w =8SSoo>
g E5858%
rrrrrrr
eeeeeee
SSSSSSS

Second Edition (February 1984)

This is a major revision of, and makes obsolete, GC34-0471-0 and Technical News-
letter GN34-0840.

This edition applies to Version 6 Modification Level 2 of the IBM Series/1 Realtime
Programming System (Program number 5719-PC6). - Technical changes or additions
to the text and illustrations are indicated by a vertical line to the left of the change.

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your coun-
try.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers’ comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information Develop-
ment, Department 28B, P.O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate with-
out incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1983, 1984

Preface

This book describes Version 6 of the Realtime Programming System — a general purpose
operating system for the Series/1. The purpose of this book is to:

Present system facilities and indicate how the Realtime Programming System
implements general operating system concepts

Discuss licensed programs that extend the functions of the base operating system

Provide introductory information to help you understand how the operating system
works

How This Book is Orgaiized

This book contains five chapters.

Chapter 1, “Overview of the Realtime Programming System’’ highlights the Realtime
Programming System and briefly describes the types of applications and the licensed
programs that the Realtime Programming System supports.

Chapter 2, “Operating System Facilities” describes the structural components

(facilities) of the operating system. Such topics as multiprogramming, multitasking,
system I/0, and file management are discussed.

Chapter 3, “Data Communications and Network Support” discusses the Realtime

Programming System support for data communications devices, SNA networks, and
Series/ 1 networks.

Chapter 4, “User Interfaces to the System” tells users how to use the operating system.

Chapter 5, “Development Tools and Application Aids” describes high-level
programming languages and the tools IBM provides for writing programs on a Series/1.

Related Publications

Related publications are publications that discuss or relate to the subjects described in this
book. The following list states the complete titles of this manual’s related publications. For
the sake of brevity, the related publication titles referred to later in this book do not include
the company, system, version designation, or order number.

The library for the Realtime Programming System consists of:

The Realtime Programming System manuals

The Program Preparation Subsystem manuals

Manuals for other licensed programs (including programming RPQs) that run under the
Realtime Programming System

Miscellaneous Series/1 manuals

Related publications are as follows:

IBM Series/1 Realtime Programming System Version 6:

— Binary Synchronous and Start-Stop Communications Programming Guide,
SC34-0478

— Command Language Facility User’s Guide, SC34-0462

— Configuration Guide, SC34-0562

Preface

iv GC34-0471

— Control Blocks, SC34-0472

— Data Management Programming Guide, SC34-0468

— Glossary and Subject Index, GC34-0473

— High-Level Language System Services Reference, SC34-0537

— Macro Reference, SC34-0463

— Messages and Codes, SC34-0464

— Network Definition Utility User’s Guide, SC34-0546

— Operation Guide and Reference, SC34-0565

— Problem Determination, SC34-0470

— Reference Summary, SX34-0110

— Standard System Installation Guide, SC34-0467

— Supervisor Services Programming Guide, SC34-0469

— System Customization Guide, SC34-0466

— System Planning Guide, GC34-0489

— Systems Network Architecture Support Installation Guide, SC34-0512

— Systems Network Architecture Support Programming Guide, SC34-0511

— Utilities Reference, SC34-0465

IBM Series/1 Program Preparation Subsystem Version 6:

— Application Builder User’s Guide, SC34-0475

— Batch User’s Guide, SC34-0476

— Macro Assembler User’s Guide, SC34-0477

— Text Editor User’s Guide, SC34-0474

IBM Series/1:

— -System/370 Channel Attach Program General Information Manual, GC34-0217

— -System/370 Channel Attach Program Reference Manual, SC34-0215

— Advanced Remote Job Entry User’s Guide, SC34-0452

— COBOL Language Reference Version 2, GC34-0392

— COBOL Programmer’s Guide Version 2, SC34-0394

— Communications Manager for the Series/1 Introduction, GL23-0060

— Fortran IV Language Reference, GC34-0133

— Fortran IV User’s Guide, SC34-0134

— Indexed Access Method Version 2: User’s Guide, SC34-0396

— Job Stream Processor Programming RPQ P82625 User’s Guide, SC34-1716

— Mathematical and Functional Subroutine Library User’s Guide, SC34-0486

— Multiple Terminal Manager Version 3 General Information Manual, GC34-0509

— Multiple Terminal Manager Version 3 User’s Guide, SC34-0455

— Pascal Programming RPQ, P82658, P82659: Language Reference, SC34-1731

— Pascal Programming RPQ, P82659: User’s Guide, SC34-1729

— PL/I Language Reference, GC34-0085

— PL/I User’s Guide, SC34-0086

— Query General Information Manual, GC34-0457

— Query Installation and Programmer’s Guide, SC34-0427

— Query User’s Guide and Work Book, SC34-0428

— Remote Manager User’s Guide, SL.23-0097

— Sort/Merge Programmer’s Guide, SL.23-0011

— Systems Network Architecture Remote Management Utility Programming RPQ
P82639 User’s Guide, SC34-1712

— X.25/HDLC Communications Support: Programming and Operating Reference Man-
ual, SC09-1029

— 4987 Programmable Communications Subsystem Extended Execution Support Refer-
ence, SC34-0187

— 4987 Programmable Communications Subsystem Preparation Facility Reference,
SC34-0119

e IBM Series/I:
— Digest, G360-0061
— Principles of Operations, GA34-0152
— Software Service Guide, GC34-0099
— System Selection Guide, GA34-0143

Problems with the Program

If you have a problem with a Series/1 program, see the IBM Series/1 Software Service
Guide, GC34-0099, for instructions on how to report the problem and obtain resolution.

Preface V

Vi GC34-0471

Contents

Chapter 1. Overview of the Realtime Programming System 1-1
Operating System Characteristics 1-2
Fault Tolerance, Incremental Growth, Multiprocessor Operation 1-2
The Types of Work the Realtime Programming System Can Do 1-3
Transaction Processing 1-3
Commercial Data Processing 1-4
Data Acquisition and Control 1-4
Message Transmission and Message Concentration 1-4
Distributed Data Processing 1-4
Data Communications and Data Exchange 1-4
Batch Processing 1-5
Uniprocessor and Multiprocessor Systems 1-5
Uniprocessor System 1-6
Multiprocessor System 1-6
The Standard System 1-7
Development and Production Systems 1-8
Major Software Components of the Realtime Programming System 1-10
The Control Program 1-10
Development Tools 1-13
Application Aids 1-15
Data Communications Tools 1-16
Summary 1-18

Chapter 2. Operating System Facilities 2-1
Keeping the System Productive 2-3

Keeping the Processors Busy 2-3

How the Supervisor Shares a Processing Unit Among Tasks 2-4

Using I/0 to Balance System Performance 2-5
Optimizing the Use of Processor Storage 2-7

How Storage is Managed 2-7

Managing Contention for a Partition 2-9

Extending Partition Storage 2-9
Managing Data and Devices 2-14

Device Management 2-14

Data Management 2-15

Associating a File with a Program 2-16

Where Data is Stored 2-17

How Data is Structured for Storing 2-18

How Data is Organized Within a File 2-20

Access Levels 2-22

How Data is Transferred (Access Methods) 2-23
Ensuring the Integrity of Data 2-24

Recovering Down-Level Duplex Volumes 2-25
Ensuring System Integrity and Availability 2-25
Program Development 2-27
Sharing Data, Programs, and Devices 2-28

Sharing of Resources Across Partitions and Nodes 2-29

Controlled Sharing of Files and Devices 2-31
Writing Realtime Applications 2-32

Synchronizing Tasks 2-32

Scheduling Tasks and Task Sets for Execution 2-34

Stopping the Execution of Tasks and Task Sets 2-34

Contents Vil

\"

Inter-Task Communication 2-35
Realtime Applications Using Sensor I/O 2-36
Finding and Repairing Program Defects 2-36
Finding Problems Before Execution 2-36
Finding Problems During Execution 2-36
Machine Level Problem Determination 2-37
Customizing Your Operating System 2-41
The Configurator 2-41
IPL Options File and User Input Command (UIC) File 2-42
Dynamic Device Generation 2-42
SYSGEN Program 2-42
System Operation 2-42
Installing IBM-Supplied Patches 2-43
Reporting Problems with IBM Licensed Programs 2-44

Chapter 3. Data Communications and Network Support 3-1
Communications Applications 3-2
Decentralized Processing 3-2
Protocol Conversion 3-3
Message Concentration 3-3
Data Communications in a Network 3-3
Front-End Processor 3-4
Communications Support 3-4
Communications Connections 3-4
Communications Protocols 3-5
Systems Network Architecture Support 3-6
Systems Network Architecture Extended Support 3-6
Additional Communications Support 3-7
4987 Programmable Communications Subsystem 3-7
Advanced Remote Job Entry 3-9
SNA Remote Management Utility Programming RPQ 3-11
Series/1 to System/370 Channel Attach Program 3-12
3270 Device Emulation Using the Multiple Terminal Manager 3-13
X.25/HDLC Communications Support 3-14
Remote Manager 3-15
Communications Manager for the Series/1 3-16

Chapter 4. User Interfaces to the System 4-1

End User Interfaces 4-2

Programmer Interfaces 4-2

Operator Interface 4-4
Installing the Standard System 4-4
Attended and Unattended Modes 4-5
Operator Command Set 4-5

Interactive Subsystems 4-7

Chapter 5. Development Tools and Application Aids 5-1
Programming Languages and Subroutine Libraries 5-2
Cobol 5-3
Fortran 5-5
Mathematical and Functional Subroutine Library 5-6
Realtime Subroutine Library 5-7
Pascal 5-8
PL/I 5-9
Macro Assembler 5-11

GC34-0471

System/370 Host Preparation Facilities Programming RPQ 5-12
System/370 Host Application Builder 5-12
System/370 Environment 5-13
Additional Prerequisites 5-13
Interactive Tools for Development and Production Systems 5-14
Command Language Facility 5-14
Text Editor 5-16
System Utilities 5-18
Tape Utilities 5-19
Stand-Alone Utilities 5-20
Batch Processing 5-21
Job Control Language 5-21
Aids for Transaction Applications 5-23
Writing Transaction Applications with the Multiple Terminal Manager 5-23
Query 5-27
Preparing a Program for Execution 5-29
Handling Large Programs 5-29
Additional Application Tools 5-35
Indexed Access Method 5-35
Sort/Merge 5-38
Summary 5-39

Index X-1

Contents IX

X GC34-0471

Figures

. Attributes of the Realtime Programming System 1-2

. Development Components of the Program Preparation Subsystem 1-8
. Example of Storage Organization 2-7

. Ways to Extend Logical Storage 2-13

. Example of How Data is Structured for Storing 2-20

. Examples of Data Organization Within a File 2-21

. How Disk Overlays Work 5-31

. How Storage Overlays Work 5-33

Figures Xi

Xii GC34-0471

Summary of Amendments
for Concepts and Facilities, GC34-0471-1

Realtime Programming System Version 6 Modification Level 2

Additions to this Book

o Support for the Programmable Two-Channel
Switch enables a set of common terminals to be
bi-directionally switched, under program
control, between two Series/1s

« Support for the IBM 4968 Autoload Streaming
Magnetic Tape Unit enables quickly backing up
the data from a large-capacity disk

« Support for the integrated 30-megabyte disk unit
in the IBM 4954-30D and 4956-30D processors
and in the 4965-30D storage and I/O expansion
unit

« Support for the IBM 4980 Display Station

o Support for the IBM 5219, 5224, and 5225
Printers

« Support for additional command language facili-
ty commands

« Support for additional operator commands

« Terminal backup capability of the Multiple Ter-
minal Manager in case of processor failure

« Asynchronous processing capability of the
Indexed Access Method improves the perform-
ance of application programs

Summary of Amendments

Changes to this Book

Clarify that magnetic tape units can not be dis-
tributed devices. A program using a magnetic
tape unit must run at the Series/1 where the
tape unit is attached.

Removal of the restriction that the 3101 Display
Terminal can not be a distributed device. All
supported terminals can now be distributed
devices. A program running on one Series/1 in
a multiprocessor system can use terminals that
are attached to other Series/ 1s in the system.

PASSTHRU service of the Multiple Terminal
Manager can now use any of its full-screen for-
matted terminals

Summary of Amendments X

Xiv GC34-0471

Summary of Amendments

Summary of Amendments

for Concepts and Facilities, GC34-0471-0

as updated by GN34-0840

Realtime Programming System Version 6 Modification Level 1

Additions to this Book

o The licensed program, Communications Manager for the Series/1, is supported

« The Multiple Terminal Manager has a programming interface to the Communications
Manager

« The X.25/HDLC Communications Support licensed program functionally replaces the
Packet Network Support programming RPQ

« The Remote Manager licensed program is supported

 Task storage records are available for supervisor-state tasks. The system maps the task
storage record into the same area of logical storage each time it dispatches the task.

« You can develop a system that supports an additional terminal, or a terminal emulator
program (that is, a virtual terminal), as the operator console or as a display device

o A full-screen editor (FSEDIT) is available for examining and changing data in
hexadecimal format

« Operations on X.21 circuit switched public data networks are supported in binary
synchronous and SNA/SDLC modes in compliance with the CCITT X.21
recommendation

* You can use the ICDEF command to specify internode communications control block
allocations when using the command language facility

« IBM-supplied subroutines provide an interface between Cobol, Fortran, or PL/I, and
the operating system services of loadable external modules and global queues

« IBM-supplied subroutines provide an interface between PL/I and the operating system
storage services

« In text editor full-screen mode you can tailor the program function keys
o The 4967 disk is supported

Summary of Amendments XV

XVi GC34-0471

Summary of Amendments

Version 6 of the IBM Series/1 Realtime Programming System is the latest version of the
system. This summary of amendments is for users of previous versions of the Realtime
Programming System who might want to know how this book, IBM Series/1 Realtime
Programming System Version 6: Concepts and Facilities, reflects system function that is new,
changed, or deleted for Version 6.

New Function

New functions of the Realtime Programming System for Version 6 are listed below.

Multiprocessor System Support

Information has been added to document support for the Series/1 Realtime Programming
System as a multiprocessor system with several processors linked together in a configuration
that makes possible a level of fault tolerance and incremental system growth.

Loadable External Module Facility Documentation

Information has been added to document loadable external modules, which are program
modules that can be loaded and unloaded anywhere in the storage of your partition while
your task set is executing.

Duplex Volume Documentation

Information has been added to document duplex volumes.

Query Licensed Program Documentation

Information has been added to document a new licensed program called Query, a program
for retrieving and updating data in sequential or indexed files.

interactive System Utilities Update

Information has been added to document program function key tailoring capability for pro-
gram function (PF) keys 1 to 5, and output scrolling capability using the REPORT system
utility.

Summary of Amendments Xvii

Two-Channel Switch Support

Information has been added to document support of the Series/1 two-channel switch
(hardware #7900) for use in recovering from processor failures.

New Service Aids Documentation
Material on the following new service aids has been added:
o Error log types

¢ Online device tests
« Automatic time stamping of all system messages

New Operator Commands

Information has been added to reflect new operator commands.

New Tape Utilities

Information has been added to document tape utilities as part of the base operating system.

New Stand-Alone Utility

Information has been added to document a new stand-alone utility, REPT, which produces
a formatted report of a task set reference table.

New Terminal Controller Commands

Information has been added to document new terminal controller commands, LOGOFF
and LOGON CONSOLE.

Changed Functions

Changed functions of the Realtime Programming System for Version 6 are listed below.

Advanced Remote Job Entry Update

Information has been added to document miscellaneous enhancements to the Advanced
Remote Job Entry program product.

Xviii GC34-0471

Packet Network Support
Information has been added to document miscellaneous enhancements to the Packet Net-
work Support programming RPQ.

Multiple Terminal Manager Update
Information has been added to document miscellaneous enhancements to the Multiple Ter-
minal Manager program product.

Command Language Faciiilty Updaie

Information has been added to document enhancements to the command language facility,
most notable of which is the addition of a set of menus (and accompanying help screens) to
facilitate use of system services.

System/370 Host Assembler Programming RPQ Documentation

Information has been added to document a programming RPQ called the System/370 Host
Assembler, a language translator that translates symbolic instructions into Series/1 machine
language instructions, assigns storage locations, and performs auxiliary functions necessary
to produce executable machine language programs.

Indexed Access Method Update

Information has been added to document miscellaneous enhancements to the Indexed
Access Method program product.

SNA Extended Update

Information has been added to document SNA extended as part of the SNA support in the
base supervisor.

Deleted Function

Deleted functions of the Realtime Programming System for Version 6 are listed below.

o Prebinding task sets

« Rollout/rollin partitions
¢ Message buffering

o 4952 processor

e 5250 terminal

Summary of Amendments Xix

XX GC34-0471

ter 1, Overview of the Realtime

CERE e == 2R

Programming System

The Realtime Programming System is an operating system for the IBM Series/1 processor.
IBM also provides other licensed programs for use with the Realtime Programming System.
These include high-level languages (such as PL/1, Fortran, Cobol, and Pascal), program
development tools, and data communications facilities.

Contents of this chapter:

Operating system characteristics 1-2
Fault tolerance, incremental growth, multiprocessor operation 1-2

The types of work the Realtime Programming System can do 1-3
Transaction processing 1-3 / Commercial data processing 1-4
Data acquisition and control 1-4
Message transmission and message concentration 1-4
Distributed data processing 1-4
Data communications and data exchange 1-4
Batch processing 1-5

Uniprocessor and multiprocessor systems 1-5
Uniprocessor system 1-6 / Multiprocessor system 1-6
The standard system 1-7 / Development and production systems 1-8

Major software components of the Realtime Programming System 1-10
The control program 1-10 / Development tools 1-13
Application aids 1-15 / Data communications tools 1-16

Summary 1-18

Overview of the Realtime Programming System 1-1

Operating System Characteristics

General attributes of the Realtime Programming System are shown in Figure 1-1 .

General Purpose:
supports many
applications

Full Function:
supports many
facilities

S—— +—
REALTIME
PROGRAMMING

—> SYSTEM —

Fault Tolerant:
supports
dynamic system
growth and

Distributed:
supports use of
resources at
nodes other

tolerates than where the
single resources are
component located
failures

Figure 1-1. Attributes of the Realtime Programming System

« General purpose means the operating system supports many types of processing (see
“The Types of Work the Realtime Programming System Can Do’ on page 1-3)

« Full function means it provides the necessary facilities to write many different kinds of
data processing applications

« Fault tolerant means the system is designed so that it continues running if a single
Series/1 in a system of Series/ 1s fails

« Distributed means that a program running on one Series/1 in a multiprocessor system
can use resources that are attached to other Series/1s in the system. Such resources
include disks, diskettes, printers, and terminals.

Fault Tolerance, Incremental Growth, Multiprocessor Operation

The Realtime Programming System provides:

« Fault tolerance

1-2 GC34-0471

o Incremental growth
« Multiprocessor operation

Once an enterprise decides to use computers, it becomes dependent on its computer
systems for its daily operation. These systems must be able to handle failures while still

providing service. Systems that can handle the failure of a single hardware component are
fault tolerant.

Also, as the enterprise grows or changes, computing needs increase. Incremental growth
enables you to add more computing resources without disrupting the system’s operation.

The Version 6 Realtime Programming System promotes a high degree of fault tolerance and
incremental growth by enabling:

e A system to grow or shrink in size without taking the system down

« A user or system program to use many devices (such as disks) no matter where the
devices are attached in the system

« A second copy of a file to be kept automatically so processing can continue if one copy
fails

o The home node supervisor functions to be backed up. (A node is a processor in a
multiprocessor system together with its associated programs and devices.)

« More than one Series/1 to be under the control of a single operating system

« A set of common terminals can be bi-directionally switched, under program control,
between two processors. This dynamic reconfiguration can recover these common
terminals from a failing processor, and return them when appropriate.

A multiprocessor system means from two to sixteen Series/1s are connected by two Local

Communications Controllers. Each Local Communications Controller forms a high-speed
data link between nodes.

The Types of Work the Realtime Programming System Can Do

Using the Realtime Programming System, you can do the following types of data
processing:

o Transaction processing

o Commercial data processing

« Data acquisition and control

o Message transmission and message concentration
« Distributed data processing

« Data communications and data exchange

« Batch processing

Transaction Processing

A transaction processing application can consist of a set of programs that can use data files
and display formats on a terminal screen. A single processing application can request input
from end users by means of one or more displays. These are called transaction interactions.
For example, the user displays and updates the operational data of a business enterprise. In
most cases, the end user has little or no knowledge of data processing. Transaction process-
ing applications can be written in assembler, Cobol, Fortran, Pascal, or PL/1.

Overview of the Realtime Programming System 1-3

Commercial Data Processing

A commercial data processing application involves such things as sorting or merging files,
performing arithmetic calculations and logical operations, generating printed reports, and
updating files. The application can be written in a high-level language such as Cobol,
Fortran, PL/I, or Pascal. The operating system supports these languages.

Data Acquisition and Control

In data acquisition and control programs, the system must react to external stimuli or
sensors quickly. Programs are scheduled and run in response to these external stimuli. The
operating system:

« Handles data from sensors (analog and digital input and output)
« Manages external interruptions (process interrupts)
e Schedules and runs programs

You can write data acquisition and control programs using PL/I, Fortran, or Series/1
assembler language.

Message Transmission and Message Concentration

A message is any unit of information to be transmitted. A message can be a single sales
transaction or an entire file of data. In programs that transmit messages, a message (unit of
information) received by a central system from one terminal is sent to one or more systems
or terminals. These programs require that the system handle communications lines,
different types of terminals, and various communications protocols.

Programs that perform message concentration collect and concentrate messages in one
location and then forward them to another location. Data flow control routines select
alternate paths for sending the messages to ensure continuous operation. There is often a
need for Series/1 systems to connect to other machines.

Message handling facilities are part of the Multiple Terminal Manager and Communications
Manager licensed programs.

Distributed Data Processing

A distributed data processing application is one in which some or all of the processing,

storage, control, and I/O functions are situated in different places and are connected by
transmission facilities.

Data Communications and Data Exchange

Data communications facilities allow data to be exchanged with other computer systems or
devices. The form in which the data is sent must allow the data to be used on the receiving
system or device. Data to be exchanged is transmitted to another system electronically, over

1-4 GcC34-0471

communications lines, or physically, by recording the data on a removable storage medium
that can be used on the receiving device or system.

Data can be exchanged electronically between a Series/ 1 system and another system that
supports at least one of the following communications protocols:

o Asynchronous (start/stop) communications protocol
« Binary synchronous communications protocol

« Synchronous data link control (SDLC) protocol in a Systems Network Architecture
(SNA) network

These protocols can be used to connect many different types of devices. You should review
the following manuals dealing with Realtime Programming System communications proto-
cols for more specific information:

e Binary Synchronous and Start-Stop Communications Programming Guide
o Systems Network Architecture Support Programming Guide

Data can be physically exchanged between a Series/1 system and other systems, provided
the other systems can use any of the following media:

« 9-track magnetic tape (non-labeled tapes and IBM standard labeled tapes compatible
with System/370 DOS/VS)

« IBM basic exchange diskettes

« IBM type E exchange diskettes

« IBM type H exchange diskettes

Batch Processing

Long running, low priority programs that do not require interaction with a terminal are
often batched. Batch processing means a set of programs are stacked or batched together
and run in first-in-first-out or priority order.

The job stream processor is a Series/ 1 batch processing facility.

Uniprocessor and Multiprocessor Systems

A Version 6 system contains one or more Series/1s under the control of the Realtime
Programming System. The operating system recognizes two system types. A uniprocessor
system consists of one Series/1. A multiprocessor system consists of two or more Series/1s
(maximum of 16) connected by two Local Communications Controller rings.

Each Series/1 is a node in a multiprocessor system. From a program’s point of view, a local
node is the Series/1 in the system where the program is running. A remote node is any
other node in the system. The home node is the node from which all the nodes in the
system were first loaded.

A multiprocessor system has distributed devices. These devices include disks, diskettes,

printers, and terminals. Any program in the system can use these devices as long as the
Series/1 with the devices is online.

Uniprocessor systems are typically used either to execute applications or to develop new
ones. This book uses the terms “production system” and “development system” to describe
these uses. Uniprocessor systems are not usually powerful enough to support both activities
simultaneously. In contrast, a multiprocessor system can be both a development and a

Overview of the Realtime Programming System 15

production system at the same time because of its greater power. The term “standard
system” refers to the pre-built operating system you receive from IBM.

Uniprocessor System

A uniprocessor system consists of one Series/1. Past users of the Realtime Programming
System can use the operating system as they have in the past if they do not need a
multiprocessor system. The System Planning Guide discusses differences between Realtime
Programming System Version 6 and earlier versions of the Realtime Programming System.

Multiprocessor System

A multiprocessor system consists of two to sixteen Series/ 1 processors attached by one or
two Local Communications Controllers.! Each Local Communications Controller provides

a high speed data link between nodes. The operating system controls all Series/1 systems,
the two Local Communications Controllers, and devices.

In Realtime Programming System Version 6:

« The supervisor controls the flow of data and commands over the Local Communications
Controller

o Task sets can be queued to be run at another node

« Resources such as global queues or global resources are known throughout the system.
The system uses the home node to synchronize the use of resources in the system.

« Disks, diskettes, printers, and terminals can be used by programs running anywhere in

the system. They need not be at the node where the program using the devices is
running.2

Incremental Growth

In a multiprocessor system, you can add or remove nodes while the system is running. If
you take a node out of the system to add or remove devices, remaining nodes in the system

continue running. A program called the configurator helps you to grow or shrink the size of
a multiprocessor system.

Configurator

The configurator is the program you use to set up, install, or change the makeup of a
multiprocessor system. You start the program using a command language facility command.

To provide a high degree of fault tolerance, each Series/1 must be attached to two Local
Communications Controllers so that processing can continue if one fails.

Not all devices can be attached to a Series/1 different than the one using the device. For example, a

program using sensor /0, magnetic tape, or communications devices must run at the node where the
device is attached.

1-6 Gc34-0471

(The command language facility is an interactive set of menus and commands for
programming and managing files.) Once you enter the command to start the configurator,
menus appear on which you enter the needed information to configure your system. The
configurator uses the facilities of the Series/1 hardware to identify the I/O devices attached
to a node and to enable you to add items to the system.

System Backup and Recovery

To ensure fault tolerance in a multiprocessor system, Version 6 provides backup procedures
for data and certain hardware in the system. For critical data, you can designate that the
disk volume containing the data be duplexed.

For system backup, Version 6 requires two Local Communications Controller rings in a
multiprocessor system. One ring serves as a backup for the other ring.

You can select a node to function as a backup for the home node. If you do not, the system
chooses one of the remaining nodes as a backup node.

You can use the manual Two-Channel Switch feature (#7900) of the 4959 1/0O Expansion
Unit to electronically switch I/O devices from a failing node to a backup node. Upon
processor failure a Switchover Command File, containing operator commands, is opened
and executed in the backup node. The commands typically start the switched devices and
the applications that service them, but any operator commands allowed in UICINPUT are
acceptable. Once the failed node is restored, the operator must manually reset the switch to
move the switched I/O devices back to their original state.

You can use the Programmable Two-Channel Switch feature (#7777) of the 4959 1/0
Expansion Unit to electronically switch common terminals from a failing node to a backup
node. A set of common terminals can be bi-directionally switched, under program control,
between two processors. This dynamic reconfiguration can recover these common
terminals from a failing processor, and return them when appropriate. The Programmable
Two-Channel Switch can also be manually operated.

The Two-Channel Switch and the Programmable Two-Channel Switch are mutually
exclusive; that is, they cannot both be installed on the same pair of nodes.

The Standard System

The standard system is a pre-built operating system included in the set of diskettes that IBM
sends when you order a uniprocessor or multiprocessor system. It is the first operating
system you install on a Series/1 processor. The standard system must be installed on the
processor of each node in a multiprocessor system.

The standard system enables you to begin using the Series/1 quickly and easily. Using the
standard system, you can add IBM licensed programs, devices, or user-written programs
without extensive planning or delay.

If you install the Program Preparation Subsystem under the standard system, you have an
operating system that provides most of the tools programmers need to write and test
programs.

Overview of the Realtime Programming System 1-7

Development and Production Systems

Version 6 systems can support either a program development or production environment, or
both.

Program development involves using languages, libraries, and other tools to write and test
programs. A system that supports this activity is called a development system.

After a program is fully tested, it is used in production mode. A system customized to exe-
cute application programs is called a production system.

Development System

IBM supplies a licensed program with the tools a programmer needs to write and test pro-
grams. This licensed program is the Program Preparation Subsystem. Program development
components of the Program Preparation Subsystem are shown in Figure 1-2.

TEXT COMMAND
EDITOR LANGUAGE
FACILITY
JOB
CONTROL
LANGUAGE
MACRO APPL I CA-
ASSEMBLER TION
/L1BRARY BUILDER
PROGRAM PREPARATION SUBSYSTEM

REALTIME PROGRAMMING SYSTEM

Figure 1-2. Development Components of the Program Preparation Subsystem

1-8 GcC34-0471

The Program Preparation Subsystem includes:

« A full-screen text editor with commands to edit and update source program files and
data files

o Interactive menus and commands of the command language facility for writing and test-
ing programs

« A batch job control language to create and execute long compilations or assemblies that
do not require interaction at a terminal. The job stream processor provides this com-
mand language.

« A macro assembler and macro library for writing programs in Series/1 assembler lan-
guage. The assembler language includes structured programming macros. Routines in
the macro library interface to system functions.

« An application builder facility with statements that combine compiler or assembler out-
put into programs that run under operating system control

All components of the Program Preparation Subsystem run under the control of the
Realtime Programming System.

In addition to the Program Preparation Subsystem, four high-level programming languages
are provided (as separate products):

e Cobol

« Fortran
e Pascal

« PL/I

Production System

When the writing and testing cycle of a program is complete, you install the program on the
system. A program serving its end users runs in production mode. Throughout this book,
the term “production system” describes a Realtime Programming System that you custom
build to support a production environment. In some cases, the IBM-supplied standard sys-
tem is suitable for a production environment.

Changing the Standard System

You can change (customize) the IBM-supplied standard system to support a unique envi-
ronment. For example, hardware features, devices, and licensed programs (such as lan-
guage compilers) that are supported on a development system might not be needed on a
production system. Conversely, devices not needed on a development system may be nec-
essary for a production system.

You can also change the standard system by changing special system files (the initial pro-
gram load (IPL) input file or the user input command (UIC) file). The configurator aids
you in this process. These files and the configurator are discussed in the section entitled
“Customizing Your Operating System” on page 2-41.

Overview of the Realtime Programming System 1-9

Using the SYSGEN Program

You use the SYSGEN program to custom build a Realtime Programming System to include

only those components you need. The SYSGEN program is a part of the Program Prepara-
tion Subsystem.

You can also customize the Realtime Programming System to run on a uniprocessor system
with no fixed disk device; a diskette can be the system-resident device.

Major Software Components of the Realtime Programming System

This section presents you with a brief overview of the functions of the operating system,
and introduces several terms that are used throughout this book.

Realtime Programming System components are grouped into four categories:

The control program
Development tools
Application aids

Data communications tools

The Control Program

The control program consists of the:

Supervisor

Data management routines

Menus and commands of the command language facility
System utilities

Tape utilities

Stand-alone utilities

Operator interface

o Data communications support

. [] L] * L] L] L]

The Indexed Access Method is a separately priced program that extends the input/output
support of the control program.

Supervisor

The supervisor manages one or more Series/ 1 processors within a single node. It handles
functions such as multiprogramming, multitasking, error processing, storage management,
and timer management. Supervisor functions are discussed in more detail in Chapter

2, “Operating System Facilities” and in the Supervisor Services Programming Guide.

1-10 Gc34-0471

PN

Data Management Routines

Data management routines manage input and output to files and devices. The routines pro-
vide functions that:

« Allocate and provide access to data files
« Provide access to disks, diskettes, magnetic tape, sensor input/output devices, printers,
and several types of terminals

System 1/0O functions are discussed in more detail in Chapter 2, “Operating System
Facilities” and in the Data Management Programming Guide.

Menus and Commands of the Command Language Facility

Interactive menus and commands of the command language facility are included in the con-
trol program for programming and for managing files. The facility can also be used by the
support programmer to install other Realtime Programming System based licensed programs
such as PL/I, Fortran, Cobol, Pascal, and the Program Preparation Subsystem.

Once started, the facility creates an interactive terminal session for each of its users.

The facility includes interactive menus and commands for performing various functions.
Help screens assist you in using the set of menus. You enter the commands online at the
terminal. The facility also includes a procedural language called S1/EXEC for writing your
own commands or menus.

The command language facility is discussed in more detail in Chapter 5, ‘“Development
Tools and Application Aids” and in the Command Language Facility User’s Guide.

System Utilities

The system utilities are a set of interactive routines that can be used to manage data stored
in system format files on disk or diskette. (System utilities can also do some processing on
non-system format diskettes.) The utilities program can be started under command lan-
guage facility control.

The system utilities are discussed in more detail in Chapter 5, “Development Tools and
Application Aids” and in the Utilities Reference manual.

Tape Utilities

The tape utilities are a set of commands for backing up data from a disk to a tape (and tape
to disk), copying data from tape on one drive to tape on another drive, building a tape data
set definition, and initializing or exercising a tape.

The tape utilities are discussed in more detail in Chapter 5, ‘“‘Development Tools and Appli-
cation Aids” and in the Utilities Reference manual.

Overview of the Realtime Programming System 1-11

Stand-Alone Utilities

The stand-alone utilities are a set of commands and programs for formatting disks, saving
and restoring volumes or devices, loading and starting a supervisor, dumping processor stor-
age to diskette, and producing directory reports.

The stand-alone utilities are discussed in more detail in Chapter 5, “Development Tools and
Application Aids” and in the Utilities Reference manual.

Operator Interface

The operator interface consists of a set of commands that enable an operator to start and
stop programs, control I/O devices, monitor system status, and make backup copies of files.

The operator commands are discussed in more detail in Chapter 4, ‘“User Interfaces to the
System’ and in the Operation Guide and Reference manual.

Data Communications Support

Data communications support allows communications with remote locations and consists of
those portions of the control program that provide:

« Binary synchronous communications
« Asynchronous (start/stop) communications
o Series/1 support for the Systems Network Architecture (SNA)

Systems Network Architecture support for a Series/1 is a subset of the total IBM Systems
Network Architecture support.

Data communications support is discussed in more detail in Chapter 3, “Data Communi-
cations and Network Support” and in the following books:

e Binary Synchronous and Start-Stop Communications Programming Guide
o Systems Network Architecture Support Programming Guide

Indexed Access Method

The Indexed Access Method program builds and maintains indexed files and enables access,
by symbolic key, to records in an indexed file.

The Indexed Access Method is discussed in more detail in Chapter 5, “Development Tools
and Application Aids” and in the Indexed Access Method User’s Guide.

1-12 Gc34-0471

Development Tools

Four high-level languages (PL/I, Cobol, Fortran, and Pascal) and a group of program
development facilities called the Program Preparation Subsystem provide the tools used on
a development system.

PL/I

The following licensed programs are required for program development in PL/I:

« PL/I Compiler and Resident Library
o PL/I Transient Library

The transient library is also necessary to execute programs produced by the PL/I compiler.

Cobol

The following licensed programs are required for program development in Cobol:

« Cobol Compiler and Resident Library
« Cobol Transient Library

The transient library is also necessary to execute programs produced by the Cobol compiler.

Fortran

The following licensed programs are required for program development in Fortran:

o Fortran Compiler and Object Support Library
« Mathematical and Functional Subroutine Library

Fortran requires the Mathematical and Functional Subroutine Library to build and execute
programs produced by the Fortran compiler. Fortran also requires either the floating point
hardware feature or floating-point emulation support in the system.

An additional licensed program, the Fortran Realtime Subroutine Library, is needed for
applications that use sensor 1/0, realtime functions, or system multitasking functions.

Pascal

The Pascal Compiler and Object Support Library licensed program is required for program
development in Pascal.

Overview of the Realtime Programming System 1-13

Program Preparation Subsystem

A licensed program, called the Program Preparation Subsystem, provides common tools for
program development. Features of the Program Preparation Subsystem include:

A full-screen text editor with commands to edit and update source program files and
data files

A batch job control language to create and run long compilations or assemblies that do
not require interaction at a terminal. The job stream processor provides this command
language.

A macro assembler and macro library for writing programs in Series/1 assembler
language. Macros are provided to assist in structured programming and interface to
system functions.

An application builder facility to combine compiler or assembler output into programs
that execute under the operating system

A system generation program (SYSGEN) to custom build a supervisor

Interactive menus and commands of the command language facility for writing and
testing programs

The Program Preparation Subsystem runs under the Realtime Programming System.

1-14 Gc34-0a71

Application Aids

Application aids support functions that are frequently needed on both development and
production systems. These optional separately-priced licensed programs aid you in writing
applications.

Multiple Terminal Manager

The Multiple Terminal Manager program supports transaction processing. The
manager supplies a set of utilities that aid you in creating a transaction processing
application that uses multiple terminals. The application can be written in PL/I,
Cobol, Fortran, Pascal, or assembler language.

The Multiple Terminal Manager also supports remote transaction processing. This
support allows a Series/ 1 processor and specified terminals to appear to a host system
as one or more 3270 Information Display Systems while local transaction applications
use other terminals attached to the Series/1 processor.

The manager also allows you to access data on other Series/1 processors by using a
programming interface to the Communications Manager. This support is discussed in
the section entitled “Multiple Terminal Manager Bridge Service” on page 3-18.

Query

Query is a program that enables you to get information from Series/1 files without
writing programs. Query can supply timely, appropriate, and concise information.

Using Query, you can look at data in an Indexed Access Method file or a sequential
file, or you can update, delete, or insert data in an Indexed Access Method file.

As a tool for information analysis, Query can turn your system into a management
information system. Query provides menus for you to select the functions you wish to
do.

Query must be run under control of the Multiple Terminal Manager in order to set up
file profiles. You can also call Query from a Cobol or assembler language program.

Mathematical and Functional Subroutine Library

The Mathematical and Functional Subroutine Library routines are available to assem-
bler language and Fortran programmers.

Overview of the Realtime Programming System 1-15

Sort/Merge

The Sort/Merge licensed program sorts and merges records from up to eight input files
into one output file in either ascending or descending order.

Job Stream Processor

The Job Stream Processor Programming RPQ is a batch processing facility for
executing a collection of background? programs on production systems. This
programming RPQ is the same as the Job Stream Processor component of the Program
Preparation Subsystem.

Data Communications Tools

Data communications tools provide functions that extend the base communications support
and the operating system support for Systems Network Architecture (SNA) networks.
These optional separately-priced licensed programs are discussed below.

Communications Manager

The Communications Manager for the Series/1 manages the flow of messages in a
network between Series/1s, between Series/ 1s and host computers, and between the
Series/1 and a variety of input and output devices.

The Communications Manager provides operator commands to allow online control of
the network and to display information about activity within the network.

Message management features of the Communications Manager include line
concentration, message queuing, message warm start, the ability to obtain messages
from any supported source (computer, device, or application program) and the ability
to deliver messages to any supported destination on a priority basis.

System/370 Channel Attach Program

The System/370 Channel Attach Program allows a Series/1 application to
communicate with an application executing on a host System/370, 30xx, or 43xx
system. The Channel Attach Program uses the Series/1-to-System/370 Channel
Attachment hardware. The host system must be using OS/VS1, OS/VS2 (SVS or
MYVS), or DOS/VSE with the Basic Telecommunications Access Method (BTAM).

3

Programs that execute in background mode are usually long-executing, low-priority programs that do
not require interaction with a terminal. These programs are queued (batched) and executed one after
another. Programs that execute interactively at a terminal are said to run in foreground mode.

1-16 Gc34-0a71

Advanced Remote Job Entry

The Advanced Remote Job Entry program supports the use of a Series/1 as a remote
job entry work station using either Systems Network Architecture (SNA) or
multi-leaving binary synchronous communications.

Advanced Remote Job Entry:

Supports multi-leaving remote job entry support for binary synchronous
communications using EXIO BSC support

Supports multiple logical unit Systems Network Architecture (SNA) support for
Synchronous Data Link Control (SDLC) using SNA and SNA extended

Has commands that are designed to be easily used and that are identical for remote
job entry operation

Supports unattended operation by having remote job entry commands on disk or
diskette. Support for dynamic punch file allocation and delayed activation is also
provided.

Has full function console support with status reporting and journaling, data
decompression, and printer form support

SNA Remote Management Utility

The SNA Remote Management Utility Programming RPQ allows you to communicate
between a host computer and a remotely located Series/1. The utility allows you to
perform various file maintenance, system maintenance, and system functions without
having an operator at the remote Series/1. The SNA Remote Management Utility
executing on a Series/ 1 processor gives the host system access to Series/1 Remote
Management Utility functions.

4987 Programmable Communications Subsystem Preparation Facility

The 4987 Programmable Communications Subsystem Preparation Facility is used to
support the generation of controller storage image programs for the Programmable
Communications Subsystem. The program provides a macro library for assemblies
with the Program Preparation Subsystem.

4987 Programmabie Communications Subsystem Extended Execution Support

The 4987 Programmable Communications Subsystem Extended Execution Support is
used to write application programs that communicate with devices that are attached via
the 4987 Programmable Communications Subsystem. Two levels of user interface are
supported; READ/WRITE and EXIO.

Overview of the Realtime Programming System 1-17

X.25/HDLC Communications Support

The X.25/HDLC Communications Support licensed program enables a Series/1 to
attach to X.25 packet switching networks. You can also use the X.25/HDLC
Communications Support to communicate with terminals or processors in a network
that uses high-level data link control (HDLC) procedures.

Remote Manager

The Remote Manager licensed program enables Series/1 networks to be managed and
operated through the communications and systems management programs available on
IBM host processors (System/370, 30XX, and 43XX). The Remote Manager on each
Series/ 1 in the network supports centralized control and problem determination using
the following host programs:

» Network Communications Control Facility

« Distributed Systems Executive

+ Host Command Facility

e Network Problem Determination Application

Summary

The Realtime Programming System and its supporting programs provide a wide range of
functions. The operating system is general enough to handle traditional commercial data
processing, yet is responsive enough to handle many transaction processing, interactive, or
process control applications.

1-18 Gc34-0471

This chapter highlights general operating system concepts and discusses Realtime
Programming System facilities that provide various means of solving data processing
problems. The term system service, as used in this book, describes a programming interface
to a system facility that consists of one or more interactive commands, assembler language
macros, or interactive applications.

Operating System Facilities 2-1

Contents of this chapter:

Keeping the system productive 2-3
Keeping the processors busy 2-3
How the supervisor shares a processing unit among tasks 2-4
Using I/0 to balance system performance 2-5

Optimizing the use of processor storage 2-7
How storage is managed 2-7
Managing contention for a partition 2-9
Extending partition storage 2-9

Managing data and devices 2-14
Device management 2-14
Data management 2-15
Associating a file with a program 2-16
Where data is stored 2-17
How data is structured for storing 2-18
How data is organized within a file 2-20
Access levels 2-22
How data is transferred (access methods) 2-23

Ensuring the integrity of data 2-24
Recovering down-level duplex volumes 2-25

Ensuring system integrity and availability 2-25
Program development 2-27

Sharing data, programs, and devices 2-28
Sharing of resources across partitions and nodes 2-29
Controlled sharing of files and devices 2-31

Writing realtime applications 2-32
Synchronizing tasks 2-32
Scheduling tasks and task sets for execution 2-34
Stopping the execution of tasks and task sets 2-34
Inter-task communication 2-35
Realtime applications using sensor I/O 2-36

Finding and repairing program defects 2-36
Finding problems before execution 2-36
Finding problems during execution 2-36
Machine level problem determination 2-37

Customizing your operating system 2-41
The configurator 2-41
IPL options file and user input command (UIC) file 2-42
Dynamic device generation 2-42
SYSGEN program 2-42

System operation 2-42
Installing IBM-supplied patches 2-43
Reporting problems with IBM licensed programs 2-44

2-2 GC34-0471

Keeping the System Productive

Effective utilization of a system implies that system resources must be kept fully utilized in
a productive fashion. A system is kept productive by:

« Keeping the processors busy
o Sharing processing units among tasks
« Using I/0 to balance system performance

Keeping the Processors Busy

A Series/1 processor is equipped with a single processing unit and therefore executes a sin-
gle set of program instructions at a time. Time and processor resources are wasted if the
program in control of a processing unit is waiting for an I/O operation, for a resource to
become available, or for human intervention before execution proceeds.

Multiprocessing

Multiprocessing means running more than one program at the same time. Because a multi-
processor system has multiple processors, more than one application program can execute,
at different processors, at the same time.

Multiprogramming

An idle processing unit represents lost work if another program is awaiting execution. The
procedure for finding ready programs in processor storage and for starting their execution is
called multiprogramming. Multiprogramming gets its name from the idea of multiple pro-
grams sharing a processing unit’s execution cycles.

Multiprogramming allows more than one program to reside in processor storage and appear
to be executing at the same time. The operating system chooses which program is to
receive control of the processing unit. The processor allows instruction execution and I/O
operations to overlap. While one program is waiting for I/O to complete, another program
is permitted to execute. Multiprogramming works because the operating system is able to
recognize and respond to interruptions in processing.

Multitasking

If an application is divided into independent units of work, there are more instances in
which the supervisor can find sequences of instructions that can be given control of the
processing unit to do work. This process is exactly what occurs within the operating system
where a large number of independent units of work are created. The independent units of
work are called tasks, and the supervisor allocates machine cycles to these tasks. This shar-
ing process is called multitasking.

Operating System Facilities 2-3

Tasks and Task Sets

A program’s execution structure is divided into one or more tasks. The resulting structure is
called a task set.! Any program that executes under the Realtime Programming System con-
tains at least one task called the primary task. A program with multiple tasks has one prima-
ry task. All other tasks are called secondary tasks. All of the tasks for a single program
execute on the same node that executes the primary task. The supervisor shares the proc-
essing unit among the tasks in your program as well as those in other programs executing in
the processor.

Program Modules Within a Task

You write modular programs by dividing a task into program modules that execute synchro-
nously. A task contains one main (primary) program module — the module that receives
control when a task begins executing. Other program modules within a task are subpro-
grams (secondary programs). Subprograms are executed only if they are called by the main
program or by a subprogram that is executing. When the main program module completes
execution, the task containing the program module terminates.

How the Supervisor Shares a Processing Unit Among Tasks

The supervisor shares a processing unit among tasks by using a component called the dis-
patcher, and events.

The Dispatcher

In order to distribute machine cycles among competing tasks in an effective manner, the
supervisor recognizes when a task is temporarily unable to proceed. Also, the supervisor
recognizes when the required conditions have been met so that a suspended task can
resume execution. The dispatcher, a component of the supervisor that runs in every node,
decides when the processing unit for that node is allocated to a particular task.

Task Execution

All tasks running on a given processor compete for processor execution time. If no con-
straints exist, tasks execute and terminate asynchronously. Events allow the execution of a
task to be synchronized with the execution of other tasks or with operating system tasks.
An event is an occurrence that is significant to a task (such as the completion of I/0).
Events might be necessary if tasks need to communicate information, if there is a point in
one task where further execution is dependent upon an external occurrence, or if another
task is dependent on your task (two or more tasks must cooperate).

1 A task set is a means of packaging together the parts of an executable program. These parts include

the program instructions, work areas, and optional data areas. The task set consists of related tasks
that perform an application. The terms task set and program are used interchangeably in this book.

2-4 GC34-0471

Factors That Determine Task Execution

Whether or not a task executes depends on many factors including:
o The status of input or output operations that are executed on behalf of the task

« The recognition of the occurrence of events in a task’s execution. An event can consist
of an interruption from an external sensor, the expiration of a time interval, or in gen-
eral, the arrival of a cooperating task at a specified point during execution. In the last
case, a task notifies another task that it is awaiting the occurrence of an event. The

task then suspends itself (waits) until the other task indicates (posts) that the event has
occurred.

« The availability of a serially reusable resource such as a program segment or data area.
A resource is serially reusable during execution if only one cooperating task can use the
resource at a time. You use system facilities to define the resource as serially reusable.
The supervisor grants control of serially reusable resources to one task at a time. If a
task requests a resource that is already being used, it can suspend itself until the

resource is no longer being used. Alternatively, the task can continue execution and try
again later.

« Task dispatching priority. You give a task a dispatching priority to:

— Promote system throughput. For example, you should give a task which does not
use its processor heavily, but which does a lot of I/O, a high priority.

— Make sure the processor is available to tasks with critical response or service
requirements (such as process interrupt servicing for process control)

— Assure cause and effect processing. For example, you should give a problem state

program that uses a device a lower priority than the system task that manages the
device.

You assign a task’s dispatching priority. The dispatcher uses the priority of a task to

decide which task gains control of the processing unit when several tasks are ready to
execute.

Using 1/0 to Balance System Performance

Each Series/ 1 processor is equipped with an I/O channel and I/O devices containing dedi-
cated microprocessors. The channel allows input and output operations to proceed without
the assistance of the processing unit. This independent processing allows the operating sys-
tem to support both asynchronous and synchronous 1/0.

Asynchronous I/0

A program that uses asynchronous 1/0 performs its I/O independently of its execution.

You use asynchronous I/O if your program can continue executing without waiting for an
I/O operation to complete.

Asynchronous I/0 is accomplished by specifying an event on your 1/0 request. Your pro-
gram continues execution until the program reaches a point where it must wait for the event

to occur before proceeding. Asynchronous I/0 allows a program to overlap execution with
I/0 operations.

Operating System Facilities 2-5

Synchronous 1/0

A program that uses synchronous I/O must wait for an I/0 operation to complete before
continuing execution. The operating system puts a program using synchronous I/0 into a
wait state while the I/O is being done. When the I/0 is complete, the operating system
resumes the program’s execution.

Remote I/0 and Load Balancing

An application may require more I/O devices than can be attached to, or adequately ser-
viced by, a single processor. In a multiprocessor system, programs in any node can refer to
certain devices attached to any other node. The locations of disks, diskettes, printers, and
terminals are transparent to your application programs. I/O requests are routed to the
node that has the device(s) physically attached to it. Only programs using sensor I/0,
magnetic tape, or communications devices must run at the node where the device is
attached.

Utilizing processors at several nodes for device or file servicing is particularly beneficial if
you are using the Indexed Access Method.

Spooling

The operating system provides spooling services that allow you to send output to a slow
speed device without having the slow speed device limit the execution speed of your pro-
gram. The operating system first writes the output data to a disk file at high speed and later
writes the data to its final destination. Spooling allows your program to print without hav-
ing to wait for the data to be transmitted to the printer. Your program then completes its
execution so that other work can be started while the system completes the transmission.
The final output occurs asynchronously with your program’s execution.

Spooling services manage contention for a printer when several programs attempt to use the
printer at the same time. When directing spooled output to a printer you may specify an
output class. The operating system, under the operator’s control, decides what spooled out-
put is to be printed based on the class designation.

The operating system allows you to select different output forms on which output is to be
printed. You can also request multiple copies of spooled output. The operating system
interacts with the operator when non-standard forms are requested so that the proper out-
put forms can be mounted before printing proceeds.

Spooling is discussed in more detail in the Operation Guide and Reference manual.

2-6 GC34-0471

Optimizing the Use of Processor Storage

Processor storage refers to the hardware that retains instructions and data within each
processor. Processor storage is a fundamental resource of your system. The demand for
processor storage forces the operating system to manage the storage resource as effectively
as it can. You control how the operating system manages processor storage.

Logical storage is the conceptual storage layout of a processor which represents address
spaces. The operating system allows programs to use the addressing scheme of this concep-
tual storage layout to access processor storage. To do this, the operating system manages a
group of registers called segmentation registers.

A stack of segmentation registers is identified by an address key. The logical storage
defined by an address key is called an address space. The storage address relocation trans-
lator in each processor uses the values in the segmentation registers to convert logical stor-
age (also called primary storage) addresses into processor storage addresses.

How Storage is Managed

Management of primary storage under the Realtime Programming System is done on a node
by node basis and starts with the concept of partitions.

Partitions

An example of partition arrangement is shown in Figure 2-1 .

PARTITION 1 PARTITION 2 (Up to 15 user partitions)
Executable Executable -
program program
Internal
data areas - Up to 6LK
Dynamic
storage Internal

data

areas

Dynamic

storage Y

Figure 2-1. Example of Storage Organization

The operating system allocates a quantity of processor storage (logical storage) to a parti-
tion. A partition is a portion of logical storage dedicated to the execution of one task set at
a time. A program executes within a partition of storage. Programs executing in one parti-
tion do not interfere with programs executing in another partition. At each node, the

Operating System Facilities 2-7

Realtime Programming System Supervisor executes in partition 0, which is reserved for it.
This partition uses two address spaces: one for its data and one for its instructions.

You define the quantity of processor storage (logical storage) that is to be allocated to each
partition. You can define up to 15 partitions at each node for your programs.

Partitions provide storage space for an executable program and for internal data areas. If
the partition size you define exceeds the storage required to hold your program and its
internal data, the excess storage in the partition is used as dynamic storage.

Dynamic Storage: Dynamic storage is the available logical storage left in a partition after
a task set is loaded. Dynamic storage services allow your program to access dynamic stor-
age during execution. Your program can use dynamic storage for data areas or buffers.

For example, the Series/1 PL/I compiler is designed to run in a 26K-byte partition. The
storage required for the compiler program itself is 20K bytes. The additional partition stor-
age is used for dynamic work areas. The compiler can use storage in excess of 26K bytes to
speed up execution by allocating larger program work spaces. Using dynamic storage
allows you to write a program that can adapt itself to use additional storage.

Defining Primary Storage

Primary storage is defined for the system data address space (SDS), system instruction
address space (SIS), static partitions, and dynamic partitions.

System Data Address Space: The system data address space (SDS) is the part of the
system task set that contains the system data areas for the Realtime Programming System.
This part of the system task set resides in address space 0. No user task sets can reside in
address space 0.

System Instruction Address Space: The system instruction address space (SIS) is the

part of the system task set that contains the system instructions for the Realtime Program-
ming System. This part of the system task set resides in address space 1. No user task sets
can reside in address space 1.

Static Partitions: Static partitions are defined when the system is installed or by execut-
ing an operator command, DEFP, during IPL. A static partition is fixed in size and remains
defined until the system is reloaded. The operating system executes in a static partition.

Dynamic Partitions: Dynamic partitions are defined when needed. The operating system
creates a dynamic partition for you:

e When a program (task set) is being started and no partition number is specified, or
« If a partition number is specified that has not been defined as a static partition

The operating system determines the size of your program (rounded up to the nearest 2K
bytes), allocates a partition of that size, and then loads and executes the program. If insuf-
ficient storage is available to create the partition, your program is not executed until enough
storage is available for the partition. The operating system frees a dynamic partition’s stor-
age when the program completes execution.

Your program is placed into execution faster in a static partition because the partition’s
storage is allocated at IPL time. Static partitions are more efficient but require planning on
your part. You should use static partitions when you plan to run production programs of a
predictable size that do not change, especially those that must execute on a regular basis.

2-8 GC34-0471

Dynamic partitions are more flexible, but using them requires slightly more time to place
your program into execution. For example, a program that executes in a dynamic partition
might not be able to execute immediately because the system is unable to allocate enough
physical storage. This situation could occur if several dynamic partitions are currently
active.

Managing Contention for a Partition

All programs are queued (lined up) for execution. A program is queued for execution in the
requested partition, and the program waits until the partition is free. By queuing programs,
the operating system manages contention for partitions when multiple programs (task sets)
attempt to use the same partition.

Queuing Priority

The operating system selects which program to start based on the priority of the programs
in the queue (their queuing priority). Programs of the same priority are selected in a
first-in-first-out manner if resources are available. You select a queuing priority for a
program in order to control the order in which programs execute in a partition. The
queuing priority for programs is unrelated to the dispatching priority for tasks.

Extending Partition Storage

You can extend partition storage by using disk overlays, loadable external modules,
transients, secondary storage services, and additional storage services.

Disk Overlays

Disk overlays are overlay segments that reside on direct access storage devices and, when
called, are loaded into the overlay area of logical storage associated with their resident
segments. Disk overlays are described under “Overlays” on page 5-30.

Loadable External Modules

Loadable external modules are a type of program segment that is loaded into dynamic
(logical) storage or a storage pool from a direct access storage device. Loadable external
modules are built by the application builder and resolved to their owning task sets so that
they can be executed. See the section entitled “Loadable External Modules” on page 5-34
for more information.

Operating System Facilities 2-9

Transients

A transient is a program or data module that is loaded from disk into processor storage.
Transients allow task sets to operate in a smaller amount of storage than would otherwise
be needed. Transients are of two kinds: system and user.

When a system transient is required, the operating system loads the transient into processor
storage from disk or diskette. After the transient completes execution, its storage or
transient area is available to another transient. By using dynamic transient pool
management (DTPM), the operating system retains frequently used system transients in
storage. This process allows the operating system to optimize performance on the basis of
the storage you provide in the pool and on actual system transient usage. The svstem

programmer decides the amount of storage to assign to the dynamic transient pool when the
system is installed.

User transients are self-relocating programs that run in problem state in a user partition.
These programs are not part of the resident portion of the task set, but are loaded by the
LOAD macro from disk into dynamic storage in the user partition.

For more information on system and user transients, see the Supervisor Services
Programming Guide.

Secondary Storage Services

The supervisor provides secondary storage services which you can use to extend storage
capacity. Secondary storage is processor storage outside a defined partition. Secondary
storage is called unmapped storage because it is not mapped in an address space by
segmentation registers.

You can allocate secondary storage by requesting that an amount of unmapped storage be
assigned to a partition. On request, portions of secondary storage are mapped and made
available to a program. Secondary storage is mapped by setting a logical address
(segmentation register) to create an area of selected blocks of physical storage.

Secondary storage services include:

o Storage overlays

« Storage records

o Task storage records

« Control module mapping

o Dynamic transient pools

« SNA buffer pools

By usirig these services, which utilize secondary storage, you avoid the more

time-consuming process of reloading from disk or diskette.

Storage Overlays: A storage overlay is an overlay segment that resides on a direct access
storage device and is loaded into secondary storage at task set load time. The largest
storage overlay associated with each composite module is included in a storage overlay area
within the task set load module, which is read into primary storage at task set load time.
When called, a storage overlay is accessed through manipulation of the segmentation
registers assigned to the overlay area associated with its resident segment. Storage overlays
are discussed under “Overlays” on page 5-30.

2-10 Gc34-0471

Storage Records: Your programs can also allocate and map secondary storage for
storage records. You specify an amount of secondary storage to be associated with a
partition or task set for storage records. When a storage record is defined, a number of
2K-byte blocks of unmapped storage are assigned to it, and it is mapped to your partition.
When the record is mapped, you can store data in it.

The storage record remains addressable to your task set until you request addressability to a
new storage record, or until you request a record that you have previously created. Because
the data that you write in a storage record is retained until the task set terminates, you can
gain fast access to this data by invoking the supervisor to map an existing storage record.

Task Storage Records: Storage records are associated with task sets. Within a
supervisor-state task set, however, you can associate a storage record with an individual
task. A storage record associated with a task is called a task storage record. The system
maps the task storage record into the same area of logical storage each time it dispatches
the associated task.

You can define several task storage records, each associated with a different task in the task
set. The system maps the task storage records, one at a time, into the same area of logical
storage each time it dispatches the associated task.

When you purge a task storage record, the system no longer maps the task storage record
when it dispatches the associated task.

Control Module Mapping: You can logically extend supervisor data address space
(SDS) beyond its 64K-byte limit by using a facility called control module mapping for
non-supervisor control modules. To use this facility, you allocate a control module mapping
area beyond SDS, but within address space 0. The amount of logical storage you should
allocate for the mapping area must be equal to or greater than the largest control module of
the task sets you plan to execute. If you use a shared task set, the mapping area must be
large enough to contain both the, sharing and shared task set’s control modules
simultaneously.

Non-supervisor control modules are located in unmapped storage. The supervisor sets the
control module mapping area to map the control module for the task set that it selects for
execution. Mapping is accomplished by setting the processor segmentation registers to the
secondary storage address of the control module. No data movement occurs.

Control module mapping extends the capacity of the system because all user control
modules of active task sets need not be simultaneously mapped in a single 64K-byte data
space. Logical storage is required only for the largest control module. Storage in SDS that
is no longer being used to hold control modules is available for control blocks needed to
support additional devices or communications lines. Thus, large configurations can be
supported within the 64K-byte addressing limit.

Operating System Facilities 2-11

The savings in SDS is illustrated below.

SDS without SDS with
Control Module Control Module
Mapping Mapping
Unmapped
storage
Control Control
module 2 module 2
Lk Lk
Control ~ Control Control
module 1 module map module 1
6K area 6K 6K
10K bytes needed 6K bytes needed beyond
in SDS to run SDS but within address
two task sets space 0 to run two task sets

Dynamic Transient Pools: To improve system performance, you can request that
secondary storage be allocated to logical storage pools that the operating system uses to
hold system transients. These areas are called dynamic transient pools. A dynamic transient
pool can only be allocated to the operating system partition.

SNA Buffer Pools: SNA buffer pools are data areas required by Realtime Programming
System SNA support. They are system-managed and reside in secondary storage.

Additional Storage Services

Additional storage service facilities are available for the following licensed programs or
facilities:

o Indexed Access Method
o Multiple Terminal Manager
« Storage pools

These storage service facilities are discussed under the topics ‘“Indexed Access Method” on
page 5-35, “Managing the Application with the Multiple Terminal Manager” on page 5-25,
and in the Supervisor Services Programming Guide for storage pools. Note that Indexed
Access Method index pages can be either in secondary storage or on disk, as can Multiple
Terminal Manager user transaction programs, and user-controlled storage for storage pools.
Figure 2-2 on page 2-13 shows the various ways logical storage can be extended.

2-12 GcC34-0471

sanijioe4 walsAg bunesadQ

) A4

33e10)S [8d1307] PUAXY 03 SABA\ *T-T 931y

Disk

_—

~_

1AM Index
& Data

Loadable
External

~Modules -
MTM Programs

N~

64K

Use of storage

Primary storage

Secondary storage

T
Supervisor

partition 0

SDS SIS

MTM
window

A

PTN1

SNA
application

Control Module

window \

1AM DTPM
pool window

PTN2

MTM

PTN3

IAM
application

PTN4

User
application

Storage overlays
window

Storage
overlays

S E—

MTM user []
transaction
programs

D E—

IAM _‘—‘
index
pages
I

User =
control
modules

Lr_—

ANNY

SNA
storage pool

Storage records
window

Jj]

DTPA

Storage
records

512KB

Managing Data and Devices

An important aspect of any data processing application is the entry, updating, and retrieval
of data. System input and output (I/O) is accomplished through the data management and
device management facilities provided by the operating system. Refer to the Data Man-
agement Programming Guide for complete information on system I/O support.

Device Management

Device management services within the operating system support various devices for input
and output. In particular, the operating system supports the following I/O devices:

« Non-removable disks

« Removable diskettes

¢ 9-track magnetic tape devices

« Line and matrix printers

« Display terminals and teletypewriters

» Binary synchronous communications

« Start/stop (asynchronous) communications

o Series/ 1 support for the IBM Systems Network Architecture (SNA)
« Sensor I/0 devices

o Timers

For disk and diskette, each physical record (sector) has a relative block address that is the
physical address of the sector on the device.

For non-storage devices (such as a printer), you must structure your data by specifying the
number of bytes (characters) to transfer. The number of bytes must fit the physical record
size of the device.

Terminals

You communicate directly with an application or with the operating system using a
terminal. The operating system and various licensed programs support the following types
of terminals:

o IBM 3101 Display Terminal
« IBM 4978 Display Station
« IBM 4979 Display Station
o IBM 4980 Display Station

You can also develop a system that supports an additional terminal, or a terminal emulator
program (that is, a virtual terminal), as the operator console or as a display device. Existing
display applications may be able to use the additional terminal (or terminal emulator pro-
gram) as their I/O device with no change.

Local/Remote Transparency

An important facility when you use a 3101 Display Terminal is local/remote transparency.
Your 3101 can be attached directly to one of the nodes in the system, or it can be attached

2-14 GcC34-0471

remotely over communication lines. In either case, your program is made independent of
the line protocols that are needed when communications lines are involved. You can use a
remote 3101 as an operator console or as a display terminal for the command language
facility.

Online Device Tests

An operator, using commands, can test active devices. The online device tests allow an
operator to test disks, diskettes, printers, floating-point hardware, timers, and most termi-
nals. You use the data created by the online tests to help decide when IBM must service
the system.

Data Management

Data management services support input and output (I/0) to files. A file is the fundamental
1/0 structure that the operating system uses. The term applies to data written to or read
from any I/O device.

The collection of data that is written to a device is termed the output file. The collection of
data read from a device is called the input file. An input or output file for a non-storage
I/0 device is simply the collection of data read from or written to the device between the
opening and closing of the file.

Symbolic Names

In general, the first concern in accessing data is referring to the device for I/O. For ease of
use, devices are referenced by symbolic names (for example, PRINTER, DISK, DISPLAY,
etc.) instead of by a number representing the absolute node and device addresses. Using
this technique, a program need not be sensitive to the details of the hardware installation or
be concerned with the details of configuration management.

Decisions about the relationship between actual devices, their physical addresses, and the
symbolic device name can be made:

e Dynamically using a system operator command
o Using a system macro (STARTDEYV)

« When the SYSGEN program is executed

« With the configurator program

The standard system supplies a set of default device assignments. These defaults are dis-
cussed in the Standard System Installation Guide.

If your system has support for at least one device of a given device type (for example, a
4963 disk), you can readily add support for another device of that same type (4963 disk).
The operator enters an operator command (REDY) to ready the device for use or a start
device operator command (STDV) for the new device. The operating system creates the
needed control data for the new device from the existing device and starts it. This facility is
called dynamic device generation. Dynamic device generation allows you to expand the
configuration of a node without extensive preplanning. You also avoid the need to run the

Operating System Facilites 2-15

SYSGEN program to add the new device to the system. The device is added dynamically
and is available for application programs to use immediately.

The next concern in accessing data is referencing a file. A file is referred to by symbolic
name. The operating system uses the symbolic name when the data comprising the file is
read from or written to the device. For example, when a program reads input from a disk
file, the operating system uses the symbolic name to search for and locate the data on the
disk. You do not need to know the actual device-dependent location of the file because the
operating system allocates the space for the file when the file is created and maintains its
location for future accesses.

Associating a File with a Program

The operating system provides services that allow a program to access files. The program
must establish a connection between itself and the file. The operating system’s OPEN ser-
vice does this.

Data Set Definition (DSD)

The program must also identify how it will use the file. This is done by defining the data
structure using a data set definition (DSD). The data set definition allows you to specify a
variety of file attributes such as:

« File name

« Record format (how records are to appear within a block)

« Size of a logical record

« Size of a block

« Device name (where the file resides)

« Direction of access or access mode (input only, output only, or both input and output)
o Access level — the level of support you need from the system I/0 routines:

— To block data on output, deblock data on input, and manage data buffers in
processor storage (GET/PUT level)

— To transfer blocks of data to and from disk or diskette with no automatic buffering,
blocking, or deblocking (READ/WRITE level)

o Access method (whether data is transferred sequentially or directly)
« File organization (consecutive, random, or partitioned)

A data set definition can be made part of an assembler language source program. In this
case, changes can be made in data formats or file names either during program execution or
by reassembling the program.

Data Set Definition Table (DSDT)

The operating system also allows you to define your data set definitions (DSDs) outside of
your program. These DSDs are placed into a data set definition table (DSDT), a file that is
associated with your program at execution time. DSDTs exist at several levels: task set,
shared task set, or local level (meaning at the system-resident volume of a node), or global
level of a multiprocessor system. This approach to defining DSDs provides greater flexibili-

2-16 Gc34-0471

ty because you can change a DSD in your DSD table without changing your program. You
can use the command language facility, job stream processor, or system utility commands to
create or modify the necessary DSD table entries. In this case, the program makes a sym-
bolic reference to this data set definition when it issues the OPEN for a file. The OPEN
processing picks up the necessary file attributes. This approach is sometimes called late
association because the file information is determined at execution time. In contrast, with
early association, the file information is incorporated into the source program at compile or
assembly time.

Programs that you create in PL/I, Fortran, Pascal, or Cobol use the external data set defi-
nition technique and late association to give you greater flexibility in writing application
programs. Once a file is opened, it remains open until the task closes it explicitly or com-
pletes execution. When a task completes execution (either normally or abnormally), the
operating system dissociates any files that were open when the task completed.

Where Data is Stored

A file consists of data written to or read from an I/O device. Operating system services
provide a variety of file structures and flexible data storing techniques.

Data can be stored on disk devices or system formatted diskettes. When you initialize a
disk or diskette, you prepare the disk or diskette in system format.

You can refer to the data on these devices by using the:

« Device

¢ Volume

« Data set
e Member
Device

A device refers to an entire disk or diskette device. A disk or system-formatted diskette?2
has room for at least one volume.

Volume

A volume is a group of related data sets on a disk or diskette. Each device and volume has a
table of contents area that identifies all files that are stored on the device or volume.

2 A diskette can be in system format, basic exchange format, type E exchange format, or type H

exchange format. A disk is always in system format.

Operating System Facilities 2-17

Data Set

A data set is usually the file structure to which input and output is performed. A data set
must reside in a logical volume. A data set that is structured as a set of related files is called
a partitioned data set. Each file in the partitioned data set is called a member. A partitioned
data set has a table of contents similar to the table of contents found in a logical volume.

For files created on disk or diskette, you define the size of a file before using the file for
output. The operating system reserves the space you request and records the file name, file
organization, and file boundaries in the table of contents of the device, volume, or parti-
tioned data set. When the file is used, the space allocation does not increase dynamically if
you attempt to write more data to the file than it can hold. If a file is not filled on output,
you have the option of releasing the unused space.

How Data is Structured for Storing

Logical Records

Typically, you want to read and write records of data in your application program without
being concerned about how the data is stored on disk or diskette. The operating system
allows you to read and write logical records. To do this, you use the GET/PUT level of
access discussed in the section entitled “Access Levels” on page 2-22. At the logical record
(GET/PUT) level, the operating system structures your logical records into blocks for out-
put and deblocks the data into logical records on input.

You specify the format of the logical records, the maximum size of each record, and the
maximum size of each block in the file. You control the size of a block and the number of
logical records grouped into each block. Choosing optimum block sizes maximizes I/O per-
formance and gives you flexibility in using disk space. The way you select record formats,
sizes, and blocking schemes affects the efficiency of the use of disk or diskette storage.

Record Format

The format of each logical record is either fixed in length or variable in length. Fixed means
that the same number of characters appears in each logical record. Variable means that the
number of characters in each logical record can vary.

Record Size

The size of a logical record is the number of characters in the record. For records in vari-
able format, the operating system uses four bytes at the front of each record to indicate the
record’s length. When you specify a variable record size, you include the length of the data
(number of characters) plus the four bytes of length information. Files containing variable
length records can not be accessed directly, because the location on the disk of a record or
block can not be determined from the relative block address.

2-18 Gc34-0471

Block Size

Data is written to or read from disk or diskette in blocks. The size of a block can be larger
or smaller than a sector, but the optimum block size is a multiple of the sector size. For
blocks containing variable format records, the operating system uses four bytes at the front
of each block to indicate the block’s length. When you specify a variable block size, you
include the length of the longest record plus the four bytes of block length information.

In general, you achieve efficiency in space use if the block size is a multiple of the sector
size.3

Spanned Records

When using fixed or variable format records, you maximize space use on disk or diskette by
spanning records across blocks. This technique wastes no space because entire blocks are
used to store data. You must group spanned records into blocks. An example of how data
is structured for storing is shown in Figure 2-3 on page 2-20 .

3 For disk, the size of a physical record (sector) is 256 bytes. For diskette, the size of a physical record
(sector) can be 128 bytes, 256 bytes, 512 bytes, or 1024 bytes.

Operating System Facilities 2-19

INPUT:

J

LOGICAL RECORDS
(fixed length
or variable

length)
Stored in
BLOCKS

(optimum size (records may be

equals multiple spanned across

of sector size) blocks)
DISK-
ETTE

DISK

Figure 2-3. Example of How Data is Structured for Storing

How Data is Organized Within a File

The operating system supports several file organizations. An example of how data is organ-
ized within a file is shown in Figure 2-4 on page 2-21 .

2-20 GcC34-0471

Parti-
tioned
4 file
= member
R
* B
A
R member
B
4 A
L. member
< member
CONSECUTIVE) RANDOM PARTITIONED
Records are Records are Records are
written and written and written and
read first read in any read by specifying
to last order (using a member name
relative block (members are either
addresses—RBAs) consecutively or
randomly organized)

Figure 2-4. Examples of Data Organization Within a File

Consecutive Organization

All devices permit files that are organized consecutively — where blocks are written one
after the other. The records are retrieved in the same order in which they were written
(that is, first to last).

Random Organization

Disk and system formatted diskette devices also permit files to be organized randomly —
where blocks are written in any order. For random files, physical addresses called relative
block addresses are assigned to each sector on the disk or diskette. Your program reads or
writes a block of data in any order in the file by specifying the relative block address of the
desired record.

Partitioned Organization

Disk and system formatted diskette devices also permit partitioned data sets. A file organ-
ized as a partitioned data set is a file that contains a set of related files called members. You

Operating System Facilities 2-21

Access Levels

-read or write data to a partitioned data set by specifying a member name for a file to be

accessed within the data set. Members within a partitioned data set can have either consec-
utive or random organization.

Indexed Organization

An indexed file is a special random file in which records are stored and retrieved by using a

‘portion of each record called a key. You assign the location and the length of the key. The

records are later retrieved by specifying the symbolic key. The Indexed Access Method
licensed program provides support for indexed files.

The operating system supports three levels of input and output called access levels. Each
level does different things for you.

Logical Record Level (GET/PUT)

Typically, you want to read and write records of data in your application program without
being concerned about how the data is stored on disk or diskette. At the logical record lev-
el, you read and write logical records. The operating system structures your logical records
into blocks of one or more records for output and deblocks the data into logical records on
input. It also creates processor storage buffers for input and output.

The logical record level is also called the GET/PUT level. GET and PUT are the system
service (macro) names for reading and writing logical records.

You specify the format of the logical records, the maximum size of each record, and the
maximum size of each block in the file. Because the size of a block is under your control,
you control the number of logical records that are grouped into each block. This control
lets you choose optimum block sizes that maximize I/O performance and that give you flex-
ibility in using disk space. The flexibility in choosing record formats, sizes, and blocking
schemes uses space on disk or diskette with varying degrees of efficiency.

Physical Level (READ/WRITE)

The next lower level, the physical level, is the programmer’s interface to most features of
IBM-supported I/O devices. At the physical level, you must be aware of the characteristics
of the I/O device.

The physical block level is also called the READ/WRITE level. READ and WRITE refer
to the system service (macro) names for reading and writing physical blocks.

2-22 GC34-0471

Basic Level (EXI0)

The lowest level, the basic level, gives you access to any hardware function of any I/O
device supported by the operating system. To use this level of I/O, you must write your
program in Series/1 assembler language.

The basic level is also called the EXIO level. EXIO is the system service (macro) name for
reading and writing data at the basic level.

Device Independence

The greatest degree of device independence is achieved:

« By not specifying device characteristics that are unique to a particular device, and
« By using the highest level of I/O (the logical record level)

In most cases, the PL/1, Pascal, Fortran, and Cobol compilers determine the proper access
level based on your description of the file in the data set definition.

How Data is Transferred (Access Methods)

Access methods (or access types) are techniques for moving data between processor storage
and I/0 devices. The access methods for reading or writing data are:

« Sequential

« Direct

o Indexed (Indexed Access Method only)

« Keyed direct (Multiple Terminal Manager only)

Sequential and direct access are part of the standard operating system support. Indexed
access requires that the Indexed Access Method program be installed. The Multiple Termi-
nal Manager facility supports keyed direct access.

Sequential Access

With sequential access, blocks are read or written in sequential order. On input, data is
accessed from the first block until the end-of-data indicator is detected. On output, blocks
of data are written from the first block until the ending boundary of the file is detected.

Direct Access

Records or blocks accessed directly can be read or written in any order within the physical
boundaries of the data set. Records or blocks must be in fixed format.

Operating System Facilities 2-23

Indexed Access

The Indexed Access Method accesses a record using a key that must match some part of the
actual record. Indexed access can be used if a file is being accessed by key or sequentially.

Keyed Direct Access

Keyed direct files have an alphameric key in positions 0 to n of each record. Keyed direct
is a fast means of accessing records by keys and is useful if you do not intend to access an
indexed file sequentially. Keyed direct files are special random files that are only supported
under the Multiple Terminal Manager.

Direct Access for Display Terminals

In addition to supporting direct access on disks and diskettes, the operating system provides
direct access mode for display terminals. Your program can use line character positions as
values to read or write portions of the display. The values specified for line and character
positions must be within the bounds of the display area allocated to the data set.

Ensuring the Integrity of Data

To ensure data integrity, the operating system allows volumes to be “duplexed.” A duplex
volume is a logical volume of which the system keeps two copies. Duplex volumes may
reside only on disk and the two copies must be kept on separate physical devices. In con-
trast, a simplex volume is a volume on disk that is not duplexed.

Duplexing volumes is an optional service that improves data availability and integrity. If the
devices that contain the two copies of a duplexed volume are on the same node, duplexing
provides backup data in case of disk failure. If the devices are on separate nodes, duplexing
provides backup data in case of disk or node failure. In general, you duplex volumes that
contain critical data. For example, volumes containing key system data sets (such as the
global data set definition table) should be duplexed. Duplexing is not available for system
residence volumes.

Duplexing is done at the logical volume level; not at the physical (device), data set, or
member level. Individual data sets or members of a partitioned data set are duplexed if they
are part of a volume that is duplexed.

In order to use duplexing, you must relate your devices to one another with the following
naming convention: the names of the two devices are the same except that one is prefixed
by a dollar sign. For example, the system expects a disk device named $DISKA to be
defined in order to back up duplex volumes on the disk named DISKA. This naming
scheme allows Version 6 to remain compatible with previous versions of the Realtime Pro-
gramming System.

When creating a volume you would like to duplex, you can create the volume with the
duplex option. You can also change a simplex volume to a duplex volume, or vice versa,
using the command language facility command named CONVERT. For more information
on the CONVERT command see the Command Language Facility User’s Guide.

2-24 GC34-0471

Recovering Down-Level Duplex Volumes

If a WRITE operation to a duplex volume fails to update both copies of the data, the system
records this event in the error log and directs all subsequent I/O activity on the affected
volume to the remaining good copy. The other copy is considered down-level.

The command language facility command named DVCHECK can be used to determine if
both copies of a duplex volume are identical.

You can restore the two copies to the same level using the command language facility com-
mand named RECOVER. RECOVER can run while other programs are using the current
level copy; CONVERT cannot. For more information on the RECOVER command see the
Command Language Facility User’s Guide.

Ensuring System Integrity and Availability

When multiple applications are executing (multiprogramming or multiprocessing) the failure
of a single program must not affect the successful execution of other programs. The follow-
ing operating system facilities ensure integrity among executing programs and ensure avail-
ability of the Series/1.

System Address Space

The operating system runs in a separate address space, which is protected from user address
spaces. This protection prevents any program from inadvertently overwriting supervisor
programs and data.

Control Blocks

The operating system data areas needed to execute and manage programs are called control
blocks. Control blocks are collected in a separate data area called a control module. When
a program (task set) is loaded, the control module for each program is made accessible to
the supervisor. The control modules are protected from inadvertent damage because this
storage is not accessible to other user programs. Protection of your control module allows
the operating system to recover system resources from abnormally terminated programs.
This protection ensures that other programs will continue executing or that other programs
can be loaded for execution.

System-Wide Function and Execution

In a multiprocessor system, you can execute a function in nodes throughout your system.
For example, duplex volumes at different nodes are useful if one disk fails. Similarly, if a
node fails, you can access the devices attached to that node from another node, using the
manual Two-Channel Switch.

Operating System Facilities 2-25

A set of common terminals can be bi-directionally switched, under program control,
between two nodes. This dynamic reconfiguration can recover these common terminals
from a failing node, and return them when appropriate. This Programmable Two-Channel
Switch can also be manually operated.

The Two-Channel Switch and the Programmable Two-Channel Switch are mutually exclu-
sive; that is, they cannot both be installed on the same pair of nodes.

Name Constants

System control blocks are indirectly addressed by application programs using
system-generated names rather than storage addresses. A system-generated name is a name
constant or NCON. This technique prevents your program from damaging the supervisor if
an invalid control block address is specified.

Releasing Resources

The operating system provides a set of routines that are invoked when any secondary or
primary task terminates. These routines are designed to release resources that are allocated
to the task or task set so that the resources can be used by subsequent programs. For
example, when a task ends, any files that were opened by that task are closed.

Task Error and Termination Exits

The operating system provides a task error exit and a task termination exit facility that
allows programs to implement special termination clean-up processing. PL/I, Cobol,
Fortran, and Pascal support these clean up facilities. Thus, you can ensure that your appli-
cation program terminates in an orderly fashion even when it fails.

Address Space for User Partitions

User partition addressability is restricted to a single address space (except in the special
case of a shared task set). Thus, applications that execute in separate address spaces are
protected from one another.

Problem/Supervisor State Execution

User programs are executed in problem state. Executing in problem state prevents a pro-
gram from executing privileged instructions that could destroy other user programs or data
in the system partition.

2-26 GC34-0471

In contrast, programs that execute in supervisor state can execute any privileged or
non-privileged instruction. Supervisor-state programs execute only within the supervisor
partition.

System-Handled 1/0

The operating system performs all input/output operations. The boundaries of files and the
buffer areas used in all transmissions are examined to ensure that I/O operations are per-
formed in a fashion that ensures correctness and avoids inadvertent access to or destruction
of data and storage. Full I/O error recovery facilities are supported to diagnose and retry
failing I/0 operations. If I/O operations fail, the operating system performs I/O error log-
ging to record the relevant data about the failure.

Subscript Range Checking

Programs developed using PL/I, Fortran, and Cobol can be compiled to contain subscript
range checking. This facility prevents you from inadvertently destroying your executable
program area or data area.

Program Development

Standard System

An easy-to-use program development environment is important to ensure successful defi-
nition, creation, and support of production environments. The standard system that is
shipped from IBM is pre-built at IBM to provide you with an operating environment that is
easy to install and begin the definition and creation of your applications. The standard sys-
tem with the Program Preparation Subsystem is optimized for systems dedicated to program
development.

High-Level Languages

High-level languages — PL/I , Fortran, Pascal, and Cobol — are available. Extensions for
each language give you access to many operating system functions. A macro assembler lan-
guage with structured programming macros and a library of macros that interface to most
system functions is also available.

Program Preparation Subsystem

The Program Preparation Subsystem provides most of the necessary tools for developing,
testing, and maintaining applicati8ns. Two of these tools are the text editor, a full-screen

Operating System Facilities 2-27

editor with commands that invoke a variety of editing functions for entering and maintain-
ing source language files or data files; and the application builder, a facility for preparing
programs for execution under the Realtime Programming System. The function of the
application builder is similar to that of linkage editors of other systems. Two command lan-
guages are available — an interactive command language supported by the command lan-

guage facility and a batch processing job control language supported by the job stream
processor.

Command Language Facility

The command language facility provides commands that access most system functions, cre-
ate and maintain files, and compile and prepare programs written in a high-level language or
in assembler language.

Utility Packages

The operating system and many licensed programs provide utility packages that allow inter-
active use of their unique set of functions at a terminal. In addition to the interactive
stand-alone, system, and tape utility packages, the following licensed programs provide
interactive utility functions:

o Indexed Access Method
e Multiple Terminal Manager
e Query

Program development tools and utility functions are discussed in greater detail in Chapter
5, “Development Tools and Application Aids.”

Sharing Data, Programs, and Devices

An application is usually divided into a set of cooperating but separate tasks or programs
(task sets). To support this environment, the operating system provides a set of functions
that allow controlled sharing or exclusive use of programs, data, and devices.

These resources can be shared locally within a task set or between a shared task set and the
task set(s) that are using the shared task set. Resources can also be shared globally in both
uniprocessor or multiprocessor systems and synchronized by using global resources.

You control the use of program modules in a task set and the sharing of program modules
within that task set by specifying that a program module is:

« Reentrant
e Serially reusable
+ Nonreusable

You specify the above attributes for the primary program of the primary task in a task set.

The PL/I, Pascal, and Cobol compilers and the macro assembler allow you to produce
reentrant programs. The Fortran compiler does not produce reentrant programs.

2-28 GC34-0471

Reentrant Program Modules

A program module is reentrant if it can have concurrent executions active without requiring
each usage to terminate its execution before another can start. Reentrant programs have
the following attributes:

« Instructions in the program are not modified during execution
« Separate, variable, data areas are provided for each invocation of the program

The program module and task management components of the operating system support
reentrant programs. If several requests are made to execute a subroutine as a task from
within a program (task set), the operating system recognizes this condition and permits exe-
cution. An example of this is several RUN statements for the same procedure in a PL/I
program.

Serially Reusable Program Modules

A program module that is executing as a serially reusable program has only one active invo-
cation of the program executing at a time. A serially reusable program can be shared, but
the currently active execution of the program must complete before another user starts the
program. A serially reusable program can modify its data, but the program must restore its
initial state before another user uses it.

Nonreusable Program Modules

A nonreusable program module is a program that modifies its instructions or data areas dur-
ing execution and does not restore its initial state before completing. Nonreusable pro-
grams cannot be executed more than one time. If the program must be executed again, you
must use a fresh copy. Nonreusable programs are appropriate only when you know that the
program will execute infrequently and is not shared by other programs. A nonreusable pro-
gram is always loaded from disk or diskette each time that it executes.

Sharing of Resources Across Partitions and Nodes

Often, resources must be shared among several programs (task sets) executing in different
partitions or among cooperating tasks executing in the same partition. You can use shared
task sets and your ability to link task sets to accomplish this as well as global queues and
global resources to share data among several task sets. Distributed devices, global queues,
and global resources are called system-wide resources. System-wide resources are shared
by an entire uniprocessor or multiprocessor system.

Shared Task Sets

You can share programs and data across partitions in a single node by defining one or more
special task sets called shared task sets. A shared task set is a specially built program that

Operating System Facilities 2-29

you designate as containing data and subprograms that are to be accessible to active pro-
grams (task sets) in other partitions in the same node. When a program of this kind is built,
a copy of its external symbols, the task set reference table (TSRT), is saved. A shared task
set executes in a static partition.

Once you create a shared task set, you can write application programs that refer to data and
subprograms that reside in the shared task set. You prepare your program for execution
and designate that any unresolved external symbols are to be resolved to the designated
shared task set. This symbol resolution process is performed by the application builder. In
addition to resolving your program’s external references to the shared task set, the applica-
tion builder also marks your programs as needing the specified shared task set for successful
execution. This process tells the operating system to make sure that the needed shared task
set is active when a task set requiring a shared task set is loaded for execution.

Subprograms that you place in a shared task set should be reentrant if you wish to support
full sharing. Examples of full sharing are the PL/I and Cobol transient subroutine libraries.
These transient libraries execute as shared task sets and are used by all PL/I and Cobol
applications.

Subprograms that are written in PL /I, Pascal, Fortran, Cobol, or assembler language can be
placed in a shared task set. Any program that references the shared task set can use the
subprograms. Your program can use resources (such as an event definition) of the shared
task set.

You can also share data across several programs that execute in the same node by including
it in a shared task set. The data could reside in a global storage area or a system queue. If
the data is read-only, then you need provide no control over access to it. If the data is not
read-only, you must serialize access to the data. Serialization is done using the
REQUEST/RELEASE functions of the operating system. PL/I provides access to these
system functions using the LOCK/UNLOCK statements. For Fortran, these functions are
provided in the Fortran Realtime Subroutine Library.

Details on using a shared task in PL /1, Pascal, Fortran, or Cobol applications are given in
the user’s guide for each language.

Linking Task Sets

An application consisting of several related task sets may require that two task sets execute
one after another without any intervening tasks sets executing. To accomplish this, the sys-
tem provides the facility for one task set to invoke (be linked to) another task set. The
operating system terminates the execution of the linking task set. The next task set that is
executed is the linked task set. The two task sets communicate using a global area within
the partition.

Global Areas

Global areas are allocated in a special area of your partition. Global areas are accessible
from any task within the partition.

A global area is not overlaid during a special circumstance when a task set is linked to
another task set to be executed next in the same partition. The global area of the partition
is not changed when the linked task set is loaded for execution. Instead, references in the
linked task set to the global area are resolved to the data items contained in the global area

2-30 Gc34-04a71

definition in the linked task set. The actual data accessed by the references in the linked
task set is the data placed in the global area by the previous task set (the linking task set).

PL/I programmers use global areas by specifying uninitialized STATIC EXTERNAL data
and by specifying the TRANSFER TO statement. Fortran programmers use GLOBAL
data to use global areas and link to another task set using the INVOKE function. Assem-
bler language programmers use the GLOBL data type and the LINKTS system service to
define and use global areas.

Local Queues

You use local queues to share data within a task set or among task sets (if the queue is
defined by a shared task set) éxecuting in the same node. A local queue can only be added
to by the task set that defined it or by task sets that share the task set that defined it. A
local queue may be private or public depending on whether or not tasks other than the
defining task (but within the defining task set) can take elements from it.

Global Queues

You can share data among several programs in different partitions and at different nodes
(in a multiprocessor system) using global queues. You can take advantage of this form of
sharing without using a shared task set. The global queue is defined by the program that
will take data elements from the queue. Only this program can take elements from the
global queue. However, any program can put elements on the queue. Global queues can
reside in processor storage or on disk. Additional information is provided in the section
entitled “Inter-Task Communication” on page 2-35.

Controlled Sharing of Files and Devices

Controlled Sharing of Files

Data within files stored on a disk or system formatted diskette can be accessed by any pro-
gram requesting it unless the file was opened with exclusive use requested. When exclusive
use is requested, the operating system allows only one application to access the file and
prohibits access by all others.

Controlled Sharing of Interactive Terminals

The operating system provides a unique function: controlled sharing of interactive terminals
by multiple applications. Operating system I/O routines for display terminals (the 4978,
4979, and 4980 terminals) enable you to associate a program function key with an applica-
tion. Furthermore, you can designate part of a display screen or the entire display screen as
a file from which input is read or to which output is written. The file appears as a window
on the screen for application I/O. A window is one or more adjacent lines that use part of a
display screen or the entire screen.

Operating System Facilities 2-31

An end user uses multiple applications at a display screen by pressing the program function
key associated with the appropriate application and then entering input lines within the
window defined for the application. You ensure that windows do not overlap by defining
window files with unique line numbers. You prevent multiple applications from sharing a
display terminal by opening the device for exclusive use.

Controlled Use of Indexed Files

The Indexed Access Method program controls access to records in indexed files via
system-wide record locking. Record locking means that all requests to update a record in

an indexed file are locked out until the application in control of the record completes its
update.

Writing Realtime Applications

Process Control

Developing a realtime application is challenging because its success usually depends upon
providing fast response and designing strategies that must handle a wide variety of situ-
ations in short periods of time. One of the most demanding kinds of realtime programs is
the process control application. The term process control usually means that the program is
tied to a process or procedure that is executing in production mode and whose control must

be performed in realtime. That is, they are cyclical in that the time periods used are “wall
clock” time, not time in execution.

As an example, a Series/ 1 system might be used to control the flow of parts in a manufac-
turing process. Sensors on a conveyor belt might enable the system to recognize and count
parts and to direct them to the manufacturing area in which they are needed. In such an
application, the system must respond to the presence of a part and sort it before it proceeds
beyond a certain point on the conveyor belt. The whole process is then geared to the speed
of the conveyor belt and how long it takes to recognize a part and direct it to its needed
area. Usually, a process control application involves reading and writing external sensors;
responding to process interruptions from sensors; handling the expiration and initiation of
service cycles, based on external definitions or time of day; and in coordinating and control-
ling a number of separate activities.

The following sections discuss system facilities that help you in producing a realtime appli-
cation. Many of these are general services that are applicable to other kinds of applications.

Synchronizing Tasks

Often, the execution of a given task cannot proceed until other tasks have performed cer-
tain operations. In these situations, the task that cannot proceed needs to have its exe-
cution synchronized with other cooperating tasks.

Task synchronization can be achieved using:

o Events
o Serially reusable resources

2-32 GC34-0471

« Timer services

Events

Task synchronization is usually achieved using events. A task uses the operating system
WAIT function to suspend itself until a given event occurs. Using the operating system
POST function, another task signals the occurrence of the event to the waiting task. A task
may wait for one or more events to occur before proceeding with execution. Waiting for a
list or set of events is common in most realtime applications.

The operating system recognizes several different kinds of events:

« Events associated with the completion of input or output operations, including response
to operator input

« Events associated with the occurrence of process interruptions

« User-defined events that you associate with activities you define

Events in the first two categories are set complete (posted) by the operating system when
the associated action completes. User-defined events are set complete by explicit user
action using the operating system POST function. Tasks that synchronize with user-defined
events must execute on the same node of a multiprocessor system.

Serially Reusable Resources

You can also accomplish task synchronization using the operating system serially reusable
resources (via the REQUEST/RELEASE facilities). Serially reusable resources are used
when you deal with situations where several tasks need to use a piece of data, a file, or a
section of code that can only be used by a single task at a time. In this environment, each
task agrees to associate a specific resource name with access to the facility in question.
Each task then requests control of the resource before it attempts to access it. The operat-
ing system only grants the resource to a single task at a time. Other tasks requesting the
resource can choose to be placed in the wait state until the resource becomes available or
can request notification if the resource is busy. In the latter case, the requesting task does
other work and requests the resource again later. It is important to emphasize that this
form of synchronization is only enforced by user programming conventions.

The system provides both node-wide and system-wide serially reusable resources.
Node-wide serially reusable resources are used when serialization on a per node basis is suf-
ficient. System-wide or global serially reusable resources are used when the serialization
must be done for the entire multiprocessor system.

Timer Services

Tasks can also be synchronized by having a task delay its execution for a specified time
interval or until a particular time of day occurs. This process is done using timer services.

Operating System Facilities 2-33

Scheduling Tasks and Task Sets for Execution

You schedule tasks and task sets to let the operating system know when you want to exe-
cute them. In a multiprocessor system, tasks and task sets may be scheduled in any node.
The operating system provides two types of scheduling: immediate or delayed.

Immediate Scheduling

For immediate scheduling, the operating system is instructed to execute the task or task set
as soon as it is possible to do so. The immediate scheduling of tasks is done using the sys-
tem function STARTASK.

Delayed Scheduling

For delayed scheduling, the execution of the task sets is deferred until a particular event
occurs. The types of events supported for delayed scheduling are:

« Schedule a task set on the occurrence of a process interrupt

« Schedule a task set to execute after a time interval

e Schedule a task set to execute at a particular time of day

« After a certain time of day, execute a task set at a user-specified interval

The operating system directly supports delayed scheduling of task sets. The system sched-
uler function uses a special data area known as the system scheduler table to contain entries
for the task sets that are to be scheduled. Delayed task sets can also be unscheduled using a
system function to remove entries from the system scheduler table.

Delayed scheduling can be simulated by starting the task and then causing the task to sus-
pend itself until the appropriate event occurs. Series/1 PL/I supports this approach. PL/I
also supports the scheduling of tasks on the occurrence of process interruptions, at a partic-
ular time of day, or after a time interval has expired.

Stopping the Execution of Tasks and Task Sets

The system provides services to stop the execution of tasks and task sets. These services
are important because stopping a task or task set may be the only way to recover its
resources for other programs to use. When a task or task set is stopped, it has the opportu-
nity to enter a designated error exit to perform any necessary special actions. The termi-
nation processing of a task or task set in the operating system is designed so that resources
are returned to the operating system. In particular, termination has the following effects:

« Resources held by the task or task set are released

« Files that are opened are closed

o Time intervals or events that are defined in the task are cancelled
« Control blocks used to monitor the task’s execution are freed

« Partition storage for a task set using a dynamic partition is freed

2-34 GcC34-0471

Inter-Task Communication

An important point to consider when implementing a multitasking or multiprocessing appli-
cation is how data can be passed between asynchronously executing tasks. Either shared
files or queues, or both, allow data to be passed (exchanged) between tasks.

Shared Files

In using shared files, the file to be shared is opened in one task and is accessed by several

other tasks. Simultaneous access can be used successfully if the following conventions are
followed:

o The file should be accessed directily using either relative record numbers or the Indexed
Access Method

« If you are using the Indexed Access Method, it ensures that updated records are stored
in the file so that only the current copy of a record is maintained. If you are not using
the Indexed Access Method and you are writing your application in assembler language,
use the READ/WRITE level of access. You cannot use the GET/PUT level of access.
In PL/I, use SHARED files.

« If several tasks are to update records in your application, use the Indexed Access Meth-
od, if possible, because it provides automatic record locking to protect you from simul-
taneous updates. An alternative is to use operating system services (WAIT/POST or
REQUEST/RELEASE) to provide your own record level locking.

Queues

A second way to communicate data between tasks is to use the operating system queuing
services. These services allow several tasks to send and receive data using a symbolic name.
The data you send must not exceed 4094 characters. The area where the queue resides can
be totally within processor storage, totally on disk, or a combination of storage and disk.

You can define a queue as local or global. A local queue can only be accessed by tasks in
the same partition or by tasks in other partitions of the same node if the queue is allocated
by a shared task set. If sharing among task sets is required, you should use the global queue

function. A global queue can be accessed by any task set that knows the symbolic queue
name.

You can further define a local queue to be private (where only the defining task can take
elements from the queue) or public (where any task in the defining task set can take ele-
ments from the queue).

A useful feature of operating system queuing service is that system queue functions allow a
receiving task to be suspended until a message arrives at a-designated queue. This facility
allows you to easily design and implement an application so that the application can be acti-
vated when work arrives for it to process.

Disk queues also have a restart attribute that allows the operating system to restart them if
necessary. The operating system restarts the processing of the queue with no elements (a
cold restart) or with all elements from previous processing intact (a warm restart).

Operating System Facilities 2-35

Realtime Applications Using Sensor 1/0

Many realtime applications must exchange data with non-computer sources. An example of
such a requirement might be the reading of an electronic temperature gauge by a program.

The operating system allows you to read and write both digital and analog devices. The
programming interface to sensor I/0 devices allows you to refer to the device and the
points with symbolic names. PL/I supports sensor I/O with language extensions to record

1/0. Fortran supports sensor I/0 via callable subroutines in the Realtime Subroutine
Library.

Finding and Repairing Program Defects

Before an application program is put into productive use, its defects must be found and
repaired. The process of finding program errors, repairing them, and retesting is known as
debugging. This section outlines those facilities that the operating system provides and the
supporting programs that aid you in the debugging process.

Finding Problems Before Execution

The most productive type of debugging is often that which is accomplished before a trial
program execution. This type of debugging is facilitated by the extensive diagnostic facili-
ties that are provided by the language processors which are offered under the operating sys-
tem. Each language processor contains extensive source diagnostic facilities that are aimed
at eliminating syntax and semantic errors. Use of these facilities to eliminate compile time
errors ensures that you can move to the trial execution step in a productive fashion.

Finding Problems During Execution

Various facilities help you find incomplete logic or faulty design in your application coding.
First, there are the facilities that are available to the various high-level languages. Second,
there are facilities that are available to all users. These facilities are of particular benefit to
those programmers who are writing assembler language programs.

High-level Language Debugging Aids

PL/I, Fortran, Pascal, and Cobol provide execution time diagnostic aids that help you pin-

point a source program failure and correct it. Of particular importance are the following
facilities:

o Object time error exits

« Execution tracing

o Subscript range checking
« Execution time messages

2-36 GC34-0471

Object Time Error Exits

The Cobol and Fortran languages allow you to write object time error exits. These error
exits are defined by error handling clauses or statements for many conditions such as I/0
error conditions. You should employ these facilities so that you can easily diagnose
exceptional conditions in your program.

The PL/I language supports the concept of error exits in a much more general way. You
write ON units in your application program to handle the vast majority of errors you could
encounter. The ON unit facility allows you to provide specific messages or program logic to
recover from error situations.

Cxecutioii 17acing

4

The language implementations on a Series/ 1 provide different forms of execution path flow
tracing. This type of facility is a valuable way of determining the execution path of an
application. Flow tracing is implemented by Cobol, Fortran, and the S1/EXEC interpreter.
PL/1 provides a calling execution trace via the SNAP option of the ON statement.

Subscript Range Checking

Often in PL/I or Fortran applications, execution time loops are set up where subscript
values of arrays are computed and used to store values. If these subscript values are out of
range (exceed the established bounds of the array), using them can destroy other user data
or code in the application. You prevent this occurrence by using the Fortran debug
statements or by enabling the PL/1 subscript range condition. If either of these actions is
taken, the compiler generates additional code to validate subscript values before any
damaging usage occurs.

Execution Time Messages

PL/1, Cobol, and Fortran are designed to provide you with execution-time error messages
when your application encounters an error condition and your program does not contain
error-handling source coding. These messages help you spot problems without resorting to
machine level problem determination. The PL/I compiler is especially helpful in this area.
PL/I’s execution time diagnostic support permits you to pinpoint the failing source
statement.

Machine Level Problem Determination

If your application is written in Series/1 assembler language, or if you are familiar with
Series/1 assembler language and you are using either PL/I or Cobol, a variety of problem
determination aids are available to you. These aids include:

« Generated machine code listings
e Dumps

Operating System Facilities 2-37

Online debugging

Traces

Online terminal test

Online test

System error log

Displays

Time stamping of messages

Full-screen editor (FSEDIT) to examine and change data in hexadecimal format

Complete information on problem determination is in the Problem Determination manual.

Generated Machine Code Listings

Both the PL/I and Cobol compilers produce annotated assembler language listings of the
generated code for your program. You can employ these listings in conjunction with other
facilities mentioned in the section to perform problem determination, when other source
level debugging aids have proved ineffective. :

Dumps

The principal value of a dump is that it allows you to inspect both the data and instruction
areas of your partition and to determine the state of various program variables. A dump is
useful in doing detailed analysis away from the machine.

The operating system provides three facilities for dumping the contents of storage — the
DUMP and SNAP services and the processor storage-to-diskette dump utility. The DUMP
and SNAP services dump (display) the contents of your partition. The processor
storage-to-diskette dump utility is a stand-alone utility that dumps the contents of processor
storage to diskette.

In most cases, the dump you get using the DUMP service is produced on abnormal
termination of a task. The dump is written to a member of a file named ABDUMP. The
ABDUMP member contains a complete dump of a partition as well as system control blocks
that your application was using.

Using the SNAP service, you can dump selected portions of a partition without terminating
your program. SNAP writes its output directly to a printer.

The processor storage-to-diskette dump utility enables an operator to dump the contents of
processor storage on diskette when the diskette containing the utility is loaded. Loading the
dump program destroys the contents of storage addresses 0 through 255, so record the
contents of these bytes manually before using this utility.

In a communications environment, you can transmit a dump from a remote Series/1 to
another Series/1.

Online Debugging

The operating system offers an interactive multiuser debug package that assists you in
locating errors in an assembler language program. DEBUG aids in testing multitasked

2-38 GC34-0471

programs in a multiprogramming and multiuser environment. By operating a program under
control of DEBUG, you can:

« Stop the program each time execution reaches any of the instruction addresses which
you specify. These addresses are known as breakpoints. You can have multiple active
breakpoints in a program.

« Trace the flow of execution of instructions within the program by specifying that
DEBUG enter into the single-step mode. Then, each time the program executes an
instruction, the terminal may optionally display the contents of the instruction address
register (IAR), the address key register (AKR), the level status register (LSR), general
registers, and the op-code before the execution of each instruction.

« Continually monitor the contents of a specific storage location, and enter DEBUG
when that location is modified

« Restart program execution at the breakpoint, or restart program execution at other than
the next instruction

« Each time program execution reaches one of your breakpoints, you can:

— Display registers and storage location contents

— Print control blocks

— Modify the contents of storage locations and registers
— Display or modify the contents of storage media

— Print storage location contents

By using these functions, you can determine the results of computations performed by the
program and the sequence of instructions executed within the program. You can also
modify data or instructions of the program during execution.

The debug package can also be used with programs produced with high-level languages.
However, effective use requires knowledge of Series/1 assembler language and the
implementation techniques of the language processors.

Traces

The operating system supports several types of traces:

e Supervisor call (SVC) trace
« Communications trace
e I/0 trace

The supervisor call (SVC) trace is a trace of all SVC instructions issued in a particular
partition. An SVC trace is useful because the system services that your application uses are
invoked using the SVC instruction. You use the SVC trace instruction to determine the

SVCs that your program executed successfully as well as the last successfully executed
SVC.

The communications trace is a trace of all asynchronous (start/stop) and binary
synchronous I/0 over a set of communications lines. This trace is extremely useful for
tracing communications line problems in applications using data communications.

The I/0 trace is a trace of I/0 requests to the devices that the operating system controls.
This data is useful in locating I/O errors that are causing an application to fail.

Operating System Facilities 2-39

Online Terminal Test

You can use online terminal testing to verify proper operation of terminals and communi-
cations lines. Online terminal testing aids in diagnosing line or terminal trouble.

Online Test

The command language facility command, OLT, enables you to perform online tests of the
devices and features available on your system. Use this command to determine if a device
is operational; not to diagnose specific failures. The OLT command starts the device or
feature by exercising a basic set of functions.

System Error Log

The system error log data set is used to record error conditions that the operating system
detects. The conditions recorded include IPL, node failures, node start ups, changes in the
status of duplex volumes, errors in data transfer between nodes, program checks, machine
checks, and 1/0 errors.

Using the system utilities, you can produce a formatted report of the information in the
error log data set. You can optionally specify what types of errors are to be reported from
the log data. The log data aids in problem determination. It will help you to analyze why a
particular program or piece of hardware is failing.

The IBM customer service representative who services your Series/1 also uses the error log
information to assist in locating and repairing a failing hardware component.

Displays

The operating system provides an operator command called DISP that allows a system
operator to request that the system display information about system activity and status.
You use this command to determine:

« What partitions are active and what programs they contain

« What write-to-console instructions have outstanding replies

« What storage is available

« What programs (task sets) are queued for execution

o What programs (task sets) are in the system scheduler table

« What devices are available

e What is the time of day and date

« What are the spooled jobs and spool writers

« What programs have disk locations known to the system scheduler
o What are the internode communication facility trace table entries
« What are the internode communication facility statistics

« What is a node’s status

o What are the disk seek statistics

« What is the status of subsystems or terminals known to the terminal controller

2-40 GcC34-0471

Time Stamping of Messages

All system messages contain the date and the time of day.

Full-Screen Editor (FSEDIT)

FSEDIT is a full-screen editor for altering data in hexadecimal format. Blocks of data (up
to 256 bytes) on disk or diskette are examined and changed, according to your instructions.
You can save a block of data, cancel editing a block, print either a block or just the changes
you have made, and find and/or replace a string (character or hexadecimal).

Customizing Your Operating System

You may want to customize the operating system to support only functions you require
while using a minimum amount of processor storage. Customization of the operating sys-
tem is usually necessary if a system that is different from the standard system is needed. A
customized system can be generated for a uniprocessor system or for one or more nodes of
a multiprocessor system configuration. You customize a system by:

« Executing the configurator program

« Changing the IPL options file or User Input Command (UIC) file used at IPL time

« Dynamically generating devices

« Executing the SYSGEN program provided with the Program Preparation Subsystem

« Using the INSTALL option of the IPLMAINT utility to change the size of the dynamic

transient pool area, the system data space and instruction space, or the size of the con-
trol module mapping area

The Configurator

The configurator is the program you use to set up or change the make up of a system. You
start the program using a command language facility command. (The command language
facility is an interactive part of the operating system consisting of menus and commands for
programming and managing files.) Once you enter the command, menus appear on which
you type the needed information to configure your system.

The configurator enables you to:

» Display the configuration of nodes

« Give each node a name (or accept the default name), and designate whether or not the
node should be brought online automatically when you perform an IPL of the system
« For each node:
— Designate the task set to be used as the system task set at the node
— Allocate storage to the system and to partitions
— Display the devices at the node, give them names (or accept the default names), and
examine and set device-dependent options for each device
— Designate whether or not the Indexed Access Method is to run at that node, and if
so, specify parameters for it

Operating System Facilities 2-41

— Assign devices to the terminal controller
— Establish characteristics for Systems Network Architecture (SNA) support at the
node
— Display and modify other system parameters
o Copy a custom-built system to the node

IPL Options File and User Input Command (UIC) File

The IPL options file and the User Input Command (UIC) files are special files that contain
operator commands that are executed when the operating system is loaded and started.
You can change characteristics of the operating system by editing these files, entering the
appropriate operator commands, and then restarting the system. This approach is an easy
way of customizing the standard system to meet your needs.

Dynamic Device Generation

Once a system is installed, you can dynamically change the number of most devices that
were generated in the system without regenerating and reinstalling the system. This enables
you to start another device of any type that is already defined in the operating system that
you wish to modify. Once the support exists for a type of device, any other device of the
same type can be started.

SYSGEN Program

The SYSGEN program is supplied with the Program Preparation Subsystem. SYSGEN is a
question and answer program that builds a specification file that is used to customize your
operating system. The specification file contains all information that is necessary to gener-
ate a complete system.

The specification file that was used to generate the standard system is shipped with the
SYSGEN program. Because SYSGEN provides an update mode that allows you to change
the IBM-supplied specification file, you may only need to update a few of the specifications
to meet your particular system requirements.

Complete information on customizing the operating system is located in the System
Customization Guide.

System Operation

The operating system provides facilities that allow an operator to monitor the status of the
system, to ensure productive use of the Series/1 processors, and to install IBM-supplied
system patches. Operator commands can be issued from the operator console, a remote
terminal, or be included in your program. Command language facility commands also allow
system users to use operating system facilities that ensure productive use of the processor
(such as printer output spooling).

2-42 GC34-0471

Operator Facilities

An operator, through the use of a full set of operator commands, can control the execution
of programs, query the status of all programs in the system including the control program,
allocate resources and control the use of the resources, use system debugging and problem
determination facilities, and control system routines that write spooled output to a printer.

Typically, an operator loads the operating system initially by pressing the LOAD button on
the hardware control panel.4 On a multiprocessor system, the operator needs to press
LOAD only on the control panel for the home node. The system will start the remaining
nodes. The operator then enters commands to set the time of day and date and to define
the command language facility as a subsystem to the terminal controller.

Complete information on controlling system operation is located in the Operation Guide and
Reference manual.

User Control Facilities

Operating system spooling functions enable you to write printer output at high speed to
disk. Command language facility commands support printer output spooling. The spooled
output support enables you to request multiple copies of printed output or to request that
output be printed on different forms.

The command language facility also allows you to queue task sets for execution or to dis-
play the status of submitted jobs.

Information on controlling system operation using command language facility commands is
located in the Command Language Facility User’s Guide.

Installing IBM-Supplied Patches

The patch application tool is an interactive, menu-driven application that allows you to
install IBM-supplied patches to the operating system or to other licensed programs. It also
provides a module replacement capability. Using the patch application tool you can:

« Apply corrections from an IBM-supplied diskette

« Apply IBM-supplied patches entered at a display station or teletypewriter device
« Remove patches that were previously applied by the patch application tool

¢ Print the amount of system patch area used and available

e Print patch log data sets

« Print the patch data for a specific authorized program analysis report (APAR)

e View and modify the SYSVOL table

« Prepare the system task set for IPL

« Delete the old system task set

Information on using the patch application tool is located in the Problem Determination
manual.

4 The IPL command can be used to perform an IPL of a Realtime Programming System from an execut-

ing Realtime Programming System. Binary synchronous communications enable you to perform a
remote IPL of a Realtime Programming System.

Operating System Facilities 2-43

Reporting Problems with IBM Licensed Programs

If you have a problem with a Series/1 program, see the Software Service Guide for
instructions on how to report the problem and obtain resolution.

2-44 GC34-0471

n -~ P q - - _— LR H .
Chapter 3. Data Communications and

Network Support

Modern computer systems often consist of several processors of varying types that are
interconnected using communications lines. Such systems are said to be decentralized
because all the system’s data processing functions are not handled by a single, central com-
puter but are distributed among several processors. Significant physical distances often
separate each interconnected processor. Also, the devices (terminals, printers, etc.) that
communicate directly with each processor may be distant from the processor. This decen-
tralization of computing resources in a system allows data processing functions to be
distributed among multiple processors while the results of the processing are known
throughout the system.

Contents of this chapter:

Communications applications 3-2
Decentralized processing 3-2 / Protocol conversion 3-3
Message concentration 3-3 / Data communications in a network 3-3
Front-end processor 3-4

Communications support 3-4
Communications connections 3-4 / Communications protocols 3-5

Systems Network Architecture Support 3-6
Systems Network Architecture Extended Support 3-6

Additional communications support 3-7
4987 Programmable Communications Subsystem 3-7
Advanced Remote Job Entry 3-9
SNA Remote Management Utility Programming RPQ 3-11
Series/1 to System/370 Channel Attach Program 3-12
3270 device emulation using the Multiple Terminal Manager 3-13
X.25/HDLC Communications Support 3-14 / Remote Manager 3-15
Communications Manager for the Series/1 3-16

Data Communications and Network Support 3-1

Communications Applications

Applications that use communications can make use of the multitasking facilities of the
operating system to separate the communications task from the processing tasks of the
application. This separation of processing and communications allows you to choose the
proper programming language (high level or assembler) for specific processing tasks. The
processing task reads and writes messages via subroutine calls to the communications task
and inter-task communications facilities.

The communications task is usually an assembler language program containing assembler

language macros that define and control communications lines and devices. The macros
allow you to:

« Define the characteristics of remote devices and associated communications lines
o Transmit and receive messages
« Break connections

« Establish a list of remote device identifiers for communications with dial-up (switched)
lines

An application communicating with a remote device sets up the message sequence using an
acceptable communications protocol and then passes the message to the hardware interface
using cycle steal I/O commands.

A communications system can be dedicated exclusively to one application, or the
communications system can be used as a system I/O device. In the latter case, you use

remote devices or processors as you would any other I/O device connected directly to the
Series/ 1 processor.

The Realtime Programming System data communications components and support for
Systems Network Architecture (SNA) environments allow a variety of communications
applications including:

o Decentralized processing

« Protocol conversion

« Message concentration

« Data communications in a network
« Front-end processor

Decentralized Processing

Data processing environments for a business organization are typically large in number and
are often remote from one another and from the center of the business enterprise. Distrib-
uted systems evolved to match this decentralized data processing environment.

The Realtime Programming System facilities for remote communications support decentral-
ized processing environments that:

« Require batch store and forward processing. For example, a Series/1 could be used to
collect transactions entered at an interactive terminal, store the data on disk, and then
connect regularly to a host system to transmit the data to a central data base. You can
develop batch store and forward applications or use facilities provided with the
Communications Manager for the Series/1.

« Perform remote transaction processing that allows inquiry and update of a central data
base on a host system. A data base, of which the host system keeps an image, might
also be used at the remote site. Remote transaction processing uses a Series/ 1
processor connected to display terminals and optional line or matrix printer to emulate

3-2 GC34-0471

an IBM 3270 Information Display System. The Multiple Terminal Manager program
supportssremote transaction processing through the Multiple Terminal Manager 3270
device emulation. The Communications Manager for the Series/1 also supports remote
transaction processing.

« Permit you to write programmable logical units to communicate messages in a Systems
Network Architecture (SNA) network. Such a network might communicate with the
Information Management System (IMS) or Customer Information Control System
(CICS) executing on a host computer. If you do not develop your own programmable
logical units, the Communications Manager for the Series/1 supports this kind of
message exchange for you.

Protocol Conversion

Realtime Programming System facilities and supporting licensed programs enable a Series/ 1
processor to communicate with a variety of non-Series/1 devices that use differing
protocols. The 4987 Programmable Communications Subsystem Preparation Facility and
Extended Execution Support enable you to develop applications that communicate with the
variety of devices that often exist in a communications environment. The Communications
Manager for the Series/1 also provides protocol conversion support.

Message Concentration

Message concentration applications collect transactions entered at interactive terminals and
prepare messages in the proper message format for transmission to an application executing
on a host system. The Communications Manager for the Series/1 supports message
concentration and takes care of routing messages to their final destination under operator
control.

Data Communications in a Network

The Realtime Programming System enables a Series/1 processor to communicate with other
processors and devices in a Systems Network Architecture (SNA) network or connected to
an X.25 packet switching network.

The X.25/HDLC Communications Support enables a Series/1 to connect through a packet
switching network to other Series/1 processors, or to act as a node within an X.25 network.

The operating system support and extended support for SNA networks enables you to write
your own applications that communicate with host systems. A communications
environment using the Systems Network Architecture permits the transfer of data based on
the demand transactions entered at an interactive terminal.

The Synchronous Communications Single Line Control / High Speed Adapter enables a
Series/1 to connect to an X.21 leased network or an X.21 circuit switched public data
network. Data transmission uses synchronous data link control communications (SDLC) or
binary synchronous communications (BSC) in half-duplex mode.

Data Communications and Network Support 3-3

Front-End Processor

The need to enter batch jobs remotely for execution on a host computer and the need for
remote data entry at remote terminals resulted in the use of a Series/1 system as a
front-end processor for the host system. Such a system uses one or more front-end
processors to collect data and batch jobs being submitted from remote devices and to pre-
pare the information for processing by the host computer.

Communications Support

The architecture of the Series/1 enables you to physically connect a variety of remote
devices (including processors) to Series/1s over communications lines.

The data communications support is logically connected to operating system input/output
support and includes the operating system’s error detection and recovery services. For
example, the operating system supports the online testing of local and remote terminals to
ensure that messages are transmitted properly.

The operating system opens files that establish communications with a terminal or

processor. Your communications application then transmits data using the operating system
READ/WRITE level of access.

Operating system routines and the communications interface hardware generate and control
message transmission for a particular communications link.

The Series/ 1 hardware interfaces supporting communications use:

e A cycle-steal channel to access message sequences in processor storage for transmission
and to insert message sequences into main storage. Use of cycle stealing results in
minimum processor interaction and overhead.

« Microprocessors to diagnose errors. The microprocessors control the communications
interfaces and ensure self-diagnosis of communications line problems.

Communications Connections

A communications connection! physically connects devices in a communications
environment. Communications environments transmit information electronically, usually
through telephone lines in a public telephone system.

A point-to-point communications connection physically connects a Series/1 to a remote
device. Devices in a point-to-point connection use leased (nonswitched) telephone lines or
dial-up (switched) telephone lines through modems. For dial-up lines, the connection is
maintained only for the duration of the communication. If a point-to-point connection uses
a dial-up line, one control station (such as a Series/1) can communicate with several remote
stations after a link has been established between the control station and each remote
station.

A multipoint communications connection physically connects a control station with multiple
remote stations (called secondary stations). All stations in the multipoint connection are
physically connected over a single leased line.

1 The terms communications connection, data link, communications link, and communications line are

used synonymously in this book.

3-4 GC34-0471

Communications Protocols

A communications protocol is the form or convention by which particular sequences of
characters are interpreted and acknowledged over a communications line.

The Realtime Programming System supports the following communications protocols:

« A variety of asynchronous (start/stop) communications protocols
« Binary synchronous communications

« Synchronous data link control (SDLC) communications

o X.21 interface

o X.25 interface

Asyncihronous {Stari/Siop) Comimunications

Data communications facilities in the base operating system support asynchronous commu-
nications. A variety of device protocols are supported in half-duplex mode.

Series/1 PL/I directly supports asynchronous communications using record I/0.

Binary Synchronous Communications

Data communications facilities in the base operating system support binary synchronous
communications. The binary synchronous communications protocol is used most often in
exchanging data and programs between computers, between remote job entry terminals and
computers, and similar applications. Binary synchronous communications enable you to:

e Transmit either EBCDIC, ASCII, or transparent EBCDIC data
» Perform block checking for error detection
« Remotely IPL Realtime Programming Systems

The binary synchronous communications protocol operates in half-duplex mode using
point-to-point or multipoint connections.

Series/1 PL/I directly supports binary synchronous communication using record I/0.

Synchronous Data Link Control (SDLC) Communications

Systems Network Architecture (SNA) support in the Realtime Programming System enables
communications using the synchronous data link control (SDLC) protocol. SDLC protocol
is the standard link-level protocol for communicating in an SNA network. SDLC operates
in half-duplex mode using point-to-point or multipoint connections at line speed rates up to
9,600 bits per second.

Data Communications and Network Support 3-5

X.21 Network Support

The SDLC communications protocol supports non-switched half-duplex connections of a
Series/1 to an X.21 network through an SNA interface. Operations on X.21 circuit

switched public data networks are supported in binary synchronous and SNA/SDLC modes
in compliance with the CCITT X.21 recommendation.

X.25 Interface

The X.25 protocol is supported by means of the X.25/HDLC Communications Support
licensed program. The X.25 support is discussed in the section entitled “X.25/HDLC
Communications Support” on page 3-14.

Systems Network Architecture Support

The IBM Systems Network Architecture (SNA) is the communication architecture
subscribed to by many IBM programs and communication products. SNA support in the
Realtime Programming System is an implementation of a subset of the total IBM Systems
Network Architecture. The support provides system services to establish, control, and

terminate sessions between multiple Series/1 programs and System/370 subsystems or user
programs.

The support also provides system services to transfer data and control information between
the programs. The SNA network consists of the following elements:

o A Series/1 system defined as a cluster controller with multiple logical units and
associated user applications

« A System/370 consisting of a virtual operating system using Virtual
Telecommunications Access Method (VTAM) or Telecommunications Access Method
(TCAM) and user applications

¢ An IBM 3705 Communications Controller with its Network Control Program
connecting a Series/1 to the host processor

« Synchronous data link control (SDLC) communications line between the Series/1 and
the 3705 controller

Systems Network Architecture Extended Support

The Systems Network Architecture Extended Support consists of a set of assembler
language macros that enable you to write applications that communicate with the

Information Management System (IMS/VS) or the Customer Information Control System
(CICS/VS).

The support extends the basic SNA support and masks SNA protocols from an application
program.

3-6 GC34-0471

Additional Communications Support

In addition to the base operating system support for communications, the following licensed
programs provide additional support for communications:

¢ 4987 Programmable Communications Subsystem

e Advanced Remote Job Entry

« SNA Remote Management Utility Programming RPQ

» Series/1 to System/370 Channel Attach Program

e 3270 device emulation using the Multiple Terminal Manager
« X.25/HDLC Communications Support

« Remote Manager

« Communications Manager for the Series/1

4987 Programmable Communications Subsystem

The 4987 Programmable Communications Subsystem is a separate processing facility that
supports applications involving large numbers of terminals and communications lines.

Often the device requirements in communications applications and the characteristics of the
devices vary considerably. The Programmable Communications Subsystem supports a vari-
ety of communications lines, line speeds, terminal types, and communications protocols (in-
cluding non-IBM devices and protocols). The subsystem is adapted to the Series/1
hardware and software architecture so that the same type of self-diagnosis, availability, and
error recovery features as in the operating system are supported.

The Programmable Communications Subsystem allows you to perform the following types

of communication processing on the Programmable Communications Subsystem hardware
instead of on a Series/ 1 processor:

« Redundancy checking

« Generation and recognition of control characters
« Data chaining to and from processor storage

o Telephone call answering and originating

« Timeouts or interval timer

e« Modem control

« Console control

« Self-diagnosis and tracing functions

¢ Automatic polling

If the above tasks were handled on a Series/1 processor, significant overhead could occur
when large numbers of different communications lines and terminals are used.

The Programmable Communications Subsystem provides the following interfaces:

« Synchronous and asynchronous EIA interfaces

¢ Automatic call handling interface

o Teletype? current loop interface

« Synchronous and asynchronous integrated modems

[

Trademark of the Teletype Corporation

Data Communications and Network Support 3-7

The Programmable Communications Subsystem allows you to have a variety of line speed
and interface types and to mix them arbitrarily within the communications subsystem.

The Programmable Communications Subsystem uses a scanner to scan each interface to
collect or transmit characters. The scanner also provides:

« Programmable synchronization and line turnaround characters

« Programmable selection of bits per character

o Parity checking

+ Programmable selection of the number of stop bits for asynchronous terminals

The controller within the Programmable Communications Subsystem allows you to custom-

ize the communications subsystem to handle a particular group of terminals and a particular
application. The controller provides:

« A protocol level instruction set

« The capability to customize the communications subsystem to line type, protocol, and
functional level

o Parameter build capability for management of the communications subsystem

You use controller functions by using an assembler language macro library that supports
two types of macro instructions:

« Communication macro instructions used to customize communications programs (called
function strings) for each line of the Programmable Communications Subsystem

« Communication definition macros used to define tables, parameters, line types, function
strings, and pointers that the subsystem needs

Preparation Facility

The 4987 Programmable Communications Subsystem Preparation Facility is used to sup-
port the generation of controller storage image programs for the IBM 4987 Programmable
Communications Subsystem. The program provides a macro library for assemblies with the

Program Preparation Subystem.
Extended Execution Support

The 4987 Programmable Communications Subsystem Extended Execution Support is used
to write application programs that communicate with devices that are attached via the 4987

Programmable Communications Subsystem. Two levels of user interface are supported;
READ/WRITE and EXIO.

Documentation

o 4987 Programmable Communications Subsystem Preparation Facility Reference
o 4987 Programmable Communications Subsystem Extended Execution Support Reference

3-8 Gc34-0471

Advanced Remote Job Entry

The Advanced Remote Job Entry program enables you to use the Realtime Programming
System as a remote job entry work station. The program can be used in an SNA network
or in a network using multileaving binary synchronous communications.

Using binary synchronous communications, the Series/1 system can communicate with a
System/370 that uses any of the following host entry subsystems:

« OS/VS2JES2
« OS/VS2JES3
« VM/370 RSCS

Using SNA, the Series/1 can communicate with a System/370 that uses any of the follow-
ing host entry subsystems:

« OS/VS2JES2
« OS/VS2JES3
« DOS/VSE VSE/POWER

The Advanced Remote Job Entry program enables you to transmit one or more batch files
to a System/370 job entry subsystem for processing. The files are System/370 job
streams. Upon completion, the output from the job stream(s) normally is routed to a
Realtime Programming System data set or to a Series/1 printer.

Multileaving Remote Job Entry

The binary synchronous option supports point-to-point (switched or non-switched) com-
munication using the multileaving remote job entry technique. Multileaving enables input
and output data streams to be intermixed on the communication line. The data transmission
is fully synchronized and two-directional. A variable number of data streams can be trans-
mitted between the Series/ 1 system and the host system. The Series/1 system appears as a
System/3 with console support to the host job entry subsystems.

SNA Remote Job Entry

The SNA remote job entry option supports point-to-point or multipoint (switched or
non-switched) Synchronous Data Link Control lines. The option includes support for up to
four logical unit sessions at a single work station. The option uses Logical Unit Type 1 pro-
tocols for session communication with the host job entry subsystems.

Unattended Operation

The following Advanced Remote Job Entry facilities allow a work station to operate unat-
tended:

o Commands in a disk or diskette data set
o Dynamic punch file allocation
« Delayed session activation

Data Communications and Network Support 39

An Advanced Remote Job Entry user can place remote job entry commands in a disk or
diskette data set or enter them at the work station display terminal. Commands in a data
set are read in and processed just as if they were entered at the display terminal.

You can also activate the Advanced Remote Job Entry program in a wait state. Delayed
activation means the connection is established with the host job entry subsystem only when
a call is received from the host.

Punched output received from the host is always placed in a Realtime Programming System
disk or diskette data set. The Advanced Remote Job Entry program allocates this data set
dynamically.

Other Work Station Functions

The work station console function lets you query the host system for the status of a submit-
ted job. You can also query the host for any other normally allowed information (i.e., sys-
tem status etc.). Other facilities allow you to record console activity in a Realtime
Programming System data set for subsequent printing. This is called journaling.

Printed output sent from the host is either printed directly on a Series/1 printer or, through
spooling, is placed in a disk or diskette spool data set for printing at a later time. You use
Realtime Programming System spool facilities to control the printing of specific jobs from
the spool processor output queue.

Advanced Remote Job Entry supports 3211/3203-4 Forms Control Buffers (FCB) for
printed data. You use a utility to define FCBs corresponding to the FCB requests that may
be sent by the host.

Commands

Advanced Remote Job Entry commands are single line commands with parameters. These
commands are summarized below:

Attend - changes operational mode (attended/unattended)
Help - prints a list of the commands

Journal - turns journal activity on or off

Library - changes library environment

Operator - transmits a host operator command

Print - changes the current printer information

Punch - changes punch information

Readfile - identifies a command or data file to be processed
Status - reports current work station status

Documentation

Complete information on the Advanced Remote Job Entry program as used with the
Realtime Programming System is located in the Advanced Remote Job Entry User’s Guide.

3-10 Gcec34-0471

SNA Remote Management Utility Programming RPQ

The SNA Remote Management Utility programming RPQ enables you to have communi-
cation between a host System/370 (with OS/VS2 MVS) and a remotely located Series/1
system. The utility program executes on a Series/ 1 and allows a host system to manage the
Series/1 system. The utility allows a Series/1 system to operate effectively without an
operator and enables a remotely managed Series/ 1 based system to be a part of an all-SNA
network.

A Virtual Telecommunications Access Method (VTAM) program is provided that allows
the host system to initiate operator commands and send them to a Series/ 1 for processing.
You can issue most operator commands (except those requiring operator intervention at a
Series/1) as if the host terminal was directly connected to a Series/1 system.

Highlights of the utility include:
« Transmission of files to and from a Series/1 system

« Ability to perform storage dumps, execute programs, and transfer diagnostic informa-
tion back to the managing system on demand

« SNA host connection

The host gives the Series/1 commands across a synchronous data link control (SDLC) con-
nection. This capability allows a programmer at a Time Sharing Option (TSO) terminal on
the host system to monitor and control the activity of a remote Series/1 system. The ses-
sion between the System/370 and a remote Series/1 can be established using a
point-to-point leased connection or using a multipoint or point-to-point dial-up connection.

Documentation

Complete information on using the SNA Remote Management Ultility is located in the SNA
Remote Management Utility User’s Guide.

Data Communications and Network Support 3-11

Series/1 to System/370 Channel Attach Program

The Series/1 to System/370 Channel Attach Program allows a Series/1 user to transfer
data, under joint consent, between application programs executing on a Series/1 system
and a host System/370, 30xx, or 43xx system. The host system must be using OS/VS1,

0S/VS2 (SVS or MVS), or DOS/VSE with the Basic Telecommunications Access Method
(BTAM).

The Channel Attach Program:

« Establishes, controls, and terminates access between Series/ 1 application programs and
the channel attach device

« Transfers input and output between the Series/1 application programs and the channel
attach device

« Logs errors
o Handles interrupts from the channel attach device

« Performs error recovery at the Realtime Programming System READ/WRITE access
level

Documentation

Complete information on the channel attach program is located in the IBM
Series/1-System/370 Channel Attach Program General Information Manual and in the IBM
Series/1-System/370 Channel Attach Program Reference Manual.

3-12 Gc34-0471

3270 Device Emulation Using the Multiple Terminal Manager

In addition to its support for local transaction processing, the Multiple Terminal Manager
licensed program enables you to physically connect a Series/1 system and a host
System/370 system. This support is called 3270 device emulation. The device emulation
uses a locally attached full-screen formatted terminal and a line or matrix printer.3 The
device emulation enables a Series/1 processor to appear to a host System/370 as one or
more 3270 Information Display Systems. Any of the manager’s full-screen formatted ter-
minals are used in this environment. End users entering information at the terminal appear
to the System/370 as 3277 or 3278 terminal users. At the same time, transaction applica-
tions that are not communicating with the host system are able to use other terminals
attached to the Series/1 processor for local processing.

The Series/ 1 system supporting 3270 device emulation is attached to the host System/370
using either the Series/1 binary synchronous communications protocol or the synchronous
data link control (SDLC) protocol.

If the binary synchronous communications protocol is used, the host system recognizes:
o The Series/1 system as a 3271 Model 2 control unit

« Display terminals in character mode as 3277 Model 2 display stations

If the synchronous data link control protocol is used, the host system recognizes:

« The Series/1 system as a 3274 control unit

« Display terminals as 3278 Model 2 display stations

When the SDLC protocol is used, an IBM 4973, 4974, 4975, 5219, 5224, or 5225 printer
attached to a Series/1 using 3270 device emulation appears to the host system as a
3287/3289 printer using an SNA character string.

Documentation

Complete information on the 3270 Device Emulation support is included in the Multiple
Terminal Manager Version 3 User’s Guide.

3 The binary synchronous communications protocol supports terminals only.

Data Communications and Network Support 3-13

X.25/HDLC Communications Support

The X.25/HDLC Communications Support (XHCS) licensed program enables a Series/ 1
to communicate with devices connected to an X.25 packet switching network. The modules
that comprise XHCS:

Provide X.25 packet-level protocol management:

Supports multiple permanent virtual circuits or switched virtual circuits (virtual
calls) on a single network access link

Supports data communications applications where Series/1 is a Data Terminal
Equipment attached to an X.25 network, or where Series/1 is a node within an
X.25 network

Supports a READ/WRITE/CONTROL assembler language macro interface to
application programs

Provides access to carrier-supported optional facilities that are controlled by appli-
cation programs (for example; reverse charging, closed user group, packet and win-
dow size negotiation, throughput class negotiation, and priority service)

Provide HDLC (High-Level Data Link Control) protocol management:

Supports HDLC Asynchronous Balanced Mode protocols; that is, the LAPB proto-
col that is used to access X.25 networks

Supports HDL.C Normal Response Mode protocols, point-to-point or multipoint

Supports data communications applications in which Series/1 communicates by
means of one or more leased or dialed HDLC links

Provide duplex and half-duplex data transmission at speeds of 1200, 2400, 4800, 9600,
19200, 48000, or 56000 bits per second

Documentation

For complete information see the X.25/HDLC Communications Support: Programming and
Operating Reference Manual.

3-14 Gc34-0471

Remote Manager

The Remote Manager licensed program enables Series/ 1 networks to be managed and
operated through the communications and systems management programs available on IBM
host processors (System/370, 30xx, and 43xx). The Remote Manager on each Series/1 in

the network supports centralized control and problem determination using the following
host programs:

Network Communications Control Facility
Distributed Systems Executive
Host Command Facility

Network Problem Determination Application

The Remote Manager provides three major functions:

Alert-processing facility that routes Series/1 hardware and software error indications to
the Network Problem Determination Application at the host, alerting network opera-
tors to real or potential problems with the Series/1 network operations

Host-operator facility that enables a host operator to act as a local Series/1 operator;
issuing commands, invoking system utilities, and running application programs

Relay and node data services facility that enables a Series/1 and a host to transmit data
between one another using the Distributed Systems Executive

Documentation

For complete information see the Remote Manager User’s Guide.

Data Communications and Network Support 3-15

Communications Manager for the Series/1

The Communications Manager for the Series/1 manages communication:

« Between a Series/1 and other Series/ 1s
o Between a Series/1 and a host
« Between a Series/1 and various input/output devices

It supports a selected set of devices and communication connections and provides a
structure for you to write support for other devices. The Communications Manager is also
a message management program that manages the communication of messages to and from
your applications.

Examples of applications that could effectively use the Communications Manager include:

o Data entry applications that accept messages from terminals. The application may
process the data or merely collect the data and pass it along to another processor.

« Message routing applications that handle the routing and sending of messages within a
network. A message routing application may, for example, send a message to all users
or to a selected subset, or it may receive data from one processor and pass it along to
another processor without analysis or processing.

o Applications that do a share of some data processing that is part of a larger system.
Such an application may, for example, manage part of a data base or do preliminary
processing of data, with the final processing being done in the host.

« Store and forward applications that collect messages arriving at a station, hold them,
and then forward them to another location. An installation might, for example, forward
the messages when a certain volume of them has been collected, at a certain time of
day, or when communication line use is low.

« Line concentration applications that collect messages, batch them, and forward them
efficiently over a high speed communications line

The Communications Manager includes a set of commands that enable a system operator or
user to interact with the Communications Manager from a terminal. The commands enable
you to:

« Start or stop the Communications Manager

« Define or delete stations and control their attributes

« Hold, release, and purge messages

« Display status information, error counts that pertain to a station, message queuing, and
storage utilization information

« Remotely IPL a Series/1 system

« Load, unload, and locate specific modules

« Enter Realtime Programming System operator commands from within the
Communications Manager environment

o Build and list the contents of an X.25 directory to establish X.25 connections

o Control message traffic over the Local Communications Controller ring with the Local
Communications Controller program

You can define an error message logging station, a command logging station, and a user
message logging station.

The Communications Manager can be installed either with the system utilities or with the
command language facility. An installation can use Communications Manager functions
without doing additional programming. However, the manager includes a set of assembler
language macros as well as Cobol, PL/I, and Pascal callable routines for you to use in
writing application programs in any of these languages. A Communications Manager

3-16 GC34-0471

subroutine makes it possible for Cobol, PL/I, and Pascal application programs to use
Communications Manager functions to build and log their own error messages.

The Communications Manager also provides IBM 3271 control unit emulation. This
feature enables a Series/1 attached to a host processor to serve as a 3271 control unit with
up to 32 devices attached. The devices can be 3277 terminals or 3284 /3286 printers. The
Programmable Communications Subsystem is required for 3271 emulation.

Communications Manager 3270 support can be used to connect a Series/1 to an IBM 5280
Distributed Data System operating in 3270 emulation mode.

Message Handling

As a message management program, the Communications Manager controls the flow of
messages between processors, devices, and application programs. A message is any unit of
information—from a record of a sales transaction to a large file. The message managing
facilities include:

o Delivering messages. The Communications Manager obtains a message from a
processor, device, or application program and delivers it to another processor, device,
or application program.

e Message priorities. The Communications Manager delivers messages on a priority
basis. Message priority is assigned on the basis of the originating station’s priority
assignment during station definition.

¢ Queuing messages. The Communications Manager creates priority queues of messages
for each destination either in processor storage or on disk.

e Message warm start. The Communications Manager delivers messages, contained in
disk storage, that were not delivered during the previous execution of the manager.

« Device independence. The Communications Manager accepts a message in the
communications configuration and delivers it to any location in the configuration. If
the source and destination are devices, they need not be of the same device type.

Local Communications Controller

You can use a variety of communications protocols with the Communications Manager to
send messages. For instance, the Communications Manager supports the Series/1 L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>