
--- ------ - ---- ---- - ---- - - ----------_ .-

SC34-0313-2

File No. S1-32

LICENSED
PROGRAM

IBM Series/1

Event Driven Executive

Utilities, Operator Commands, Program

Preparation, Messages and Codes

Program Numbers: 5719-LM5 5719-LM6 5719-AM3
5719-UT3 5719-UT4
5719-XS1 5719-XS2
5719-XX2 5719-XX3
5740-LM2 5740-LM3

Series/1

--- ------ - ---- ---- - ---- - - ----------_.-

o

SC34-0313-2

File No. S1-32

LICENSED
PROGRAM

IBM Series/1

Event Driven Executive

Utilities, Operator Commands, Program
Preparation, Messages and Codes

Program Numbers: 5719-LM5 5719-LM6 5719-AM3
5719-UT3 5719-UT4
5719-XS1 5719-XS2
5719-XX2 5719-XX3
5740-LM2 5740-LM3

Series/1

Use this publication only for the purpose stated.

Changes are periodically made to the information herein;
before us i ng th i s p~bl i cat ion in connect 10n wi th the operat ion
of IBM systems, refer to the latest IBM Ser i es/I ~rapb i c
Qibli09raphy, GA34-00SS, for the editions that are ap~licable
and current.

It is possible that this material may contain reference to, or
i nformat i on about, IBM products (mach i nes and programs),
programming, or services which are not announced in your coun
try. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, program
ming, or services in your country.

Publications are not stocked at the address given below.
Requests for copies of IBM publications should be made to YQur
IBM representat i ve or the IBM branch off i ce serv i ng your local
ity.

Thi~ publication could contain technical inaccuraci~$ or
typographical errors. A form for reader's comments is provided
at the back of this publication. If the form has been removed,
address your comments to IBM CorporatiQn, Systems Publica
tions, Department 27T, P.O. Box 1328, Boca Raton, Florida
33432. IBM may use and distribute any of the information you
supply in any way it believes appropriate without incurring ~ny
obligation whatever. You may, of C9urse, continue to use the
1 n fo r rna t ion yo u 5 up ply •

(C)·Copyright IBM Corporation 1979,1980

o

c

c

CI

o

SUMMARY OF AMENDMENTS

Operator Commands

The following operator commands have been modified to
include support for the IBM Series/l 4969 Magnetic Tape
Subsystem:

• $C

• $VARYOFF

• $VARYON

Session Manager

The following changes have been made to the Session Man
ager for the Event Driven 'Executive Version 2
(S719-UT4):

• $Pl/I (Option 10) has been added
Preparation s~condary option menu
Pl/I compiler.

to the Program
to support the

• Option 3 "Disk Utilities" of the primary option menu
has been changed to "Data Management".

• $TAPEUTI (Option 10) has been added to the
Management" secondary option menu to support
management.

$TAPEUTI Utility

"Data
tape

This new utility is described in Chapter 4. The tape
READ/WRITE return codes are described in Chapter 6.

SC34-0313 iii

$PREFIND Utility

This utility has been updated to include support for
locating tape data sets.

$JOBUTIl - Jok Stream Processor

This utility has been updated to support the PL/I
compiler.

Suaaested Utjlity Fun~tion Table

This table has been expanded to include all the utiJitv
programs within this book for easy reference to their
functions and commands.

Glossary

New terms have been added to the glossary.

Reorganization

The book has been reorganized. It is now divided into
six chapters with an introduction for each chapter.

Chapter 4 presents the utilities in alphabetic order.

iv SC34-0313

c

C
'~

.)

c

o

Subject tabs have been added to the upper outside cor
ners of Chapters I through 6 of the book.

Bibliography

The Bibliography lists the books in the Event Driven
Executive library and a recommended reading sequence.
Other publications related to the Event Driven Executive
are also listed.

Mjscellaneous Changes

This manual has been modified to include new function
and to improve technical accuracy and clarity. Addi
tional material and technical changes are .indicated by
vertical bars in the left margin.

SC34-0313 v

HOW TO USE THIS BOOK

The material in this section is a guide to using this book. It
defines the purpose, audience, and content of the book as well
as 1 i st i ng aids for us i ng the book and background mater i a Is.

PURPOSE

The purpose of this publication is to describe how to use the
following:

The operator commands to perform var i ous system control
functions

The Session Manager to directly invoke utilities

The Batch Job Stream Proce~sor ($JOBUTIL) to invoke prede
fined sequences of utilities

The data management, terminal, graphics, text editing,
program preparation, and diagnostic utilities

The messages and codes issued when using the Event Driven
Executive

AUDIENCE

Th is manua 1 is intended for use by:

• System programmers to aid in generating a system to meet
the requ i rements of the i nsta llat ion

• Application programmers to prepare and execute application
programs

• Operators to run the system,

vi SC34-0313

o

o

HOW THIS BOOK IS ORGANIZED

This book contains six chapters:

"Chapter 1. Overv i ew" prov i des an overv i ew of the contents
of the book.

"Chapter 2. Operator Commands" descr i bes the operator com
mands and how to use them.

"Chapter 3. Session Manager" describes the method used to
interactively access programs from a set of predefined
menus and assoc i ated procedures.

"Chapter 4. Utilities" describes the utilities and how to
use them. This chapter contains a table which cross refer
ences the ,utilities. It shows the utility and command to
use to perform the des ired funct ion.

"Chapter 5. App 1 i cat i on Program Preparat ion" descr i bes the
program preparat ion ut iii ties and how to use them.

"Chapter 6. Messages and Codes" describes the messages and
codes issu~d by the Event Driven Executive and explains
their meaning.

AlPS IN USING THIS PUBLICATION

Illustrations in this book are enclosed in boxes. Many illus
trations display output formats printed while using the Event
Driven Executive system. In those cases where the actual print
er output exceeds the size of the box, the i nformat i on is
i 11 ustrated ina compressed format.

Severa 1 other aids are prov i ded to ass i st you in us i ng th i s
book:

• A Summary of Amendments 1 i sts the sign if i cant changes made
to this publication since the last edition

• A Bibliography:

•

Lists the books in the Event Driven Executive library
along with a brief description of each book and a
recommended reading sequence

Lists related publications and materials

A Glossary def i nes terms

SC34-0313 vii

• A Common Index wh i ch inc 1 udes entr i es from each book in the
Event Driven Executive library

Related Publ;cat;ons

Re Iated pub 1 i cat ions are 1 i sted in the Bib 1 i ography.

SUBMITTING AN APAR

If you have a problem with the Series/l Event Driven Executive
services, you are encouraged to fill out an authorized program
analysis report (APAR) form as described in the IBM Series/l
Author i zed Program Ana lys i s Report (APAR) User's Gu i de,
GC34-0099.

vii i SC34-0313

c

CI

o

Chapter 1. Overview
Operator Commands
Sess i on Manager
Uti lities
Messages and Codes • • • • • •••
Hardcopy Function for the 4978/4979 Display

Chapter 2. The Operator Commands
Invok i ng the operator commands
Entering command parameters
Operator Commands ••••••

$A - List Act i ve Programs
$8 - Blank Display Screen
$C - Cancel Program ••••
$CP - Change Terminal's Partition Assignment
$0 - Dump Storage •••• • ••••
$E - Ej ect Pr inter
$L - Load Program
$P - Patch Storage
$T - Set Date and Time
$VARVOFF - Set Device Offline
$VARVON - Set Dev ice Onl i ne
$W - Display Date and Time

Chapter 3. The Sessi on Manager
Invoking the Session Manager
Session Manager Program Function Keys
Automatic Data Set Allocation/Deletion
Session Mana~er Menus

Pr i mary Opt i on Menu
Secondary Option Menus
Menu Option Combinations

. . . .
Ut iIi ties Not Supported by Sess i on Manager Menus

Chapter 4. The utilities
Invoking the Utilities
Suggested Ut iIi ty Usage Table
$COMPRES - Compress Library
$COPV - Copy Data Set ••••

$COPV Commands ••••••
$COPVUTl - COpy Data Set with Allocation

$COPVUTl Commands •••••••••••
$DASDI - Format Disk or Diskette •••• • •••

Option 1 - 4964,4966 Diskette Initialization
Option 2 - 4962 Disk Initialization
Option 3 - 4963 Disk Initialization

$DEBUG - Debugg i n9 Too 1 •••••
Debug Usage Considerations
Start and Termination Procedure
$DEBUG Commands ••••••
$DEBUG Command Descriptions . .

CONTENTS

1
1
2
2
7
7

9
9

10
11
11
12
13
14
15
16
17
18
19
20
22
25

27
27
28
29
33
35
36
46
46

47
47
48
57
59
59
64
64
68
68
73
78
82
83
85
86
90

Contents i x

Tips and Techniques
$DICOMP - Display Composer

Invoking $DICOMP
$DICOMP Commands
Composer Subcommands

$DIINTR - Display Interpreter

.

Us i ng $DIINTR from an App I i cat i on Program
3D Concepts as used by $OIINTR •••••••••••

$DISKUT1 - Allocate/Delete; List Di rectory Data
$DISKUT1 Commands •• 0 ••• 0 • 0 •

$DISKUT2 - Patch, Dump or Clear Member
$DISKUT2 Commands • 0 •••••••

$DIUTIL - Display Data Base Utility
Invok i ng $DIUTI L • 0 0 ••••••

$DIUTI L Commands • 0 0 • 0 0 ••••

$DUMP - Format and Display Saved Envi ronment
Invok i ng $OUMP ••••••

$EDIT1 and $EDIT1N - Line Ed i tors
Data Set Requ i rements
Sequence of Operat ions
Special Control Keys
Ed i tor Commands
Ed it Mode Subcommands
Line Editing Commands ••••. • •••

$FONT - Process 4978 Character Image Tables ••••
$FONT Commands • 0 •• 0 • • 0 ••

Edit Mode •••••••• • •••
$FSEDIT - Full Screen Editor

Data Set Requ i remen'ts ••••••••••
Scrolling 0 •••••• 0 0 0

Program Funct i on Keys •••••• • •••
$FSEDIT Opt ions and Command Summary •••••
Pr i mary Opt i on Nenu •••• • •••••••••
Pr i mary Commands •••••••••••••••
Ed it Line Commands ••••• 0

$ IAMUT1 - Bu i ld and Ma i ntea in Indexed Data Set
$IAMUT1 Commands 0 •••• 0 0 0 • 0 0

Bu i ld i ng an Indexed Data Set o. 0 •••••••

Determining Data Set Size and Format
$IMAGE - Define 4978/4979 Formatted Screen Image

$I~1AGE Commands •••••• 0 •• '0 • 0

Edit Mode •••••••••••••••
$INITDSK - Initialize or Verify Volume

$INITDSK Commands ••• 0 ••••

Initialization
Verification

$IOTEST - Test Sensor
Invoking $IOTEST
$ lOT EST Commands

$JOBUTI L - Job Stream
Setup Procedure
$JOBUTIL Commands
Batch Job Example

$LOG - Log I/O Errors
Log Data Set

x SC34-0313

I/O; List Configuration

Processor
.
into Data Set '.

103
105
105
105
109
127
127
129
135
135
142
143
150
150
151
163
163
169
169
170
172
173
182
203
205
205
206
209
209
210
211
212
213
218
226
235
235
247
247
250
250
255
256
256
257
260
263
263
264
271
271
272
290
292
292 c

o

Invoking $LOG ••••••••••••••••
$MOVEVOL - Disk Volume Dump/Restore

Diskette Usage ••••••••••••
Data Set Spec if i cat ion •••••••••••
Dump Procedure •••••••••
Restoration Procedure

$PFMAP - Ident i fy 4978 Program Funct i on Keys
$PREF IND - Pref i nd Data Sets and Over lays

Program Load Process Overview ••
$PREFIND Usage Cautions
$PREFIND Commands
Invoking $PREFIND

$TAPEUT1 - Tape Management
$TAPEUT1 Commands

. .
.

$TERMUTI - Change Terminal Parameters
$TERMUTI Commands

$TERNUT2 - Process 4974/4978 Image/Control store
4978 Support •••••
4974 Support •••••
Data Set Names • • • • • •••
$TERMUT2 Commands •••••••••••

$TERNUT3 - Send Message to a Terminal
$TRAP - Save Storage on Error Cond it ion

Chapter 5. Application Program Preparation
Enter i ng Source Statements ••••
Program Assemb I y/Comp i lat i on ••••••••
Linkage Editor ••••••••
Object Module Conversion
Prefind of Data Sets and Overlays
Summary ••••••••• , ••••

$EDXASM - Event Dr i ven Language Comp i ler
Language Control Data Set •••••
Requ i red Data Sets ••••••
Camp i ler Opt ions •••••
$EDXASM Output ••••••
Compiler Features Supported
Programming Considerations
I n v 0 kin g $ E D X AS M ••••• • • • •
$EDXLIST - Comp i ler List i ng Program

. . . .

$S1ASM - Ser i es/l Assembler ••••••••••••
Requ i red Data Sets ••
Invok i ng $S1ASM ••••••• • ••••

Host Assembler ••••••• • ••
Invok i ng the Host Assembler •• " ••••
Transferring the Object Module to Series/l
EDXLIST - Host List i n9 Formatter
Program Opt ions • • • • • •••••••

$LINK - Linkage Editor •• • • • • • •••
Combining Modules • • • • • •••
Multiple Con'frol Sections ••••
Formatting Modules for $UPOATE ••••••••••
Elimination of Duplicate Contral Sections
Automatic Inclusion (Autocall) ••••
Storage Map

292
294
294
295
296
299
301
302
302
303
304
305
311
312
334
334
339
339
340
340
340
344
348

351
351
352
353
353
353
354
356
357
357
358
359
361
361
368
370
372
372
373
382
382
383
383
385
390
392
392
392
393
393
393

Contents xi

Bu i Id i ng an Event Dr i ven Execut i ve Superv i sar . .
The Link Ed it Process •••• - .
Input to $LINK •••• . . .
Data Sets Used by $LINK ·
AutocallOption • • • • .. • •• • •••
Output from $LINK
Invoking $LINK • • • • •• • •• •
Object Module Record Format ••••••••• Ii •••••

·$UPDATE - Object Program Converter
$UPDATE Commands • • • • • • •
Invok i ng $UPDATE
Creat i ng a Superv i sor •••• • .•••• ,. •

$UPDATEH - Object Program Converter (Host) ••••••••
$UPDATEH Commands •••••••••• • .. • • .4o.

Chapter 6. Messages and Codes
System Operation Messages

· ·
IPL Operat i on •••• • • • • • Volume Initialization
Tape Initialization
Storage Map Generation

·, .. ·
Load Ut iIi ty Locat i on
Sensor I/O Status Check

.,.
Date and Time Printing •••••• • •••
Pr'ogram load Message •••••••

Error Messages •••••••••• •
Program Check Errpr Message
System Program Check Error Message • • • • •
Processor Status t~ord (PSW) ••• •
$DUMP Error Messages •••••••••
$lOG Error Message • • •• •
$RMU Error Messages •• .;.. • ••••••••
$TRAP Error Nessages • • • • .. •••

Utility Completion Codes
$EDXASM Comp let i on Codes
$IAMUTI Completion Codes • • • • • • •• • ••••
$JOBUTIL Completion Codes • .. • • • • • • • ...
$LINK Completion Codes • • • • • •••
$UPDATE Comp let i on Codes •••• •

Event Dr i ven language and Funct t on Return Codes .. .
$DISKUT3 Return Codes
$PDS Return Codes • • • • • •
BSC Return Codes ••••
Data Formatt i ng Return Codes ·
EXIO Return Codes •••••
Float i n9 Po i nt Return Codes
Formatted Screen Image Return Codes
I n d e xed Ace e s s ~1 e tho d Ret urn Cod e s ••
LOAD Return Codes •••••••••••

. .;
..

Multiple Terminal Manager Return Codes
READ/~JRITE Return Codes ••••• .; •••••••••
S8IO (Sensor-based I/O) Return Codes
Terminal I/O Return Codes
Terminal I/O - ACCA Return Codes •• " ••••
Terminal I/O - Interprocessor Communications Return

xii SC34-0313

394
394
396
400
401
403
405
407
408
408
414
417
418
418

421
421
421
422
423
423
424
424
425
425
427·
427
429
430
431
432
433
435
436
436
437
439
440
443
444
444
445
446
447
448
450
450
451
452
453
454
457
4Sa
459

I I •.

c

c

(""'\

j

c

Codes ••••••••••••••• .• • • • • • • • • • • •
Terminal I/O - Virtual Terminal Communications Return

Codes •••• • • • • • • ••••
TP Return Codes •••••••••

Bi bl; ogl'aphy ••••• • • • •
Event Dr i ven Execut i ve Library Summary

Event Driven Executive Library
Sum hi a r y 0 1= Lib r ar y ••••••••• • • • • •
Read i ng Sequence •••••••••• • •••

Other Event Driven Executive Programming Publications
Other Series/l Programming Publications
Other Programming Publications
Series/1 System library Publicatidns
Gloss."y . . ~ .
Common Index

460

461
463

467
467
467
468
470
471
471
472
472

475

487

Contents xiii

()

xiv SC34-0313

LI~T QE EIGUf!§~

C;
Figure 1 • Sess i on Manager logon menu · · · · · · · 27
F=igure 2. $SMALLOC contents · · · · · · · 30
Figure 3. Data sets created by the Sess i on Manager 31
Figure 4. $SMDELET contents · · · · 32
Figure S. Menu se lect i on hierarchy · · · · · · · · 34
Figure 6 • Primary option menu . · · · · · · · · · · · · 35
Figure 7. Program preparat i On ut iIi ties opt i on menu 37
Figure 8. $EDXASM parameter select i on menu · · · · 38
Figure 9. Data management opt i on menu · · · · · • 39
Figure 10. Terminal utilities option menu · · · · · 41
Figure 11 • Graphics utilities option menu 41
Figure 12. Communications utilities option menu 43
Figure 13. Diagnostic aids uti lities option menu 44
Figure 14. $TRAp parameter selection menu · · · · 44
Figure 15. $DUMP parameter se lect i on menu · · · · · 4S
Figure 16 • $LOG parameter selection menu 45
Figure 17. X,V Coordinate Grid and Viewing Area 110
Figure 18. X,y,Z C()ordinate Grid and Viewing Area 111
Figure 19 • Viewing Area in 3D Node. . · · · · · · · · · · · 132
FigurE! 20. $EDITl/$EDITlN Commands and Subcommands 171
Figure 21. $MOVEVOL parameter input menu · · · · · · · 295
Figure 22. EVE!nt Dr i ven Execut i ve program preparat ion 355
Figure 23. Programming with a linkage editor · · · · 391

C)

c
List of Figures xv

xvi SC34-0313

0 ·,
I ,,)'

c

Ovel"v;ew 1
CHAPTER 1. OVERVIEW

The following Event Driven Executive system components are
described in this book:

• Operator commands to invoke programs and provide other
system contro I funct ions

• A sess i on manager to invoke the ut iii ties from opt i on menus

Data management utilities to maintain disk, diskette, and
tape data

• D i agnost i c ut iii ties to aid in hardware and software
debugging

• Graphics utilities to define, display, and maintain graph
i c data

• Terminal utilities to define and modify terminal control
information

• Text editing utilities to enter and edit source data

• Program preparation utilities for system and application
progra~ development

• Messages and codes to aid you in operat i on of the system

Each of these components is discussed later in the book in
detail. A brief description of each follows.

OPERATOR COMMANDS

Twelve operator commands provide functions you can perform at
your terminal. Commands that require parameters prompt you for
them. Commands are accessed via the ATTN key of the 4978 or 4979
display term)nals or the ESC or ALT MODE key on teletypewriter
terminals.

The operator commands and the funct ions they perform are:

SA

$B

Display loaded program names Clnd locations

Blank a 4978/4979 screen

Chapter 1. Overview 1

(Overview

$C Cancel a program

$CP Change a terminal's partition assignment

$D Dump storage

$E Eject pr inter page

$L Load a program

$P Patch storage

$T Enter the date and time

$VARYOFF Set a dev i ce offl i ne

$VARYON Set a dev j ce onl i ne

$W Dis pia y the d ate and tim e

I SESSION MANAGER

The session manager is a menu-driven interface used to access
both system functions and your applications through a set of
predefined full screen menus and their associated procedures.
See "Chapter 3. The Session Manager" on page 27 for a detailed
descr i pt i on on the sess i on manager.

UTILITIES

The utilities are a set of programs that provide productivity
aids for Series/l application program development and system
maintenance.

To aid yo u i n us i n g the s e uti lit i e s, the E v en t D r j ve n E x e cut j v e
system provides three ways to invoke the utility programs from
a term; nal:

• The sess i on manager

• The job stream processor ut iIi ty ($JOBUTI L)

• $L command

2 SC34-0313

((.-~
~-y

c

()

o

Overview

Most utility programs are used interactively from a terminal.
After a utility program is invoked, you can list its defined
operations and command by entering a question mark in response
to the' COMMAND (?):' prompt.

In Chapter 4, the utility programs are presented in alphabetic
order along with examples of their usage.

The session manager groups the utility programs by function.
The following represents the functional groupings of the util
ities along with the operations they perform.

Text Editing Utilities

The text editing utilities provide facilities for entering and
ed it i ng source programs as fo llows:

SEDITl

$EDITlN

$FSEDIT

Ali ne ed i tor that uses host data sets

A line ed i tor that uses Ser i es/l data sets

A full screen editor that uses Series/lor host data
sets

Program Preparation Utilities

The program preparation utilities aid in:

$COBOl Compiling COBOL programs

$EDXASM Compiling Event Driven language programs

$EDXlIST Reformatting 6EbxASM listings

$FORT Comp iIi ng FORTRAN programs

$lINK link ed it i ng more that one program together

$PL/I Compiling Pl/I programs

$ PRE FIND Pre fin din g d a t a set san d 0 ve r I a y pro g ram s to s h 0 r ten
program load i ng time·

$SlASM Assembling Series/l assembler language programs

Chapter 1. Overview 3

["overView I
$UPDATE Converting an object program into an executable load

module

$UPDATEH Converting a hqst object program into an executable
load module

Data Management utilities

The data management utilities aid in:

$COMPRES Compressing disk or diskette libraries

$COPY Copying disk or diskette data sets or volumes

$COPYUTl Copying data sets and volumes with dynamic
allocation of the recei ving data sets

$DASDI Initializing, formatting, and verifying disks or
diskettes

$DISKUTl Allocating and deleting data sets; listing di rectory
data

I $DISKUT2

$DISKUT3

$IAMUTl

I $INITDSK

Patch i ng and dump i ng data sets; list j ng the error
log data set

Performi ng data management funct i cns from another
program. $DISKUT3 is descr i bed in the System Gu j de.

Building and maintaining Indexed Access Method data
sets

Initializing and verifying a direct access storage
volume for use with the Event Driven Executive

$MOVEVOL Transferring volumes of data between systems and
creat i ng backup cop i es of an anI i ne data base

$PDS Organizing and accessing partitioned data sets from
another program. $PDS is described in the System
Guide.

$TAPEUTl Allocating tape data sets, copying data sets or vol
umes from disk or diskette to tape, from tape to disk
or diskette, or from tape to tape, and changing tape
attributes.

4 SC34-0313

c

o

c

Overv;ew

Terminal Utilities

The terminal utilities aid in:

$FONT Creat i ng and mod i fyi ng character i mage tables for
your display terminal

$IMAGE Defining formatted screen images

$ P FMA P Dis p I a yin g pro g ram fun c t ion key ass i g n men t s

$TERMUTl Altering logical device names, address assignments,
or terminal configurations

$TERMUT2 Defining routines and changing key definitions on
the 4978 keyboard. Restor i ng the 4974 pr inter to the
standard character set.

$TERI"'UT3 Send i ng messages from one termi nal to another

The Multiple Terminal Manager utility programs are documented
in the Communications and Terminal Applications Guide.

Graphics Utilities

Under the direction of a display processor, three graphics
utilities aid in:

$DICOMP

$DIINTR

$DIUTIl

Generating and modifying displays using an online
composer

Us i ng an interpreter to display and process the data
base

Maintaining the resulting data base

Communications utilities

The communications utilities aid in:

$BSCTRCE Tracing the I/O activities on a given binary synchro
nous communications line

Chapter 1. Overview 5

Overview I

$BSCUTl Formatt i ng binary synchronous trace files to either a
printer or a terminal

$BSCUT2 Exercisin9 BSCAM capabilities

$RJE2780 Simulating a 2780 RJE interface

$RJE3780 Simulating a 3780 RJE interface

$PRT2780 Pr i nt i ng spool records produced by $RJE2780

$PRT3780 Printing spool records produced by $RJE3780

$HCFUTl Interact i ng wi th the Host Commun i cat ions Fac i 1 i ty

The communcations utilities are documented i n the
Communications and Terminal Applications Guide.

Diagnostic Utilities

The diagnostic utilities aid in:

$DEBUG Debugging programs

$DUMP Formatting and displaying the data saved by $TRAP on an
error condition

SIOTEST Performing the following functions:

SLOG

STRAP

• Test i ng the ope rat i on of sensor based I/O features

• List i ng the hardware conf i gurat i on of the Ser i es/l

• List i ng the dev ices supported by the system

• Listing volume information

Logg i ng I/O errors into a data set

Intercept i ng certa inc lass interrupts and record i ng
the env ironment on a disk or diskette data set

6 SC34-0313

o

o

o

-I Overvi ew

MESSAGES AND CODES

Whi Ie using the Event Dri ven Executi ve, you may encounter
return codes, complet i on codes, and messages. They are found in
Chapter 6. Messages and Codes.

HARDCOPY FUNCTION FOR THE 4978/4979 DISPLAY

Press i ng the PF6 key or the ass i gned hardcopy key on the
4978/4979 keyboard causes the entire display (24 lines) to be
transferred to the designated hardcopy device. (During system
generation, the TERMINAL statement is used to define the hard
copy device.) If the hardcopy device has not been defined or is
current I y busy with another operat ion, then no act ion is taken.
Otherwi se, the screen cursor moves to each line as it 'i s
printed, returning to its original position after the page is
printed. The hardcopy function should not be activated while
the screen is be i ng changed.

Chapter 1. Overview 7

I Operator Commands

8 SC34-0313

/' "\

\'c;!

C,· '
J

o

(",J'~)
.. ,..Y

o

Operator Commands

CHAPTER 2. THE OPERATOR COMMANDS

Twelve operator commands provide system control functions you
can perform at your terminal. The operator commands begin with
the character $ and are directed to the supervisor. (The com
mands directed to the various utilities are described in
"Chapter 4, The Utilities" on page 47 for each utility).
Commands that requ ire parameters will prompt you for them.

The operator commands and the funct ions they perform are:

SA Dis pIa y loa d e d pro g ram n a me san d 1 0 cat ion s

$B Blank a 4978/4979 screen

$C Cancel a program

$CP Change a terminal's par'tition number

$D Dump storage

$E Eject pr inter page

$L

$P

$T

Load a program

Patch storage

Enter the date and time

$VARYOFF Set a device offline

$VARYON Set a device online

$W Display the date and time

INVOKING THE OPERATOR COMMANDS

To invoke the operation commands, press the ATTN key on the
4978 or 4979 (designated attention key on the teletypewriter
terminal). Then enter the desired command in response to the
prompt i ng message> from the superv i sor.

~: If the system includes more than 64K bytes of storage,
,the $A, $C, $0. $L. and $P functions operate only within the
storage part it i on ass i gned to the term ina 1.

Chapter 2. The Operator Commands 9

f Operator Commands

ENTERING COMMAND PARAMETERS

Vouare prompted for required parameter information, for exa~
pIe, the storage addresses to be displayed by $D or the name of
the program to be loaded by $L.

Note: In the syntax definitions in this chapter, the required
fields need not be entered on the same line as the command.

An alternate method for entering the operator commands is the
sing Ie 1 i ne format. Th is format a llows you to enter success i ve
fie l·d s, s epa rat e d by b 1 an k s, a s a sin g 1 e en try. T his can be
done for as many fie Ids as the system can process before it must
print an informational response. A possible entry using single
line format is:

$L $EDXASM CALCSRC ASMWORK ASMJOB

10 SC34-0313

(
--~

' .. J

c

o

o

Operator Commands

OPERATOR COMMANDS

$A - List Active Programs

Displays the names and load points of all programs that are
active within the partition to which the requesting terminal is
ass i gned. Programs that were loaded by operator commands
entered at your term ina 1 are i dent if i ed by an aster i sk.

Syntax

$A
Required:
Default:

None
None

No operands are supported.

Example - Display active programs

> $A

PROGRAMS AT 08:14:19
IN PARTITION is
$SNMAIN 0000 *
$JOBUTIl 0400 *
$DISKUTI 0800 *
$COPYUTI 2600

Chapter 2. The Operator Commands 11

[Ope~ato~ Commands

$B - Blank Display Screen

Blanks or erases the requesting terminal's (4978/4979) screen,
both protected and unprotected areas.

Syntax

$B
Required:
Default:

None
None

No operands are requ ired.

Example - Blank screen

> $8

Note: Display screen is blanked.

12 SC34-0313

()

/-r "\
I '
"cc,.,1

c

o

(~)

o

Operator Commands

$C - Cancel Program

Cancels a program and frees the storage that it occupied. When
more than one copy of the program is in your partition, you are
prompted to specify the load point of the program you wish to
cancel. Use $A to obtain the load point.

$C will also close, rewind, and set offline any tape data sets
defined in the program header of the cancelled program. If a
tape drive is online and targetted to receive data, the oper
ation will complete and tape will be set offline.

paut;on: Do not use the $C command as a normal means of termi
nating program execution. Use it only as an aid when no other
way exists to force termination of a program (such as a program
to be cancelled is in an endless loop of instructions>. $C can
cause unpredictable errors (the task error exit is not taken>
and should only be used as a last resort to avoid having to IPL
the system aga in.

Syntax

$C
Required:
Default:

Operands

program

program
program
None

Description

The name of the program to cancel.

Example - Cancel $EDIT1

> $C $EDITl

$EDIT1 CANCELED AT 08:16:24

Chapter 2. The Operator Commands 13

Operator Commands

$CP - Change Terminal's Partition Assignment

Th is command allows you to change the part it 1 on number ass i gned
to your terminal. If an invalid partition number is specified,
an error message is displayed.

Note: I f you are us i ng a 4952 processor, you are lim i ted to
partitions 1 and 2.

Syntax

$CP n
Required: n
Default: None

Operands Description

n The partition to which the terminal is to be
assigned.

Example - Assign terminal to partition 2

> $CP

PARTITION t ? 2

14 SC34-0313

c

o

o

Operator Commands

$0 - Dump storage

Dumps the contents of storage in hexadec i ma 1 on the term ina l.

Syntax

$D
Required:
Default:

Operands

origin

address

I count

origin,address,count
origin,address,count
None

Description

The hexadecimal origin address (the program load
point).

The hexadecimal address in the program at which the
dump is to start.

The dec i mal number of words to dump.

Example - pump first 10 words of partition

> $D
ENTER ORIGIN: 0000
ENTER ADDRESS,COUNT: 0000,10
0000: 6802 6AF6 0000 0000 6C34 6AF2 6C34 6AF2
0010: 0000 0000
ANOTHER DISPLAY? N

Chapter 2. The Operator Commands 15

Operator Commands

$E - E;ect Pr;nter

Causes the 4974 or 4973 pr inter (def i ned as $SYSPRTR) to
advance to the top of the next page a spec if i ed number of times.

Syntax

$E
Required:
Default:

QlLerands

n

n
None
Ejects one page

Description

The number of pages to eject.

Example - Eject page on printer

> $E 2

Note: Printer ejects two pages.

16 SC34-0313

c

o

o

o

Operator Commands

$L - Load Program

loads a program from disk or diskette and starts it.

Syntax

$l program,volume,storage data setcs)
Required: program
Default: volume defaults to IPl volume

Operands Description

program The name of the program to load.

volume The name of the volume which contains the program to
load.

I storage The tot a 1 add i t i on a 1 s tor age to be added tot he end
of the loaded program.

data set C s) Data set C s) to be passed to the program be i n9
loaded (if required). Specify the data set(s) in
the order the program expects.

Example - Lo~d a Program Called PROCESS from EDX003 and Pass a
Single Data Set, MY DATA

II > $L PROCESS,EDX003 MYDATA

Note: Wait until the system is initialized before loading a
program. If your system has timers, the system is initialized
when the 'SET TIME AND DATE USING $T' appears (or when the time
and date are printed). If your system does not have timers, the
system is initialized when it enters the wait state after the
storage map has been displayed.

Chapter 2. The Operator Commands 17

Operator Commands

$P - Patch storage

Allows main storage to be patched online. Enter the patch data
in response to prompt i ng messages.

Syntax

$P
Required:
Default:

Operands

origin

origin,address,count
origin,address,count
None

Description

The hexadecimal origin address
point).

(program load

address The hexadecimal address in the program at which the
patch is to start.

I count The dec i mal number of words to patch.

Example - Patch word X'lOO' of program loaded at 0 to 'S'FFFF'

> $P
ENTER ORIGIN: 0000
ENTER ADDRESS,COUNT: 0100,1
0100: C462
DATA: FFFF
ANOTHER PATCH? N

18 SC34-0313

o

c

o

o

0'·""
I,

Operator Commands

$T - set Date and T;me

Enters a new date and time into the system and resets the
realtime clock. You can only use $T from terminals having the
label $SYSLOG and$SYSLOGA. After entering the time, the timer
is started at the instant carr i age return/ENTER is pressed.
Th i s resets the seconds to zero.

Notes:

Make sure your time and date entry is correct as the system
does not ver i fy th i s data.

If $T is entered from other than $SYSlOG or $SVSLOGA, it is
equivalent to entering $W.

Syntax

$T
Required:
Default:

Operands

date

time

date,time
date,time
date defaults to 00/00/00
time defaults to 00:00:00

Description

The current date.

The current time.

Example - Set date and time

> $T
DATECM.D.T): a:22:79
TIMECH.M): 11:15

Chapter 2. The Operator Commands 19

Operator Commands

$VARYOFF - Set Dev;ce Offline

Sets the status of a disk, diskette, diskette magaz i ne un it, or
tape drive to offline.

On the 4966 diskette magaz i ne un it, each diskette vo I ume in
individual diskette slots or either of the diskette magazines
can be set to offline.

When you vary a tape dev i ce 0 ff line, that tape dr i ve is rewound
to the load point and set logically offline.

Syntax

$VARYOFF
Required:
Default:

Operands

ioda

slot

Examples:

ioda slot
loda
None

Description

The hexadecimal device address of the device to be
varied offline.

The slot number (1,2,3,A,B) of the diskette to be
varied offline. This parameter applies to the 4966
only.

Vary offline the volume in slot 2 of a 4966 device at address 22

> $VARYOFF 22 2
IBMIRD OFFLINE

20 SC34-0313

/'"~ -""\
\-\.,.JI'

c

o

o

o

Operator Commands

Vary offline tape drive at device address 4C on which a stand
ard label tape volume (volume serial 123456) was mounted and is
displayed.

> $VARYOFF 4C
123456 OFFLINE

Vary offline tape drive at device address 4E. In this example,
the tape drive was defined for non-labeled (NL) tapes or for
bypass label-processing (BLP). Therefore, the tape ID assigned
to that device at system generation is displayed.

> $VARYOFF 4E
TAPE1 OFFLINE

Note: If you vary offline a tape drive that is online and in
use, yoU are prompted as fo llows:

DEVICE MARKED IN USE, CONTINUE? (Y,N):

If response is N, the tape is not varied offline." If response is
y, the tape will be put logically offline (closed) and usable
(ready to be var i ed on line). Th is a llows an "unc lased" tape
dr i ve to be recovered.

Chapter 2. The Operator Commands 21

Ope~ator Commands

$VARYON - set Dev;ce On1;"8

Sets the status of a disk, diskette, diskette magaz i ne un it, or
tape drive to online.

On the 4966 diskette magazine unit, each diskette volume in the
individual slots or either of the diskette magazines can be
independently set to online. When a new diskette volume is
mounted, the diskette volume must be online for it to become
accessible. I/O commands issued to disk or diskette will not
operate unless the device and/or the di$kette volume is online.

I Before I/O commands can be l$sued to a tape, the tape must be
mounted on a tape dr i ve and var i ed on 1 i ne.

I $VARYON performs special tape functions, depending on the
labe 1 type that is def i ned for the tape dr i ve.

I ·
•

I ·

If the drive is defined for a standard label (Sl) tape, the
VOll volume label is read.

If the drive is defined for a non-labeled (Nl) tape, the
leading tape mark Cif one exists) is automatically
bypassed or, if a label is encounted, terminates without
sett i ng the tape onl i ne.

If the drive is defined for bypass label-processing (BlP),
no initial tape motion qccurs.

I $VARYON also allows access to a mul~iple-file
through a spec; f; ed f; Ie sequence i nd i cator.

tape volume

The tape drive must be set to the proper density at system
generation or by the Change Tape (eT) command of the $TAPEUTI
ut iii ty before YOU vary a tape onl i ne. You ~an request that the
exp i rat i on date on an SL tape data set be ignored.

22 SC34-0313

(.. . ~
, ~)

o

o

o

o

SVARYON
Required:
Default:

ioda slotlfile 'EX'
iada

Operator Commands

file defaults to 1, maximum value of 255

Note: The OR symbo 1 (I) i nd i cates mutua 11 y exc I us i ve operands.

Operands

ioda

Description

Tha hexadecimal device address of the device to be
varied online.

slotlfile The slot number (1,2,3,A,B) of the diskette to be
varied online. This parameter applies to the 4966
only.

, EX'

Examples:

The decimal fi Ie number on the tape to be accessed.
This parameter applies to the tape drive only.

This parameter applies to tape only and requests an
expiration date override. If a tape data set is ini
tialized with an expiration date, this parameter
must be used to write to that tape data set and the
file number must be specified.

Vary diskette in slot 1 of 4966 at device address 22 online

> $VARYON 22 1
IB~1IRD ONLINE

Vary a standard label (SL) tape (volume 123456) at address 4C
online and access the first file.

Chapter 2. The Operator Commands 23

Operator Commands

> $VARYON 4C
123456 ONLINE

Vary a non-labeled (NL) tape at address 4C online and access
the second file, where TAPE1 was the ID ass i gned at system gen
eration.

> $VARYON 4C 2
TAPE1 ONLINE

Vary a standard label tape at address 4D online. The first file
of this tape has an expiration date that has not expired; how
ever, output to this file is allowed.

> $VARYON 40 1 EX
OVERRIDE EXPIRATION DATE CHECK? (Y,N): Y
123456 ONLINE

24 SC34-0313

o

o

o

$W - Display Date and Time

Displays date and time.

Syntax

$W
Required:
Default:

None
None

No operands are supported.

Example - Display date and time

> $W
DATE = 08/22/79 TIME = 11:16:54

Operator Commands

Chapter 2. The Operator Commands 25

Session Manager

o

o

o
26 SC34-0313

o

o

Sess;on Manager

CHAPTER 3. THE SESSION MANAGER

The session manager provides a quick and easy to use method of
accessing programs (including the utilities) interactively
from a terminal. Predefined full scre,en menus and associated
procedures enable you to invoke the functions you request. Full
screen 4978 or 4979 dis~l~y terminals present prompting mes
sages and gather input parameters for processing system func
tions or application programs. Input requests are accompanied
by prompting messages to help you supply all required informa
tion.

The session manager requires a m1nlmum partition of 10K bytes
to process menus and your requests, but only 2K bytes remains
resident during execution of the functions yoU request. Each
terminal (4978 or 4979) has a dedicated copy of the session
manager loaded into the part it i on to wh i ch that term ina lis
assigned.

INVOKING TH~ SESSION MANAGER

You can invoke the sess ion e i thet of two ways:

• as part of the IPL procedure

• your request using $L (Load a Program)

When you IPL the Event Driven Executive system, the session
manager can be automatically loaded for each active 4978 or
4979 display terminal and the logon menu (as shown in Figure 1)
is displayed.

$SMMLOG: THIS TERMINAL Il LOGGED TO THE SESSION MANAGER
17:55:31

ENTER 1-4 CHAR USER 10
(ENTER LOGOFF TO EXIT)

==>

ALTERNATE SESSION MENU ==>
(OPTIONAL)

Figure 1. Session Manager logon menu

OS/24/79

Chapter 3. The Session Manager 27

[Session Manager

If you wish ~o start the session manager at IPL time, you must
rename the session manager module $SMINIT to $INITIAL, using
the following $OISKUTI utility command:

RE $SMINIT $INITIAL

The module $INITIAL, if present, is part of the IPL stream and
is automatically loaded.

If you do not wish the automatic start feature, you can load the
session manager using the following command:

$L $SMMAIN

To beg i 11 a sess ion, enter your user 10 (one to four characters)
and press the ENTER key. Use the ENTER key throughout the ses
sion for all data entry operations from the terminal. The user
10 should be unique and not be used by more than one person
simultaneously. This is because the user 10 is used to create
temporary work data sets whose names contain the four
character ID. Multiple use of the same ID results in sharing
the same work data sets, with unpredictable results.

NQ..tg: If you do not wish to use the session manager, enter the
word LOGOFF instead of a user ID and the session manager,termi
nates.

SESSION MANAGER PROGRAM FUNCTION KEYS

Four program function (PF) keys enable you to perform the fol
lowing functions:

PFl Blanks the current screen image and allows system
commands to be entered through prompt i ng messages:

28 SC34-0313

o

o

o

o

o

ENTERING SYSTEM COMMAND MODE -
TO REENTER THE SESSION MANAGER,
DEPRESS ATTN KEY AND ENTER '$SM':

Sess;on Manager

PF2 Restores the current screen image to its appearance when
first displayed. Use this key to erase erroneous entries.

PF3 Returns the previously displayed screen image. Use this
key to back out from the current screen image.

PF4 Returns you to the primary option menu. Use this key to
return from any sess i on manager screen.

AUTOMATIC DATA SET ALLOCATION/DELETION

The session manager allocates and deletes data sets
logon/logoff time.

Data Set Allocation

at

After you enter your user ID, the session manager allocates
work data sets on a disk resident volume. The data set called
$SMALLOC controls the data sets that are to be allocated.
Figure 2 on page 30 lists the data set contents which consists
of the data set prefix names, the sizes in 256-byte records,
and the volumes to be used.

The END statement i nd i cates the end of the list of data sets to
be allocated. Six data sets are usually allocated, five of
which are temporary. Temporary data sets are deleted at the end
of the session manager session. The data sets are allocated on
volume EDX003. Figure 3 on page 31 lists the data sets, their
sizes, and their functions.

The data sets to be allocated, their volume, or size can be
changed by using $FSEDIT or $EDIT1N to edit $SMAlLOC. Four oth
er optional data sets ($SM4, $SM5, $SM6, and $SM7) can also be
allocated. To change the number of data sets to be allocated,
move the END statement behind the last data set to be allo
cated. To change a data set size or volume, change the size or

Chapter 3. The Session Manager 29

Session Manager

volume field.

The on I y req u i red data sets are $SMP and $SMW. They must be
allocated on volume EDX003.

For each user ID, a permanent parameter data set named $SMPuser
is created. The last input parameters entered on a parameter
select i on menu are displayed, allowi ng them to be used as is or
changed. They are saved in the data set and recalled on the next
i nvocat i on of the menu.

When the data sets have been allocated, the primary option menu
is displayed on the screen and you can select the option
desired.

$SMP
$SMP
$SMW
$SME
$SM1
$SM2
$SM3
END

$SM4
$SMS
$SM6
$SM7

00 EDX003
30 EDX003
30 EDX003
400 EDX003
400 EDX003
400 EDX003
250 EDX003
*** TERMINATOR -

DATASETS ***
100 EDX003
100 EDX003
100 EDX003
100 EDX003

NAME AND VOLUME FOR OPEN
SIZE AND VOLUME TO ALLOCATE
SIZE AND VOLUME TO ALLOCATE
SIZE AND VOLUME TO ALLOCATE
SIZE AND VOLUME TO ALLOCATE
SIZE AND VOLUME TO ALLOCATE
SIZE AND VOLUME TO ALLOCATE

INDICATES END OF ALLOCATED

SIZE AND VOLUME TO ALLOCATE
SIZE AND VOLUME TO ALLOCATE
SIZE AND VOLUME TO ALLOCATE
SIZE AND VOLUME TO ALLOCATE

** $SMLOG WORK DATASET PARAMETER VALUES FOR ALLOCATE **
** FUNCTION **
** NOTE: THE DATASETS $SMW AND $SMP MUST RESIDE ON **
** THE VOLUME EDX003. ALL OTHERS MAY BE **
** REASSIGNED. **
** NOTE: THE FIRST ENTRY IN THIS LIST IS USED TO **
** TEST FOR THE EXISTENCE OF THE $SMP **
** DATASET. DON'T DELETE. **
** DC C'5719-XSl COPYRIGHT IBM CORP 1979' **

END

Figure 2. $SMALLOC contents

30 SC34-0313

o

o

o

o

o

Session Manager

Data set Size in 256
name byte blocks Functional usage

$SMEuser 400

$SMPuser 30

$SMWuser 30

$SMluser* 400

$SM2user* 400

$SM3user* 250

NQtes~

Used by the full screen text
editor utility ($FSEDIT) as a
work data set.

Used by the session manager to
save your input parameters
from session to session. This
data set is not deleted at the
completion of a session.

Used by the session manager to
submit procedures via the job
stream utility ($JOBUTIL).

Used by the linkage editor ($LINK),
the assembler ($SlASM), the com
pilers ($EDXASM, COBOL, PL/I,
and FORTRAN IV as a work data set.

Used by the linkage editor ($LINK),
the Series/l Macro Assembler
($SlASM), COBOL, FORTRAN IV,
and P!/I as a work data set.

Used by the Series/l Macro
Assembler ($SlASM), COBOL,
and PL/I as a work data set.

1. 'user' in the data set name is replaced by your
user 10.

2. *Using tha session manager to invoke $SIASM, COBOL,
and PL/I requires that these data sets be deleted and
reallocated. Recommended sizes for most programs are
2000 records for $SMluser and $SM2user and 800 record
for $SM3user.

Figure 3. Data sets created by the Session Manager

Chapter 3. The Session Manager 31

I Session Manager

Data Set Deletion

Data sets created by the session manager can be deleted when
you return to the logon menu. A prompt message is issued ask i ng
if you wish to save the data sets. To reply, enter a V for yes or
an N for no and press the ENTER key. Abnormal termination of the
session manager prevents the deletion of the temporary data
sets.

The data set $SMDELET controls the data sets to be deleted at
the end of the sess ion. The data set conta i ns the data set pre
fix names and the volumes on which they reside. The END state
ment i nd i cates the last data set to be de leted. The data sets to
be deleted should normally be the data sets that were allocated
at the start of the sess ion. Figure 4 1 i sts the contents of the
$SMDELET data set.

$SME
$SMI
$SM2
$SM3
$S~1W

END

$SM4
$SM5
$SM6
$SM7

EDX003
EDX003
EDX003
EDX003
EDX003

TERMINATOR
BE DELETED

EDX003
EDX003
EDX003
EDX003

PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
- INDICATES END OF DATA SETS TO

PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE

** $SMEND WORK DATASET PARAMETER VALUES FOR DELETE **
** FUNCTION **
** DC C'5719-X51 COPYRIGHT IBM CORP 1979' **

END

Figure 4. $SMDELET contents

32 SC34-0313

o

o

o

o

o

Sess;on Manager

SESSION MANAGER MENUS

The sess i on manager menus enable you to select opt ions, such as
text editing or program preparation, and to enter parameters. A
un i que procedure, associ ate d wi t h each menu , enables you to
select option menus or to invoke through the batch job process
ing utility, $JOBUTIL, the functions you desire.

Menus and procedures are stored in a library that resides on a
direct access storage device. A menu is either a parameter
selection menu or an option selection menu. You use a parameter
se lect i on menu to pass parameters to the program be i ng invoked.
The option selection menu is used to select other menus based
on which option is selected.

When you log on to the session manager, the supplied environ
ment can be overridden by specifying a main option menu that
you have created. This provides for additional environments
tailored to your system. Option selection menus can be modified
to add options that provide different environments for differ
ent users. (Procedures for modifying and adding new menus are
discussed in the System Gu j de) •

Figure 5 on page 34 shows the structure and the various paths
that can be used to execute a requested function. When a func
tion completes, the most recently displayed menu is again dis
played. You can then change parameters and again request the
function, or you can return to previously displayed menus by
pressing the PF3 key. Use the PF3 key to return to a previous
menu and, finally, to exit the session manager.

Chapter 3. The Session Manager 33

I Sess;on M~nager

o
Levell

Logon
menu

I
I I

User Primary
Level 2 supplied option

menu menu

I
f I I 1

Parameter Secondary
Level 3 selection option

menu , menu

I I
I I

Execute Execute Tertiary
Level 4 requested requested option

function function menu

I
r I

Parameter
Level 5 selection

• menu

•

I •
•
•

Execute
requested
function

Figure 5. Menu selection hierarchy

c
34 SC34-0313

o

C
~ ,

Session Manager

Pr;mary opt;on Menu

The primary option menu provides nine options as shown in
Figure 6. The session manager automatically positions the
cursor to accept input. Type in the desired option number and
press the ENTER key. The function of each primary option is
discussed in the following pages.

$SMMPRIM: SESSION MANAGER PRIMARY
ENTER/SELECT PARAMETERS:

SELECT OPTION ==>

1 - TEXT EDITING

OPTION MENU ---------
DEPRESS PF3 TO RETURN
19:42:07
07/13/79
USER

2 - PROGRAM PREPARATION
3 - DATA MANAGEMENT UTILITIES
4 - TERMINAL UTILITIES
5 - GRAPHICS UTILITIES
6 - EXEC PROGRAM/UTILITY
7 - EXEC $JOBUTIL PROC
8 - COMMUNICATION UTILITIES
9 - DIAGNOSTIC UTILITIES

Figure 6. Primary option menu

Chapter 3. The Session Manager 35

(Sess;on Manager

Secondary Option Menus

Option 1 - Text Editing

Th is opt i on requ i res no further parameter input. When you
select this option, the session manager loads the full screen
text editor utility program $FSEDIT and passes control to it.
The edit work data set used is the one automatically preallo
cated by the Session Manager. All further communication is
directly between you and $FSEDIT. Commands for $FSEDIT can be
found under "Primary Commands" on page 218.

When $FSEDIT terminates, control returns to the session manag
er, the primary option menu is displayed, and another option
can be selected.

Option 2 - Program Preparation

This option allows YOli to prepare programs for execution. By
further spec if i cat i on on a secondary opt i on menu, programs can
be assembled, compiled, linked, updated, or listed. A second
ary option menu, as shown in Figure 7 on page 37, is displayed
on the screen after you select the program preparation utili
ties opt i on from the pr i mary opt i on menu. You can select one of
the 1 i sted ut iii ty programs from it.

A parameter selection menu is displayed based on which second
ary option you select. The menu allows entry of required param
eters such as: source input data set name, object output data
set name, and assemb ler or camp i ler opt ions. The se lected
parameters are saved from one session logon to the next. An
example of the $EDXASM parameter menu is' shown in Figure 8 on
page 38. Parameter menus for other program preparation utili
ties are similar and self explanatory. The required work data
set for assemblers, compilers, and the linkage editor are pre
allocated by the session manager. 'You must allocate the object
data set.

The fo llow i ng programs can be invoked from th i s opt i on:

$EDXASM Compiles Event Driven Language programs

$SlASM Assembles macro assembler language programs

$COBOl Camp i les COBOL programs

36 SC34-0313

o

o

o

o

o

Sess;on Manager

$FORT Comp i les FORTRAN IV programs

$LINK Link-edits program object modules

$UPDATE Converts an object program to an executable program

$UPDATEH Transmits and converts host assembled modules

$PREFIND Locates data sets/overlays prior to
program

$PL/I Compiles PL/I programs

loading a

Opt ion 9 of the program preparat ion ut iii ties opt i on menu
invokes the ut iii ties referenced in the sequence shown. You can
pass parameters to those programs as needed.

$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTION MENU--
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SELECT OPTION ==>

1 - $EDXASM COMPILER
2 - $SlASM ASSEMBLER
3 - $COBOL COMPILER
4 - $FORT FORTRAN COMPILER
5 - $LINK LINKAGE EDITOR
6 - $UPDATE
7 - $UPDATEH (HOST)
8 - $PREFIND
9 - $EDXASM/$LINK/$UPDATE

10 - $PL/I COMPILER/$LINK/$UPDATE

Figure 7. Program preparation utilities option menu

Chapter 3. The Session Manager 37

Sess;on Manager

$SMM0201: SESSION MANAGER $EDXASM PARAMETER INPUT MENU
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOlUME) ==>

OBJECT OUTPUT CNAME,VOlUME) ==>

ENTER OPTIONAL PARAMETERS
BY POSITION==> 1--------2-----------

LIST PRINTER NAME
NOlIST
ERRORS

DEFAULTS ARE: LIST $SYSPRTR

Figure 8. $EDXASM parameter se lect i on menu

I Option 3 - Data Management

This option allows you to invoke the following utilities:

$DISKUTl Allocates and deletes data sets; lists directory
data

$DISKUT2 Patches and dumps data sets

$COPYUTl Cop i es data sets with output data set a llocat ion

$COMPRES Compresses libraries

$COPY Cop i es d i sk/d 1 skette data sets and vo I umes

$DASDI Initializes,
diskettes

formats, and verifies disks or

$INITDSK Initializes and read-verifies a direct access
storage volume

$MOVEVOL Saves direct access volumes whose SI ze requi res
multiple diskettes

38 SC34-0313

o

(~)

- :.,:'

c

o

o

I Sessi on Manager -,

$IAMUTl Builds and maintains Indexed Access Method data sets

$TAPEUTl Allocates tape data sets, cop i es
volumes from disk/diskette to tape,
disk/diskette, or tape to tape, and
attributes.

data sets or
from tape to
changes tape

A secondary option menu, as shown in Figure 9, is displayed on
the screen after you select the data management option from the
pr i mary opt i on menu. You can se I ect one of the listed ut iii ties
from it.

$SMM03 SESSION MANAGER DATA MANAGEMENT OPTION MENU------"
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SELECT OPTION ==>

1 - $DISKUTl
2 - $DISKUT2
3 - $COPYUTl
4 - $COMPRES
5 - $COPY
6 - $DASDI
7 - $INITDSK
8 - $MOVEVOL
9 - $IAMUTI

10 - $TAPEUT1

(ALLOCATE, LIST DIRECTORY)
(DUMP/LIST DATA SETS)
(COpy DATASETS/VOLUMES)
(COMPRESS A VOLUME)
(COPY DISK/DISKETTE DATASET$/VOLUMES)
(DISKCETTE) SURFACE INITIALIZATION)
(INITIALIZE/VERIFY DISK/DISKETTES)
(COpy DISK VOLUME TO MULTI-DISKETTES)
(MAINTAIN INDEXED DATA SETS)
CTAPE ALLOCATE, CHANGE, COPY)

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS.

Figure 9. Data management option menu

The $TAPEUT1 ut iii ty has been added to the secondary opt i on
menu of the Data Management utilities for the Event Driven
Executive Version 2 (S719-UT4).

Chapter 3. The Session Manager 39

[Sess i on Manager

Option 4 - Terminal Utilities

This option allows you to invoke the following utility pro
grams:

$TERMUTl Alters logical device names, address assignments, or
terminal configuration parameters

$TERMUT2 Defines routines and changes key definitions on the
4978 keyboard. Restores the 4974 pr inter to the
standard character set.

$TERMUT3 Sends a single line message from one terminal to
another

$IMAGE Defines formatted screen images for the 4978 or 4979
display terminals

$FONT Modifies character image tables for the 4978
terminal

$PFMAP Identifies program function keys on the 4978
terminal

A secondary option menu, as shown in Figure 10 on page 41, is
displayed on the screen after you select the terminal utilities
option from the primary option menu. You can select one of the
listed ut iIi ty programs from it.

Option 5 - Graphics Utilities

Th i s opt i on allows you to invoke ut iii ties to generate, store"
and display information graphically or in reports. The follow
i ng ut iii ty programs can be invoked from th i s opt ion:

$DIUTIL Performs uti lity functions on a display data base

$DICOMP Composes existing display profi les and adds new ones

$DIINTR Generates the requested display

A secondary option menu, as shown in Figure lion page 41, is
displayed on the screen after you select the graphic utilities
option from the primary option menu. You can select one of the
listed ut iIi ty programs from it.

40 SC34-0313

()

c

o

o

Session Manager

$SMM04 SESSION MANAGER TERMINAL UTILITIES OPTION MENU---
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SELECT OPTION ==>

1 - $TERMUTl
2 - $TERMUT2
3 - $TER~'UT3

4 - $IMAGE
5 - $FONT
6 - $PFMAP

(TERMINAL CONFIGURATOR)
(4978 KEYBOARD DEFINE)
(TERMINAL MESSAGE SENDER)
(SCREEN FORMAT BUILDER)
(CREATE/MODIFY CHARACTER IMAGES)
(DISPLAY PF KEY CODES)

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS.

Figure 10. Terminal utilities option menu

$SMM05 SESSION MANAGER GRAPHICS UTILITIES OPTION MENU-
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SELECT OPTION ==>

1 - $DIUTIl
2 - $DICOt1P
3 - $DIINTR

(GRAPHICS ORGANIZOR)
(GRAPHICS COMPOSER)
(GRAPHICS INTERPRETER)

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS.

Figure 11. Graphics utilities option menu

Option 6 - Execute Program

This option allows you to execute any program. The program can
be a system program or utility, or one of your application pro
grams. The parameter selection menu has provision for specify
i ng the parameters and data sets that the program may need.

Chapter 3. The Session Manager 41

Sess·i on Manager

Option 7 - Execute $JOBUTIl Procedure

This option allows the submission of previously built proce
dures to the job stream processor uti lity $JOBUTIL. A parameter
selection menu allows entry of the procedure name and volume
name it res i des on. The procedure cannot invoke the name of
another procedure.

Option 8 - Communications Utilities

This option allows yoU to invoke the following
programs:

utility

$BSCTRCE Traces the I/O act i vi ties on a given binary

$BSCUTl

. $BSCUT2

synchronous communications line

Formats binary synchronous trace files to either a
pr inter or a termi nal

Exercises BSCAM capabilities

$RJE27BO S.i.mulates a 2780 RJE interface

$R..)E3780 Simulates a 3780 RJE interface

$PRT2780 Prints spool records produced by $RJE2780·

$PRT3780 Prints spool records produced by $RJE3780

$HCFUTI Interacts with the Host Communications Facility

A secondary option menu, as shown in Figure 12 on page 43 is
displayed on the screen after you select the communications
ut iIi ty opt i on from the pr i mary opt i on menu. You can select one
of the listed ut iii ty programs from it.

42 SC34-0313

()

o

o

o

C~ /

o

I Session Manager

$SMM08 SESSION MANAGER COMMUNICATION UTILITIES OPTION
MENU

ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SELECT OPTION ==>

1 - $BSCTRACE
2 - $BSCUTI
3 - $BSCUT2
4 - $RJE2780
5 - $RJE3780
6 - $PRT2780
7 - $PRT3780
8 - $HCFUTI

(TRACE BSCAM LINES)
(PRINT TRACE FILE)
(SSC EXERCISER)
(2780 RJE TO HOST)
(3780 RJE TO HOST)
(2780 SPOOLED RJE FILE PRINTER)
(3780 SPOOLED RJE FILE PRINTER)
(HOST COMMUNICATIONS FACILITY)

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS.

Figure 12. Communications utilities option menu

Option 9 - Diagnostic Utilities

This option allows you to invoke the following utility
programs:

STRAP Saves the env ironment ina data set incase of error

$DUMP Formats and d i SP lays the data saved by $TRAP

SLOG Logs I/O errors into a data set

$DISKUT2 Formats and d i sp lays the log data set on a pr inter or
terminal

SlOTEST Tests sensor-based operations; lists system
configuration and volumes

A secondary option menu, as shown in Figure 13 on page 44 is
d i sp 1 ayed on the screen after you se lect the d i agnost i c ut iii ty
option from the primary option menu. You can select one of the
1 i sted ut iii ty programs from it.

Chapter 3. The Session Manager 43

Sess;on Manager

$SMM09 SESSION MANAGER DIAGNOSTIC AIDS OPTION MENU -
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SELECT OPTION ==>

1 - $TRAP

2 - $DUMP
3 - $LOG
4 - $DISKUT2
5 - $IOTEST

(CAPTURE PROGRAM INFORMATION TO
DATA SET)

(FORMATTED STORAGE/REGISTER
(I/O ERROR LOGGING)
(DUMP/PATCH DISK(ETTE) UTILITY
(SENSOR I/O DEVICE EXERCISOR)

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (1) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS.

Figure 13. Diagnostic aids utilities option menu

A parameter selection menu, as shown in Figure 14 is displayed
on the screen after you select the STRAP utility. Use the menu
to enter the name of the data set to be used by $TRAP and the
name of the vo lume conta i n i ng the data set.

$SMM0901: SESSION MANAGER STRAP PARAMETER INPUT MENU -
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

$TRAP

DUMP DATASET (NAME,VOLUME)==>

Figure 14. $TRAP parameter select i on menu

A parameter selection menu, as shown in Figure 15 on page 45 is
displayed on the screen after you select the SDUMP uti lity. Use
the menu to enter the name of the data set to be used for the
dump and the name of the volume containing the data set.

44 SC34-0313

o

/1',
\i:U)

o

o

o

o

Session Manager

$SMM0902: SESSION MANAGER $DUMP PARAMETER INPUT MENU --
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

$DUMP

DUMP DATASET (NAME,VOLUME)==>

Figure 15. $DUMP parameter selection menu

A parameter selection menu, as shown in Figure 16 is displayed
on the screen after you select the $LOG uti lity. Use the menu to
enter the name of the data set to be used by $lOG and the name of
the vo 1 ume conta i n i ng the data set.

$SMM0903: SESSION MANAGER $LOG PARAMETER INPUT MENU -
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

$LOG

LOG DATASET (NAME,VOLUME)==>

Figure 16. $LOG parameter selection menu

Chapter 3. The Session Manager 45

Session Manager

Menu 'opt; on Comb i nat; ons

When se lect i ng a pr i mary opt ion, the secondary opt i on, if
applicable, can also be entered. This results in the secondary
option being invoked without display of the secondary option
menu. The secondary opt i on is separated from the pr i mary opt ion
by a period.

Example: To request an assembly from the primary option menu,
enter 2.1 as the selected option. You have selected primary
opt i on 2 (program preparat ion) and its secondary opt ion '1
($EDXASM - compile Event Driven Language program). The next
menu displayed is the parameter selection menu ($SMM0201) for
the compiler $EDXASM.

utilities Not Supported by Session Manager Menus

The following uti llty programs are not supported by the Session
Manager menus:

$DEBUG
$DISKUT3
$EDITI
$EDITIN
$EDXLIST
$PDS
The Multiple Terminal Manager utilities
The Remote Management ut iii ty ($RMU)

·Wi th the except i on of $DISKUT3 and $PDS, these ut iIi ty programs
can be invoked by enter i ng the operator command $L (Load a Pro
gram) and the utility name. $DISKUT3 and $PDS can only be used
from a program us i ng the LOAD instruct i on and are documented in
the System Guide. $RMU is documented in the Communications and
Terminal Applications Guide.

46 SC34-0313

()

o

c

o

(j:

o

CHAPTER 4. THE UTILITIES

The utilities are a set of programs supplied with the Event
Driven Executive system that allow you to interactively commu
n i cate with the system and perform many funct ions necessary for
Series/l application program development and system mainte
nance.

INVOKING THE UTILITIES

To aid you in performing utility functions, the Event Driven
Execut i ve system prov i des three ways to invoke the ut iii ty pro
grams from a termi nal:

•

•

The session manager - You choose the desired utility pro
gram from a predefined option menu provided. Most utili
ties can be invoked in this manner. This is the easiest to
use for interactive utilities because you need only enter
option numbers (not program names) to access the function
needed.

$JOBUTIL - The job stream processor utility can be used to
invoke a predefined sequence of pro 9 ramp rep a rat ion uti I i -
ties and pass parameters to them. $JOBUTIl can itself be
invoked by the sess i on manager.

• $l command - Enter the operator command $~ (Load program),
followed by the name of the utility of your choice. All
utilities described in this book can be invoked in this
manner.

Most utility programs are used interactively from a terminal.
After a utility program is invoked, you can list its defined
operations and command codes by entering a question mark in
response to the' COMMAND (?):' prompt.

Chapter 4. The utilities 47

SUGGESTED UTILITY USAGE TABLE

The following table is intended to help you find the appropri
ate utility program and command to perform the function that
you want to accomplish. To use it, find the activity and func
tion that you want to do in the left columns; the corresponding
utility and command to accomplish the function are in the right
columns. The program name indicated can be used on the $L com
mand to load that utility program. When using the session man
ager, the menu option corresponding to the program name on the
secondary option menu can be selected to access the program.
The command indicated is used to direct the utility to perform
the desired function.

48 SC34-0313

o

c

C \,','
ACTIVITY FUNCTION UTILITY COMMAND

Activate Error logging SLOG SLOGaN
stopped task $DEBUG GO
TRAP function of

storage dump STRAP TRAPON

Allocate Data set SDISKUT1 AL
SDIUTIL AL
SIAMUTI CR
STAPEUTI TA

A new data set in a data
base for a graphics
display profile SDICOMP AD

Assign Alternate for defective
4963 sector $DASDI 3,1

DEFINE key i n a 4978
control store $TERMUT2 AD

Cancel Dump SDUMP CA
List option SFSEDIT CA
~1ultiple member copy $COPYUTI CA
Multiple member list SDISKUTI CA
Multiple record dump $DISKUT2 CA
Multiple record list $DISKUT2 CA

Change $EDXASM assembly of EDL $EDXASM CA
Address assignment of

a terminal STERt1UTl RA
Base address $DEBUG QUALIFY
Execution sequence $OEBUG GOTD
Graphic or report

display profile $OICOMP AL,IN
H~rdcopy device

associated with
4978/4979 $TERMUTl RH

Host library $UPDATEH CH
Key definition in a

4978 control store $TER~'UT2 C
Name of logical device $TERMUTI RE
Page formatting

parameters of a
terminal $TERMUTI CT

0'1,,'''', . v,

Chapter 4. The Utilities 49

Utilities

ACTIVITY FUNCTION UTILITY COMMAND

Change Series/l library $UPDATEH CV
Tape drive attributes $TAPEUTI CT
Trap function of

storage dump $TRAP $TRAPEND
Volume $DISKUTI CV

$DISKUT2 CV
$UPDATE CV

Clear Data set to zero $DISKUT2 CD

Compress Graphics data base $DIUTIL CP
Library $COMPRES None

COpy All of data set to
existing data set $COPY CD

Part of data set to
existing data set $COPY CD

All of disk or
diskette data set to
tape data set $TAPEUTI CD

A tape data set to disk
or diskette data set $TAPEUTI CD

A tape data set to
another tape data set $TAPEUTI CD

Absolute $COPY CD
Entire disk or diskette

volume $COPY CV
Member with allocation $COPYUTI CM
Member from graphic

source data base to
target data base $DIUTIL CM

All members with
allocation $COPYUTI CALL

Data members with
allocation $COPYUTI CAD

Program members with
allocation $COPYUTI CAP

Generic members with
allocation $COPYUTI CG

Non-generic members with
allocation $COPYUTI eNG

c
50 SC34-0313

o
ACTIVITY

Define

Delete

Direct

Display

o

o

FUNCTION

Indexed Access Method
data set

Formatted screen:
- image dimensions
- horizontal tab
- vertical tab
- null representation

Member

Prefound status of data
sets and overlays

Output to $SVSPRNT

Output to terminal

4978 program function
keys

Character image table
Contents of storage or

registers
Graphics or report

display profile
Header of a data member

in graphics data base
Indexed Access Method

SE command parameters
Members in graphics

data base
Status of all tasks
Status of current

graphics data base
Volume information

UTILITY

$IAMUTI

$IMAGE
$IMAGE
$IMAGE
$IMAGE

$DISKUTI
$DIUTIL

$PREFIND

$DISKUTI
$DISKUT2
$DISKUTI
$DISKUT2

$PFMAP
$FONT

$DEBUG

$DIINTR

$DIUTIL

$IAMUTI

$DIUTIL
$DEBUG

$OIUTIL
$IOTEST

COMMAND

OF

DIMS
HTAB
VTAB
NULL

DE
DE

DE

LISTP
PL
LISTT
LL

Each key
DISP

LIST

None

LH

01

LA
WHERE

ST
VI

Chapter 4. The utilities 51

utilities

o
ACTIVITY FUNCTION PROGRAM COMMAND

Dump Data set or program on $DISKUT2 DP
printer $DICOMP PR

$DUMP None
Data set or program on $DISKUT2 DU

console $DICOMP PR
$DUMP None

Tape on printer or
terminal $TAPEUTI DP

Exercise Tape to verify it i s
executing correctly
and surface is free
of defects $TAPEUTI EX

Generate Graphic or report
display profile $DIINTR None

Help With use of $COPY $COPY ?
With use of $COPYUTI $COPYUTI ?
'~i t h use of $DICOMP $DICOMP ?
With use of $DISKUTI $DISKUTI ?
With use of $DISKUT2 $DISKUT2 ?
With use of $DIUTIL $DIUTIL ?
With use of $FONT $FONT ?
With use of $FSEDIT $FSEDIT ?
With use of $IAMUTI $IAMUTI ?
loJ i t h use of $IMAGE $ I~1AGE ?
With use of $INITDSK $INITDSK ?
With use of $IOTEST $IOfEST ?
,oJ i t h use of $PREFIND $PREFIND ?
With use of $TAPEUTI $TAPEUTI ?
With use of $TERMUTI $TERHUTI ?
With use of $TERMUT2 $TERMUT2 ?
With use of $UPDATE $lJPDATE ?
With use of $UPDATEH $UPDATEH ?

c
52 SC34-0313

o

o

ACTIVITY FUNCTION UTILITY

Initialize Disk
Diskette

$DASDI
SDASDI

List

load

Log

For use with Event
Driven Executive

Graphics data base
Log data set
Tape

All members in volume
All members (CTS mode)
Breakpoints/trace ranges
Data members (CTS mode)
Data members in volume
Data set on printer
Data set on console
Devices supported by

system
Hardware configuration
Log on printer
Log on console
One member
Program function keys
Program members

SINITDSK
SDIUTIL
$LOG
STAPEUTI

SDISKUTI
$DISKUTI
$OESUG
$DISKUTI
SDISKUTI
$DISKUT2
$OISKUT2

SIOTEST
$IOTEST
$OISKUT2
$OlSKUT2
$OISKUTI
$IMAGE

(CTS mode) $DISKUTI
Program members in volume SDISKUTI
Space available SDISKUTI
Terminal names/types/

addresses
Through volumes

A 4978 control store
from a direct access
data set

Character image table
into a 4978

Indexed Access Method
data set

I/O errors into disk or
diskette data set

$TERMUTI
$OISKUTI

$TERMUT2

$FONT

$IAMUTI

$LOG

utilities

COMMAND

2
1

I
IN
$LOGINIT
IT

LA
LACTS
BP
LDCTS
LO
LP
LU

LS
LD
PL
LL
LM
KEYS

LPCTS
LP
LS

LA
LV

LC

PUT

LO

$LOGON

Chapter 4. The Utilities 53

utilities

o
ACTIVITY FUNCTION UTILITY COMMAND

Move Graphics data base from
on~ volum~ to another $OIUTIL MD

Tape forward or back $TAPEUTI MT

Patch Data set or program $OISKUT2 PA
Storage or registers $OEBUG PATCH

Preallocate Data sE:lts and overlays $PREFINO PF

Post An event or process
interrupt $OEBUG POST

Print Map of 4963 alternate
sectors $OASDI 3,3

Pulse A digital output address $IOTEST PO

Read Character image table
from 4978 $FONT GET

Analog input $IOTEST AI
Program $UPDATE RP

$UPDATEH RP
Digital input $tOTEST 01
Digital input using

external ,sync $IOTEST XI

Rename Member $DISKUTI RE
Display profile

identification name $DIUTIL RE

Remove Breakpoints/tr~ce ranges $OEBUG OFF

Reset Indexed Acpe!is Metho~
ECHO mode $IAMUTl EC

Indexed Access Method
SE command parameters $IAMUTl RE

Reorganize Indexed Acee$is Method
data set $IAMUTI RO

o
54 SC34-0313

utilities

o
ACTIVITY FUNCTION UTILITY COMMAND

Restore Assigned 4963 alternate
sector $DASDI 3,2

Disk volume from
diskettes $MOVEVOL None

Disk or diskette
volume from tape $TAPEUTI RT

4974 printer to the
standard character set $TERMUT2 RE

Rewind Tape $TAPEUTI MT
Tape and place offline $TAPEUTI NT

Save A 4978 control store
into a direct access
data set $TERMUT2 SC

Character image table $FONT SAVE
Cont.ents of hardware

registers and main
storage in disk or
diskette data set $TRAP None

o Disk volume on diskettes $MOVEVOL None
Disk or diskette volumes

on tape $TAPEUTI ST
Formatted screen image

on disk $IMAGE SAVE

Send A single line message
to another terminal $TERMUT3 None

Set Breakpoints/trace ranges $DEBUG AT
Indexed Access Method

ECHO mode $IAMUTI EC
Indexed Access Method

SE command parameters $IAMUTI SE
Tape offline $TAPEUTI MT

Terminate Logging $LOG $LOGTERM

Test Generated report or
graphic display
profile member $DICOMP TO

Process interrupt for
occurrence of an event $IOTEST PI,SG,SB

o
Chapter 4. The Utilities 55

utH;thSJ

ACTIVITY FUNCTION

Unload Indexed Access Method
data set

Verify ReadClbilityof disk or
diskette datCl set

Tape executing correctly
Tape surface free of

defects

Write A hex value to a DO
address

Digital output using
external sync

Tapemark

56 SC34-0313

UTILITY

$IAMUTI

$INITDSK

$TAPEUTI

$TAPEtJTl

$IOTEST

$IOTEST
$TAPEUTI

COMMAND

UN

V

EX

EX

DO

XO
MT

0, ~l j

c

o

o

$COt1PRES

$COMPRES - COMPRESS LIBRARY

$COMPRES compresses a library on disk or diskette. It is used
so that new data sets can be allocated when a library is frag
mented (due to deletion of data sets).

Caution:

• Do not compress a 11 brary wh i Ie it is be i ng accessed.

• You must IPL the system after using $COMPRES if the volume
that was compressed conta i ns the superv i sor ($EDXNUC).

The following is an example of using the $COMPRES utility. In
response to the prompting message >, the $A operator command
determi nes if another program; s act i ve and the $L operator
command invokes the $COMPRES uti lity.

Chapter 4. The utilities 57

[$COMPRES 1

Examp'le

> $A

PROGRAMS AT 08:14:19
IN PARTITION is
NONE

> $L
PGMCNAME,VOLUME): $COMPRES
$COMPRES I1P,14.00.35, LP=4COO

COMPRESS SYSTEM LIBRARY
WARNING! SHOULD BE RUN ONLY WHEN
NO OTHER PROGRAMS ARE ACTIVE

VOLUME LABEL = EDX001

COMPRESS LIBRARY ON EDX001? Y

$EDXNUC COPIED
$INITIAL COPIED
$UPDATE COPIED
$COMPRES COPIED
$DISKUTI COPIED
$DISKUT2 COPIED
$COPY COPIED.
LIBRARY COMPRESSED

ANOTHER VOLUME? N
$COMPRES ENDED AT 14.05.03

58 SC34-0313

o

()

o

o

o

$COPY

$COPY - COpy DATA SET

$COPY cop i as a disk or diskettE! data set, in part or in its
entirety, to another disk or diskette data set. Source and tar
get data sets must have the same organization; the need not be
on the same disk or diskette drive or volume. You can specify
the number of records of the source data set to copy and the
relative starting record in each data set to begin copying.
All target data sets must have beeh prea llocated us i ng
$DISKUTI. Piirt i al copy is only permi tted if the data set
organization is of type DO (Direct Organization, see
$DISKUT1).

Note: For any copying related to tape, see "$TAPEUTl
Management" on page 311

$COPY Commands

Tape

The commands avai lable under $COPY are listed below. To display
this list at your terminal, enter a question mark in response
to the prompt i ng message COMMAND (1):.

COMMAND (1): ?

CD - COPY DATA SET
CV - COpy VOLUME
RE - COpy FROM BASIC EXCHANGE
WE - COpy TO BASIC EXCHANGE

(-CA- WILL CANCEL)
EN - END PROGRAM
COMMAND (1):

After the commands are displayed, you are again prompted with
COMMAND (1):. You respond with the command of your choice (for
e)(ample, CO).

Absolute Record Copy

An a b sol ute r e e or d eo py i n g fun c t 1 on i sal so pro v ; de d as par t 0 f
the Copy Data (CD) command. See the data set naming con
ventions in the System Gyid~. for a description of the special
data set names, $$EDXVOL and $$EDXLIB, which are used when
do i n gab sol ute r e e 0 r d and bas ice x t h an ge cop yin g •

Chapter 4. The Utilities 59

$COPY

Volume COpy

$COPY can be used to copy an ent ire disk or diskette vo I ume for
the purpose of creating new or backup volumes .• See the System
Guide for an explanation of disk and diskette organization.

Bas; c Exchange Di skette Data Set COpy.

$COPY can be used to read a basic exchange data set from a
diskette and write it to a disk dat.a set, or write a disk data
set to ab a sic e xc han g e d a t a set 0 n d 1. s k e t t e • All data sets must
exist before the copy operation. Only one sided, 128-byte
diskettes can be used. The Event Driven Executive recognizes
only one volume on a diskette.

$COPY prompts you for the name of the basic exchange volume.
The volume specified must already be varied online.

You are prompted for the diskette bas i c exchange data set name.
If you use $DASDI to format and initialize the basic exchange
header on the diskette, a data set named DATA will be automat
ically allocated. If you use $INITDSK to initialze the volume
directory, the data set name becomes EDXLIB. DATA consists of
all the data tracks on the diskette. A record size of 128 bytes
must be specified.

1. Errors may occur if the diskette contains uninitialized
HDR Is. Data on the diskette is read and wr i tten two sectors
per I/O operat i on.

2. The diskette data set accessed must start on an odd sector
boundary.

You can control the location in the disk data set where data is
read or wr i tten by enter 1 ng the start 1 ng and end 1 ng record num
bers when prompted for that i nformat 10n.

The following error message is issued if the output data set is
too small to accommodate the amount of data to be copied from
the i n put data set.

DATA SET TOO SMALL

When the output data set is on disk ord i skette, the end of data
po inters are updated.

60 SC34-0313

o

c

o

0 ',,'· ,I

Examples

CD - COpy Ent 1 re Data Set

COMMAND (?): CD
SOURCE (NAME,VOLUME): DATAFILl
COpy ENTIRE DATA SET? Y
TARGET (NAME,VOLUME): DATAFIL1,EDX002
ARE ALL PARAMETERS CORRECT? Y
COPY COMPLETE

50 RECORDS COPIED

COMMAND (?):

CD - Copy Where Rece 1 vi n9 Member Is Too Sma 11

COM~'AND (?): CD
SOURCE (NAME,VOLUME): DATAFILl
COpy ENTIRE DATA SET? Y
TARGET (NAME,VOlUME): DATAFIL2

TARGET DATA SET TOO SMAll
COPY REQUEST CANCEllED

Note: No data is copied in this case

$COPY

Chapter 4. The Utilities 61

$COPY

CD - Copy A Part i a 1 Data Set

COMMAND (1): CD
SOURCE (NAME,VOLUME): DATAFILl
COpy ENTIRE DATA SET? N
FIRST RECORD: 1
LAST RECORD: 3
TARGET (NAME,VOlUME): DATAFIL2
FIRST RECORD: 1
ARE ALL PARAMETERS CORRECT? Y
COpy COMPLETE

3 RECORDS COPIED

COMMAND C?):

CV - COPy A Dj skette To A Backup Data Set On 4962 Dj sk

COMMAND (?): CV

COpy VOLUME
ENTER SOURCE VOLUME: EDXOOl
ENTER TARGET VOLUME: EDX002
ENTER TARGET DATA SET NAME -
ARE ALL PARAMETERS CORRECT?
COpy COMPLETE

949 RECORDS COPIED

COMMAND (?):

eDXOOl
y

The CV command copies the entirep diskette volume. Therefore the
target data set on the 4962 disk must equal the diskette size in
reco rds; 949 records for Diskette 1, 1924 records for
D i skette2. Use $DISKUTl to a llocate the data set on the disk.

62 SC34-0313

()

o

o

,0

o

RE - COPY A Basic Exchange Diskette Data Set To Disk

COMMAND (1): RE

SOURCE ($$EDXVOL,VOLUME): $$EDXVOL,BASIC
TARGET (NAME,VOLUME): DATAFIL1,EDX002

SPECIFY START/END? Y/N: N

ENTER BASIC EXCHANGE DATA SET NAME: DATA
NUMBER OF RECORDS COPIED: 52
COpy COMPLETED

COMMAND (?):

WE - Copy A D j sk Data Set To A Bas i c Exchange Diskette

COMMAND (1): WE

SOURCE (NAME,VOLUME): DATAFIL1,EDX002

SPECIFY START/END? Y/N: N
TARGET ($$EDXVOL,VOLUME): $$EDXVOL,BASIC

ENTER BASIC EXCHANGE DATA SET NAME: DATA

COPY COMPLETED

COMMAND (?):

$COPY

Chapter 4. The Utilities 63

$COPYUTl

$COPYUTl - COpy DATA SET WITH ALLOCATION

$COPYUTI performs .several related COpy functions. These func
tions determine the size and organization of the source data
set to be copied, allocates a member on the target volume, and
then cop i es the source member to the target member.

~§tut;on: If a member already exists on the target volume, it is
deleted, reallocated, and the new source copied to the target
volume. There are no prompting messages asking if you wish to
replace the existing member.

Jiote: For any copying related to tape, see "$TAPEUTI - Tape
Management" on page 311

$COPYUTl Commands

The commands avai lable under $COPYUTI are listed below. To dis
play this list at your terminal, enter a question mark in
response to the prompt i ng message COMMAND (?):.

COMMAND (1): ?

CM---COPY MEMBER FROM SOURCE TO TARGET
------ MULTIPLE COPY COMMANDS-----
CALL--COPV ALL MEMBERS FROM SOURCE TO TARGET
CAD---COPY ALL DATA MEMBERS FROM SOURCE TO TARGET
CAP--~COPY ALL PROGRAMS FROM SOURCE TO TARGET
CG----COPY ALL MEMBERS S~rARTING WITH TEXT FROM •••
CNG---COPY ALL MEMBERS NOT STARTING WITH TEXT FROM
------END OF MULTIPLE COpy COMMANDS-----
SQ----SET PROMPT MODE FOR ALL MULTIPLE COPY COMMANDS
NQ----RESET PROMPT MODE FOR ALL MULTIPLE COpy COMMANDS
--CA-- WILL CANCEL MULTIPLE COpy COMMANDS
CV---CHANGE SOURCE AND TARGET VOLUMES
EN---END PROGRAM
? ---HELP

COMMAND (?):

After the commands are displayed, you are ag~in prompted with
COMMAND (1):. You respond with the command of your cho i ce (for
example, CM).

64 SC34-0313

o

O
('~

/ ..

o

o

()

o

$COPYUTl

The fo llow i ng commands mod i fy the way the mu 1 tip Ie copy
commands work; if needed, they must be entered before you start
a multiple copy function.

SQ You are asked if you want to copy the current member.

NQ No quest ions are asked. All matched members are cop i ed.
This is the default.

The following keyboard function is invoked with the ATTENTION
key. (It is not a command.)

CA If entered, CA stops the multiple copy after the current
member is cop i ed.

When $COPYUTI is loaded, the source and target volumes are set
to the IPl volume. You can then change the source and target
volumes. Once the volumes are set, the copy commands copy mem
bers from the source volume to the target volume unti I you do a
CV to change a volume.

The CG (copy gener i c) and CNG (copy not gener i c) commands
prompt you for a text string. The source volume directory is
then searched for names beginning with this text string. Use
CG to copy only those members beginning with the text string.
Use CNG to copy only those members that do not begin with the
text string.

If the multiple copy commands stop because the target volume is
full, you can mount a new volume and continue the copy. Thus,
you can create a disk backup spanning several diskettes. The
actua I copy process may take longer than with the ut iii ty
$MOVEVOl, but may use fewer diskettes as only members are
copied. In addition, single and double-sided diskettes can be
intermixed.

Since $COPYUTI deletes a member if it already exists, the mul
tiple copy functions run faster if the target volume does not
contain the same member names. If you are creating a new vol
ume, use $INITDSK to start with an empty target volume.

The multiple copy commands will not copy the supervisor
($EDXNUC). Th is prevents the inadvertent loss of a ta i lored
supervisor. Furthermore, since the supervisor is allocated
when the disk is initialized, the eM command will not allocate
$EDXNUe on the target volume. It will copy $EDXNUe from source
to target but only if the size of $EDXNUe on the target is the
same size as on the source.

Chapter 4. The utilities 65

No absolute record copy from disk or diskette is provided.
Ther.fore the s~etial names $$, $$EDXLIB, $$EDXVOL are hot
allowed. The $COPV utility provides ~n absolute copy by.record
number.

o

o

o

o

o

Example

> $L $COPYUTI
$COPYUTI 35P,ll:l6:57, LP= 6900

** WARNING **
MEMBERS ON TARGET VOLUME WILL BE DELETED.
REALLOCATION AND COPYING OF MEMBERS IS
DEPENDENT ON SUFFICIENT CONTIGUOUS SPACE.

THE DEFINED SOURCE VOLUME IS EDX003, OK ? Y
THE DEFINED TARGET VOLUME IS EDX003, OK 1 N
ENTER NEW TARGET VOLUME: MIKES

$COPYUTl

MEMBER WILL BE COPIED FROM EDX003 TO MIKES OK?: Y
COf1MAND (?): CM
ENTER FROM(SOURCE) MEMBER: COFFEE
ENTER TO (TARGET) MEMBER OR * FOR SAME NAME AS SOURCE:GO
GO COpy COMPLETE 4 RECORDS COPIED
COMMAND (?): CM LEM *
LEM COPY COMPLETE 10 RECORDS COPIED
COMMAND (?): CG

ENTER GENERIC TEXT: MIKE
MIKEEDIT COpy COMPLETE
MIKEANL COpy COMPLETE
MIKEDATA COpy COMPLETE

54 RECORDS COPIED
13 RECORDS COPIED
50 RECORDS COPIED

MIKENAME TOO LARGE TO COpy, ONLY 92 RECORDS LEFT IN LIB
TARGET VOL IS FULL,DO YOU WISH TO CaNT ON A NEW VOL?: Y
MOUNT NEW VOLUME AND DO A $VARYON
THEN ENTER ATTN RESTART TO CONTINUE COPY
> $VARYON 2
EDXOOI ONLINE
> RESTART

THE DEFINED TARGET VOLUME IS MIKES, OK 1 y
VOLUME NOT MOUNTED
ENTER NEW TARGET VOLUME: EDXOOI
MIKEl COpy COMPLETE 100 RECORDS COPIED
COMMAND(l): SQ
CON~'AND (1): CALL
COpy TEMP ? Y
TEMP COpy COMPLETE 40 RECORDS COPIED
COpy EDITWORK 1 N
COpy DATAFILE 1 Y
DATAFILE COpy COMPLETE 110 RECORDS COPIED
COMMAND (1):

Chapter 4. The Utilities 67

$DASDI - FORMAT DISK OR DISKETTE

$DASDI initializes your 4962 or 4963 disk or formats diskettes
on the 496(t or 4966 diskette un i ts. The ut i I j ty can be used
online. When this utility is invoked, you are prompted for one
of the following disk or diskette initialization option!;:

• Option 1 - 4964,4966 diskette initialization •

• Option 2 - 4962 disk initialization

• Option 3 - 4963 disk initialization

$DASDI must be loaded into part i t i on 1.

C~ution: For disk initialization, a program tha~ accesses the
disk being initialized should not be run concurrently with this
utility.

Diskette initialization can run concurrently with other pro
grams.

Option 1 - 4964, 4966 Diskette Initialization

Diskette Formats

The $DASDI utility reformats single and double-sided
diskettes. Three formats are ava i lable:

1. Format for use wi th the Ser i es/l Event Dr i ven Execut i ve

2. Format to the IBM Standard for Informat i on Interchange

3. Format entire diskette to 128,256, or 512 byte records.

If you select the Event Driven Executive format, all tracks are
formatted for 128 byte sectors. Also, cylinder 0 is formatted
accord i ng to the IBM Standard for Informat i on Interchange. The
assigned volume label is IBMEDX.

Note: Use this format if all cylinders are to be formatted to
128-byte sectors.

If you initialize according to the IBM Standard for Information
Interchange, Cylinder 0 is formatted for 128-byte sectors, and
the remaining cylinders are formatted for either 128-,256-, or

68 SC34-0313

o

o

o

o

o

SDASDI

5l2-byte records. You are asked to select the desired size.
The assigned volume label is IBMEDX.

When you initialize according to sector size, all cylinders are
formatted to the si ze you select (128-, 256-, or 512-bytes). No
volume labels, headers, or deleted records are written on
Cylinder o.

Caut; on: In th is format, the diskette is not usab Ie on an Event
Dr i ven Execut i ve system except for reformatt i ng.

Operating Characteristics

You are asked to i dent i fy the diskette dr i ve by dev i ce address.
The selected diskette drive is varied offline and a .warning
message issued to you before proceeding. On a 4966, diskette
initialization can be performed only on slot 1. You are then
prompted to se lect the opt ions des ired. Comp let i on of the
reformatt i ng is i nd i cated by the d i SP layed messages:

'IBMEDX VARIED ONLINE'
'FORMATTING COMPLETE'

In the process of reformatting, a new volume label (IBMEDX) is
written.

Caut; on: Do not use $C to cance 1 formatt i ng ope rat i on. Enter>
$DASDI to force term i nat ion.

Chapter 4. The Utilities 69

[$DASDI I
Examples

Format Dis k e t t e f 0 ,. Event D ,.~ n E x e cut i ve

$OASDI 15P,OO:28:55,LP= 7EOO

DIRECT ACCESS DEVICE INITIALIZATION
DISK INITIALIZATION OPTIONS:

1 = 4964, 4966 DISKETTE INITIALIZATION
2 = 4962 DISK INITIALIZATION
3 = 4963 DISK INITIALIZATION
4 = EXIT DISK INITIALIZATION

ENTER DISK INITIALIZATION OPTION: 1

** * DISKETTE FORMATTING PROGRAM *
* IF FORMATTING IS IN PROGRESS, DO NOT *
* CANCEL ($C) THIS PROGRAM. INSTEAD, *
* ENTER ATTN/$DASDI TO FORCE TERMINATION. *
**

ENTER DISKETTE ADDRESS IN HEX 12

INITIALIZE FOR USAGE WITH THE EVENT DRIVEN EXECUTIVE? Y

EDX VARIED OFFLINE
** WARN1NG **

FORMATTING WILL DESTROY ALL DATA. CONTINUE? Y

IBMEDX VARIED" ONLINE

FORMATTING COMPLETE

LOAD $INITDSK? Y
$INITDSK 16P,OO:30:16, lP= 8000

COMMAND (?>: I

LIBRARY INITIALIZATION

l=ENTER VOLUME LABEL
2=ENTER DEVICE ADDRESS

SELECT OPTION: 2

ENTER DEVICE ADDRESS IN HEX: 12

70 SC34-0313

()

o

o

c

o

Format Diskette for Event Drlven Executive (continued)

WRITE VOLUME LABEL? Y

ENTER DESIRED VOLUME LABEL (1-6 CHARACTERS) EDX
ENTER OWNER ID (1-14 CHARACTERS): FCS
LABEL WRITTEN
CREATE A DIRECTORY? Y

HOW MANY RECORDS IN DIRECTORY? (2 - 120): 13
MAXIMUM NO. OF MEMBERS = 102, OK? Y

DO YOU WISH TO RESERVE SPACE FOR A NUCLEUS? Y
ENTER MAXIMUM SIZE IN K-BYTES (16-64): 64
DIRECTORY INITIALIZED

WRITE IPL TEXT? Y
IPL TEXT WRITTEN

COMMAND (?): EN

$INITDSK ENDED AT 00:31:10

ANOTHER DISKETTE? N

$DASDI ENDED AT 00:31:15

$DASDI]

Chapter 4. The Utilities 71

$DAS~I 1

Format Diskette to IBM Standards for Information Interch~ng~

ENTER DISKETTE ADDRESS IN HEX 02

INITIALIZE FOR USAGE WITH THE~ EVENT DRIVEN EXECUTIVE? N

INITIALIZE TO STANDARDS FOR INFORMATION INTERCHANGE? Y
SELECT SECTOR SIZE (1=128, 2=256, 3=512): 2

NND002 VARIED OFFLINE
** WARNING **

FORMATTING WILL DESTROY ALL DATA. CONTINUE? Y

IBMEDX VARIED ONLINE

FORMATTING COMPLETE

ANOTHER DISKETTE? N

$DASDI ENDED AT 00:44:30

Format Diskette to 128-, 256-, or 512-Byte Records

ENTER DISKETTE ADDRESS IN HEX 02

INITIALIZE FOR USAGE WITH THE EVENT DRIVEN EXECUTIVE? N

INITIALIZE TO STANDARDS FOR INFORMATION INTERCHANGE? N
SELECT SECTOR SIZE (1=128, 2=256, 3=512): 3

** WARNING **
FORMATTING WILL DESTROY ALL DATA. CONTINUE? Y

FORMATTING COMPLETE

ANOTHER DISKETTE? N

$DASDI ENDED AT 01:01:27

72 SC34-0313

o

c

o

()

o

$DASDI

Option 2 - 4962 Disk Initialization

The disk initialization utility for the 4962 initializes your
disk, writes sector addresses on the entire volume, analyzes
and locates defective sectors, and assigns alternate sectors.
After initialization, the disk is ready for use with the Event
Driven Executive. For a new disk device, initialization should
be performed before the Event Driven Executive system is
installed on it.

When using this option, you are required to select one of two
initialization types:

• PI (primary) - initialize a disk for the first time or to
completely reinitialize the disk.

caution: This option rewrites the complete disk surface
and destroys all data that may have been on the disk.

• AS (alternate sector assignment) - assign alternate sec
tors without destroying the data currently on the disk.

H.o..:t~: Use the AS option only when necessary. Cylinder 1 has a
limited number of available alternate sectors. Once an alter
nate sector is assigned, it can only be recovered by writing
all sector IDs during a primary initialization.

The PI option verifies and corrects sector IDs and analyzes the
disk surface to find defective sectors. If the programmer's
console is present, the data buffer displays the number of the
cylinder currel,tly being initialized. If a defective sector is
found, either on a movable or a fi xed head, an alternate sector
is ass i gned from Cyl i nder 1 and a message is issued by the lit i 1-
ity. When an alternate sector is assigned, the sector ID of the
defective sector references the location of its alternate on
Cylinder 1. Defective sectors are marked defective. Skewed IDs
are written where normal IDs fail. For a defective sector on
Cylinder 0, an alternate good sector under the same head on
Cyl i nder 0 is reass i gned to the defect i ve sector.

The AS option forces the assignment of alternate sectors with
out destruction of data on the disk. $DASDI tries to move data
from the defective sector to its assigned alternate. If data
recovery fails, $DASDI issues a message. and the alternate data
field is flagged with one bits (hexadecimal FFFF). If an
already ass i gned alternate is found defect i ve, it is marked
defective and a new alternate is assigned. Data recovery is
attempted in th i s case a Iso.

Chapter 4. The Utilities 73

$DASDI

The number of alternate sectors avallable on Cyl inder 1 depends
on the 4962 model:

Model

74 SC34-0313

Capacity

9.3 MB
13.9 MB

Alternates

120
180

()

o

o

0 ,
)/

o

Examples

Primary Initialization of a 49§2Disk

$DASDI I5P,OO:28:55,LP=7EOO

DIRECT ACCESS DEVICE INITIALIZATION
DISK INITIALIZATION OPTIONS:

I = 4964, 4966 DISKETTE INITIALIZATION
2 = 4962 DISK INITIALIZATION
3 = 4963 DISK INITIALIZATION
4 = EXIT DISK INITIALIZATION

ENTER DISK INITIALIZATION OPTION: 2

$DASDI

* WARNING *
* NO USER PROGRAM SHOULD BE RUNNING *
* WHILE PERFORMING DISK INITIALIZATION *

DISK INITIALIZATION STARTED
ENTER DEVICE ADDRESS - NNN: 003

ENTER INITIALIZATION TYPE - PI OR AS: PI

ENTER INITIALIZATION MODE
REMOVE PREVIOUS ••. DEFECTIVE SECTOR FLAGS? YiN: NO

I nth e abo vee x amp 1 e, you are pro m pte df 0 r the following:

• Disk or diskette initialization option: 1,2, or 3

• Initialization type: PI for primary or AS for alternate
sector

• Initialization mode:

NO - Retain defective flag,byte of each sector 10.

YES - Rewrite sector flag IDs and reinitiali ze the flag
byte where possible. Allows a disk with invalid sector
flags to be initialized.

C a u t ; 0 n : Respond YES only if you l\11 S ht 0 r e w r i tea 11 sector
IDs. This causes the loss of any IBM facto~y assigned defec
t i ve sector flags. I f you respond YES, the fo llow i ng ver i fy
operation occurs:

Chapt~r 4. The Utilities 75

$DASDI

FACTORY MARKED DEFECTIVES MAY BE LOST
IS CHANGE OF REPLY DESIRED? YiN: NO

NO Operation is to continue with flags considered invalid.

YES A reprompt of the previous message results, allowing you
to change the status of the defecti ve flags.

The following message is repeated for each alternate sector
ass i gnment, if any occur:

ALTERNATE SECTOR ASSIGNED FOR ccchss

Note: ccchss=the address of the al ternate sector ass i gned.

76 SC34-0313

o

o

o

o

Alternate Sector Ass i gnment on a 4962 Di sk

$DASDI I5P,00:28:55,LP=1EOO

DIRECT ACCESS DEVICE INITIALIZATION
DISK INITIALIZATION OPTIONS:

1 = 4964, 4966 DISKETTE INITIALIZATION
2 = 4962 DISK INITIALIZATION
3 = 4963 DISK INITIALIZATION
4 = EXIT DISK INITIALIZATION

ENTER DISK INITIALIZATION OPTION: 2

$DASDI I·

* WARNING *
* NO USER PROGRAM SHOULD BE RUNNING *
* WHILE PERFORMING DISK INITIALIZATION *

DISK INITIALIZATION STARTED
ENTER DEVICE ADDRESS - NNN: 003

ENTER INITIALIZATION TYPE - PI OR AS: AS

ALTERNATE SECTOR MODE
ENTER SECTOR ADDRESS - CCCHSS

The following message is displayed at your terminal indicating
completion of the disk initialization.

ALTERNATE SECTOR ASSIGNED FOR CCCHSS
DISK INITIALIZATION COMPLETE

$DASDI ENDED AT 00:31:15

ccchss: The address of the sector presumed to be defect i ve. The
utility assigns an alternate sector on Cylinder 1, then tries
to move the data from the defect i ve sector, to the a I ternate
sector. Alternates on Cylinder 0 are located on the same track
and head as the defects on Cylinder O. This process may reveal
that the sector 105 on Cyl i nder 0 are in an i ncons i stent cond i
tion. Processing continues if possible. You cannot assign an
alternate to a defective sector on Cylinder 1.

Chapter 4. The Utilities 11

$DASDI

Note: Theft xed head area is always referred to as Cylinder
303. You should consider that this cylinder contains eight
heads (zero through seven). To refer to sector five under fixed
head four, you would speci fy 303405 for ccchss.

The $DASDI utility program identifies and restores defective
sectors on a 4963 disk device. The 4963 comes from the factory
already formatted with all logical sector addresses assigned
and tested and with alternates assigned to any defective sec
tors; you do not have to initialize a newly installed 4963.

With this function, you are given the option of:

• Identifying a specific sector as being defective, causing
the uti lity to assign an alternate to it.

• Restoring a previously identified defective sector, caus
ing the uti lity to free its alternate.

• Printing a map of all defective sectors, indicating if the
defect i ve sector was factory or user i dent if i ed.

Alternate sectors are ass i gned as fa llows:

• If the primary alternate (the extra sector on the same
track) is available, it is used as the alternate for the
defective sector.

• If the primary alternate is not available (either it is
defective or already assigned), a secondary alternate is
assigned from the nearest track under the movable heads
having an avai lable primary alternate •

.t:I 0 t e : The pr i mary a I t ern ate under a f i xed head i s ass i g ned to a
sec tor t hat is u nd e r the sam e fix e d h e ad.

When restoring sectors from defective status, $DASDI phys
ically moves the sectors within the track to minimize the proc
essing time between consecutive logical sectors. You cannot
restore:

• A factory ass i gned defect i ve sector

• A primary defect (one that cause the primary alternate
sector for the t r a c kt 0 b e ass i g ned)

78 SC34-0313

()

o

o

o

o

• A sector whose ID has been wr i tten extende«:J

Examples

InvQkjng 4963 Disk Initialization

$DASDI ISP,OO:28:SS,LP=7EOO

DIRECT ACCESS DEVICE INITIALIZATION
DISK INITIALIZATION OPTIONS;

1 = 4964, 4966 DISKETTE INITIALIZATION
2 = 4962 DISK INITIALIZATION
3 = 496~ DISK INITIALIZATION
4 = EXIT DISK INITIALIZATION

ENTER DISK INITIALIZATION OPTION: 3
~**********
* WARNING *
* NO USER PROGRAM SHOULD BE RUNNING *
* WHILE PERFORMING DISK INITIALIZATION *
**********************************~********************

DISK INITIALIZATION STARTED
ENTER DEVICE ADDRESS - NNN: 048

THE AVAILABLE OPTIONS ARE:
1 - IDENTIFY DEFECTIVE SECTORCS)
2 - RESTORE DEFECTIVE SECTORCS)
3 ~ MAP DEFECTIVE SECTORCS)
4 - EXIT UTILITY

ENTER OPTION: n

The entry n must be Qne of the four options listed in the ~Om
mand menu. You can choose to identify, restore, or map defec
t i ve sectors. The ut iIi ty termi nates when you enter Opt i on 4.

Chapter 4. The Utilitie$79

SDASDI

Obta i n i ng Map of Defect i ve 4963 Sectors

ENTER OPTION: 3

DEFECT
000101
020114

ALTERNATE EXTENDED

Assigning an Alternate Sector

ENTER OPTION: 1

ENTER CCCHHSS OF SECTOR TO BE MARKED
DEFECTIVE OR END: 0010205

ENTER 'V' TO ASSIGN ALTERNATE,
ANYTHING ELSE TO CANCEL: Y

ccchhss ASSIGNED ALTERNATE OF 0010205

ENTER CCCHHSS OF SECTOR TO BE MARKED
DEFECTIVE OR END: END

ENTER OPTION:

Note: In the preceding example, the disk address for a 4963 is
entered ~s a seven-digit number (0010205): the cylinder is 1
(001), the head is 2 (02), and the sector is 5 (05).

80 SC34-0313

o

rr,)· " '\Jl "

c

o

o

o

Re&tgrjog i' rr,vigyslX A=,signed Alt!!rnate Sector

ENTER OPTION: 2

ENTER CCCHHSS OF SECTOR TO BE
RESTORED OR END: 0010207

OOloa07 HAS BEEN RESTORED FROM ccchhss

ENTER CCCHHSS OF SECTOR TO BE
RESTORED OR END: END

ENTER OPTION: 4
DISK INITIALIZATION ENDED
$DASDI ENDED AT 01:01:27

$DASDI

Chapter 4. The Utilities 81

$DEBUG

$DEBUG DEBUGGING TOOL

$DEBUG is a tool for locating errors in programs. By operating
a program under control of $DEBUG, you can:

• Stop the program each time execution reaches any of one or
more instruction addresses that you have specified. These
addresses are known as breakpo i nts.

• List the contents of spec if i ed storage locat ions or reg i s
ter contents each ti me the program execut i on reaches one or
more of your breakpo i nts.

•

•

•

Trace the f low of execut i on of instruct ions wi th i n the pro
gram by spec i fyi ng one or more ranges of instruct ion
addresses (known as trace ranges). Each time the program
executes an instruction within any of the specified trace
ranges, the term ina I d i sp lays a message i dent i fy i ng the
task name and the instruction address just executed.
Optionally, program execution can be stopped after each
instruct i on is executed with ina trace range. Also,
optionally, storage locations or register contents can be
displayed on the terminal after the execution of each
instruct i on wi th ina trace range.

Restart program execution at the breakpoint or trace range
address where it is currently stopped. Or, in the case of
Event Driven Language instructions, restart program exe
cut i on at other than the next instruct i on.

List additional registers and storage location
while the program is stopped at a breakpoint
instruction within a trace range.

contents
or at an

• Patch the contents of storage locat ions and reg i sters.

Using these functions, you can determine the results of compu
tations performed by the program and the sequence of
instruction execution within the program. You can also modify
data or instruct ions of the program dur i ng execut i on.

To use $DEBUG effectively, you must have a printed listing of
the program to be debugged wh i ch shows the storage addresses of
each instruction and data area of interest. To obtain such a
listing, specify PRINT GEN in the source program, after the
PROGRAM statement, at assembly time. A PRINT NOGEN should pre
cede the PROGRAM statement to prevent the unnecessary printing
of many system EQU statements, etc. For $EDXASM a satisfactory
listing is produced by specifying LIST.

82 SC34-0313

()

i--~

~J

c

o

0

o

$DEBUG

Debug Usage Cons;derat;ons

The program debug fac iii ty aids in test i ng mu I t i tasked
programs in a multiprogramming and multiuser environment. All
of your interactions are via terminals and do not require the
use of the mach i ne conso Ie. A summary of the maj or features of
the $DEBUG program follows:

Notes:

1. $DEBUG should be invoked from a terminal other than the one
used by the program to be tested if the program uses
4978/4979 terminals in STATIC screen mode.

2. Mu I tip Ie breakpo i nts and trace ranges can be estab I i shed.

3. Several users can each use separate copies of $DEBUG con
currently, if sufficient storage is available.

4. Ser i es/1 assemb ler language as we 11 as Event Dr i ven

5 •

6 •

7.

8.

9.

language instruct ions can be traced and tested.

Both superv i sor and appl i cat i on programs can be debugged.

Task names are automaticallY obtained from the program to
be tested.

Task reg i s t e r s i 1 and i 2 can be dis p lla ye d and mod i fie d •

Hardware reg i sters RO through R7 and the IAR can be
displayed and modified.

Five different data formats are accepted by the list and
patch functions.

10. No special preprocessing of a program is required to permit
it to be debugged.

11. All address spec if i cat ions are made as shown in the program
assembly listing without concern for the actual memory
addresses where the program is loaded into storage for
testing.

12. No processing overhead is incurred unless the hardware
t rae e f eat u rei sen a b led • Eve nth en, the h a r d t'H) ret race
feature is only enabled for speci fic tasks.

13. The debug facility can be activated for a program that is
experiencing problems but was previously loaded without
the debug facility.

Chapter 4. The utilities 83

SOEBUG]

1 4. Apr 0 g r. am can bed e bug g e d b y loa din g $ 0 E BUG fro mat e r min a I
other than the one from which the program to be tested was
loaded.

15. Breakpoints or trace ranges specified during a debug ses
sion can be listed.

16. $OEBUG can only control the execution of programs contain
i ng no more than 20 tasks.

The $OEBUG program can be used to test different types of
programs. The mos·t: common usage is to debug app I i cat ion
programs written using the Event Driven Language instruction
set. However, it can also be used to test portions of applica
tion programs that are written in assembler language and
portions of the sliPervisor program that are written in either
Event Driven Language or Series/l assembler language. Testing
of the supervisor should normally be required only if you are
making your own modifications or additions to this program.

You can use $OEBUG to debug overlay programs by loading the
primary program that will subsequently load the overlay pro
gram to be debugged. Load $OEBUG after the overlay program is
in storage. (For more information on debugging overlay pro
grams that are part of the Event Driven Language compiler,
$ E 0 X A S M, ref e r tot h e I n t ern aID e.JLi..rul). T 0 sus pen d e x e cut ion 0 f
the overlay program so that $OEBUG can be loaded, enter a
REAOTEXT or QUESTION as the first instruction of the overlay
program. Multiple. Terminal Manager users should code a CALL
ACTION instruction to provide the required function. When the
overlay program is entered, it pauses at the first instruction
and waits for input. At this point, load $OEBUG. This can be
done from another terminal assigned to the same partition.
Specify the overlay program name when prompted for the program
name and indicate that no new copy of the overlay program is to
be loaded.

The $OEBUG utility can then be used to set breakpoints and
perform other functions as requi red. If the overlay program
causes a program check, it is cancelled by the system. If an
overlay program terminates through a PROGSTOP or for any other
reason and is reloaded by the primary program, any breakpoints
or patches made prior to the termination are lost.

Use of certa in capab iii ties of $OEBUG requ i res a thorough know
ledge of both the supervisor and debugging techniques. For
example, altering the contents of storage locations occupied
by the supervisor or contents of the Series/l hardware regis
ters could have undesirable effects on the operation of the
supervisor or application programs in operation concurrently
with $DEBUG.

84 SC34-0313

o

c

o

o

$DEBUG

N~: Only those instructions that execute as part of a task
can be debugged. Those port ions of the superv i sor program that
service interrupts created by various hardware devices (disk,
timers, terminals, etc) cannot be executed under control of
$DEBUG.

start and Term;nat;on Procedure

The primary method for activating the debug facility is to load
$DEBUG and then specify the name of the program to be tested,
when prompted CDBUGDEMO in the following example). $D.EBUG then
loads your program, inserts a breakpoint at the first executa
ble instruction, and notifies you that your program is stopped
at this point. For example:

> $L $DEBUG
$DEBUG 26P,09:10:17, LP=5200
PROGRAM NAME: DBUGDEMO
DBUGDEMO 4P,09:10:28, LP=6700
DBUGDEMO STOPPED AT 009E

Chapter 4. The Utilities 85

SDEBUG

$DEBUG Commands

The following commands are avai lable:

AT
BP

END
GO
GO TO
HELP
LIST
OFF
PATCH
POST
QUALIFY
WHERE

- Set breakpoints and trace ranges
- List breakpoints and trace ranges

thus far specifiad
- Terminate debug facility
- Activate stopped task
- Change execution sequence
- List debug commands
- Display storage or registers
- Remove breakpoints and trace ranges
- Modify storage or registers
- Post an event Qr process interrupt
- Modify base address
- Display status of all tasks

Command Entry

A command is entered by press i ng the ATTENTION key on your ter
minal and entering the command name, or the command name plus
the requ i red parameters for the command, in response to the
prompt i ng message' >, •

Syntax Summary

In'the command syntax examples and descriptions in the follow
ing sections, keyword parameters are capitalized and variable
parameters are shown in lower case, Whenever one of several
keywords can be chosen, these keywords are separated by a
slash(/). The examples show the vario~s formats of each com
mand which are available for different purposes. Detailed syn
tax descr i pt ions are presented under $DEBUG Command
Descriptions.

86 SC34-0313

O
·'~'

, '

o

o

o

$DEBUG

Set breakpoints and trace ranges:

address NOLIST/LIST NOSTOP/STOP AT ADDR
AT TASK taskname start-add end-add EDX/ASM NOLIST/LIST

NOSTOP/STOP
AT ALL
AT *

NOLIST/LIST NOSTOP/STOP
NOLIST/LIST NOSTOP/STOP

Terminate $DEBUG:

END

Activate breakpoints or trace ranges:

GO ADDR address
GO TASK taskname start-add end-add
GO ALL
GO *
List ·$DEBUG commands:

HELP

Display storage or registers:

LIST ADDR address length mode
LIST R 0 •.• R 7 taskname length mode
LIST #1/12 task name length mode
LIST IAR task name length mode
LIST *
Remove breakpoints or trace ranges:

OFF ADDR address
OFF TASK taskname start-add end-add
OFF ALL
OFF *

Chapter 4. The Utilities 87

$DEBUG

Modify storage or registers:

PATCH ADDR address length mode
PATCH R 0 ••• R 7 taskname length mode
PATCH #1/#2 taskname length mode
PATCH IAR taskname length mode
PATCH *
Post events or process interrupts:

POST ADDR address code
POST PIxx code
POST *
Modify base address:

QUALIFY base disp
Q base displ

Display status of all tasks:

WHERE

Display breakpoints and trace ranges:

BP

Change execution sequence:

GOTO current-address new-address

88 SC34-0313

o

(;(--~

IV

o

o

o

o

$DEBUG

Example: The command syntax permits most keyword parameters to
be abbreviated to a single character, except ALL which
conflicts with ADDR; entry of AL for ALL and A for ADDR is per
mitted. You are prompted for command parameters individually,
unless you are sufficiently familiar with the syntax to enter a
complete command on a single line. For example, to set the task
TIMET into a program trace between addresses 0 and 3000 and
also print the contents of both task registers in task LOOP2 in
decimal mode but continue processing, the following interac
tive keyboard sequence may occur. Each response is terminated
by a RETURN key entry.

> AT
OPTIONC*/ADDR/TASK/ALL): TASK
TASK NAME: TIMET
FIRST ADDRESS: 0
LAST ADDRESS: 3000
TRACE TYPECEDX/ASM): EDX
LIST/NOLIST: LIST
OPTIONC*/ADDR/RO ••• R7/tl/t2/IAR): 11
TASK NAME: LOOP2
LENGTH: 2
MODEeX/F/D/A/C): F
STOP/NOSTOP: NOSTOP

1 BREAKPOINT(S) SET

Identical results are obtained
response:

by entering the single

> AT T TIMET 0 3000 E L 11 LOOP2 2 F N
1 BREAKPOINT(S) SET

Chapter 4. The Utilities 89

[$DEBUG I

$DEBUG Command Descriptions

AT - Se't Breakpo; nts and Trace Ranges

AT sets breakpoints and trace ranges. The LIST and STOP options
established for a breakpoint or trace range are executed prior
to executing the instruction that satisfied the breakpoint or
trace range spec if i cat ion. l~hen the spec if i cat i on for a break
point or trace range is satisfied, the task currently active is
detoured and $DEBUG performs the fo llow i ng act i OilS for the sub
ject task: prints its status, prints the LIST specification,
and optionally puts the task into a wait state. If the NOSTOP
opt i o'n was requested, task status is pr i nted as "taskname
CHECKED AT XXXX". The STOP opt i on generates a "taskname
STOPPED AT XXXX" message.

The LIST and STOP options for all currently defined breakpoints
and trace ranges can be modified by entering AT ALL. Similar
ly, the speci fications for the most recently entered AT command
can be altered by the AT * option.

Notes:

1. You cannot set breakpo i nts in ATTNL 1ST rout i nes.

2. You can only set breakpo i nts on EDl instruct ions wi th i n an
EDL program.

Syntax

AT ADDR address NOLIST/LIST NOSTOP/STOP
AT TASK taskname start-add end-add EDX/ASM NOLIST/LIST

NOS TOP/STOP
AT ALL NOLIST/LIST NOSTOP/STOP
AT * NOLIST/LIST NOsTOP/STOP

Operands

ADDR

address

Description

Keyword indicating this is an instruction program
breakpoint specification.

Instruction address where a breakpoint is to be
inserted.

90 SC34-0313

o

()

o

o

o

NOlIST

LIST

NOSTOP

STOP

TASK

taskname

$DEBUG

Caut;on: Be sure that this is the first word of an
executable instruction, since the low-order byte of
this word will be modified by $DEBUG. Unpredict
able results can occur if you speci fy the address of
data or the address of other than the first word
generated by an instruct i on.

No special print request is needed at this break
po i nt or trace range.

Complete spec if i cat i on for a storage or reg i ster
display. See the lIST command for a description of
a 11 list opt i on5 and parameters.

Process; ng is to cant i nue after the breakpo i nt
notification has occurred.

The task is to stop whenever this breakpoint ~r
trace range speCification is satisfied.

Trace range spec if i cat i on.

Name of task to be traced. If. the program conta ins
on 1 y one task , om itt his par a met e r •

start-add Trace range starting address. Since your program
is not actually modified by a trace specification,
no special care needs to be exercised in entering
trace addresses.

end-add

EDX

ASM

All

*

Trace range end i ng address. To estab Ii sh a
breakpoint at an individual assembler instruction,
specify both the starting and ending address to
co i hC ide with the instruct i on address.

Only Event Driven language instructions are to be
traced.

All Series/l assembler instructions within the
spec if i ad range are to be traced.

All cUrrently defined breakpoints and trace ranges
are redef i ned with new list and stop opt ions.

The most recent ly def i ned breakpo i nt or trace range
specification is to be redefined. This specifica
tion is determ~ned by the last usage of an AT, GO,
or OFF command.

Chapter 4. The Utilities 91

[$DEBUG

BP - Li st Breakpoi nts and Trace Ranges

BP displays all breakpoints and trace ranges that have been
specified during the current debug sessio~. The information
supp 1 i ed for each breakpo i nt inc 1 udes t he task address,
instruction type, associated list options, and whether a stop
was specified.

Syntax

BP

No operands are requ ired.

END - Termi nate SDEBUG

END removes all currently active breakpoints and trace ranges,
act i vates a 11 current 1 y stopped tasks, and term i nates $DEBUG.

Syntax

END

No operands are requ ired.

92 SC34-0313

()

()

o

o

o

o

$OEBUG

GO - Act; vate a Stopped Task

GO reactivates any task that has been stopped by $DEBUG. If a
task is stopped at a breakpoint, specify the exact breakpoint
address. If a task 1S stopped as a result of a trace specifica
tion, supply the name of the task and an address range which
brackets the addresses in the original trace request. If only
one task is be i ng debugged, no operands need be spec i f i ed.

Syntax

GO ADDR address
GO TASK taskname start-add end-add
GO ALL
GO *
GO

Operands Description

ADDR Keyword indicating this
specification.

i s a breakpoint

address Instruct i on address where the task is .stopped.

TASK Keyword indicating this is a trace range
specification.

taskname Name of task to be act i vated. For programs conta i n
ing only a single task, omit this parameter.

start-add Trace range start i ng address.

end-add Trace range ending address.

ALL All currently stopped tasks are to be activated.

* The most recently referenced breakpoi nt or trace
range specification is to be used. This specifica
tion is determined by the last u7~ge of an At, GO,
or OFF command. /

Chapter 4. The Utilities 93

$DEBUG

GOTO - Change Execut i on Sequence

Gala react i vates, at a different instruct i on, any task that has
been stopped at an Event Dr i ven Language instruct ion. If
stopped using a breakpoint or trace, supply the current address
and the address at which execution should be resumed. Break~

po i nt or trace spec if i cati ons are not changed.

S}!ntax

GOTD current-address new-address

Qe.erands Description

current-address

Address where the task is stopped.

new-address Address where execut i on is to be restarted.

HELP - Li st $DEBUG Commands

The HELP command produces a list of $DEBUG commands and func
tions.

Syntax

HELP

No operands are requ ired.

94 SC34-0313

()

()

o

o

o

$DEBUG

LIST - 0; splay Storage or Regi sters

LIST displays the contents of memory locations, or task regis
ters, or hardware registers, or the IAR. The LSB can be dis
played by listing the IAR with a length of 11 words. Any
r~gister data is only guaranteed to be current if the corre
sponding task is inactive or stopped by a $DEBUG breakpoint or
trace range. To repeat the most recent I y spec if i ed LIST
command or to verify (list) a patch you have just entered, use
"LIST *".
Syntax

LIST ADDR address length mode
LIST RO/ ••• /R7 taskname length mode
LIST #1/#2 taskname length mode
LIST IAR
LIST *

Operands

ADDR

address

length

mode

taskname length mode

Description

Keyword indicating this is a display of a storage
location.

Address of the storage locat i on to be d i sp layed.

Length of display in words,
characters. depend i ng on mode.

Mode of data display:

x - hexadec i rna I word
F - decimal number(word)
o - decimal numberCdoubleword)
A - relocatable address
C - EBCDIC character

doublewords, or

RO/ ••• /R7 One of the Series/1 hardware registers RO through
R7. To define the start of the LIST.

taskname

#1/#2

Name of task from which register data
displayed. For programs containing only
task, am it th is parameter.

Task reg i ster i1 or #2 spec if i cat ion.

is to be
a single

Chapter 4. The Utilities 95

$DEBUG

IAR

*

Keyword indicating the IA~ (Instruction Address
Register) is to be displayed_

The most recently s~ecified LIST s~ecification is
to be used. Th is is determi ned by the last usage of
a LIST or PATCH command.

96 SC34-0313

o

o

o

$DEBUG

OFF - Remove Breakpo; nts and Trace Ranges

OFF removes a breakpoint or' trace range established with the AT
command. To remove a breakpoint, specify the exact breakpoint
address. To remove a trace request, specify the name of the
task and an address range which brackets the addresses in the
original trace request. If a task is currently stopped at the
requested breakpoint or trace range, this task is automat
ically re~ctivated.

Syntax

OFF ADDR ~ddress (breakpoints)
OFF TASK taskname start-add end-add (trace ranges)
OFF ALL
OFF *

Operands

ADDR

Description

Keyword i nd i cat i ng th i sis the remova I 0 f the
breakpoint specification.

address Instruction address where a breakpoint has previ
ously been established.

TASK Keyword i nd i cat i ng a trace range is to be removed.

taskname Name of task assoc i ated wit h a trace range. For pro
grams containing only a single task, omit this
parameter.

start-add Trace range start i ng address.

end-add Trace range end i ng address.

All All breakpoints and trace ranges are to be removed.

* The most recent ly referenced breakpo i nt or trace
r'ange specification is to be used. This specifica
tion is determined by the last usage of an AT, GO,
or OFF command.

Chapter 4. The Utilities 97

$DEBUGJ

PATCH - Modi fy storage or Regi sters

PATCH modifies the contents of memory locations, task regis
ters, hardware registers, and the IAR (Instruction Address
Register). The entire LSB (Level status Block) can be modified
by patching the IAR with a length specification of 11 words.
The patch to any reg i s t e r data i S 0 nl y g u Ct ran tee d i f the cor r e -
sponding task is inactive or stopped by a $OEBUG breakpoint or
trace range. To respec i fy the data for the most recent patch or
to patch the data displayed by the most recent LIST command,
enter 'PATCH *'.
After the patch command is entered, the current memory or
register content is displayed, and you Ctre prompted for the
patch data (a string of data entries that satisfy the length
and mode spec if i cat 1 ons). The entr i es are separated by spaces,
for example, data ••. data. After the patch data is entered, you
can apply the patch by responding YES, abort by responding NO,
or indicate additional patches with a CONTINUE reply to the
prompt i ng message. By spec i fy i ng CONTINUE, the patch is
performed and prompting continues for entry of new length,
mode, and data specifications to memory or register locations
immediately behind your previous patch.

If less data than spec if i ed wi th the length operand is entered,
the effective patch is padded with blanks for character data
and zeros for all other data types.

Syntax

PATCH ADDR address length mode
PATCH RO/ .•• /R7 taskname length mode
PATCH #1/#2 taskname length mode
PATCH IAR taskname length mode
PATCH *

Operands Description

ADDR Keyword i nd i cat i ng th is is a storage patch.

address

length

Address of the storage locat i on to be mod if i ed.

Length of patch in words,
characters depend i ng on mode.

doublewords,

98 SC34-0313

or

()

o

o

o

o

o

mode Mode of data entry:

x - hexadecimal word
F - decimal numberCword)
o - dec i rna 1 number C doub leword)
A - relocatable address
C - EBCDIC character

$DEBUG

RO/ ••• /R7 One of the Series/l hardware registers RO through
R7, where the patch is to be started.

taskname

11/12

IAR

*

Name of task for which register data is to be
modified. For programs containing only a single
task, ami t th i s parameter.

Task reg i ster 11 or 12 spec if i cat i on.

Keyword indicating the IAR (Instruction Address
Register) is to be modified.

The most recently referenced LIST or PATCH speci fi
cation is to be used. This is determined by the
last usage of a LIST or PATCH command.

Chapter 4. The Utilities 99

I $DEBUG I
POST - Post an Event or Process Interrupt

POST activates a task waiting for an event or a process inter
~,u pt. To d up I i cat e apr e v i 0 u s p 0 s tin g , en t e r POST * . The
address of the ECB (Event Control Block) to be posted is con
tained in the second word of a WAIT command as shown on a pro
gram assembly listing. Process interrupts can also be posted
by name, using the PIxx option.

POST ADDR address code
POST PIxx code
POST *

Operands'

ADDR

address

code

Plxx

*

Description

The address of an ECB (Event Contro I Block).

ECB address to be posted.

Dec i rna 1 code to be posted to the spec if i ed ECa.

Name of process interrupt PII to PI99.

The most recently- referenced ECB address or PIxx
n a me and cod e spec i f i cat ion i s t 0 b e use d •

100 SC34-03l3

o

o

o

o

o

$DEBUG

QUALIFY - Modify Base Address

QUALIFY modifies the base address used by $DEBUG to reference
physical storage locations. This command is useful for debug
ging supervisor program modifications.

Syntax

QUALIFY base displ
Q base displ

Operands

base

displ

Description

New hexadecimal base address. Enter 0 when working
with the supervisor.

Hexadecimal offset to be added to base to form the
new base address for all subsequent address refer
ences. Enter the origin of the supervisor program
module as shown on the link editor listing.

Chapter 4. The utilities 101

$DEBUG

WBERE - D; splay status of All Tasks

WHERE displays the current status of each task. If a task is
currently processing its breakpoint routine, it is marked
CHECKED. If a task has been stopped by a breakpoint or trace
request or if the main task has not yet been attached by $DEBUG,
the task is marked STOPPED. In all other cases, each task is
shown to be at the currently executing instruction, at the com
mand it wi 11 start execut i ng when dispatched by the task super
visor, or at the last command executed pr i or to enter i ng a wa i t
state.

Syntax

WHERE

WH

No operands are requ ired.

102 SC34-0313

o

f)·.·. \'-

o

o

o

o

$DEBUG

Tips and Techniques

Additional breakpoints and trace ranges that are desired
should usually be established before initiating program
execution with a GO ALL command. At program load time all task
names are obtained by $DEBUG, and the current status of each
task can be requested by entering WHERE. For example:

> l!JHERE
DBUGDEMO
USERT
LOOP3
LOOP2
TIMET

STOPPED
AT 02EE
AT 0230
AT OICO
AT 0124

AT 009E

Actual task names are only available if the program is loaded
by $DEBUG. If the program to be tested is already loaded and
executing, task names have been destroyed, and artificial
names are generated by $DEBUG by appending the relative address
(in hexadecimal) of the TCB (task control block) to TASK. For
example:

> L'IIHERE
TASK0308 AT
TASK02AO AT
TASKOIE2 AT
TASK0172 AT
TASKOOD6 AT

OOBE
0300
0298
01CO
0164

If the program to be debugged has previously been loaded into
storage multiple times, the load points of all currently active
cop i es are 1 i sted, and YOll have the opt i on to spec i fy wh i ch
copy you wish to debug. You also have the option to request a
fresh copy of the same program to be loaded. For example:

Chapter 4. The Utilities 103

I $DEBUG

> $l $DEBUG
SDEBUG 21P,09:37:17, LP=C200
PROGRAM NAME: DBUGDEMO
ALREADY ACTIVE AT 5200 5600 5AOO
DO YOU WANT A NEW COpy TO BE LOADED? N
PROGRAM LOAD POINT: 5600

or

DO YOU WANT A NEW COpy TO BE LOADED? Y
DBUGDEMO 4P,09:38:02, LP=5EOO

When more than one disk/diskette drive is available, programs
from a volume other than the IPL volume can be loaded. For exam
ple:

PROGRAM NAME: DBUGDEMO,EDX002

Notes:

• SDEBUG is terminated by the command END. It cannot be ended
by the superv i sor ut iii ty funct i on command $C.

• When $DEBUG is ended the program wh i ch was be i ng tested
under the control of SDEBUG remains in storage with all .of
j ts tasks act i ve and ope rat i ng.

104 SC34-0313

()

(~
'\...)~j

o

o

C"· ')

$DICOMP ,.

$DICOMP - DISPLAY COMPOSER

The composer allows you to add display profiles and modify
existing display profiles. Through the use of interactive
dialogue, the program guides you through the g~neration or
alteration of a display profi Ie. Because this program does not
change the bas i c structure of the onl i ne data base, you can use
it at the same time other functions are being performed. This
program can be used to generate a portion of a new display pro
file. Then you can use $DIINTR to cause the partial display to
be generated. If corrections or additions are necessary, you
can then use $DICOMP to alter the display prof; Ie. These steps
can be repeated unt; I the des ired resu 1 ts are obta i ned.

Invoking $DICOMP

To start execut i on of $DICOMP:

1. Load the program $DICOMP specifying the appropriate data
set name. $DIFILE, the online data set, or any other data
set can be used. However, you should make sure that anoth
er user or program is not changing or using the same data
set.

2. The system responds with the program loaded message fol
lowed by:

$DICOMP - DISPLAY DATA BASE COMPOSER
COMMAND (1):

$DICOMP Commands

The commands available under $DICOMP are listed below. To dis
play this list at your terminal, enter a question mark in
response to the prompt i ng message COMMAND (1):.

Chapter 4. The Utilities 105

$DICOMP

CO~1MAND (? r: ?

AD - ADD A NEW MEMBER
AL - ALTER EXISTING MEMBER
EN - EXIT PROGRAM
IN - INSERT OR DELETE DISPLAY ELEMENTS IN A MEMBER
PR - PRINT MEMBER FORMATTED
TO - TEST DISPLAY

COMMAND (?):

After the commands are displayed, you are again prompted with
COM~lAND (?):. You respond wi th the command of your cho i ce (for
example, AD).'

AD - Add aNew Member to Data Base

Allows you to generate a new display profile. The display can
be 1 n either graph i c or report form. You are prompted to enter
a 1 - 8 c h a r a.c t e r Dis p lay Prof i Ie name used by the Interpreter to
.retrieve the display. The next prompt message asks if a dis
play heading is desired. If so, a report display is assumed.
If n~t, a graphic display is assumed and you are prompted to
proceed with generating the display. You are also permitted to
select the device to which the output from the Interpreter is
to be routed.

Report Display: If the response to the question IS THIS A
GRAPHIC DISPLAY?' is NO, you are prompted to enter the column
headings desired. One line up to 132 cha~acters is allowed.
Following the entry of the column headings, you are prompted to
enter the name of the print report data member. You are then
prompte~ to enter the next command.

Graphic Display: If a graphic display is desired, you should
respond to the message IS THIS A GRAPHIC DISPLAY? by entering
the character Y. The composer then asks if ·the display is to be
a 3D object. If you respond with a character Y, then all fol
lowing references to X and Y values wi 11 also include the Z val
ue. The composer asks you to enter the values X, y, and Z, if 3D
object. They are used to position the first character of the
display heading. You are then prompted with the request COMMAND
(?):'. Subcommands should then be entered.

106 SC34-0313

o

c

o

o

o

$DICOMP

AL - Alter an Ex; st; n9 Member

This function allows you to display each element of a display
profile and make changes, using subcommands, provided the size
of the element and the sequence of commands is not changed.
This function is of great value during the trial and error
per i od when you are gene rat i ng a new d i sp lay. You can generate
a display using the AD function and display the results using
the Interpreter. You are allowed to either start alteration at
the beginning of the member and display each element in turn or
or to skip to a specific element within it. Use the PR command
to display the elements and their sequence numbers. As each
element is displayed, you are questioned whether or not this
e Ie men tis to be a I t ere d •

ALTER ENTRY?

When Y is selected, you are prompted to reenter the element as
described in the AD/Add Member/ section. When the end of the
display profi Ie is reached, the Composer is terminated and you
can redisplay the profile to see if the corrections are satis
factory.

EN - Ex; t P,rogram

This func·tion provides an immediate exit from the Composer.

IN - Insert or Delete Elements; n an Ex; st; ng Member

This function combines the facilities of the Alter and Add
functions with the ability to delete individual display ele
ments. Because the Insert funct i on creates a new member in the
data base, the size and sequence of display elements can be
changed •

.t:jote; Use of the ut iii ty program to ver i fy that suff i c i ent
space rema ins in the data base is recommended. By us i ng the LA
and 5T funct; ons, you can determ i ne the size of the member to be
mod if i ed and the rema in i ng space ; n the data base. As
described in the Alter function, the Composer displays each
element in turn with the fo llow i ng quest ions asked:

Chapter 4. The Utilities 107

$DICOMP

KEEP ENTRY?
DELETE ENTRY?
ALTER ENTRY?

If you elect to keep the entry, the Composer proceeds to the
next element. If N is selected, the DELETE ENTRY? question is
displayed. If N is entered, the ALTER ENTRY? question is dis
played. If Y is entered, the Composer proceeds with the alter
at i on process as descr i bed in the AL funct i on descr i pt i on.

Following the Alteration function, control is returned to the
Insert function and the process is repeated for the next ele
ment. If the element L!Jas not altered, you are prompted to
insert a new subcommand. At this point, all the functions of
the AD facility are available. You can add one display element
after which control is returned to the Insert function where
the previous element is redisplayed and the sequence is
repeated.

Aga in, as in the Al ter funct ion, you must step through each
element in the Display Profile before completion. When the end
is reached, the message END OF DATA - ISSUE SAVE OR ADD NEW COM
MANDS is d i sp layed. The Composer then reverts to the Add func
t i on and add it i ona I commands can be entered.

Note: You must issue a Save command to term i nate the Insert
funct ion. When the Save command is issued, the Composer
deletes the old member and renames the newly built member with
the old name. This procedure m:Clkes the modified version avail
able to the Interpreter. You are urged to use the utility to
compress the data base following insert activity to prevent
fragmentation of the data base and reclaim unused space •

. PR - Pr i nt Member Formatted

Display on the terminal or printer the contents of a display
profile member formatted in the same way as used by the Alter
and Insert functions. This display is useful asan aid in main
taining display profiles. Routing to $SYSPRTR is allowed to
provide a high speed hard copy.

TD - Test Di splay as Currently Entered

You are prompted for the name of a plot control member and then
$DIINTR is invoked to generate the specified display after
which control is returned to you to make alterations.

108 SC34-0313

o

o

o

o

o

$DICOMP

Composer Subcommands

When adding, altering, or inserting elements in a member,
subcommands are used. These are listed below and described on
the following pages. When entered, subcommands are placed in
or mod i fy the member. The member can later be used by the
interpreter to generate the desired display. The following
subcommands are available:

AD - ADVANCE X,Y
01 - DIRECT OUTPUT
DR - DRAW A SYMBOL
EN - EXIT PROGRAM
EP - END DISPLAY
HX - DISPLAY HEX WORDS
1M - INSERT MEMBER
JP - JUMP TO ADDRESS
JR - JUMP REFERENCE
LB - DISPLAY CHARACTERS
LI - DRAW A LINE TO X,y
LR - DRAW LINE RELATIVE
MP - MOVE BEAM TO X,Y
PC - PLOT CURVE ONLY
PL - PLOT DATA
RT - ACTIVATE REALTIME DATA MEMBER
SA - SAVE ACCUMULATED DATA
TD - DISPLAY TIME AND DATE
VA - DISPLAY VARIABLE

Most ~ubcommands perform actions based on the X and Y coordi
nates of the viewing screen. It is important that you keep
t rack 0 f the cur rent X and Y va I u e s as t he dis p I a y i s de vel oped •
The suggested method to produce a graphic display is to first
draw the display on graph paper and assign X and Y coordinates
to the key nodes in the display. Then use this drawing as a
guide to the generation of the display, keeping in mind the
screen Ii mi ts for the termi nal to be used. The view area of the
graphic terminals supported is shown in Figure 17 on page 110.
Figure 18 on page 111 shows the space supported in 3D mode.

Chapter 4. The Utilities 109

I $DICOMP

()

M ~ \
N ~ ~. \
~ ·c ~ \
O:Je m Vl \

~>~ ~~ I
o ~ . ~'C I Normal viewing area

1
"' B ~ }

o I

'---_________ --11/
I ~ 0 to 1023 • I

X units
addressable

Figure 17. X,Y Coordinate Grid and Viewing Area

o
110 SC34-0313

o

o

o

$DICOMP

32767~~ ________ -+ __________ ~
I
I
I
I

o I
I
I

en
'x
co

N

J---------- 32767
,/ /

/'~ ~,,=,
/' 4~

-32768 ~;......----~-----~-32768 /
-32768 0 32767

....... fooo----- X axis----""'!t.~

Figure 18. X,V,Z Coordinate Grid and Viewing Area

AD - Advance X, Y

Moves the beam position by the specified value. This could be
helpful in displaying data with even spacing on the screen.
After issuing a 'DR' command using a symbol, AD could advance
the X,V position to the next position without regard to the
actual screen X,V location. The limit for the specified X or V
value is plus or minus 512 units. If a 3D object is being
defined, then the Z axis value is also requested.

Chapter 4. The Utilities 111

$DICOMP

DI - D; rect output

Directs the resultlng graphic output to appear at a terminal
other than the one used to enter commands. The terminal name to
be entered ;s the label of the TERMINAL statement used to
descr i be the des ired termi nal.

DR - Draw a Symbol

Draws a predefined symbol. Several commonly used symbols have
been prov i ded. In spec i fyi ng a symbol, you are prompted to
enter the symbol number and the symbol modifier. These values
are used by the Interpreter to generate the requested symbol.
Some of the symbols require additional information. If
requ ired, you are prompted for th is add it i ona I i nformat ion.
Valid symbol numbers are 1 through 14.

Symbol # = 1 Draw Fan SYmbol Left Hand Format

Modifier = Radius of fan body
and opening on left side
of fan. Must be a multiple of 4.

= start and end X,Y current
position.

Symbol # = 2 Draw Fan Symbol Right Hand Format

Modifier = Radius of fan body
and opening on right side
of fan. Must be a multiple of 4.

= start and end
position.

112 SC34-0313

x,V current

()

o

o

o

Symbol :it: = 3 Draw Damper Vertical

Modifier = Number of damper pairs
to be generated in the down direction.

= start and end X,V current position.

Symbol :it: = 4 Draw Damper Hor i zontal

Modifier = Number of damper pairs
to be generated to the right.

= start and end
position.

X,V current

Symbol :it: = 5 Drawa Hot COlI

Modifier = Number of hot coil pairs
to be generated in the down direction.

= start and end
position.

X,V current

$DICOMP

---.---

140 Units Y

,.. -,
16 Units X

I

t \ / I6unitsy
I

,.. -,
40 Units X

----.---
D

D
116 Units Y

,.. -,
12 Units X

Chapter 4. The Utilities 113

$DICOMP

Symbol * = 6 Drawa Cold COlI

Modifier = Number of double pairs
to be generated in the down direction.

= start and end
position.

X,Y current

SYmbo 1 * = 7 Draw a F i 1 ter Element

Modifier = Number of elements
to be generated in the down direction.

= start and end X,V current position.

Symbol * = 8 Draw a Valve

---... ---

"" "" \- -\
16 Units X

I~ -I
8 Units X

116 Units Y

~}6unitSY

For 2-way valve
Modifier = 2

For 3-way valve
Modifier = 3

= start and end

114 SC34-0313

, I

I. ..I
I 32 Units X I
I I
I I

32 Units Y

x,V current position.

()

o

o

o

$DICOMP

Symbol i = 9 Draw An Arrow

e:::::::::J I 8 Units Y

~
I ·16 Units X· I

Modifier =
616unitsy

1 for left 8 Units X H
2 for right
3 for up
4 for down

= start and end X,Y current position.

Symbol i = 10 Drawa logic Block Right

Modifier = Radius of Half Circle.
Must be a multiple of 4.

= start and end X,Y current position.

V 16 Units Y

Chapter 4. The Utilities 115

$DICOMP

Symbol t = 11 Draw a Log i c Block Left

Modifier = Radius of half circle.
Must be a multiple of 4.

= start and end X,Y current position.

Symbol «= = 12 Drawa Circle

Modifier = Radius of Circle.
Must be a multiple of 4.

= start and end X,V current position.

116 SC34-0313

o

o

0 ,·' I,

Symbol t = 13 Draw An Arc Right

Modifier = Radius of circle.
Must be a multiple of 4.

= s~art and end X,V current position.

Note: This symbol requires
additional values.

1. Draw arc UP or down.
Enter zero for down or
for up.

one

2. Number of V units to draw arc.
Must be a multiple of 4.

Note: This symbol always starts at X=O and
proceeds until the V units have been exhausted.

Symbol t = 14 Draw An Arc left

Modifier = Radius of circle.
Must be a multiple of 4.

= start and end. X,V current
position.

Note: See note under Symbol 13 for additional
information.

EN - Ex; t Program

$DICOMP

Causes the Composer to be term i nated without updat i ng the
Display Profile Data Base Directory. All data collected up to
this point for this member is lost.

Chapter 4. The Utilities 117

$D1COMP

The preceding list of available subcommands are those that are
available when using the AD function. These descriptions are
also valid when using the AL Alter function or the IN Insert
function.

EP - End D; splay

Specifies that the end of this section of the display has been
reached. Normally, this command is followed by a SA (Save)
command. However, this command can be useful if a jump
zero/not zero causes the Interpreter to take alternate paths.
You can use the EP command at the end of each of these paths
instead of an uncond it i onal jump to a common end i ng po i nt.

HX - Send Data

Sends to the terminal up to 16 words of data without conver
sion. All bit patterns are valid; therefore, control or spe
cial data can be sent to the terminal.

1M - Insert Member

Combines display profile members to form one display. This
allows you to conserve disk space, decrease time required to
enter display profiles, and standardize display formats. For
example, you can build a display profile member to represent a
common background of a physical system or floor plan. Then, by
def i n i ng another display prof i Ie member, super' impose on the
background the variables that will make the display unique.
Only one level of nesting is permitted. That is, a member
inserted us i ng the '1M' command cannot conta i n Clny 'IM'
commands. However, a primary member can include multiple '1M'
commands.

JP - Jumlt to Address

Causes a change in the sequence of execution of subcommands.
There are three types of Jump to Address subcommands that can
be used. They are:

• Jump Unconditional

• Jump if Zero

• Jump if Not Zero

As described in the Display Variable command, the conditional
jump commands are dependent on the use of the Realtime Data
Member. If conditional jump is selected, then the jump is
based on the current cond i t i on (zero/not zero) of the spec if i ed
word and record. Jump Unconditional prompts you to enter a
J u m p toR e fer e nee • T his ref ere nee i s two c h a r act e r san dis·

118 SC34-0313

o

o

o

o

$DICOMP

resolved when a 'JR' Jump Reference 1S defined. See the 'JR'
command definition. If you select a conditional jump, prompt
messages requesting word number and record number are issued.
Following the definition of these two codes, you are requested
to enter the Jump to Reference. The Jump to Reference for a
Conditional Jump is the same as that of an unconditional Jump.
The following example shows the use of the Jump command.

Command sequence us i ng Jump:

MP X=200, V=200
JP Zero, WDRD#=O, RECORDt=4, JR=AA
DR SYM=l, MOD=40
JP JR=BB
JR AA
DR SYM=2, MOD=40
JR BB
EP
SA

The preceding example draws a fan symbol at 200,200 either
right or left depending on the zero/not zero condition of the
Realtime Data Member word 0, record 4.

In the preceding sequence, the first JP causes a jump to JR AA
if word 0 of record 4 is zero. The second JP causes a jump to JR
BB unconditionally.

JR - Jump Reference

Indicates to the Composer that this location in the command
sequence is referred to in a JP command. As defined in the JP
command, the location is defined by 2 characters. If these
characters have already been used, an error message is dis
played. If the capacity of the JR table is exceeded, an error
message is d i sp layed. The capac i ty 0 f the jump re ference tab Ie
...j..s~ 4 0 un i que j u m pre fer e n c e poi n t s for e a c h dis p I a y •

LB - D; splay Characters

Places a character string on the screen. It is not necessary to
use an MP command to pos i t i on the beam because th is command
allows specification of the location of first character. If a
3D object is being defined, then X, V, and Z values are
requested. Up to 72 characters can be displayed. The ending
X,V position are 1 character position beyond the last character
in the string.

Chapter 4. The Utilities 119

$DICOMP

LI - Draw a L;ne to X,Y

Draws a vector to the specified X and Y coordinates from wher
ever the beClm was left with the previous commClnd.

600- /

200-

I
100

I
600

Draw line to X=600 Y=600 line shown on screen
Current position END X,Y

When generating a 3D display, 3 values Clre required.
values are X, y, and Z.

~ ~
~

./

600 _ ./

·0_
-----(

I ,/600 I -0
I

I I
0 600

Draw line to X=600 Y=600 2=600
END X,Y,Z

120 SC34-0313

These (~)

o

o

C""'.·\
../

o

I $DICOMP

LR - Draw L; ne Relat; ve

Draws a line relative to the current position. For example,
you can, through the lise of the 'MP', 'JP', and 'JR' commands,
position the beam at various current positions based on
Rea It i me Data Member cond it ions. Then a ser i es of lines can be
drawn to form a symbol using the 'LR' command. This would have
the effect of placing the symbol at various screen locations
based on external conditions. The limits allowed for the X,V
values are plus or minus 512 units. If a 3D object is being
defined, then the Z axis value is also requested.

MP - Move Beam to X, Y

Draws a dark vector to the specified X and V coordinates. A
dark vector 1s not visible and, therefore, results in moving
the beam to the spec if i ed locat i on.

200- •

I
100

Beam moved to X=lOO V=200
END X,V

Nothing shown on screen
Current position

When generating a 3D display, 3 values are required.
values are X, V and Z.

These

Chapter 4. The Utilities 121

I $DICOMP 1

~ ~
100 _ ".

0_ ----(
I

-100 I
I -0

I I o 100

Beam moved to X=100 Y=100 Z=100
END X,Y,Z Current position

PC - Plot Curve Only

Provides multiple curves on an existing background as defined
by a preceding PL command. Refer to the folioNin9 section (PL)
for descriptions of entry procedure. steps 9 and 10 are the
only required action. As many PC commands as are necessary to
obtain the desired results can be included.

PL - Plot Data

Formats the viewing area into a basic plotter. Options are
provided for X and Y labels as well as X and Y grids. You are
prompted to include the name of a plot curve data member. Refer
to the "$DIUTIL Uti lity Program" in "$DIUTIL - Display Data
Base Utility" on page 150 for information regarding the allo
cation and formatting of the plot curve data member. The
sequence of quest ions to be answered for the PL command:

1. Enter i of Y axis divisions

2 •

To present a readable display, it is suggested that this
value be under 20. However, if Y axis division values are
bypassed (Step 7), then larger values are appropriate. Y
axis divisions become unreadable when this value exceeds
125.

Enter:lt of X axis divisions

122 SC34-0313

c

o

o

3.

$DICOMP

To present a readable display, it is suggested that this
value be under 40. However, if X axis division values are
bypassed (Step 8), then larger values are appropriate. X
axis divisions become unreadable when this value exceeds
200.

Vertical Grid?

A Y answer causes the Composer to include commands to
connect the X axis divisions (specified in 2 preceding) to
the top of the viewing area. An N bypasses this feature.

4. Horizontal Grid?

5.

6 •

A V answer causes the Composer to include commands to
connect the V axis divisions specified in 1 preceding to
the right side of the viewing area. An N bypasses this
feature.

Enter V axis label - 24 characters

You must enter the V axis label. If no axis label is
desired, press the enter key. This label is general in
nature and-is placed at the left side of the viewing area.
This label is vertical, that is, one character under the
next.

Enter X ax is label - 24 characters

You must enter the X axis label. If no X axis label is
desired, press the enter key. This label is general in
nature and is placed near the lower portion of the plot
viewing area.

7. V axis division values?

8.

If Y axis division values are desired, respond with a Y.
The Composer asks-for as many values as you have specified
divisions plus 1 (see Step 1 preceding). You must enter 6
characters fo-r each division. The first value requested is
the value for the V base line and each succeeding value is
for the next division in the plus Y direction.

X axis division values?

If X axis division values are to be displayed, respond with
a V. The composer asks for as many values as you have spec
ified divisions plus 1 (see Step 2 preceding). You must
e n t e r 6 c h a r ac t e r s for e a c h d i vis ion • The fir s t val u e
requested is the value for the X base line and each
succeeding value is for the next division in the plus X
direction.

Chapter 4. The utilities 123

[: $DICOMP]

9. Enter Name of Member for Plot Data

Enter the name of a plot curve data member. This member
must have been allocated and initialized by the use of the
utility program $DIUTIL. Refer to "$DIUTIL Utility
Program" in "$DIUTIL - Display Data Base Utility" on page
150 for procedures on allocation and initializing of this
member.

10. Is This Plot a Point Plot?

The composer allows the use of any valid printable charac
ter to be used for the plot. If Yes is selected, then a
plot character is requested. If N is selected, then a
normal line for the curve is used.

The preced i ng 10 steps generate the necessary commands to cause
a basic plot background to be displayed and one curve to be
super imposed on that background. If add it i onal curves are
desired, then 'PC' commands should be issued next.

RT - Act; vate New Real t; me Data Member

You call define multiple Realtime Data Members. This command
allows you to switch from one to another during the generation
of a Display. The default name for the realtime data member is
, REALTIME' •

SA - Save Accumulated Data

Specifies that completion of a display profile has been
reached. The Composer enters the member name into the d i recto
ry of the display profile data base and make it availabla for
the Interpreter.

TD - Di splay T; me and Date

This command allows you to display the current time of day and
date from the realtime clocks used by the Event Driven Execu
tive. You are reminded that prior to issuinga 'TO' command, a
'MP' may be required to position the beam to the desired dis
play location. The 'TO' command displays the time and date in
the following format:

124 SC34-0313

()

o

o

o

HH:MM:SS MM/DD/YY

where: HH is Hours
MM is Minutes
SS is Seconds
MM is Month
DO is Day
YY is Year

VA - Di splay Vari able

$DICOMP

Places a data variable from the Realtime Data Member on the
screen. A prompt message is issued ask i ng if you wish to locate
the data at a location other than the current X,V position. If
a 3D object is being defined, then X, V, and Z are requested.
The use of this command requires that the Realtime Data Member
be allocated. The Composer continues by asking for the record
number and word number. The record number is the record number
within the Realtime Data Member. The word number is the word
number within the record specified. This value is in the range
of 0-8.

The funct i on code is requested next and is used to i nd i cats the
type of variable to be displayed. Valid function codes are as
follows:

o Single precision integer
1 Double precision integer
2 Standard precision floating point
3 Extended precision floating point

15 Character data

Type code i s reques~ed next and is an i nd i cator of the format of
the value to be displayed. Val i d type codes are:

Chapter 4. The Utilities 125

[$DICOMP

o Integer
1 Floating point F format
2 Floating point E format

Field width and number of decimal places are requested next.
If the variable 1S an integer, the number of decimals should be
zero.

126 SC34-0313

o

o

C,::
)

o

$DIINTR

$DIINTR - DISPLAY INTERPRETER

The Interpreter program searches the data base and generates
the requested display. Both graphic and report displays are
generated in this manner. Each display profile is made up of
many display profile elements. Each element, when retrieved
from the data base by the Interpreter, is decoded and converted
to the appropriate command to cause the requested action to be
performed. Each display profile element contains various
parts, such as Display Code, X and Y coordinates, Symbol ID,
and Symbol Modifier. Realtime Data Member record number and
Additional Member names are included in the display profi Ie
element.

To begin operation of the Interpreter, you must first load
$OIINTR. Output is directed to the terminal that requests the
display or as directed by the Display Profile. The following
steps are requ i red to in it i ate the Processor Mon i tor:

1 •

2 •

3.

Load the program $DI INTR.

The system responds wi th the prompt message:

ENTER DISPLAY ID--XXXXXXXX OR EXIT TO TERMINATE

To terminate the Interpreter, enter 'EXIT'. To cause the
Interpreter to prepare the d i SP lay, enter the 0 i sp lay 10.

Us;ng $DIINTR from an Appl;cat;on Program

$DIINTR can be loaded from an application program to allow
displays without operator assistance. The following example is
the method used to cause th i s act i on to occur.

Chapter 4. The Utilities 127

$DIINTR

* Your program

LOAD $DIINTR,MBRNME,D5=($DIFILE),EVENT=iWAIT, C
LOGMSG=NO

WAIT #W.'\IT

MBRNME DATA CL8'DI5PLAY'
51 DATA F ' 0 ' THESE 8 VALUES ARE FOR 3D OBJECTS
52 DATA F ' 0 ' * 53 DATA F ' 0 ' *
D DATA F ' 0 ' * T DATA F ' 0 ' * R DATA F ' 0 ' *
01 DATA F ' 0 ' * Tl DATA F ' 0 ' *

When using $DIINTR to display a 3D object there are 8 values
that are needed to describe the manner in which you want the
object displayed. The preceding example shows the eight values
passed to $DIINTR as follows:

51 Platform Location X=
52 Platform Location Y=
53 Platform Location Z=
o Platform Direction in Degrees
T Platform Tilt in Degrees
R Platform Rotate in Degrees
D1 View Direction in Degrees
Tl View Tilt in Degrees

These values are single precision integers and may contain a
numeric value from -32768 to +32767.

Displaying 3D images requires a 4955 processor with floating
point hardware installed.

128 SC34-0313

()

c

o

o

o

$DIINTR

3D Concepts as used by $DIINTR

3D objects can be defined by .$DICOMP and placed on disk or
diskette much the same as with a 20 object. The only difference
is that each po i nt in space has three va lues as soc i ated with it
instead of 2. These three values represent the X, V, and 2
coord i nates of the po i nt in space. Figure 5-2 shot~s the Ii mi ts
of the defined area in space. The maximum limits of the defined
areas in space are -32,768 to +32 1 767. Vou can define one or
more objects within this cube. Once the object is defined, you
can view this object from any location within the same space.
To spec i fy the locat i on from whare you wi sh to view the object,
either pass these eight values through the use of the PARM=
parameter in the LOAD instruction or $DIINTR requests this
input if it is invoked by the $L command. The concept used to
com put e the 2 D rep res e n tat ion 0 f a 3 0 0 b j e c tis a's f 0 I low s. The
user is assumed to be suspended on a platform at a specific
location in space. The first three values are the X, V, and 2
values that define the location in space of the vie~ing plat
form. The next five values represent the physical orientation
of the platform and the v i ewers or i entat i on on that platform.

Platform Direction in Oegrees~ Assume the following unit vec
tor:

If we rotate this unit vector in the direction V to X around the
Z axis, we can turn the view in any direction. A plus value
causes, the un it vector to rotate c lockw i se as viewed from the
+2 axis to zero.

Chapter 4. The Utilities 129

I $DIINTR I
Platform Tllt in Degrees: Assume the following unit vector:

z

I f we rotate th is un i t vector in the direct i on Z to Y around the
X axis, we can tilt the view to any angle. A plus value causes
the unit vector to rotate clockwise as viewed from the +X axis
to zero.

P 1 a t for m Rot ate i n De 9 r e e s : As s u me the foIl 0 win gun i t v e c to r s :

z

I f we rotate th i s un it vector in the d j rect ion Z to X ar-ouhd the
Y axis, we can rotate the view to any angle. A plus value causes
the unit vector to rotate clockwise as viewed from the -Y axis
to zero.

View Direction In Degrees: This value is used the same as th~
Platform Direction but is calculated after the above 3 are com
puted. This calculation rotates the unit vector in a V to X
direction around the Z axis with a plus value causing the unit
vector to rotate clockwise as viewed from the +Z axis to zero.

130 SC34-0313

()

()

o

o

(~)
.1>'"

$DIINTR I
View Tilt In Degrees: This value is used the same as the Plat
form Ti It but is calculated after the above 4 are computed.
This calculation rotates the unit vector in a Z to X direction
around the Y axis with a plus value causing the unit to rotate
clockwise as viewed from the -Y axis to zero.

Once the 8 values provided are computed. the object in space is
converted to its 20 representation and sent to the terminal.
It is possible to view an object with all or a portion outside
the viewing area. Points and lines that do not fall within the
viewing area are not shown on the 2D screen. The viewing area
is shown in Figure 19 on page 132.

Chapter 4. The Utilities 131

[:SOUNTR

()

Viewing screen

Platform location
Distance between platform location and viewing SCreen = 1

Figure 19. Viewing Area in 3D Mode.

c
132 SC34-0313

$DIINTR

o
The following example defines a 3D object in space

A Cube

CMO X V Z

MP -100 -100 -100
LI +100 -100 -100
II +100 -100 +100
II -100 -100 +100
LI -100 -100 -100
LI -100 +100 -100
II +100 +100 -100
II +100 +100 +100
II -100 +100 +100
II -100 +100 -100
MP +100 -100 -100
II +100 +100 -100
~1P +100 -100 +100
II +100 +100 +100
MP -100 -100 +100

C\ LI -100 +100 +100
EP
SA

Object as viewed from: ~ /
51 0
S2 -400
S3 0
0 0 / ~ T 0
R 0
01 0
T1 0

o
Chapter 4. The utilities 133

[$DIINTR 1

Object as viewed from:

51 -150
52 -400
53 0
D 0
T 0
R 0
D1 0
Tl 0

Object as viewed from:

51 -150
S2 -400
S3 100
D 0
T 0
R 45
D1 0
Tl 0

134 SC34-0313

c

o

c

o

$DISKUTl

$DISKUTl - ALLOCATE/DELETEj LIST DIRECTORY DATA

$DISKUTI performs several commonly used disk or diskette stor
age management functions.

Note: For tape management functions, see "$TAPEUTI - Tape
Management" on page 311

$DISKUTl Commands

The commands avai lable under $DISKUTI are 1 isted below. To dis
play th is list at your term ina 1, enter a quest i on mark in
response to the prompt i ng message COMMAND (?):.

COMMAND (?): ?
AL ALLOCATE SPACE
CV CHANGE VOLUME
DE DELETE MEMBER
EN END THE PROGRAM
LA *--- LIST ALL(DS/PGM)
LACTS-* LIST ALL (CTS MODE)
LD "*--- LIST DATA SETS
LDCTS-* LIST DATA SETS (CTS MODE)
LM ---- LIST 1 MEMBER
LP *--- LIST PROGRAMS
LPCTS-* LIST PROGRAMS (CTS MODE)
LS ---- LIST SPACE
LV *--- LIST THROUGH VOLUMES (DS/PGM)
LISTP-- DIRECT LISTING TO eSYSPTR
LISTT-- DIRECT LISTING TO TERMINAL
RE ---- RENAME A MEMBER

*--- PREFIX (OPTIONAL)
CO~'MAND (1):

After the commands are displayed, you are ag~in prompted with
CO~1MAND (1):. You respond with the command of your choice (for
e x a mp 1 e, A L) •

Note: In CTS mode, disk locations ar'e shoL",n in cylinder, track,
and sector format instead of by record number.

Chapter 4. The Utilities 135

$DISKUTl

The program prompts you for any parameters required by the
requested function. Examples of some of the $DISKUTI command
execution prompts and replies are given on the following pages.

$DISKUTl Parameters

The following table identifies the parameters that can be used
for the various $DISKUTI commands.

Function

Help
AII'ocate Space
Change Volume
Delete Member
End Utility
list All Members
list All Members in CTS mode
list Data Sets
list Data Sets in CTS mode
list One Member
list Programs
list Programs in CTS mode
list Space
list Through Volumes
Direct listing to $SYSPRTR

Direct listing to Terminal
Rename ~1ember

Command

?
AL
CV
DE
EN
LA
lACTS
lD
lDCTS
l ~1
lP
lPCTS
lS
LV
lISTP

lISTT
RE

Parameters

None
Name Size Type
New-volume-label
Member-name
None
Prefix (optional)
Prefix (optional)
Prefix (optional)
Prefix (optional)
Member-name
Prefix (optional)
Prefix (optional)
None
Prefix (optional)
Terminal-name
(optional)
None
Old-name New-name

Notg: When using the Al command, select either of the following
organization types for the data set to be allocated:

o - Data Organ i zat ion

P - Program: Use this only for executable object programs
(the output of $UPDATE/$UPDATEH)

All the functions listed (except for ?, CV, lV, and EN)
initially act upon the IPL volume and is indicated by the mes
sage USING VOLUME XXXXXX when $OISKUTI is loaded. To point to
another volume to perform one or more of the previously listed
functions, enter the CV command and the name of the volume. All
funct ions act upon the spec if i ed vo I ume unt i I changed by anoth
er CV command or unti I $OISKUTI is terminated and reloaded. If
a pref i x of up to 8 characters is spec if i ed in the List commands
(except lM), only those data sets/programs beginning with

136 SC34-0313

c

o

C\
/

o

$DISKUTl

these characters are listed. The LV command scans through all
ex i st i ng vo I umes, list i ng members in each vo I ume. When the scan
is completed, the utility points to the last volume accessed.
The LV command is useful in finding a data set when the volume
is not known or when the same data set appears in multiple vol
umes.

Examples

AL - Allocate a 100 Record Data Set Named DATAFILE

COMMAND (?): AL
MEMBER NAME: DATAFILE
HOW MANY RECORDS? 100
DEFAULT TYPE = DATA - OK? Y
DATAFILE CREATED

COMMAND (?):

CV - Change Volume to be Accessed by Subsequent Commands

COMMAND (1): CV
NEW VOLUME LABEL = EDXOOl

COMMAND (?):

DE - Delete a Member Named DATAFIl~

COMMAND (?): DE
MEMBER NAME: OATAFILE
DATAFILE DELETE? Y
DATAFIlE DELETED

COMMAND (1):

Chapter 4. The Utilities 137

$DISKUTI

LD - List Description of the Data Sets in a Volume

COMMAND (? > : LD

USING VOLUME EDXOOI

NAME FREC SIZE
TEXTWORD DATA 105 22
$SAMDATA DATA 127 36
$NAME3 DATA 450 10

506 FREE RECORDS IN LIBRARY

COMMAND . (? > :

~ote: FREC is the number of the record containing
the first record of the data set.

LM - list Description of an Individual Member

COMMAND (?>: LM
MEMBER NAME: TEST12

USING VOLUME EDXOOI

NAME FREC SIZE

TEST12 DATA 305 7

IODA,CTS=003,022116,022122

COMMAND (?):

Not~: IODA,CTS= I/O Device Address, Cylinder, Track,
and Sector. In this example, the extent of the
member is on the device at device address 003 at cylinder
22, track 1, from sector 16 through sector 22.

138 SC34-0313

()

c

o

C~)
./'

o

$DISKUTl

LP - List Oeser i pt i on of the Program Members in Vo 1 ume

COMMAND (?): LP $DISK

USING VOLUME EDXOOI

NAME FREC SIZE

$DISKUT1 PGM 256 32
$DISKUT2 PGM 288 30

2550 FREE RECORDS IN LIBRARY

COMMAND (?):

Note: Only members with a prefix of $DISK are listed
in this example.

Chapter 4. The Utilities 139

$DISKUTl

L S - L 1st F r e e SPill c e A va i 1 ill b 1 e ; n Vol u.J!1...!.

COMMAND (?): LS

USING VOLUME EDXOOI

LIBRARY
AT REC
SIZE
UNUSED

DIRECTORY
SIZE
UNUSED

1
3600 RECORDS

665 RECORDS

24 RECORDS
2450 BYTES

NO. MEMBERS - 35

NO. FREE SPACE ENTRIES -

LIST FREE SPACE CHAIN? Y

FREC
3000

247

SIZE
600

65

COMMAND (1):

140 SC34-0313

c

$DISKUTl

o LV""', L 1 s t Me m b e r s. wit b aPr, fix 0 f 'S' i" A I 1 V 0 ! u m e s

COMMAND (?) : LV S

NAME FREe SlZE VOLUME

SEW DATA 1646 100 EDXOO2
SSRC DATA 7748 5 EOXOOZ
SMODUL DATA 1386 10 ASMLIB
SWORK DATA 15522 300 EDX003
SDATA DATA 6989 5 EDXOO5

USING VOLUME EDX005

COMMAND (?):

o
Cha~ter 4. The Utilities 141

$DISKUT2

$DISKUT2 - PATCH, DUMP OR CLEAR MEMBER

$DISKUT2 dumps or patches data or program members of a volume.
It also can clear (set to zero) all or portions of a data set
and reset its end-of-data pointer, list any data set created
us i ng $EDITIN or $FSEDIT, and 1 i st the I/O error log data set.

Note: For tape management functions, see "$TAPEUT1
Management" on page 311

Tape

$DISKUT2 can also be used to modify the default load time stor
age allocation associated with a program. The S5 (set storage)
command allows you to change the allocation without
reassemb i ng the source code or prov i ding an overr i de on the
LOAD instruction.

Program dumps and patches are made by relat i ve address
(hexadecimal) within the program. The relative address corre
sponds exactly to the address specified in the lOC field of an
assembly listing. Data can be entered in hexadecimal or EBCDIC
as shown in the examples that follow. To convert an Event Driv
en language instruction to a no operation (NOP), patch all of
the generated DCs to hexadec i mal zero.

Data set dumps and patches are made by spec i fyi ng a record num
ber and a first word. The numbering for both record and word
number begins with 1. Data can be entered in either decimal or
hexadecimal. Each field of patch data should be separated with
a a non-numer i c character other than a carr i age return.

Dumps of programs or data sets are formatted when hexadecimal
is selected as an opt i on.

$DISKUT2 can 1 i st data sets created by $EDIT1N or $FSEDIT. You
can list all or part of a source data set on a terminal or
printer.

A spec i a 1 feature of $DISKUT2 a llows dump i n9 and/or
any area on a disk volume by referencing absolute
bers. Th i s mode is selected by enter i ng the
$$EDXVOL as a member data set name. When us i ng
record numbering begins wit ho n e •

patch i ng of
record num
characters
this mode,

The I/O error log list commands allows the specification of any
data set as the log data set. The option is available to print
every log record or only those log records containing data for
a spec if i c dey ice address. The output is a formatted dump.

You are prompted, as necessary, for i nformat ion requ i red by any
of the funct ions of $DISKUT2.

142 SC34-0313

o

c

o

o

L $DISKUT2

$DISKUT2 Commands

The commands available under $DISKUT2 are listed below. To dis
play this list at your terminal, enter a question mark in
response to the prompt i ng command COMMAND (1).

COMMAND (1): ?

CD - CLEAR DATA SET
CV - CHANGE VOLUME
DP - DUMP DS OR PGM ON PRINTER
DU - DUMP DS OR PGM ON CONSOLE

(-CA- WILL CANCEL)
PA - PATCH DS OR PGM
SS - SET PROGRAM STORAGE PARM
LP - LIST DS ON PRINTER
LU - LIST DS ON CONSOLE
PL - LIST LOG ON PRINTER
LL - LIST LOG ON CONSOLE
EN - END PROGRAM

COMMAND (1):

After the commands are displayed, you are again prompted with
COMMAND (1):. You respond wi th the command of your eho i ce (for
example, CD).

Chapter 4. The Utilities 143

[$DISKUT2

Examples

CD - C 1 ear a D a t a Set (t 0 Z er ou

COMMAND (?): CD
DATA SET NAME? DATA
CLEAR ENTIRE DATA SET? N
FIRST RECORD: 1
LAST RECORD: 100

RESET THE E.O.D. POINTER? Y
HOW MANY RECORDS TO EOD? 100

ARE ALL PARAMETERS CORRECT? Y
CLEAR COMPLETED

CONMAND (?):

DU/DP - Dump a Data Set Q" Term;"tiI !/Pr inter

COMMAND(?): DU
PGM OR DS NAME: EDITWORK
EDITWORK IS A DATA SET
FIRST RECORD: 1
LAST RECORD: 1
WORDS / RECORD: 52
(O)EC OR HE(X): X

RECORD I
73 7A2E 7800
81 0000 0000
89 0000 0000
97 0000 0000

105 0000 0000
113 7B96 402F
121 7BA4 6808

DUMP COMPLETE
ANOTHER AREA? N
COMMAND(?)

144 SC34-0313

0088
34D6
14DO
0000
0000
7BAO
OOF6

7A30
0000
5600
0000
0000
0000
680D

COOA lOlA 0240
0000 0000 0000
0000 7A02 0000
0000 0000 0000
5040 6F03 023C
1a2e 6808 OOC4

o

()

4040 · . ·
FFFF • •••• 0 •••
0000
0000
0254 • ••••••• &
680D t. .:It ••••

i •... 6 ••

c

o

o

c

DU/DP - Dump a Program on Term ina !/Pr inter

COMMAND (?): DU
PGM OR DS NAME: MYPROG
MVPROG IS A PROGRAM
ADDRESS: 22
DUMP TO PROGRAM END? N
HOW MANY WORDS? 22

$DISKUT2

0022
0032

0000 0000 1C66 FFFF 0000 0000
4040 4040 4040 0606 4040 4040 I · · · · · · · · · · · · · · $ $1

0042 0000 0001 0001 0000 0000 I · · · · · · · · · · · · ·
DUMP COMPLETE
ANOTHER AREA? N

COMMAND (?):

II - list log Data Set

COMMAND (?): LL
lOG DS NAME: $LOGDS
DEVICE ADDRESS(NULl FOR ALL): 003

SOFT ERR
DEV ADDR: 0003
DATE: 10/26/79
TINE: 11:59:59
INTCC: 07
DCB1: XXXX XXXX
DCB2: XXXX XXXX
CSSt-t: xxxx xxxx

DEV 10: 0304
LVL: 0002 AKR: 0001
RETRY: 13 IOCB: 7000 2100
ISB: 80

XXXX XXX X XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX
xxxx

Chapter 4. The Utilities 145

$DISKUT2

LU - List a Source Data Set on Term ina 1

COMMAND(?): LU
DATA SET NAME? CALSRC
LIST ALL OF THE DATA SET? N
FIRST RECORD: 4
LAST RECORD: 8

ATTNLIST ATTNLIST (STOP,POST1,CALC,POST2)
SPACE 1

POSTI POST KBEVENT,1
ENDATTN
SPACE 1

LIST COMPLETE

COMMAND(?):

146 SC34-0313

o

c

o

()

o

PA - Patch a Program in Hexadec i mal

COMMAND (?): PA
PGM OR OS NAME: MYPROG
MYPROG IS A PROGRAM
ADDRESS: 312
HOW MANY WORDS? 2
CD)EC, CE)BCDIC, OR (H)EX?: H

NOW IS:
0312 D3C9 E2E3

ENTER DATA: C3Cl D3D3

NEW DATA:
0312 C3Cl 0303

OK? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND (?):

$DISKUT2

ILIST

ICALL

Chapter 4. The Utilities 147

$DISKUT2

PA - Patch a Program in EBCDIC

COMMAND (?>: PA
PGM OR DS NAME: MYPROG
MYPROG IS A PROGRAM
ADDRESS: 2D8
HOW MANY WORDS? 7
CD)EC, CE)BCDIC, OR (H)EX?: E

NOW IS:
02D8 D4C5 D4C2 C5D9 40C4 C5D3 C5.. .• 1 MEMBER DELETEOl

ENTER DATA: DELETE MEMBERa

NEW DATA:
0208 C4C5 D3C5 E3C5 40D4 C5D4 C2.. .• 1 DELETE MEMBERQl

OK? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND (?>:

148 SC34-0313

()

()

o

o

o

o

$DISKUT2

S S - Set P r Q 9 ram S t o.ll.9...e Par m: The follow i n g e x amp 1 e s how 5

reduc i ng the dynami c storage to be allocated for the COBOL com
piler at program load. The SS command requires the size in
bytes to be expressed in decimal. The value requested, if not
an even multiple of 256, will be rounded up.

> $DISKUT2

USING VOLUME EDX002
COMMAND (1): CV ASMLIB

COMMAND (1): 5S $COBOL
ENTER NEW STORAGE SIZE IN BYTES: 2816
OLD STORAGE SIZE WAS 8448
OK TO CONTINUE? Y

COMMAND (?): EN
$DISKUT2 ENDED AT 08:36:02

Chapter 4. The Utilities 149

$DIUTIL

$DIUTIL - DISPLAY DATA BASE UTILITY

$DIUTIL maintains the disk resident data base used with graph
ics applications. This utility provides comprehensive facili
ties to keep the data base current by means of the following
functions:

• Initialize the Disk Resident data base

• Delete a member

• Rec la i m space in data base due to deleted members

• Display contents of data base

• Copy data base

• Copy i nd i vi dua I members of data base

• Allocate and bu i Id a data member

This utility is normally used only when no other programs of
the Display Processor are 1n use. The online data base can be
changed or you may select another data base to be referenced.
This allows you to create displays in a data base other than the
anI i ne data base and then copy the members into the onl i ne data
base after test i ng.

Invoking $DIUTIL

To start execut i on of $DIUTI L:

1. Load the program $DIUTIL specifying the appropriate data
set. $DIFILE, the online data set, or any other data set
can be used. However, you should make sure that another
user or program is not chang i ng or us i ng the same data set.

2. The system responds with the Program Loaded message fol
lowed by:

DISPLAY DATA BASE UTILITY
COMMAND (?):

150 SC34-0313

o

(f.) ..
{-

o

o

c

o

$DIUTIl

$DIUTIl Commands

The commands available under $DIUTIL are listed below. To dis
play this list at your terminal, enter a question mark in reply
to the prompt i ng message CO~1MAND (?):.

COMMAND (?): ?

AL - ALLOCATE DATA MEMBER
BU - BUILD DATA MEMBER
CP - COMPRESS DATA BASE
CM - COPY MEMBER
DE - DELETE A MEMBER
EN - EXIT PROGRAM
IN - INITIALIZE DATA BASE
LA - DISPLAY MEMBER DIRECTORY
LH - DISPLAY MEMBER HEADER
MD - MOVE DATA BASE
RE - RENAME MEMBER
ST - DISPLAY DATA SET STATUS

COMMAND (?):

After the commands are displayed, you are again prompted with
COMMAND (?): to which you respond with the command symbol for
the function of your choice (for example, AL).

Al - Allocate Data Member

Reserves space in a data base for one of several types of data
members. Information such as size in sectors and member code
is requested. Member codes are spec if i ed as fo llows:

4 - Pr i nt Report Data Member: Informat i on such as number of
lines and line length are requested. Each line is then
entered, limited to 132 characters.

5 - Plot Curve Data Member: Information such as X and Y ranges,
X and Y base values and number of points to plot are requested.
Automatic entry of the X points can be selected to reduce the
data entry requ i rements. A sawtooth pattern opt i on is prov i ded
to shade under the curve for more vivid presentation of plotted
data. Us i ng less than 200 po i nts on the X ax i s gives an i nade
quate shad i ng effect.

Chapter 4. The Utilities 151

I $DXUTXl.

6 - Realtime Data Member: The number of records is requested.
You can enter hexadecimal data for testing.

7 thru 9 ~ User Data Member: These codes are used by the build
function to guide you through the correct data entry procedure.

COMMAND (?): AL
MEMBER NAME: TOATA
ENTER i OF RECORDS TO ALLOCATE? 10
ENTER MEMBER CODE #: 4
MEMBeR TDATA ALLOCATED

COMMAND (?):

152 SC34-0313

o

o

o

$DIUTIL

BU - Bu; Id Data Member

Inserts fixed data into a data member. Thi s allows you to enter
data records to describe a fixed display or enter retards,
which normally will be dynamic, with a fixed value, to allow
testing of the display.

The member may have been allocated using Al; if not, you are
prompted for the requisite allocation information before pro
ceeding with the "build" process. You are guided one step at a
time through the initialization of the data member.

COMMAND (?): BU
ENTER MEMBER NAME: RDATA
INITIALIZE REPORT DATA MEMBER
ENTER i OF LINES IN REPORT: 2
LINE LENGTH=32
ENTER LINE ITEMS
LINE ONE OF REPORT
LINE TWO OF REPORT
ME~1BE R LOADED

COMMAND (?):

In this case, the member had already been allocated.

Chapter 4. The Utilities 153

$DIUTIl

CP - Compress Data Base

Compress reclaims unused space in the data base. Deleted mem
bers are not actually removed; the space is merely flagged
unusable. The tnsert function of SDICOMP also flags space as
unusable. CM is used to reclaim this space for future use. As
each member is moved, a message is displayed. At the com
pletion of the compress 'function, the message COMPRESS COM
PLETED is displayed.

Caution should be exercised in using this function as it actu
ally rearranges the members in the data base. It is advisable,
in order to prevent unpredictable results, to restrict the use
of the Interpreter (SDIINTR) during this process.

Caution: If an unrecoverable I/O error occurs, the data set is
destroyed.

COMMAND (?): CP
WARNING--COMPRESS IN PLACE.
SHOULD OCCUR DATASET WILL BE

DO YOU WISH TO PROCEED? Y
DATA COPIED
RDATA COPIED
REPORT COPIED
SQUARE COPIED
CIRCLE COPIED
RPT COPIED
ARC COPIED
PLOT COPIED
COMPRESS COMPLETED

COMMAND (1):

154 SC34-0313

IF AN ERROR
DESTROYED

o

o

o

o

$DIUTIL

CM - Copy Member

Copies a member from the source data base to the target data
base. The options avai lable in MD are also included in CM.

COMMAND (1): eM
SOURCE DATASET NAME: $DIFILE
LOCATED ON VOLUME: EDX002
CHANGE SOURCE DATASET? N
TARGET (NAME, VOLUME): $DIFILE,EDX003
SAVE EXISTING MEMBERS IN TARGET DATA BASE? Y
ENTER MEMBER NAME TO BE COPIED
PLOT
PLOT COPIED
COPY COMPLETED

COMMAND (?):

Chapter 4. The Utilities 155

[$DIUTIL I
DE - Delete a Member

Removes display or data members from the data base. You are
prompted for the name of the member to be deleted and asked to
ver i fy the accuracy of your entry pr i or to actua 1 de let i on.

CO~1MAND (?): DE
MEMBER NAME: PLTT
DELETE MEMBER PLTT? Y
PLTT DELETED

COMMAND (?):

EN - Exi t Program

Causes the D i sp 1 ay Processor ut iii ty to be term i nated.

156 SC34-0313

o

o

o

C)

c

$DIUTIL

IN - Ini t i a1 i ze Data Base

Formats the ent ire data base to zeros and formats the directory
to reflect the starting and ending record numbers. After
entry, you are prompted to proceed.

Cauti on: Th is funct i on destroys any data in the data base.

Make sure the data set name entered is correct. The command is
terminated when the message DATA SET FORMATTED is displayed.
$DIFILE was allocated by $DISKUT1. Each di rectory record allo
cated by IN contains sixteen directory entries, except the
first, which contains fifteen.

COMMAND (?): IN
--WARNING THIS FUNCTION WILL DESTROY ANY DATA

CURRENTLY IN DATA SET-*-*

DO YOU WISH TO PROCEED? Y
ENTER DIRECTORV SIZE IN RECORDS: 2
DATA SET FORMATTED
DATASET NAME: $DIFILE
LOCATED ON VOLUME: EDX002
- DATA SET -- DIRECTORV-

NEXT TOTAL NEXT TOTAL
3 100 1 31

END OF STATUS

COMMAND (?):

Chapter 4. The Utilities 157

I $DIUTIL I
()

LA - D; splay D; rectory

Displays all active members. Each line of display shows the
member name followed by four values:

1. Start i ng sector relat i ve to the start of the data base.

2. Length of member in records.

3. Membe r usage code.

4. User defined member code.

COMMAND (?) : LA
PLOT 11 4 2 0
DATA 15 10 5 0
RDATA 25 10 4 0
REPORT 35 1 1 0
SQUARE 36 1 2 0
CIRCLE 38 1 2 0
RPT 39 1 1 0
ARC 40 1 2 0 (/I' '\\

l,'IL.)
COMMAND (?) :

o
158 SC34-0313

o

c

$DIUTIL

LH - Di splay Mambel' Headel'

Displays the header of a data member (types 4-9). The header
describes the characteristics and use of the member. For a
description of header contents, see Data Set Format in IBM
Series/l Event Driven Executive System Guide, SC34-0312

Example:

COMMAND (1): LH
MEMBER NAME: RDATA
MEMBER RDATA HEADER

000
END OF HEADER

COMMAND (1):

o 2 32 80 o

Chapter 4. The utilities 159

$DIUTIL

MD - Move Data Base

Moves the data base on the same or another volume when the data
base becomes too small to add a member. You can temporarily
move the online data base to another location, delete the old
version, reallocate and initialize the new expanded versio~,
and move back the previous contents. During this procedure,
care should be observed in the use of the Interpreter.

caut;on: If the data base is being moved and the Interpreter
uses a member, unpredictable results will occur.

Dur i ng the, execut i on of MD, you are prompted for a new source
data base if des i red and a target data base. You have the
opt i on of say i ng the members in the target data base. MD is
helpful if you wish to use $DICOMP to develop display members
in a different data base than the online version and then, at a
later time, combine the new members with those in the online
data base.

COMMAND (?): MD
SOURCE DATASET NAME: $DIFILE
LOCATED ON VOLUME: EDX002
CHANGE SOURCE DATASET? N
TARGET (NAME,VOLUME): $DIFILE,EDX003
SAVE EXISTING MEMBERS IN TARGET DATA BASE? Y
PLOT COPIED
DATA COPIED
RDATA COPIED
REPORT COPIED
SQUARE COPIED
CIRCLE COPIED
RPT COPIED
ARC COPIED
COPY COMPLETED

COMMAND (?):

160 SC34-0313

o

c

$DIUTIL

RE - Rename Member

Changes the Display Profile 10 name. You are prompted for each
step and no action is taken unless your response is first
o b t a i ned • REi sus e f u 1 'IJ hen a n C) n lin e me m b ern e e d s t 0 b e mod i -
fied. The member that needs changing can be copied to another
data base, mod if i ed and tested, then tenamed and cop i ed back to
the online data base. By using the rename and delete func
t ions, you can exchange the new for the old wi thout i nterfer i ng
with any online functions.

COMMAND (?): RE
MEMBER NAME: PLOT
ENTER NEW NAME: PLTT
RENAME COMPLETED

COMMAND (?):

Chapter 4. The Utilities 161

[$DIUTIL

ST - 0; splay Data Set status

Displays the current data base status. The first line shows
the data base location and name. The data that follows is the
current status of the data base. There are 4 values presented.
The first is the next available record. The second is the total
number of records in the data base. You can then see how much
space is avai lable for new members. If space is running short,
you can compress the data base or allocate a larger area. The
next value displayed is the next avai lable directory entry.
The last value displayed is the total number of directory
entries available. Refer to these two values to determine if
more or less space is needed for directory entries. Following
the completion of the status display the message END OF STATUS
is displayed.

COMMAND (?): ST
DATASET NAME: $DIFILE
LOCATED ON VOLUME: EDX002
- DATA SET -- DIRECTORV-

NEXT TOTAL NEXT TOTAL
41 100 10 159

END OF STATUS

COMMAND (?):

162 SC34-0313

c

c

$DUMP

SDUMP - FORMAT AND DISPLAY SAVED ENVIRONMENT

$DUMP displays on a terminal or printer the contents of the
data set generated by the $TRAP utility. After the successful
execution of $TRAP and the subsequent occurrence of a trap con
dition, the data set assigned to $TRAP will contain a storage
image. Use $DUMP to retrieve, format, and print the data on a
terminal or printer.

Invok;ng $DUMP

$OUMP can be invoked by the session manager using the Diagnos
tic Uti lities option menu or by the $L command.

Chapter 4. The Utilities 163

~DUMP

Example

Dump Part of Supervisor Partition to Printer

< $L SOUMP
DUMPDSCNAME,VOlUME): DUMP,EDXOO3

$DUMP 22P,12:20:17, lP=8FOO

ENTER DEVICE NAME FOR OUTPUT
$SYSPRTR

PARTIAL DISPLAY? CY/N): Y

ENTER PARTITION I OR S FOR SUPERVISOR S
ENTER START END ADDR IN HEX a 100

EVENT DRIVEN EXECUTIVE FORMATTED STORAGE

AT TIME OF TRAP PSW WAS 8002 ON HARDWARE

lEVEL 0 lEVEL 1 lEVEL 2

IAR 0892 0892 0892
AKR 0000 0000 0000
lSR 0000 0090 0090
RO 0000 0000 0000
R1 0000 0000 0000
R2 0000 0000 0000
R3 0000 0000 0000
R4 0000 0000 0000
R5 0000 0001 0002
R6 8000 8000 8000
R7 0000 0000 0000

164 SC34-0313

DUMP

lEVEL

lEVEL

0892
0000
0090
0000
0000
0000
0000
0000
0003
8000
0000

2

3

Notes
il.l.

.1.2.l

1.11

~
..t2.l

rr-\
'-~

o

c

$DUMP

Dump Part of Super v i sor Part i t i on to Pr inter (cont.)

Notes:

1. The data set spec if i ed here must be the same as that
def i ned when $TRAP was executed.

2. Vou can specify a terminal to receive the output from
$DUMP. If the operator presses the 'ENTER' key or enters
'$DUMP', the dump program assumes that the output is to be
directed to the term ina I that loaded $DUMP. Us i ng the
attention key followed by 'CA' cancels the $DUMP program.

3. If a display of all storage is desired then respond to this
question with a 'N'. If 'N' is used, the output display
begins immediately and continue until all of storage is
dumped or an attention 'CA' is entered. If 'V' is used,
$DUMP allows sections of storage to be displayed.

4. Enter an '5' for the supervisor partition or the number 1
through 8 for the part it i on number to dump.

5. Enter the starting and ending addresses that should be
included in this section of the output.

Chapter 4. The Utilities 165

[$DUMP I
Dump Part of Supervisor Partition to Printer (cont.)

()

SEGMENTATION REGISTERS:

BLOCK ADSO ADS1 ADS2 ADS3 ADS4 ADS5 ADS6 ADS7

0000 0004 0104 0204 0304
0800 OOOC OIOC 020C 030C
1000 0014 0114 021.4 0314
1800 OOIC 01lC 02lC 03lC
2000 0024 0124 0224 0324
2800 002C 012C 022C 032C
3000 0034 0134 0234 0334
3800 003C 013C 023C 033C
4000 0044 0144 0244 0344
4800 004C 014C 024C 034C
5000 0054 0154 0254 0354
5800 005C 015C 025C 03SC
6000 0064 0164 0264 0364
6800 006C 016C 026C 036C
7000 0074 0174 0274 0374
7800 007C 017C 027C 037C
8000 0084 0184 0284 0384
8800 D08C 018C 028C 038C
9000 0094 0194 0294 0394
9800 009C 019C 029C 039C
AOOO 00A4 0lA4 02A4 03A4
ABOO OOAC OIAC 02AC 03AC
BOOO 0084 0184 02B4 03B4
B800 OOBC OIBC 02BC 03BC
COOO 00C4 01C4 02C4 03C4
CBOO OOCC OICC 02CC 03CC
DOOO 00D4 01D4 02D4 0304
OBOO OODC OlOC 02DC 03DC
EOOO 00E4 01E4 02E4 03E4
EBOO OOEC 01EC 02EC 03EC
FOOO 00F4 01F4 02F4 03F4
F800 OOFC OlFC 02FC 03FC

c
166 SC34-0313

$DUMP

Dump Part of Supervisor Partition to Printer (cant.)

STORAGE MAP: $SVSCOM AT ADDRESS 3420

PARTI NAt1E ADDR PAGES TCB

PI **PART** 9FOO 97
PI $TRAP 9FOO 21 B2B4
PI **FREE** B400 76

P2 **PART** 0000 256
P2 **FREE** 0000 256

P3 **PART** 0000 256
P3 **FREE** 0000 256

P4 **PART** 0000 256
P4 $SNMAIN 0000 4 02F8
P4 $SMLOG 0400 34 1978
P4 **FREE** 2600 218

("""\.'
",/

o
Chapter 4. The Utilities 167

[$DUr1P]

Dump Part of Supervisor Partition to Printer (cont.)

TERMINAL LIST:

NA~1E eeB 10 ADDR

$SYSLOG 1876 0406 0004
$TERMI IA82 040E 0005
$TERM2 OC32 040E 0006
$SYSLOGA IDee 0010 0000
$SYSPRTR IF86 0306 0001

DSKCETTE) LIST:

NAME DDB TYPE 10 ORG SIZE LIB ADOR

EDXOOI 165E PRI 0106 0 75 27 0002
EOX002 16FO PRI OOAA 0 92 2461 0003 IP
ASMLIB 1782 SEC 92 16 1
SUPLIB 17A2 SEe 108 16 1
MACLIB 17C2 SEC 124 78 1
EDX002 17E2 SEC 202 102 1

SUPV BEGINNING AT ADDRESS 0000 FOR 139 PAGES

0000 6802 882A 0000 0000 8968 8826 8969 8826 1- -
DOlO 0000 0000 8968 8826 OA76 OA12 8968 8826

SAME AS ABOVE
0100 12DC 8BC2 0004 0006 1010 6A08 03F8 5B22 I · · · B ..

ANOTHER AREA? (Y /N) : N Note

Note: $DUMP allows you to request several partial dumps. If a
'V' response is entered, then $DUMP prompts you for the start
i ng and end i ng addresses that are to be dumped. See note 4.

168 SC34-0313

(
~\

" I

./

o

c

$EDIT! and $EDIT!N

SEDIT! AND $EDIT!N - LINE EDITORS

$EDITI and $EDITIN provide a text editing facility (primarily
used for source program entry and editing) that can be invoked
simultaneously with the execution of other programs. The Host
Communication Facility related version ($EDITI) provides a few
commands for data communication using the Host Communications
Facility IUP on the System/370 so that almost the entire proc
ess of program preparation can be controlled from a Series/l
terminal~ The native program preparation version ($EDITIN)
produces members that can be processed by the Series/I assem
bler.

Both versions work with 80-character lines that are line num
bered in positions 73-80 and are invoked by the $L command.

Data Set Requ;rements

One work data set is required by the editing facility and must
be allocated on disk or diskette using SDISKUTI. You are
prompted for its name when eithe~ version is loaded. This data
set contains both your data and some index information during
the editing session, and the size (number of records) of the
data set determines the maximum number of data records that it
can conta in. It is d i vi ded into three parts:

1. One header record

2. A ser i es of index records (32 entr i es per record)

3 • A s e r i e s 0 fda tar e cor d s (3 e n t r i es per r e cor d)

The required data set size can be calculated as follows: number
of text lines (n) divided by 30, times II, plus 1 «n/30 xII) +
I) .

Chapter 4. The Utilities 169

$EDITl and $EDITIN

Sequence of Operations

When the edit program is loaded, it prompts you for the name of
the work data set to be used. If an existing data set is to be
edited, the READ command should be used to copy the data set to
the work data set. For a new data set, edit mode should be
invoked. The contents of the work data set can be pr i nted us i ng
the LIST command.

The EDIT command is used to enter edit mode. Edit subcommands
are then recogn i zed unt i I term i nated by the END command.

No~: You should use the VERIFY ON subcommand until you become
familiar with the editing process.

The TABSET subcomm~nd is used, if desired, to specify the tab
character and tab column. This eliminates the entry of blanks
when a substantial amount of the text to be entered is in tabu
lar format or begins in a particular column.

Data can be entered ali ne at a time under the INPUT subcommand
(recommended for new data sets and bulk sequential updates
because of the automatic prompting feature) or by using the
line editing function (for single line corrections). Portions
of the ed i ted data can be listed at the term i nal us i ng the LIST
command.

The position of the current line pointer is controlled by the
FIND, TOP, BOTTOM, Up, and DOWN subcommands.

Ed i t mode is term; nated wi th the END command. When the text has
been ed i ted, copy the work data set to a permanent data set
us i ng either the WRITE or SAVE subcommand. The t~ork data set is
ina blocked format that is i ncompat i ble wi th most Event Dr i ven
Executive functions. Automatic translation from text editor
format to source statement format is performed.

The fo llow i ng figure shows the pr i mary commands and subcom
mands available under $EDIT1/$EDIT1N.

170 SC34-0313

$EDITl and $EDITIN

o

I >$L $EDIT1/N I

(Editor ready

COMMANDS

~
LIST (printer) I END $EDIT1/N I EDIT
READ
WRITE
SUBMIT

Edit mode)

SUBCOMMANDS

~ ~

I INPUT I I END I LIST (terminal) I LINE EDIT I VERIFY
RENUM
SAVE
TABSET

CHANGE
COPY
DELETE
MOVE

FIND
TOP
BOTTOM
UP
DOWN

Figure 20. $EDIT1/$EDITIN Commands and Subcommands

o
Chapter 4. The Utilities 171

$EDITI and $EDITIN

Special Control Keys

1. End of Line Character (see note be low). The Carr i age Return
Key (CR)/ENTER is used to end an input line.

2 • Line Delete Character (see note below). The
(DEL) of certain teletypewriter terminals
delete an input line.

Delete Key
is used to

Note: CR and DEL keys can be def i ned in the TERMINAL
statement. See the System Gu i de.

3. Character Delete Character. The backspace (BS) key on ter
minals is used for the character delete function. On tele
typewriter terminals, use the CTRL and H keys
simultaneously.

4. Tabulation Character. You can set the TAB character to the
character of your choice. '%' is the default TAB character.
Columns 10, 20, 40, and 72 are the default TAB columns.

5. ATTN Key (4978/4979) or ESC or ALT MODE Key (teletypewriter
terminals). The subcommands CHANGE, FIND, and LIST,
described below, can be cancelled by pressing the ATTN/ESC
key and enter i ng, as a spec i a 1 system ut iii ty funct i on, the
two character code CA. This feature is useful, for example,
to termi nate a long 1 i st i ng.

172 SC34-0313

o

o

o

$ED~Tl and $EDIT1N

The editor commands are described in the following pages.
Unless specifically indicated, the commands apply to both the
host and native versions of this utility. The editor commands
are:

COMMAND

EDIT
END
LIST
READ
SUBMIT
WRITE

DESCRIPTION

Enters edit mode; allows edit subcommands
Terminates $EDIT1/$EDIT1N
Lists the work data set on the system printer
Reads a source data set into the work data set
Submits a job to the host batch job stream
Writes the work data set into a source data set

Chapter 4. The Utilities 173

$EDITI and $E~ITIN

EDIT - Enter Ed; t Mode

EDIT is used to beg; n ed i t i ng source data.

Syntax

EDIT OLD/NEW

Required: None
Defaults: NEW when using a newly allocated work data set.

OLD when using an old work data set.
Alias: E,ED

Operands

OLD

NEW

Notes:

Descript;on

Indicates that data exists in the data set you want
to modify.

Ind i cates that you are creat i ng new data.

1 • The EDIT command must be entered before the ed i tor subcom
mands can be used.

2. When in ed i t mode, the subcommand END or SAVE must be
entered before the editor commands listed on the preceding
p age c an be used.

174 SC34-0313

c

o

o

$EDITl and $EDITIN

END - End $EDIT1/$EDITIN

END terminates execution of $EDITI or $EDITIN.

The contents of the edit work data set are unchanged. You can
re invoke $EDIT l/N at a later t j me and cont i nue.

Syntax

END

Required: None
Defaults: None
Alias: EN

No operands are requ ired.

Chapter 4. The Utilities 175

$EDITl and $EDITIN

LIST - L; st Work Data set

LIST prints all or p~rt of the work data set on the system
pr inter ($SYSPRTR). A sing Ie line number can be spec if i ed or a
pa i r of line numbers can be entered to 5~ec; fy a l; ne range. If
no line numbers are specified, the ent.re data set is listed.
List i ng can be term i nated by enter i ng ATTN and CA. Note a's i m i
larity to the EDIT .ubcommand. A~ a command following READY,
the data set is pr i nted on $SYSPRTR. As a subcommand followi ng
EDIT, the data set is displayed on your terminal.

Syntax

LIST line-spec

Required: None
Defaults: None
Alias: L,LI

Operands

line-spec

Examples

Descriptjon

'*' (for the current
indicate a single line
'linenuml linenum2' to
The entire data set is
omitted.

LIST 10 100
L * 5
L *
LI

176 SC34-0313

line) or 'line-number' to
to be listed. '* COUNT' or
display a range of lines.
printed if this operand is

o

c

$EDITl and $EDITIN

READ - Retr; eve Host Data Set ($EDIT1)

READ retr i eves a data set from the host system and stores it in
your Ser i es/l work data set.

The Host Communications Facility
required.

on the System/370 is

READ dsname

Required: None
Defaults: If dsname is omitted, the system prompts you
Alias:

Operands

dsname

None

Description

The fully qualified name of the host data set to be
retr i eved. It must conta in fixed length records,
80 bytes in length, with line numbers in co 1 umns
73-80.

You can enter the command and name together on the
same line or enter the command READ and the system
prompts for the data set name.

Chapter 4. The Utilities 177

[SEDITI and $EDITIN I
READ - Retr; eve Ser; es/l Data set ($EDIT1N)

READ retrieves a named data set from a volume on the Series/l
disk or diskette and stores it ina Ser i es/l work data set

READ dsname volname

Required: None - System prompts for operands
Default:
Alias: R, RE

Operands Description

dsname Name of data set to be retr i eved.

volname Name of the volume containing the data set to be
retrieved.

t!Qh: These operands are entered as responses to system
prompts.

178 SC34-0313

()

,~ ~
, \

\.,.::)

c

o

('''''' .,
;'

j

o

$EDIT! and $EDITIN

SUBMIT - Submi t Job to Host ($EDIT1)

SUBMIT injects a job (JCL and optional data) into the host
batch job stream.

The Host Communications Facility
required.

on the System/370 is

Note: This option is only to be used in systems with a HASP or
JES/Host Communication Facility interface.

Syntax

SUBMIT
SUBMIT

Operands

dsname

DIRECT

dsname
DIRECT

Description

The fully qualified name of the host data set, the
contents of which are to be entered into the job
stream. This data set must contain fixed length, 80
byte records.

If specified, the contents of your edit work data
set are transferred di rectly to the host job
stream.

Chapter 4. The Utilities 179

[$EDITI and $EDITIN

WRITE - Write Work Data Set to Host ($EDIT1)

WRITE transfers your Series/l work data set to a host data set.
It is assumed that your data set has been created or ed i ted wi th
the $EDITI uti 1 ity program.

The Host Communications Facility
required.

on the System/370 i s

If a host data set has been previously speci fied, you are asked
if you wish to reuse it. If not, or if one was not previously
spec if i ed, you are prompted for a new host data set name.

Syntax

WRITE dsname

Dgerands

dsname

Description

The fully qualified name of the target host data
set. Th is data set shou ld conta in fixed length
80-byte records.

You can enter t~e command and name together on the
same line or enter only the command WRITE and the
system prompts you for the data set name.

180 SC34-0313

o

o

o

$EDITl and $EDITIN

WRITE - Wr; te Work Data Set to Ser; e5/1 Data Set ($EDITIN)

WRITE copies the Series/1 work data set to a named data set in a
Series/1 disk or diskette volume.

Syntax

WRITE
Req~ired: None - System prompts you for operands
Default: Copy to the originating data set, if any
Alias: W, WR

No operands are requ ired.

The following prompt is issued by EDIT1N:

WRITE TO 'READVOL' OR 'READVS'?YES/NO

where 'READVOL' is the originating volume and 'READVS' is the
originating data set. This prompt is issued only if the work
data set was initialized via the READ command. If the response
is 'NO' or the data set is new, the following prompt is issued:

I ENTER VOLUME LABEL: volname

Chapter 4. The Utilities 181

$EDITI and $EDITIN

Edit Mode Subcommands

The subcommands used to edit your work data set while in
mode are descr i bed as fo llows:

Subcommand

BOTTOM
CHANGE
COPY
DELETE
DOWN
END
FIND
INPUT
Line Editing
LIST
MOVE
RENUM
SAVE
TABSET
TOP
UP
VERIFY

182 SC34-0313

Operands

line-spec /textl/text2/ALL
line-spec
line-spec
count

/character-string/
line-number increment
line-number character-string
line-spec
line-spec
new-line-number increment

ONCinteger list), OFF, CHCcharacter)

count
ON/OFF

" , 0" .. "

EDIT

(,
" ... -.~.\ , ,

->,/

o

c

$EDITI and $EDITIN

BOTTOM - Set Li ne Poi nter to Bottom

BOTTOM repositions the current line pointer (*> to the last
line of the data set being edited.

Syntax

BOTTOM

Required: None
Defaults: None
Alias: B,BO

No operands are requ ired.

Chapter 4. The Utilities 183

[$EDITI and $EDIT1N

CHANGE - Change Cha~acte~ str; ng

CHANGE mod if i es a character str i ng ina 1 i ne or range of 1 i nes.

Syntax

CHANGE line-spec /textl/text2/ALL

Required: /textl/text2
Defaults: line-spec defaults to *.
Alias: C,CH

Qperands

line-spec

Description

'*' or blank for the current line.

'* count' or '1 i nenum! 1 i nenum2' for a range 0 f
lines.

'line-number' for a particular line.

/textl/text2/ALL

'/' can be any non-numeric character except BLANK,
TAB, and ASTERISK. It is not a part of, "and cannot
appear within the character strings 'text!' and
'text2'. The line or range of lines is searched for
'text!', which, if found, is replaced by 'text2'.
Note that the same character must be used for both
del i mi ters in anyone change command.

The keyword 'ALL' is optional
occurrence of 'text l' to be
line(s).

and causes every
replaced in the

Two adjoining delimiters denote a null operand. If
text! is a null operand, then text2 is inserted at
the start of the line. The line is shifted right. If
text2 is a null operand and text! is specified,
text2 is removed from the line and the rest of the
line shifted left.

184 SC34-0313

()

o

o

c

Example

C 20 /ABC/ADC/
C 100 250 =/*=//=ALL
C * //XYZ
C /PROG/PGM/

$EDITl and $EDIT1N

Chapter 4. The Utilities 185

[SEDITI and $EDITlN]

COpy - Copy Text

COpy duplicates text, from one location
another location within that data set.
text both remain in the data set.

in
The

a data set, at
'from' and 'to'

Syntax

COpy

Required:
Defaults:

Alias:

Operands

linenuml

linenum2

linenum3

linenuml linenum2 linenum3

linenuml linenum3
linenuml linenurn3 defaults to
a single line copy of ' 1 ' to ' 3 ' •
CO

Description

The first line of text to be copied.

The last line of text to be copied.

The line of text after which the copied text is to
be placed.

All specified line numbers must exist. 'linenum2'
must be equal to or greater than 'linenuml'.
'linenum3' must be less than 'linenuml' or equal to
or greater than 'linenum2' when three line numbers
are spec if i ed. The data set is renumbered wi th
standard specifications. The original 'linenum2'
is listed with its new line number on exit.

186 SC34-0313

()

(
~ I.J

o

o

Example

CO 100 300 60
CO 120 250 820
CO 150 150 310
COpy 150 310

[$EDITl and $EDIT1H

Note: The last two examples are equivalent.

Chapter 4. The Utilities 187

$EDITI and $ED~~IN

DELETE - Delete Text

DELETE removes records from the data set. The current
pointer C*> is repositioned prior to the deleted lines.

DELETE line-spec

Required: None
Defaults: *
Alias: DE

Oeer~nds Descrietjon

line-spec * for current 1 i ne.

line

'* count' or 'I i nenurn1 1 j nenum2' for a range of
lines.

Example

DELETE *
DE * 4

'1 i ne-number' for a part i cular 1 i ne.

DE 100 150
DE 125

188 SC34-0313

o

c

o

0 '"" I,

$EDITI and $EDITIN

DOWN - Move Li ne Po; ntar Down

DOWN moves the current line pointer C*) toward the end of the
data set.

Syntax

DO~JN count

Required: None
Defaults: 'COUNT' defaults to 1.
Alias: DO

Operands

couRt

Example

DOWN 5
DO 10

Description

Spec if i es the number of lines the current line
po inter is to be moved.

Chapter 4. The Utilities 189

I $EDITI ~n~$EDITIN

END - Ex; tEd; t Mode

END requests that the EDIT mode be terminated. The editor com
mands can now be used relative to your finished source data. To
save or list your data set or to write or submit your data set
to the host, see "Editor Commands" on page 173. The contents of
the work data set rema i n unc'hanged. You can re'-enter the ed i t
mode using the EDIT command and continue editing the work data
set.

END

Required: None
Defaults: None
Alias: EN

No operands are requ ired.

190 SC34-0313

o

o

o

o

$EDITl and $EDIT1N

FIND - F; nd Character str; n9

FIND searches for a specified character string beginning with
the current line, if operands are specified (see ~yntax.) The
current line pointer (*) is moved to the first line found to
contain the string. The search is made at every position with
in each line.

Note: VERIFY should be set to ON when using the FIND command.

~yntax

FIND =char-string=

Required: None
Defaults: If no operands are specified, those specified

on the last previous issue of the FIND
subcommand are assumed., The search begins at
the line following the current line.

Alias: F,FI

Operands Description

=char-string=

Example

The string delimiter can be chosen to be any non
numeric character, except BLANK, TAB, or ASTERISK
and which does not appear within the specified
character string. The second occurrence can be
replaced by a carriage return. Note that both
delimiters must be the same character.

FIND /START/
F
FI =DATA X'OOFl'=

Chapter 4. The Utilities 191

INPUT - Inpu't Text

INPUT allows lines to be added or replaced. INPUT can be used
any time in ed it mode by press i n9 the ENTER key. lines are then
added to the end of the data set.

To terminate INPUT mode, press the ENTER key immediately after
you rece i ve the prompt for the next line number to be entered.

INPUT line-number
or

* increment

increment

Required: None
Defaults: Increment defaults to previous or 10
Alias: I,IN

OQ....erands

line-number

Description

The first line inserted will have this number, or
this number plus the increment if the specified
line number already exists.

increment The increment for numbering inserted lines. The
default is the previously specified increment or 10
if not specified.

* lines are to be inserted at the current line
position plus the default increment. If no oper
ands are specified, lines are to be inserted at the
end of the data set plus the default increment.

192 SC34-0313

o

c

o

C:I

0 ",
" ,'I,'

Example

INPUT * 1
IN 100 5
I 20
I

SEDITl and $EDITIN

Chapter 4. The Utiliti~s 193

$EDITl a~d $EDITlN I

LIST - Li st Work Data Set

LIST displays, at the terminal, lines of the data set being
edited.

LIST line-spec

Required: None
Defaults: line-spec defaults to entire data set
Alias: L,LI

1ULerands Description

line-spec C*) or line-number to indicate a single line to be
listed. '* count' or 'linenuml linenum2' to dis
playa range of 1 i nes.

Example

LIST 10 100
L * 5
L *
LI

194 SC34-0313

c

o

o

$EDITl and $EDITlN

MOVE - Move Text

MOVE moves text from one location in a data set to another
location within that data set. The 'from' text is deleted and
only the 'to' text remains in the data set.

Syntax

MOVE linenuml linenum2 linenum3

Required: linenuml linenum3
Defaults: linenuml linenum3 defaults to move one line.
Alias: MO

Ope ran d s .p e s c rip t.iQ.n,

Ii nenuml The first line of text to be moved.

linenum2 The last 1 i ne of text to be moved.

linenum3 The 1 i ne of text after wh i ch the moved text is to be
placed.

All spec if i ed 1 i ne numbers must ex i st. 'I i nenum2' must be
equal to or greater than 'linenuml'. 'linenum3' must be less
than 'linenuml' or greater than 'linenum2' when three line mem
bers are specified. The data set is renumbered with standard
specifications. The origin~l 'linenum2' is listed with its new
line number on exit.

Example

MO 100 300 60
MO 120 250 820
MO 87 87 310
MOVE 87 310

Not~: The last two examples are equivalent.

Chapter 4. The Utilities 195

I :~E~ITl and $EDITlNJ

RENUM - Renumber Wor k Data Set

RENUM renumbers each 1 i ne of ali ne numbered data set
ass i gns 1 j ne numbers to each 1 i ne of an unnumbered data set.

Syntax

RENUM new-line-number increment

Required: None
Defaults: Both new-line-number and increment

default to 10.
Alias: R, RE

No t.1t : ' new - 1 i n e - n u m b e r' i s r e qui red if' inc rem e nt' i s
specified.

Q[Le rands .Descr i pt ion

new-line-number

or

The sequence number to be ass i gned to the first 1 i ne
processed.

increment The increment to be used in renumber i ng.

Example

RENUM 10 10
RE 100 5
RENUM
R

196 SC34-0313

/~---\

\,,",,';

o

o

("':
,/

o

$EDIT! and $EDIT!N

SAVE - Save Work Data Set

SAVE wr i tes the current contents of the L>Jork data set to a host
data set with the host related version ($EDIT!) or to a
Series/! data set with the nati ve related version ($EDITIN).

If a data set has been previously specified (e.g., in a READ
command), you are asked if you wish to wr i te onto that data set;
otherwise, you are prompted for a new data set name.

Syntax

SAVE dsname

Required: None
Defaults: None
Alias: S, SA

Operands

dsname

Example

SA
S
SAVE

Description

When using $EDIT!, you are prompted for the target
host data set name. It must be a fully qualified
data set name.

When using $EDIT!N, the target data set must have
been previously allocated in a volume on a Series/l
disk or diskette. The data set should contain fixed
length records, 80 bytes in length. You are
prompted for the target volume name.

Chapter 4. The Utilities 197

SEDITl and $EDITIN

TABSET - set Tabs

TABSET reestablishes tab values or nullifies existing t~b val
ues. The tabulation character and tab stop values are main
ta i ned as part of your work data set. (They can be changed
later).

The tab character can be entered anywhere in the data line
under the INPUT subcommand or line editing function. It causes
a skip to the next tab position when the data line is entered
into the work data set. The resulting line is not visible, but
can be displayed if desired.

Syntax

TABSET
TABSET
TABSET

ONCinteger-list)
OFF
CHCtab-character)

Required: ON, OFF, or CH
Defaults: None
Ali~s: TA

Operands Description

integer-list

The relative column positions in each line to which
tab values are to be set. Initial system defaults
are 10,20,40, and 72.

tab-character

OFF

A new tab character. The standard is a percent
sign.

Term i nates the tab funct ion.

198 SC34-0313

()

c

o

o

o

Examples

TABSET ONCI0 20 40 72)
TA ONCIO 16 31)
TA CHCI)
TA OFF

TABSET ONCI0 20)
36 %TAB POSITION 1
INPUT 37 I
INPUT
00037 %%TAB POSITION 2
00038

EDIT

$EDITI and $EDITIN

LIST 36 37
00036
00037

TAB POSITION 1
TAB POSITION 2

Chapter 4. The Utilit'ies 199

I $EDITI and $EDITIN

TOP - set Line Poi nter to Top

TOP pos i t j ons the current 1 i ne po inter (*) before the first
1 i ne of the data set.

TOP

Required: None
Defaults: None
Alias: TO

No operands are requ ired.

Note: If VERIFY is ON, no line is printed because the current
line number precedes the f i rs't· line.

200 SC34-0313

o

o

o

$EDITl and $EDITlN I
UP - Move Line Pointer Up

UP moves the current line pointer (*) toward the start of the
data set.

Syntax

UP count

Required: None
Defaults: Count defaults to 1
Alias: U

Operands

count

Example

UP 10

Description

The number of lines that the current line pointer
(*) is to be moved.

Chapter 4. The Utilities 201

[$EDITl and $EDITlN

VERIFY - Di splay Changes on Termi nal

VERIFY causes the changes you made to be shown on the terminal
(ON), or not sho"Jn (OFF). Verification is off until it is
invoked the first time during an edit •

..s..Y.ntax

VERIFY ON/OFF

Required: None
Defaults: ON
Alias:

Operands

ON

OFF

Example

V ON
V
V OFF
VERIFY

V,VE

Description

Each time the position of the current line pointer
(*) changes, the line to which it moves should be
printed. In addition, modifications made in fields
of records using the 'character-string' or 'text'
forms of the CHANGE subcommand are ver if i ed.

Changes of the position of the current line pointer
(*), and of fields of records by means of the CHANGE
subcommand, are not to be ver if i ed.

202 SC34-0313

01',1'

~"

c

o

c

$EDITl and $EDITIN

Line Editing Commands

The line editing commands allow a single line to be added,
replaced, or deleted from the data set being edited.

Note: Line ed it i ng funct ions are not subcommands.

Syntax

line-number character-string

Required: line-number
Defaults: None

Note: I f spec if i ed, 'character-str i ng' must be
separated from 'line-number' by a single blank
or tab.

·Operands

line-number

Description

'line-number' with an immediate carriage return
deletes the 1 i ne hav i ng the spec if i ed number (i t
does nothing if the line does not exist).

'L i ne-number', fo 110wed by a character str i ng, adds
the string to the data set. If a line having. the
s p e c i fie d Ii u m be r a 1 rea dye xis t s, i tis rep 1 ace d' it

character-string

The text of the 1 i ne to be added.

Chapter 4. The Utilities 203

$EDITl and $EDIT1N

Examples

Add line (line 112345 does not exist)

12345 This line is being ~dded

Delete line 12345

[12345

Replace li~e 12345

~345 This line replaces 12345

c
204 SC34-0313

o

(~ "\

)

o

$FONT]

$FONT - PROCESS 4978 CHARACTER IMAGE TABLES

$FONT, a special purpose utility, creates or modifies charac
ter image tables for the 4978 display station. Each character
image is def i ned by a dot matr i x that is coded into eight bytes
of data. The entire table of codes requires 2048 bytes of stor
age. For details on the associated 4978 hardware, see the Bib
liography for the 4978 Display Station manuals.

$FONT requ i res one prea Ilocated data set of 2048 bytes (8
records). The data set can conta ina character i mage tab Ie, or
it can represent storage for a new table to be constructed.

$FONT Commands

The commands available under $FONT are listed below. To display
this list at your terminal, enter a question mark in response
to the prompt i ng message COMMAND (?):.

COMMAND (?) : ?

DISP DISPLAY TABLE
EDIT ENTER EDIT MODE
SAVE SAVE TABLE
PUT LOAD TABLE INTO DEVICE
GET READ TABLE FROM DEVICE
END END PROGRAM

COMMAND (?) :

After the commands are displayed, you are again prompted with
CO~1f1AND (?):. You respond with the command of your choice (for
example, DISP).

DISP - Di splay Table

The character images defined by the table are displayed along
with their associated EBCDrC codes.

EDIT - Enter Ed it Mode

Edit mode enlarges the display for modification of the dot
matrix patterns (a complete description of the edit mode func-

Chapter 4. The Utilities 205

$FONT

tions is given following this section).

END - End Program

When you enter the END subcommand, the system displays the mes
sage SAVE TABLE? if edit mode has been entered at least once
since the last SAVE operation. This allotr.ls you to save the cur
rent table, if desired, before ending the program.

GET - Read Table from Devi ce

The image store is read from a (4978) terminal and becomes the
current table. The GET command followed by SAVE provides a
means for in it i ali zing a data set with a character i mage tab Ie.

PUT - Load Table into Dev; ce

The current table is written to the image store of a (4978) ter
minal. A terminal name can follow the command on the same line,
or you are prompted for it. The image store is a table which
conta i ns codes for gene rat i ng characters or i mages for the 4978
terminal.

SAVE - Save Table

The current table, reflecting any changes made during edit
mode, is wr i tten to the data set des i gnated at load time.

Edit Mode

When you enter edit mode, a 4X8 grid is displayed in the center
of the screen. For each grid row, the centers of seven overlap
ping dot areas occur at the centers of each of the four squares
and at each of the three interior grid lines. (See 4978-Lpis-
1tl a y S tat; 0 nan d At t a c "me. n t G e n era I I.n for mat; 0 n for d eta i Iso n
the character matr i x.) Dots are represented wi th the followi ng
pattern:

206 SC34-0313

o

o

o

o

$FONT

Screen Format

The following complete screen format appears after you select a
character for display:

PFI
PF2
PF3
PF4
ENTER
PF5

TAB FORWARD
TAB BACK
NEXT LINE
INVERT DOT
SET PATTERN
COMMAND MODE

CODE A (Cl)

II II

IIII IIII

A

Chapter 4. The Utilities 207

$FO~IT

Character Image DisRlay and Modification

You can d i sp lay and mod i fy the character i mages as fo llows:

1. Spec i fy the character to be viewed either by enter i ng a
character at the cursor position (the alphanumeric field),
or by entering the hexadecimal representation of the
EBCDIC code between the parentheses (the hex fie ld) •

2. Press the ENTER key. The character image, as determ i ned by
t h.e tab led e s i 9 nat e d a t loa d tim e, i s dis pIa ye don the
grid. For 4978 terminals, the image is also displayed
beneath the grid in normal dimensions. If the character
was designated with an alphanumeric field entry, then the
EBCDIC code as determined by the keyboard in use is dis
played in the hex field.

3. The program function keys can then be used according to the
displayed instructions to modify the dot pattern. Note
that adjacent or overlapping dots appear as a continuous
solid line on the grid. This reflects a feature of the
character generat i on hardware on the 4978 display.

4. When the des i red pattern has been constructed, press
ENTER. The word CODE on the code entr y line changes to SET,
displayed at high intensity. At this point, press ENTER
again and the new pattern replaces the existing pattern for
the spec if i ed code. To assoc i ate the pattern wi th a new
code, alter either the alphabetic or hex field before
press i ng ENTER.

208 SC34-0313

o

o

o

$FSEDIT

$FSEDIT - FULL SCREEN EDITOR

$FSEDIT is a full-screen text editing utility that helps you
develop and modify programs. It operates the terminal as a
static screen device and therefore must be run from a terminal
with static screen capabi lity (4978/4979).

With $FSEDIT you can:

- Edit programs using a full screen

• Scroll information forward and backward

-Use PF (program function) keys for frequently used func
tions

- Insert a mask for pref ill i ng inserted lines

- Merge data from other data sets

- Communicate with a System/370 in conjunction with the Host
Communication Facility IUP installed on the host
System/370

NQ..i.g,: To use $FSEDIT, the modules SFSUTIL, $FSUTLN, $FSHELP
and $FSIMI to $FSIM8 must reside on the system IPL volume.

Data Set Requ;rements

$FSEDIT requires a preallocated work data set for use as a text
edit work area. This work data set is automaticallY allocated
if $FSEDIT is invoked by the session manager. If you use the $L
command, you can provide the name of the work data set when you
enter the load request, or when $FSEDIT issues a prompt for the
name of the work data set.

Text data (source statements) within this work data set are in
a special text editor format, identical to that used by the
$EDITIN text editor. See "Data Set Requirements" on page 169.
Data within a work data set can be edited by either $EDITIN or
$FSEDIT.

Note: $FSEDIT uses source data sets of 80-character lines that
are line numbered in positions 73-80 for host or Series/l data
sets or in pos i t ions 1-6 (COBOL convent ion) for host data sets.

Chapter 4. The Utilities 209

$FSEDIT

Whe.n you end a text editing utility session, save the contents
of the work data set in a source data set on disk, diskette or
tape. If a new data set is used, a prompt is issued asking if
the work data set is to be written to the same disk, diskette,
or tape it was read from. If your response is N, a prompt is
issued asking for a new data set to be used. If the data set
does not exist on the volume specified, $FSEDIT creates it
automatically. Automatic translation from text editor format
to source statement format is performed.

Caution: If you write the work data set out to a
tape, all files following this data set will no
accessible.

Scrolling

multifile
longer be

During editing and browsing, the information to be displayed
usually exceeds the si ze of the display screen. Scrolling
allows you to page UP or down through the information. Two PF
keys are used for th i s purpose -- one for each direct i on. When
ever scrolling is allowed, a scroll amount, displayed at the
end of the second line of the display, shows the number of lines
scrolled with each use of a scroll key,

PAGE or P Specifies scrolling one page (22 lines).

HALF or H Specified scrolling a half page (1 1 lines),

MAX or M Specifies scrolling to the top or bottom of the data
set.

n Specifies number of scrolling lines

You can change the scroll amount by moving the cursor to the
scroll field and overtyping the amount currently displayed. To
change the scroll amount, type over the first character with a
P, H or M to change the scroll amount to a page, half page, or
maximum, respectively. To specify a number of lines to scroll,
o v e r t y pet h e fie I d wit h the n u m b e r 0 f l.i n e s des ire d •

In browse mode, the scroll amount is initialized to PAGE; in
edit mode, it is initialized to HALF. When you make a change,
the new value remains in effect for the remainder of the
sess i on un less you change it. The va 1 ue for MAX is an
exception; following a MAX scroll, the scroll amount defaults
back to the initial value.

210 SC34-0313

()

c

o

o

$FSEDIT

Program Function Keys

The ATTN and six program funct i on keys are used to request com
monly used or special $FSEOIT operations as follows:

PFl Redisplays the screen image. All changes are ignored
and the original data is displayed.

PF2 SCROll UP scrolls up the amount shown in scroll amount
field.

PF3 SCROLL OO~~N scrolls down the amount shown in the
scroll amount field.

PF4 REPEAT FIND repeats the action
FINO pr j mary command.

of the previous

PFS REPEAT CHANGE repeats the action of the previous
CHANGE pr i mary command (App lies on I y to ed i t mode).

PF6 PR INT SCREEN pr i nts the screen i mage on the system
pr inter ($SYSPRTR). The use of PF6 for hardcopy may
have been changed by use of the TERMINAL HOCOPY state
ment (see the ~tem Guicill>.

ATTN CA Cancel the list option. Pressing the ATTN key and typ
ing CA stops the list option of $FSEOIT and returns to
the primary option selection list.

Note: The PF2 - PFS keys are active only during browse and edit
modes. PFI use is only meaningful during edit mode.

Chapter 4. The Utilities 211

L ,$FSEDIT I

$FSEDIT Options and Command Summary

This summary shows the options and commands available under
$F SED IT. A des c rip t ion 0 f e a c h follow s •

Primary Options:

- Display Data Set
- Edit Data Set
- Terminate $FSEDIT
- Display Commands
- Print Data Set

BROWSE
EDIT
END
HELP
LIST
~'ERGE
READ
SUBMIT
t~R IT E

- Merge Data from a Source Data Set
- Retrieve Data Set From Native/Host
- Submit Job to Host
- Transfer Data Set to Native/Host

BROWSE Primary Commands:

END - Same as MENU
FIND - Find a Character String
LOCATE - Find Data by Line Number
MENU - Return to Primary Option Menu

~.-------------------------,--~
EDIT Primary Commands:

CHANGE
CLEAR
END
FIND
LOCATE
NENU
RENUM
RESET

- Modify Character Strings
- Clear Work Data Set
- Return to Primary Option
- Find Character String
- Find Data by Line Number
- Return to Primary Option
- Renumber Data Set
- Clear Line Commands

EDIT Line Commands:

Menu

Menu

A,B - Define Copy/Move Destination
C,CC - Copy Lines of Text
COLS - Display Columns
D,DD - Delete Text
I,ll - Insert Text
M,MM - Move Line of Text
MASK - Display Insert Mask

212 SC34-0313

c

o

o

$FSEDIT

P~;ma~y Option Menu

When $FSEDIT is loaded, the following primary option menu
(selection list) is displayed. To select the desired function,
enter the number of the opt i on in the 'Se lect Opt i on' input
field.

---------- SFSEDIT PRIMARY OPTION MENU ------------
SELECT OPTION ===> 1

1
2
3
4
5
6
7
8
9

BROWSE
EDIT
READ
WRITE
SUBMIT
LIST
MERGE
END
HELP

opt ion 1 - BRO'''SE

- DISPLAY DATASET
- CREATE OR CHANGE DATASET
- READ DATASET FROM HOST/NATIVE (H/N)
- WRITE DATASET TO HOST/NATIVE (H/N)
- SUBMIT BATCH JOB TO HOST SYSTEM
- PRINT DATASET ON SYSTEM PRINTER
- MERGE DATA FROM A SOURCE DATASET
- TERMINATE SFSEDIT
- DISPLAY TUTORIAL

The BROWSE mode allows you to display and examine a source fi Ie
in the work data set, but prevents the possibility of changing
it.

In this mode, you can view all parts of the work data set using
the scroll i ng funct i on (i nvoked by press i ng PF keys).

In addition, two primary comm~nds are used to locate specific
i nformat i on wi th i n the data set.

FIND Searches for a des i gnated text str i ng

LOCATE Searches for a des i gnated line number.

These primary option commands are discussed under "Primary
Commands" on page 218.

During browsing, the current number of lines in your data set
and the maximum number of lines the work data set can hold is
displayed on the top line of the display, following the data
set name and the volume identification. (The maximum number of
lines is displayed in parentheses.)

Chapter 4. The Utilities 213

$FSEDIT

Browsing is terminated by entering the primary command MENU in
the command input field to return to the Pr i mary Opt i on Menu.

opt; on 2 - EDIT

In the ed it mode, you can mod i fy an ex i st i ng source data set or
create a new one. To do th is, you use:

• Program function keys for two-way scrolling and repeat
change and find

• Primary commands (CHANGE, CLEAR, END, FIND, LOCATE, MENU,
RENUM, and RESET)

• Line edit commands to manipulate whole lines or blocks of
lines.

Creating a Source Data Set

To create a new source data set, you enter EDIT mode (option 2
of the primary option menu) with an empty data set (the work
data set specified when SFSEDIT was invoked). Because the work
data set is empty, the editor assumes insertion (creation) of
lines is desired and the INSERT function is active. Following
is an example of the initial display when editing an empty data
set.

EDIT --- EDITWORK, EDX002
COMMAND INPUT ===>

0(24)--- COLUMNS 001 072
SCROLL ===>HALF

***** ***** TOP OF DATA ********************************

***** **** BOTTOM OF DATA ******************************

The top line of the screen, from left to right, displays ut ili
ty mode (EDIT), the name and volume of the work data set
(EDITWORK,EDX002), the number of source statements in the work
data set, and in parentheses, the total number of statements
the data set will hold.

The cursor is positioned at character position 1 of the insert
line. After you enter i nformat i on on th i s line, press the
ENTER key to wr i te the data on the screen to your work data set.

214 SC34-0313

o

o

C
~

,~

)

$FSEDIT

The utility then numbers the entered line and sets up for the
next insert line.

As you continue in this manner, a new insert line is readied
each time the preceding line is entered (ENTER key). The insert
(creation) operation is terminated by pressing the ENTER key
wi thout enter i ng anyth i ng on the new insert 1 i ne.

Note: $FSEDIT does not distinguish between input mode and edit
mode during editing operations and data on the screen can be
changed at any time.

To save the source statements just created, return to the pri
mary option menu (using the MENU command). Use the WRITE option
to save the newly created data set. You are prompted for the
name of the target data set and volume.

Modifying an Existing Data Set

To modify (edit) an existing data set, it must first be read
into the work data set using option 3 (READ) of the primary
opt i on menu.

Once your data set has been read into the work data set, you can
locate and change information by scrolling the data set by
press i ng the PF keys. The PF keys and def i nit ions are descr i bed
under "Program Funct i on Keys" on page 211.

To modify data on the screen, move the cursor to the desired
location and enter the new information. Several lines can be
changed before pressing the ENTER key. A single line or blocks
of lines can be deleted, inserted, duplicated, or rearranged
using the edit line commands. These are discussed under "Edit
Line Commands" on page 226.

For general editing purposes, primar'y edit commands are used to
find and change designated character strings and to change the
1 i ne number i ng sequence. These commands are discussed under
"Pr i mary Commands" on page 218.

After you finish modifying the data set, use WRITE to save the
data in the same data set it was read from or to a new data set
on disk or diskette.

Editing is terminated by entering the primary command END or
MENU in the command input field, which returns you to the pri
mary opt i on menu.

Chapter 4. The Utilities 215

$FSeDIT 1

Opti 0:" :5 - READ

The ~EAD option retrieves a data set from either a host system
ora .dat a set and i s k, dis k e t t e, 0 r tap eon the nat i ve 5 e r i e s /1
system and stores it in your work data set. The primary option
menu remains on the display and the area below it is used to
prompt for the data set name and to provide information. The
data set n a m e en t ere d m u s t b e f u 1 1 y qua 1 i fie dan d m u s t con t a i n
fix e d Ie n 9 t h 8 0 - b y t ere cor d s •

Line numbers for nati ve data sets must be in columns 73-80. For
htist data sets, line numbers can be in either columns 1-6 or
73-80. If the line numbers in the data set exceed the maximum
al10~ed by $FSEDIT (32767), the data is automatically renum
be r ed with a smaller lin e number inc rem e n t •

When the READ is completed or terminated because of an error,
the number of lines transferred, or the appropriate error mes
sage, is displayed and the cursor is moved to the 'Select
Option' input field. This indicates the completion of the READ
~unction and another option can be selected. The READ to host
requires the Host Communications Faci lity on the System/370.

opt; on 4 -WRITE

The W.RITE option transfers the contents of the work data set to
a ho~t/native data set. A prompt is issued asking if the work
dat~ set is to be written to the same disk, diskette, or tape
dat~ set it was read from. If the response is NO (N), a prompt
is issued ask i ng for a new data set to be used. If the data set
does not exist on the volume specified, it is created automat
ically~ The WRITE to host requires the Host Communications
F a c ili··t yon the S y s t e m / 3 7 0 •

Mo t e '.: The l~ R I TEo p t ion doe s not des t roy the con ten t 5 0 f the
work data set. Therefore, the WRITE option can be directed to
another data set to obtain a backup copy. The WRITE option can
a 150 be .U sed follow i n g fur the red i tin 9 o'f the w 0 r k d a t a 5 e t •

Caut.io·n.

1. If YOU increase the contents of the work data set so that 1 t
is too big to be written back to the source data set,
$FSEDIT deletes the source data set and attempts to reallo
cate it with enough space to save the work data set con
tents. If the allocation fails, the original source data
set is lost. However, the work data set rema i ns intact and
can be s a v e din a 5 u ita b 1 e so u r c e d a t a set.

·lfyou write the work data set out to a multifile tape, all
. fi 1 e 5 f oIl 0 win 9 t his data set wi I 1 no longer be access i b 1 e •

216 SC34-0313

o

o

o

()

o

$FSEDIT

opt; on 5 - SUBMIT

The SUBMIT option injects a job (Jel and optional data) into
the host job stream. The display and operation are similar to
the READ and WRITE commands. The data set name entered must be
the fully qualified name of the host data set containing the
JCl to be submitted. If the keyword DIRECT is entered instead
of a data set name, the contents of the work data set are trans
ferred directly into the host job stream. The SUBMIT to h~st
requ i res the Host Commun i cat ions Fac iii ty on the System/370.

Noh: The DIRECT option is only to be used in systems with a
HASP or JES2 interface.

opt; on 6 - LIST

The LIST option prints the entire contents of the work data set
on the hardcopy device assigned to the terminal. (The listing
can be terminated at any time by pressing the ATTN key and typ
ing CA.)

opt; on 7 - MERGE

The MERGE opt i on merges all, or part, of a sour'ce data set into
the current edit work data set. You are prompted for the names
of the Series/l source data set and volume. If the specified
data set is found, you are then prompted for the first and last
line numbers of the data to be copied. If the entire data set
is to be merged, an '*' can be entered instead of the 1 i ne num
ber specifications. You are also prompted for the line number
of the current work data set after which the data is to be
added. The spec if i cat i on of an aster i sk is only to be used for
the source data set. (I f the format of the 1 i ne number spec i fi
cat ion sis inc 0 r r e c t, an err 0 r me s sag e i s dis p I aye d an d you ar e
prompted for the data again.) If all parameters are correct,
the data is then read from the source data set, added t~ the
current work data set and the current work data set is renum
bered.

To cancel the MERGE function, press the ENTER key when prompted
for MERGE FROM data set name.

C aut; O!1.!.. 0 n c e the mer g e has s tar ted, i t m u s t b e a 11 0 wed to
complete nor'mally or unpredictable results may occur.
Series/l source data sets are defined to consist of 80 charac
ter 1 i nes wh i ch are numbered in columns 73-80.

Chapter 4. The Utilities 217

r $FSEDIT

Opti on B - END

The END opt 1 on termi nates $FSEDIT.

Opti on 9 - HELP

The HELP option displays tutorial text on the use of $FSEDIT.

Primary Commands

Primary commands are entered on line 2 of the display in the
Command Input Field. All pr i mary commands can be entered wh i Ie
in ed j t mode. In browse mode, three pr i mary commands are
recogn i zed by $FSEDIT: LOCATE, FIND, MENU.

Most of the pr i mary commands can be entered in abbrev i ated for
mat. Only the first character is required. Minimum free form
format is indicated with each command enclosed in ().

The function of each of the primary commands is described on
the fa llow i ng pages.

218 SC34-0313

()

o

o

a,\'
"

$FSEDIT

C (CHANGE) - Change Text (Ed; t Mode Only)

Changes text str i ngs. The search for the 'text l' str i ng
proceeds unt i 1 the str i ng is found or the bottom of the data set
is reached. If found, 'textl' is replaced with 'text2'. If the
two text str i ngs are not the same length, automat i c sh i ft i ng is
performed by expanding or collapsing blank characters at the
end of the line. If insufficient blanks exist for shifting
right without shifting a non-blank character into column 72,
the change is not made and the line is displayed with an error
message in the line number field. (If the ALL option was
selected, the change is terminated at this point.) If the
'text!' string is not found, you are notified with an error
message displayed on the top line of the screen. PFS would
repeat the prev i ous CHANGE spec if i cat ion.

Syntax

CHANGE /textl/text2/option
C /textl/text2/option

Requi~ed: /textl/text2/
Defaults: option defaults to 'NEXT'

Operands Descriptjon

/textl/text2/

option

The delimiter (/) can be any alphanumeric character
except blank. It is not part of, and cannot appear
in, the character str i ngs 'text l' and' text2'. All
three delimiters are required and all must be the
same character. 'text!' and 'text2' can be any
character str i ng not conta i n i ng the de lim iter used.

Def i nes the beg i nn i n9 and the extent of the search.
The following are valid options:

NEXT

Locate and change the next occurrence of 'textl' to
'text2'. The search starts with the first line
displayed.

FIRST

Chapter 4. The Utilities 219

$FSEDIT]

Locate and change the first occurrence of 'text!
beg inn i ng the search at the first line of data set.

ALL

Locate and change all occurrences of 'text!' begin
ning at the first line of the data set.

220 SC34-0313

0 ... 1

.,

\ ."

C1
,.

.~

o

o

CL (CLEAR) - Clear Work Data Set (Ed; t Mode Only)

Clear the work data set.

Syntax

CLEAR
CL

Required: none
Defaults: none

No operands are requ ired.

E (END) - End PI'; mary Command Input

$FSEDIT

Return to Pr i mary Opt i on Menu. The END command term i nates ed it
or browse mode and returns to the Pr i mary opt i on Menu screen.

Syntax

No operands are requ ired.

Chapter 4. The Utilities 221

[$FSEDIT

F (FIND) - Find Text String

Find and display text strings. The search proceeds until the
text string is found or until the end of the data set is
reached. If the string is found, automatic scrolling takes
place to display the line containing the text string to be dis
played at the top of the data area of the display. If the
string is not found, you are notified. PF4 repeats the previ
ous FIND specification.

Syntax

FIND /text/ option
F /text/ option

Required: /text/
Defaults: option defaults to 'NEXT'

Operands

/text/

option

Description

The delimiter (/) can be any alphanumeric character
except blank which does not appear within the text
string. Both delimiters are required and must be
the same character.

Defines the beginning of the search. The valid
opt ions are:

NEXT

The search starts with the first line of the current
display.

FIRST

The search starts at the first 1 i ne of the data set.

222 SC34-0313

o

o

o

o

o

$FSEDIT

L (LOCATE) - Locate L;ne Number

Locate and display the requested line number. The data set is
searched for the requested line. If found, automatic scrolling
takes place and the requested line is displayed at the top of
the display. If the requested line number does not exist, an
error message is displayed.

Syntax

LOCATE line-number
L line-number

Required: line-number
Defaults: none

Operands Description

line-number

The number of the line to be located and displayed.

M (MENU) - Return to Pr;mary Opt;on Menu

Return to Primary Option Menu. The MENU
edit or browse mode and returns to the
screen.

MENU
M

No operands are required.

command terminates
Primary Option Menu

Chapter 4. The Utilities 223

$FSEDIT

R (RENUM) - Renumber Data Set (Edit Mode Only)

Ass i gn new line numbe.rs to each line of the data set.

'£y'ntax

RENUM first increment
R first increment

Required: none
Defaults: first and increment default to 10 or to

the values last used.

QRerands Description

first The number to be assigned to the first line of the
data set.

increment The increment to be used in
numbers.

generating line

Not~: If the number of lines in the data set is so large that
the maximum line number of 32767 is exceeded, the 'first' and
'increment' values are automaticallY reduced unti I the data
set can be properly renumbered.

224 SC34-0313

()

o

o

o

$FSEDIT

RESET - Reset L; ne Commands (Ed; t Mode Only)

The RESET command can be used to ~~set e~~oneous o~ unwanted
line commands, to reset line numbers td normal after they were
replaced with ERR messages and to terminate the display of the
MASK 1 i ne •

Syntax

RESET

Required: none

No operands are requ ired.

Chapter 4. The Utilities 225

$FSEDlt

Edit L;ne Commands

The edit line commands are used to delete, insert, duplicate,
or reatrange a single line or a group of lines. They are valid
only in edit mode.

Single charactet line commands operate on single lines of data
and are spec if i ed by enter i ng the line command in the first
position of the line preCeding the line number.

Double cha~acter line commands operate on blocks of data and
are specified by entering the block command in the first two
positions on the first and last line of the block of data.

A (After) and B (Before)

Defines the destination for a copy or move operation. The 'A'
and 'B' lirie commands are entered to define the destination of
a copy or move operation. The 'A' defines the destination as
be i ng after the line and the 'B' de fines the dest i nat i on as
being before the line. Thus it is possible to move or copy any
w her e i nth e d a t a set, inc 1 u d', n 9 b e for e the fir s t lin e 0 r aft e r
the last line.

c (Copy L; ne) and CC (COpy Block)

Dup Ii cate lines of data with i n the data set. The procedure for
dupl i cat i ng I j nes is the same as for mav i ng except that the' C'
or 'CC' rep laces the t ~1' or 'MM'. The copy ope rat i on leaves the
original data intact and inserts a duplicate copy of the data
at the destination specified. The entire data set is renum
bered at the complet i on of the copy operat i on.

226 SC34-0313

o

c

o

o

Example

kruD!. Block

EDIT --- EDITWORK, EDX002
COMMAND INPUT ===>

2C

$FSEDIT

24)--- COLUMNS 001 072
SCROLL ===>HALF

***** ***** TOP OF DATA ********************************
CCOOOIO LINE 1
CC00020 LINE 2
B**** **** BOTTOM OF DATA ******************************

.screen image after Block COPY

EDIT --- EDITWORK, EDX002 4(24)-BLOCK- DATA RENUMBERED
COMMAND INPUT ===> SCROLL ===>HALF
***** ***** TOP OF DATA ********************************

00010 LINE 1
00020 LINE 2
00030 LINE 1
00040 LINE 2

***** **** BOTTOM OF DATA ******************************

Chapter 4. The Utilities 227

COLS - Di splay Columns

The COlS command are used to display a line showing column num
bers. To display the column numbers, type COLS starting in the
left margin of the line where the display is desired.

D (Delete Line) and DD (Delete Block>

Delete a line, or a block, of data. A 'D' on a line causes the
line to be deleted when the ENTER key is pressed. More than one
line can be deleted by entering a '0' on each line. The 'DD'
line commands are used to delete a block of data. The 'DO' is
entered on the first and last line of the block of code to be
deleted. The first line of the block does not have to be on the
same display page as the end of the block (scrolling can take
place between defining the two 'DO' lines). The block of data
is deleted when the ENTER key is pressed the first time after
both 'DO' lines have been specified.

Example

Del e t e B I 0 c k a f lin e,s

EDIT --- EDITWORK, EOX002 7(24)--- COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===>HALF
***** ***** TOP OF DATA ********************************

00010 LINE 1
0000020 LINE 2

00030 LINE 3
ODOOO(.O lINE 4

00050 LINE 5
00060 LINE 6 ~

00070 lINE 7
***** **** BOTTOM OF DATA ******************************

228 SC34-0313

0"',:' , " '

o

o

o

$FSEDIT

Screen Image after Block Delete

EDIT --- EDITWORK, EDX002 7(24)-BLOCK-DATA RENUMBERED
COMMAND INPUT ===> SCROLL ===>HALF
***** ***** TOP OF DATA ********************************

00050 LINE 5
00060 LINE 6
00070 LINE 7

***** **** BOTTOM OF DATA ******************************

I (Insert) - Insert New Li ne

Causes a new 1 i ne to be inserted after th is line. Any i nforma
tion typed on the inserted line is assigned a line number and
becomes part of your data when the ENTER key is pressed. If the
line number assigned to the newly inserted line is equal to, or
greater than, the line number of the next sequential line, all
data to the end of the data set is automaticallY renumbered. If
no information is entered, the inserted line is automatically
deleted the next time the ENTER key is pressed. If information
is entered on the inserted line and the cursor is still on the
inserted line when the ENTER key is pressed, another new line
is automatically inserted. This allows line ~fter line to be
generated ina cont i nuous insert mode. The cursor is set to the
first position where data appears in the following line.

The inserted line dup I i cates the current va I ue of the ed it mask
line. The initial value of the mask line is 72 blanks. It can be
changed at any time as noted in the descr i pt i on of the MASK com
mand.

Note: The I line command can be entered on the TOP OF DATA mes
sage line to insert a line ahead of what is currently the first
line. It is typed in the first position of the TOP of DATA
line.

Chapter 4. The Utilities 229

$FSEOIT

Example

I L i ne Command

EDIT --- EDITWORK, EDX002
COMMAND INPUT ===>

2(24)--- COLUMNS 001 072
SCROLL ===>HALF"

1**** **** TOP OF DATA *********************************
00010 LINE 1
00020 LINE 2

***** **** BOTTOM OF DATA ******************************

.screen Image After I Line Command

EDIT --- EDITWORK, EDX002 2C 24)--- COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===>HAlF
***** ***** TOP OF DATA ********************************

00010 LINE 1
00020 LINE 2

***** **** BOTTOM OF DATA ******************************

230 SC34-0313

o

o

o

c

$FSEDIT

II (Insert Block) - Insert Block of Lines

Insert a block of new data. The line with the II command is
displayed at the top of the display with twenty-one inserted
lines following it. Data can be entered on all twenty-one
lines before entering it with the ENTER key. The new data is
then saved as with the 'I' command. If all inserted lines have
data entered on them and the cursor is left on the last line of
the display when the ENTER key is pressed, another twenty-one
lines are generated. If data are not entered on one or more of
the lines, the unchanged lines are deleted and the insert mode
is term i nated.

Notes:

• The II command can be entered on the TOP OF DATA message
line to insert data in front of what is now the first 1 i ne.
It is typed over the first two asterisks of the TOP OF DATA
line.

• The II command is di fferent from the rest of the double
character line commands in that it is entered on only one
1 j ne and generates a block of new data instead of ope rat i ng
on a block of data.

• The inserted lines duplicate the current value of the edit
line mask.

Example

Block lnsert Line Command

EDIT --- EDITWORK, EDX002 2(24)--- COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===>HALF
***** ***** TOP OF DATA ********************************

00010 LINE 1
1100020 LINE 2
***** **** BOTTOM OF DATA ******************************

Chapter 4. The Utilities 231

[$FSE~IT]

~creen Im~~ After Block Insert Command

EDIT --- EDITWORK, EDX002
COMMAND INPUT ===>
00020 LINE 2

MASK - D; splay Insert Mask

2 (24)--- COLUMNS 001 072
SCROLL ===>HAlF

The MASK line command is used to display the insert mask which
is used to pref ill inserted 1 i nes. The insert mask is 72 bytes
long and is initialized to ~ll blanks at the beginning of the
session. Any data filled into it remains in effect for the
remainder of the current session unless changed by you. The
insert mask can be changed any time it is displayed by overtyp
ing it with the desired information.

Note: To display the insert mask requires that all four charac
ters of the MASK line command be entered by overtyping the
first four characters of the line number.

232 SC34-0313

()

c

o

o

[SFSEDIT

M (Mo veL i n e) and MM (M 0 v e B 10 c k)

Move a line, or block of lines, from one location to another.
When a 'M' line command is entered, a single line is moved to
the location specified by an 'A' or 'B' line command. The'MM'
line commands cause the block of data defined by the two 'MM'
line commands to be moved to the locat i on spec if i ed by an 'A' or
'B' line command. The moved lines are removed from their ori
ginal location and the entire data set renumbered after the
move. The move occurs when the ENTER key is pressed the first
time after both the lines to be moved and the destination are
defined. The destination does not have to be on the same page
of the display as the move line commandCs) and the two 'MM' line
commands can also be separated.

Excample

Move Block of Lines

EDIT --- EDITWORK, EDX002
COMMAND INPUT ===>

7(24)--- COLUMNS 001 072
SCROLL ===>HALF

A**** ***** TOP OF DATA ********************************
00010 LINE 1
00020 LINE 2
00030 LINE 3

MM00040 LINE 4
00050 LINE 5

MM00060 LINE 6
00070 LINE 7

***** **** BOTTOM OF DATA ******************************

Chapter 4. The Utilities 233

Screen Image After Block Move

EDIT --- EDITWORK, EDX002 7(24)-BlOCK-DATA RENUMBERED
COMMAND INPUT ===> SCROll ===>HAlF
***** ***** TOP OF DATA ********************************

00010 LINE 4
00020 LINE 5
00030 LINE 6
00040 LINE 1
00050 LINE 2
00060 LINE 3
00070 LINE 7

***** **** BOTTOM OF DATA ******************************

234 SC34-0313

()

0_"\
I .. 1

o

o

$IAMUTl

$IAMUTl - BUILD AND MAINTAIN INDEXED DATA SET

$IAMUTI helps you manage your indexed data sets. The $IAMUTI
utility is shipped with an input/output buffer of 512 decimal
bytes. This allows you to define an indexed data set with a max
imum block size of 512 bytes, and to load, unload, and reorgan
ize indexed data sets with a maximum record size of 512 bytes.
I f you want to change the max i mum record size, refer to the
Program Directory for use with Version 1, Modification level 1
of program 5719-AM3, section J, Programming Considerations

$IAMUTI can be invoked using the $l command, $JOBUTIl, or the
Sess i on Manager.

$IAMUTl Commands

The commands available under $IAMUTI are listed below. To dis
play th i s list at your termi nal, enter a quest i on mark in
response to the prompt i ng message COMMAND (1):.

ENTER COMMAND (1): ?

CR - INVOKE $DI·SKUTI
EC - SET/RESET ECHO ~10DE

EN - END THE PROGRAM

SE - SET DEFINE PARAMETERS
DF DEFINE AN INDEXED FILE
DI DISPLAY CURRENT SE PARAMETERS
RE RESET CURRENT VALUES FOR DEFINE

LO - LOAD INDEXED FILE FROM SEQUENTIAL FILE
RO - REORGANIZE INDEXED FILE
UN - UNLOAD INDEXED FILE TO SEQUENTIAL FILE

ENTER COMMAND (?):

After the commands are displayed, you are again prompted with
COMMAND (1):. You respond with the command for of your choice
(for example, EC).

Chapter 4. The Utilities 235

[$IAMUnJ

CR - Create Data set

CR allocates space for your data set in a volume by internally
invoking the $DISKUTl utility. The SE command should have been
used to determine the number of ,-ecords to allocate. When CR is
entered on a terminal, the $DISKUTI utility is loaded. You can
then use the Al command of $DISKUTI to allocate a data set; any
other $DISKUTI function can also be performed. Communication
to the $DISKUTI uti lity continues unti 1 the END command (EN) is
entered, at which time communication to $IAMUTI is restored.
For information on the SDISKUTI utility, refer to "$DISKUTI -
Allocate/Delete; List Di rectory Data" on page 135.

Note: Echo mode is not act i ve dur i ng use of $DISKUTI.

The f 0 1 low i n g e x amp I e s how s a use 0 f t he C R comma n d :

ENTER COMMAND (?): CR
$DISKUTI ACTIVE
USING VOLUME EDX002

COMMAND (?): AL SAMPLEl
HOW MANY RECORDS? 72
DEFAULT TYPE = DATA - OK? Y
SAMPlEl CREATED

ENTER COMMAND (?):

236 SC34-03l3

o

c

o

o

$IAMUTl

DF - Def; ne Indexed Data set

DF command defines an indexed data set using an existing data
set and the information you specify. When OF is entered, you
are prompted for the immediate write back option and the names
of the data set and volume to be formatted. Size calculations
are made and the data set is formatted. The size calculation
information is returned to you at your terminal on completion
of the DF command. Before entering DF, you must use the SE
command to set up parameters that determine the si ze and format
of the indexed data set. The data set must have been allocated
previously (the CR command can be used to allocate it).

DF allows you to select th~ immediate write back option. With
this option, each modification to the indexed data set records
that is the result of your request to update a data record is
written to the data set immediately, thus contributing to the
integrity of the data set. If you enter N to the immediate write
back prompt, modi fications are held in the main storage buffers
for a period of time before being written back to the indexed
data set. In most cases, not us i ng the i mmed i ate wr i te back
option often results in fewer I/O operations and in better per
formance.

The following example shows a use of the DF command:

ENTER COMMAND (?>: OF
DO YOU WANT IMMEDIATE WRITE-BACK? N
ENTER DATASET (NAME,VOlUME): SAMPLE1,EDX002

After entering the above information, the following is dis
played:

Chapter 4. The utilities 237

$IAMUTl

~ TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
i OF INDEX BLOCKS AT LEVEL 1:
i OF INDEX BLOCKS AT LEVEL 2:
i OF INDEX BLOCKS AT LEVEL 3:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:
ENTER COMMAND (?):

238 SC34-0313

3
2
1

32
7
1
o
6
o
7
7
o
9
2
1

72
-1
-1

()

c

o

o

$IAMUTl

DI - Di splay Parameter Values

DI displays the current parameter values entered via the SE
command. The parameter values can be used to format a data set
via the DF command or they can be modified by reusing the SE
command.

The following example shows a use of the DI command.

ENTER COMMAND (?>: DI
CURRENT VALUES FOR SE COMMAND ARE:
BASEREC 100
BLKSIZE 256
RECSIZE 80
KEYSIZE 28
KEYPOS 1
FREEREC 1
FREEBLK 10
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
ENTER COMMAND (?):

Chapter 4. The Utilities 239

$IAMUTl

EC - Control Echo Mode

EC allows YOU to enter or leave echo mod~. When in echo mode,
all $lAMUTl input and output is logged on the $SVSPRTR device.
This allows YQU t9 save information about the data sets you
maintain using $IAMUTI. When in echo mode, all input and out
put is logged unt i 1 either the current ut iii ty sess i on is ended
or echo mode is reset by use of the EC command. Echo mode is off
when $IAMUTI is loaded.

Note: Input and output from $DISKUTI (CR command) is not
logged.

The following examples show the commands to set and reset echo
mode:

ENTER COMMAND (?): EO
00 YOU WANT ECHO MODE? (V/N) Y
ENTER COMMAND (?): EC
DO YOU WANT ECHO MODE? (V/N) N
ENTER COMMAND (?):

240 SC34-0313

(Set echo mode)

(Reset echo mode)

()

~C--'\

\.,-~)

o

o

o

o

LO - Load Indexed Data Set

LO loads an indexed data set from a sequential data set. The
sequential data set must contain unblocked records. They can
span two or more 256-byte records. The records in the sequen
tial data set must be in ascending order by the data that
represents the key field. If a record wi th a dupl i cate or out of
sequence key in found, you are given the option to either omit
the record and cont i nue load i ng, or to end load i ng. The indexed
data set must have been allocated and defined by use of the CR,
SE and DF commands before us i ng the LO command.

The record lengths of the two data sets do not have to be the
same. When the indexed data set is opened, the record length is
displayed on the terminal. At this point, you can specify the
record length of the sequent i al data set if it is different
than that of the indexed data set. If the indexed data set
records are longer than the sequential data set records, the
loaded records are left justi 'fied and fi lIed with binary zeros.
If the indexed data set records are shorter than the sequential
data set records, the following message appears on the termi
nal:

INPUT REC GT OUTPUT REC. TRUNCATION WILL OCCUR.
OK TO PROCEED?

Reply 'V' to proceed (records will be truncated). Reply 'N' to
-terminate the load function. If the end of the input sequential
data set is reached, you can continue loading from another
sequent i al data set. You are asked if there is more data to
load. If you reply yes (V), you are prompted for the data set
and volume name of the new input sequential data set to use. The
load operation continues, putting the first record of the new
input sequential data set in the next available record slot of
the indexed data set.

Note: The record lengths of subsequent input data sets are
assumed to be the same as the in it i a I input data set.

If the end of input data set is reached and you choose not to
name another input data set, the load operat ion is comp lete.

The following example shows use of the LO command:

Chapter 4. The Utilities 241

$IAMUTl

ENTER COMMAND (1): LO
LOAD ACTIVE
ENTER INPUT DATASET (NAME,VOLUME): SEQOATA,EOX002
ENTER OUTPUT DATASET (NAME,VOLUME): SAMPLE1,EDX002
INPUT RECORD ASSUMED TO BE 80 BYTES. OK?: Y
LOAD IN PROCESS
END OF INPUT D/S
ANY MORE DATA TO BE LOADED?: N

100 RECORDS LOADED
LOAD SUCCESSFUL
ENTER COMMAND (?):

RO - Reorgan; ze Indexed Data set

RO unloads an indexed data set filled by insert activity into
an empty indexed data set and reorganizes the records to allow
additional inserts. The empty indexed data set must have been
allocated and defin~d by use of the SE, CR, and DF commands
be fore us i ng the RO command.

The record lengths of the two data sets need not be the same.
Unloaded re60rds are truncated or filled with binary zeros if
record lengths differ (see LO command). The key fields and key
positions of the two data sets must be the same; however, the
other data set specifications (SE parameters) may differ.

The following example shows use of the RO command:

ENTER COMMAND (?): RO
REORG ACTIVE
ENTER INPUT DATASET (NAME,VOLUME): SAMPLE,EDX002
ENTER OUTPUT DATASET (NAME,VOLUME): SAMPlEl,EDX002
REORG IN PROCESS
END OF INPUT D/S

100 RECORDS LOADED
REORG SUCCESSFUL
ENTER COMMAND (?):

242 SC34-0313

o

c

o

$IAMUTI

RE - Reset Parameters

RE resets the parameters set up by the SE command to their
default values.

The following example shows a use of the RE command:

ENTER COMMAND (?): RE
ENTER COMMAND (?):

Chapter 4. The Utilities 243

I $IAMUTl I
SE - Set Parameters

SE prompts you for parameters that determine the structure and
size of the indexed data set. The parameter values entered are
saved by SIAMUTI. This allows you to reuse the SE command to
change one or more parameters without having to reenter all of
them. The current values can be displayed by the DI command.

Note: The values are retained only as long as SIAMUTI remains
loaded.

Size calculations are performed using the parameter values you
have specified. The results are returned to you at your termi
nal. The SE command Celn be followed by the CR command to create
a data set of the size specified on the SE command. After the
data set has been allocated, or if a data set of the correct
size already ex i sts, the DF command can be used to format it.

The following list shows the default values for parameter$ on
the SE command (all values are decimal):

BASEREC 0
BLKSIZE 0
RECSIZE 0
KEVSIZE 0
KEVPOS 1
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL

If the default value is acceptable, enter a null line for the
parameter when prompted for it. If you wish to change the value
for any parameter, enter the new value in response to the
prompting message. The new value becomes the new default value
for the current SIAMUTI session. The only parameters for which
a null can be specified are RSVBlK, FPOOL, DELTHR, and RSVIX.
To specify a null parameter after the original default has been
modified, enter an ampersand (&) in response to the prompting
message. For an explanation of the SE command parameters, refer
to "Determi n i ng Data Set Size and Format" on page 247.

The following example shows a use of the SE command in estab
lishing the size and structure of an indexed data set.

244 SC34-0313

o

(~-~)

o

o

o

ENTER COMMAND C?): SE
ENTER BASEREC 100
ENTER BLKSIZE ,256
ENTER RECSIZE 80
ENTER KEVSIZE 28
ENTER KEVPOS 1
ENTER FREEREC 1
ENTER FREEBLK 10
ENTER RSVBLK
ENTER RSVIX
ENTER FPOOL
ENTER DELTHR

$IAMUTI

After the above information has been entered, the following is
displayed showing the size and structure of the defined indexed
data set.

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
i OF INDEX BLOCKS AT LEVEL 1:
i OF INDEX BLOCKS AT LEVEL 2:
i OF INDEX BLOCKS AT LEVEL 3:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:
ENTER COMMAND (?):

3
2

50
32

7
1
o
6
o
7
7
o
9
2
1

72
-1
-1

Chapter 4. The Utilities 245

I $IAMUn 1

UN - Unload Indexed Data Set

UN unloads an indexed data s.et to a sequential data set. The
record lengths of the tLoJO data sets need not be the same.
Unloaded records are truncated or padded with zeros if the
records lengths of the two data sets differ. Refer to the LO
command.

Records are placed in the sequential data set in ascending key
sequence as indicated by the indexed data set. Unloaded records
are not blocked. They can span two or more 256 byte records. If
the indexed data set contains more records than are allocated
in the sequent i al data set, you are given the opt j on to cont i n
ue unloading to another sequential data set. If you choose to
continue unloading, you are prompted for the name of the data
set and volume to use to continue the unload operation. The
unload operation continues, putting the records read from the
indexed data set into the new sequent i al data set.

NO!.!t: The record length of subsequent output sequent i al data
sets is assumed to be the same as the initial output sequential
data set.

If the end of the output data set is reached and you choose not
to continue, the unload operation ends.

Ciluti on: Do not spec i fy the same data set 'for input and output.

The following is an example of the commands and responses of an
UN command:

ENTER COMMAND (1): UN
UNLOAD ACTIVE
ENTER INPUT DATASET (NAME,VOLUME): SAMPLE1,EDX002
ENTER OUTPUT DATASET (NAME,VOLUME): SAMPLE2,EDX002
OUTPUT RECORD ASSUMED TO BE 80 BYTES. OK?: N
ENTER RECORD SIZE: 256
UNLOAD IN PROCESS
END OF INPUT D/S

100 RECORDS UNLOADED
UNLOAD SUCCESSFUL
ENTER COMMAND (1):

246 SC34-0313

()

o

o

o

$IAMUT~

Bu;lding an Indexed Data Set

The SE and DF commands allow you to spec i fy the size and format
of your indexed data set and to do the actual data set format
ting. Use the SE command to enter those values that determine
the size of the indexed data set. Use the DF command to actually
format the data set using the values previously specified on
the SE command.

If the data set is too small to support the specified format,
the amount of space required is returned to you. Knowing the
available space and using the SE command, you can vary the SE
parameters to des i gn a data set of proper size.

Determin;ng Data Set Size and Format

The data set design is determined by these SE command parame
ters:

BASEREC

BLKSIZE

RECSIZE

KEYSIZE

KEYPOS

FREEREC

FREEBLK

The est i mated number of records to be loaded into the
data set in ascend i ng key sequence. These records
can be loaded by $IAMUTI or by a PUT request after
either a LOAD or PROCESS request.

BASEREC should never be zero.

The length, in bytes, of blocks in the data set. It
must be a multiple of 256.

The length, in bytes, of records in the data set.
Record length must not exceed block length minus 16.

The length (1 to 254 bytes) of the key to be used for
this data set.

The position, in bytes, of the key within the record.
The first byte of the record is pos it i on 1.

The nllmber of free records to be reserved in each
block. It should be less than the number of records
per block (block size minus 16, divided by record
size). It can be zero.

The percentage (0-99) of each cluster to reserve for
free blocks. The percentage calculation result is
rounded up so that at least one free block results.
The calculation is adjusted to ensure that there is
at least one allocated block in the cluster; that is,

Chapter 4. The utilities 247

[$IAMUTl

RSVBLK

RSVIX

FPOOL

there cannot be 100% free blocks.

The percentage of the entries in each lowest level
index block to reserve for cluster expansion. The~e
reserved entries are used to point to neLoJ data blocks
as they are taken from the free pool to expand the
cluster. The result of the calculation is rounded UP
so tha t any non-'zero spec i f i cat i on i nd i cates at
least one reserved index entry. The calculation is
adjusted to ensure that there is at least one allo
cated block in the cluster. Enter a null character
(*) for this prompt if you do not want initial
reserved blocks and do not want the indexed access
method to create reserved blocks as records are
deleted and blocks become empty. Specify a value of
zero for this prompt if you do not ,~ant initial
reserved blocks but you do want the indexed access
method to create reserved blocks as records are
deleted and blocks become empty (See the DEL THR
prompt). Note that the sum of the FREEBLK and RSVBLK
prompts should be less than 100.

The percentage (0-99) of the entries in each second
level index block to reserve for use in case of clus
ter splits. A cluster split is required when a clus
ter expands to its maximum potential size (as
defined by the RSVBLK prompt) and another data set is
inserted into the cluster. Each cluster split uses
one reserved entry of the second level index block.
The result of this calculation is rounded liP so that
any non-zero spec if i cat i on i nd i cates at least one
reserved index entry. The calculation is adjusted so
that there is at least one unreserved entry in each
second level index block. This value defaults to
zero.

The percentage (0-100) of the maximum possible free
pool to allocate. The RSVBLK and RSVIX prompts
result in a data set structur'e capable of dra"'Jing on
the free pool for expansion. If insertion activity
j s evenly d j str i buted throughout the data set, every
reserve entry of every index block can be used. The
number of blocks drawn from the free pool to support
this highly unlikely condition is the maximum free
pool size needed for the data set. In more realistic
cases, insertion activity is not evenly distributed
throughout the data set, so fewer free blocks are
needed. The percentage speci fied here represents the
evenness of the d i str i but i on of inserted records.
Speci fy a large number (90, for example) if you
expect insertions to be evenly distributed. Specify
a small number (20, for example) if insertions are

248 SC34-0313

o

o

o

o

DELTtfR

$IAMUTl

anticiPClted to be concentrated 1n specific key
ranges. If null 15 specified for this prompt, a free
pool is not created for th is indexed data set. If
zero is spec if i ed, an empty free pool is created.
Blocks can then be added to the free pool as records
are deleted and blocks become empty (see the DELTHR
prompt explanation). If you do not speci fy a null for
this prompt, the RSVBLK must not be null and/or the
RSVIX must be non-zero or an error is returned.
Conversely, if the RSVBLK and/or RSVIX is non-zero,
FPOOL must not be null or an error is returned.

The percentage (0-99) of blocks to retain in the
cluster as records are deleted and blocks made
available. This is knoJ..>1n as the delete threshold.
When a b lock becomes empty, it is first determ i ned if
the block should be gi ven liP to the free pool by
checking the response to this prompt. If the block is
not given up to the free pool, it is retained in the
cluster, either as a free block or as an active empty
block. The result of this calculation is rounded up
so that any non-zero spec if i cat i on i nd i cates at
least one block. The calculation is adjusted to
ensure that the cluster alllJays conta i ns at least one
block. If specified as null, this value defaults to
the number of allocated blocks in the cluster plus
one half of the value calculated by the FREEBLK
prompt. Specify null unless data set usage indicates
that tuning is required.

The define (DF) command sets the size of the data set. There
fore, the BASEREC, FREEREC, FREEBLK, RSVBLK, RSVIX, and FPOOL
parameters should be large enough to accommodate the maximum
number of records planned for the data set.

To calculate the size of the data set for a given combination of
parameters, lise the SE command.

Chapter 4. The Utilities 249

$IMAGE 1

$IMAGE - DEFINE 4978/4979 FORMATTED SCREEN IMAGE

$IMAGE defines formatted screen images for the 4978/4979 dis
play terminals, or for any terminal whose support includes the
stat i c screen funct ions. The images (formatted screens),
wh i eh are def i ned in terms of protected and non-protected
alphanumeric fields, can be saved in disk or diskette data
sets, to be retrieved later by application programs for dis
play, or by this utility for modification.

You must allocate the data set where the image will be stored
before using $IMAGE. f10st logical screens require a data set of
two records. There are two modes of interaction with the $IMAGE
program: command mode and edit mode. For retrieval informa
t ion, refer to screen formatt i ng in the System Gu ide.

You can find an example using $IMAGE to format a static screen
in the Syst.~m Guide. For an aid in laying out the format of the
screen to be defined, refer to the IBM 3270 Information Display
System layout Sheet, GX27-2951.

$IMAGE Commands

$IMAGE is in command mode when loaded. When $IMAGE is in com
mand mode, you spec i fy the funct i on to be per formed by enter i ng
an alphabetic code followed by a parameter list. You are,
prompted for each item that is not spec if i ed in advance and'
does not have a default value.

The commands available under $IMAGE are listed below. To dis
play this list at your terminal, enter a question mark in
response to the prompt i ng message COMMAND (?):.

250 SC34-0313

o

1' .. . '''''
I \

~)

o

o

o

COMMAND(?): ?

DIMS
HTAB
VTAB
NULL
EDIT
KEYS
SAVE
END

DEFINE IMAGE DIMENSIONS
DEFINE HORIZONTAL TAB SETTINGS
DEFINE VERTICAL TAB SETTINGS
DEFINE NULL REPRESENTATION
ENTER EDIT MODE
LIST PROGRAM FUNCTION KEYS
SAVE IMAGE ON DISK
END PROGRAM

COMMAND(?):

$IMAGE

After the commands are displayed, you are again prompted with
COMMAND (?):. You respond with the command of your cho i ce (for
example, DIMS).

DIMS - Daf; ne Image D; mens; ons

The DIMS command is followed by two values, giving the number
of lines and the line size, for example:

DIMS
DIMS

10 20
24 80

(10 20-character lines)
(full screen image)

EDIT - Enter Ed it Mode

The EDIT command can be fo llowed by a data set name in the form:

dataset,volume

Here the volume, if unspecified, defaults to the IPl volume.
If a data set name is not given, then the program displays the
currently defined image. Some examples are:

Chapter 4. The Utilities 251

f:SIMAGE I

EDIT
EDIT
EDIT

IMAGEl
IMAGEB,EDX002

END - End the Program

END (or EN) ends the utility program. If the screen image has
been mod if i ed since the last SAVE operat i on, then the quest i on:

SAVE FINAL IMAGE?

appears. The image is saved or not, depend i ng on your response
(YES/NO), and the command prompting message is issued again.

HTAB - Oef; ne Hor; zontal Tab Setti ngs

HTAB defines tab settings for the duration of edit mode, for
example:

[HTAB 10 15 20 40 45 SO 73 1

The default .settings are 10,20,30,40,50,60 and 70. If atab
value exceeds the line size or is not in ascending order, then
the cursor moves to the next 1 i ne when that sett i ng is encount
ered. When the horizontal tab key (PFI when in EDIT mode) is
pressed, the cursor moves to the next hor i zontal tab pos it ion.

252 SC34-0313

c

o

o

$IMAG!

KEYS - Li st Program Functi on Keys

KEYS lists on the terminal the meaning of the PF keys while in
the edit mode.

COMMAND(?): KEYS

PFI DEFINE PROTECTED FIELDS
PF2 DEFINE DATA FIELDS
PF3 ENTER COMMAND MODE

COMMAND(?):

PFI and PF2 function as the horizontal and vertical tab keys
(respectively) when you are defining protected or data fields
in EDIT mode.

NULL - Defi ne Null Representat ion

NUll defines a character that is interpreted as the null char
acter during editing of the image. Null characters define the
non-protected pos it ions on the screen i mage to be used for data
entry. Some examples are:

NULL
NULL /
NULL
CHARACTER:

In the last example, no character l·las indicated causing the
prompt message to be issued. If again no character is entered,
then the null character itself is used.

Not e, : 1ft heN U II com man dis not d e fin e d p rio r t 0 a ned i tin g
session, the null character defaults to a period C.). There
fore, all periods defined as protected in subsequently edited
screens assume an unprotected status.

Chapter 4. The Utilities 253

$IMAGE "I

SAVE - Save Image on Di sk

The screen image, as currently defined, is saved in the last
data set edited, or in a new data set if one is specified
following SAVE. The formatting information and text that
def i ne the i mage are stored in the spec if i ed data set ina spe
cial packed format to conserve space. For packed format infor
mation, refer to the System Guide. Some examples are:

SAVE
SAVE
SAVE

IMAGE2
IMAGE2,EDX003

When the image has been saved, the following message appears,
with the number of 256 byte records i nd i cated in parentheses.

I SAVED n(RECORDS)

VTAB - Defi ne Verti cal Tab Setti ngs

VTAB defines vertical tab settings to conveniently edit the
screen image by columns rather than rows. The default vertical
tabs range from 1 to 24 in 1-1 i ne increments. These can be rede
fined as in the following example:

I VTAB 5 10 20 24

When the vertical tab key (PF2 when in edit mode> is pressed,
the cursor moves to the next i nd i cated line at the last
encountered horizontal tab setting. When the last vertical tab
sett i ng is passed, the cursor moves to line 0 at the next hor i
zonta I tab sett i ng.

254 SC34-0313

o

()

o

o

$IMAGE

Ed;t Mode

When you enter edit mode, the current image is displayed within
a rectangular frame whose upper lefthand corner is at line 0,
indent O. The frame and all screen positions outside it are
protected in the display buffer; this limits the cursor to
positions within the frame when the field-advance key is
pressed. If the image dimensions do not allow display of the
entire frame, then its sides are omitted according to the fol
lowing priority: top before bottom, left before right.

Null characters, dimension fields, and tab settings should be
defined before entering edit mode. If you are modifyi~g an
ex i st i ng screen image, the nu 11 character must be rede fined
each time $IMAGE is invoked.

Once the image is displayed, you can invoke the edit phases by
means of the PF keys.

PFl This key causes the protected fields of the image to be
displayed as non-protected, so you can r~def i ne them
directly on the screen. The non-protected (data) fields
of the image are indicated with the null representation
character, and you use that character to redefine those
fields if desired. Once this edit phase has been entered,
PFI acts as the horizontal tab key and PF2 as the verti
cal. When the ENTER key is pressed, the newly defined
image is displayed, with protected fields in their proper
mode.

PF2 This key prepares the $IMAGE program for modification of
the data (non-protected) fields of the image. The cursor
is displayed at position (0,0) of the image, and you can
use the field-advance keys to move to each data field in
turn, or the tab keys (PF land PF2) can be used when appro
priate. When the ENTER key is pressed, the new data val
u e s are saved, but not ye tw r itt e n to disk.

PF3 Th is key is used to return from ed i t mode to command mode.

Note: The ENTER key must have been used for PF3 to
function correctly.

Chapter 4. The Utilities 255

L:IIlITDSK

$INITDSK - INITIALIZE OR VERIFY VOLUME

$INITDSK initializes and/or read verifies a Series/l
access storage device volume for use with the Event
Executive.

direct
Driven

$INITDSK performs the following functions:

• Initialization (I)

I •
I

Initializes a library directory for the Event
Driven Executive

Writes IPL text on a disk or diskette, if desired. The
IPL dev ice address for 4962 disk, 4963 disk, 4964
diskette, and 4966 diskette magaz i ne un its are
hexadecimal 03, 48, 02, and 22, respectively. An ini
tialized diskette can be used to IPL from either a 4964
or 4966 diskette dev i ce.

Writes a volume label on a diskette.

Note: A label is not required on a disk since it is not
a removable device.

Verification (V) verifies the readability of:

A group of records within a disk or diskette volume

A disk or diskette volume

All d j sk vo I urnes at a spec j f i ed address

• Writes (W) only IPL text on a primary volume for which
$EDXNUC has been allocated.

I $INITDSK Commands

The commands avai lable under $INITDSK are listed below. To dis
play this list at your terminal, enter a question mark in
response to the prompt i ng message COMMAND (?):

256 SC34-0313

o

o

o

o

o

COMMAND (?): ?

E - END PROGRAM
I - INITIALIZE DISKCETTE)
V - VERIFY DISKCETTE) AREA
W - WRITE IPL TEXT ONLY

COMMAND (?):

$INITDSK

After the commands are displayed, you are again prompted with
CO~'~1AND (?):. You respond wi th the command of your cho i ce C for
example, I).

Initialization

Directory Creation

A directory can be created on each volume with $INITDSK. The
minimum directory size ;s 2 records. The maximum sizes are 120
records on a 4962, 4963, 4964, or 4966 and 60 records on the
fixed head volume of a 4962 or 4963. The maximum volume size,
including directory, ;s 32,767 records. The directory size
determines the maximum number of programs and data sets that
can be stored. A directory of n records can catalog a maximum
of 8n-2 data sets.

Diskette Initialization

The volume label on a diskette conforms to the standard for an
EBCDIC Basic Exchange format. One EBCDIC Header Label (HDR1)
is written which describes the entire diskette as an allocated
data set. An entire diskette is considered as an Event Driven
Executive volume. A single-sided diskette is initialized to
conta i n up to a 13-record directory and a 949-record data area.
A double-sided diskette is initialized to contain up to a 26
record directory and an 1898 record data area. A diskette must
have been previously initialized to 128 bytes per sector by
us i ng the $DASDI ut iii ty. On a 4966 diskette magaz i ne un it, you

Chapter 4. The Utilities 257

I $INITDSK I
can initialize only on slot number 1.

Disk Initialization

Each disk volume (primary and secondary) must be initialized by
using $INITDSK.

C a..Y.t ; 0 n : I f you i nit i ali z e and ere ate a d ire c tor yon dis k 0 r
diskette, any data previously stored on the disk or diskette
will no longer be access i b 1 e •

258 SC34-0313

o

()

c

o

c

0"
~

Example

Initializing and Writing IPL Text on Diskette

SINITDSK 13P,13.44.14, LP= 5000

COMMAND (?): I

LIBRARY INITIALIZATION

1 = ENTER VOLUME LABEL
2 = ENTER DEVICE ADDRESS

SELECT OPTION: 2

ENTER DEVICE ADDRESS IN HEX: 2

WRITE VOLUME LABEL? Y

$INITDSK

ENTER DESIRED VOLUME LABEL (1-6 CHARACTERS) EDXOOl
ENTER OWNER 10 (1-14) CHARACTERS: DEPT.L78 09/77
LABEL WRITTEN

CREATE A DIRECTORY? Y
HOW MANY RECORDS IN DIRECTORY? (2 - 120): 13

MAXIMUM NO. OF MEMBERS = 102, OK? Y
DO YOU WISH TO RESERVE SPACE FOR A NUCLEUS? Y
ENTER MAXIMUM SIZE IN K-BYTES (16-64): 32
DIRECTORY INITIALIZED
WRITE IPL TEXT? Y
IPL TEXT WRITTEN

COMMAND (?): EN

$INITDSK ENDED AT 13:54:00

Chapter 4. The Utilities 259

Verification

$INITDSK can be used to per"form a readabi lity check of an
entire disk device, or an entire disk or diskette volume, or
any portion thereof, to determine if any defective records
exist for which alternates should be assigned. Only record
read operations are performed. Therefore, a verify operation
can be performed with no risk of destroying existing data.

Exam·ples

VerifYing ~ortion df'a Volume

CONMAND(?): V
DISK OR DISKETTE VERIFICATION

1 = ENTER VOLUME LABEL
2 = ENTER DEVICE ADDRESS
SELECT OPTION: 1

ENTER VOLUME LABEL: EDX002

EDX002 AT 0003 IS A PRIMARY DISK
CHECK THE ENTIRE VOLUME? NO
FIRST RECORD = 300
NO. OF RECORDS = 1200
1200 RECORDS CHECKED

cor1MAND (?):

260 5C34-0313

o

c

o

o

Ve r i f Y-l.!HLA 11 Vol u m ~ son a Dis k

COMMAND(?): V
DISK OR DISKETTE VERIFICATION

1 = ENTER VOLUME LABEL
2 = ENTER DEVICE ADDRESS
SELECT OPTION: 2

ENTER DEVICE ADDRESS IN HEX: 3

CHECK THE ENTIRE VOLUME? Y
ASSIGNED ALTERNATE SECTOR AT RECORD 121
ASSIGNED ALTERNATE SECTOR AT RECORD 122
ASSIGNED ALTERNATE SECTOR AT RECORD 151
EDX002 32000 RECORDS CHECKED
EDX003 30000 RECORDS CHECKED
EDX004 12000 RECORDS CHECKED

COMMAND (?):

VerifYing Diskette Volume (No Errors Found)

COMMAND (?): V
DISK OR DISKETTE VERIFICATION

1 = ENTER VOLUME LABEL
~ = ENTER DEVICE ADDRESS
SELECT OPTION: 2

ENTER DEVICE ADDRESS IN HEX: 2

CHECK THE ENTIRE VOLUME? YES
962 RECORDS CHECKED

COMMAND (?):

$INITDSK -I

Chapter 4. The Utilities 261

Write IPL Text Where $EDXNUC Has Been Preallocated

COMMAND (?): W

WRITE IPL TEXT
l=ENTER VOLUME LABEL
2=ENTER DEVICE ADDRESS

SELECT OPTION: 1

ENTER VOLUME LABEL: EDX002

EDX002 AT 0002 IS A PRIMARY DISKETTE

WRITE IPL TEXT? Y
IPL TEXT WRITTEN

COMMAND (?):

Write IPL Text on a Volume That Does Not Contain $EDXNUC

CO~1MAND (?): W

WRITE IPL TEXT
l=ENTER VOLUME LABEL
2=ENTER DEVICE ADDRESS

SELECT OPTION: 1

ENTER VOLUME LABEL: EDX002

EDX002 AT 0002 IS A PRIMARY DISKETTE

IPL WRITE ABORTED. NO NUCLEUS FOUND

COMMAND (?):

262 SC34-0313

()

o

o

0 ",
"

$IOTEST

$IOTEST - TEST SENSOR I/Oj LIST CONFIGURATION

$IOTEST determines the complete I/O configuration of a
Series/l and tests the operation of sensor based I/O features.
$IOTEST performs the following functions:

• Reads and wr i tes dig ita I (group or subgroup)

• Writes digital with selected time intervals

• External sync DI and DO

• Processes interrupts (normal, special bit and group)

• Reads and wr i tes analog

• Lists the hardware configuration of the Series/l

• Lists the dev ices supported by the system

• lists volume information

Invok;ng $IOTEST

$IOTEST can be invoked by the session manager using the Diag
nosti c Ut iii ties opt i on menu or by the $L command.

Chapter 4. The Utilities 263

$IOTEST

$IOTEST Commands

The commands available under GIOTEST are listed below. To dis
play this list a"t: your terminal, enter a question mark in
response to the prompt i ng message COMMAND (?):.

GIOTEST 24P,13:26:42 LP=5000

ATTNLIST (ALTER) TO STOP LOOPING FUNCTIONS

COMMAND (?): ?

EN = END PROGRAM
DO = DIGITAL OUTPUT
PD = UP AND DOWN DO WITH TIME
XO = EXTERNAL SYNC DO
01 = DIGITAL INPUT
XI = EXTERNAL SYNC 01
PI = PROCESS INTERRUPT
SG = SPECIAL PROCESS INTERRUPT GROUP
S8 = SPECIAL PROCESS INTERRUPT BIT
AI = ANALOG INPUT
AO = ANALOG OUTPUT
LD = LIST ALL HARDWARE DEVICES
LS = LIST SUPERVISOR CONFIGURATION
VI = DISPLAY VOlU~lE INFORt'1ATION
WS = PUT PG~1 IN WAIT STATE

COMMAND (?): EN

$IOTEST ENDED AT 13:27:29

After the commands are displayed, you are again prompted with
COMMAND (?):. You respond wi th the command of your cho ice (for
example, DO).

AI and DI issue a read every 10 mi 11 i seconds and only pr i nts the
value if it is different from the last reading. PI issues a wait
and prints on each occurrence. External sync 01 and DO perform
their functions and do not return to command status until the
number of words i nd i cated are read or wr i tten • ALTER is used to
terminate repetitive functions and to reactivate the program
if it was put in the wait state.

264 SC34-0313

o

(!:'---.\
\\.....I

c

o

o

Examples

DO - Wr i te X' A5A5' to DO Address 52

COMMAND (?) : DO
ENTER DEVICE ADDRESS ,(HEX 1-FF) 52
ENTER START BIT (0-15) : 0
ENTER # OF BITS : 16
EN T E R D A T A (H EX) : ASA5
COMMA·ND (1):

$IOTEST

PO - Pulse DO Address 53 Bit 8 on for 10 Milliseconds, Off for
50 Milliseconds 100 times

COMMAND (1): PD
ENTER DEVICE ADDRESS ,(HEX I-FF) 53
ENTER START BIT (0-15) B
ENTER i OF BITS : 1
ENTER DATAl (O-FFFF) : 1
ENTER TIME! IN MS : 10
ENTER DATA2 (O-FFFF) : 0
ENTER TIME2 IN MS : 50
ENTER NUMBER OF TIMES TO LOOP 100
COMHAND (1):

Note: I f number 0 f times to loop is set less than or equa I to
zero, the loop i I1g cont i !lues unt i 1 the next AL TER command.

Chapter 4. The Utilities 265

SlOT EST

XO - Write Digital Output using External Sync

COMMAND (1): XO
ENTER DEVICE ADDRESS ,(HEX I-FF) S3
ENTER WORD COUNT 1-256 : 100
COMMAND (1):

No·te: Data is wr i tten from a buffer with in th i s program that is
used for external sync 01 an DO. Therefore, data can be input
via DI and written via DO.

DI - Read Digital Input

COMMAND (1): DI
ENTER DEVICE ADDRESS ,(HEX I-FF)
ENTER START BIT (0-15) : 0
ENTER i OF BITS : 16
VALUE = A5A5
VALUE = COFE
> ALTER
COMNAND (1):

50

XI - Read Digital Input using External Sync

COMMAND (1): XI
ENTER DEVICE ADDRESS ,(HEX I-FF) 51
ENTER WORD COUNT : 100
COM~1AND (?):

266 SC34-0313

o

c

o

~~
\

, ("'"""

/

0 :·
I ",'I

$lOTEST

PI - Test Process Interrupt for the Occurrence of this Event

COMMAND (?): PI
ENTER DEVICE ADDRESS ,(HEX I-FF) 50
ENTER BIT (0-15) : 3
PI OCCURRED
PI OCCURRED
PI OCCURRED
> ALTER
COMMAND (?):

SG/SB - Special Process Interrupt Grqup/Bit

Commands SG and SB functionally operate differently within the
supervisor but they print basically the same information as
normal PI with this uti lity program.

An easy way to test the system is to use the Customer Eng i neer' s
wrap back connectors. The wrap cable for the 1010 unit con
nect~ the first DI address on the card to the first DO address
and the same for the second 01 and DO. These connect ions
include the external sync functions also. Therefore, two
copies of $IOTEST can be executed simultaneously. There are
simi lar connectors avai lab Ie for the 4982 Sensor I/O Unit.

Chapter 4. The Utilities 267

I $lOTEST]

AI - Read Analog Input

COMMAND (1): AI
ENTER DEVICE ADDRESS ,(HEX I-FF) : 61
ENTER RANGE: 1=5V, 2=500MV, 3=200MV, 4=100MV,

5=50MV, 6=20t1V, 7=10MV : 7
ZERO CORRECTION 1 N
ENTER MPXR POINT (0-15) : 1
AI VOLTAGE = -629 MV, E-3
AI VOLTAGE = -688 MV, E-3
> ALTER
COMMAND (1):

Analog input has a testing facility to convert diagnostic zero
or voltage. This utility allows these functions if the ADC
add res sis g i v e n ins tea d 0 f t he m u 1 tip 1 e x 0 r address.

COMMAND (1): AI
ENTER DEVICE ADDRESS ,(HEX I-FF) : 60
CONVERT DIAGNOSTIC ZERO 1 y
ENTER RANGE: 1=5V, 2=500MV, 3=200MV, 4=100MV,

5=50MV, 6=20MV, 7=10MV : 1
AI VOLTAGE = 0 MV, E-O
> ALTER

COMMAND (1): AI
ENTER" DEVICE ADDRESS, (HEX I-FF) 60
CONVERT DIAGNOSTIC ZERO 1 N

CONVERTING DIAGNOSTIC VOLTAGE, SHOULD BE 4.5 +- 0.5
AI VOLTAGE = 4604 MV, E-O
AI VOLTAGE = 4602 MV, E-O
> ALTER
COMMAND (1):

268 SC34-0313

()

C~ .. \. .)

o

0',
.,I'~

$IOTEST

COMMAND (?>: AI
ENTER DEVICE ADDRESS ,(HEX I-FF) 60
CONVERT DIAGNOSTIC ZERO 1 N

CONVERTING DIAGNOSTIC VOLTAGE, SHOULD BE 4.5 +- 0.5
AI VOLTAGE =' 4604 MV, E-O
AI VOLTAGE = 4602 MV, E-O
> ALTER
COMMAND (1):

LD - List Devices

LD reads the actual hardware addresses, their IDs, and displays
a list of the descriptions. If a device exists but is not pow
ered on, the description for that device is displayed.

COMMAND (?): LD

ACTUAL SERIES/l HARDWARE CONFIGURATION

00 = TELETYPEWRITER ADAPTER
01 = 4974 PRINTER
02 = 4964 DISKETTE UNIT
04 = 4979 DISPLAY STATION
09 = SINGLE lINE BSC
40 = TIMER FEATURE
41 = TIMER FEATURE
50 = 1010 DI/PI NON-ISOLATED
51 = 1010 DI/PI NON-ISOLATED
52 = 1010 DO WITH EXTeRNAL SYNC
53 = 1010 DO WITH EXTERNAL SYNC

COMMAND (?>:

Chapter 4. The Utilities 269

$IOTEST

LS - List Supervisor Configuration

LS provides a display similar to LD except that it lists the
devices your supervisor is generated to support (whether or not
they are j n the hardware of the system current ly be i ng used).

VI - Display Volume Information

VI d i sp lays in format j on about vo I umes as fo llows:

COMMAND (?) : VI

VOLSER TYPE IODA STATUS VOLORG VOLSIZE LIBORG

NRQ021 PRI. 0002 ONLINE 0 75 27
NRP001 PRI. 0022 1 ONLINE 0 75 27
SMVOL SEC. 0022 2 OFFLINE 0 75 27
NRP002 SEC. 0022 3 ONLINE 13 74 14
NRP003 SEC. 0022 1A ONLINE 13 75 27
NEWPRG SEC. 0022 3A ONLINE 0 74 14
FORT SEC. 0022 4A ONLINE 13 75 27
DEV SEC. 0022 lOA ONLINE 0 74 14
EDX002 PRI. 0003 ONLINE (IPL) 0 130 241
ASMLIB SEC. 0003 130 16 1
SUPLIB SEC. 0003 1 l.6 16 1
EDX003 SEC. 0003 162 141 1
EDX005 PRI. 0048 ONLINE 0 50 705
EDX006 SEC. 0048 51 50 1
EDX007 SEC. 0048 150 50 1
EDX008 SEC. 0048 200 50 1

270 SC34-0313

()

o

()

o

$JOBUTIL

$JOBUTIL - JOB STREAM PROCESSOR

$JOBUTIL is a batch job processing capability that can be
invoked simultaneously with the execution of other programs.
This allows you to sequentially execute a series of programs
without intervention. You include the names of the programs,
and other information in a collection of $JOBUTIL commands cre
ated via $EDIT1N or $FSEDIT.

A procedure can invoke another procedure, however, the called
procedure cannot invoke another. A typical use of $JOBUTIL
would be to execute a procedure that causes the assembly, link
editing, and formatting of your program. Refer to "Batch Job
Example" on page 290.

$JOBUTIL is the main program that calls two overlay programs:
$JP1 which opens required data sets and $JP2 which processes
all commands.

Programs tha't are capable of receiving parameter,s in the format
used by $JOBUTI L are:

$COBOL
$EDXASM
$FORT
$LINK

Setup Procedure

$PL/I
$PREFIND
$SlASM
$UPDATE

The steps requ i red to set UP and start a procedure are:

1. Using $DISKUT1, allocate a data set on either di,sk or
diskette which is to contain the procedure. The size of
the data set depends on the number of commands. Allocate
one record for each two commands.

2. Us i ng $EDITIN or $FSEDIT, enter the $JOBUTI L commands nec
essary for yo ur procedure into an ed i tor L~ork data set, and
, S A V E' the In i nth e d a t a s.e t a 110 cat e din S t e p 1.

3. To run your job, load $JOBUTIL and speci fy the name of your
procedure data set. Loading can be done by use of the ses-
5 i on manager or the $L command.

Chapter 4. The Utilities 271

$JOBUTIL

$JOBUTIL Commands

The $JOBUTIL commands are listed below. Commands must be
entered in the fo llow i ng format:

Command - Position 1 to 8

Operands - Position 10 to 17

Comment - Position 18 to 71

For internal comments - '*' in position 1

Note: All commands without operands can have comments starting
in position 10.

Command

AL
DE
DS
EOJ
EOP
EXEC
JOB
JUMP
LABEL
lOG
NOMSG
PARM
PAUSE
PROC
PROGRAM
REMARK

*

Function

Allocate data set
Delete data set
Identify data set
Identify end of job
Identify end of nested procedure
load and execute program
Identify job
Jump to label
End jump
log Job stream Processor Commands
Suppress load messages
Identify program parameter
Await manual intervention
Identify nested procedure
Identify program
Remark to operator
Internal comment

272 SC34-0313

o

o

o

()

o

$JOBUTIL

AL - Allocate Data Set

AL j dent j f j es a data set to be allocated. It returns a $DISKUT3
return code that can be used by the JUMP command.

Syntax

AL name,volume size type

Required: name,volume
size
type

Default: None

name Defines the data set to be allocated

volume

size

type

Example

AL

Defines the volume on which the data set is to be
allocated

Defines the size ;n blocks of the data set

Defines the type of data set as follows:

D indicates data (default)

P i nd i cates program

U indicates undefined

TEMPDS,EDX003 25 0

Chapter 4. The Utilities 273

$JOBUTIL

DE - Delete Data Set

DE i dent if i es a data set to be de leted.

Syntax

DE

Required:
Default:

Operands

name

volume

Example

DE

name, volume

name, volume
None

Description

Def i nes the data set to be deleted

Defines the volume from which the data set is to be
deleted

TEMPDS,EDX003

274 SC34-0313

o

c

o

()

o

[$JOBUTIl

DS - Ident; fy Data Set

DS i dent if i es a data set to be opened and accessed by a program.
D S co," man d 5 are a II owed on I y between PROGRAM and EXEC commands.
Up to nine (9) DS commands can be spec if i ed for a program.

Syntax

DS name,volume

Requ ired: name
Default: volume is IPL volume

Operands

name

volume

Example

DS

Description

Defines the data set to be accessed by a program

Def i nes the vo I ume that conta i ns the data set to be
accessed by a program

WORKl,EDXOOl

Chapter 4. The Utilities 275

I $JOBUTIL ·1

EOJ - End o'F Job

EOJ indicates the end of the primary procedure and must be the
la,st command in the procedure data set. data set.

S)!ntax

No operands are requ ired.

EOP - End of Procedure

EOP i nd i cates the end of a nested procedure and must be the last
command in the called procedure data set.

EOP

No operands are requ ired.

276 SC34-0313

o

r"c,\

\""c~

o

o

()

o

$JOBUTIL

EXEC - Execute Program

EXEC loads and executes the program i dent if i ed in the preced i ng
PROGRAM command. EXEC must have been p.roceeded by a PROGRAM
command.

SYntaK

EXEC
Required:
Default:

Operands

STORAGE

STORAGE=size
None
STORAGE=O

Description

Spec i f i es the amount 0 f dynam i c storage to be all 0-

cated to the program to be executed. This value
overrides the value specified when the program was
comp i led. STORAGE=O (the de fau It) i nd i cates that
the dynamic storage specified (if any) during com
pilat i on should be allocated.

Chapter 4. The Utilities 277

I $JOBUTIL I
JOB - Ident; fy Job

JOB, an optional command, identifies the procedure or a col
lection of commands within a procedure data set. When a JOB
command is read by $JOBUTI L, a message is pr i nted on the termi
nal with the Job name, time started and date (if timer support
is included).

~ntax

JOB job-name

Required: job-name

Operands Description

job-name Names the current group of commands as a job

Example

JOB TEST1

278 SC34-0313

()

(' ')
\"-- '

' \ O~"

o

o

o

$JOBUTIL

JUMP - Jump to Label

JUMP bypasses $JOBUTI L commands by test i n9 the camp let i on code
of the previously executed program. The test compares the pro
gram comp let i on code to 'cc'. The commands between the JUMP and
the LABEL command with the same label name are ignored if the
condition tested for is 'true'. An unconditional JUMP to a
LABEL is also permitted. Jumps are forward only and are limited
to the range of the current procedure, for example, a jump can
not occur from one procedure to a label in another procedure. A
JUMP with no label name jumps to the next unlabeled LABEL com
mand or to an EOJ or an EOP, whichever occurs first. If an EOJ
or an EOP is encountered while searching for a LABEL command,
the search for the LABEL command terminates and the EOJ or EOP
is executed.

Note: The JUMP and LABEL commands are not permitted in the
PAUSE mode.

Syntax

JUMP label-name,op,cc

Required: None

Operands Description

label-name The name associated with a LABEL comman.d.

op

cc

Examples

JUMP
JUMP
JUMP

LT, GT, EQ, GE, LE, or NE.

Program comp let i on code.

lBLl,EQ,20
LBL2

Chapter 4. The Utilities 279

[$JOBUTIL I
LABEL - Identi fy Conti nuati on Poi nt

Job processing continues at the LABEL command after a related
JUMP command is encountered. The LABE L command is not va lid in
the PAUSE mode.

LABEL label-name

Requ ired: None

Operands Descri~tion

label-name Defines the command where processing can continue.

Examples

LABEL
LABEL

LBLI

280 SC34-0313

o

o

c)

o

$JOBUTIL

LOG - Log Control

LOG indicates whether the $JOBUTIL commands are to be printed
as they are read and which terminal device is to print them.
LOG commands can be placed anywhere in the procedure data set.
If a terminal device is not specified, the commands are logged
on the terminal from which the Job Processor was invoked.

LOG

Required:
Default:

Operands

ON

OFF

Operand

None
ON

Description

Ind i cates that $JOBUTI L commands are to be pr i nted

Ind i cates that $JOBUTI L commands are not to be
printed

terminal-name

Examples

LOG
LOG
LOG
LOG

Identifies the terminal device which is to print
the job processor commands. If omitted indicates
that the job processor commands ~re to be logged on
the terminal from which the job processor was
called.

ON
OFF
$SYSPRTR

Chapter 4. The Utilities 281

I $JOBUTIL I
NOMSG - No Message Logg; ng

NOMSG sets LOGMSG=NO for the program identified in the preced
ing PROGRAM command. See the LOAD instruction in the Language
R e of ere n c e for the de fi nit ion 0 fLO G M S G. NO f1 S Gis i n val i d i f not
preceded by a PROGRAM command.

The NOMSG command must be between the PROGRAM and EXEC com
mands.

Syntax

I NOMSG

Required: None

No operands are requ ired.

Example

PROGRAM
HOMSG

CALCDEMO

282 SC34-0313

o

0"1

"

eli I,

$JOBUTIL

PARM - Pass Parameter

PARM identifies the parameters to be passed to the program in
the preceding PROGRAM command. PARM must be between the PRO
GRAM and EXEC commands. Maximum length of the operand on the
PARM command is 62 bytes. The parameters spec if i ed on the PARM
command are passed to the specified program as an EBCDIC char
acter string. In the specified program they can be referenced
as beginning at the label $PARMI and are packed two characters
per LtJord. The length of the str i ng is determi ned by the
'PARM=n' operand of the PROGRAM statement in the specified pro
gram. For example, 'PARM=31' would cause the maximum 62 char
acters from positions 10-71 of the PARM command to be
transferred to the specified program starting at the label
$PARM1.

S}!ntax

PARM parameters

Requ ired: None

Operands Description

parameters Def i nes parameters to be passed to the program

Example

PARM NOLIST,XREF

Chapter 4. The Utilities 283

[$JOBUTIL

PAUSE - Await Manual Intervention

PAUSE allows $JOBUTIl commands to be entered from a terminal
keyboard. JUMP and LABEL commands are not permitted.

When a PAUSE command is read, you are prompted for input. You
communicate with the processor using the attention key and
three PAUSE subcommands.

You can initiate the PAUSE mode by pressing the attention key
and typ i ng PAUSE.

PAUSE subcommands are:

• ABORT To end $JOBUTI L process i ng

• ENTER - To enter $JOBUTIL commands

• GO - To end the PAUSE mode and read the next command in the
procedure data set

Syntax

Requ ired: None

No operands are requ ired.

284 SC34-0313

c

o

C
IJ~~

;'

o

Example

Data Set with PAUSE

JOB
LOG
PROGRAM
EXEC
REMARK
REMARK
PAUSE
EOJ

PAYROll
ON
WAGES

LAST DAV OF MONTH?
RUN MONTH END

In PAUSE Mode (Terminal Outp-ut)

$JOBUTIL

PAUSE - * - ATTN: GO/ENTER/ABORT

PAUSE
>ENTER

ENTER COMMAND
ENTER OPERAND
ENTER COMMAND
ENTER OPERAND

PROGRAM
MONTH END
EXEC

Chapter 4. The Utilities 285

[$JOBUTIL I
PROC - Execute Procedure

PROC allows you to pass control to another procedure data set.
The operand identifies the data set. A PROC command is not
allowed in the called procedure data set. PROC cannot be
placed between a PROGRAM command and EXEC command. The com
pletion code of the last program executed in the sub-procedure
wi 11 be avai lable for testing by the main procedure.

PROC procedure-name, volume

Required: procedure-name
Default: volume is IPl volume

Description

procedure-name

volume

Examples

PROC
PROC

Defines the procedure data set to which control is
to be passed.

Defines the volume contCiining the procedure data
set to wh i ch control is to be passed.

PAYROll,EDX002
PAYROLL

286 SC34-0313

c

o

('1
,I

o

$JOBUTIL

PROGRAM - Ident; fy Program

PROGRAM i dent if i es a program to be executed.

Syntax

PROGRAM program-name, volume

Required: program-name
Default: volume is IPl volume

operands Description

program-name

volume

Examples

PROGRAM
PROGRAM

Def i nes the name of the program member to be
executed

Def i nes the name of the volume conta i n i ng the
program member to be executed

$DEBUG,EDX002
CHECKS

Chapter 4. The Utilities 287

$JOBUTIl

REf1ARK - D; splay Remark

REMARK allows you to output a message to the operator with log
ON or OFF. The operand contains the message. The maximum mes
sage length is 62 bytes.

Syntax

REMARK comment

Required: None

Des c.r:...i..Q t 1 on

comment Defines the comment to be displayed

Example

I REMARK INSERT DISKETTE EDX005

288 SC34-0313

()

o

o

o

$JOBUTIL

* - Comment

An asterisk (*) in position 1 allows internal comments in the
procedure data set. Comments can start in pos i t i on 2. The
1 nternal comment is not pr i nted.

Syntax

* internal comment

Required: None

No operands are requi red.

Example

* THIS PROCEDURE IS A TEST CASE

Chapter 4. The Utilities 289

$JOBUTIL .1

Batch Job Example

The following examples list three procedure data sets. The
last two procedures shown are invoked by the first.

List Data Set BATCH on EDXOO~

JOB
LOG
REMARK
PROGRAM
NOMSG
DS
PARM
EXEC
PROGRAM
EXEC
JUMP
PROGRAM
EXEC
LABEL
PROGRAM
PARM
EXEC
JUMP
PROGRAM
OS
EXEC
LABEL
PROC
PROC
EOJ

BATCH
$SYSPRTR
THIS JOB SHOULD RUN UNINTERRUPTED
JUTESTl,EDX003

LOADl,EDX003
FOF4FIF7

JUTEST2,EDX003

JMPl,EQ,-lO
CALCDEMO,EDX002

JMPI
JUTEST3,EDX003
2

JMP2,LT,5
$EDITIN,EDX002
EDITWORK,EDX002

JMP2
PROCl,EDX003
PROC2,EDX003

290 SC34-0313

o

c

c

o

l j st Data Set PROCI on EDX003

lOG
REMARK
PROGRAM
EXEC
EOP

ON
PROCI
JUTEST2,EDX003

li st Data Set PROC2 on EDX003

RENARK
PROGRAM
DS
PARM
EXEC
EOP

PROC2
JUTESTl,EDX003
lOADl,EDX003
ENDT

[$JOBUTIL

Chapter 4. The utilities 291

[$lOG I
$LOG - LOG I/O ERRORS INTO DATA SET

$lOG records information concerning I/O errors onto a disk or
d j skette data set. The i nformat i on recorded on the log data set
can then be d i sp layed us i ng $DISKUT2.

N01~: You must include the supervisor I/O error logging module
(SYSlOG) in your generated system to have I/O error logg i n9
capability.

Log Data Set

Before I/O errors can be recorded, you must allocate a log data
set to contain the device and system information available at
the time of the I/O error. The log data set should be at least
eight records long and should be named $LOGDS. $LOGDS may
reside in a disk or diskette volume. The log data set contains
one 256-byte log entry per record. The first two records are
used for contra 1 i nformat ion.

If the log data set was previously used and contains valid
entr i es, new entr i es are added after the old ones. If the data
set is not initialized, a new log control record is written,
indicating that no entries are in the log data set. When the
log data set becomes full, the following message is sent to the
terminal:

$LOG - *** INSUFFICIENT BUFFERS FOR LOG RATE ***

"Following this message, subsequent log entries received are
'oJritten over the oldest entries.

Invoking SLOG

To activate error logging, load $lOG into any partition. Use
the session manager diagnostic utilities option menu or the $L
operator command. You are prompted for the name of the log data
set. After $LOG is loaded and error logging is activated, you
can use attention commands provided by $LOG to deactivate,
reactivate or terminate error logging. You can also reinitial
i ze the log data set us i ng one of these attent i on commands. For

292 SC34-0313

10' .. '" ",

o

o

o

c

SLOG

information about I/O error logging, system generation consid
erations, and execution time interfaces, refer to the ~stem
Guide.

Example: The follo,~ing example shows how to activate error log
ging and the attention commands that are avai lable.

> $L SLOG SLOGDS,EDX002
$LOG 21P, LP= 7400

* $ LOG UTI LIT Y *
* * * THE FOLLOWING ATTENTION COMMANDS ARE AVAILABLE: *
* ATTN/$LOGOFF - TEMPORARILY DEACTIVATE LOGGING *
* ATTN/$LOGON - REACTIVATE LOGGING *
* ATTN/$LOGINIT - INITIALIZE LOG DATA SET *
* ATTN/$LOGTERM - TERMINATE LOGGING *
* ATTN/$LOG - REISSUE COMMAND LIST *
* * * WARNING: DO NOT CANCEL($C) THIS PROGRAM. *

LOGGING ACTIVATED

Chapter 4. The Utilities 293

[$MOVEVOI.]

$MOVEVOL - DISK VOLUME DUMP/RESTORE

$~10VEVOL dumps the contents of an Event Dr i ven Execut i ve direct
access volume to diskette when such a volume spans several
diskettes.

$MOVEVOL also restores a volume from diskette to disk. Thus,
$MOVEVOL provides the facility for transferring large amounts
of data from one system to another or for creating backup
copies of an online data base.

Diskette Usage

Diskette Contents

The first of the set of diskettes used for the dump function,
called the control diskette, records control information and
the volume directory. The rest of the diskette,s store the data
portion of the volume being dumped. Control information is
recorded on each data diskette to identify the diskette con
tents and to ensure that it contains data related to the dump
operation described on the control diskette.

Diskette Format

All diskettes must be 'formatted using $DASDI to contain
128-byte sectors. Either single-sided or double-sided
diskettes can be used; however, all diskettes in a set must be
the same type. Each diskette must contain a volume label in the
standard format. The volume label must be a six-character field
in which the last two characters are used for sequencing; for
example, SAVEOO, SAVEOl, ••• , SAVEnn, where nn is the last
diskette used. All diskettes used must have the same four
character prefix.

294 SC34-0313

o

c

o

$MOVEVOl

4966 Diskette Usage Considerations

If you are using the 4966 diskette magazine unit for your
dump/restore operation, you can use diskette magazines or an
individual diskette slot. If you use an individual diskette
slot, then all of the subsequent diskettes mounted must be
placed in the same slot. If you use diskette magazines, you
must have all of your diskettes in the correct sequence with no
empty slots in the magazine. The first volume with the suffix
00 must be in slot number 1 of the first magazine. You can use
either or both of the diskette magaz i nes, A and B.

Data Set Specification

If $MOVEVOL is invoked with the $L command, you are prompted to
enter the names of the data sets and volumes to be used.

Figure 21 shows the parameter menu displayed when $MOVEVOL is
invoked using the session manager. Enter the requested infor
mat i on and press ENTER.

$SMM0308: SESSION MANAGER $MOVEVOL PARAMETER INPUT MENU
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

DISK ($$EDXLIB,VOLUME) ==>

DISKETTE (NAME, VOLUME) ==>

Figure 21. $MOVEVOl parameter input menu

Chapter 4. The utilities 295

[:SMOVEVOL I
Dump Procedure

The following steps are required to dump the contents of a
direct access volume onto diskette.

1. Set up a control diskette.

a. Use $INITDSK to:

1) Initialize the
label that is
SAVEOO).

control
suffixed

diskette
with 00

with
(for

2) Create a di rectory of at least 2 records.

a volume
example,

3) If the diskette is to be used to IPl another sys
tem, reserve space for a nucleus of the appropri
ate s j ze and I-Jr i te the IPl text.

b. Use $DISKUTI to:

1) Determine the directory size, in records, of the
volume to be dumped.

2) Change volume to the control diskette (for exam
ple, SAVEOO) and allocate a control data set with
the same name as the name of the volume to be
dumped. The member size of the control data set
must be one record larger than the size of the vol
ume be i ng dumped.

c. Use $COPYUT 1 to:

1) Copy other data sets onto the control data set. For
example, you may required $EDXNUC, the transient
loader, or a copy of $MOVEVOl.

Note: The first record in the control data set
contains control information and up to 50 charac
ters of text descr i bing the data be i ng dumped. The
remaining space stores a copy of the directory of
the vo I ume be i ng dumped.

2. Set up a ser i es of data diskettes. For each data diskette:

a. Use $INITDSK to:

1) Create a volume label. The volume label of each
diskette must have the same four-character prefix
as the control diskette and a two-character suffi x
indicating the sequence number, for example,

296 SC3 l .-0313

o

o

o

o

I SMOVEVOL

SAVEO 1, SAVE02, .••.•• , SAVEnn.

2) Create an owner 10 fie ld.

3) Allocate a two-record directory.

b. Use $01SKUTl to:

1) Allocate a one-record data set named $CONTROL.

2) Allocate a second data set with the name of the
volume to be dumped (for example, EOX002). The
second data set must use the remaining available
space on the diskette (946 records for a single
sided diskette and 1921 records for a double-sided
diskette.

3. Mount the control diskette, vary it online and load
$MOVEVOL for execution.

You must spec i fy two data sets at load time:

DISK The volume on disk to be
$$EDXLIB,volser.

DISKETTE The control data set on
dsname,volser.

dumped.

diskette.

Specify

Specify

$MOVEVOL asks if you wi sh to dump from disk to diskette.

$MOVEVOL then determines the number of additional
diskettes required to dump the referenced volume (DISK),
informs you of this requirement, and asks whether the
procedure should be continued. A negati ve response termi
nates the operat ion. I f the response is pos i t i ve, the con
tro 1 i nformat i on and disk directory are recorded on the
control diskette and you are asked to mount a new diskette
for transfer of the data portion of the volume being
dumped.

4. Each time a diskette is filled, $MOVEVOL requests another
diskette. Mount as many data diskettes as requested.

Chapter 4. The Util~ties 297

$MOVEVOL 1

Example

Dump Operation Using a 4966 Diskette Ma..,9.P.zine Unit

> $L $MOVEVOL
DISK(NAME,VOLUME): $$EDXLIB,EDX002
DISKETTECNAME,VOLUME): $EDX002,SAVEOO

$MOVEVOL 20P,10:07:52, LP=5200

DUMP LIBRARY FROM VOLUME EDX002 TO DISKETTE? Y

PROCESSING DISKETTE VOLUME SAVEOO
ENTER LIBRARY IDENTIFICATION (1-50 CHAR.):
DUMP OF EDX002 - DATE IS 09/14/77

11 MORE DISKETTES ARE REQUIRED, CONTINUE? Y

PROCESSING DISKETTE VOLUME SAVE01
PROCESSING DISKETTE VOLUME SAVE02
PROCESSING DISKETTE VOLUME SAVE03
PROCESSING DISKETTE VOLUME SAVE04
PROCESSING DISKETTE VOLUME SAVE05
PROCESSING DISKETTE VOLUME SAVE06
PROCESSING DISKETTE VOLUME SAVE07
PROCESSING DISKETTE VOLUME SAVE08
PROCESSING DISKETTE VOLUME SAVE09

MOUNT NEXT DISKETTE OR MAGAZINE
REPLY -Y- WHEN DONE: Y

PROCESSING DISKETTE VOLUME SAVEI0
PROCESSING DISKETTE VOLUME SAVEll

VOLUME DUMP OPERATION COMPLETE
9200 RECORDS TRANSFERRED

$MOVEVOl ENDED 10:10:13

298 SC34-0313

('\
.Y

c

O
~' '\

;,

o

$MOVEVOL

Restorat;on Procedure

The following steps are required for a restore operation.

1. Mount the contro I diskette, vary it on line and load
$MOVEVOL for execution.

a. Respond as described previously in Dump Procedure to
requests for data sets.

b. Select the restoration mode by responding N to the
query for disk to diskette dump and Y to the query for
diskette to disk restoration.

2. Mount data diskettes as requested.

Examples

Restore Operat i on Us i n9 a 4964 Diskette Un it: The source is
smaller than the receiving volume in size.

> $l $NOVEVOL,GREYV2
DISK (NAME,VOLUME): $$EDXLIB,MACLIB
DISKETTECNAME,VOLUME): $MACLIB,BACKOO

$MOVEVOL 20P,00:26:08, LP= 7000
DUMP LIBRARY FROM VOLUME MACLIB TO DISKETTE? N

RESTORE LIBRARY FROM DISKETTE TO DISK VOLUME MACLIB ? Y
RESTORING 5719-XX2 V01M01 JAN. 12, 1979 TO VOLUME MACLIB
CONTINUE? Y
SOURCE VOLUME IS SMALLER THAN THE TARGET. CONTINUE? Y
COMPRESS THIS LIBRARY AFTER INSTALLATION.
PROCESSING DISKETTE VOLUME BACKOO
MOUNT NEXT DISKETTE OR MAGAZINE
REPLY -Y- WHEN DONE: Y
PROCESSING DISKETTE VOLUME BACK01

Chapter 4. The Utilities 299

$MOVEVOL

Restor~eratl0n USl~n Individual 4966 Diskette Magazine
Slot: The source and target volumes are equal in si ze.

> $L $MOVEVOL $$EDXLIB,EDX003 $EDX003,SAVEOO

$MOVEVOL 20P,11:05:05, LP=6300

DUMP LIBRARY FROM VOLUME EDX002 TO DISKETTE? N

RESTORE LIBRARY FROM DISKETTE TO DISK VOLUME EDX002? Y
RESTORING DUMP OF EDX002 - DATE IS 09/14/77
CONTINUE? Y

PROCESSING DISKETTE VOLUME SAVEOO
MOUNT NEXT DISKETTE OR MAGAZINE
REPLY -Y- WHEN DONE: Y

PROCESSING DISKETTE VOLUME SAVEOI
MOUNT NEXT DISKETTE OR MAGAZINE
REPLY -Y- WHEN DONE: Y

PROCESSING DISKETTE VOLUME SAVE02
MOUNT NEXT DISKETTE OR MAGAZINE
REPLY -Y- WHEN DONE: Y

PROCESSING DISKETTE VOLUME SAVE03
MOUNT NEXT DISKETTE OR MAGAZINE
REPLY -Y- WHEN DONE: Y

PROCESSING DISKETTE VOLUME SAVE04

VOLUME INSTALLED
3600 RECORDS TRANSFERRED

$MOVEVOL ENDED 11.10.56

300 SC34-0313

o

o

$PFMAP

$PFMAP - IDENTIFY 4978 PROGRAM FUNCTION KEYS

The $PFMAP utility identifies the program function keys on the
4978 display station. As each key is pressed, its associated
system code is displayed in decimal and hexadecimal. A key's
associated system code is the identification returned at com
pletion of a WAIT KEY instruction or an ATTNLIST interrupt.
The hardcopy key is active during execution of this program,
and its code is not displayed. The program is terminated by
press i ng the ENTER key.

Chapter 4. The Utilities 301

$PREFIND

$PREFIND - PREFIND DATA SETS AND OVERLAYS

$PREFIND locates the disk, diskette, or tape data sets and
overlay programs to be referenced by your program and stores
their addresses in the header of your program. After $PREFIND
has executed, the tasks performed by $LOADER are reduced and
future program load times for the your program are shortened.

Under certain carefully controlled conditions, $PREFIND
reduces the time required to load other programs from disk or
diskette for execution. $PREFIND is normally used as the last
step in the program preparation process, following the
execution of $UPDATE; hO"Jever, it can be used to process a pro
gram at any time after the program has been processed by $UP
DATE or after a previous processing by $PREFIND as is described
as follows.

$PREFIND is most effective when it is used to process programs
that reference a large number of disk, diskette, or tape data
sets and overlay programs and when these programs must be
loaded frequent I y from disk or diskette.

I Program Load Process Overview

If a program uses data sets or overlays programs (OS= and PGf1S=
keyword parameters in PROGRAr" statement), the assembly process
creates control blocks in the program header for each data set
and overlay program specified. Space is reserved in these con
trol blocks for the physical disk/diskette/tape addresses of
the data sets and overlay programs defined.

After completion of the program preparation process ($LINK if
required, and then $UPDATE), the executable load module can be
loaded to storage. The system program that performs the load
operation is a transient loader program ($LOADER), and part of
that operat i on inc I udes fill i ng in the actua I phys i ca I
addresses of data sets and overlay programs in the control
blocks of the program header of the program that was loaded.
When a large number of data sets and/or overlay programs are
defined, this can be a time-consuming process, as $LOADER must
search a volume di rectory for each data set/program used.

In this manner, all data sets and overlay programs required by
a program are located and their sizes determined each time the
using program is loaded for execution. Thus, the loaded pro
gram wi 11 execute correctly even if the si ze or location o'f one
or more of the data sets or overlay programs it uses has
changed.

302 SC34-0313

o

o

o

o

$PREFIND

The program loading process just described provides maximum
safety and flexibi lity in loading programs for execution. How
ever, the time requ i red to locate each data set and over lay
program each time a program is loaded may be undesirable in
some circumstances.

$PREFIND allows data sets and overlay programs to be located
prior to program load time, and written directly into the pro
gram header on disk or diskette. When a program is loaded, the
information required is already present, and load time is
therefore reduced.

Note: See Internal Des~ for a description of the Relocating
Program Loader ($LOADER), the program header, and Data Set Con
trol Blocks (DSCBs).

$PREFIND Usage Caut;ons

1. Use $PREFIND only to locate data sets and/or overlay pro
grams in well tested production systems where the size and
location of the referenced data sets and overlay programs
are unlikely to change and where programs are loaded so
frequently that the saving of a few seconds in program load
time results in a useful performance increase for the sys
tem.

2. Use $PREFIND only in situations where the disk, diskette,
or tape locations of referenced data sets and overlay
programs will remain relatively static. If a referenced
data set or overlay program is moved to a new location on
disk or diskette, or to another tape volume, then programs
that have been processed by $PREFIND will not be aware of
the new location or size. This will produce undesirable
results the next time the programs are executed.

3.

$PREFIND must be used again to insert the new information
into the program headers of all referencing programs.

Before loading a program that references data sets on
removeable media, such as diskette or tape, make sure. that
the proper diskette or tape volume containing the prefound
data sets has been mounted and varied online. If the cor
rect diskette or tape volume is not mounted, the program
wi 11 use whatever volume is mounted at the time of exe
cution. If you should access an incorrect volume, unpre
dictable results may occur and possible destroy the data on
the diskette or tape.

Chapter 4. The Utilities 303

$PREFIND

4. The system does not keep track of referenced data sets or
overlay program locations that are no longer valid. It is
ynur responsibility to prevent disk, diskette, or tape
data sets and program overlays from being incorrectly mod
ified.

System functions that can change the size or location of
data sets or overlay programs are:

• DE Clnd AL commands of $DISKUTl

• CD, ST, and RT commands of $TAPEUTI

• $COPYUTI

• $UPDATE, following reassembly of a program

• $COMPRES

5. If you generate a new system and IPL from that system, make
sure that the disk, diskette, or tape control blocks have
not been relocated. A change in control block location
with j n the super visor requ j res that $PREF IND be used aga i n
to locate any referenced data sets and overlay programs.

Changes made during system generation that can affect the
location of control blocks are:

• Add i ng, de let i ng, or chang i ng $EDXDEF statements.

• Modifying the $LNKCNTL data set to add additional
INCLUDE statements.

• Relinking the supervisor with new or modified object
modules, for example, $SYSCOM or PTF module replace
ments.

$PREFIND Commands

The $PREFIND commands are listed belo,.,. When invoked using $L,
$PREFIND prompts you for the information required for each com
mand. When invoked through $JOBUTIL as a batch processing job,
$PREFIND must be supplied with the necessary information with
the PARM command of $JOBUTIL, as descr i bed on the follo~.Ji ng
pages.

304 SC34-0313

()

o

C.
·~
~\

)

o

Command

PF
DE
EN
?

Invok;ng $PREFIND

$PREFINO

Description

PRE LOCATE DATA SETS AND OVERLAYS
DELETE PREFOUND STATUS
END $PREFIND
LIST AVAILABLE COMMANDS

$PREFIND can be invoked by the $L command, the job stream
processor ($JOBUTI L), or the program preparat i on opt i on of the
session manager.

Invoking $PREFIND Using $L

When invoked with $L, $PREFIND prompts you for the command name
and, if e j ther PF or DE is entered, prompts you for the name and
volume of the program, as well as the numbers (1 through 9) of
the data sets and overlay programs that are to be located or
whose prefolJnd status is to be deleted. All of the requi red
information can be entered without waiting for the prompting
messages. For example:

PF MYPROG .. EDX003 D=(1 .. 2 .. 4,7) P=(1,2,3) J
'-------_.

her e the n u m b e r 5 i n p a " e nth e 5 i ,S cor res p 0 n d tot hen u m b e r sus e d
in the DSn and PGMn parame'ters on the READ/WRITE and LOAD Event
Driven Language instructions.

The data set and program numbers must always be entered in the
formats D=(_,_,_) and P=(_,_). Data set numbers, if present,
must always precede overlay program numbers. The word ALL can
be used in place of the number string within the parenthesis if
desired. A null response to the prompt for either (but not
both) the data set or program numbers can be made, if appropr i-

Chapter 4. The Utilities 305

$PREFIND

ate, and no change in the status of the data sets or programs
will occur.

Only those data set or program numbers whose status is to be
changed should be entered. For example, if a program refer
ences six data sets and it is desired to prelo~ate the first
three and the sixth, then D= (1 ,2,3,6) l.JOU ld be entered when
using the PF command. If at a later time it is desired to no
longer have the th i rd data set in the pre found state, a DE com
mand specifying 0=(3) would be used. After performing the two
commands described .bove, data sets I, 2, and 6 would be pre
f 0 u n dan d d a t a set s 3," 4, 5 W 0 u I d not. I nth e e x amp leg i v e n
here, the execut i on of the DE command only affects DS3 and does
not update the i nformat i on in the program header concern i ng
DSI, D52, or DS6 should they have been moved to di fferent
locations on disk between'the execution of the PF and DE
commands described.

Note: Dur i ng' execut i on 0 f the DE command, a data set can be
deleted which was originally defined in the format
(dsname,??). In this case, $PREFIND prompts you to enter the
prompting dsname to be placed back into the program header
since the original name was overridden during the previous PF
command. If the DE command is invoked via $JOBUTIL, an error
message occurs if the above cond it i on is encountered.

Any data set or overlay program not marked as be i ng in the pre
found state is located by $LOADER whenever the using program is
loaded into storage for execut i on.

Examples

Process i n9 One Program Wi thout Prompt i ng Messages

> $L $PREFIND
$PREFIND 22P,00:06:15, LP= 9800

COMMAND (1): PF TESTPREF,EDX001 D=(1,2,3,5,7,9) P=(ALL)
COMMAND COMPLETED
COMMAND (?): EN

$PREFIND ENDED AT 00:07:30

306 SC34-0313

o

o

o

o

$PREFIND

Processing Multiple Programs with/without Prompting Messages

COMMAND (?): PF
PGM(NAME,VOLUME): TESTPREF,EDXOOI
ENTER DATA SET NUMBERS: 0=(1,2,3,7,9)
ENTER OVERLAY PGM. NUMBERS: P=(ALL)

COMMAND COMPLETED
COMMAND (?):

COMMAND (1): PF
PGM(NAME,VOLUME): TESTPRE2,EDXOOI D=(ALL) P=(ALL)

COMMAND COMPLETED
COMMAND (?): EN

$PREFIND ENDED AT 00:10:59

Chapter 4. The Utilities 307

$PREFIND

Invoking $PREFIND Using $JOBUTIL

When $PREFIND is invoked through $JOBUTI l, it requ i res the same
information as was described under 'Invoking $PREFIND Using
$L'. This information is provided with a PARM command having
the format shown below. The number of spaces between the oper
ands in the PARM command may be one or more, as long as the
total number of characters, including spaces, does not exceed
62.

Syntax

Character
Position
1 10
PARM progname,volume c D=(_,_,_) P=(_,_,_)

Operands

progname

volume

c

-'-'-

Description

The name of the program whose data set and overlay
program status is to be mod if i ed.

The volume of residence of the program whose data
set and overlay program status is to be modified.

Either character P for PREFIND or character D for
DELETE

The string of data set or overlay program numbers,
or the word ALL

W hen i n v 0 ked wit h $ JOB UTI l, $ PRE FIN D per for m 5 e i t h e,r a sin 9 1 e
prefind or delete function and then terminates its execution.
$PREFIND directs its error and/or termination messages to the
device defined as $SYSPRTR.

308 SC34-0313

()

c

o

$PREFIND

Example

Messages and responses on your terminal:

> $L $JOBUTIL
$JOBUTIL 3P,02:23:15, LP= 6500
ENTER PROCEDURE (NAME,VOLUME): PREPROC,EDXOOI

$JOBUTIL ENDED AT 02:23:38

Output on $SYSPRTR:

LOG $SVSPRTR
*** JOB - PREFIND STARTED AT 02:23:28 00/00/00 ***

JOB PREFIND
PROGRAM $PREFIND,EDXOOI
NOMSG
PARM D TESTPREF,EDXOOl D=(ALl) P=(All)
EXEC

COMMAND COMPLETED

$PREFIND ENDED AT 02:23:37

The procedure used:

00010 lOG
00020 JOB
00030 PROGRAM
00040 NOMSG
00050 .PAR~1

00060 EXEC
00070 EOJ

$SVSPRTR
PREFIND
$PREFIND,EDXOOI

D TESTPREF,EDXOOl D=(ALl) P=(ALL)

Chapter 4. The Utilities 309

Invoking $PREFIND Using the Session Manager

The session manager option menu for program preparation can be
used to invoke $PREFIND. Selection of $PREFIND causes the fol
lowing parameter option menu to be displayed:

$SMM0208: SESSION MANAGER $PREFIND PARAMETER INPUT MENU--
ENTER/SELECT PARAMETERS DEPRESS PF3 TO RETURN

COMMAND (P/D) ==> D

PROGRAM (NAME,VOLUME) ==> TESTPREF,EDXOOl

DATASET i'S (OR ALL) ==> All

PROGRAM #'S (OR ALL) ==> ALL

After the parameters are entered, $PREFIND executes as if it
were invoked using $JOBUTIL.

310 SC34-0313

/",,--,,\

\~~.~J

(\
.)

o

I

I

I

I

I

I
(''') ,.J I

0 ,,,,
.,1,

$TAPEUTl

$TAPEUTl - TAPE MANAGEMENT

$TAPEUTI performs several commonly used tape management func
tions. You can initialize tapes, allocate tape data sets, copy
data sets or volumes to or from tape, copy tape to tape, print
tape records, dump/restore disk devices, and test the tape
transport hardware.

$TAPEUTI is invoked with the $L command or primary option 3 of
the session manager. Once invoked and prior to accepting com
mands, $TAPEUTI displays the following information about the
tapes def i ned to the system:

• TAPEID

• density selection (800, 1600, DUAL)

• label type (SL, NL, BLP)

• current density setting

• online or offline

• volume information (i f an onl ine SL tape)

• device address

Example: load i ng $TAPEUT 1 and its automat i c d i sp 1 ay of the sYS
tem tapes.

> $l $TAPEUTl
$TAPEUTI 21P,II:II:33, LP= 0000
TAPEOI DUAL SL 1600 OFFLINE

DEVICE ADDRESS = 004C
TAPE02 DUAL Nl 1600 OFFLINE

DEVICE ADDRESS = 0040

COMMAND (1):

Note: Error logging of tape errors is available. Refer to the
SYstem Guide.

Chapter 4. The Utilities 311

$TAPEUTI

$TAPEUTI Commands

The commands avai lable under $TAPEUTI are 1 i sted below. To di s
pIa y t h 1 s 1 1 s ,t a t you r t e r m j n aI, e n t era que s t ion mar kin rep 1 y

to the prompt i ng message COMMAND (?):.

COMMAND (?>: ?

CD - COpy DATASET
CT - CHANGE TAPE ATTRIBUTES
OP - DUMP TAPE
EN - END $TAPEUTI
EX - EXERCISE TAPE
IT - INITIALIZE TAPE
MT - MOVE TAPE
RT - RESTORE DISK/VOL FROM TAPE
ST - SAVE A DISK/VOL ON TAPE
TA - ALLOCATE TAPE DATASET

COMMAND (?):

After the commands are displayed, you are again prompted with
COMMAND (?>:. You respond with the command of your choice (for
e)(a mp 1 e, CO).

312 $C34-0313

o

/1"\
'\'\.,)

o

o

$TAPEUTl

CD - Copy Data Set

CD cop i es a d 1 sk or d 1 skette data set onto a tape, cop 1 es a tape
data set 1 nto a disk or diskette data set or onto another tape.
The command wr 1 tes a tra 1 ler labe I at the end of the data set on
the target tape 1f it is a standard label tape. Header labels
are not written on standard or non-labeled tapes, therefore,
the target tape data set must be preallocated.

I fad i sk or diskette data set is be i ng cop i ed to tape, the tape
records wi 11 be 256-bytes. If a tape data set from another sys
tem (for example, a 5/370) is copied to a disk or diskette and
the source records are not 256-bytes, the source records are
split into multiple 256-byte records with any unused bytes pad
ded with zeros. Prior to copying, you are prompted for the
max 1 mum 1 nput record size.

Cons i der the fo llow i ng when you are copy i ng data sets:

•

•

When you reach a tapemark (end of input data), you are
prompted to continue. If you have more records to copy, you
can continue; however, make sure that there 1S sufficient
room on the target tape. You are prompted at every tapemark
encountered on the source tape. If you do not wish to con
t i nue, the tra i ler label 1 s wr i tten on the target tape.

To copy the contents of one tape to another tape, thereby
creating an exact duplicate of the entire tape (header
label and data records or only data records), you can use
either of two methods:

To copy only data records, initialize the target tape
(using the IT command) 50 that it has the same label
type as the source tape. Copy (using the CD command)
the source tape to the target tape. This allows you to
create a new header label on the target tape and to
duplicate only the data record.s from the source tape.

To create an exact duplicate of the source tape, mount
the source and target tapes on dr i ves spec if i ed for
bypass label-processing. Then copy (using the CD com
mand) the entire source tape. The target tape becomes
an exact duplicate of the source all label records, all
data records, and all trai ler labels).

Chapter 4. The utilities 313

[$TAPEUTl

Example

.c..opYing Data from a Disk to a T,iE..g,

COMMAND (?): CD

SOURCE (NAME,VOLUME): $TAPEUTl,EDX002
TARGET (NAME,VOLUME): DATAl111,123456
ENTER SOURCE BlOCKSIZE CNULL=DISKCETTE»:
USE ATTN/CA TO CANCEL COpy

ARE ALL PARMS CORRECT? (Y,N): Y
EOD ON SOURCE DATASET

25 RECORDS COPIED

COMMAND (?):

314 SC34-0313

o

c

o

o

o

$TAPEUTl

CT - Change Tape Dr;ve Attr; butes

CT resets the label type and density for any tape drive. The
label type and density are set at system generation. CT allows
you to dynamically reconfigure the tape drives. You must vary
off the tape dr i ve before you can change its attr i butes.

where nn = hexadec i ma I dev ice address

The current settings for label and density are displayed. You
are prompted to enter any changes.

The CT command fails and issues an error message on the termi
nal for the following conditions:

I· i nval i d dev; ce address

I •
I •

tape drive is not varied offline

invalid label type

I. invalid density

I. tape dr i ve not def i ned as dual dens i ty

Chapter 4. The Utilities 315

[$TAPEUTl~ I
Examples

~ e c i f y C h <ulS.e s t 0 the lab e 1 Pro c e 5 s· i n 9 and Den sit y 5 e 1 e c t ion
for Tape Dr i ve at Address 4C.

COMMAND (1): CT TAPEOI

ENTER TAPEID (1-6 CHARS): TAPEOI
TAPE TAPEOI AT ADDR 4C IS BlP 1600 BPI
DO YOU WISH TO MODIFY (Y OR N)?: Y
lABEL (NUll,Sl,Nl,BlP)?: SL
DENSITY (NUll,800,1600): 800
TAPE TAPEO! AT ADDR 4C IS SL 800 BPI

COMMAND (?):

lto C.!! a n . .9..e s a r e r1 a d e for l a bel Pro c e 5 sin 9 and Den sit y S e 1 e c t ion
for Ta~r i ve at Address 4D.

COMMAND (?): CT TAPE02

ENTER TAPEID (1-6 CHARS): TAPE02
TAPE TAPE02 AT ADDR 4D IS Sl 800 BPI
DO YOU WISH TO MODIFY (Y OR N)?: N

COMMAND (?):

316 SC34-0313

o

o

o

~,

C~'''',

O,"'~',,·
'I

$TAPEUTl

DP - Dump Records

DP dumps tape record(s) on the system printer ($SYSPRTR), on
the terminal from which you invoked $TAPEUT1, or on the termi
nal you specify. The output format is similar to the $DISKUT2
uti lity; hexadecimal data plus the EBCDIC conversion.

The r'ecord number for each record is shown and the words
'tapemark' are printed when a tapemark is encountered. You are
prompted for the number of records to be pr i nted. ~~hen a
tapemark is detected, you are prompted to cont i nue or to term i
nate the dump.

You are prompted for the maximum record size. This allows you
to pr i nt record sizes up to the max i mum amount of storage
available. If the record being read is smaller or larger than
the maximum size specified, a message will be issued indicat
i n g :

I. a wrong length record was encountered

I. the actua I record s j ze

Smaller records are pr i nted and padded wi th zeros. larger
records are truncated and printed to the maximum size speci
fi ed. You are informed of the actual record size.

3.

Ii •

The tap emu 5 t be v a r i e d 0 f f lin e be for e you can dum p
records.

The TAPEID specified must match the one specified at system
generation.

This is an offline utility; therefore, the tape will not be
automatically rewound when the dump is finished. Use the
move tape command (MT) to rewind the tape.

The dump command COP) and the move tape command (MT) can be
used together to selectively search and dump portions of a
tape.

Chapter 4. The Utilities 317

[:$TAPEUTl

Example

Dump Five Records on D i spJ ... ltY. Term ina I

COMt1AND (?): DP

ENTER MAXIMUM BLOCKSIZE: 256
USE ATTN/CA TO CANCEL DUMP
ENTER TAPEID (1-6 CHARS): TAPEOI
ENTER NUMBER OF RECORDS TO DUMP: 5
PRINT DUMP ON $SYSPRTR? (Y,N): N
ENTER TARGET TERMINAL NAME (*,NAME): *

(The dump is directed to the terminal
you are currently assigned to)

COMMAND (?):

To direct the dump to the $SYSPRTR or to a terminal of your
choice, you are prompted and can respond as follows:

y

N

Pr i nt dump on $SYSPRTR

Display dump on the terminal of your choice. You are
prompted for the terminal name and can respond as fol-
10l<Js:

• * = terminal on which you are currently assigned

• name = device name of the target terminal

If the tape you want to dump is currently in use, you are
prompted as follows:

r-DEVICE NOT OFFLINE
~O YOU WISH TO CONTINUE? (Y,N):

If you speci fy y, the dump wi 11 continue but the device wi 11 be
unuseable by the or i 9 i nal user.

318 SC34-0313

o

o

o

o

o

[$TAPEUTl

EX - Exerc; se Tape

EX, a software exerc i ser, per forms two operat ions:

•

It exercises any of the three label type tapes to ensure
that the I/O commands to that tape are executing correctly.

I tan a I y z est h e sur f ace 0 f the tap e t 0 v e r i ·f y t hat the sur
face is free of defects. Any errors and their approximate
location on the tape are printed on the system printer
($SVSPRTR).

Caution: Surface analysis writes records over the information
currently on the tape. Any existing data records or labels are
destroyed.

Each operation is optional and you are prompted before continu
i ng •

The EX command performs the following functions:

• Wr i tes 600 un i que records to a data set on the tape

I· Closes and reopen the data set

I •

I •

I ·

Finds a particular record within the dat'a using NOTE/POINT

Ver if i es that the correct record is accessed

Performs a surface analysis of the tape by writing over the
tape and then ver if i es each record.

Chapter 4. The Utilities 319

[$TAPEUTl

Example

COMMAND (?): EX
TARGET CNAME,VOLUME: MYDATA,123456
USE ATTN/CA TO CANCEL THE EXERCISER
DO YOU WANT TO EXERCISE THE SOFTWARE CY/N): Y

Exerciser runs and prints status on printer

WRITE/READ ENTIRE SURFACE OF TAPE? (Y/N): Y

Exerciser writes on entire surface of tape, then
reads and verifies each record

TAPE EXERCISER ENDED

I A sample of the data printed by the EX command follows.

320 SC34-0313

o

o

o

C~
j

o

TAPE EXERCISER STARTED
WRITE 600 UNIQUE RECORDS TO TAPE

TEST DATA WRITTEN
STEP 1 SUCCESSFUL
CLOSE DATASET FOR REUSE
STEP 2 SUCCESSFUL
READ 250 OF THE RECORDS
NOTE PRESENT POSITION
STEP 3 SUCCESSFUL
POINT TO RECORD 150 AND READ THAT RECORD
STEP 4 SUCCESSFUL
NOTE PRESENT POSITION
STEP 5 SUCCESSFUL

CLOSE DATASET FOR REUSE
STEP 18 SUCCESSFUL
REOPEN THE DATASET
READ 598 OF THE RECORDS

$TAPEUTl

ATTEMPT TO READ MORE RECDS WITH 1 STMT THAN ARE AVAILABLE
VERIFY END-OF-DATA RETURN CODE
STEP 19 SUCCESSFUL
VERIFY 2ND WORD OF TCB CONTAINS ACTUAL i REALLY READ
STEP 20 SUCCESSFUL
WRITE/READ ENTIRE SURFACE OF TAPE? Y
THIS SECTION WILL DESTROV All LABEL FIELDS
DO YOU WISH TO CONTINUE? (Y,N): Y
REWIND TAPE TO LOAD POINT
STEP 21 SUCCESSFUL
WRITE ENTIRE TAPE
WRITE TAPEMARKS ON END OF TAPE
STEP 22 SUCCESSFUL
REWIND TAPE TO LOAD POINT
STEP 23 SUCCESSFUL
READ AND VERIFY ALL THE RECORDS
REWIND TAPE TO LOAD POINT
STEP 24 SUCCESSFUL
CLOSE TAPE OFFLINE
STEP 25 SUCCESSFUL

TAPE EXERCISER SUCCESSFUL

Chapter 4. The Utilities 321

[$TAPEUT~

IT - Initialize Tape

IT completely initializes a new tape, or changes the label
information on a used tape. The IT command initializes tapes
for non-labeled and standard label lise.

When you initialize a tape as non-labeled,
writes three tapemarks deleting any previous
tape.

the IT
labels

command
on the

When you initialize a tape as standard label, the IT command
wr ites on the tape:

I· a volume label (VOll)

I· a header label (HDR!)

I ·
-to

2 tapemarks to delimit the label information and to indi
cate an empty data set ----
a trailer label (EOF!) and 2 tapemarks signifying the end
of data on the tape

I You are prompted for the the contents of all
fields.

Example

COMMAND (1): IT TAPEOI

ENTER TAPEID (1-6 CHARS): TAPEOI
STANDARD lABEL 1600 BPI? Y
TAPEDS (NAME,VOlUME): DATAllll,123456
OWNERID (1-10 CHARS): OWNER-ID
EXPIRATION DATA (YYDDD): 79001
TAPE INITIALIZED

COMMAND (?):

Notes:

required label

1. Your tape must be varied offline before you can initialize
it. If the tape is not offline, a warning message is issued
and you are prompted to cont i nue.

322 SC34-0313

o

o

o

o

2 •

$TAPEUTl

If you are changing the label information on a used tape,
you must use the EX parameter of $VARYON to override an
unexpired expiration date.

3. Your tape is initialized with the same attributes (label
and density) as those defined for the tape drive on which
the tape is mounted. Refer to the TAPE statement in the
System Guide.

4. When specifying the volume and data set names, do not use
the same names as were specified for tape ID at system gen
eration.

Chapter 4. The utilities 323

$TAPEUTl 1

MT - Move Tape

MT provides functions to the terminal user that control tape
motion on the specified tape. The available control functions
are:

BSF - Back space file

BSR - Back space records

FSF - Forward space file

FSR - Forward space records

OFF - Set device offline

REW-Rewind

ROFF - Rewind offline

WTM - Wr i te tapemark

A count is avai lable for FSR, BSR, FSF, BSF, and WTM so that you
can specify the number of records to be spaced over or the
number of tapemarks to be wr i tten.

An EDT (end-of-tape) terminates only the write tapemark (WTM)
function and issues a return code. If you wish to proceed past
the EOT, you must request another WTM.

Notes:

1. You can proceed past the EDT, however, make sure that there
is suff i c i ent tape to perform the operat ion.

2. The tapemark record is smaller than the end-of-tape (EOT)
indicator so you could possibly teceive two or more end
of-tape j nd i cat ions for the same EOT.

A tapemark terminates FSR or BSR operations and the tape is
p 0 s i ti 0 ned following that tap e mar k •

324 SC34-0313

o

c

o

,

o

$TAPEUTl

Example

Move TAPEO! Forward 3 Records

COMMAND (?): MT

ENTER TAPEID (1-6 CHARS): TAPEOI
TYPE? FSR/BSR/FSF/BSF/WTM/REW/ROFF/OFF: FSR 3
* the action occurs *
FSR SUCCESSFUL
TYPE? FSR/BSR/FSF/BSF/WTM/REW/ROFF/OFF: END
$TAPEMT ENDED AT 00:20:39

COMMAND C?):

If the tape was positioned at the first record and the utility
forward spaces 3 records, the tape is pos i t i oned at the 4th
record.

Notes:

! .

3.

Your tape must be varied offline before you can issue the
mot i on commands. I f the tape is not of f line, a warn i ng mes
sage is issued and you are prompted to cont i nue.

The response to 'ENTER TAPEID' must be the same TAPEID that
was spec if i ed at system generat i on.

This is an offline utility; therefore, the tape will not be
repositioned or rewound when it end. Use the MT command to
rew i nd the tape.

Chapter 4. The Utilities 325

[$TAPEUTl]

RT - Restore Di sk or Oi sk Volume From Tape

RT restores a disk or disk volume from a tape. The tape must
have been previously created using the ST command. You can
restore a disk volume from a tape to the same device type or a
di fferent device type, except for the IPl volume. (The IPl vol
ume is treated similarly to the disk device; it must be
restored to the same device type). To restore an entire disk
dey ice from tape, the dey i ce type and model number of the
source and target disks must match.

Certain conditions (for example, disaster recovery) can make
it necessary to restore an entire disk from tape. To perform a
restore when the disk has been destroyed, the following proce
dure is suggested since tape support is not included in the
distributed starter system:

1. Create on a diskette a nucleus that includes tape support
and include $TAPEUTI on the diskette. Keep this diskette
with the backup tapes you create with the ST command.

2. When a restore is necessary, IPl wi th th i s diskette,
restore the disk from the backup tapes, and IPL from the
restored disk.

To create the diskette that you will IPl:

1. Use your current system with tape support included

2. Use $INITDSK to initialize and write IPl text on the
diskette with the following attributes:

• DIRECTORY SIZE=3

• CREATE NUCLEUS?: Y

• SIZE=64

• IPl TEXT?: Y

3. Copy the current system us i n9 $COPY (CD) onto the diskette
as follows:

• SOURCE: $EDXNUC,EDX002

• TARGET: $EDXNUC,diskette ID

4. Use $COPYUTI (CM) to copy the following modules to the
diskette:

• $LOADER

326 SC34-0313

o

o

c)

o

$TAPEUTl 1
• $TAPEUTl

• $TAPERT

• Your terminal support (for 4978/4979 support, copy
$4978150 and $4978CSO)

With this procedure, you create a diskette copy of the IPL text
and support modules necessary to IPL your system and restore
the disk from tape without generat i ng your system aga in.

Examples

Restore Volume from a Tape

> $VARYON 4C
TAPEOl ONLINE
> $L $TAPEUTI
$TAPEUTI 19P,00:08:48, LP= 7AOO
TAPEOI DUAL NL 1600 ONLINE

DEVICE ADDRESS = 004C
TAPE02 SL 1600 OFFLINE

DEVICE ADDRESS = 0040

COM~1AND (?): RT

* WARNING: TO ENSURE PROPER *
* DISK CONTENTS, THE SYSTEM *
* SHOULD BE INACTIVE WHILE *
* RUNNING THIS UTILITY *

SOURCE (NAME,VOLUME): X,TAPEOI
TARGET (NAME,VOLUME): $$EDXVOL,ASMlIB
DEVICE RESTORE? N
ARE ALL PARMS CORRECT? (Y,N): Y

USE ATTN/CA TO CANCEL THE RESTORE

VOLUME RESTORED
COMt1AND (?):

Chapter 4. The Utilities 327

I $TAPEUTl I
Res tor e D i ~ k De vic e fro m el Tel P e

> $VARYON 4C
TAPEOI ONLINE
> $L $TAPEUTI
$TAPEUTI 19P,00:l2:06, LP=
TAPEOl DUAL NL 1600 ONLINE

DEVICE ADDRESS = 004C
TAPE02 SL 1600 OFFLINE

DEVICE ADDRESS = 004D

COMMAND (?>: RT

7AOO

* WARNING: TO ENSURE PROPER *
* DISK CONTENTS, THE SYSTEM *
* SHOULD BE INACTIVE WHILE *
* RUNNING THIS UTILITY *

SOURCE (NAME,VOLUME): X,TAPEOI
TARGET (NAME, VOLUME): $$EDXVOL,EDX002
DEVICE RESTORE? Y
ARE ALL PARMS CORRECT? (Y,N): Y

USE ATTN/CA TO CANCEL THE RESTORE

DISK RESTORED
COMMAND (?):

328 SC34-0313

o

o

o

o

Restore Disk Device from More than One Tape

COMMAND (?): RT

* WARNING: TO ENSURE PROPER *
* DISK CONTENTS, THE SYSTEM *
* SHOULD BE INACTIVE WHILE *
* RUNNING THIS UTILITY *

SOURCE (NAME,VOLUME): SAVE1,TAPE02
TARGET (NAME,VOLUME): $$EOXVOL,EOX002
DEVICE RESTORE? Y
ARE ALL PARMS CORRECT? (Y,N): Y

USE ATTN/CA TO CANCEL THE RESTORE

MOUNT SAVE2,TAPE02
REPLY Y WHEN TAPE MOUNTED AND VARIED ONLINE?
> $VARYON 40
TAPE02 ONLINE
? Y
DISK RESTORED

COM~1AND (?):

$TAPEUTl

Chapter 4. The Utilities 329

[$TAPEUTl I
ST - Save a 0; sk Dev; ce or 0; sk Volume on Tape

ST saves an entire disk device or a single disk volume on a
tape. 5T prompts you to spec i fy whether you are sav i ng a dev i ce
or volume. The ST command can be used in conjunction with the
restore command (RT) to backup data you wish to protect.

Examples

Save Di sk Volume on Tape

> $VARYON 4C
TAPEOI ONLINE
> $L $TAPEUTI
$TAPEUTI 19P,00:06:26, LP= 7AOO
TAPED! DUAL NL 1600 ONLINE

DEVICE ADDRESS = 004C
TAPE02 SL 1600 OFFLINE

DEVICE ADDRESS = 004D

COMMAND (?): ST

* WARNING: TO ENSURE PROPER *
* TAPE CONTENTS, THE SYSTEM *
* SHOULD BE INACTIVE WHILE *
* RUNNING THIS UTILITY. *

SOURCE (NAME,VOLUME): $$EOXVOL,ASMLIB
TARGET (NAME,VOLUME): X,TAPEOl
DEVICE SAVE? N
VOLUME SAVE OF ASMLIB ONTO TAPE X,TAPEOI
OK? (Y,N): Y

I USE ATTN/CA TO CANCEL THE SAVE

VOLUME SAVED
COMMAND (?):

330 SC34-0313

c

o

o

Save Disk Device on Tape

> $VARYON 4C
TAPEDI ONLINE
> $l $TAPEUTl
$TAPEUTI 19P,DO:02:16, LP= 7AOO
TAPEOl DUAL NL 1600 ONLINE

DEVICE ADDRESS = 004C
TAPE02 SL 1600 OFFLINE

DEVICE ADDRESS = 004D

COMMAND (?): ST

* WARNING: TO ENSURE PROPER *
* TAPE CONTENTS, THE SYSTEM *
* SHOULD BE INACTIVE WHILE *
* RUNNING THIS UTILITY. *

SOURCE (NAME,VOLUME): $$EDXVOL,EDX002
TARGET (NAME,VOlUME): X,TAPEOl
DEVICE SAVE? Y
DEVICE SAVE OF DISK CONTAINING EDX002
ONTO TAPE X,TAPEOl
OK? (Y,N): Y

USE ATTN/CA TO CANCEL THE SAVE

DISK SAVED
COMMAND (?):

$TAPEUTl

Chapter 4. The Utilities 331

[$TAPEUTl

Save Disk Dev ice on More than One Tape

COMMAND (?): ST

* WARNING: TO ENSURE PROPER *
* TAPE CONTENTS, THE SYSTEM *
* SHOULD BE INACTIVE WHILE *
* RUNNING THIS UTILITY. *

SOURCE (NAME,VOLUME): $$EDXVOL,EDX002
TARGET (NAME,VOLUME): SAVE1,TAPEOl
DEVICE SAVE? Y
DEVICE SAVE OF DISK CONTAINING EDX002
ONTO TAPE SAVEl,TAPEOl
OK? (Y,N): Y

USE ATTN/CA TO CANCEL THE SAVE

END OF TAPE ENCOUNTERED. CONTINUE? Y
ENTER NEXT TAPE (NAME,VOLUME): SAVEl,TAPEOl
REPLY Y WHEN TAPE SAVE2,TAPEO! IS MOUNTED
AND VARIED ONLINE?
> $VARYON 4C
TAPEO! ONLINE
? Y

DISK SAVED
COMMAND (?):

332 SC34-0313

rf"\
\'(\.:_.-,1J)

o

o

o

o

$TAPEUTl

TA - Allocate a Tape Data set

TA deletes an existing data set and reallocates a null data
set, or adds a null data set after the last data set on the vol
ume.

Notes:

1. Th i s command is used to p lace data set labe Is on prev i ous 1 y
initialized standard labeled (SL) tapes; the tape unit
must be in the standard label processing mode.

2. All the data on the tape following the newly allocated data
set is destroyed.

3. The tape must be varied online to the file number of the
data set be i ng allocated.

4. To be accessed by a program, the tape must be var i ed
online.

Example

Allocate Data Set (DATA2222) on Volume 123456

COMMAND (?): TA

TAPEDS (NAME,VOlUME): DATA2222,123456
EXPIRATION DATA (VVDDD): 79001
DATA SET ALLOCATED

COMMAND (1):

Chapter 4. The Utilities 333

I $TERMUn]

$TERMUTI - CHANGE TERMINAL PARAMETERS

$TERMUTl, a general purpose terminal utility program, alters
logical device names, address assignments or terminal config
uration parameters. Changes remain in effect until the next
IPL.

$TERMUTI Commands

The commands avai lable under $TERMUTI are listed below. To dis
p I a y t his 1 i s ton yo lJ r t e r min aI, en t era que s t ion mar kin
response to the prompti ng message COMMAND (?):.

COMMAND(?): ?

LA
RE
RA
RH
CT
EN

LIST TERMINAL ASSIGNMENTS
RENAME
REASSIGN ADDRESS
REASSIGN HARDCOPY
CONFIGURE TERMINAL
END PROGRAM

COMMAND(?):

After the commands are displayed, you are again prompted with
COMt1AND (?):. You respond with the command of your choice (for
example, LA).

334 SC34-0313

()j
II ~

o

o

o

$TERMUTl]

CT - Conf; gure Term; nal

CT modifies the page formatting parameters associated with a
terminal. In the following example, the conditional prompt
message associated with each parameter is shown. Default val
ues are i nd i cated in parentheses.

ENTER TERMINAL NAME: $SYSLOG (loading terminal)
PAGE SIZE: 24 (from TERMINAL statement)
TOP MARGIN: 12 (0)
BOTTOM MARGIN: 23
HISTORY LINES: 6
LEFT MARGIN: 0
RIGHT MARGIN: 79
OVERFLOW LINES? N
OUTPUT PAUSE? N

(page size -1)
(0)
(0)
(line size -1)
(N)

(N)

The option OUTPUT PAUSE allows the 'screen full' pause for
screen dey ices to be d i sai:tled so that unattended systems do not
enter an indefinite wait state.

!!2ll: For more information on terminal parameters, see the
TERMINAL statement in the System Gu ide.

EN - End Program

EN term i nates the $TERMUTI ut iii ty.

Chapter 4. The Utilities 335

r "$TERMUTl I
LA - L; st Term; nal Ass; gnments

LA lists the current terminal names, addresses and types.

COMMAND(?): LA

NAME ADDRESS

$SYSLOG 04
$SYSPRTR 01
$SYSLOGA 00

06
DISPLAY2 07

COMt1AND (?) :

TYPE

4979
4974
TTY
4979
4978

No name appears for the device at address 06 because there was
none on the or i gina 1 TERMINAL statement.

RA - Reass; 9" Address

RA reassigns the physical address of a terminal specified in
the address:: parameter of the TERMINAL statement dur i ng system
generat i on The form for th i s funct i on is:

~ ____ n_a_m_e __ a_d __ d_r_e_s_s __ ~

where the address in question must be currently unassigned.
Some examples are:

RA DISPLAY2 7
RA $SYSPRTR 12
RA (05) 06

336 SC34-0313

(~)

c

o

C~,
j

o

[$TERMUTl

RE - Rename Log;cal Dev;ce

RE renames the logical terminal name (the label on the TERMINAL
statement) that you specified during system generation. The
form for this function is:

RE oldname newname

The new name replaces the old name. As shown in the following
examples, the old name can be a logical name or a hexadecimal
device address. If a device address is indicated, it must con
s i st of 1 or 2 dig its enc losed in parentheses.

RE DISPLAY2 DISPLAY3
RE (06) TERMl

The changes are ver if i ed by enter i ng the LA command.

Chapter 4. The Utilities 337

$TERMUTI

RH - Reassi gn Hardcopy

RH changes the hardcopy device associated with a 4979/4978 dis
play, and indicates which program function key wi 11 produce the
hardcopy. The form is:

RH name keycode

Here 'name' is the logical name (not device address) of the
hardcopy device, and 'keycode' is the code for the desir'ed
hardcopy key (e.g., 1 to 6 for the 4979 display).

The hardcopy device is changed for the terminal from which
$TERMUTI was loaded. Some examples are:

Rti $SYSlOGA 6
RH $SYSLOGA 4
RH PRTR2 6

338 SC34-0313

o

:r-)
("", .

o

o

Cl

o

$TERMUT2

I $TERMUT2 - PROCESS 4974/4978 IMAGE/CONTROL STORE

$TERMUT2 is used to:

•

•

•

•

Assign a DEFINE key in a 4978 control store.

Change the definition of one or more keys in a 4978 control
store.

Load a 4978 control store from a direct access data set
or saving a newly redefined 4978 control store into a
direct access data set. The contro I store is a data set
containing the 4978 control store and microcode to access
the i mage store.

Load a 4978 image store from a direct access data set or
save a 4978 i mage store into a direct access data set. (Re
fer to the description of the $FONT utility program for a
description of image store definition.)

Restore the i mage buffer of a 4974 pr inter to the standard
64 character set.

You may wish to invoke these functions from a terminal other
than the one you are us i ng; therefore, you are requested to
specify a terminal. If the selected terminal is not a 4978, you
are not if i ed and the command is rej ected.

4978 Support

Use $TERMUT2 to to make spec i a 1 character str i r,g ass i gnments on
the 4978 keyboard. Key definitions can be changed, perhaps to
be appropr i ate to a spec i al key data appl i cat i on, and the rede
fined keyboard definitions saved on disk. The keyboard defi
nition can be reloaded later using $TERMUT2 or by using the
TERMCTRL instruction within your application. 4096 bytes are
transferred during an image control save so a 16 record data
set must be defined for each control store image to be stored.
Use $FONT to change the display image of redefined keys. For
detailed information on the 4978 display station functions and
the 4978 keyboards, refer to the Bibliography for 4978-1 Ois
p lay Stat i on manua Is.

Chapter 4. The Utilities 339

$TERMUT2

4974 Support

Use $TERMUT2 to restore the image buffer of a 4974 printer to
the standard 64 character set. The 4974 printer uses the
Extended Binary Coded Decimal Interchange Code (EBCDIC), which
includes 64 standard characters and five characters for inter
national use. The standard key definition can be changed by
using the TERMCTRL instruction within your application program
and the redefined character set is stored in the image buffer
of the 4974. For detailed information on the 4974 printer,
refer to the B1 bl i ography for the 4974 Pr inter manual.

Data Set Names

Naming conventions for image store and control store data sets
follow the convent ions of the Event Dr i yen Execut i ve: the label
can be up to eight characters. Two special names are reserved
by the system and used during initial program load time:

$4978150 image store label

$4978C50 control store label

These data sets are automaticallY searched for and loaded to
defined 4978 display stations during the initialization phase
at IPL time.

$TERMUT2 Commands

The commands ava i lab Ie under $TERMUT2 are 1 i sted be low. To d i s
play th is 1 i st at your term ina I, enter a quest i on mark in
response to the prompt i ng message COMMAND (?):.

340 5C34-0313

()

c

o

o

COMMAND (1): ?

AD - ASSIGN DEFINE KEY
C - CHANGE KEY DEFINITION
EN - END PROGRAM
LC - LOAD CONTROL STORE
LI - LOAD IMAGE STORE
RE - RESTORE 4974 TO STD. 64 CHAR. SET
SC - SAVE CONTROL STORE
SI - SAVE IMAGE STORE

COMMAND (1):

$TERMUT2

After the commands are displayed, you are ag~in prompted with
COMMAND (?):. You respond wi th the command of your cho ice (for
example, AD).

Chapter 4. The Utilities 341

$TERMUT2

Examples

AD - Assign a Define Key

COMNAND (?): AD
ENTER SCAN CODE OF KEY TO BE ASSIGNED

AS THE DEFINE KEY (HEX): 1
ENTER TERMINAL NAME (CR OR * ~ THIS ONE): $SYSLOG

C - Change a Key Definition

COMMAND (?): C
ENTER TERMINAL NAME (CR OR * = THIS ONE): $SYSLOG
ENTER SCAN CODE OF THE KEY TO BE REDEFINED (HEX): 1
ENTER NEW FUNCTION 10 (HEX): 20
ENTER NEW CHARACTER/FUNCTION CODE (HEX): 0
ENTER NEW INTERRUPT CODE (HEX): 1
ANOTHER KEY? N

lC - load a Control store

COMMAND (?): LC
FROM DATA SET (NAME,VOlUME): $4~78CSO
ENTER TERMINAL NAME (CR OR * = THIS ONE): *

342 SC34-0313

1(')-,'1" I, ','

/'~- '''\
i~,_)

o

$TERMUT2

o RE - Restore 4974 to Standard 64 Character Set

COMMAND (1): RE
ENTER TERMINAL NAME (CR OR * = THIS ONE): MPRINTER

SC - Save a Control Store

COMMAND (1): SC
SAVE DATA SET (NAME,VOlUME): $4978CSO
ENTER TERMINAL NAME (CR OR * = THIS ONE): $SYSLOG

o

o
Chapter 4. The Utilities 343

$TERMUT3

$TERMUT3 - SEND MESSAGE TO A TERMINAL

$TERMUT3 sends a single line message from your terminal to any
other termi nal def i ned 1 n the system. One message line is sent
at a time and you are prompted for the message, the terminal the
message is to be send to , and if add it i ona I messages are to be
sent. There are no commands, only prompting messages as fol
lows:

ENTER TERMINAL NAME:
Label of the terminal to which message is to go.

ENTER MESSAGE TO SEND
Type in message and press the ENTER (CR) key.
The message is transmitted to the destination terminal.

ANOTHER LINE?
Yes or No.
If yes, you are prompted to enter another message line.

ANOTHER TERMINAL?
Yes or No. If yes, select another terminal and
repeat the above process.

SEND MESSAGE LATER ('ATTN SEND')?
Yes or No. If yes, the program remains loaded
and inactive. Pressing the ATTN key and
entering 'SEND' starts the above process again.

344 SC34-0313

o

o

o

o

C)
~

o

Examples

Send a Message to Terminal $SVSlOGA

$TERMUT3 3P,00:41:10, LP= 8800

TERMINAL BROADCAST PROGRAM

ENTER TERMINAL NAME: $SYSLOGA
ENTER MESSAGE TO SEND
THIS IS A TEST MESSAGE.

ANOTHER MESSAGE ? Y
ENTER MESSAGE TO SEND
THIS IS ANOTHER TEST MESSAGE.

ANOTHER MESSAGE ? N

ANOTHER TERMINAL ? N

DETACH PGM (WAIT FOR 'ATTN SEND') ? N

$TERMUT3 ENDED AT 00:43:05

$TERMUT3

Chapter 4. The Utilities 345

I $TEI!MUT3 I
S e 1 e etA not her T e r min a 1 A f t e r Sen din gaM e s~

ANOTHER LINE ? N

ANOTHER TERMINAL ? Y
ENTER TERMINAL NAME: $SYSPRTR
ENTER MESSAGE TO SEND
HELLO $SYSPRTR

ANOTHER LINE ? N

ANOTHER TERMINAL ? N

SEND MESSAGE LATER ('ATTN SEND') ? N

$TERMUT3 ENDED AT 00:54:00

346 SC34-031.3

o

c

$TERMUT3 1

o Keep $TERMUT3 Act i ve, Send a Message Later

ANOTHER LINE ? N

ANOTHER TERMINAL ? N

SEND MESSAGE LATER ('ATTN SEND') ? Y

> SEND
ENTER TERMINAL NAME: TTY30
ENTER MESSAGE TO SEND
TTY30 - ARE YOU THERE

ANOTHER LINE ? N

ANOTHER TERMINAL ? N

SEND MESSAGE LATER ('ATTN SEND') ? N

C") $TERMUT3 ENDED AT 01:42:15
~J,I

c
Chapter 4. The Utilities 347

~RAP

STRAP - SAVE STORAGE ON ~RROR CONDITION

$TRAP intercepts certain class interrupts and saves the con
tents'of hardware registers and processor storage on a disk Or
diskette data sat. Th i s ut j 1 i ty helps you to diagnose system or
application program problems. The companion utility, $DUMP,
prepares a formatted display of the data saved by $TRAP.

$TRAP must be executed before an expected failure so that the
requested class interrupts can be intercepted when they occur.
It can also be acti \fated if a class interrupt such as a program
check or mach i ne check do not occur.

Two methods are prov i ded to accomp I j shed forced traps:

• ATTN: TRAPDUMP

• The console interrupt button

$TRAP does not affect the execution of any program or operator
command unles~ it is activated by a class interrupt such as a
program check or ea mach i ne check, or by the operator.

348 SC34-0313

()

//\

I,)

c

o

("\"

,/

c

Example

> $L $TRAP

DUMPDSCNAME,VOLUME): DUMP,EDX003
$TRAP 15P,12:16:42, LP8FOO

TO ACTIVATE TRAP USE ATTN: TRAPON
TO DEACTIVATE TRAP USE ATTN: TRAPOFF
TO FORCE TRAP USE ATTN: TRAPDUMP
TO END $TRAP USE ATTN: TRAPEND
DO NOT USE $C TO END $TRAP
IF TRAP OCCURS SYSTEM MUST BE IPLED
TRAP ON MACHINE CHECK? CY/N) Y
TRAP ON PROGRAM CHECK? (Y/N) Y
SPECIFICATION CHECK? (Y/N) Y
INVALID STORAGE ADDRESS? (Y/N) Y
PRIVILEGE VIOLATE? (V/N) Y
PROTECT CHECK? (V/N) Y
INVALID FUNCTION? CY/N) Y
TRAP ON SOFT EXCEPTION? CY/N) Y
INVALID FUNCTION? (Y/N) Y
FLOATING POINT EXCEPTION? (Y/N) Y
STACK EXCEPTION? (Y/N) Y
TRAP ON CONSOLE INTERRUPT? (Y/N) Y
SAVE FLOATING POINT REGS? (Y/N) Y

TRAP SET OFF
READY FOR ATTN: X---X

> TRAPON
TRAP SET ON
> TRAPOFF
TRAP SET OFF

Notes:

$TRAP

Notes
(1)

(2)
(2)
(2)
(3)
(3)
(4)
(5)
(6)

(7)

(8)
(9)

(10)

(11)

(11)

1. The $TRAP data set must be as large as the storage used: for
a 64K-byte system, it must be at least 256 records; for a
128K-byte system at least 512 records.

2. Trap initiation is via the attention handler. TRAPON acti
vates the trap facility but does not produce a storage
dump. You must activate the trap facility (TRAPON) first;
then specify TRAPDUMP to force a storage dump. If TRAPDUMP

Chapter 4. The Utilities 349

[$TRAP]

is used, I PL to resume operat ions.

3. STRAP should not be cancelled using $C. Use TRAPEND.

4. During trap processing, all I/O activities are halted. All
configured devices are reset. IPL to resume operations.

5. A 'V' response saves storage and hardware registers when
any machine check (storage parity, CPU control or I/O error
check) occurs.

6. A 'V' response prompts you for the type of program check to
trap. Any combination of the five types can be selected.

7. A 'V' response prompts you for the type of soft exception
to trap. Any combination can be selected.

8. It may be desirable to save storage even though no hardware
detectable error has occurred. This option can be used to
cause a trap when the console interrupt button is pressed.
(Programmer console must be installed on Series/I)

9. Respond with 'V' if the Series/1 has the floating point
hardware installed.

10. STRAP initializes to a TRAPOFF state. Any time after this
message YOll can act i vate trap us i ng the STRAP attent i on
commands. See notes 2-4.

11. These are the TRAPON and TRAPOFF attent i on commands.

350 SC34-0313

(~)

"c--"\

I,c;;)

o

o

o

o

[App!;cat;on Program Preparat;on

CHAPTER 5. APPLICATION PROGRAM PREPARATION

Application program preparation consists of four major oper
ations:

1. Enter i ng the program source statements onto disk or
diskette.

2. Compiling or assembling the source program into an object
module.

3. Link editing two or more object modules together to form
the final object module.

4. Converting the object module into an executable relocata
ble load module which can then be loaded and executed.

Entering Source statements

Entering program source statements for assembly or campi lation
on the Series/l is normally performed using either of the edi
tor utilities, $EDITIN or $FSEDIT. (For descriptions of the
text ed i tors, refer to "Chapter 4. The Ut iii ties" on page 47.

When entering source programs which will be assembled by the
System/370 host assembler, $EDITI or $FSEDIT can be used to
enter the program and store it in a host data set. This oper
ation requires that IUP 5796-PGH, Event Driven Executive Host
Communication Facility, be installed on the host computer.
Alternatively, a source program entered using $EDITIN or
$FSEDIT can be transmitted to the host for assembly using uti 1-
ity programs $RJE2780 or $RJE3780 when the host computer sup
ports the IBM 2780 or 3780 RJE stations.

Pro g ram s to be ass e m b 1 e don the h '0 5 t S y s t e m / 370 can a 1 sob e
entered into the System/370 as either punched card decks or by
any type of terminal input supported by the host system.

Chapter 5. Application Program Preparation 351

Program Asse.mbly/CompilQt;on

Program assembly or campi lation can be performed by several
assemblers and compilers each with some restrictions on their
capabilities. They include:

• The Event Dr i ven language comp i ler, $EDXASM, from the
Event Driven Executive Program Preparation Facility

• The Series/l Macro Assembler ($SlASM)

• The Macro Assembler supplied by the System/370 Program
Preparation Facility

• The COBOL comp i ler

• The FORTRAN comp i ler

I· The Pl/I camp i ler

Some restrictions that apply to the use of the two assembler
programs ($SlASM and Host Preparation) and the 9EDXASM compil
er are discussed in more detai 1 in the chapters on each of them.
The $EDXASM compiler and the $SlASM assembler can be executed
concurrently with other programs in an Event Driven Executive
based system. Both the Series/l and Host assemblers are macro
assemblers which permit the assembly of both Event Dri ven
Language instructions and Series/l assembler language
instructions. $EDXASM provides for the compilation of Event
Driven Language instructions only. Use of the host assembler
requi res installation of the Event Dri ven Executi ve Macro
Library/Host. Assembly of Series/l assembler instructions and
Event Driven language instructions using $SlASM requires the
Event Dr i ven Execut i ve Macro Library.

Object modules produced by the host assembler must be transmit
ted to Series/l disk or diskette for link editing and conver
sion into executable programs. Possible means of transmission
include the use of utility programs $HCFUTl, $RJE2780, or
$RJE3780. If the host assembly is a complete main program, it
can be transmitted and converted in one step by using the uti I
i ty pr'ogram $UPDATEH. Use of $HCFUTI or $UPDATEH requi res that
the Host Communications Facility (IUP 5796-PGH) be installed
on the host computer.

Minor differences exist between the format of source programs
to be compiled by $EDXASM and either of the macro assemblers.
When using $EDXASM, you must explicitly code any ECB and QCB
statements that are required. Also, $EDXASM provides the COpy
statement function in a different manner than the host assem
bler, or the limited manner available with the Event Driven

o

o

o

o

[Application Program Preparation

Executive Macro Library as a macro instruction. $EDXASM per
mi ts labels in programs to be composed of any pr i ntaole charac
ters with a maximum label length of eight characters.

Linkage Editor

Link ed i t i ng obj ect modu les together is an op tiona I program
preparation step except when the Series/l Macro Assembler
($SIASM) is used. In that case, the output object module of
$SIASM must always be link edited ($LINK). If your program is
compi led or assembled as a single module it is not necessary to
use the linkage editor, $LINK, in the program preparation proc
ess (except when $SlASM is used). However, when creating large
programs it is frequent ly des i rable to segment the program into
functional modules. The modules can then be compi led or assem
bled separately, as they are created, and then linked together
to form the final program. In this manner, a change in one mod
ule requires only recompiling or reassembling the modified
section followed by a link editing with the unchanged modules.
Object modules that are input to SLINK can be created by
$EDXASM, $SlASM, COBOL, FORTRAN, PL/I, or the Host Assembler as
previously described.

Object Module Conversion

The program modules which are the output of the various campi 1-
er or assembler programs or $LINK are not in the format that is
required by the program loading function of the system supervi
sor. The utility programs eUPDATE or eUPDATEH must be used to
convert an object module into loadable form and to update the
directory of the volume on which the loadable program is
stored.

Prefind of Oata Sets and Overlays

Each time your program is loaded into storage for execution,
the location of the data sets and overlays it uses must be
determined by the loader. $PREFIND can be used to perform the
data set and overlay location fUnction before program load
tfme. The result is a faster load operation. Use of ePREFIND is
optional.

Chapter 5. Application Program Preparation 353

[APPlication Program Preparation I
Caution must be exercised in using $PREFIND. See "$PREFIND
Usage Cautions" on page 303.

Summary

The following sections describe in more detail the use of the
various assemblers and compilers ~nd the operation of $lINK,
$UPDATE, $UPDATEH, and $PREF IND. See "Chapter 4. The
Utilities" on page 47 for descriptions of the editing utilities
$EDITl, $EDITIN, and $FSEDIT (th~y are not used exclusively for
source program entry).

The programs $EDXASM, SLINK, $PREFIND, $UPDATE, and $UPDATEH
can be invoked individually from a terminal using either the
session manager or the $L ·function. They can also be invoked as
part of a batch job stream operation under the control of
$JOBUTI l lit iIi ty. For a descr i pt i on of $JOBUTI L ope rat ions,
see "$JOBUTI l - Job stream Processor" on page 271.

Figure 22 on page 355 shows the program preparation process of
assembling or compiling, link editing and updating. The pro
grams can be invoked individuallY by the session manager or
through the batch job stream processing utility. An example of
prepar i ng an appl i cat i on program can be found in the System
Guide.

354 SC34-0313

o

o

o

C)

o

Format

$UPDATE

Other
object
libraries

$EDXASM

Figure 22. Event Driven Executive program preparation

Chapter 5. Application Program Preparation 355

$EDXASM - EVENT DRIVEN LANGUAGE COMPILER

SEDXASM provides an online program compi lation capabi lity that
can be executed concurrently with other programs in an Event
Driven Executive based system. Multiple copies of SEDXASM can
operate concurrently.

$EDXASM is composed of a main program plus a large number of
overlay programs and, therefore, makes extensive use of the
program loading facilities of the supervisor. If during exe
cution of SEDXASM, you invoke other programs by means of the $L
function, the execution of SEDXASM may be delayed until all
information needed by the $L command (e.g. data set names) has
been entered. This delay is because the program load facility
is a serially usable function and must complete one program
load request before starting another. It is good practice to
enter as much of the required information as possible on the
same line of input as the $L command to minimize the time that
the loader is busy.

Ex~mple

> $L PROGRAM, VOLUME DATASETl,VOLUME DATASET2,VOLUME

Not..,g,: Volume parameters are optional if the IPL volume
is used.

The description of $EDXASM aSsumes that you have already
entered the source program to be comp i led into a disk or
diskette data set by means of one of the editor utilities,
$EDITIN or $FSEDIT.

SEDXASM can be invoked either by the $L command, by the
$JOBUTI L ut iii ty, or by the program preparat ion ut iIi ties
option selection menu operating under the Session Manager. In
each case, the same information must be provided when $EDXASM
is loaded for execution. Invoking $EDXASM using $JOBUTIL is
shown under "Invoking $EDXASM Using $JOBUTIL" on page 368.
Invok i ng SEDXASM us i ng the Sess i on Manager is shown under
"Invoking SEDXASM Using the Session Manager" on page 369.

356 SC34-0313

()

o

o

c

$EDXASM

Language Control Data Set

$EDXASM uses a language control data set, $EDXL. The 'data set
is divided into two logical parts: the error messages and the
operation codes to process module specifications. This data
set is produced by $EDITlN. As distributed, $EDXL in the volume
ASMLIB contains the standard compiler error messages and Event
Driven Language instruction set specifications. You may wish
to add COPY code definitions or additional processing modules
and error messages and may even desire to have differently
modified versions assigned to different users. The contents of
SEDXL are described in the Internal Design. The use of the
*COPYCOD function LoJithin $EDXL is described under "COPV
statements" on page 362.

Required Data Sets

$EDXASM requires three data sets. These data sets, in order of
specification when $EDXASM is invoked using $L are:

1. l ... DJLl..t:lJlllt, or source, data .set. The format of th i s data set
is the same as produced by $EDITIN/$FSEDIT.

2. Th,g. work data set. Th is data set conta i ns object code,
relocation pointers and the symbol table. A minimum size
of 100 records is recommended; 250 records might be consid
ered average and 500 records would be large. This data set
is automat i ca 11 y a Ilocated by the Sess i on Manager to be 400
records.

3 • T h e.~Q..ll.~_ t d a t a s.~ T his d a t a set con t a ins the 0 u t " u t
object module from the compilation and serves as input to
$UPDATE (or to $LINK, if a link edit is required). The
appropriate S1 ze for the object module data set is also
,dependent 011 the program size. For est i mat i ng purposes,
divide the program length in bytes by 100 to get the number
of records required.

Chapter 5. Application Program Preparation 357

r $EOXASM I
Sample printouts showing the prompt messages and replies fol
low:

> $L $EDXASM,ASMLIB
SOURCE CNAME,VOLUME): ASMSRC
WORKFILECNAME,VOLUME): ASMWORK
OBJECT (NAME,VOLUNE): ASMOBJ

$EDXASM 64P,02:48:50, LP= 6300

SELECT OPTIONS (?): ?

The program name and data sets required can be entered in the
same line. For example:

> $L $EDXASM,ASMLIB ASMSRC ASMWORK ASMOBJ

This single line entry is equivalent to the multiline entries
above.

Compiler Options

When the compiler is loaded into storage, enter the options to
be used. The option list follows:

SELECT OPTIONS (?): ?

LIST - SPECIFY lIST DEVICE
NOlIST - DO NOT PRINT LISTING
ERRORS - LIST ERRORS ONLY
CONTROL - SPECIFY CONTROL LANGUAGE
END - END OPTION SELECTION

('ATTN - CA' TO CANCEL ASSEMBLY)

358 SC34-0313

('

(\,. "l

o

o

O·~,,',
I'

$EDXASI\1

If no options are selected, because YOll entered only a carriage
return/ENTER in response to the select option message, the
defaults are LIST on $SYSPRTR using the language control data
set $EDXL on the volume ASMLIB. If a listing is required on
another device, specify LIST or L. You can enter the name of
the device in response to the prompt for device name or on the
same 1 i ne. A nu 11 entry or an * 1 s used to spec i fy your term i
nal.

If no listing is required, specify NOLIST or N •. In this case,
the com p i I est a tis tic s are p r i n ted 0 nth e sam e.. t e r min a 1 a s
$EDXASr1 was loaded from. If only statements containing errors
are to be pr i nted, spec i fy ERRORS or ER. In th is case, a dev ice
name is required as in LIST. Similarly, a null entry or aster
isk (*) indicates that the error messages are to be listed on
the loading terminal. This option is very useful for the first
few compilations to remove typographical or simple syntactical
errors from the source program.

If a control data set other than $EDXl on the volume ASMlIB is
required, enter CONTROL followed by the name and volume of the
data set to be used. All option entries can be entered on a
single line or in response to prompt messages. The last
entered listing option takes precedence. The compilation or
the subsequent 1 i st i ng can be cance 11 ed at any time by press; ng
ATTN and enter i ng CA.

$EDXASM Output

When the compilation process is complete, the compiler prints
out statistics. They indicate the source, work, and object data
sets used, the date and time the comp i lat i on started, the
elapsed time for the compilation, the number of statements
processed, the number of statements flagged with er'ror mes
sages, and the compilation completion code. A completion code
of -1 is normal. At this time, the object module is stored and
is ready for input to $UPDATE or $l INK. I f a list i ng has been
requested, it is then pr i nted on the appropr i ate output dev i ce.
The printing of duplicate lines of object code is automaticallY
sliPpressed by the listing routine of $EDXASM. Before the data
sets specified in the compilation are reused, it is possible to
r e que s t a lis tin g 0 f the com p i 1 a t ion u 5 i n-g the pro g ram
$EDXL 1ST. Refer to "$EDXL 1ST - Comp i ler List i ng Program" on
page 370 for more i nformat i on.

Chapter 5. Application Program Preparation 359

Examples

LIST on $SYSPRTR:

SELECT OPTIONS (1): null entry

ERRORS on PRINTER!:

SELECT OPTIONS (1): ERRORS
DEVICE NAME: PRINTERl

SELECT OPTIONS: END
or

SELECT OPTIONS: ER PRINTERl END
--~

NOLIST and use $EDXL on EDX002:

SELECT OPTIONS (1): N CONTROL
CONTROL(NAME,VOLUME): $EDXL,EDX002
SELECT OPTIONS (?): END

P r,.o c e S...!iin.9 Com p i 1 e r 0 u tJ2..Y.J wit h $ U P D ATE 0 r $ L tN K

The output object module has been completed before the listing
is started; therefore, the object module can be processed by
$LINK and/or $UPDATE while the listing is being produced. The
operation of $UPDATE is described under "$UPDATE - Object
Program Converter" on page 408. The operation of $LINK is
descr'ibed under "$LINK - Linkage Editor" on page 390.

360 SC34-0.313

o

o

o

o

0,"'"
"

Compiler Features Supported

Print Control Supported:

EJECT
SPACE
SPACE n 1 < n < 25
PRINT OFF/ON
PRINT DATA/NODATA

PRINT NODATA suppresses the printing of all
lines of object code which are not on the same
line as a source statement.

PRINT DATA is equivalent to PRINT ON.

Print Control Unsupported:

TITLE
PRINT GEN/NOGEN

Establishing Symbolic Representation:

EQU
CSECT
ENTRY
EXTRN
WXTRN

Programming Considerations

Source Line ContinuatioQ

$EDXASM

Continuation of source lines is indicated by placing any char
acter in position 72 of the line to be continued. If the line to
be continued contains a blank prior to position 71, then any
further information on that line is ignored. Continuation
lines must begin in position 16. The data in positions 16 up to
71 (or the first blank) i~ concatenated to the data from the
preceding line.

Chapter 5. Application Program Preparation 361

[$EDXASM

Recommended practice 1S to either code the operand fields
through position 71 of a line to be continued, or to terminate
the line by placing a b.lank after the comma which terminates
one operand in the str i ng of operands.

The maximum number of continuation lines is limited only by the
maximum of 254 characters in the operand field.

COpy Statements

COpy statements can only be used in the first level of source
code. They cannot be used with i n COpy code.

$EDXL conta i ns t,oJO *COPYCOD statements, *COPYCOD ASMLIB and
*COPYCOD EDX002. This indicates to $EDXASM that volumes ASMLIB
and EDX002 are to be searched for the spec j al source module
each time a COpy statement appears ina source program. I f your
COpy modules are not in either of the above volumes, you must
add an *COPYCOD statement to $EDXL for each additional volume
wh i ch conta i ns COPY modules.

To def i ne your COPY code to the comp i ler:

1. Create your COpy code source statements by using $EDITIN or
$FSEDIT

2. Add *COPYCOD statements (i f requ ired) to $EDXL (or your
$EDXL special copy), with $EDITIN or $FSEDIT.

The format of the *COPYCOD statements is:

*COPYCOD volume

Column 1 10

The libraries are searched in the order in which the *COPYCOD
statements appear in $EDXL.

ECB and QCB

Certain conditions apply when any of the following are coded:

362 SC34-0313

()

o

c

o

$EDXASM

LOAD .•• ,EVENT=ecbname
WAIT/POST ecbname
ENQ/DEQ qcbname

The ECB or QCB is not automat i ca 11 y created but must be exp 1 i c
itly specified by you. If EVENT=ecbname is specified in a PRO
GRAM or TASK statement, do not code an ECB statement;
otherwise, duplicate labels will result.

Multiple Declarations on DC and DATA statements

When implementing DC (or DATA) statements, up to 10 declara
tions can be made on a single DC statement. A sample statement
follows:

DC F'S',ACTEST),CL5'ABC'

The fo llow i ng DC types are supported:

Chapter 5. Application Program Preparation 363

[:SEDXASM I

F'x',mF'x' where 'm' is the number of times the
data is to be duplicated

A(y),mA(y)

X'z',mX'z'

H' s ' , mH ' s '

where 'z' can be from 1-8 hexadecimal
digits.

C't',mC't',CLn't',mCLn't'
where 'n' is the length of the data
in bytes

D'w' ,mD'w'

E'u',mE'u'

L'v',mL'v'

~F Statement Placement

IODEF statements must appear after the PROGRAM statement and
before the ENDPROG statement. Also, all IODEF statements of
the sa m,e t y p e (e. g ., PI, D I, 00, AI, A 0) m u s tap pea r tog e the r i n
a group. For example, if a program requi res two DI and three DO
definitions, the statements in the program would be coded as
follows:

IOOEF
IODEF
IODEF
IOOEF
100EF

011 , ••.
012, ...
001 , •••
D02, ..•
003, .••

In other words, the D I and DO de fin i t ion s must be grouped
together.

364 SC34-0313

0,11

I,

o

o

$EDXASM

GETEDIT and PUTEDIT

The instructions GETEDIT and PUTEDIT cannot have the format
statement included in the instruction. A separately coded FOR
MAt statement must be referenced by the GET EDIT or PUTEOIT
instruction.

ATTNlIST Statement

The ATTNlIST statement can have only one list coded. The list
can be up to 254 characters in length and can contain a total of
50 suboperands or 25 ATTNlIST entr i es.

EQU Statement

labels referenced in EQU statements must have been previously
defined.

Arithmetic Expression Operators

Only one operator is allowed in an arithmetic expression. Val
id operators are +, -, *, and /. For example, the following
expressions are valid: A+B, C-l, 0*4, E/2. If an expression
containing more than one term is required, multiple equate
statements can be coded. For example, to compute the address
A+B-2, the following statements can be coded:

APB
APBM2

EQU
EQU

A+B
APB-2

Instructions Requiring Support Modules

Certain instructions require support modules link edited into
the executable load module. These modules are referenced in

Chapter 5. Application Program Preparation 365

I $EDXASM I
the linkage ed i tor autocall data set $AUTO. Therefore, the mod
ules are automatically included in your program by running the
link editor on the object module output of $EDXASM. Use of the
following instructions requires a link edit.

Formatting instructions

GETEDIT
PUTEDIT
FORMAT

Graphics instructions

CONCAT
GIN
PLOTGIN
SCREEN
XYPLOT
YTPLOT

Square root instruction

SQRT

S ~ r i e 5/1 M Cl.C r 0 Ass e m b I e r i n t e r fa C e ins t r u C t ion

USER

The supervisor interface module $$RETURN must be link-edited
with any module that includes the USER statement.

366 SC34-0313

o

o

o

$EDXASM

A link edit is also required if any of the following screen
formatting subroutines are called in an application program:

$IMOPEN
$IMGEN
$IMDEFN
$IMPROT
$IMDATA
$PACK
$UNPACK

The supervisor interface module $$RETURN must be link-edited
with $IMOPEN and $IMGEN if they are called in an application
program.

See the descr i pt i on of "$ LINK - L; nkage Ed i tor" on page 390 for
i nformat i on on us i ng the 1 i nkage ed i tor.

Chapter 5. Application Program Preparation 367

I SEDXASM]

Invok;ng $EDXASM

Invoking $EDXASM Using $JOBUTIL

$EDXASM can be invoked using $JOBUTIL. The same options are
a val I a b let h r 0 ugh the PAR Mfa c iii t y 0 f the job s.t rea m pro c e s s 0 r
($JOBUTIL) as were described previously under the $L command.
The listing option is specified in column 10, the device name
in column 20, and the control data set name and volume in column
40. If the default options are required, the PARM statement can
be blank but must be included in the procedure. A sample proce
dure is shown be low:

LOG
PROGRAM
OS
OS
DS
PARM
NOMSG
EXEC

PRINTER!
$EOXASM,ASMLIB
ASMSRC
ASMWORK,EDX003
ASMOBJ
LIST PRINTER!

368 SC34-0313

o

o

o

c

Invoking SEDXASM Using the Session Manager

$EDXASM can be invoked using the session manager by selecting
opt i on 1 from the program preparat i on secondary opt i on menu.

The following parameter selection menu is displayed for entry
of the required data sets and optional parameters. The control
data set is assumed to be SEDXL on ASMLIB. The example shows the
data set ASMSRC is to be compiled with the object output being
di rected to the data set ASMOBJ.

SSMM0201: SESSION MANAGER SEDXASM PARAMETER INPUT MENU -
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> ASMSRC,EDX002

OBJECT OUTPUT (NAME,VOLUME) ==> ASMOBJ,EDX002

ENTER OPTIONAL PARAMETERS BY POSITION ==> NOlIST
1--------
LIST
NOLIST
ERRORS

lPRINTER
2--------
PRINTER

NAME

DEFAULTS ARE:
LIST
SSYSPRTR

Chapter 5. Application Program Preparation 369

$EDXASM

$EDXLIST - Compiler Listing Program

$EDXLIST is used to obtain a listing of the last $EDXASM compi
lation performed.

You can specify LIST or NOLIST in response to the SELECT
OPTIONS (?): prompt when $EDXASM is loaded. If you respond with
the ENTER key or LIST, $EDXASM automaticallY loads $EDXLIST as
part of the comp i lat i on step and produces ali st i ng of the com
pilation. If you respond with NOLIST, the statistics from the
compilation are displayed on the loading terminal and a listing
is not produced.

$EDXLIST can be loaded as a separate program. For example, if
NOLIST were selected, and the statistics displayed at the end
of the comp i lat ion i nd i cate that there are comp i lat i on errors,
$EDXLIST can then be loaded to pr i nt ali st i ng.

$EDXLIST will prompt for the source data set and the work data
set and wi 11 get the name of the language control data set from
the work data set, in wh i ch it is stored, at the end of the com
pi 1 at ion. As long as an i liter ven i ng comp i lat i on has not a I tered
the contents of the work data set, and you have not mod if i ed the
source or language control data sets, $EDXLIST wi 11 produce the
same 1 i st i ng when loaded by you after a comp i lat i on as it would
we rei t loa d e d b y $ E D X A SMa spa r t 0 f the com p i 1 a t ion s t e p .•

I Invoking $EDXLIST

$EDXlIST is invoked using $l. Two data set names are required:
the source (SOURCE) and work (WORKFILE) data set used for com
pilation. The name of the control data set used for the compi
lation is kept in the work data set. If $EDXASM was invoked by
the session manager, the work data set will be named $SMluser
(where user is the sign on ID used).

Caut;on: If you want a listing of the latest compilation, use
$EDXLIST before invoking $EDXASM again. Any subsequent compi
lation modifies the contents of the source and work data sets.

An example using $EDXLIST follows:

370 SC34-0313

()

o

o

o

o

> $L $EDXLIST,ASMLIB
SOURCE CNAME,VOLUME): ASMSRC , EDX002
WORKFILE(NAME,VOLUME): ASMWORK,EDX002

$EDXLIST 21P,00:07:49, LP= 6500

SELECT OPTIONS (?): ?

LIST - SPECIFY LIST DEVICE
ERRORS - LIST ERRORS ONLY
END - END OPTION SELECTION

('ATTN - CA' TO CANCEL LISTING)

SELECT OPTIONS (?): LIST
DEVICE NAME: $SYSPRTR

SELECT OPTIONS (?): END

$EDXLIST ENDED AT 00:08:46

$EDXASM

Chapter 5. Application Program Preparation 371

$SlASM

$SlASM SERIES/l ASSEMBLER

$SlASM prov i des an on 1 i ne program assemb 1 y capab iii ty that can
be executed concurrently with other programs in an Event Driven
Executive system. $SlASM produces object modules from source
programs written in Series/l assembler language or Series/l
assembler language macros such as the commands provided by the
Event Driven Executive Macro Library. Multiple copies of
$SlASM can operate concurrently if each copy has its own work
files and printer. $SlASM is composed of a main program and a
number of overlays.

The following description of $SlASM assumes that you have
entered the source program to be assemb led ; nto a disk or
diskette data set. This is accomplished by using one of the
editor utility programs, $EDITIN or $FSEDIT. $SlASM can be
invoked by:

• The Program Preparat ion ut iIi ties opt i on se lect i on menu
operat i ng under the sess i on manager

• The $L operator command

• The batch job stream process i ng ut iii ty, $JOBUTI L.

Required Data Sets

$L and $JOBUTIL require that the following information be pro
vi ded when $SlASM is loaded for execut i on.

1. The source input data set.

2. Three work data sets, used as work files, conta in i ng object
code, re locat i on po inters, the symbo 1 tab Ie, and other
i nformat i on. For. most programs, sizes of 2000, 2000, and
800 for ASMWRKl, ASMWRK2, and ASMWRK3, respectively, are
sufficient. This requirement can increase when assembling
a large program conta in i ng many macro ca lIs.

3. The object data set. This data set wi 11 contain the output
object module. It serves as input to the 1 i nkage edi tor
($LINK) which must always be run when using $SlASM. A size
of 50 to 100 sectors is sufficient for most programs.

The Sess i on Manager prov i des the work data sets and
requ i res only that the input and output data sets be spec i
fied.

372 SC34-0313

o

c

o

o

$SlASM

Invoking $SlASM

Invoking $SlASM using $l

For i 11 ustrat i ve purposes, let us assume that:

• EDX002 is the IPl volume

• Data sets ASMSRC and ASMOBJ are on that volume

• EDX003 contains the ASMWORKl, ASMWORK2, and ASMWORK3 data
set.:!,

• PRNTRl is the name of a print device.

Specify Data Sets (Prompt/Reply Mode)

A sample printout showing the prompt/reply format of $l to
invoke $SlASM and specifying these data sets follows:

> $L $SlASM,ASMLIB
SOURCE (NAME,VOLUME):
WORKl (NAME,VOLUME):
WORK2 (NAME,VOLUME):
WORK3 CNAME,VOLUME):
OBJECT (NAME,VOLUME):

MACLIBl (?):

ASMSRC
ASMNORK1,EDX003
ASML,JORK2, EDX003
ASM"~ORK3, EDXO 03
ASMOBJ

Specify Data Sets (Single Line Mode)

A sample printout showing the single line format of $l to
invoke $SlASM and specifying these data sets follows:

Chapter 5. Application Program Preparation 373

$SlASM

> $L $SlASM,ASMLIB ASMSRC ASMWORK1,EDX003 ASMWORK2,EDX003
ASMWORK3,EDX003 ASMOBJ

MACLIBI (1):

Specify Macro Libraries

In both of the previously shown modes, you are prompted as fol
lows:

MACLIBI (1):

If you require macros for this assembly, yoU can specify one or
two macro library volumes. A null response (ENTER) takes you to
the next prompt (SELECT OPTIONS). If a MACLIBI is specified (as
shown in the following example), another prompt (MACLIB2)
appears:

MACLIBI (1): MACLBl

MACLIB2 (1):

You can supply the name of another macro library or enter a null
response.

Note: If your source program contains Event Driven Language
instructions, you must specify, as either MACLIBI or MACLIB2,
the name of the volume(s) that contains the Event Dri ven Execu
tive Macro Library (S719-LMS) and copy code.

374 SC34-0313

()

c

o

0,")" '"

$SlASM

Specify Assembly Options

After entering the macro library volume name(s) and/or a null
response, you are prompted as fo llows:

ENTER OPTIONS (1):

Following is a list of possible replies:

• Enter a null response and take the default options (LIST,
OBJ ECT, MAC RO)

• Enter the options you desire (for example, LIST, NOXREF,
NORLD). See "List of Options" on page 378.

• Enter a question mark to display a list of the available
options. After the options are displayed, the ENTER
OPTIONS (?): prompt is d i sp layed.

• Enter the options of your choice, followed by the name of
your output device. This prevents the next prompt from
appearing.

If you do not s~ecify the name of the output device with your
options, as follows:

ENTER OPTIONS (1): LIST,NOXREF,NORLD

Chapter 5. Application Program Preparation 375

$SlASM

You are prompted wi th:

ENTER OUTPUT DEVICE NAME:

You can enter the name of the dev i ce on wh i ch your 1 i st i ngs and
d i agnost j c messages are to be wr j tten. I f you do not spec i fy an
output device (a null response), it defaults to $SYSPRTR.

The next message displayed is:

I CPAOOOI ASSEMBLER STARTED

376 SC34-0313

c

o

C""J
'I

Complete Example:

A complete example follows using:

• AsMsRC for the source library

• AsMWORKl, AsMt~ORK2, and AsMWORK3 for work fi les

• ASMOBJ for the output fi Ie

• MACLBl for the macro library

• PRNTRI for the output list i ng •

.Invoke $SlASM and Spec i fy Data Sets to Use

> $L $SlASM,ASMLIB

SOURCE
WORKl
t~O R K 2
l~ORK3

OBJECT

(NAME,VOLUME): ASMSRC
CNAME,VOLUME): ASNWORK1,EDX003
(NAME,VOLUME): ASMWORK2,EDX003
(NAME,VOLUME): ASMWORK3,EDX003
(NAME,VOLUME): ASMOBJ

MACLIBI (?): MACLBl

MACLIB2 (?):

ENTER OPTIONS (?): ?

$SlASM

Chapter 5. Application Program Preparation 377

~lASM I
List of Options

If you enter a question mark in response to the prompt ENTER
OPTIONS, the following list of options is displayed:

VALID OPTIONS ARE:
LIST/NOLIST - COMPLETE ASM LISTING/

ERRORS ONLY
TEXT/NOTEXT - SOURCE AND OBJECT LISTING/
ESD/NOESD - LIST EXTERNAL SYMBOL DICTIONARY/

SUPPRESS THIS OPTION
RLD/NORLD - LIST RELOCATION DICTIONARY/

SUPPRESS THIS OPTION
XREF/NOXREF!FULLXREF - LIST REFERENCED SYMBOLS/

NO XREF LISTING/
LIST ALL SYMBOLS

OBJECT/NOOBJECT - WRITE OBJECT TO OBJECT FILE/
SUPPRESS THIS OPTION

MACRO/NOMACRO --- PROCESS MACROS IN SOURCE/
DO NOT PROCESS MACROS IN SOURCE

SYSPARM(' ••• ') -- SUBSTITUTION STRING FOR MACRO PROCESSIN
LINECOUNTCN) ---- LINE/PAGE FOR ASH LIST

DEFAULT N = 55 LINES/PAGE
SETCCN) --------- NUMBER OF CHARACTERS ASSIGNED TO

SETC SYMBOLS
END ------------- TERMINATE OPTIONS PROCESSING
CA -------------- TO CANCEL ASSEMBLY

ENTER OPTIONCS) SEPARATED BY COMMAS
DEFAULT OPTIONS ARE: "LIST,OBJECT,MACRO"

378 SC34-0313

o

o

c

o

$SlASM

Select processing options

You now enter the options of your choice and are prompted as
follows. A message is displayed indicating that the assembler
has started.

ENTER OPTIONS (1): LIST,NOXREF,NORLD

ENTER OUTPUT DEVICE NAME: PRNTRl

CPAOOOI ASSEMBLER STARTED

Single line format

Combining your inputs, using the single line format, the previ
ous example looks like this:

> $L $SlASM,AS~LIB ASMSRC ASMWORKl,EDX003 ASMWORK2,EDX003
ASMWORK3,EDX003 ASMOBJ

MACLIBI (1): MACLBl

MACLIB2 (1):

ENTER OPTIONS (1): LIST,NOXREF,NORLD PRNTRl

CPAOOOI ASSEMBLER STARTED

Chapter s. Application Program Preparation 379

GS1ASM]
Invoking $SIASM Using $JOBUTIl

$SIASM can be invoked using $JOBUTIl. The same options are
avai lable through the PARM faci lity of the job stre;»m processor
($JOBUTIl) as were described previously under the $l command.
If the default options are required, the PARM card can be blank
but must be included in the procedure. A sample procedure that
parallels the previous example using $l follows:

PROGRAM
OS
DS
OS
OS
DS
PARM
EXEC

$SIASM,ASMLIB
ASMSRC
ASM~JORKl, EDX003
ASMWORK2,EDX003
AS M ~J 0 R K 3 , E D X 0 0 3
ASMOBJ

NAClBl PRNTRI LIST,NOXREF,NORLD

Not~: Parameter"s of the PARM statement in the preceding sample
are column dependent:

MAClBl must start in column 10
~1AClB2, if coded, must start in column 20
PRNTRI must start in column 30
The opt i on list must start in column 40

380 SC34-0313

o

o

o

0 '1",,'\
'"''

$SlASM

Invoking $SlASM Using the Session Manager

To invoke $S1ASM using the session manager, select option 2
from the program preparat i on secondary opt i on menu.

The following parameter selection menu is displayed for entry
of the required data sets and optional parameters. The example
shows the data set ASMSRC ;s to be assembled with the object
output be i ng directed to the data set ASMOBJ.

$SMM0202: SESSION MANAGER $S1ASM PARAMETER INPUT MENU ---
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> ASMSRC,EDX002

OBJECT ,OUTPUT (NAME,VOLUME) ==> ASMOBJ,EDX002

ENTER OPTIONAL PARAMETERS BY POSITION :

MAClBl PRNTRl lIST,NORlD,NOXREF
1---------2---------3---------4--------------------------
MACLIB! MAClIB2 PRINTER ASSEMBLER OPTIONS
(VOLUME) (VOLUME) NAME SEPERATED BY COMMAS

LIST/NOlIST XREF/NOXREF/
FULLXREF

TEXT/NOTEXT MACRO/NOMACRO
ESD/NOESD OBJECT/

NOOBJECT
RLD/NORLD LINECOUNT(N)

N=lINES/PAGE

DEFAULT OPTIONS ARE:
LIST
OBJECT
MACRO

Chapter 5. Application Program Preparation 381

[:Host Assembler

HOST ASSE1'1BLER

Assembly of Event Dr i ven Executi ve programs on an IBM
System/370 requires installation of the following programs on
the System/370.

• FOP 5798-NNQ, System/370 Program Preparation Facilities
for Ser i es/l

• 5740-LM2, Event Driven Executive Macro library/Host, as is
descr i bed in the ~tem Gu ide.

Invoking the Host Assembler

It is assumed in the following discussion that the procedure
EDXPREP (described in the System Guidl:t) is installed as a cata
loged procedure. If the procedure is not cataloged, it can be
used inline. This procedure makes use of the host assembler
program of 5798-NNQ and the macro library and listing program
EDXlIST provided by 5740-l~12. The function and operation of
EDXlIST is described under "EDXlIST - Host listing Formatter".
on page 383.

Program assembly is accomplished by modifying the source and
object program names spec if i ed in the SYSIN and SYSOUT DD
statements of EOXPREP to reflect your program names, followed
by execut i on of the procedure.

Source programs can contain both Event Dri ven language
instructions and Series/l assembler language instructions.
Refer to the USER instruction in the language Reference for
i nformat i on concern i ng i nclus i on of Ser i 9s/1 assembler
instructions.

The object module pr'oduced by the assembly process
either a main program or a subprogram, as described
MAIN= operand of the PROGRAM instruction in the
Reference.

382 SC34-0313

can be
in the

language

0 ,
\',,~

""'--'\
I,,,,)

o

o

Host Assembler

Transferring the Object Module to Series/l

There are various methods which can be used to transfer object
modules created on the System/370 to the Series/I.

If IUP 5796-PGH, Event Driven Executive Host Communication
Fac iii ty, is i nsta lIed on the System/370 then ut iii ty programs
$HCFUTl or $UPDATEH can be used. If the object module is a main
program and is not to be linked together with any other object
modules, $UPOATEH can be used to read the object module from
the System/370, convert it to an executable program, and store
it in a Series/l disk or diskette. If the object module is to be
link edited with other object modules, it can be transferred to
the Series/l by using the READOBJ command of utility program
$HCFUTI.

If IUP 5796-PGH is not installed on the System/370, 'but a bina
ry synchronous cornmun i cat i on 1 i nk ex i sts between the
System/370 and the Ser i es/l, then the ut iii ty program $RJE2780
or $RJE3780 can be used to transfer object modules from
Systern/370 to the Series/l if suitable 2780 or 3780 support is
installed on the System/370. Modules transferred in this man
ner must then be processed by $LINK and/or $UPDATE to convert
them into executable programs. $RJE2780 or $RJE3780 can also
be used to submit the source program for assembly on the Sys
tem/370.

If the object module is a subprogram, it must be transmitted to
the Ser i es/l for link ed it i ng wi th a ma i n program before it can
be converted into executable format by $UPDATE.

A complete main program object module only requires processing
by $UPDATE on the Series/l to convert it to executable form.
Refer to "$UPOATE - Object Program Converter" on page 408.

Program preparation of Event Dr i ven Language programs ona SyS
tem/370 does noe use the Series/l Native Application Load
Facility, 5798-NNR.

EDXLIST - Host Listing Formatter

The purpose of the EOXLIST program is to reduce the size of, and
improve the readab iii ty of, the program list i ng. When the
PR INT GEN opt ion is used for an assemb 1 y conta in i ng macros, the
macro generated code appears on the assembler produced listing
following each source statement. Event Driven Language
instructions are implemented as macros, each macro generating
an average of si x bytes of object code. The object code is gen-

Chapter 5. Application Program Preparation 383

[-Host Assembl~~

erated using the assembler DC stat·ement.

Example:: The following example shows the format of the assem
bler listing for a small .section of a program:

LOC OBJECT CODE STMT SOURCE STATEMENT

1 MOVE A,B
0000 DOSC 2+ DC A($MOV2)
0002 OODC 3+ DC ACA)
0004 OOOE 4+ DC ACB)

5 ADD B,C
0006 0033 6+ DC A($AD222)
0008 OOOE 7+ DC ACB)
aOOA 0010 8+ DC ACe)

9 A DATA F '0'
OOOC 0000 10+A DC F ' 0 '

11 B DATA F ' 0 '
OOOE 0000 12+8 DC F ' 0 '

13 C DATA F ' 0 '
0010 0000 14+C DC F ' 0 '

This listing is difficult to read because of the mixture o'f
source statements and macro generated object code. The purpose
of the list post processing program, EDXlIST, is to condense as
m u c h 0 f the 1 i s tin gas po 5 5 i b I e and t 0 p·r i n ton 1 yes sen t i a I
information in a more readable format.

EDXLIST takes each source statement and prints on the same line
with it the object code generated by the macro expansion. Each
line has room for 10 bytes 0 f data so that near 1 y all
instructions can be printed on one line. This gives the assem
bly the appearance of being an actual assembler type language.
The results of processing the above example with EDXLIST is
shown below:

384 SC34-0313

o

''\
,,~-_/

o

0

o

Host Assembler

LOC OBJECT CODE STMT SOURCE STATEMENT

0000 OOSC OOOC OOOE 1 MOVE A,B
0006 0033 QOOE 0010 6 ADD B,C
OOOC 0000 9 DATA F ' 0 '
OOOE 0000 11 DATA F • 0 i

0010 0000 13 DATA F'O'

Program Opt;ons

A number of options are provided to further condense or elimi
nate cross reference and relocation dictionary, as well as your
own and macro generated comrnen"ts.

To use EDXlIST, the assembly output must be di rected to a data
set rather than the customary SYSOUT class. For example:

I //SYSPRINT DD DSN=$$PRINT.DISP=(.PASS).
/ ~_ SPA C E = ••• , UN I T = .•. , DC B ="_(~B_L_K_S_I_Z_E _=_. _._._) _______ . __ --'

Th i 5 data set then becomes input to the EDXL 1ST program. Exam
ple job control statements are shown below:

//LIST EXEC PGM=EDXLIST,PARM='ISA(16)/ ••. PARMS'
//STEPLIB DD OSN= •••
//SYSPRINT DO SYSDUT=A
//WORK DD DSN=$$WORK,UNIT=SYSDA,SPACE=CTRK,5)
//IN DD OSN=$$PRINT,OISP=(OLD,PASS)
//LIST DO SYSQUT=A

The IN DD c~rd refers to the data set containing original
assembler listing and the LIST DO card refers to the new list
i ng produced by EDXL1ST.

Chapter 5. Application Program Pr~p~ration 385

[H:st Assembler

If in addition to the above, the original assembler listing is
a Iso requ ired, the host ut iii ty program I EBPTPCH can be used in
the fo llow i ng manner to produce 1 t:

//BIGLIST
//SVSPRINT
//SVSUTI
//SVSUT2
//SVSIN

EXEC PGM =IEBPTPCH
DO SYSOUT=A
DO DSN=$$PRINT,DISP=(OLD,PASS)
DO SYSOUT=A,DCB=BLKSIZE=133
DD *

PRINT PREFORM=A

EXfC Statement Parameters

A number of parameters for the EDXLIST program can be speci fied
on the EXEC statement. A list of the options follows. Default
values can be found under "Defaults" on page 388.

PRINTER

TERMINAL

TERMINALE

SEQ

STMT

CONTROL=***

COMMENTS=NONE

COMMENTS=ALL

Output is listed on a pr inter.

Output is listed on a terminal.

Same as TERMINAL, except only error messages
and associated source statements are
printed.

Source code sequence numbers are pr i nted.

Assembler statement numbers are pr i nted.

Def i nes a spec i al control card that is recog
nized as an execution time control statement.
Any two characters can be specified for the
second and third characters; the first, how
ever, must be an '*'. See contro 1 opt ions
below.

Pr i nt no comments.

Print all comments.

COMMENTS=PROGRAM Pr i nt onl y comments not generated by macros.

386 SC34-0313

o

o

C
I~

'\

.. /

o

Host Assembler

COMMENTS=CONTROL Print comments only if columns 1, 2, and 3
match the value specified in the CONTROL=
parameter.

EQUATES=* Print only macro generated equates of the
form +LABEL EQU *.

EQUATES=PROGRAM Pr i nt on I y equates not generated by macros.

LABELS=PROGRAM Print labels not generated by macros.

LABELS=PEND Same as PROGRAM except all labels after the
ENDPROG statement are pr i nted.

START=PROGRAM AlII i st i ngs before the PROGRAM statement are
not pr i nted.

START=START Printing is to begin at first line of list
i n g •

XREF=NONE

XREF=$

XREF=ALL

XREF=AREF

XREF=$REF

RLD=YES

RLD=NO

Notes:

Cross-reference listing is not printed.

Print abbreviated cross-reference listing
with the exception of labels beginning with
the character $.

Same as $, except $ labels are included.

Same as ALL, except statement references are
included.

Same as AREF, except $ LABELS are included.

Pr i nt condensed re locat ion d i ct i onary.

Do not print reloca'tion dictionary.

1. I f both STHT and SEQ are spec if i ed, then statement
numbers appear to the left of the source code and sequence
numbers in the right margin. If only one is specified, the
numbers appear to the left o'f the source code.

2. XREF=ALL or XREF=$ print only the label name and its
address and these are placed in seven columns across the
page.

3. XREF=AREF or $REF prints one label per line and all
statement numbers referencing the label are printed. If
this option is selected, it is assumed STMT was also speci
fied.

Chapter 5. Application Program Preparation 387

Host ASS~mbler I
4. If START=PROGRAM is speci fied and there is no PROGRAM

statement, then the listing is printed as if START=START
was coded.

5. Whenever one of the following control statements appears
in the assembler listing, then the special listing func
'I:ions occur.

Cootrol Options

*XXEJECT Skip to a ne~ page
*XXSPACE 1 Skip one line
*XXSPACE 2 Skip two lines
*XXTITLE X-----------maximum 50 characters-----------X

Will print this character string at the
top of each successive page.

*XXLIST ON List input exactly as it appears on
original listing

*XXLIST OFF Resume listing compression.

N.ote: '*XX' represents the three characters coded in the
CONTROL= parameter discussed prey i ous I y.

These control statements are treated as comments by the assem
bler. The macros EJECT, SPACE, and TITLE distributed in the
library Sl.EDX.LISTMAC.ASM will create control statements with
the characters *** in columns 1, 2, and 3. Thus, when the cor
responding assembler listing control statements appear in the
source program, the appropriate control statements are created
for EDXLIST. They require CONTROL=*** in the PARM field.

Defaults

The two ma in parameter opt ions are PR INTER and TERMINAL. TERMI
NAL assumes output on a slow typewr iter dey i ce. It, therefore,
attempts to print as little nonessential information as possi
ble. PRINTER, on the other hand, assumes a high speed printer
is being used, and although there is st ill around a 5to 1 out
put compression ratio, the listing has a little extra informa
tion to make it more readable. The following defaults apply:

388 SC34-0313

, ' 0 ,'

c

o

o

PRINTER

STMT,SEQ
COMMENTS=PROGRAM
EQUATES=*
LABELS=PEND
START=PROGRAM
XREF=$
RLD =YES

TERMINAL

ST~1T

COt1M E NTS =NON E
EQUATES=*
LABELS=PEND
START=PROGRAM
XREF=NONE
RLD=NO

Host Assembler

Chapter 5. Application Program Preparation 389

SLINK 1

$LINK - LINKAGE EDITOR

The $LINK program provides a linkage editor capability to aid
in preparing programs to execute in an Event Driven Executive
system. With $LINK, you can:

•

I •

I ·

I ·
I •

Combine two or more separately compi led or assembled
object modules into a composite module

Combine modules with multiple control sections, for exam
ple, COBOL, FORTRAN, and PL/I programs, into a composite
module

Format the output of $SlASM for input to $UPOATE

Eliminate duplicate control sections from the input mod
ules

Automatically include standard routines referenced by the
program (AUTOCALL)

Provide a storage map of the combined, edited modules

I. Bui ld an EDX supervisor nucleus

I Each of these is explained in this section.

The object modules that are input to $lINK can be created by any
of the following program preparation facilities:

$EDXASM
$SlASM
FORTRAN
COBOL
PL/I
Host Assembler (FOP 5798-NNQ)

$LINK accepts object modules that ar~ in the compressed record
format created by the Realtime Programming System assembler.

A $LINK output module must be formatted by the utility program
$UPDATE to convert it to executable (lo:adablel form. Figure 23
on page 391 illustrates the steps necessary to prepare a pro
gram for execut i on.

390 SC34-0313

()

(~-'\,

'\",_",)-l

('")

o

o

Source
module

I nput object
module

Output object
module

Executable (relocatable)
load module

Figure 23. Programming with a linkage editor

Program
execution

$LINK

Chapter 5. Application Program Preparation39l

I $lUlK I
Combining Modules

Every program is designed to fulfill a particular purpose. To
achieve that purpose, the program can often be divided into
logical units that perform specific functions. A logical unit
of code that performs a function, or several related functions,
is called a source module.

Each source module can be programmed as a separate entity using
an appropriate programming language (for example, Event Driven
Language, Series/l Assembler Language, COBOL, FORTRAN, PL/I,
or the host assembler) and assembled or campi led. The resulting
object module can then be processed by SLINK, along with the
other object modules that are necessary to make up the entire
program.

Preparing source modules as separate logical units allows you
the ability to modify one part of a program and requires the
reassembly or recompilation of only the modified unit (fol
lowed by another execution of SLINK), as opposed to requiring
the reassembly or recompilation of the entire program. It also
allows a function that is common to several programs to be
coded and assembled or compi led once and then included wherever
needed, saving effort and ensuring consistency. Linkage edit
ing, if needed, follows the source program assembly or campi la
tion of a program.

I Multiple Control Sections

A control section (CSECT) is a unit of code (instructions and
data) that is, in itself, an entity. All elements of a control
section have a constant relationship to each other and, there
fore, it is the smallest separately relocatable unit or a pro
gram. Separate compilations always produce individual control
sections, but multiple control sections can be produced from a
single compilation as well. The COBOL, PL/I, and FORTRAN com
pi ler's always produce multiple CSECTs and, therefore, their
output must always be processed by SLINK. SSIASM and the host
assembler will also produce multiple control sections if the
CSECT instruction is used.

Formatting Modules for $UPDATE

The output object modules of SSlASM and the Realtime Program
ming System Program Preparation Subsystem assembler must be

392 SC34-0313

o

c

o

''I C'
!

.)'

0"
I ,i,i

$LINK

reformatted by $LINK prior to $UPDATE processing. The standard
link edit process does the reformatting and no special parame
ters are requ ired.

Notes:

1. $UPDATEH can handle host assembler modul~s without link
editing.

2. The output of the Realtime Programming System language
processors must be link-edited before processing by $UP
DATE.

I Elimination of Duplicate Control Sections

If the input to $LINK contains more than one control section
(CSECT) wi th the same name, the first sect i on is kept, all
subsequent sections with the same name are deleted and all
references are adj us ted to po i nt to the first CSECT. Th i s makes
the resulting program smaller and assures that there is only
one copy of any shared data areas.

I Automatic Inclusion (Autocall)

Frequently used routines can be assembled or compiled as sepa
rate modules and automaticallY included in any program that
references them by using the AUTOCALL facility of $LINK. This
technique makes it convenient to define and use standard rou
tines almost as if they were instructions. The Event Driven
Language FORMAT, GETEDIT, and PUTEDIT instructions use this
techni que. See "Autoca 11 opt i on" on page 401 for deta i led
i n for mat i on 0 nus i n g the aut 0 call op t ion.

I storage Map

$LINK produces a table showing the name, location, and length
of all contro 1 sect ions in the program p I us the locat i on of
symbols (entries) defined as referenceable by the entire pro
gram. This is useful in debugging and in determining the total
si ze of the program.

Chapter 5. Application Program Preparation 393

Building an Event Driven Executive Supervisor

$lINK and the link edit process are used to generate a custom
ized supervisor by selectively including the modules needed
for the des ired funct ions. See the ~tem Gu i de for further
information.

The Link Edit Process

The logical structure of an object module consists of three
entities:

ESC An external symbol dictionary that includes the name of
each external symbol, the type of reference it is, and
its iocation in the program. ESD entries represent sym
bols such as the label on a PROGRAM, CSECT, or ENTRV
statement, or the label of a DATA or DC statement that
defines an A-type constant.

RLD A relocation dictionary that contains an entry for each
address that must be relocated (adjusted) before the
module is executed. Each entry specifies an address con
stant by i nd i cat i ng its locat i on in the program.

TEXT An area that contains the instructions and data of the
program in the binary codes used by the Event Dr'ven
Execut i ve and/or the Ser i es/l processor.

To produce a program from a collection of object modules com
p i led 0 r ass e m b 1 e d s epa rat ely b y d iff ere n t com p. i I e r S 0 r ass e m -
bIers (for example, $EDXASM, SSIASM, COBOL, FORTRAN, Pl/I, or
the host assembler FDP 5798-NNQ), the object modules must be
link-edited (combined) to resolve the program origins (load
points) of each object module and the external references
between the di fferent modules.

Each object module is assigned a program origin (usually zero)
during assembly or compilation. When these object modules are
link-edited, SLINK assigns an origin (load point) to the text
for the pr i mary program and adj usts the RlDs descr i bing address
constants accordingly. The text for the other object modules,
as well as the address constants, are assigned addresses rela
tive to the origin (load point) assign~d to the primary pro
gram. This causes the link-edited (combined) text for all'
object modules to occupy consecutive addresses in the output
object module produced by SLINK. See Figure 24 on page 395.

394 SC34-0313

o

(, (\
.I J

o

C1

o

$LINK

Any object module that refers to an external symbol defined in
another object module must identify it as an externally defined
symbol. External symbols (EXTRNS or WXTRNS) between these mod
ules are resolved by matching the referenced symbols to defined
symbols.

The ESDs and RlDs of the object modules are combined to form
composite ESDs and RlDs for the complete program. The output
RlDs include relocatable information for the complete text of
the output object module of $lINK.

An output object module produced by $lINK looks as follows.

ESD

TEXT

RLD CESD
Output

Input object $LlNK TEXT object
modules modules

ESD RLD

TEXT

RLD

Chapter 5. Application Program Preparation 395

$LINK

Input to $LINK

Input to $LINK consists of LINKCNTL, the data set containing
control records, the various data sets containing the object
modules to be linked together, and the optional autocall data
set.

You must provide the na~es of the input and output object mod
ules to $LINK with a set of control records stored in a disk or
disk ette data set ca lIed L INKCNTL. How to format and create
these control records is descr i bed under "Control Records."

In add i t i on to the data set conta i n i n9 the contro I records, You
must also allocate two work data sets on disk or diskette. The
message data set SLEMSG is supplied with your installation
package and is required by SLINK. A description of all of the
data sets is contained under "Data Sets Used by $LINK" on page
400, along with suggestions for selecting the sizes of the data
sets.

A sample of input to $LINK follows:

OUTPUT
INCLUDE
INCLUDE
INCLUDE
INCLUDE
END

LEOUT,DANOI AUTO=LEAUTO,DANOI
lETEST,DANOl
lETESTl,DANOl
LETEST2
lETEST3,DANOl

Control Records

You must allocate the control record data set (lINKCNTL) using
SDISKUTI. Then enter the control records with SEDITIN or
$FSEDIT and store the records with either SAVE or WR ITE.

LINKCNTL should contain the names of the input object modules,
the names of the output object modules, and other control
information. Both data set name and volume name are required on
all OUTPUT and INCLUDE records, unless the data set resides on
the IPL volume. In the latter case, only the data set name is
required.

396 SC34-0313

()

o

o

o

SLINK]

Any number of leading blanks are permitted in control records,
but the record must not be longer than 71 characters. Any
record with an '*' in position 1 is treated as a comment and
wi 11 list out on the printed output.

All the parameters used must be coded in the order shown. The
parameters must be separated by one or more spaces.

END Record

The END record termi nates the control record str i ng. The
format is:

Syntax

END

Required: None
Default: None

No operands are requ ired.

Chapter 5. Application Program Preparation 397

$LINK

INCLUDE Record

The INCLUDE records specifies the input object module to be
link-edited. You can include several input object modules but
you must have an INCLUDE record for each input object module.
The format is:

Syntax

INCLUDE name,volume

Required: name
Default: Volume defaults to IPL volume.

Oeerands Description

name

volume

The name of the input object
link-edited~ There must be one
between 'INCLUDE' and 'name'.

module
or more

to be
spaces

The disk or diskette volume that contains 'name'.
Not required if 'name' resides on the IPL volume.
The first INCLUDE record cannot spec i fy the name of
a subprogram (i .e., one with MAIN=NO in the PROGRAM
statement or one t hat does not canta ina PROGRAM
statement). All other INCLUDE records should spec"":
i fy the names of subprograms.

All of the 'name,volume' specifications on INCLUDE records
must be unique in the input to $LINK. In a like manner, all
ENTRY labels and program section (CSECT) definitions must be
un i que (i. e., the same name cannot be used for both a CSECT and
an entry, or for two ENTRYs, etc.). Duplicate symbol type
errors will result if these rules are not observed. If $lINK
encounters two or more CSECTs with the same name, the first one
,~i 11 be accepted and a 11 others ignored.

CSECTs input to $LINK must not have a length of zero.

398 SC34-0313

o

o

o

SLINK

OUTPUT Record

There can only be one OUTPUT record in LINKCNTL and it must be
the first record (excluding comment records) in the data set.
The format is:

Syntax

OUTPUT name,volume NOMAP AUTO=name2,volume ENTRY=label

Required: name
Default: Volume defaults to IPL yolume.

Operands Description

name

volume

NOMAP

The name of the data set (previously allocated on
disk or diskette) to conta i n the output obj ec t
module from SLINK. There must be one or more spaces
between·'OUTPUT' and 'name'.

The name of the disk or diskette volume containing
the output data set.

This parameter suppresses printing of the storage
map portion of SLINK output starting with the line
which begins 'OUTPUT NAME=' and continuing through
the f ina 1 CSECT or ENTRY list i ng line. See the sam
ple pr i ntout for deta i Is.

AUTO=name2,Yolume

ENTRY=label

Th i s parameter spec if i es the name (and YO I ume if
the data set is not on the IPL volume) of the data
set containing the list of names of object modules
which may be included via the autocall facility. A
further discussion of the autocall option is pro
vided under "Data Sets Used by $LINK" on page 400
and "Autocall Option" on page 401.

This parameter is used only if the output of $lINK
is to be an Event Driven Executive supervisor
program ($EDXNUC). .When generat i ng a superv i sor,
'ENTRY=$START' must be coded.

Chapter 5. Application Program Preparation 399

Data sets Used by $LINK

SLINK requ i res you to spec i fy three data set names at the star t
of program execut i on (one if invoked by the Sess i on Manager) •

LINKCNTL (051) The data set that wi 11 contain the control
records.

LEWORKI (DS2) A work data set that wi 11 contain various
intermediate work areas for $LINK. This data
set must be at least 265 records and wi 11
require approximately 1 additional record for
each 60 RLD items or for each 42 program section
definition (CSECT) or ENTRY specifications.
400 records should be sufficient for almost any
program.

SLINK dynamically divides 052 into three
sect ions and refers to them as 052, OS7, and
058. Therefore, error messages loJhich reference
057 or OS8 actually refer to portions of DS2.

The session manager automatically allocates
4 0 0 records to D 5 2 • Its name is $ S f11 use r (where
user is the sign on 10 used). the sign on ID
used).

LEWORK2 (D53) A second work data set. Th i s data set conta i ns
a work area for SLINK, plus the storage area
where all SLINK printed output is stored until
it is printed at the end of $LINK execution. A
size of 20 records plus 1 rec~rd for each 3
lines of printed output expected should be
suf·ficient. The amount of printed output
varies with the number of INCLUDE records, the
number of unresolved EXTRNs and WXTRNs, etc. A
data set size of 150 records should be suffi
c i ent for most programs.

400 SC34-0313

If the space avai lable for messages in DS3
becomes filled, then the message file will be
pr inted before the end of SLINK execution.
SLINK then refills the message file as needed.
This condition can result in the printed If you
are executing other programs from the same
terminal doing $LINK, the printed output will
be interspersed with the output from the other
programs.

()

o

'\ C""·'

o

$LINK

The session manager automaticallY allocated
400 records to 052. Its name is $SM2user (where
user is the sign on ID used).

The optional data set specified by the AUTO= parameter of the
OUTPUT record is dynamically opened as DS9 by $LINK. At least
one record in 059 is required for every object module named in
the autocall list.

In addition, the data set $LEMSG must be installed on volume
ASMLIB. $LEMSG is supplied as part of the distributed system
and contains messages used by $LINK and is referenced as '054'
by $LINK. $LINK dynamically opens the data sets specified by
the OUTPUT and INCLUOE records as '055' and '056', respective
ly.

The data set spec i f i eel by the OUTPUT contro I record may need to
be as large as 350-450 records when 1 ink ed it i ng $EDXNUC.

Autocall Opt;on

$LINK provides a limited autocall option whereby modules that
are no t ex pI i cit I yin c III d e d (v i a t he I Ne l. U DEc on t r 0 Ire cor d) i n
the output object module can be automatically incorporated.
When you code the AUTO= parameter of the OUTPUT record, spec i fy
the name (and volume unless the data set is on the IPL volume)
of the data set that contains the list of object module
names/volumes, along with their entry point names, which are
avai lable for automatic inclusion in the output object module.

Stand~rd Autocall List

As part of the distribution of the Event Driven Executive syS
tem, a standard autocall list is included in the data set $AUTO
in volume ASMLIB. This standard list contains the names of the
modules and entry points that can be autocalled as a result of
including the folloNing functions in your program:

• graphics formatting instructions

• data formatting instructions

• screen formatting subroutines

• square root function •

Chapter 5. Application Program Preparation 401

SLINK

These functions generate EXTRN statements that are resolved by
specifying AUTO=$AUTO,ASMLIB.

Using a Seecial Autocall List

To add your own autoca 11 1 i st names to those prov i ded in $AUTO,
use $EDITIN or $FSEDIT to make the additions and then save the
resulting modi fied list as a saved data set with a name of your
choice. This data set name (and volume) are specified in the
AUTO= parameter of the OUTPUT record. 'I f you use the funct ions
listed previously in your program, you will need to merge the
contents of $AUTO into your autocall list.

Using the Autocall Feature

Perhaps the most common use of the autocall feature occurs when
you have assembled some number of commonly used subroutines
that mayor may not be needed by a given pr i mary program. When
you assemble a primary program, you can link edit it with the
requ ired subrout i nes by prov i ding an INCLUDE record for the
primary program and for each required subroutine. An alternate
method is to put the names of all potentially needed subrou
tines and their entry point names into the autocall list, then
provide only an INCLUDE record for the primary program and add
the AUTO= parameter to the OUTPUT record. The method that is
most e'ff i c i ent depends upon how your programs are organ i zed and
the frequency wi th wh i ch common subrout i nes are used.

You must provide EXTRN statements in the primary program for
the entry point names in the modules to be autocalled as well as
linkage (branches) to the desired entry points in the
autocalled modules. Modules that have been included with the
autocall can contain EXTRNs that are to be resolved by further
autocall processing. $LINK searches the autocall list repeat
edly unti I either all EXTRNs have been resolved or unti I no
ENTRY in the autocall list matches an unresolved EXTRN.

WXTRN Processing

The autocall list is not searched for ENTRY po i nts to match
unresolved WXTRNs. They are resolved only from the ENTRY defi
n; t ions conta i ned 1 n the modu les inc I uded (v 1 a the INCLUDE con
trol record) or autocalled. An unresolved WXTRN has no affect

402 SC34-0313

()

o

o

C'\
,/

o

SLINK

upon $LINK completion codes and the storage location contain
ing the WXTRN is set to relocatable zero. Therefore, at program
execut i on time, the addresses of unreso I ved WXTRN' s are the
program load po i nt.

Autocall List Record Format

The format of the autocall list records is shown below. They
can most conveniently be created as the saved output of a
$EDITIN or $FSEDIT editing session using tab settings of 20,
30, 40 t 50 and 60. Each input 1 i ne must conta i n the
'name, volume' entry of the object module to be autocalled,
start i ng in post i on 1. Up to 5 entry po i nt names can be spec i
fied per line, starting in positions 20,30,40,50, and 60. If
a data set has more than five entry points, multiple lines are
required. Each line must contain the module 'name,volume'
entry beg i nn i ng in pos it ion 1 and at least one entry po i nt name
starting in position 20. The autocall list must be terminated
by an '**END ' entry in an entry point name field or in a module
name field. 'Volume' is required for each 'name' that is not on
the IPL volume. For example:

line position:
1 20

NAf1El,VOLI
NAME2,VOLl

ENTRYl
ENTRYA

Output from SLINK

30

ENTRY2
ENTRYB

40

ENTRY3
ENTRYC

50 60

**END

The ,'esul t of execut i ng $LINK cons i sts of a pr i nted 1 i st i n9 and
an output object module. A sample of the printed listing fol
lows. It cons i sts of a start message, a list of the input con
trol records, a list of any unresolved EXTRN or WXTRN labels
(none in example), an optional map of program section (CSECT)
and ENTRY point locations in the output module, a length mes
sage, and an ending message. All numeric values are given in
hexadec i rna I, except the R LD COUNT fie ld.

Chapter 5. Application Program Preparation 403

[$LINK

SLINK EXECUTION STARTED
$LINK EXECUTION CONTROL RECORDS

FROM LINKCNTL,EDX002
OUTPUT LEOUT,DANOI AUTO=LEAUTO,DANOI
INCLUDE LETEST,DANOI
INCLUDE LETEST1,DANOI
INCLUDE LETEST2
INCLUDE LETEST3,DANOI
INCLUDE SUB4,DANOI VIA AUTOCALL
INCLUDE SUBS,DANOI VIA AUTOCAll
END

OUTPUT NAME= LEOUT
ESD TYPE LABEL ADDR LENGTH

CSECT $PROGRAM 0000 OOFO
CSECT OOFO 0026

ENTRY SUBI 00F2
ENTRY DEF OlOF

CSECT 0116 0044
ENTRY I 0116
ENTRY MSG OllA
ENTRY SUB2 013E

CSECT OISA 0034
ENTRY X OlSA
ENTRY SUB3 0160
ENTRY ABC 0180

CSECT Ol8E 0022
ENTRY SUB4 0190

CSECT OlBO DOlE
ENTRY SUBS 01B2

MODULE TEXT LENGTH= DICE, RLD COUNT= 40
lEOUT ADDED TO DANDI
$LINK COMPLETION CODE= -1

The printed output can be di.rected to any terminal on the
system by passing the terminal name as a parameter ($PARMI) to
$LINK. If the parameter is not passed to $LINK at program load
time, you will be prompted to enter the desired name from the
invoking terminal. A null response to the prompt for the termi
na I name routes the output to the system pr inter, $SYSPRTR.

The output object module is stored in the disk or diskette data
set specified by the OUTPUT control record if no errors occur
that are severe enough to ca~se $LINK to terminate (e.g., disk
hardware errors). However, the output module is probably not
usable if any errors occurred during $LINK execution. Refer to

404 SC34-0313

o

/r-,\
I,~~_)

c

o

c

I SLINK J
"$LINK Complet i on Codes" on page 440 for more i nformat i on.

Invok;ng SLINK

Invoking SLINK using $L and $JOBUTIL

If you invoke $LINK with the SL from a terminal, you are
prompted for the names (and volumes) of data sets LINKCNTL,
LEWORKl, and LEWORK2. You are also prompted to enter the name
of the terminal to which the printed output is to be directed.
An invalid name reply to the device name prompt causes the out
put to be directed to the terminal you are currently assigned
to. A null reply (pressing the ENTER key or carriage return)
causes the output to be directed to $SYSPRTR.

SLINK can eliso be invoked as part of a batch procedure under the
control of the job stream processor uti lity, $JOBUTIL. In this
instance, you must supply the same information as above, with
the DS and PARM commands of SJOBUTI L.

An example of invoking SLINK via SJOBUTIL commands follows:

LOG
PROGRAM
OS
OS
DS
PARM
NOMSG
EXEC

SSYSPRTR
SLINK
LNKCONTR,MYLIB
LNKWORKl,EOX003
LNKWORK2,EOX003
$SYSPRTR

SLINK sets a completion code that can be tested by means of the
JUMP command of $JOBUTIL. Successful completion results in a
code of -1. Errors encountered dur i ng $LINK execut i on cause
completion codes as shown in "$LINK Completion Codes" on page
440. Any disk I/O error which causes abnormal termination of
$LINK results in a completion code of 12. The most severe
(numerically greatest) completion code encountered is the one
posted when $ L INK term i nates exec ut i on.

Chelpter 5. Application Program Preparation 405

[$LINK I
Invoking .LINK Using the Session Manager

To invoke $LINK using the session manager, select option 5 from
the program preparat i on secondary opt i on menu.

The following parameter selection menu is displayed for entry
of the control data set ~nd volume, and the output device. The
example shows the control data set as being LINKCNTL on volume
EDX002. The required linkage editor work data sets were allo
cated at sess i on manager log all time.

$SMM0205: SESSION MANAGER $LINK PARAMETER INPUT MENU --
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

LINK CONTROL (NAME,VOLUME) ==> LINKCNTL,EDX002

OUTPUT DEVICE (DEFAULTS TO TERMINAL) ==> $SYSPRTR

406 SC34-0313

()

c

o

C
'''','~~' 'I

/

c

SLINK

Oblect Module Record Format

Records in object modules are 80 bytes in length, packed 3 per
disk or diskette record or var lab Ie-length records blocked
256. The following general description of their format is given
as an aid in diagnosing error printouts. If error message 13 is
received while link editing, error records will be printed.
Object module records containing errors are printed in
hexadecimal form if byte one equals '02'; otherwise they are
pr i nted in character str i ng form.

Byte

1

5-6

7-8

9-10

11-12

13-14

15-16

17-72

73-80

Contents

Hexadecimal '02'

One of the following EBCDIC strings:
ESD = External Symbol dictionary record
TXT = Text data record
RLD = Relocation dictionary record
END = End of object module

Unused

Blank for ESD, RLD, END
Address of 1st data word for TXT

Blanks

Number of bytes of ESD, RLD, or TXT data
in record

Blanks

ESD= External Symbol Dictionary
Identification
(ESDID) of first ESD item in record;
blank if all ESD items in record are
label definitions (LDs)

TXT= ESD ID of control section containing
the text.

RLD,END= blanks

Data items for this record

Unused by $LINK

Chapter 5. Application Program Preparation 407

$UPDATE

$UPDATE - OBJECT PROGRAM CONVERTER

$UPDATE converts an object module on a specified volume into an
executable relocatable load module and stores it into a speci
fied volume.

The object module used as input to $UPDATE may have been com
pi led by $EDXASM or the host assembler provided by FDP
5798-NNQ. An object module that is the output of the linkage
editor, $LINK, can be the input to $UPDATE. Object modules
created by the host assembler must be transmitted to a Series/l
disk or diskette volume by a facility such as the IBM 2780/3780
RJE emulation program $RJE2780/$RJE3780, or by uti lity program
$HCFUTl, before they can be used as the input to $UPDATE. The
object output of language translators other than $EDXASM or the
host assembler must be processed by the linkage editor, $LINK,
before it can be used as input to $UPDATE.

$UPDATE can be invoked either by the $L command, by the batch
job stream processor ($JOBUTIl), or by the session manager.
When invoked, $UPDATE prompts you for the i nformat jon it
requires. Examples of this interactive usage follow. An exam
ple of batch job stream invocation is given at the end of this
section.

$UPDATE Commands

$UPDATE commands are:

COMMAND (?): ?

CV - CHANGE VOLUME
RP - READ PROGRAM
EN - END
COMMAND (7):

408 SC34-0313

;/ -"I
~,""-..;

o

(
~\

)

c

Examples

Load $!JPDATE

> $L $UPDATE
$UPDATE 22P" LP= 4800

THE DEFINED INPUT VOLUME IS EDX002, OK? N
ENTER NEW INPUT VOLUME LABEL: EDX003
THE DEFINED OUTPUT VOLUME IS EDX003, OK? Y

Change Volume

COMMAND (?):CV

THE DEFINED INPUT VOLUME IS EDX002, OK? N
ENTER NEW INPUT VOLUME LABEL: EDX003
THE DEFINED OUTPUT VOLUME IS EDX003, OK? Y

COMMAND (?):

If volume not mounted:

COMMAND (?): CV
ENTER NEW OUTPUT VOLUME LABEL: EDXDFG
VOLUME NOT MOUNTED

COMMAND (?):

$UPDATE

Chapter 5. Application Program Preparation 409

$UPD~

Con v e r..:t a n d_S,J: o..r..!L-fLli.e w P r.:.Q.9..r am: T his e x amp I e a I I 0 cat e san e w
data set TESTPROG (type PGM) of the requi red si ze if a data set
with that name has not already been allocated.

COMMAND (?): RP

OBJECT MODULE NAME: OBJSET

OUTPUT PGM NAME: TESTPROG
TESTPROG STORED

COt1MAND (?):

Convert and Store a Nonex i stent Program

COMMAND (1): RP

OBJECT MODULE NAME: DUMMY

OUTPUT PGM NAME: PROGRAM

INPUT DATA SET 'DUMMY' NOT FOUND
COMMAND (1):

Not~: No action is taken when error occurs.

410 SC34-0313

o

o

$UPDATE

Convert E)(i st i ng 'Program' That is Not a Program Type Member

COMMAND (1): RP

OBJECT MODULE NAME: PROGl

OUTPUT PGM NAME: PROG2
ILLEGAL HEADER FORMAT

COMMAND (1):

Note: No action is taken when error occurs.

Convert Program Where E)(isting Output Data Set is Not Program
~

COMMAND (?): RP

OBJECT MODULE NAME: OBJSET

OUTPUT PGM NAME: TSTPROG
TSTPROG IS NOT A PROGRAM
COMMAND (1):

Note. No action is taken when error occurs.

Chapter 5. Application Program Preparation 411

Co n v e r tan d R ~-:..PJ_c;:a c e_E xis t i t19 0 u t p u.t Pro.9. ram wit h Sam e Out put
Name: In this example, if the existing output program is to be
replaced with the new output program and the new and old sizes
are the same, then the new prograrn data replaces the old with no
other changes. If the new space required is different from the
existing space, the existing data set is deleted and a new one
of the proper size is allocated wherever enough free space is
available.

COMMAND (?): RP

OBJECT MODULE NAME: OBJSET

OUTPUT PGM NAME: TSTPRGI

OUTPUT PGM NAME: TSTPRGI
TSTPRGI REPLACE? Y
TSTPRGI STORED

cor1MAND (?):

412 SC34-0.313

()

o

o

o

$UPDATE

Convert ~nd Rename New Output Progr~m if an Output Program
Alreac1y ex i sts: The ex i st i ng output data set is und i sturbed and
a new data set (type PGM) of the proper size and with the new
name is allocated.

COMMAND (?): RP

OBJECT MODULE NAME: OBJSET

OUTPUT PGM NAME: TESTPROG
TESTPROG REPLACE? N
RENAME? Y

NEW PGM NAME: TSTPRG
TSTPRG STORED

COMMAND (?):

End $UPDATE

COMMAND (?): EN

$UPDATE ENDED AT 11:39:34

Chapter 5. Application Program Preparation 413

I: $UPD~E
Invoking $UPDATE

Invoking $UPDATE Using $JOBUTIL

When $UPDATE is invoked as part of a batch job under the control
of $JOBUTIL, certain restrictions apply to its operation. In
th i s mode, the command 1 s assumed to be RP. The Rename funct ion
is not supported; however, the Replace function 1S. Refer to
the preceding examples for a description of Rename and Replace.

In batch mode, $UPDATE terminates its execution after perform
i ng one RP command. A complet i on code is set by $UPDATE depend
ing upon the success or failure of the requested operation.
This code can be tested by the JUMP command of $JOBUTIL. The
$UPDATE completion codes are described in **Figure reference
'ccupd' unresolved**.

~lhen $JOBUTIL is used to invoke $UPDATE, the information
required by $UPDATE must be passed to it by means of the PARM
command of $JOBUTI L. The requ ired i nformat i on cons i sts of:

1 • The name of the dev i ce to rece i ve the pr 1 nted output
resulting from $UPDATE execution

2. The name,volume of the data set containing the input object
module

3. The name,volume of the data set to contain the output
loadable program

4. An optional parameter YES if the output module is to
replace an existing module of the same name,volume

The volume names of the data sets must be given unless they
reside on the IPL volume.

The first three items of information are required and must be
given in the order described. At least one blank must occur
between each of these four items in the PARM command.

An example of invoking $UPDATE via $JOBUTIL commands follows:

414 SC34-0313

o

o

o

o

PROGRAM
PARM
NOMSG
EXEC

$UPDATE
$SVSPRTR OBJMOD,VOll MVPROG YES

$UPDATE

In this example, $SVSPRTR receives the printed messages, the
input object module is OBJMOD on VOLl, the output program is
MYPROG on the IPL volume. If MYPROG already exists on the IPL
volume it is replaced by the new version. If MYPROG does not
already exist then space is allocated for it by $UPDATE.

Chapter S. Application Program Preparation 415

[~$UPDATE I
Invoking $UPDATE Using the Se~sion Manager

To invoke $UPDATE using the session manager, select option 6
from the program preparat j on secondar-y opt i on menu.

The following parameter selection menu is displayed for entry
of the required data sets and other parameters. The example
shows the object program in the data set ASMOBJ is to be format
ted and placed in the data set TSTPGM. The REPLACE parameter is
left blank when a member does not already exist. If the member
did exist, that parameter should be entered as YES.

$SMM0206: SESSION MANAGER $UPDATE PARAMETER INPUT MENU -
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

OBJECT INPUT (NAME,VOLUME) =============> ASMOBJ,EDX002

PROGRAM OUTPUT (NAME,VOLUME) ============> TSTPGM,EDX003

REPLACE (ENTER YES IF PROGRAM EXISTS) ===>

LISTING (TERMINAL NAME/*> ==========> $SYSPRTR

Note: The object input, program output, and listing terminal
name must be entered .. An '*' indicates the listing will be dis
played on the terminal you are currently assigned to.

416 SC34-0313

o

o

o

$UPDATE

Creating a Supervisor

The name $EDXNUC for the output program receives special treat
ment by eUPDATE since the creation of a supervisor results in
an absolute, rather than a relocatable program. The following
rules apply:

1. If the first seven characters of the output program name
are $EDXNUC then an absolute supervisor program wi 11 be
formatted.

2. If the eighth character of the name is either a blank or is
not present, then the output program will automat i ca 11 y
replace the existing supervisor program on the specified
volume.

3. If the eighth character of the program name is any charac
ter except a blank, then the output supervisor program wi 11
be stored in the library on the specified volume using the
eight character name.

In this manner, you can create multiple supervisor programs for
different mach i ne con f i gurat ions on one Ser i es/l. You can then
copy them to the diskettes which can be used on the Series/l
having the proper configuration.

Supervisors created and stored under 8-character names (e.g.,
eEDXNUC2, $EDXNUCX, etc.) can be tested by:

1. Copying the member into eEDXNUC on the IPL volume, and IPL
the system aga in, or by

2. Providing the CTS address of the stored supervisor in
response to the Stand Alone Utilities IPL message:

'EXEC=',

Chapter 5. Application Program Preparation 417

I $UPDATEH

$UPDATEH - OBJECT PROGRAM CONVERTER (HOST)

$UPDATEH transfers, over a commun i cat 1 ens 1 ink, Ser i es/l
object programs that are members of a host partitioned data set
(PDS) and stores them in a Series/l disk or diskette volume in
the proper format to be loaded for execution. These programs
were previously assembled on the host. To change the name of
the default host library, locate the label, HOSTNAME, in the
$UPDATEH listing and change the name from the supplied default
library name to the host library name desired by you. $UPDATEH
must then be assembled and installed in the program library.

$UPDATEH requires that the Event Driven Executive Host Commu
nication Facility (rUp 5796-PGH) be installed on the host com
puter.

$UPDATEH can be invoked either by the $L command, by the batch
job stream processor ($JOBUTr l), or by the sess i on manager.
When invoked, $UPDATE prompts you for the i nformat i on it
requires. Examples of this interactive usage follow.

$UPDATEH Commands

The commands avai lable under $UPDATEH are I isted below. To dis
play this list at your terminal, enter a question mark in
response to the prompt i ng message COMMAND (?):.

COMMAND (1): ?

CH Change Host Library
CV Change Series/l Library
RP Read a Program
EN End $UPDATEH

COMMAND (1):

After the commands are displayed, you are again prompted with
COMMAND (1): to which you respond with the command symbol for
the funct i on of your cho i ce (for examp Ie, CH).

418 SC34-0313

()

c

o

C:I

O··,·~
I.,'.

$UPDATEH

Examples

Transfer of a New Program

> $L
PGMCNAME,VOLUME): $UPDATEH
$UPDATEH 23P,15.29.59, LP=4400
THE DEFINED HOST LIBRARY IS Sl.EDX.LOADLIB, OK? Y
THE DEFINED VOLUME IS EDXOOl, OK? Y

COMMAND (?): RP

PGM NAME: TPTEST
TPTEST STORED

COMMAND (?):

Request Nonexistent Program

COt1MAND (?): RP

PGM NAME : DUMMY
DU~lMV I S UNKNOWN
COr1MAND (?):

Transfer and Replace Existing Program

COMMAND (?): RP

PGM NAME: PROGl
PROG1 REPLACE? Y
PROGl STORED

COMMAND (?):

Chapter 5. Application Program Preparation 419

[$UPDATEH I
T.ransfer and Rename an Existll1.g Program: This example trans
fers an existing program, P~OGl, and renames it PROG2. The
ex i st i ng program is not rep laced.

COMMAND(?): RP

PGM NAME: PROSl
PROGI REPL? N
RENAME? Y

PROG NAME: PROG2
PROG2 STORED

COMMAND (?):

Change Host Library

COMMAND (?): CH
ENTER HOST LIBRARY NAME: Sl.EDX.LOADLXB2

COMMAND (?): EN

$UPDATE ENDED 15.30.54

420 SC34-0313

()

o

o

o

Messages and Codes

CHAPTER 6. MESSAGES AND CODES

This chapter contains messages and codes issued by the Event
Driven Executive system.

SYSTEM OPERATION MESSAGES

IPL Operation

The supervisor can be IPLed from the 4962 or 4963 disk or the
4964 or 4966 diskette. The IPL switches on the Series/l opera
tor console must be in the appropr i ate pos i t i 011 for the type of
IPL and the $SYSLOG terminal should be turned on. For example,
if DISK is used to IPL, the IPL switch must be set to PRIMARY if
the DISK is wired as the primary IPL device or to SECONDARY if
the DISK is wired as a secondary IPl device.

After IPL, the following message appears on the $SVSlOG termi
nal:

~ __ E_V_E_N_l_' __ D_R_I_V_E_N __ E_X_E_C_U __ T_I_V_E __ *_*_*~ ___________ . _________________ ~

Chapter 6. Messages and Codes 421

IMess~~~
Volume Initialization

Th e sup e r vis 0 r bh e nat tern p t s tor e a d e a c h 0 f the de fin e d
disk/diskette volumes and prints a status message similar to
the following:

VOLSER TVPE IODA STATUS
EDXOOI PRI. 0002 ONLINE
EDX002 PRI. 0003 ONLINE CIPL)
SUPLIB SEC. 0003
MACLIB SEC. 0003

PRI. 0012 UNUSABLE
EDX013 PRJ. 0013 ONLINE

Note: This information can be displayed again by using the
$IOTEST utility.

VOLSER The volume identification for the disk/diskette or the
name of a volume on a disk or diskette.

TYPE

IODA

If primary,VOLSER is the volume identification of the
disk/diskette.

I f secondary, VOLSER is the name of def i ned va I ume on the
device.

The hardware dev ice address.

STATUS The status of the hardware dev ice.

I fad i skette was not inserted ina def i ned 4964 dr i ve, the
STATUS is UNUSABLE and the volume identification for the IODA
is blank. If a diskette is subsequently put into the drive, it
will be considered OFFLINE until a $VARVON command is
performed. If the diskette contains a nonstandard label, the
STATUS is marked OFFLINE.

During IPL, the system initializes the 4966 Diskette Magazine
Unit by reading the diskette label on each diskette. The
diskettes are read in the fo llow i ng order:

1. The diskettes in i nd i vi dua 1 diskette slots 1 through 3 are
read unt i I a 11 three are read or an empty slot is found

422 SC34-0313

o

c ' \

--,j!

o

c

Messages

2. The diskettes in diskette magazine A are read until all ten
are read or an empty slot is found

3. The diskettes in diskette magazine B are read until all ten
are read or an empty slot is found

Each diskette read that conta i ns a va lid labe lis marked
ONLINE. All others are marked OFFLINE.

If the device is not turned on or has a hardware failure, the
STATUS is marked UNUSABLE.

Tape initialization is performed after volume initialization.
The supervisor attempts to read each tape address, as defined
at system gener'ation. If the address is valid, the tape is
marked OFFLINE and is therefore usable. A message is issued for
each valid tape address simi lar to the following:

TAPE 004C OFFLINE
TAPE 0040 OFFLINE]

If an address is incorrectly defined (for example, the device
is not a tape), if the tape drive is not turned on, or if the
tape drive has a hardware failure, messages describing the
problem are issued. Examples of messages are:

TAPE 004C IS NOT A TAPE * * *
TAPE 004C MARKED UNUSABLE

storage Map Generation

At this point, the storage map for the supervisor is printed.
If 64K or less storage is avai lable, one partition is avai lable
for your programs. If more than 64K is ava i lable and the

Chapter 6. Messages and Codes 423

address translator feature is installed, multiple partitions
can be defined as described in the system configuration state
ment SYSTEM. The starting address and size of each partition is
printed as shown in the following example:

STORAGE MAP
PART i START

1
2
3

30720
65536

100352

SIZE

34816
34816
30720

The superv i sor occup i es the first 30720 bytes of storage. Three
partitions are available for your programs. Partitions 1 and 2
are 34816 bytes long, and partition 3 is 30720 bytes long.

At this point, the system locates the load utility program,
$LOADER. If it cannot be found on the IPL volume, the following
message is pr i nted:

I NO PROGRAM LOAD FACILITY

Sensor I/O status Check

The system also checks the status of any defined sensor I/O or
Binary Synchronous Communications Adapter devices and prints
appropriate status messages, for example:

424 SC34-0313

/'

o

o

SENSOR I/O DEVICE AT ADDRESS 0050 IS OFFLINE
BSCA NOT THE DEVICE AT ADDR: 0019

Date and Time Printing

Messages

If timer support was included during system generation, the
system prints a message indicating that the date and time can
be optionally entered (or reset) using the $T supervisor uti li
ty:

~S_E_T __ D_A_T __ E __ A_N_D __ T_I_M_E __ U_S_I_N_G __ C_O_M_M_A_N_D __ $_T _____________________ ~

If a system has been defined to include fixed head support for
the 4962, a period of about 10 seconds will elapse before the
'Set Date •••• ' message appears. During this time, the fixed
head portion of the disk is being initialized.

Normally you enter date and time at IPl time; however, if the
system started as a result of an AUTO IPl, the date and time can
be entered later.

The super,v i sor is now ready for operat ion.

Program load Message

Any program invoked using $l (load a Program) results in the
fo llow i ng message be i ng d i sp layed, i nd i cat i ng that the program
you requested has been loaded.

~ _______ --l ~RAM 15P,14.00.35,lP=4COO ~

Chapter 6. Messages and Codes 425

I MeSSages]

Here, 15P indicates that the program is 15 pages long, where
256 bytes equals one page. 14.00.35 is the time in hours, min
utes, and seconds. LP=4COOi nd i cates that the load po i nt of the
program is at locat i on X' 4COO'. 1ft i mer support is not
included in the sliPervisor, the time is not printed.

426 SC34-0313

CI·--"-\ ..

~)

o

o

o

Messages

ERROR MESSAGES

Program Check Error Message

If a program check occurs during execution of a program, a mes
sage with the fa llow i ng format is pr i nted on the load i ng term i
nal:

PGM CHK: PlP
6BOO

TCB
0138

PSW
8002

LSB
lE6A 0000 8800

PLP The program load point of the fai ling program.

TCB The locat i on 0 f the task contra I b lock for the fa iii ng
program (the address appear i ng on the assemb I y I 1st i ng) •

PSW The processor status word when the
(described later in this chapter).

check

LSB Level status block, consisting of the following:

WORD 1 - instruction address register (IAR)
WORD 2 - address key register (AKR)
WORD 3 - level status register (LSR)
WORD 4 - 11 - general registers (RO-R7)

occurred

I f the program is wr i tten is assemb ler language, COBOL,
FORTRAN, or PL/I, the contents of the reg i sters depend upon the
conventions unique to that language. If the program is written
in Event Driven Language, registers 0 through 7 (words 4-11)
contain:

Chapter 6. Messages and Codes 427

Messages :I

WORD 4 CRO) work register
WORD S (R 1) address of Event Driven Executive

instruction
WORD 6 (R2) address of El')l TCB
WORD 7 (R3) address of EDl operand 1
WORD 8 (R4) address of EDl operand 2
'~ORD 9 (RS) EDl command
WORD 10 (R6) work register
WORD 11 (R7) work register

The program in which the error occurred is either aborted or,
if it has a task error exit, the exit is entered. In either
case, normal system execution is resumed after the program
check message has been pr i nted.

428 SC34-0313

()

o

o

c

Messages

System P~og~am Check E~~o~ Message

If a program check occurs in the supervisor, the following mes
sage pr i nts on the $SYSlOG term ina 1:

SYSTEM PGM CHK: PSW AND lSB
8000 0000 1014 BODP 6FOO 6F22 1015 s4Fs 6F26 80SC ••.

where:

WORD
WORD
WORD
WORD

1
2
3
4 - 11

- processor status word (PSW)
- instruction address register (IAR)
- address key register (AKR)
- level status register (lSR)

Chapter 6. Messages and Codes 429

r Messages I
Processor status Word (PSW) ()

Processor
Type 495x Class

Bit 2 3 5 Condition Interrupt Note

00 X X X Specification Check Program Check
01 X X X Invalid Storage Addr Program Check
02 X X X Privilege Violate Program Check
03 X X Protect Check Program Check

X Not Used 1
04 X X X Invalid Function

Soft Exception
Trap

05 X Floating Point Soft Exception
Exception Trap

X X Not Used 1
06 X X X Stack Exception Soft Exception

Trap
07 - - - Not Used 1
08 X X X Storage Parity Check Machine Check
09 - - - Not Used 1
10 X X X CPU Control Check Machine Check
11 X X X I/O Check Machine Check
12 X X X Sequence Indicator None 2
13 X X X Auto IPL None 2
14 X X Translator Enabled None

X Not Used - 1
15 X X X Power/Thermal Warning Power/Thermal 3

Notes:

1 • Always Zero

2 • Status Flag

3. Controlled by summary mask

o
430 SC34-0313

o

o

Messages

$DUMP E~ro~ Messages

Error messages may appear when the $DUMP ut iii ty is act i ve.

The following error message occurs if the data on the data set
to be dumped is not the output of $TRAP:

dsname ON dsvol DOES NOT CONTAIN $TRAP OUTPUT
$DU~1P TER~tINATED

where dsname and dsvol are the names of the data set and the
va I ume in wh i ch it res i des used as input to $DUMP.

The following error message occurs if an invalid partition
number is entered dur i ng a part i al storage dump:

PARTITION NUMBER IS INVALID

The following error message occurs if an invalid starting or
ending storage address is entered during a partial storage
dump:

DUMP RANGE INVALID
VALID RANGE IS xxxx TO yyyy

where XX)(X and yyyy are the valid range of storage addresses.

Chapter 6. Messages and Codes 431

.:

MeSSages]

$LOG Error Message (t=)

The followi ng error message occurs if the error log becomes
f u 11 :

$LOG - *** INSUFFICIENT BUFFERS FOR LOG RATE ***

432 SC34-0313

()

o

~,

C
i~

'i
/

o

Messages

I $RMU Error Messages

The following error messages are issued when the Remote Manage
ment Utility encounters an error and are written to the termi
nal that loaded the uti lity.

$RMU Error 1

The size of the buffer defined for use by the utility is less
than the 512-byte minimum. The default 1024-byte buffer size
has been modified incorrectly.

$RMU ERROR 1 - INSUFFICIENT BUFFER. SIZE: nnnn

$RMU Error 2

The OPEN of the BSC commun i cat ions 1 i ne fa i led. The return code
is defined in the description of the BSC Access Method for the
Event Driven Executive.

$RMU ERROR 2 - COMMUNICATIONS OPEN FAILED,
RETURN CODE: nnnn

$RMU Error 3

The CLOSE of a BSC communications line failed. The return code
is defined in the description of the BSC Access Method for the
Event Driven Executive.

$RMU ERROR 3 - COMMUNICATIONS CLOSE FAILED,
RETURN CODE: nnnn

Chapter 6. Messages and Codes 433

Messages

$RMU Error 4

A communications error has been detected by the utility. The
I/O function (aaaaaa) indicates the type of request as follows:

READ INITIAL
READ CONTINUE
WRITE EOT
WRITE INITIAL
WRITE EOT (ABORT)
WRITE CONTINUE

The return code is def i ned in the descr i pt i on of the BSC Access
Met hod' for the Eve n t Dr i v e n E x e cut i v e •

$RMU ERROR 4 - COMMUNICATIONS I/O ERROR.

$RMU Error 5

I/O FUNCTION: aaaaaa
RETURN CODE: nnnn

The ut iIi ty attempted to load an over lay program v i a a LOAD
instruct ion, and the load fa i led. The return code is issued for
the LOAD instruction.

$RMU ERROR 5 - LOAD OVERLAY FAILED, RETURN CODE: nnnn
OVERLAY NUMBER: mmmm

$RMU Error 6

The utility's function table defined a function as being con
tained within an overlay, but it was not. This, error can occur
if a user-written function is not added properly to the func
tion table.

$RMU ERROR 6 - OVERLAY FUNCTION MISSING. FUNCTION: nnnn
OVERLAY NUMBER: mmmm

434 SC34-0313

()

o

o

o

Messages

$TRAP Error Messages

Error messages may appear when the $TRAP utility is active.

The following error message occurs if $TRAP is loaded into a
partition other than partition 1:

$TRAP MUST BE IN PARTITION il
$TRAP TERMINATED

The following error message occurs if the data set assigned to
$TRAP is not large enough to contain the amount of storage
being saved:

dsname ON dsvol IS ONLY xxx RECORDS. MINIMUM SIZE IS yyy
RECORDS
STRAP TERMINATED

The following error message occurs if no trap conditions have
been specified:

NO TRAP CONDITIONS SPECIFIED
STRAP TERMINATED

Chapter 6. Messages and Codes 435

Comp!et;on Codes

UTILITY COMPLETION CODES

The utility completion codes are printed on the list device by
the utility programs upon their completion unless otherwise
noted.

$EDXASM Comp!et;on Codes

$EDXASM completion codes are accompanied by an appropriate
error message. The completion codes can be tested by the job
stream processor, allowing steps subsequent to the assembly to
be sk i pped, if appropr i ate. The complet i on codes are:

Completion Conditions

Successful completion -
no errors in assembly.

Successful completion -
one or more statements had
assembly errors.

Out of space in work or object
data set.

I/O error in source, work, or
object data set.

Overlay-instruction table full.

Unable to locate overlay
program or copy code module.

Operator cancelled assembly
with ATTN CA command.

436 SC34-0313

Completion Code

-1

8

12

12

12

12

100

(~:)

o

Complet;on Codes

o $IAMUTI Complet;on Codes

CODE DESCRIPTION

- 1 Successful completion
01 Data set not found (OPEN failed)
02 Invalid IODA exit (OPEN failed)
03 Volume not mounted (OPEN failed)
04 Library not found (OPEN failed)
05 Disk I/O err'or (OPEN failed)
06 No VTOC exit address (OPEN failed)
07 Link module i n use
08 Load error for $IAM
12 Data set shut down
13 Module not included in load module
23 Get storage error - IACB
31 FCB WRITE error during IDEF processing
32 Blocksize not multiple of 256
33 Data set is great~r than 32,767

Event Driven Executive records
34 Data set i s too small

C\ 36 Invalid block size during file definition
~J processing

37 Invalid record size
38 Invalid index size
39 Record size greater than block size
40 Invalid number of free records
41 Invalid number of clusters
42 Invalid key size
43 Invalid reserve index value
44 Invalid reserve block value
45 Invalid free pool value
46 Invalid delete threshold value
47 Invalid free block value
48 Invalid number of base records
49 Invalid key position
50 Data set i s opened for exclusive use
51 Data set opened i n load mode
52 Data set i s opened, cannot be

opened exclusively
54 Invalid block size during PROCESS or LOAD
55 Get storage for FeB error

o
Chapter 6. Messages and Codes 437

Complet;on Codes

CODE

56
60

61
62

100
101
110

438 SC34-0313

DESCRIPTION

FCB READ error
LOAD mode key is equal to or less than
previous high key in data set
End of file
Duplicate key found
READ error
WRITE error
WRITE error - data set closed

o

o

o

C,l

o

[Complet;on Codes

$JOBUTIL Comp!et;on Codes

The $JOBUTIL completion codes are displayed on the terminal
used to access $JOBUTI L. The codes are as fo llows.

Code

-1
61

64
67

70
71
72

73

74
75
76
77
78

79

80

Description

Successful completion
The transient loader C$LOADER) is not included
in the system
No space available for the transient loader
A disk or diskette I/O error occurred during
the load process
Not enough main storage available for the program
Program not found on the specified volume
Disk or diskette I/O error while reading
directory
Disk or diskette I/O error while reading program
header
Referenced module is not a program
Referenced module is not a data set
Data set not found on referenced volume
Invalid data set name
LOAD instruction did not specify required data
setCs)
LOAD instruction did not specify required
parameterCs)
Invalid volume label specified; for example,
greater than eight characters

Chapter 6. Messages and Codes 439

[Completion Codes

$LINK Complet;on Codes

Message Description
number

Successful completion
01 052 less than 265 records
02 Disk error reading DS1
03 End of f i 1 e reached on 051
04 Disk error reading object

module
05 Invalid 'OUTPUT' record
06 Invalid 'INCLUDE' record
07 Error opening object output

module:
- misspelled name or

volume
- data set not allocated

08 Error opening input object
module (see Error 07)

09 Error opening output module
(hardware error)

10 Error opening an input
module (hardware error)

11 Error opening autocall list
(059). See Error 07 for
causes

12 Error opening autocall list
(DS9) (hardware error)

13 Invalid input object module
record type

14 Entry point label not found
15 No valid ESDID for TXT or

RLD
16 Invalid ESD item type
17 Duplicate ESDID number
18 Invalid Symbol
19 Duplicate Entry point

symbol
20 Invalid ESDID number
22 Invalid ESD symbol
23 End of f i 1 e reached on DS9
24 Disk error reading DS9

440 SC34-0313

Cause Action
code code

1 2
2 2
1 3

2 1
1 2
1 6

1 5

1 6
2 5

2 6

1 5

2 5

4 4
1 3

4 4
4 4
4 4
4 4

3 4
4 4
4 1
1 2
2 2

Return
code

-1
12
12

4

8
12

8

12

8
12

8

12

12

8
4

8
8
8
8

8
8
8

12
12

o

/(---'\

II 'I

'"".-"J

(("\cl
:c'';

" ;;I'

Completion Codes

0
Message Description Cause Action Return
number code code code

--
25 Disk error reading DS4 2 2 12
26 End of F i 1 e reached on DS3 6 2 12
27 Disk error Read/~Jr i te

on DS8 2 2 12
28 End of f i 1 e reached on DS8 5 2 12
29 End of f i 1 e reached on DS7 6 2 12
30 End of file reached on DS4 6 2 12
31 Disk error writing on DS5 2 2 12
32 End of f i 1 e reached on DS5 5 2 12
33 End of f i 1 e reached on DS2 6 2 12
34 Duplicate section definition

(CSECT) 3 1 4
36 End of f i 1 e reached 011 DS6 4 1 8
37 Disk error, read/write on

DS7 2 2 12
38 Disk error, read/write on

DS3 2 2 12
39 Invalid RLD record data

length 4 4 8

C! 40 Disk error, read/write on
DS2 2 2 12

42 D52 not large enough
(program size over 64K) 5 2 12

45 No 'INCLUDE' records 1 2 12
It 6 No CSECT length field 4 3 4

None Unresolved EXTRN 4

0":,;
I,

Chapter 6. Messages and Codes 441

[Complet;on Codes 1

Cause Code~

1 - Your error
2 - System error
3 - Possible duplicate 'name,volume' or duplicate CSECT

or ENTRY names
4 - Input object recordCs) in error. Probable cause is

that 'name,volume' is not a valid object module
5 - Data set is of insufficient size
6 - Probable $LINK error, this condition should not

occur

Action Codes

1 - Log warning message and continue at next 'INCLUDE'
2 - Terminate $lINK with error message
3 - Continue as if expected occurance had happened
4 - Log error message plus invalid object module

record and continue at next 'INCLUDE'
5 - Log error message plus OUTPUT record and

terminate $LINK
6 - log error message plus INCLUDE record, continue

at next 'INCLUDE'

Return Code Definitions

-1 Successful completion
4 Warning: A module has been written -

execution will probably work
8 Warning: A module has been written -

execution will probably fail
12 Severe error: Module is not written

442 SC34-0313

o

c

o

o

0'1:
'I

Complet;on Codes

$UPDATE Comp!et;on Codes

The $UPDATE completion codes are displayed on the terminal used
to access $UPDATE. The codes are as follows.

Code

-1
8
8
8
8
8
8
8
8
8
8
8
8
8
8

12

Condition

Successful completion
No supervisor space in this library
Output name specified is not a program
Disk volume already in use by another program
No space in directory
No space in data set (output library)
Invalid header format
Invalid program name
Disk volume not mounted
Disk volume off line
Library not found
Input data set not found
No parameter supplied via $JOBUTIL
No data set names provided via $JOBUTIL
Replacement of output data set not allowed
Any disk or diskette I/O errors

Chapter 6. Messages and Codes 443

~n Codes I
EVENT DRIVEN LANGUAGE AND FUNCTION RETURN CODES

The Eve n t Dr i v e n Lan 9 u age ret urn C 0 de s are ret urn e din t he
fi rst: word o'f the Task Control Block of the program which
invoked the respective language instruction or function unless
otherwise noted.

$DISKUT3 Return Codes

The $DISKUT3 utility places a return code in the first word of
the DSCB specified. The return codes for $DISKUT3 are listed
below.

Code

1
2
4
5
6

7
8

9

10
11

12

13
14
15
16
17

18

19
20
21

Condition

Invalid request code parameter (not 1-5)
Volume does not exist (All functions)
Insufficient space in library (ALLOCATE)
Insufficient space in directory (ALLOCATE)
Data set already exists - smaller than the
requested allocation
Insufficient contiguous space (ALLOCATE)
Disallowed data set name, eg. $EDXVOL or
$EDXLIB (All functions)
Data set not found
(DELETE, OPEN, RELEASE, RENAME)
New name pointer is zero (RENAME)
Disk is busy
(ALLOCATE, DELETE, RELEASE, RENAME)
I/O error writing to disk
(ALLOCATE, DELETE, RELEASE, RENAME)
I/O error reading from disk (All functions)
Data set name is all blanks (ALLOCATE, RENAME)
Invalid size specification (ALLOCATE)
Invalid size specification (RELEASE)
Mismatched data set type
(DELETE, OPEN, RELEASE, RENAME)
Data set alreadY exists - larger than the
requested allocation
SETEOD only valid for data set of type 'data'
Load of $DISKUT3 failed ($RMU only)
Tape data sets are not supported

444 SC34-0313

()

c

o

o

Return Codes

$PDS Return Codes

Use the EVENT=parameter on the LOAD command when using the $PDS
utility. The $PDS utility returns the status of the request in
the Event Control block specified in the LOAD command. The
return codes for $PDS are listed below.

Code

-1
1
2
3
4
5
7
8
9

10

Condition

Successful operation
Member not found
Member already allocated
No space
Directory is full
Member was not used
Record not in member
Member control block invalid
Space not released
Not a data member

Chapter 6. Messages and Codes 445

[~;turn Codes I
BSC Return Codes

Code

-2
-1

Description

Text received in conversational mode
Successful completion

Notes

~.----------,------.--~
END=

1
2
3
4
5
6

ERROR=

10
11
12
13
14
15
20
21
22
23
24
25
30
31
32
33
34

35
99

EDT received
OLE EDT received
Reverse interrupt received
Forward abort received
Rem 0 t est, a t ion not rea d y (N A K r e c e i v e d)
Remote station busy (WACK received)

4
4

Timeout occurred 1
Unrecovered transmission error (BCC error) 1
Invalid sequence received 3
Invalid multi-point tributary write attempt 2
Disregard this block sequence received 1
Remote station busy (WACK received) 1
Wrong length record - long (No COO) 6
Wrong length record - short (write only) 2
Invalid buffer address 2
Buffer length zero 2
Undefined line address 2
Line not opened by calling task 2
Modem interface error 2
Hardware overrun 2
Hardware error 5
Unexpected ring interrupt 2
Invalid interrupt during auto-answer
attempt 2
Enable or disable OTR error 2
Access method error 2

Notes:

1 • Retried up to the limit specified in the RETRIES= operand
of the BSCLINE definition.

446 SC34-0313

0 ,
L.I,I •••• 'I

o

c

Return Codes

2. Not retried.

3. Retr i ed dur i ng wr i te operat i on on 1 y when a wrong ACK is
received following an ENQ request after timeout Cindicat
i ng that no text had been rece i ved at the remote stat ion) •

4. Returned only during an initial sequence with no retry
attempted.

5. Retried only after an unsuccessful start I/O attempt.

6. Retried only during read operations.

riata Formatting Return Codes

Code Description

-1
1
2
3

Successful completion
No data in field
Field omitted
Conversion error

Chapter 6. Messages and Codes 447

EXIO Return Codes

I/O Instruction Return Codes (word 0 of TCB)
(Word 1 of TCB contains supervisor instruction
address)

Code Description

-1 Command accepted
1 Device not attached
2
3
It

5
6
7
8
9

10
11
12
13
16

Busy
Busy after reset
Command reject
Intervention required
Interface data check
Controller busy
Channel command not allowed
No DDB fOllnd
Too many DCBs chained
No address specified for residual status
EXIODEV specified zero bytes for residual status
Broken DCB chain (program error)
Device already opened

448 SC34-0313

/

c

Return Codes 1

Interrupt Condition Codes (Bits 4-7 of word 0 of ECB)
(If bit 0 is on, bits 8-15=device 10)

Code Description

o Controller end
1 Program Controlled Interrupt (PCI)
2 Exception
3 Device end
4 Attention
5 Attention and PCI
6 Attention and exception
7 Attention and device end
8 Not used
9 Not used

10 SE on and too many DCBs chained
11 SE on and no address specified for residual status
12 SE on and EXIODEV specified no bytes for residual

status
13 Broken DCB chain
14 ECB to be posted not reset
15 Error in Start Cycle Steal Status

(after exception)
---.---~

Chapter 6. Messages and Codes 449

Floating Point Return Codes

Code Description

-1 Successful completion
1 Floating point overflow
3 Floating point divide check

(divide by '0')
5 Floating point under flow

Formatted Screen Image Return Codes

These return codes are issued by the $IMOPEN subroutine. They
are returned in the second word of the Task Control Block of the
calling program.

Code Description

-1 Successful completion
1 Disk I/O error
2 Invalid data set name
3 Data set not found
4 Incorrect header or data set length
5 Input buffer too small

450 SC34-0313

o

o

0,
, ,

Return Codes

Indexed Access Method Return Codes

CODE

- 1
- 57
- 58
- 80
- 85

01
07
08
10
12
13
22
23
50

51
52

54

55
56
60
61
62
70
80
85
90

100
101
110

DESCRIPTION

Successful completion
Data set has been loaded
Record not found
End of data
Record to be deleted not found
Function code not recognized
Link module in use
load error for $IAM
Invaild request
Data set shut down due to error
Module not included in load module
Invalid IACB address
Get storage error - IACB
Data set is opened for exclusive
use, cannot be opened exclusively
Data set opened in load mode
Data set is opened, cannot be
opened exclusively
Invalid block size during PROCESS or LOAD
processing
Get storage error - FCB
READ error - FeB
Out of sequence or duplicate key
End of file
Duplicate key found in PROCESS mode
No space for insert
FeB WRITE error during DELETE processing
Key field modified by user
Key save area in use
READ error
HRITE error
WRITE error - data set closed

Chapter 6. Messages and Codes 451

[Return Codes I
LOAD Return Codes

Code Description

-1 Successful completion
61 The transient loader ($LOADER) is not included

in the system
62 In an overlay request, no overlay area exists
63 In an overlay request, the overlay area is in use
64 No space available for the transient loader
65 In an overlay load operation, the number of data

sets passed by the LOAD instruction does not equal
the number required by the overlay program

66 In an overlay load operation, no parameters were
passed to the loaded program

67 A disk(ette) I/O error occurred during the load
process

68
69
70
71
72
73
74
75
76
77
78

Reserved
Reserved
Not enough main storage available for the program
Program not found on the specified volume
Disk(ette) I/O error while reading directory
DiskCette) I/O error while reading program header
Referenced module is not a program
Referenced module is not a data set
Data set not found on referenced volume
Invalid data set name
LOAD instruction did not specify required data
setcs)

79 LOAD instruction did not specify required
parametersCs)

80 Invalid volume label specified
81 Cross partition LOAD requested, support

not included at system generation
82 Requested partition number greater than number of

partitions in the system

Not!;i: I f the program be i ng loaded is a sensor I/O program and a
sensor I/O error is detected, the return code will be a sensor
I/O return code, not a load return code.

452 SC34-0313

o

0 ',
"

('~\I
. ,/

o

Return Codes

Multiple Terminal Manager Return Codes

These return codes are returned in a caller-specified variable
on the SETPAN or FILEIO function.

CODE

-1
1

2
201
202
203

204
205
206
207
208

-500

-501
other

DESCRIPTION

Successful completion
Warning: uninitialized panel. Input buffer
has been set to unprotected blanks (x'OO')
and cursor position set to zero.
Data table truncated.
Data set not found
Volume not found
No file table entries are available;
all have updates outstanding
I/O error reading volume directory
I/O error writing volume directory
Invalid function request
Invalid key operator
SEOD record number greater than data set
length
Terminal is not an IBM 4978/4979 •
No action has been taken
Screen data set not found.
Return code from READ/WRITE or the
Indexed Access Method

Chapter 6. Messages and Codes 453

[Return COdes]

READ/WRITE Return Codes

Disk/tape return codes resulting from READ/WRITE instructions
are returned in two places:

1. The Event Control Block CECB) named DSn, where n is the
number of the data set be i ng referenced.

2. The task code word referred to by taskname.

The disk/tape return codes and the i r mean i ngs are shown below.

If further information concerning an error is required, it may
be obtained by printing all or part of the contents of the Disk
Data Blocks (DOSs) located in the Supervisor. The starting
address of the DDBs can be obtained from the linkage editor map
of the supervisor. The contents of the DDBs are described in
the Internal Design. Of particular value are the Cycle Steal
Status Words and the Interrupt Status Word save areas, along
with the contents of the word that contains the address of the
next DDB in storage.

454 SC34-0313

o

o

o

o

Return Codes

Disk Return Codes

Code Description

-1 Successful completioM
1 I/O error and no device status present

(this code may be caused by the I/O area starting
at an odd byte address)

2 I/O error trying to read dev'ice status
3 I/O error retry count exhausted
4 Error on issuing I/O instruction to read device

status
5
6
7

9
10

11

Unrecoverable I/O error
Error on issuing I/O instruction for normal I/O
A 'no record found' condition occurred, a seek
for an alternate sector was performed, and another
'no record found' occurred i.e., no alternate is
assigned
Device was 'offline' when I/O was requested
Record number out of range of data set--may be an
end-of-file (data set) condition
Device marked 'unusable' when I/O was requested

Chapter 6. Messages and Codes 455

[Re turn Codes I
~~e Return Codes

Code Description

-1 Successful completion
1 Exception but no status
2 Error reading STATUS
4 Error issuing STATUS READ
5 Unrecoverable I/O error
6 Error issuing I/O command

10 Tape mark (EOO)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
76

Device in use or offline
Wrong length record
Not ready
File protect
EDT
Load point
Uncorrected I/O error
Attempt WRITE to unexpired data set
Invalid blksize
Data set not open
Incorrect device type
Incorrect request type on close request
Block count error during close
EOVI label encountered during close
DSN not found

456 SC34-0313

o

c

o

c

Return Codes

SBro (Sensor-based I/O) Return Codes

Code

-1
90
91
92
93
94
95
96
97
98

100
101
102
104

Description

Successful completion
Device not attached
Device busy or in exclusive use
Busy after reset
Command reject
Invalid request
Interface data check
Controller busy
Analog Input over voltage
Analog Input invalid range
Analog Input invalid channel
Invalid count field
Buffer previously full or empty
Delayed command reject

Chapter 6. Messages and Codes 457

Return Codes

Terminal I/O Return Codes

Code

-1
1
2
3
4
5
6
7

11

Bit

o
1
2
3
4
5
6
7

Description

Successful completion
Device not attached
System error (busy condition)
System error (busy after reset)
System error (command reject)
Device not ready
Interface data check
Overrun received
Codes greater than 10 represent possible
multiple errors. To determine the errors,
subtract 10 from the code and express the result
as an 8-bit binary value. Each bit (numbering
from the left) represents an error as follows:

Description

Unused
System error (command reject)
Not used
System error (DeB specification check)
Storage data check
Invalid storage address
Storage protection check
Interface data check

NQ..t!lt: If an error message code greater than 128 is returned for
devices supported by 1052741 (2741,PROC), subtract 128; the
result then contains status word 1 of the ACCA. (Refer to
Co DIm u n i cat i 0 n Fe a t u res Des c rip t ion to de t e r min e the s p e cia 1
error condition.)

458 SC34-0313

(~
III .•)

o

Return Codes

o Terminal I/O - ACCA Return Codes

-1 Successful completion.

Bit Description

0 Unused
1-8 ISB of last operation (I/O complete)
9-10 Unused

11 1 i f a write or control operation (I/O complete)
12 Read operation (I/O complete)
13 Unused

14-15 Condition code +1 after I/O start (or)
Condition code after I/O complete

c
Chapter 6. Messages and Codes 459

Return Codes

Terminal I/O - Interprocessor Communications Return Codes

End of Transmission (EOT).
End of Record (NL).
End of Subrecord (EOSR).

460 SC34-0313

CODTVPE=

EBCD/CRSP EBCDIC
Return

Codes

IF
5B

Not used.

FDFF
FEFF
FCFF

-2
-1

Handled
by device

support.

o

C
"'\ ,

c

I Return Codes

Terminal I/O - Virtual Terminal Communications Return Codes

Value Transmit Receive

x'BFnn' NA LINE=nn received
x'BEnn' NA SKIP=nn received

-2 NA Line received (no CR)
-1 Successful completion New line received

1 Not attached Not attached
5 Disconnect Disconnect
B Break Break

LINE=nn (x'BFnn'): This code is posted for READTEXT or GETVALUE
instructions if the other side sent the LINE forms control
operat i on; it is transmi tted so that the rece i vi ng program may
reproduce on a rea I term ina I (for pr inter spoo ling app 1 i ca
tions for example) the output format intended by the sending
program.

SKIP=nn (x'BEnn'): The sending program transmitted SKIP=nn.

Line Receiv~d (-2): This code indicated that the sending pro
gram did not send a new line indication, but that'the line was
transmitted because of execution of a control operation or a
trans i t i on to the read state. Th is is how, for examp Ie, a
prompt message is usua 11 y transm i tted with REAPTEXT or
GETVALUE.

New Line Received (-1): This code indicates transmission of the
carriage return at the end of the data. The distinction
between a new line transmission and a simple line transmission
is, again, made only to allow preservation of the original out
put format.

Not attached (1): If the virtual terminal accessed for the
operation does not reference another virtual terminal, then
th is code is returned.

Disconnect (5): This code value corresponds to the 'not ready'
indication for real terminals; its specific meaning for vir
tual terminals is that the program at the other end of the chan
nel terminated either through PROGSTOP or operator
intervention.

Chapter 6. Messages and Codes 461

[Return Codes

Break (8): The break code indicates that the other side of the
channel is in a state (transmit or receive) which is incompat
ible with the attempted operation. If only one end of the chan
nel is defined with SYNC=YES (on the TERMINAL statement), then
the task on that end wi 11 always recei ve the break code, wheth
er or not it attempted the operation first. If both ends are
defined with SYNC=YES, then the code wi 11 be posted to the task
wh i ch last attempted the operat i on. The break code may thus be
understood as follows: when reading (READTEXT or GETVALUE),
the other program has stopped send i ng and is wa i t i ng for input;
when writing (PRINTEXT or PRINTNUM), the other program is also
attempting to write. Note that current Event Driven Executive
programs, or future programs which do not interpret the break
code, must always communicate through a virtual terminal which
is defined with SYNC=NO (the default).

462 SC34-0313

o

C\
:!

"Return Codes

TP Return Codes

Code

-1
1
2
3
4
5

6

7

8

9

10

11

50
51

100
101
102

Description

Successful completion
Illegal command sequence
TP I/O error
TP I/O error on host
Looping bidding for the line
Host acknowledgement to request
code was neither ACKO,ACKl,WACK,
or a NACK
Retry count exhausted - last error
was a timeout: the host must be down
Looping while reading data from
the host
The host responded with other than
an 'EDT' or an 'ENQ' when an 'EDT'
was expected
Retry count exhausted - last error
was a 'modem interface check'
Retry count exhausted - last error
was not a timeout,modem check,
block check or overrun
Retry count exhausted - last error
was a transmit overrun
I/O error from last I/O in DSWRITE.
I/O error when writing the last buffer

Length of DSNAME is zero
Length of DSNAME exceeds 52
Invalid length specified for I/O

Module

Supervisor
Supervisor
Supervisor

HCFCOMM
Supervisor
Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

DSCLOSE
DSCLOSE

HCFCO~1M

HCFCOMM
HCFINIT

Chapter 6. Messages and Codes 463

Code

200

201
202
203
204
205
206

207
208
209
211
212
213
214
216

217

218
219
220

221
222

300
301
302
303

Description

Data set not on volume specified for
controller
Invalid member name specification
Data set in use by another job
Data set already allocated to this task
Data set is not cataloged
Data set resides on multiple volumes
Data set is not on a direct access
device
Volume not mounted (archived)
Device not online
Data set does not exist
Record format is not supported
Invalid logical record length
Invalid block size
Data set has no extents
Data set organization is partitioned and
no member name was specified
Data set organization is sequential and
a member name was specified
Error during 05/ OPEN
The specified member was not found
An I/O error occurred during a
directory search
Invalid data set organization
Insufficient I/O buffer space available

End of an input data set
I/O error during an 05/ READ
Input data set is not open
A previous error has occurred

464 SC34-0313

f10dule

HCFINIT

DSOPEN
DSOPEN
D50PEN
DSOPEN
DSOPEN

DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN

DSOPEN

D50PEN
DSOPEN
D50PEN

DSOPEN
DSOPEN
DSOPEN

D5READ
D5READ
D5READ
DSREAD

, ' C--'"
!)

Return Codes

o
Code Description Module

400 End of an output data set DSWRITE
401 I/O error during an OS/ WRITE DSWRITE
402 Output data set is not open DSWRITE
403 A previous error has occurred DSWRITE
404 Partitioned data set is full DSCLOSE

700 Index, key, and status record added SET
701 Index exists, key and status added SET
702 Index and key exist, status replaced SET
703 Error - Index full SET
704 Error - Data set full SET
710 I/O Error SET

800 Index and key exist FETCH
801 Index does not exist FETCH
802 Key does not exist FETCH
810 I/O error FETCH

900 Index and/or key released RELEASE
901 Index does not exist RELEASE
902 Key does not exist RELEASE
910 I/O error RELEASE

.-
1xxx An error occurred in a subordinate S7SUBMIT

module during SUBMIT. ' x x x ' i s
the code returned by that module.

o
Chapter 6. Messages and Codes 465

466 SC34-0313

o

BIBLIOGRAPHY

EVENT DRIVEN EXECUTIVE LIBRARY SUMMARY

The library summary is a guide to the Event Driven Executive
1 i brary. By br i ef 1 y list i ng the content of each book and
providing a suggested reading sequence for the library, it
should assist you in using the library as a whole as well as
direct you to the i nd i vi dua 1 books you requ ire.

Event Driven Executive Library

The IBM Series/l Event Driven Executive
consist of five full-sized books, a quick
book, and a set of tabs:

1 i brary mater i a Is
reference pocket

• IBM Series/l Event Driven Executive System Guide (or
System Guide), SC34-0312

•

•

IBM Series/l Event Driven ~xecutive Utilities, Operator
Com man d s, P r O..9..r a m Pre par a t ion , Me s sag e san d Cod e s (0 r
~tilities), SC34-0313

IBM Series/l Event Driven Executive language Reference (or
language Reference), SC34-0314

• IBM Series/l Event Drive~ Executive Communications and
Terminal Application Guide (or Communications Guide),
SC34-0316

• IBM Series/l Event Driv~n Executive Internal Design (or
Internal Design), LY34-0168

• I B.M S e r i e s / 1 Eve n t Dr i v e n E x e c uti v eMu I t i pIe T e r min a I Man
.9..fler Internal Design (or Multiple Terminal Manager
Internal Design), lY34-0190

• IBM Series/l Event Driven Executive Indexed·Access Method
Internal Desi9J.1 (or Indexed Access Method Internal
D t;! 5 i 9n.), l Y 34 - 0 1 8 9

• IBM Series/l Event Driven Exgcutive Reference Summar~ (or
B_e fer e n c e 5 u m mar y), S X 34- 0 1 0 1

• IBM Series/l Event Driven Executive Tabs (or Tabs),
SX34-0030

Bibliography 467

Summary of L;brary

System Guide

The System Guide introduce~ the concepts and capabilities of
the Event Dr i ven Execut i ve system. It discusses mu It i-task i ng,
program and task structure, program overlays, storage manage
ment, and data management.

Planning aids include hardware and software requirements,
along with guidelines for storage estimating.

The System Guide also presents step-by-step procedures for
generating a supervisor tailored to your Series/l hardware
conf i gurat i on and software needs.

The descr i pt i on of the Indexed Access Method conta i ns the
information on how to write applications that use indexed data
sets.

The descr i pt i on of the sess i on manager includes a procedure for
modifying the session manager to include application programs
in the primary option menu so that you can execute them under
the session manager. You can also add a procedure to compile,
link, and update programs.

Information is also provided concerning partitioned data sets,
tape data organization, diagnostic aids, inter-program commu
nication, logical screens, and dynamic data set allocation.

Uti 1 i t i 'e s

Utilities describes:

• Event Dr i ven Execut i ve ut iIi ty programs

• Operator commands

• Procedures to prepare and execute system and application
programs

• The session manager -- a menu-driven interface program
that will invoke the programs required for program devel
opment

• Messages and codes issued by the Event Dr i ven Executi ve
system

468 SC34-0313

(
-~

I,.)

o

0 ·'
..)

c

The operator commands, program preparation facilities, and
sess i on manager are grouped by funct i on and discuss ions
include detailed syntax and explanations. The utilities are
presented in alphabetical order •

!anguage Reference

The Language Reference familiarizes you with the Event Driven
Language by first groupihg the instructions into functional
categories. Then the instructions are listed alphabetically,
with complete syntax and an explanation of each operand.

The final section of th~ Language Reference contains examples
of using the Event Driven language for applications such as:

• Program loading

• User exit routine

• Graphics

• I/O level control program

• Index i ng and hardware reg i ster usage

Communications Guide

The Communications Guide introduces the Event Driven Executive
communications support -- binary synchronous communications,
as y n c h ron 0 usc o·m m u n i cat ion s , and the H 0 5 t COlli m u n i cat ion s
Facility.

The Communications Guide contains coding details for all util
ities and Event Driven language instructions needed for commu
nications sliPport and advanced terminal applications.

Internal Design

Internal Design describes the internal logic flow and specifi
cations of the Event Driven Executive system so that you can
understand how the system interfaces with application pro
grams. It familiarizes YOll with the design and implementation
by describing the purpose, function, and operation of the vari
ous Event Dr i ven Execut i ve system programs.

Bibliography 469

M u I tip leT e r min a I Man age r I n :t, r nS! 1 Des i g nan d I n d e x@_d A c c e s s
Nethod Internal Desl9..!l de,scribe the internal logic flow and
spec if i cat ions of these programs.

Unlike the other manuals in the library, the Inte~J-JLesign
books conta in mater i al that is the I icensed property of IBM and
they are available only to licensed users of the Event Driven
Executive system.

Reference Summary

The Reference Summary is a pocket-sized booklet to be used for
qu i ck reference. It lists the Event Dr i ven language
instructions with their syntax, the utilit~ and program prepa
ration commands, and the completion codes.

The tabs package must be ordered separately. The
tains 33 index tabs by subject, with additional
These extended tabular pageS can be inserted at
various sections of the library. The tabs are
accord i ng to the major library top i cs.

Reading Sequence

package con
blank tabs".
the front of
color coded

All readers of the Event Driven Executive library should begin
wit h the fir s t t h r e e c hap t e r s 0 f the .5,.v:;t e m G u ide
("Introduction," "The Supervisor and Emulator," and "Data Man
agement") for an overview of the Event Driven Executive con
cepts and facilities.

Readers respons i b Ie for i nsta 11 i ng and prepar i ng the system
should then continue in the System Guide with "System Config-
urat i on" and "System Generat i on." '

All readers should review the Utilities
become familiar with the utility functions
Event Dr i yen Execut i ve system. Then you can
sections for particular utilitie$, operator
gram preparation facilities.

"Introduct i on" to
available for the
read more spec if i c
commands, and pro-

After you have a basic understanding of the Event Driven E x e c u -
t i ve system and how you can best use the system for your appl i
cat ions, you should reC1d the Lan~'-!LCULe Reference
"Introduction." This will familiarize you with the potential

470 SC34-0313

O·i I'

()

c

of the Event Driven Language and prepare you to start coding
application programs.

If yoU have communications support for your Event Driven Execu
tive system, you should read the Communication5,..l1uide, which is
an extension of the System Guide, Utilities, and the Lan9uag~
Reference.

After you know the functions of the various Event Driven
language instruct ions, ut iIi ties, and program preparat i on
faci lities, you may wish to refer only to the Reference Summary
for correct syntax whi Ie coding your applications.

On 1 y readers respons i b Ie for the support or mod if i cat i on of the
Event Driven Executive system need to read Internal Design.

OTHER EVENT DRIVEN EXECUTIVE PROGRAMMING PUBLICATIONS

• IBM Series/l Event Driven Executive FORTRAN IV User's
Guide, SC34-0315.

•

•

I B M S e r i e s / 1 E v .!!::..:.n~t-=----"D:;.,;r,--,-i ..;:..v..::;e.-n:..--......::E..-x"-=e::,.;::c:;...;u:;,..t.;::...:..i __ v..::;e:-......-P_-=L~/..:I:--.::.L-=a..:...n:..;;;9;r...;u=-a:;.,g 1
Reference, GC34-0147.

IBM Serigs/l Event Driven Executive Pl/I User's Guide,
GC34-0148.

• IBM Series/l Event Driven Executive COBOL Programmer's
Guide, SL23-0014.

• IBM Ser i es/l Event Dr i ven Execut i ve Sort/Merge Program
mer's Guidg, SL23-0016

• IBM Series/l Event Driven Executive Macro Assembler
Reference,GC34-0317.

• tBM Ser i es/l Event Driven Executive Study Guide,
SR30-0436.

OTHER SERIES/l PROGRAMMING PUBLICATIONS

• IBM Ser i e5/1 Programm i n9 Syst@m Summar\!, GC34-0285.

• IBM Series/l COBOL Language Reference, GC34-0234.

• IBM Series/l FORTRAN IV language Reference, GC34-0133.

Bibliography 471

•

•

IBM Ser i es/l Host Commun i cat ions Facility Program
Description Manual, SH20-1819.

IBr1 Series/l Mathematical and Functional Subroutine
Library User's Guide, SC34-0139.

• IBM Series/l Macro Assembler Reference Summary, SX34-0128

• IBM Series/l Data Collection Interactive Programming RPQ
P82600 User's Guide, SC34-1654.

OTHER PROGRAMMING PUBLICATIONS

• IBM Data Processing Glossary, GC20-1699.

• IBM Series/l Graphic Bibliography, GA34-0055.

• IBM OS/VS Basic Telecommunications Access Method (BTAM),
GC27-6980.

• General Information Binary Synchronous Communications,
GA27-3004.

• IBM System/370 Program Preparat i on Fac iii ty, SB30-1072.

SERIES/l SYSTEM LIBRARY PUBLICATIONS

• IBM Series/l 4952 Processor and Processor Features
Description, GA34-0084.

• IBM Series/l 4953 Processor and Processor Features
Description, GA34-0022.

• IBM s..eries/l 4955 Processor and Processor Features
Description, GA34-0021.

• IBM Series/l Communications Features Description, GA34
-0028.

• IBM Series/l 3101 Display Terminal Description, GA34-2034.

• IBM Series/l 4962 Disk Storage Unit and 4964 Diskette Unit
Description, GA34-0024.

• IBM Ser i es/l 4963 Di sk Subsystem Descr i pt ion, GA34-0051.

• IBM Series/l 4966 Diskette Magazine Unit Description,
GA34-0052.

472 SC34-0313

c

o

()

C'
o ,,:1

•

•

IBM Series/l 4969 Magnetic Tape SubsYstem Description,
GA34-0087.

IBM Ser i es/l 4973 Line Pr inter Descr i pt i on, GA34-0044 •

• JLBM~~rie5/1 4974 Printer Description, GA34-0025.

• IBM Se r i e s/ l~J"'§-=.l----ILL?.JUJ.u __ Sta t i..9n (R PQ DO 2 0 55) and
.A t t a c h men t (R P Q D 0 2 0 3 8) G e n era t I n for mat ion, G A 34 - 1 5 5 0

• IBM S e r i e s/ 1 4 9 78- 1 D i ,2B..1.2-Y. S tat ion, Key boa r d (R P Q D 0 2 0 5 6)
~~peral Information, GA34-1551

• IBM Series/l 497.8-1 Display Station, Keyboard (RPQ D02057)
General Information, GA34-1552

• 1.B M S ~ r i e s / 1 4 9 7 8 - 1 Dis p 1 ~ y 5 tat i 0 n Key boa r d s (R P Q D 0 2 0 6 4
and D02065) General Information, GA34-1553

• IBM Series/l 4979 Display Station Description, GA34-0026

• IBM Series/l 4982 Sensor Input/Output Unit Description,
GA34-0027

• 1..H M S e.r i e 5/1 D a t a Co 11 e c t ion In t era c t i ve R P Q s DO 2312 ,
002313, and D02314 Custom Feature, GA34-1567

Bibliography 473

()

o
474 SC34-0313

o

C···:
,",;

GLOSSARY

This glossary contains terms that are used in the Series/! Event Driven
Executive software publications. All software and hardware terms are
Series/1 oriented. This glossary defines terms used in this library and
serves as a supplement to the IBM Data Processing Glossary (GC20-1699).

$SYSLOGA. The name of the
alternate system logging device.
This device is optional but, if
defined, should be a terminal with
keyboard capability, not just a
printer.

the Multiple Terminal Manager
facilities.

asynchronous commun;cat;ons con
trol adapter. An ASCII terminal
attached via 11610, #2091 with
#2092, or 12095 with #2096 adapt-

$SYSLOG. The name of the sy5te~ ers.
logging device or operator
station; must be defined for every
system. It sh~uld be a terminal
with keyboard capability, not just
a printer.

$SYSPRTR. The name of the system
printer.

ACCA. See asynchronous
communications control adapter.

address key. Identifies a set of
Series/1 segmentation registers
and represents an address space.
It is one less than the partition
number.

address space. The logical
storage identified by an address
key. An address space is the
storage for a partition.

application program manager. The
component of the Multiple Terminal
Manager that provides the program
management facilities required to
process user requ~sts. It cen
troIs the contents of a program
area and the execution of programs
within the area.

application program stub. A
collection of subroutines that are
appended to a progrhm by the link
age editor to provide the link
from the application program to

attention list. A series of pairs
of 1 to 8 byte EBCDIC strings and
addresses pointing to EDL
in~tructions. When the attention
key is pressed on the terminal,
the operator can enter one of the
strings to cause the associated
EDl instructions to be executed.

backup. A copy of data to be used
in the event the original data is
lost or damaged.

base retords. Records that have
been placed into an indexed data
set while in load mode.

basic exchange format. A standard
format for exchanging data on
diskett~s between systems or
devices.

binary synchronous dev;ce data
blbck (BSCDDB1. A control block
that provides the information to
control one Series/l Binary Syn
chronous Adapter. It determines
the line characteristics and pro
vides dedicated storage for that
line.

block. (1) See data block or
index block. (2) In the Indexed
Method, the unit of space used by
the access method to contain
indexes and data.

Glossary {t75

BSCDDB. See binary synchronous
device data block.

buffer. An area of storage that
is temporarily reserved for use in
performing an input/output oper
ation, into which data is read or
from which data is written. See
input buffer and output buffer.

bypass label processing. Access
of a tape without any label proc
essing support.

eCB. See terminal control block.

character image. An alphabetic,
numeric, or special character
de.fined for an IBM 4978 Display
Station. Each character image is
defined by a dot matrix that is
coded into eight bytes.

character ima9a table. An area
containing the 256 character
images that can be defined for an
IBM 4978 Display Station. Each
character image is coded into
eight bytes, the entire table of
codes requiring 2048 bytes of
storage.

cluster. In an indexed file, a
group of data blocks that is
pointed to from the same
primary-level index block, and
includes the primary-level index
block. The data records and
blocks contained in a cluster are
logically contiguous, but are not
necessarily physically contiguous.

COD (change of direction). A
character used with ACCA terminal
to indicate a reverse in the
direction of data movement.

command. A character string from
a source external to the system
that represents a request for
action by the system.

common area. A user-defined data
area that is mapped into every
partition at the same address. It

476 SC34-0313

can be used to contain control
blocks or data that will be
accessed by more than one program.

completion code. An indicator
that reflects the status of the
execution of a program. The com
pletion code is displayed or
printed on the program's output
device.

conversion. See update.

cross partition service. A
function that accesses data in two
partitions.

data block. In an indexed file,
an area that contains control
information and data records.
These blocks are a multiple of 256
bytes.

data set. A group of contiguous
records within a volume pointed to
by a directory member entry in the
directory for the volume.

data set control block (DSCB). A
control block that provides the
information required to access a
data set, volume or directory
using READ and WRITE.

data set shut down. An indexed
data set that has been marked (in
main storage only) as unusable due
to an error.

DeE. See directory control entry.

DDB. See disk data block.

direct access. (1) The access
method used to READ or WRITE
records on a disk or diskette
device by specifying their
location relative the beginning of
the data set or volume. (2) In
the Indexed Access Method, locat
ing any record via its key without
respect to the previous operation.

o

o

o

o

c

o

directory. A series of contiguous
records in a volume that describe
the contents in terms of allocated
data sets and free spaces.

directory control entry
(DCE). The first 32 bytes of the
first record of a directory in
which a description of the direc
tory is stored.

directory member entry (DME). A
32-byte directory entry describing
an allocated data set.

disk data block (DDB). A control
block that describes a direct
access volume.

display station. An IBM 4978 or
4979 display terminal or similar
terminal with a keyboard and a
video display.

DNE. See directory member entry.

DSCB. See data set control block.

dynamic storage. An increment of
storage that is appended to a pro
gram when it is loaded.

end-of-data indicator. A code
that signals that the last record
of a data set has been read or
written. End-of-data is deter
mined by an end-of-data pointer in
the DME or by the physical end of
the data set.

ECB. See event control block.

EDL. See Event Driven language.

emulator. The portion of the
Event Driven Executive supervisor
that interprets EDL instructions
and performs the function speci
fied by each EDL statement.

end-of-tape (EDT). A reflective
marker placed near the end of a
tape and sensed during output.
The marker signals that the tape
is nearly full.

event control block (ECB). A
control block used to record the
status (occurred or not occurred)
of an event; often used to syn
chronize the execution of tasks.
ECBs are used in conjunction with
the WAIT and POST instructions.

event driven language (EDL). The
language for input to the Event
Driven Executive compiler
($EDXASM), or the Macro and Host
assemblers in conjunction with the
Event Driven Executive macro
libraries. The output is inter
preted by the Event Driven Execu
tive emulator.

EXIO (execute input or
output). An EDL facility that
provides user controlled access to
Series/l input/output devices.

external label. A label attached
to the outside of a tape that
identifies the tape visually. It
usually contains items of iden
tification such as file name and
number, creation data, number of
volumes, department number, and so
on.

external name (EXTRN). The 1- to
8-character symbolic EBCDIC name
for an entry point or data field
that is not defined within the
module that references the name.

FCA. See file control area.

FeB. See file control block.

file control area (FCA). A
Multiple Terminal Manager data
area that describes a file access
request.

file control block (FCB). In an
indexed data set, the first block
of the data set. It contains
descriptive information about the
data 'contained in the data set.

Glossary 477

file manager. A collection of
subroutines contained within the
program manager of the Multiple
Terminal Manager that provides
common support for all disk data
transfer operations as needed for
transaction-oriented application
programs. It supports indexed and
direct files under the control of
a single callable function.

formntted screen image. A
collection of display elements or
display groups (such as operator
prompts and field input names and
arQas) that are presented together
at one time on a display device.

free pool. In an indexed data
set, a group of blocks that can be
used as either a data bl~ck or an
index block. These differ from
other free blocks in that these
are not initially assigned to spe
cific logical positions in the
data set.

free space. In the Indexed Access
Method, record spaces or blocks
that do not currently contain
data, and are available for use.

free space entry (FSE). A 4-byte
directory entry defining an area
of free space within a volume.

FSE. See free space entry.

hardware timer. The timer
features available with the
Series/l processors. Specif
ically, the 7840 Timer Feature
card or the native timer (4952
only). Only one or the other is
supported by the Event Driven
Executive.

host assembler. The assembler
licensed program that executes in
a 370 (host) system and produces
object output for the Series/I.
The source input to the host
assembler is coded in Event Driven
language or Series/l assembler
language. The host assembler

478 SC34-0313

refers to the System/370 Program
Preparation Facility (5798-HNQ).

host system. Any system whose
resources are used to perform
services such as program prepara
tion for a Series/I. It can be
connected to a Series/l by a com
munications link.

lACS. See indexed access control
block.

IAR. See instruction address
register.

ICB. See indexed access control
block.

lIB. See interrupt information
byte.

image store. The area in a 4978
that contains the character image
table.

index. In the Indexed Access
Method, an ordered collection of
pairs, each consisting of a key
and a pointer, used to sequence
and locate the records in an
Indexed Access Method data set.

index block. In an indexed file,
an area that contains control
\nformation and index entries.
These blocks are a multiple of 256
bytes.

indexed access control block
(lACB/ICB). The control block
that relates an application pro
gram to an indexed data set.

indexed access method. An access
method for direct or sequential
processing of fixed-length records
by use of a record's key.

indexed data set. A data set
specifically created, formatted
and used by the Indexed Access
Method. An indexed data set may
also be called an indexed file.

I'

0···
'·\

c

o

c

indexed file. Synonym for indexed
data set.

index entry. In an indexed file,
a key-pointer pair, where the
pointer is be used to locate a
lower-level index block or a data
block.

index register (11, 12). Two
words defined in EDl and contained
in the task control block for each
task. They are used to contain
data or for address computation.

input buffer. (!) See buffer.
(2) In the Multiple Terminal Man
ager, an area for terminal input
and output.

input output control block
(IDCB). A control block contain
ing information about a terminal
such as the symbolic name, size
and shape of screen, the size of
the forms in a printer.

instruction address register
(IARl. The pointer that identi
fies the instruction currently
being executed. The Series/!
maintains a hardware tAR to deter
mine the Series/! assembler
instruction being executed. It is
located in the level status block
(LSB).

interactive. The mode in which a
program conducts a continuous
dialogue between the user and the
system.

internal label. An area on tape
used to record identifying infor
mation (simila~ to the identifying
information placed on an external
label). Internal labels are
checked by the system to ensure
that the correct volume is
mounted.

interrupt information byte
(lIB). In the Multiple Terminal
Manager, a word containing the
status of a previous input/output

request to or from a terminal.

job. A collection of related
program execution requests pre
sented in the form of job control
statements, identified to the
jobstream processor by a JOB
statement.

job control statement. A
statement in a job that specifies
requests for program execution,
program parameters, data set defi
nitions, sequence of execution,
and, in general, describes the
environment required to execute
the program.

job strea~ processor. The job
processing facility that reads job
control statements and processes
the requests made by these stata
ments. The Event Driven EMecutive
job stream processor is $JOBUTIl.

key. In the Indexed Access
Method, one or more consecutive
characters in a data record, used
to identify the record and estab
lish its order with respect to
other records. See also key
field.

key field. A field, located in
the same position in each record
of an Indexed Access Method data
set, whose content is used for tha
key of a record.

level status block (LSB). A
Series/! hardware data area that
contains processor status.

library. A set of contiguous
records within a volume. It con
tains a directory, data sets
and/or available space.

line. A string of characters
accepted by the system ~s a single
input from a terminal; for exam
ple, all characters entered before
the carriage return on the tele
typewriter or the ENTER key on the
display station is pressed.

Glossary 479

link edit. The process of
resolving symbols in one or more
object modules to produce another
single module that is the input to
the update process.

load mods. In the Indexed Access
Method, the mode in which r~cords
are initially placed in an indexed
file.

load module. A single modure
having cross references resolved
and prepared for loading into
storage for execution. The module
is the output of the $UPDATE or
$UPDATEH utility.

load point. A reflective marker
placed near the beginning of a
tape to indicate where the first
record is written.

lock. In the Indexed Access
Method, a method of indicating
that a record or block is in use
and is not available for another
request.

LSB. See level status block.

membe~. A term used to identify a
named portion of a partitioned
data set (POS). Sometimes member
is also used as a synonym for a
data set. See data set.

menu. A formatted screen image
containing a list of options. The
user selects an option to invoke a
program.

menu-driven. The mode of
processing in which input consists
of the responses to prompting from
an option menu.

multifile volume. A unit of
recording media, such as tape reel
or disk pack, that contains more
than one data file.

multiple terminal manager. An
Event Driven Executive licensed
program that provides support for

480 SC34-0313

transaction-oriented applications
on a Series/I. It provides the
capability to define transactions
and manage the programs that sup
port those transactions. It also
manages multiple terminals as
needed to support these trans
actions.

multivolume file. A data file
that, due to its size, requires
more than one unit of recording
media (such as tape reel or disk
pack) to contain the entire file.

non-Inbeled tapes. Tapes that do
not contain identifying labels (as
in standard labeled tapes) and
contain only files separated by
tapemarks.

null character. A user-defined
character used to define the
unprotected fields of a formatted
screen.

option selection menu. A full
screen display used by the Session
Manager to point to other menus or
system functions, one of which is
to be. selected by the operator.
(See primary option menu and sec
ondary option menu.)

output buffer. (1) See buffer.
(2) In the Multiple Terminal Man
ager, an area used for screen
output and to pass data to subse
quent transaction programs.

overlay. The technique of reusing
a single storage area allocated to
a program during execution. The
storage area can be reused by
loading it with overlay programs
that have been specified in the
PROGRAM statement of the program.

overlay area. A storage area
within a program reserved for
overlay programs specified in the
PROGRAM statement.

.r: \

\ i
\~",f7

o

c

c

parameter selection menu. A full
screen display used by the Session
Manager to indicate the parameters
to be passed to a program.

partition. A contiguous
fixed-sized area of storage. Each
partition is a separate address
space.

physical timer. Sy~onym for
hardware timer.

prefind. To locate the data sets
or overlay programs to be used by
a program and to store the neces
sary information so that the time
required to load the prefound
items is reduced.

primary-level index block. In an
indexed data set, the lowest level
index block. It contains the rel
ative block numbers (RBHs) and
high keys of several data blocks.
See cluster.

primary menu. The program
selection screen displayed by the
Multiple Terminal Manager.

primary option m~nu. The first
full screen display provided by
the Session Manager.

primary task. The first task
executed by the supervisor when a
program is loaded into storage.
It is identified by the PROGRAM
statement.

priority. A combination of
hardware interrupt level priority
and a software ranking within a
level. Both primary and secondary
tasks will ex~cute asynchronously
within the system according to the
priority assigned to them.

precess mode. In the Indexed
Access Method, the mode in which
records may be retrieved, updated,
inserted or deleted.

processor status word (PSW1. A
16-bit register used to (1) record
error or exception conditions that
may prevent further processing and
(2) hold certain flags that aid in
error recovery.

program. A disk- or
diskette-resident collection of
one or more tasks defined by a
PROGRAM statement; the unit that
is loaded into storage. (See pri
mary task and secondary task.)

program header. The control block
found at the beginning of a
program that identifies the prima
ry task, data sets, storage
requirements and other resources
required by a program.

program/storage manager. A
component of the Multiple Terminal
Manager that controls the
execution and flow of application
programs within a single program
area and contains the support
needed to allow multiple oper
ations and sharing of the program
area.

protected field. On a display
device, a field in which the oper
ator cannot enter, modify, or
erase data from the keyboard. It
can contain text that the user can
read.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queue control block (QCB). A data
area used to serialize access to
resources that cannot be shared.
See serially reusable resource.

qugue descriptor (QDJ. A control
block describing a queue built by
the DEFINEQ instruction.

Glossary 481

queue element (QE). An entry in
the queue defined by the queue
descriptor.

record. (1) The smallest unit of
direct access storage that can be
accessed by an application program
on a disk or d~skette using READ
and WRITE. Records are 256 bytes
in length. (2) In the Indexed
Access Method, the logical unit
that is transferred between $IAM
and the user's buffer. The length
of the buffer is defined by the
user.

recovery. The use of backup data
to recreate data that has been
lost or damaged.

reflective marker. A small
adhesive marker ettached to the
reverse Cnonrecording) surface of
a reel of magnetic tape.
Normally, two reflective markers
are used on each reel of tape.
One indicates the beginning of the
recording area on the tape <load
point), and the other indicates
the proximity to the end of the
recording area (EOT) on the reel.

relative record number. An
integer value identifying the
posit~on of a record in a data set
relative to the beginning of the
data set. The first record of a
data set is record one, the second
is record two, the third is record
three.

reorganize. For an indexed data
set, the copying of the data to a
new indexed data set in a manner
that rearranges the data for more
optimum processing and free space
distribution.

return code. An indicator that
reflects the results of the exe
cution of an instruction or sub
routine. The return code is
placed in the task code word Cat
the beginning of the task control
block).

482 SC34-0313

roll screen. A display screen on
which data is displayed 24 lines
at a time or data is entered line
by line, beginning with line 0 at
the top of the screen and continu
ing through line 23 at the bottom
of the screen. When a roll screen
device's screen is full Call 24
lines used), an attempt to display
the next line results in removal
of the old screen (screen is
erased) and the new line on line 0
is displayed at the top of the
screen.

SBlOCB. See sensor based I/O
control block.

second-level index block. In an
indexed data set, the
second-lowest level index block.
It contains the addresses and high
keys of several primary-level
index blocks.

secondary option menu. In the
Session Manager, the second in a
series of predefined procedures
grouped together in a hierarchical
structure of menus. Secondary
option menus provide a breakdown
of the functions available under
the session manager as specified
on the primary option menu.

secondary task. Any task other
than the primary task. A second
ary task must be attached by a
primary task or another secondary
task.

sector. The smallest addressable
unit of storage on a disk or
diskette. A sector on a 4962 or
4963 disk is equivalent to an
Event Driven Executive record. On
a 4964 or 4966 diskette, two sec
tors are equivalent to an Event
Driven Executive record.

sensor based I/O control black
(SBIOCB1. A control block con
taining information related to
sensor I/O operations. ()

o

o

C,:1
'I

sequential access. The processing
of a data set in order of occur
rence of the records in the data
set. (1) In the Indexed Access
Method, the processing of records
in ascending collating sequence
order of the keys. (2) When using
READ/WRITE, the processing of
records in ascending relative
record number sequence.

serially reusable resource
(SRRJ. A resource that can only
be accessed by one task at a time.
Serially reusable resources are
usually managed via (1) a QCB and
ENQ/DEQ statements or (2) an ECB
and WAIT/POST statements.

session manager. A series of
predefined procedures grouped
together as a hierarchical struc
ture of menus from which you
select the utility functions, pro
gram preparation facilities, and
language processors needed to pre
pare and execute application pro
grams. The menus consist of a
primary option menu that displays
functional groupings and secondary
option menus that display a break
down of these functional
groupings.

shared resource. A resource that
can be used by more than one task
at the same time.

shut down. See data set shut
down.

source module/program. A
collection of instructions and
statements that constitute the
input to a compiler or assembler.
Statements may be created or modi
fied using one of the text editing
facilities.

standard labels. Fixed length
aD-character records on tape con
taining specific fields of infor
mation (a volume label identifying
the tape volume, a header label
preceding the data records, and a

trailer label following the data
records).

static screen. A display screen
formatted with predetermined
protected and unprotected areas.
Areas defined as operator prompts
or input field names are protected
to prevent accidental overlay by
input data. Areas defined as
input areas are not protected and
are usually filled in by an opera
tor. The entire screen is treated
as a page of information.

subroutine. A sequence of
instructions that may be accessed
from one or more points in a pro
gram.

supervisor. The component of the
Event Driven Executive capable of
controlling execution of both sys
tem and application programs.

system configuration. The process
of defining devices and features
attached to the Series/I.

SYSGEN. See system generation.

system generation. The processing
of user selected options to create
a supervisor tailored to the needs
of a specific SeriesJl configura
tion.

system partit;on. The partition
that contains the supervisor (par
tition number 1, address space 0).

tapemark. A control character
recorded on tape used to separate
files.

task. The basic executable unit
of work for the supervisor. Each
task is assigned its own priority
and processor time is allocated
according to this priority. Tasks
run independently of each other
and compete for the system
resources. The first task of a
program is the primary task. All
tasks attached by the primary task

Glossary 483

are secondary tasks.

task code word. The first two
words (32 bits) of a task's TeB;
used by the emulator to pass
information from system to task
regarding the outcome of various
operations, such as event com
pletion or arithmetic operations.

task control block (TCB). A
control block that contains infor
mation for a task. The informa
tion consists of pointers, save
areas, work areas, and indicators
required by the supervisor for
controlling execution of a task.

task supervisor. The portion of
the Event Driven Executive that
manages the dispatching and
switching of tasks.

TCB. See task control block.

terminal. A display station,
teletypewriter or printer.

terminal control block (CCB). A
control block that defines the
device characteristics, provides
temporary storage, and contains
links to other system control
blocks for a particular terminal.

terminal environment block
(TEB). A control block that con
tains information on a terminal's
attributes and the program manager
operating under the Multiple Ter
minal Manager. It is used for
processing requests between the
terminal servers and the program
manager.

terminal screen manager. The
component of the Multiple Terminal
Mannger that controls the presen
tation of screens and communi
cations between terminals and
transaction programs.

terminal server. A group of
programs that perform all the
input/output and interrupt handl-

484 SC34-0313

ing functions for terminal devices
under control of the Multiple Ter
minal Manager.

trace range. A specified number
of instruction addresses within
which the flow of execution can be
traced.

transaction oriented
applications. Program execution
driven by operator actions, such
as responses to prompts from the
system. Specifically, applica
tions executed under control of
the Multiple Terminal Manager.

transaction program. See
transaction-oriented applications.

transaction selection menu. A
Multiple Terminal Manager display
screen (menu) offering the user a
choice of functions, such as read
ing from a data file, displaying
data on a terminal, or waiting for
a response. Based upon the choice
of option, the application program
performs the requested processing
operation.

unprotected field. On a display
device, a field in which the user
can enter, modify, or erase data
using the keyboard. Unprotected
fields on a static screen are
defined by the null character.

update. (1) To alter the contents
of storage or a data set. (2) To
convert object modules, produ6ed
as the output of an assembly or
compilation, or the output of the
linkage editor, into a form that
can be loaded into storage for
program execution and to update
the directory of the volume on
which the loadable program is
stored.

user exit. (1) Assembly language
instructions included as part of
an EDl program and invoked via the
USER instruction. (2) A point in
an IBM-supplied program where a

o

o

o

c

c

user written routine can be given
control.

vary offline. (1) To change the
status of a device from online to
offline. When a device is off
line, no data set can be accessed
on that device. (2) To place a
disk or diskette in a state where
it is not available for use by the
system; however, it will still be
available for executing I/O at the
basic access level (EXIO).

vary online. To restore a device
to a state where it is available
for use by the system.

volums. A disk or diskette
subdivision defined during system
configuration. A volume may con
tain up to 32,767 records. As
many volumes may be defined for a
disk as will physically fit. A
diskette is limited to one volume.

volume label. A label that
uniquely identifies a single unit
of storage media.

Glossary 485

o

c
486 SC34-0313

o

C~:

c

COMMON INDEX

This index is common to the Event Driven Executive library. The index
includes entries from the seven publications listed below. (The Glossary
is not indexed.) Each pUblication has a copy of the index, which provides
a cross-reference between the publications.

Each page number entry contains a single letter prefix which identifies
the publication where the listed subject can be found. The letter pre
fixes have the following meanings:

• C = Communications and Terminal Application Guide

• I = Internal Design

• L = Language Reference

• 5 = System Gui de

• U = Utilities, Operator Commands, Program Preparation, Messages and
Codes

• M = Multiple Terminal Manager Internal Design

• A = Indexed Access Method Internal Design

Special Characters

$$EDXLIB system name L-228, 5-57
$$EDXVOL system name L-228, 5-57
$A display active programs,
operator command 5-63, U-ll

$ATTA5K special task control
block L-61

$AUTO link edit auto call data
set 5-403, U-401

$B blank (clear) screen, operator
command 5-63, U-12

$B5CTRCE trace utility for B5C
lines C-61

$B5CUTI trace printing utility for
B5C C-62

$B5CUT2 test utility for B5C
lines C-64

$C cancel a program, operator
command 5-63~ U-13

$COMPRE5 library compress 5-64,
U-57

$COPY copy data sets 5-64, U-59
$COPYUTI copy data sets with
allocation 5-64, U-64

$CP change terminal's partition
assignment command

overview 1-73, 5-63
syntax U-14

$D dump storage, operator command
5-63, U-15

$DA5DI format disk or diskette
5-64, U-68

$DBUGNUC debug module description
1-77

$DEBUG debugging tool U-82
$DICOMP display composer

command description U-I06
create partitioned data set

member 5-247
invoking U-I05
overview 5-67

$DIINTR display interpreter U-150

$DI5KUTI allocate/delete, list
directory data

$JOBUTIL procedure 5-229
allocate partitioned data set

5-248
command descriptions U-135
overview 5-64

$DISKUT2 patch, dump, or clear
member

description U-142
overview 5-64
printing I/O error logs 5-275
syntax U-143

$DI5KUT3 data management utility
description 5-315
input to 5-316
request block contents 5-317
return codes 5-319, U-444

$DIUTIL display data base utility
5-248, U-150

$DUMP dump saved storage and
registers utility U-163

$E eject printer page, operator
command 5-63, U-16

$EDITl/$EDITIN text editors
command syntax

EDIT U-174
EDIT mode subcommands

U-182
END U-175
LIST U-176
READ U-177
5UBMIT U-179
WRITE U-180

control keys U-172
data set requirements U-169
line editing commands U-203
overview 5-66, U-169
summary of commands and

subcommands U-171
$EDXA5M Event Driven Language
compiler

features supported U-361
internal overview 1-5, 1-211
invoking

with $JOBUTIL U-368

Common Index 487

with $l U-370
with session manager

U-369
listing program ($EDXL15T)

U-370
options U-358
output U-359
overlay program example 1-244
overview 5-71, U-356
programming considerations

U-361
arithmetic expression
operators U-365

ATTNL15T U-365
COpy statements U-362
ECB and QCB U-362
EQU U-365
GETED1T and PUTEDIT U-365
instructions requiring
support modules U-365

10DEF statement placement
U-364

multiple declarations on
DATA/DC U-363

source line continuation
U-361

required data sets U-357
usage example 5-397
using the compiler U-356

$EDXATSR supervisor interface
routine 1-48

$EDXDEF hardware configuration
editing to match hardware con
figuration 5-117

overview 1-5, 1-6
storage map 1-7

$EDXl language control data set of
$EDXA5M 1-221, U-357

$EDXLIST compiler listing program
U-370

$EDXNUC supervisor data set
in system generation 5-126
overview 1-5
with $l1NK utility U-399

$EDXNUC supervisor data sets
U-399

$EXEC language emulator linkage
1-279, 1-313

$EXEC session manager option
5-216, U-41

$FONT 4978 character image tables
utility 5-68, U-205

$F5EDIT full-screen editor, host
and native

data set requirements U-209
options

BROWSE U-213
EDIT U-214
END U-218
READ U-216
SUBtlIT U-2l7
L>JRITE U-216

overview 5-66, U-209
primary commands U-218
program function (PF) keys

U-211
scrolling U-210
summary of options and

commands U-212
$HCFUTI Host Communications
Facility utility C-I07

$IAM Indexed Access Method load
module S-155

$1AM task error exit 5-178

488 SC34-0313

$1AMUT1 Indexed Access Method
utility 5-148, U-235

$IDEF $EDXA5M instruction
definition

description 1-241
instruction format 1-226

$1MAGE define screen image
utility 5-68, U-250

usage example S-387
$1MDATA subroutine 5-303

usage example 5-375
$1MDEFN subroutine 5-301

usage example 5-375
$1MOPEN subroutine 5-300

usage example 5-374
$1MPROT subroutine 5-302

usage example 5-375
$INDEX subroutine, $EDXA5M 1-233
$1NITD5K initialize or verify

volume 5-64, U-256
$INITIAl automatic initialization

and restart
description 5-129
with session manager 5-209,

U-28
$IOTEST test sensor I/O, list con
figuration 5-67, U-263

$JOBUTIL job stream processor
5-69, U-271

commands U-272
set up procedure U-271
usage example 5-408, U-290

$l load program, operator command
internals 1-23
overview 5-63
syntax U-17

$lEM5G $lINK message data set
U-401

$LINK linkage editor
data set requirements U-400
description U-390
in system generation 1-5
invoking

with $JOBUTIl U-405
with $L U-405
with session manager
U-406

overview 5-71
usage example 5-402

$lNKCNTL data set 5-118
$LOADER 1-19, 1-22

module description 1-78
$lOG I/O error logging utility

description 5-270, U-292
overview 5-67

$lPARSE subroutine 1-240
$MOVEVOl disk volume dump/restore

5-65, U-294
$P patch storage, operator

command 5-63, U-18
$PACK/$UNPACK subroutines 5-309
$PD5 partitioned data set utility

in a program 5-259
overview 5-65

$PFMAP identify 4978 program
function keys 5-68, U-30l

$PREFIND prefind data sets and
overlays 5-69, U-302

$PRT2780 spooled print utility
C-72

$PRT3780 spooled print utility
C-72

$RJE2780 remote job entry utility
C-73, 5-66 c

o

c

$RJE3780 remote job entry uti!ity
C-73, 5-66
$RMU (see Remote Management Uti!
ity)

$5MCTL session manager program
5-209, 5-212

$SMEND session manager program
S-212

$5MJOBR session manager program
5-212

$5MLOG session manager program
5-212

$SMMAIN session manager program
5-210, 5-212, U-28

$SMMLOG, logon menu for session
manager 5-212

$5MMPRIM, primary option menu for
session manager 5-212, U-27,
U-35

$5MM02, program preparation sec
ondary option menu 5-214, U-37

$5MM03, data management secondary
option menu 5-215, U-39

$5MM04, terminal utilities
secondary option menu 5-215,
U-41

$SMM05, graphics utilities second
ary option menu 5-216, U-41

$5MM06, execute program utilities
secondary option 5-216

$SMM07, job stream processor
utilities secondary option 5-216

$SMM08, communications utilities
option 5-217, U-43

$5MM09, diagnostic utilities
5-217, U-44

$5TART supervisor entry point
1-279, 1-313

$STOREMAP example 1-27
$5Y5COM data area 1-12, 1-279,

1-313, 5-113
$5Y5LOG system logging device

overview 5-110
$SY5LOGA alternate system logging
device

overview 5-111
$5Y5PRTR system printer

overview 5-111
$51A5M 5eries/1 macro assembler

description U-372
internals 1-5, 1-253
overview 5-9
storage map, general 1-256

$T set date/time, operator
command 5-63, U-19

$TAPEUT1 tape management utility
U-311

$TCBCCB (ATTACH) L-59
$TERMUT1 change terminal
parameters 5-68, U-334

$TERMUT2
process 4978 image or contro!
store 5-68, U-339

restore 4974 image U-339
$TERMUT3 send message to a
terminal 5-68, U-344

$TRAP class interrupt trap
utility 5-67, U-348

$UNPACK/$PACK subroutines 5-309
$UPDATE object program converter

description U-408
in system generation 1-5
overview 5-69
usage example 5-407

$UPDATEH object program converter
(host) 5-69, U-418

$VARYOFF set disk, diskette, or
tape offline 5-63, U-20

$VARYON set disk, diskette, or
tape online 5-63, U-22

with standard labeled tape
5-237

$W display date/time, operator
command 5-63, U-25

11 index register 1 L-6
12 index register 2 L-6

A after, $F5EDIT line command
U-226

A-conversion L-153
A/I (see analog input)
A/O (see analog output)
abort task level (5VC abend) 1-49
ACCA terminal C-7, L-295
Access Method, Indexed

(see Indexed Access Method)
ACTION, Multiple Terminal Manager

CALL
coding description C-130,

L-360
internals M-9
overview C-117, L-29

activate

AD

add

error logging, $LOG utility
U-293

realtime data member, RT
$DICOMP subcommand U-124

stopped task, GO $DEBUG
command U-93

task supervisor execution
state 1-43

TRAP function of storage dump,
$TRAP utility U-348

add member, $DICOMP command
U-106

advance, $DICOMP subcommand
U-111

advance X,Y (PD5) 5-255
assign define key, $TERMUT2

command U-342

add member, AD $DICOMP com
mand U-106

null data set on tape volume,
TA $TAPEUT1 command U-330

options to the session
manager 5-224

support for new I/O terminals
1-117

calling conventions 1-118
code translation tables

1-118
linkage conventions 1-119
terminal instruction
modification 1-119

ADD data manipulation instruction
coding description L-52
overview l-19
precision table L-53

address relocation translator
1-71, 5-42

addressing indexing feature L-6

Common Index 489

ADDV data manipulation
instruction

coding description L-54
index register use L-55
overview L-19
precision table L-55

advance, AD $DICOMP subcommand
U-1l1

advance and prompting input, ter
minal I/O L-46

AI (see analog input)
AL

allocate
command

allocate
command

allocate
command

data member, $DIUTIL
U-151

data set, $DISKUT1
U-137

data set, $JOBUTIL
U-273

allocate member, $DICOMP
command U-I07

allocate
data set

$JOBUTIL command U-273
AL $DISKUTl command U-137
ALLOCATE function C-214
tape, TA $TAPEUTl command

U-333
member

$DICOMP command U-I07
$DIUTIL command U-151
$PDS S-261

ALLOCATE function C-216, 1-166,
1-174

allowable precision table L-20
alter member AL $DICOMP command

U-107
alter terminal configuration,

$TERMUT1 U-334
alternate system logging device

($SYSLOGA) 5-47
alternate tracks S-58, U-73, U-78
ALTIAM Indexed Access Method

subroutine S-167
analog input S-49

AI $IOTEST command U-268
control block 1-129
IODEF statement L-187
overview S-49
SBIO instruction L-263
SENSORIO configuration

statement L-39
analog output

AO $IOTEST command U-264
control block 1-129
description S-49
10DEF statement L-186
SBIO instruction L-264
SENSORIO configuration

statement l-39, S-84
AND data manipulation instruction

coding description L-57
overview l-19

AO (see analog output)
application program

automatic initialization and
restart S-129

indexed access S-149
introduction L-1
manager C-119
preparation U-351
size estimating S-344
structure L-8
support S-20

ASCII terminals
codes S-110

490 SC34-0313

configuring S-96
devices supported C-6, S-14
graphics L-26, S-46
TERMINAL statement examples

S-106
A5MERROR, $EDXASM instruction

1-230
assembler

(see $EDXASM)
(see $S1ASM)
(see host assembler)

assign
alternate for defective 4963
sector, $DASDI utility U-78

DEFINE key in 4978 control
store, AD $TERMUT2 command
U-341

asynchronous communications con
trol adapter (see ACCA)

AT set breakpoints and trace
ranges, $DEBUG command U-90

ATTACH task control instruction
coding description L-59
internals 1-44
overview L-42, S-34

attention handling, terminal I/O
1-108, L-47, S-63

attention keys, terminal I/O l-47
attention list (see ATTNLIST)
ATTN key (see attention handling)
ATTNLIST task control statement

$ATTASK l-61
coding description L-61
overview L-42, S-30

attribute character, 3101 C-122
autocall

option, $LINK U-401
AUTOCALL statement requirement

(WXTRN) l-323
automatic

application initialization
S-13, S-129

application restart S-13,
S-129

B before, $F5ED1T line command
U-226

backup disk or disk volume on
tape, 5T $TAPEUT1 command U-330

backup dump restore utility,
$MOVEVOL U-294

base records, indexed data set
definition S-149
loading 5-160

basic exchange
diskette data set copy utili
ty, $COPY U-59

basic supervisor and emulator (see
supervisor/emulator)

batch job processing (see
$JOBUT1L)

BEEP, Multiple Terminal Manager
CAll

coding description C-137,
l-361

internals M-9
overview C-117, L-29

binary synchronous communications
automatic retry S-17
BSCAM/BSCAMU module

o

o

o

descriptions 1-80
BSClINE configuration state

ment C-42, S-76
control flow (BSCAM) 1-147
device data block (BSCDDB)

1-133
features C-35, S-16
Host Communications Facility
protocol 1-156

instruction formats C-38,
1-144

multipoint operation C-36,
S-16

overview 5-16
point-to-point lines 5-16
Remote Management Utility

requirements C-208
sample programs C-59
special labels for,
description 1-149

system internal design 1-133
test utility, $B5CUT2 C-64
trace printing routine,

$B5CUT1 C-62
trace routine, $BSCTRCE C-61

blank screen, $B operator command
S-63, U-12

BLANK TERMCTRl function l-288
BlDTXT subroutine, $EDXA5M 1-237
BLINK TERMCTRl function l-288
BlP (see bypass label processing)
BOT (beginning-of-tape> l-40
BOTTOM reposition line pointer,

$EDIT1/N editor subcommand U-183
boundary requirement, full-word

DO l-34
IF l-34
PROGRAM l-225

BP list breakpoints and trace
ranges, $DEBUG command U-92

breakpoints and trace setting, AT
$DEBUG command U-90

BROWSE display data set, $F5EDIT
option U-213

BSC (see binary synchronous
communications)

BSCAM (see binary synchronous com
munications>

BSCClOSE BSC statement 1-144,
1-148

coding description C-38
BSCDDB binary synchronous device
data block

description of 1-133
equates 1-291

BSCEQU l-11
BSCIA immediate action routine

CBSC) 1-148
BSCIOCB BSC statement C-39, 1-144
BSCl1NE configuration statement

C-42, 5-76
BSCOPEN BSC statement C-44,

1-145, 1-148
BSCREAD BSC statement C-45,

1-145, 1-148
BSCWRITE BSC statement C-49,

1-146, 1-148
BSF (backward space file) l-75
BSR (backward space record) l-75
BTE, buffer table entry A-20
BU build data member, $DIUTIl

command U-153
buffer

table entry
definition A-20

description A-31
terminal I/O buffer

management 1-109
BUFFER data definition statement

. coding description l-65
overview l-17

build data member, BU $DIUTIl
command U-153

building an indexed data set
U-247

burst output with electronic dis
play screens l-46

bypass label processing U-311
description S-244

C
change a key definition,

$TERMUT2 command U-342
copy line, $FSEDIT line

command U-226
CA cancel

assembly, $EDXASM attention
request U-358

copy, $COPYUT1 attention
request U-64

list option, $FSEDIT attention
request U-217

listing, $EDXlIST attention
request U-358

CAD COpy all data members,
$COPYUT1 command U-64

CAll
copy all members, $COPYUT1

command U-64
program control instruction

coding description l-68
Indexed Access Method
syntax S-146

Multiple Terminal Manager
syntax l-359

overview l-32, S-31
program l-68
subroutine l-68

callable routines l-30
CAllFORT program control
instruction

coding description l-70
overview l-32

cancel
$C operator command U-13
assembly, CA $EDXASM attention

request U-358
copy, CA $COPYUTI attention

request U-64
dump, CA $DUMP command U-165
list option, CA $FSEDIT
attention request U-217

listing, CA $EDIT/N attention
request U-172

CAP copy all programs, $COPYUT1
command U-64

CC copy block, $FSEDIT line
command U-226

CCB
equate table 1-292
internals 1-105, 1-119
interprocessor communications
C-30

use in terminal I/O support
1-113

Common Index 491

CCBEQU L-l1
CD

clear data set, $DISKUT2 com
mand U-144

copy data set, $COPY command
U-61

copy data set, $TAPEUTl
command U-313

CDATA, Multiple Terminal Manager
CALL

coding description C-139,
L-362

internals M-9
overview L-29

CDRRM equates C-292
CG copy all members (generic)

$COPYUTl command U-64
CH

change hardcopy device,
$BSCUT2 command C-70

change host library, $UPDATEH
command U-420

chain, ECB/QCB/TCB I-55
CHAIN supervisor service routine

I-54
CHA1ND supervisor service routine

I-54
CHAINE supervisor service routine

I-54
chaining L-27
CHA1NP supervisor service routine

I-54
change

address assignment of termi
nal, RA $TERMUTl command
U-336

base address, QUALIFY $DEBUG
command U-101

character string, CHANGE
$EDIT1/N editor subcommand
1'-184

clo")cter stri ng, change
$~~EDIT primary command
U-219

execution sequence, GOTO $DE
BUG command U-94

graphics or report display
profile, $DICOMP utility
U-I05

hardcopy device, CH $BSCUT2
command C-70

hardcopy device, RH $TERMUTl
command U-338

host library, CH $UPDATEH
command U-420

key definition in 4978 control
store, C $TERMUT2 U-342

name of logical device, RE
$TERMUTl command U-337

output volume, CV $UPDATE
command U-409

page formatting parameters of
a terminal, CT $TERMUT1
U-335

partition assignment, $CP
operator command U-14

realtime data member name RT
($PDS) S-258

tape label support U-322
volume

CV
CV
CV
CV
CV

$BSCUT1 command
$COPYUTl command
$DISKUTl command
$D1SKUT2 command
$UPDATEH command

492 SC34-0313

C-62
U-64
U-137
U-143
U-418

character constants L-89
character image table U-205
CHGPAN, Multiple Terminal Manager

CALL
coding description C-135,

l-364
internals M-9
overview C-124, L-29

CL clear work data set, $FSEDIT
primary command U-221

class interrupt vector table
1-10, 1-277

class interrupts, intercepting,
$TRAP utility U-348

clear
data set, CD $D1SKUT2 command

U-144
screen, $B operator command

U-12
CLOSE Host Communications Facili-
ty, TP operand C-90

CLSRU (close tape data set) L-75
cluster, indexed data set S-200
CM copy member

$COPYUTl command U-64
$DIUTIL command U-155

CMDEQU L-12
CMDSETUP 1-13, 1-67
CNG copy all members

(non-generic),$COPYUT1 command
U-64

CO command, $RJE2780/$RJE3780
C-76

COBOL
execution requirements S-23
link editing 5-71
overview S-7
program preparation

requirements S-23
use with Multiple Terminal

Manager C-193
code translation

new support tables 1-111
terminal I/O layer 2 1-109

code words, task L-8
COLS display columns, $FSEDIT line

command U-228
command area, $EDXASM 1-214
command descriptions U-235
COMMAND send to host,

$RJE2780/$RJE3780 C-75
command table 1-68, 1-282, 1-301
common data area (see $SYSCOM)
common emulator setup routine

command table 1-13, 1-282,
1-301

operating conventions 1-67
communication error function

1-166
communications utilities

$BSCTRCE C-61
$BSCUT1 C-62
$BSCUT2 C-64
$HFCUT1 C-I07
$PRT2780 C-72
$PRT3780 C-72
$RJE2780 C-73
$RJE3780 C-73
$ Rt'1U C-282

communications utilities (session
manager) S-217, U-42

communications vector table 1-11,
1-278, 1-313

compiler (see $EDXA5M)

o

o

C"i
,)

completion codes (see return
codes)

$EDXASM U-436
$IAMUT1 U-437
$JOBUTIl U-439
$lINK U-440
$UPDATE U-443

compress
data base, CP $DIUTIl command

U-154
library, $COMPRES utility

U-57
compressed byte string 5-309
CONCAT graphics instruction

coding description l-72
overview l-26

concatenating indexed data sets
5-167

concurrent access l-27
concurrent execution l-42
configuration statements 5-75
configure terminal CT $TERMUT1

command U-335
connecting an indexed data set

5-159
continuation, source program line,

$EDXASM U-361
control, device instruction level

L-24
control block (see DSCB)
control block and parameter
tables

BSCEQU 1-133, 1-291, L-11
CCBEQU (see also CCB) l-11
CMDEQU (see also emulator

command table) l-12
DDBEQU 1-92, 1-308, l-12
DSCBEQU (see also DSCB) l-12
ERRORDEF L-12
FCBEQU A-20, l-12
IA~lEQU l-12
PROGEQU 1-312, l-13
referencing 1-289
TCBEQU (see also TCB) l-13

control block module (ASMOBJ)
description 1-76

CONTROL IDCB command L-175
control keys for text editors

U-172
control records, $LINK U-396
control statements, program

listing l-28
task l-42
terminal I/O forms control
l-45

CONTROL tape instruction l-74
conversion

algorithm for graphics 1-201
alphameric data l-152
definition
EBFLCVT module description
1-80

floating point/binary 1-205
numeric data l-148
program modules by $UPDATE/H

U-418
terminal I/O binary/EBCDIC

1-110
CONVTB data formatting
instruction

coding description L-79
internals 1-207
overview L-18

CONVTD data formatting
instruction

coding description L-82
internals 1-207
overview L-18

copy
block of text, CC $F5ED1T line

command U-226
data members, all, CAD

$COPYUT1 command U-64
data set, CD $COPY command

U-61
data sets with allocation,

$COPYUTI utility U-64
line of text, C $F5EDIT line

command U-226
member

CM $COPYUT1 command U-64
CM $DIUT1L command U-155

members
all, CALL $COPYUT1 com

mand U-64
generic, CG $COPYUT1

command U-64
non-generic, CNG $COPYUT1

command U-64
programs, all, CAP $COPYUT1

command U-64
text, $EDIT1/N editor

subcommand U-186
volume, CV $COPY command U-62

copy code library, instruction
parsing ($EDXASM) 1-222

COpy instruction
coding description L-86
overview L-33

Count record C-256
CP compress data base, $DIUTIl

command U-154
CR invoke $DISKUT1, $1AMUT1

command U-236
create

character image tables, $FONT
U-205

source data 'set, $F5ED1T
U-214

supervisor for another
Series/1 5-132

unique labels, '$SYSNDX
($EDXA5M) 1-242

create indexed data set 5-156
cross partition instructions 1-71
cross partition services 5-286
CSECT list, supervisor

Version 1.1 5-347
Version 2 5-357

C5ECT program module sectioning
statement

CT

CV

coding description l-87
overview L-33

change tape drive attributes,
$TAPEUTI command U-31S

configure terminal, $TERMUTI
command U-335

change output volume U-409
$UPDATE command U-409
$UPDATEH command U-418

change volume
$B5CUTl command C-62
$COPYUT1 command U-64
$DISKUTI command U-137
$DISKUT2 command U-143

copy volume, $COPY command
U-S9

Common Index 493

CYCLE
coding description C-132,

l-365
internals M-9
overview C-116, l-29

cylinder 5-60
cylinder track sector (CTS) U-135

D delete line, $F5EDIT line com-
mand U-228

D/I (see digital input)
D/O (see digital output)
data

conversion (see conversion)
conversion specifications (see
also conversion) l-146

definition statements l-17
files for $S1ASM 1-254
floating-point arithmetic

instructions l-20
formatting functions l-18
formatting instructions l-18
integer and logical
instructions l-19

length of transmitted, host
communications 1-159

management S-45
management system, Indexed

Access Method l-27
manipulation instructions

l-19
record contents, text editor
1-325

representation l-20
floating-point l-20
integer L-19
terminal input l-45
terminal autput l-45

transfer initialization,
terminal I/O support 1-112

transfer rates, Host
Communications Facility C-84

transfer ready, (DTR) BSCOPEN
1-148

Data Collection Interactive 5-11
DATA data definition statement

coding description L-88
overview L-17

data management utilities
$COMPRES 5-64, U-57
$COPY 5-64, U-59
$COPYUT1 5-64, U-64
$DASDI 5-64, U-68
$DI5KUT1 5-64, U-135
$DI5KUT2 5-64, U-142
$DI5KUT3 S-315
$IAMUT1 5-148, U-235
$INITD5K 5-64, U-256
$MOVEVOL 5-65, U-294
$PD5 5-247
$TAPEUTI U-311
session manager 5-215, U-38

data manipulation, vector l-19
data manipulation instructions

l-19
Data record C-257
data representation, terminal I/O

L-45
data set

allocation/deletion

494 5C34-0313

$DI5KUT1 U-137
$DI5KUT3 5-315
$JOBUTIL U-273
$PD5 5-248
session manager U-29

characteristics, HCF C-83
format

$F5EDIT U-210
$PD5 5-249
$PRT2780 C-72
$PRT3780 C-72

naming conventions C-82, 5-56
transfer

RECEIVE function C-243
SEND function C-247

utilities (see data management
utilities)

data set naming conventions, Host
Communications Facility C-82

data-set-shut-down condition
5-179

date/time
display, $W operator command

U-25
set, $T operator command U-19

DC data definition statement
coding description L-88
overview l-17

DCB EXIO control statement
coding description l-91
overview L-24

DCE directory control entry
format 1-88

DCI (Data Collection Interactive)
5-11

DD block delete, $F5EDIT line
command U-228

DDB disk data block
description 1-92
equate table 1-308

DDBEQU L-12
DE delete member

$DI5KUT1 command U-137
$DIUTIl command U-156
delete data set, $JOBUTIL

command U-274
deadlocks C-238, 5-180
debug

$EDXA5M overlay programs
1-248

aids (see also diagnostic
aids) 5-18

facility, $DEBUG utility U-82
define

horizontal tabs, HTAB $IMAGE
command U-252

image dimensions, DIM5 $IMAGE
command U-251

indexed data set, DF $IAMUT1
command U-237

null representation, NULL
$IMAGE command U-253

vertical tabs, VTAB $IMAGE
command U-254

DEFINEQ queue processing
statement

coding description l-94
overview l-37

definition statements, data l-17
delete

data set
$JOBUTIl command U-274
DELETE function C-216
tape data set, TA $TAPEUT1

command U-333

()

,/\
\~-)

c

c'
elements, IN $DICOMP command

U-I07
member

text

$PD5 5-261
DE $DI5KUTI command U-137
DE $DIUTIL command U-156

$EDIT1(N) editor subcom
mand U-188

line, D $F5EDIT line
command U-228

with $PREFIND U-305
DELETE function C-216, 1-166,
1-174

DELETE instruction
coding description L-329
overview L-27, 5-147
return codes L-330

DEQ task control instruction
coding description l-95
internals I-59
overview L-42, 5-33
supervisor function 1-46

DEQB5C dequeue B5C DDB routine
1-149

DEQT terminal I/O instruction
coding description L-97
overview L-44, 5-47

DETACH task control instruction
coding description L-98
internals 1-45
overview L-42, 5-30

detached, task supervisor
execution state 1-43

device
busy (EXOPEN) L-129
data block description, EXIO

1-123
instruction level control

L-24
interrupt handling, EXIO
1-125

test utility, $IOTE5T U-263
vector table 1-11, 1-278

DF define indexed file, $IAMUT1
command U-237

DI (see digital input)
diagnostic

aids 5-265
summarized 5-18

utilities
$DEBUG U-82
$DUMP U-163
$IOTE5T U-263
$LOG U-292
$TRAP U-348
with session manager

5-217, U-38
digital input

$IOTE5T command U-266
digital I/O control block

1-129
direct output,$DICOMP subcom

mand U-112
direct output to another
device ($PDS) S-255

display parameters, $IAMUTI
command U-239

external sync, XI $IOTE5T
command U-266

IODEF statement L-186
overview S-48
5aIO instruction L-265
5ENSORIO configuration

statement S-84

digital output
digital I/O control block

1-129
DO $IOTE5T command U-265
external sync, XO $IOTE5T

command U-266
IODEF statement L-186
overview 5-48
SBIO instruction L-267
5ENSORIO configuration

statement L-84
DIMS define image dimensions,

$IMAGE command U-251
direct access common I/O module,

DISKIO, description 1-77
direct access storage device
organization 5-52

direct output, DI $DICOMP
subcommand U-112

directory
control entry (DCE) 1-88
entries 5-249
member entry (DME) 1-89

disaster recovery from tape, RT
$TAPEUTI command U-326

DISCONN Indexed Access Method
CALL

coding description L-332
overview L-27, 5-148
return codes L-333

DISCONNECT Multiple Terminal
Manager utility C-119, C-159

disconnecting an indexed data set
5-159

DISK configuration statement 5-78
disk/diskette

capacity 5-58
data block (DDB) 1-92
fixed-head S-15, 5-61
I/O task 1-95
IPL 5-16, 5-61
primary volume 5-60
resident loading code 1-19
secondary volume s-60
symbolic addressing L-10
utilities

$COMPRE5 5-64, U-57
$COPY S-64, U-59
$COPYUT1 S-64, U-64
$DASDI 5-64, U-68
$DISKUTI 5-64, U-135
$DI5KUT2 5-64, U-142
$DISKUT3 5-315
$IAMUTI 5-148, U-235
$INITDSK 5-64, U-256
$MOVEVOL 5-65, U-294
$PDS 5-247

utility functlon table U-49
volume 5-16, 5-52

disk I/O instructions L-22
DISKIO direct access common I/O

module description 1-77
display (see also list)

character image tables, DI5P
$FONT command U-205

contents of storage or
registers, LIST $DEBUG com
mand U-95

control member ($PD5) 5-250
control member format ($PDS)

S-252
initial data values for image
5-303

processor composer, $DICOMP
U-105

Common Index 495

processor interpreter,
$DIINTR U-150

processor utility, $DIUTIL
U-150

processor utility, general
description U-105

profile elements ($PDS) S-252
protected and null fields of
an image S-302

report line items ($PDS)
S-255

status of all tasks, WHERE
$DEBUG command U-102

storage, $D operator command
S-63, U-15

time and data, TD ($PDS)
S-258

time and date, $W operator
command S-63, U-25

utility program set ($PDS)
S-248

variable, VA($PDS) 5-254
4978 program function keys,

$PFMAP utility U-301
DISPLAY TERMCTRL function L-288
DIVIDE data manipulation

instruction
coding description L-99
overview L-19
precision table L-100

DME directory member entry
format 1-89

DO
updated bySETEOD S-324

digital output (see digital
output)

program sequencing
instruction

coding description L-I01
overview L-34

double-precision L-19
floating-point arithmetic

L-21
integer and logical l-19

DOWN move line poiner, $EDIT1/N
editor subcommand U-189

DP
dump to printer

$DISKUT2 command U-144
$TAPEUT1 command U-317

print trace file, $B5CUTI
command C-62

DR draw symbol, $DICOMP
subcommand U-112

DR draw symbol ($PDS) S-254
draw

line, LI $DICOMP subcommand
U-120

line relative LR ($PDS) S-257
symbol, DR $DICOMP subcommand

U-112
DS data set identifier, $JOBUTIL

command U-275
DSCB data set control block

statement
coding descri'ption L-I05
equate table, DSCBEQU 1-311
for tape, internals 1-99
internals 1-92
overv i etoJ L -22

DSCBEQU L-12
DSECT (see control block and

parameter equate tables) L-11
DSOPEN subroutine

description S-322

496 SC34-0313

DSR data set ready in BSCOPEN
1-148

DTR data transfer ready in
BSCOPEN 1-148

DU

dump

dump on terminal, $DISKUT2
command U-144

dump trace file on terminal,
$BSCUT1 command C-62

restore volume utility
$MOVEVOL U-294

storage partition, DUMP
function C-218

to printer
$DUMP utility U-163
DP $DISKUT2 command U-143
DP $TAPEUTI command U-317
PR $DICOMP command U-I08

to terminal
$DUMP utility U-163
DP $TAPEUTI command U-317
DU $DISKUT2 command U-143
PR $DICOMP command U-I08

trace file on printer, DP
$BSCUTI command C-62

trace file on terminal, DU
$BSCUT1 command C-62

DUMP function C-218, 1-166, 1-175
D4969, tape device handler module
description 1-82

E-conversion (Ew.d) L-150
EBFLCVT, EBDIC to floating-point
conversion 1-205

module description 1-80
EC control echo mode, $IAMUT1

command U-240
ECB task control statement

coding description L-I07
internals I-55

EDIT

overview L-42, S-30
with SBIOCB 1-128

begin editing source data,
$EDIT1/N command U-174

create or change data set,
$FSEDIT option U-214

enter edit mode, $FONT
command U-205

enter edit mode, $IMAGE
command U-251

edit data set subroutine examples,
text editor 1-326

editor subcommands, $EDITI/N
U-182

EDL (see Event Driven Language)
compiler ($EDXASM) U-356
instruction format 1-67
interpreter, EDXALU, module
description 1-77

operation codes 1-67
EDXALU Event Driven Language
interpreter description I~5,
1-77

EDXFLOAT floating-point operations
module description 1-79

EDXINIT supervisor initializ~tion
control module 1-15

description 1-81

'

//.1"- ''l\

J
\;,l __ ./

(
~ , \

·,/1

o

EDXlIST host listing formatter
U-383

EDXSTART supervisor initialization
task module description 1-81

EDXSVCX/EDXSVCXU task supervisor
addr. trans. support desc 1-5,
1-76

EDXSYS system data tables,
description 1-75

EDXTIMER 7840 timer feature card
module description 1-80

EDXTIMR2 4952 timer module
description 1-80

EDXTIO terminal 1/0
EDXTIO/EDXTIOU module
description 1-78

internals 1-105
EJECT listing control statement

coding description l-109
overview l-28

eject printer page
$E operator command U-16

ELSE program sequencing
instruction

coding description l-110,
L-178

overview l-34
emulator (see

supervisor/emulator)
emulator command table 1-13,

1-282, 1-301
emulator functional flow 1-69
emulator setup routine 1-67

command table 1-13, 1-282,
1-301

EN end program, $IAMUT1 command
U-235

END
$lINK control record U-396
option selection, $EDXASM

command U-358
option selection, $EDXLIST

command U-371
option selection, $SlASM

U-378
primary command input, $FSEDIT

primary command U-221
task control statement

coding description l-111
overview L-42

end display, EP $DICOMP
subcommand U-118

end-of-file, indicating with
SETEOD S-324

ENDATTN task control instruction
coding description l-112
overview L-42, S-30

ENDDO program sequencing
instruction

coding description L-103,
L-113

overview l-34
ENDIF program sequencing
instruction

coding description L-114,
l-178

overview L-34
ENDPROG task control statement

coding description l-115
overview l-42, S-30

ENDSEQ Indexed Access Method CALL
coding description L-334
overview L-27, S-147
return codes L-335

ENDSPOOl switch spool to print,
$RJE2780/$RJE3780 C-75

ENDTASK task control instruction
coding description l-116
overview L-42, S-30

ENQ task control instruction
coding description L-117
internals 1-60
overview L-42, S-33
supervisor function 1-45

ENQT terminal 1/0 instruction
S-293

coding description L-119
overview L-44, S-47

enqueue, task supervisor function
(see ENQ)

entering and editing source state
ments' S-66, U-192

entry points, supervisor
Version 1.1 S-347
Version 2 S-357

ENTRY program module sectioning
statement

coding description L-121
overview L-33

EOF (end-of-file) l-74
EOJ end of job, $JOBUTIL command

U-276
EOP end of nested procedure,

$JOBUTIL command U-276 .
EOR data manipUlation instruction

coding description L-122
overview L-19

EOT (end-of-tape) L-41
EP end display, $DICOMP

subcommand U-118
EQ (equal) L-34
EQU data definition instruction

coding description L-124
overview L-17

equate tables
$EDXASM compiler common area

1-214
BSCDDB, BSC line control

block 1-291
CCB, terminal control block

1-292
DDB, diskldiskette control

block 1-308
DDB for sensor 1/0 1-309
DSCB, data set control block

1-311
emulator command table 1-282,

1-301
Indexed Access Method A-19
parameter and control block

L-11
program header 1-312

referencing 1-30
supervisor 1-279, 1-313
TCB, task control block 1-314

ERASE terminal lID instruction
coding description L-126
overview L-44, S-47

error codes (see return codes)
error handling

lID error logging S-270
Indexed Access Method error
exit S-178

Remote Management Utility
C-277

software trace S-265
task error exit S-33, S-268
terminal 1/0 L-44

ERRORDEF L-12

Common Index 497

ERRORS list error option
$EDXASM command U-358
$EDXLI5T command U-370

estimating storage (see storage
estimating)

event control block (see ECB)
Event Driven Language (see EDL)
EX exercise tape, $TAPEUTl com-
mand U-319

EXEC function C-220, 1-166, 1-178
EXEC load and execute program,

$JOBUTIL command U-277
execute program

EXEC function C-220
PA55THRU function C-225
SHUTDOWN function C-251
utilities (session manager)

5-216
executing, task supervisor exe
cution state 1-43

exercise tape, EX $TAPEUTl
command U-319

EXFLIH command start 1-125
EXI0 control instruction

coding description L-128
EXI0DDB device data block
description 1-123

internals 1-125
overview L-24, 5-51

EXI0CLEN, EXI0 termination module
1-126

EXIODEV configuration statement
S-82

EXIOINIT, system initialization
1-125

EXOPEN EXIO control instruction
coding description L-129
internals 1-125
interrupt codes L-132
overview L-24
return codes L-131

external sync DI/DO, XI/XO $IOTE5T
command U-266

EXTRACT, Indexed Access Method
CALL

coding description L-336
overview L-26, 5-148
return codes L-337

EXTRN program module sectioning
statement

coding description L-134
overview L-33

F-conversion (Fw.d) L-149
FADD data manipulation
instruction

coding description L-135
overview L-19
return codes L-136

FAN, Multiple Terminal Manager
CALL

coding description C-139,
L-366

overview L-31
FCA file control area, Multiple
Terminal Manager C-143

FCB file control block for Indexed
Access Method

definition A-9, A-20
description A-II, A-21, 5-194

498 SC34-0313

location A-20
map provided by FCBEQU 5-155

FCBEQU Indexed Access Method copy
code module L-12, 5-155

FDIVD data manipulat·ion
instruction

coding description L-137
overview L-19
return codes L-138

FETCH Host Communications
Facility, TP operand C-92

fetch record ($PD5) 5-261
fetch status, FE $HCFUT1 command

C-110
file L-75

backward space file (BSF)
L-75

control area (see FCA)
control block (see FCB)
definition L-40
forward space file (F5F) L-75
manager, Multiple Terminal

Nanager M-8
tape control commands L-75

FILEIO, Multiple Terminal Manager
CALL

FIND

coding description C-141,
L-367

internals M-9
overview C-118, L-29

editor commands
character string, $EDITI/N

subcommand U-191
character string, $F5EDIT

primary command U-222
program sequencing
instruction

coding description L-139
overv i etoJ L -34

FINDNOT program sequencing
instruction

coding description L-141
overview L-34

FIRSTQ queue processing
instruction

coding description L-143
overview L-37, 5-32

fixed-head devices 5-61
fixed storage area, contents 1-9
floating-point

arithmetic instruction
equates 1-283, 1-303

arithmetic instructions L-20
binary conversions 1-205
command entries module,

NOFLOAT, description 1-79
operations module, EDXFLOAT,
description 1-79

return codes L-21
FMULT data manipulation
instruction

coding description L-144
overview L-19
return codes L-145

format
illustrated L-5
instruction (general) L-3

FORMAT data formatting statement
'A' conversion L-153
'E' conversion L-150
'F' conversion L-149
'H' conversion L-152
'I' conversion L-148
coding description L-146

(
-~

ii, _.,.;

I I (
-~

~.l

c

o

conversion of alphameric data
L-153

conversion of numeric data
L-148

data conversion specifica-
tions L-146

module names L-18
multiple field format L-155
overview L-18
repetitive specification

L-155
using multipliers L-155
X-type format l-154

formatted screen images S-300,
U-250

formatting instructions, data
L-18

forms control
burst output with electronic
display screens L-46

forms interpretation L-46
output line buffering L-46
parameters, terminal I/O L-44
terminal I/O L-45

FORTRAN IV
execution requirements S-24
link editing S-71
overview S-6
program preparation

requirements S-24
use with Multiple Terminal

Manager C-197
FPCONV data manipulation
instruction

coding description L-157
overview L-19

free pool in Indexed Access
Method L-27

free space
definition S-148
estimating S-168
in Indexed Access Method l-27

free space entry 1-90
FREEMA1N storage allocation
function 1-25

FSE free space entry 1-90
FSR (forward space record) L-75
FSUB data manipulation
instruction

coding description L-159
index registers L-160
overvie~.J L-19
return codes L-160

FTAB, Multiple Terminal Manager
CALL

coding description C-138,
L-372

overview C-124, L-31
return codes L-373

full-screen static configuration
S-293

full-screen text editor host and
native, $FSED1T U-209

full-word boundary requirement
DO L-34
IF L-34
PROGRAM L-225

function process overlays 1-162
function process subroutines

1-162, 1-170
new subroutines 1-187

function table 1-164, 1-167

GE (greater than or equal) L-34
general instruction format L-3
generating the supervisor S-115
GENxxx~ macro 1-120
GET Indexed Access Method CALL

coding description L-338
overview L-27, S-147
return codes L-340

GETEDIT data formatting
instruction

coding description L-162
overview L-18

GETMAIN storage allocation
instruction 1-25

GETPAR3 1-69
GETSEQ Indexed Access Method CALL

coding description L-342
overview L-27, S-147
return codes L-343

GETSTORE TERMCTRL function L-288
GETTIME timing instruction

coding description L-167
overview L-50, S-32

GETVAL subroutine, $EDXASM 1-234
GETVALUE terminal I/O instruction

coding description L-169
overview L-44, S-47

GIN graphics instruction
coding description L-172
overview l-26

global area, $EDXASM 1-224
GLOBAL ATTNLIST L-61
GO activate stopped task, $DEBUG

command U-93
GOTO

change execution sequence,
$DEBUG command U-94

coding sequencing instruction
coding description L-173
overview L-34

graphics
conversion algorithm 1-201
functions overview l-26
hardware considerations C-6,

C-300
instructions l-26

CONCAT L-72
GIN L-172
PLOTGIN l-210
SCREEN l-270
XYPLOT L-324
YTPLOT L-325

requirements L-26
terminals S-46
utilities

$DICOMP U-105
$DIINTR U-127
$DIUTIl U-150
session manager S-216,

U-40
summarized S-64, U-5

GT (greater than) l-34

Common Index 499

H-conversion L-152
hardcopy function for terminals

PF6 1-114, U-7
hardware levels 5-30
HCF (see Host Communications
Facility)

HDRI tape label 5-239
header labels, tape 5-235
header record

Remote Management Utility
C-209

header record format, text editor
1-323

HELP list debug commands, $DEBUG
command U-94

higher-level index block 5-197
horizontal tabs, defining with

$IMAGE U-252
host assembler U-382
Host Communications Facility

C-81, 1-153
data set naming conventions

C-82
Program Preparation

5ystem/370 1-153, U-382
TPCOM module description 1-81
utility program, $HCUTI C-I07

host program, Remote Management
Utility C-205

host system considerations C-83
H05TCOMM configuration statement

5-83
HX display hex words, $DICOMP

subcommand U-118

I
initialization, $INITD5K com

mand U-257
insert line, $F5EDIT line

command U-229
I-conversion (Iw) L-148
I/O device instruction level L-24
I/O error logging

data set list utility,
$DI5KUT2 U-142

device table 5-276
invoking 5-273, U-292
log control record 5-276
log data set U-292
LOG macro

equates 5-278
syntax 5-272

printing the errors 5-275
recording the errors 5-270
tape log entries 5-245
utility, $LOG U-292

I/O functions
disk/diskette 1-95, L-22

summarized 5-46
EXIO control 1-123, L-24

summarized 5-51
H05TCOMM configuration

statement L-39, 5-83
overview 5-45
sensor 1-127

summarized 5-51

500 5C34-0313

tape L-40, L-75
terminal 5-46
timers L-50, 5-32

I/O instructions
disk L-22
diskette L-22
tape L-40

IACB indexed access control block
built by connecting data set

5-159
definition A-20
description A-35
location A-14

lAM Indexed Access Method link
module 5-155

IAMEQU Indexed Access Method copy
code module L-12, 5-155

IDCB EXIO control statement
coding description L-175
overview L-24

IDCHECK function C-223, 1-166,
1-177

identification, verify
host system C-223
IDCHECK function C-223
remote system C-223

IF program sequence instruction
coding description L-177
overview L-34

II insert block, $F5EDIT line
command U-231

lIB interrupt information byte,
Multiple Terminal Manager C-128

1M insert member
$DICOMP subcommand U-118
$PD5 5-257

image dimensions, define, DIM5
$IMAGE command U-251

image store U-205
immediate action routines 1-46

binary synchronous access
method 1-149

specifying maximum number
5-88

task supervisor 1-48
immediate data L-4
IN

initialize data base, $DIUTIL
command U-157

insert or delete elements,
$DICOMP command U-I07

INCLUDE $LINK control record
U-398

INCLUDE statement requirement
(EXTRN) L-134

index block A-20, A-33
overview 5-151

index entry A-12
index record contents, text
editor 1-323

index registers
floating-point operations

using L-21
integer operations using L-19
software introduction L-6

indexed access control block (see
IACB/ICB)

Indexed Access Method L-26, L-327
$IAM load module 5-155
$IAMUT1 utility U-235

overview 5-148
parameters 5-187
used in data set

reorganization 5-166
application program

(.\.,)

c~

C,'''' . I

preparation
$JOBUTIL procedure 5-158
link edit control 5-158

CALL instruction syntax L-68,
5""146

CALL processing A-4
~oding instructions L-327
control block linkages A-15
control flow A-3
data block location
calculation A-9
~evices supported by 5-146
~iagnostic aids A-I0
I/O requests

DELETE L-329, 5-147
DI5CONN L-332, 5-148
END5EQ L-334, 5-147
EXTRACT L-336, 5-148
GET L-338, 5-147
GET5EQ L-341, 5-147
LOAD L-344, 5-147
PROCE55 L-347, 5-147
PUT L-350, 5-147
PUTDE L-352, 5-147
PUTUP L-354, 5-147
RELEA5E L-356, 5-147

lAM link module 5-155
pperation 5-148
ov,rview L-27, 5-145
performance 5-205
program preparation procedure

5 ... 155
record processing A-6
request processing A-5
request verification A-10
storage requirements 5-204

'",d, .~ed.applications, planning and
·,:I.11gn1ng
, Qonnecting and disconnecting

data sets 5-159
handling errors

data-set-shut-down condi
tion 5-179

deadlocks 5-180
error exit facilities

5-178
long-lock-time condition

5-180
system function return
codes 5-179

lQading base records 5-160
processing indexed data sets

delete 5-165
direct read 5-161
direct update 5-162
extract 5-165
insert 5-146
sequential read 5-162
sequential update 5-146

resource contention 5-181
• ndluced data set
I: : base records 5-149

building U-247
concatenating with ALTIAM

subroutine 5-167
qQntrol block arrangement A-8
~reation with $IAMUT1 utility

U-236
formatting 5-187
procedure 5-156

df!51gn A-7
d~termining size and format
. ij"'24 7

format
blocks 5-192

cluster 5-200
data block 5-194
file control block (FCB)
5-151, 5-194

free blocks 5-200
free pool 5-203
free records 5-200
free space 5-184
higher-level index block

5-197
index 5-195
index block 5-194
introduction 5-151
last cluster 5-203
primary-level index block

(PIXB) 5-152, 5-195
relative block number

(RBN) 5-152
reserve blocks 5-201
reserve index entries
5-202

second-level index block
(5IXB) 5-152, 5-197

sequential chaining 5-203
loading and inserting records
5-150

maintenance
backup and recovery 5-165
deleting 5-167
dumping 5-167
recovery without backup
5-166

reorganization 5-166
overview 5-148
physical arrangement A-8
preparing the data

defining the key 5-166
estimating free space

5-168
selecting the block size

5-167
putting records into 5-149
RBN, relative block number

A-7, A-12
record locking 5-146, 5-160
verification A-11

indexed data set, defining U-237
indexed file (see Indexed Access
Method)

indexing, address feature L-6
initial program load (see also

IPL) 1-15
initialization

automatic application 5-129
disk (4962) U-68, U-73
disk (4963) U-68, U-78
diskette (4964,4966) U-68
libraries, $INITD5K utility

U-256
modules 1-16
nucleus 1-15
Remote Management Utility,
internals 1-166, 1-171

tape, $TAPEUT1 utility U-322
task 1-15

initialize data base, IN $DIUTIL
command U-157

initializing secondary volumes
5-132

INITMOD5, initialization modules
1-16

INITTA5K, initialization task
1-15

input, terminal I/O L-46

Common Index 501

Input Buffer, Multiple Terminal
Manager C-116

contents during 4978/4979/3101
buffer operation C-129

description C-116
input data parsing, description
of 1-218

Input Error function 1-166, 1-182
input/output (see I/O)
input output control block (see

IOCB)
INPUT switch to input mode,

$EDIT1/N editor subcommand U-192
insert

block, II $F5EDIT line com
mand U-231

elements, IN $DICOMP command
U-107

line, I $F5EDIT line command
U-229

member, 1M $DICOMP subcommand
U-118

instruction address register (see
IAR)

instruction and statements - over
view l-15

instruction definition and
checking ($EDXA5M) 1-241

instruction format, Event Driven
language 1-67, l-3

instruction format, general l-3
instruction operands l-3
integer and logical instructions
l-19

interactive program debugging
5-67, U-82

interface routines, supervlsor
1-61

interprocessor communications
C-29

interprogram dialogue 5-282
interrupt, from EXIO device 1-125
interrupt information byte (see
lIB)

interrupt line 5-313
interrupt servicing 1-46, 1-113
INTIME timing instruction

coding description l-181
overview l-50, 5-32

introduction to EDl l-1
invoking the loader 1-23
invoking the session manager U-27
invoking the utilities U-47
IOCB terminal I/O instruction

coding description l-183
constructing, for formatted

screen ($IMDEFN) 5-301
overview l-44, 5-47
structure 5-296
terminal I/O instruction

l-183
TERMINAL statement converted
to 5-96

IODEF sensor based I/O statement
U-364

coding description l-185
overview l-39, 5-51
5PECPI - process interrupt
user routine l-189

IOlOADER, function of 1-127
IOlOADER/IOLOADRU sensor based I/O
init. module desc. 1-78

lOR data manipulation instruction
coding description l-191
overview l-19

502 5C34-0313

IPl
automatic application initial

ization and restart 5-129
messages U-421

date and time U-425
IPl operation U-421
load utility location

U-424
sensor I/O status check

U-424
storage map generation

U-423
tape initialization U-423
volume initialization

U-422
procedure U-421

IPlSCRN, Multiple- Terminal
Manager C-125

job U-278
job control statement U-278
JOB job identifier, $JOBUTIL

command U-278
job stream processor, $JOBUTIl
5-69, U-27l

job stream processor utilities
(session manager) S-216

JP
jump ($PDS) 5-255
to address, $DICOMP

subcommand U-118
JR jump reference, $DICOMP

subcommand U-118
JUMP, $JOBUTIL command U-279
jump reference, JR $DICOMP

subcommand U-118
jump to address, JP $DICOMP

subcommand U-118

key (see program function (PF)
keys

keyboard and ATTNlI5T tasks, ter
minal I/O l-47

keyboard define utility for 4978,
$TERMUT2 U-339

KEY5 list program function keys
$IMAGE command U-253

keyword operand l-5

lA
display directory, $DIUTIl

command U-158
list all members, $DISKUT1

command U-135, U-136
list terminal assignment,

$TERMUT1 command U-336
label l-3

field l-3
syntax description L-4

()

o

c

LABEL end jump, $JOBUTIL command
U-280

labels, tape (see tape)
LABELS subroutine, $EOXASM 1-238
LACTS list all members CTS mode,

$DISKUT1 command U-135
language control data set,

$EDXASM 1-221, U-357
LASTQ queue processing
instruction

coding description L-191
overview L-37, S-32

layers, terminal I/O 1-108
LB display characters

$OICOMP display character sub
command U-119

$POS S-252
LC load control store, $TERMUT2

command U-342
LO

list all hardware devices,
$IOTEST command U-269

list data members, $OISKUT1
command U-138

LOCTS list data members CTS mode,
$OISKUT1 command U-135

LE (less than or equal) L-34
level status block (see LSB)
LEWORK1 work data set for $LINK

U-400
LEWORK2 work data set for $LINK

U-400
LH display member header, $OIUTIL

command U-159
LI

draw line $OICOMP subcommand
U-120

draw line $POS S-253
load image store, $TERMUT2

command U-342
library

definition 5-52
directory, disk or diskette

1-87
origin 5-60

line
commands, $FSEDIT U-229
continuation, source

statement L-4
editing, $EOIT1/N U-203
pointer reposition (see move
line pointer)

source line continuation
U-361

LINK, Multiple Terminal Manager
CALL

coding description C-131,
L-374

internals M-9
overview C-115, L-29

link edit process, $LINK U-394
autocall option U-393
building an EOX supervisor

U-394
combining program modules

U-392
control records U-396
elimination of duplication
control sections U-393

formatting modules for
$UPOATE U-392

input to $LINK U-396
multiple control sections

U-392
object module record format

U-407
output from $LINK U-403
storage map U-393

link edit program object modules
U-390

link module, Indexed Access
Method 5-155

linkage editor S-71, U-353
LINKOH, Multiple Terminal Manager

CALL

list

coding description C-132,
L-376

internals M-9
overview C-115, L-29

active programs, $A operator
command U-l1

breakpoints and trace ranges,
BP $OEBUG command U-92

characters, LB $OICOMP
subcommand U-119

data members, LO $OISKUT1
command U-138

data members, LOCTS $OISKUT1
command U-135

data set
BROWSE $FSEOIT option

U-213
LP $OISKUT2 command U-143
LU $OISKUT2 command U-146
status, ST $OIUTIL

command U-162
date/time, $W operator

command U-25
date/time, TO $OICOMP

subcommand U-124
devices, LO $IOTEST command

U-269
end, EP $OICOMP subcommand

U-117
error specification, ERRORS

$EOXASM command U-358
hardware configuration, LO

$IOTEST command U-264
insert mask, MASK $FSEOIT line
command U-232

member, LM $DISKUTI command
U-138

member, PR $OICOMP command
U-108

member header, LH $DIUTIL com
mand U-159

members, all
LA $DISKUT1 command U-135
LA $DIUTIL command U-158
LACTS $DISKUTI command

U-135
processor program, $EOXLIST

U-370
program function

$PFMAP utility
program function

$IMAGE command
program members,

command U-139

key codes,
U-301
keys, KEYS
U-253
LP $DISKUTI

program members, LPCTS
$OISKUTl command U-135

status of all tasks, WHERE
$DEBUG command U-102

storage, $0 operator command
U-15

terminal
names/types/addresses, LA
$TERMUT1 command U-335

variables, VA $DICOMP

Common Index 503

subcommand U-125
volume information, VI $IOTEST

command U-270
LIST commands

data set
LIST $EDITI/N command

U-193
LIST $FSEDIT option U-217

display lines of text,
$EDIT1/N editor subcommand
U-193

display storage or registers,
$DEBUG command U-95

lines of text, LIST $EDIT1/N
editor command U-176

list device option, $EDXASM
command U-358

list device option, $EDXLIST
command U-370

obtain full listing, LIST
$EDXASM command U-358

print data set, $EDITI/N
command U-176

print data set, $FSEDIT
option U-217

registers, LIST $DEBUG
command U-95

storage, LIST $DEBUG command
U-95

listing control functions U-29
listing control instructions

EJECT L-109
overview L-28
PRINT L-216
SPACE L-275
TITLE L-308

LISTP list to $SYSPRTR, $DISKUT1
command U-135

LISTT list to terminal, $DISKUTI
command U-135

LL list log data set, $DISKUT2
command U-145

LM list member, $DISKUT1 command
U-138

LO load indexed file, $IAMUTI
command U-241

LOAD
Indexed Access Method CALL

coding description L-344
connect file S-159
overview L-27, S-146
return codes L-346

task control instruction
coding description L-194
internals 1-24
overview L-42
return codes L-199

used with automatic
initialization S-129

used with overlays S-40
load mode S-149
load point defined L-40
load program

$L operator command 1-23,
U-17

automatic initialization
S-129

EXEC $JOBUTIL command U-277
loading overlays 1-22
loading programs 1-19
locate data sets and overlay

programs, $PREFIND U-302
LOCATE locate requested line

number $FSED1T primary comman
U-223

504 SC34-0313

location dictionary 1-250
lock

locks, block and record A-16
locks, file A-17
record S-146

LOCK TERMCTRL function L-288
LOG

I/O error logging macro 5-271
job processor commands,

$JOBUTIL command U-281
log data set for I/O errors U-292
logical end-of-file on disk S-324
logical screens S-293
logon menu for session manager
S-212, U-27

long-lock-time condition S-180
low storage

LP

during IPL 1-16
during program load 1-20

list data set on printer,
$DISKUT2 command U-144

list program members, $DISKUT1
command U-139

LPCTS list program members CTS
mode, $DISKUT1 command U-135

lR draw line relative

LS

$DICOMP subcommand U-121
$PDS S-257

list space, $DISKUT1 command
U-140

list supervisor configuration,
$IOTEST command U-270

LSB level status block I-52,
U-427

IT (less than) L-34
LU list data set on console,

$DISKUT2 command U-146
LV list through volumes, $DISKUTI

U-141

M move line, $FSEDIT line command
U-233

macro assembler
internal overview $S1ASM
1-253

overview S-9
macro library S-6
macro library/host S-5
magazine diskette (see 4966
diskette magazine unit)

magnetic tape (see tape)
MASK display insert mask, $FSED1T
line command U-232

master control block (see MCB)
Mathematical and Functional Sub

routine Library S-6
MCB master control block

$PDS S-260
definition A-20
description A-28

MD move data base, $DIUTIL
command U-160

member area S-250
member control block (MCB) S-260
MENU

Multiple Terminal Manager
CALL

coding description C-137,

o

;(~~.

,:,~,.J

o

c

c

l-377
internals M-9
overview C-116, l-29

return to primary option,
$F5EDIT U-223

menu-driven U-2
menus

(see option selection menu)
(see parameter selection
menu)

(see primary menu)
(see primary option menu)
(see secondary option menu)
(see session manager, menus)
(see transaction selection
menu)

MENU5CRN, Multiple Terminal Manag
er C-126

MERGE merge data, $F5EDIT option
U-217

message, PRINTEXT instruction
L-217

message sending utility, $TERMUT3
U-344

messages U-421
error U-427

$DUMP U-431
$LOG U-432
$RMU U-433
$TRAP U-435
program check U-427
system program check

U-429
IPL (see IPL messages)
Multiple Terminal Manager

C-178
Remote Management Utility

C-279
minimum execution system config
uration 5-22

minimum program preparation
requirements 5-22

mirror image
description C-7, 5-109
in TERMINAL configuration
statement 5-101

mixed precision combinations L-20
MM move block, $F5EDIT line

command U-233
modified data 5-307
modify character image tables

U-339
modify character string, CHANGE

$EDIT1/N editor subcommand
U-184

$F5EDIT primary command U-219
modify default storage allocation,

$DI5KUT2 U-149
modifying an existing data set,

$F5EDIT U-215
modifying TERMINAL statement for

new I/O terminal 1-119
module descriptions

-$51A5M 1-269·
supervisor 1-75

module names and entry points,
supervisor

move

Version 1.1 5-347
Version 2 5-357

block, MM $F5EDIT line com
mand U-233

line pointer
BOTTOM $EDIT1/N editor

subcommand U-183

DOWN $EDITI/N editor
subcommand U-189

TOP $EDITI/N editor
subcommand U-200

UP $EDIT1/N editor
subcommand U-201

tape U-324
text

$ED1Tl/N editor subcom
mand U-195

$F5EDIT line command
U-233

volumes on disk or diskette,
$MOVEVOL utility U-294

MOVE data manipulation
instruction

coding description L-201
overview L-19

MOVEA data manipulation
instruction

coding description L-204
overview L-19

MOVEBYTE subroutine, $EDXA5M
1-236

MP
move beam, $DICOMP subcommand

U-121
move position ($PDS) S-253

MT move tape, $TAPEUT1 command
U-324

MTM5TORE file, Multiple Terminal
Manager C-120, C-171, M-12

MTM5TR, Multiple Terminal Manager
C-169, C-170, M-12

multiple field format L-155
multiple program execution 1-36
multiple program structure S-26
multiple-task programs 1-33
Multiple Terminal Manager

accessing the terminal envi
ronment block C-139, M-22

application program C-116
application program languages

L-30
application program manager

C-119, M-4
automatic OPEN/CLOSE C-140,

M-8
CAll

ACTION C-130, l-360
BEEP C-137, L-361
CDATA C-139, l-362
CHGPAN C-135, l-364
CYCLE C-132, L-365
FAN C-139, L-366
F1LE10 C-141, L-367
FTAB C-138, L-372
LINK C-131, L-374
L1NKON C-132, L-376
MENU C-137, L-377
SETCUR C-137, L-378
SETPAN C-134, L-379
WRITE C-133, L-381

coding instructions L-359
components C-123, M-4
considerations for 3101

terminal C-122
data files C-120

MTMSTORE file C-120,
C-171, M-12

PRGRM5 volume C-120,
C-173

SCRNS volume C-120, C-173
TERMINAL volume C-120,

C-171

Common Index 505

direct file request types
. C-144, l-370
disk file support C-140
distribution and installation

C-161
dynamic screen modification
and creation C-136

file control area C-142
file I/O considerations (Event

Driven Executive) C-146
file management C-118, M-8
FIlEIO, disk file support

C-140
FIlEIO Indexed Access Method
considerations C-148

fixed screen formats C-125
functions (callable routines)

C-117, C-124
indexed file request types
C-144, l-369

indexed file support C-140,
l-367

initialization programs
C-119, C-158, M-4, M-6

Input Buffer C-116, C-127
Input Buffer Address C-116
Input Buffer during

4978/4979/3101 buffer oper
ation C-127

interrupt information byte
C-128

messages C-178
module list M-4
operation C-115
Output Buffer C~116
Output Buffer Address C-127
Output Buffer during

4978/4979/3101 buffer oper
ation C-128

overview l-29, S-10
program management C-115, M-4
program preparation

COBOL C-166
Event Driven language

C-164
FORTRAN C-165
Pl/I C-167

programming considerations
COBOL C-153
Event Driven language

C-151
FORTRAN C-152
Pl/I C-155

return codes (FIlEIO) C-145,
L-371

screen definition C-121
screen formats C-125

IPlSCRN C-125
MENUSCRN C-126
SCRN5REP C-126
SIGNONSC C-126

screen panel manager M-7
SIGNON/SIGNOFF C-156

SIGNONFl C-174
storage requirements C-168
swap out data set C-116
system generation
considerations C-169

data set requirements
C-171, C-175

volume requirements C-169
terminal environment block

(TEB) C-128, M-13
TERMINAL file C-124, C-172
terminal manager C-121

506 SC34-0313

terminal/screen management
C-117

terminal server C-119, M-7
terminal support C-114, C-126
transaction oriented
applications C-121

user application programs
C-124

utilities C-159
DISCONNECT turn off
specified terminals
C-159

programs report C-159
RECONNECT turn on
specified terminals
C-159

screens report C-160
terminal activity report

C-159
work areas, control blocks and

tables M-l1
buffer areas M-15,. M-29
common area M-l1, M-25
file table M-15, M-27
MTMSTORE data set M-12
program table M-14, M-21
screen table M-14, M-21
terminal environment block

(TEB) M-13, M-22
terminal table M-13, M-21

MULTIPLY data manipulation
instruction

coding description l-205
overview l-19
precision table l-206

multiprogramming
automatic application initial

ization S-129
design feature S-13

multitasking 1-42

NE (not equal) l-34
newline subroutine, terminal I/O

1-112
NEXTQ queue processing

instruction
coding description l-207
overview l-37, 5-32

NOFlOAT floating-point command
entries module description 1-79

NOlIST no list option, $EDXASM
command U-358

NOMSG message suppression,
$JOBUTIl command U-282

non-compressed byte string S-309
non-labeled tapes

description S-241
layout S-242
processing S-243

NOTE disk/tape I/O instruction
coding description l-209
overview l-22

notify of an event (see POST)
NQ reset prompt mode, $COPYUT1

command U-64
nucleus initialization 1-15
null character U-253
NUll define null representation

$IMAGE command U-253

o

o

C"i

, I

(""""
'"

,j

c

null representationl defining
U-253

number representation conversion
(see conversion)

object data set for $EDXASM U-357
object module record format l

$LINK U-407
object text elements, format ofl

$EDXASM I-215
OFF (set tape offline) L-75
OFF remove breakpoints and trace

rangesl $DEBUG command U-97
OLE operand list elementl $EDXASM

format of 1-216
in instruction parsing

($EDXASM) 1-220
used in $IDEF 1-241

online debug aids 5-67
op (operation field) L-3
OPCHECK subroutinel $EDXASM 1-232
opcode table, instruction parsing

($EDXA5M) 1-220, 1-223
open a data set

disk or diskette 1-90
tape 1-99

open EXIO device, EXOPEN 1-125
open member ($PDS) S-261
OPENIN Host Communications
Facility, TP operand C-93

OPENOUT Host Communications
FacilitYI TP operand C-94

operands
defined L-3
keyword L-5
parameter naming (Px) L-8

operating conventions, supervisor
program 1-67

operating environment S-22
operation codel instruction
parsing ($EDXA5M) 1-220

operation codes, Event Driven
Language 1-68

operations using index registers
L-20 .

operator commands 5-63, U-9
operator signals, terminal I/O

L-49
option selection menu U-33
optional features support L-15
OTE define object text element

$EDXASM instruction 1-227
OUTPUT $LINK control record U-399
Output Buffer, Multiple Terminal

Manager C-116, C-128
contents during 4978/4979/3101
buffer operation C-129

definition M-29
overflow L-20
overlay function processor table

1-167, 1-220
overlay program S-40

instructions, $EDXASM 1-259
loading 1-22
locating, $PREFIND U-302
subroutines, $EDXASM 1-231
user 1-38

overlay program execution 1-38
overlay selection, instruction
parsing ($EDXASM) 1-223

overlay table 1-167 1 I-220
overview

data definition statements
L-17

data formatting instructions
L-18

data format module names
L-18

data manipulation
instructions L-19

data representation L-19
mixed-precision
operations L-20

operations using index
registers L-20

overflow L-20
vector L-19

disk I/O instructions L-22
EXIO control instructions

L-24
floating-point arithmetic

l-20
floating-point arithmetic

instructions l-20
data representation l-21
operations using index
registers L-21

return codes L-21
graphics instructions L-26
Indexed Access Method
instructions L-27

instructions and statements
L-15

integer and logical
instructions l-19

listing control statements
L-28

Multiple Terminal Manager
instructions L-29

program control statements
L-32

program module sectioning
statements L-33

program sequencing
instructions L-34

queue processing l-37
sensor-based I/O statements

L-39
single-precision L-19
system configuration
statements L-39

tape I/O instructions L-40
task control instructions

L-42
terminal I/O instructions

L-44
timing instructions L-50

P/I (see process interrupt)
PA patch, $DISKUT2 command U-147
page eject 5-63, U-16
parameter equate tables L-11
parameter naming operands in the
instruction format L-8

parameter passing, Remote
Management Utility C-212

parameter selection menu U-33
parameter tablesl control block
and L-l1

Common Index 507

PARM program parameter passing,
$JOBUTIL command U-283

parsing, input data ($EDXASM)
I-218

partition assignment changing, $CP
operator command U-14

partitioned data sets S-247
partitions S-42
PASSTHRU function

conducting a session C-227
establishing a session C-225
internals 1-166, 1-179
overview C-225
programming considerations

C-237
sample program C-265
types of records C-232
virtual terminals C-239

Passthru record C-209
patch

disk/diskette, PA $DISKUT2
command U-147

Remote Management Utility
defaults C-283

storage, $P operator command
S-63, U-18

storage or registers, PATCH
$DEBUG command U-98

PATCH modify storage or registers,
$DEBUG, command U-98

PAUSE operator intervention,
$JOBUTIL command U-284

PC plot curve
$DICOMP subcommand U-119
from plot curve data member

($PDS) S-255
PD pulse DO, $IOTEST command

U-265
PF,code TERMCTRL function L-288
PF keys (see program function

keys)
phase execution and loading,

$S1ASM 1-255
PI process interrupt (see process

interrupt) U-267
PID program directory S-27
PIXB (see primary-level index

block)
PL/I

execution requirements S-24
link editing S-71
overview S-8
program preparation

requirements S-23
supported by Multiple Terminal
Manager C-200

Pl plot data, $DICOMP subcommand
U-122

plot control block (see PLOTCB)
plot curve data member ($PDS)

S-251
PLOTCB graphics plot control

block L-210
PLOTGIN graphics instruction

coding description. l-210
overview L-26

POINT
disk/tape instruction

coding description l-212
overview L-22, S-54

point-to-point (BSC) S-65
point-to-point vector drawing

S-46
POST

post an event, $DEBUG command

508 SC34-0313

U-100
task control instruction .. J.

coding description L·II~
internals I-58
overview L-42, 5-~4 :
supervisor function %~4'

power outage, restoring aftar
S-129

PR print member, $OICOMP commana
U-I08

preC1Slon l-19
floating-point arithmetic

l-21
integer and logical L-19
precision combinations,
allowed L-20

precision table
ADD L-53
ADDV L-54
DIVIDE L-101
~1UL TIPL Y L-206
overview l-20
SUBTRACT L-284

prafind U-302
PREPARE IDCB command L-175
PRGRMS volume, Multiple TQrmih~i

Manager C-120, C-173
primary

commands, $FSEDIT U-218
option menu, $FSEDIT U-21J
option menu, session manag~~
S-218, U-35

task
internals 1-29
overview S-29

volume S-60
primary-level index block

description S-195
overview S-151

PRINDATE terminal I/O instruct""
coding description l-21S
overview L-44, S-47
timer-related instruction
S-33

PRINT listing control statement
coding description L-216
overview l-28

print member, PR $DICOMP co~~ahd:
U-I08

PRINTEXT terminal I/O instructioH
coding description l-217
overview l-44, S-47
return codes l-219 ~.

PRINTIME terminal I/O instruct •• ~·
coding description l·221
o v e r view l-4 4, > l-50, S - 41
timer-related instruction

S-33
PRINTNUM terminal I/O instruct'Oft

coding description l-222
overview l-44, S-47

PRINTOH define terminal name,
$RJE2780/$RJE3780 C-75

priority
assigned to tasks 5-29
design feature S-13
illustrated S-38
internals 1-31
task l-226, l-286

PROC identify nested procedura,
$JOBUTIl command U-286 .

procedures, session manager (•••
session manager)

PROCESS Indexed Access Method
CALL

o

c

coding description L-347
overview L-27, S-147
return codes L-349

process interrupt
control block (SBIOCB) 1-128
description S-48
IODEF statement L-189
IOTEST command U-267
supported by sensor I/O S-15
user routine (SPECPI) L-189

process mode
definition S-150

processing compiler output with
$LINK or $UPDATE U-360

processor status word (see PSW)
PROGEQU L-13
program

equates I-312
assembly/compilation U-352
control L-32
disabling S-102
entry (see $FSEDIT, $EDIT1/N)
function (PF) keys L-47

internals 1-108
listing, KEYS $IMAGE

command U-253
listing 4978, $PFMAP
utility U-301

when using $FONT edit
mode U-206

~hen using $FSEDIT U-211
when using $IMAGE edit

mode U-255
when using session

manager U-28
header 1-30
identifier, $JOBUTIL command
U-287

internal processing 1-30
library update (see $UPDATE)
load process, $PREFIND U-302
loading (see also LOAD) 1-19
module sectioning functions

L-33
organization S-29
sequencing functions L-34
structure S-29
termination, EXIO 1-126
types 1-32

program check error messages
U-427

program execution via Remote Man-
agement Utility

EXEC function C-220
PASSTHRU function C-225
SHUTDOWN function C-251

PROGRAM identifier, $JOBUTIL
command U-287

program preparation
$EDXASM 1-211, U-356
$S1ASM 1-253, U-372
host assembler U-382
of Remote Management Utility

1-184
summary S-18
usage example S-367

Program Preparation Facility
description S-71
overview S-5

program preparation utilities
U-351

program preparation utilities
(session manager) OU-36, 5-214

program/storage manager, Multiple
Terminal Manager M-4

program structure S-36
internals 1-33

program/task concepts 1-29, S-29
PROGRAM task control instruction

coding description L-225
internals 1-30
overview L-42, S-31

PROGSTOP task control statement
coding description L-234
overview L-42, S-31

prompting and advance input,
terminal I/O L-46

protected field S-307, U-253
protocol, BSC transmission 1-156
P5W processor status word U-430
PU PUNCHO/PUNCHS function,

$RJE2780/$RJE3780 reset type
C-76

pulse a digital output address, PD
$IOTE5T command U-264

PUNCHO/PUNCHS define output file,
$RJE2780/$RJE3780 C-75

purpose of EDL L-1
PUT Indexed Access Method CALL

coding description l-350
overvi e~... L-27
return codes L-351

PUTDE Indexed Access Method CALL
coding description L-352
overview L-27
return codes L-353

PUTEDIT data formatting
instruction

coding description L-236
overview L-18
return codes L-238

PUTSTORE TERMCTRL function L-288
PUTUP Indexed Access Method CALL

coding description L-354
overv i e~o,J L -27
return codes L-355

Px L-8

QCB task control statement S-33
coding description L-240
overview L-42
queue control block 1-45,

I-54
QD queue descriptor 1-64, L-37
QE queue entry

functions 1-64
overview L-37
processing 5-32

QUALIFY modify base address,
$DEBUG command U-101

QUESTION terminal I/O instruction
coding description L-242
overview L-44, 5-47

queuable resource 5-33
queue control block (see QCB)
queue descriptor (see QD)
queue entry (see QE)
queue processing 1-64
queue processing instructions

L-37
queue processing supp~rt module,

QUEUEIO, description 1-81
QUEUEIO queue processing support

module description 1-81

Common Index 509

RA reassign address, $TERMUTI com
mand U--336

random access 5-53
random work file operation,

$SlASM 1-260
RCB (see Remote Management
Utility, control block)

RDCURSOR terminal I/O instruction
coding description l-244
overview l-44, $-47

RE

read

copy from basic exchange data
set, $COPY command U-59

rename, $TERMUTI command
U-337

rename member, $DISKUTl com
mand U-135, U-136

rename member, $D!UTIl
command U-161

reset parameters, $IAMUTI
command U-243

restore 4974 to standard
character set, $TERMUT2
U-339

analog input, AI $IOTEST
U-268

character. image table from
4978, GET $FONT U-206

data set into work file
$EDITI U-177
$EDITIN U-176
$FSEDIT U-216

digital input, 01 $IOTEST
command U-266

digital input using external
sync U-266

Host Communications FaCility,
TP operand C-95

IDCB command l-175
operations (BSC) 1-157
program, RP command

$UPOATE U-410
$UPDATEH U-419

READ instruction
disk/diskette return codes
l-249, U-455

disk/diskette/tape I/O
instruction

coding description l-245
overview l-22

tape return codes l-249,
U-456

REAODATA read data from host,
$HCFUTI command C-I08

READID IOCB command L~115
READOBJ read object module,

$HCFUTI command C-I09
REAOTEXT terminal I/O instruction

coding description L-251
overview L-44, $-48 .
return codes l-255
return codes, virtual terminal

communications L-256
ready a task supervisor execution
state 1-43

READI IDCB command L-175
READ80 read 80 byte records,

$HCFUTI command C-I09
real image ACCA terminals C-7

510 SC34-0313

realtime data member
$POS S-251
RT $D1COMP subcommand U-124

RECEIVE function
overview C-243
sample program C-262

RECONNECT Multiple Terminal
Manager utility C-120, C-159

record
blocking, Remote Management
Utility C-211

definition S-53
exchange, Remote Management
Utility C-208

format for object module,
$lINK U-407

header, Remote Management
Utility C-209

sizes, Host Communications
Facility C-83

reformat diskettes U-68
register, index l-6
register, software l-6
register conventions

$SIASM 1-257
BSCAM processing 1-147
common emulator setup routine

1-68
EnCOIC to floating-point
conversion 1-205

summary chart $SIASM 1-258
terminal I/O support 1-106

REl release a status record,
$HCFUTI command C-I10

relational statements l-180
RELEASE

Host Communications Facility,
TP operand C-96

Indexed Access Method CALL
S-147

coding description l-356
overview L-27, S-147
return codes l-357

release a status record, REl
$HCFUTI command C-110

release space ($PDS) S-261
relocating program loader 1-19
relocation dictionary, $EOXASM
1-250

REMARK operator comment, $JOBUT1L
command U-288

remote job entry to host,
$RJE2780/$RJE3780 C-73

Remote Management Utility
CDRRM equates C-292
control block (RCB)

description 1-164, 1-169
equate tables C-292,

1-295
use in problem determi-
nation 1-190

defaults C-283
error handling C-277
function table 1-164, 1-167
functions C-206, 1-166
installation C-281
interface C-207
internals 1-216
logic flow 1-170
messages C-279
modifying defaults C~283
module descriptions 1-191
module list 1-186
operation C-213
overlay function processor

(~ ,)

c

o

c

Or'
'l

table 1-167, 1-220
overlay table 1-167, 1-220
overview C-205
program preparation I-184
requirements C-207
sample host programs C-259
system generation
considerations C-281

TERMINAL statement example
S-107

terminating C-251
remote system (see Remote
Management Utility) C-205

remove breakpoints and trace
ranges, OFF $DEBUG command U-97

rename member
RE $DISKUTI command U-135,

U-136
RE $DIUT1l command U-161

RENUM renumber lines
$EDITI/N subcommand U-196
$FSEDIT primary command U-224

reorganize an indexed data set
U-242

procedure S-166
report data member ($PDS) 5-251
reposition line pointer (see move
line pointer)

Request record C-209
reserved labels l-4
reset

function, $RJE2780/$RJE3780
attention request C-76

IDCB command L-176
Indexed Access Method

ECHO mode, EC $IAMUT1 com
mand U-240

SE command parameters, RE
$IAMUTI command U-243

line command, $FSEDIT primary
command U-225

RESET task control instruction
coding description l-258
overview L-42, 5-31

resident assembler routines 1-256
resolution, enhanced 1-201
resolution, standard graphics
1-201

resource control, supervisor I-54
restart, automatic S-129
restore

disk or disk volume from tape,
RT $TAPEUTI command U-326

dump volume utility, $MOVEVOl
U-294

. 4974 to standard character
set, RE $TERMUT2 command
U-343

resulting field (EOR) l-122
return codes (see also completion
codes)

$DISKUT3 S-319, U-444
$PDS U-445
BSC C-57, U-446
CONVTB l-80
CONVTD L-83
data formatting instructions

U-447
DELETE l-330
DISCONN l-333
ENDSEQ l-335
EXIO U-448
EXIO instruction L-131
EXIO interrupt L-132
EXTRACT l-337

FADD l-136
FDIVD l-138
FIlEIO C-145
floating point instruction

U-450
FMUlT l-145
formatted screen image U-450
FSUB l-160
FTAB C-L38, l-373
GET L-340
GETSEQ l-343
in Remote Management Utility
control block 1-190

Indexed Access Method U-451
lOAD l-199, U-452
LOAD (Indexed Access Method)

L-346
Multiple Terminal Manager

U-453
PRINTEXT l-219
PROCESS L-349
PUT l-351
PUTDE l-353
PUTEDIT l-238
PUTUP l-355
READ disk/diskette l-249,

U-455
READ tape l-250, U-456
READTEXT L-255
RELEASE L-357
SBIO U-457
SBI0 instruction l-262
SETPAN C-135
tape L-77
TERMCTRl L-288
terminal I/O l-255, U-458

ACCA U-459
interprocessor
communications C-31,
U-460

virtual terminal L-256,
U-461

TP (Host Communications Facil
i~y) C-I02, U-463

WHERES l-316
WRITE disk/diskette l-320,

U-455
WRITE tape l-320, U-456

return from immediate action
routine (SUPEX1T) 1-49

return from task level (SUPRTURNl
1-49

RETURN program control
instruction

coding description l-259
overview L-32, S-31
supervisor entry point 1-279,
1-313

supervisor interface 1-62
REW (rewind tape) L-75
rewind tape, MT $TAPEUT1 command

U-324
RH reassign hardcopy, $TERMUT1

command U-338
RI read
transparent/non-transparent,
$BSCUT2 commahd C-68

RJE (see Remote Job Entry)
RlOADER 1-19, 1-22

RLOADER/RLOADRU module
description 1-78

RO reorganize indexed file,
$IAMUTI command U-242

ROFF (rewind offline) l-75

Common Index 511

roll screen, terminal I/O l-48,
5-293

RP read program
$UPDATE command U-410
$UPDATEH command U-419

RPQ 002038, 4978 display station
attachment C-6, 5-97

different device
confjgura~ions C-8

RSTATU5 rDCB command l-175
RT

activate realtime data member,
$DICOM? subcommand U~124

change realtime data member
name ($PD5) 5-258

disk or disk volume from tape,
$TAPEUTI utility U-326

RWI read/write non-transparent,
$BSCUT2 command C-58

RWIV read/write non-tr~nsparent
conversational, $B5CUT2 C-71

RWIVX read/write transparent
conversational, $BSCUT2 C-70

RWIX read/write transparent,
$BSCUT2 command C-67

RWIXMP read/write multidrop
transparent, $BSCUT2 command
C-60

SA saVe data, $DICOMP subcommand
U-124

SAVE
data set on disk, $IMAGE com

mand U-254
work data set, $EDITI/N

subcommand U-197
save current task status

(TASKSAVE) I-54
save data, SA $DICOMP subcommand

U-124
save disk Or disk volume on tape,

$TAPEUTI utility U-330
save storage and registers, $TRAP
utility U-348

SB special PI bit, $IOTEST
command U-267

SBAI sensor based I/O support
module description 1-80

SBAO sensor based I/O support
module description 1-80

SBCOM sensor based I/O support
module description 1-80

SBDIDO sensor based I/O support
module description 1-80

SBIO sensor based I/O instruction
coding description l-260
control block (SBIOCB) 1-127
overview L-39, 5-51
return codes L-262

SBIOCB sensor based I/O control
block 1-127

SBPI sensor based I/O support
module description 1-80

SC save control store, $TERMUT2
command U-343

screen format builder utility,
$IMAGE S-68, U-250

SCREEN graphics instruction
coding description L-270
overView L-26

512 5C34-03I3

screen image format building
U-250

screen images, retrieving and dis
playing 5-300

screen management, terminal I/O
L-48

SCRN5 volume, Multiple Terminal
Manager C-120, C-173

5CRN5REP, Multiple Terminal
Manager C-125

scrolling, $F5EDIT U-210
5C5S IDCB command L-176
5E set parameters, $IAMUTI

command U-244
SE set status, $HCFUTI command

C-II0
second-level index block

description 5-197
overview 5-153

secondary
disk volumes 5-132
volumes 5-60

secondary option menus S-218,
U-36

(see session manager)
sectioning of program modules

L-33
sector $-52
self-defining terms L-4
send

data, HX $DICOMP subcommand
U-118

data set, SEND function C-247
message to another terminal,

$TERMUT3 utility U-344
SEND function

internals 1-166, 1-172
overview C-247
sample program C-274

sensor based I/O
assignment L-188
I/O control block (SBIOCB)
1-127

modules (IOLOADER/IOLOADRU)
1-78

statement overview L-39
support module descriptions

1-81
symbolic L-9

SEN50RIO configuration statement
5-51, 5-84

sequence chaining L-27
sequencing instructions, program

L-34
sequential access

in Indexed Access Method
5-145

overview S-53
sequential work file operations

($51ASM) I-259
serially reusable resource (5RR)
I-59, 5-33

session, PA55THRU
conducting C-227
establishing C-225
logic flow diagram C-230
using $DEBUG utility C-272

session manager U-27
$5MALLOC data set allocation
control data set 5-222. U-30

$5MDELET data set deletion
control data set 5-222, U-32

adding an option 5-209, 5-224
communications utilities U-42

communications utilities

;1'----'1\

~.;Ji)

o

o

o

S-217
data management S-215
diagnostic utilities

S-217
disk utilities (see data

management)
execute program utilities

5-216
graphics utilities 5-216
job stream processor
utilities S-216

logon menu U-27
primary 5-218, U-35
program preparation
utilities S-214

secondary S-218, U-36
summary of S-213
terminal utilities S-215
updating primary option

S-224
creating a new menu S-224
data management U-38
data set deletion U-32
data sets creation U-29
diagnostic utilities U-43
execute program utilities

U-41
graphics utilities U-40
invoking U-27
invoking a $JOBUTIl procedure
S-229

job stream processor
utilities U-42

menus U-33
minimum partition size

required U-27
operational overview S-209
primary option menu, $SMMPRIM

S-218, U-35
procedures

communications utilities
S-217

data management utilities
S-215

diagnostic utilities
S-217

execute program utilities
S-216

graphics utilities S-216
job stream processor
utilities S-216

overview S-220
program preparation
utilities S-214

terminal utilities S-215
updating S-225

program function keys U-28
program preparation utilities

U-36
secondary option menus S-218,

U-36
storage usage S-211
terminal utilities U-40
text editing utilities U-36
utilities not supported U-46

SET,ATTN TERMCTRL function L-288
set breakpoints and trace ranges,

AT $DEBUG command U-90
set date and time, $T operator

command S-63, U-19
SET Host Communications Facility

TP operand C-97
SET,LPI TERMCTRL function l-288
set status, SE $HCFUT1 command

C-110

set tape offline, MT $TAPEUT1 com
mand U-324

set time, $T operator command
U-19

SETBUSY supervisor busy routine
1-48, 1-63

SETCUR, Multiple Termi~al Manager
CALL

coding description C-137,
L-378

internals M-9
overview C-117, l-29

S ETEOD subrout i ne S-324·
SETPAN, Multiple Terminal Manager

CALL
coding description C-134,

L-379
internals M-9
overview C-117, l-29
return codes l-380

setup procedure for $JOBUTIl
U-271

SG special PI group, $IOTEST com
mand U-267

SHIFTl data manipulation
instruction

coding description l-271
overview l-19

5HIFTR data manipulation
instruction

coding description l-273
overview L-19

SHUTDOWN function C-251, 1-166,
1-181

51 save image store, $TERMUT2 com
mand U-341

SIGNON/SIGNOFF, Multiple Terminal
Manager C-156

SIGNONFL C-174
single program execution 1-35
single-task program 1-33
single task program S-34
SIXB (see second-level index
block)

5LE sublist element, $EDXASM
format of 1-217
in instruction parsi~g

($EDXASM) I-220
instruction description and
format I-229

used in $IDEF 1-241
software register l-6
software trace table S-265
sort/merge S-9
source program compiling S-71
source program entry and editing
S-66, U-351

source program line continuation
using $EDXASM l-4, U-361

source statements, $EDXASM overlay
generated 1-243

SP spool function,
$RJE2780/$RJE3780 reset type
C-76

SPACE listing control statement
coding description l-275
overview l-28

special control characters 5-46
special PI

bit, SB $IOTEST command U-267
group, SG $IOTEST command

U-267
specifications, data conversion

L-146

Common Index 513

SPECPI define special process
interrupt L-189

SPECPIRT instruction
coding description L-276
overview L-39

split screen configuration S-293
SPOOL define spool file,

$RJE2780/$RJE3780 C-76
SQ set prompt made, $COPYUTI

command U-64
SQRT data manipulation

instruction
coding description L-277
overview L-19

S5 set program storage parameter,
$DI5KUT2 command U-149

ST
display data set status,

$DIUTIL command U-162
save disk or disk volume on
tape, $TAPEUTI command U-330

standard labels, tape
EOFI S-240
EOVI S-239
fields S--238
HDRI S-239
header label S-235
layouts S-236
processing 5-236
trailer label S-235
volume label 5-235
VOL1 S-238

START
IOCB command L-176
PROGRAM statement operand

L-225
start and termination procedure,

$OEBUG U-85
STARTPGM 1-16
statemeht label L-4
static screen, terminal I/O

accessing example S-297
overview L-48

statu., set, SE $HCFUTI comm~nd
C-I10

STATUS data definition statement
coding description L-278
overview L-17

status data set, system Host
Communications Facility C-85

5tatus record C-258
STIMER timing instruction

coding description L-280
overview L-50, 5-32
with PASSTHRU function C-238

storage estimating
application program size

S-344
supervisor size S-333
utility program size S-342

storage management
address relocation translator

1-71, 5-42
allocating 1-25
descriptiOn 5-42
design feature $-13

storage map, resident loader 1-26
storage map ($SIASM) phase to
phase 1-262

storage resident loader, RLOADER
1-19

storage usage during program load
1-20

store next record ($PDS) $-261
store record ($PDS) S-261

514 SC34-0313

string.~relational statement
L-180 -.

SU
submit eX) function,

$RJE2780/$RJE3780 reset type
C-77

submit job to host, $HCFUT1
command C-111

SUBMIT
Host Communications Facility,

TP operand C-98
send data stream to host,

$RJE2780/$RJE3780 C-77
submit job to host, $EDITI

command U-179
submit job to host, $FSEDIT
option U-217

SUBMITX send transparent,
$RJE2780/$RJE3780 C-77

SUBROUT program control statement
coding description L-281
overview L-32, S-31

subroutines
$IMDATA S-303
$I~1DEFN S-30 1
$IMOPEN S-300
$IrolPROT S-302
ALTIAM concatenation S-167
DSOPEN S-322
overview S-31
SETEOD S-324

SUBTRACT data manipulation
instruction

coding description L-283
overview L-19
precision table L-284

suggested utility usage U-48
supervisor/emulator

class interrupt vector table
1-10, 1-277

communications vector table
1-11, 1-278, 1-313

control block pointers 1-11
design features S-13
device vector table 1-11,

1-278
emulator command table 1-13,

1-282, 1-301
entry routines 1-47
equate table 1-279, 1-313
exit routines 1-49
features S-13
fixed storage area 1-9
functlons 1-44

calling 1-60
generation 1-5, S-115
initialization control module,

EDX1NIT, description 1-81
initialization task module,

EDXSTART, description 1-81
interface routines 1-61
introduction 1-5
module names and entry points

S-309
module summary 1-8
overview S-29
PASSTHRU session with C-225
referencing storage locations

in 1-12
service routines I-53
size, estimating S-333
task supervisor work area
1-13, 1-280

utility functions (see
operator commands)

o

o

('i f

with the address translator
support 1-72

SUPEXIT supervisor exit routine
1-49, 1-63

support for optional features
L';"15

SUPRTURN supervisor exit routine
1-49

surface analysis of tape, $TAPEUT1
utility U-319

SVC supervisor entry routine
1-47, 1-62

SVCABEND supervisor exit routine
1-49

SVCBUF supervisor request buffer
1-48

SVCI supervisor entry routine
1-48

symbol dictionary, $EDXASM 1-250
symbol table types, $EDXASM 1-216
symbolic L-I0

address (disk,tape) L-10
disk/tape I/O assignments

L-I0
diskette L-10
reference to terminals S-110
sensor I/O addresses L-9
terminal I/O L-10

symbols (EXTRN) L-134
symbols (WXTRN) L-323
syntactical coding rules L-4
syntax checking in instruction
parsing ($EDXASM) I-221

syntax rules L-4
SYSGEN (see system generation)
system

alternate logging device
S-46, S-111

class interrupt vector table
1-10, 1-277

commands (see operator
commands)

common area 1-12
communications vector table

1-11, 1-278, 1-313
control blocks, referencing

1-289
data tables, EDXSYS, module
description 1-75

device vector table 1-11,
1-278

emulator command table 1-13,
1-282, 1-301

generation
procedure S-115

host/remote C-205
logging device S-46, S-110
operational and error
messages U-421

printer S-46, $-110
program check and error
messages U-427

task supervisor work area
1-13, 1-280

SYSTEM configuration statement
L-39, $-86

system configuration statements
$-75

system control blocks $-42
system reserved labels L-4

TA allocate tape data set,
$TAPEUT1 command U-333

tables, parameter equate L-11
tabs

HTAB $IMAGE command U-252
TASSET $EDIT1/N subcommand

U-198
VTAB $IMAGE command U-254

TABSET establish tab values
$EDIT1/N editor subcommand U-198

tape
bypass label processing $-244
control L-74
data set L-40
defining volumes $-62
definitions for data sets

L-40
end-of-tape (EOT) L-41
I/O instructions L-40
internals 1-97
labels

external $-233
internal $-233

load point (BOT) L-40
non-label

layout S-242
processing S-243
support $-241

record L-40
return codes L-77, U-455
standard label

fields S-238
layout $-236
processing S-236
support $-235

storage capacity S-59
symbolic addressing L-10
utility, $TAPEUT1 $-233,

U-311
volume L-40

TAPE configuration statement $-94
tape data set control block 1-99
tape device data block (see TDB)
TAPEINIT, tape initialization mod-
ule-description 1-82

tapemark L-74
task

active/ready level table I-50
concepts 1-29
control 1-42
control block (see TCB)
definition and control func-
tions

dispatching I-52
error exit facility

check and trap handling
$-268

linkage conventions $-269
execution states 1-43, S-39
internals 1-42
multiple-task program 1-33,

$-34
overview L-42, $-29
priority (see priority, task
execution)

single-task program 1-33,
$-34

states $-39
status display, WHERE $DEBUG

command U-102
structure $-29

Common Index 515

superv!sor 1-42
superVlsor address translator
support module 1-76

supervisor functions 1-44
supervisor work area 1-13,

1-280
switching I-51, S-30
synchronization and control
I-54, S-30

task code words L-8
TASK task control statement

coding description L-285
overview L-42, S-31

TASKSAVE supervisor service
routine I-54

TCB task control block 1-32,
1-43, 1-49, I-56, 1-314

TCBEQU L-13
TO

display line and data ($POS)
5-258

display time and date, $OICOMP
subcommand U-124

test display, $DICOMP command
U-I08

TOB, tape device data block
description 1-97
equate listing 1-316

TEB terminal environment block
C-128, M-13

Tektronix C-6
devices supported S-14, 5-45
support for digital I/O 5-312

teleprocessing (see TP)
teletypewriter adapter C-7, C-21
TERMCTRL terminal I/O instruction

coding description L-288
overview L-44
return codes L-301

TERMERR L-44
terminal

#7850 teletypewriter adapter
C-21

ACCA support C-7, L-295
ASCII C-7
assignment list, LA $TERMUTI

command U-336
attention handling L-47
attention keys L-47
code types C-303
configuration utility,

$Tl:RMUTl U-334
connected via digital I/O

5-312
control block (see CCB)
data representation L-46
definition and control
functions 5-47

device configurations C-8
EDXTIO/EDXTIOU module
description 1-78

environment block (see TEB)
error handling L~44
forms control L-46
f~rms interpretation for
display screens L-46

functions
data formatting C-16
definition C-16
interrupt processing C-17

hardware jumpers C-18
I/O L-46

attention handling L-47
data representation L-45
error handling L-44

516 5C34-0313

forms control L-45
prompting and advance

input L-46
screen management L-48

I/O internal design 1-105
I/O support layer 3 1-112
input L-46
keyboard and ATTNLI5T tasks

L-47
message sending utility,

$TERMUT3 U-344
new I/O terminal support

1-117
operations C-14
operator signals L-49
output L-46
output line buffering L-46
program function keys L-47
prompting and advance input

L-46
return codes C-20, L-219,

L-255, U-458
roll screens L-48
sample terminal support
program C-26

screen management L-48
server, Multiple Terminal
Manager C-119, M-7

session manager (see session
manager)

special considerations for
attachments of devices

via #1610 or #2091 with
#2092 adapters C-17

via #2095 with #2096
adapters C-21

special control characters
S-46

static screens L-48
supported devices and
features C-6

terminal I/O L-47
terminology for supported
terminals C-7

transmission protocol C-31
utilities (session manager)

S-215, U-40
virtual I/O 1-115

TERMINAL configuration statement
defaults 5-105
definition 5-96
overview S-48

TERMINAL volume, Multiple Terminal
Manager C-120, C-171

terminate

test

logging, $LOG utility U-292
Remote Management Utility

C-251

BSC lines, $B5CUT2 utility
C-64

generated report or graphics
profile'member U-108

label types, $TAPEUT1 utility
U-319 '

pro~ess interrupt for
occurrence of event, $IOTEST
U-267

TEXT data definition statement
coding description L-305
overview L-17

text editing utilities
edit dataset subroutine exam
ples 1-326

full screen-editor $FSEOIT

()

(
--~

'J

o

o

o

U-209
line editors, $EDITI/N U-169
overview 5-66
work data set, format of

1-321
text wrapping, WRAP function

C-254
time/date

display, $W operator command
U-25

set, $T operator command U-19
set, automatic initialization
facility 5-130

time of day
GETTIME instruction L-167

TIMEDATE Host Communications
Facility, TP operand C-I00

TIMER configuration statement
5-33, 5-112

timer control L-50
timer module descriptions

(EDXT1MER, EDXTIMR2) 1-80
timing instructions L-50, 5-32
TITLE listing control statement

coding description L-308
overview L-28

TONE TERMCTRL function L-288
TOP repostiton line pointer,

$EDITI/N editor subcommand U-200
TP host communication instruction
description

coding description C-90
internals 1-153
subcommand operations 1-157

TPCOM host communications support
module description 1-81

trace printing routine for B5C,
$B5CUT1 C-62, 5-65

trace ranges and breakpoints
setting, AT $DEBUG command U-90

trace routine for B5C, $B5CTRCE
C-61

trace table, software 5-265
transaction program, Multiple

Terminal Manager
functions L-28
Multiple Terminal Manager

C-121
transfer data set to host

5END function C-247
WR $HCFUT1 command C-112
WRITE $EDITI command U-180
WRITE $F5ED1T option U-216

transfer rates for data, Host
Communications Facility C-84

transient program loader 1-19
transmission codes 5-98
transmission protocol, host

communications 1-156
transmitted data, length of, host

communications 1-159
TRAPDUMP force trap dump, $TRAP
attention command U-349

TRAP END end $TRAP use, $TRAP
attention command U-349

TRAPOFF deactivate error trap,
$TRAP attention command U-349

TRAPON activate error trap, $TRAP
attention command U-349

UN unload indexed file, $IAMUT1
command U-246

UNBLINK TERMCTRL function L-288
undefined length records, tape

5-245
UNLOCK TERMCTRL function L-288
unprotected field 5-307, U-253
UP move line pointer, $EDIT1/N
editor subcommand U-201

update utility
$UPDATE convert object program
to disk U-408

$UPDATEH convert host object
program to disk U-418

updating a menu for the session
manager 5-224

user defined data member ($PD5)
5-252

user exit routine L-310
requires Macro Assembler $-71

user initialization modules 1-17
USER program control instruction

coding description L-310
overview L-32

utilities U-47
B5C communications C-61
invoking U-2
listed by type S-64, U-3
overview 5-5

utilities not supported by session
manager menu U-46

utility program size 5-342
utility usage U-48

V verify, $INITD5K command U-260
VA

display, variable, $DICOMP
subcommand U-125

display variable ($PD5) 5-254
variable length record, Host

Communications Facility C-84
variable length records, tape
5-244

variable names L-4
vary disk, diskette, or tape
offline, $VARYOFF U-20

vary disk, diskette, or tape
online, $VARYON U-22

vector
addition L-19, L-54
data manipulation L-19

vector addition (ADDV)
coding description L-54
overview L-19

verify
disk or diskette data set, V

$IN1TD5K U-260
tape executing correctly, EX

$TAPEUT1 command U-319
tape surface free of defects,

EX $TAPEUT1 command U-319
verify and initialize disk or
diskette library, $INITDSK U-256

verify identification
host system C-223
remote system C-223

Common Index 517

VERIFY verify changes, $EOITI/N
editor subcommand U-202

vertical tabs, defining U-254
VI list volume information,

$IOTEST command U-270
virtual terminal communications

accessing the virtual termi
nal S-281

creating a virtual channel
S-280

establishing the connection
S-280

inter-program dialogue 5-282
internals 1-115
loading from a virtual
terminal S-281

Remote Management utility
requirements C-281

volume
definitions (disk/diskette)

L-22, S-52
dump restore utility,

$t10V EVO L U-294
labels S-60

VTAB define vertical tab setting,
$IMAGE command U-254

WAIT program sequencing statement
coding description L-313
overview L-42, S-31
supervisor function 1-45,
I-58

wait state, put program in, WS
$IOTEST command U-264

waiting, task execution state
1-43

WE copy to basic exchange diskette
data set, $COPY command U-63

WHERE display status of all tasks,
$DEBUG command U-I02

WHERES task control function
coding description l-315
overview L-42, S-287
return codes L-316

WI write non-transparent, $BSCUT2
command C-69

WIX write transparent, $B5CUT2
command C-69

word boundary requirement
DO L-34
IF L-34
PROGRAM L-225

work data set
$EDXA5M 1-249
$LINK U-400
$SlASM 1-258

work files, $SIASM, how used
1-258

WR write a data set to host,
$HCFUTI command C-112

WRAP function C-254, 1-166, 1-176
WRITE

disk/diskette I/O instruction
coding description L-317
overview L-22
return codes L-320, U-455

Host Communications Facility,
TP operand C-I0l

IDCB command L-175
Multiple Terminal Manager

518 5C34-0313

CALL
coding description C-133,

L-381
internals M-9
overview C-118, L-29

save work data set
$EDITI command U-180
$EDITIN command U-181
$FSEDIT primary option

U-216
tape I/O instruction

coding description L-317
overview L-22
return codes L-320, U-456

write data set to host, WR $HCFUTI
command C-112

write operations, HCF 1-156
WRITEI IDCB command L-175
WS put program in wait state,

$IOTEST command U-264
WTM (write tape mark) L-75
WXTRN program module sectioning

statement
coding description L-323
overview L-33

X-type format L-154
XI external sync 01, $IOTEST

command U-266
XO external sync DO, $IOTEST

command U-266
XYPLOT graphics instruction

coding description L-324
overview L-26

YTPLOT graphics instruction
coding descrition L-325
'overv i ew L -26

ZCOR, sensor I/O L-189

Nu~er;c Subjects

1560 integrated digital
input/output non-isolated fea
ture C-6

different device
configurations C-8

use with different terminals
C-7

1610 asynchronous communications
single line controller C-6

considerations for attachment
of devices C-17

different Qevice
configurations C-8

for interprocessor
communications C-29

to a single line controller
S-99

use with different terminals
C-7

2091 asynchronous communications
eight line controller C-6, S-99

considerations for attachment
of devices C-17

different device
configurations C-8

use with different terminals

o

o

o

o

c

C-7
2092 asynchronous communications
four line adapter C-6

considerations for attachment
of devices C-17

different device
configurations C-8

to attach ACCA terminal S-99
use with different terminals

C-7
2095 feature programmable eight
line controller C-6

considerations for attachment
of devices C-21

different device
configurations C-8

use with different terminals
C-7

2096 feature programmable four
line adapter C-6

considerations for attachment
of devices C-21

different device
configurations C-8

use with different terminals
C-7

2741 Communications Terminal
supported S-45
TERMINAL statement example

S-106
3101 Display Terminal

attribute character C-122
block mode considerations

C-25
character mode considerations

C-22
interface with Multiple
Terminal Manager C-121, L-29

TERMINAL configuration
stateme~t examples 5-108

3585 4979 display station
attachment C-6, 5-97

4952 Processor
partitions on S-42
timer feature installed on

S-32
4953 Processor

partitions on 5-42
timer feature installed on

S-32
4955 Processor

partitions on S-42
timer feature installed on

5-32
4962 Disk Storage Unit

storage capacity S-58
supported by Indexed Access

Method S-146
4963 Disk Subsystem

storage capacity S-58
supported by Indexed Access

Method S-146
4964 Diskette Storage Unit

part of minimum system config
uration S-22

required for program
preparation S-22

supported by Indexed Access
Method S-146

4966 Diskette Magazine Unit
part of minimum system config
uration 5-22

required for program
preparation S-22

supported by Indexed Access
Method S-146

4969 Magnetic Tape Subsystem
S-233

4973 Line Printer
defined in TERMINAL configura
tion statement 5-96

end of forms S-307
TERMINAL statement example

S-105
4974 Matrix Printer

defined in TERMINAL configura
tion statement S-96

end of forms S-307
restore to standard character
set, RE $TERMUT2 U-339

TERMINAL statement example
S-105

4978 Display Station
defined in TERMINAL configura
tion statement S-96

part of minimum system
configuration 5-22

reading modified data S-307
required for program
preparation 5-22

TERMINAL statement example
S-105

4979 Display Station
defined in TERMINAL configura
tion statement S-96

part of minimum system
configuration 5-22

required for program
preparation S-23

TERMINAL statement example
5-105

4982 sensor I/O unit S-84
5230 Data Collection Interactive

S-11
5620 4974 matrix printer
attachment C-6

defined in TERMINAL statement
S-97

different device
configurations C-8

5630 4973 line printer attachment
C-6

defined in TERMINAL statement
S-97

5719-AM3 (see Indexed Access
Method)

5719-A5A (see Macro Assembler)
5719-CB3 (see COBOL)
5719-CB4 (see COBOL)
5719-F02 (see FORTRAN IV)
5719-LM3 (see
Mathematical/Functional Subrou
tine Library)

5719-LM5 (see Macro Library)
5719-M51 (see Multiple Terminal
Manager)

5719-SM2 (see Sort/Merge)
5719-UT3 (see Utilities)
5719-UT4 (see Utilities)
5719-X51 (see Basic Supervisor and

Emulator)
5719-XX2 (see Program Preparation
Facility)

5740-LM2 (see Macro library/Host)
5799-TDE (see Data Collection
Interactive)

7850 teletypewriter adapter C-6,
C-21

Common Index 519

c
520 SC34-0313

C,l!
"

(
'"'" ---'"

II
~j

(")
c:
.-+

o ...
" o a:
»
0'
:::s
Ie

r-
5'
(1)

READER'S COMMENT FORM

IBM Series/1 Event Driven Executive Utilities, Operator
Commands, Program Preparation, Messages and Codes

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I BM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publ ications; this only delays the response. I nstead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or cI arifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an I BM office or representative will be happy to forward your comments.)

SC34-0313-2

Reader's Comment Form

Fold and tape Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

--- ------ - ---- ---- - ---- - - -------------
®

International Business Machines Corporation
General Systems Division
4111 Northside Parkway N. W.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternational)

Please Do Not Staple Fold and tape

SC34-0313-2

Printed in U.S.A.

(')

S

/

c

o

C
·~\
,)

READER'S COMMENT FORM

IBM Series/1 Event Driven Executive Utilities, Operator
Commands, Program Preparation, Messages and Codes

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I BM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. I nstead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

SC34-0313-2

Reader's Comment Form

Fold and tape Please Do Not Staple

II " I
BUSINESS REPLY MAl L
FIRSTCLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Pu bl ications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Fold and tape

--- ------ - ---- ---- - ---- - - ----------_.-
®

International Business Machines Corporation
General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(International)

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IFMAILED

IN THE
UNITED STATES

Fold and tape

SC34-0313-2

Printed in U.S.A.

o

I

--- ------ ----- ---- - ---- - - ----------_ .-

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.

P. O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(International)

SC34-0313-2
Printed in U.S.A.

