
--- ------ - ---- ---- - ---- - - ----------_ .-

GC34-0328-0

File No. S1 -34

LICENSED
MATERIAL

IBM Series/1

Event Driven Executive Version 1.1

Planning Guide

Program Numbers: 5719-XS1
5719-UT3
5719-XX2
5719-LM5
5719-LM2
5719-MS1 (Multiple Terminal Manager)
5719-AM3 (Indexed Access Method)

Series/1

--- ------ ----- ---- - ---- - - ----------_.-

c

1

c

GC34-0328-0

File No. 51-34

LICENSED
MATERIAL

IBM Series/1

Event Driven Executive Version 1.1

Planning Guide

Program Numbers: 5719-XS1
5719-UT3
5719-XX2
5719-LM5
5719-LM2
5719-MS1 (Multiple Terminal Manager)
5719-AM3 (Indexed Access Method)

Series/1

First Edition (July 1979)

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM systems, refer to the
latest IBM Series/l Graphic Bibliography, GA34-0055, for the editions
that are applicable and current.

Publications are not stocked at the address given below. Requests for
copies of IBM publications should be made to your IBM representative or
the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical
errors. A form for reader'~ comments is provided at the back of this
publication. If the form has been removed, address your comments to IBM
Corporation, Systems Publications, Department 27T, P.O. Box 1328, Boca
Raton, Florida 33432. IBM may use and distribute any of the information
you supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the information
you supply.

ec) Copyright IBM Corporation 1979

ii Version 1.1 Planning Guide

o

o

c

(".~
/

o

PREFACE

This publication is to be used for planning purposes only. Any information
contained herein is subject to change. For final information concerning
any topic discussed in this publication, consult the Version 1.1 manuals
listed below when they become available.

This publication provides the information required to design applications
that use Version 1.1 of the Event Driven Executive, the Multiple Terminal
Manager, and the Indexed Access Method.

HOW THIS MANUAL IS ORGANIZED

• Part 1 describes Version 1.1 of the Event Driven Executive and points
out the enhancements it provides over Version 1.0.

• Part 2 describes the Multiple Terminal Manager, which you can use to
simplify the definition of transaction-oriented applications.

• Part 3 describes the Indexed Access Method, which you can use to
access and maintain your data in a keyed (indexed) organization.

Before reading this manual, you should be familiar with the Event Driven
Executive. See the list below for pUblications that can help you.

RELATED PUBLICATIONS:

The following publications are now available for Version 1.0 of the Event
Driven Executive. The Version 1.1 publications will be released in Octo
ber, 1979, under the same numbers and titles (except as noted).

• IBM Series/1 System Summary, GC34-0285.

• IBM Series/l Event Driven Executive System Guide, SC34-0312.

• IBM Series/l Event Driven Executive Utilities, Operator Commands, and
Program Preparation, SC34-0313.

Note. The Version 1.1 release of this document will be titled: IBM
Series/l Event Driven Executive utilities, Commands, Pro9ram Prepara
tion and Messages and Codes, SC34-0313.

• IBM Series/l Event Driven Executive language Reference, SC34-0314.

• IBM Series/l Event Driven Executive Macro Assembler, SC34-0317.

Preface iii

• IBM Series/1 Event Driven Executive Communications Guide, SC34-0316.

Note. The Version 1.1 release of this document will be: IBM Series/1
Event Driven Executive Communications and Terminal Applications
Guide, SC34-0316.

iv Version 1.1 Planning Guide

o

o

c

o

Part 1: Event Dr;ven Execut;ve
Introduction
Address Translator Support

Version 1.0
Version 1.1

Compatibility
Source Program Compatibility
Application Program Interfaces
Data Set Compatibility
Functional Content Compatibility
Storage Si zes

Multi-Partition Extensions
Diagnostic and Recovery Improvements

I/O Error Recording
Task Error Exit
System Area Protection
Program Exception Trace
sto rage Dump

Special Considerations
References to System Area Data
Invoking Programs That Reside in the System Area
User-Written Supervisor Extensions
Virtual Terminals•
Sensor I/O Appl i cati ons
Use of Attention Lists (ATTNLIST)
Program (Header) or TCB Dependencies
&SYSCOM Usage•.•.

Part 2: EDX Hult;ple Term;nal Manager
Overv i ew

Multiple Terminal Manager Concepts
Hardware
Software

Program Operat ion
Multiple Terminal Manager Initialization Program
Terminal Server Programs
Application Program Manager
Program Management

ACTION - Fetch Operator Response
LINK - Load and Execute Program
LINKON ...•........•
CYCLE - Suspend Current Terminal Application
MENU - Return to Multiple Terminal Manager Control
WRITE - Output to an Asynchronous Terminal ...•.
Terminal/Screen Management
SETPAN - Format the Input and Output Buffers
SETCUR - Move Cursor to Specified Position
BEEP - Set Audi ble Alarm
CHGPAN
Fi Ie Management
FILEIO .••.•

CONTENTS

1
1
2
2
2
3
5
6
7
7

7

8
8
8
9

9
9

9
9

10
10
11
11
12
12
13
13

15
15
15
17
21
21
21
22
22
23
24
24
24
25
26
26
26
27
27
27
27
29
29

Contents v

Indexed File Request Types
Di rect Fi Ie Request Types .•.••
Multiple Terminal Manager Utilities

Application Design Information
Programming Considerations ••.•••
Multiple Terminal Manager Data Set Requirements

MTMS TORE •••...•.•.••••.
Terminal .••...•••••••••••

Screen Format Volume - SCRNS ••.•••
User Application Program Volume - PRGRMS
Si gn-On Fi Ie - SIGNONFl •.•••.••

Operator Interface
Multiple Terminal Manager Initialization

Sign-on
Program Initiation and Termination
Disconnect
Reconnect .•..
Programs Report
Terminal Activity Report

Screen Pri nt•
Distribution and Installation
Program Preparation

Performance Information

Part 3: EDX Indexed Access Method
Overview
Indexed Data Set Features
Data Protection
Devices Supported
Components
Funct ions •...•
Indexed data Sets

Program Operation
Application Program Preparation

Application Design Information
Prepari ng the Data .••••

Defining the Key ...••
Selecting the Block Size
Est i mat i ng Free Space .••••.

Building The Indexed Data Set
Determi ni ng Si ze and Format•.
Defining and Creating the Indexed Data Set •.•..••••
Connecting and Disconnecting the Indexed Data Set

loadi ng Base Records . . • • . .••..•••
Processing

Di rect Readi ng
Direct Updating
Sequential Reading
Sequential Updating
Inserting
Deleting
Extracting

Handling Errors
Error Exit Routine
System Function Return Codes

vi Version 1.1 Planning Guide

30
31
31
31
32
32
33
33
34
34
35
35
35
36
36
37
37
38
38
38
38
40
40

43
43
43
44
44
44
45
48
49
50
51
51
51
52
54
56
56
57
58
58
59
60
60
61
62
62
63
64
64
64
64

~,"'," (1,\ ".'11
'~

o

c

o

Data Set Shut Down
Deadlocks •.•..•.•.•

Executing the Application Program
Maintaining the Indexed Data Set

Backup and Recovery
Recovery Without Backup
Reorganization
Dumping
Deleting

Data Set Format
Blocks

FCB
Index Block
Data Block
The Index
Prime Index Blocks
Second-Level Index Block
Higher Level Index Block
Index Example
Cluster

Free Space
Free Records
Free Blocks
Reserve Blocks
Reserve Index Entries
The last Cluster .. .•
Sequential Chaining
Free Pool

Storage and Performance Information
Storage Requirements
Indexed File Size
Performance Information

Summary of Calculations

Index

65
65
66
68
68
68
69
69
70
70
70
72
72
72
73
73
75
75
76
77
78
79
80
80
80
81
81
82
83
83
83
84
84

91

Contents vii

o

/---\

<,~

o
vi i i Versi on 1.1 Planni ng Gui de

c
INTRODUCTION

c /

c

PART 1: EVENT DRIVEN EXECUTIVE

Version 1.1 of the Event Driven Executive, available in
October 1979, expands the scope of the data processing
solutions possible with the Event Driven Executive.
Improvements include:

• Support for 128KB of storage on the 4952

• Applications programs up to 64KB

• Cross-partition communication capability

• Diagnostic and recovery improvements

The changes that make this possible are described in this
planning guide.

Version 1.1 of the Event Driven Executive system includes
service releases of each of the following licensed pro
grams:

•

•

•

•

•

•

•

•

•

Basic Supervisor and Emulator (5719-XSl)

Utilities (5719-UT3)

Program Preparation Facility (5719-XX2)

Macro Assembler (5719-ASA)

Macro Library (5719-lM5)

Macro Library/Host (5740-LM2)

COBOL Compiler and Resident library (S719-CB3)

COBOL Transient Library (S719-CB4)

FORTRAN IV Compiler and Object library Version 2
(S719-F02)

• Sort/Merge (S719-SM2)

• Mathematical
(S719-LM3)

and Functional Subroutine Library

The following new licensed programs have also been
announced for use with Version 1.1 of the system and will
be available in October 1979.

Part 1: Event Driven Executive 1

• Indexed Access Method (S719-AM3)

• Multiple Terminal Manager CS719-MS1)

These new programs are also described in this planning
guide.

ADDRESS TRANSLATOR SUPPORT

VERSION 1.0

VERSJON 1.1

The Event Driven Executive CEDX) operating system for the
Series/l currently supports the address translator fea
ture of the 4952 and 4955 processors. The programs execut
ing in each storage partition have direct access to the
functions and data areas in the supervisor, in much the
same way as a program executing in a non-address trans
lated, single partition system. Although this mechanism
offers the advantages of conceptual simplicity and com
patibility with earlier versions of the operating system,
it has two drawbacks. First, segmentation registers are
used to map the system area into each partition defined by
the user. In systems with processor storage approaching
128K bytes and two sets of segment registers, the result
may be an inadequate number of segmentation registers to
map the entire storage area. Thus, processor storage can
exist which cannot be accessed by either user or system
tasks. Second, the user application may be
size-constrained by the necessity to leave 20-32KB or more
for the system area in each 64KB partition.

The system requires that two facilities be available to
user programs and system utilities regardless of the
addressing mechanism used. These are the ability to invoke
supervisor functions through Series/l assembler language
instructions or the Event Driven language and the ability
to reference system data areas, again in either a direct
or indirect .fashion. As noted above, the current version
of EDX provides these functions by logically mapping the
supervisor into each partition.

Version 1.1 of EDX provides a supervisor that resides only
in partition 1, thus making it possible to support appli
cation programs up to 64K bytes in length in the other
partitions. Elimination of redundant mappings of the sys-

2 Versi on 1.1 Planni ng Gui de

o

,

c

c

(""" ,

~"/

COMPATIBILITY

c

tem area frees more of the processor's segmentation regis
ters for use in addressing unique physical storage, thus
increasing the amount of storage that can be effectively
put to use on processors such as the 4952. The abillty to
optionally map a portion of the system area into each par
tition provides the capability for shared storage areas
(such as $SYSCOM) without wasting large amounts of appli
cation space on other control program modules as well.
Figure 1 illustrates some of the storage configurations
now possible with Version 1.1.

Another advantage of the new storage map is that it pro
vides increased protection of the system area from acci
dental modification by applications. Previously, a
program error could accidentally damage the system and
affect all programs and partitions. Because the Version
1.1 system area resides in partition 1 only, the chance of
accidental modification by programs in other partitions
is considerably reduced.

To complement the storage map improvement the enhanced
address translator support includes several extensions to
system functions for the multi-partition environment.
These extensions make it possible to move data and signal
events and manage resources across partition boundaries,
thus making multiple partition applications easier to
design and implement. These facilities are described in
more detail under the heading "Multi-Partition Exten
sions."

Version 1.1 also contains improved diagnostic and recov
ery capability. Optional facilities include I/O error
logging, a task error recovery exit, a program exception
trace, and a storage dump. These facilities are described
in more detail under the heading "Diagnostic and Recovery
Improvements."

Version 1.1 preserves all the standard Event Driven Execu
tive application program interfaces and as many of the
application implementation techniques as possible.
Version 1.1 is compatible with Version 1.0 in terms of
source programs, data sets and functional content. Each of
these is explained more fully below. In general, you may
expect that applications written to run on Version 1.0
will run on Version 1.1 after recompilation. Since most
applications written for the Event Driven Executive FDP
Version 2 would also run on Version 1.0 of the licensed
program, the information in this guide is also applicable
to them.

Part 1: Event Driven Executive 3

EDX
Supervisor

32KB

$SYSCOM 4KB

EDX
SUPERVISOR

24KB

Application
1

14KB

EDX
Supervisor

26KB

Indexed
Access
Method

16KB

COBOL
Application

22KB

Application

64KB

$SYSCOM

Application
2

54KB

COBOL
Application

48KB

SORT/MERGE
16KB

Figure 1. Possible Storage Configurations

4 Versi on 1.1 Planni ng GUt de

• 96KB 4955
• large single application

• 96KB 4952
• 2 application spaces
• Shared ($SYSCOM) area

• 128KB 4952 or 4955
• large COBOL application

using Sort and Indexed
Access Method

• Second COBOL application
also utilizing Indexed
Access Method

• Indexed Access Method
which serves both
COBOL applications plus -
Sort/Merge (buffer space
expanded by 2K bytes)

o

,

o

o

c

c

SOURCE PROGRAM COMPATIBILITY

COBOL and FORTRAN programs are completely source compat
ible and require only that they be recompiled using Ver
sion 1.1 of the COBOL or FORTRAN compiler. An additional
module of less than 200 bytes will be automatically
included (by Autocall) during link-edit. Execution of
COBOL programs will require Version 1.1 of the COBOL Tran
sient Library. Version 1.1 of COBOL and FORTRAN will be
available concurrent with Version 1.1 of supervisor and
will be automaticallY shipped to existing licensees.

Event Driven Language (EDL) and Series/1 Assembler Lan
guage programs that use standard application interfaces
are source compatible. Refer to the topic below titled
"Application Program Interfaces" for a list of source com
patible interfaces. However, any programs with explicit
dependencies on access to the system area may:

1. Be required to execute in partition 1 only so that
unrestricted access to the system area is possible.

2. Require that the option to map some or all of the sys
tem area into each partition be used to provide the
ability to reference system area control blocks.

3. Require source modification to utilize the cross
address space capabilities added to various functions
in Version 1.1.

Recompilation of the Event Driven Language or assembler
language programs requires Version 1.1 of the appropriate
program preparation vehicle. All these releases will be
available concurrent with Version 1.1 of the Supervisor
and Emulator and will be automatically shipped to existing
licensees. The following program preparation vehicles may
be used:

1. Program Preparation ($EDXASM) Version 1.1 (for pro
grams consisting exclusively of Event Driven Language
statements).

2. Macro Library Version 1.1 and Macro Assembler Version
1.1. If it is desired to compile programs on Version
1.0 for later execution on a Version 1.1 system, the
Version 1.1 Macro Library can also be used with the
Version 1.0 Macro Assembler.

3. Macro Library/Host Version 1.1 and any current release
of the Series/1 370 Host Assembler.

Application programs that contain Series/1 assembler lan
guage instructions will require 1-3 additional modules to
be link-edited with the application. These modules are

Part 1: Event Driven Executive 5

provided with the Version 1.1 supervisor for the purpose
of handling the special interface used by assembler lan
guage routines under EDX. Most assembler language applica
tions will require only the basic RETURN interface module
(about 40 bytes) but some applications may require addi
tional modules that support the special interfaces SVC,
SETBUSY and SUPEXIT. The interface modules total approxi
matelY 200 bytes and can be automaticallY included where
needed with the AUTOCAll facility of $lINK if EXTRN state
ments for the desired modules are included with the pro
gram. See the "Special Considerations" topic for more
information.

APPLICATION PROGRAM INTERFACES

The primary application program interface is documented
in the Event Driven Executive language Reference manual.
Users of COBOL or FORTRAN may also view their respective
language reference manuals and users guides as their
interface. In addition to these, certain other interfaces
and data areas are available for reference and use by
application programs. These are the following:

• The Branch interfaces named RETURN, SETBUSY, SUPEXIT
and SVC and their respective parameter lists.

• The CAll interface for DSOPEH, including its parame
ters and data area.

• The CAll interface for SETEOD including its parameter
list and data area.

• The following interfaces as described
Communications Guide: BSCOPEN, BSCClOSE,
BSCWRITE, BSCIOB, and TP (all functions).

in the
BSCREAD,

• The first two words of the Task Control Block (TCB)
system data area.

• The first two words of the Data Set Control Block
(DSCB).

Programs should use only the above interfaces so that they
wi 11 be source-statement compati ble across releases of
EDX.

6 Version 1.1 Planning Guide

o

o

o

DATA SET COMPATIBILITY

Data sets created or updated using Version 1.0 can be used
on Version 1.1 without change.

FUNCTIONAL CONTENT COMPATIBILITY

STORAGE SIZES

All the functions defined in the Language Reference
Manual, the Utilities Operator Commands and Program
Preparation and the Communications Guide for Version 1.0
are also supported by Version 1.1.

Version 1.1 of the Supervisor and Emulator is slightly
larger than Version 1.0. For planning purposes you may
assume that the system area of identical configurations
will increase by approximately 5% for a configuration with
64KB or less and by approximately 10% for configurations
with more than 64KB of storage. Actual increases will
depend on the particular functions included in each sys
tem.

Systems installed on a 4952 processor with 128KB of stor
age will gain the use of up to 32KB of additional storage
in return for the 2-4KB increase in control program size.
Users of the 4955 processor with greater than 64KB will
also find that the increase is offset by application
improvements made possible by the availability of larger
application spaces and the new multi-partition exten
sions. Potential benefits include the ability to avoid the
need for complex overlays or applications that must be
split apart so they can be executed in separate parti
tions, and the ability to keep more data in storage
instead of spilling it to disk to save space.

Changes in program size are expected to be minimal for
most applications written in the Event Driven Language. A
straightforward program with a single task and no atten
tion lists (ATTNLIST) will increase about 50 bytes. Each
attention list will expand about 120 bytes (see "Special
Considerations" for more information on ATTNLIST).
Programs containing Series/l assembler language code (in
cluding all COBOL and FORTRAN programs) will require an
additional 50 to 200 bytes because of the inclusion of the
interface modules described in the section on "Source Pro
gram Compatibility."

Part 1: Event Driven Executive 7

MULTI-PARTITION EXTENSIONS

As part of the changes in the address translator support
several system functions have been altered to accommodate
the new environment. These changes remove many of the
restrictions of the Version 1.0 address translator and
allow applications written in the Event Driven Language or
assembler language to take maximum advantage of the
multi-partition environment. With the Version 1.1 address
translator support it is possible to:

• Move data directly from the executing program's parti
tion to another, or vice versa, using the MOVE
instruction.

• Enqueue or dequeue (ENQ/DEQ) on a resource (QCB) in
another partition without the use of a common area
($SYSCOM).

• LOAD a program in another partition and pass parame
ters to it or wait for its completion.

• READ or WRITE using a buffer in a partition other than
the executing program's.

•

•

ATTACH a task in another partition.

WAIT or POST an event (ECB) in a partition other than
the invoker's and without a common area ($SYSCOM).

• Locate a program by name and determi ne its address and
partition. This allows independently loaded programs
to find each other at execution time without using a
common area ($SYSCOM).

DIAGNOSTIC AND RECOVERY IMPROVEMENTS

I/O ERROR RECORDING

Included in Version 1.1 is the optional ability to log the
occurrence of hardware errors on a data set. This facili
ty, which is used by EDX device services and is available
to user-written device handlers and EXIO users, provides
error data to assist in the detection and correction of
hardware errors. A utility to print the contents of the
log data set is included.

8 Versi on 1.1 Planni ng Gui de

o

(~~
, \

1\'1~"=J')

o

c

C'
~

o

TASK ERROR EXIT

Application programs can elect to process errors them
selves instead of relying on standard system actions. This
enables diagnostic and recovery actions to be tailored to
each user's application environment. Each task can iden
tify a routine to receive control if a processor malfunc
tion or program exception occurs during the execution of
the task. If an error occurs, execution of the task is
resumed at the task error exit routine in lieu of the
standard system action of terminating the task.

SYSTEM AREA PROTECTION

Isolation of the system area from all but one application
partition constrains most application errors to a single
partition instead of allowing impact to the entire machine
through damage to the system area.

PROGRAM EXCEPTION TRACE

STORAGE DUMP

Program exception data can be captured in an in-storage
table, providing a chronological history of exceptional
conditions for use in debugging.

A storage dump utility provides the ability to stop on
program exceptions and record the contents of the storage
in a data set. A second utility prints the dump data set.

SPECIAL CONSIDERATIONS

Certain interfaces and implementation techniques have
been affected by the Version 1.1 address translator
changes. Application programs that use any of the inter
faces or techniques described in this section will require
review to determine if changes will be necessary or desir
able in the new execution environment provided by Version
1.1. These considerations are in addition to those listed
under "Compatibility."

Part 1: Event Driven Executive 9

REFERENCES TO SYSTEM AREA DATA

Applications that depend on explicit reference to data
(control blocks) in the system area are definitely
affected by the new multi-partition environment because
the system area is not addressable by the program unless
special action is taken. Data areas such as the DDB
(disk), CCB (terminal) and CMDTABLE (command Table) are
not generally accessible in a multi-partition system.
There are three approaches that can be used to move appli
cations with this dependency onto a multiple partition
Version 1.1 system.

1. Execute the application in partition 1 only. Since the
system area also resides in partition 1, the applica
tion will have unrestricted access to it without the
need for any changes.

2. Map some or all of the system area into every partition
so that the desired data areas are accessible from
every partition. This requires generation of a system
using a new, optional parameter on the SYSTEM state
ment, but it requires no changes to the application
program.

3. Alter the application to use the new multi-partition
functions to obtain the desired data. Some applica
tions may be able to use the new functions exclusively
instead of depending on direct use of the system area.
This is recommended where possible because the content
and format of the system area are subject to change. In
addition, it should be possible to eliminate the need
for $SYSCOM from many applications.

INVOKING PROGRAMS THAT RESIDE IN THE SYSTEM AREA

Certain programs that reside in the system area may be
branch-entered by assembler language application pro
grams. Only the following four entry point names are sup
ported: RETURN, SVC, SETBUSY and SUPEXIT. To use these
entry points in a Version 1.1 system it will be necessary
to link-edit ($LINK) additional module(s) with the appli
cation program. No source code modifications are
required. The additional modules, which are provided with
the Version 1.1 supervisor and emulator, are about 200
bytes in total size. Only the moduleCs) required for the
particular entry pointCs) in the program need be included.
Mapping the system area into all partitions does not elim
inate the requirement to use the linkage module.

10 Version 1.1 Planning Guide

n
V

o

o

(\
~/

o

USER-WRITTEN SUPERVISOR EXTENSIONS

In general, user-written extensions to the supervisor
will require careful review for dependencies on address
ing data in the application's partition. The keyboard task
will always execute with address key 0 because it phys
ically resides in partition 1. Change Partition ($CP) will
no longer change the processor address key register;
instead the new partition value will be placed in a TCB
field, TCBADS. System functions must use this field to
determine the actual partition in use. The TCBAKR field
should not be used for this purpose.

VIRTUAL TERMINALS

Applications that use virtual terminals may require mod
ification if the TERMINAL statement defining the virtual
terminal is contained in the application program rather
than in the system configuration module ($EDXDEFS).
Commencing with Version 1.1, all TERMINAL statements must
be in partition 1 and application programs in other parti
tions must use an IOCB statement to gain access to the
virtual terminal. To help provide source compatibility,
TERMINAL statements coded in application programs will
automatically be converted to IOCB statements during
assembly. However, TERMINAL statements with the same
names and parameters as those in the application program
must be added to the system configuration module
($EDXDEFS).

The following example, which is explained in the "Advanced
Topics" section, the Version 1.0 System Guide,
illustrates a typical use of virtual terminals:

A TERMINAL DEVICE=VIRT,ADDRESS=B,SYNC=YES

B TERMINAL DEVICE=VIRT,ADDRESS=A,END=YES

ENQT B

LOAD $TERMUT1,LOGMSG=NO,END=ENDWAIT

ENQT A

The result is a virtual channel between $TERMUT1 and the
program that loaded it. In Version 1.1 the TERMINAL state
ments in the example above will actually generate the fol
lowing two IOCB statements:

Part 1: Event Driven Executive 11

A IOCB A

B IOCB B

The IOCB statements that replace the application's TERMI
NAL statements must point to TERMINAL statements in the
system configuration module ($EDXDEFS). Therefore, for
this sample to work the following two statements must be
added to the system configuration module:

A TERMINAL DEVICE=VIRT,ADDRESS=B,SYNC=YES

B TERMINAL DEVICE=VIRT,ADDRESS=A,END=YES

The effect of this change is to increase the size of the
system area by about 700 bytes and to decrease the size of
the virtual terminal application by about 640 bytes. Since
multiple programs can share the virtual terminal defi
nitions (using ENQT) when they are part of the system con
figuration, this may result in an overall decrease in
storage requirements. However, programs that use the same
virtual terminal pair can not execute at the same time.

SENSOR I/O APPLICATIONS

Applications using the specialized sensor I/O capabili
ties of EDX may be affected by changes in timing that
occur in Version 1.1. The special process interrupt inter
face (IODEF SPECPI) is slightly faster than in Version 1.0
if the application is executed in partition 1 but is esti
mated to be 25-30 microseconds slower (on a 4955 process
or) if executed in some other partition. Programs with
extreme time sensitivity should therefore use SPECPI
TYPE=GROUP and be executed in partition 1.

The method of return from the SPECPI exit to the supervi
sor may also require modification. For SPEePI TYPE=GROUP
there is no change, but for SPECPI TYPE=BIT a new return
statement, SPECPIRT, is provided. The Version 1.0 tech
nique, which used register 7, is valid only in partition
1. The new statement, SPECPIRT will work in any partition.

USE OF ATTENTION LISTS (ATTNLIST)

Programs that use ATTNlIST exits to provide new commands
or intercept existing system commands may be affected by a
change in the method of executing attention routines. In
Version 1.0 the ATTNlIST routine was executed directly
from the keyboard task for the terminal in use. In Version

12 Version 1.1 Planning Guide

c

o

c

c

o

1.1, the keyboard task is always executed in partition 1
while the attention exits themselves are executed in what
ever partition the exit program resides in. Therefore, the
keyboard task will ATTACH a special ATTHlIST TCB to
execute the attention exit. This special TCB is automat
ically created when a program containing an ATTHlIST
statement is assembled, increasing program size by
approximately 120 bytes. The attention routine is exe
cuted in the partition it resides in and therefore does
not have direct access to the system area. If the atten
tion exit needs to reference the system area, refer to the
section on "References To System Area Data."

PROGRAM (HEADER) OR TCB DEPENDENCIES

&SYSCOM USAGE

The PROGRAM header and TCB's that reside within the users'
application program have changed slightly in size and for
mat. Programs that reference or modify these control
blocks except for the first two words of a TCB or a DSn
(DSCB) may require source code modification. While most
fields have changed only in offset within the data area,
no assumptions should be made about compatibility. In par
ticular, use of any reserved fields or fields that contain
address keys indicates that a change would be required.
IBM recommends against any dependency on these data areas.

Applications that use a $SYSCOM shared area should not
require change. However, you may wish to control the
placement of the $SYSCOM CSECT to minimize the amount of
storage shared across partitions. All storage locations
from 0 to the boundary specified in a new SYSTEM statement
parameter are shared (mapped) by all partitions. There
fore it is usually advisable to include the $SYSCOM CSECT
near the beginning of the supervisor load module rather
than at the high end.

Part 1: Event Driven Executive 13

o
14 Version 1.1 Planning Guide

c

(~
/

o

PART 2: EDX MULTIPLE TERMINAL MANAGER

OVERVIEW

MULTIPLE TERMINAL MANAGER CONCEPTS

The Series/l Multiple Terminal Manager (5719-MS1) is an
application program that operates under the Series/l
Event Driven Executive. It provides a set of high-level
functions that simplify the definition of
transaction-oriented applications such as inquiry, file
update, data collection, and order entry.

Transaction-oriented means that program execution is
driven by operator actions, typically, responses to
prompts from the system.

This prompt-response-process cycle between the program
and the terminal operator is the basic principle for the
design of applications using the Multiple Terminal Manag
er.

The Multiple Terminal Manager provides the capability to
define transactions and manage the programs which support
those transactions. It also provides management of multi
ple terminals as needed to support these transactions and
their various application programs. The components of the
Multiple Terminal Manager are:

• A program/storage manager, which controls the exe
cution and flow of the application programs within a
single program area.

• A terminal/screen manager, which controls the presen
tation of screens and communications between terminals
and application programs.

• A file handling mechanism, which simplifies the stor
age and retrieval of data on the bulk storage devices.

The terminal manager simplifies such transactions by:

• Automatically providing input and output buffers for
the application program.

• Performing I/O operations to access fixed screen for
mats from the screen file. Here, the term screen
refers to the image that is displayed on the screen of
an IBM 4979 or IBM 4978 Display Station. Fixed-screen
formats consist of unmodifiable text and definitions

Part 2: EDX Multiple Terminal Manager 15

1

16

of possible areas for data input. Screens are built
using the $IMAGE system utility.

• Returning control to the user program to allow modifi
cation of the input buffer containing the screen if
desired.

• Performing the set of I/O operations involved in writ
ing the screen to the terminal, filling in unprotected
fields with user-defined output data, and reading the
data entered by the operator before returning control
to the application program that requested the action.
The terminal manager assumes that each action request
involves both output and input operations, thus elimi
nating the need for the application program to make
separate requests.

In addition, the Multiple Terminal Manager provides stor
age, file, and program management services, terminal
transaction statistics, the capability for sign-on
programs for password validation, and error recovery for
I/O and program check conditions.

Multiple Terminal Manager applications can be written in
the Event Driven language, Series/1 Assembler language,
COBOL or FORTRAN IV. Disk I/O can be performed by an appli
cation program using indexed or direct access methods.
Terminal support is provided for locally attached IBM 4979
and 4978 Display Stations and remote Teletype l ASR 33/35
compatible terminals attached using a single-line or
multiline asynchronous communication adapter.

The disk I/O function provides the following for disk and
diskette files:

• Indexed Access Method file support

• Direct file support

• Storage conservation through automatic open and close
functions.

The TERMINAL file describes the terminals to run with the
terminal man~ger. In this file, you specify the terminal
type, the name of the terminal, the screen to be used as
the primary m~nu screen, whether or not sign-on is
required, and for asynchronous terminals, the length of
the input buffer. This flexibility allows you to add or
delete terminals without rebuilding the terminal manager.

Trademark of the Teletype Corporation.

Version 1.1 Planning Guide

o

/'--\

\'c=)

c

C'
,

',,;}
,1

HARDWARE

C,,'"
, '

Your application programs can be executed by way of a
selection from the terminal menu or by a program. Only the
program name is required. The Multiple Terminal Manager
performs the operations necessary to load the program and
control its execution.

Screen formats are used by application programs and the
Multiple Terminal Manager itself. Each screen is a data
set in a volume that defines protected fields and
optionally defaults for unprotected fields. Three screens
are predefined:

• The initial program load (IPl) screen that
played when the Multiple Terminal Manager
starts.

is
task

dis
set

• The sign-on screen (displayed if a sign-on procedure
is specified for the terminal).

• A sample primary menu screen for program selection.
However, you can select any screen as a menu screen.

These screens are provided as samples and can be modified
to suit individual requirements. (You can define addi
tional screens using the $IMAGE screen build utility).

The Multiple Terminal Manager responds to an interrupt
from a terminal by loading the requested program specified
by program name or program function key selection. The
terminal manager routes subsequent operator entries to the
associated program. Two program function keys are
reserved:

• PF3 - signals the Multiple Terminal Manager to termi
nate the current program and display the menu screen

• PF6 - signal can still be defined to print the contents
of the current screen on the system printer.

The mlnlmum hardware configuration required for the Mul
tiple Terminal Manager is as follows:

• Ser;es/! processor (either 4952 or 4955) with 96KB
storage

• Disk storage device (either 4962 or 4963)

• An Event Driven Executive $SYSlOG device. It is recom
mended but not mandatory that this be a non-Multiple
Terminal Manager terminal for receiving any system

Part 2: EDX Multiple Terminal Manager 17

messages during the Multiple Terminal Manager exe
cution.

• Display station (either 4978 or 4979)

• Printer - IBM 4973 or IBM 4974 (to define a $SYSPRTR
for error messages).

The following optional hardware is supported:

• Additional 4978 or 4979 terminal devices

• Teletype 2 devices connected to an ACCA adapter

• Printers as supported by EDX Version 1.1

• Additional direct access devices (disk or diskette) as
supported by EDX Version 1.1

• Additional storage as supported by EDX Version 1.1.

2 Trademark of the Teletype Corporation.

18 Version 1.1 Planning Guide

o

o

o

o

/ /

/ / RJE
/ / /

--/--/--/

EDl t---

EDX lAM Appli-
Super- cations
visor

SORT/ ---
MERGE

Appli- -
cation
area

28K 14K 22K

<----------ASO------------>

Hardware:
• Processor - 4952
• Storage - 128K
• Printer - 4974
• Disk - 4962-4
• Diskette - 4964
• Displays (5) - 4978

Software:
• Event Dri ven -Execut i ve V 1.1
• Indexed Access Method (lAM)
• COBOL library
• Multiple Terminal Manager (MTM)
• Remote Job Entry (RJE)
• Event Driven language (EDl)

Figure 2. Transaction Oriented System

/

8
/

COBOL
Transaction
Programs

48K

MTM

16K

/

<------------AS1--/------>
/

/

4978

4978

Part 2: EDX Multiple Terminal Manager 19

A
I
I
I
I
I
I

64K
I
I
I
I
I
I
I
I
v

/

/

/

/EP Supervisor

28K
/ /

lAM
COBOL Transaction

14K Programs

RJE 20K

16K
MTM

ASO
16K

AS1

Hardware:
• Processor - 4955
• Storage - 128K
• Printer - 4973
• Diskette - 4964
• Disk - 4963
• BSC single line - 12074
• Displays (5) - 4978

Software:
• Event Driven Executive
• Indexed Access Method (lAM)
• COBOL Compiler
• COBOL Library
• Multiple Terminal Manager (MTM)
• Remote Job Entry (RJE)

4978

4978

-

/ -
/

/

/

COBOL
Compiler

32K

AS2 /

/

/

4979

Figure 3. Transaction Oriented/Program Development System

20 Version 1.1 Planning Guide

c

4978

o

c

\ C'"

o

SOFTWARE

The mlnlmum software requirements for executing the Mul
tiple Terminal Manager under EDX are:

• EDX Supervisor Version 1.1 (5719-XSl)

• EDX Utilities (S719-UT3).

• Program Preparation Facilities (5719-XX2), required
for program preparation and installation of Multiple
Terminal Manager applications

Additional software supported by the Multiple Terminal
Manager includes:

• EDX Indexed Access Method (5719-AM3) if indexed I/O
will be used

• EDX FORTRAN (5719-F02) if FORTRAN applications are to
be executed

• EDX COBOL (5719-CB3 and 5719-CB4) if COBOL applica
tions are to be executed.

PROGRAM OPERATION

The Multiple Terminal Manager is invoked using the $l com
mand. This will cause the Multiple Terminal Manager pro
gram manager to be loaded into storage and activated. The
first program activated by the program manager is the
initialization routine.

MULTIPLE TERMINAL MANAGER INITIALIZATION PROGRAM

This program determines the number of terminals that are
being controlled and prepares the tables and in-storage
control blocks to support those terminals. The initial
ization routine loads and initializes a terminal server
for each terminal that is to be controlled by the Multiple
Terminal Manager. When initialization is complete, con
trol is returned to the program manager.

Part 2: EDX Multiple Terminal Manager 21

TERMINAL SERVER PROGRAMS

The terminal server programs perform all input/output and
interrupt handling functions for those terminal devices
operating under the control of the Multiple Terminal Man
ager. There is one terminal server program for each termi
nal assigned to the Multiple Terminal Manager.

When a server program is first activated by the initial
ization program, it will display a base Multiple Terminal
Manager message screen and wait for an interrupt from the
operator. If a sign-on procedure is required for this ter
minal, the server will invoke the sign-on procedure and
wait until an operator has signed on properly. After pro
per sign-on, the server will perform I/O operations as
needed to satisfy the requirements of operator dialogues
and the associated application program. The terminal
servers use ENQ/DEQ and WAIT/POST mechanisms for inter
facing with the program manager.

APPLICATION PROGRAM MANAGER

The application program manager provides the Multiple
Terminal Manager program management facilities required
to satisfy operator requests. The program manager con
trols the contents of the program area and the initializa
tion of programs within the area.

The Multiple Terminal Manager is a transaction processing
subsystem which executes as an application program under
the Event Driven Executive. The Multiple Terminal Manager
transactions are initiated by a terminal operator using a
transaction selection menu (also referred to as a program
selection menu). Programs can request single or multiple
operator prompts, process the input, and then request
additional input or terminate.

The Multiple Terminal Manager applications are automat
ically connected to a terminal when a transaction begins.
The Multiple Terminal Manager in turn processes terminal
I/O for the these applications. The applications execute
within the managed program area, and are provided program,
terminal, screen and file management services through
calls to the Multiple Terminal Manager. For exampl~, a
program executing under control of the Multiple Terminal
Manager displays a menu screen offering the operator a
choice of functions. Based on the operator's selection,
the application program then performs processing oper
ations, such as reading information from a data file, dis
playing the data at the terminal, and waiting for the next
response.

22 Version 1.1 Planning Guide

()

o

o

o

PROGRA" "ANAGE"ENT

The program management facilities provide the capability
for the control of application programs while performing
their respective transactional processes within a single
program area. Because all of the Multiple Terminal Manager
application programs operate in the same program area, the
Multiple Terminal Manager program management facilities
contain the support needed to allow multiplex operation
and sharing of the program area.

The application programs using these program/storage man
agement facilities will always have the following four
items associated with them:

1. The application program itself. This is the user-writ
ten code that performs the transaction processing as
required by the user. It will reside in the programs
file and be loaded into the in-storage program area by
the manager.

2. The "swap out" data set. This data set is used by the
manager to save programs and data across calls to
ACTION, LINK, LINKON, CYCLE, and WRITE.

3. The input buffer. This buffer contains the data that
was last entered by the operator when the current seg
ment of the application program is entered. This buff
er also contains the protected characters of the
screen display that the application program is prepar
ing for the next dialogue with the operator. Refer to
Figure 4 for additional information. This buffer is
automatically allocated by the Multiple Terminal Man
ager and is 1920 bytes long.

4. The output buffer. This buffer contains the unpro
tected characters of the screen display that the cur
rent application program is preparing for the next
dialogue with the operator. These unprotected charac
ters can either be default values or the response to an
operator query. Refer to Figure 4 for additi~nal

information. This buffer is automatically allocated by
the Multiple Terminal Manager and is 1024 bytes long.

The application programs will interface with these facili
ties using the callable functions described in the follow
i ng paragraphs.

Part 2: EDX Multiple Terminal Manager 23

ACTION - Fetch Operator Response

The ACTION function provides the application program with
the ability to display a screen and then to obtain the
operator's input to a display on the terminal screen. This
call function should be preceded by one of the calls to
format the display buffer.

When this funct~on is called, the manager saves the infor
mation needed to return to the next sequential program
instruction when the ACTION function is complete. The man
ager then communicates with the operator at the proper
terminal and constructs the buffer to be returned to the
calling program. While the manager is performing this
operation for the calling program, the storage space con
taining the calling program might be placed (by the manag
er) with one of the other application programs, thus
allowing the sharing of the storage resource among several
application programs. When the requested ACTION function
has been completed and the storage has been freed by
another application program, the manager will reload the
calling application program and return control to that
program at its next sequential instruction. Figure 4 shows
the status of the input and output buffers when this func
ti on 1 s called.

LINK - Load and Execute Program

LIHKON

The LINK function enables an application program to com
plete its own execution by loading and executing some oth
er application program. Once an application performs a
CALL LINK, that program will not be returned to from the
manager, unless the manager detects an error in the call
ing sequence to the LINK function; consequently,
instructions following a CALL LINK must be included to
handle this problem. Refer to Figure 5 for more informa
tion. Also, Figure 4 shows the status of the in~ut and
output buffers when this function is called.

The LIHKOH function is a combination of the functions pro
vided by the ACTION and LINK functions; that ls, it
requests an operator action and, when this action is com
plete, loads and executes some other application program.
Figure 4 shows the status of the input and output buffers
when this function is called.

24 Ver,sion 1.,1 Planning Guide

o

c

o

C
~ 1\

I

;'

c

Buffer contents upon Input buffer Output buffer
return from

- Terminal operator Data entered Blanks (X'40')
by operator

- CAll lINK Blanks (X'40') Unchanged from
calling program

- CAll lINKON Data entered Blanks (X' 40')
by operator

- CAll CYCLE Blanks (X'40') Unchanged

- CAll SETPAN Protected data Unprotected data
from new from new screen
screen panel panel

Buffer contents upon Input buffer Output buffer
program exit by

- CAll ACTION Write protected Scatter written
data if CAll into unprotected
SETPAN issued fields on screen

- CAll LINKON Same as by Same as by CALL
CALL ACTION ACTION

- CALL LINK Write protected
if CALL SETPAN Saved
issued

- CALL CYCLE Same as by Same as by CALL
CAll LINK LINK

Figure 4. Buffer contents and usage during control of the
Multiple Terminal Manager program/storage manager.

CYCLE - Suspend Current Terminal Application

The CYCLE function provides an application program with
the capability of suspending itself to allow other appli-

Part 2: EDX Multiple Terminal Manager 25

cations or terminals to become active. After other appli
cations have had an opportunity to execute, the manager
will reload the calling program and return control to it
at the next sequential instruction after the call to
CYCLE. Refer to Figure 4 for more information.

MENU - Return to Multiple Terminal Manager Control

The MENU function provides the application programs with
the capability of aborting their own operation and return
ing to the control of the Multiple Terminal Manager base
program with the operator selection menu displayed on the
terminal. The operator at a terminal can perform this same
function with the PF3 key on his terminal.

WRITE - Output to an Asynchronous Terminal

The WRITE function is provided for those applications that
use asynchronous terminals such as the Teletype 3 ASR 33.
It causes the specified buffer contents to be displayed on
the specifi~d terminal. After the display has been written
on the terminal, the application program must then perform
a CAll ACTION to receive responses back from the operator.
This function executes in a similar fashion to the func
tions described under "Storage/Program Management" in
that the application program does not remain in storage
while the buffer is being written.

Terminal/Screen Management

The terminal screen management facilities provide you
with a simplified method of performing the terminal handl
ing functions that your application program may require.
In addition to providing the means of operating with the
Series/1 keyboard/CRT devices, the terminal/screen manag
er also provides facilities for handling ~synchronous

terminal devices. Application programs using keyboard/CRT
terminals may interface to the terminal/screen management
facilities through four callable functions, while the
interfaces with asynchronous terminals will use only one
callable function.

Trademark of the Teletype Corporation.

26 Version 1.1 Planning Guide

o

o

c

c

c

SETPAN - Format the Input and Output Buffers

The SETPAN function provides the application program with
the ability to request that a specified screen be
retrieved from the screens file and loaded into the input
buffer. The screen images in the screens file will have
been built using the $IMAGE utility. The contents of this
input buffer will then be displayed on the next call to
ACTION, LINK, or LINKON. The screen will be written on the
terminal display with all positions write-protected
except those in which nulls (X'OO~) were defined.

When this function is called, one of the parameters will
specify the name of the screen to be retrieved.

SETCUR - Move Cursor to Specified Position

The SETCUR function provides the application program with
the ability to identify the character position at which
the terminal/screen manager will display the cursor when
the screen is displayed.

BEEP - Set Audible Alarm

CHGPAN

The BEEP function provides the application program with
the ability of activating the audible alarm on the next
CALL ACTION as a signal to the terminal operator. This
function is ignored for those terminals that do not have
an audible alarm capability.

The CHGPAN function is used to notify the terminal manager
of changes to the number of protected/unprotected charac
ters of a screen panel in the input buffer so that the
terminal manager will know how many unprotected data char
acters to write on the next output cycle.

Figure 5 is an example of an application program that per
forms MTM functions to converse with an operator, to allow
other applications to run, and to link to another applica
tion program.

Part 2: EDX Multiple Terminal Manager 27

ENTRY--> * Start
•
•

CALL SETPAN (1)
•
•

CALL ACTION (2)
* Process input buffer

•
•

CALL CYCLE (3)
•
•

* link to new program
CALL LINK (4)

* If LINK returns, it
* was unsuccessful
* ERROR HANDLER (5)

•
CALL MENU (6)

Figure 5. Sample Application Program

1. Read screen image from data set. Protected data goes
into the input buffer and unprotected data goes into
the output buffer.

2. The ACTION function writes protected data from the
input buffer, and writes unprotected data from the
output buffer. It then reads operator inputs into the
input buffer.

3. The CALL CYCLE suspends the program to allow others to
execute.

4. The last call in this application program terminates
the program and starts the next one.

5. An error handling routine in the event that the manag
er detects ~n error in the call i ng sequence for the
LINK function.

6. The CALL MENU within the error handling routine termi
nates the current program and returns to the Multiple
Terminal Manager with the basic menu displayed.

28 Versi on 1.1 Planni ng Gui de

o

o

c

(~
J

o

File Management

FIlEIO

The file management facilities provide common,
easy-to-use support for all disk data transfer operations
as needed for the application programs. These facilities
provide support for both indexed and direct files under
the control of a single callable function FILEIO (Perform
Disk I/O)

The FIlEIO function performs read and write operations on
the disk using either indexed or direct accessing of the
information. You specify the desired operation to the pro
gram using a file control area. This is a callable func
tion, and the calling program will remain in storage while
the operation is taking place.

FIlEIO provides the facility to access previously created
files using the call interface described earlier. These
files must have been previously defined and loaded using
an offline user-written utility.

CAll FIlEIO,(FCA),(BUFFER),(RETURN CODE)

Figure 6. FIlEIO

The calling parameters are:

• File Control Area (FCA) - Address of a table with the
parameters describing the requested operations:

• BUFFER - Address of the user program I/O buffer. This
is in the user program space. FIlEIO and Indexed
Access Method have their own buffers.

• RETURN CODE - Address of the 2-byte field to contain
the return code passed back by FIlEIO. This can be a
FIlEIO return code, or it can be passed through from
the Indexed Access Method.

Part 2: EDX Multiple Terminal Manager 29

Request type

Data set name

Key relation operator
or number of records

Key length

Key locatio~ or logical
EOD record number

Relative record number

Volume name

Figure 7. File Control Area

Indexed File Request Types

REtS

REtR

PUTU

PUTD

PUTN

GETD

GETS

IDEt

lets

GTRU

GTSU

Function

Release from sequential processing mode

Release from random processing mode

Put operation, update mode

Put operation, delete mode

Put operation, new mode-adds a record to the
fi Ie

Get operation, direct read

Get operation, sequential read

Delete operation

Close an indexed data set

Direct get, update mode

Sequential get, update mode

30 Versi on 1.1 Planni ng Gui de

o

/-----\

\".J

o

c

Djrect File Request Types

Function

READ

WRIT

SEOD

Read the record defined by the RRN field of the
FCA into the user-provided buffer.

Write the record defined by the RRN field of the
FCA into the major user-provided buffer.

Set the system-maintained EOD pointer to the
record number provided in the relative record
number field of the FCA.

Multiple Terminal Manager utilities

The utility program support consists of operator service
functions that assist you in the operation of the Multiple
Terminal Manager system.

Terminal Activity Report. This report utility enables you
to display the names and current status of the terminals
under control of the system.

Terminal Connection Facilities. Provides the operator
with the facilities to disconnect and reconnect terminals
during the normal Multiple Terminal Manager operation.
These services are performed by the two operator commands!

• Disconnect - Turn Off Specified Terminals. This facil
ity provides the operator with a means of shutting
down individually-specified, or all terminals, on the
Multiple Terminal Manager system. If the operator
requests that a terminal that is currently involved in
a transaction is to be disconnected, that terminal
will be allowed to complete its associated transaction
before being disconnected.

• Reconnect - Turn On Specified Terminals. This facility
provides the operator with a means of restoring a
disconnected terminal back into operation.

Programs Report. Prints information about available pro
grams.

Part 2: EDX Multiple Terminal Manager 31

APPLICATION DESIGN INFORMATION

PROGRAMMING CONSIDERATIONS

The Multiple Terminal Manager applications are processed
as initial tasks of a program which execute within the
program manager's overlay area. On the first execution of
a program during a transaction, the program is brought
into the overlay area by a LOAD. Then, when the program
returns to the Multiple Terminal Manager through a CALL
ACTION, WRITE, CYCLE, MENU, LINK or LINKON, the Multiple
Terminal Manager dequeues the program from the system
using DETACH. Also, if the program returned using a CAll
ACTION, WRITE or CYCLE, the Multiple Terminal Manager
writes the program out to the MTMSTORE data set. The over
lay area is then free for use by other programs. When the
Multiple Terminal Manager is ready to reexecute that pro
gram for subsequent processing of the transaction, the
program manager reads the program into the overlay area
and requeues that program to the system using ATTACH.

Thus, the Multiple Terminal Manager transaction programs
should adhere to the following conventions:

• No subtasks should be active across calls to the Mul
tiple Terminal Manager

• No system-wi de resources should be enqueued across
calls to the Multiple Terminal Manager

• Transaction programs cannot use overlays

• Transaction programs should be written as main pro
grams with the expectation of receiving four parame
ters at initiation

• Transaction programs should use the Multiple Terminal
Manager for all terminal and disk I/O

• All other I/O should be complete across calls to the
Multiple Terminal Manager

• Transaction programs should terminate only with calls
to the Multiple Terminal Manager and should not issue
any PROGSTOP, ENDTASK, or DETACH instructions

• Error handling routines should terminate with a CALL
MENU.

32. Version 1.1 Planning Guide

0, ... 111 '

, ,

o

o

o

o

MULTIPLE TERMINAL MANAGER DATA SET REQUIREMENTS

MTMSTORE

TERMINAL

MTMSTORE, the Multiple Terminal Manager work file, con
tains:

• The Multiple Terminal Manager program table

• The Multiple Terminal Manager screen table

• A program and buffer save area for each terminal
defined in the TERMINALS specifications file.

The size of the MTMSTORE file can be calculated as follows:

• Allow 10 bytes per screen in the SCRNS volume; round up
to the nearest sector

• Allow 12 bytes per program in the PRGRMS volume; round
up to the nearest sector

• Allow per terminal:

1. Enough sectors to hold a copy of the largest pro
gram in the PRGRMS volume

2. Four additional sectors for full screen devices.

This data set is in the volume MTMSTR.

This file is built with the $FSEDIT system utility. It
contains one record/terminal containing the specification
of a terminal.

Dvtp~Termname~Menuscrn~Y/N

Dvtp Type of terminal. Enter:

4979 IBM 4979 full screen
4978 IBM 4978 full screen
3335 ASR 33/35 line at a time

Termname 1- to 8-character name of a terminal. This name
must be identical with the device name specified
on the EDX TERMINAL statement at SYSGEN. This
name should not be the $SYSLOG device.

Menuscrn The data set name of the screen to be displayed
after an operator exits a transaction or signs
on. For asynchronous terminals, this field is

Part 2: EDX Multiple Terminal Manager 33

Y/M

ignored.

Y = Thi s t,ermi na'l is requi red to use the SIGN-ON
and SIGNOFF programs. If a user program named
SIGH-ON does not appear in the program library,
this terminal is not usable. N = This terminal
is always si gned on.

Comment records are acceptable in thi s fi Ie as well as com
ments following specification records. Comment records
must have an * in position 1.

An example of this file would be:

4979,DISPLAYl,MENUSCRN,n
4978,DIS49780,MENUSCRN,y
3335,ACCA1,MENUSCRN,y
/*

End of specifications must be indicated with a /* record.

Before processing each record during task set startup, the
record is listed on $SYSPRTR. When startup is complete,
all terminals will have the Multiple Terminal Manager IPL
screen displayed. The terminal data set is in the volume
PRGRMS.

Screen Format Volume - SCRNS

This volume contains screen panel data sets for full
screen images built using the $IMAGE system utility. These
screens must have been built with a 24x80 dimension size.

User Application Program Volume - PRGRMS

All programs loaded by the Multiple Terminal Manager are
loaded using the names of the data sets on this volume.
The terminal file is also in this volume.

Application programs are stored in this volume as the out
put of the $UPDATE utility. The names of the programs are
the names used by the operator from the MENU mode to
invoke programs and can also be used as the program param
eter on a CALL LINK from one program segment to another.

When the Multiple Terminal Manager is initiated, a program
table is 'built containing the name of each program data
set in the PRGRMS volume.

34 Versi on 1.1 Planni ng Gui de

o

o

c

o

Each program is checked to determine if it is too big for
the program area in the Multiple Terminal Manager. If this
occurs, the user should split the program into segments
using LINK or increase the size of the program area.

Sign-On File - SIGNONFL

This file contains sign-on records for use by the SIGN-ON
program. The format of the file is:

Field Name Positions Contents
EMPLOYEE 1-08 Employee number
PASSWORD 9-12 Password
USERID 13-16 User ID
USER CLASS 17-20 User class
NAME 21-32 Employee name

This file is built by using the $FSEDIT EDX utility. This
fi Ie is in the volume PRGRMS. A /* in columns 1 and 2
denote the end of the file.

OPERATOR INTERFACE

Multiple Terminal Manager Initialization

The Multiple Terminal Manager can be initiated from any
terminal defined to the system by entering the $L
$MTM,PRGRMS command. The $L $MTM command will cause the
Multiple Terminal Manager program manager to be initi
ated. The program manager will then initiate a terminal
server for each terminal specified in the TERMINAL file.
Upon completion of initiation, the IPL screen, IPLSCRN,
will be displayed at each of the Multiple Terminal Manager
terminals. IPLSCRN will specify that the operator press
the enter key in order to display either the sign-On or
menu screen.

The data set IPLSCRN is displayed on each full screen ter
minal after the Multiple Terminal Manager ;s started. It
requests that the operator press the enter key to connect
the terminal to the Multiple Terminal Manager. It should
not be displayed again.

Part 2: EDX Multiple Terminal Manager 35

For execution VOL ID Data set name Size

SwalJ data set MTMSTR MTMSTORE See MTM data
Program manager PRGRMS CDMPGMGR 36 Sectors
4978/4979 term server PRGRMS CDMFlSCR 6 Sectors
TTY term server PRGRMS CDMTTY 6 Sectors
MTM initialization PRGRMS CDMINIT 22 Sectors
Terminal specifications PRGRMS TERMINAL 4 Sectors

(appx)
User application pgms PRGRMS (User specified) ?

? ?

Screen formats SCRNS (User specified) 4 Sectors
SCREENS Per screen

Sign-on file PRGRMS SIGNONFl 4 Sectors

For program preparation
MTM stub (User specified)
MTM auto call list (User specified)

For rebuilding MTM
MTM Source (User specified)

(appx)

8 Sectors
2 Sectors

2500 Sectors

Note: MTMSTR,PRGRMS,SCRNS must be defined at SYSGEN time as
logical volumes.

set reqm'ts

This may necessitate a remapping of the disk on which they will reside.

Figure 8. Summary of Multiple Terminal Manager Data Set Requirements.

SIGN-ON

If sign-on was specified for the terminal, then the
si gn-on screen, si gn-on, wi 11 be di splayed foIl OWl ng the
IPl screen. The sign-on screen will require that the oper
ator enter a user-id and password. After sign-on process
ing has been completed, then the menu screen will be dis
played.

PROGRAM INITIATION AND TERMINATION

After the Multiple Terminal Manager initiation and
si gn-on processi ng have been completed, then the menu
screen is displayed. The menu screen is the screen from

36 Versi on 1.1 Plann; ng Gui de

0

o

c

DISCONNECT

RECONNECT

o

which the operator can initiate transactions. A trans
action is initiated by the operator entering either a pro
gram name or pressing a PF key when the menu screen is
displayed. A PF key will initiate program PFOn where n
reflects the number of the PF key pressed. If data is
entered, the Multiple Terminal Manager will consider the
first eight bytes to be a program name.

After a transaction is initiated, the operator can termi
nate it by pressing the PF3 key. Upon termination of the
transaction, the menu screen will be redisplayed. Subse
quently pressing the PF3 key from the menu screen will
cause the sign-on screen to be redisplayed if sign-on was
specified for that terminal. Otherwise, PF3 will be a
no-op and the menu screen will remain displayed.

Terminals can be disconnected from the Multiple Terminal
Manager or the Multiple Terminal Manager can be terminated
via the DISCONNECT facility. DISCONNECT is invoked from
the menu screen by keying in either DISCONNECT,termname or
DISCONNECT,ALL. If a referenced terminal is in a trans
action, that transaction is allowed to complete. When the
terminal returns to MENU state, it is automatically signed
off and displays the YOU ARE DISCONNECTED message. Termi
nals in MENU state are signed off immediately.

If ALL is specified, all terminals are disconnected. When
the last terminal is truly disconnected, whether using ALL
or separate disconnects, the manager task is stopped.

To enter ~his command from a menu screen, the screen must
contain at least nineteen unprotected characters.

While a terminal continues in a transaction with discon
nect pending, the audible alarm is sounded after every
interaction to tell the operator that a disconnect is
pending.

If the referenced terminal is disconne~ted, it is recon
nected in a signed-off status if applicable. If it is not
disconnected, the command is ignored.

Part 2: EDX Multiple Terminal Manager 37

PROGRA"S REPORT

This report displays data from the program table about
each available program. It is intended mainly for debug
ging during development of the manager but is included as
a working example for possible use.

The program name for this program is PGMRPT.

TER"INAL ACTIVITY REPORT

SCREEN PRINT

This program displays the names and status of all termi
nals on the system. If more than 22 terminals are
attached, the operator must press ENTER to page to succes
sive groups of 22 lines.

The program name for this program is REPORT.

Terminal displays can be printed on the system printer
using the PF6 key to invoke the system's print screen
facility. EDX print screen facility. This entails press
i ng the PF6 key.

DISTRIBUTION AND INSTALLATION

The Multiple Terminal Manager will be distributed as a
licensed program and will consist of the following items:

• Prebuilt Multiple Terminal Manager - This will be a
ready to load program consisting of a program manager,
file manager, terminal servers and sample programs.

• Multiple Terminal Manager source - This will be the
complete set of the Multiple Terminal Manager source
code for the user who wants to tailor his Multiple Ter
minal Manager environment.

• Application Stub - This will be the Multiple Terminal
Manager stub in object format that the user must
include with his application programs at link time.

38 Version 1.1 Planning Guide

o

c

o

0'··
,,'I

• Application Stub AUTOCALL List - This 15 the auto list
that the user will use at link time to cause the appli
cation stub to be appended to his program.

• Screen Formats - This will be a set of screens to sup
port the default Multiple Terminal Manager and sample
programs.

• Terminal File - This will be a set of miscellaneous
terminal statements to support the default system.

The user must create the following volumes on his system
disk:

• PRGRMS - This volume is for the Multiple Terminal Man
ager programs, user application programs and the ter
minal specifications file.

• SCRNS - This volume is for the screen formats used by
the Multiple Terminal Manager and user applications.

• MTMSTR - Contains only the MTMSTORE data set. This the
Multiple Terminal Manager swap file.

After the volumes have been created, the user can then copy
the prebuilt Multiple Terminal Manager, screen formats and
terminal file from the shipped diskettes to disk. This
will install the default Multiple Terminal Manager and
establish the following data sets.

Data sets within the PRGRMS Volume:

CDMPGMGR Multiple Terminal Manager program manager

CDMSVR89 Multiple Terminal Manager full screen, 4978 and
4979, terminal server

CDMSVR33 Multiple Terminal Manager TTY terminal server

CDMINIT Multiple
routine

Terminal Manager initialization

TERMINAL Multiple Terminal Manager terminal

other

specification file

Miscellaneous data sets needed for the sample
programs

Data sets within the SCRNS Volume:

IPLSCRN

SIGN-ON

The initial Multiple Terminal Manager started
screen

The sign-on screen

Part 2: EDX Multiple Terminal Manager 39

MENUSCRN The default menu screen

other Miscellaneous screen data sets needed for the
sample programs

If the user wants to tailor his Multiple Terminal Manager,
then he can re-assemble, re-build and replace the changed
Multiple Terminal Manager components.

The user can then modify his terminal specifications file
to match his system environment by using the $FSEDIT sys
tem utility. He can also add screen formats to the SCRNS
volume using the $IMAGE system utility.

Before executing the Multiple Terminal Manager, the user
has to create the MTMSTORE data set; refer to Figure 8 for
the MTMSTORE requirements.

PROGRAM PREPARATION

During program preparation, the user must ensure that the
link phase includes the Multiple Terminal Manager shipped
AUTOCAll list and application stub in order to resolve
CAlls to the Muftiple Terminal Manager function routines.

After linking his application programs with the Multiple
Terminal Manager application stub, the user then must
store the prepared program in the PRGRMS volume using $UP
DATE.

PERFORMANCE INFORMATION

The information shown in Figure 9 may be used for perform
ance planning purposes. The basis for the information is
from modelling the Multiple Terminal Manager system.
While the modelling results provide some general guide
lines as to the performance of the system, it should be
noted that the models are only partially validated for the
workloads modelled. Other workload assumptions may pro
vide a different set of performance results.

As a general guideline to Multiple Terminal Manager per
formance, the mean expected response time should be less
than or equal to 3 seconds with 1 to 4 terminals. The per
formance may exceed this range. Mean expected response
time is the average response time experienced from when
the user presses the enter key until the first character
of the response is displayed.

~o Version 1.1 Planning Guide

o

o

o

C:

o

3.0

2.5
CII

"'0
C
0
(,) 2.0 OJ
CII

C

OJ

E .;::; 1.5
OJ (Simple file update CII
c

with lAM) 0 ...
0.
CII • • OJ 1.0 • . 0: • • .. • • • (Simple file inquiry

0.5 without lAM)

2 3 4 5 6 7 8 9 10

Number of terminals

Figure 9. Multiple Terminal Manager Performance Trends

Figure 9 shows the response time results for each of the
transactions. The highest set of response times was
achieved under a complex file update transaction and the
lowest was with a non-Indexed Access Method simple file
inquiry. With all these cases the response time was under
2 seconds.

A key variable to response time results is the think plus
key-in-time associated with a set of terminals. When this
variable is very short, the system resources may be
stressed and can result in higher response times. When
this variable is increased, the mean response time will be
smaller.

Refer to Figure 10 for a definition of the transactions
used in the model. The think mean plus key-in-time for the
modelling was 20 seconds.

Part 2: EDX Multiple Terminal Manager 41

Program lAM Number of Number of application 0
ll!.e.g size Database disk I/O instructions executed

Simple 22K GETD 4 27.8K
inquiry

Simple file 22K GETD, 5 28.7K
inquiry/ PUTU
update

Simple file 15.6K 2 15.6K
inquiry
(non-lAM)

Complex file 48K GETD, 10 41.9K
update GETD,

PUTU

Figure 10. Transaction Description

The following were the modelling assumptions:

• Configuration

-4955 (translated)
-4963 (1 unit)
-4978 display terminals
-Adequate storage
-Indexed Access Method

• Workload

-Transaction rate of 3 per minute per terminal
-20 seconds (exponential) think plus key-in-time
-COBOL and Indexed Access Method application

o
42 Versi on 1.1 Planni ng Gui de

o

c

o

OVERVIEW

PART 3: EDX INDEXED ACCESS METHOD

The Indexed Access Method Licensed Program (5719-AM3) is a
data management system that operates under the IBM
Series/l Event Driven Executive. It provides you with an
Event Driven Language callable interface to build and
maintain an indexed data set and to access, by key or
sequentially, your records in that data set. In an indexed
data set, each of your records is identified by the
contents of a predefined field called a key. The Indexed
Access Method builds into the data set an index of keys
that provides fast access to your records.

INDEXED DATA SET FEATURES

For your applications using indexed data sets, the Indexed
Access Method offers several useful features:

• Direct and sequential processing. Multiple levels of
indexing are used for direct access, and sequence
chaining of data blocks is used for sequential access.

• Support for high insert and delete activity without
significant performance degradation. Free space is
distributed throughout the data set and in a free pool
at the end so that inserts can be made in place; space
provided by deletes can be immediately reclaimed.

• Access to a. single data set by several requests con
currently. These requests can execute from the same or
different programs. Data integrity is maintained by a
file-, block-, and record-level locking system that
prevents access to that portion of the file that is
being modified.

• Implementation as a separate task. A single copy of
the Indexed Access Method executes and coordinates all
requests. The buffer pool supports all requests and
optimizes the space required for physical I/O; in the
user program the only buffer required is the one for
the record currently being processed.

• An Indexed Access Method utility program ($IAMUTl)
which executes as a user program, and allows you to
create, format, load, unload, and reorganize an
indexed data set.

Part 3: EDX Indexed Access Method 43

DATA PROTECTION

The Indexed Access Method performs all input/output oper
at~ons by using system functions. Therefore, all data pro
tection facilities offered by the system also apply to the
indexed data sets. The following additional data pro
tection is provided by the Indexed Access Method:

• Exclusivity option. As a user of the Indexed Access
Method, you specify on the PROCESS or LOAD request
that the data set is for use exclusively. This allows
you to impose additional control where needed.

• Record locking. The Indexed Access Method
ically prevents two users from using the
record at the same time.

automat
same data

• Immediate write-back. This optional feature provides
the capability of having all updated records written
immediately to the data set.

• Accidental key modification. If you attempt to modify
the key field in one of your data records, the Indexed
Access Method prevents the modification from occur
ring. This helps ensure that your index and data
match.

DEVICES SUPPORTED

COMPONENTS

The Indexed Access Method supports indexed data sets on
these direct-access devices:

• IBM 4962 Disk Storage Unit

• IBM 4963 Disk Subsystem

• IBM 4964 Diskette Storage Unit

• IBM 4966 Diskette Magazine Unit

The Indexed Access Method consists of the following compo
nents:

• A load module that supports the execution of your
programs, which contain the Indexed Access Method
requests. Indexed Access Method functions are initi-

44 Version 1.1 Planning Guide

o

o

o

FUNCTIONS

c

o

•

ated by your programs through a CAll interface.

A set of object modules that you may use to generate a
customized Indexed Access Method load module (a read
only system, for example). If you use the supplied
load module, you do not need the object modules.

• An object module, called a link module, which you
include with your program to provide the interface to
the Indexed· Access Method. This link module is some
times called a stub.

• A set of copy code modules. You can reference these
modules from your programs to define symbolic labels
used in Indexed Access Method requests.

• A load module for the Indexed Access Method utility
program.

You request the services of the Indexed Access Method
through a call interface.

(CAllIAM,+FUNC,IACB,(PARM3),(PARM4),+PARMS).

The following functions can be invoked:

PROCESS

LOAD

GET

GETSEQ

Builds an indexed access control block (IACB)
and connects it to an indexed data set for read
ing, updating, inserting, and deleting records.
You can then use the IACB to issue requests to
that data set. A program can issue multiple
PROCESS functions and obtain multiple IACBs for
the same data set so that the data set can be
accessed by several requests concurrently.

Similar to PROCESS but allows loading or
extending the initial collection of records.

Directly retrieves a single record from the data
set. If you specify the update mode, the record
is locked (made unavailable to other requests)
and held for possible modification or deletion.

Sequentially retrieves a single record from the
data set. If you specify the update mode, the
record is locked (made unavailable to other
requests) and held for possible modification or
deletion.

Part 3: EDX Indexed Access Method 45

PUT

PUTUP

PUTDEL

RELEASE

DELETE

ENDSEQ

EXTRACT

DISCONN

Loads or inserts a new record depending on how
the data set was connected: LOAD or PROCESS.

Replaces a record that is being held for update.

Deletes a record that is being held for update.

Releases a record that is being held for update.

Deletes a single record, identified by its key,
from the data set.

Terminates sequential processing.

Provides information about the file
control block).

(file

Disconnects an lACS from an indexed data set,
thereby releasing any locks held by that IACB,
writing out all buffers associated with the data
set, and releasing the storage used by the IACB.

These functions provide you the support necessary to build
an indexed data set and to perform direct or sequential
processing on that data set. Routines using these services
are written in Event Driven Language and can be included in
programs written in any language that supports the calling
of Event Driven Language routines.

In addition, the Indexed Access Method utility program
($IAMUTl) provides a set of commands which help you manage
your indexed data sets. The following commands are pro
vided by the Indexed Access Method utility program:

CR

DF

The create function allows you to allocate space
for your data set in a volume by internally
invoking the $DISKUTI system utility. When the
create command is entered on a terminal, the
$DISKUTI program is loaded and you can then use
the AL command of $DISKUTI to allocate a data
set; any other $DISKUT1 function can also be
performed. Commtinication to the $DISKUTI utility
co~tinues until the end command (EN) is entered,
at which time communication to the Indexed
Access Method utility program is restored.
Information on the $DISKUTI utility can be found
in the Utilities, Operator Commands and Program
Preparation manual.

The define command of the Indexed Access Method
ut iii ty program uses an ex i st i ng data set and
user-specified information to define an indexed
file. when the define command is entered, you
are prompted for the immediate write-back option
and for the volume and data set names of the data

46 Version 1.1 Planning Guide

o

o

o

c

c

DX

EC

EN

LO

RO

SE

UN

set to be formatted. The define function per
forms size calculations and formats the data
set. The size calculation information is
returned to your terminal at the completion of
the define function. Prior to entering the
define command, you must use the SE command to
set up parameters that determine the size and
format of the indexed data set.

The display command allows you to display the
current saved values for the define command, as
described above.

The echo command allows you to set or reset echo
mode. When echo mode is on, the input and output
of the current utility session is logged on the
$SYSPRTR device. Echo mode remains on until
either the current utility session is ended or
it is reset by the EC command. When the Indexed
Access Method utility is loaded, echo mode is
initially off. Note: Output from the $DISKUTI
program will not be logged since the terminal
input/output is handled directly by the $DISKUTI
utility (not $IAMUTl).

The end command ends the
session.

current utility

The load command loads an indexed data set from
a sequential data set.

The reorganize command loads an empty indexed
data set from an existing indexed data set.

The setparms command prompts you for parameters
that determine the structure and size of the
indexed data set, and sets these values in a
parameter list. Size calculations are performed
using the parameters you specify and are
returned to your terminal. The setparms command
should be entered prior to using the define
command to do the actual data set formatting.
All values that you specify for parameters of
the setparms command are saved (until the end of
the session) for later invocations of the
setparms command and the define command. You can
display these values by entering the DI command.

The unload command unloads an indexed data set
to a sequential data set.

For each of these utility functions, you are prompted for
the volume and data set names of the input and/or output
data sets.

Part 3: EDX Indexed Access Method 47

INDEXED DATA SETS

You can organize a collection of data into an indexed data
set if the data consists of fixed-length records and each
record is uniquely identified by the contents of a single
predefined field. This identifier is called the key.
Records are arranged in an indexed data set in ascending
order by key. Some reserved space can be distributed
throughout the data set so that records can be inserted in
their key position during processing. This space is called
free space.

The Indexed Access Method puts records into an indexed
data set in either of two ways:

1. In LOAD mode, records are presented in ascending order
by key and are loaded into the data set sequentially,
skipping any free space. These records are called the
base records. Each record loaded must have a new high
key; that is, it must have a key higher than any key
already in the data set.

2. In PROCESS mode, records are inserted in their proper
key position relative to records already in the data
set. Records can be inserted using the free space
skipped during loading or, if a record has a new high
key, in the unused space after the last loaded record.

You connect an indexed data set to your application
program with the LOAD or PROCESS request.

The total number of base records that can be loaded is set
using the define command of the Indexed Access Method
utility program when the indexed data set is built. It is
not necessary, however, to load all the base records
before processing can begin. The data set can be connected
for loading some of the base records, connected for proc
essing including inserts, and later connected for loading
more base records. Figure 11 illustrates this sequence.

The total amount of free space for inserts is specified by
the define command of the Indexed Access Method utility
program when the indexed data set is built. This free space
is distributed throughout the data set in the form of free
records in each data block, free blocks in each block
grouping, and/or in a free pool at the end of the data set.

An indexed data set contains space allocated for base
records and insertions and for a multilevel index and the
control information required to use the index and the free
space. This type of information is useful for planning,
diagnostics, and a general understanding of the Indexed
Access Method. See "Data Set Format" on page 70 for a
description of the format of the indexed data set.

48 Version 1.1 Planning Guide

o

o

o

o

r-----------.. <--Fi rst record has
lowest key

<---.....

Step 1.
load a
portion of
the base
records

<

l
<----I

<----I

<----t--- Step 2.
Insert new
records. <----4

High
key after
step 1.

<----4

Step 3.
load more
base
records.

I
<

<----' High
key after
step 2.

High key
after
step 3.

L
l

> Unused space.

J

Figure 11. loading and Inserting Records in an Indexed Data Set

PROGRAM OPERATION

The Indexed Access Method compri ses of a load module and a
link module. The link module is included in a user's pro
gram at link-edit time as an autocall module. The Indexed
Access Method performs I/O operations using standard data
management requests.

The Indexed Access Method operates under Version 1.1 of
the Event Driven Executive.

A single copy of the Indexed Access Method serves the
entire system. The Indexed Access Method can be loaded
automatically at IPl time through the $INITIAl feature of
the system, or it can be loaded manually by using the $l
(load) command. The Indexed Access Method does not need to

Part 3: EDX Indexed Access Method 49

-

be loaded before it is used by any program. The name of
the Indexed Access Method for loading purposes is $IAM.
Once loaded, the Indexed Access Method remains in storage
until cancelled.

The Indexed Access Method can be loaded into any address
space, including address space zero. It can be invoked
(through the link module) from any address space, includ
ing the address space it is in. Figure 12 shows an example
of a system containing the Indexed Access Method.

Address space 0 Address space 1 Address space 2

Application
program

EJ
Application

program
Control blocks
and buffer pool
- - - - - - - - -

Indexed

EJ Access
Method

Application
program Application

Event

EJ
program

Driven

EJ Executive

Each application program contains a copy of the link module,
which provides the interface to the single copy of the
Indexed Access Method.

Figure 12. Example System Environment

APPLICATION PROGRAM PREPARATION

Application programs that issue Indexed Access Method
requests are prepared as follows:

50 Version 1.1 Planning Guide

0, "~I
~ "

o

o

CI

o

1. Programs are assembled by any of these assemblers:

• The EDX assembler, $EDXASM, from the EDX Program
Preparation Facility (S798-XX2).

• The EDX macro assembler $SIASM (S719-AMA)

• The Ser;es/l macro assembler supplied by the Sys
tem/370 Program Preparation Facility for the
Series/l C5798-HHQ).

2. Use the linkage editor, $lIHK, to combine object mod
ules produced by any of the above assemblers, along
with the IBM-supplied link object module, into a sin
gle module.

3. Use the conversion program, $UPDATE or $UPDATEH, to
convert your module into loadable form.

APPLICATION DESIGN INFORMATION

This chapter provides guidelines for designing applica
tions that use the Indexed Access Method. It describes:

• Preparing and maintaining data

• Designing an indexed data set

• Using the functions provided

PREPARING THE DATA

The following sections describe how you can design an
indexed data set that uses space efficiently and provides
optimum performance.

Defining the Key

Define a single key field for each indexed data set by
specifying its size and position in the record when the
data set is built by the define command of the Indexed
Access Method utility program. The longer the key, the
l~rger the index contained in the indexed data set. There
fore the key should not be longer than necessary. However,
the key must be long enough to ensure uniqueness.

Part 3: EDX Indexed Access Method 51

Ensuring Uniqueness of the Key. In order to identify each
record in an indexed data set, each key must be unique. If
key duplication is possible, the key field should be
expanded.

Customer name is a good example of a key with which dupli
cations can occur. One way to avoid duplication is to
lengthen the key field to include other characters such as
part of the customer address or the account number. Since
the characters 'in the key must be contiguous, this sol
ution can involve rearranging the fields in the record.

Another way to eliminate duplication is to modify new
records dynamically whenever a duplication occurs during
loading or processing. A position at the end of the key
field can be reserved for a suffix code. Whenever a dupli
cate occurs, you can add a value to the suffix and make
another attempt to add the record to the data set. The
result can be a data set that contains a sequence of keys
such as Smith, Smith 1, Smith 2, and so forth. If you add a
suffix, you must use the entire unique key to access a
specific record.

providing Access by Hore Than One Key. To provide good
performance with both direct and sequential access, each
indexed data set is indexed by a single key. At times,
however, it may be useful to locate records by a secondary
key. For example, in a customer file indexed by account
number, you might want to locate a record by customer
name.

One way of providing access by a secondary key is to build
a second indexed data set composed of short records that
contain only the secondary and primary keys. Using the
secondary key to access this data set, the associated
primary key can be determined. The primary key can then be
used to locate the desired record in the first data set.

Where there are multiple keys to a data set, ensure high
performance by selecting as primary key the one that is
used most often or the one with which you plan to do
sequential processing.

Selecting the Block Size

Records can be blocked in an indexed data set. The block
si.ze must be a multiple of 256. Blocking reduces I/O
activity; it also allows for free records to be inter
spersed among base records to provide space for inserts.
Free records are one kind of free space; free blocks
included at the end of each block grouping, or at the end
of the data set, are others.

52 Version 1.1 Planning Guide

o

o

o

o

o

o

Specify record size and block size when building the data
set by the setparms command of the Indexed Access Method
utility program. Each block has a 16-byte header. There
fore, the number of records per block is:

(block size - 16)
record size

The result is truncated; that is, any remainder is
dropped. A remainder represents the number of unused bytes
in the block. Selection of a block size is largely depen
dent on record size, but the block size must be a multiple
of 256. Other factors to consider are insert activity and
buffer space.

Insert Act;v;ty. Each block contains allocated record
areas into which base records can be loaded and can con
tain free record areas into which records can be inserted
during processing. The ratio of allocated records to free
records in a block should be close to the ratio of esti
mated base records to estimated inserts in the data set.
Ideally, block size should be large enough to accommodate
enough records to approximate this ratio.

Buffer space. A large block size is advantageous in that
it minimizes the read/write activity, but it is costly in
terms of the read/write buffer space required from the
buffer pool. Some processing requires a buffer large
enough for two blocks.

Examples. A data set consists of 1000 base records with an
estimate of 500 records to be inserted and a record size
of 70 bytes. Select a block size and a number of free
records per block to build an indexed data set.

1. Selecting a block size of 256 with 1 free record per
block implies (256-16)/70 = 3 records per block, with
a remainder of 30 bytes. The ratio of 2 allocated
records and 1 free record accurately reflects the
insert activity. Buffer size is minimized. Some space
is wasted on the disk (30 bytes per sector). Designing
aO-byte records and 256-byte blocks for this data set
effectively uses these 30 bytes.

2. Selecting a block size of 512 with 2 free records per
block implies (512-16)/70 = 7 records per block, with
a remainder of 6 bytes. The ratio of 5 allocated
records to 2 free records underestimates the insert
activity. The larger block size requires a larger
buffer but increases I/O efficiency. Fewer bytes are
wasted on the disk (6 bytes in 2 sectors).

Part 3: EDX Indexed Access Method 53

Estimating Free Space

4

Specify free space for inserts using the setparms command
of the Indexed Access Method utility program.

An exact calculation to estimate free space is not neces
sary. Experience can be your best guide; if the need for
file reorganization is signalled (no space for an insert)
before a major portion of the free space is utilized, you
know you must adjust the mix of free records and free
blocks, reserve blocks, and reserve index blocks.

As a general approach, estimate not only the number of
inserts but also their distribution throughout the data
set. For example, consider a data set with 5 records per
block, and 10 data blocks per cluster.4 Suppose that the
data set consists of 300 base records and 200 inserts.

If the inserts are distributed evenly throughout the data
set, the pattern of inserts is:

Blocks

Inserts •• •• •• •• •• •• •• •• ••

With this kind of distribution you can specify 2 free
records per block to absorb the inserts; no free blocks
are needed.

Of course inserts do not usually occur in such an even
pattern. Free blocks help to absorb a concentration of
inserts. The more uneven the expected distribution, the
greater the free block specification should be.

Suppose the same number of inserts are distributed in this
pattern:

Blocks I
Inserts. •••• • ••• •• • •• •• • ••

With this distribution you must specify either 3 free
records per block, or 20~ free blocks with 2 free records
per block.

How suppose the distribution were more uneven:

A cluster is a group of blocks; the extent of the group being deter
mined by the structure of the index. This is more fully described in
"Data Set Format" on page 70.

54 Version 1.1 Planning Guide

o

o

o

o

o

0',
~

Blocks

Inserts • •••• • •
• •••
••••
•••

In this case a satisfactory mix of free space is 1 free
record per block and 40~ free blocks.

If the anticipated insert activity is confined to only a
few clusters, it is better to use a free pool. A free pool
is a group of blocks, at the end of an indexed data set,
that are available to be used wherever they are needed
within the file. However, in order to use blocks from the
free pool, the data set must be structured so that they
can be logically connected where they are needed. This
structure is specified with the RSVBlK and RSVIX parame
ters of the define command of the Indexed Access Method
utility program.

Use the RSVBlK parameter to indicate the percentage by
which a cluster can grow, by taking data blocks from the
free pool. The structuring is accomplished by leaving
reserve entries in the lowest level index blocks. These
reserve entries are not originally used, but can be used
later to point to data blocks taken from the free pool.

Use the RSVIX parameter to indicate the percentage by
which a cluster grouping can grow by adding new clusters.
This structuring is accomplished by leaving reserve
entries in the second-level index blocks. These reserve
entries are not originally used, but can be used later to
point to new lowest-level index blocks taken from the free
pool. This lowest-level index block is the seed for a new
cluster and can ultimately grow into a full-sized cluster
as data blocks are taken from the free pool.

As an example of the advantage of a free pool, assume that
a data set contains 50 clusters of 10 data blocks each and
40% of the blocks in the cluster are free blocks. There
are 200 free blocks in the data set. If most of the
inserts into the data set will fall into a relatively
small key range and do not normally require more than 50
blocks, 150 blocks are saved by specifying no free blocks
and a 40% RSVBlK.

A 25% FPOOl parameter provides the 50 blocks in the free
pool to be used where the inserts are required. The result
is that the data set still accepts all the anticipated
inserts and 150 blocks are saved.

Part 3: EDX Indexed Access Method 55

If insert activity into the data set is anticipated to be
relatively even, the space for inserts should be reserved
as free records and free blocks. This results in the best
response time from the Indexed Access Method.

If, however, insert activity into the data set is to be
primarily into one or more areas or key ranges, the space
for inserts should be reserved as reserve blocks and/or
reserve indexes. This results in the most efficient use of
space in the data set.

The space for inserts can be divided between free records,
free blocks, reserve blocks, and reserve indexes to suit
your requirements.

To determine how many blocks are required for an indexed
data set with a given combination of free records, free
blocks, reserve blocks, reserve index blocks, and free
pool size, use the SE command of the Indexed Access Method
utility program (see "Determining Size and Format").

BUILDING THE INDEXED DATA SET

The SE and DF commands of the Indexed Access Method utili
ty program allow you to specify the size and format of
your indexed data set and to do the actual data set
formatting. Use the SE command to enter those values that
determine the size of the indexed data set and to receive
size calculation information. Use the DF command to cause
the actual data set formatting to occur, using the values
previously specified on the SE command.

Determining Size and Format

The design of the data set is determined by these parame
ters of the SE command:

• BlKSIZE - Block size

• RECSIZE - Record size

• KEYSIZE - Key size

• BASEREC - Estimated number of base records

• FREEREC - Number of free records per block

• FREEBlK - Percentage of free blocks

S6 Version 1.1 Planning Guide

o

o

o

0

o

c

• RSVBLK - Percentage of reserved data blocks

• RSVIX - Percentage of reserved primary index blocks

• FPOOL - Percentage of free pool

• DElTHR - Percentage delete threshold

The define (DF) command fixes the size of the data set.
Therefore, BASEREC, FREEREC, FREEBlK, RSVBLK, RSVIX, and
FPOOL should be large enough to accommodate the maximum
number of records planned for the data set. To calculate
the size of the data set for a given combination of the
define parameters, use the SE command.

The DF command allows you to select the immediate write
back option. With this option you can cause modifications
to the indexed data set to be written to the file imme
diately. This contributes to the integrity of the file,
but increases response time.

Defining and Creating the Indexed Data Set

The setparms (SE) command allows you to receive the size
calculation information without actually performing the
data set formatting. The size of the data set and other
relevant information are returned to your terminal by the
utility. The calculations performed by the setparms func
tion are described in "Data Set Format" on page 70 and are
summarized in "Summary of Calculations" on page 84. Use
the DF command to actually format the data set. You are
prompted for the volume and data set names, and for the
immediate write-back option, of the data set to be format
ted. (Note: the data set must be previously created using
the CR command of the Indexed Access Method utility pro
gram and/or the Al command of the $DISKUTI utility.) This
data set is connected and then formatted by the define
function. If the data set does not contain sufficient
space to support the specified format, the amount of space
required is returned to you. Knowing the available space
and using the SE command, you can vary the define parame
ters to design a data set that fits. If the specified data
set does not exist, a connect error will occur and you are
given the option to retry. If you indicate to retry, you
are prompted for the volume and data set names of the data
set to be formatted and the function is attempted again.

Part 3: EDX Indexed Access. Method 57

Connecting and Disconnecting the Indexed Data Set

When you prepare to use an indexed file by the Indexed
Access Method, you must issue a LOAD or PROCESS request to
connect it to your program.

A LOAD or PROCESS builds an indexed access control block
(IACB) that is associated with an indexed data set. The
IACB connects a request to the data set.

Only one LOAD ~an be connected to the data set. However,
processing can take place concurrently with loading. No
LOAD or PROCESS is successful until the file has been for
matted using the define command of the Indexed Access
Method utility program.

Multiple IACBs can be associated with the same data set.
Data integrity is maintained by a locking system that
allocates file, record, or block locks to the requesting
IACB in order to prevent concurrent modification of index
or data records by other requests.

An IACB can hold only one lock at a time; therefore, if
your application requires concurrent execution of func
tions that obtain locks (direct update or sequential
update - see "Processing" on page 59 for a description of
these functions), you must issue multiple PROCESSes to
provide multiple IACBs. The Indexed Access Method retains
information about these requests in the IACB.

A DISCONN disconnects an IACB from the data set, releases
the storage for that IACB, releases locked blocks or
records being held by that IACB, and writes out blocks to
the data set that are being held in the buffer. The
DISCONN request can be made any time during loading or
processing.

There 1S no automatic DISCONN on task termination. It is
very important that you disconnect your indexed data sets
prior to terminating your task; failing to do so may pre
vent resources allocated to your task from being allocated
to other tasks and updates from being written back from
the buffer to your data set.

LOADING BASE RECORDS

Base records must be loaded in ascending order by key.
Initiate loading of base records with a LOAD request. Then
load the records with a PUT for each record. When the
desired number of records has been loaded, issue a DISCONN
request to terminate the load procedure. The only valid

58 Version 1.1 Planning Guide

o

o

o

o

o
PROCESSING

o

requests that can follow a LOAD request are:

• PUT

• EXTRACT

• DISCOHH

You need not load all the base records at once. A data set
that contains some records can be reconnected for loading
more records. The ~ey of each new record must be higher
than any key alreadY in the data set.

Also, the limit on base records as specified on the define
command of the Indexed Access Method utility program can
not be exceeded. If an attempt is made to load a record
after the last allocated record area has been filled, an
end-of-file condition is returned.

Only one user can have a data set connected for LOAD at any
time. Other processing requests can concurrently be made
to a data set that is being loaded. However, an attempt to
retrieve a record from a data block being loaded can result
in a no-record-found condition. You can load an indexed
file from a sequential data set by using the load command
(LO) of the Indexed Access Method utility program

Initiate the processing of an indexed data set with a
PROCESS ,request. After the PROCESS, any of the following
functions can be requested. Note that the update functions
require more than one request.

• Direct reading - Retrieval of a single record inde
pendent of any previous request

• Sequential reading - Retrieval of the next logical
record from the point of the previous request

• Direct updating - Retrieval of a single record for the
purpose of updating that record; subsequent completion
of the update by replacing or deleting the original
record.

• Sequential updating - Retrieval of the next logical
record for the purpose of updating that record; subse
quent completion of the update by replacing or delet
ing the original record

Part 3: EDX Indexed Access Method 59

Direct Reading

Direct Updating

• Inserting - Placement of a single record in its log
ical key sequence in the indexed data set

• Deleting - Direct removal of a single record from the
indexed data set

• Extracting - extract data describing the data set

When the function is complete, another function can be
requested, except that a sequential function can be fol
lowed only by another sequential function until the
sequence is ended. At any time, you terminate the process
ing by issuing a DISCONN.

Use the GET request to read a record using direct access.
The KEY parameter is required and must be the address of a
field of full key length regardless of the KlEN (key
length) specification.

The record retrieved is the first record in the data set
that satisfies the search argument defined by the KEY,
KlEN, and KREL (key relation) parameters. The key field is
updated to reflect the key in the record that satisfied
the search.

If KLEN is specified as less than full key length, only
part of the key field is used for comparison when search
ing the data set. For example, suppose the keys in the
data set are AAA, AAB, ABA, and ABB and suppose the key
field contains ABO and KREL (key relation) is EQ.

If KlEN is zero, the search argument is the full key (de
fault) ABO and a 'record not found' code is returned. If
the KLEN specification is 2, the search argument is AB,
and the third record is read. If the KLEN specification is
1, the search argument is A, and the first record is read.

To update a record using direct access:

1. Retrieve the record with a GET request with one of the
update MODE/KREL parameters specified.

2. Modify the record in your buffer as desired. However,
do not change the key field in the record. Return the
updated record to the data set with a PUTUP request.

60 Version 1.1 Planning Guide

o

o

o

o

o

o

Alternatively, you can delete the record with PUTDEL, or
leave it unchanged by completing the update with a RELEASE
request.

A direct update, like a direct read, requires that the KEY
parameter be specified as the address of a field of full
key length. This field must not be modified during the
update.

The only valid requests, other than DISCONN and EXTRACT,
that can follow GET for direct update are the requests that
complete the update:

• PUT UP

• PUT DEL

• RELEASE

During the update, the subject record is locked; that is,
the record is unavailable to any other request until the
update is complete. Even if no other action is taken after
the GET, the RELEASE is required to release the lock on the
record.

Sequential Reading

Use theGETSEQ request to read a record using sequential
access. After a sequence has been initiated by a sequen
tial retrieval, only sequential functions can be
requested until the sequence is completed with an end-of
data condition or an ENDSEQ request. At any time in the
sequence, processing can be terminated with a DISCONN.
Also, the sequence is terminated if any error or warning
IS returned while in sequential mode.

Start;ng the Sequence. To begin the sequence with the
first record in the data set, set the KEY address to zero.
To start the sequence with any other record, specify a
search argument as for a direct read.

If you specify the search argument when you start the
sequence, the key field is modified to reflect the key
found as a result of the retrieval of the first record.

Intermed;ate Retr;evals. After the first retrieval, a
GETSEQ retrieves the next sequential record regardless of
any KEY, KREL, or KLEN specification. Therefore, you can
use the same GETSEQ statement in a loop to read all the
records in the sequence. If you specify a search argument
on intermediate retrievals, it is ignored and the key
field is not modified on intermediate retrievals.

Part 3: EDX Indexed Access Method 61

Ending the Sequence. To end the sequence before the end of
data is reached, specify ENDSEQ. The sequence is ended
automatically at the end of data. An end-of-data condition
occurs when an attempt is made to retrieve a record after
the last record in the data set.

If you specify the EODEXIT parameter in the PROCESS, it is
not necessary to test for the end-of-data return code.
When the end-of-data condition occurs, control transfers
to your end-of-data routine.

Sequential Updating

Inserting

To update a record using sequential access, retrieve the
record with a GETSEQ request with one of the update
MODE/KREL parameters specified. The sequential retrieval
for update is the same as the sequential read. A search
argument is used only on the first retrieval of a sequence
and is not specified if the sequence is to begin with the
first record in the data set. The sequence is terminated
with an EHDSEQ or with an end-of-data condition.

The sequential update is completed in the same way as a
direct update. The key in the record cannot be modified.
The record can be returned to the data set with a PUTUP,
deleted with a PUTDEL, or left unchanged by specifying
RELEASE. When the update is complete, another sequential
read or update can be requested.

It is valid to terminate the sequence with ENDSEQ, or ter
minate processing with a DISCONN either before or after
completing the update. Figure 13 summarizes the protocol
for sequential processing.

To insert'a new record in a data set connected for proc
essing, specify PUT. The Indexed Access Method uses the
key within the record in your buffer to insert the record
-in proper key order in the data set.

The key of the inserted record must be different from any
key in the data set; otherwise a duplicate key error
occurs. The key can be higher than any key in the data
set; that is, it is permissible to insert a record with a
new high key.

62 Version 1.1 Planning Guide

o

o

o

o

o

o

A request for sequential update:
GET for update
can be followed by:

1. A request to end processing:
DISCONN

2. An end-of-data condition:
automatic end-of-sequence and
transfer of control to EODEXIT
routine

End-of-sequence can be followed
by:

1. A request to end processing:
DISCONN

3. A request to end the sequence:
ENDSEQ 2. Any processing function:

GET, PUT, DELETE

A request to complete the update: The completed update can be
followed by:

4. PUTUP
1. A request to end processing:

5. PUTDEL DISCONN

6. RELEASE 2. A request to end the sequence:
ENDSEQ

3. A sequential request:
GETSEQ

Figure 13. Protocol for Sequential Updating

If there is no free space in the area associated with the
insert or no blocks in the free pool, a no-more-space con
dition occurs. The no-more-space condition does not mean
the data set is fulli there can be free space in unrelated
blocks. It indicates a need for data set reorganization.
This procedure is described in "Reorganization" on page
69.

Use DELETE to delete a record from the data set. The full
key of the record must be specified .. If there is no record
with that key, a negative return code gives a warning.

Deletion ;s also performed as part of updating by follow
ing a GET for update with a PUTDEL request.

Part 3: EDX Indexed Access Method 63

Extracting

HANDLING ERRORS

You can extract information about a data set from the file
control block (FCB). This includes information such as key
length, key displacement, block size, record size, and
other detailed data regarding the data set structure.

This data is requested by EXTRACT. Execution of this func
tion causes copying of the file control block to the spec
ified user area. You must provide the storage into which
the data is copied. The data set must be connected by LOAD
or PROCESS.

All executed Indexed Access Method requests return a
signed number, called a return code, in the task code word
(referred to by task name) of the TCB. The return code
reflects the condition of the requested function. Return
codes are grouped in three categories:

• -1 - Successful completion

• Positive - Error

• Negative - Warning

Error Exit Routine

In PROCESS and LOAD requests, the address of an error exit
routine can be specified by the ERREXIT parameter. If
specified, this routine is executed whenever this request
or any subsequent Indexed Access Method request for the
duration of this PROCESS or LOAD terminates with a posi
tive return code.

If the address of an ~rror exit routine is not specified,
the next sequential instruction after the request is exe
cuted regardle~s of the value of the return code.

System Function Return Codes

If a system function called by an Indexed Access Method
request terminates with a positive return code, the return
code is placed in a location reserved by the PROCESS or

64 Version 1.1 Planning Guide

o

o

o

o

o

c

LOAD request. This is used by any subsequent request until
a DISCONN is issued.

For example, GET uses the read function. If the read ter
minates with a positive return code, that return code is
saved in the location reserved for the system function
return code in the PROCESS associated with the GET. The
GET also terminates with a positive return code in the
task control word that indicates a read error. The cause
of the read error is determined from the system function
return code.

Data Set Shut Down

Deadlocks

Sometimes an I/O error that is not associated with a spe
cific request occurs. For example, Task A issues a GET on
data set X. In order to secure buffer space, the Indexed
Access Method writes out a block to data set Yand, in the
process, an error occurs. Data set Y is damaged but there
is no requesting program to accept an error return code.

The error is recorded by setting the data-set-shut-down
condition for data set Y. When this condition exists, no
requests other than a DISCONN are accepted for this data
set.

Later, if Task B issues a GET on data set Y, the request is
terminated with a data-set-shut-down return code. Task B
should issue a DISCONN and use recovery procedures to
reconstruct the data set. An initial program load CIPL)
cancels the data-set-shut-down condition.

Since the Indexed Access Method uses record and block
locks to preserve file integrity, deadlock conditions are
possible. A deadlock is a condition where two or more
tasks interact in such a way that one or more resources
become permanently locked and further progress is not pos
sible.

A deadlock can also occur when two IACBs from the same
task request a lock on the same record or a lock on the
same block in sequential mode.

In this section, the term deadlock refers not only to a
true deadlock, but also to an apparent deadlock, in which
a task holds 8 resource for an unreasonably long period of
time.

Part 3: EDX Indexed Access Method 6S

Application tasks should not use the Indexed Access Method
in such a way that a record or block remains locked for a
long period of time, since other tasks may attempt to use
the same record or block. In a terminal oriented system,
make every effort to ensure that a record or block is not
locked during operator "think" time. Specifically, you
should attempt to follow these rules:

• Do not retrieve a record for update, display the
record at the terminal, then wait for the operator to
modify it before completing the update.

• Do not retrieve a record in sequential mode, display
the record at the terminal, then wait for an operator
response before continuing the sequential operation.

In both of these cases, a record or block is locked during
operator "think" time and could be held for minutes or
hours.

Every effort should be made to avoid a deadlock situation.
There is no way to break a deadlock except to release the
locks that are being waited on~ Even terminating the tasks
involved might not break the deadlock because termination
processing cannot occur until any outstanding requests
issued by a terminating task have completed.

EXECUTING THE APPLICATION PROGRAM

Application programs that use the Indexed Access Method
are executed the same as other application programs.
Because the Indexed Access Method and the indexed data
sets are resources available to all tasks, delays can
occur under heavy system usage. Specifically, with more
than one task using the Indexed Access Method there can be
contention between tasks for any of these resources:

• Entire indexed file

• Index block in the data set

• Data block in the data set

• Data record in the data set

• Buffer space from the system buffer pool

For example, during the execution of a request from Task A,
some buffer space can be required and an index block or
data block or record can be locked (made unavailable to
other requests). If a request from Task B requires more
buffer space than remains available or if it requires a

66 Version 1.1 Planning Guide

o

o

o

o

c

o

locked block or record, that request is delayed until the
required resource is freed.

In general, resources required by the Indexed Access Meth
od are allocated only for the duration of that request.
There are two exceptions:

• During an update, when control returns to the task
after a GET or GETSEQ for update, the subject record is
locked. The lock is released when the update is com
pleted with a PUTUP, PUTDEL, RELEASE, or by a DISCONN.

• During sequential processing, when control returns to
the task after a GETSEQ, the block containing the sub
ject record is locked and held in the buffer.

Subsequent GETSEQ requests pick up records directly
from the buffer; sequential processing is fast because
no search is required. When a GET requires a record
from the next block, the current block and buffer are
released. Pending requests for buffer area are satis
fied and the next block is locked and held in the buff
er. Except for momentary release of the buffer area
between blocks, one block and buffer are locked for
the entire sequence. The sequence is terminated by an
end-of-data condition, by an ENDSEQ, or by a DISCONN.

The update and the sequence should be completed promptly.
Use the following guidelines to avoid problems with these
resources.

1. Disconnect all indexed data sets before task termi
nation. The DISCONN releases locked records or blocks
and writes out buffers for that data set that have not
already been written.

2. With multiple Indexed Access Method users on the sys
tem, use direct access rather than sequential access
to retrieve a sequence of records interactively. A
suggested method is:

a. Retrieve the first record by key.

b. Extract the key from that record and save it for
the next retrieval.

c. Retrieve the next record using the saved key and a
greater-than key relation.

d. Repeat the second and third steps for the duration
of the sequence.

Part 3: EDX Indexed Access Method 67

MAINTAINING THE INDEXED DATA SET

The Indexed Access Method does not provide specific pro
grams to perform indexed data set backup and recovery, nor
does it include services to delete the data set or dump to
the printer. These procedures are readily provided by a
combination of EDX and Indexed Access Method services as
suggested below. The Indexed Access Method utility pro
gram provides services to help you reorganize your data
set as described below.

Backup and Recovery

To protect against the destruction of data, at regular
intervals you should make a copy of the indexed data set
(or the logical volume in which the data set exists> using
the system COPY utility. During the interval between
copies, you should keep a journal file of all transactions
made against the indexed data set.

The journal file can be a consecutive data set containing
records that describe the type of transaction and the per
tinent data. A damaged indexed data set can be recovered
by updating the backup copy from the journal file.

For example, suppose an indexed data set named REPORT is
lost because of physical damage to the disk. The condition
that caused the error has been repaired and the data set
must be recovered. Delete REPORT and copy the backup ver
sion of REPORT to the desired volume.

If a data set shut down condition exists, IPL again. Then
issue a PROCESS to the REPORT data set and, using the
journal file, recreate the transactions that occurred
since the backup copy was made.

Recovery Without Backup

If you do not'use the backup procedures outli~ed above and
you encounter a problem with your data set, you still may
be able to recreate your file. However, the status of
requests made prior to the problem is uncertain.

To recreate your data set, follow the steps given below as
a method of reorganizing your data set. After recreating
the data set, verify the status of requests made at the
time the problem occurred.

68 Version 1.1 Planning Guide

0.'
, I

o

o Reorganization

o

Dumping

0 ,
, , ,I ~

An indexed data set must be reorganized when required
inserts fail because of lack of space. This condition does
not imply that there is no more space in the data set; it
means that there is no space in the area where inserts
must be made. Therefore, you can reorganize without
increasing the size. The following steps provide a method
of performing a reorganization:

1. Ensure that all outstanding requests against the data
set have been completed; issue a DISCONN for every
current lACS.

2. Use the define command (DF) of the Indexed Access
Method utility program to define a new indexed data
set. Carefully estimate the number of base records and
the amount and mix of free space in order to minimize
the need for future reorganizations. Guidelines for
making these estimates appear at the beginning of this
chapter.

3. Use the reorganize command (RO) of the Indexed Access
Method utility program to load the new indexed data
set from the indexed data set to be reorganized.

Alternatively, you can use the unload command (UN) of
the Indexed Access Method utility program to transfer
the data from an indexed data set to a sequential data
set, then use the load command (LO) to load it back
into the indexed data set. The result is a reorganized
indexed data set.

4. Use system utilities to perform any desired house
keeping operations. The old data set can be deleted,
and the new data set can subsequently be renamed to the
name of the old data set.

To print user records, retrieve the records sequentiallY
and print them. Use the DP command of the $DISKUT2 utility
for a hexadecimal dump of the entire data set including
control information, index blocks, and data blocks.
Information on the $DISKUT2 utility can be found in the
Utilities, Operator Commands and Program Preparation
manual.

Part 3: EDX Indexed Access Method 69

Delating

DATA SET FORMAT

BLOCKS

Delete an indexed data set in the same manner in which you
delete any data set. From your terminal, use the DE com
mand of the $DISKUTI utility (see the Utilities, Operator
Commands and Program Preparation manual).

The define command of the Indexed Access Method utility
program formats and creates the indexed data set. The
information required to determine the format and the num
ber of blocks in the data set is provided by ten parame
ters. These parameters are specified using the setparms
command. Examples in this chapter use the following values
for the parameters:

Parameter Name Value Addressed by Parameter

BlKSIZE Block size = 256 bytes

RECSIZE Record size = 80 bytes

KEYSIZE

BASEREC

FREEREC

FREEBlK

RSVBlK

RSVIX

FPOOl

DELTHR

Key size = 28 bytes

Number of base records = 1000

Number of free records per block = 1

Percentage of free blocks = 10

Percentage of reserved blocks = 10

Percentage of reserved index = 10

Percentage of free pool = 50

Percentage of blocks to retain when
deleting records; this value is allowed to
default.

The indexed data set is composed of a number of fixed
length blocks. The block is the unit of data transferred
by the Indexed Access Method, and is a multiple of 256. A
block is addressed by its relative block number (RBN) such
that the first block in the data set is located at RBN o.

70 Version 1.1 Planning Guide

o

o

o

o

c

o

Note that the RBN is a block number used only in indexed
data sets, by the Indexed Access Method. A block as used
in the Indexed Access Method differs from an EDX record in
the following ways:

1. The size of a block is not limited to 256 bytes. Its
length can be a multiple of 256 bytes.

2. The RBN of the first block in an indexed data set is o.
The record number of the first EDX record in a data set
is 1.

The size, in 256-byte records, of the data set is calcu
lated by the define command of the Indexed Access Method
utility program and returned to the terminal.

There are three kinds of blocks in an indexed data set: a
file control block (FeB), index blocks, and data blocks.
These blocks are all the same length, as defined by
BLKSIZE, but they contain different kinds of information:
control information, index entries, and data records. The
control information is contained in block headers and the
FeB; for a description of control information, see Figure
14. Figure 14 shows examples of the three block types.

Control
information

Unused

File control block

Header

RBN Key

RBN Key

RBN Key

RBN Key

RBN Key

RBN Key

RBN Key

Unused

Index block

Figure 14. Indexed Data Set Block Types

Header

Data
record

Data
record

Data
record

Data block

Part 3: EDX Indexed Access Method 71

Index Block

Data Block

The file control block (FeB) is the first block in the
data set (RBH 0). It contains a fixed amount of control
information.

An index block contains a header followed by a number of
index entries. Each index entry is a key-pointer pair. The
key is the highest key associated with a block; the point
er is the RBN of that block. The number of entries con
tained in each index block depends on block size and key
size. The header of the block is 16 bytes. The RBH field
in each entry is 4 bytes. The key field in each entry must
be an even number of bytes in length; if key size is odd
then the field is padded with one byte to make key entry
even. The number of i,n,dex entri es in an index block is:

block size - 16
4 + key length

The result is truncated; any remainder represents the num
ber of unused bytes in the block. For example, if block
size is 256 and key size is 28, then each index entry is 32
bytes, there are 7 entries in a block, and the last 16
bytes of the block are/unused.

A data block contai ns a header followed by a number of
data record areas. The number of records that can be con
tained in a data block depends on block size and record
size. The header of the block is 16 bytes. The number of
record areas in the block is:

block size - 16
record size

The resul tis tr~incated; any remai nder represents the num
ber of unused bytes in the block. For example, if block
size is 256 and record size is 80, there can be 3 records
in a data block. In this example, there is no unused area.
The key field of the last record slot in a data block
indicates the high key for the data block. If all records
of the data b~ock are not currently used, the key field of
the last reco/rd slot is normally the same as the key fi eld
of the last used record in the block. However, it is pos-

72 Version 1.1 Planning Guide

o

o

o

c

o

o

The Index

sible for the key field of the last record slot to contain
a key higher than that of any record in the block. This
can occur if the last record of the block has been
deleted. Thus, deletion of a record does not reduce the
key range for the block.

The index of an indexed data set is constructed in several
levels so that, given a key, there is arsingle path (one
index block per level) cascading through the index levels
that leads to the data block associated with that key. The
index is built from the bottom up. At the lowest level are
the prime index blocks. At the second level are index
blocks containing entries that point to the prime index
blocks. There are enough levels so that the highest level
consists of a single index block.

Prime Index Blocks

Entries in a prime index block point to data blocks. Each
entry in a prime index block is one of three possible
types:

• Allocated (used) entry. This type of entry points to
an active data block. The key portion of the entry is
initialized to binary l's (all bits on). The key
portion of the entry contains the highest key from the
data block. The pointer portion contains the RBN of
the data block. Allocated entries are the first
entries in the index block. The number of index
entries initially allocated when the indexed data set
is loaded is calculated as the total number of entries
per index block, less the number of entries of the oth
er two types (free block entry and reserve block
entry) (see Figure 15).

• Free block entry. This type of entry points to a free
data block. The key portion of the entry contains
binary zeros. The pointer portion contains the RBN of
the free block. Free block entries follow the allo
cated entries in the index block. The number of index
entries initiallY formatted as free entries when the
indexed data set is loaded is the specified percentage
(FREEBLK) of the total number of e~tries, with the
result rounded up if there is a remainder.

Part 3: EDX Indexed Access Method 73

Header

RBN Key l RBN Key

RBN Key > Allocated entries

RBN Key J RBN Key

RBN 0 Free block entry

0 0 Reserve block entry

Unused

Figure 15. Example of Prime Index Block

• 'Reserve block entry. This type of entry does not point
to a block. It is reserved for later use as a pointer
to a data block which can be taken from the free pool.
Both the key and pointer portions of a reserve block
entry are binary zeros. Reserve block entries are at
the end of the index block. When a reserve block entry
is converted to a used entry, the index block is refor
matted to move the entry to the allocated entry area of
the block. The number of index entries initially for
matted as reserve block entries is the specified per
centage (RSVBlK) of the total number of entries, with
the result rounded up if there is a remainder. Howev
er, if the number of free block entries and the number
of reserve block entries together require all index
entries, the number of reserve block entries is
reduced by 1. This provides at least one allocated
entry per index block.

In order to calculate the number of prime index blocks in
an indexed data set, you must first know the initial number
of data blocks allocated in the indexed data set. The ini
tial number of data blocks is calculated as the specified
number of base records (BASEREC) divided by the number of
allocated (not free) records in a data block, with the
result rounded up if there is a remainder. The number of
prime index blocks can then be calculated as the initial
number of allocated data blocks divided by the number of
allocated entries per prime index black, with the result
rounded up if there is a remainder.

74 Version 1.1 Planning Guide

o

~-)
~-

o

o

c

c

Sacond-Lavel Index Block

Entries in a sacond-Ievel indax block point to prime index
blocks. Each entry in a second-level indax block is one of
two possibla types:

• Allocated (used) entry. This typa of entry points to
an existing prime index block. The key portion of the
entry is initialized to binary l's (all bits on). The
key portion of the entry contains the highest key from
the prime index block. The pointer portion contains
the RBN of the prime index block. Allocated entries
are the first entries in the index block. The number of
index entries initially allocated when the indexed
data set is loaded is calculated as the total number of
entries per index block, less the number of reserve
index entries.

• Reserve index entry. This type of entry does not point
to a block. It is reserved for later use as a pointer
to a prime index block that can be taken from the free
pool. Both the key and pointer portions of a reserve
index entry are binary zeros. Reserve index entries
are at the end of the index block. The number of index
entries initially formatted as reserve index entries
is the specified percentage (RSVIX) of the total num
ber of entries, with the result rounded up if there is
a remainder. However, if the number of reserve index
entries is the same as the total number of entries in
an index block, the number of reserve index entries is
reduced by 1. This provides at least one allocated
entry per second-level index block.

The number of second-level index blocks is calculated as
the number of prime index blocks divided by the number of
allocated entries per second-level index block, with the
result rounded up if there is a remainder (see Figure 16).

Higher Level Index Block

Entries in a higher level index block point to index
blocks at the next lower level. All entries in higher lev
el index blocks are allocated (used) entries. The key
portion of the entry contains the highest key from the
next lower level index block. The pointer portion contains
the RBN of the next lower level index block. The number of
blocks at any higher index level is calculated as the

Part 3: EDX Indexed Access Method 75

Header

RBN Key

RBN Key

RBN Key
> Allocated entries

RBN Key

RBN Key

RBN Key

0 0 Reserve index entry

Unused

Figure 16. Example of Second-level Index Block

Index Example

number of index blocks at the next lower level divided by
the total number of entries per index block, with the
result rounded up if there is a remainder (see Figure 17).

If the number of index blocks at any level is one, that
level is the top level of the index. Although the Indexed
Access Method is capable of supporting 17 levels of index,
any given indexed data set is formatted with only as many
index levels as are required for the specified number of
records. If an indexed data set has not been fully loaded,
it is possible that one or more higher index levels are
not yet required, even though they exist in the file
structure. In this case, the unnecessary higher levels are
not used.

In the sample data set described at the beginning of this
chapter, 500 data blocks are initially allocated to the
data set. Each prime index block contains one free block
entry, one reserve block entry, and five allocated
entries; therefore, the total number of prime index blocks
is 100. Each second-level index block contains one reserve
index entry and six allocated entries; therefore, the num
ber of second-level index blocks is 17. The number of

76 Version 1.1 Planning Guide

()

(~
\V

o

o

c

c

Header

RBN Key

RBN Key

RBN Key

RBN Key > Allocated index entries

RBN Key

RBN Key

RBN Key

Unused

Figure 17. Example of Higher-Level Index Block

Cluster

entries in higher level index blocks is seven. This
results in three index blocks at the third level and one
at the fourth level.

Therefore the sample data set contains a total of 121
index blocks. Of these blocks, 100 are prime index and the
remaining 21 are high-level index blocks. This dis
tinction is important because, as shown later in this
chapter, high-level index blocks are located contiguouslY
at the beginning of the data set (after the FeB), while
prime index blocks are scattered throughout the file with
the data blocks. Figure 18 shows the structure of the
high-level index blocks.

Data records are loaded into the data blocks in ascending
order by key. Each data block is pointed to by a prime
index block entry that contains the high key of the data
block (that is, the key from the last record slot in the
data block).

Prime index blocks and data blocks are stored together in
the data set in groups called clusters. Each cluster
begins with a prime index block followed by as many data

Part 3: EDX Indexed Access Method 77

Fourth (top)
level
index

Third
level
index

Second
level
index

Figure 18. High-Level Index Block Structure

FREE SPACE

blocks as there are allocated or free entries in the index
block. Data blocks can be of two types: allocated data
blocks and free data blocks. The prime index block can
also contain unused slots for reserved blocks. For exam
ple, if there are seven entries in an index block, there
are eight blocks in a cluster: one prime index block fol
lowed by up to 7 data blocks. If there are reserve blocks
specified, even though the cluster can expand to eight
blocks, the blocks represented by the reserve block
entries are not included until insert activity has taken
place and the required blocks have been obtained from the
free pool. For example, if there are seven entries in an
index block, and one of the entries is a reserve block
entry, then there would only be seven blocks in the clus
ter initially (one index block and six data blocks). This
is illustrated by the following diagram.

Prime
index Data Data - Data Data Data Data
block block block block block block block

When an indexed data set ;s loaded with data records, free
space is reserved for records that may be inserted during
processing. There are four kinds of free space: free
records, free blocks, reserve blocks, and reserve index
blocks.

78 Versi on 1.1 Planni ng Gui de

(.~. j

o

o

o

Free Records

Free records are areas reserved at the end of each data
block. The FREEREe parameter of define command of the
Indexed Access Method utility program specifies the num
ber of free records that are reserved in each data block.
The remaining record areas are called allocated records.
For example, if a block contains three data record areas
and you specify one free record per block, then there are
two allocated records per block. See Figure 19.

When records are loaded, the allocated records are filled,
and the free records are skipped over. During processing,
a record can be inserted in a block that contains a free
record.

Header

Allocated record

Allocated record

Free record

Figure 19. Example of a data block

Part 3: EDX Indexed Access Method 79

Free Blocks

Reserve Blocks

Free blocks follow the allocated data blocks within each
cluster. For example, if the cluster contains six data
blocks and you specify 10 as the percentage of free
blocks, then there are five allocated blocks and one free
block in each cluster.

Prime Alloc. Alloc. Alloc. Alloc. Alloc. Free
index data data data data data data
block block block block block block block

When records are loaded, the allocated record areas in the
allocated data blocks are filled, and the free blocks are
skipped over. During processing, as data blocks become
full, a free block can be included in the logical block
sequence to provide space for more insertions.

Reserve blocks do not exist in the cluster. When all data
blocks in a cluster are used and another data block is
needed, a data block can be created from the free pool,
provided the prime index block contains a reserve block
entry. In this case, the reserve block entry in the prime
index block points to the block, and the data block
becomes a normal used data block.

Reserve Index Entries

Reserve index entries in second-level index blocks allow
the index structure to be expanded by adding new prime
index blocks. These, in turn, can have data blocks associ
ated with them, thus forming new clusters. This process of
forming a new cluster is sometimes called a cluster split.

The initial number of allocated data blocks in the data
set can be calculated as the specified number of base
records (BASEREC) divided by the number of allocated (not
free) records in a data block, with the result rounded up
if there is a remainder.

The number of clusters in the data set can be calculated
as the initial number of allocated data blocks divided by
the number of allocated entries in each prime index block,
with the result rounded up if there is a remainder.

,80 Version 1.1 Planning Guide

o

o

o

o

c

o

The total number of free blocks in the data set (not
including the free pool) is calculated as the number of
clusters in the data set multiplied by the number of free
entries in each prime index block.

The last Cluster

The last cluster in the data set may be different from the
other clusters. It contains the same number of free blocks
as the other clusters but only enough allocated blocks to
accommodate the records that you have specified with the
parameter BASEREC.

For example, suppose you intend to load 1000 records in an
indexed data set that is formatted for two allocated
records and one free record per block and five allocated
blocks and one free block per cluster. The number of allo
cated blocks in a data set is:

number of base records
number of allocated records per block

The number of allocated blocks in this example is 1000/2
or 500 blocks. The number of clusters in a data set is:

number of allocated blocks
number of allocated blocks per cluster

The number of clusters in this example is 500/5 or 100
clusters. Note that in both these calculations, if the
quotient is not an i~teger, it must be rounded up (rather
than truncated) in order to accommodate all of the base
records. Thus, in the last allocated block, there can be a
few more allocated records than required. However, the
last cluster can be a short cluster because it will have
only the required number of allocated blocks.

In this example, the number of allocated blocks divided by
the number of allocated blocks per cluster (500/5) equals
100 with no remainder. If there is remainder it represents
the number of allocated entries in the prime index block
for the last cluster, thus the number of allocated data
blocks in that cluster. Unused entries in the last prime
index block are treated as reserve block entries.

Sequential Chaining

Data blocks in an indexed data set are'chained together by
forward pointers located in the headers of data blocks.

Part 3: EDX Indexed Access Method 81

Free Pool

Only allocated data blocks are included in this sequential
chain. Free blocks are skipped over. This provides effi
cient sequential processing of the "data set with no need
to reference the index. When a free block is converted to
an allocated block, it is included in the chain.

If you specify that you want a free pool (by the FPOOL
parameter of define command of the Indexed Access Method
utility program), your indexed data set contains a pool of
free blocks at the end. The file control block contains a
pointer to the first block of the free pool, and all
blocks in the free pool are chained together by forward
pointers.

A block can be taken from the free pool chain to become
either a data block or a prime index block. When this is
done, the block is taken from the beginning of the chain,
and its address (RBN) is placed in the appropriate prime
index block (if the new block is to become a data block)
or in the second level index block (if the new block is to
become a prime index block). Any block in the free pool
can be used as either a data block or as a prime index
block.

When a data block becomes empty because of record
deletions, it is sometimes possible to return it to the
free pool (depending on the delete threshold (DELTHR)
parameter). When this is done, reference to the block is
removed from the pr i me index block, and the block is
placed on the beginning of the free pool chain. Index
blocks are never returned to the free pool.

The calculation of the initial size of the free pool con
sists of several steps, as follows:

• Each reserve block entry in a prime index block
represents a possible use of a data block from the free
pool. The·number of data blocks that can be assigned to
initial clusters is the number of prime index blocks
times the number of reserve block entries in each
prime index block.

• Each reserve index entry in a second-level index block
represents a possible use of a prime index block from
the free pool. The number of prime index blocks that
can be assigned from the free pool is the number of
second-level index blocks times the number of reserve
index entries in each second-level index block.

82 Verst on 1.1 Plann; ng Gui de

o

o

o

o

• Each prime index block taken from the free pool con
sists entirely of empty (reserve block> entries. Hew
data blocks can then be taken from the free pool for
these entries in the new prime index block. The total
number of such data blocks is the total number of
entries per index block times the number of new prime
index blocks (calculated in the previous step).

• The maximum number of blocks that can conceivably be
taken from the free pool is the sum of the above three
calculations. This is the maximum possible free pool.

• The actual number of blocks in the free pool is the
specified percentage (FPOOl) of the maximum possible
free pool, with the result rounded up if there is a
remainder.

STORAGE AND PERFORMANCE INFORMATION

STORAGE REQUIREMENTS

The mlnlmum amount of storage required by the Indexed
Access Method to perform all functions is about 14K-B, not
including the link module or the user error exit routine.
This is based on the following assumptions:

• A maximum block size of 256 bytes for any indexed data
set. Since the buffer must be large enough for two
blocks, we have assumed a 512 byte buffer. If your max
imum block size is larger, you should subtract the 512
and add in double your block size. You can improve per
formance by making the buffer larger.

• One user connected to an indexed fi Ie at a time. If you
will have more than one user connected, you should add
about 625 bytes per additional user.

The IBM-supplied link module is included in your applica
tion program (see Figure 12). Its size is about 250 bytes.

INDEXED FILE SIZE

The structure of an indexed file is highly dependent on
parameters you specify when you create the file. This is
described in "Data Set Format" on page 70. The calcu
lations presented there are summarized in "Summary of
Calculations" on page 84.

Part 3: EDX Indexed Access Method 83

PERFORMANCE INFORMATION

Performance of the Indexed Access Method is primarily
determined by the structure of the indexed data set being
used. This structure is determined by parameters you spec
i fy when you create the data set. Thi sis descr i bed in
"Data Set Format" on page 70. Performance is affected by
file structure in the following ways:

• File size. A large file spans more cylinders of the
direct access device, so the average seek to get the
the record you want is longer.

• Humber of index levels. A file with many index levels
requires more accesses to get to the desired data
record, thus degrades performance. Factors which
influence the number of index levels are:

Humber of records in data set.

Amount and type of free space.

Block size.

Key size.

Data record size.

To get a feeling for the affect of the various parameters
on the file structure, you should calculate several exam
ples. Refer to "Summary of Calculations."

In addition to file structure, the following factors also
influence performance:

1. Buffer size. If you provide a large buffer when you
install the Indexed Access Method, it is more likely
that blocks (especially high-level index blocks)
needed are already in storage and need not be recalled
from the data set.

• Contention. If many tasks are concurrently using the
Indexed Access Method, interference can result, and
performance is degraded.

SUMMARY OF CALCULATIONS

The following calculations are used to structure an
indexed data set. In the calculations requiring division,
results with non-zero remainders are either:

84 Versi on 1.1 Planni ng Gui de

o

/,f-\

I~_)

o

c

CI

0"
"

truncated 0. or rounded up G.
To truncate is to drop the remainder; to round up is to
add one (only if the remainder is non-zero), and truncate.

Data Block
Records per data block
= block size minus 16,
divided by record size;
result truncated.

Free records per block.

Allocated records per
data block = Records
per block minus free
records per block.

Index Block (General)

G Index entry size = key
length plus 4; must be
even -- add 1 if odd.

Total entries per index
block = block size
minus 16, divided by
index entry size;
result truncated.

Index Block (PIXB)
Free entries per
primary index block
(PIXB) = specified
percentage of total
entries per index
block; result rounded
up.

Reserve entries per
PIXB = specified
percentage of total
entries per index block;
result rounded up.
If free entries per
PIXB and reserve
entries per PIXB require
all PIXB entries,
subtract one from
reserve entries per PIXB.

G = (BlKSIZE-16)/RECSIZE 0

G = FREEREC

G = KEYSIZE + 4 (+1 if odd)

G = (BlKSIZE-16) / G 0

G = FREEBlK 1(of G G

G = RSYBlK 1(of G G

Part 3: EDX Indexed Access Method 85

Allocated entries per
PIXB = total entries
per index block minus
free entries per PIXB,
minus reserve entries
per PIXB.

Index Block (SIXB)
Reserve entries per
secondary index block
(SIXB) = specified
percentage of total
entries per index
block; result rounded
up. If reserve entries
per SIXB require all
SIXB entries,
subtract one.

Allocated entries per
SIXB = total entries
per lndex block mlnus
reserve entries per
SIXB.

Delete Threshold

O
The number of blocks to

11 retaln in cluster
(delete threshold) is
calculated in one of
three ways:

a. If the RSVBlK parameter
was not specified:
Humber of blocks to
retain in cluster =
total entries per index
block.

b. If the RSVBlK parameter
was specified, but the
DElTHR parameter was not
specified:
Humber of blocks to
retain in cluster =
allocated entries per
PIXB, plus one-half of
free entries per PIXB;
result rounded up.

86 Version 1.1 Planning Guide

G = RSVIX l: of G G
(-1 if G = Gl

0=G-G

or

or

c

o

o

c. If the RSVBlK parameter
was specified, and the
DElTHR parameter was
specified:
Humber of blocks to
retain in cluster =
specified percentage of
total entries per index
block; result rounded
up. If the result is
zero, set it to 1.

Data in Data Set
Initial allocated data
blocks = base records
divided by allocated
records per data block;
result rounded up.

Humber of clusters in
data set = initial
allocated data blocks,
divided by allocated
entries per PIXB;
result rounded up.

Total number of free
blocks in data set =
number of clusters in
data set, times free
entries per PIXB.

Indexes in Data Set
Humber of primary
index blocks (PIXBs)
= number of clusters
in data set.

Humber of secondary
index blocks (SIXBs)
= number of PIXBs,
divided by allocated
entries per SIXB;
result rounded up_

o = DEL THR " of G 0
(If 0, !let 0 to 1)

G = BASEREC / G 0

Part 3: EDX Indexe~ Access Method 87

Calculate the number
of index blocks for
levels 3 to n. Note
that levels 1 (PIXB)
and 2 (SIXB) have
already been calculated.
When the number of
index blocks at a
level is 1, n has
been reached and the
calculation is finished.

Number of index blocks
at level i (i =3 to n) =
number of index blocks
at next lower level,
divided by total entries
per index block; result
rounded up.

Total number of index
blocks = sum of index
blocks at each level
until a level containing
a single index block
is attained.

Free Pool
Number of new data
blocks that can be
assigned to existing
clusters = reserve
entries per PIXB,
times number of PIXBs.

Number of new clusters
(PIXBs) that can be
created = reserve
entries per SIXB,
times number of SIXBs.

Number of new data
blocks that can be
assigned to new clusters
= total entries per
index block, times
number of new clusters
that can be created.

88 Version 1.1 Planning Guide

o

+ (Sum of all G~l

()

o

G
Maximum possible free

G G 0 0 C pool = number of new = + +
data blocks that can
be assigned to existing
clusters, plus number
of new clusters (PIXBs)
that can be created,
pl'JS number of new data
blocks. that can be
assigned to new clusters.

G
Actual number of free

G 0 G pool blocks = specified = FPOOl " of
percentage of maximum
possible free POOli
result rounded up.

Size of Data Set

0
Total number of blocks

0 0 G in data set = 1 (for = 1 + +
file control block),
plus total number of

0 G index blocks, plus + +
initial allocated data
blocks, plus total
number of free blocks

(" in data set, plus actual
'."\

number of free pool
.J.->"/ blocks.

o
Part 3: EDX Indexed Access Method 89

o

c
90 Version 1.1 Planning Guide

c

c

$SYSCOM usage 13

activity report, terminal 38
ACTION - fetch operator response 24
address translator support 2
application design information

indexed access method 51
indexed access method calculations 84
multiple terminal manager 32

application program
executing 66
interfaces 6
manager 22
preparation 50
volume, user (PRGRMS) 34

attention list, use of 12
ATTNlIST, use of 12
audible alarm, BEEP 27

backup and recovery 68
base records, loading 58
BEEP - set audible alarm 27
block size selection 52
blocks 70

data 72
FeB 72
free 80
higher level 75
index 72
index example 76,77
,prime index 73
reserve 80
second-level index 75

buffer space 53
building the indexed data set 56

Index 91

chaining, sequential 81
CHGPAN 27
cluster 77
cluster, last 81
compatibility

application program interfaces 6
data set 7

,functional content 7
,source program 5
storage sizes 7

components of indexed access method 44
components of multiple terminal manager 15
concepts, multiple terminal manager 15
connecting and disconnecting the indexed data set 58
creating the indexed data set 57
CYCLE - suspend current terminal application 26

data block 72
data protection 44
data set

compatibility 7
format 70
indexed 48
requirements, multiple terminal mgr. 33
shut down 65

deadlocks 65
defining and creating the indexed data set 57
defining the key 51
deleting

records 63
indexed data sets 70

determining size and format 56
designing the indexed data set 51
deVices supported 44
diagnostic and recovery improvements 8
direct

file request types 31
reading 60
updatlng 60

DISCONN 45,58
disconnect 37
disconnecting the indexed data set 58
distribution and installation 38
dumping 69
duplicate key 52

92 Version 1.1 Planning Guide

o

c

c

entries, reserve index 80
error exit routine 64
error exit, task 9
error handling 64
error recording, I/O 8
estimating free space 54
executing ·the application program 66
exit routine, error 64
extensions, multi-partition 8
extracting 64

FCB 72
features, indexed data set 43
fetch operator response, ACTION 24
file control block (FeB) 72
file management 29
FILEIO 29
format and size determination 56
format, data set 70
format the input and output buffers, SETPAN 27
free

blocks 80
pool 82
records 79
space 78

functions of indexed access method 45
functional content compatibility 7

handling errors 64
hardware 17
higher level index block 75

I/O error recording 8

Index 93

index
block 72
block, higher level
block, second-level
blocks, prime 73
example 76,77
of an indexed data

indexed
data set building
data set, defining
data set features

75
75

set 73

56
and building
43

data set maintaining 68
data sets 48
file request types 30
file size 83

indexed access method
components 44
data protection 43
devices supported 44
functions 45
indexed data set features 43
indexed data sets 48
overview 43

57

initialization, multiple terminal manager 35
initialization program, multiple terminal manager 21
initiation and termination, program 37
insert activity 53
inserting 62
installation and distribution 38
interface, operator 35
interfaces, application program 6
intermediate retrievals, sequential reading 61
invoking programs that reside in the system area 10

key, defining 51
key, duplicate 52

last cluster 81
LINK - load and execute program 24
LINKON 24
load and execute program, LINK 24
loading base records 58

94 Versi on 1.1 Planni ng Gui de

o

c

c

maintaining the indexed data set 68
MENU - return to multiple terminal manager control 26
MTMSTORE 33
move cursor to specified position, SETCUR 27
multi-partition extensions 8
multiple terminal manager

concepts 15
components 15
data set requirements 33
hardware 17
initialization 35
initialization program 21
overview 15
program operation 21
software 21
utilities 31

operator interface 35
output to an asynchronous terminal, WRITE 26

performance information
indexed access method 83
multiple terminal management 40

planning the indexed data set 51
PRGRMS, user application program volume 34
PGMRPT (programs report) 38
prime index blocks 73
program

exception trace 9
(header) or TCB dependencies 13
initiation and termination 37
management 23
manager (application programs) 22
operation (indexed access method) 49
operation (multiple terminal mgr) 21
preparation 40
report (PGMRPT) 38

Index 95

programming considerations 32
protection

data 44
system area 9

reading, direct 60
reading, sequential 61
records

delli!ting 63
free 79
inserting 62
loading base 58
reading direct 60
reading sequential 61
updating direct 60
updating sequential 62

recovery and diagnostic improvements 8
recovery, backup and 68
recovery without backup 68
reconnect 38
references to system area data 10
reorganization 69
REPORT - terminal activity report 38
request types, direct file 31
request types, indexed file 30
reserve blocks 80
reserve index entries 80
return codes, system function 64
return to multiple terminal manager control, MENu 26

screen format volume - SCRNS 34
screen print 38
SCRNS - screen format volume 34
second-level index block 75
selecting the block size 52
sensor i/o applications 12
sequential

chaining 81
reading 61
updating 62

set audible alarm, BEEP 27
SETCUR - move cursor to specified

96 Versi on 1.1 P lann i ng Gu fde

position 27

f)

o

c

c

o

SETPAH - format the input and output buffers 27
shut down, data set 65
sign-on 36
sign-on file - SIGNONFl 35
SIGHONFL, sign-on file
size and format determination 56
size, indexed file 83
source program compatibility 5
space, estimating free 54
special considerations 9
storage

dump 9
performance information 83
requirements 83
sizes 7

supervisor extensions, user-written 11
suspend current terminal application, CYCLE 26
system

area, invoking programs from 10
area protection 9
data area, references to 10
function return codes 64

task ~rror exit 9
TCB dependencies or program (header) 13
terminal 33
terminal/screen management 26
terminal activity report 38
terminal server programs 22
termination, program 37
trace, program exception 9

updating, direct 60
updating, sequential 62
utilities, multiple terminal manager 31
use of attention lists (ATTNLIST) 12
user application program volume - PRGRMS 34
user-written supervisor extensions 11
using &SYSCOM 13

virtual terminals 11

Index 97

o 0
WRITE - output to an asynchronous terminal 26

o
98 Version 1.1 Planning GUlde

c

o

c

(")

S
o

" o
0:
»
0"
:::s
to

c:
:::s
(1)

READER'S COMMENT FORM

IBM Series/1 Event Driven Executive
Version 1.1 Planning Guide

G C34-0328-0

Your comments assist us in improving the usefulness of our publ ications; they are an
important part of the input used in preparing updates to the publ ications. I BM may
use and distribute any of the information you supply in any way it bel ieves appro

priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape Please Do Not Staple

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Pu bl ications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Fold and tape

--- -----= =-= =..= - - ---- - - -------------
®

International Business Machines Corporation
General Systems Division
4111 Northside Parkway N. W.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternati 0 na I)

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

G C34-0328-0
Printed in U.S.A.

o

o

o

•

o

o
c:
~

" o
c:
»
5"
:::3
cc
r :;.
CD

READER'S COMMENT FORM

IBM Series!1 Event Driven Executive
Version 1.1 Planning Guide

GC34-0328-O

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I BM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. I nstead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape Please Do Not Staple

IIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Pu bl ications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Fold and tape

--- ------ ----- ---- - ---- -- ----------_.-
®

I nternational Business Machines Corporation
General Systems Division
4111 Northside Parkway N. W.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternational)

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

G C34-0328-0
Printed in U.S.A.

o

•

o

--- ------ ----- ---- - ---- - - ----------_.-

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P. O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(International)

GC34-0328-0
Printed in U.S.A.

f

