
, 

l 
1 

I 

--- ------ - ---- ---- - ---- - - ----------_ . -

GC34-0121-0 

S1-20 

PROGRAM 
PRODUCT 

IBM Series/1 

Program Preparation Subsystem 

Introduction 

Program Number 5719-AS1 

10 1'-, J* . :f.C 
..c::. --:ra l 

0 fEE : cOl 

II 
11111111111111111111111111111111111111111111111 

0 [] 

111 1111111111111111111111111111111111111111 11 111 

0 

~ w~~ .J- 0 rn 0 [] 

1111111111111111111 ~ 
0 [[] I 

111111111111111111111111111111111111111111111111 

~( z ./(1] 

Series/1 

/ 



--- ------ - ---- ---- - ---- - - ----------_.-

c 

o 

GC34-0121-0 

51-20 

IBM Series/1 

PROGRAM 
PRODUCT 

Program Preparation Subsystem 

Introduction 

Program Number 5719-A51 

Series/1 



This publication is for planning purposes only. The information herein is subject to change before 
the products described become available. 

First Edition (February 1977) 

This manual applies to the IBM Series/l Program Preparation Subsystem, 5719-ASl. 

Significant changes or additions to the contents of this publication will be reported in subsequent 
revisions or Technical Newsletters. Requests for copies of IBM publications should be made to your 
IBM representative or the IBM branch office serving your locality. 

A form for readers' comments is provided at the back of this pUblication. If the form has been 
removed, send your comments to IBM Corporation, Systems Publications, Department 27T, P.O. 
Box 1328, Boca Raton, Florida 33432. Comments become the property of IBM. 

©Copyright International Business Machines Corporation 1977 

ii GC34-0121 

o 

t \ 



c 

c 

Preface v 
How This Book is Organized v 
Related Publications vi 

Programming Publications vi 
Hardware Publications vi 

Chapter I. Overview of the Series/l Program Preparation 
Subsystem 1-1 

The Subsystem Components 1-2 
The Job Stream Processor 1-2 
The Text Editor 1-4 
The Macro Assembler 1-5 
The Application Builder 1-6 

Using the Subsystem Components in Program Preparation 1-8 
Typical Uses of the Program Preparation Subsystem 1-8 

Using the Subsystem Programs in the Realtime 
Environment 1-10 

Preparing Programs for Execution Under Your Own 
Supervisor 1-10 

Using the Subsystem Programs in a Batch Environment 1-11 
Problem Solving with the Compile, Load, and Go Facility 1-12 

Invoking and Executing the Subsystem Programs 1-13 
Data Sets and Devices Used by the Subsystem Programs 1-14 

The Required Data Set Definitions 1-14 
Work Data Sets 1-15 
Environment Lists 1-16 

Req uired Hardware 1-16 
Installing the Program Preparation Subsystem 1-18 

Chapter 2. The Job Stream Processor 2-1 
The Job Input Stream 2-1 

Jobs and Steps 2-1 
Data Set Definition Statements 2-2 
DSD Environment 2-2 
Compile Load and Go Statements 2-3 
Input Data 2-4 
Sources of the Input Stream 2-4 
Redirecting the Input Stream 2-5 
Which Input Stream Source to Use 2-6 

Summary of Job Stream Processor Control Statements 2-6 
Summary of Job Stream Processor Features 2-7 

Chapter 3. The Text Editor 3-1 
Using the Text Editor 3-2 

Interactive and Noninteractive Use 3-2 
Line Numbers 3-2 
Tailoring the Editing Session 3-3 
Preserving Editing Sessions 3-4 
Defining Editor Data Sets 3-5 
Invoking the Editor 3-5 
The Editor Commands 3-6 

Summary of Text Editor Features 3-7 

Chapter 4. The Macro Assembler 4-1 
The Assembler Program 4-1 

Defining Assembler Data Sets 4-1 
Invoking the Assembler 4-2 

The Assembler Language 4-3 
Machine Instructions 4-3 
Assembler Instructions 4-3 
Macro Instructions 4-5 

Assembler Coding Features 4-7 

Contents 

Symbolic Representation of Program Elements 4-7 
Variety of Data Representation 4-7 
Relocatable Object Mod ules 4-7 
Address Assignment 4-7 
Flexible Register Usage 4-7 
Program Sections 4-7 
Symbolic Linkages Between Separately Assembled Source 

Modules 4-8 
Comprehensive Assembler Listings 4-8 
Structured Macro Usage 4-9 

Summary of Macro Assembler Features 4-10 

Chapter 5. The Application Builder 5-1 
Execution Environments Supported 5-1 

An Environment You Provide 5-2 
The Realtime Programming System Execution Environment 5-3 

Application Builder Processing 5-6 
Phase 1 Processing 5-6 
Phase 2 Processing 5-8 
Phase 3 Processing 5-11 

Summary of Application Builder Data Sets 5-13 
Invoking the Application Builder 5-13 
Listing and Processing Options 5 -14 
Summary of Application Builder Features 5-15 

Appendix A. Configuration Requirements A-I 
Hardware A-I 

Storage Requirements A-I 
Disk Requirements A-I 
Diskette Requirements A-2 
Timer Requirements A-3 
Printer Requirements A-3 

Programming Requirements A-3 
Compatibilities A-3 

The Base Program Preparation Facilities and the Program 
Preparation Subsystem A-3 

The Realtime Programming System and the Program 
Preparation Subsystem A-4 

Appendix B. Using the Series/I Programming Library B-l 

Glossary G-l 

Index X-I 

Contents iii 



, , 

iv GC34-0121 



c: 

c 

Preface 

This book provides introductory information about the IBM Series/l Program 
Preparation Subsystem for the reader who is evaluating the subsystem for 
applicability to his installation, as well as for the reader who simply wants a 
general understanding of the subsystem facilities. 

The reader should have a basic knowledge of programming systems and be 
familiar with the information in the IBM Series/l Realtime Programming 
System: Introduction and Planning Guide, GC34-0102. 

How this Book is Organized 

Chapter 1. Overview of the Program Preparation Subsystem. This chapter 
describes the purpose, organization, functions, and operating environment of the 
components of the Program Preparation Subsystem. 

Chapter 2. The Job Stream Processor. This chapter explains how the job stream 
processor control statements are used to invoke batch programs and define the 
data sets and devices required by those programs. 

Chapter 3. The Text Editor. This chapter explains how the text editor is used to 
create, modify, list and save text modules. 

Chapter 4. The Macro Assembler. This chapter describes assembler language 
features and explains how the assembler program is used to create relocatable 
object modules. 

Chapter 5. The Application Builder. This chapter explains how the application 
builder processes object modules to prepare them for execution as application 
programs. 

For each of these components, there is a description of its purpose, data sets and 
devices used, the input required, the processing sequence, and the output created. 
Each of these chapters also directs the reader to the appropriate manual for more 
detailed information about the component. 

Appendix A. Configuration Requirements. This appendix contains information 
about hardware and software requirements and compatibilities. 

Appendix B. Using the Series/1 Programming Library. This appendix is a 
quick-reference guide to help you determine the other Series/l manuals you may 
need for various types of programming activities. 
A glossary is provided to define terms referenced in this manuaL 

Preface v 



Related Publications 

Programming Publications 

Hardware Publications 

vi GC34-0121 

The following hardware and programming publications contain more detailed 
information about topics covered in this book. 

Note. Order numbers are shown only for the publications that are available at 
this time. 

IBM Series/l Program Preparation Subsystem: Batch User's Guide 

IBM Series/l Program Preparation Subsystem: Text Editor User's Guide 

IBM Series/l Program Preparation Subsystem: Macro Assembler User's Guide, 
SC34-0124 

IBM Series/l Program Preparation Subsystem: Application Builder 
User's Guide 

IBM Series/l Realtime Programming System: Introduction and Planning Guide, 
GC34-0102 

IBM Series/l FORTRAN IV: Introduction, GC34-0132 

IBM Series/l PL/ I: Introduction, GC34-0084 

IBM Series/l Mathematical and Functional Subroutine Library: Introduction, 
GC34-0138 

IBM Series/l Model 5 4955 Processor and Processor Features Description, 
GA34-0021 

IBM Series/l Model 3 4953 Processor and Processor Features Description, 
GA34-0022 

IBM Series/l 4962 Disk Storage Unit Description and 4964 Diskette Unit 
Description, GA34-0024 

IBM Series/l 4973 Printer Description, GA34-0044 

IBM Series/l 4974 Printer Description, GA34-0025 

IBM Series/l 4979 Display Station Description, GA34-0026 

IBM Series/l System Summary, GA34-0035-1 

( "\ , , 



c 

c 

Chapter 1. Overview of the Series /1 
Program Preparation Subsystem 

The Program Preparation Subsystem is a set of programs in the IBM Series/l 
software system that offers: 

• A general-purpose disk-based job stream processor. 
• Powerful program preparation facilities for creating realtime and batch 

applications. 

The job stream processor reads, analyzes, and processes the job input stream, 
which is a sequence of your requests for invoking batch programs and defining 
the data sets and devices they use. 

The program preparation facilities-the text editor, macro assembler, and 
application builder-allow you to create, update, and assemble source programs, 
and then build executable application programs. 

The programs that make up the Program Preparation Subsystem will also be 
referred to in this manual as the subsystem programs or the subsystem 
components. 

You can also use PL/I, FORTRAN IV, and the Mathematical and Functional 
Subroutine Library (MFSL) with the subsystem programs. Information about the 
Series/l software-the program products and how they form a total system-is 
contained in the IBM Series/l Realtime Programming System: Introduction and 
Planning Guide, GC34-0 1 02. 

Figure I-\. The IBM Series/l software system 

Text Macro Application 
editor assembler builder 

Job stream 
processor 

Overview of the Series/l Program Preparation Subsystem 1 - 1 



The subsystem programs can run concurrently with realtime applications under 
the realtime supervisor or, in the absence of realtime applications, can run under 
the realtime supervisor in a simple batch environment. Batch processing provides 
a convenient method of invoking and executing programs, with little or no 
operator intervention required. 

The Subsystem Components 

The Job Stream Processor 

1 - 2 GC34-0121 

Each of the components in the Program Preparation Subsystem performs 
functions that allow you to prepare programs for execution-in the Realtime 
Programming System execution environment or in an environment you provide. 
The following section introduces the features and functions of each of the 
components to give you some background information about the component 
before you read the individual chapters describing each component. It covers the: 

• Job stream processor. 
• Text editor. 
• Macro assembler. 
• Application builder. 

The job stream processor, which serves as the interface to the system resources, 
provides a simple set of control statements for invoking the programs and for 
defining data sets they use. These control statements and related data make up a 
job input stream composed of jobs and steps. Upon reading the control 
statements (such as JOB, EXEC, and PARM) the job stream processor analyzes 
the parameters you supply and processes your requests for executing programs. It 
also manages the data sets and devices used by the programs and handles the 
automatic job-to-job, step-to-step transition during job input stream processing. 

The job stream processor provides the facility to: 

• Specify your work requests to the system, using a simple control language. 
• Process a job input stream of work requests, the source of which may be an 

operator station or a previously-created data set. 
• Start the input stream from one device and redirect it to another device. For 

example, you could start the primary input stream from an operator station, 
then switch to a secondary input stream on a disk data set. 

• Use data set definition (DSD) statements to define data sets and devices 
required by the subsystem programs or your own programs. 

• Specify a group of data set definitions to be in effect at various levels of input 
stream processing-session level, job level or step level. 

• Predefine lists containing all of the data set definitions (DSDs) required for 
executing particular jobs. These environment lists can be prepared and stored 
on the system. Jobs that require them can then refer to the appropriate 
environment list, and the job stream processor will process the DSDs as if you 
had entered them in the input stream. 

• Use special control statements -ASMGO, FORTGO, or PLIGO-to initiate 
a "compile, load, and go" sequence. This lets you translate, build, and execute 
a program with a minimum of effort. 

• Run the Realtime Programming System utilities under the Program Preparation 
Subsystem. 

(\ 
'" I 



c 

c 

D 
Source of the 
input stream 

The job input stream 

Allocating resources in the input stream 

DSDs for required work data sets ---'" 

DSD for output data set ABC-----

DSD for listing output---------.... 

DSD for system logging device ----

DSD for message logging device --~ 

JOBI 
STEPl 

• 
• 
• 

JOB 
EXEC 

• 
• 

ENVL refers to 
TSN= 

Changing the source of the input stream 

ALTER ------""" 

Figure 1-2. Using the job stream processor facilities 

Overview of the Series/l Program Preparation Subsystem 1 - 3 



The Text Editor 

1 - 4 GC34-0121 

The text editor allows you to create, modify, list, and save text modules. These 
text modules can consist of previously-prepared job input streams, source ( '\ 
statements, or input data to a batch program. You can use the editor in an \. j 

interactive mode, entering text and commands from an operator station, or you 
can use it in a noninteractive mode by defining a disk or diskette data set as the 
input source. 

Using the editor, you can create a new text module or retrieve and update an 
existing text module. The actual editing takes place in two work data sets, 
referred to as the editor workspace. The output from the text editor is a 
newly-created or updated text module that can be saved on a disk or diskette 
data set and later used as input to a language translator or one of your own 
application programs. 

The editor has 15 easily-learned commands that provide a variety of editing 
capabilities. You can: 

Replace text data within a field in one or more lines. (CF) 
• Clear the editor workspace to prepare for a new editing session. (CL) 
• Copy lines of text from one area of the editor workspace to another. (CO) 
• Display the current status of the editing environment. (CS) 
• Change a character string in one or more lines. (CT) 
• Delete one or more lines in the editor workspace. (DE) 
• End the editing session. (END) 
• Search for text in the editor workspace and print each line containing the text. 

(FI) 
• Get text from a data set and place it in the editor workspace. (GE) 
• Insert new lines of text into the editor workspace. (IN) 
• Set a line display range and set a line length. (LF) 
• List one or more text lines of the editor workspace. (LI) f \, 
• Move one or more lines from one area in the editor workspace to another. , , 

(MO) 
• Save text lines of the editor workspace to a data set. (SA) 
• Set tabs to be used during an editing session. (T A) 

Establishing an editing environment 
CS 
LF 
TA 
CL 

Retrievin/{ text modules 
GE 

Modifyin/{ text 
CF DE MO 
CO FI 
CT IN 

Listing text 
Ll 

Saving text 
SA 

Ending an editing session 
END 

Text 
editor 

Figure 1-3. Program preparation-the text editor (part 1 of 3) 

Source 
statements 



The Macro Assembler 

c 

c 

c 

Once source statements have been created, the next step in the program 
preparation sequence is a language translator. The macro assembler is a powerful 
language translator that provides: 

• A function-oriented assembler language for specifying machine instructions. 
• A flexible macro language facility. 
• Conditional assembly capability within macros. 
• Sectional assembly capability. 
• Assembler options for data definition and listing control. 
• Relocatable object module output. 
• Listing output that can include the source program and object text, external 

symbol dictionary, relocation dictionary, cross-reference table, error messages, 
and statistics. 

The main purpose of the assembler program is to process source statements and 
create one or more relocatable object modules. These object modules consist of 
machine instructions and information that will be used by the application builder 
in its processing. 

Note. Using the PL/I and FORTRAN IV program products in program 
preparation is described in the IBM Series/l PL/I: Introduction, GC34-0084 
and the IBM Series/l FORTRAN IV: Introduction, GC34-0132. 

Source 
statements 

Macro 
assembler 

Figure 1-4. Program preparation-the macro assembler (part 2 of 3) 

Overview of the Series/1 Program Preparation Subsystem 1 - 5 



The Application Builder 

1 - 6 GC34-0121 

The application builder provides a variety of services that can be used in creating 
an application program for execution in the Realtime Programming System ( \ 
environment or in an environment you provide. How you use these services will \. ; 
depend on the execution environment for which you are preparing the application 
program. 

To execute in the realtime environment, an application program must be in the 
form of a task set. A task set is a planned program structure that consists of one 
or more modules grouped together and combined with various tables and control 
blocks (a control module) required by the realtime supervisor. To execute in an 
environment other than the realtime environment, an application program must 
be a load module in absolute format. 

To create an application program, in the form of a task set, to execute in the 
Realtime Programming System environment, the application builder: 

• Processes control statements that allow you to select the options and data set 
environment to perform the functions required. 

• Assigns storage addresses and resolves external references to create a 
composite module in relocatable format, which will later become part of a task 
set. 

• Produces composite modules that may be structured in a single segment 
(simple structure) or multiple segments (overlay structure). 

• Provides a recycling capability to process multiple sets of control statements, 
where each set of statements creates a composite module. 

• Can include modules automatically from a program library through an autocall 
facility. 

• Creates a control module, which specifies the control blocks required by the 
Realtime Programming System, at application build time rather than at 
execution time. (This control module resides in your task set at execution t 1\ 

time.) " , 
• Creates a prebind module, which allows you to specify the resources to be 

pre bound to a task set when it is installed rather than at execution time. This 
pre binding of resources will allow your task set to begin executing faster. 

To create an absolute load module that is executable in an environment you 
provide, the application builder: 

• Processes the control statements you specify to identify the contents, structure, 
and name of the absolute load module. 

• Processes object modules to create absolute load modules that consist of a 
single segment. Addresses are assigned relative to the specified origin for that 
module, as well as having external references between the object modules 
resolved. 

( ....... -, 



c 

c 

c 

Using the application builder to create 
an application program to execute in 
an environment other than that of the 
Realtime Programming System. 

Application 
builder 
(phase 1) 

Using the application builder to create 
an application program to execute in 
the Realtime Programming System 
environment. 

Applica tion 
builder 
(phase I) 

Applica tion 
builder 
(phase 2) 

*optional 

Application 
builder 
(phase 3) 

9 
~ 

Figure 1-5. Program preparation-the application builder (part 3 of 3) 

Overview of the Series/I Program Preparation Subsystem I - 7 



Using the Subsystem Components in Program Preparation 
A major use of the subsystem components is preparing programs for execution 
under the realtime supervisor or your own supervisor. 

The basic steps involved in creating an application task set are: 

1. Use the job stream processor to manage the program preparation 
environment. 

2. Use the text editor (or IBM 3741 Programmable Work Station) to create the 
source code. 

3. Use the macro assembler or a compiler to translate the source code and 
create object modules. 

4. Use the application builder to create composite modules or absolute load 
modules. (If you are creating an absolute load module to execute under your 
own supervisor, you can skip steps 5 and 6.) 

5. Use the application builder to create a control module and (optionally) a 
pre bind module. 

6. Use the application builder to create an application task set that can be 
executed in the Realtime Programming System environment. 

Figure 1-6 shows the sequence of steps in creating an application task set. 

Typical Uses of the Program Preparation Subsystem 
The facilities of the Program Preparation Subsystem meet the requirements of a 
wide range of users. Typical uses of these facilities include: 

• Preparing application task sets to run under the realtime supervisor in a 
realtime environment. 

• Creating your own supervisor and preparing programs to run under that 
supervisor. 

• Using the subsystem programs in a batch environment. 
• Using the compile, load and go capability for problem-solving purposes. 

Us;"g the Subsystem Programs in the Realtime Environment 

I - 8 GC34-0121 

Typically, you would create programs and data using the text editor, then store 
them on permanent data sets. The source statements are compiled or assembled 
to create object modules, which must undergo application builder processing to 
build your realtime application. 

To execute under the realtime supervisor, an application must be in the form 
of a task set. Phases 1, 2, and 3 of application builder processing are required to 
create task sets that are executable in the realtime environment. Figure 1-6 
illustrates this processing. 

The subsystem programs may execute concurrently with your realtime 
applications. 

( '\ 
\. ? 



C 
Control 
statements ----- Text 

or editor r-
I 
I 
I 
I I 
I I 
I I 
I I --- ---

.-J 

~L_ 

: I C 
I I 
I I 
I L 

I 
I 
I 

(optional) 

L_ 

c Figure 1-6. Program preparation sequence 

Overview of the Series/l Program Preparation Subsystem 1 - 9 



Preparing Programs for Execution Under Your Own Supervisor 

/' 
Control 
statements 

((tatements 

Text 
editor 

1 - 10 GC34-0121 

In this case, you prepare programs in much the same manner as you would for 
the Realtime Programming System, with one exception. Instead of creating 
programs, in the form of task sets, to execute under the realtime supervisor, you 
create absolute load modules to execute independently or under your own 
supervisor. 

Phase 1 of application builder processing can create these absolute load 
modules. However, none of the Realtime Programming System support functions 
can be requested, and you must provide a means of loading the programs into 
storage and passing control to them. The Disk IPL Bootstrap Loader, which is 
described in the IBM Series/l Stand-Alone Utilities User's Guide, GC34-0070, 
can be used for loading a program and passing control to it. 

Figure 1-7 illustrates this processing. 

ij ~ 
Language Application Your own 
translator builder supervisor 

Figure 1-7. Preparing programs for execution under your own supervisor 

( \ 

'- ? 



C
··~ 

~ 

c 

o 

Using the Subsystem Programs in a Batch Environment 
You may use application programs that you have created to run in a batch 
environment. Application program input, stored in data sets, can be prepared or 
updated by using the text editor. The data set can be passed to the application 
program through the job stream processor. 

For example, you may have a payroll program residing on a data set. 
Periodically you would use the text editor to enter such data as overtime for the 
last period of time. This data and the appropriate job stream processor control 
statements would then be entered in the job input stream for processing by your 
payroll program. 

o 

\ • 

JOB1 JOB 
STEP1 EXEC TSN=PA YRPGM 

~: 
• 

Text 
editor 

Job 
stream 
processor 

Input data 

Figure 1-8. Using the subsystem programs in a batch environment 

PAYRPGM 

Overview of the Series/l Program Preparation Subsystem 1 - 11 



Problem Solving with the Compile, Load, and Go Facility 

I - 12 GC34-0121 

The Program Preparation Subsystem provides a simple method for performing 
problem solving activities through the compile, load, and go facility. This allows ( .~ 
you to compile or assemble a program, build a task set, and execute that task set , 
by specifying a few simple control statements. The DSD statements identifying 
the required data sets and devices are defined in advance in an environment list. 
(Compile, load, and go is described in the job stream processor chapter of this 
manual.) 

Typically, you would write a small program in a high level language, enter this 
program through the text editor, and then use the appropriate statement 
(ASMGO, PLIGO, or FORTGO) to perform a compile, load, and go. Usually 
you would only be interested in the printed output and would not need to save 
object data or to specify intermediate input, output, or disk space requirements. 
Figure 1-9 illustrates the use of the compile, load, and go facility. CLGLST 
refers to a previously-prepared environment list. 

Text 
edi tor 

~2 
or 

FORTGO 
or 

PUGO 
EO] 

• 

Language 
translator 
processing 

Applica tion 
builder 
processing 

Task set 
execution 

Figure 1-9. Example of using the compile, load, and go facility 

( '\ , 
~ 

c 



c 

c~ 

c 

Invoking and Executing the Subsystem Programs 

o 

The subsystem programs run under control of the Realtime Programming System 
as realtime applications in a predefined, fixed partition. The text editor, macro 
assembler and application builder are all task sets that are invoked through the 
job stream processor, which is also a task set. 

To begin a batch session, you must invoke the job stream processor by 
entering a system command-TSET STR, CPJ, ptn, qprty-at the operator 
station. This command starts the job stream processor task set (CPJ), specifies 
the number of the partition in which the job stream processor is to execute (ptn), 
and establishes the queuing priority of the job stream processor (qprty). The job 
stream processor is then loaded and starts processing the input stream. The input 
stream, which consists of control statements and related input data, is logically 
subdivided into jobs and steps. The step is the basic unit of work in which you 
can specify the EXEC control statement to invoke a batch program. 

Figure 1-10 illustrates this sequence. 

TSET STR, CPJ, ptn, qprty 

JOBl JOB. 
STEPl I:XEC TSN = CPA 

EO] 

Realtime 
applications 

Batch 
partition 

A<;sembler 

Job 
stream 
processor 

1. Issue the system com
mand TSET STR ... to 
start the job stream 
processor. 

2. The job stream processor is 
loaded and starts processing 
the input stream. It reads 
a request to invoke the 
assembler (STEPI ... ). 

3. The job stream processor queues 
itself to the batch partition, and 
the assembler is loaded. After 
the assembler terminates, the 
job stream processor is the next 
task set to get con trol. 

- fub 7tr~l; I 
processor I 

L--_____ ----i_ ~~ei _ -I 

Figure 1-10. Invoking and executing the subsystem programs 

Note. The batch partition is not reserved for the subsystem programs. Realtime 
applications use it either when the subsystem programs are inactive or by 
preempting the partition during a batch processing session. 

Overview of the Series/1 Program Preparation Subsystem 1 - 13 



Data Sets and Devices Used by the Subsystem Programs 
In the input stream there can be a variety of requests to execute programs-the 
text editor, the assembler, the application builder, PL/I, FORTRAN IV, or your (" 
own batch programs. Each of these programs uses certain data sets and devices \.. J 

to make up its operating environment. You can specify these resources to the 
program through data set definition (DSD) statements. DSD statements are used 
to establish a connection between a data set or device and a DSD name used in 
a program. 

You can use DSD statements to create new data sets, identify existing data 
sets or delete data sets that are no longer needed. The length of time the DSD is 
in effect depends on where it is located in the input stream-in a step, in a job, 
or at the beginning of a batch session. 

The Required Data Set Definitions 

IN STREAM 

JSPWORK 

MSGLOG 

PRINT 

1 - 14 GC34-0121 

Certain DSDs are established when the Program Preparation Subsystem is 
installed to make required data sets available to the job stream processor when 
you start a batch processing session. 

To simplify the installation process, default DSDs are supplied for the required 
data sets at installation time. You can change any of these DSDs if they do not 
suit your needs. 

The required data set information and DSD names are summarized here. The 
data sets and devices described are those that are required by the job stream 
processor and, therefore, by all components invoked through the job stream 
processor. For information about the required data sets and devices that are 
unique to each component-the text editor, macro assembler, or application 
builder-refer to the chapter describing that component. 

The INSTREAM DSD defines the input stream source. Unless you specify 
another input source in the P ARM field of the task set start command, the job 
stream processor always reads the input stream from the device defined by 
INSTREAM. 

The default IN STREAM device is the operator station. 

JSPWORK defines a disk data set in which the job stream processor saves its 
control blocks when it relinquishes the batch partition to another task set. 

MSGLOG defines the messages log device or data set that the job stream 
processor and text editor use for writing prompts and messages when in the 
interactive mode. The device assigned to MSGLOG should be the same as the 
IN STREAM device. 

The default MSGLOG device is the operator station. 

The device specified by the PRINT DSD is used by all of the subsystem 
programs for listing various types of printed output that you need in hard copy 
form. 
(For example, the assembler and application builder print their listings and maps 
at the device defined by PRINT.) 

The default PRINT device established at installation time is the printer. 

( " 
\ , 



SPOOL 

c 

o 
c 

Work Data Sets 

o 

The disk volume defined by the SPOOL DSD is used by the job stream 
processor to handle your inline input data for the batch programs. When the job 
stream processor is processing the input stream and encounters your input data 
for a batch program, it automatically creates a data set on the SPOOL volume 
and transfers the inline data to that data set before the batch program is invoked. 

Processor 
storage 

Job 
stream 
processor 

JSPWORK 

SPOOL 

Figure 1-11. Default DSDs for required data sets and devices common to all subsystem 
components 

The text editor, macro assembler, and application builder all require work data 
sets in order to perform their processing. Each of these components requires a 
different size and number of work data sets. You can specify the space required 
for a work data set by: 

• Using individual DSD statements to indicate a specific volume and a specific 
amount of space for the WORKI-WORKx data sets. 

• Using the WORKVOL DSD to define space for all the work data sets 
(WORKI-WORKx) and the volume on which the space is to be allocated. 

Note. The DSD statements for WORKI-WORKx must always be specified for 
the assembler and for the application builder, whether or not you use the 
WORKVOL DSD. The operands you specify on these statements will vary, 
depending on the use of the WORKVOL DSD. The text editor only requires that 
you specify the WORKVOL DSD. 

To maximize workspace efficiency, you can use the WORKVOL DSD to define a 
volume to which all available space will be allocated. Each component can then 
dynamically allocate this space between the number of the work data sets it 
needs and in the proportion it needs. 

Overview of the Series/l Program Preparation Subsystem 1 - 15 



Environment Lists 

Required Hardware 

1 - 16 GC34-0121 

For example, suppose you were to specify the WORKVOL DSD (to create a 
temporary work volume) and dummy work data sets-WORKi, WORK2, and 
WORK3-for assembler processing. The assembler, which requires three work 
data sets, would allocate the space among WORKi, WORK2, and WORK3. 
Work data set requirements for each component are summarized in the individual 
chapters describing the component. 

Once the Program Preparation Subsystem is installed, you can also specify data 
sets to contain lists of DSDs that the job stream processor will use to create the 
environments for various batch programs. These environment lists can contain all 
the DSDs required to execute a job or step. 

Many jobs can effectively use environment lists. For example, if you use the 
compile, load, and go facility, you should have environment lists prepared for the 
compile, load and go jobs. You might also want to prepare environment lists for 
jobs that use the program preparation facilities. 

The chapters covering the text editor, macro assembler, and application builder 
give you more specific information about the data sets and devices used by each 
of these components. This information should help you to plan the data set and 
device assignments most efficient for your system and to set up the appropriate 
environment lists. 

The minimum hardware configuration for the Program Preparation Subsystem is 
the same as is required for the Realtime Programming System: 

Required hardware Product name 

Processor One IBM 4953 Processor or IBM 4955 Processor with 
at least 48K bytes of processor storage. 

Disk/ diskette One (or more) IBM 4962 Model 2 or Model 2F Disk 
Storage Unit (combination disk/diskette unit). 
or 
One (or more) IBM 4962 Model 1 or Model 1 F Disk 
Storage Unit 
and 
One (or more) IBM 4964 Diskette Units 

Printer One (or more) IBM 4973 Line Printers or IBM 4974 
Printers 

Operator station One (or more) IBM 4979 Display Stations 
or 
Teletype* Model ASR 33/35 or an ASCII equivalent 
device that can be used an an operator station and is 
attached to the system through the Teletypewriter 
Adapter Feature #7850. 

*Trademark of the Teletype Corporatioon 

{ 

\ , 



annn 
ITIIIIIl 

111111111111 

IH-t++t++11 

I~ , r 

I!I 

" I II I I I I 

c 
UIIIl 
UIID 

II I I I I I 

rn 

m I1II 

OJ 

I II I I I - -

c 

Timers may optionally be used with the subsystem programs. 
For information about sensor I/O and communications support, which are not 

supported by the Program Preparation Subsystem, refer to the IBM Series/l 
Realtime Programming System: Introduction and Planning Guide, GC34-0102. 

mn:n 
UIllD 

'" I " II " 
@) 

11111111 

"J 
0 

m 
13 

11111111 II 

IIITID 

UIIIIJ 
(jJ 

[] 
11111 " I I 

• • 

Figure 1-12. Sample hardware configurations 

Overview of the Series/l Program Preparation Subsystem 1 - 17 



Installing the Program Preparation Subsystem 

1 - 18 GC34-0121 

Once you have determined your data set and device requirements and the 
required hardware configuration, you can prepare to install your Program 
Preparation Subsystem. Before the subsystem programs can be installed, you 
must have already performed a system generation for the Realtime Programming 
System. The subsystem programs are installed in a stand-alone environment, and 
the installation process requires 48KB of processor storage. 

The installation package you receive from IBM contains diskettes that contain 
the information required for converting the IBM-supplied code into task sets 
designed to run in the batch partition. 

IBM also supplies a generation program that prompts you to supply 
information about the system to be built. To simplify the installation process, 
defaults are provided for all of the required DSDs. If you accept these defaults, 
the system can be installed as is. If you do not want to accept the defaults, you 
can make changes to the DSDs through your responses to the generation 
program prompts. 

After you have supplied the information requested by the generation program, 
a job input stream will be generated. When this job input stream is executed, you 
will have a Program Preparation Subsystem tailored to your requirements. The 
generation program can also perform a system verification to ensure that your 
system is properly installed. System verification can only be performed against a 
complete Program Preparation Subsystem. 

Although the Program Preparation Subsystem requires only a 16KB partition 
for execution of batch programs, you may want the partition to be larger for 
program preparation activity. This would make more efficient use of the system 
because the text editor, assembler, and application builder execute faster in a 
larger partition. 

The IBM Series/l Program Preparation Subsystem: Batch User's Guide will 
give a step-by-step description of installing and verifying the Program 
Preparation Subsystem. 

(' 
\. -, 



c 

The Job Input Stream 

c 
Jobs and Steps 

o 

Chapter 2. The Job Stream Processor 

The job stream processor is the subsystem component that reads, analyzes, and 
processes the job input stream. The job input stream is made up of your requests 
for executing programs along with related information, such as data set 
definitions. The job stream processor provides a simple set of control statements 
for specifying these requests. 

To start a batch session, you would invoke the job stream processor with a 
task set start command. Once started, the job stream processor will read the 
input stream from the device you designated as the input stream source. The 
input stream source could be an operator station or a disk or diskette data set. 
This can be specified at installation time or when the job stream processor is 
started. The job stream processor reads and processes the control statements and 
data that make up the input stream until the end of the input stream is reached, 
or a task set stop command is issued for the job stream processor, or a severe 
error occurs. 

Detailed information about the job stream processor will be contained in the 
IBM Series/l Program Preparation Subsystem: Batch User's Guide. 

The job input stream is logically divided into independent units of work called 
jobs. Each job may be made up of steps, which are basic units of work for the 
subsystem. 

Jobs are self-contained elements and, as such, have no relation to other jobs in 
the input stream. The input stream can consist of many jobs, which are processed 
one after another in the sequence that they appear in the input stream. If a job 
terminates because of an error, the jobs that follow it will not be affected, and 
the job stream processor will automatically continue with the next job in the 
input stream. 

Each job usually contains one or more related steps. A step is the basic unit of 
the input stream that allows you to invoke a batch program. A step is identified 
by the EXEC statement, which specifies the batch program to be executed. This 
example shows a request to execute a task set called PGMl. 

I EXEC TSN=PGMI 

When there is more than one step in a job, execution of a given step depends 
on successful execution of the previous step. The job stream processor can 
determine whether or not a batch program was successfully executed by the 
return code it receives from the batch program. Return codes are used by all of 
the subsystem programs to indicate the results of their processing. If a step is not 
successfully executed, the job stream processor does not attempt to execute the 
steps that follow, but goes on to the next job in the input stream. 

Within a job or step, you can also include data set definition (DSD) statements 
that define data sets and devices to be used for that job or step. This is discussed 
in the section that follows. 

The Job Stream Processor 2 - 1 



Figure 2-1 shows an example of the structure of an input stream. 

· . . DSD · . . 
• • • DSD · . . 
JOBI JOB • • • · . . DSD · . . 
STEPI EXEC TSN=PGMI 

EOS 
STEP2 EXEC TSN=PGM2 

DSD · . . DSD · . . 
EOS 
EOJ 

JOB2 JOB · . . 
STEPX EXEC TSN=PGMX 

EOS 
EOJ 

• 

Figure 2-1. Sample input stream 

Data Set Definition Statements 

DSD Environment 

2 - 2 GC34-0121 

Before a data set can be used by a batch program, it must be defined to the 
system. To do this, you can use DSD statements. (You can also use the Realtime 
Programming System's BLDDSD macro, DEFDSD macro, or DEFINE utility to 
establish the connection between a DSD name and the associated data set or 
device.) Once the definition has been established, a program can access the data 
set by using the DSD name associated with it. ( \ 

You can use DSD statements to establish new data sets or to identify existing, ~ 
data sets. Both permanent and temporary data sets can be created. Permanent 
data sets can also be deleted with a DSD statement. In addition to defining data 
sets, DSDs can be used to identify a device to be used by a program. 

If you enter DSDs at the start of a batch session, these DSDs remain in effect 
for the entire session unless you override them with the appropriate DSD 
statements at the job or step level. To override an existing data set or device 
definition, enter a new DSD statement with the same name as the DSD name of 
the definition that you want to override. The new DSD statement overrides all 
parameters on the previously-established DSD of the same name. 

DSDs placed within a job are defined for the duration of that job; DSDs 
placed within a step are defined for the duration of that step. At the end of the 
associated job or step, the definition is deleted although the data set itself may 
be permanent. 

The DSDs in effect at any given time in the input stream make up the DSD 
environment. At installation time, required DSDs are established when you either 
accept the default DSDs that IBM supplies or modify them to suit your needs. 

After the program preparation subsystem has been installed, you can prepare 
lists of DSDs to create environments used by the subsystem programs or your 
own batch programs. These environment lists are very useful because they can 
reduce the number of statements that must be entered to execute a particular 
job. On the JOB statement, you simply include the ENVL parameter to refer to 
the desired environment list. An example of this is shown in the following C 
section. '"' 



c 

c 

c 

Compile, Load, and Go Statements 
There are special control statements you can use to perform a compile, load, and 
go with a minimum of effort and knowledge of the Program Preparation 
Subsystem. These special statements and their functions are: 

• ASMGO-causes execution of the assembler program, application builder, and 
the task set created by the application builder. 

• FORTGO-causes execution of the FORTRAN IV compiler, application 
builder, and the task set created by the application builder. 

• PLIGO-causes the execution of the PL/I compiler, application builder, and 
the task set created by the application builder. 

When you specify one of these statements, a series of steps is initiated to 
translate, build, and execute a program. By using these statements, you let data 
set definitions default to data sets that have been previously defined in 
environment lists. All you have to do is specify the statement (ASMGO, 
FORTGO, or PLIGO) and include the ENVL parameter on the JOB statement 
and all the necessary steps are performed for you. The IBM Series/l Program 
Preparation Subsystem: Batch User's Guide will provide the information you 
need in order to prepare for compile, load, and go processing. 

Figure 2-2 illustrates the use of the ASMGO statement. 
Here, the ENVL parameter indicates that ALIST refers to a list of DSDs for this 
compile, load, and go job. 

o 
JOBI JOB ENVL=ALIST 

ASMGO 
EOJ 

Figure 2-2. Using the ASMGO statement 

environment list 

... DSD .. . 

... DSD .. . 

... DSD .. . 

... DSD .. . 

... DSD .. . 

... DSD .. . 

... DSD .. . 

... DSD .. . 

Assembler 

Application 
builder 

Realtime 
Programming 
System 
execution 
environment 

The Job Stream Processor 2 - 3 



Input Data 
Along with the control statements in the input stream, you may also include 
input data for the subsystem programs or your own batch programs. Before the ( ., 
program is invoked, this inline data will be spooled out to a disk data set (which \ ; 
you must have preallocated for that purpose), then passed to the program for 
use. Spooling is done to preserve input stream integrity. 

To include input data in the input stream, specify a DSD statement with an 
asterisk (*) parameter preceding the data and a slash asterisk (/*) delimiter 
following the data. Suppose you wanted to include data to be used by the 
assembler. Figure 2-3 shows how the input data is spooled by the job stream 
processor, then passed to the assembler. 

JOB! JOB 
STEPl EXEC 
SOURCIN DSD * 

P""" .,.. ;-""'"."7 "1 
I I--~ 

l • 

/* 

STEP 2 

I • I Your 
: irtpul 
t data 
I • 
I .1 
1 ....•• < ..•• 1 L .... _ ....... _d 

EOS 
EXEC· • • 

Figure 2-3. Spooling input data 

Assembler 

Note. Your input data to the subsystem programs must be defined by specific 
DSD names-SOURCIN for the assembler, APBIN for the application builder, 
and CMDIN for the text editor. You cannot assign an interactive device to 
SOURCIN or APBIN. 

Input data for a batch program need not be located in the input stream. It 
could be on a completely separate data set. In this case, you would define the 
data set using a DSD statement with the appropriate DSD name (SOURCIN, 
APBIN, or CMDIN) and the job stream processor would pass the data set to the 
subsystem program, which then controls that data set. 

Sources of the Input Stream 

2 - 4 GC34-0121 

The source of the input stream may be an operator station or a 
previously-created text library. 

c 



c 

c~ 

o 

From the Operator Station 

From a Text Library 

The operator station may be an IBM 4979 Display Station or any ASCII 
interactive device that can be attached to the processor through the 
Teletypewriter Adapter Feature. When the input stream is to come from the 
operator station, the job stream processor control statements and data will be 
accepted even though the operator station is also being used as the interface to 
the Realtime Programming System. 

The source of the input stream can be a text library, which may be contained on 
a disk or diskette data set. In this case, you must have previously created the 
input stream by using the text editor or the IBM 3741 Programmable Work 
Station. Assembler and application builder input must come from a text library. 

Redirecting the Input Stream 
You may, at some time, wish to change the source of the input stream. The job 
stream processor allows you to have input streams residing on more than one 
device. You might have one main input stream along with secondary input 
streams that are only processed periodically. Suppose your main input stream 
source is an operator station, and you have a secondary input stream on a disk 
data set. You can start the input stream from the operator station and then use 
the ALTER statement to redirect the input stream to come from the disk data 
set. 

Figure 2-4 gives an example of redirecting the input stream. 

JOBI JOB 

/ ~LIB DS!) DSN=ABC ••• 

• 
• 
•• EXEC.· 

· . DSD •• 
EOS 

EOJ 
JOB2JOB 

EXEC TSN= •• 

• 
• 
• 
EOS 
EXEC TSN = •• 
• 
• 

• 
~~OS • 

• V~EOF 

Figure 2-4. Redirecting the input stream 

This feature gives you flexibility in creating your input stream because you can 
execute different jobs or steps within jobs from different locations. This is useful 
when you have various jobs that you want to execute under a single 
environment, but they are not all in one location. All you have to do is start the 
batch session from the operator station, enter the environment, and use ALTER 
statements to go to each job. This saves you the time of reentering each job 
individually. 

The Job Stream Processor 2 - 5 



Which Inpllt Stream SOllrce to Use 
The input stream source you wish to use-operator station or a 
previously-created data set--depends on your time and flexibility requirements. 

If you want to be able to change the input stream at the last moment, you 
would use an operator station. This way the input stream does not have to be 
created until the moment it is ready to be processed. The disadvantage to this is 
that it can be time-consuming and requires that someone be present at the 
operator station at all times. 

If you anticipate no changes to the input stream, you can create it on a disk or 
diskette ahead of time. When you start the batch session, you can indicate that 
this previously-created input stream is the one to be processed- either by 
defining it as the primary input stream on the task set start command or by using 
an ALTER statement to switch to it. For standard jobs that are in different 
locations, you can put them in a text library and use ALTER statements to 
combine and execute these jobs as needed. 

Summary of Job Stream Processor Control Statements 

Statement Use 

ALTER Redirects the job input stream from one 
data set to another. 

ASMGO Creates a compile, load, and go sequence . 
for the assembler program. 

DSD Establishes a connection between a data 
set or device and a DSD name used in a 
program. 

EOF Indicates the end of an input stream file. 

EOJ Ends a job. 

EOS Ends a step. 

EXEC Starts a step. 

FORTGO Creates a compile, load, and go sequence 
for the FORTRAN IV programs. 

JOB Starts and names a job. 

NOEXEC Used at an interactive device to cancel a 
step. 

PARM Used to pass parameters to a task set to 
be executed for a step. 

PLIGO Creates a compile, load, and go sequence 
for the PL/I programs. 

*(comment) * indicates that a comment follows. 
Comments can be placed anywhere in the 
input stream except between continuation 
statements. 

/* Ends an inline data set started by a DSD 
* statement. 

2 - 6 GC34-0121 

f '\ 

" I' 



c 

o 

Summary of Job Stream Processor Features 
• The job stream processor gives you a simple control language for specifying 

requests to execute programs and defining the data sets and devices they 
require. 

• Your input stream can come from an operator station or from a 
previously-created data set. 

• You can redirect the source of the input stream. The input stream can be 
started from one device, then redirected to come from another device by an 
ALTER statement. 

• You can predefine environment list DSDs. These lists will contain all the 
DSDs needed to execute particular jobs. 

• You can add to the environment or override DSDs in the environment. These 
changes can be in effect for an entire session, a job, or a step. 

• You can initiate a compile, load, and go sequence for PL/I, FORTRAN IV, or 
assembler programs by specifying PLIGO, FORTGO, or ASMGO. 
You can pass parameters to a task set that is to be executed in a step. 

• You can have multiple stacked jobs per job stream and multiple steps per job. 

The Job Stream Processor 2 - 7 



(: 
2 - 8 GC34-0121 



c 

c 

c 

Chapter 3. The Text Editor 

The text editor provides a facility for creating and editing text modules. It 
executes in the batch partition and is invoked through the job stream processor. 
Once you define the required data sets and start the editor, you can enter new 
text or retrieve and modify existing text. The actual editing takes place in two 
work data sets referred to as the editor workspace. 

The editor commands let you manipulate the text in a variety of ways. You 
can easily make changes, additions, and deletions to the text, then save the 
updated text module on an output data set. Text modules can be independently 
or compositely retrieved, edited, and saved during a single editing session. 

The printed output is a listing of commands and text that you entered, along 
with the prompts and messages issued by the editor. You can also get a complete 
listing of the text module that you have created or updated. 

Detailed information about the text editor will be contained in the IBM 
Series/l Program Preparation Subsystem: Text Editor User's Guide. 

cr CO 
DE CS 
END IN 

LF 
MO 

Insert or edit text 
from the operator station 
(teletypewriter or display station) 

CL 
Qear the 
editor 

disk or diskette 
data set 

Store text 
module on disk 
or diskette data set 

Figure 3-1. Retrieving, editing, and saving text with the text editor 

The Text Editor 3 - 1 



Using the Text Editor 
The editor features offer flexibility and ease of use in your editing sessions. 

Interactive and Noninteractive Use 

Line Numbers 

3 - 2 GC34-0t21 

You can use the editor in an interactive or noninteractive mode. It executes in a 
noninteractive mode when the source of commands and data is a disk or diskette 
data set rather than an operator station. 

Most of the time you will probably use the editor interactively, entering 
commands and data from a teletypewriter or display station. 

Interactive mode 

Text 
editor 

Noninteractive mode 

Figure 3-2. Interactive and noninteractive use of the text editor 

Text 
editor 

If you use a display station that is also being used by the system, the lower 
portion of the display screen is reserved for system use, and the upper portion is 
for editor use. 

The basic unit of text is a line. As lines are placed in the editor workspace 
(through the get command or insert command), these lines are assigned 
temporary line numbers for reference. The line numbers are displayed at the 
beginning of the line of text but are not part of the text. You can specify the 
starting line number and the increment to be added to each succeeding line or let 
both values default to 10. 

( \. 

\ ' 



c 

c 

o 

D 

If you anticipate updating the text module, you have more editing flexibility if 
you let the starting line number and increment both default to 10. This way you 
can insert up to nine lines before or after each one of the original lines, without 
having to rearrange text or reassign line numbers. Figure 3-3 illustrates this 
concept. 

Editor workspace 

Line Text 
number data 

~ 

~
_r- ---------, 

------'-- _____ ---.--J 

o 10 line 1... 
20 line 2 .. . 
30 line 3 .. . 
40 line 4 .. . 
50 line 5 .. . 

Figure 3-3. Editing by line number 

Tailoring the Editing Session 

Line Length 

Line Display Range 

The editor has features that allow you to tailor an editing session. You can set a 
line length, line display range, and tabs that will remain in effect for an entire 
editing session unless you change them. 

You can establish a line length-1 to 132 characters-for each record to be 
edited. This line length does not have to match the record length associated with 
the text modules to be edited. The line length defaults to 80 characters if you do 
not specify otherwise. 

You can also specify a line display range to control the length of a text line to be 
printed or displayed. This feature is useful when you want to avoid line 
wraparound. Line wraparound occurs when a line is too long to be printed on 
one device line and is therefore continued on the next line. This can detract from 
readability of the text lines. To eliminate line wraparound, you can specify a 
certain number of characters to be printed so that only as many characters as 
will fit on a device line will be printed. 

The line display range can also be useful when you are editing from a 
teletypewriter and do not need to see the entire line printed out. Specifying a line 
display range to print only as much of the line as you need to see can reduce 
printing time. 

If you do not specify a line display range, it defaults to the line length 
established by the line format (LF) command. 

The Text Editor 3 - 3 



Tabs 

Preserving Editing Sessions 

3 - 4 GC34-0121 

The editor tabbing feature adds to your formatting flexibility. Through the tab 
(T A) command, you can establish tab settings that will be in effect throughout (. . .. ~ 
an editing session unless you change them. You can specify up to ten levels of .T 

indentation. 
The tabbing feature is easy to use. Through the tab command, specify a tab 

character (which will invoke the tab function) and the column positions of all the 
tabs you want to set. Suppose you have specified a "I" as the tab character and 
set tabs at 1 0, 16, and 35. When you enter lines of text, simply type the" I" 
wherever you want a tab. Each time the editor encounters a tab character in a 
text line, it shifts the data following the tab character to the position you 
specified in the tab command (10, 16 or 35). The resulting "tabbed line" will 
have the tab character replaced by the proper number of blanks and will be 
placed in the editor workspace. 
Example: 

Text line as you entered it 

I LABEL/MVA/TABLE,R1 

Text line in editor workspace 

I LABEL MVA TABLE,R1 

To ensure that no text is inadvertently lost from the editor workspace when you 
end an editing session, the editor automatically preserves the text and editing 
environment for that session. This way, if you were to enter the END command ( , 
before saving your text module, the text is not deleted from the editor \ , 
workspace. The text and editing environment remain intact until you restart the 
editor. At that time, you can either continue editing the text in the editor 
workspace, or you can use the clear (CL) command to clear the editor 
workspace and start a new editing session. 

In addition to preventing loss of text, this feature offers you another 
convenience. If you are interrupted during an editing session, you can end it and 
restart it later-without having to save the text, retrieve it, and respecify such 
information as line length, line display range, and tab settings. 

c 



Defining Editor Data Sets 

c 

c 

Invoking the Editor 

o 

Before you can invoke and use the editor, certain data sets must be defined. The 
DSD names and descriptions of data sets used by the editor are summarized in 
the following chart. 

DSD Name Description 

CMDIN Input device for commands and new 
data-usually the operator station. 

MSGLOG Message log device for listing text data, 
editor messages, and editor 
prompts-usually the operator station. 

SYSLOG System message log device-usually a 
printer device, so that you can have a 
hard copy of messages. 

TXTIN Text module input data set-usually a 
disk or diskette data set that defines the 
location of one or more text modules to 
be retrieved. 

TXTOUT Text module output data set that defines 
the location where edited modules are to 
be saved-usually a disk or diskette data 
set or data set member. 

PRINT Output print device for listing lines of 
text-usually a printer. 

WORKVOL Volume from which space for work data 
sets 1 and 2 are obtained. This must be 
specified. 

You can specify these DSDs when you invoke the editor or you may have 
previously defined them in an environment list. An environment list can contain 
all the DSDs required to execute the editor. Using environment lists can simplify 
editing sessions. Once these lists are prepared, you can refer to the environment 
list you need without having to respecify all the DSDs needed to create the 
environment for a particular editing job. 

If you have already specified the necessary DSDs in an environment list, you can 
invoke the editor as easily as in this example: 

TEJOB JOB ENVL=TELIST 
TESTEP EXEC TSN=CPE 

EOJ 

where TEJOB is the name of your job, TELIST is the environment list, and CPE 
is the text editor task set name. 

Messages are printed at the operator station to tell you that the editor is 
started and ready to accept your editing commands. 

The Text Editor 3 - 5 



The Editor Commands 

3 - 6 GC34-0121 

The editor provides a variety of commands. You can use them to retrieve existing 
text or create new text. You can modify the text-insert and delete text lines, 
move and copy text lines, and change fields or character strings. When editing is 
completed, you can save the edited text on an output data set. 

The following chart summarizes the editor commands and their functions. 

Command Function 

CF (change field) Replaces text data within a field in one 
or more lines. 

CL (clear) Clears the editor workspace to prepare 
for a new editing session and sets the line 
length to 80. 

CO (copy) Copies one or more lines from one area 
in the editor workspace to another 
(original lines not deleted). 

CS (current status) Prints the current status of the 
editor-the line length, last line number 
used, line display range, the tab character 
and tab settings. 

CT (change text) Changes a character string in one or 
more lines. 

DE (delete) Deletes one or more lines in the editor 
workspace. 

END (end) Ends the editing session. 

FI (find) Searches for text in one or more lines in 
the editor workspace and prints each line 
containing this text. 

GE (get) Gets text data from a disk or diskette 
data set member and places it in the 
editor workspace. 

IN (insert) Inserts new lines of text into the editor 
workspace. 

LF (line format) Sets the line display range for lines to be 
listed. Sets a line length. 

LI (list) Lists one or more text lines of the editor 
workspace. 

MO (move) Moves one or more lines from one area 
of the editor workspace to another. 

SA (save) Saves all text lines in the editor 
workspace to a data set or data set 
member on a disk or diskette (workspace 
contents not affected). 

TA (tab) Sets tabs to be used during an editing 
session. 

t .. , ;-

(.' .f 



c 

c 

o 

Summary of Text Editor Features 
• You can use the editor in an interactive mode (entering data and commands 

from an operator station) or noninteractive mode (data and commands coming 
from a data set or a data set member on a disk or diskette). 

• You can use a teletypewriter or display station for editing in the interactive 
mode. 

• You can establish tab settings, line length and a line display range to suit your 
needs for a particular editing session. 

• At any time during the editing session, you can display the current status of 
the editor-the tab settings, tab character, the line length, line display range 
and last line number used. 

• The editor automatically preserves the editor workspace contents when you 
end an editing session, so that you can restart the session later. 

• The editor gives you a variety of easy-to-use commands to retrieve, create, 
delete, update, list and save text. 

The Text Editor 3 - 7 



3 - 8 GC34-0121 

( , 
\ , 



c 

c 

o 

The Assembler Program 

Chapter 4. The Macro Assembler 

This chapter describes the macro assembler-the assembler program and the 
assembler language. Throughout the chapter, the term assembler is used to 
denote the macro assembler. 

For detailed information about the assembler, refer to the IBM Series/l 
Prof?ram Preparation Subsystem: Macro Assembler User's Guide, SC34-0124. 

The assembler program processes the machine, assembler and macro instructions 
you have coded in assembler language (the source program) and produces an 
object module in machine language. 

The assembler also produces information for other programs. The application 
builder uses such information to combine object modules into load modules. The 
assembler processing sequence is illustrated in Figure 4-1. 

Defining Assembler Data Sets 
Before you can use the assembler program, you must define certain data sets to 
establish the DSD environment for assembler processing. 

The DSD names and descriptions of data sets the assembler uses are 
summarized in the following chart. 

DSD Name Description 

LIB 1 AND/OR LIB2 System or user macro data 
sets-disk or diskette data sets that 
define the location of macro files. 
(Optional) 

OBJOUT Object module output data set that 
defines the location where object 
modules are to be saved. 

PRINT Output print device-usually a 
printer where listings are to be 
printed. 

SOURCIN Assembler input data set-a disk 
or diskette data set that defines the 
location of input source modules. 

SYSLOG Device or data set where error 
messages can be printed. 
(Optional) 

TSOVLY Assembler phase and overlay data 
set. 

WORK 1, WORK2, WORK3 Work data sets used in assembler 
processing. 

WORKVOL Volume from which space for 
WORKl,WORK2 and WORK3 is 
obtained. 

The Macro Assembler 4 - 1 



Invoking the Assembler 

4 - 2 GC34-0121 

If you have already set up the recommended program preparation default 
environment-with DSDs for assembler work data sets, system logging device, (- " 
object data sets, printer and system macro library-you can invoke the assembler 
through these simple control statements. 
ASMl JOB ENVL=ALIST 
STEPl EXEC TSN=CPA 

EOJ 

where ASMI is the name of your job, ALIST refers to the environment list 
containing the required DSDs, and CPA is the assembler task set name. 

Coding and entering 
the source program 

Figure 4-1. Assembler processing sequence 

Assembler 
processing 

Source program 

Macro generation 
and conditional 
assembly 

I 
I 

Assembler 
to machine 
language 

I 
I 

Object module 

{ " 
'- ; 

c: 



c 

c 

o 

The Assembler Language 

Machine Instructions 

Assembler Instructions 

Assembler language is a symbolic programming language containing statements 
that represent instructions and comments. There are three types of instruction 
statements: 

• Machine instructions. 
• Assembler instructions. 
• Macro instructions. 

A machine instruction is the mnemonic representation of a single hardware 
instruction. The mnemonic implies the function and the type of data operated on. 
For example, AB means add byte, SW means subtract word, and MVW means 
move word. The assembler program translates these mnemonic machine 
instructions into binary instructions that the system can execute. 

Each machine instruction generates a hardware instruction. That instruction 
depends on the operation code and syntax of the operand. Based on the syntax 
of the operands, the assembler will generate one of several possible hardware 
instructions. If more than one hardware instruction can perform the operation 
specified by the mnemonic and its operand, the assembler generates the one that 
is most efficient in timing and storage usage. 

There are more than 200 machine instructions that perform a wide variety of 
functions. The types of instructions included are: 

• Data movement instructions. 
• Arithmetic instructions. 
• Branching instructions. 
• Shift instructions. 
• Stack instructions. 
• Compare instructions. 
• Logical instructions. 
• Processor status instructions. 
• Privileged instructions. 
• Floating point instructions. 

The individual instructions contained in each of these groups are described in 
detail in the IBM Series/l Program Preparation Subsystem: Macro Assembler 
User's Guide, SC34-0124. Input/Output instructions and data format 
information will be contained in the IBM Series/l Realtime Programming 
System: Macro User's Guide-Data Management. 

An assembler instruction is a request to the assembler program to perform 
certain operations during the assembly of a source module. Some of these 
operations are defining data constants, defining the end of the source module, 
and reserving storage areas. Except for the instructions that define constants or 
provide boundary alignment, the assembler does not translate assembler 
instructions into object code. 

Summary of Assembler Instructions 
The following chart summarizes assembler instructions and their functions. 

The Macro Assembler 4 - 3 



Instruction 

ALIGN 

COM 

COpy 

CSECT 

DC 

DROP 

DS 

DSECT 

EJECT 

END 

ENTRY 

EQU 

EQUR 

EXTRN 

GLOBL 

ICTL 

ISEQ 

ORG 

POP 

PREF 

PRINT 

PUSH 

SPACE 

START 

TITLE 

USING 

WXTRN 

4 - 4 GC34-0121 

Function 

Allows you to ensure the setting of the location counter to an odd 
byte or word address during program assembly. 

Initiates a common control section or indicates its continuation. 

Allows you to copy predefined source statements from a library 
and include them in your source module. 

Initiates an executable control section or indicates its continuation. 

Allows you to define data constants needed for program execution. 

Allows you to terminate the USING domain for one or more 
registers. 

Allows you to reserve areas of storage, provide labels for these 
areas and use these areas by referring to the symbols defined as 
labels. 

Initiates a dummy control section or indicates its continuation. 

Stops the printing of an assembly listing on the current page and 
continues printing on the next page. 

Marks the end of a source module to indicate to the assembler 
where to stop assembly processing. 

Allows you to identify symbols defined in the source module 
containing the ENTRY instruction so you can refer to them in 
another source module. These symbols define locations called entry 
points. 

Allows you to assign absolute or relocatable values to symbols. 

Allows you to define a register symbol by assigning to the symbol 
the value of an absolute expression. 

Allows you to identify those symbols that are referred to in the 
source module containing the EXTRN instruction but are defined 
in another source module. These symbols are called external 
symbols. 

Initiates a global control section or indicates its continuation. 

Allows you to change the begin, end, and continue columns to 
establish a different coding format for your source statements. 

Causes the assembler to sequence-check the statements in your 
source module. 

Alters the setting of the location counters and thus controls the 
structure of the current control section. You can, therefore, 
redefine parts of a control section. 

Restores the control section to the section on the top of the 
internal assembler section stack. 

Allows you to generate a 1- to 5-word parameter list. 

Allows you to control the amount of detail you want printed in the 
listing of your program. 

Saves information about the current control section in an internal 
assembler stack. 

Allows you to insert one or more blank lines in the assembly 
listing. 

Initiates the first executable control section in your source module. 

Allows you to provide headings for each page of the assembly 
listing. 

Allows you to specify that a register is available for use as a base 
register. 

Allows you to identify those symbols that are referred to in the 
source module containing the WXTRN instruction but defined in 
another source module. 

( \ 

\ , 

c 



c 

c 

o 

Macro Instructions 
A macro instruction is a request to the assembler program to generate a 
predefined sequence of machine and assembler instructions. This predefined 
sequence of code is called a macro definition. 

You can prepare your own macro definitions and invoke them by coding the 
appropriate macro instruction. From the macro definitions, the assembler 
generates an instruction sequence that is processed as if it were part of the 
original input in the source module. 

The conditional assembly language is used within a macro definition to process 
input from a calling macro instruction. The conditional assembly language allows 
you to: 

• Select statements for generation. 
• Determine the generation order. 
• Perform computations that affect the content of the generated statements. 
• Produce assembly-time messages through the MNOTE instruction. 

Macro instructions simplify coding for functions that are complex or occur 
frequently in a program. When you create your own macros, you can tailor the 
code with parameters you supply as operands. Each time you specify a macro in 
your program, the parameters you name are substituted for the prototype 
operands when the assembler program expands the macro. 

The advantage to using macro language is that you reduce programming effort. 
You write and test the code for a macro definition only once. You and other 
programmers can then use the same code as often as you need by calling the 
definition. You only need to code one macro instruction to call for the generation 
of many assembler language statements from the macro definition. 

Macro Instructions and Their Functions 

The following chart summarizes the macro language instructions and their 
functions. 

The Macro Assembler 4 - 5 



Instruction 

macro name 

prototype name 

ACTR 

AGO 

AIF 

ANOP 

GBLA 

GBLB 

GBLC 

LCLA 

LCLB 

LCLC 

MACRO 

MEND 

MEXIT 

MNOTE 

SETA 

SETB 

SETC 

4-6 GC34-0121 

Function 

Provides the name of the macro definition. 

Provides a symbol that identifies the macro 
definition. 

Sets a conditional assembly loop counter. 

Provides an unconditional branch. 

Provides a conditional branch. 

No operation-branches to next sequential 
instruction. 

Allows you to declare initial value, type, and 
array dimensions for variable symbols (global 
SETA). 
Note. Global variables communicate values 
between macro definitions. 

Allows you to declare initial value, type, and 
array dimensions for variable symbols (global 
SETB). 

Allows you to declare initial value, type, and 
array dimensions for variable symbols (global 
SETC). 

Allows you to declare initial value, type, and 
array dimensions for variable symbols Oocal 
SETA). 
Note. Local variables are communicated within 
a single macro definition. 

Allows you to declare initial value, type, and 
array dimensions for variable symbols (local 
SETB). 

Allows you to declare initial value, type, and 
array dimensions for variable symbols (local 
SETC). 

Serves as the macro definition header. It is the 
first statement of every macro definition. 

Indicates the end of a macro definition and 
provides an exit from the end of the macro 
definition when it is processed during macro 
expansion. 

Causes the assembler to stop processing a 
macro definition and provides an exit from the 
middle of a macro definition when it is 
processed during macro expansion. 

Allows you to generate an error message with 
an error condition code attached or to generate 
comments whereby you can display the results 
of preassembly operations. 

Allows you to assign values to variable symbols 
(arithmetic). 

Allows you to assign values to variable symbols 
(binary). 

Allows you to assign values to variable symbols 
(character) . 

(~ 

( " , , 

(: 



c 

c 

o 

Assembler Coding Features 
The assembler features make assembler language coding easier. 

Symbolic Representation of Program Elements 
Use of symbols can reduce programming effort and errors. Symbols can represent 
storage addresses, displacements, constants, registers, and other elements of the 
assembler language. Besides being easier to remember and code, the symbols are 
listed in a symbolic cross reference table in your program listing. This makes it 
easy to find a particular symbol when searching for an error in your code. 

Variety of Data Representation 
You can represent data in character, decimal, binary, ASCII, or hexadecimal. The 
assembler converts these values to binary values required by the machine 
instructions. 

Relocatable Object Modules 

Address Assignment 

Flexible Register Usage 

Program Sections 

These object modules can be relocated from the originally-assigned storage area 
to any other suitable main storage area without affecting program execution. 
Assignment to a physical memory location can be deferred until the code is 
linked with other object modules at application build time. 

To locate data to be operated on, most machine instructions refer to a storage 
address. You need not be concerned with specific main storage locations when 
you write a program because the assembler keeps track of locations of statements 
in your program (relative to the beginning of your program), then assigns 
addresses and displacements required when it produces the object program. 

There are eight general-purpose registers that can be used to hold a value, an 
address, or displacement for manipulating data, maintaining counters, or 
determining the address of a particular instruction or storage location. 

You can code a program in sections and, later, at application build time, combine 
the sections into an executable program. Advantages to this are: 

• Many programmers can work on a large program, with each programmer 
working independently coding, assembling, and debugging his own section of 
the program. 

• Less computer time is required because you can reassemble a section for the 
already-assembled program rather than reassembling the entire program. 

• Sections common to more than one program are assembled only once, then 
linked to the unique sections of each program. This reduces computer time and 
results in shorter assembly listings that are easier to debug. 

• You can configure a program to various main storage requirements much more 
easily by linking the sections into different combinations of storage loads or 
phases. 

The Macro Assembler 4 - 7 



The four types of program sections that can be defined in the assembler language 
are summarized in the following chart. 

Section Type Assembler Instruction Function 

Control section ST AR T or CSECT Defines the object code-
that is, machine instructions 
and data definitions. 

Common section COM Defines an area of storage 
that can be shared with the 
program sections in multiple 
assemblies within a task. 

Global section GLOBL Defines either task set global 
or system global. Task set 
global is addressable by all 
programs executing in the 
same partition. System 
global is contained in the 
shared task set and is 
addressable by all programs 
linked to the shared task set. 

Dummy section DSECT Describes the format of data 
located elsewhere. 

Symbolic Linkages Between Separately-Assembled Source Modules 
Symbols can be defined in one module and referred to in another. If a linkage 
symbol is referenced by another module, it must be identified by an ENTRY 
assembler instruction unless it is a ST ART or CSECT statement. If a module 
refers to a linkage symbol defined in another module, the symbol must be 
identified by an EXTRN or WXTRN statement. 

Comprehensive Assembler Listings 

4 - 8 GC34-0121 

The listings generated by the assembler contain source statements, macro 
expansions, ESD, RLD and cross reference tables, error messages and statistics. 
You can control the content of the listing output with assembler options. 

C' 
.... 



Assembler Options 

c 

c 

Structured Macro Usage 

o 

The following chart summarizes the assembler options. (Defaults are underlined). 
You can specify parameters to the assembler through the P ARM control 
statement. 

Option Explanation 

LIST /NOLIST LIST -write all assembly listings to the PRINT data 
set. 
NOLIST-write only error messages to the PRINT 
data set. 

TEXT /NOTEXT TEXT -write source and object program listing to the --
PRINT data set. 
NOTEXT -suppresses the option. 

XREF /NOXREF /FULLXREF XREF-write cross reference listing to the PRINT data 
set only for referenced symbols. 
NOXREF-suppresses this processing. 
FULLXREF-write the cross-reference listing to the 
PRINT data set for all defined and referenced 
symbols. 

ESD/NOESD ESD-write the external symbol dictionary before the 
source program listing. 
NOESD-suppresses the option. 

RLD/NORLD RLD-write relocation dictionary after source 
program listing 
NORLD-suppresses the option. 

SYSPARM(' .. .') Defines up to 8 characters of information substituted 
for the & SYSPARM value during macro processing. 

OBJECT /NOOBJECT OBJECT causes the object module to be written to 
the OBJOUT data set. 
NOOBJECT suppresses this processing. 

LINECOUNT (n) LINECOUNT specifies n as the number of lines per 
page of the PRINT data set. Default line count is 55. 
The value of n can be from 1-999. 

MACRO/NOMACRO MACRO-macro processing is desired. 
NO MACRO-suppresses macro processing. 

A set of structured macros, which can be used as input to the assembler, is 
provided in a separate macro library. Some advantages of using structured macros 
are: 

• They eliminate branch and jump instructions in source code. 
• They generate reenterable code. 
• They allow you to use all hardware facilities (such as indirect addressing) and 

data types (such as bit processing). 
• They permit up to 20 levels of structure nesting. 
• They print English-language assembly-time diagnostic messages, which can 

include the variables you have coded. This helps you to find and correct 
errors. 

• They are easy to read and understand. 

Use of structured macros can reduce errors, increase productivity, and reduce 
development and maintenance costs. 

The Macro Assembler 4 - 9 



Summary of Macro Assembler Features 

4 - to GC34-0121 

• You can code machine instructions using a function-oriented assembler 
language-the mnemonics imply the function. 

• You can code macro instruction statements to generate a series of assembler 
language statements. 

• You can use conditional assembly instructions within macro definitions to 
selectively generate sequences of instructions. 

• You can use the structured macros. 
• Source statements can come from an input data set or from a library. 
• The assembler can process four types of program sections----common sections, 

control sections, global sections, and dummy sections. 
• Programs may reference symbols defined in separately-assembled programs. 

These external references are later resolved during application builder 
processing. 

• The assembler produces object modules that include information for module 
relocation and external symbol resolution. 

• The assembler also generates comprehensive listings. You can control the 
listing output by options you specify to the assembler. 

(.-.' -, 

" 

( " ,- , 

c 



c 

c 

o 

Chapter 5. The Application Builder 

The application builder handles the final steps in the program preparation 
sequence. It is the subsystem component that processes object modules to 
prepare them for execution as application programs. 

To fully understand the significance of application builder processing, you 
should be familiar with the information presented in the IBM Series/l Realtime 
Programming System: Introduction and Planning Guide, GC34-0102, particularly 
the sections describing task sets. 

Detailed information about how to use the application builder to build task sets 
will be contained in IBM Series/l Program Preparation Subsystem: Application 
Builder User's Guide. 

Note. Throughout this chapter, the Realtime Programming System is also 
referred to as the operating system. 

Execution Environments Supported 

Phase 1 

Application 
builder 

Regardless of the execution environment for which you are preparing the 
application program, you must at least use the application builder to convert from 
object module format to composite or absolute load module format. An object 
module produced by a language translator, which is the initial input to the 
application builder, may contain one or more object programs and control 
information. The output of application builder processing will depend on how you 
use the application builder phases. 

There are three phases in application builder processing, as shown in Figure 
5-1. 

Phase 2 

Application 
builder 

(optional) 

Figure 5-1. The three phases of application builder processing 

Phase 3 

Application 
builder 

The Application Builder 5 - 1 



Phase 1. This phase can create a load module in absolute format or a composite 
module in relocatable format. Absolute load modules are not executable under 
the Realtime Programming System but can be executed in an environment you ( ~: 
provide. A composite module, in relocatable format, will be used as input to _ f 
phase 3 processing. A composite module is made up of object modules 
(programs) structured into a resident segment and optional overlay segments. 

Phase 2. This phase builds control modules and pre bind modules. The control 
module, which is required by the operating system, provides the tables and 
control blocks that the system needs in order to execute the functions requested 
(data management, queuing, and tasking, for example). The prebind module, 
which is optional, allows you to specify the information needed for binding the 
required resources to an application task set when it is installed rather than at 
execution time. This pre binding of resources allows a task set to start execution 
faster. 

Phase 3. This phase creates task sets that will be executable in the Realtime 
Programming System environment. A task set is a planned program structure-a 
named collection of programs, data, and control blocks designed to execute 
within a partition under the operating system. 

If you are creating an application program for execution in an environment you 
provide, you need only use the application builder for phase 1 processing. If you 
are creating an application program for execution under the operating system, 
you must use the application builder for all three phases in order to supply the 
information needed by the system to execute your application program, which 
must be in the form of a task set. 

To simplify describing the phases of the application builder, this chapter first 
gives a brief explanation of what you must do to create an application program 
for execution in an environment other than that of the Realtime Programming f ' 
System. The rest of this chapter assumes that you are using the application ,_ ; 
builder to create an application program (a task set) that will execute under the 
operating system. 

An Environment You Provide 

5 - 2 GC34-0121 

This can be any execution environment other than the Realtime Programming 
System environment. Creating an absolute load module for execution in an 
environment you provide requires only phase 1 processing. 

c 



c 

c 

o 

Creating Absolute Load Modules 

Phase 1 combines object modules produced by a language translator to create an 
absolute load module. The application builder control statements allow you to 
identify the contents, structure and name of the output load module. Through 
phase 1 control statements, you can specify the: 

• Object modules to be included in the output load module (INCLUDE 
statement). 

• Entry point of the output load module (ENTRY statement). 
• Member name of an output load module, if more than one absolute load 

module is being created (NAME statement). 
• Format of the output module-absolute or rclocatab1c (FORMAT statement). 

You must specify an origin on the FORMAT control statement in order to 
create a load module in absolute format. Phase 1 processing assigns origin 
addresses to control sections and resolves external references within the control 
sections. The origin address will be whatever you specify on the FORMAT 
statement. References in one control section to items in another control section 
of a different object module are resolved relative to the address assigned to the 
item in the output load module. 

The output load module, in absolute format, consists of a header record 
(containing descriptive information about the load module-such as its name, 
origin address, length of text, etc.,) and text records, which make up an 
executable program with all address constants resolved against a specific storage 
address. An absolute load module is not executable under the Realtime 
Programming System, and you cannot use any of the system support functions. 
You must also provide a means of loading the module into storage and passing 
control to it. The DISK IPL Bootstrap Loader, which is described in the IBM 
Series/l Stand-Alone Utilities User's Guide, GC34-0070, can be used for 
loading a program into storage and passing control to it. 

The Realtime Programming System Execution Environment 
To create an application program that can execute in the Realtime Programming 
System environment, you must use phases 1, 2, and 3, of the application builder. 
Phases 1 and 2 create modules that are input to phase 3, which combines them 
into a task set and writes that task set to a task set library. A task set library is a 
volume containing all of the modules and tables associated with a single task set. 

In phase 3 processing, you must supply partition information because task sets 
under the Realtime Programming System are executed within a partition. Task 
sets must be prepared for a specific partition because they are not relocated 
when loaded. 

A task set can have a simple structure, where all segments are resident during 
execution, or complex structure (overlay), where some segments reside on disk. 
In overlay structure, a storage-resident segment of code can request the system to 
retrieve a unit of code from disk and pass control to it. The specific structure and 
characteristics of the task set are defined by the information you supply on 
control statements that are input to the application builder. 

The Application Builder 5 - 3 



5 - 4 GC34-0121 

Figure 5-2 represents the system and partition storage organization for the 
Realtime Programming System execution environment. 

F 

x 
e 
d 

a 
d 

o 

System 
organization 

User 
task set 
(partition # 2) 

d ~--~~~~~~~--~---__ 
r 
e 
s 

e 

64KB 

Task set 
load module 

Figure 5-2. System and Partition Storage Organization 

Partition 
organization 

Primary 
segment 

Common 
area 

Overlay 
area 

Secondary 
segment 

Common 
area 

Overlay 
area 

Auto called 
library 
subroutines 

Control 
module 

Task Set Load Module. The task set load module is a structure that contains all 
resident segments, their associated common and overlay areas, and the control 
module, for a single task set. 

f '\ 

\ , 

c 



c 

c 

o 

Resident Primary Segment. The resident primary segment is a segment that 
remains in primary storage for the duration of task set execution. (A program in 
a resident segment may call a program in another resident segment.) This 
resident segment contains the initial entry point of a task set. The entry point of 
a task set must be a primary program within the primary segment. 

Common Area. The common area reserves an area of storage and can be 
referred to by resident and overlay segments that are associated with a given 
primary or secondary segment within a task set. 

Overlay Area. The overlay area is where disk overlays are loaded and passed 
control. Each resident segment that calls overlays has its own disk overlay area. 

Resident Secondary Segment. The resident secondary segment can be any 
resident segment other than the primary segment of a task set. It differs from a 
primary segment in that it does not contain the task set's entry point. 

Resident Library Subroutines AutocaUed. These are modules whose purpose is to 
complete a resolution within the task set load module. These routines are 
obtained from a disk-resident autocall library and are added to the task set as if 
they were another resident secondary segment. 

Control Module. A control module is required by the operating system for task 
set execution. It consists of a set of tables and control blocks that the system 
needs in order to execute the functions requested. 

The Application Builder 5 - 5 



Application Builder Processing 

Phase 1 Processing 

5 - 6 GC34-0121 

The following sections describe the purpose and functions of each of the three 
phases of application builder processing. Throughout these sections, it is assumed 
that you are using the application builder to create a task set for execution under 
the operating system. Other execution environments are not considered. 

Object modules produced by a language translator are not in a format that allows 
them to be loaded or executed. These object modules contain: 

• An external symbol dictionary (ESD) containing information to be used in 
resolving symbolic references between control sections of different modules. 

• Text data that is the actual program instructions and data areas. 
• A relocation list dictionary (RLD) containing an entry for each relocatable 

address constant. 
• An end of module record. 

Phase 1 combines one or more object modules to form a single composite 
module, in relocatable format, that will be used as input to phase 3 processing. 

Figure 5-3. Application Builder phase 1 processing 

( " , 

c 



c 

c 
Composite Module Output 

Printed Output 

o 

Figure 5-4 shows the basic functions performed during phase 1 processing. 

Phase I processing 

• Combining object 
modules 

• Assigning addresses 
• Resolving external 

references 

Figure 5-4. Combining object modules 

Composite modules produced by phase 1 can be simple or overlay structured. 
Overlay structured modules consist of multiple segments. The first segment is the 
resident segment, and successive segments are the overlay segments. 

A composite module can be placed in a consecutive data set or placed as a 
member of a partitioned data set. Composite modules grouped within a 
partitioned data set form a composite module library. 

In addition to the output composite module, phase 1 produces: 

• A listing of your control statements. 
• A composite module map identifying names and assigned addresses of control 

sections. 
• Diagnostic messages indicating results of phase 1 processing. 

The Application Builder 5 - 7 



Phase 1 Control Statements 

Phase 2 Processing 

Control Module 

5 - 8 GC34-0121 

The phase 1 control statements allow you to identify the contents, structure, and 
name of the output composite module. The following chart summarizes phase 1 ( -~ 

control statements. , 

Control Statement Purpose 

PHASE1 Introduces phase 1 control statements 
and causes phase 1 to be invoked. 

INCLUDE Specifies object modules to be included in 
the composite module. 

OVERLAY Identifies the beginning of an overlay 
segment. 

ENTRY Identifies an entry point to a program in 
the primary resident segment. 

NAME Identifies the member name of the 
composite module. 

FORMAT Identifies the type of output module 
(absolute or relocatable). 

Phase 2 creates the control module and, optionally, a prebind module to be used 
in the Realtime Programming System execution environment. 

A control module provides the tables and control blocks required by the system 
to execute the functions requested. This may include: 

• The task set control block. ( '\ 
• A DSD list of data sets to be pre bound. ,_ , 
• Preallocated control block stacks. 
• The variable control block area, which is an area of storage available for 

variable length control blocks (for the supervisor and data management). 
• Sensor 110 tables. 

The control module, which is required by the system for execution of task sets, 
is included in the task set produced by phase 3 processing and occupies storage 
in the partition in which the task set will execute. 

c 



Prebind Module 

c 

c 

o 

A prebind module is used to specify the required resources to be pre bound to an 
application task set at installation time rather than at execution time. The pre bind 
module is optional and does not occupy storage in the user partition. Through the 
application builder control statements, you can specify pre binding to be 
performed in order to: 

• Prebind tasks by allocating control blocks and task work stacks. 
• Predefine queues by allocating control blocks and preopening disk data sets 

for disk queues. 
• Establish the conditions under which scheduled task sets are to execute, by 

updating the system scheduler table. 
• Preopen data sets. 

Phase 2 processing also generates a list of your control statements and a list of 
error messages. Figure 5-5 illustrates phase 2 processing. 

Control 
statements 

Application 
builder 

Figure 5-5. Application builder phase 2 processing 

(optional) 

The Application Builder 5 - 9 



Control Statements 

5 - 10 GC34-0121 

Phase 2 control statements can be used to define the control module or both the 
control and prebind modules. The following chart summarizes phase 2 control 
statements. 

For Prebind 
Control Statement Purpose For Control Module Module 

PHASE2 Introduces phase 2 X X 
control statements and 
causes phase 2 to be 
invoked. 

TASKSET Describes the task set X 
(name, partition, etc.). 

TASK Describes a task (entry X X 
point, dispatching 
priority, etc.). 

SIO Defines sensor I/O used X 
by task set. 

CTBLKS Pre allocates control X 
blocks needed at 
execution. 

QUEUE Defines the queue to be X 
prebound to the task set. 

DATASETS Defines data sets to be X 
prebound to a task set. 

EXCOND Describes a condition X 
under which the task set 
is to be executed. 

SHARING Defines resource names X 
that are otherwise not 
defined in the control 
module or task set. This 
lets you define names of 
resources (in a shared 
task set) that may be used 
by other task sets. 

( , , , 

c 



c 

c 

o 

Phase 3 Processing 

Composite 
module 

Control 
module 

Prebind 
module 

(optional) 

Phase 3 combines the modules created in phases 1 and 2 to create a task set that 
is executable in the Realtime Programming System environment. The primary 
input to phase 3 consists of the modules produced by phases 1 and 2. These 
modules may be obtained from: 

• Data sets containing the control module and pre bind module. 
• An autocall library. 
• A consecutive data set or a partitioned data set (library) that you specify 

through the phase 3 INCLUDE control statement. 

Figure 5-6 illustrates phase 3 processing. 

Control 
statements 

Application 
builder 

Figure 5-6. Application builder phase 3 processing 

8 I ~~Sk I 

The Application Builder 5 - 11 



Control Statements 

5 - 12 GC34-0121 

Basically, phase 3 processing involves the following operations. 

Control Statement and Composite Module Processing. Your input control 
statements are analyzed and processed. Composite modules are combined into a 
single task set, with all addresses resolved relative to a partition origin. 

External Reference Resolution. External references from a composite module are 
resolved to definitions in other modules, a shared task set, or a module from the 
autocall library that is automatically included in the task set. 

Global Processing. Global sections from the composite modules are combined 
into a task set global area. 

Overlay Processing. Overlay segments from the composite modules are combined 
into a separate data set that will be used during task set execution. Space is 
allocated in the task set load module for each overlay area. 

Task Set Creation. Resident programs, overlay areas, and the task set control 
module make up a task set load module with addresses assigned and references 
resolved. The task set load module is written to a data set in the task set library. 

Indicating Results of Processing. A return code indicates whether or not phase 3 
was completed successfully. You get a listing of control statements, a task set 
map, and diagnostic messages. 

Through phase 3 control statements, you can specify the contents, structure, and 
characteristics of the output task set. The following chart summarizes phase 3 
control statements. 

Control Statements Purpose 

PHASE3 Introduces phase 3 control statements 
and causes phase 3 to be invoked. 

INCLUDE Identifies composite modules that are to 
be combined to form a task set. 

PARTN Specifies characteristics of the task set 
and the partition in which it is to 
execute. 

(.~ 
.~ 

{ .. ~ , 

c 



c 

c 

o 

Summary of Application Builder Data Sets 
The following chart summarizes the DSD names and descriptions of data sets 
used by the application builder to obtain its input, perform the processing 
requested, and produce the appropriate output. 

DSD Name Description 

APBIN Contains the control statements you specify. 

AUTOI-AUT03 Indicates libraries used for automatic call processing. 
(Autocall processing allows modules to be obtained 
automatically from a program library.) 

BUILDINI-BUILDIN5 Identify data sets (partitioned or consecutive) 
containing object modules to be included as input to 
phase 1. 

CONTROL Identifies a partitioned data set to contain the control 
module and (optionally) the prebind module. 

LMODOUT Identifies the data set (partitioned or consecutive) to 
contain the output module created in phase 1 
processing. 

LOADI-LOAD5 Identify data sets (partitioned or consecutive) 
containing composite modules to be included as input 
to phase 3. 

PBMDS Identifies the data set that is to contain the resolved 
prebind module for a task set. 

PRINT Identifies the output data set to contain listing 
information such as control statements and maps. 

SYSLOG Identifies system message log device. 

TSLIB Identifies volume in which the unbound task set, disk 
overlay module, and resolved prebind module data 
sets are defined. 

TSLOAD Identifies the data set that is to contain the output 
task set. 

TSOVLY Identifies the data set to contain disk overlays. 

TSRTDS Identifies the data set that is to contain the task set 
reference table. 

TSSHARE Identifies the consecutive data set containing the task 
set reference table of the shared task set to be used 
for resolution when building your task set. 

WORKl, WORK2, WORK3 Identifies intermediate work data sets. 

WORK4 Identifies a data set to contain overflow queues. 

WORKVOL Volume from which space for work data sets can be 
allocated. Any or all of the WORKI-WORK4 data 
sets can be allocated from that volume. 

Invoking the Application Builder 
Assuming you have defined the required data sets and devices and have 
described the content and structure of the output module, the following example 
shows the minimum control statements needed to invoke the application builder. 
APBl JOB ENVL=APBLST 
STEPl EXEC TSN=CPD 

EOJ 

where APB! is the name of your job, APBLST refers to the environment list 
containing the required DSDs, and CPD is the task set name of the application 
builder. 

The Application Builder 5 - 13 



Listing and Processing Options 

5 - 14 GC34-0121 

You can specify certain listing and processing options to the application builder 
through the job stream processor P ARM statement. These parameters are passed 
to the application builder by the job stream processor. 

The following chart summarizes the options. Defaults are underlined. 

Options Explanation 

LIST = YES YES causes a listing of the specified input to be created. 
NO NO suppresses the LIST option 

MAP = ALL The MAP option causes a map of the output data set to 
LM be created. The map indicates the structure and symbols, 
TS both resolved and unresolved. 
NO ALL causes a map for the composite module and task set 

to be created. 
LM causes a map to be created for only the composite 
module. 
TS causes a map to be created for the task set only. 
NO suppresses the MAP option. 

AUTO =YES YES causes a further attempt to resolve symbols that are 
NO - unresolved from within a task set by checking a library 

you specify for the unresolved symbol. 
NO suppresses this option. 

STS = YES YES causes a shared task set file to be checked to resolve 
NO - unresolved symbols before an attempt is made using the 

AUTO option. 
NO suppresses this option. 

c 

c 



c 

c 

o 

Summary of Application Builder Features 
• The application builder performs the necessary processing operations-such as 

assigning storage addresses and resolving external references-to combine 
input object modules and create an absolute load module or a composite 
module. 

• It allows for creating an absolute load module that is executable in an 
environment you provide. 

• It allows for creating a composite module that will undergo further application 
builder processing to ultimately become part of a task set that will be 
executable in the Realtime Programming System environment. 

• It allows modules to be obtained automatically from a program library. 
• It provides for recycling to create multiple composite modules. 
• It allows for creating a control module, which provides the control blocks that 

the system needs to execute such functions as data management, queuing, and 
tasking. 

• It allows for creating a pre bind module, which contains specifications that can 
be used to prebind resources to a task set at installation time rather than at 
execution time. 

• It allows you to create task sets that will be executable in the Realtime 
Programming System environment. 

The Application Builder 5 - 15 



5 - 16 GC34-0121 



c 
Hardware 

Storage Reqlliremellts 

Disk Reqllirements 

c Program Residency Space 

Message Data Set Space 

o 

Appendix A. Configuration Requirements 

The Program Preparation Subsystem uses the hardware required and supported 
by the Realtime Programming System. The minimum hardware (and optional 
hardware) to be used for the subsystem programs is described in chapter 1 of 
this publication. 

To install the subsystem programs, you need a minimum of 48KB of processor 
storage. For installation, the entire 48KB is used by the starter system, but once 
the subsystem programs are installed, a minimum of 16KB is required for 
executing these programs. 

The subsystem programs are installed by using the starter system provided by the 
Realtime Programming System and copying the programs from diskettes to disk. 

Once these programs are installed, the starter system is deleted from disk and 
therefore is not considered disk space that must be permanently reserved. 

The subsystem programs will require the following estimated space. 

Note. The total number of cylinders on the disk is 302. 

The amount of space required for each subsystem program is: 

Subsystem program Cylinders 

Job stream processor 0.7 

Text editor 1.0 

Macro assembler 5.0 

Application builder 3.0 

Total 9.7 

The amount of space required for the subsystem programs that have defined a 
separate data set for their messages is: 

Subsystem program Sectors 

Job stream processor 25 

Text editor 34 

Macro assembler -
Application builder -

Total 59 sectors (0.5 cylinders) 

Note. Message data set space for the macro assembler and application builder 
is included in the program residency space. 

Configuration Requirements A-I 



Work Data Set Space 

Total Disk Space 

Diskene Requirements 

A - 2 GC34-0121 

The amount of space required to satisfy typical use of the subsystem program 
during its execution is: 

Subsystem program Cylinders 

Job stream processor 00.5 

Text editor 57.0 

~acro assembler 50.0 

Application builder 41.0 

Total 57.0** 

**Since only one batch program will be executing at any given time, it is 

expected that the same workspace will usually be used by all the 

subsystem programs. Therefore, only the largest workspace requirement is accounted 

for in determining workspace requirements. 

The estimated total disk space required for the subsystem programs is: 

Disk space Cylinders 

Program residency space 09.7 

~essage data set space 00.5 

Work data set space 57.0 

Total 67.2 
(68) 

Note. This total amount does not account for control blocks/tables (i.e., data 
set definition table (DSDT) that is defined within each task set library), which 
will be required for subsystem components. However, any additional space is 
considered negligible compared to the total above. 

The only requirement the subsystem programs have for diskettes is during 
installation. The Program Preparation Subsystem program product is on six 
diskettes. 

1. The job stream processor, generation program, application builder, and 
verification compare program. 

2. Job stream processor and text editor composite modules. 
3. Macro assembler object modules. 
4. Application builder composite modules. 
5. Structured macros. 
6. Structured macros. 

The data copied to disk from the first diskette will not be retained after the 
Program Preparation Subsystem is installed. If the subsystem programs must be 
reinstalled, the starter system and first diskette are again copied to disk, and the 
process is repeated. 

( '\ ,- , 

c 



c 

c 

o 

Timer Requirements 

Printer Requirements 

The timer is an optional feature. If available, the subsystem programs will use its 
services as follows. 

Subsystem Program Use 

Job stream processor Date/time stamping jobs (job 
accounting). 

Text editor Date/time stamping editing sessions 
that are saved for restarting at a later 
time. 

Macro assembler Dat~/tim~ stamping assembled output 
listing. 

The Program Preparation Subsystem generation program generates job stream 
processor control statements of up to 80 characters in length. These control 
statements will be listed at the printer. 

Each subsystem program will require a printer to display its output. Depending 
on the subsystem program in use, from 120 to 132 characters will be required for 
use from the 132-character printer line length. 

The job stream processor and text editor do not necessarily require a printer 
for execution. 

Programming Requirements 

Compatibilities 

In order to support the Program Preparation Subsystem program product, the 
only requirement in the SYSGEN of the Realtime Programming System is that a 
batch partition of a minimum of 16KB of processor storage be defined. The basic 
Realtime Programming System provides all the support functions (that is, 
supervisor, data management, utilities) required for installation and for the 
subsystem programs to operate. 

The Base Program Preparation Facilities and the Program Preparation Subsystem 
The Program Preparation Subsystem assembler language syntax is compatible 
with that of the Base Program Preparation Facilities assembler language. Any 
statement using the Base Program Preparation Facilities assembler syntax will 
assemble properly using the Program Preparation Subsystem macro assembler. 

The commands of the Base Program Preparation Facilities and Program 
Preparation Subsystem text editors are compatible. Although the subsystem text 
editor has additional commands, the commands common to both text editors 
have the same syntactical operands. The one exception to this is the data set 
references on the get (GE) and save (SA) commands for the subsystem text 
editor. 

Configuration Requirements A - 3 



The Realtime Programming System and the Program Preparation Subsystem 

A - 4 GC34-0121 

The Program Preparation Subsystem uses the Realtime Programming System 
standard system and data management interfaces to perform the following types C 
of operations: 

• Space allocation. 
• Task set transfer control and queuing. 
• Data set creation. 
• Accessing and deleting data sets. 
• Parameter passing. 

c 



c 

c 

o 

For the following activity ... 

Appendix B. Using the Series/1 Programming Library 

From the time you plan and install your system until the time you are actually 
running your application programs on the Series/I, you will be involved in a 
variety of activities. In the course of these activities, you will be gathering 
information from various publications. Knowing which publication to use for 
which type of activity can make your job much easier. 

To make it easier for you to find the publication you need, this appendix 
summarizes the steps involved in various types of programmer activities and ties 
them to the appropriate Series/l programming publication (or publications). 

Note. For an overview of Series/1 system functions and a comparison of how 
they are supported by different languages, operator commands, or macros, refer 
to the "Summary of System Functions" in the IBM Series/1 Realtime 
Programming System: Introduction and Planning Guide, GC34-0102. 

The following table shows the programmer activity, the associated system step, 
and the related publications. Order numbers are given for publications that are 
available at this time. 

The associated system step is ... Refer to Publications ... 

PLANNING AND SYSTEM DESIGN None. 

· Understanding the Realtime IBM Series/l Realtime Programming 
Programming System and the purpose System: Introduction and Planning Guide, 
of each of the program products in the GC34-0102 
Series/l software system. 

· Understanding the purpose and 
features of: 
- The Program Preparation IBM Series/l Program Preparation 

Subsystem. Subsystem: Introduction, GC34-0121 

- PL/l. IBM Series/l PL/I: Introduction, 
GC34-0084 

- FORTRAN IY. IBM Series/l FORTRAN IV: Introduction, 
GC34-0132 

- The Mathematical and Functional IBM Series/l Mathematical and 
Subroutine Library (MFSL). Functional Subroutine Library: Introduction, 

GC34··0138 

· Understanding the total Series/l IBM Series/l System Summary, 
hardware and software offering. GA34-0035 

BUILDING THE REAL TIME System generation. IBM Series/l Realtime Programming 
PROGRAMMING SYSTEM System Generation and Installation 

Procedures 

BUILDING THE PROGRAM System generation. IBM Series/l Program Preparation 
PREPARATION SUBSYSTEM Subsystem: Batch User's Guide 

Using the Series/l Programming Library B-1 



For the following activity ... The associated system step is ... Refer to Publications ... 

CODING YOUR PROGRAMS None. 

· Assembler language programs. IBM Series/} Program Preparation 
Subsystem: Macro Assembler User's Guide, 
SC34-0124 

IBM Series/} Program Preparation 
Subsystem: Macro Assembler Reference 
Summary 

- Using the routines in the IBM Series/} Mathematical and 
Mathematical and Funct ional Functional Subroutine Library User's Guide 
Subroutine Library. 

- Using the Realtime Programming IBM Series/} Realtime Programming 
System macros. System Macro User's Guide-Supervisor 

· FORTRAN IV language programs. IBM Series /} FOR TRAN IV Language 
Reference, GC34-0133 

- Using the routines in the IBM Series/} Mathematical and 
Mathematical and Functional Functional Subroutine Library User's Guide 
Subroutine Library. 

· PL/I programs IBM Series/} PL/ I Language Reference 

USING THE OPERATOR CONSOLE IBM Series/} Realtime Programming 
System: Operator Commands and Utilities 

USING THE JOB CONTROL Job stream processor. IBM Series/} Program Preparation 
LANGUAGE Subsystem: Batch User's Guide 

CREATING SOURCE MODULES Text editor. IBM Series/} Program Preparation 
Subsystem: Text Editor User's Guide 

CREATING OBJECT MODULES Assembler program. IBM Series/} Program Preparation 
Subsystem: Macro Assembler User's Guide, 
SC43-0124 

PL/I compiler. IBM Series/} PL/I User's Guide 

FORTRAN IV compiler. IBM Series/} FOR TRAN IV User's Guide 

CREA TING COMPOSITE MODULES Application builder. IBM Series/} Program Preparation 
Subsystem: Application Builder User's 
Guide 

· PL/I considerations. IBM Series/} PL/I User's Guide 

· FORTRAN considerations. IBM Series/} FORTRAN IV User's Guide 

CREATING APPLICATION TASK Application builder. IBM Series/} Program Preparation 
SETS Subsystem: Application Builder User's 

Guide 

· Planning application task sets. IBM Series/} Realtime Programming 
System: Introduction and Planning Guide, 
GC34-0102 

IBM Series/} Realtime Programming 
System: Macro User's Guide-Supervisor 

· Building application task sets. IBM Series/} Program Preparation 
Subsystem: Application Builder User's 
Guide 

- PL/I considerations. IBM Series/} PL/ I User's Guide 

- FORTRAN IV considerations. IBM Series/} FORTRAN IV User's Guide 

USING THE REAL TIME Utilities. IBM Series/} Realtime Programming 
PROGRAMMING SYSTEM UTILITY System: Operator Commands and Utilities 
PROGRAMS 

c 
B-2 GC34-0121 



c 

c 

o 

For the following activity ... 

CREATING A COMMUNICATIONS 
SYSTEM 

INSTALLING TASK SETS 

EXECUTING TASK SETS 

DEBUGGING TASK SETS 

The associated system step is ... 

A series of steps using the utility DEFINE 
and COPY facilities and the install option 
on the start task set operator command. 

Direct-start task operator command or 
supervisor macro. 

Batch-job stream processor 

Error management. 

Messages and codes (Realtime 
Programming System). 

Messages and codes (Program 
Preparation Subsystem). 

Messages and codes (PL/I). 

Messages and codes (FORTRAN). 

Debugging. 

Refer to Publications ... 

IBM Series/' Realtime Programming 
System: Macro User's 
Guide-Communications 

IBM Series/' Realtime Programming 
System: Macro User's Guide-Supervisor 

IBM Series/' Realtime Programming 
System: Operator Commands and Utilities 
IBM Series/' Realtime Programming 
System: Macro User's Guide-Supervisor 

IBM Series/' Program Preparation 
Subsystem: Batch User's Guide 

IBM Series/' Realtime Programming 
System: Macro User's Guide-Supervisor 

IBM Series/' Realtime Programming 
System: Messages and Codes 

IBM Series/' Program Preparation 
Subsystem: Messages and Codes 

IBM Series/' PL/I: Messages 

IBM Series/' FORTRAN IV User's Guide 

IBM Series/' Realtime Programming 
System: Control Blocks and Debugging 
Guide 

Using the Series/1 Programming Library B-3 



B-4 GC34-0121 

c 

( , , , 

c 



o 

c 

o 

Glossary 

This glossary contains only those terms that are referenced in this manual, and all 
definitions given are Series/l-oriented. You may also want to refer to the 
glossary contained in the IBM Series/l Realtime Programming System: 
Introduction and Planning Guide, GC34-0102. 

absolute load module. A combination of object modules having cross references 
resolved and prepared for loading into storage for execution at a specific address. 
This load module is not executable in the Realtime Programming System 
environment, but may be executable in a user-provided execution environment. 
It is an output of application builder phase 1 processing. 

app6cation buDder. The subsystem program (operating in conjunction with the 
job stream processor under control of the Realtime Programming System) that 
prepares the object module output of language translators for execution. To 
create output that is executable in a user-provided environment, it can be used to 
create an absolute load module (an output of phase 1 processing). To create 
output that is executable under the Realtime Programming System, it can be used 
to create a task set (the final output from processing performed in phases 1, 2, 
and 3). 

autocall 6brary. Disk-resident composite module library used by the application 
builder to obtain those modules that contain a program that can resolve a 
reference from another program in a task set. 

batch execution. Program execution initiated by the job stream processor in 
response to job control statements. 

batch partition. The user partition that is used by and managed by the job stream 
processor. 

batch program. Any of the subsystem programs or user task sets initiated by the 
job stream processor. 

bound task set load module. A task set load module that has been bound to its 
execution environment. The bound task set load module contains the image of 
the partition at the completion of task set installation. 

command. A character string that represents a request for action within the 
system from a source external to the system. 

common control section. A type of control section that reserves an area of 
storage. It can be referred to by resident and overlay segments that are 
associated with a given primary or secondary segment within a task set. 

Glossary G - 1 



G-2 GC34-0121 

composite module. Object modules (programs) structured into a resident segment 
and optional overlay segments. A composite module is in relocatable format; 
that is, its addresses can be modified to compensate for a change in its origin. It C 
is the output of phase 1 and input to phase 3 of application builder processing. ._~ 

consecutive data set. A collection of data, having a consecutive arrangement, to 
which the system has access. 

control module. A set of tables and control blocks that contain control and 
parameter information pertaining to the task set. It is one of the modules 
produced by the application builder and subsequently included in the task set 
load module. 

data set. A named collection of data which resides on a device. 

data set definition (DSD). Describes and locates a data set being used by a task 
set. It exists in the using program in a DSD table data set in the task set library. 
The DSD is accessed when the data set is opened. 

data set definition name (DSD name). The external name of a DSD table entry 
used within a task set to reference the data set described by that entry. 

data set definition statement (DSD statement). A job stream processor control 
statement that allows the user to establish a connection between a data set or 
device and a DSD name used in a program. 

data set definition table (DSD table). A table that contains parameters for data ( " 
sets. \ , 

data set name (DS name). The term or phrase used to identify a data set. It is 
contained in the data set definition table of each task set referencing that data 
set. 

device. A piece of mechanical, electrical, or electronic equipment used to contain 
data that is input to or output from the processor. 

device line. The actual number of characters that can be displayed on one print 
line of the device. For example, the operator station line length is 72 characters, 
and the display station line length is 80 characters. 

DSD environment-See environment. 

DSD name-See data set definition name. 

DSD statement-See data set definition statement. 

DSDT or DSD table-See data set definition table. 

editing session. A period of time beginning when the editor is invoked and 
ending when the editor has completed processing. c 



c 

c 

o 

environment (data set environment). The data set definitions that are in effect at 
any point in time during a batch session. 

environment list. A data set (or member) containing a group of data set 
definitions which make up a DSD environment. 

external symbol dictionary (ESD). Control information, associated with an object 
or composite module, that identifies the external symbols in the module. 

fixed line number. The line number assigned to a text record and associated with 
that text record for the duration of the editing session (unless specifically altered 
by the user). 

fixed partition. A partition having a predefined beginning and ending storage 
address. 

generation input stream. An input stream created by the generation program 
which, when executed, produces a system tailored to the user responses to the 
generation program questions. 

generation program. The IBM-supplied program that is used at installation time 
in creating your Program Preparation Subsystem. 

global area. An uninitialized portion of a partition accessible by any program of 
a task set in the partition at a given time. The same area may be used by other 
task sets that execute in the same partition. The size of the global area is 
determined by the collective sizes for the largest uniquely named (or unnamed) 
global section definitions. These definitions are declared by programs that make 
up a task set. 

global control section. A type of control section that reserves an area of storage. 
It can be referred to by any primary or secondary program and their associated 
overlays within a task set. See also global area. 

input stream. The sequence of job control statements and data submitted to an 
operating system through an input device designated for this purpose by the 
operator. Synonymous with input job stream, job input stream. 

interactive. A realtime interface between a user and a program system. 

job. A collection of related problem programs, identified in the input stream by 
a JOB statement followed by one or more EXEC and data set definition 
statements. 

job input stream. See input stream. 

job stream. See input stream. 

Glossary G - 3 



G-4 GC34-0121 

job stream processor. The Program Preparation Subsystem component that reads 
and interprets job control statements and processes the requests made by those 
statements. 

line. A string of characters accepted by the system as a single block of input 
from an operator station; for example, all characters entered before the carriage 
return key or the ENTER key is pressed. For the text editor, it represents the 
line number plus the text line. 

line display range. That portion of a line to be displayed or printed out when a 
line is listed. 

line length. Logical record length of lines being edited by the text editor. 

noninteractive. An indirect interface between a user and a program system; for 
example, through a disk or diskette data set. 

object module. The output of a single assembly or compilation containing one or 
more control sections-CSECTs. An object module is equivalent to a program. 

object module data sets. Disk resident data sets that contain object modules. 

object module library. A partitioned data set containing mUltiple object modules. 

operator station. A device through which the primary interaction between the 
user and a program system occurs. It can be either a display station or any 
device that can be used as an operator station and is attached to the system 
through the ASCII Teletypewriter Adapter Feature. 

overlay area. An area within a task set load module, associated with a given 
resident segment and used for execution of overlay segments that are located on 
disk. 

overlay module. A structure that contains all overlay segments in a single task 
set. It is one of the modules produced by the application builder as part of a 
task set library. 

overlay segment. A segment that resides on secondary storage and is loaded into 
the overlay area associated with its resident segment. All overlay segments in a 
composite module are associated with the resident segment in that composite 
module. A program in an overlay segment can call a program within the same 
overlay segment or a program in any resident segment. 

partition. A segment of physical and addressable storage which may contain one 
task set at a time. A partition begins and ends on a 2KB boundary and has a 
unique numeric ID from 0 to 15. See also fixed partition and user partition. 

( " 
\ , 

c 



c 

c 

o 

partitioned data set. A data set in direct access storage that is divided into 
partitions, called members, each of which can contain a program, part ofa 
program, or data. 

pre bind module. A module that contains the specifications used during task set 
installation to create the bound task set load module. It is one of the modules 
produced by the application builder as part of the task set library. 
prebinding. The connection of a task set's control blocks (both internal and 
external) and resources before task set execution. 

primary program. The first program executed under each task in the system. A 
primary program has a single entry point and must have a program header. A 
primary program is either reenterable, serially-reusable, or nonreusable and is 
only invoked by a start task request. 

primary segment. The resident segment that contains the initial entry point of a 
task set. The entry point of a task set must be a primary program within the 
primary segment. 

processor. (1) In hardware, the resource required to execute an instruction 
stream. (2) In software, a synonym for processing program. 

processor storage. The storage provided by one or more processing units. This 
term pertains to physical locations in hardware devices. 

program. (1) A named sequence of instructions that operates under the auspices 
of a task. (2) A program is the output of a single assembly or compilation, 
containing one or more control sections-CSECTs. A program is equivalent to 
an object module. 

program preparation facilities. The subsystem components that are used to create 
user task sets; These components are the text editor, macro assembler, and 
application builder. 

queue. A line or list formed by items in a system that are waiting for service. 

resident segment. A segment that remains in primary storage for the duration of 
task set execution. A program in a resident segment may call a program in one 
of its overlay segments or a program in another resident segment. 

resource. Any facility of the computing system or operating system required by a 
job or task, and including main storage, input/output devices, the central 
processing unit, data sets, and control or processing programs. 

return code. A code used to influence the execution of succeeding steps in a job 
in the input stream. An indicator, which is passed from a batch program to the 
job stream processor, that reflects the status of the batch program at the time of 
its termination. 

Glossary G - 5 



G-6 GC34-0121 

scheduIing. The ability to imply that a task set should be started at a particular 
time of day or after a specified time interval. 

secondary program. Any program other than the primary program of a task. A 
secondary program may have multiple entry points and mayor may not have a 
program header. Secondary programs are invoked by a call request or by direct 
linkages, such as assembler branch instructions. 

secondary segment. Any resident segment other than the primary segment of a 
task set. 

segment. A structure containing one or more programs, which is a portion of a 
composite module or a task set load module. 

source module. A collection of source statements which constitute the input to a 
language translator for a particular translation. These source statements may be 
created, modified, and listed using the text editor. 

split screen. The division into sections of a display screen in a manner which 
allows two or more programs to use the display screen concurrently. 

spooling. Writing a data set that is found in the input stream to secondary 
storage. 

starter system. A supervisor in IPL format which supports the system generation 
process. 

step. A request to the job stream processor to execute a program and, 
optionally, any accompanying statements defining data sets used by the program. 

task. The dispatch able entity used by the supervisor to establish and track 
concurrent program execution within the system. Each task represents a single 
thread of execution through a program or set of programs. The first program 
executed under each task is a primary program. All others are secondary 
programs. 

task set. A named collection of programs, data, and control blocks designed to 
execute within a partition. The program of a task set perform a related set of 
work and execute under one or more tasks. 

task set library. A logical volume containing all of the data sets associated with a 
single task set. A task set library may also contain user data sets. 

task set load module. A structure that contains all resident segments, their 
associated common and overlay areas, and the control module, for a single task 
set. A task set load module is loaded from a consecutive data set in the task set 
library into a partition when the request for the task set becomes the highest 
priority element in the partition queue. It remains in primary storage for the 
duration of task set execution. A task set load module is in absolute format; that 
is, its origin cannot be changed. See bound task set load module and unbound 
task set load module. 

I \, 

\. ; 

C' 
-



c 

c 

o 

text editor. The program preparation facility that is used to create, modify, and 
list text modules. Text prepared using the text editor may be in the form of 
source modules, which may be input to the macro assembler, or text data, which 
may be input to a user program or one of the subsystem programs. 

text module. A term used by the text editor to indicate the data (text) that may 
be created and maintained using the facilities of the text editor. This data is 
usually in the form of printable characters (for example, source modules or input 
data to a user program). 

timer. A mechanism for defining an interval of time. 

transient area. A main storage area used for temporary storage of transient 
programs. 

transient program. Self-relocating program permanently stored on a system 
residence device and loaded into the transient area when needed for execution. 

unbound task set load module. A task set load module that has not been bound 
to its execution environment. It is one of the modules produced by the 
application builder as part of a task set library, The unbound task set load 
module may be loaded into a partition without being prebound, or it may be used 
as input to task set installation to create a bound task set load module. 

user partition. A partition that contains a user task set when in execution. 

work data sets. The data sets and data set members used by the program 
preparation facilities as temporary work areas. 

work stack. A list that is constructed and maintained so that the next 
information to be retrieved is the most recently stored information in the list; 
that is, a last-in-first-out or pushdown list. It is an area of unprotected main 
storage allocated to each task and used by the programs executed by that task. 

Glossary G - 7 



c 
G - 8 GC34-0121 



" C.·~·' 

• 

c 

o 

absolute load module 
creating 5-3 
general information 1-6 

ACTR instruction 4-6 
address assignment 

application builder processing 5-7 
assembler processing 4-7 

AGO instruction 4-6 
AIF instruction 4-6 
ALIGN instruction 4-4 
ALTER statement 

example 2-5 
function 2-6 

altering location counter setting 4-4 
ANOP instruction 4-6 
APBIN data set 5-13 
application builder 

data sets and devices 5-13 
execution environments supported 5-1 
features 5-15 
functions 1-6 
in program preparation 1-8 
invoking 5-13 
listing and processing options 5 -14 
phase 1 processing 5-6 
phase 2 processing 5-8 
phase 3 processing 5-11 
processing 1-7 

ASMGO statement 
example 1-12,2-3 
function 2-6 

assembler see macro assembler 
assembler instructions 4-3 
assembly listings 4-9 
assigning addresses 

application builder processing 5-7 
assembler processing 4-7 

assigning values to variable symbols 4-6 
AUTO option 5-14 
auto call library 

in application builder processing 1-6 
in phase 3 processing 5-11 
purpose 5-5 

AUTOI-AUT03libraries 5-13 

Base Program Preparation Facilities compatibilities A-3 
base register 4-4 
batch partition 1-13 
batch processing 1-1 
batch programs 

invoking 1-13 
running 1-11 

binding resources 5-9 
blank line insertion (assembly listing) 4-4 

BLDDSD macro 2-2 
bootstrap loader 1-10 
BUILDINI-BUILDIN5 data sets 5-13 

change field command (CF) 3-6 
change text command (CT) 3-6 
changing coding format 4-4 
clear command (CL) 3-6 
CMDIN device 3-5 
coding features, assembler 4-7 
coding format change 4-4 
coding programs in sections 4-7 
COM instruction 4-4 
commands, text editor 

capabilities 1-4 
summary of 3-6 

comment generation, assembler 
comment indicator-* 2-6 
common area 5-5 
common control section 4-4 
communications support 
compatibilities 

1-17 

4-6 

Base Program Preparation Facilities A-3 
Realtime Programming System A-4 

compile, load, and go 
example 2-3 
for problem solving 1-12 
statements 2-3 

complex (overlay) structured task set 5-3 
composite module 

creating phase 1 output 5-6 
general description 5-2 
input to phase 3 5-11 
library 5-7 
map 5-7 
multiple segment 5-7 
overlay structured 5-7 

conditional assembly language 4-5 
conditional assembly loop counter 4-6 
configuration requirements A-I 
CONTROL data set 5-13 
control module 

control statements 5-10 
creating 5-8 
definition 5-2 
functions 5-8 
purpose 1-6 

control statements, job stream processor 2-6 
copy command (CO) 3-6 
COpy instruction 4-4 
copying predefined source statements 4-4 
CPA-assembler task set name 4-2 
CPD-application builder task set name 5-13 
CPE-editor task set name 3-5 

Index 

Index X-I 



CPJ-job stream processor task set name 1-13 
creating new text see insert command 
cross reference listing options 4-9 
CSECT instruction 4-4 
CTBLKS statement 5-10 
current status command (CS) 3-6 

data constants, defining 4-4 
data representation 4-7 
data sets and devices for subsystem 

job stream processor 1-13 
summary of data sets 

for application builder 5-13 
for macro assembler 4-1 
for text editor 3-5 

work data sets 
for application builder 5-13 
for job stream processor 1-14 
for macro assembler 4-1 
for text editor 3-5 
general information 1-15 

DATASETS statement 5-10 
date/time stamping jobs A-3 
DC instruction 4-4 
default data set definitions 1-14 
DEFDSD macro 2-2 
DEFINE utility 2-2 
defining a register symbol 4-4 
defining assembler data sets 4-1 
defining data constants 4-4 
defining data sets 2-2 
delete command (DE) 3-6 
devices and data sets for subsystem 1-14 
diagnostic messages, phase 3 5-12 
dictionary, external symbol 5-6 
dictionary, relocation list 5-6 
disk IPL bootstrap loader 1-10 
disk overlay area 5-5 
disk requirements A-I 
diskette requirements A-2 
display station 

in hardware configuration 1-16 
text editor use 3-2 

DROP instruction 4-4 
DS instruction 4-4 
DSD environment 

application builder DSDs 5-13 
default DSDs 1-14 
definition 2-2 
macro assembler DSDs 4-1 
overriding DSDs 2-2 
required DSDs 1-14 
statement function 2-6 
text editor DSDs 3-5 
using job control statements to establish 1-3 
work data sets 1-15 

DSECT instruction 4-4 
dummy control section 4-4 

editor commands 
capabilities 1-4 
summary of 3-6 

X-2 GC34-0121 

editor workspace 3-1 
EJECT instruction 4-4 
end, macro definition 4-6 
end command (END) 3-6 
END instruction 4-4 
ENTR Y instruction 4-4 
ENTRY statement 

for absolute load module 5-3 
for composite module 5-8 

environment lists 
DSD environment 2-2 
example 1-3,1-12,2-3 
function and use of 1-16 
overriding DSD 2-2 
purpose 1-2 

ENVL parameter 
ASMGO example 2-3 
example 1-4 
use of 2-2 

EOF statement 2-6 
EOJ statement 2-6 
EOS statement 2-6 
EQU instruction 4-4 
EQUR instruction 4-4 
error message generation, assembler 4-6 
ESD (external symbol dictionary) 5-6 
ESD/NOESD listing option 4-9 
EXCOND statement 5-10 
EXEC control statement 

example of use 2-1 
function 2-6 

executing the subsystem programs 1-13 
execution environments 

other than Realtime Programming System 1-10 
application build requirements 5-2 
phase 1 processing 5-3 

Realtime Programming System 1-7 
application build requirements 5-3 
phase 1 processing 5-6 
phase 2 processing 5-8 
phase 3 processing 5-11 

exit, macro definition 4-6 
external reference resolution 

phase 1 5-7 
phase 3 5-12 

external symbol dictionary listing option 4-9 
external symbols, identifying 4-4 
EXTRN instruction 4-4 

features summary 
application builder 5-15 
job stream processor 2-7 
macro assembler 4-10 
text editor 3-7 

find command (PI) 3-6 
FORMAT statement 

for absolute load module 5-3 
for composite module 5-8 

formatting capabilities, text editor 3-3 
FORTGO statement 2-3 
FULLXREF option 4-9 

( \ 

" J 



o 

c 

o 

GBLA instruction 4-6 
GBLB instruction 4-6 
GBLC instruction 4-6 
generation program 1-18 
get command (GE) 3-6 
global control section 4-4 
global variables 4-6 
GLOBL instruction 4-4 

hardware 
configuration specifications A-I 
minimum hardware configuration 1-16 
optional hardware supported 1-17 

hardware instructions 4-3 
header, macro definition 4-6 
heading, assembly listing 4-4 

ICTL instruction 4-4 
INCLUDE statement 

for absolute load module 5-3 
for composite module 5-8 

increment, line number 3-2 
indentation levels, text editor 3-4 
initiating control section 4-4 
input stream see job input stream 
insert command (IN) 3-6 
inserting blank lines (assembly listing) 4-4 
installation requirements A-I 
installing the subsystem programs 1-18 
INSTREAM device 1-14 
interactive text editing 3-2 
invoking and executing the subsystem programs 1-13 
invoking the application builder 5-13 
IPL bootstrap loader 5-3 
ISEQ instruction 4-4 

job accounting A-3 
job input stream 

definition 1-1 
example 1-3,2-2 

JOB statement 2-6 
job stream processor 

compile, load, and go 2-3 
data set definition statements 2-2 
DSD environment 2-2 
environment lists 2-2 
functions 1-2 
in program preparation 1-8 
input stream source to use 2-6 
job input stream 1-1 
jobs and steps 2-1 
redirecting the input stream 2-5 
sources of the input stream 2-5 
starting 2-1 
summary of control statements 2-6 
summary of features 2-7 
user input data 2-4 

JSPWORK data set 1-14 

LCLA instruction 4-6 
LCLB instruction 4-6 
LCLC instruction 4-6 
library, autocall 

in application builder processing 
in phase 3 processing 5 -11 
purpose 5-5 

library, task set 5-3 
library, using Series/l B-1 
LIBl, LIB2 data sets 4-1 
line display range 3-3 
line format command (LF) 3-6 
line length 3-3 
line wraparound 3-3 
LINECOUNT option 4-9 
lines and line numbers 
linkage symbols 4-8 

3-2 

1-6 

list command (LI), text editor 3-6 
LIST/NOLIST option, assembler 4-9 
LIST option, application builder 5-14 
listing, assembler 4-9 
listing options, application builder 5-14 
listings, phase 1 5-7 
listings, printing assembly 4-4 
LMODOUT data set 5-13 
loader, disk IPL bootstrap 1-10 
LOADI-LOAD5 data sets 5-13 
local variables 4-6 
location counter setting 4-4 
loop counter, conditional assembly 4-6 

machine instructions 4-3 
macro assembler 

assembler instructions 4-3 
assembler language 4-3 
assembler program 4-1 
coding features 4-7 
defining assembler data sets 4-1 
functions 1-5 
in program preparation 1-8 
invoking the assembler 4-2 
machine instructions 4-3 
macro instructions 4-5 
processing 4-2 
purpose 1-5 
summary of features 4-10 

macro definitions 4-5 
MACRO instruction 4-6 
macro instructions 

definition of 4-5 
summary of 4-6 

macro name 4-6 
MACRO/NOMACRO option 4-9 
macro processing option 4-9 
macros, structured 4-9 
MAP option 5-14 
MEND instruction 4-6 
message data set space A-I 
MEXIT instruction 4-6 
minimum hardware configuration 1-16 
MNOTE instruction 4-6 

Index X-3 



move command (MO) 3-6 
MSGLOG device 

job stream processor use 1-14 
text editor use 3-5 

NAME statement 
for absolute load module 5-3 
for composite module 5-8 

no-operation instruction 4-6 
NOESD option 4-9 
NOEXEC statement 2-6 
NOLIST option 4-9 
NOMACRO option 4-9 
noninteractive text editing 3-2 
NOOBJECT option 4-9 
NORLD option 4-9 
NOTEXT option 4-9 
NOXREF option 4-9 

object module 
creating 1-5 
definition 1-5 
input to phase 1 5-6 
output of language translator 5-1 
relocatable 4-7 

OBJECT/NOOBJECT option 4-9 
object program listing 4-9 
OBJOUT data set 4-1 
operator station 

as input stream source 2-5 
in hardware configuration 1-16 

options 
application builder 5-14 
assembler 4-9 

ORG instruction 4-4 
origin address, load module 5-3 
overlay area 5-5 
overlay processing 5-12 
OVERLAY statement 5-8 
overlay structure 5-3 
overriding DSDs 2-2 

parameter passing see PARM statement 
PARM statement 

for application builder options 5-14 
for assembler options 4-9 
function 2-6 

partition, batch 1-13 
partition storage organization 5-4 
PARTN statement 5-12 
PBMDS data set 5-13 
permanent data sets 2-2 
phase 1, application builder 

control statements 5-8 
functions performed 5-7 
object module input 5-6 
output 5-7 

phase 2, application builder 
control module 5-8 
control statements 5-10 
prebind module 5-9 
processing 5-9 

X-4 GC34-0121 

phase 3, application builder 
control statements 5 -12 
processing 5-12 

PHASE1 statement 5-8 
PHASE2 statement 5-10 
PHASE3 statement 5-12 
PLl GO statement 2-3 
POP instruction 4-4 
prebind module 

control statements 5-10 
crea ting 5 -9 
definition 5-2 
functions 5-9 
purpose 1-6 

PREF instruction 4-4 
preserving editing sessions 3-4 
primary segment, resident 5-5 
PRINT device 

application builder use 5-13 
assembler use 4-1 
job stream processor use 1-14 
text editor use 3-5 

printer requirements A-3 
printing assembly listing 4-4 
problem solving with compile, load, and go 1-12 
processing options, application builder 5-14 
program preparation facilities 

application builder 1-6 
macro assembler 1-5 
text editor 1-4 

program residency space (subsystem) A-I 
program section types 

COM 4-8 
DSECT 4-8 
GLOBL 4-8 
STAR T or CSECT 4-8 

program sections 4-7 
programming requirements (subsystem) A-3 
prototype name 4-6 
ptn parameter 1-13 
PUSH instruction 4-4 

qprty parameters 1-13 
QUEUE statement 5-10 
queues, predefining 5-9 
queuing priority 1-13 

realtime programming system 
compatibilities A-4 
defining data sets 2-2 
execution environment 5-3 
hardware configuration 1-16 
in Series/l software system 1-1 
in subsystem installation process 
relation to subsystem 1-13 
task set execution under 1-6 

register symbol definition 4-4 
register use 4-7 
relocatable format 5-6 
relocatable object modules 4-7 
relocation dictionary listing 4-8 
representing data 4-7 
reserving storage area 4-4 

1-18 

c 

( " 
, i 

c 



o 

• 

c 

o 

resident library subroutines 5-5 
resident primary segment 5-5 
resident secondary segment 5-5 
resolving external references 5-12 
resource allocation 1-3 
restarting an editing session 3-4 
retrieving text see get command 
return codes 2-1 
RLD (relocation list dictionary) 5-6 
RLD/NORLD option 4-9 

sample hardware configurations 1-17 
save command (SA) 3-6 
searching for text see find command 
secondary segment, resident 5-5 
sections, program 4-8 
segment, resident primary 5-5 
segment, resident secondary 5-5 
sensor I/O support 1-17 
sensor I/O used by task set 5-10 
sequence-checking source statements 4-4 
SET A instruction 4-6 
SETB instruction 4-6 
SETC instruction 4-6 
setting tabs 3-4 
SHARING statement 5-10 
simple structured task set 5-3 
SIO statement 5-10 
SOURCIN data set 4-1 
SP ACE instruction 4-4 
SPOOL volume 

SPOOL DSD 1-15 
spooling example 2-4 

START instruction 4-8 
starter system A-I 
starting the job stream processor 1-13 
stopping assembly processing 4-4 
stopping job stream processor 2-1 
storage requirements A-I 
structured macros 4-9 
STS option 5-14 
summary of features 

application builder 5-15 
job stream processor 2-7 
macro assembler 4-10 
text editor 3-7 

suppress printing options 4-10 
switching source of input stream 2-5 
symbol use 4-7 
symbolic linkages 4-8 
SYSLOG device 

application builder use 5-13 
assembler use 4-1 
text editor use 3-5 

SYSP ARM option 4-9 
system and partition storage organization 5-4 
system global 4-8 
system scheduler table 5-9 

tab character 3-4 
tab command (T A) 3-6 
tab feature 3-4 
tailoring an editing session 3-3 
task set 

creating 1-6,1-7,5-11 
defining contents and structure 5-12 
definition 5-2 
library 5-3 
overlay processing 5 -12 
partition information 5-3 
simple and complex structures 5-3 
system and partition organization 5-4 

task set global 4-8 
task set load module 5-4 
task set start co mmand 1-13 
TASK statement 5-10 
T ASK SET statement 5-10 
temporary data sets 2-2 
terminate USING domain 4-4 
text editor 

commands 1-4 
defining editor data sets 3-5 
functions 3-1 
in program preparation 1-8 
interactive and noninteractive use 3-2 
invoking the editor 3-5 
line display range 3-3 
line length 3-3 
lines and line numbers 3-2 
preserving an editing session 3-4 
setting tabs 3-4 
summary of editor commands 3-6 
summary of editor features 3-7 

TEXT /NOTEXT option 4-9 
timer requirements A-2 
TITLE instruction 4-4 
translating, building, executing 2-3 
TSLIB volume 5-13 
TSLOAD data set 5-13 
TSOVLYdataset 5-13 

in application builder processing 5-13 
in assembler processing 4-1 

TSRTDS data set 5-13 
TSSHARE data set 5-13 

unconditional branch 4-6 
USING instruction 4-4 
using the Series/1 software library B-1 
utilities 

DEFINE 2-2 
DISK IPL bootstrap loader 1-10 
used with subsystem 1-2 

variable symbols 4-6 

work data sets 
disk space A-2 
for application builder 5-13 

Index X-5 



work data sets (continued) 
for job stream processor 1-14 
for macro assembler 4-1 
for text editor 3-5 
general information 

allocating workspaces 1-15 
DSD statements 1-15 
maximizing workspace efficiency 1-15 

WORKVOL volume 
application builder use 5-13 
assembler use 4-1 
general information 1-15 
text editor use 3-5 

WORKl, WORK2, WORK3 see work data sets 
WXTRN instruction 4-4 

XREF/NOXREF/FULLXREF options 4-9 

X-6 GC34-0121 

l 

c 



c 

c 

o 

() 

S 
o .., 
'T1 
o 
c:: 
» 
5" 
:J 
to 

C 
:J 
CI) 

Program Preparation Subsystem: 
Introduction 

GC34-0121-0 

YOUR COMMENTS, PLEASE ... 

Your comments assist us in improving the usefulness of our publications; they are an 

important part of the input used in preparing updates to the publications. All comments 
and suggestions become the property of IBM. 

Please do not use this form for technical questions about the system or for requests 

for additional publications; this only delays the response. Instead, direct your 
inquiries or requests to your I BM representative or to the I BM branch office serving 
your locality. 

CQi"rections or clarifications needed: 

Page Comment 

READER'S 
COMMENT 
FORM 

What is your occupation? _____________________________ _ 

Number of latest Technical Newsletter (if any) concerning this pUblication: ___________ _ 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 



GC34-0121-0 

Your comments, please ... 

This manual is part of a library that serves as a reference source for IBM systems. 
Your comments on the other side of this form will be carefully reviewed by the 
persons responsible for writing and publishing this material. All comments and 
suggestions become the property of IBM. 

Fold Fold 

Fold 

--- ------ - ---- ---- - ---- - - ----------_.-
® 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

I BM Corporation 
Systems Publications, Dept 27T 
P.O. Box 1328 
Boca Raton, Florida 33432 

I nternational Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
P.O. Box 2150, Atlanta, Georgia 30301 
(U.S.A. only) 

First Class 
Permit 40 
Armonk 
New York 

Fold 

(") 

S 

OJ 
s:: 
en 
~ 
[ 
"'tJ a 
~ 
Q) 

3 
"'tJ 
@ 

~ 
~ 
0' 
::J 
en c: 
c-en 
'< en ..... 
(1) 

3 

~ a 
a. 
c: 
~ 
0' 
::J 

~ 
5' ..... 
(1) 

a. 
5' 
c 
en 
?> 
C) 
(") 
w 
~ 

~ 
~ 
6 

t \. 

\. , 



" C·~··· 

c 

o 

(") 

S-
o .., 

Program Preparation Subsystem: 
Introduction 

GC34-0121-0 

YOUR COMMENTS, PLEASE . .. 

Your comments assist us in improving the usefulness of our publications; they are an 

important part of the input used in preparing updates to the publications. All comments 
and suggestions become the property of IBM. 

Please do not use this form for technical questions about the system or for requests 
for additional publications; this only delays the response. Instead, direct your 
inquiries or requests to your I BM representative or to the I BM branch office serving 
your locality. 

Cmrections or clarifications needed: 

Page Comment 

READER'S 
COMMENT 
FORM 

What is your occupation? _____________________________ _ 

Number of latest Technical Newsletter (if any) concerning this publication: ___________ _ 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 



GC34-0121-0 

Your comments, please ... 

This manual is part of a library that serves as a reference source for I BM systems. 
Your comments on the other side of th is form will be carefu Ily reviewed by the 
persons responsible for writing and publishing this material. All comments and 
suggestions become the property of IBM. 

Fold 

Fold 

--- ------ - ---- ---- ----- - - -------------
® 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

I BM Corporation 
Systems Publications, Dept 27T 
P.O. Box 1328 
Boca Raton, Florida 33432 

International Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
P.O. Box 2150, Atlanta, Georgia 30301 
(U.S.A. only) 

First Class 
Permit 40 
Armonk 
New York 

Fold 

Fold 

(") 

S 

0; 
s:: 
en 
~ 
[ 
"'tI 
(3 

CQ 
OJ 

3 
"'tI 
Cil 
'0 
~ 
~ 
0' 
::I 

en 
c 
g-
~ 
(1) 

3 

~ 
(3 
c.. 
c 
C') ..... 
0' 
::I 

~ 
~ 
(1) 

c.. 
:;' 
c 
en 
~ 
G) 
(") 
w 
.j::o, 

6 ..... 
I\J ..... 
6 

(1 

t 
, 
I _. 

c 



--- ------ - ---- ---- - ---- - - ----------- ' -
® 

International Business Machines Corporation 

General Systems Division 

57750 Glenr idge Drive N. E. 

P. O. Box 2150 
Atlanta , Georgia 30301 
(U.S.A. only) 

GC34-0121-0 

t 

[D 

s: 
en 
!!l 

~ 
'll 
(3 
cc 
Ql 
3 
~ 
(I) 

'0 
III 

~ o· 
:l 
en 
c: 
0' 
'" 
~ 
(I) 

3 

:l ... 
(3 t a. 
c: 
~ o· 
:l 

~ 
~ 
(I) 

a. 
5' 
c 
en 
?> 
C) 
(') 
w 
~ 
6 
r-J -6 


