBI1 RB2 | AM1 | AM2 | Fun
1 00 00 1 1

0 4 5 7 8 9 101112131415
L T T T4ddress/Displacement |
L _ Displacement 1 _ [_Displacement2 _ !

16 23 24 31
r— == — = — = - = L= — — — - -

Address/Dtsplacinent I
L _ Displacement1 | _ _Displacement2 _,
32 39 40 47

The address arguments generate the effective addresses of
the two operands in main storage. (Effective Address
Generation is explained in Chapter 2.) Byte operand 1 is
subtracted from byte operand 2. Neither operand is
changed.

Indicators

Carry. Tumed on by the detection of a borrow beyond the
high-order bit position of the byte. If no borrow is detec-
ted, the carry indicator is reset.

e

{
L

C

Overflow. Cleared, then turned on if the difference cannot
be represented in one byte; i.e., if the difference is less than
-27 or greater than +27-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand. The
instruction is terminated. If AM1 equals 01 and the operand
2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address).

Compare Byte Immediate (CBI)

CBI byte,reg
Operation code R Immediate
11110
G E2N 78 15

The immediate field is extended to 16 bits by sign propa-
gation to the eight high-order bit positions. The result is
subtracted from the contents of the register specified by the
R field. Neither operand is changed.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the word. If no borrow is detected,
the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one word; i.e., if the difference is less than
-2'5 or greater than +2'5-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
No program checks occur.

CBI

Instructions

6-19

CD

Compare Doubleword (CD)
Register/Storage Format

CD addr4,reg
Operation code R RB | AM | Function
11010 0100
0 4 5 7 8 9 101112 15
E —_ Aadress/Displacement ___ _ !
L _ _ Displacement I "]~ Displacement2
16 23 24 31

The contents of the doubleword in main storage specified
by the effective address are subtracted from the contents of
the register pair specified by the R field and R+1. (Effec-
tive Address Generation is explained in Chapter 2.)

Neither operand is changed.

Bit 12 of the instruction is not used and must be set to
zero to avoid future code obsolescence. If the R field
equals 7, register 7 and register O are used.

Indicators

Carry. Tumned on by the detection of a borrow beyond the
high-order bit position of the doubleword. If no borrow
is detected, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in the doubleword;i.e., if the difference is
less than -23! or greater than +23!-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

6-20 GA34-0022

Storage/Storage Format
CD addr5,addr4

Operation code | RBI RB2 | AM1| AM2| Fun
1 0010 11

0 4 5 7 8 9 101112131415
T T T T T Address/Displacement 1
b— —— — St
L Displacement 1 Displacement 2 1
16 23 24 T T T3
[— - m o e — — — 1
Address/Displacement

—_——

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address Genera-
tion is explained in Chapter 2.) Doubleword operand 1 is
subtracted from doubleword operand 2. Neither operand
is changed.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the operand. If no borrow is
detected, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one doubleword;i.e., if the difference is
less than -23! or greater than +23-1.,

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand. The
instruction is terminated. If AM1 equals 01 and the oper-
and 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

o

oo
-

Compare Byte Field Equal and Decrement (CFED)

Compare Byte Field Equal and Increment (CFEN)

CFED (reg),(reg)
CFEN (reg),(reg)
Operation code | R1 R2 I|D| Fun
00101 0 1 1
0 45 7 8 101112131415

0 for CFED or CFEN—J

0 for CFED; decrement
contents of R1 & R2.
1 for CFEN; increment
contents of R1 & R2.

This instruction compares two fields in main storage on a
byte for byte basis. Register 7 contains the number of bytes
to be compared. This number is decremented after each
byte is compared. The register specified by R1 contains the
address of operand 1. The register specified by R2 contains
the address of operand 2. Operand 1 is subtracted from
operand 2, but neither operand is changed. After each byte
is compared, the addresses in R1 and R2 are incremented

or decremented (determined by bit 13 of the instruction).
The operation terminates when either:

1. An equal condition is detected, or
2. The number of bytes specified in register 7 has been
compared.

When an equality occurs, the addresses in the registers
point to the next operands to be compared, but the count
in R7 is not updated.

Bit 11 of the instruction is not used and must be set to
zero to avoid future code obsolescence.

See Scan Byte Field Equal and Decrement (SFED) and
Scan Byte Field Equal and Increment (SFEN) for other
versions of this machine instruction.

CFED
CFEN

Notes.

1. If the specified count in R7 is zero, the instruction
performs no operation (No-op).

2. Variable field length instructions can be interrupted.
When this occurs and the interrupted level resumes
operation, the processor treats the uncompleted
instruction as g new instructicn with the remaining

byte count specified in register 7.

Indicators

Carry. Turned on by the detection of a borrow beyond
the high-order bit position of the byte. If no borrow is
detected, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one byte;i.e., if the difference is less
than -27 or greater than +27-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Operand. The instruction is
terminated.

Instructions 6-21

CFNED
CFNEN

Compare Byte Field Not Equal and Decrement
(CFNED)

Compare Byte Field Not Equal and Increment
(CFNEN)

CFNED (reg),(reg)

CFNEN (reg),(reg)

Operation code | R1 R2 I |D | Fun

00101 0 1 0

0 4 5 7 8 1011 12131415
0 for CFNED or CFNEN:

0 for CFNED; decrement
contents of R1 & R2.

1 for CEFNEN; increment
contents of R1 & R2.

This instruction compares two fields in main storage on a
byte for byte basis. Register 7 contains the number of
bytes to be compared. This number is decremented after
each byte is compared. The register specified by R1 con-
tains the address of operand 1. The register specified by
R2 contains the address of operand 2. Operand 1 is sub-
tracted from operand 2, but neither operand is changed.
After each byte is compared, the addresses in R1 and R2
are incremented or decremented (determined by bit 13 of
the instruction). The operation terminates when either:

1. An unequal condition is detected, or
2. The number of bytes specified in register 7 has been
compared.

When an inequality occurs, the addresses in the registers
point to the next operands to be compared, but the count
in R7 is not updated.

Bit 11 is not used and must be set to zero to avoid future

code obsolescence.

See Scan Byte Field Not Equal and Decrement (SFNED)
and Scan Byte Field Not Equal and Increment (SFNEN) for

other versions of this machine instruction.

6-22 GA34-0022

Notes.

1. If the specified count in R7 is zero, the instruction
performs no operation (no-op).

2. Variable field length instructions can be interrupted.
When this occurs and the interrupted level resumes
operation, the processor treats the uncompleted
instruction as a new instruction with the remaining
byte count specified in register 7.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the byte. If no borrow is detec-
ted, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one byte;i.e., if the difference is less than
-27 or greater than +27-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Operand. The instruction is
terminated.

C

PN
A

C

Complement Register (CMR)

CMR reg|,regl

Operation code | R1 R2 Function
01110 00110
0 4 5 7 8 10 11 15

The contents of the register specified by the R1 field are
converted to the two’s complement. The result is placed
in the register specified by the R2 field. The contents of
the register specified by the R1 field are unchanged if R1
and R2 do not specify the same register.

Indicators

Carry. Reset. Then turned on if the number to be comple-

mented is zero.

Overflow. Reset. Then turned on if the number to be
complemented is the maximum negative number
representable.

Even, Negative, and Zero. Unchanged.

Program Check Conditions
No program checks occur.

CMR
CPCL

Copy Current Level (CPCL)

CPCL reg

Operation code R2 Function

01 1 1 110 0 O 1 1.0 01
0 4 5 /¥ 10 11 i35

The register specified by the R2 field is loaded as follows:

® Bits 0—13 are set to zero.

® Bits 14—15 are set to the binary-encoded current level.
For example if the current level is three, bits 14—15 are
set to 11.

Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

Indicators
All indicators are unchanged.

Program Check Conditions

Privilege Violate. Privileged instruction.

Instructions 6-23

CPCON
CPIMR
Copy Console Data Buffer (CPCON)

CPCON reg

Operation code R2 Function
011111000 11000
0 4 5 7 8 10 11 15

The contents of the console data buffer are loaded into the
register specified by the R2 field. The contents of the
buffer are unchanged.

Bits 57 of the instruction are not used and must be set
to zero to avoid future code obsolescence. If the program-
mer console is not installed, the data loaded into the speci-
fied register is undefined.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the resulit.

Program Check Conditions
Privilege Violate. Privileged instruction.

6-24 GA34-0022

Copy Interrupt Mask Register (CPIMR)
CPIMR addr4

Operation code RB | AM | Function
0101 1]000 1000
0 4 5 7 8 9 101112 15

™™ 77 7" 7" "Address/Displacement —_ |

| Displacement 1 | Displacement2__|
16 23 24 31

The contents of the interrupt mask register are stored at
the word location in main storage specified by the effective
address. (See Effective Address Generation in Chapter 2.)
The interrupt mask register is unchanged.

Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

The mask is represented in a bit significant manner as
follows:

Mask bit Interrupt level
0 0
1 1
2 2
3 3

Bits 413 are set to zero.

A mask bit set to ““1”” indicates that the level is enabled.
A mask bit set to “0” indicates that the level is disabled.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.
Privilege Violate. Privileged instruction.

Specification Check. Even byte boundary violation
(indirect address or operand address).

o
~

Copy In-process Flags (CPIPF)

CPIPF addr4

Operation code RB | AM | Function
0101 1|0 0O 1101

0 4 5 7 8 9 101112 15
L . _ _ AddressDisplcement "]
_ _ Displacement1 __|___ Displacement2 4
16 23 24 31

The in-process flags for each level are stored at the word
location in main storage specified by the effective address.
(Effective Address Generation is explained in Chapter 2.)

The in-process flags are not changed. The flags are stored
in a bit significant manner with bit zero representing level
zero, and so on. Bits 4—15 are set to zero.

Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

This instruction permits the supervisor on the current
level to inspect the in-process flags of the other levels. The
in-process flag, bit 9 of the level status register, is on when
a level is active or pending (previously interrupted by a
higher level).

Indicators
All indicators are unchanged.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Privilege Violate. Privileged instruction.

Specification Check. Even byte boundary violation
(indirect address or operand address).

CPIPF

Instructions

6-25

CPLB

Copy Level Block (CPLB) Program Check Conditions

CPLB reg,addr4 Invalid Storage Address. Instruction word or the 11 word
main storage area. The instruction is terminated. If the

main storage area being accessed is partially outside the
Operation code R RB | AM |Function . . .
010711 1110 installed storage size, a partial data transfer occurs.
0 45 7 8 9 101112 15 Privilege Violate. Privileged instruction.
Specification Check. Even byte boundary violation
: : _ : Ed@ﬁf};’“_;ﬁ?"_’_ —_—:___I (indirect address or operand address).
L_ _ Displacement i T " Displacement 2 __]
Ts 23 24 31 Level Status Block Format
EA IAR
This instruction stores a level status block (LSB) into 11 Zeros
words of main storage beginning with the location specified]liSRi ter 0
by the effective address. (Effective Address Generation is Rzii:tei 1
explained in Chapter 2.) The contents of the LSB are not Register 2
changed. Register 3
The register specified by the R field contains the binary Register 4
encoded level of the LSB to be stored. The binary encoded gzggg 2
level is placed in bits 14—15 of the register. Bits 0—13 are EA+20 Register 7
not used and must be zero. (+14 hex)
Using this one instruction, the supervisor can copy the EA=effective address
information contained in the hardware registers assigned to
a program operating on any level. Most instructions are Format of Register Specified by R in CPLB Instruction
restricted to the registers associated with the current level.
After executing a CPLB instruction, the supervisor can:
1. Use the information just stored; for example, the Reserved Level
contents of the general registers or the LSR. 3 000000000000 ?3 7
2. Assign the level to another task by executing a Set
Level Block (SELB) instruction that points to a Level 0
different level status block. Level |
In the second case, the supervisor can restart the preempted Level 2
Level 3

program at a later time by executing another SELB instruc-
tion that points to the previously stored level status block.

Programming Note. 1f the AM field equals 01, the contents
of the register specified by the RB field are incremented
by 2.

Indicators
All indicators are unchanged.

6-26 GA34-0022

i,

»

Copy Level Status Register (CPLSR)

CPLSR reg

Operation code R2 Function
01110000 01110
0 4 5 7 8 10 11 15

The level status register is loaded into the register specified
by the R2 field. The level status register is unchanged.
Bits 57 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

Indicators
All indicators are unchanged.

Program Check Conditions
No program checks occur.

Copy Processor Status and Reset (CPPSR)
CPPSR addr4

Operation code R RB | AM | Function
01 011]00°0 1111
0 4 5 7 8 9 101112 15
;:_ T 7 7 TAddress/Displacement
r___ Displacement 1 | __Displacement 2
16 23 24 31

The contents of the processor status word (PSW) are stored
at the word location in main storage specified by the effec-
tive address. (Effective Address Generation is explained in
Chapter 2.)

This instruction resets bits 0—12 of the PSW. Bits
13—15 are unchanged.

Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

CPLSR
CPPSR

Indicators

All indicators are unchanged.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
Privilege Violate. Privileged instruction.

Specification Check. Even byte boundary violation

(indirect address or operand address).

Program Status Word (PSW) Format

PSW bit Meaning

0 Specification check

1 Invalid storage address
2 Privilege violate

3 Not used

4 Invalid function

5 Not used

6 Stack exception

7 Not used

8 Storage parity check

9 Not used

10 CPU control check

11 1/0 check

12 Sequence indicator

13 Auto-IPL

14 Not used

15 Power/thermal warning

Instructions 6-27

Cw

Compare Word (CW)

Register/Register Format

Ccw reg,reg

Operation code| RI1 R2 Function
01110 0 01 01
0 4 5 7 8 10 11 15

The contents of the register specified by the R1 field are
subtracted from the contents of the register specified by
the R2 field. The contents of both registers are unchanged.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the word. If no borrow is detec-
ted, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one word; i.e., if the difference is less than
-215 or greater than +215-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
No program checks occur.

Register/Storage Format
cw addr4,reg

Function
0100
7 8 9 1011 12 15

Operation code R RB | AM
1 1 0 01
0 4 5

The contents of the word in main storage specified by the
effective address are subtracted from the contents of the
register specified by the R field. (Effective Address Genera-
tion is explained in Chapter 2.)

Both operands are unchanged.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the word. If no borrow is detec-
ted, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one word; i.e., if the difference is less than
-215 or greater than +2!°-1.

Even, Negative, and Zero. Changed to reflect the result.

6-28 GA34-0022

Program Check Conditions
Invalid Storage Address. Instruction word or operand. { »
Specification Check. Even byte boundary violation

(indirect address or operand address).

Storage/Storage Format
CwW addr5,addr4

Operation code| RBI RB2 |AM1| AM2{ Fun
1 0 0 0 1 11
0 4 5 7 8 9 101112131415

- —de—ress/_D;'sﬁ;e-r;mt_ - _i

32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (See Effective Address
Generation in Chapter 2.) Word operand 1 is subtracted
from word operand 2. Neither operand is changed.

Indicators Lo

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the word. If no borrow is detec-
ted, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one word;i.e., if the difference is less
than -2'5 or greater than +25-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand. The
instruction is terminated. If AM1 equals 01 and the oper-
and 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

C

Compare Word Immediate (CWI)

Register Inmediate Long Format

CW1 word, reg

Operation code| RI Function

U1 1 11 U U UJVU U 1L L U |

0 4 5 7 8 10 11 15
Immediate

16 31

The immediate field is subtracted from the contents of the
register specified by the R1 field. The contents of the
register specified by the R1 field are unchanged.

Bits 8—10 are not used and must be set to zero to avoid
future code obsolescence.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the word. If no borrow is detec-
ted, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one word; i.e., if the difference is less than
-21% or greater than +21°-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word.

CWI

Storage Immediate Format
CWI word,addr4

Format without appended word for effective
addressing (AM = 00 or 01

Operation code RB | AM | Function

01 VULV ULV VO 1011

0 4 5 7 8 9 101112 15
Immediate

16 31

Format with appended word for effective
addressing (AM =10 or 11)

Operation code RB | AM | Function
0100O0}000O0 1111
0 4 5 7 8 9 101112 15

Address/Displacement

— —— — —— — a— e o

Displacement 2
16 23 24 31

Immediate

32 47

The immediate word is subtracted from the contents of
the location specified by the effective address. (Effective
Address Generation is explained in Chapter 2.)

Bits 5—7 are not used and must be set to zero to avoid
future code obsolescence. Both operands are unchanged.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the word. If no borrow is detec-
ted, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one word; i.e., if the difference is less
than -2!5 or greater than +215-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-29

DB

Divide Byte (DB)

DB addr4,reg

Operation code R RB | AM | Function
11101 0010
0 4 5 7 8 9 101112 15
| I Address| Displacement ":
——— e —— — — — o ———— —
L __ Displacement 1 [" Displacement 2 _ |
16 2324 31

A divide operation is performed between the word dividend
contained in the register specified by the R field and the
byte divisor at the location specified by the effective
address. (Effective Address Generation is explained in
Chapter 2.) The 1-word quotient replaces the contents of
the specified register while the 1-word remainder is placed
in the register specified by R+1. If the R field specifies
register 7, the remainder is placed in register 0.

R EA
Dividend _®_ |Divisor
®

0 l 15 0

R R+1

Quotient Remainder

0 15 0 15
Indicators

Overflow. Cleared, then turned on if division by zero is
attempted, or if the quotient cannot be represented in one
word. If overflow occurs, the remaining indicators and the
contents of the specified register are undefined.

Carry. Cleared, then turned on (together with the overflow
indicator) if the overflow was caused by an attempt to
divide by zero.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand. If
the AM field equals 01, the contents of the register specified
by the RB field are incremented.

Specification Check. Even byte boundary violation
(indirect address).

6-30 GA34-0022

e s

Divide Doubleword (DD)

DD addr4 reg

Operation code R RB | AM | Function

1 1 1 01 1 01 0
0 4 5 7 8 9 101112 15
':___ T T T Address/Displacement _‘l
| ___Displacement 1 ___' Displacement 2}
16 23 24 31

A divide operation is performed between the doubleword
dividend contained in the registers, specified by the R field
and R+1, and the word divisor at the location specified by
the effective address. (Effective Address Generation is
explained in Chapter 2.) The doubleword quotient replaces
the contents of the specified registers (least significant word
is in R+1). The one-word remainder is placed in the register
specified by R+2.

The R field wraps from 7 to 0; e.g., if R specifies register
6, registers 6, 7, and O are used.

1
]
'R+1 EA

T 4 -

Divisor 55

0 l{ 31 0
]
|

R I R+1 R+2

15

9 w5

Remainder ﬁf

Programming Note. 1f the AM field equals O1, the contents
of the register specified by the RB field are incremented
by 2.

Indicators

Overflow. Cleared, then turned on if division by zero is
attempted, or if the quotient cannot be represented in a
doubleword. If overflow occurs, the remaining indicators
and the contents of the specified registers are undefined.

Carry. Cleared, then turned on (together with the overflow
indicator) if the overflow was caused by an attempt to
divide by zero.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

15

Instructions

DD

6-31

DIAG

Diagnose (DIAG)
DIAG ubyte

Operation code |Function| Parameter
01 100O0(1 01
0 45 7 8 15

The Diagnose instruction is used for controlling or testing

various hardware functions in a machine dependent manner.

The parameter field has the following bit significance.

Bits Functions

8&9 =00 Storage select — word
=01 Storage select — byte
=10 Local storage register select
=11 1/0O interface select

10 =unused Must be set to zero
11 =unused Must be set to zero

12 =0 Storage to register
=1 Register to storage
13 =1 Set system ID
14 =0 Disable
=1 Enable

15 =unused Must be set to zero
Functions
Storage Select — Word.

Storage Select — Byte. These functions, with bit 14
(enable/disable function), allow the inhibiting of storage
parity generation or parity checking for the data cycle
executed within the instruction. Bit 12 (storage to register/
register to storage function) specifies the direction of the
data transfer. The storage address for this storage cycle is
contained in register 7 of the current active level. The

data is contained in register 0 of the current active level.

Local Storage Register Select. This function transfers data
between main storage and any local storage location by
directly addressing local storage. Two additional words
are appended to the Diagnose instruction when this func-
tion is specified.

Additional words when accessing local storage
Stack address

000O0O0O0O0O0O00O0
16 25 26 31

Immediate data

32 47
The bits in these words are defined as follows:

Bits Significance

16—-25 Must be set to zero
26~31 Local storage address
32-47 Immediate data field

Bit 12 of the Parameter field specifies the direction of
the data transfer.

Bit 12=0 Immediate data field to local storage
=1 Local storage to immediate data field

The following chart shows the addresses for the registers
in local storage.

6-32 GA34-0022

Bits

N
(=Y

el I e i e i e S - B e B e B e B e e Y e i o i - i e Y i e i o I o B o B o B o B o R o Y s W e B e i e B o W e Il o B o i o I e Y o B e N e}

N
~

s e e e e bt b bl b b b b b b e O O O O OO OO OO OO OO OO R e e e, m, 0000000000000 O

3

b et = e = = O OO OO QOCOO R MEE R EEF OO0 OO =R e R EEFREOCODOOCOOOO R HEEREMEREEMOOQOOOOO O

Ny
o

it bt et et DO O O bk i b OO O QO et b= e OO OO i DO OO it it bt e DO OO b b=t OO OO kit bt m OO OO i b= = =OOOO

w
S

= OO MO0 R OO FOOR mMOORFR MOOR, R OO mEROORRMOORmMOORMROOR R OO MEMROOMMOOEMROOMMOOO

w
~

O I O O MM OO RO OO QOMOMOMOMQOROMOMOMOMEOMOFROMEROMEROMFEPROMRORROFR O OFROROMEROMEROmD

Register Selected

Work Reg 2
Work Reg 3
PSW

Mask

SAR
Lvi0IAR
Work Reg C
Lvl 0 LSR
LviOReg 0
LviOReg 1
Lvl O Reg 2
Lvl0O Reg 3
Lvl O Reg 4
Lvli0O Reg §
Lvl O Reg 6
Lvi0 Reg 7
Address Compare Reg
Spare

CIAR
Console Data Reg
Spare
Lvl1IAR
Work Reg D
Lvl1LSR
Lvl1 Reg 0
Lvl1 Reg1
Lvl 1 Reg 2
Lvl1 Reg3
Lvl 1 Reg 4

Lvl1Reg$5
Lvl1 Regé
Lvl1Reg7
Work Reg 0
Data Buffer
Spare
Spare
Spare

Lvl 21AR
Work Reg E
Lvl12 LSR
Lvl2 Reg O
Lvi2Regl
Lvli2 Reg 2
Lvl2 Reg 3
Lvl 2 Reg 4
Lvi2 Reg 5
Lvl2 Reg 6
Lvl2 Reg 7
Work Reg 1
Work Reg 4
Spare
Spare
Spare

Lvl 3 IAR
Work Reg F
Lvli3LSR
Lvi3 Reg 0
Lvi3 Reg 1l
Lvl 3 Reg 2
Lvi3 Reg 3
Lvl3 Reg 4
Lvi3 Reg $§
Lvl3 Reg6
Lvl 3 Reg 7

PLEEEN

[u.-v T

1/O Interface Select. This function, with bit 14 equal to 0,
disables and logically isolates the interrupt and cycle steal
request lines on the 1/O interface from the channel. When
bit 14 equals 1, these lines are enabled.

Storage to Register.

Storage to Storage. This function specifies the direction
of data transfer for storage and local storage functions.

Set System ID. This function sets the system model
number into bits 14—15 of register O of the current active
level. Bits 0—13 are set to zeros.

If this function is specified, all other functions in the
parameter field are ignored. The system ID for the 4953
processor is 03 (hex) and register O is set as follows:

Register 0
60000 O0O0O0OO OOOO OOT11
0 131415
Disable.

Enable. This function disables or enables parity generation
checking. See functions Storage Select and I/O Interface
Select.

Program Check Conditions

Privilege Violate. Privileged instruction.

DIS

Disable (DIS)
DIS ubyte

Operation code |Function] Parameter
011004011
0 4 5 7 &8 15

The facilities designated by one bits in the parameter field
are disabled. The bits in the parameter field have the
following significance:

Bit Facility

8 Not used
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used

15 Summary mask

Note. Bits not used must be set to zero to avoid future
code obsolescence.

Indicators
No indicators are changed.

Program Check Conditions

Privilege Violate. Privileged instruction.

Instructions 6-33

DW

Divide Word (DW)

DwW addr4,reg

Operation code R RB | AM | Function
11101 0110
0 4 5 7 8 9 101112 15
": T T T T TAddress/Displacement |

A divide operation is performed between the word dividend
contained in the register specified by the R field and the
word divisor at the location specified by the effective
address. (Effective Address Generation is explained in
Chapter 2.) The one word quotient replaces the contents
of the specified register. The one word remainder is placed
in the register specified by R+1.

The R field wraps from 7 to 0; that is, if R specifies
register 7, registers 7 and O are used.

R EA
Dividend @ | Divisor
[]
0 15 0 15
R R+1
Quotient Remainder
0 15 0 15
Indicators

Overflow. Cleared, then turned on if division by zero is
attempted, or if the quotient cannot be represented in one
word. If overflow occurs, the remaining indicators and the
contents of the specified registers are undefined.

Carry. Cleared, then turned on (together with the overflow
indicator) if the overflow was caused by an attempt to
divide by zero.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

634 GA34-0022

-ty
*

Enable (EN)
EN ubyte

Operation code |Function Parameter
01100010
n 4 S 7 R s

The facilities designated by one bits in the parameter field
are enabled.

The bits in the parameter field have the following
significance:

Bit Facility

8 Not used
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used

15 Summary mask

Note. Bits not used must be set to zero to avoid future
code obsolescence.

Indicators
No indicators are changed.

Program Check Conditions

Privilege Violate. Privileged instruction.

EN

Instructions

6-35

FFD
FFN
Fill Byte Field and Decrement (FFD)

Fill Byte Field and Increment (FFN)

FFD reg,(reg)
FFN reg,(reg)
Operation code R1 R2 0 |I |D |Fun
001 0 1. 00

0 4 5 1011 1213 1415

1 for FFD or FFN ‘
0 for FFD; decrement contents
of R2

1 for FFN; increment contents
of R2

This instruction fills all bytes of a field in main storage with
the same bit configuration in each byte. Register 7 con-
tains the number of bytes to be filled (field length). If a
field length of zero is specified, the instruction is a no-op.
The register specified by R1 contains, in bits 8—15, the
byte used to fill the field. The register specified by R2
contains the starting address of the field in main storage.
After each byte in the field is filled:

Ao e P T -1 _ a - n
The address in R2 is either inciemeinted oi UCCchHCIllCd,

—

determined by bit 13 of the instruction. This permits
filling the field in either direction.
2. The length count in R7 is decremented.

The operation ends when the specified field length has
been filled (contents of R7 equal zero). At this time, the
address in R2 has been updated and points to the byte
adjacent to the end of the field.

Bits 11 and 15 of the instruction are not used and must
be set to zero to avoid future code obsolescence.

See Move Byte Field and Decrement (MVFD) and Move
Byte Field and Increment (MVFN) for other versions of
this machine instruction.

6-36° GA34-0022

Note. Variable field length instructions can be interrupted.

When this occurs and the interrupted level resumes opera-
tion, the processor treats the uncompleted instruction as a
new instruction with the remaining byte count specified in
register 7. ’

Indicators

Carry. Unchanged.

Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect that result
of the last byte moved.

Program Check Conditions

Invalid Storage Address. Operand. The instruction is
terminated.

,ﬁ»m Y

y

Operate 1/0 (10)
Refer to Chapter 4 for a detailed description concerning
the operation of this instruction.

10 longaddr

01101 1 00
0 4 5 7 8 10 11 12 15

0 = direct address } l

1 = indirect address

Operation code R2 X | Function
000 1

Address

16 31

An effective main storage address is generated as
follows:

1. The address field is added to the contents of the
register specified by the R2 field. If the R2 field
equals zero, no register contributes to the address
generation.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11=0 (Direct Address). The result from step 1 is the
effective address.

Bit 11=1 (Indirect Address). The result from step 1 is the
address of the main storage location that contains the
effective address.

Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

The effective address specifies the location of a two-
word control block, called the immediate device control
block (IDCB). The IDCB contains the command, device
address, and a one-word immediate data field:

IDCB (immediate device control block)
Command field Device address field

0 7 8 15

Immediate data field

16 31

The immediate data field serves two purposes:

1. For direct program control (DPC) operations, it holds
the data transferred to or from the I/O device.

2. For cycle steal operations, it holds the address of the
device control block (DCB).

Refer to Chapter 4 for additional information.

10
IR

Indicators

Even, Carry, and Overflow. Changed to reflect the condi-
tion code. See Branch on Condition Code (BCC) or Branch
on Not Condition Code (BNCC) instructions.

Negative and Zero. These indicators are not changed.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.
Privilege Violate. Privileged instruction.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Interchange Registers (IR)

IR reg,reg

Operation code RI R2 Function
01110 00111
0 4 5 7 8 10 11 15

The contents of the register specified by the R1 and R2
fields are interchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
moved from R1 to R2.

Program Check Conditions
No program checks occur.

Instructions 6-37

J .
JAL
Jump Unconditional (J)
J jdisp
‘ jaddr

Operation code R

01010

0 4 S5 7 8 15
N

Word displacement

Zero

Bit 8 of the word displacement field is propagated left
seven bit positions and a zero is appended at the low order
end, resulting in a 16-bit word. (Word displacement is con-
verted to a byte displacement.) This value is added to the
updated value of the instruction address register becoming
the address of the next instruction to be fetched.

Note. The hardware format of this instruction is identical
to the format used for the Branch Indexed Short (BXS)
instruction.

Indicators

No indicators are changed.

Program Check Conditions

Invalid Storage Address. Effective address.

Specification Check. Even byte boundary violation (branch
address).

6-38, GA34-0022

Jump and Link (JAL)

JAL jdisp,reg (A
jaddr,reg

Operation code R
1 0011

0 4 5 7 8 15

Word displacement

The updated value of the instruction address register (the
location of the next sequential instruction) is stored into
the register specified by the R field. Bit 8 of the word dis-
placement field is propagated left by seven bit positions
and a zero is appended at the low order end, resulting in a
16-bit word. (The word displacement is converted to a
byte displacement.) This value is added to the updated
contents of the instruction address register, and the result
is stored in the instruction address register, becoming the
address of the next instruction to be fetched.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Effective address. The instruction
is terminated. Branching does not occur, but the storing

of the updated instruction address into the register speci-
fied by the R field still occurs.

-
. .

[ﬁw# !

Jump On Condition (JC)
Operand

Mnemonic syntax Instruction name

IC cond,jdisp Jump on Condition
cond,jaddr

Extended Operand

Mnemonic syntax Instruction name

JE jdisp Jump on Equal
jaddr

JOFF jdisp Jump if Off
jaddr

JZ jdisp Jump on Zero
jaddr

JMIX jdisp Jump if Mixed
jaddr

JP jdisp Jump on Positive
jaddr

JON jdisp Jump if On
jaddr

JN jdisp Jump on Negative
jaddr

JEV jdisp Jump on Even
jaddr

JLT jdisp Jump on Arith-
jaddr metically Less Than

JLE jdisp Jump on Arith-
jaddr metically Less Than

or Equal

JLLE jdisp Jump on Logically
jaddr Less Than or Equal

JICY jdisp Jump on Carry
jaddr

JLLT jdisp Jump on Logically
jaddr Less Than

Condition
field
bits (see)

Any value
listed below

Condt'tion
Jl;lietl: (see)
000

000

000

001

001

010

010

011

100

101

110
111

111

JC

Operation code | Cond
00010

Word displacement

0 4578 15

This instruction tests the condition of the various indicators
set by a previously executed instruction (for example: an
arithmetic, compare, test bit, or test word type of
instruction).

If the condition tested is met, bit 8 of the word displace-
ment field is propagated left by seven bit positions and a
zero is appended at the low-order end resulting in a 16-bit
word. (Word displacement is converted to a byte displace-
ment.) This value is added to the updated value of the
instruction address register, becoming the address of the
next instruction to be fetched. If the condition tested is
not met, the next sequential instruction is fetched.

For additional information about the indicator settings
for the various conditions, see Chapter 2.

Indicators
No indicators are changed.

Program Check Conditions
Invalid Storage Address. Effective address.

Instructions 6-39

JCT

Jump On Count (JCT)
ICT jdisp,reg
jaddr,reg

Operation code R
1 0111

0 4 5 7 8 15

Word displacement

This instruction tests the contents of the register specified
by the R field.

If the register contents are not zero, the contents are
decremented by one. If the register contents are still not
zero, the word displacement is converted to a byte displace-
ment and added to the updated contents of the updated
instruction address register (IAR). This value indicates the
location of the next instruction to be fetched.

If the register contents are zero when initially tested, no
decrementing occurs. In this case, or when the register
contents are zero after decrementing, the next sequential
instruction is fetched.

Reg \ No
0

contents =

Yes

Subtract 1 from
reg contents

Reg
contents = 0

Add the byte
displacement
to the IAR

(No jump ’

6-40 GA34-0022

‘ Jump ,

Note. When the register contents are not zero, the word

displacement is converted to a byte displacement as follows.

Bit 8 of the word displacement field is propagated left by
seven bit positions, and a zero is appended at the low-order
end. This results in a 16-bit word that has been doubled

in magnitude.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Effective address. The jump does
not occur, but the contents of the register specified by the
R field are still decremented by one.

VRN

Jump On Not Condition (JNC)

Condition

Operand field bits
Mnemonic syntax Instruction name (see }
INC cond,jdisp Jump on Not Any value

cond jaddr Condition listed below

Condition

Extended Operand field bits
Mnemonic syntax Instruction name (see m)
INE jdisp Jump on Not Equal 000

jaddr
JINOFF jdisp Jump if Not Off 000

jaddr
JNZ jdisp Jump on Not Zero 000

jaddr
JINMIX jdisp Jump on Not Mixed 001

jaddr
JNP jdisp Jump on Not Positive 001

jaddr
JNON jdisp Jump if Not On 010

jaddr
JNN jdisp Jump on Not Negative 010

jaddr
JNEV jdisp Jump on Not Even 011

jaddr
JGE jdisp Jump on Arith- 100

jaddr metically Greater Than

or Equal

JGT jdisp Jump on Arith- 101

jaddr metically Greater Than
JLGT jdisp Jump on Logically 110

jaddr Greater Than
JLGE jdisp Jump on Logically 111

jaddr Greater Than or

Equal

INCY jdisp Jump on No Carry 111

jaddr

Operation code | Cond
00011

0 4578 15

Word displacement

This instruction tests the condition of the various indicators
set by a previously executed instruction (for example: an
arithmetic, compare, test bit, or test word type of
instruction).

If the condition tested is met, bit 8 of the word displace-
ment field is propagated left by seven bit positions and a
zero is appended at the low-order end resulting in a 16-bit
word. (Word displacement is converted to a byte displace-
ment.) This value is added to the updated value of the
instruction address register, becoming the address of the
next instruction to be fetched.

If the condition tested is not met, the next sequential
instruction is fetched.

For additional information about the indicator settings
for the various conditions, see Chapter 2.

JNC
LEX

Indicators
No indicators are changed.

Program Check Conditions
Invalid Storage Address. Effective address.

Level Exit (LEX)
LEX [ubyte]

Operation code |Function| Parameter

0110 0{0O01
0 4 5 7 8 15

When this instruction is executed, the processor exits the
current level. The in-process flag (LSR bit 9) for the
current level is turned off. Next the instruction tests for
(1) pending levels or outstanding priority interrupt requests,
(2) the condition of the summary mask (LSR bit 11), and
(3) the condition of the level mask bits.

o If pending levels or outstanding requests exist and the
summary mask and level mask is enabled:
— A branch is executed to the address contained in the
IAR of the highest pending or requesting level.
— This level then becomes the current level and
processing resumes.
® If processing levels or outstanding requests exist and
the summary mask is disabled:
— The priority interrupts are not allowed.
— The highest pending level becomes the current level
and processing resumes.
— If no levels are pending, the processor goes to the
wait state.
® [f no levels are pending and no interrupt requests are
outstanding, the processor goes to the wait state.

For additional information on level switching, refer to
Chapter 3.

Programming Note. When a level is exited by a LEX
instruction and processing is to continue on a pending level,
one instruction is executed on the pending level prior to
sampling for a trace class interrupt.

Indicators
No indicators are changed.

Program Check Conditions

Privilege Violate. Privileged instruction.

Instructions 6-41

LMB

Load Multiple and Branch (LMB)

Refer to Stack Operations in Chapter 2 for a detailed
description concerning the operation of this instruction.
The LMB instruction is used in conjunction with the
Store Multiple (STM) instruction described later in this
chapter.

LMB - addr4

Operation code RB | AM Function
01 00 0l]0 0 0 1 010
0 4 5 7 8 9 101112 15

'f: - 7(§r;s/-bisp7-la:?rr;nt_ _____ -:

L _Dbplacement T —_ ~ [Diplacement I 7~
16 23 24 31

The contents of the registers for the current level are loaded
from the stack defined by the stack control block pointed
to by the effective address. (Effective Address Generation
is explained in Chapter 2.) The registers to be loaded are
defined by the stack entry previously stored by a Store
Muitiple (STM) instruction. The next instruction is fetched
from the storage address contained in register 7.

Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.
Programming Note. If the AM field equals 01 the contents
of the register specified by the RB field are incremented
by 2.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word or stack control
block. The instruction is terminated.

Specification Check.

1. Even byte boundary violation (indirect address, stack
control block, or stack element).
2. Address in R7 is odd.

Soft Exception Trap Condition

Stack Exception. Stack is empty. If the AM field equals
01, the contents of the register specified by the RB field
are incremented. The instruction is terminated.

6-42 GA34-0022

e

Multiply Byte (MB)
MB addr4,reg

Operation code R RB | AM Function
11101 0 001

n 4 < 7 2 o 1In111)D 18

F—= .
L Displacement 1 _l Displacement 2 1

A multiply operation is performed between the word
multiplicand contained in the register specified by the R
field and the byte multiplier at the location specified by the
effective address. (Effective Address Generation is explained
in Chapter 2.) The word product replaces the contents of
the register.

R EA

Multiplicand X Multiplier
0 15 0
R

Product

0 15
Indicators
Carry. Reset.

Overflow. Cleared, then turned on if the result cannot be
represented in 16 bits. If overflow occurs, the contents of
the specified register are undefined.

Even, Negative, and Zero. Set to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
If the AM field equals 01, the contents of the register
specified by the RB field are incremented.

Specification Check. Even Byte boundary violation
(indirect address).

Instructions

MB

6-43

MD

Multiply Doubleword (MD)

MD addr4,reg
Operation code R RB | AM | Function
11101 1 001
0 4 5 7 8 9 101112 15
E_ - ._A;dgre&s-/_Displa_cement]
L Displacement I~] _Displacement2 "]
16 23 24 31

A multiply operation is performed between the double-
word multiplicand contained in the registers specified by
the R field and R+1 and the word multiplier at the location
specified by the effective address. (Effective Address
Generation is explained in Chapter 2.) The doubleword
product replaces the contents of the registers with the
least significant word in R+1.

The R field wraps from 7 to 0; that is, if R specifies
register 7, registers 7 and O are used.

|
|
|

R R+1 EA
()LL Multiplicand ZIL[X Multiplier C’ﬂ
0 31 0 15
]
R ! R+1
%{ Product é(z
0 T 31

Programming Note. 1f AM=01, the register specified by
the RB field is incremented by 2.

Indicators

Carry. Reset.

Overflow. Cleared, then turned on if the result cannot be
represented in 32 bits. If overflow occurs, the contents
of the specified registers are undefined.

Even, Negative, and Zerc. Set to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

6-44 GA34-0022

iy,
-+

Move Address (MVA)

Storage Address to Register Format

MVA addrd,reg
Operation code R RB | AM | Function
5106068 0100
0 435 7 8 9 101112 15

{:— - __ -0 :d.(-ire_ss/-Dt-'s.pac:m—en-t- _____ ::

L _ Displacement 1" " T " Displacement 2}
16 23 24 31

The effective address is loaded into the register specified by
the R field. (Effective Address Generation is explained in
Chapter 2.)

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
loaded into the register specified by the R field.

Program Check Conditions

Invalid Storage Address. Second Instruction word.

Specification Check. Even byte boundary violation
(indirect address).

MVA

Storage Immediate Format
MVA raddr,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

Operation code ‘ RB] AM | Function

01 0 0 0j0 0 O] | 0O 0 00
0 4 5 7 8 9 101112 15

Immediate

16 31
Format with appended word for

effective addressing (AM = 10 or 11)

Operation code RB AM | Function

01 00 00 0O 0000
0 4 5 7 8 9 101112 15
" Address/Displacement

Displacement 1 T Displacement 2
16 23 24 31
Immediate
32 47

The operand in the immediate field replaces the contents
of the location specified by the effective address. (Effec-
tive Address Generation is explained in Chapter 2.)

Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

The immediate operand is not changed.
Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-45

MVB

Move Byte (MVB)
Register/Storage Format
MVB reg,addr4
addrd,reg
Operation code R RB AM | X |Function
11000 000
0 45 7 8 9 10111213 IS5

1 = result to storage } |

0 = result to register

E : : : : T TAddress/Displacement ':
L Displacement 1 _ — T~ "Displacement2 __|
16 23 24 31

A byte is moved between the least significant byte of the
register specified by the R field and the location specified
by the effective address in main storage. (Effective Address
Generation is explained in Chapter 2.) Bit 12 of the instruc-
tion specifies the direction of the move:

Bit 12 = 0. The byte is moved from storage to register. The
high-order bit of the byte (sign) is propagated to the eight
high order bits of the register. This permits the Compare
Byte Immediate (CBI) instruction to be used for byte com-
pare operations. The operand in storage is unchanged.

Bit 12 = 1. The byte is moved from register to storage.

The contents of the register specified by the R field are

not changed.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
moved.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address).

646 GA34-0022

Storage/Storage Format
MVB addr5 addr4 (A)

Operation code RB1 | RB2 | AM1| AM2 | Fun
100 00 00

0 4 5 7 8 9 101112131415
E- -~ —A;ire—ss/_Dis;la.c-errT;n7 _____ :
L _Displacement 1 | 'Displacement2 |

16 23 24 31
';— T T 7 T TAddress/Displacement —3
L _Displacement T _ [" Displacement 2"

32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address Genera-
tion is explained in Chapter 2.) A byte is moved from
operand 1 to operand 2. Operand 1 is unchanged.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the byte
moved.

PLEUN
*

Program Check Conditions

Invalid Storage Address. Instruction word or operand. The
instruction is terminated. If AM1 equals O1 and the operand
2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address).

Move Byte Immediate (MVBI)

MVBI byte reg

Operation code R Immediate
00001

0 4 5 7 8 15

The register specified by the R field is loaded with the
immediate operand.

The immediate field of the instruction forms the
operand to be loaded. The immediate field is expanded to
a sixteen bit operand by propagating the sign bit value
through the high order bit positions; this operand is loaded
into the register specified by the R field.

Indicators
Carry and Overflow. Unchanged.
Even, Negative, and Zero. Changed to reflect the operand

loaded into the register.

Program Check Conditions
No program checks occur.

MVBI

MVBZ
Move Byte and Zero (MVBZ)

MVBZ addr4,reg
Operation code R RB AM | Function
11 000 01 01
0 4 5 7 8 9 101112 15
. A :i-dreg/;isglacement - _j‘
[_Displdcement 1 7| ~ Diplacemeni3 7
16 23 24 31

The byte specified by the effective address is loaded into
the least significant byte of the register specified by the R
field. (Effective Address Generation is explained in
Chapter 2.) The high order bit of the byte (sign) is
propagated to the eight high order bits within the register.

The byte specified by the effective address is then set
to zeros.

Bit 12 of the instruction is not used and must be set to
zero to avoid future code obsolescence.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
loaded into the register.

Program Check Conditions.

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address).

Instructions 6-47

MVD

Move Doubleword (MVD)
Register/Storage Format

MVD addrd reg
reg,addr4

Operation Code R RB |AM | X |Function
11010 000

0 4 5 7 8 9 101112131415

1 = result to storage } l

0 = result to register

'__ — fci_tire;vs/l;ispm:-err:’r; ————— 1
L Displacement 1 Displacement 2 __ll
16 2324° ~ T T T T T 3

A doubleword is moved between the contents of the
register pair specified by the R field (R and R+1) and the
doubleword location specified by the effective address in
main storage. (Effective Address Generation is explained
in Chapter 2.) The source operand is unchanged.

The R field wraps from 7 to 0; that is, if R specifies
register 7, registers 7 and 0 are used.

Bit 12 of the instruction specifies the direction of the
move:
Bit 12 = 0. The doubleword is moved from storage to
the register pair.
Bir 12 = 1. The doubleword is moved from the register
pair to storage.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
moved.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

6-48 GA34-0022

Storage/Storage Format
MVD addr5,addr4

Operation code RB1 |RB2 |AMI1 |AM2 | Fun
10010 00

0 4 5 7 8 9 101112131415
[T T T T4ddress/Displacement _ 1!
_ Displacement 1 _T Displacement 2 q

16 23 24 31
[_'___" "~ Taadress/Displacement B _;
L _ Displacement 1 Displacement 2 1

32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address Generation
is explained in Chapter 2.) A doubleword is moved from
operand 1 to operand 2. Operand 1 is unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the double-
word moved.

Program Check Conditions

Invalid Storage Address. Instruction word or operand. The
instruction is terminated. If AM1 equals 01 and the
operand 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

A i

C

oy ¢ !

Move Doubleword and Zero (MVDZ)

MVDZ addré4 reg
Operation code R RB | AM Function
11010 01 01
0 4 5 7 R 9 101112 15
*':’ T 77 T Taddress/Displacement _j'
L Displacement 1 Displacement 2]
s~~~ T T T 2324 T T T T 731

The doubleword specified by the effective address is
loaded into the register pair specified by the R field (R and
R+1). (Effective Address Generation is explained in
Chapter 2.) The R field wraps from 7 to 0; that is, if R
specifies register 7, registers 7 and O are used.

The doubleword specified by the effective address is
then set to zeros.

Bit 12 of the instruction is not used and must be set to
zero to avoid future code obsolescence.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
loaded into the register pair.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

MVDZ

Instructions

6-49

MVFED
MVEN
Move Byte Field and Decrement (MVFD)

Move Byte Field and Increment (MVFN)

MVFD (reg),(reg)

MVFN (reg) (reg)
Operation code R1 R2 I |D |Fun
00101 0 00
0 4 5 7 8 1011 1213 14 15

0 for MVFD or MVEFN _—l

0 for MVFD; decrement contents
of R1 & R2

1 for MVFN; increment contents
of R1 & R2

This instruction moves a specified number of bytes (one
byte at a time) from one storage location to another.
Register 7 contains the number of bytes to be moved (field
length). If a field length of zero is specified, the instruction
is a no-op. The register specified by R1 contains the
address of operand 1; the register specified by R2 contains
the address of operand 2. Operand 1 is moved to operand
2.

After each byte is moved:

1. The addresses in R1 and R2 are either incremented or
decremented, determined by bit 13 of the instruction.
This allows the field to be moved in either direction.

2. The length count in R7 is decremented.

The operation ends when the specified field length has
been filled (contents of R7 equal zero). At this time, the
addresses in R1 and R2 have been updated and point to
the next operands.

Bits 11 and 15 of the instructions are not used and must
be set to zero to avoid future code obsolescence.

See Fill Byte Field and Decrement (FFD) and Fill Byte
Field and Increment (FFN) for other versions of this
machine instruction.

6-50 GA34-0022

Note. Variable field length instructions can be interrupted.

When this occurs and the interrupted level resumes opera-
tion, the processor treats the uncompleted instruction as a
new instruction with the remaining count specified in
register 7.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result of
the last byte moved.

Program Check Conditions

Invalid Storage Address. Operand. The instruction is
terminated.

-

Move Word (MYW)
Register/Register Format

MVW reg,reg
Operation code R1 R2 Function
o1 1 1 0 001 00
0 4 5 7 8 10 11 15

The contents of the register specified by the R1 field
replace the contents of the register specified by the R2
field. The contents of the register specified by the R1
field are unchanged.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
No program checks occur.

Register/Storage Format

MVW reg,addr4
addrd,reg

Operation Code R RB |AM | X |Function
110 01 0 0 O
0 4 5 7 8 9 101112 13 15

= result to storage } ‘

0 = result to register

r L Address/Displacement __:
L Displacement 1 Displacement 2 3
6~~~ T T 7 2324 ~ T T T T T 31

A word is moved between the contents of the register
specified by the R field and the location specified by the
effective address in main storage. (Effective Address
Generation is explained in Chapter 2.) The source
operand is unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand

moved.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

MVW

Register to Storage Long Format

MVW reg.longaddr

Operation code R1 R2 X Function
01101 1101
0 4 5 7 8 10 1’1 12 15

1 = indirect address

0 = direct address } I

Address

16 31

The contents of the register specified by the R1 field are
stored into the main storage location specified by an
effective address. This effective address is generated as
follows:

1. The address field is added to the contents of the
register specified by the R2 field. If the R2 field
equals zero, no register contributes to the address
generation.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11 = 0 (direct address). The result from step 1 is
the effective address.

Bit 11 = 1 (indirect address). The result from step 1 is
the address of the main storage location that contains
the effective address.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result
stored from the register specified by the R1 field.
Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-51

MVW

Storage to Register Long Format

MVW longaddr,reg
Operation code R1 R2 X| Function
01101 1 000
0 4 5 7 8 1011 12 15
0 = direct address
1 = indirect address
Address
16 31

The register specified by the R1 field is loaded with the
contents of the main storage location specified by an
effective address. This effective address is generated as
follows:

1. The address field is added to the contents of the
register specified by the R2 field. If the R2 field
equals zero, no register contributes to the address
generation.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Rit 11 = 0 (direct address). The result from step 1 ig
the effective address.

Bit 11 = 1 (indirect address). The result from step 1 is
the address of the main storage location that contains
the effective address.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result
loaded into the register specified by the R1 field.
Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

6-52 GA34-0022

Storage/Storage Format
MVW addr5,addr4

Operation code RB1 |RB2 |AM1 {AM2 | Fun
10001 00

0 4 5 7 8 9 101112131415
:: -t —/u;are_ss/siszla:en-l-enT _____ :
L _Displacement 1| "_Displacement2

16 23 24 31
T T T T 7 Tddaress/Displacement |
F——————— ——— = o —— —
L Displacement 1 [_ Blsﬁlaﬁzment 2 |

32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address
Generation is explained in Chapter 2.) A word is moved
from operand 1 to operand 2. Operand 1 is unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the word
moved.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
The instruction is terminated. If AM1 equals 01 and the
operand 2 effective address is invalid, RB! is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

'

PEEEEN

Move Word Immediate (MVWI)

Storage to Register Format
MVWI word ,reg

I Operation code R l RB AM Function
|

[V 1000 (61 0¢
0 4 5 7 8 9 101112 15
I_ ————— A ?d?eE/D-?sz)_la;m?rxi_ —————]
F —Sisplacement I~ — |~ Displacement? —]
16 — T T T T T 3324 T T T T T 7T 31

The effective address value is loaded into the register
specified by the R field. (Effective Address Generation is
explained in Chapter 2.) This value is equal to the value
of word as specified by the programmer.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
loaded into the register specified by the R fieid.

Program Check Conditions

Invalid Storage Address. Second instruction word.

Specification Check. Even byte boundary violation
(indirect address).

MVWI

Storage Immediate Format
MVWI word,addr4

Format without appended word for
effective addressing (AM =00 or 01)

Operation code RB | AM | Function

Ul 0 U Oju 0 0 6 6 6 O

0 4 5 7 8 9 101112 15
Immediate

16 31

Format with appended word for
effective addressing (AM =10 or 11)

Operation code RB | AM | Function
01 0000O0TO 0 0000
0 4 5 7 8 9 101112 15

Address/Displacement
Displacement 1 T Displacement 2 ﬂ

Immediate

32 47

The operand in the immediate field replaces the contents
of the location specified by the effective address. (Effective
Address Generation is explained in Chapter 2.)

Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

The immediate operand is not changed.
Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-53

MVWS

Move Word Short (MVWS)

Register to Storage Format
MVWS reg,shortaddr

Operation code R1 RB | X |Wd displacement
1 01 00
0 4 5

7 8 9 1011 15

0 = direct address
1 = indirect address

The contents of the register specified by R1 are stored into

the main storage location specified by the effective address.

The contents of the register are unchanged.
The effective address is generated as follows:

1. The five bit unsigned integer (word displacement) is

doubled in magnitude {converted to a byte displacement).

2. The result from step 1 is added to the contents of the
base register (RB) to form a main storage address.

3. Instruction bit 10 is tested for direct or indirect
addressing:
Bit 10 = 0 (direct address). The result from step 2 is
the effective address.
Bit 10 = 1 (indirect address). The result from step 2 is
the address of the main storage location that contains
the effective address.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
stored into main storage.

Program Check Conditions

Invalid Storage Address. Operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

6-54 GA34-0022

Storage to Register Format
MVWS shortaddr,reg

Operation code R1 RB | X |Wd displacement|

11100

0 4 5 7 8 9 1011 15

0 = direct address
1 = indirect address

The contents of the main storage location specified by the
effective address are loaded into the register specified by
the R1 field. The contents of the main storage location
remain unchanged.

The effective address is generated as follows:

1. The five bit unsigned integer (word displacement) is
doubled in magnitude (converted to a byte displace-
ment).
The result from step 1 is added to the contents of the
base register (RB) to form a main storage address.
3. Instruction bit 10 is tested for direct or indirect
addressing:
Bit 10 = 0 (direct address). The result from step 2 is
the effective address.
Bit 10 = 1 (indirect address). The result from step 2 is
the address of the main storage location thai coniains
the effective address.

i

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the operand
loaded into the register specified by the R1 field.
Program Check Conditions

Invalid Storage Address. Operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Move Word and Zero (MVWZ)

MVWZ addr4,reg

Operation code R RB AM | Function

1 1 001 01 01
0 4 5 7 8 9 101112 15
r B Address/Displacement J
" DpleimenT [Disphdereni? ~
16 23 24 31

The word specified by the effective address is loaded into
the register specified by the R field. (Effective Address
Generation is explained in Chapter 2.)

The word specified by the effective address is then set
to zeros.

Bit 12 of the instruction is not used and must be set to
zero to avoid future code obsolescence.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the results of
the operand loaded.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

MVwZ

Instructions

6-55

MW

Multiply Word (MW)

MW addr4,reg
Operation code R RB| AM Function
11101 0101
0 4 5 7 8 9 101112 15
{: __ Address/Displacement - _|]
L Diphcement 1’ " | Disphcement? =
16 23 24 31

A multiply operation is performed between the word
multiplier contained in the register specified by the R field
and the word multiplicand at the location specified by the
effective address. (Effective Address Generation is
explained in Chapter 2.) The word product replaces the
contents of the register.

R EA

Multiplier X | Multiplicand éﬂ
0 15 0 I%;
R

Product
0 15
Indicators

Carry. Unchanged

Overflow. Cleared, then turned on if the result cannot be
represented in 16 bits. If overflow occurs, the contents
of the specified register are undefined.

Even, Negative, and Zero. Set to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

6-56 GA34-0022

¢

No Operation (NOP)
NOP

Operation code
01010[00O0f0O0O0O0OOCOOO
0 4 5 7 8 15

The hardware format of this instruction is identical to the
format used for the Branch Indexed Short (BXS) and Jump
Unconditional (J) instructions. When bits 5—15 are all zeros,
the instruction performs no operation.

Indicators
No indicators are changed.

Program Check Conditions
No program checks occur.

NOP
NWI

And Word Immediate (NWI)

NWI word reg|,reg]

Operation code R1 R2 Function

01 111 00 000

n 4 5 7 R 10 11 15
Immediate

16 31

The immediate field is ANDed bit by bit with the contents
of the register specified by the R1 field. The result is
placed in the register specified by the R2 field. The
contents of the register specified by R1 are unchanged
unless R1 and R2 specify the same register.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word.

Instructions 6-57

OB

OR Byte (OB)

Register/Storage Format

OB reg,addr4
addr4,reg

Operation Code R RB |AM | X |Function

1.1 000 0 0 1
0 4 5 7 8 9 101112131415

= result to storage } .

0 = result to register

[_ AddressDisptacoment__ _ _ _ _ 3
L Displacement1 | Displacement2 _
16 23 24 31

A logical OR operation is performed between the least
significant byte of the register specified by the R field and
the location specified by the effective address in main
storage. (Effective Address Generation is explained in
Chapter 2.) Bit 12 of the instruction specifies the

destination of the result. The source operand is unchanged.

Also, when going from storage to register, bits O through 7
of the register are unchanged.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address).

6-58 GA34-0022

Storage/Storage Format
OB addr5 ,addr4

Operation code RB1 |RB2 |AMI1 |AM2 | Fun
1 00 00 01

0 4 5 7 8 9 101112131415
I _ _ _ _ _ Address/Displacement _ _ 1
L _Displacement1_ — T " " Displacement 2|
16 23 24 31
O T T T TAddress/Displacement !
L _Displacemeni | _ _ | __ Displacemeni2 _ |
32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address
Generation is explained in Chapter 2.) A one byte logical
OR operation is performed between operand 1 and operand
2. The result replaces operand 2.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
The instruction is terminated. If AM1 equals 01 and the
operand 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address).

PR

(

)

Y

OR Doubleword (OD)
Register/Storage Format

OD addr4,reg
reg,addr4
Operation Cude R RB | AM | X \Fuiiciicii
11010 001
0 75 7 8 0 101112 131415

1 = result to storage } l

0 = result to register

r Address/Displacement -1
" Oisphisment 1 _ | _ Displacerent2_ _ |
L spacement 1 | Displacements
16 23 24 31

A logical OR operation is performed between the contents
of the register pair specified by the R field (R and R+1)
and the doubleword in main storage specified by the
effective address. (Effective Address Generation is
explained in Chapter 2.) Bit 12 of the instruction specifies
the destination of the result. The source operand is
unchanged.

If the R field equals 7, register 7 and register O are used.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the results of
the OR operation.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or direct address).

OD

Storage/Storage Format
OD addr5,addr4

Operation code RB1 | RB2 | AMI1 | AM2 | Fun
10010 01

0 4 5 7 8 9 10111213 1415
7T T T T TadavisDipticenens ~ Z D - !
L _ Displacement 1~ "]"_ " Displacement Z

16 23 24 31
O 7 T 7 T Taddress/Displacement)
e ——— = = — === == — — -
L Displacement 1 _ *_[_"_ Displacement 2™~

32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address
Generation is explained in Chapter 2.) A doubleword
logical OR operation is performed between operand 1 and
operand 2. The result replaces operand 2. Operand 1 is
unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result of
the OR operation.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
The instruction is terminated. If AM1 equals 01 and the
operand 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-59

Oow

OR Word (OW)
Register/Register Format

ow regreg
Operation code R1 R2 Function
01110 00001
0 4 5 7 8 10 11 15

The contents of the register specified by the R1 field are
ORed bit by bit with the contents of the register specified
by the R2 field. The result is placed in the register
specified by the R2 field. The contents of the register
specified by the R1 field remain unchanged unless R1 and
R2 specify the same register.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
No program checks occur.

6-60 GA34-0022

Register/Storage Format

ow reg,addr4 ‘
addr4,reg (

ol

Operation Code R RB | AM | X \Function
11001 0 01

0 4 5 7 8 9 10111213 15

= result to storage } l

0 = result to register

[~~~ T SdarimDisplacement §
L _Displacement T ~_ | "Displacement2 |
16 23 24 31

A logical OR operation is performed between the contents
of the register specified by the R field and the location
specified by the effective address in main storage. (See
Effective Address Generation in Chapter 2.) Bit 12 of

the instruction specifies the destination of the result. The
source operand is uncHanged.

Indicators :

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result of
the OR operation.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

C

Storage to Register Long Format
ow longaddr,reg

Operation code R1 R2 X
01101 1 0 01
0 4 5 7 8 10 11 12 15

0 = direct address })

1 = indirect address

Function

Address

16 31

A logical OR operation is performed between the contents
of the main storage location specified by an effective
address and the contents of the register specified by the
R1 field. The result is placed in the register specified by
the R1 field.

The effective main storage address is generated as follows:

1. The address field is added to the contents of the
register specified by the R2 field. If the R2 field equals
zero, no register contributes to the address generation.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11=0 (direct address). The result from step 1 is the
effective address.

Bit 11-1 (indirect address). The result from step 1 is
the address of the main storage location that contains
the effective address.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result
loaded into the register specified by the R1 field.
Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

ow

Storage/Storage Format
ow addr5,addr4

Operation code RB1 RB2 |AM1 {AM2 | Fun

1 0001 01

0 4 5 7 8 9 10111213 1415
A Y |
L _ Displacement 1| "Displacement 2 _ |
16 23 24 31
‘;_ T T 7 T TAddress/Displacement _J
L _Displacement 1 [" "Displacement 2™
32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (See Effective Address
Generation in Chapter 2.) A one word logical OR operation
is performed between operand 1 and operand 2. The result
replaces operand 2. Operand 1 is unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand. The
instruction is terminated. If AM1 equals O1 and the
operand 2 effective address is invalid, RBI is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-61

oWl

OR Word Immediate (OWI)

Register Inmediate Format

OwI word,reg[reg]
Operation code R1 R2 Function
01111 00 011
0 4 5 7 8 10 11 15
Immediate
16 31

The immediate field is ORed bit by bit with the contents

of the register specified by the R1 field. The result is

placed in the register specified by the R2 field. The
contents of the register specified by R1 are unchanged unless
R1 and R2 specify the same register.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.

6-62 GA34-0022

Storage Immediate Format

oW1 word,addr4 £
(]
Format without appended word for
effective addressing (AM = 00 or 01)
Operation code RB AM | Function
01000000 1100
0 4 5 7 8 9 101112 15
Immediate
16 31
Format with appended word for
effective addressing (AM =10 or 11)
Operation code RB | AM | Function
01 00 0|0 0O 1100
0 4 5 7 8 9 101112 15
Address/Displacement _
Displacement 1 T Displacement 2
16 23 24 31
Immediate
32 47 ?
L Y

A logical OR operation is performed between the immediate
field and the contents of the main storage location specified
by the effective address. (Effective Address Generation is
explained in Chapter 2.) The result replaces the contents
of the storage location.

Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence. The immediate
operand is unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result
of the OR operation.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Pop Byte (PB)

Refer to Stack Operations in Chapter 2 for additional
information about the operation of this instruction and
the associated stack control block.

PB addr4,reg
Operation code R RB | AM Function
11101 0011
0 4 5 7 8 9 101112 15
[__ o idcgeg/l__)isplacime_nt _____ 3
L Displacement T — ~ T “Displacement2 "
16 23 24 31

The top element of a byte stack is popped from the stack
and loaded into the least significant byte of the register
specified by the R field. The stack is defined by the stack
control block pointed to by the effective address.
(Effective Address Generation is explained in Chapter 2.)

Programming Note. If AM equals 01, the register specified
by the RB field is incremented by two.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word, stack control
block, or operand.

Specification Check. Even byte boundary violation
(indirect address or stack control block).

Soft Exception Trap Condition

Stack Exception. Stack is empty. If AM equals 01, the
contents of the register specified by the RB field are
incremented.

PB
PD

Pop Doubleword (PD)

Refer to Stack Operations in Chapter 2 for additional
information about the operation of this instruction and
the associated stack control block.

PD addr4,reg
Operation code R RB AM | Function
1 1 101 1 011
0 4 5 7 8 9 101112 15
r Address|Displacement —]i
w Displacement 1 Displacement 2]
16 23 24 31

The top element of a doubleword stack is popped from

the stack and loaded into the register pair specified by the

R field (R and R+1). The stack is defined by the stack

control block pointed to by the effective address.

(Effective Address Generation is explained in Chapter 2.)
If the R field equals 7, registers 7 and O are used.

Programming Note. If AM equals 01, the register specified
by the RB field is incremented by two.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word, stack control
block, or operand.

Specification Check. Even byte boundary violation
(indirect address, stack control block, or stack element).
Soft Exception Trap Condition

Stack Exception. Stack is empty. If the AM field equals
01, the contents of the register specified by the RB field
are incremented.

Instructions 6-63

PSB
PSD

Push Byte (PSB)

Refer to Stack Operations in Chapter 2 for additional
information about the operation of this instruction and the
associated stack control block.

PSB reg,addr4
Operation code R RB AM Function
11101 000@O
0 4 5 7 8 9 101112 15
'f: T 7 7 7 TAddress/Displacement _1‘
L Displacement 1 _ [Displacement 2" " _
16 23 24 31

The least significant byte of the register specified by the R
field is pushed into the stack. The stack is defined by the
stack control block pointed to by the effective address.
(Effective Address Generation is explained in Chapter 2.)

Programming Note. If AM equals 01, the register specified
by the RB field is incremented by two.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word, stack control
block, or operand.

Specification Check. Even byte boundary violation
(indirect address or stack control block).
Soft Exception Trap Condition

Stack Exception. Stack is full. If AM equals 01, the
contents of the register specified by the RB field are
incremented.

6-64 GA34-0022

Push Doubleword (PSD)

Refer to Stack Operations in Chapter 2 for additional
information about the operation of this instruction and the
associated stack control block.

PSD reg,addr4
Operation code R RB| AM | Function
11101 1 000
0 4 5 7 8 9 101112 15
Il: T T T TAadressiDisplacement _ _ _ _ __ 7|
L Displacement 1 Displacement 2 1
6~~~ T T T 2524~ T T T T T 73

The doubleword operand contained in the register pair
specified by the R field (R and R+1) is pushed into the
stack. The stack is defined by the stack control block
pointed to by the effective address. (Effective Address
Generation is explained in Chapter 2.)

If the R field equals 7, registers 7 and O are used.
Programming Note. If AM equals 01, the register specified
by the RB field is incremented by two.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word, stack control
block, or operand.

Specification Check. Even byte boundary violation
(indirect address, stack control block, or stack element).
Soft Exception Trap Condition

Stack Exception. Stack is full. If the AM field equals
01, the contents of the register specified by the RB field
are incremented.

LN

pe

{v

A

Push Word (PSW)

Refer to Stack Operations in Chapter 2 for additional
information about the operation of this instruction and
the associated stack control block.

PSW reg,addr4
Operation code R RB | AM | Function
11101 01 00
0 4 5 7 8 9 101112 15
E_ -t Zd:ir;vsTDEpl_a.c;m?nT _____]
L _ Displacement 1~ [" Displacement2 |
16 23 24 31

The word operand contained in the register specified by

the R field is pushed into the stack. The stack is defined by
the stack control block pointed to by the effective address.
(Effective Address Generation is explained in Chapter 2.)

Programming Note. 1f AM equals 01, the register specified
by the RB field is incremented by two.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word, stack control
block, or operand.

Specification Check. Even byte boundary violation (indirect
address, stack control block, or stack element).
Soft Exception Trap Condition

Stack Exception. Stack is full. If the AM field equals 01,
the contents of the register specified by the RB field are
incremented.

PSW
PW

Pop Word (PW)

Refer to Stack Operations in Chapter 2 for additional
information about the operation of this instruction and
the associated stack control block.

PW addr4,reg

Operation code R RB | AM | Function
11101 0 1 1 1
0 4 5 7 8 9 101112 15

£ Address/DispIacer.;e.r; _____ ;‘

L Displacement T~ [~ Displacement2 _"_
16 23 24 31

The top element of a word stack is popped from the stack
and loaded into the register specified by the R field. The
stack is defined by the stack control block pointed to by
the effective address. (Effective Address Generation is
explained in Chapter 2.)

Programming Note. 1f AM equals 01, the register specified
by the RB field is incremented by two.

Indicators
No indicators are changed.

Program Check Conditions

Invalid Storage Address. Instruction word, stack control
block, or operand.

Specification Check. Even byte boundary violation
(indirect address, stack control block, or stack element).
Soft Exception Trap Condition

Stack Exception. Stack is empty. If the AM field equals
01, the contents of the register specified by the RB field
are incremented.

Instructions 6-65

RBTB

Reset Bits Byte (RBTB)

Register/Storage Format

RBTB addr4,reg
reg,addr4

Operation Code R RB | AM | X |Function
11000 010
0 4 5 7 8 9 10111213 15

0 = storage to register } l

1 = register to storage

|__ _ _ _ Address|Displacement :||
L _Displacement |~ "] _ Displacement2 |
16 23 24 31

This instruction operates either:

1. Storage to register (instruction bit 12 equals 0) or
2. Register to storage (instruction bit 12 equals 1).

Storage to Register. The specified bits are reset in the
least significant byte of the register specified by the R1
field. The bit positions turned off correspond to the bit
positions containing one-bits in the main storage byte
location specified by the effective address. The remaining
hits in the low-order byte of the register are unchanged.
Also, bits 0—7 of the register and the storage operand are
unchanged.

Register to Storage. The specified bits are reset in the
main storage byte location specified by the effective
address. The bits turned off correspond to the bit
positions containing one-bits in the least significant byte of
the register specified by the R field. The remaining bits

in the storage location are unchanged. The register
operand is unchanged.

Note. Effective Address Generation is explained in
Chapter 2.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address).

6-66 GA34-0022

Storage/Storage Format
RBTB addr5 ,addr4

Operation code RB1 |RB2 |AM1 (AM2 | Fun
10 000 10

0 4 5 7 8 9 101112131415
L _ _ _ _ _ TAddress/Displacement_ _ ':
L _Displacement 1 _T Displacement 2]

16 23 24 31
(07T T e e
L __Displacement 1 Displacement 2 j
32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address
Generation is explained in Chapter 2.) The bit positions
containing one-bits in byte operand 1 determine the bit
positions turned off in byte operand 2. The remaining
bits in operand 2 are unchanged. The result replaces
operand 2. Operand 1 is unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
The instruction is terminated. If AM1 equals 01 and the
operand 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address).

>

Reset Bits Doubleword (RBTD)

Register/Storage Format

RBTD addr4;reg
reg,addr4

Operation Code

R RB | AM | X |Function
11010 010
0 4 5 7 8 9 10111213 15

0 = storage to register } l

1 = register to storage

E - B —Addres:/l;ispla:ement _-:
L Displacement 1 L Displacement 2 4
16 23 24 31

This instruction operates either:

1. Storage to register (instruction bit 12 equals 0) or
2. Register to storage (instruction bit 12 equals 1)

Storage to Register. The specified bits are reset in the
register pair specified by the R field (R and R+1). The
bit positions turned off correspond to the bit positions
containing one-bits in the doubleword main storage
location specified by the effective address. The remaining
bits in the register pair are unchanged. The storage
operand is unchanged.

Register to Storage. The specified bits are reset in the
doubleword main storage location specified by the effective
address. The bit positions turned off correspond to the

bit positions containing one-bits in the register pair
specified by the R field (R and R+1). The remaining

bits in the storage operand are unchanged. The register
operand is unchanged. If the R field equals 7, registers 7
and O are used.

Note. Effective Address Generation is explained in
Chapter 2.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

RBTD

Storage/Storage Format
RBTD addr5,addr4

Operation code RBl | RB2 | AM! | AM2 | Fun
1 001 10

0 4 5 7 8 9 101112131415
"l_"' T T T 7 Taadress/Displacement :
L _Displacement | '] __Displacement 2 _

16 23 24 31
f;_' T 7 7 7 TAddvess/Displacement "_":
L Displacement 1 |_ Displacement 2 1

32 3940 47

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address
Generation is explained in Chapter 2.) The bit positions
containing one-bits in doubleword operand 1 determine
the bit positions turned off in doubleword operand 2. The
remaining bits in operand 2 are unchanged. The result
replaces operand 2. Operand 1 is unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
The instruction is terminated. If AMI equals Ol and the
operand 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-67

RBTW

Reset Bits Word (RBTW)
Register/Register Format

RBTW reg,reg

Operation code R1 R2 Function
01110 000O00O0
0 4 5 7 8 10 11 15

The bit positions containing one-bits in the register
specified by the R1 field determine the bit positions turned
off in the register specified by the R2 field. The remaining
bits in the register specified by the R2 field are unchanged.
The contents of the register specified by the R1 field are
unchanged unless R1 and R2 specify the same register.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
No program checks occur.

6-68 GA34-0022

Register/Storage Format

RBTW addr4 reg (\:
reg,addr4 W

Operation Code R RB |AM | X |Function

11001 010

0 45 7 8 9 10111213 IS

0 = storage to register } l

1 = register to storage

L______.__:I _________ 2
16 23 24 31

This instruction operates either:

1. Storage to register (instruction bit 12 equals 0) or
2. Register to storage (instruction bit 12 equals 1)

Storage to Register. The specified bits are reset in the
register specified by the R field. The bit positions

turned off correspond to the bit positions containing one-
bits in the main storage word location specified by the
effective address. The remaining bits in the register are
unchanged. The storage operand is unchanged.

-
\

Register to Storage. The specified bits are reset in the
main storage word location specified by the effective
address. The bit positions turned off correspond to the
bit positions containing one-bits in the register specified
by the R field. The remaining bits in the storage operand
are unchanged. The register operand is unchanged.

Note. Effective Address Generation is explained in
Chapter 2.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Storage to Register Long Format

RBTW longaddr,reg
Operation code RI R2 X Function
01101 1 010
0 4 5 7 &8 10 11 12 15
0 = direct address ’
1 = indirect address
Address
16 31

The bit positions containing one-bits in the main storage
word location specified by the effective address

determine the bit positions turned off in the register
specified by the R1 field. The remaining bits in the register
specified by the R1 field are unchanged. The storage
operand is unchanged.

The effective address is generated as follows:

1. The address field is added to the contents of the
register specified by the R2 field to form a main
storage address. If the R2 field equals zero, no
register contributes to the address generation. The
contents of R2 are not changed.

2. Instruction bit 11 is tested for direct or indirect
addressing:

Bit 11 = 0 (direct address). The result from step 1 is
the effective address.

Bit 11 = 1 (indirect address). The result from step 1 is
the address of the main storage location that contains
the effective address.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

RBTW

Storage/Storage Format
RBTW addr5,addr4

Operation code RB1 RB2 [AM1 |AM2 | Fun
1 0001 10

0 4 5 7 8 9 101112131415
E IR Address/Displacement ‘l
l_. Displacement 1 Displacement 2]

16 23 24 31
[:" T T 7 7 Taddress/Displacement B _;
L _ Displacement 1 T_ Displacement 2 B

32 39 40 47

The address arguments generate the effective addresses of
two operands in main storage. (Effective Address
Generation is explained in Chapter 2.) The bit positions
containing one-bits in word operand 1 determine the bit
positions turned off in word operand 2. The remaining bits
in operand 2 are unchanged. The result replaces operand
2. Operand 1 is unchanged.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
The instruction is terminated. If AM1 equals O1 and the
operand 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-69

RBTWI

Reset Bits Word Immediate (RBTWI)

Register Immediate Long Format

RBTWI word reg[reg]

Operation code R1 R2 Function

01111 00100

0 4 5 7 8 10 11 15
Immediate

16 31

The bit positions containing one-bits in the immediate
field determine the bit positions to be reset. These bit
positions are reset in the operand from the contents of
the register specified by the R1 field. The result is
placed in the register specified by the R2 field.

Example: _

Contents of immediate field 0000 0000 0000 1111
Contents of R1 register 0101 0101 0101 0101
Result in R2 register 0101 0101 0101 0000

The contents of the register specified by the R1 field
are unchanged unless R1 and R2 specify the same register.

Indicators
Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word.

6-70 GA34-0022

Storage Immediate Format
RBTWI word ,addr4

Format without appended word for
effective addressing (AM = 00 or 01)

Operation code RB | AM | Function

01 00 0]0 0 O 1101

0 4 5 7 8 9 101112 15
Immediate

16 31

Format with appended word for
effective addressing (AM = 10 or 11)

Operation code RB | AM | Function
01 0 0 0/0 0O 1101
0 4 5 7 8 9 101112 15
Address/Displacement _
i Displacement 1 T Displacement 2
16 23 24 31
Immediate
32 47

The bit positions containing one-bits in the immediate
field determine the bit positions turned off in the main
storage location specified by the effective address.

(Effective Address Generation is explained in Chapter 2.)

The immediate operand is unchanged.
Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

Indicators

Carry and Overflow. Unchanged.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

-
AN -

Cmd # !

Subtract Byte (SB)

SB reg,addr4
addr4,reg

1

[Operation code R T RB l AM [X lFunctio
n 1 1
1

- . ~n A
ll 1 AV v v ' { i

0 4 5 7 8 9 10111213 15

1 = result to storage E I

0 = result to register

b — — _ _ _Address/Displacement _ _ T T
L Displacement 1 Displacement 2 |
16 23 24 31

A subtract operation is performed between the least
significant byte of the register specified by the R field
and the location specified by the effective address in main
storage. (See Effective Address Generation in Chapter 2.)
Bit 12 of the instruction specifies the destination of the
result. The source operand and high-order byte of the
register are unchanged.

Indicators

Carry, Turned on by the detection of a borrow beyond the
high-order bit position of the byte. If no borrow is
detected, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one byte; i.e., if the difference is less
than -27 or greater than +27-1.

If an overflow occurs, the result contains the correct
low-order eight bits of the difference; the carry indicator
contains the complement of the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address).

SB
SCY

Subtract Carry Indicator (SCY)

SCY reg

Operation code R2 Function
011101000 00010
n 4 5 7 R 1011 15

The value of the carry indicator on entry is subtracted
from the contents of the register specified by the R2 field.
The result is placed in the register specified by the R2
field. Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

Programming Note. This instruction can be used when
subtracting multiple word operands. See Indicators —
Multiple Word Operands in Chapter 2.

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the word. If no borrow is
detected, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one word: i.e., if the difference is less
than -2'% or greater than +2!5-1.

If an overflow occurs, the result contains the correct
low-order 16 bits of the difference; the carry indicator
contains the complement of the high-order (sign) bit.

Even. Unchanged.
Negative. Changed to reflect the result.
Zero. If on at entry, changed to reflect the result. If

off at entry, it remains off.

Program Check Conditions
No program checks occur.

Instructions 6-71

SD

Subtract Doubleword (SD)
Register/Storage Format

SD reg,addr4

addr4,reg
Operation code R RB | AM | X |Function
11010 111
0 4 5 7 8 9 10111213 15

~
]

result to storage% I

0 = result to register

’_'"_ T 7 7 7 TAddress/Displacement |
_ _ DDisplacement 1] — " Displacement 2
16 23 24 31

A subtract operation is performed between the register pair
specified by the R field (R and R+1) and the doubleword
in main storage specified by the effective address. (See
Effective Address Generation in Chapter 2.) Bit 12 of the
instruction specifies the destination of the result. The
source operand is unchanged.

If the R field equals 7, register 7 and register O are used.

Indicators

Carry. Turncd on by the detection of a borrow beyond ihe
high-order bit position of the doubleword. If no borrow is

detected, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in the doubleword; i.e., if the difference is
less than 23! or greater than +23!-1.

If an overflow occurs, the result contains the correct

low-order 32 bits of the difference; the carry indicator
contains the complement of the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.

Specification Check. Even byte boundary violation
(indirect address or operand address).

6-72 GA34-0022

Storage/Storage Format _
SD addr$ addr4 (Y
¥

Operation code| RBI1 RB2 {AM1 |AM2 | Fun

101 01 11

0 4 5 7 8 9 101112131415

™ = T T T TAddress/Displacement |

L _ Disptacemeni_1_ [_ Displacement 2 |

16 23 24 31

. o gl

L _ Displacement 1_ | “Displacement 2 |

32 39 40 47

The address arguments generate the effective addresses of

two operands in main storage. (See Effective Address

Generation in Chapter 2.) Doubleword operand 1 is sub-

tracted from doubleword operand 2. The result replaces

operand 2. Operand 1 is unchanged.

Indicators

Carry. Turned on by the detection of a borrow beyond the

high-order bit position of the doubleword. If no borrow

is detected, the carry indicator is reset. £
L Y

Overflow. Cleared, then turned on if the difference cannot
be represented in the doubleword;i.e., if the difference is
less than -23! or greater than +23!-1.

If an overflow occurs, the result contains the correct
low-order 32 bits of the difference; the carry indicator
contains the complement of the high-order (sign) bit.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Instruction word or operand.
The instruction is terminated. If AM1 equals 01 and the
operand 2 effective address is invalid, RB1 is incremented.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Set Console Data Lights (SECON)

SECON reg

Operation code R2 Function

0 1 1 1 10 0O 1 0 00O
0 4 5 7 8 10 11 15

The contents of the register specified by R2 are stored in
the console data lights. The contents of the register are
unchanged.

Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

If the Programmer Console is not installed, the instruc-
tion performs no operation.

Indicators
All indicators are unchanged.

Program Check Conditions
Privilege Violate. Privileged instruction.

SECON
SEIMR

Set Interrupt Mask Register (SEIMR)

SEIMR addr4
Operation code RB | AM | Function
010111000 00 00O
0 4 5 7 8 9 101112 15
T T TAarmDlpmeimer — Z |
L _ Displacement 1 _| __ _ Displacement 2
16 23 24 31

Bits 0—3 of the word location in main storage specified by
the effective address are loaded into the interrupt mask
register. (Effective Address Generation is explained in
Chapter 2.) Bits 4—15 of the word in main storage are not
used. The contents of main storage are unchanged.

Bits 5—7 of the instruction are not used and must be set
to zero to avoid future code obsolescence.

The mask is represented in a bit significant manner as
follows:

Mask bit Interrupt level
0 0
1 1
2 2
3 3

A mask bit set to *“1” indicates that the level is enabled.
A mask bit set to ““0” indicates that the level is disabled.

Indicators
All indicators are unchanged.

Program Check Conditions
Invalid Storage Address. Instruction word or operand.
Privilege Violate. Privileged instruction.

Specification Check. Even byte boundary violation
(indirect address or operand address).

Instructions 6-73

SEIND

Set Indicators (SEIND)

SEIND reg

Operation code R2 Function
01110({00°0O0 01111
0 4 5 7 8 10 11 15

Bits 0—4 of the register specified by the R2 field are loaded

into bits 0—4 of the current level status register (indicators).

Bits 5—15 of the register specified by R2 are ignored. Bits
5—15 of the level status register are unchanged.

Bits 5—7 of the instruction are not used and must be
set to zero to avoid future code obsolescence.

The following table shows the indicator bits of the level
status register (LSR):

LSR bit Indicator

0 Even

1 Carry

2 Overflow
3 Negative
4 Zero
Indicators

Changed as specified by the R2 register.

Program Check Conditions

N nro

1 ATy
No program checks occu

"t

6-74 GA34-0022

L

Set Level Block (SELB)

Execution of the SELB instruction can cause the processor
to change levels. Also, the processor may exit supervisor
state. For additional information concerning the processor
action when executing this instruction, refer to Program
Controlled Level Switching in Chapter 3.

SELB reg,addr4
Operation code R RB | AM | Function
01011 0110
[4 5 7 8 9 101112 15
™ = T T 7 TAddress/Displacement _;
L _ Displacement 1_ | _ Displacement 2
16 23 24 31

This instruction loads a level status block (LSB) from 11
words of main storage beginning with the location specified
by the effective address. (Effective Address Generation is
explained in Chapter 2.) The contents of the storage loca-
tions are not changed.

The register specified by the R field contains the binary
encoded level of the LSB to be loaded. The binary encoded
level is placed in bits 14—15 of the register. Bits 1—13 are

not used and must be zero to avoid future code obsolescence.

Bit O of the register specified by the R field is the inhibit
trace (IT) interrupt bit. If bit 0 is a one and the trace bit
(bit 10) in the LSR of the target LSB is a one, then both the
Set Level Block instruction and the instruction pointed to
by the IAR in the target LSB are executed before trace
interrupts are allowed.

If bit 0 is zero and the trace bit in the LSR of the target
LSB is a one, the Set Level Block instruction is executed
and then trace interrupts are allowed.

The target LSB is defined by either (1) the effective
address, if the in-process bit is set to one in the LSR of the
target LSB and the specified R field level is higher than or
equal to the current level, or (2) the currently active LSB
when condition (1) is not met.

Level Status Block Format

EA IAR
Zeros
LSR
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6

EA+20 Register 7

(+14 hex)

EA=effective address

SELB

Format of Register Specified by R in Instruction

IT X X
000O0OOOOOOOO 0O

0 1 13 14 15

Level 0 0 0

Level 1 0 1

Level 2 1 0

Level 3 1 1

Programming Notes.

1. The Set Level Block instruction with the IT bit equal
to one should be used to return from the trace interrupt
routine and from a class interrupt routine when the
instruction causing the interrupt is to be reexecuted.
This is necessary to prevent a double trace of the
instruction.

2. If the Set Level Block instruction sets the current level
in-process bit to zero and the current level trace bit
to one, no trace interrupt occurs as the level is exited.

3. The registers and LSR for the current level are not
changed if the specified R field level is other than the
current level.

4. If the AM field equals 01, the contents of the register
specified by the RB field are incremented by 2.

Indicators
All indicators are unchanged if the specified level is other

than the current level.
Program Check Conditions

Invalid Storage Address. Instruction word or level status
block. The instruction is terminated.

Privilege Violate. Privileged instruction.

Specification Check. Even byte boundary violation
(indirect address or level status block address). The insiruc-
tion is terminated.

Instructions 6-75

SFED
SFEN

Scan Byte Field Equal and Decrement (SFED)

Scan Byte Field Equal and Increment (SFEN)

SFED reg,(reg)

SFEN reg,(reg)

Operation code R1 R2 I |D|Fun
001 01 0 11
0 4 5 7 8 101112131415

1 for SFED or SFEN ————J

0 for SFED; decrement
contents of R2.

1 for SFEN; increment
contents of R2.

This instruction compares a field in main storage against a
single byte contained in a register. This comparison is made
one byte at a time. Register 7 contains the number of
bytes to be compared. This number is decremented after
each byte is compared.

The register specified by R1 contains, in bits 8—15, the
single byte of operand 1. The register specified by R2 con-
tains the starting address of operand 2. Operand 1 is sub-
tracted from operand 2, but neither operand is changed.

After each byte is compared, the address in R2 is incre-
mented or decremented (determined by bit 13 of the
instruction). The operation terminates when either:

1. An equal condition is detected, or
2. The number of bytes specified in register 7 has been
compared.

When an equality occurs, the address in the register speci-
fied by R2 points to the next operand to be compared,
but the count in R7 is not updated.

Bit 11 of the instruction is not used and must be set to
zero to avoid future code obsolescence.

See Compare Byte Field Equal and Decrement (CFED)
and Compare Byte Field Equal and Increment (CFEN) for
other versions of this machine instruction.

6-76 GA34-0022

Notes.
1. Variable field length instructions can be interrupted. (»
When this occurs and the interrupted level resumes
operation, the processor treats the uncompleted
instruction as a new instruction with the remaining
byte count specified in register 7.
2. If the specified count in R7 is zero, the instruction
performs no operation (no-op).

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the byte. If no borrow is
detected, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one byte;i.e., if the difference is less than
=27 or greater than +27-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

-Invalid Storage Address. Operand. The instruction is

terminated.

i
A

Em g

Scan Byte Field Not Equal and Decrement (SFNED)

Scan Byte Field Not Equal and Increment (SFNEN)

SFNED reg,(reg)

SFNEN reg.(reg)

Operation code R R2 I |D|Fun
00101 0 1 0
0 4 5 7 8 101112131415

1 for SFNED or SFNEN _—-l

0 for SFNED; decrement
contents of R2.

1 for SFNEN; increment
contents of R2.

This instruction compares a field in main storage against a
single byte contained in a register. This comparison is made
one byte at a time. Register 7 contains the number of
bytes to be compared. This number is decremented after
each byte is compared.

The register specified by R1 contains, in bits 8—15, the
single byte of operand 1. The register specified by R2
contains the starting address of operand 2. Operand 1 is
subtracted from operand 2, but neither operand is changed.
After each byte is compared, the address in R2 is incre-
mented or decremented (determined by bit 13 of the
instruction). The operation terminates when either:

1. An unequal condition is detected, or
2. The number of bytes specified in register 7 has been
compared.

When an inequality occurs, the address in the register speci-
fied by R2 points to the next operand to be compared, but
the count in R7 is not updated.

Bit 11 of the instruction is not used and must be set to
zero to avoid future code obsolescence.

See Compare Byte Field Not Equal and Decrement
(CFNED) and Compare Byte Field Not Equal and Incre-
ment (CFNEN) for other versions of this machine
instruction.

SFNED
SFNEN

Notes.

1. Variable field length instructions can be interrupted.
When this occurs and the interrupted level resumes
operation, the processor treats the uncompleted instruc-
tion as a new instruction with the remaining byte
count specified in register 7.

Z. If the specified count in R7 is e1v, thie lusiiuciioii
performs no operation (no-op).

Indicators

Carry. Turned on by the detection of a borrow beyond the
high-order bit position of the byte. If no borrow is detec-
ted, the carry indicator is reset.

Overflow. Cleared, then turned on if the difference cannot
be represented in one byte; i.e., if the difference is less than
=27 or greater than +27-1.

Even, Negative, and Zero. Changed to reflect the result.

Program Check Conditions

Invalid Storage Address. Operand. The instruction is
terminated.

Instructions 6-77

SLC

Shift Left Circular (SLC)

Immediate Count Format

SLC cntl6,reg
Operation code R Count Function
00110 000
0 4 5 7 8 12 13 15

The bits in