
--- ------ ----- ---- - ---- - - ----------_ .-

SC34-0316-2

File No. S1-30

LICENSED
PROGRAM

IBM Series/1

Event Driven Executive

Communications and Terminal
Applications Guide

Program Numbers: 5719-LM5 5719-LM6 5719-MS1
5719-UT3 5719-UT4
5719-XS1 5719-XS2
5719-XX2 5719-XX3
5740-LM2 5740-LM3

Series/1

--- ------ ----- ---- - ---- - - ----------_.-

o

o

SC34-0316-2

File No. S1-30

LICENSED
PROGRAM

IBM Series/1

Event Driven Executive

Communications and Terminal

Applications Guide

Program Numbers: 5719-LM5 5719-LM6 5719-MS1
5719-UT3 5719-UT4
5719-XS1 5719-XS2
5719-XX2 5719-XX3
5740-LM2 5740-LM3

Series/1

Third Edition (APRIL 1980)

Use this publication only for the purpose stated.

Changes are periodically made to the information herein;
before using this publication in connection with the operation
of IBM systems, refer to the latest IB~1 Ser i es/1 Graph i c
Bibliography, GA34-0055, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services which are not announced in your coun
try. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, program
ming, or services in your country.

Publications are not stocked at the address given below.
Requests for copies of IBM publications should be made to your
IB~l representat i ve or the IBM branch off i ce serv i ng your local
it y.

This publication could contain technical inaccuracies or
typographical errors. A form for reader's comments is provided
at the back of this pUblication. If the form has been removed,
address your comments to IBM Corporation, Systems Publica
tions, Department 27T, P.O. Box 1328, Boca Raton, Florida
33432. IBM may use and distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

(C) Copyright IBM Corporation 1979,1980

o

()

o

o

SUMMARY OF AMENDMENTS

Terminal Support

Terminal support information for the 3101 Display Termi
nal (Models 1 and Model 2) was added to Chapter 1.

Multiple Terminal Manager

Chapter 5 has been modified for PL/I and 3101 Display
Terminal as provided by the Multiple Terminal Manager.

Remote Management Utility (Version 2 only)

Chapter 6 is a new chapter that describes the Remote
Management Utility.

The Bibliography lists the books in the Event Driven
Executive library and a recommended reading sequence.
Other pUblications related to the Event Driven Executive
are also listed.

Miscellaneous Changes

This manual has been modified to include new function
and to improve technical accuracy and clarity. Addi
tional material and technical changes are indicated by
vertical bars in the left margin.

SC34-0316 iii

HOW TO USE THIS BOOK

The material in this section is a guide to the use of this book.
It defines the purpose, audience, and content of the book as
well as listing aids for using the book and background materi
als.

PURPOSE

The IBM Series/l Event Driven Executive Communications and
Term ina I App I i cat ions Gu i de, SC34-0316 descr i bes how to use
the Event Driven Executive to communicate with interactive
devices, such as, terminals or other processors.

This manual provides extensions to the System Guide, the
Utilities, Operator Commands, Program Preparation, Messages
and Codes, and the Language Reference manuals.

AUDIENCE

T his. boo k i s w r itt e n for 5 y s t e man d a p p 1 i cat ion pro g ram mer s
with cons i derab Ie knowledge in BSC and host ope rat ion,. inc I ud
ing IBM and non-IBM communications hardware.

To write applications for remotely attached devices, you must
be familiar with line control procedures. Experience in pro
gramming realtime programs in the Event Driven Language is
required. Experience coding programs in assembler language for
the Series/l wi 11 enable you to extend the terminal application
capabilities of the system.

HOW THIS BOOK IS ORGANIZED

This book is organized into two parts. The first part explains
criteria for selecting communications methods or techniques
available with the Event Driven Executive system. The second
part consists of individual chapters which describe how to
design particular communication techniques.

iv SC34-0316

o

o

()

c

The top i cs covered in part two inc I ude:

Terminal Support

Binary Synchronous Communications

Host Communications Facility

Multiple Terminal Manager

Remote Management Utility

EXAMPLES AND OTHER AIDS

Throughout this book, coding examples and illustrations are
used to clarifY coding techniques and requirements. Coding
examples are fully executable portions of complete programs
that may be entered as they are shown. Cod i ng ill ustrat ions are
non-executable portions of incomplete programs that show the
correct format of all required parameters on a statement. Miss
ing code, or code provided by you, is indicated by a series of
vertical or horizontal dots.

Several other aids are provided to assist you in using this
book:

• A Summary of Amendments 1 i sts the sign if i cant changes made
to this publication since the last edition

• A Bibliography:

Lists the books in the Event Driven Executive library
along with a brief description of each book and a
recommended reading sequence

Lists re lated pub 1 i cat ions and mater i a Is

• A Glossary which defines terms

• A Common Index which includes entries from each book in the
Event Driven Executive library

References to other manuals are made throughout thi s manual
using shortened titles. For the full title and order number of
manuals mentioned in the text, see the Bibliography.

SC34-0316 '!

RELATED PUBLICATIONS

Related publications are listed in the Bibliography.

SUBMITTING AN APAR

If you have a problem with the Series/l Event Driven Executive
services, you are encouraged to fill out an authorized program
analysis report (APAR) form as described in the IBM Series/l
Authorized Program Analysis Report (APAR) User's Guide,
GC34-0099.

vi SC34-0316

c

c

0"",,' ',,'

o

o

CONTENTS

Introduction 1

Part I - Techn; que Select ion Cr iter; a 3

Chapter 1. Techn; ques Ava; lable Us; n9 the Event Dr; ven
Executive • • • • • • • • • • • • • •••

Terminal Support •••••.•••••••••••••.
Terminology for Supported Terminals ••••••••

Binary Synchronous Communications Access Method (BSCAM)

5
5
7
9
9
9
9

Host Commun i cat ions Fac iIi ty ••••
Multiple Terminal Manager ••••
Remote Management ut i 1 i ty •••• • •••
Graphics
Utilities

Part II - Techni que Des; gn Informati on

Chapter 2. Terminal Support
Terminal Operations
Terminal I/O Instructions
Data Formatting Instructions
Terminal Definition Functions
Interrupt Process i ng Funct ions •••••••••
Considerations for Feature #1610 or #2091 with #2092

Adapter
Return Codes •••.•••••••••••••••
Considerations for Feature 12095 witht2096 Adapter
17850 Teletypewriter Adapter ••••••••••
Spec i a 1 Cons i der at ions for the IBM 3101 in Character

Mod e ••••••••••••••••••••••••••
Special Considerations for the IBM 3101 in Block Mode
Interprocessor Communications

Hardware Preparation ••••
Terminal Control Block (CCS)
Transm iss ion Protoco 1
Modifications to the Protocol
CRDELAV= •••••••...••
CODTVPE= •••.••••••

Chapter 3. Binary Synchronous Communications
Access Level
Conversational Operations
Multipoint Operations
Task Control •••••••
The Event Dr i yen Language BSC Statements
BSCCLOSE ••••••••••••••
BSCIOCB
BSCLINE
BSCOPEN
BSCREAD

BSCREAD Types

10
10

11

13
14
15
16
16
17

17
19
21
21

22
25
29
29
30
31
33
33
33

35
36
36
36
37
38
38
39
42
44
45
46

Contents vii

BSCWRITE ••••
BSCWRITE Types

Error Recovery
Sample Program: Write Transparent
Sample Program: Read Transparent
Ut iIi ty Programs (BSC)
$BSCTRCE ••••
$BSCUTI •••••••
$BSCUT2 •••••••

RWI - Read/Write Non-transparent Data ••••
R~JIX - Read/Wr i te Transparent Data ••••
RWIXMP - Read/Write Transparent, Multidrop Line
RI - Read Transparent/Non-transparent •••••
WI - Write Non-transparent
WIX - l~r i te Transparent
EN - End $BSCUT2 Program
CH - Change Hardcopy Device ••••
RWIVX - Read/Write Transparent Conversational
RWIV - Read/Write Non-transparent Conversational

$PRT2780 and $PRT3780 ut iii ty Programs
$RJE2780 and $RJE3780 Ut iIi ty Programs

Chapte~ 4. Host Communications Facility
Open Ser i es/l Data Sets ••••
Host Data Set Naming Conventions
Host Data Set Character i st i cs
Host System Considerations
Record Sizes •••••••
Variable Length Records
Data Transfer Rates
System Status Data Set
TP Statement •••••
Examples of Use

TP Statement Syntax
TP CLOSE
TP FETCH
TP OPENIN
TP OPENOUT •••••
TP READ ••••
TP RELEASE •••••••••
TP SET ••••••
TP SUBMIT ••••
TP TIMEDATE
TP WRITE

Return Codes ••••
Example Transfer a Series/l Data Set to the Host
Example Transfer a Host Data Set to the Series/l
$HCFUT 1 Ut iIi ty Program ••••• • •••

READDATA •••••••• • •••
READ80 and READOBJ
SET, FETCH, and RELEASE
SUB~1IT ••••
WRITE ••••.•••••••••••

Chapte~ 5. Mul t; pIe Termi nal Manager

viii SC34-0316

49
50
56
59
60
61
61
62
64
66
67
67
68
69
69
70
70
70
71
72
73

81
82
82
83
83
83
84
84
85
88
88
90
90
92
93
94
95
96
97
98

100
101
102
105
106
107
108
109
110
111
112

113

0.'·,·· II

o

o

Introduction
Hardware Requirements
Software Requirements
Program Operation Overview

Program Management
Terminal/Screen Management
Fi Ie Management •••••••
Multiple Terminal Manager Operation
Multiple Terminal Manager Initialization Program
Terminal Server Programs ••••••••••••.
App I i cat i on Program Manager •••••••••.•••••
Multiple Terminal Manager Utilit.ies
Sign-On/Sign-Off ••••••••••
Data Files ••••••••••••

App I i cat i on Program Inter face •••• . ••••
Considerations for the IBM 3101 Model 2 Terminal
Multiple Terminal Manager Components
Program Execution •••••
User Program Organization

Input Buffer Address
Output Buffer Address ••••
Terminal Environment Block (TEB)
Interrupt Information Byte (lIB) ••••

Controlling the logic Flow of Programs
CAll ACTION
CAll lINK
CAll lINKON
CAll CYCLE

Communicating with ASCII Terminals
CALL WRITE •••••••

Communicating
CAll SE.TPAN
CAll CHGPAN
CAll SETCUR
CAll BEEP
CALL NENU
CAll FTAB
CAll FAN

with IBM 4978/4979/3101 Displays

Accessing the Terminal Environment Block
CAll CDATA • • • • • •••

Disk File Support
CAll FIlEIO ••••

Event Dr i ven Execut i ve Direct File I/O Cons i derat ions
FIlEIO Indexed Access Method Considerations ••••
Pro g ram min g Co n s'l d era t ion s ••.••••••••••

Event Driven language Programming Considerations
FORTRAN Programm i ng Cons i de rat ions ••••
COBOL Programmi ng Cons i derat ions ••••
Pl/I Prograrnm i ng Cons i derat ions ••••

S I G NON / S I G N 0 F F P r.o 9 ram s • • • •
SIGNON •••• • •••••••
SIGNOFF

Operator Interface ••••
Multiple Terminal Manager Initiation and Termination
Signing On ••••••••••••••••••••••

113
114
114
115
115
117
118
118
119
119
119
119
120
120
121
122
123
127
127
127
128
128
128
130
130
'131
132
132
133
133
134
134
135
137
137
137
138
139
139
139
140
141
146
148
150
151
152
153
155
156
156
157
158
158
158

Contents ix

Program Initiation and Termination
Utilities •••••••••••••

Distribution, Installation and Program Preparation
Installat ion ••••••••••••••••
Program Preparat i on •••••••••••••••••

Event Driven Language Program Preparation
FORTRAN Program Preparation
COBOL Program Preparation
PL/I Program Preparation

Storage Requ i rements ••••
System Generation Considerations

Volume Requ i rements •••••
Data Set Requ i rements ••••

MTMSTORE • • • • • •••••••••••
TERMINAL ••••••
Screen Format Volume - SCRNS
User App 1 i cat i on Program Vo I ume - PRGRMS
SIGNONFL .••••••••••••••••

Multiple Terminal Manager Defaults and How to Change
Multiple Terminal Manager Messages ••••••••
E xamp I e - F i leMa i ntenance Transact i on App 1 i cat ion

EDL Sample Progl •••• • •••
EDL Sample Prog2 •••••
COBOL Sample Progl ••••••••
COBOL Sample Prog2
FORTRAN Sample Progl
FORTRAN Sample Prog2
PL/I Sample Prog1 ••••
PL/I Sample Prog2

Chapter 6. Remote Management ut; 1; ty
Remote Management Funct ions •••••••••••
Hardware Requ i rements ••••••
Software Requ i rements •••••
Remote Management Ut i 1 i ty Interface

Binary Synchronous Communication Protocol
Record Exchange • • •• • •••
Record Format •••••
Record Block i ng •••••••••••
Buffer Allocation ••••••••••
Parameter Pass i ng •••••

Remote Management Ut i 1 i ty Funct i ona 1 Ope rat ion
ALLOCATE Function •••••• • •••

Required Field Descriptions
DELETE Function ••••••••

Required Field Descriptions
DUMP Funct i on ••••••••

Required Field Descriptions
EXEC Funct i on ••••••••

Required Field Descriptions
IOCHECK Funct i on ••••••

Required Field Descriptions
PASSTHRU Funct ion •••••••

Establ ish i ng a PASSTHRU Sess i on
Conduct i ng a PASSTHRU Sess i on

x SC34-0316

158
159
161
162
164
164
165
166
167
168
169
169
171
171
171
173
173
174
177
178
182
190
191
193
195
197
198
200
202

205
206
207
207
207
208
208
209
211
211
212
213
214
214
216
216
218
218
220
220
223
223
225
225
227

o

o

o

o

Passthru Record Types ••••
Text or Program Function Key
Request for Data •••••
Program End ••••
No Data ••••••
PASSTHRU Blocking
Cons i derat ions on Us i ng PASSTHRU

RECEIVE Function ••••
Required Field Descriptions

SEND Funct ion ••••••••
Required Field Descriptions

SHUTDOWN Funct i on ••••••
Required Field Descriptions

WRAP Funct i on ••••••••
Required Field Descriptions

Count Record ••••
Data Record ••••••••
Status Record ••••••••
Sample Host Programs

Error Handl i ng
Types of Errors
Err 0 r Me s sa g e s

Installation
Remote Management Ut iIi ty Modu les
System Generation Requirements
Storage Requ i rements ••••••••
Remote Management Uti lity Defaults
Modifying Defaults ••••

Host 10 •••••••
Remote ID
BSC Dev i ce Address
Communications line
Storage ••••••••
Buffer Si ze ••••
Standard Data Set ••••
Source Data Set
Passthru Data

CDRRM Equate listing

Chapter 7. Graphics
General Description
Hardware Considerations

Append i x A. Code Types

B;bl;ography ••••••
Event Driven Executive library Summary

Event Driven Executive library
Summary of library

System Gu ide .••••
Utilities ••••
language Reference
Communications Guide
Interna 1 Des i gn ••••
Reference Summary

232
232
236
236
236
237
237
243
244
247
248
251
251
254
254
256
257
258
259
277
277
279
281
281
281
282
283
283
284
285
286
287
288
289
290
290
291
292

299
299
300

303

309
309
309
310
310
310
311
311
311
312

Contents xi

Tabs
Read i ng Sequence •••••••••••••••••••••

Other Event Driven Executive Programming Publications
Other Ser i es/l Programm i ng Pub 1 i cat ions ••••
Other Programming Publications ••••
Ser i es/1 System Library Pub Ii cat ions ••••

Glossary

Common Index

xii SC34-0316

312
312
313
313
314
314

317

329

rr--"\
~'''>-)

o

o

LIST OF FIGURES

Figure
Figure
Figure

1. Supported Devices and Features •••••••
2. Terminal I/O - ACCA Return Codes ••••••
3. Terminal I/O - Interprocessor Communications

6
20

Return Codes .••••••••..••.••••••••• 31
41
57
74
78
79
86

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

(Part

4. Requi red Buffers for BSCREAD and BSCWRITE
5. BSC Return Codes ••••••••••••••
6. $RJE Attention Requests •••••••••••
7. Sample $RJE Session (Part 1 of 2)
8. Sample $RJE Session (Part 2 of 2)
9. System Status Data Set Sample Program

10. TP Return Codes (Part 1 of 3)
11. TP .Return Codes (Part 2 of 3) •••••••••
12. TP Return Codes (Part 3 of 3) •••••
13. Remote Management Ut iii ty Record Types
14. Remote Management ut i 1 i ty Record Sc heme
15. Communications Flow for the ALLOCATE Function
16. Commun i cat ions F low for the DE LETE Funct ion
17. Commun i cat ions F low for the DUMP -Funct ion
18. Commun i cat ions F low for the EXEC Funct i on
19. Communications Flow for the IDCHECK Function
20. Log i c F low of a PASSTHRU Sess i on •••••••
21. Example of Passthru Records Recei ved by Host
22. Commun i cat ions F low for the PASSTHRU Funct i on
1 of 2)

Figure 23. Communications Flow for the PASSTHRU Function
(Part 2 of 2)

Figure 24. Commun i cat ions F low for the RECE IVE Funct ion
Figure 25. Commun i cat ions F low for the SEND Funct i on
Figure 26. Communications Flow for the SHUTDOWN Function
Figure 27. Communications Flow for the WRAP Function
Figure 28. Error Handling by the Remote Management
Utility

Figure 29. Error Handling by the Host Program
Figure 30. CDRRM Copy Code (Part 1 of 6) •••••••••
Figure 31. CDRRM Copy Code (Part 2 of 6) •••••••••
Figure 32. CDRRM Copy Code (Part 3 of 6) •••••••••
Figure 33. CDRRM Copy Code (Part 4 of 6)
Figure 34. CDRRM Copy Code (Part 5 0 f 6)
Figure 35. CDRRM Copy Code (Part 6 of 6)

List of Figures

102
103
104
209
210
215
217
219
222
224
230
235

241

242
246
250
253
255

278
279
292
293
294
295
296
297

xii i

()

xiv SC34-0316

o

c

o

INTRODUCTION

The Event Driven Executive can be used to interact with a vari
ety of terminals. Various techniques are available using the
Event Driven Executive. These techniques support applications
ranging from simple applications interacting with a single
terminal to complex communications networks. This book con
tains both the information you need to understand which Event
Driven Executive technique is best suited for your particular
application and, the information needed to design your appli
cation using the technique selected.

These techn i ques are:

• Terminal Support

• Binary Synchronous Communication Access Method (BSCAM)

• Host Communications Facility

• Multiple Terminal Manager

I· Remote Management ut i 1 i ty

• Graphics

• Utilities

Introduction 1

o

c
2 SC34-0316

o

o

0,,1,'

"

PART I - TECHNIQUE SELECTION CRITERIA

This part of the book lists and briefly describes the tech
niques supported by the Event Driven Executive. The informa
tion in this part of the book allows you to see what is
available and to select the technique best suited for your par
ticular application.

Part I - Technique Selection Criteria 3

o

4 SC34-0316

o

o

c

CHAPTER 1. TECHNIQUES AVAILABLE USING THE EVENT DRIVEN EXEC
UTIVE

Th is chapter descr i bes the techn i ques ava i lab Ie us i ng the
Event Driven Executive. The information in this chapter will
help you select the technique best suited to your application.

TERMINAL SUPPORT

This technique is the basic Event Driven Executive terminal
support and should be selected if you are writing an Event
Driven Language program ,which will interact with a single ter
minal. See Figure 1 on page 6 for supported terminals. Use of
this facility will also allow the Event Driven Language program
to interact wi th another Event Dr i ven Language program. The
interaction with another Event Driven Language program is
known as virtual terminal support. For information on the vir
tual terminal support, refer to "Virtual Terminal Communi
cat ions" in the System Gu ide.

Using the terminal support, you interact with the terminal in
either field or line mode. If the terminal is a supported
display, the interaction may also be in full screen mode. For
information on the full screen mode support, refer to "Defining
and Access i ng Log i ca I Screens" in the System Gu i de.

Chapter 1. Techniques Available Using the Event Driven
Executive 5

The following figure lists the devices and features which are
supported by the Event Dr i ven Execut i ve.

Device (or equivalent) Attach Via Series/l
Controller/Adapter

Feature Number
IBM 2741 1610
IBM 4973 5630
IBM 4974 5620
IBM 4978 RPQ 002038
IBM 4979 3585
IBM Series/l 1610
IBM 5100 1610
IBM 5110 1610
IBM 3101 1610 or, 2091 with 2092 or,

2095 with 2096 or, 7850
ASCII terminal* 1610 or, 2091 with 2092 or,

2095 with 2096 or, 7850
Graphics terminal** 1560

*Teletype 1 ASR 33/35 CTTY) or equivalent
**Tektronix 2 Model 4013 or equivalent

1560 - Integrated Digital Input/Output Non-Isolated
1610 - Asynchronous Communications Single Line Controller
2091 - Asynchronous Communications Eight line Controller
2092 - Asynchronous Communications Four line Adapter
2095 - Feature Programmable Eight line Controller
2096 - Feature Programmable Four line Adapter
3585 - 4979 Display Station Attachment
5620 - 4974 Printer Attachment
5630 - 4973 line Printer Attachment
7850 - Teletypewriter Adapter
RPQ 002038 - 4978 Display Station Attachment

Figure 1. Supported Devices and Features

1

2
Trademark of Teletype Corporation.
Trademark of Tektron ix, Inc.

6 SC34-0316

c

o

()

c

Term;nology for Supported Term;nals

The following is a definition of terminologies used in describ
ing Event Driven Executiie supported terminals. This terminol
ogy is also used to describe the coding of the TERMINAL
statement during system generation time which is discussed in
the System Gu ide.

Terminology
ASCII Terminal

ACCA Terminal

Mirror Image
ACCA Terminal

Real Image
ACCA Terminal

TTY

2741 Terminal

PROC

Definition
Any device which attaches via #7850,
#1610, 12091 with 12092, or #2095
with #2096 adapters. (Teletypewriter,
Asynchronous Single Line, Asynchronous
Multiline, and Feature Programmable
adapters respectively) and uses code
type ASCII or EBASC.

An ASCII terminal attached via 11610,
#2091 with #2092, or #2095 with #2096
adapters.

An ACCA terminal attached via #1610 or
#2091 with 12092 using code type EBASC.

An ACCA terminal attached via 12095
with #2096 using code type ASCII.

Any Teletype ASR 33/35 or compatible
terminal attached via #7850 only.

A terminal attached via #1610 using
code type CRSP or EBCD.

A terminal attached via #1610 using
code type EBCDIC.

Note: Appendix A of this book contains all the code types men
tioned in the previous text.

Chapter 1. Techniques Available Using the Event Driven
Executive 7

The following table shows the different device configurations.

Device
Class

Display

Display

Display

Display

Display

Display

Printer

Printer

Printer

Printer

Printer

Printer

Printer

Program

Program

Program

Program

8 SC34-0316

Code
Type

Graphics

ASCII

Mirror
Image
ASCII

EBCDIC

EBCDIC

ASCII

ASCII

Real
Image
ASCII

Mirror
Image
ASCII

CRSP

EBCD

EBCDIC

EBCDIC

EBCDIC

EBCDIC

EBCD

CRSP

Local/
Remote

local

Remote

Remote

local

local

local

local

Remote

Remote

Remote

Remote

local

local

local

Remote

Remote

Remote

Control/
Adapter

11560

12095
with

12096

11610
or

#2091
with

#2092

RPQ
002038

#3585

17850

#7850

12095
with

12096

11610
or

#2091
with

12092

11610

11610

#5620

#5630

n/a

#1610

#1610

#1610

System
Configuration
Device Type

4013

ACCA

ACCA

4978

4979

TTY

TTY

ACCA

ACCA

2741

2741

4974

4973

VIRT

PROC

PROC

PROC

Device

4013

3101 ..

3101

4978

4979

3101

Teletype

Teletype

Teletype

2741

2741

4974

4973

Series/l

Series/1

5100/5110

5100/5110

c

(j

o

c

BINARY SYNCHRONOUS COMMUNICATIONS ACCESS METHOD (BSCAM)

The binary synchronous communications access method technique
should be selected when interacting with remotely connected
terminals or CPUs using the binary synchronous communications
facility. The remote terminals and CPUs may be any which sup
port the BSe protocol. In order to use this technique, the con
nect i on must be v i a a BSC line. The Event Dr i ven Language
support allows you to write programs which send and receive
data consistent with the BSC protocol on the line. This support
also provides IBM utilities or, IBM supplied applications,
which have general applicability. These utilities are 2780 and
3780 RJE emulators and aids for the debugging of programs which
use binary synchronous communications.

HOST COMMUNICATIONS FACILITY

The Host Communications Facility allows you to send/receive
data sets and background jobs to/from a host system. It
requires the Host Communications Facility Installed Users Pro
gram (IUP) (S796-PGH) be installed on the host S/370 system.
This technique provides Event Driven Language instructions and
a utility ($HCFUTl) to provide interactive communications
between a S/370 host and remote Series/lover a binary synchro
nous commun i cat ions fac i 1 i ty. The Host Commun i cat ions Fac i 1 i ty
ut iIi zes the BSCAM support to perform its funct ions.

MULTIPLE TERMINAL MANAGER

The Multiple Terminal Manager support should be selected when
the requirement is to support a transaction-oriented applica
t ion. A transact ion-or i ented appl i cat ion is one wh i ch cons i sts
of several terminals, each of which may request concurrent
interaction with one or more programs. The Multiple Terminal
Manager manages the Series/l storage area to reduce the amount
of storage required to support interaction with more than one
terminal by one program. High-level language support is pro
vided.

I REMOTE MANAGEMENT UTILITY

The Remote Management Utility support should be selected when
the requirement is to provide remote Series/l processing for a
host computer. The Remote Management Utility provides a means

Chapter 1. T~chniques Available Using the Even~ Driven
Executive 9

of distributed processing on a remote Series/I, with little or
no operator intervention required. The Remote Management Util
ity and the host communicate via a user-written host program
over a BSC line us i ng the BSCAM support of the Event Dr i ven
Executive.

GRAPHICS

This support should be selected when the application has a
requirement for graphics support. This technique enables you
to communicate with a Tektronix Model 4013 (or equivalent) ter
minal. The physical connection is via the #1560 adapter. In
addition to the basic terminal support statements available,
graphics-oriented Event Driven language statements and IBM
utilities are provided.

UTILITIES

Various IBM utilities are supplied to ease the burden of data
transmission to/from interacting devices. These utilities are
descr i bed in the appropr i ate sect ions and are:

• Terminal support (see Utilities, Operator Commands,
Program Preparation, Messages and Codes)

$IMAGE
$FONT
$PFMAP
$TERMUTI
$TERMUT2
$TERMUT3

• BSCAM (see Chapter 3)

$PRT2780
$PRT3780
$RJE2780
$RJE3780

$BCSUTI
$BSCUT2

• Host Commun i cat ions Fac iii ty (see Chapter 4)

$HCFUTI

• Graphics (see Chapter 7)

10 SC34-0316

$DIUTIL
$DICOMP
$DIINTR c

o

o

o

PART II - TECHNIQUE DESIGN INFORMATION

This part of the book describes in detail the different tech
niques supported by the Event Driven Executive. After you have
selected the technique which best suits your application, you
can design your application using the information provided in
th is part of the book.

Part II - Techniqtie Design Information 11

c
12 SC34-0316

o

o

CHAPTER 2. TERMINAL SUPPORT

The Event Driven Executive terminal support is designed to be
as device independent as possible. With few exceptions, you
need not be concerned with what type of device is being driven
by terminal functions coded in the program. The same sequence
of terminal output instructions, for instance, can be used to
print data on a matrix or line printer, on a locally attached
teletypewriter device, on a remote 2741 terminal, or to display
the data on an electronic display screen device.

Terminals are 6efined in the system with the TERMINAL system
conf i gurat i on statement. Th i s statement generates system
control blocks and tables that contain the logical and physical
variables required to operate the terminal.

The high degree of device independence is achieved in part by
treat i ng a 11 term ina Is as though they were line pr inters,
differing only in their page sizes (forms length) and margin
sett i ngs, wh i ch are def i ned by TERMINAL statement operands.
The support provides instructions allowing interactive commu
nications between you and your application programs. See
Figure 1 on page 6 for a list of supported terminals~

Generally, you can write terminal I/O functions in an applica
tion program without concern for the actual terminal being
used. The default terminal to be used by the program is dynam
ically assigned by the supervisor to be the same terminal that
was used to in it i all y invoke the program. Therefore, the term i
nal assigned can vary from one program invocation to the next,
with little or no program change. Utilizing the terminal
instructions, any application program that contains no device
dependent information can be operated in a compatible manner
from any Event Dr i ven Execut i ve supported termi nal.

Terminals can be referenced by symbolic name and accessed by
any application program .,through appropriate instructions.
Forms and screen format cohtrol can be dynamically changed
within your program and the 4978/4979 screen can be copied to
any des j gnated hard copy term ina I.

Chapter 2. Terminal Support 13

Term;nal Operat;ons

,When a program is loaded from a terminal, that terminal is
dynamically designated by the system as the terminal to be used
by terminal I/O instructions in the program. Each terminal I/O
instruction automaticallY has exclusi ve use of the terminal
while executing, and can request extended control for multiple
I/O ope rat ions.

I f more than one task is us i ng the term ina I, term ina 1 oper
ations from different tasks could become interspersed. When
this is not desirable, you can specify the ENQT (enqueue termi
nal) instruction to reserve the terminal for the exclusive use
of a task, thereby prevent i ng other tasks from us i ng the termi
nal until the task issuing the ENQT releases it with the DEQT
(dequeue term ina 1) instruct ion.

You can also use ENQT to gain exclusive control of any other
terminal. The symbolic name of a terminal is the name coded on
the label of the TERMINAL statement that defines the device.
Coding a name in the label field of the TERMINAL statement dur
ing system configuration automaticallY defines the terminal to
the system as a global resource that can be enqueued (ENQT) by
other programs. Normally, an IOCB statement would be used to
establish the connection between the ENQT and the TERMINAL
statements at execut ion time.

Three symbolic terminal names are used by the supervisor for
system ut iii ty programs:

$SYSLOG Names the system 1 ogg i ng dev ice or operator stat i on,
and must be defined in every system. In the starter
superv i sor, $SYSLOG def i nes an IBM 4978 or an IBM
4979 Display Station.

$SYSLOGA Names the alternate system logging service. If
unrecoverable errors prevent use of $SYSLOG, the
system will use the $SYSLOGA terminal as the system
logging device/operator station. If defined, this
device should be a terminal with keyboard capabili
ty, not just a printer. The starter supervisor
def i nes the $SYSLOGA term ina 1 as a te letypewr iter
device.

$SYSPRTR Names the system printer. If defined, the output
from some system programs is directed to th is
dey ice. The starter superv i sor def i nes a 4974 matr i x
pr inter as the $SYSPRTR dev ice.

14 SC34-0316

u

o

C)

c

Terminal I/O Instructions

The Event Driven Language terminal I/O instructions are pro
vided to control the input/output operations to terminals.
These instructions are defined in the Language Reference and
are!

DEQT Releases a terminal from exclusi ve use

ENQT Acquires exclusive access to a terminal

ERASE Clears designated portions of static type screens

GETVALUE Reads one or more integer values that are entered by
the terminal operator

PRINDATE Prints the date on the terminal

PRINTNUM Converts a floating-point variable or integer
var i ab Ie to pr i ntab Ie form and wr i tes it on the ter
minal, with an optional format specification

PRINTEXT Wr i tes an alphamer i c text str i ng to a termi nal, wi th
or without forms control

PRINTIME Prints the time of day on the terminal

QUESTION Pr i nts a message and quer i es the operator for a V
(yes) or N (no) reply

RDCURSOR Acqu i res the cursor pos it i on of stat i c screens

READTEXT Reads an alphamer i c text str i ng from the termi nal

TERMCTRL Controls device dependent features

/

Chapter 2. Terminal Support 15

Data Fo~matt;ng Inst~uctions

Data formatting instructions allow you to prepare formatted
data for display on the terminals or printers attached to the
Series/1. The capability is provided to format data in storage
and then allow the program to decide the destination.

Use of the data formatting instructions FORMAT, GETEDIT, and
PUTEDIT require that the user's object program be processed by
the link edit program, $lINK, in order to include the supervi
sor interface routines and the formatting routines which are
supplied as object modules. Refer to the Utilities, Operator
Commands, Program Preparat i on, Messages and Codes for the
description of the autocall option of $lINK, and information on
the use of the "AUTO=$AUTO,AS~1lIB" option of $lINK.

These instructions are defined in the language Reference and
are:

CONVTB

CONVTD

FORMAT

GETEDIT

PUTEDIT

Converts a binary value to an EBCDIC string.

Converts an EBCDIC str i ng to a binary va 1 ue.

Describes the conversion performed between internal
and external representat ions of data items.

Rece i ves data from a term ina 1 us i ng FORMAT.

Sends data to a terminal using FORMAT.

Te~minal Definition Functions

Two Event Dr i ven language statements are pro v i ded to def i ne the
type of terminal the program is connected to. These are:

TERMINAL A system conf i gurat i on statement to def i ne the
existence of the terminal to the Event Driven Execu
t i ve superv i sor. Th is statement is def i ned in the
SYstem Gu ide.

IOCB Used in a program to define the variable attributes
of a terminal, such as margins, and to supply the
symbolic name of the TERMINAL statement supplied
dur i ng system conf i gurat ion. Th i s statement is
def i ned in the language Reference.

16 SC34-0316

(.. ~-. ' I

.J

(
/-\

- _.;:;J

o

o

o

c

Interrupt Processing Functions

Normally a program would need to wait for an operator to
respond to a request for input. Th is program wa it capab iii ty is
provided automatically by the READTEXT instruction or via the
WAIT Event Driven Language instruction. The capabi lity also
exists to define asynchronous attention interrupt routines via
the ATTNLIST instruction. When the Attention key is pressed on
a terminal, the system will query the operator for a command.
1 f th i s command is spec if i ed on the ATTNL 1ST statement, contro 1
is given to the appropr i ate program. These two instruct ions are
def i ned in the Language Reference:

WAIT KEY - Wait for operator response.
ATTNLIST - Defines asynchronous attention interrupt routine.

See the Language Reference for a full discussion and
programs illustrating the use of the terminal support
nique.

sample
tech-

Considerations for Feature 11610 or 12091 with 12092 Adapter

Devices attached via the #1610 controller or 12091 controller
with 12092 adapters are supported by the standard terminal I/O
instructions. The adapters operate in half-duplex mode and
require special attention to the operating environment. Com
pared to the Event Driven Executive implementation of the #7850
adapter, the following differences are noted:

• Half-duplex mode

• No Series/l Echo (must use Local Echo on terminal)

• Uses e i ght-b i t data interchange code

The a t t a c h e d de vic e rna y b e u sed ina s wit c h ed, lea sed ,or
direct connect environment. Each adapter feature has hardware
jumpers that are used to customi ze the adapter to meet a varie
ty of network configurations. Prior to defining the adapter to
the Event Driven Executive via the TERMINAL statement, you
should become fami liar with these hardware jumpers. The
Communications Feature Description should be referenced before
actual connection of terminals or modems. Be sure the hardware
is configured correctly prior to defining the software inter
face.

Chapter 2. Terminal Support 17

Some general rules for hardware jumpers are:

• For Direct Connect terminals:

Data Terminal Ready (DTR) is usually jumpered.

Request to Send (RTS); jumper only when Carrier Detect
(CD) is not provided by terminal.

Carrier Detect (CD); jumper only when Request to Send
(RTS) is provided by the terminal.

• For Leased Lines us i ng modems:

Data Terminal Ready (DTR); jumper only when Event
Driven Executive application programs do not control
the modem.

Request to Send (RTS); jumper only if the modem pro
v ide s a s tea d y C I ear t 0 Sen d (C T S) s i 9 n a I •

Carrier Detect (CD); jumper only if the modem supports
th is feature.

• For Swi tched Lines us i ng modems:

Data Terminal Ready (DTR); jumper only when Event
Driven Executive application programs do not control
the modem.

Request to Send (RTS); jumper only if the modem pro
vides a steady Clear to Send (CTS) signal.

Carr i er Detect (CD); jumper only if the modem supports
th i s feature.

Speed range jumpers should be installed in accordance with
instructions in the Communications Feature Description.

Once the hardware features have been properly defined, you may
define the features to the Event Driven Executive system. The
TERMINAL statement is used for this description. Additionally,
the TERMCTRL statement has operands which allow the control of
the modem. See the System Guide for information on the TERMINAL
statement and the Language Reference for the TERMCTRL state
ment.

18 SC34-0316

o

o

c

o

The TERMCTRL operands are as follows:

RING

RINGT

ENABLE

ENABLET

ENABLEA

Waits until the Ring Indicator (RI) is presented to
the Ser i es/1 from the modem. No timeout is prov i ded.

Waits until the Ring Indicator (RI) is presented to
the Serie's/1 from the modem. If no Ring Indicator
(RI) occurs after 60 seconds, then the instruction
is terminated and an error condition is returned to
the appl i cat i on program 1 n the first word of the task
control block (TCB).

Act i vates Data Term ina I Ready (DTR) if it is not
already jumpered on and then waits for Data Set Ready
(DSR) to be returned by the modem. No timeout is pro
vided.

Act i vates Data Term ina I Ready (DTR) if it is not
a 1 ready j umpered on and then wa i ts for Data Set Ready
(DSR) to be returned by the modem. If Data Set Ready
is not returned within 15 seconds. then the
instruction is terminated and an error condition is
returned to the application program in the first
word of the TCB.

Provides the same function as ENABLE except that an
answer tone is activated for 3 seconds following the
activation of Data Set Ready (DSR). The modem must
allow for the control of the answer tone.

ENABLEAT Prov i des the same funct i on as ENABLET and ENABLEA
combined.

DISABLE Disables Data Terminal Ready (DTR) if it is not
jumpered on and waits for 15 seconds. Use this func
t i on to hang up the modem.

Return Codes

After each I/O instruction issued,by the Event Driven Executive
application program, a return code is provided in the first
word (taskname) of the TCB. These return codes have spec i al
meaning for terminals attached via #1610 controller, #2091
controller with 12092 adapters and #2095 controller with 12096
adapters.

Chapter 2. Terminal Support 19

-1 Successful completion.

Bit Description

0 Unused
1-8 ISB of last operation (I/O complete)
9-10 Unused

11 1 i f a write or control operation (I/O complete)
12 Read operation (I/O complete)
13 Unused

14-15 Condition code +1 after I/O start (or)
Condition code after I/O complete

Figure 2. Term ina I I/O - ACCA Return Codes

If any error has occurred after I/O complete, then the cycle
steal status information is also available at iCCBSTWO,
iCCBSTWI and iCCBSTW2. If the supervisor is mapped into your
part i t i on, you can obta i n the three cyc Ie stea I status words by
coding the following instructions:

SAVE

COpy
COpy

MOVE
MOVE

DATA

PROGEQU
CCBEQU

il,$PRGCCB GET ADDRESS OF CCB
SAVE,(iCCB-#CCBSTWO,#I),3 MOVE STATUS

3 F ' 0 '

Refer to the Communications Feature Description for a detailed
description of the Interrupt Status Byte (ISB) Condition Codes
both after start I/O and after I/O complete as well as the mean
ing of the cycle steal status words 1, 2, and 3.

20 SC34-0316

c

o

o

o

Considerations for Feature ~2095 with ~2096 Adapter

The Event Dr i ven Execut i ve system includes support for the Fea
ture Programmable Controller and Adapter. The #2095 controller
wi th #2096 adapter has two modes of operat i on:

• Compatibi lity mode - allows the substitution of #2095 con
troller with #2096 adapter for current asynchronous commu
nication features (#1610 controller and #2091 controller
with #2092 adapter us i ng eight bit interchange code).

• EXIO mode - provides access to the full command set.

In compatibility mode the difference between the #1610 con
troller and the #2091 controller with :ft:2092 adapter is that the
line code is ASCI I. Th i sis of part i cular importance dur i ng
system configuration because the line control characters spec
ified on the TERMINAL statement are not coded in mirror image,
but in standard ASCII. The line code (CODTVPE) must also be
spec if i ed as ASCI I. Refer to the System Gu i de for deta i Is and a
definition of mirror image.

~7850 Teletypewriter Adapter

The most frequent use of the '17850 Teletypewriter Adapter sup
port is to receive or send messages composed of ASCII character
strings between the Series/1 and a teletypel.Jriter terminal.
The most common forms of such terminals are keyboard/printer
and keyboard/CRT type display configurations. However, use of
the terminal I/O instructions need not be limited to these
types of terminals.

Devices are available from many vendors which are compatible
with the physical transmission methods of the Ser;es/1 Tele
typewriter Adapter, for example, Isolated Contact sense, TTL,
and EIA. Such devices include terminals which transmit only, or
receive only, or transmit only in response to being polled for
information. The devices may not have keyboards for informa
tion input but may acquire data from bar code scanners, analog
or digital input features within the device, etc. The trans
mission code employed by these devices may be alphameric ASCII
characters or may be any of the 256 possible 8-bit character
combinations.

Proper use of the terminal I/O instructions enables your pro
gram to communicate with many such devices. For example, if the
device attached to the #7850 Teletypewriter Adapter does not
expect the data which it transmits to be returned by the
Series/1 (usually returned for printing purposes), then the
ECHO=NO parameter on the appropriate TERMINAL statement should
be coded.

Chapter 2. Terminal Support 21

Further, the dev i ce data transmi ss i on to the Ser i es/1 may
include bit combinations which match the lINEDEl and CHARDEl
parameter characters defined on the TERMINAL statement. To
receive these characters as data in your program, the READTEXT
instruct i on must spec i fy the parameter XlATE=NO. Us i ng
XlATE=NO will permit the reception, as data, of any 8-bit pat
tern except ·for the carriage return (hexadecimal values OD or
8D). You may detect the reception of a carriage return charac
ter by performing l the input operation as one or more READTEXT
instruct ions, each of wh i ch spec if i es an input area that is one
character in length. If the READTEXT operation completes with
the r e c e i v e d c h a r act ere 0 un t e qua Ito z e r 0, the c h a r a c·t e r i n put
was either an X'8D' or X'OD' value since reception of a car
riage return terminates a READTEXT instruction without passing
that character into your input area. There is no method avail
able to distinguish between reception of X'OD' and X'8D' val
ues.

Transmission of other than standard alphameric ASCII charac
ters to a terminal is accomplished by specifying XlATE=NO on
the PRINTEXT instruction. In this case, you must define the
8-bit values to be transmitted by means of DATA or DC
instruct ions. The output data area must have the same format as
is generated by a TEXT instruct ion.

Special Considerations for the IBM 3101 ;n Character Mode

The IBM 3101 Display Terminal can be connected to the Series/l
via four attachments: the #7850 Teletypewriter Adapter, #1610
controller, '2091 controller with '2092 adapter, or '2095
controller with '2096 adapter. In the following discussion,
all connections are direct, with no intervening modem. For a
discussion of leased and switched lines using modems, refer to
"Considerations for Feature #1610 or '2091 with #2092 Adapter"
on page 17.

For attachment wi th the #7850 Teletypewr iter Adapter, the
#7850 input selection jumpers (see IBM Series/1 User's Attach
ment Manual, GA34-0033) may be set as follows:

MSB
o 1

lSB
o

MSB = Most Significant Bit
lSB = least Significant Bit

Input
Selected

EIA

Input
Interpreted as
Minus=datamark

Also, the bit rate selection jumpers must match the 3101 setup
sw itch sett i ngs.

22 SC34-0316

c

o

o

o

o

A typ i ca 1 setup sw itch sett i ng wou ld be:

on
off

Groupl

Ixxxxxxxx I

Group2

Ixxxxxxxx I

Group3

~
~

Group4

Ixxxxxxxx I

In the illustration above, the 3101 setup switch settings indi
cate 4800 bps. The #7850 bit rate selection jumpers would then
also indicate 4800 bps. A bit rate of 110 bps would require that
two stop bits be set in the 3101 setup switches instead of one
as illustrated above.

For attachment via the #1610 controller or #2091 controller
with #2092 adapter, or #2095 controller with #2096 adapter, the
3101 setup switches may be set as follows:

on
off

Groupl

~
~

Group2

Ixxxxxxxx I

Group3

~
~

Group4

~
~

The jumpers for the #2091 controller with #2092 adapter should
have Data Terminal Ready and Request to Send jumpered on. Also,
the HIGH or LOW speed option must be jumpered to reflect the
speed set in the 3101 setup switches. In the illustration
above, the speed is 9600 bps. The RANGE and BITRATE operands on
the TERMINAL configuration statement must also be compatible
with the #2091 controller with #2092 adapter jumpers and 3101
setup switches.

The jumpers for the #2095 controller with the #2096 adapter
should have Data Terminal Ready, Request to Send, and Receive
Line (on = mark) jumpered on.

Finally, special consideration must be given to operator input
and internal code representation. This· is summarized in the
following table.

Chapter 2. Terminal Support 23

Character Generated

Device=ACCA Device=TTY

Operator Key on 3101 #1610 or #2095 #7B50
Function #2091 with with

#2092 #2096

EBASC ASCII ASCII

ATTENTION ESC followed X'D9' X'9B' X'1B'
by space bar

ENTER <~ X'B1' X'BD' X'OD'

(Key above
SEND key)

BACKSPACE < X'11' X'BB' X'OB'
(character (top row, not
delete) bottom row)

LINE DEL X'FF' X'FF' X'7F'
DELETE

Note that ECHO=NO or PROTECT=YES on the READTEXT statement (for
suppression of input text) has no effect when the 3101 is
attached via the t1610 controller or the #2091 controller with
#2092 adapter, or the #2095 controller with #2096 adapter.

24 SC34-0316

n u

0_\··
"'

o

o

0 ,
I', Y

Special Considerations for the IBM 3101 in Block Mode

The IBM 3101 Mode 1 2 may be operated in b lock mode under contro 1
of the Multiple Terminal Manager.

For attachment via the 11610 controller or 12091 controller
with #2092 adapter, or #2095 controller with 12096 adapter, the
3101 setup switches may be set as follows:

on
off

Group1

~
~

Group2

~
~

Group3

Ixxxxxxxx I

Group4

~
~

The jumper for the 12091 controller with #2092 adapter should
have Data Terminal Ready and Request to Send jumpered on. Also,
the HIGH or LOW speed option must be jumpered to reflect the
speed set in the 3101 setup switches. In the illustration
above, the speed is 2400 bps. The RANGE and BITRATE operands on
the TERMINAL configuration statement must also be compatible
with the #2091 controller with 12092 adapter jumpers and 3101
setup swi tches.

The jumpers for the 12095 controller with the 12096 adapter
should have Data Terminal Ready, Request to Send, and Receive
Line (on = mark) jumpered on.

Refer to the System Guide for sample TERMINAL statements and
other system generation considerations.

Chapter 2. Terminal Support 25

Sample Terminal Support Program (1 of 3): The following exam
ple shows how to use the terminal support technique to print
the IBM logo and the time and date.

SAMPLE PROGRAM START,500,TERMERR=ERROR
** * NOTE THAT THE SUPERVISOR USED TO EXECUTE THIS *
* SAMPLE PROGRAM MUST HAVE BEEN SYSGEN'ED TO INCLUDE TIMERS, *
* $SYSLOGA, AND THE TARGET COMMUNICATIONS TERMINALS. THE *
* NAME OF A TARGET TERMINAL IS THE LABEL USED ON THE TERMINAL *
* STATEMENT DESCRIBING IT. *
**
* TERMX

START

*

IOCB $SYSLOGA
SPACE 2
EQU *

TARGET TERMINAL IOCB

* * * ASK OPERATOR FOR NAME OF TARGET TERMINAL. MOVE THAT NAME *
* INTO THE 'TERMX' IOCB AND THEN 'ENQT' ON TERMX. THIS WILL *
* ALLOCATE THAT TERMINAL TO THIS PROGRAM AND ALL TERMINAL I/O *
* INSTRUCTIONS WILL THEN BE ROUTED TO IT. *
* * *---*
* READTEXT TNAME,'ENTER 8 CHAR TERMINAL NAME:

MOVE TERMX,TNAME,(8,BYTE) MOVE 8 CHARS TO IOCB

* * * DETERMINE THE LINE CONNECTION TYPE. IF SWITCHED, INQUIRE *
* IF THE CPU IS THE CALLER OR THE ANSWERER. *
* * *---*

QUESTION '@IS THE LINE CONNECTION SWITCHED? ',NO=XFER
MOVEA LINETYPE,+SWITCHED INDICATE SWITCHED CONNECTION
PRINTEXT '@ *** ANSWER THE FOLLOWING QUESTION, THEN'
PRINTEXT ' PERFORM THE DIAL OPERATION *** '
QUESTION '@IS THE CPU THE CALLER? ',YES=XFER
MOVEA DIALTYPE,+ANSWER INDICATE CPU WILL ANSWER

XFER ENQT TERMX
IF (LINETYPE,EQ,+SWITCHED) SWITCHED CONNECTION?

IF (DIALTYPE,EQ,+ANSWER) CPU TO ANSWER?
TERMCTRL RING WAIT FOR RING INT. TO ANSWER

ENDIF
TERMCTRL ENABLE WAIT FOR DATA SET READY

ENDIF
EJECT

26 SC34-0316

c

o

o

o

Sample Program (2 of 3)

* * NOW THAT All TERMINAL I/O IS GOING TO
* THE TARGET TERMINAL:
* 1. PRINT IBM lOGO
* 2. PRINT DATE AND TIME

*
* *
*
* *---*

lOGO EQU *
PRINTEXT lINE=1
PRINTEXT lOGOl,SPACES=15,SKIP=4
PRINTEXT lOG02,SPACES=15
PRINTEXT lOG03,SPACES=15,SKIP=1
PRINTEXT lOG04,SPACES=15
PRINTEXT lOG05,SPACES=15,SKIP=1
PRINTEXT lOG06,SPACES=15,SKIP=1
PRINTEXT lOG07,SPACES=15,SKIP=1
PRINTEXT lOG08,SPACES=15
PRINTEXT lOG09,SPACES=15
PRINTEXT SKIP=4
SPACE

TIMES EQU *
PRINTEXT 'DATE = ',SPACES=5
PRINDATE
PRINTEXT 'TIME = ',SPACES=5
PRINTIME

STOP EQU *
GOTO ENDIT END OF SAMPLE
EJECT

* TERMINAL ERROR ROUTINE *

ERROR EQU *

MOVE RC,SAMPlE SAVE THE ERROR CODE
DEQT RETURN TO SYSTEM CONSOLE
PRINTEXT 'a** UNRECOVERABLE TERMINAL ERROR OCCURRED **'
PRINTEXT 'a THE ERROR CODE WAS'
PRINTNUM RC,MODE=HEX
PRINTEXT 'a** SAMPLE IS TERMINATED **a'
GOTO ENDIT END THIS PROGRAM

RC DC F'O'
EJECT

* END OF PROGRAM *

Chapter 2. Terminal Support 27

Sample Program (3 of 3)

ENDIT EQU *
IF (LINETYPE,EQ,+SWITCHED) SWITCHED LINE CONNECTION?

TERMCTRL DISABLE HANG UP IF SWITCHED CONNECTION
ENDIF END OF LINE CONNECTION TEST
DEQT RETURN TO CONSOLE USE
PROGSTOP
EJECT

---------~---

*
*
*

D A T A ARE A *
*
* *---*

TNAME TEXT LENGTH=8 HOLDS NAME OF TARGET TERMINAL
LOGO! TEXT '1111111111 BBBBBBBB MM MM@'
LOG02 TEXT '1111111111 BBB BBBB MMM MMM'
LOG03 TEXT I I BBB BBBBB NMMM MMMM@'
LOG04 TEXT I I BBBBBBBBBB MMMMMMMMMM'
LOGOS TEXT II BBBBBBBB ~1MMMMMMMMM '
LOG06 TEXT II BBBBBBBBBB ~1M MMMM MM'
LOG07 TEXT II BBB BBBB MM MM MM@'
LOG08 TEXT '1111111111 BBB BBBB MM MM@'
LOG09 TEXT '1111111111 BBBBBBBB MM MM'
*
DIALTYPE DATA F '-1 ' DIAL CONNECTION TYPE:
CALL EQU -1 -1 = CALL
ANSWER EQU 0 0 = ANSWER
LINETYPE DATA F ' 0 ' LINE CONNECTION TYPE:
SWITCHED EQU -1 -1 = SWITCHED
NONSW EQU 0 0 = NON-SWITCHED

ENDPROG
END

28 SC34-0316

o

~--\

I ,-Y!

c

o

o

c

Interprocessor Communications

Using the 11610 Asynchronous Communication Single Line Con
troller Adapter feature with Event Driven Executive, processor
to processor communication is available through the stand~rd
terminal interface. This mode of communication is specified by
def i n i ng DEVICE=PROC on the TERMINAL statement. It allows con
necting Series/1 to Series/I, Series/1 to IB~1 5100 and IBM 5110
(us i ng the Ser i a I I/O feature), or Ser i es/1 to any other
processor capable of handling the required protocols. As with
terminals, ATTENTION signals can be transmitted. The line pro
tocol used by interprocessor communications is 2741 and is
restricted to a single line ACCA feature 11610 per communi
cat i on line to another processor. Th i s prov i des a means to load
or cancel programs, synchronize the action of tasks, and send
and receive data to and from programs residing in remote
processors. If CODTYPE=EBCDIC is def i ned on the TERMINAL
statement, arbitrary binary data can be transmitted. The TER
MINAL statement is coded in your source statements for system
generation, and is assembled together with DISK, SYSTEM, and
other supervisor configuration statements. Refer to the
sect i on "System Conf i gurat i on" in the SYstem Gu i de for
detailed information.

Hardware Preparation

In addition to defining the 11610 controller to the Event Driv
en Executive with the TERMINAL statement, you should set the
hardware jumpers on the attachment according to the IBM
Series/1 Communications Feature Description, GA34-0028.

Note: Interprocessor communication is restricted to the single
line ACCA feature 11610.

For a direct processor interconnect i on:

• Data Term ina 1 Ready (DTR) is j umpered

• Request To Send (RTS) is jumpered

• Low or High speed range is jumpered depending on the bit
rate chosen (100 to 9600 baud).

Chapter 2. Terminal Support 29

Be sure to use the right cables for the type of attachments
being interconnected. For a direct Series/l to Series/l con
nection, one side should use the Local Communication Cable
(feature #2056) and the other should use the EIA Data Set cable
(feature #2057) in order to interchange the Receive/Transmit
lines; Data Set Ready (DSR)/Data Terminal Ready (DTR) and
Request To Send (RTS)/Clear To Send (CTS). The #2056 cable
allows attachment to a modem (male 25-pin type D connector);
the #2057 cable allows attachment to a terminal (female 25-pin
type D connector) •

If only one cable type is available, the following lines of the
25-pin type D connectors have to be crossed:

Pin number
(connector 1)

1
2
3
4
5
6
7

20

to

Protect i ve Ground 'XMT
Transmit Data (X or T)
Receive Data (REC)
Request to Send (RTS)
Clear to Send (CTS)
Data Set Ready (OSR)
Signal Ground
Data Terminal Ready (DTR)

Pin number
(connector 2)

1
3
2
5
4

20
7
6

For a Series/1 to IBM 5100 connection, the 12056 cable may be
used.

Terminal Control Block (CCB)

When DEVICE=PROC is specified on the TERMINAL statement, the
#1610 controller is defined as an interproces50r communi
cations pipeline. The CODTVPE and CRDELAV parameters of the
TERMINAL statement affect the protocol to be used. See "Modifi
cations to the Protocol" on page 33. The BITRATE and RANGE
parameters should be set in accordance with the hardware jump
ers, matching the setting in the other processor. Also, the
LINSIZE parameter should have the same value in both process
ors.

30 SC34-0316

c

o

o

o

Transmission Protocol

The length of a cant i nuous message generated, for example, by a
series of PRINTEXT commands on the sending side, might exceed
the size of the receiving system buffer. Therefore the message
i s d i v ide din tore cor d s, w h i c h t he m s e 1 v e sma y can sis t a f sub r e -
cords (only for CODTVPE=EBCDIC).

A record corresponds to aline of text ended by a New Line (NL)
character, the end of a message is defined as transition from
Print to Read state and is indicated by an End of Transmission
(EOT) character. Both messages and/or records may be empty;
that is, cant a in no text (for examp Ie, ina transm iss i on of
SKIPs).

To a reading Event Driven Executive program, the received end
characters are signalled as different return codes in the task
code word. For the possible code types, the hexadecimal repres
entat i on of the end characters is given, together with the cor
respond i ng return codes, in Figure 3.

End of Transmission (EOT)
End of Record (NL)
End of Sub record (EOSR)

CODTVPE=

EBCD/CRSP

1F
58

Not used

Return
EBCDIC Codes

FDFF -2
FEFF -1
FCFF Handled

by device
support

Figure 3. Terminal I/O - Interprotessor Communications Return
Codes

Note: For CODTYPE=EBCDIC, two characters are used to signal
the respect i ve end cond it ion.

As in the IBM 2741 protocol, the beginning of a message (for
example, the transition from Read to Print state) is indicated
by transmission of an End of Address (EOA) character to the
rece i ver (X' 16' for EBCD/CRSP code. For EBCDIC code, see
"CODTVPE=" on page 33.)

Before a message is sent, an EOT character indicating that the
other side entered Read mode must be received. If this charac
ter has not been received as the end of the previous message,
the dev i ce support wa its the time per i ad spec if i ed on the
CRDELAY parameter, or the the default for this character. If it
i s not r e c e i v ed, a n err arc ode (8) i s ret u r n-e d toy our pro g ram •

Chapter 2. Terminal Support 31

Modifications to the Protocol

The communication protocol may be modified to satisfy special
requirements by assigning the appropriate values to TERMINAL
statement parameters. These opt ions are discussed in
"CRDElAV=" on page 33, and also in "CODTVPE=" on page 33.

CRDElAV=

PROMPT,n The device support waits before every record (and
sub record) for the EOT prompt character. The time
limit is n times 3.33 milliseconds, starting at the
end of the prev i ous operat i on. In response to the
EOT, and also at the beginning of every record (and
subrecord), an EOA character is sent.

SP5100,n Identical to the PROMPT mode except that at End of
Record, the two characters Line Feed and New Line
(X'3B5B') are sent. This is necessary for communi
cation with the IBM 5100 or IBM 5110 running APl or
BASIC and us i ng the Ser i al I/O feature.

DELAV,n

CODTVPE=

CRSP

At the beg j nn i ng of a message, the dev i ce support
waits a maximum of one second for the EOT
character(s). After each record a delay of n times
3.33 milliseconds is inserted. This mode might be
used to simulate an 2741-like terminal for another
processor.

With this option the 11610 controller is set to PTTC
mode (see Commun i cat ions Feature Descr i pt i on) and
messages are translated via the CRSP conversion
table (PTTC/correspondence code). The communication
is restricted to characters, as PTTC mode allows
only the transmission of bytes with the seven
low-order bits of odd parity. Therefore, XlATE=NO
should not be speci fied on PRINTEXT or READTEXT
instructions.

32 SC34-0316

c

EBCD

o
EBCDIC

o

c

Similar to CRSP, except that the EBCD conversion
tab Ie is used. The EBCD opt i on is recommended for
connection to an IBM 5100 or IBM 5110 computer. The
6-b it code must be se lected with the Ser i a I I/O
microprogram.

This option sets the #1610 controller to Eight Bit
Coded Data Interchange mode with all change of
direction codes equal to X'FF' (see the
Communications Feature Description). Special
protocol provides for transparent exchange of arbi
trary binary data. As there are no parity
restrictions and only the code X'FF' is recognized
as change of direction (indicating EOT, NL or EOSR),
all bytes (especially all EBCDIC characters) other
than X'FF' are transmitted "as is". Before a message
or record is sent, it is scanned for a byt-e code
(other than X'FF') not contained in it. This special
code is sent as EOA and every occurring X'FF' in the
message or record is replaced by it. On the rece i vi ng
side, every EOA code is replaced by X'FF'. If a
record is larger than 128 bytes, it is divided into
appropriate subrecords (length < 128 bytes) to which
the procedure can be app 1 i ed.

Note: If CODTVPE=EBCDIC is used, arb i trary binary
data may be transm i tted.

Chapter 2. Terminal Support 33

c

c
34 SC34-0316

o

o

o

CHAPTER 3. BINARY SYNCHRONOUS COMMUNICATIONS

The Event Driven Executive binary synchronous communications
access method provides statements that allow you to write pro
grams to send and rece i ve data on a binary synchronous commun i
cations line. These statements are a part of the Event Driven
language and are coded in your application program. A general
introduction to binary synchronous communications and details
of the line protocol used by the Event Driven Executive may be
found in General Information Binary Synchronous
Communications, GA27-3004.

Series/l binary synchronous communications closely parallels
the System/370 and additional information on the subject of
binary synchronous communications may be found in IBM OS/VS
Basic Telecommunications Access Method (BTAM), GC27-6980.

Features of the binary synchronous commun i cat ions access meth
od pro v i ded with the Event Dr i ven Execut i ve are:

• Multiple line support

• Point-to-point leased line

• Point-to-point switched line (automatic answer, manual
ca 11 and answer)

• Multipoint tributary station

• Multipoint master station

• Optional transparent mode

• Optional conversational mode

Hardware features and BSC protocol not supported by the Event
Dr i ven Execut i ve are:

• ASCI I mode

• lead i ng graph i cs support

• Transparent ITB and ENQ transm iss i on

Throughout this chapter, the TYPE parameter is mentioned fre
quently, and refers to the TYPE parameter of the BSClINE state
ment discussed in "BSClINE" on page 42

For generation of BSC support into your Event Driven Executive
supervisor, refer to the "System Configuration" section in the
System Gu i de.

Chapter 3. Binary Synchronous Communications 35

Access Level

The Event Driven Executive BSC Access Method provides facili
ties at the READ/WRITE level. No control characters are
inserted into or stripped from blocks of data in your buffer.
However, all additional control sequences are managed by the
access method ina manner transparent to the us i ng program. You
must ensure that the proper STX, DLE STX, ETX, and other con
trol characters are contained in the output buffer. The single
except i on to th is convent i on is the transm iss i on of the DLE ETX
or DLE ETB sequence to complete a transparent write, in which
case these characters must not be included in the output buff
er. On input, the buffer will contain all control characters
received.

Conversat;onal Operat;ons

The BSC protocol provides a limited conversational response
capab iii ty wh i ch is supported by the Event Dr i ven Execut i ve BSC
Access Method. During conversational write operations, the
response, which may be either an acknowledgement sequence or
text, is read into a second buffer area specified by your pro
gram. Acknowledgement sequences are checked by the access
method and error recovery is attempted when indicated. If text
is received, a -2 return code is returned in lieu of the normal
-1 and no error recovery is attempted.

Conversational writes may also be used to perform other special
functions. For example, an IAM/WRU (I am/Who are you) explana
tion sequence can be transmitted by a calling station on a
switched network using a conversational write.

When the Series/1 is operating as the control station on a
multipoint line (TYPE=MC), the access method handles the poll
ing/selection requirements of initial operations via a poll
sequence whose locat i on address is spec if i ed in the BSC 10CB
statement. A single poll/select is associated with each oper
ation. A 3-second time-out is always enabled during
poll/select operations regardless of the TIMEOUT parameter
s pee i f ic a t ion s .

When the Series/1 is operating as a tributary station on a
multipoint line (TVPE=MT), the access method assumes that
polling/selection has been established before a read/write
initial operation is requested. The Read Poll operation moni
tors the line for receipt of a polling or selection sequence.

36 SC34-0316

~r \
U

o

o

o

It assumes the BSC Adapter has been jumpered for multipoint
tributary operation. Once the line has been polled/selected,
your program should check the next operation request and issue
appropriate read/write initial operation.

The initialization phase for multipoint operation
plished by the control station transmitting the
sequence:

NUL,EOT,PAD,NUL,(poll or selection address),ENQJ

is accom
following

This is the polling/selection sequence. The NUL,EOT,PAD,NULJ
portion is generated by the access method. The (poll or
selection address),ENQJ portion is supplied by you and refer
enced in the BSCIOCB. Generally this sequence consists of three
bytes containing address,address,ENQ3. Refer to General
Information Binary Synchronous Communications, GA27-3004 for
details.

Task Control

An implied wait is associated with each operation; that is, no
immediate exit capability is provided. However, you may choose
to attach a separate task to perform the operations in an asyn
chronous manner.

Sample programs are included at the end of this section which
illustrate the most common communications operations.

J Commas are for readability only and not part of the data
stream.

Chapter 3. Binary Synchronous Communications 37

The Event Driven Language SSC statements

The following text describes the Event Driven Language (BSC)
statements and the i r syntax.

SSCCLOSE

BSCCLOSE is used to free a binary synchronous line for use by
other tasks. If the line is switched (TVPE=SM or SA), it will
also drop Data Terminal Ready causing the line to be discon
nected.

Syntax

label BSCCLOSE bsciocb,ERROR=,Pl=,P2=

Required: bsciocb
Defaults: None
Indexable: bsciocb

Operands

label

bsciocb

ERROR=

Pn=

Description

The optional
statement.

symbolic name of the BSCCLOSE

The symbo Ii c address or indexed locat i on of the
BSCIOCB statement to be associated with the close
operat i on. Close process i ng uses th i s BSCIOCB to
determine the address of the line to be closed.

The symbolic address of the next instruction to be
executed if an error occurs while closing the line.
If not specified, control will be returned to the
next sequent i ali nstruct i on. In either case, the
return code will reflect the results of the oper
ation. See Figure 5 on page 57.

The optional labels, PI and P2 to be affixed to the
bsc i ocb and ERROR operands, respect i ve I y.

38 SC34-0316

o

o

o

BSCIOCB

BSCIOCB ;s used to specify the line address and buffer(s) for
BSCCLOSE, BSCOPEN, BSCREAD and BSCWRITE operations. BSCIOCB is
a non-executable instruction. The first word of the BSCIOCB is
also used to return auxi liary information about the ending sta
tus of the operat i on.

If variable-length records are to be written, the length field
(length1 operand) must spec i fy the actual length of the message
to be written. The value specified in the length field should
be reset to the buffer length before issuing a READ. Figure 4
on page 41 lists the number of buffers required by each type of
BSCREAD and BSCWRITE statement.

Syntax

label BSCIOCB lineaddr,buffer1,length1,buffer2,
length2,pollseq,pollsize,Pl=,P2=,
P3=,P4=,P5=,P6=,P7=

Required: lineaddr
Defaults: None
Indexable: Not applicable

Operands

label

lineaddr

bufferl

lengthl

Description

The symbolic name of the BSCIOCB for reference in a
BSCCLOSE, BSCOPEN, BSCREAD, or BSCWRITE operation.
Label may also be used by other instructions to ref
erence the aux iii ary i nformat i on returned in the
first word of the BSCIOCB. This word will contain:

• After successful receipt of text, the address
of the last character rece i ved.

• For all other conditions, the Interrupt Status
Word from the Ser i es/l BSC Adapter.

The hardware address, in hexadecimal form, of the
line on wh i ch to perform the operat i on.

The address in storage of the first buffer to be
used in an operation. This buffer is located in the
target Address Space as def i ned by $TCBADS.

The length, in bytes, of the first buffer.

Chapter 3. Binary Synchronous Communications 39

buffer2

length2

pollseq

pollsize

Pn=

The address in storage of the second buffer to be
used in an operation. This buffer is located in the
target Address Space as def i ned by $TCBADS.

The length, in bytes, of the second buffer.

The address in storage of the poll
sequence to be used in a multipoint
initial operation.

or se lect i on
control line

The length, in bytes, of the poll or selection
sequence.

The optional labels to be affixed to the lineaddr,
buffer!, length!, buffer2, length2, pollseq, and
pollsize operands, respectively.

Note: The polling and selection sequences, consisting of from
one to seven characters, are followed by: ENQ,(Read or Write
Initial)4. Specific sequences for a given device may be found
in the device component description manual. Generally a 3-byte
pollsize is sufficient for a sequence of address,address,ENQ4
between Series/! processors. The actual sequence is determined
by the dev i ce type tr i butary.

4 Commas are for readab iii ty only and are not part of the
data stream.

40 SC34-03!6

0 Number Number
Read of Write of
type buffers type buffers

C 1 C 1
D 0 CV 2
E 1 CVX 2
I 1 CX 1
p 1 CXB 1
Q 0 D 0
R 1 E 0
U 1 EX 0

I 1
IV 2
IVX 2
IX 1
IXB 1
Q 1
N 0
U 1
UX 2

Figure 4. Required Buffers for BSCREAD and BSCWRITE

o

o
Chapter 3. Binary Synchronous Communications 41

BSCLINE

The BSClINE statement is coded as part of your superv i sor
conf i gurat ion. See "System Conf i gurat ion" in the System Gu i de.
BSClINE def i ne's the binary synchronous 1 i nes to be supported in
the generated system. One BSClINE statement is requ i red for
each line to be referenced by programs using the Binary Syn
chronous Communications Access Method. All BSClINE statements
must be grouped together with the last BSClINE statement
including an END=VES specification.

Syntax

blank BSClINE ADDRESS=,TVPE=,RETRIES=~MC=,END=

Required: None
Defaults: ADDRESS=9,TVPE=PT,RETRIES=6,MC=NO,END=NO
Indexable: Not Applicable

Operands

ADDRESS=

TVPE=

Description

The hardware address (i n hexadec i ma 1) of the 1 i ne.

PT (Point-to-Point) - The line is a point-to-point
(non-switched) line with a single remote station.
The adapter should be jumpered with DTR permanently
enabled.

SM (Switch Manual) - The line is on a switched net
work and connect i on will be estab 1 i shed manua 11 y by
the operator. The adapter should be jumpered for
switched line operation and DTR should not be per
manentlyenabled.

SA (Swi tched Auto Answer) The 1 i ne is on a
switched network and calls should be answered auto
matically by the BSC Access Method (during
BSCOPEN). The adapter should be jumpered for
switched line operation and DTR should not be per
manentlyenabled.

MC (Multipoint Control) - The Series/l is the con
trolling station on a multipoint line. The adapter
should be jumpered with DTR permanently enabled and
multipoint line should not be jumpered.

42 SC34-0316

c

c

o

o

c

RETRIES=

MC=

END=

HT (Multipoint Tributary) The Series/l is a
tributary station on a multipoint line. The adapter
should be jumpered for multipoint tributary oper
ation with DTR permanently enabled.

The number of attempts which should be made to
recover from common error conditions before posting
a permanent error.

NO - The binary synchronous adapter located at the
address specified on the ADDRESS operand is either
a medium speed, single line feature card or a high
speed, sing Ie 1 i ne feature card.

YES - The binary synchronous adapter located at the
address spec if i ed on the ADDRESS operand is part of
a multiline controller feature configuration. When
generating supervisors using multiline controller
attachments, note the fo llow i ng:

•

•

The character str i ng YES must be spec if i ed. Any
other character string wi 11 be equivalent to
NO.

All multiline feature cards must start at a
base address ending with either X'O' or X'8'. A
BSCLINE statement must ex i st for the line at
this base address if any of the other lines of
the multi line attachment are to be used.

YES, for the last BSCLINE statement in the system
definition module.

Examples:

BSCLINE ADDRESS=28,TYPE=PT,RETRIES=10,MC=NO
BSCLINE ADDRESS=30,TYPE=SM,RETRIES=2,MC=YES,END=YES

Chapter 3. Binary Synchronous Communications 43

BSCOPEN

BSCOPEN is used to prepare a binary synchronous 1 i ne for use by
a task. It first enqueues on the '1 i ne and then prepares it for
interrupts. If the line is switched manual (TVPE=SM), it will
also raise Data Terminal Ready and wait UP to two minutes for
the telephone connection to be established. If the line is
switched auto-answer (TVPE=SA), it will wait indefinitely for
the ring interrupt and then ra i se Data Termi nal Ready.

Syntax

label BSCOPEN bsciocb,ERROR=,Pl=,P2=

Required: bsciocb
Defaults: None
Indexable: bsciocb

Operands

label

bsciocb

ERROR=

Pn=

Description

The opt i onal
instruction.

symbolic name of the BSCOPEN

The ,symbolic address or indexed location of the
BSCIOCB statement to be assoc i ated wi th the open
operation. Open processing uses this BSCIOCB to
determi ne the address of the 1 i ne to be opened.

The symbolic address of the next instruction to be
executed if an error occurs while opening the line.
If not specified, control will be returned to the
next sequential instruction. In either case, the
return code will reflect the results of the oper
ation.

The optional labels to be affi xed to the bsciocb and
ERROR operands, respectively.

Note: BSCOPEN assumes that point-to-point lines will be jump
ered with Data Terminal Ready (DTR) permanently set on.

44 SC34-0316

o

o

o

0 :,
. ",:,)

BSCREAD

BSCREAD is used to read data from a binary synchronous 1 i ne. If
the read is successful, the first word of the assoc i ated
BSCIOCB wi 11 conta i n the address of the last character read.

Syntax

label

Required:
Defaults:

BSCREAD type,bsciocb,ERROR=,END=,
TIMEOUT=,Pl=,P2=,P3=

type,bsciocb
TIMEOUT=VES

Indexable: bsciocb

Operands

label

type

bsciocb

ERROR=

END=

Description

The opt i ona 1
statement.

symbolic name of the BSCREAD

The type of read operation to be performed. See
"BSCREAD Types" on page 46 for a descr i pt i on of each
type.

The symbolic address or indexed location of the
BSCIOCB statement to be assoc i ated wi th the read
operation.

The symbolic address of the next instruction to be
executed if an error (return codes 10 through 99) is
encountered. I f not spec if i ed, contro 1 will be
returned to the next sequential instruction. In
either case, the return code will ref lect the
results.

The symbolic address of the next instruction to be
executed if an ending condition (return codes 1
through 6) is encountered. If not specified, con
trol wi 11 be returned to the next sequential
instruction. In either case, the return code will
reflect the results.

Chapter 3. Binary Synchronous Communications 45

TIMEOUT= YES - The access method wi 11 enable a 3-second
time-out during receive operations. If data is not
received within this interval, a time-out error
wi 11 occur. The appropriate retry procedure wi 11
then be attempted up -to the limit specified in the
RETRIES parameter of the BSCLINE statement defining
this line. For initial type reads, the time-out may
occur both when attempt i ng to estab 1 i sh the correct
initial sequence and during the subsequent read of
the first record.

Pn=

NO - The access method will disable the 3-second
time-out dur i ng all rece i ve operat ions.

The o~tional labels to-be affixed to the bsciocb,
ERROR, and END operands, respect i ve 1 y.

BSCREAD Types

The eight types of read operations to binary synchronous lines
are:

C - Read Continue
D - Read Delay
E - Read End
I - Read Initial
p - Read Poll
Q - Read Inquiry
R - Read Repeat
U - Read User

~ Operation

C Read Continue - Used to read subsequent blocks of data
after an initial block is received via a Read Initial.

Read Cont i nue wr i tes a pos it i ve response and reads a mes
sage block:

1. Write ACK-O (X'1070') or ACK-l(X'1061')

2. Read Text - The text rece i ved is either message text
or an EDT (X' 37')

46 SC34-0316

o

o

o

D Read Delay - Used to acknowledge correct receipt of a
block of data and to request that the transmitting
station wait before sending the next block. Multiple
Read Delays may be issued before resuming transmission
of data v i a a Read Cont i nue.

Read Delay writes a WACK sequence and checks for the pro
per ENQ response:

1. Write WACK (X'106B')

2. Read ENQ (X'2D')

E Read End - Used to acknowledge correct receipt of a block
of data and to request that the transmi tt i ng stat i on stop
sending data. Only one Read End should be issued during a
single transmission and Read Continues should then be
issued until EaT is actually received.

I

Read End wr i tes an RVI sequence and reads a message
block:

1. Write RVI (X'107C')

2. Read Text - The text rece ived is either message text
or an EDT (X'37')

Read Initial - Used to read the first block of data in a
t ransm iss i on. After a successfu I Read In it i a I, Read Con
tinues should be issued until EDT is received.

Point-to-point operation (TVPE=PT,SA,SM).

A Read Initial monitors the line for an ENQ sent by the
transm itt i ng stat i on, wr i tes a pos it i ve response
(ACK-O), and reads the message block that follows:

1. ReadENQ(X'2D')

2. Write ACK-O (X'1070')

3. Read message text

Multipoint operation controller operation (TVPE=MC).

Rea dIn i t i alp 0 lis a t rib uta r y s t"a t ion and i f the
response to po 11 i ng is pos i t i ve, reads the message text.

1. Write EDT (X'37')

2. Write polling sequence from address location speci
fied in BSCIOCB

3. Read message text

Chapter 3. Binary Synchronous Communications 47

Mu I t i po i nt ope rat i on tr i butary operat i on (TVPE=MT).

Read Initial writes a positive response (ACK-O), and
reads the message block that follows.

1. Write ACK-O (X'1070')

2. Read message text

P Read Poll - Used to read the polling/selection sequence
rece i ved when the Ser i es/1 is act i ng as a tr i butary
station on a multipoint line (TVPE=MT). Upon successful
completion, the specified buffer will contain the
sequence recei ved starting with the second station (con
trol unit) address character. The content of the
received data stream, including control characters is
not checked by the access method. Once polled/selected,
your program should check the next operation requested
and issue the appropr i ate Read/Wr i te In it i al Operat i on.

Q Read Inqu i ry - Used to read an ENQ character. Read
Inquiry will return an invalid sequence error if ENQ or
EOT is not received. If EOT is received, the END= exit
will be taken if specified.

R

1. Read ENQ (X'2D')

Read Repeat - Used to request retransmission of the last
block of data following an unsuccessful read. The Read
statements retry most common errors UP to the limit of
the RETRIES operand of the BSClINE statement; however,
Read Repeat may be used to attempt further recovery
depending on the actual error encountered.

Read Repeat writes a negative response to the remote
stat i on and reads a message block:

1. Write NAK (X'3D')

2. Read Text

U Read User - Used in special situations to simply receive
data. No associated write operation is performed by the
access method, the data is not checked, and no error
recovery is attempted.

48 SC34-0316

(r'''1
'\J

o

o

o

BSCWRITE

BSCWRITE is used to write data to a binary synchronous line.

Syntax

label BSCWRITE type,bsciocb,ERROR=,END=,CHECK=,
Pl=,P2=,P3=

Required: type,bsciocb
Defaults: CHECK=YES
Indexable: bsciocb

Operands

label

type

bsciocb

ERROR=

END=

CHECK=

Description

The opt i ona 1
statement.

symbolic name of

The type of write operation to be
"BSCWRITE Types" on page 50 for a
each type.

the BSCWRITE

performed.
description

See
of

The symbolic address or indexed location of the
BSCIOCB statement to be associated with the write
operation.

The symbolic address of the next instruction to be
executed if an error (return codes 10 thru 99) is
encountered. If not specified, control will be
returned to the ne xt sequent i a I instruct i on. In
either case, the return code wi 11 reflect the
results.

The symbolic address of the next instruction to be
executed if an ending condition (return codes 1
through 6) is encountered. If not specified, con
trol wi 11 be returned to the next sequential
instruction. In either case, the return code will
reflect the results.

YES - Val id only for type CV or CVX. Normal checking
of the response occurs.

NO - The response is not checked for protoco I va Ii d
ity. This provides a chained write to read similar
to Wr i te User and Read User.

Chapter 3. Binary Synchronous Communications 49

Pn= The optional labels to be affixed to the bsciocb,
ERROR=, and END= operands, respecti vely.

BSCWRITE Types

Seventeen types of write operations can be issued to a binary
synchronous communications line. T~ey are:

C -
CV -
CVX -
CX -
CXB -
D -
E -
EX -
I -
IV -
IVX -
IX -
IXB -
Q -
N -
U -
UX -

Write
Write
Write
Write
Write
Write
Write
Write
Write
Write
Write
Write
Write
Write
Write
Write
Write

Continue
Continue Conversational
Continue Conversational Transparent
Continue Transparent
Continue Transparent Block
Delay
End
End Transparent
Initial
Initial Conversational
Initial Conversational Transparent
Initial Transparent
Initial Transparent Block
Inquiry
NAK
User
User Transparent

~ Operation

C Write Continue - Used to write subsequent blocks of data
after an initial block is wr:-jtten via a Write Initial.

Write Continue writes message text and reads a response
from the receiving station.

1. Write Text

2. Read Response

CV Wr i te Cont i nue Conversat i ona I - Used to wr i te subsequent
blocks of data in conversational mode.

Wr i te Cont i nue Conversat i onal wr i tes message text and
reads a response into your buffer. Acknowledgement
sequences are checked by the access method and error
recovery is attempted when i nd i cated. I f text is
rece i ved, a -2 return code is returned in lieu of the
normal -1.

1. Write Text

50 SC34-0316

r-\
~

o

o

o

cvx

ex

2. Read Response/Text

Write Continue Conversational Transparent Used to
write subsequent blocks of transparent data in conversa
tional mode.

Write Continue Conversational Transparent writes mes
sage text and the ending sequence, DLE ETX, and reads a
response into your buffer. Acknowledgement sequences are
checked by the access method and error recovery is
attempted when i nd i cated. I f text is rece i ved, a -2
return code is returned in lieu of the normal -1.

1. Write Text

2. Write OLE ETX (X'l003')

3. Read Response/Text

Write Continue Transparent - Used to
blocks of transparent data after an
written.

wr i te subsequent
initial block is

Write Continue Transparent writes message text and the
ending characters, DLE ETX, that must follow transparent
data and reads a response from the rece i vi ng stat ion.

1 • Write Text

2 • Write OLE ETX (X'1003')

3. Read Response

eXB l~r i te Cont i nue Transparent Block Used to wr i te
subsequent blocks of transparent data after an initial
block is written. This operation is the same as BSCWRITE
type CX except ETB is used instead of ETX as the ending
character.

D

Wr i te Cont i hue Transparent Block wr i tes message text and
the ending characters DLE ETB, that must follow trans
parent data, and reads a response from the receiving
station.

1. Write Text

2. Write DLE ETB (X'1026')

3. Read Response

Write Delay - Used to inform the remote station that the
transmission of the next block of data will be delayed.
Multiple Write Delays may be issued before transmission
of data is resumed.

Chapter 3. Binary Synchronous Communications 51

Write Delay writes a temporary text delay (TrD) sequence
to the receiving station and reads a NAK response. The
purpose of this operation is to inform the receiving
station of a TTD before resuming transmission of message
blocks.

1. Write TTD (X'022D')

2. Read NAK (X'3D')

E Write End - Used to inform the remote station that the
previous block of data was the last of this transmission.
Write End writes an EDT:

1. WriteEOT(X'37)

EX Write End Transparent - Used to write a transparent EDT
(DLE EDT). This sequence is most commonly used to notify
the receiving station on a switched line that the trans
mitting station is disconnecting from the line. Write
End Transparent wr i tes DLE EDT:

1. Write DLE EOT (X'1037')

I Write Initial - Used to write the first block of data in a
transmission. Write Initial first establishes the cor
rect initial sequence (depending on the type of line),
and then wr i tes the first block and checks the response.

• Point-to-point Operation (TVPE=PT,SA,SM)

W~ite Initial writes an ENQ to gain use of the line,
reads positive response (ACK-O), writes the message
text and reads the response to the text:

1. t~rite ENQ (X'2D')

2. Read ACK-O (X'1070')

3. Wr i te Message text

4. Read Response

• Multipoint Operation Controller Mode (TVPE=MC)

t~ r i tel nit i a 1 s e 1 e c t sat rib uta r y s tat ion and i f the
response to selection is positive, writes message
text, then reads the response:

1. Write EDT (X'37')

2 •

52 SC34-0316

Write selection sequence where location address
is specified in BSCIOCB c

o

o

o

3. Read ACK-O (X'1070')

4. Wr i te Message Text

5. Read Response

Multipoint Operation Tributary Mode (TVPE=MT)

Write Initial writes message text and reads a
response from the controller station:

1. Wr i te Message Text

2. Read Response

IV Write Initial Conversational - Used to write the first
block of data of a transmi ss ion in conversat i onal mode.

Write Initial Conversational establishes the correct
i nit i a I seq u e nee (d e pen din g 0 nth e t yp e 0 f lin e), w r i t e s
the fi rst block of message text and reads a response into
your buffer. Acknowledgement sequences are checked by
the access method and error recovery is attempted when
indicated. If text is received, a -2 return code is
returned in lieu of the normal -1.

• Point-to-point Operation (TVPE=PT,SA,SM)

1. Write ENQ (X'2D')

2. Read ACK-O (X' 1070')

3. Wr i te Message Text

4. Read Response Text

• Multipoint Operation Controller Mode (TVPE=MC)

1. Write EOT (X'37')

2. Write selection sequence found in BSCIOCB

3. Read ACK-O (X' 1070')

4. Wr i te Message Text

5. Read Response Text

• Mu 1 t i po i nt Operat i on Tr i butar y Mode (TVPE=MT)

1. Wr i te Message Text

2 . Read Response Text

Chapter 3. Binary Synchronous Communications 53

IVX

IX

Write Initial Conversational Transparent - Used to write
the first block of transparent data of a transmission in
conversational mode.

Write Initial Conversational Transparent first estab
lishes the correct initial sequence (depending on the
type of line), writes the first block of message text and
the ending characters, OLE ETX, that must follow trans
parent data and reads a response into your buffer.
Acknowledgement sequences are checked by the access
method and error recovery is attempted when indicated.
If text is received, a -2 return code is returned in lieu
of the normal -1.

• Point-to-point Operation (TVPE=PT,SA,SM)

1. Write ENQ (X'20')

2. Read ACK-O (X'I070')

3. Wr i te Message Text

4. Write OLE ETX (X'I003')

5. Read Response Text

• Mu It i po i nt Operat i on Contro ller Mode (TVPE=MC)

1 • Write EOT (X'37')

2. Wr i te se lect i on sequence found in BSCIOCB

3. Read ACK-O (X'1070')

4. Wr i te Message Text

5. Write OLE ETX (X'I003')

6. Read Response Text

• Multipoint Operation Tributary Mode (TVPE=MT)

1. Wr i te Message Text

2. Write OLE ETX (X'I003')

3. Read Response Text

Write Initial Transparent - Used to write the first block
of transparent data in a transmission. Write Initial
Transparent first establishes the correct initial
sequence (depending on the type of line), and then writes
the first block of transparent data and checks the
response. The block is terminated by the access method
with OLE ETX.

54 SC34-0316

0, ~-.. I

()

o

o

o

IXB Write Initial Transparent Block - Same as IX except ETB
is used instead of ETX as the end i ng character.

Q Wr i te Inqu i ry - Used to wr i te an ENQ character and to
read the response (wh i ch may be either a contro 1 sequence
or text) into your buffer. This sequence is most commonly
used to request retransmission of the response to a mes
sage block. It also retries upon time-out.

1. Write ENQ (X'20')

2. Read Response/Text

N Wr i te NAK - Used to simp ly wr i te a NAK character down the
line. The most likely use of this operation is to respond
"device not ready" to polling/selection when the
Series/l is operating as a tributary station on a multi
point line (TVPE=MT).

1. Write NAK (X'30')

U Write User Used in special situations to simply
transmi t a character stream. No assoc i ated read oper
at ion is performed by the access method, and no error
recovery is attempted.

ux

1. Wr i te buffer in BSCIOCB for length i nd i cated.

Write User Transparent - Used in special situations to
simply transmit a transparent character stream. No asso
c i ated read ope rat i on is performed by the access method,
and no error recovery is attempted.

I . Write the stream described by BSCIOCB
bufferl/lengthl

2. Exit transparent write using the character pair
described by BSCIOCB buffer2.

Note: The only valid character pai rs which may be
contained in buffer2 are OLE ETX, OLE ETB, or OLE ENQ.

Chapter 3. Binary Synchronous Communications 55

Error Recovery

Each BSC operation results in a return code being returned in
the calling task's TCB (may be referenced by the taskname).
Figure 5 on page 57 describes these return codes. Three basic
completion conditions are possible:

• Successful operation

• End i ng sequence rece i ved (END=)

• Permanent error encountered (ERROR=)

The particular type of condition encountered determines which
of two optional completion exits may be taken during a read or
write operation.

The access method attempts to recover from common line errors,
but hardware and spec if i cat i on errors are not retr i ed. Your
program is free to retry permanent errors, and under certain
conditions such attempts may prove successful.

Auxiliary error information is returned in the first word of
the BSCIOCB. After successful receipt of text, the address of
the last character received is returned in this word. For all
other conditions, the Interrupt Status Word (ISW) from the
Ser i es/l BSC Adapter is returned.

56 SC34-0316

C-~,"'," , I

o

o

c

Code

-2
-1

END=

1
2
3
4
5
6

ERROR=

10
11
12
13
14
15
20
21
22
23
24
25
30
31
32
33
34

35
99

Description

Text received in conversational mode
Successful completion

EaT received
OLE EDT received
Reversi interrupt received
Forward abort received
Remote station not ready (NAK received)
Remote station busy (WACK received)

Notes

4
4

Timeout occurred 1
Unrecovered transmission error (BSC error) 1
Invalid sequence received 3
Invalid multi-point tributary write attempt 2
Disregard this block sequence received 1
Remote station busy (WACK received) 1
Wrong length record - long (No COD) 6
Wrong length record - short (write only) 2
Invalid buffer address 2
Buffer length zero 2
Undefined line address 2
Line not opened by calling task 2
Modem interface error 2
Hardware overrun 2
Hardware error 5
Unexpected ring interrupt 2
Invalid interrupt during auto-answer
attempt 2
Enable or disable DTR error 2
Access method error 2

Figure 5. BSC Return Codes

Notes:

1. Retried up to the limit specified on the RETRIES operand of
the BSCLINE definition.

2. Not retried.

3. Retried during write operations only when a wrong ACK is
received following an ENQ request after timeout (indicat
ing that no text had been recei ved at the remote station).

Chapter 3. Binary Synchronous Communications 57

4. Returned only dur i ng an in it i al sequence wi th no retry
attempted.

5. Retried only after an unsuccessful start I/O attempt.

6. Retr j ed on 1 y dur i ng read operat ions.

58 SC34-0316

o

o

o

Sample Program: Write Transparent

WRITEX
START
RESTART

PRlNTERR

ALLDONE
10CB
BUFFER

MSGi
I
ERRCODE

SOURCE STATEMENT

PRINT NOGEN
PROGRAM START
BSCOPEN IOCB,ERROR=PRINTERR
BSCWRITE IX,IOCB
IF (WRITEX,EQ,10),GOTO,RESTART
IF (WRITEX,NE,-l),GOTO,PRlNTERR
DO 29,TIMES

ADD 1,1
CONVTB MSGi,I
BSCWRITE CX,IOCB,ERROR=PRINTERR

ENDDO
BSCWRITE E,IOCB,ERROR=PRINTERR
GOTO ALLDONE
MOVE ERRCODE,WRITEX
PRINTEXT 'WRITE ERROR:',SKIP=l
PRINTNUM ERRCODE
BSCCLOSE IOCB
PROGSTOP
BSCIOCB 19,BUFFER,82
DC X'l002'
DC CL74'TEST MESSAGE'
DC CL6' l'
DC F'l'
DC F'O'

ENDPROG
END

Chapter 3. Binary Synchronous Communications 59

Sample Program: Read Transparent

READX
START

RESTART

PRINTIT

SOURCE STATEMENT

PRINT NOGEN
PROGRAM START
ENQT $SVSPRTR
BSCOPEN IOCB,ERROR=PRINTERR
BSCREAD I,lOCB
IF (READX,EQ,lO),GOTO,RESTART
IF (READX,NE,-l),GOTO,PRINTERR
MOVE MSG,INPUT+2,(80,BVTE)
PRINTEXT MSG,SKIP=l
BSCREAD C,IOCB,END=ALLDONE,ERROR=PRINTERR
GOTO PRINTIT

PRINTERR MOVE RETCODE,READX
PRINTEXT ERRMSG,SKIP=l
PRINTNUM RETCODE
BSCREAD R,IOCB,ERROR=ALLDONE,END=ALLDONE
GOTO PRINTIT

ALLDONE

IOCB
INPUT
~1SG

ERRMSG
RETCODE

DEQT
BSCCLOSE IOCB
PROGSTOP
BSCIOCB 29,INPUT,83
DC CL83"
TEXT LENGTH=80
TEXT 'READ ERROR:'
DC F'O'
ENDPROG
END

Note: The $BSCUT2 utility contains many examples
the Ser i es/l Event Dr i ven Execut i ve binary
instructions. Examination of the source program
should answer many questions on buffer content of
be transm i tted and data rece i ved.

60 SC34-0316

of the use of
synchronous
for $BSCUT2
both data to

c

o

o

0"
",

ut;l;ty Programs eBSC)

This section describes the Event Driven Executive BSC utility
programs and the i r syntax.

$BSCTRCE

The $BSCTRCE utility program provides a means to trace the I/O
activities on a given BSC line. $BSCTRCE must be loaded in the
same partition as the application program that is controlling
the traced line. If loaded in any other partition, unpredict
able results will occur. When loaded, $BSCTRCE prompts for the
disk or diskette file in which to place the trace output.
$BSCTRCE then prompts for the line number to be traced. The
trace action is terminated by the attention command STOP. Since
the output file is reused from the beginning whenever the end
is reached, $BSCTRCE d i sp lays the re lat i ve record number of the
last trace record written upon termination. The trace file can
then be displayed or listed using the $BSCUT1 utility. Multiple
Bse lines may be traced concurrently with multiple loads of
$BSCTRCE us i ng different trace files, for examp Ie:

> $L $BSCTRCE
DS1(NAME,VOLUME): TRACE9
$BSCTRCE 6P,11:03:22,
ENTER LINE NUMBER (HEX):

> STOP

LP=6500
9

LAST TRACE RECORD EQUALS 19
$BSCTRCE ENDED AT 11:13:31

Trace F; Ie Record Format: The format of the records produced by
$BSCTRCE is shown below.

I cc I ISW I STATUS DCB LGTH DATA LAST4

o +2 +4 +10 +26 +28 +252

Chapter 3. Binary Synchronous Communications 61

*CC Interrupt Condition Code on completion of the I/O.

Interrupt Status Word on completion of the I/O.

\

*STATUS The three status words of the SSC Adapter (produced
when bit 0 of the ISW is on.)

DCB The Dev i ce Contro I Block for the I/O.

LGTH The length of the data sent/recei ved.

DATA The data in main storage following the I/O.

LAST4 The last 4 bytes of data if the data is longer than 227
bytes.

Note: * These fie Ids are zero when the DCB hers been cha i ned
from the prev i ous record's DCB.

SBSCUTI

The $BSCUTI utility program formats binary synchronous trace
files (see $BSCTRCE utility description) to either $SYSPRTR or
a termi nal. You may select the records of the trace file to
dump. You will be prompted, as necessary, for information
requ i red by the funct ions of SBSCUTI.

Following is a list of the available functions of $BSCUTl, as
obta i ned by us i ng the? command.

COMMAND(?): ?

CV - CHANGE VOLUME
DP - PRINT TRACE FILE ON PRINTER
DU - DUMP TRACE FILE ON TERMINAL

(CA WILL CANCEL)
EN - END PROGRAM

COMMAND (?):

62 SC34-0316

C~)

o

0

o

Example: Dump trace file to your console

COMMAND (1): DU TRACE9
FIRST RECORD: 32
LAST RECORD: 33

DUMP OF TRACE FILE TRACE9 ON EDX002

***** RECORD 32 ***** START OF CHAINED OPERATION

CC = 0002 ISW = A009 STATUS = 98DA 0001 C080
RESULT: EXCEPTION - WRONG LENGTH RECORD (SHORT)

DCB = 8004 0000 0000 0000 0000 2B1C 0002 2AE4
OPERATION: CHAINED TRANSMIT

DATA LENGTH = 2
1 1061

***** RECORD 33 ***** CONTINUATION OF CHAINED OPERATION

DCB = 2008 0000 0000 0000 0000 0000 0200 96F6
OPERATION: RECEIVE WITH TIMEOUT

DATA LENGTH = 485
1 0227 615B F1F6 4BF5 F94B F3F4 40D1 D6C2
17 4040 F4F2 F440 D7D9 F3FO F1F6 F5F6 40C5
33 E7C5 C3E4 E3C9 D5C7 40D4 40D7 D9C9 D640
49 40F7 1E27 615B F1F6 4BF5 F94B F3F4 4001
65 D6C2 4040 F4F2 F340 C8D8 F1F2 FIF6 F5F6
81 40C5 E7C5 C3E4 E3C9 D5C7 40D4 40D7 D9C9
97 0640 40F7 1E27 615B F1F6 4BF5 F94B F3F4
113 4001 D6C2 4040 F3FO F040 C9E2 FOF3 F1F4
129 F4F5 40C5 E7C5 C3E4 E3C9 D5C7 40E5 40D7
145 09C9 D640 40F5 1E27 615B F1F6 4BF5 F94B
161 F3F4 40D1 D6C2 1D43 F4F8 407B C7E2 D7C5
177 FOF1 F040 D6D5 40D7 D9C9 D5E3 D9F2 4040
193 07D9 C9D6 4040 F51E 2761 5BF1 F64B F5F9
209 4BF3 F440 DID6 C240 40F3 F2FO 40C6 C7F6
LAST 4 D4D5 1E26

DUMP COMPLETE
ANOTHER AREA?

.. /$16.59.34 JOB
424 PR301656 E

XECUTING M PRIO
7 .. /$16.59.34 J

OB 423 HQ121656
EXECUTING M'PRI

0 7 •. /$16.59.34
JOB 300 150314

45 EXECUTING V P
RIO 5 .. /$16.59.
34 JOB •. 48 iGSPE
010 ON PRINTR2
PRIO 5 .• /$16.59
.34 JOB 320 FG6
MN ..

Chapter 3. Binary Synchronous Communications 63

$BSCUT2

The $BSCUT2 utility program checks out the binary synchronous
communications access method (BSCAM), the BSCLINE definitions
generated in the executing supervisor, and the hardware cus
tomized jumper assignments in the adapters. Various BSCAM
capab i lit i es may be tested as fo llows:

1. Read and wr i te both transparent and non-transparent data

2. Operate in limited conversational mode with both transpar
ent and non-transparent data

3. Operate as a master controller on a multipoint (multidrop)
line to both poll and select tributaries (text written only
for transparent data)

4. Operate as a tributary on a multipoint line and be polled
and selected (text written only for transparent mode)

The pr i mary purpose of th i s ut i 1 i ty is to check out your system
after installation, supervisor generation, and your tailored
adapter assignments via the jumper options (device address,
type such as PT, SM or SA, tributary address, etc.). Therefore
it is essential to have this information available to run this
program. For each selected function in $BSCUT2, you will be
prompted for the device (line) address, tribut~ry address (if
multipoint), record length, etc. Error messages will print if
any discrepancies exist between the function being performed
and the hardware assignments. These error codes are defined in
this section.

Normal or successful exercising of any given function results
in a test pattern message being printed or displayed on the
selected output terminal. The output basically consists of:

1. First sect i on - Interna 1 task i dent if i er (for examp Ie READ
for transparent and non-transparent reads), and optionally
record number and record length.

Example:

Task READ entered RECORD NUMBER= 1 RECORD LENGTH= 80

64 SC34-0316

(~ J')

o

o

o

o

2. Second line - Funct i on i dent if i er, record number, and
alphabetic text string (A through Z) repeated to fill
record length specified. The identifier and record number
make up a 25-byte field and the remaining record length is
filled by the alphabetic string. Therefore if you speci
fied a record length of 80, the alphabetic string would
consi st of 55 characters (A through Z, A through Z, and
ABC) •

The output message in the previous example is repeated for the
number of records transrni tted.

Following is a list of the available functions of $BSCUT2 as
obta i ned by us i ng the? command.

$BSCUT2 74P,00:33:52:, LP=9400

COMMAND (?): ?
RWI ---- READ/WRITE - NONTRANSPARENT
RWIX --- READ/WRITE - TRANSPARENT
RWIMP -- READ/WRITE - MULTIDROP LINE NONTRANSPARENT
RWIXMP - READ/WRITE - MULTIDROP LINE TRANSPARENT
RI ----- READ - TRANSPARENT/NONTRANSPARENT
WI ----- WRITE - NONTRANSPARENT
WIX ---- WRITE - TRANSPARENT
EN ----- END THE PROGRAM
CH ----- CHANGE HARDCOPY DEVICE
RWIVX READ/WRITE - TRANSPARENT CONVERSATIONAL
RWIV READ/WRITE - NONTRANSPARENT CONVERSATIONAL

$BSCUT2 can be used to check out binary synchronous operations
if at least two binary synchronous adapters are available on
Series/l processors and if a connection between the two adapt
ers is made. If switched manual connections are used, $BSCUT2
does not prompt you to make connection. This must be done once
the $BSCUT2 command has been issued and all questions have been
answered.

Note: $BSCUT2 contains many examples of the use of the Series/l
Event Driven Executive binary synchronous instructions. Exam
ination of the source program for $BSCUT2 should answer many
questions on buffer content of both data to be transmitted and
data rece i ved.

Following are explanations of each type of command for $BSCUT2:

Chapter 3. Binary Synchronous Communications 65

RWI - Read/Write Non-transparent Data

This command writes non-transparent messages on line. Each
message is numbered. The record length for write includes the
control characters. The read task receives the messages,
analyzes them, and prints them on the hardcopy device. The
analysis includes transparent or non-transparent and record
length rece i ved.

COMMAND (?): RWI
RWI ---- READ/WRITE - NONTRANSPARENT
READ ADDRESS? SA
WRITE ADDRESS? 58
READ RECl? 80
WRITE RECl? 80
NUMBER OF RECORDS? 10
READ ~10NITOR? Y
WRITE MONITOR? Y

Notes:

1 • READ ADDRESS and WRITE ADDRESS refer to binary synchronous
adapter channel address. If the test is to be run between
two processors (one to read and one to write) •. load $BSCUT2
on both processors and enter the correct address for read
on one processor and the correct address for write on the
other processor. The other address can be invalid and the
corresponding task on each processor will fail due to an
undefined line: however, the read/write task will function
proper 1 y. Th is is true for all $BSCUT2 commands.

2. RECl quest ions refer to the buffer size to be used and
therefore the number of bytes transferred in one trans
mission over the binary synchronous line. The maximum
buffer size permitted is 512 bytes. READ (RECl) should
always be equal to or greater than WRITE or errors wi 11
occur.

3. NUMBER OF RECORDS determines the number of transmissions
to be made before the test ends.

4. "Mon i tor" funct ions turn on a swi tch wh i ch allows each task
to report its prog~ess to the terminal. Thus TASK ENTERED,
TASK EXITED messages and so on are written to the (nvoking
term ina 1 if the mon i tor funct i on is enab led.

66 SC34-0316

;-.. ",
(I
~

o

o

0,
, '"''

RWIX - Read/Write Transparent Data

COMMAND (?): RWIX
RWIX --- READ/WRITE - TRANSPARENT
READ ADDRESS? SA
WRITE ADDRESS? 58
READ RECL? 80
WRITE RECL? 80
NUMBER OF RECORDS? 10
READ MONITOR? Y
WRITE MONITOR? Y

Same as "RWI - Read/Write Non-transparent Data" on page 66
except data transmitted by the WRITE task is transparent.

RWIXMP - Read/Write Transparent, Multidrop Line

COMMAND (?): RWIXMP
RWIXMP - READ/WRITE - MULTIDROP LINE TRANSPARENT
MC DEVICE ADDRESS? SO
BUFFER LENGTH? 80
NUMBER OF RECORDS? 5
LOOP COUNT? 1
MONITOR? Y
NUMBER OF TRIBUTARIES? 1

PARAMETERS FOR TRIBUTARY? 1
MT DEVICE ADDRESS? 51
MT TRIBUTARY ADDRESS? 02
BUFFER LENGTH? 80
NUMBER OF RECORDS? 5
MONITOR? Y

See notes under "RWI - Read/Wr i te Non-transparent Data" on page
66. In th is command, BUFFER LENGTH is equ i valent to REeL.

Chapter 3. Binary Synchronous Communications 67

The master controller (MC) at device address polls and selects
all tributaries (MT) and sends and receives messages to them.
Since each task both transmits and receives, successful oper
ation requires the controller buffer length to equal all
tributary buffer lengths. Values other than this can be entered
to test access method error detection. Received messages are
logged to the hardcopy dev ice.

DEVICE ADDRESS for this command refers to binary synchronous
adapter channel address. TRIBUTARY ADDRESS refers to the jump
ered tributary address on each card.

Note: The adapter must be jumpered in tributary mode for this
test to funct i on proper I y.

If the test be i ng performed is between two $BSCUT2 programs
then:

1. Program 1 would use a valid MC device address and dummy
tributaries (MT)

2. Program 2 would use a dummy MC dev ice address and val i d
tributaries (MT)

3. NUMBER OF TRIBUTARIES must be equal in both programs

4. lOOP COUNT must be equal in both programs.

RI - Read Transparent/Non-transparent

COMMAND (?): RI
RI ----- READ - TRANSPARENT/NONTRANSPARENT
READ ADDRESS? SA
READ RECl? 80
READ MONITOR? Y

See note under "WIX - Wr i te Transparent" on page 69.

68 SC34-0316

o

o

o

o

WI - Write Non-transparent

COMMAND (?): WI
WI ----- WRITE - NONTRANSPARENT
WRITE ADDRESS? 58
WRITE RECL? 80
NUMBER OF RECORDS? 10
WRITE MONITOR? Y

See note under "WIX - Write Transparent."

WIX - Write Transparent

COMMAND (?): WIX
WIX ---- WRITE - TRANSPARENT
WRITE ADDRESS? 58
WRITE RECL? 80
NUMBER OF RECORDS? 5
WRITE MONITOR? Y

Note: RI, WI, and WIX commands individually activate the tasks
comprising RWI and RWIX. The Read task does not require NUMBER
OF RECORDS since it will read either transparent or non
transparent data until EOT is received. This makes the Read
task useful for monitoring any binary synchronous line sending
data to the processor. For example, RI can receive data from
SRJE~780 or SRJE3780 utilities operating in the same Series/l
or in another Series/I.

Chapter 3. Binary Synchronous Communications 69

EN - End $BSCUT2 Program

COMMAND (?): EN
$BSCUT2 ENDED AT 01:14:40

CH - Change Hardcopy Device

COMMAND (?): CH
NEW HARDCOPY DEVICE? $SYSLOGA

Note: If the hardcopy device entered is not defined, then the
hardcopy output wi 11 come to the terminal which loaded $BSCUT2.

RWIVX - Read/Write Transparent Conversational

COMMAND (?): RWIVX
RWIVX -- READ/WRITE - TRANSPARENT CONVERSATIONAL
READ ADDRESS? SA
WRITE ADDRESS? 58
BUFFER LENGTH? 5
NUMBER OF RECORDS? 10
READ MONITOR? Y
WRITE MONITOR? Y

70 SC34-0316

o

o

o

o

o

RWIV - Read/Write Non-transparent Conversational

COMMAND (?): RWIV
RWIV --- READ/WRITE - NONTRANSPARENT CONVERSATIONAL
READ ADDRESS? 58
WRITE ADDRESS? SA
BUFFER LENGTH? 80
NUMBER OF RECORDS? 5
READ MONITOR? Y
WRITE MONITOR? Y

For RWIVX and RWIV commands, see Notes under "RWI - Read/Write
Non-transparent Data" on page 66. In this command BUFFER LENGTH
is equ i va lent to RECL.

RWIVX and RWIV test limited conversational operation in both
transparent and non-transparent mode. The following is a
descr i pt i on of the binary synchronous line transact ions:

WRITE TASK

BSCWRITE N(X)

BSCREAD C

BSCWRITE CV(X)

BSCWRITE CV(X)

BSCREAD C

----ENQ------------->
<---ACKO (Response)-
----Text------------>
<---Text (Response)-
----ACKI (Response)->
<---Text-------------
----Text (Response)->
<---ACKO (Response)--
----Text------------>
<---Text-------------
----ACK1------------>

READ TASK

BSCREAD I

BSCWRITE CveX)

BSCWRITE CV(X)

BSCREAD C

BSCWRITE CV(X)

This sequence continues until the NUMBER OF RECORDS count is
satisfied.

Chapter 3. Binary Synchronous Communications 71

$PRT2780 and $PRT3780 ut;!;ty Programs

$PRT2780 and $PRT3780 are uti lity programs which wi II print the
spool records produced by t h e$ R J E 2 78 0 and $ R J E 3 78 0 uti lit i e s .
When these utilities are loaded, they prompt for the name of
the spool file to be printed. The utility terminates upon
reaching the end of the spool file. An initial option allows
you to choose a pr inter other than $SYSPRTR if des ired.

Example:

> $L $PRT3780
DS1(NAME,VOLUME): ASMWORK

$PRT3780 9P,00:02:44, LP= 8000
PRINT TO $SYSPRTR? (Y OR N): Y
$PRT3780 ENDED AT 00:03:05

Spooled data from a /*DR HASP command during remote job entry
session as printed out by above utility is:

$19.28.14 RM74.RD1 *** INACTIVE
$19.28.14 RM74.PR1 *** INACTIVE
$19.28.14 RM74.PU1 *** INACTIVE
$19.28.14 RM75.RD1 *** INACTIVE
$19.28.14 RM75.PR1 *** INACTIVE
$19.28.14 RM75.PU1 *** INACTIVE

72- SC34-0316

(~,
; \

~yl

c

o

o

o

$RJE2780 and $RJE3780 utility Programs

$RJE2780 is a utility program which can be used to interface
with a System/360 or System/370 via remote job entry. It simu
lates an IBM 2780 having the following characteristics and fea
tures:

• Model 2 (Card reader, card punch, and printer)

• EBCDIC transparency

• Multiple record transmission

• 132-character pr i nt line

• Transparent punch output only

• No hor i zonta I tab

• No tape controlled operations (except channell as new page
indicator)

$RJE3780 is a utility program which can be used to interface
with a System/360 or System/370 via remote job entry. It simu
lates an IBM 3780 having the following characteristics and fea
tures:

• 3780 with IBM 3781 Card Punch

• Compress i on for both input and output

• Vert i cal tab

• Transparent punch output only

$RJE2780 and $RJE3780 present the same interface to the follow
ing list of host RJE facilities:

• HASP or HASP V4

• JES2 or JES3

• RES

• VMRSCS

In the following pages, $RJE refers both to $RJE2780 and
$RJE3780.

The $RJE utility is controlled by a set of attention requests.
See Figure 6 on page 74.

Chapter 3. Binary Synchronous Communications 73

ABORT

COMMAND

END

ENDSPOOl

PRINTON

PUNCHO

PUNCHS

RESET

SPOOL

SUBMIT

SUBMITX

Stops transmission to or from the
host

Sends a single card image to the host

Terminates execution of the utility

Switches from spooling to direct printing

Defines the terminal name used for output

Defines a disk or diskette file for
punch output of object data

Defines a disk or diskette file for
punch output of source data

Reset function (use caution)

Defines a disk or diskette file for
printer output and to commence spooling

Sends a data stream to the host

Sends a transparent data stream to the
host

Figure 6. $RJE Attention Requests

W hen the $ R J E uti lit y i s fir s t loa d e d -, i t c h e c k s for the pre s -
ence of only one BSC line specified in the supervisor. If true,
the actual device address of the adapter is used as the default
line address and a prompt i ng message is suppressed. I f more
than one Bse line has been def i ned, it prompts for the RJE line
address. Sub~equent control ope~ations are all performed using
the attention request commands. Multiple copies of $RJE can be
loaded using different lines to the host. The spool facility
can b e use d t 0 a v 0 i d con ten t ion for a sin g 1 e p ro-i n t e r. Fig u r e 7
on page 78 and Figure 8 on page 79 show a sample $RJE session.

Attent;on Requests

ABORT: ABORT is used to stop a data transmission which is cur
rently in process. During a SUBMIT or SUBf1ITX operation, normal
end-of-file is transmitted to the host following the current
block. During r~ceive operations, EDT is returned instead of a
normal acknowledgement and data then continues to be received
un til the h 0 s t sen d s EO T. De peon din g 0 nth e 0 per a t ion 0 f the
host RJE system, this can result in suspension of print or
punch output and a pause dur i ng wh i ch the host wi 11 rece i ve

74 SC34-0316

!~\

'~ __ y'

o

o

" 0'····

input. Since the pause for input by the host may be short, any
desired commands (for example, to submit another job, cancel
the current output, hold a job, or display status) should be
entered before the ABORT command. This command simulates
pressing STOP on a 27aO while printing or punching, CARRIAGE
STOP on a 3780 printer while printing, or STOP on a 3781 punch
whi Ie punching.

COMMAND: COMMAND is used to send a single card image record to
the host. The most common use of th is capab iIi ty will be to send
control commands and information requests to the host; for
example, a HASP /*$DA command.

Upon entering the COMMAND attention request, you are asked to
enter the command to be sent.

END: END is used to terminate the $RJE uti lity program.

ENDSPOOL: ENDSPOOL is used to termi nate the spool i ng of pr inter
output (see SPOOL command). If a print data stream is being
rece i ved and spoo led when th i s command is entered, spoo 1 i ng
will continue until the end of the data stream. Subsequent
pr i nt data streams will then be pr i nted on the def i ned pr inter.

PRINTON: PRINTON is used to define the name of the terminal to
be used for pr i nt output. If not spec if i ed, $SVSPRTR is
assumed.

PUNCHS and PUNCHO: PUNCHS and PUNCHO are used to define a disk
or diskette file to be used to rece i ve punch data from the host.
Card i mage punch data streams can be wr i tten to disk in two d i f
ferent formats: source (5) or object (0). Source format will
produce two aO-byte card i mage records per 256-byte disk record
with the second card starting at byte location 129. Object for
mat will produce three aO-byte contiguous card image records
per 256-byte disk record with the last 16 bytes set to
hexadecimal zeros. The punch specification is automaticallY
reset at the completion of each punch data stream so that mul
tiple punch data streams can be separated into di fferent output
data sets by i ssu i ng another PUNCHS or PUNCHO command.

Upon entering the PUNCHS or PUNCHO attention request, you will
be queried for the name and volume of the file to be used for
punch output. If volume is not specified, the IPL volume is
assumed. The fi Ie name and volume can also be specified as part
of the PUNCHS or PUNCHO command, for example:

PUNCHS PUNCHOUT,EDXOOI

Chapter 3. Binary Synchronous Communications 75

$RJE exami nes the first cards rece i ved from the host and d i sre
gards those containing a X'6A' in columns 1, 10, and 11 (indi
cating a HASP punch header card). $RJE must be modified by you
to purge other than HASP punch header cards.

RESET: RESET is used to reset functions that have not started
operation in $RJE (for example buffered command images that
have not yet been sent to the host, SUBMIT files that have not
yet started transmission). RESET should be used with caution.
If RESET is used, once a function is in process or if use of
RESET overlaps a function initiation sequence, unpredictable
results may occur. RESET conditionally prompts you with the
following:

ENTER RESET TYPE (CO,SU,SP,PU):
CO - COMMAND function
SU - SUBMIT(X) function
SP - SPOOL function
PU - PUNCH(S or 0) function

SPOOL: SPOOL is used to define a disk or diskette file to be
used to receive printer data from the host. If not specified,
$ R JEw i 11 p r i n t r e c e i v e d d a tad ire c t 1 y to t he p r i n t e r • On c e
specified, all printer output wi 11 be spooled unti I an ENDSPOOl
command is issued. The utility programs $PRT2780 or $PRT3780
can be used to print the contents of a spool file produced by
$RJE2780 or $RJE3780, respectively.

Upon enter i ng the SPOOL attent i on request, you will be prompted
for the name and volume of the disk or diskette file to be used
for printer output. If volume is not specified, the IPL volume
is assumed. The space allocated to this file must be at least
equal in size (256-byte records) to the number of print lines
to be spooled and there must be an even number of records in the
spool file. Once the spool file is full, the output reverts to
the defined printer. The spool fi Ie name and volume may also be
entered with the SPOOL command, for example:

SPOOL SPOOLFLE,WRKlIB

76 SC34-0316

o

c

Ori , ,

o

o

SUBMIT and SUBMITX: SUBMIT is used to define and send a data
stream to the host. SUBMITX is used to def i ne and send a trans
parent data stream to the host. Multiple disk or diskette fi les
may be sent us i ng the /*CONCAT statement in the data stream
i tsel f. The files must be in the same format as that produced by
the $EDITIN and $FSEDIT utility programs (for example, two
BO-byte card i mage records per 256-byte disk or diskette record
with the second card beginning at byte location 129). Two com
mand statements within the data stream ,are recognized by $RJE
and are not transmi tted to the host:

1. /*END - sign if i es the end of the data stream to be sent.

2. /*CONCAT filename,volume - signifies that the data stream
is to be continued using the file specified. If volume is
not spec if i ed, the I PL vo 1 ume is assumed. Any number of
files may be concatenated into one data stream.

Upon enter i ng the SUBMIT or SUBMITX attent i on request, you wi 11
be queried for the name and volume of the fi Ie to be sent to the
host. If volume is not specified, the IPL volume ;s assumed.
The submit file name and volume may also be entered with the
SUBMIT or SUBMITX command, for example:

SUBMITX MYJOB,WRKLIB

Chapter 3. Binary Synchronous Communications 77

> $L $RJE2780
$RJE2780 35P,OO:OO:OO, LP= 7COO

ENTER RJE LINE ADDRESS IN HEX: SF
DIAL HOST
HOST CONNECTION ESTABLISHED
> COMMAND
ENTER COMMAND
/MSIGNON REMOTEXX
COMMAND READY TO SEND
COMMAND SENT
> PUNCHO

ENTER PUNCH FILE NAME (NAME,VOLUME): PCHOUT01,EDX002
PUNCH FILE DEFINED
> SUBMIT

ENTER SUBMIT FILE NAME (NAME,VOLUME): RJEJOB01,EDX002
SUBMIT FILE READY TO SEND
FILE TRANSMISSION STARTED
FILE TRANSMISSION COMPLETED
> COMMAND
ENTER COMMAND
/M$DA
COMMAND READY TO SEND
COMMAND SENT
> PRINTON
ENTER PRINTER NAME: PRTRl
PRTRI DEFINED AS RJE PRINTER
> COMMAND
ENTER COMMAND
/*$DA
COMMAND READY TO SEND
> RESET
ENTER RESET TYPE (CO,SU,SP,PU): CO
RESET COMPLETED
PUNCHING STARTED
PUNCHING COMPLETED
LAST CARD PUNCHED WAS CARD 2 ON RECORD 34
> SPOOL

Figure 7. Sample $RJE Session (Part 1 of 2)

78 SC34-0316

c

o

o

o

c

ENTER SPOOL FILE NAME (NAME,VOLUME): SPOOLOl,EDX002
SPOOL FILE DEFINED
> SUBMIT RJEJOB02
SUBMIT FILE READY TO SEND
FILE TRANSMISSION STARTED
FILE TRANSMISSION COMPLETED

SPOOLING STARTED

PUNCH DATA BEING RECEIVED - NO PUNCH FILE DEFINED
ENTER PUNCH FORMAT - S OR 0: 5

ENTER PUNCH FILE NAME
PUNCH FILE DEFINED
PUNCHING STARTED
PUNCHING COMPLETED
LAST CARD PUNCHED WAS
> ENDSPOOL
SPOOLING COMPLETED
> COMMAND
ENTER COMMAND
/MSIGNOFF
COMMAND READY TO SEND
COMMAND SENT

(NAME,VOLUME): PCHOUT02,EDX002

CARD 1 ON RECORD 51

$RJE2780 ENDED AT 00:00:00
> $L $PRT2780

DSl(NAME,VOLUME): SPOOL01,EDX002
$PRT2780 9P,00:00:00, LP= 7COO
PRINT TO $SYSPRTR? (Y OR N): N
ENTER PRINTER NAME: PRTRI

$PRT2780 ENDED AT 00:00:00

Figure 8. Sample $RJE Session (Part 2 of 2)

Chapter 3. Binary Synchronous Communications 79

c

C)

o
80 SC34-0316

o

o

o

CHAPTER 4. HOST COMMUNICATIONS FACILITY

An application program coded in the Event Driven Language may
commun i cate with the fac iIi ties of Installed User Program
5796-PGH, the IBM Ser i es/l Host Commun i cat ions Fac i 1 i ty
installed on an IBM System/370 running OS/MVT or OS/VS2. The TP
statement, a part of the Event Driven language, provides you a
means of per form i ng the fa llow i ng genera 1 funct ions:

• Wr i te to a host data set.

• Read from a host data set.

• Submit a background job to the host system.

• Obta in the time and date from the host system.

• Set the occurrence of a Series/l event so that it may be
tested by a program running on the host system.

• Test for the occurrence of an event which is set by the host
system.

• Erase an event which occurred on either the Series/lor the
host system.

To configure your supervisor for the Host Communications
Facility, refer to the section "System Configuration" in the
System Gu ide.

Chapter 4. Host Communications Facility 81

Open Series/l Data Sets

A Series/l may only have one host data set open at a time. If a
second task attempts to open a data set, it wi 11 be placed in a
queue of tasks wa i t i ng to use the TP fac iii ty.

If the task currently using the TP facility attempts to open a
second data set, then the currently open data set wi 11 automat
ically be closed and the second one wi 11 be opened.

Host Data Set Nam;ng Conventions

Data set names referenced by a TP instruction must consist of
an alphameric character string immediately preceded by one
word wh i ch spec if i es the length of the name fie Id. Th is is most
easily done by using a labeled TEXT instruction to define the
name, for example:

DSNI TEXT 'XYZ.EXPl.DATA'

Data set names follow standard host system naming conventions
and must not exceed 44 characters in length (including delimit
ing periods). The name field must be padded on the right with
blanks.

A partitioned data set and member name is specified with a
s t r i n g 0 f the for m d s n a m e ,(me m b ern a me), for e x amp 1 e :

PDSDSN TEXT 'XYZ.EXPl.DATA(RUNl)'

The max i mum length of such a str i ng is 54 characters.

A data set name can be read into a text field from the console
with the READTEXT instruct i on.

82 SC34-0316

c

(--"\

\\.~yl

o

o

o

0',,;
"

Host Data Set Cha~acter;st;cs

Host system data sets referenced in these functions must all be
cataloged, single-volume, direct-access data sets, with fixed
or variable-length records. Either sequential data sets or
members of partitioned data sets may be accessed. Fixed-length
logical records must contain an even number of words. The data
sets may be blocked or unblocked. If fixed blocked format i~

used, the block size must be an integral multiple of the log
ical record length (LRECL), not exceeding 13030.

Either sequent i al data sets or members of part it i oned data sets
may be used for the SUBMIT funct i on. Log i cal records must be 80
bytes long and may be blocked or unblocked. If blocked records
are used, the block size must be an integra 1 mu 1 tip Ie of 80.

Host System Considerations

To ensure economical utilization of host main storage, while
also providing large record capability, host main storage is
shared by all Series/l systems. The Host Communications Facil
ity IUP region allocation determines how much buffer space is
avai lable and therefore the upper limit for host BLKSIZE. It is
still possible an error code 222 (sufficient I/O buffer space
unavai lable> may occur because of multiple and simultaneous
requests for access to data sets with very large block sizes.
This is very improbable, but you are cautioned to minimize the
am 0 un t 0 f rea 1 t i me d uri n g w h i c h yo u use the H os t Co m m u n i cat ion s
Facility in order to minimize the probability of interference.

You are also cautioned to test for the specific error code 222
(sufficient I/O buffer space unavailable) in response to a TP
OPEN and, if rece i ved, to retry your request ali tt Ie later.

Record Sizes

A large range of logical and physical record si zes is avai lable
to the application programmer. In selecting record size, you
s h 0 u I dun d e r s tan d t hat the r e is no a b so I ute be s t c hoi. c e. Howe v -
er, the following points are offered for your consideration.

1. The basic disk or diskette record size on the Series/l is
2 5 6 b y t e s. T his i s the ref 0 rea nat u ,r a 1 u nit 0 f mea sur e for
transfer to and from disk and a natural choice for a log
ical record size on the host. This is the default chosen
for the TP instruct ions.

Chapter 4. Host Communications Facility 83

2. A host physical record (block) size of 1536 bytes yields an
efficient (80 percent) utilization of host direct access
storage on an IBM 3330 disk. This al~o yields moderate
requ i rements for host buffer storage.

3. For unformatted data, FORTRAN IV on the host system sup
ports either fixed-length unblocked data sets or
variable-length blocked data sets.

4. The larger the physical record being transferred between
host and Series/1 (a host logical record), the higher the
effective data transfer rate which will be achieved. Also,
the larger the physical record (block) being transferred
between host rna in storage and direct access, the higher the
effect i ve data rate. The max i mum data rate is ach i eved when
using track size records (13030 bytes for the IBM 3330
disk) for both operat ions.

5. The large physical records naturally require correspond
ingly large buffers in your program. In order to achieve
overlapped I/O, multiple buffers are requi red.

Variable Length Records

A variable length record is always prefixed by four bytes of
control i nformat ion. Th is is called a Record Descr 1 ptor Word or
RDI~. The structure of a variable format record is sho~.Jn below.

LL 00 DATA

The length (ll) field (bytes 1 and 2) describes the total
length of the record in bytes and is therefore always four
greater than the length of the data field. The field shown as 00
(bytes 3 and 4) is reserved ,for use by the host system.

When a variable format record is transferred from the host to
Series/I, the total record, including the LL field, will be
transferred. When a variable format record is to be transferred
from Series/1 to the host, you must set the RDW to the proper
value.

Data Transfer Rates

The data transfer rates which may be achieved between Series/1
and the host is a function of the activity on the host and as

84 SC34-03I6

o

c

o

o

o

such wi 11 vary somewhat from time to time. Of course, the speed
of transmission is also a function of the type of physical con
nection used between the systems. In general, you should avoid
implement i n9 any funct ions ina manner wh i ch depends on spec i f
ic data rates between the host and Series/I.

System Status Data Set

The status funct ions (SET, FETCH, and RELEASE) prov i de a method
of communication and therefore, of synchronization between
programs in a distributed system environment. This function is
implemented by using a shared system data set on the host com
puter. Programs on the host or satellite processors can commu
nicate by writing (SET), reading (FETCH), and deleting
(RELEASE) records.

In the simplest case, one program (Program A) makes an entry in
the System Status Data Set by i nvok i ng a SET instruct i on spec i
fying an index and a key. Another program (Program B) would
test for the ex i stence of such an entry wi th a FETCH or RELEASE
referring to the same index and key names and would receive a
positive return code if the entry existed. After performing a
SET, the first program (Program A) could periodically issue a
FETCH. A companion program (Program B) on the other system
might also be issuing a periodic FETCH for the agreed upon
index and key. At the appropriate time, this program (Program
B) could issue a RELEASE which would result in the first pro
gram (Program A) receiving a "not found" return code from its
next FETCH. This could be interpreted as a notification by the
companion program (Program B) that the message had been
received. Figure 9 on page 86 graphically illustrates the
previous explanation.

The FETCH, SET, and RELEASE functions can be invoked from a
user-written program using the TP commands or, through the use
of the Event Driven Executive $HCFUTI utility. The return codes
that could be returned are listed in the section "Return Codes"
on page 102.

Chapter 4. Host Communications Facility 85

PROGA
STATA

* A

PROGRAM A
STATUS PROGID,KEYA

TP SET,STATA

PROGRAM A
DEFINE STATUS ID & KEY

SEND MESSAGE TO PROGB
* VIA HOST
Al TP FETCH,STATA,ERRORA CHECK IF PROGB RECEIVED
* MESSAGE
* FALL THRU IF KEY & ID STILL ON HOST

*
ERRORA

PROGB
STATB

*
B

*

GO TO Al
EQU *
PROGSTOP
ENDPROG
END

PROGRAM B
STATUS PROGID,KEYA

CONTINUE INTERROGATION
DELETE THE MESSAGE ON HOST

PROGRAM B
DEFINE SAME STATUS ID & KEY

TP FETCH,STATB,ERROR=ERRORB FETCH MESSAGE

* MESSAGE WAS FOUND AND IS DELETED, THUS SIGNALING PROGA

*

ERRORB
END

TP RELEASE,STATB
GOTO END
GO TO B
PROGSTOP
ENDPROG
END

CONTINUE LOOKING FOR MESSAGE

Figure 9. System Status Data Set Sample Program

The System Status Data Set has DIRECT organ i zat i on. Records are
written into this data set with the SET funr.tion, tested for
existence with the FETCH function, or tested and deleted with
RELEASE.

A STATUS entry has three possible logical parts, two of which
are mandatory. These are:

1. Index entry

2. Key field

3. Data (optional 256-byte field)

Index entries and key fields are each eight EBCDIC characters
in length and have sign if i cance for the us i ng programs.

86 SC34-03I6

o

o

0

o

o

The
ble
two

•

•

System Status Data Set has one 268-byte index record capa
of conta i n i ng 22 separate index entr i es. An index entry has
parts. These are:

Index name - eight EBCDIC characters

Key pointer - a 4-byte relative record pointer to the first
assoc i ated key field record.

A key entry is a 268-byte record which has the following for
mat:

1. Forward po inter - a 4-byte relat.i ve record number of the
next key entry or zero if this is the last one

2. Key nC;1me - eight EBCDIC characters

3. Data - 256 bytes of optional data

The next record pointer allows more than one key to be associ
ated with a given index. The next record pointer of the last key
field wi 11 be set to zero to indicate the end of the chain.

Logically, an unlimited number of key records may be associated
with a single index. In practice, the limiting factor is the
physical size of the data set. The distributed data set allows
for a total of 94 key entries.

The System Status Data Set format is defined and allocated dur
ing the installation of the Host Communications Facility
Insta lIed User Program.

Appendix B of the IBM Series/t Host Communications Facility
Program Description and Operation Manual, 5H20-1819, contains
more detai Is on the use of the System Status Data Set.

Chapter 4. Host Communications Facility 87

TP statement

The TP statement supports only the single line BSe adapter in
point-to-point leased line mode. The following list shows the
required TP statement, or required sequence of TP statements,
to perform each of the general functions. These statements are
coded in your Event Driven Language application program, which
runs on the Ser i es/l end of the BSe link.

Examples of Use

1. Wr i te data from the Ser i es/l to a host data set.

Requires: TP
TP
TP

OPENOUT, •••
WRITE, ..•
CLOSE, .•.

2. Read data from a host data set to the Ser i es/l.

Requires: TP
TP
TP

OPENIN, ...
READ, ••.
CLOSE, ..•

3. Submit a background job to the host system.

Requires: TP SUBMIT, •••

4. Obta i n the time and date from the host system.

Requires: TP TIMEDATE, •••

88 SC34-0316

c

o

o

o

o

5. Set, on the host system, the occurrence of a Series/l
event, so that it may be tested by a program runni ng on the
host system.

Requires: TP SET, •••

6. Test for the occurrence of an event set by a program run
n i ng on the host system.

Requires: TP FETCH, .••

7. Erase the record, on the host system, of an event which was
set by either the host system or the Ser i es/l.

Requires: TP RELEASE, •••

Chapter 4. Host Communications Facility 89

TP Statement Syntax

Each of the forms of the TP instruction is described starting
with "TP CLOSE." The use of each function is shown in "Example
Transfer a Ser j es/I Data Set to the Host" on page 105 and
"Example Transfer a Host Data Set to the Series/I" on page 106.
Certain standard information is described on the following
pages.

TP CLOSE

TP CLOSE terminates a transfer operation. This instruction is
used to term i nate either an operat i on begun with TP OPENOUT, •••
or with TP OPENIN, ..••

Notes:

1. If an error occurs, an open data set wi 11 be automatically
closed by the system. The only time that a TP CLOSE must be
issued is when a data set transfer is being terminated and
no errors have occurred. For instance, this would occur if
only 10 records were being written to or read from a data
set capable of containing 20 records.

2 • The return code should always be tested after issuing a TP
CLOSE because some errors wi 11 only be detected at this
time; for example, 50 and 51. Return codes are shown in
Figure 10 on page 102, Figure lion page 103 and Figure 12
on page 104.

3. Whi Ie you have an open data set, no one else wi 11 be able to
use the fac iii ty. Use d i scret i on in your operat ions.

Syntax

label

Required:
Defaults:

TP CLOSE,ERROR=

CLOSE
None

Indexable: None

Operands Description

label The optional symbolic name of the TP statement.

90 SC-34-0316

c

c

o

o

o

CLOSE

ERROR=

Coded as shown. Spec if i es operat i on term i nat i on.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruct i on after th is one and
you must test for errors.

Chapter 4. Host Communications Facility 91

TP FETCH

TP FETCH tests for the existence of a specific record in the
System Status Data Set on the host system and optionally reads
in the assoc i ated data record.

Syntax

label TP FETCH,stloc,length,ERROR=,P2=,P3=

Required: FETCH, stloc
Defaults: length=O
IndexabIe: stIoc, length

Operands

label

FETCH

stloc

length

ERROR=

Pn=

Description

The optional symbolic name of the TP statement.

Coded as shown.

The label of a STATUS instruction. Refer to the
language Reference for a description
ins t r u'c t ion •

of this

A count spec i fyi ng the length, in bytes, of the data
port i on of the status record to be rece i ved. A count
of zero indicates that no data is to be received.
The maximum value of this field is 256.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

The optional labels to be affixed to the stioc and
length operands, respectively.

92 SC34-0316

o

o

o

o

o

TP OPEN IN

TP OPENIN prepares to read data from a host data set.

Syntax

label

Required:
Defaults:

TP OPENIN,dsnloc,ERROR=,P2=

OPENIN, dsnloc
None

Indexable: dsnloc

Operands

label

OPEN IN

dsnloc

ERROR=

P2=

Description

The opt i ona 1 symbo 1 i c name of the TP statement.

Coded as shown. Spec if i es an input operat ion.

The label of a TEXT instruction which specifies the
fully qualified name of a host data set of standard
format as detai led in "Host Data Set Nami ng
Convent ions" on page 82.

This may be either (1) a sequential data set or (2)
a part it i oned data set with member name inc 1 uded.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

The optional label to be affixed to the dsnloc
operand.

Chapter 4. Host Communications Facility 93

TP OPENOUT

TP OPENOUT prepares to transfer data to a host data set.

Syntax

label TP OPENOUT,dsnloc,ERROR=,P2=

Required: OPENOUT,dsnloc
Defaults: None
Indexable: dsnloc

Operands

label

OPENOUT

dsnloc

ERROR=

P2=

Description

The opt i onal symbol i c name of the TP statement.

Coded as shown. Spec if j es an output operat ion.

The label of a TEXT instruct i on wh i ch spec if i es the
fully qualified name of a host data set of standard
format as deta i led in "Host Data Set Nami n9
Conventions" on page 82.

This may be either (1) a sequential data set or (2)
a part i t i oned data set with member name inc 1 uded.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

The optional label to be affi xed to the dsnloc
operand.

94 SC34-0316

c

o

o

o

o

TP READ

TP READ rece i ves a data record from the host system.

Syntax

label

Required:
Defaults:

TP READ,buffer,count,END=,ERROR=,P2=,P3=

READ, buffer
count=256

Indexable: buffer, count

Operands

label

READ

buffer

count

END=

ERROR=

Pn=

Description

The opt i ona I symbo Ii c name of the TP statement.

Coded as shown. Spec if i es that a record is be i ng
received.

The label of the data buffer into which the record
is to be stored. This buffer should be generated
with or conform to the specifications of a BUFFER
statement spec i fy i ng TPBSC.

The max i mum
transferred.
includes the

number of bytes
For variable length
4-byte ROW as shown

Length Records" on page 84.

which may be
records, th i s
in "Variable

Use this operand to specify the first instruction
of the routine to be invoked if an "End of Data Set"
condition is detected (return code 300). If this
operand is not specified, an EOD will be treated as
an error.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruct i on after th is one and
you must test for errQrs.

The opt i ona I labe Is to be aff i xed to the buffer and
count operands, respectively.

Chapter 4. Host Communications Facility 95

TP RELEASE

TP RELEASE deletes a specific record in the System Status Data
Set on the host system and opt i ona 11 y reads the assoc i ated data
record.

Syntax

label TP RELEASE,stloc,length,ERROR=,P2=,P3=

Required: RELEASE, stloc
Defaults: length=O
Indexable: stloc, length

Operands

label

RELEASE

stloc

length

ERROR=

Pn=

Description

The optional symbolic name of the TP statement.

Coded as shown.

The label of a STATUS instruction. Refer to the
Language Reference for a descr i pt i on of th i s
instruction.

A count spec i fy i ng the length, in bytes, of the data
port i on of the status record to be rece i ved. A count
of zero indicates that no data is to be transmitted.
The maximum value of this field is 256.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

The optional labels to be affixed to the stloc and
length operands, respectively.

96 SC34-0316

c

o

o

TP SET

TP SET wr i tes a record in the System status Data Set on the host
system.

Syntax

label TP SET,stloc,length,ERROR=,P2=,P3=

Required: SET, stloc
Defaults: length=O
Indexable: stloc, length

Operands

label

SET

stloc

length

ERROR=

Pn=

Description

The opt i ona I symbo 1 i c name of the TP statement.

Coded as shown.

The label of a STATUS instruction. Refer to the
lin.guage Reference for a description of this
instruction.

A count spec i fy i ng the length, in bytes, of the data
portion of the status record to be transmitted. A
count of zero i nd i cates that no data is to be trans
mitted. The maximum value of this field is 256.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruct i on after th i s one and
you must test for errors.

The optional labels to be affixed to the stloc and
length operands, respectively.

Chapter 4. Host Communications Facility 97

TP SUBMIT

TP SUBMIT submits a job to the host batch job stream.

Syntax

label TP SUBMIT,dsnloc,ERROR=,P2=

Required: SUBMIT, dsnloc
Defaults: None
Indexable: dsnloc

Operands

label

SUBMIT

dsnloc

Description

The optional symbolic name of the TP statement.

Coded as shown.

The label of a TEXT instruction which specifies the
name of a host data set containing the job (JCL and
opt i ona 1 data) to be subm i tted.

This may be either:

1. TEXT "dsname" for a sequent i al data set, or

2. TEXT "dsname (membername)" for a part i t i oned
data set.

In systems with a HASP/Host Commun i cat ions Fac iIi ty
interface, specifying DIRECT for dsnloc allows
immediate transmission of data records to the job
stream without employing an intermediate host data
set. To use this facility, issue:

TP SUBMIT, 01 RECT

followed by a ser i es of

TP WRITE,buffer,80

instructions, one for each job stream record, ter
minated with a

TP CLOSE

98 SC34-0316

C"--' " _:1

c

ERROR=

o
P2=

o

o

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

The optional label to be affi xed to the dsnloc
operand.

Chapter 4. Host Communications Facility 99

TP TIMEDATE

TP TIMEDATE obtains the current time of day (hours, minutes,
and seconds) and the date (month, day, and year) from the host
system.

Syntax

label TP TIMEDATE,loc,ERROR=,P2=

Requ ired: TIMEDATE, loc
Defaults: None
Indexable: loc

Operands

label

TIMEDATE

loc

ERROR=

P2=

Description

The optional symbolic name of the TP statement.

Coded as shown.

The label of the 6-word data area where time of day
and date will be stored as hours, minutes, seconds,
month, day, and year.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruct i on after th i s one and
you must test for errors.

The optional label to be affixed to the loc operand.

100 SC34-0316

o

o

o

o

o

TP WRITE

TP WRITE sends a data record to the host system.

Syntax

label TP WRITE,buffer,count,END=,ERROR=,P2=,P3=

Required: WRITE, buffer
Defaults: count=256
Indexable: buffer, count

Operands

label

WRITE

buffer

count

END=

ERROR=

Pn=

Description

The opt i ona I symbo Ii c name of the TP statement.

Coded as shown. Spec if i es that a record is be i ng
sent.

The label of the data buffer which contains the
record to be transmitted. This buffer should be
generated with, or con form to the spec if i cat ions
of, a BUFFER statement spec i fy i ng TPBSC.

The number of Series/l bytes to be transferred. For
variable length records, this includes the 4-byte
ROW as shown in "Variable Length Records" on page
84.

Use this operand to specify the first instruction
of the rout i ne to be invoked if an "End of Data Set"
cond it i on is detected (return code 400). If th is
operand is not specified, an EOD will be treated as
an error.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruct i on after th is one and
you must test for errors.

The optional labels to be affixed to the buffer and
count operands,respectively.

Chapter 4. Host Communications Facility 101

Return Codes

Program execution will be halted until the operation is
complete, and the first word of the TCB (taskname) must be
tested to determine if the operation was successful. The return
codes are shown in Figure 10, Figure lIon page 103 and
Figure 12 on page 104.

Note: I f an error is detected,
automat i ca 11 y closed for you.

an open data set

Code Description Module

-1 Successful completion Supervisor
1 Illegal command sequence Supervisor
2 TP I/O error Supervisor
3 TP I/O error on host HCFCOMM
4 Looping bidding for the line Supervisor
5 Host acknowledgement to request Supervisor

code was neither ACKO, ACKl, WACK,
or a NACK

6 Retry count exhausted - last error Supervisor
was a timeout; the host must be down

7 Looping while reading data from Supervisor
the host

8 The host responded with other than Supervisor
an 'EDT' or an 'ENQ' when an 'EDT'
was expected

9 Retry count exhausted - last error Supervisor
was a "modem interface check"

10 Retry count exhausted - last error Supervisor
was not a timeout, modem check,
block check or overrun

11 Retry count exhausted - last error Supervisor
was a transmit overrun

50 I/O error from last I/O in DSWRITE DSCLOSE
51 I/O error when writing the last buffer DSCLOSE

100 Length of DSNAME is zero HCFCOMM
101 Length of DSNAME exceeds 52 HCFCOMM
102 Invalid length specified for I/O HCFINIT

Figure 10. TP Return Codes (Part 1 of 3)

102 SC34-0316

i s

c

~-"\

~,J;

c

o

o

0 ,'
"

Code

200

201
202
203
204
205
206

207
208
209
211
212
213
214
216

217

218
219
220

221
222

300
301
302
303

Description

Data set not on volume specified for
controller
Invalid member name specification
Data set in use by another job
Data set already allocated to this task
Data set is not cataloged
Data set resides on multiple volumes
Data set is not on a direct access
device
Volume not mounted (archived)
Device not online
Data set does not exist
Record format is not supported
Invalid logical record length
Invalid block size
Data set has no extents
Data set organization is partitioned and
no member name was specified
Data set organization is sequential and
a member name was specified
Error during OS/ OPEN
The specified member was not found
An I/O error occurred during a
directory search
Invalid data set organization
Sufficient I/O buffer space unavailable

End of an input data set
I/O error during an OS/ READ
Input data set is not open
A previous error has occurred

Figure 11. TP Return Codes (Part 2 of 3)

Module

HCFINIT

DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN

DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN
DSOPEN

DSOPEN

DSOPEN
DSOPEN
DSOPEN

DSOPEN
DSOPEN
DSOPEN

DSREAD
DSREAD
DSREAD
DSREAD

Chapter 4. Host Communications Facility 103

Code Description Module ()
400 End of an output data set DSWRITE
401 I/O error during an 05/ WRITE DSWRITE
402 Output data set i s not open DSl~RITE

403 A previous error has occurred DSWRITE
404 Partitioned data set is full DSCLOSE

700 Index, key, and status record added SET
701 Index exists, key and status added SET
702 Index and key exist, status replaced SET
703 Error - Index full SET
704 Error - Data set full SET
710 I/O Error SET

800 Index and key exist FETCH
801 Index does not exist FETCH
802 Key does not exist FETCH
810 I/O error FETCH

900 Index and/or key released RELEASE
901 Index does not exist RELEASE
902 Key does not exist RELEASE
910 I/O error RELEASE

1xxx An error occurred in a subordinate S7SUBMIT
module during SUBMIT. ' x x x ' i s
the code returned by that module.

Figure 12. TP Return Codes (Part 3 of 3)

c
104 SC34-0316

o

o

o

Example Transfer a Ser;es/l Data Set to the Host

In the following example, a Series/l data set, which is entered
by the user at program load time, is wr i tten to a 256-byte data
set on the host. The user will be prompted for a target host
data set.

WRITASK PROGRAM TPOPEN,DS=((SOURCE,??))

*
* TPOPEN

*

OPEN TP LINE
READTEXT DSNAME,'HOST DATASET: ',PROMPT=COND
TP OPENOUT,DSNAME
IF (WRITASK,EQ,-l),GOTO,DSREAD OPEN OK?
MOVE SWITCH,3 .. TPOPEN ERROR
GOTO ERRSW

READ A RECORD FROM DATA SET
DSREAD READ DSl,BUFFER,ERROR=ERR2,END=TPCLOSE
* WRITE A RECORD TO HOST
TPWRITE TP WRITE,BUFFER,256

IF (WRITASK,EQ,-l),GOTO,DSREAD .. OK?
ERR! MOVE SWITCH,l .. WRITE ERROR

GOTO TPCLOSE
ERR2 MOVE SWITCH,2 .. READ ERROR
* LOSE DATA SET AND PRINT MESSAGE AS APPROPRIATE
TPCLOSE TP CLOSE
ERRSW GOTO (RETO,RETl,RET2,RET3),SWITCH
RETO PRINTEXT '*****READ/WRITE SUCCESSFUL*****~'

PROGSTOP
RETl PRINTEXT '*****WRITE UNSUCCESSFUL*****a'

PROGSTOP
RET2 PRINTEXT '*****READ UNSUCCESSFUL*****a'

PROGSTOP
RET 1.

SWITCH
DSNAME
BUFFER

PRINTEXT '*****TP OPEN UNSUCCESSFUL*****~'
PROGSTOP
DATA F'O'
TEXT LENGTH=40
BUFFER 256,TPBSC
ENDPROG
END

Chapter 4. Host Communications Facility 105

Example Transfer a Host Data Set to the Series/l

In the following example, a host data set which is entered by
the user at the prompt "HOST DATASET: If, is read into a preallo
cated data set on a Series/l volume. At program load time the
user is prompted for the target Ser i es/l data set.

READTASK

* TPOPEN

* TPREAD

* DSWRITE

ERRl

ERR2

* TPCLOSE
ERRSW
RETO

RETl

RET2

RET3

SWITCH
DSNAME
BUFFER

PROGRAM TPOPEN,DS=CCTARGET,??»
OPEN TP LINE

READTEXT DSNAME,'HOST DATASET: ',PROMPT=COND
TP OPENIN,DSNAME
IF (READTASK,EQ,-l),GOTO,TPREAD OPEN OK?
MOVE SWITCH,3 .. TP OPEN ERROR
GO TO ERRSW

TP
IF
IF
GOTO

READ A RECORD FROM HOST
READ,BUFFER
(READTASK,EQ,-l),GOTO,DSWRITE
(READTASK,EQ,300),GOTO,TPCLOSE
ERR2

WRITE RECORD ON DISK
WRITE DSl,BUFFER,ERROR=ERRl

.. OK?

.. END?

IF CREADTASK,EQ,-l),GOTO,TPREAD .. OK?
MOVE SWITCH,l .. WRITE ERROR
GOTO ERRSW
MOVE SWITCH,2
CLOSE TP LINE AND PRINT MESSAGE AS APPROPRIATE
TP CLOSE
GOTO CRETO,RETl,RET2,RET3),SWITCH
PRINTEXT '*****READ/WRITE SUCCESSFUL*****a'
PROGSTOP
PRINTEXT '*****WRITE UNSUCCESSFUL*****a'
PROGSTOP
PRINTEXT '*****READ UNSUCCESSFUL*****a'
PROGSTOP
PRINTEXT '*****TP OPEN UNSUCCESSFUL*****a'
PROGSTOP
DATA F'O'
TEXT LENGTH=40
BUFFER 256,TPBSC
ENDPROG
END

106 SC34-03l6

o

o

o

c

$HCFUTl Ut;l;ty Program

$HCFUT1 is a utility program that uses the Host Communications
Facility on the Series/l to interact with the Host Communi
cations Facility on the System/370. $HCFUT1 contains four
host-related data set funct ions. These are:

• Read a data set from the host.

• Wr i te a data set to the host.

• Submit a job to the host.

• Status Set, Fetch, and Re lease records in the System Sta
tus Data Set.

The table below lists the commands and their codes:

?
END
FEtch
RElease
READDATA
READ80

READOBJ

SEt
SUbmit
WRite

Notes:

Help
End
Fetch status
Release status
Read host
Read 80-byte records and write two 80-byte
records in one disk sector
Read 80-byte records and write three 80-byte
records in one disk sector
Set status
Submit a job
Write to host

• See "Host Data Set Naming Conventions" on page 82 and "Host
Data Set Character i st i cs" on page 83.

• See "System Status Data Set" on page 85. Appendix B of the
IBM Series/l Host Communications Facility Program
Description and Operation Manual, SH20-1819, contains more
detai Is on its use.

• The Host Commun i cat ions Fac iIi ty IUP, program number
5796-PGH, is requ i red on the host System/370.

• Host Commun i cat ions Fac iIi ty must be i nsta lIed and conf i g
ured on the Ser i es/l.

Chapter 4. Host Communications Facility 107

READDATA

READDATA transfers a data set from the host to the Series/I.
The host logical record size is assumed to be 256 bytes.

There are three items of control information to be specified at
the time of executi on. These items are:

DS!

Record Count

DSNAME

The I-B character name of the Series/1 data set
to which data is to be transferred, and its vol
ume name, if not the IPL volume.

The number of records to be transferred,
beginning with the first. This would be used if,
for example, only the fi rst 10 records of a
50-record data set are to be transferred.

A count of zero is used to i nd i cate that the
enti re data set is to be transferred.

The name of the host data set to be transferred.

The following is a terminal printout of a typical run. In this
example, all records (length = 256 bytes each) of the host data
set "SI.EDX.TESTIN.DATA" (which contains 40 records) are
transferred to the Series/l data set "DATAFIL2".

> $L
PGM(NAME,VOLUME): $HCFUTI
DS1(NAME,VOLUME): DATAFIL2,EDXOOl
$HCFUTI BP,OB.lS.30, LP=4BOO

COMMAND (1): READDATA
NO. OF RECORDS TO READ(O=ALL): 0
DSNAME: Sl.EDX.TESTIN.DATA
END AFTER 40

COMMAND (?):

108 SC34-0316

c

o

o

o

READBO and READOBJ

READBO and READOBJ transfer BO-byte records from a host data
set and store them in 256-byte Series/l disk or diskette data
set records.

READBO stores two BO-byte records per 256-byte disk record.
The first BO-byte record is stored in the first 80 bytes of the
disk record. The second BO-byte record is stored starting at
byte 129 of the disk record. This format is compatible with the
saved results of using $EDIT1N or $FSEDIT and is also the for
mat required for input to a;language compiler or $EDXASM pro
gram preparation. READBO is normally used to transfer source
program modules from the System/370 to Series/1 disk.

READOBJ stores three BO-byte records in the first 240 bytes of
each disk record. This format is compatible with object modules
produced by any of the assembler programs. It is also the for
mat required for input to $LINK and is one of the formats
accepted by $UPDATE. READOBJ is normally used to transfer the
output object module of a host assembly to the Series/1 for
processing by $LINK or $UPDATE.

Both READBO and READOBJ are invoked in a manner similar to
"READDATA" on page lOB.

Chapter 4. Host Communications Facility 109

SET, FETCH, and RELEASE

The status commands are used to perform, from a terminal, any
of the three functions, SET, FETCH, and RELEASE, on the System
Status Data Set. See "System Status Data Set" on page 85 and
Figure lIon page 103 for STATUS return codes.

The following is an example of the use of the SET function of
$HCFUTI. STATUS return code 700 indicates that the index, key,
and status record have been added.

COMMAND (?): SE
INDEX = TESTSET
KEY = NEWRECD
STATUS = 700
COMMAND (?):

The following are examples of the use of the FETCH and RELEASE
funct ions. The FETCH return code of 802 i nd i cates that that
particular key does not exist. The RELEASE return code of 900
indicates a successful release.

COMMAND (?): FE
INDEX = TESTSET
KEY = MISSING!
STATUS = 802
COMMAND (?): REL
INDEX = TESTSET
STATUS = 900
COMMAND (?):

110 SC34-0316

0"1 '

~ ..

c

o

o

o

SUBMIT

SUBMIT causes a job to be submitted to the host job stream. See
"Host Data Set Naming Conv.entions" on page 82 and "Host Data
Set Characteristics" on page 83.

The name of the host data set containing the job control lan
guage to be submitted is specified on the Series/1 terminal.
The following is a sample of the terminal printout illustrating
the use of SUBMIT to submit the data set "Sl.EDX.TESTSUB.CNTl""

COMMAND (?): SU
DSNAME: Sl.EDX.TESTSUB.CNTL
JOB SUBMITTED
ANOTHER JOB? N

COMMAND (?):

Chapter 4. Host Communications Facility 111

WRITE

WRITE transfers a data set from the Ser i es/l to the host
processor. Host data set naming conventions and character
istics are described in this chapter. The host logical record
size is assumed to be 256 bytes.

There are three items of contro I i nformat i on to be spec if i ed at
the time of execution. These items are:

DSl

Record Count

DSNAME

The 1-~ character name of the Series/l data set
to be transferred, and its volume name, if not
the IPL volume.

The number of records to be transferred,
beginning with the first. This would be used if,
for example, only the fi rst 10 records of a
50-record data set are to be transferred.

A count of zero is used to i nd i cate that the
entire data set is to be transferred.

The name of the host data set to which the data
is to be transferred. The name will consist of up
to 44 characters or, 54 characters if a member of
a part it i oned data set.

The following is a terminal printout of a typical run. In this
example, 28 records of the Series/l data set "DATAFIL1" are
transferred to the host data set "S1.EDX.TESTOUT.DATA".

> $L $HCFUTl
DS1(NAME,VOLUME):DATAFILl
$HCFUTl 8P,08.lS.20, LP=4BOO

COMMAND (1): WR
NO. OF RECORDS TO WRITE(O=ALL): 28
DSNAME: Sl.EDX.TESTOUT.DATA
END AFTER 28

COMMAND (?):

112 SC34-0316

c

o

o

o

CHAPTER 5. MULTIPLE TERMINAL MANAGER

INTRODUCTION

The Series/l Event Driven Executive Multiple Terminal Manager
is a program which provides support, via high-level functions,
for transaction-oriented applications on a Series/I. In addi
tion, it provides the management of multiple terminals as
needed to support these transactions and their various appli
cation programs. The user creates programs which interface
with the Multiple Terminal Manager via CAll statements. The
components of the Multiple Terminal Manager are the following:

• A program/storage manager which controls the execution and
flow of the application programs within a single program
area.

• A terminal/screen manager which controls the presentation
of screens and communications between terminals and appli
cat i on programs.

• A file handling mechanism which simplifies the storage and
retrieval of data on direct access devices.

Note: The reader should be familiar with the terminology
used in the discuss i on of the TERMINAL statement in the
sect i on "System Conf i gurat i on" of the System Gu ide. The
syntax of the CAll statements in this chapter can be found
in the language Reference.

Chapter 5. Multiple Terminal Manager 113

HARDWARE REQUIREMENTS

The minimum hardware configuration required for the Multiple
Terminal Manager is as follows:

• Series/l processor (either 4952 or 4955) with 96KB storage

• Disk storage device (either 4962 or 4963)

• An Event Dr i ven Execut i ve $SYSPRTR dev i ce

I· 4978/4979/3101 or ASCII terminal

A separate $SYSLOG dev i ce is a Iso requ i red for rece i vi ng system
messages; this device should not be included in the Multiple
Term ina 1 Manager env ironment in that ··system messages may not be
displayed.

Additional hardware that may be attached to the system:

I· 4978,4979, or 3101 Models 1 or 2 terminal devices

I

• ASCII terminals connected via: #7850 Teletypewriter Adapt
er, #1610 controller, #2091 controller with :ft:2092 adapter,
or #2095 controller with #2096 adapter.

• 4973 or 4974 pr inters

• Add it i ona I direct access dev ices (d i sk or diskette)

• Additional storage

SOFTWARE REQUIREME~TS

The minimum software requirements for executing the Multiple
Terminal Manager is the Event Driven Executive V1.1. Addi
tionally, the Event Driven Executive utilities and program
preparat i on fac iIi ties are requ i red for program preparat i on
and installation of Multiple Terminal Manager applications.
The following is a list of the additional software supported by
the Multiple Terminal Manager:

• Indexed Access Method

• COBOL

• FORTRAN

• PL/I

114 SC34-0316

C

o

o

o

PROGRAM OPERATION OVERVIEW

The Multiple Terminal Manager is a transaction processing sub
system which executes as an application program within the
Event Driven Executive system. Multiple Terminal Manager
transactions are initiated by a terminal operator via a trans
action selection menu (also referred to as a program selection
menu). Transactions can consist of single or multiple operator
prompts, and responses are processed by user appl i cat ions pre
pared explicitly for the Multiple Terminal Manager.

Multiple Terminal Manager applications are processed in a mes
sage in/message out fashion and are automaticallY connected to
a term ina I when a transact i on beg ins. The Mu It i p Ie Term ina I
Manager, in turn automatically processes terminal I/O for Mul
tiple Terminal Manager applications. Multiple Terminal Manager
applications execute within the program area managed by the
Multiple Terminal Manager. The applications are provided pro
gram, terminal, screen and fi Ie management services via the
Multiple Terminal Manager.

Program Management

The program management fac iii ties allow appl i cat ions to manage
programs whi Ie these programs perform thei r respecti ve
transactional processes within a single overlay area. Because
all of the Multiple Terminal Manager application programs
operate in the same area, the Multiple Terminal Manager program
management facilities contain the support needed to allow mul
tiplex operation and sharing of the program area. The applica
tion programs interface with these facilities using the
callable functions described in the following sections.

The program management ca llab Ie funct ions are:

LINK: Load and Execute Program

The LINK function allows an application program to complete its
own execution by loading and executing some other application
program.

LINKON: Fetch Response and Execute Program

The LINKON function is a combination of the functions provided
by the ACTION and LINK funct ions; that is, it requests an oper
ator action and, when this action is complete, loads and exe
cutes some other app I i cat i on program.

Chapter 5. Multiple Terminal Manager 115

CYCLE: Suspend Current Terminal Application

The CYCLE function alloNs an application program to suspend its
execution to allow other applications/terminals to become
active.

MENU: Return to Multiple Terminal Manager Control

The MENU function allows the application program to abort its
own operation and return control to the Multiple Terminal Man
ager base program. The operator selection menu is then dis
played on the termi nal.

The application programs using these program/storage manage
ment facilities will always have the following four items asso
ciated with them:

Application Program: This is the user-written code that per
forms the transaction processing as required by the user. It
resides in the PRGRMS volume and is loaded into the in-storage
program area by the manager.

Swap Out Data Set: Res i des on MTMSTORE, MTMSTR. Th i s data set is
used by the manager to save programs and data across calls to
ACTION, LINK, LINKON, CYCLE, and WRITE.

Input Buffer: Th is buffer conta i ns either the data last entered
by the operator when the current part of the application pro
gram was entered or, the protected characters of the screen
display that the application program is preparing for the next
dialogue with the operator. This buffer is allocated by the
Multiple Terminal Manager and is normally 2048 bytes in length.

output Buffer: This buffer contains the unprotected characters
of the screen display that the current application program is
prepar i ng for the next dialogue wi th the operator. These unpro
tected characters can either be default values, or values sup
plied by the application program. This buffer is allocated by
the Multiple Terminal Manager and is 1024 bytes in length.

116 SC34-0316

o

o

o

Term;nal/Screen Management

The terminal/screen management facilities provide you with a
simplified method of performing the terminal handling func
tions that your application program may require. These facili
ties are described as follows:

ACTION: Fetch Operator Response

The ACTION function allows the application program to display a
screen on the terminal and then obtain operator input from that
display.

SETPAN: Retrieve a Screen Image from the SCRNS Volume

The SET PAN funct i on a llows the app I i cat i on program to request a
specified screen be retrieved from the SCRNS volume and loaded
into the Input and Output Buffers.

SETCUR: Move Cursor to Specified Position

The SETCUR function allows the application program to reset the
character position at which the terminal/screen manager will
display the cursor when the screen is displayed.

BEEP: Set Audible Alarm

The BEEP function allows the application program to activate
the audible alarm, if this feature is supported by the termi
nal, on the next output as a signal to the terminal operator.

CHGPAN: Change Panel

The CHGPAN function is used to notify the terminal manager of
changes to the number of protected/unprotected characters of a
screen in the input buffer. As a result of this function, the
terminal manager will know how many unprotected data charac
t e r s tow r i teo nth e n ext 0 u t put 0 per a t ion • T his fun c t i 0,,",

allows an application program to dynamically modify or create a
screen image.

F TAB: 0 esc rib e U n pro t e c ted I n put Fie Ids

The FTAB function is used to set up a table that describes the
unprotected input fields placed in the Input Buffer after a
SETPAN or CHGPAN is issued. -Th is funct i on is useful in cursor
positioning.

Chapter 5. Multiple Terminal Manager 117

WRITE: Output to an ASCII Terminal

Thi~ function is provided for those applications which utilize
ASCII terminals such as the Teletype* ASR 33/35. This function
executes similar to the functions described in the section
"Program Management" on page 115, in that the app I i cat ion
program does not remain in storage while the buffer is being
written; hence, the manager returns control to the calling
application program at the next sequential instruction.

* Trademark of the Teletype Corporation

File Management

The file management facilities of the Multiple Terminal Manag
er prov i de common, easy-to-use support for all disk
data-transfer operations as needed for the
transaction-oriented application programs. These facilities
prov i de support for both indexed and direct files under the
control of a single callable function. The file management
facilities consist of the FILEIO function.

FILEIO: Perform Disk I/O

This function allows the application program to perform read
and wr i te operat ions to disk us i ng either indexed or direct
accessing.

Multiple Terminal Manager Operation

The Multiple Terminal Manager is invoked using the Event Dri ven
Ex e cut i ve $ L co mm and ($ L $ M T M , P R G R M S). W hen t his com man dis
issued, the Multiple Terminal Manager program manager is
loaded into storage and activated. The first program activated
by the program manager is the Multiple Terminal Manager
initialization program.

118 SC34-0316

o

o

o

This program determines the number of terminals that are being
controlled and prepares the tables and in-storage control
blocks necessary to support those terminals. The initializa
tion program LOADs and initializes a terminal server for each
terminal that is to be controlled by the Multiple Terminal Man
ager. When initialization is complete, control is returned to
the program manager.

Terminal Server Programs

The terminal server programs perform all input/output and
interrupt handling functions for those terminal devices oper
ating under the control of the Multiple Terminal Manager. There
is one terminal server program for each terminal assigned to
the Multiple Terminal Manager.

Application Program Manager

The application program manager controls the contents of the
program area and the execution of programs within that area.

The utility program support provided with the Multiple Termi
nal Manager consists of operator service functions which
assist you in the operation of your Multiple Terminal Manager
system. These uti lities are described as follows:

Terminal Connection Facilities: The Multiple Terminal Manager
supervisor program provides the operator with the facilities
to disconnect and reconnect terminals during the normal Multi
ple Terminal Manager operation. These services are performed
b y It h e f 0 I low i n gop era tor com man d s :

DISCONNECT: Turn Off Specified Terminals

This faci lity allows the operator to shut down all or
individually-specified terminals on the Multiple Terminal Man
ager system. If the operator requests a terminal, which is cur
rently involved in a transaction, to be disconnected, that
terminal will be allowed to complete its associated trans
act i on before be i ng disconnected.

Chapter 5. Multiple Terminal Manager 119

RECONNECT: Turn On Spec if i ed Term ina Is

This facility allows the operator to restore a disconnected
terminal (via DISCONNECT) back into operation.

Terminal Act;v;ty Report: This report utility allows the oper
ator to display the names and current status of the terminals
under control of the Multiple Terminal Manager.

Programs Report: This report utility allows the operator to
display the names and sizes of Multiple Terminal Manager appli
cat i on programs.

Screens Report: This report uti lity allows the operator to dis
play screen formats developed for Multiple Terminal Manager
applications.

S;gn-On/S;gn-Off

The Multiple Terminal Manager provides an optional facility to
support operator sign-on and user provided sign-off. This sup
port is provided when the Multiple Terminal Manager use.r wishes
to restrict the use of the Multiple Terminal Manager system to
only user-specified authorized personnel.

Data F;les

The Multiple Terminal Manager maintains several files on disk
to assist in the operation of the program and its users. The
following is a list of these data files:

SCRNS Volume This volume contains the
displays which are built by
Executive $IMAGE utility.

formatted
the Event

screen
Driven

TERMINAL Fi Ie This fi Ie describes the terminals that are to be
controlled by the Multiple Terminal Manager.

PRGRMS Volume This volume contains the Multiple
Manager and user appl i cat i on programs.

Terminal

MTMSTORE File Th is file is used by the program man~ger as a
work file primarily for saving and restoring
programs across calls to the Multiple Terminal
Manager.

120 SC34-0316

c

o

o

APPLICATION PROGRAM INTERFACE

The Multiple Terminal Manager provides the Series/1 Event
Driven Executive user with a set of high-level functions
designed to simplify the definition of "transaction oriented"
applications, such as inquiry, file update, data collection,
and order entry.

"Transaction oriented" means that program execution is driven
by operator actions, typically, responses to prompts from the
system. For example, a program executing under control of the
Multiple Terminal Manager displays a "menu" screen offering
the operator a choice of functions. Based on the operator's
selection, the application program then performs processing
operations, such as reading information from a data file, dis
playing the data at the terminal, and waiting for the next
response.

This "prompt-response-process" cycle between the Series/1 pro
gram and the terminal operator is the basic principle for the
design of applications using the Multiple Terminal Manager.

The terminal manager simplifies such transactions by:

• Automatically allocating input and output buffers for the
application program.

• Performing I/O operations to access fixed screen formats
from the screen file. The term "screen" in this discussion
refers to the image which is displayed on the screen of an
IBM 4979, 4978, or 3101 (in block mode) terminal. Fixed
screen formats consist of protected data and definitions
of possible areas for data input. On other systems, these
are referred to as "Maps", "Formats", or "Panels". Screens
are built via the Event Driven Executive $IMAGE utility.

• Returning control to the user program to allow modi fica
t i on of the buffers conta i n i ng the screen (i f des ired).

• Performing the set of I/O operations involved in writing
the screen to the terminal, filling in unprotected fields
with user-defined output data, and reading the data
entered by the operator before returning control to the
application program that requested the action. (The termi
nal manager assumes that each ACTION request involves both
output and input operations, thus eliminating the need for
the application program to make separate requests).

In addition, the Multiple Terminal Manager provides storage,
fi Ie, and program management I services, terminal transaction
statistics, and sign on/off facilities for password vali
dation. Error recovery for I/O and program check conditions are
provided by the Event Driven Executive.

Chapter 5. Multiple Terminal Manager 121

Series/l Multiple Terminal Manager applications can be written
in EDL, assembler language, COBOL, FORTRAN IV, or PL/I. Disk
I/O can be performed by an application program using-indexed or
direct access methods. Terminal support is provided for local
ly attached IBM 4979, 4978, and 3101 display terminals and
ASCII compatible terminals attached via the #7850, #1610,
#2091 with #2092, or #2095 with #2096 adapters. See Figure 1 on
page 6 for a descr i pt i on of dev ices and attachments.

I Considerations for the IBM 3101 Model 2 Terminal

The Multiple Terminal Manager supports the IBM 3101 Model 2
terminal in full screen mode ("block mode"). This support is
on I y for Mul tip Ie Term ina I Manager based app Ii ca-t i on programs;
other applications are not supported. In particular, screen
design using the Event Driven Executive $IMAGE utility must be
performed on a 4978 or 4979. Throughout this chapter, any dis
cussion of the 3101 refers to the Model 2 operating in block
mode unless specified otherwise.

3101 support performs a subset of the functions equivalent to
the support for IBM 4978 and 4979 terminals. That is, from the
programming perspective, the 3101, 4978, and 4979 terminals
are -functionally very simi lar. However, they are operationally
di fferent in that the 3101 uses "attribute characters" to
define fields. Multiple Terminal Manager support for the 3101
places an attribute character just prior to and following each
input field, and at the first position on the screen.

Attribute characters appear as protected blanks on the display
screen. Hence, the characters preceding and following an input
field shall each appear as a protected blank. The same is true
of the first character on the screen. These attribute charac
ters should be taken into account and allowed for when design
i ng screen images.

The maximum number of unprotected fields that can be displayed
is 127.

Any invalid (unprintable) characters encountered by the 3101
will cause the alarm to ring. This condition might occur, for
instance, when displaying a non-EBCDIC disk or diskette
record. The Multiple Terminal Manager will convert to blanks,
any nulls (X'OO') found in an unprotected data stream to help
avoid this condition.

122 SC34-0316

c

;--\ I, ___ y!

c

o

o

o

The keys on the 3101 are labelled di fferently than the 4978 and
4979. The SEND key performs the same funct i on as the ENTER key.
Furthermore, the Program Function keys on the 3101 requi re that
the AL T key on the lower right hand side of the keyboard be
pressed as well as the appropriate numeric key. The PF6 key
when pressed (hardcopy screen print) however, will not cause
the screen i mage to be pr i nted.

Multiple Terminal Manager Components

Major components of the Multiple Terminal Manager for the
app I i cat i on programmer are:

• Functions (callable routines)

• User application programs

• TERMINAL file

• Screen formats

The functions provided by the Multiple Terminal Manager are
callable routines that perform terminal, disk and diskette
input/output operations and, control the execution of applica
tion programs. Program execution and terminal I/O are combined
in most instances; for example, the LINK function causes a new
program to be loaded and executed. I f the current screen format
has not yet been displayed, LINK also causes the screen to be
wr i tten to the term ina I.

The program-execution control and terminal I/O functions
include:

• A routine (ACTION) to initiate the "prompt-response" ter
minal I/O operation

• Two routines (LINK and LINKoN) to link to a new program
from the currently executing program

• A routine (MENU) to terminate program execution and return
control to the Multiple Terminal Manager

• A routine (CYCLE) to voluntari ly give up control of the
program area to other users. This allows a user-controlled
form of time sharing.

I n add i t i on, t he f 0.110 LrJ i n g fun c t ion s are used wit h 4978, 4979,
or 3101 terminals. These routines can be executed prior to a
CALL ACTION to initiate a terminal I/O cycle:

• A routine (SETPAN) to retrieve a screen into the input and
output buffers

Chapter 5. Multiple Terminal Manager 123

• A rout i ne (SETCUR) to overr i de the in i t i al cursor pos i t i on
def i ned for that screen format

• A routine (BEEP) to request the audible alarm (if avail
able) be sounded on the next terminal I/O cycle

• A routine (CHGPAN) to noti fy the terminal manager of
changes to a screen before it is wr i tten

A routine (FTAB) to build a table which describes the posi
tion and length of unprotected fields in the Input Buffer.

For the ASCII terminals, the following functions are provided:

• A routine (ACTION) to write to the terminal and read a
reply.

• A routine (WRITE) to write to the terminal without waiting
for an operator response. Multiple writes may be used to
write lengthy messages, with the last message being writ
ten via ACTION.

• A routine (BEEP) to cause a bell character to be included
in the next output line.

The disk I/O function provides the following
diskette files:

• Automat i c open of the requested file

• Indexed Access Method file support

• Di rect file support

for disk and

• Storage conservation through automatic open and close
functions

User application programs can be executed by th~ operator via a
selection from the primary menu or by a program via a call to
LINK or LINKON. A primary menu is used only for program
selection. The application programmer/terminal operator need
only specify the program name. The ~'ultiple Terminal Manager
performs the operations necessary to load the program and con
trol its execution. User programs reside in the volume PRGRMS.

The TERMINAL file is another basic element that describes the
terminals to run under the terminal manager. In this file, the
user specifies the terminal type, the name of the terminal, the
screen to be used as the primary menu screen, and whether or not
sign-on is required. The TERMINAL file provides flexibility to
the user; that is, terminals can be added or deleted without
rebuilding the terminal manager. The TERMINAL file reside~ in
the volume PRGRMS.

124 SC34-0316

o

;'l------~\

~_oc~)

c

o

o

o

Screen formats are used by application programs and the Multi
ple Terminal Manager itself. Each screen is a data set in the
volume SCRNS and defines protected fields and default unpro
tected fields. The following screens are predefined in the
SCRNS volume:

IPLSCRN The in it i a I program load (I PL) screen that
displayed when the Multiple Terminal Manager
set starts.

SCRNSREP Used by the Screens Report ut iii ty

i s
task

SIGNONSC The sign-on screen (displayed if a sign-on procedure
is specified for the terminal).

MENUSCRN A sample primary menu screen for program selection;
however, the user can select any screen as a menu
screen.

These screens are provided as samples and can be modified to
suit individual requirements. You can define additional
screens by using the Event Driven Executive $IMAGE utility.

The following are examples of the predefined screens in the
SCRNS vo I ume.

IPLSCRN
**
* IPLSCRN *
*
*
*
*
*
*
*
*
*
*

EVENT DRIVEN EXECUTIVE
MULTIPLE TERMINAL MANAGER

HIT ENTER OR A FUNCTION KEY TO START THE MULTIPLE
TERMINAL MANAGER FOR THIS TERMINAL.

5719-MS1 COPYRIGHT IBM CORP 1979

*
*
*
*
*
*
*
*
*
*

**

The next example shows the sign-on screen.

Chapter 5. Multiple Terminal Manager 125

SIGNONSC
**
* SIGNON *
* EVENT DRIVEN EXECUTIVE *
* MULTIPLE TERMINAL MANAGER *
* *
* SSSSSS IIIIIIII GGGGGG N N 0000 N N *
*S S I G G NN N a a NN N *
* SSS I G N N N a a N N N *
* SSSS I G GG N N N a a N N N *
*S S I G G N N N a a N N N *
* SSSSSS 11111111 GGGGGG N N 0000 N NN *
* *
* *
* t ?1111111 PASSWORD ==> 1111 *
* *
* *
**

This last example is the MENUSCRN.

**
* MENUSCRN *
* ENTER PROGRAM NAME ==> *
* *
* EVENT DRIVEN EXECUTIVE *
* MULTIPLE TERMINAL MANAGER *
* *
* VALID PROGRAM NAMES . RECONNECT DISCONNECT PGMRPT * .
* REPORT SCRNSRPT *
* *
* PRIMARY MENU FOR FULL SCREEN TERMINALS *
**

Errors encountered by the Multiple Terminal Manager in the
pr i mary menu mode are wr i tten protected at the first 20 charac
ter positions of a screen. User-written primary menus (defined
by the TERMINAL data set) should be designed with this taken
into account.

The Multiple Terminal Manager responds to an interrupt from a
terminal by loading the requested program specified by program
name or program function key selection. The terminal manager
routes subsequent operator entries to the associated program.
Two program funct i on keys are reser ved:

• PF3 signals the Multiple Terminal Manager to terminate the
current program and display the menu screen.

• PF6 signals Event Driven Executive to print the contents of
the current screen on the device specified by the HDCOPY
parameter of the TERMINAL statement for 4978/4979 termi
nals only. Normally, this device is the device specified
for $SYSPRTR.

126 SC34-0316

o

;r-~

~;'

c

o

o

o

Program Execution

The Multiple Terminal Manager uses a single-thread approach to
program execution, that is, only one application is resident at
one time.

When a program is initially requested for execution (terminal
operator se1ects by name or PF key), a copy of the program is
loaded into the terminal manager program area.

When the program requests an operator response, the program is
swapped out to disk and other terminals may use the program
area wh i Ie the operator is key i ng in new data. When the
response is completed and the program area is available, the
program is read into the program area from the swapped out data
set and the program is given control at the next sequent i a I
instruct i on after the instruct i on that caused the swap out. The
swap data set is MTMSTORE res i ding on the vo I ume MTMSTR.

User Program Organization

All programs must be written to operate in a conversational
mode. That is, each program (or linked sequence of programs) is
expected to recei ve data from a terminal and then send data
back to the same termi nal.

Upon initiation, each user program automaticallY receives a
list of parameters. The parameters are:

Input Buffer Address

This is the address of a buffer used for two distinct purposes:
to contain the protected data defining a screen format before
an ACTION and, to contain the data input from the terminal
after an ACTION. After a call to SETPAN , the Input Buffer con
tains a 24 X 80 (1920) byte image of the screen, where unpro
tected fields are defined by strings of null characters
(zeroes). A call to ACTION writes the screen image from the
Input Buffer to the terminal. After the operator presses ENTER
or a PF key, ACTION reads the data found in the unprotected
fields into the Input Buffer. The input data fields are contig
uous and start at the beg i nn i ng of the buf fer. Input from ASCI I
terminals (such as teletypewriters) is read from the device
with the change-of-direction character removed and backspace
characters converted to a logical backspace in the Input Buffer
(that is, backspace characters and a corresponding number of
characters preceding them are not in the buffer). This buffer
is 2048 bytes in length; however, only the first 1920 bytes are

Chapter 5. Multiple Terminal Manager 127

used for protected output. The rema i nder of the buffer conta i n-s
unusable information and is to be ignorea.

Note: The output function described above is also performed by
CYCLE, LINK, and lINKON; of these, only LINKON also performs
the input function.

Initially, this buffer contains the characters entered on the
terminal's menu screen for the first entry to a program. The
name of the program must be the first eight characters. Addi
tional characters are not used by the manager but are passed to
the program. These extra characters can be used for programs
which minimize operator interaction by allowing the operator
to enter a complete request on the menu screen and thus avoid
the need for i ntermed i ate menus or prompts.

Output Buffer Address

This is the address of a buffer which is also used for two pur
poses. It contains "default data" to be written by ACTION into
the unprotected portions of the screen. That is, a call to
SETPAN reads concatenated data defined by $IMAGE into the Out
put Buffer. A subsequent call to ACTION writes the data from
the buffer to the unprotected fields. If more characters are in
the Output Buffer than there are unprotected positions on the
screen, the excess characters are lost. The Output Buffer is
set to blanks after a return from CALL ACTION.

The Output Buffer is also used for passing data between pro
grams, when one LINKs to another. Prior to a LINK to another
program, a program may store data in the Output Buffer. The
second program wi 11 find that data in its Output Buffer.

Terminal Environment Block (TEB)

This is the address of a control block which contains informa
tion about the terminal that initiated this program.

Interrupt Information Byte (lIB)

This is the address of a word (16 bits) in storage containing,
in the low-order hal f of the word, a code i nd i cat i ng the status
of the pr i or I/O to or from th i s termi nal.

128 SC34-0316

o

o

o

For a 4978/4979/3101, this is always the numeric value repres
enting the interrupting key which was pressed as part of an
operator response. Since there is no t~RITE avai lable to
4978/4979/3101 this code never reflects the 'status of an output
operation.

For ASCII terminals, this value is the return code from a
READTEXT operation issued by the Multiple Terminal Manager.

The following figure provides a programmer's view of the con
tents of the Input and Output Buffers at various stages in the
terminal manager operation cycle.

BUFFER CONTENTS UPON INPUT BUFFER OUTPUT BUFFER
ENTRY TO APPL PROGRAM

FROM CALL ACTION UNPROTECTED DATA BLANKS (X'40')
READ FROM SCREEN

FROM CALL LINK BLANKS (X'40') UNCHANGED FROM
CALLING PGM

FROM CALL LINKON UPROTECTED DATA BLANKS (X'40')
READ FRO~' SCREEN

F RO~l CALL CYCLE BLANKS (X'40') UNCHANGED

FROM CALL SET PAN PROTECTED DATA FROM UNPROTECTED DATA
NEW SCREEN PANEL FROM NEW SCREEN

PANEL

ACTION TAKEN UPON INPUT BUFFER OUTPUT BUFFER
BUFFER CONTENTS BY
FUNCTION CALL

BY CALL ACTION WRITTEN PROTECTED ~JRITTEN INTO
IF CALL SETPAN UNPROTECTED
HAD BEEN ISSUED FIELDS ON SCREEN

BY CALL LINKON SAME AS BY CALL SAME AS BY CALL
ACTION ACTION

BY CALL LINK SAME AS BY CALL SAVED
ACTION

BY CALL CYCLE SAME AS BY CALL SAME AS BY CALL
ACTION LINK

Program Contents During 4978/4979/3101 Buffer Operation

Chapter 5. Multiple Terminal Manager 129

Controlling the Logic Flow of Programs

Program Calling Parameters: Application programs use the EDL
parameter passing facilities for passing parameters to the
Multiple Terminal Manager.

For example:

CALL
•
•
•

SCRNX DC
RC DC

•
•
•

SETPAN,(SCRNX),(RC)

CL8'SCRNIO' SCREEN PANEL NAME
F'O' RETURN CODE FIELD

This example passes the addresses of the screen name and return
code field to the Multiple Terminal Manager screen manager.

Five callable functions are provided to control I/O to termi
nals and to control the execution of user programs. They are
ACTION, LINK, LINKON, WRITE, and CYCLE.

ACTION and WRITE perform terminal I/O. LINK and LINKON control
the loading of user programs to service the current or the next
operator input, respectively. CYCLE provides a method of time
shar i ng the program area.

CALL ACTION

CALL ACTION,(buffer),(length),(crlf)

All parameters for all languages are one 16-bit word in length.
unless otherwise specified as character strings.

ACTION parameters:

buffer

length

crlf

A buffer of EBCDIC text of any length.

The number of characters in the buffer.

A binary value of 1 specifies that the terminal is to
be issued a carriage return and line feed (CRLF)
after the message is sent. Any other value results in
no CRLF be i ng sent.

130 SC34-0316

c

o

0 .1

..... /

For ASCII terminals this routine:

1 • Wr i tes the spec if i ed buffer contents to the term ina I

2. Wa its for the operator to respond

3. Reenters the current program at its next
instruction after the CALL ACTION

CALL ACTION

sequential

The Input Buffer is written protected to the screen if a CALL
SETPAN or CALL CHGPAN command was executed previously during
this transaction. The Output Buffer is written into the unpro
tected fie Ids on the screen. The term ina I then wa i ts for opera
tor input and reenters the current program (with operator input
in the Input Buffer) at the next sequential instruction after
CALL ACTION. (For IBM 4978/4979/3101 displays, a parameter
list is ignored if specified.)

CALL LINK

CALL LINK,(pgmname)

LINK causes the named program to be loaded and executed (re
placing the current program).

During the link, IBM 4978/4979/3101 terminals for which a
SETPAN or CHGPAN has been issued will have the Input Buffer
displayed. The Output Buffer is passed unchanged to the next
program.

The program be i ng linked to rece i ves the standard parameter
list for application programs (Input Buffer, Output Buffer,
TEB, lIB).

LINK parameters:

pgmname An 8-byte (right padded with blanks, if necessary)
program name.

If the program name is invalid, control returns to the next
sequential instruction in this program; therefore, any return
to the user from CALL LINK is an error condition.

Chapter 5. Multiple Terminal Manager 131

CAll lINKON

CAll lINKON,(pgmname)

lINKON provides a combined ACTION and lINK function. When the
operator has entered the requested information, the named pro
gram is entered at its entry point with the Input Buffer con
taining the unprotected characters from the screen or all
entered characters from an ASCII term; nal.

lINKON parameters:

pgmname

CAll CYCLE

An 8-byte (right padded with blanks, if necessary)
program name.

CAll CYCLE

When CALL CYCLE executes, the program may be swapped out as all
other applications are given an opportunity to process inputs.
The Output Buffer is preserved and the contents of the Input
Buffer are lost (set to blanks). If a SETPAN or CHGPAN has been
executed, the screen in the Input Buffer is displayed protected
at th is time to free up the Input Buffer.

After all other terminals have processed their inputs, the pro
gram is swapped into the program area and control is returned
to the next sequential instruction after the CAll CYCLE.

132 SC34-0316

()

o

o

o

Communicating with ASCII Terminals

The Multiple Terminal Manager provides CAll WRITE to satisfy
operator interaction to ASCII terminals for multiple output
messages.

CAll WRITE

CAll WRITE,(buffer),(length),(crlf)

CAll WRITE is for ASCII terminals only. It writes the specified
buffer contents to the current terminal. While writing, other
terminals are permitted to operate. When I/O is complete, the
current user program is reloaded and reentered at the next
sequential instruction after CAll WRITE.

WRITE parameters:

buffer

length

crlf

A buffer of EBCDIC text of any length.

One word containing the number of characters in the
buffer.

A binary value of 1 specifies that the terminal is to
be issued a carriage return and line feed (CRlF)
after the message is sent. Any other value results in
no CRlF being sent.

If CRlF is not equal to 1, trailing blanks in the buffer are
transmitted to permit you to position the terminal cursor for
the next message or operator response.

The Multiple Terminal Manager does not keep track of current
terminal cursor or carriage position. No CRlF is inserted if,
due to messages without CRlF or a buffer size larger than the
terminal line length, the right margin is reached.

Upon completion, the contents of the buffer are unchanged.

If executed by an IBM 4978/4979/3101, control returns imme
diately to the caller.

No operator entry is permi tted (see ACTION if operator entry is
required).

Chapter 5. Multiple Terminal Manager 133

I Communicating with IBM 4978/4979/3101 Displays

The Multiple Terminal Manager provides the following callable
functions for specific control of the IBM 4978/4979/3101 dis
play:

• SETPAN - Retr i eve a screen image

• CHGPAN - Reset the unprotected character count

• SETCUR - Set the cursor pos it ion

• BEEP - Sound the audible alarm

I· F TAB - B u i 1 dun pro t e c ted i n put fie 1 d tab 1 e'

CALL SETPAN

CALL SETPAN,(dsname),(return code)

Th i s rout i ne causes the spec if i ed screen format to be read into
the Input Buffer (replacing the last operator input) and sets a
switch to cause the screen format to be written~to the screen
during the next output cycle. Any nulls (X'OO') in the screen
image wi 11 be written unprotected. All other characters wi 11 be
written protected. In addition to the 1920-byte screen being
placed into the Input Buffer, any unprotected defaults that
were specified when the screen was built, are moved, concat
enated, into the Output Buffer. The cursor pos it i on for the
next display after SETPAN wi 11 be set, at the first unprotected
character position. Before executing a CALL SETPAN, be sure to
save desired information which is in the buffers, as they will
be overlaid by the screen definition.

SETPAN parameters:

dsname The data set name of the desired screen format in
the SCRNS volume.

return code A word to receive the return code. The following is
a list of the possible return codes:

134 SC34-0316

o

o

o

o

o

-1 =

-500 =

-501 =

1 =

2 =

other =

CALL CHGPAN

Successful, new screen in buffer.

This terminal is not an IBM ~978/4979/3101.

No action has been taken.

Screen data set not found.

Warning, data set does not contain a
valid $IMAGE screen. Input Buffer has
been set to unprotected nulls (X'OO')
and cursor position set to (0,0).

Warning, too many unprotected default
characters in the screen definition.
The number of default characters that
will be displayed has been truncated.

This return code is received if there
are no default unprotected characters
in the screen. The $IMAGE utility
initially assigns 1920 unprotected
characters to a screen. This number is
unchanged if the data (unprotected)
was not modified using the edit mode
of the $IMAGE utility.
Use PF2 with $IMAGE to enter default
data.

Return code from disk READ.
See the Language Reference.

CALL CHGPAN

After a CALL SETPAN, the protected characters of the screen
spec if i ed have been placed in the Input Buffer. You can add
data to the i mage by chang i ng the Input Buffer pr i or to the next
output cycle, and the data is displayed as protected data. If
you do this, you must also CALL CHGPAN to inform the manager
that it needs to recompute the location of the first unpro
tected character position in the current screen and the count
of unprotected characters. The cursor position is set to the
first unprotected character position. CHGPAN also sets the
SETPAN indicator thus allowing applications to dynamically
develop protected screens.

Chapter 5. Multiple Terminal Manager 135

Dynam;c Screen Modification and Creation: By direct manipu
lation of the Input and Output Buffers it is possible to modify
screens bui It by $IMAGE and retrieved by SETPAN. It is also
poss i b Ie to create screen images dynam i ca 11 y.

The Input Buffer contains a 24 X 80 (1920) byte image of the
screen wherein unprotected fields are represented by null (ze
ro) fields. The other bytes will be displayed as protected
characters. Additional protected characters may be added to
the screen image simply by inserting them in the appropriate
positions "in the Input Buffer. Additional unprotected fields
can be added to the screen image by inserting nulls appropri
ately. Both protected and unprotected fields can be modified,
deleted, extended, or contracted by t.he correct insertion of
characters in the desired portions of the Input Buffer. If this
is performed, it is necessary to call CHGPAN in order to indi
cate screen i mage mod if i cat ion.

It is also possible to modify the contents of the Output Buff
er. For example, after a call to SETPAN, the Output Buffer may
be modified to allow the program to modifY or supply default
data. Furthermore, if the Input Buffer is fi lIed with null
characters, the contents of the Output Buffer wi 11 be displayed
"as is". CHGPAN must be called whenever the Input Buffer is
modified.

To create a new screen, fill up the Input Buffer as des ired with
protected and unprotected characters, blanks, and null fields.
Place default data in the Output Buffer, and call CHGPAN.

136 SC34-0316

c

o

o

o

CALL SETCUR

CALL SETCUR,(row),(column)

CALL SETCUR specifies (overrides) the position at which the
cursor is to be displayed for the next output cycle.

SETCUR parameters:

row

column

One-word value representing the row position, 0-23.

One-word value representing the column position,
0-79.

The cursor position for each screen displayed on a terminal is
set to first unprotected character position by default. This
function permits you to override the cursor position for the
output on ly.

CALL BEEP

CALL BEEP

CALL BEEP causes the audible alarm (if avai lable) to be sounded
following the next output cycle.

The IBM 4979 terminal has no audible alarm and ignores this
request.

When executed for an ASCII terminal, this request causes the
next output line to be followed by a bell character.

CALL MENU

CALL MENU

CALL MENU immediately aborts the current dialog and causes the
terminal's menu screen (or request for program name message) to
be displayed.

Chapter 5. Multiple Terminal Manager 137

The operator can cause this at any time by pressing PF3 at an
IBM 4978/4979/3101 or by typing OUT on an ASCII terminal while
in a dialog.

I CAll FTAB

CAll FTAB,(table),(size),(return code)

FTAB sets UP a table which describes the unprotected (input)
fields placed in the Input Buffer after a SETPAN or a CHGPAN has
been executed. The table is a sequence of 3-word entries which
describe unprotected (input) fields. This is useful for such
funct ions as sett i ng the cursor.

Note: The FTAB function must be included in the application
link for it to be ava i lab Ie. See the sect i on on "Program
Preparation" on page 164 for information.

FTAB parameters:

table

size

I return code

A sequence of 3-word entr i es wh i ch descr i be the
unprotected fields of the screen image in the
Input Buffer. Each entry conta i ns the start i ng row
and column positions, and the length (in bytes) of
a field. Unused entries in a table will be set to
zero. The format is as fo llows:

table row (first field)
column " "
length " "

table+6 row (second field)
column " "
length " "

table+12 row (third field)
column " "
length " "

A word which gives the number of 3-word entries in
the table.

A word for the return of a status code. The return
codes are as fo llows:

-2
-1

1
2

=
=
=
=

FTAB code not linked with application
successful return
no data fields found
warning, table truncated

138 SC34-0316

o

o

o

I CALL FAN

CALL FAN

I FAN performs no operation ("no-op").

Accessing the Terminal Environment Block

Although the terminal environment block (TEB) can be accessed
directly (since its address is a user program parameter), the
user program may find it more convenient with the following
funct i on to determ i ne the attr i butes of the ca 11 i ng term ina 1.

CALL CDATA

CALL CDATA,(type),(userid),(userclass),(termname),(buffersize)

This subroutine returns data concerning the terminal currently
executing the program.

CDATA parameters:

type

userid

userclass

termname

A word specifying the terminal type:

o = Terminal is an IBM 4978, 4979, or 3101
2 = Terminal is an ASR 33/35 or equivalent

The 4 - by t e val u e set by the 5 I G NON pro g ram w he nth e
current terminal signed on. If the current termi
nal does not use SIGNON, this value is meaning
less.

The 4-byte value set by the SIGNON program when the
current terminal signed on. If the current termi
na I does not use SIGNON, th is va 1 ue is mean i ng
less.

The 8-byte (right padded with blanks, i f
necessary) name of the current terminal.

buffersize The length of the terminal's I/O buffer. For IBM
4978/4979/3101 terminals, this is the number of
unprotected characters in the last screen wh i ch
was set us i ng SETPAN.

Chapter 5. Multiple Terminal Manager 139

Disk File Support

All requests for disk/diskette I/O are by means of a call to the
FILEIO routine. FILEIO provides the following functions:

• Automat 1 c open of the requested data set.

• Oi rect access support for non-Indexed Access Method f1 les,
where records are accessed by a relative record number
(RRN).

• Support for Indexed Access Method files, prov i ding a
high-level language interface to most Indexed Access Meth
od serv ices.

• Data i ntegr i ty, v i a automat icc lose at term ina I manager
shutdown and automat i c wr i te back of data buffers.

If Indexed Access Method files are used, the Event Dr i ven Exec
utive / Indexed Access Method (S719-AM3) is required.

Automatic OPEN/CLOSE: FILEIO automatically controls the
opened/closed status of a data set. Thus data set names must
not be coded on the PROGRAM statement of Multiple Terminal Man
ager programs. If the data set is not open when a request is
made, the data set is opened. Since many terminals can require
many data sets,' both the same and different, the user can find
that there was no storage available to open a requested data
set. In order to avoid this situation, a limit is set for the
number of open data sets. In the Multiple Terminal Manager
default system, space is allocated for 14 open data sets. When
this limit is reached, the least recently accessed data set is
closed, and the space it required is reused. A data set is not
available for automatic close if it has an update pending. The
user can adjust the maximum number of open data sets by chang
ing the file table in the Multiple Terminal Manager source
module CDMCOMMN.

Indexed File Support: FILEIO provides an interface to the Event
Dr i ven Execut i ve Indexed Access Method.

Programs written in high-level languages can access indexed
files by calling the FILEIO routine. The functions supported
are listed under the heading "Indexed File Request Types" in
this section. An Indexed Access Method file must be created.
For i nformat i on on how to create an Indexed Access Method file,
see the System Gu i de.

140 SC34-0316

c

()

o

o

c

Some features of the indexed file support include the follow
i n g :

• Records can be retr i eved sequent i all y or by key.

• The key can be a gener i c key, that is, the first n bytes of
the actual key.

• Records can be added or deleted by key.

• It takes the same length of time to retrieve added records
as or i gi nal records.

If an application requires access to a file sequentially, and
also directly by alphameric keys, indexed files are required.

Since Indexed Access Method fi les are owned by a supervisor
task, using the ¢C command to cancel the terminal manager does
not c lose these files. For data i ntegr i ty, use the
DISCONNECT,ALL command described in the section "Operator
Interface" on page 158.

Additional information on indexed files and indexed file
request types is discussed in the System Guide under "Indexed
Access Method".

CALL FILEIO

FILEIO provides the faci lity to access previously created
files via the call interface described earlier. These files
must have been previously defined and loaded.

CALL FILEIO,(fca),(buffer),(return code)

FILEIO parameters:

fca The file control area. The address of a table with
the parameters descr i bing the requested oper
ations:

Chapter 5. Multiple Terminal Manager 141

buffer

o Request Type

4 Data Set Name

12 Key Relation
Operator

or
Number of
Records

14 Key Length

16 Key Location

or
EOD Record
Number

18 Reserved

20 Relative
Record
Number

22 Volume Name

28 Key Field

A 4-byte EBCDIC request,
for example: CL4'READ'

An 8-byte EBCDIC data set name

A 2-byte EBCDIC key relation
operator, the characters
"GT", "GE", "EQ"
(indexed files only)

A word value for the number
of 256-byte records to be
read or written by this
call (direct files only)

A word specifying the length of
the key to be used for retrieval.
If the length specified is less
than the actual key length, the
first n bytes of the key are
used (indexed files only).

The address of the key
(FORTRAN, EDL, and PL/I) to be
used (indexed files only).
For COBOL, the value must be O.

The system maintained logical
EOD record number passed back
to the application after each
direct file READ or WRITE
(direct files only).

A word value for the
RRN. The first record is
record number 1 (direct files
only).

A 6-byte EBCDIC volume name

The key to be used
(COBOL indexed files only),
if Key Length non-zero.

The address of the user program I/O buffer. Th i sis
in the user program space. FILEIO and Indexed
Access Method have thei r own buffers.

return code The address of the 2-byte field to contain the
return code passed back by FILEIO. This can be a
FILEIO return code, an Event Driven Executive sys
tem error code or an Indexed Access Method code.

142 SC34-0316

o

()

o

0

o

File Control Area (FCA): The entire FCA must be mapped for
Event Dr i ven Language, FORTRAN, PL/I, and COBOL except as
noted.

o
REQUEST TYPE

4

DATA SET NAME

12
KEY REL OP OR NUMBER OF RECORDS

14
KEY LENGTH

16
KEY LOCATION OR EOD RECORD NUMBER

18
RESERVED

20
RELATIVE RECORD NUMBER

22
VOLUME NAME

28

KEY FIELD (COBOL index files only)
(size defined i n KEY LENGTH field)

//

Chapter 5. Multiple Terminal Manager 143

Indexed F;le Request Types: The indexed file request types and
funct ions are def i ned as fo llows:

RElS Release from sequent i al process i ng mode

RElR Release a record held for update

PUTU Put operation, update mode

PUTD Put operation, delete mode

PUTN Put operat ion, new mode adds a record to the file

GElD Get operat i on, direct read

GETS Get operation, sequential read

IDEL Delete operation

ICLS Close an indexed data set

GTDU/GTRU Direct get, update mode

GTSU Sequential get, update mode

Note: GTDU and GTRU are identical in the operation they
perform.

D;rect F;le Request Types: The direct file request types and
funct ions are def i ned as fo llows:

READ

WRIT

SEon

Read the record defined by the RRN field of the FCA
into the user-provided buffer

Write the record defined by the RRN field of the FCA
into the major user-provided buffer

Set the system maintained EOO pointer to the record
number provided in the relative record number field
of the FCA

Ilt4 SC34-0316

c

o

o

o

FILEIO Return Codes

Return
Code
-1

201
202
203

Description
Successful
Data set not found
Volume not found
No file table entries are available; all have
updates outstanding

204 I/O error reading volume directory
20S I/O error writing volume directory
206 Invalid function request type

(this is returned for a valid Indexed Access
Method function if the Indexed Access Method
link module is not linked with the Multiple
Terminal Manager)

207 Invalid key operator
208 SEOD record number greater than data set length

Other return codes not shown above are returned by the Indexed
Access Method or by the Event Driven Executive data management
support.

Chapter S. Multiple Terminal Manager 145

Event D~;ven Executive Di~ect File I/O Conside~ations

The Multiple Terminal Manager FILEIO interface to Event Driven
Execut i ve direct file support a llows the user to access records
by specifying relative record numbers (RRNs). Normally, a
direct file may be viewed as a sequence of records starting
with RRN=l and continuing until the end of data record number,
that is, RRN=EOD. The end of data record number is returned in
the fi Ie control area (FCA) after each READ or WRIT (write)
request. It may be set by a "set end of data" (SEOD) request.

No effort is made to ensure the data integrity of Event Driven
Execut i ve direct files i nvol vi ng concurrent access to the same
record. That is, no record locking is performed. However, it is
possible to ensure that Multiple Terminal Manager applications
cannot access the same record concurrently by ensuring that
application is not swapped out of the application area at an
inappropriate moment. (An application is only vulnerable to
swap out during an ACTION, LINK, LINKON, WRITE, or CYCLE). That
is, an application can read, modify, and write a particular
record and be assured that another Multiple Terminal Manager
application wi 11 not alter the record at the same time.

This technique only applies to applications competing for
concurrent access under a single copy of Multiple Terminal Man
ager. Other disciplines must be used if other applications are
involved.

If a user desires sequential access to a direct file, it is the
user's responsibility for incrementing the RRN field and
ensuring it does not exceed the end of data record number. One
technique involves reading the file to get the end of data
record number, and then entering a loop, as in the example on
the following page where a fi Ie "A,EDX002" is processed.

146 SC34-0316

c)

~\
V

o

o

o

* GET EOD (RETURNED BY READ OPERATION)
MOVE RRN,1
CALL FILEIO,(FCA),(BUFFER),(RC)

* PROCESS FILE FROM RRN=1 TO EOD
MOVE RRN,O
DO EOD,TIMES

ADD RRN,1
CALL FILEIO,(FCA),(BUFFER),(RC)

ENDDO

* FILE CONTROL AREA
FCA EQU * REQTYPE DATA CL4'READ'
DSNAME DATA CL8'A'
NUMREC DATA F ' 1 '

DATA F ' 0 '
EOD DATA F ' 0 '

DATA F ' 0 '
RRN DATA F ' 0 '
VOLNAME DATA CL6'EDXQ02'

Chapter 5. Multiple Terminal Manager 147

FILEIO Indexed Access Method Considerations

FILEIO uses the parameters provided to create a parameter list
for an Indexed Access Method supervisor call. Therefore, it is
important to understand Indexed Access Method ope rat i on, as
explained in the section "Indexed Access Method" of the System
Guide.

FILEIO executes a file cleanup routine after each user program
ACTION, LINK, LINKON, WRITE, or CYCLE. If any record locks have
not been released, the cleanup routine causes these records to
be released in order to prevent any deadlock situations. A pro
cedure to ensure data integrity on update is illustrated as
follows:

GET

SAVE RECORD
CONTENTS

DISPLAY TO
OPERATOR

GET ~~ITH UPDATE

ENSURE RECORD
CONTENTS ARE

UNCHANGED

PUT WITH UPDATE

DISPLAY TO OPERATOR

148 SC34-0316

o

o

o

o

o

If sequential processing has been initiated on any indexed
fi les, the FILEIO cleanup routine also releases those fi les
from sequential processing mode. Thus, in order to continue
sequential processing from the same key, applications should
save the last key before issuing an ACTION, LINK, LINKON, WRITE
or CYCLE.

An indexed file may be scanned from beg i nn i ng to end by use of a
sequence of "get sequential" (GETS) operations. The first GETS
in a sequence thereof should specify a key of all nulls (X'OO')
and a key relational operator of greater than (C'GT'). When
executed, this initial GETS operation will receive the first
record in the file (following the record, if any, for which the
key is all nulls.) Subsequent GETS will retrieve the records
following the first, in sequence.

After a DISCONNECT,ALL command is issued, FILEIO executes a
termination routine before the Mult~ple Terminal Manager ter
minates. This termination routine closes all remaining open
Indexed Access Method files. This causes any control informa
t i on and records rema i n i ng in the Indexed Access Method
internal storage buffers to be written to disk.

Following is a mapping of Multiple Terminal Manager/Indexed
Access Method request types to the actual Indexed Access Method
function.

MULTIPLE
MANAGER

RElS
RElR
PUTU
PUTD
PUTN
GElD
GETS
IDEL

TERMINAL
REQUEST

ICLS
GTDU/GTRU
GTSU

INDEXED ACCESS
METHOD FUNCTION

ENDSEQ
RELEASE
PUTUP
PUTDE
PUT
GET
GETSEQ
DELETE
DISCONN
GET/UPEQ,UPGT,UPGE
GETSEQ

Note: The Indexed Access Method is accessed by the Multiple
Terminal Manager and, therefore, the application programs that
run under the Multiple Terminal Manager will not need to
include the Indexed Access Method equates and, must not be
LINKed with Inde xed Access Method link modu Ie.

Chapter 5. Multiple Terminal Manager 149

Programm;ng Considerat;ons

Multiple Terminal Manager applications are processed as ini
tial tasks of a program which execute within the program manag-
er's overlay area. On the first execution of a program during a
transact i on, the program is brought into the overlay area v i a a
LOAD instruct i on. Then, when the program returns control to the
Multiple Terminal Manager via a CALL ACTION, WRITE, CYCLE,
MENU, LINK or LINKON, the Multiple Terminal Manager dequeues
the program from Event Dr i ven Execut i ve v i a a DETACH
instruction. Also, if the program returned via a CALL ACTION,
WRITE or CYCLE, the Multiple Terminal Manager writes the pro
gram out to the MTMSTORE data set. The over lay area is then free
for use by other programs. When the Multiple Terminal Manager
is ready to re-execute that program for subsequent processing
of the transaction, the program manager reads the program into
the overlay area and requeues that program to Event Driven
Executive via an ATTACH instruction.

Thus, Multiple Terminal Manager application programs should
adhere to the following conventions:

• No subtasks should be active across calls to the Multiple
Terminal Manager.

• No system-wide resources should be enqueued across calls
to the Multiple Terminal Manager.

• Appl i cat i on programs cannot use over lays.

• Application programs must be written as subroutines named
MTMSUB and designed to receive four parameters at initi
ation.

• Application programs should utilize the Multiple Terminal
Manager for a 11 term ina 1 and disk I/O.

• All other I/O should be complete prior to any call to the
Multiple Terminal Manager.

• Appl ication programs should terminate only via calls to
the Multiple Terminal Manager and should not issue any
PROGSTOP, ENDTASK, or DETACH instructions.

• Error exit routines should terminate via a CALL MENU.

• Changes affecting the SCRNS or PRGRMS volumes during the
Multiple Terminal Manager session will not be effective
unti I the Multiple Terminal Manager is terminated and
reloaded.

150 SC34-0316

c

o

o

o

o

Event Driven Language Programming Considerations

An Event Driven Language application, which must be written as
a subrout i ne, must be def i ned to accept four parameters. In
addition, the Multiple Terminal Nanager functions must be
identified via the EXTRN statement. The subroutine name MTMSUB
must also appear on the ENTRY statement. For example:

ENTRY
EXTRN
EXTRN
SUBROUT

MTMSUB
ACTION,BEEP,CYCLE,SETCUR,CHGPAN,CDATA,MENU
SETPAN,FILEIO,lINK,lINKON,WRITE,FTAB,FAN
MTMSUB,INPUT,OUTPUT,TEB,IIB

The interface used by the Multiple Terminal Manager stub
CDMEMAIN for calling the Event Driven Language subroutine is
via the CALL instruction.

For example, the statement to call SETPAN is:

CALL SETPAN,(MENUNAME),(RC)

This statement would result in the addr"esses of MENUNAME and RC
being passed to the Multiple Terminal Manager.

The syntax for calling Multiple Terminal Manager functions in
the Event Dr i ven Language is:

CALL ACTION
CALL ACTION,(BUFFER),(LENGTH),(CRLF)
CALL LINK,(PROGRAM)
CAll LINKON,(PROGRAM)
CALL CYCLE
CALL WRITE,(BUFFER),(LENGTH),(CRLF)
CALL SETPAN,(DSNAME),(RC)
CALL CHGPAN
CALL SETCUR,(ROW),(COlUMN)
CALL BEEP
CAL.l MENU
CALL CDATA,(TERMTYPE),(USERID),(USERCLASS),(TERMNAME),(BUFSIZ)
CALL FILEIO,(FCA),(BUFFER),(RC)
CALL FTAB,(TABLE),(SIZE),(RC)
CALL FAN

Chapter 5. Multiple Terminal Manager 151

FORTRAN Programming Considerations

A FORTRAN application, which must be written as a subroutine,
must be def i ned to accept four parameters, for example:

SUB~OUTINE MTMSUB(INPUT,OUTPUT,TEB,IIB)

The interface used by the Multiple Terminal Manager stub
CDMFMAIN for calling the FORTRAN subroutine is via the Event
Driven language CAllFORT instruction. For interfacing to the
Multiple Terminal Manager, FORTRAN applications utilize the
FORTRAN CAll statement for calling Event Driven Executive sub
routines.

For example, the statement to call SETPAN is:

CALL EDX(SETPAN,2,IADDR(MENUNAME),IADDR(RC»

This statement would result in the addresses of MENUNAME and RC
being passed to the Multiple Terminal Manage'r.

All Multiple Terminal Manager functions which the application
calls must be declared as EXTERNAL, for example:

EXTERNAL SETPAN,ACTION,MENU,FllEIO

The syntax for calling Multiple Terminal Manager functions in
FORTRAN is:

CAll EDX(ACTION,Q)
CAll EDX(ACTION,3,IADDR(BUFFER),IADDR(LENGTH),IADDR(CRLF»
CAll EDX(lINK,l,IADDR(PROGRAM-NAME»
CAll EDX(LINKON,l,IADDR(PROGRAM-NAME»
CALL EDX(CVCLE,O)
CAll EDX(WRITE,3,IADDRCBUFFER),IADDR«LENGTH),IADDR(CRLF»
CALL EDX(SETPAN,2,IADDRCDSNAME),IADDRCRET-CODE»
CALL EDX(CHGPAN,O)
CALL EDX(SETCUR,2,IADDR(ROW),IADDR(COLUMN»
CALL EDX(BEEP,O)
CAll EDX(MENU,O)
CALL EDX(CDATA,5,IADDR(TERM-TVPE),IADDR(USERID),

IADDR(USER-CLASS),IADDR(TERM-NAME),IADDR(BUF-SIZE»
CALL EDX(FllEIO,3,IADDRCFILE-CONTROL-AREA),IADDR(BUFFER),

IADDRCRET-CODE»
CALL EDX(FTAB,3,IADDR(TABLE),IADDR(SIZE),IADDR(RC»
CALL EDX(FAN,O)

152 SC34-0316

o

c

o

o

o

COBOL Programming Considerations

The PROGRAM-ID for all Multiple Terminal Manager COBOL appli
cat ions must be "MTMSUB". In add it ion, a 11 parameters passed to
the Multiple Terminal Manager must be level 01 or 77. The four
parameters passed to the application, Input Buffer, Output
Buffer, TEB, and lIB must be defined in the program's LINKAGE
SECTION. Refer to "COBOL Sample Prog1" on page 193 for an exam
ple. The PROCEDURE DIVISION must contain the USING clause
followed by the names gi ven to the Input Buffer, Output Buffer,
TEB, and I IB, in that order.

For CALL FILEIO, if key location equals 0 and key length not
equal to 0, the fi Ie manager assumes that the key is immediate
ly following the FCA. This is primarily to facilitate COBOL
programs, wh i ch cannot code addresses.

The following example shows an FCA for indexed files which
would read a record associated with a 4-character key,"XXXX".

01 FILE-CONTROL-AREA.
05 REQUEST-TYPE PIC X(4) VALUE "GETD".
05 DATA-SET-NAME PIC X(8).
05 KEY-REL-OP PIC XX VALUE "EQ".
05 KEY-LENGTH PIC S999 COMP VALUE 4.
05 KEY-LOCATION PIC S999 COMP VALUE O.
05 FILLER PIC X(4).
05 VOLUME-NAME PIC X(6).
05 KEY PIC X(4) VALUE "XXXX".

For interfacing to the Multiple Terminal Manager, COBOL appli
cations utilize the COBOL CALL statement for calling subrou
tines.

For example the statement to call SETPAN is:

CALL "SETPAN" USING SCREEN, RC.

This would result in the addresses of SCREEN and RC being
passed to Multiple Terminal Manager.

The WORKING-STORAGE SECTION would have the following:

77 SCREEN PICTURE X(8) VALUE "SCRNNAME".
77 RC PICTURE 99 COMPo

Chapter 5. Multiple Terminal Manager 153

The syntax for calling Multiple Terminal Manager functions in
COBOL is:

CALL "ACTION".
CALL "ACTION" USING BUFFER, LENGTH, CRLF.
CALL "LINK" USING PROGRAM-NAME.
CALL "LINKON" USING PROGRAM-NAME.
CALL "CYCLE".
CALL "WRITE" USING BUFFER, LENGTH, CRLF.
CALL "SETPAN" USING DATA-SET-NAME, RETURN-CODE.
CALL "CHGPAN".
CALL "SETCUR" USING ROW, COLUMN.
CALL "BEEP".
CALL "NENU".
CALL "CDATA" USING TERMINAL-TYPE, USER-ID, USER-CLASS,

TERMINAL-NAME, BUFFER-SIZE.
CALL "FILEIO" USING FILE-CONTROL-AREA, BUFFER, RETURN-CODE.
CALL "FTAB" USING TABLE, SIZE, RETURN-CODE.
CALL "FAN".

154 SC34-0316

o

c

o

o

PL/I Programming Considerations

A PL/I application must be named MTMSUB, and defined to accept
four parameters:

MTMSUB: PROCEDURE (INPUT_BUFFER,
OUTPUT_BUFFER,
TEB,
PF KEY);

INPUT_BUFFER, OUTPUT_BUFFER, and TEB should usually be
declared as structures. PF_KEY should be declared BINARY FIXED
(15) .

All Multiple Terminal Manager functions which the application
calls must be declared as ENTRY, for example:

DECLARE
(SETPAN, ACTION, MENU, SETCUR, BEEP, FILEIO)
ENTRY;

The syntax for calling Multiple Terminal Manager functions in
PL/I is:

CALL ACTION;
CALL ACTION(BUFFER, LENGTH, CRLF);
CALL LINK(PROGRAM NAME);
CALL LINKONCPROGRAM_NAME);
CALL CYCLE;
CALL WRITE(BUFFER, LENGTH, CRLF);
CALL SETPANCDATA_SET_NAME, RETURN_CODE);
CALL CHGPAN;
CALL SETCURCROW, COLUMN);
CALL BEEP;
CALL MENU;
CALL CDATA(TERMINAl_TYPE, USER_ID, USER_CLASS,

TERMINAL_NAME, BUFFER_SIZE);
-CAll FIlEIOCFILE_CONTROL_AREA, BUFFER, RETURN_CODE);
CAll FTABCTABlE, SIZE, RETURN_CODE);
CAll FAN;

For WRITE, the buffer variable must be a character string. For
FTAB, the table variable must be an array. All variables should
be declared as STATIC whenever possible.

Chapter 5. Multiple Terminal Manager 155

SIGNON/SIGNOFF Programs

SIGNON

A sample SIGNON program is distributed with the Multiple Termi
na I Manager. I f the term ina I requ ires sign-on, the IBM supp lied
SIGNON program displays the SIGNON screen and does a CALL
ACTION to obtain the user 10 and password.

The user must enter the sign-on 10 (8 bytes alphanumeric) and a
password (4 bytes alphanumeric). This data will be passed to
the SIGNON program in the Input Buffer as it would be to any
other program. The sign-on 10 and password are val i dated
against the SIGNON file. If valid, the sign-on is complete and
the primary menu is displayed. If invalid, a bad return code is
set (=1) and the SIGNON program is reloaded by Multiple Termi
nal Manager. The two sign-on 10 records in the distributed
SIGNON file are:

SIGNON 10
11111111
22222222

PASSWORD
1111
2222

You can add additional records with the Event Driven Executive
text editor.

In addition to the four parameters passed to all applications,
the SIGNON routine receives a fifth parameter which is the
address of the sign-on control area. The contents of the
sign-on contro I area are as fo llows:

• RC 2-byte return code i nd i cat i ng to the system the
act i on to be taken.

• USERID - Four bytes handled exactly like USERCLASS.

• USERCLASS - Four bytes set by user sign-on program which
will be saved and passed as a parameter to the sign-off
program when the current user signs off. These four bytes
are contained in the TEB and are also available to any
standard program to val i date the user if des ired.

o = valid sign-on, display the terminal's menu screen.
1 = invalid sign-on, redisplay the sign-on screen.

USERCLASS and USERID are not used by the Multiple Terminal Man
ager. They are saved in the TEB and reported via CALL CDATA to
requesting programs from this terminal while the current
sign-on is active.

156 SC34-0316

C,-~ .. ·
I·'

o

o

o

o

SIGNOFF

A sign-off program is not provided with the default system;
however, provisions are made within the Multiple Terminal Man
ager to invoke a sign-off program. If you write a sign-off pro
gram, it wi 11 be passed the same parameters as the sign-on
program.

If these programs exist, they must meet the following consider
ations:

• SIGNON and SIGNOFF are optional. Either SIGNON alone or
SIGNON and SIGNOFF can be in the system. If they are in the
system, the names must be SIGNON and SIGNOFF. If they are
not in the system, the names SIGNON and SIGNOFF must not be
used for other user-wr i tten programs.

• The SIGNOFF program is invoked when the PF3 key is entered
from the menu screen.

• SIGNON/SIGNOFF cannot be executed from the menu screen by
enter i ng the program name.

• Ind i v i dual termi nals can be generated to requ ire or not
require sign-on. If the user does not include a SIGNON pro
gram, any terminals marked requiring sign-on are unusable
since there is no way to validate sign-on attempts.

• SIGNON/SIGNOFF can use CALL CDATA to obtain the terminal
name and other term ina I i nformat ion.

• When complete, SIGNON/SIGNOFF should perform a CALL MENU
to return to the Multiple Terminal Manager. Note that a
return code should be set in the RC field by the SIGNON pro
gram before issuing the CALL MENU. The RC field is ignored
by the Multiple Terminal Manager for the SIGNOFF program.

• The use of USERCLASS and USERID is optional.

• LINK and LINKON can not be used.

• PF3 entered by the operator during SIGNON, will cause the
current SIGNON session to be terminated and a new SIGNON
sess i on to be started.

Chapter 5. Multiple Terminal Manager 157

OPERATOR INTERFACE

Multiple Terminal Manager Initiation and Termination

The Multiple Terminal Manager can be initiated from any termi
nal defined to the Event Driven Executive system by entering
the $l $MTM,PRGRMS command. This command starts the Multiple
Terminal Manager program manager. The program manager then
initiates a terminal server for each terminal specified in the
TERMINAL file. Upon completion of initiation, the IPl screen,
IPLSCRN, is displayed at each of the Multiple Terminal Manager
termi nals. IPlSCRN spec if i es that the opera"tor press the ENTER
key in order to display either the sign-on or menu screen.

The Multiple Terminal Manager is terminated by disconnecting
all terminals using the DISCONNECT command. The $C command
should not be used to terminate Multiple Terminal Manager
tasks.

Signing On

If sign-on is specified for the terminal, then the sign-on
screen, SIGNON, is displayed following the IPl screen. The
sign-on screen requires that the operator enter a sign-on and
password. After sign-on process i ng is completed, the menu
screen is displayed.

Program Initiation and Termination

After Multiple Terminal Manager initiation and sign-on proc
essing are completed, the menu screen is displayed. The menu
screen is the screen from which the operator can initiate
transact ions. A transact i on is in it i ated by the operator
entering either a program name or pressing a PF key when the
menu screen is displayed. A PF key initiates program PFnn,
where nn reflects the number of the PF key pressed. If data is
entered, the Multiple Terminal Manager considers the first
eight bytes to be a program name.

After a transaction is initiated, the operator can terminate it
by pressing the PF3 key. Upon termination of the transaction,
the menu screen is redisplayed. A subsequent pressing of the
PF3 key from the menu screen causes the sign-on screen to be
redisplayed if sign-on is specified for that terminal. Other
wise, PF3 will be a "no-op" and the menu screen remains dis
played.

158 SC34-0316

()

o

o

o

o

Disconnect: Terminals can be disconnected from the Multiple
Terminal Manager or the Multiple Terminal Manager can be termi
nated via the DISCONNECT facility. DISCONNECT is invoked from
the menu screen by keying in either DISCONNECT, DISCONNECT *,
DISCONNECT,termname, or DISCONNECT,ALL. If DISCONNECT or DIS
CONNECT * is entered, the terminal upon which that request was
entered is disconnected. If a referenced terminal is in a
transaction, that transaction is allowed to complete. When the
terminal returns to MENU state, it is automatically signed off
and i mmed i ate I y d i 5P lays the YOU ARE DISCONNECTED message.

If DISCONNECT,ALL is specified, all terminals are discon
nected. When the last terminal is truly disconnected, whether
v i a DISCONNECT, ALL or sepa.rate DISCONNECTs, the manager task
is stopped. This is the only method that should be used to ter
minate the Multiple Terminal Manager.

Note that to enter this command from a screen, the terminal's
menu screen must conta i n at least 19 unprotected characters.

Wh i Ie a term ina 1 cont i nues ina transact ion with disconnect
pending, the audible alarm is sounded after every interaction
to tell the operator that a disconnect is pend i ng.

Reconnect: If the referenced terminal is disconnected, it is
reconnected using RECONNECT,ALL or RECONNECT,termname in a
signed-off status (if applicable). If the terminal is not dis
connected, the command is ignored. The reconnect should be
issued from a terminal other than the disconnected terminal.
The program name of th i s command is RECONNEC.

Programs Report: This report displays data about each avail
able program. It is intended mainly for debugging during devel
opment of the manager but is included as a working example for
possible use.

The name of th is program is PGMRPT.

The Programs Report will have the following headings:

PGM NAME LENGTH (in records)

Terminal Activity Report: This program displays the names and
status of all terminals on the system. If more than 19 termi
nals are attached, the operator must press ENTER to page to
success i ve groups of 19 1 i nes.

The name of th is program is REPORT.

Chapter 5. Multiple Terminal Manager 159

The Term ina 1 Act i vi ty Report has the fo llow i ng head i ngs:

TERMINAL TERMINAL USER USER PROGRAM OPERATOR TERMINAL
NAME TYPE 1D CLASS INPUTS OUTPUTS

Screens Report: This program displays the names of the screens
defined in the SCRNS volume. The operator can key in the screen
name to be displayed.

The name of th is program is SCRNSRPT.

Screen Pr;nt: Displayed screens on a 4978 or 4979 terminal can
be pr i nted on the system pr inter by press i ng the PF6 key or the
key spec if i ed on the HDCOPY parameter of the TERMINAL statement
dur i ng system gene rat i on.

160 SC34-0316

o

(" -')
/

o

o

()

o

DISTRIBUTION, INSTALLATION AND PROGRAM PREPARATION

The Multiple Terminal Manager is distributed as a program pro
duct and each d i str i but i on cons i sts of the fo llow i ng items:

• Prebuilt Multiple Terminal Manager - This is a prebuilt
Multiple Terminal Manager consisting of a program manager,
file manager, terminal servers and utility programs. The
Indexed Access Method interface is not included.

• Multiple Terminal Manager source for module CDMCOMMN
This is the Multiple Terminal Manager source code for the
user who wants to tailor the Multiple Terminal Manager
environment.

• Screen formats - This is a set of screens to support the
default Multiple Terminal Manager and sample programs.

• TERMINAL Fi Ie - This, is a set of miscellaneous terminal
statements to support the default system.

• CDMEMAIN, CDMFMAIN, CDMCMAIN, and CDMPMAIN - These are the
Multiple Terminal Manager application stubs in object for
mat that must be inc I uded with either E vent Dr i ven Lan
guage, FORTRAN, COBOL, or PL/I programs at link time.

Chapter 5. Multiple Terminal Manager 161

Installat;on

The user must have created the following volumes on the system
disk at system generat ion time.

PRGRMS

SCRNS

MTMSTR

This volume is for the Multiple Terminal Manager
programs, user application programs, terminal spec
ifications file and SIGNONFl file.

This volume is for the screen formats used by
Multiple Terminal Manager and user applications.

This volume is for the MTMSTORE data set used by the
Multiple Terminal Manager.

After the volumes have been created, the user can then copy the
prebuilt Multiple Terminal Manager, screen formats and termi
nal file from the source diskettes to disk. This installs the
default Multiple Terminal Manager and establishes the follow
i ng data sets.

Data sets within the PRGRMS volume:

$MTM The Multiple Terminal Manager program manager

CDMSVR89 The Multiple Terminal Manager full screen, 4978 and
4979, terminal server

CDMSVR33 The Multiple Terminal Manager TTY terminal server

CDMSVR01 3101 Model 2 terminal server

CDMINIT The Multiple Terminal Manager initialization
routine

TERMINAL The Multiple Terminal Manager terminal
specification file

In addition, the PRGRMS volume contains miscellaneous data
sets needed for the ut iii ty programs.

Data sets with i n the SCRNS vo I ume:

IPlSCRN The initial Multiple Terminal Manager displayed
screen

SIGNONSC The sign-on screen

MENUSCRN The defaul t menu screen

SCRNSREP The SCRNSRPT selection menu

162 SC34-0316

c

o

o

o

The Multiple Terminal Manager can be tailored by reassembling,
rebui lding and replacing the changed Multiple Terminal Manager
components.

The terminal specifications file (TERMINAL) can be modified to
match your system env ironment by us i ng the $FSEDIT Event Dr i ven
Execut i ve ut iii ty. Screen formats can be added to the SCRNS
volume via the $IMAGE Event Driven Executive utility.

Before executing the Multiple Terminal Manager, the user has to
create the MTMSTORE dataset.

Chapter 5. Multiple Terminal Manager 163

Program Preparat;on

Event Driven Language Program Preparation

The Multiple Terminal Manager contains a main routine,
CDMEMAIN, for supporting Event Driven Language applications.
CDMEMAIN is the Multiple Terminal Manager stub for Event Dri ven
Lan g u age ···ap p I iea t ion s , and is object code which enables the
Multiple Terminal Manager to invoke and pass parameters to the
application program.

It is necessary to link CDMEMAIN with the application object
module so that the application can communicate with the Multi
ple Terminal Manager. For linking Event Driven Language appli
cations, this requires that the following be used as the link
control data set dur i ng the $LINK program preparat i on step:

OUTPUT output data set,volume
INCLUDE CDMEMAIN,volume
INCLUDE object data set,volume
END

For example, the link control statements for an Event Driven
Language app I i cat i on ca lIed "QUERY" m j ght be:

OUTPUT
INCLUDE
INCLUDE
END

QUERY,EDX002
CDMEMAIN,EDX003
QUERY,EDX003

The subsequent $UPDATE step would then spec i fy the object input
to be "QUERY,EDX002" and the program output to be
"QUERY,PRGRMS", where "PRGRMS" is the Multiple Terminal Manag
er program volume.

Note: If the FTAB funct i on is used by the appl i cat i on, the FTAB
object code must be linked with the application object code.
This requires that the object module CDMFTAB be included in the
linking process. The following link control statement must be
included in the link control data set:

INCLUDE

For example:

OUTPUT
INCLUDE
INCLUDE
INCLUDE
END

164 SC34-0316

CDMFTAB,volume

QUERY,EDX002
CDMEMAIN,EDX003
QUERY,EDX003
CDMFTAB,EDX003

c

o

o

o

FORTRAN Program Preparation

The Multiple Terminal Manager contains a main routine,
CDMFMAIN, for supporting FORTRAN applications. CDMFMAIN is the
Multiple Terminal Manager stub for FORTRAN applications, and
is object code which enables the Multiple Terminal Manager to
; nvoke and pass parameters to the appl i cat i on program.

It is necessary to link CDMFMAIN with the application object
module so that the application can communicate with the Multi
ple Terminal Manager. For linking FORTRAN applications, this
requires that the following be used as the link control data
set dur i ng the $L INK program preparat i on step:

OUTPUT output data set,volume AUTO=FORTAUTO,ASMLIB
INCLUDE CDMFMAIN,volume
INCLUDE object data set, volume
END

For example, the link control statements for a FORTRAN applica
tion called "QUERY" might be:

OUTPUT
INCLUDE
INCLUDE
END

QUERY,EDX002 AUTO=FORTAUTO,ASMLIB
CDMFMAIN,EDX003
QUERY,EDX003

The subsequent $UPDATE step would then speci fy the object input
to be "QUERY,EDX002", and the program output to be
"QUERY,PRGRMS", where "PRGRMS" is the Multiple Terminal Manag
er program volume.

Note: If the FTAB function is used by the application, the FTAB
object code must be linked with the application object code.
This requi res that the object module CDMFTAB be included in the
linking process. The following link control statement must be
included in the link control data set:

INCLUDE

For example:

OUTPUT
INCLUDE
INCLUDE
INCLUDE
END

CDMFTAB,volume

QUERY,EDX002 AUTO=FORTAUTO,ASMLIB
CDMFMAIN,EDX003
QUERY,EDX003
CDMFTAB,EDX003

Chapter 5. Multiple Terminal Manager 165

COBOL Program Preparation

The Multiple Terminal Manager contains a main routine,
CDMCMAIN, for supporting COBOL applications. CDMCMAIN is the
Multiple Terminal Manager stub for COBOL applications, and is
object code which enables the ~ultiple Terminal Manager to
invoke and pass parameters to the app 1 i cat i on program.

It is necessary to link CDMCMAIN with the application object
module so that the application can communicate with the Multi
ple Terminal manager. For linking COBOL applications, this
requires that the following be used as the link control data
set during the $LINK program preparation step:

OUTPUT output data set,volume
INCLUDE CDMCMAIN,volume
INCLUDE MTMSUBil,volume
INCLUDE MTMSUBiB,volume

AUTO=COKAUTO,ASMLIB

END

In the previous example, MTMSUBil is the name of the data set
containing the COBOL compiled output. MTMSUBiB is the name of
the data set eonta i n i ng the COBOL I/O buffers (i f requ ired) •

For example, the link control statements for a COBOL applica
tion called "QUERY" might be:

OUTPUT
INCLUDE
INCLUDE
END

QUERY,EDX002 AUTO=COKAUTO,ASMLIB
CDMCMAIN,EDX003
MTMSUB#1,EDX003

The subsequent $UPDATE step would then speci fy the object input
to be "QUERY, EDX002", and the program output to be
"QUERY,PRGRMS", where "PRGRMS" is the Multiple Terminal Manag
er program volume.

Note: If the FTAB function is used by the application, the FTAB
object code must be linked with the application object code.
This requires that the object module CDMFTAB be included in the
linking process. The following link control statement must be
i neluded in the link control data set:

INCLUDE

For example:

OUTPUT
INCLUDE
INCLUDE
INCLUDE
END

166 SC34-0316

CDMFTAB,volume

QUERY,EDX002 AUTO=COKAUTO,ASMLIB
CDMCMAIN,EDX003
MTMSUBil,EDX003
CDMFTAB,EDX003

()

o

o

o

o

PL/I Program Preparation

The Multiple Terminal Manager contains a main routine,
CDMPMAIN, for support i ng PL/I appl i cat ions. CDMPMAIN is the
Multiple Terminal Manager stub for PL/I applications, and is
object code which enables the Multiple Terminal Manager to
invoke and pass parameters to the appl i cat i on program.

It is necessary to link CDMPMAIN with the application object
module so that the application can communicate with the Multi
ple Terminal Manager. For linking PL/I applications, this
requires that the following be used as the link control data
set dur i ng the $L INK program preparat i on step:

OUTPUT output data set,volume AUTO=PLIAUTO,ASMLIB
INCLUDE CDMPMAIN,volume
INCLUDE object data set, volume
END

For example, the link control statements for a PL/I application
ca lIed "QUERY" might be:

OUTPUT
INCLUDE
INCLUDE
END

QUERY,EDX002 AUTO=PLIAUTO,ASMLIB
CDMPMAIN,EDX003
QUERY,EDX003

The subsequent $UPDATE step would then speci fy the object input
to be "QUERY, EDX002", and the program output to be
"QUERY,PRGRMS", where "PRGRMS" is the Multiple Terminal Manag
er program volume.

Note: I f the FTAB funct ion is used by the app I i cat ion, the FTAB
object code must be linked with the application object code.
This requires that the object module CDMFTAB be included in the
linking process. The following link control statement must be
included in the link control data set:

INCLUDE

For example:

OUTPUT
INCLUDE
INCLUDE
INCLUDE
END

CDMFTAB,volume

QUERY,EDX002 AUTO=PLIAUTO,ASMLIB
CDMPMAIN,EDX003
QUERY,EDX003
CDMFTAB,EDX003

Chapter 5. Multiple Terminal Manager 167

STORAGE REQUIREMENTS

Listed below are the storage requir'ements for the Multiple Ter
minal Manager~ These requirements are in addition to the stor
age required for the Multiple Terminal Manager application
programs, the Event Driven Executive,supervisor, the supervi
sor's required device support programs and control blocks.

Program manager

Terminal server

12K (K = 1024 bytes)

lK per terminal for TTY (ASCII)
.75K per 4978/4979 display

1.75K per 3101 Model 2 display

The storage required for Multiple Terminal Manager application
programs is the larger of 6K or the size of the largest applica
tion which includes the application stub. This is the size
obtained after linking the application via $LINK.

During system configuration, the above information is used to
calculate the partition size to code on the SYSTEM statement,
PARTS= operand. For more information on the SYSTEM statement
see the SYstem Gu ide.

168 SC34-0316

o

o

o

o

0',
\ '",'

SYSTEM GENERATION CONSIDERATIONS

Volume Requ;rements

Three volumes must be provided when planning your Event Driven
Executive system for the Multiple Terminal Manager. These vol
umes are:

• PRGRMS - Multiple Terminal Manager programs volume

• MTMSTR - Multiple Terminal Manager work volume

• SCRNS - Multiple Terminal Manager screens volume

In Multiple Terminal Manager only systems, the most likelY
access frequency distribution of these three volumes would be:

(1) MTMSTR
(2) SCRNS
(3) PRGRMS

Therefore, it is recommended that these volumes be allocated so
that the MTMSTR and SCRNS volumes are adjacent to each other
wi th PRGRMS on one side or the other.

If fixed-head disks are to be used, it may be beneficial to
allocate the MTMSTR volume under the fixed head. (In this case
the location of SCRNS relative to MTMSTR is irrelevant.) T~is
is accomplished by specifying FHVOL=MTMSTR on the appropriate
system configuration DISK statement. It wi 11 not be possible to
place MTMSTR under the fixed head if the total volume size
exceeds 480 records for a 4962, or 512 records for a 4963.

Chapter 5. Multiple Terminal Manager 169

To calculate the size requirements for each of the three vol
umes, first calculate the data set requirements (see the
section "Data Set Requirements" on page 171). Add to this the
directory size in number of records, each volume requires. The
directory sizes may be calculated as follows:

Vo I um_e
MTMSTR

SCRNS

PRGRMS

Number of Directory
Records Required
1 Record

(number of screens
rounded to the next
record

+ 2) / 8
highest

(number of user programs +
rounded to the next highest
record

9) / 8

See the System Guide for a sample Multiple Terminal Manager
system configuration.

170 SC34-0316

c

(--'\1

~_/i

o

o

c

o

Data set Requirements

MTMSTORE

MTMSTORE is the Multiple Terminal Manager work file, and as
such, it contains:

• The Multiple Terminal Manager program table.

• The Multiple Terminal Manager screen table.

• A program and buffer save area for each terminal defined in
the TERMINAL file.

The si ze of the MTMSTORE fi Ie can be calculated as follows:

• Allow 10 bytes per screen in the SCRNS volume; round up to
the nearest 256-byte record.

•

•

Allow 14 bytes per program in the PRGRMS volume; round up
to the nearest 256-byte record.

Allow per terminal:

enough records to hold a copy of the largest
program in the PRGRMS volume plus 4 records; round
up to the nearest track; that is, nearest 64 records
for a 4963 disk or nearest 60 records for a 4962
disk.

This data set is in the volume MTMSTR and is normally the only
data set in that volume.

TERMINAL

This file is built with the $FSEDIT Event Driven Executive
utility. It contains one record/terminal containing the spec
ifications of a terminal.

The record prototype is:

Dvtp,Termname,Menuscrn,Y/N

Chapter 5. Multiple Terminal Manager 171

The following is a description of the record:

Dvtp The type of terminal. Specify one of the following
per termi nal:

4979
4978
3335
3101

(IBM 4979 full screen)
(ISM 4978 full screen)
(ASR 33/35 line at a time)
(IBM 3101 Model 2 in block mode)

Termname The 1 to 8 character name of the terminal. This name
must be identical with the device name specified on
the TERMINAL statement at system generat i on. Th is
name should not be the name of the Event Dr i ven Exec
ut i ve $SYSLOG dev ice.

Menuscrn The name of the data set in the SCRNS volume which
contains the screen to be displayed after an opera
tor ex i ts a transact i on or signs on. For ASCI I termi
nals, this field is ignored.

Y/N Speci fies whether the terminal uses SIGNON/SIGNOFF.

Y = This terminal is required to use the SIGNON and
SIGNOFF programs. I f a user program named S IGNON
does not appear in the program library, this termi
nal is not usable.

N = This terminal is always signed on.

Comment records are acceptable in this file as well as comments
following specification records. Comment records must have an
* in position 1.

An example of this fi Ie would be:

3101,DIS31010,MENUSCRN,N
4979,DISPLAYl,MENUSCRN,N
4978,DIS49780,MENUSCRN,Y
3335,ACCAl,MENUSCRN,Y
/*

End of specifications must be indicated with a record contain
ing /* beginning in column 1.

Before the Multiple Terminal Manager processes each record
during startup, the record is listed on the $SYSPRTR device.
When startup is complete, all terminals will have the Multiple
Terminal Manager IPL screen displayed. The TERMINAL file is in
the volume PRGRMS.

172 SC34-0316

c

o

o

o

o

Screen Format Volume - SCRNS

T his vol u me c'o n t a ins s c r e end a t a set s for full s c r e e n i mag e s
built via the $IMAGE Event Driven Executive utility. These
screens must have been bu i It with a 24 x 80 d i mens ion size. The
unprotected fields must be initialized with blanks or default
data. If a screen is mod if i ed or added to the SCRNS volume, the
Multiple Terminal Manager should be terminated and restarted
so that the Multiple Terminal Manager can initialize linkage to
the screens.

The IPLSCRN data set is displayed on each full screen terminal
after the Multiple Terminal ~1anager is started. It requests
that the operator press the ENTER key to connect the terminal
to the Multiple Terminal Manager. It should not be displayed
again.

Screen definition procedure (under $IMAGE) should always be
concluded by entering unprotected field initialization mode
using PF2, even when a fully protected screen is being defined.

User Application Program Volume - PRGRMS

All programs loaded by the Multiple Terminal Manager are loaded
using the names of the data sets in this volume. The TERMINAL
and SIGNONFL fi les are also in this volume • •
Application programs are stored in this volume as the output of
the $UPDATE Event Driven Executive utility. The names of the
programs are the names used by the operator from the MENU mode
to invoke programs and can also be used as the program parame
ter on a CALL LINK or CALL LINKON that passes control from one
program to another. (If an existing program is modified or a
new program added, the Multiple Terminal Manager should be ter
minated and restarted so that Multiple Terminal Manager can
establish linkage to these changes or additions.)

When the Multiple Terminal Manager is initiated, a program
table is built containing the name of each program data set in

~,

the PRGRMS volume.

Each program is checked at initialization time to see if the
program is too big for the program area in the Multiple Termi
nal Manager. If the program is too big for the program area in
the Multiple Terminal Manager, split the program into separate
programs using LINK or increase the size of the program area.

Chapter 5. Multiple Terminal Manager 173

SIGNONFL

This file contains sign-on records for use by the SIGNON pro
gram. The format of the file is:

Eield Name Positions Contents
SIGNON 10 1-08 Sign-on 10 number
PASSWORD 9-12 Password
USERID 13-16 User 10
USER CLASS 17-20 User Class
NAME 21-32 User Name

This file is built by using the $FSEDIT Event Driven Executive
utility. This file is in the volume PRGRMS. A /* in columns 1
and 2 denote the end of the fi Ie.

174 SC34-0316

c

C"'",' " \

'J

o

c

Multiple Terminal Manager Data Set Requirements for Execution

ITEM VOL ID

SWAP DATA SET MTMSTR

PROGRAM MGR PRGRMS

4978/4979 TERM PRGRMS
SERVER

3101 TERM SERVER PRGRMS

TTY TERM SERVER PRGRMS

MULTIPLE TERMINAL
MANAGER PRGRMS
INITIALIZATION

TERMINAL PRGRMS
SPECIFICATIONS
FILE

USER APPLICATION PRGRMS
PROGRAMS

SCREEN FORMATS SCRNS

SIGNON FILE PRGRMS

DATA SET NAME APPROXIMATE SIZE

MTMSTORE

$MTM

CDMSVR89

CDMSVROl

CDMSVR33

CDMINIT

TERMINAL

?
?

USER SPECIFIED
SCREENS

SIGNONFl

See MTMSTORE in the
Multiple Terminal
Manager Data Set
Requirements section

55 records

4 records

8 records

5 records

29 records

1 record
per 2
entries

?
?

4 records
per screen

1 record
per 2 entries

Chapter 5. Multiple Terminal Manager 175

Multiple Terminal Manager Requirements for Program Preparation

MULTIPLE TERMINAL
MANAGER STUBS:

CDMFTAB
plus

CDMEMAIN
CDMFMAIN
CDMCMAIN
CDMPMAIN

Event Driven Executive
program preparation
data set requirements

Approximate size
6 records each

2 records

Requirements for Rebuilding the Multiple Terminal Manager

MULTIPLE TERMINAL
MANAGER OBJECT

Multiple Terminal Manager
source module: CDMCOMMN
plus
Event Driven Executive
program preparation
data set requirements

176 SC34-0316

Approximate size
100 records

98 records

0
_-"",

, .. 1\

c

o

o

c

MULTIPLE TERMINAL MANAGER DEFAULTS AND HOW TO CHANGE

The Multiple Terminal Manager default system contains the fol
lowing limitations.

• Max i mum number of screens - 307

Th is number can be increased by i ncreas i ng the Input or
Output Buffer size 10 bytes per additional screen. The
Input Buffer (COMINPUT) and the Output Buffer (COMOUTPT)
are in the module CDMCOMMN.

• Maximum number of concurrently open data sets - 14

This number can be changed by altering the file table size.
The fi Ie table is in the module CDMCOMMN.

• Maximum number of terminals - 10

•

•

T his n u m be r c an be inc r eased by inc rea sin g t he t e r min a I
table si ze 12 bytes per terminal. The terminal table
(COMTERM) is in the module CDMCOMMN.

Maximum program size - 16K bytes

This size can be changed by reallocating the CDMDUMMY mod
ule to the desired size or by patching the name of your
largest application program into the PGMI name position of
the program manager's program header. The offset in $MTM of
the name CDMDUMMY is X'D8'

Naximum packed screen format size as but It by the Event
Dr i ven Execut i ve screen formatter, $IMAGE - 1024 bytes

Th iss i ze can be increased by i ncreas i ng the screen buffer
size. The screen buffer (COMPMGR) is in the modu Ie
CDMCOMMN.

• Maximum number of programs - 73

Th is number can be increased by i ncreas i ng the screen buff
er size 14 bytes per program. The screen buffer (COMPMGR)
is in the module CDMCOMMN.

Whenever the source module CDMCOMMN is changed, it must be
reassembled and the program manager must be rebuilt with the
new CDMCOM~1N object module.

Note: Changes to the screen buffer or Input Buffer must be in
increments of 256 to facilitate Event Driven Executive disk
READs.

Chapter 5. Multiple Terminal Manager 177

MULTIPLE TERMINAL MANAGER MESSAGES

NO TERMINALS ARE AVAILABLE: No valid terminal specification
records found in the TERMINAL file, or, no terminal servers can
be loaded, or, all terminals are busy. Other messages generated
i nd i cate the prob 1 em area. The manager program is term i nated.

MTMSTORE DATA SET LIMITS EXCEEDED: The specified MTMSTORE file
is too small. Delete and recreate it larger. The manager has
been terminated.

Th i s can occur after add i ng a new program with a storage
requ i rement greater than any prev i ous program's requ i rement or
after adding a new terminal or screen.

PROGRAM AREA TOO SMALL TO HOLD PGM BBBBBBBB: The manager's pro
gram area is too small to hold the named program. The program is
unusable.

Increase the program area size by reallocating CDMDUMMY or
split the program into smaller LINKed programs.

BBBBBBBB PROGRAM TYPE INVALID: The named program in the PRGRMS
volume is not a program type data set. The named program is
unusable.

SIGNON PROGRAM NOT AVAILABLE FOR TERMINAL BBBBBBBB: The spec i
fied terminal is required to sign on and off but no program
named SIGNON was found in the PRGRMS volume. The terminal is
not connected to the Multiple Terminal Manager.

MULTIPLE TERMINAL MANAGER TERMINAL FILE RECORDS: The TERMINAL
file records processed by the Multiple Terminal Manager are
1 i sted after th i s message. Any messages perta in i ng to a spec i f
ic TERMINAL fi Ie record wi 11 be displayed immediately after the
file record.

DEVICE TYPE INVALID: The dev i ce type spec if i ed for the TERMINAL
file record listed immediately before this message is invalid.
The terminal is not connected. Correct the TERtfINAL record.
Stop and restart the manager.

INVALID SIGNON CHARACTER: The SIGNON specification for the
TERMINAL file record listed immediately before this message is
not "Y" or "N". The termi nal is not connected. Correct the TER
MINAL record. Stop and restart the manager.

MENUN~ME INVALID: The primary menu name specified for the TER
MINAL file record listed immediately before this message is
invalid. The terminal is not connected. Correct the TERMINAL
record. stop and restart the manager.

178 SC34-0316

o

o

o

o

TERMINAL BBBBBBBB NOT DEFINED IN EVENT DRIVEN EXECUTIVE
SYSTEM: The specified terminal was not included in the defi
nition of terminals when the Event Driven Executive system was
generated. The terminal is not connected. Include a terminal
definition for the specified terminal when the Event Driven
Execut i ve system is generated.

TERMINAL NAME INVALID: The term i na I name spec if i ed for the TER
MINAL file record listed immediately before this message is
invalid. The terminal is not connected. Correct the TERMINAL
record. stop and restart the manager.

CONNECTED TO MULTIPLE TERMINAL MANAGER: This message is writ
ten to a non-full screen type terminal when it is connected to
the M u 1 tip 1 e T e r min alMa nag e r •

LOAD FOR SERVER BBBBBBBB FAILED, RC=CCCCC: A load failure
occurred during initialization for the specified server. Refer
to Event Driven Executive messages and codes to determine the
cause of failure. Ensure that the specified server program is
in the PRGRMS volume.

PRIMARY MENU BBBBBBBB FAILED FOR TERMINAL BBBBBBBB: A SETPAN
funct i on for the pr i mary menu i nd i cated has fa i led. Ensure that
a valid menu name is specified in the TERMINAL file for the
specified terminal.

DISK ERROR DURING INITIALIZATION, RC=CCCCC: A disk error
occurred while reading the SCRNS volume directory, the PRGRMS
volume directory, or the TERNINAl data set. Or, an error
occurred while writing to the MTMSTORE data set. Determine the
cause us i ng Event Dr i ven Execut i ve messages and codes.

SCREEN TABLE LARGER THAN INPUT BUFFER: The screen table built
during initialization exceeds the Input Buffer size.

Increase the Input Buffer size in module CDMCOMMN.

PROGRAM FILE LARGER THAN PROGRAM MANAGER BUFFER: The program
table built during initialization exceeds the size of the buff
er used by the program manager.

Increase the program manager buffer si ze in module CDMCOMMN.

TERMINAL TABLE OR WORK SPACE SIZE EXCEEDED: While building the
term ina 1 tab Ie and load i ng ser vers, the storage size or the the
maximum number of terminals (10) allowed has been exceeded. The
work space, defined in CDMINIT, is defined to allow a maximum
of 50 terminals. The terminal table size can be increased by
changing module CDMCOMMN.

BBBBBnBB SCREEN SIZE TOO LARGE: The specified screen in the
SCRNS volume wi 11 not fit in the screen manager buffer.

Inc rea set he s ere e n man age r b u f fer s i z.e inC 0 M COM M N •

Chapter 5. Multiple Terminal Manager 179

BBBBBBBB SETPAN FAILED, RC=CCCCCC: A SETPAN failed for the
screen name specified. Determine the cause of failure using the
return code and the Multiple Terminal Manager SETPAN documen
tation.

TERMINAL BBBBSBBB BUSY: A terminal specified in the TERMINAL
f i lei s connected to another program.

Try to RECONNECT at a later t 1 me.

ERROR ENCOUNTERED DURING CLOSE OF INDEXED ACCESS METHOD
CDDDDDDDD,VVVVVV), ERROR CODE=(cccccc): An error occurred dur
ing AUTOCLOSE of an Indexed Access Method data set.

INITIALIZATION ERROR: In it i a Ii zat i on has been unsuccess fu I.
Multiple Terminal Manager is terminated. This message is writ
ten to the terminal which loaded Multiple Terminal Manager.
Additional messages are printed on $SYSPRTR.

INVALID PROGRAM NA~1E: The name of the program requested from
the primary menu was not found in the Multiple Terminal Manager
program table or invalid parameters supplied on a DISCONNECT
command.

INVALID TERMINAL: The terminal name entered with a DISCONNECT
command is not a Multiple Terminal Manager terminal.

PROGRAM LOAD ERROR: An Event Driven Executive LOAD error
occurred for the requested program.

DISK READ ERROR: An internal Multiple Terminal Manager disk
Read error has occurred and results may be unpredictable.

TERMINAL BBBBBBBB RECONNECTED: The named terminal has been
reconnected to the Multiple Terminal Manager.

RECONNECT SYNTAX INVALID: The RECONNECT operator interface
fac iii ty is i nval i d and the proper syntax has not been used.

RECONNECT TERMINAL DEFINITION ERROR: The RECONNECT operator
interface facility has encountered a failure while attempting
to reconnect a terminal to the Multiple Terminal Manager. Since
initialization would have already performed all functions
necessary to include the terminal in the terminal table, the
TER~1INAL file, SCRNS volume or source table in RECONNEC has
probably been altered since the Multiple Terminal Manager was
started.

BBBBBBBB DISCONNECT: Terminal bbbbbbbb has been issued a suc
cessful DISCONNECT command.

180 SC34-0316

0 '"
, ,

0

o

MULTIPLE TERMINAL MANAGER SYSTEM FAILURE: The Multiple Termi
nal Manager task error exit routine has been entered due to a
machine or program error. The Multiple Terminal Manager
program remains active waiting for an event which will not be
posted.

The PSW and LSB at the time of failure has been saved at a
displacement of X'172' into the program storage. Register 1 in
the LSB contains the address of the failing instruction in the
case of a program check. Use Event Driven Executive operator
facilities to display storage.

An example follows showing a specification
occurred at location X'OS3C'.

MULTIPLE TERMINAL MANAGER SYSTEM FAILURE
> SA

PROGRAMS AT 00:06:24
IN PARTITION #2
$MTM 0000 *
CDMSVR33 6COO
> $D 0 172 30 X

0172: 8002 28E6 0110 1000 ODDC 053C ODAC 7361

check

0182: 0540 8lSC 00B8 ODDA 0000 OOFA 0004 0028
0192: 00S2 007C 00A6 0017 OE72 AOA2 OE72 FFFF
01A2: 0102 8026 1616 40C9 DSC9 E3C9
ANOTHER DISPLAY?

The PS~.J is 8002 at 0172 and R 1 i s OS3C on same line.

which

Chapter S. Multiple Terminal Manager 181

EXAMPLE - FILE MAINTENANCE TRANSACTION APPLICATION

Th is examp Ie cons i sts of a pa i r of programs wh i ch per form a
simple file maintenance task. The tasks it can perform are
reading or writing a single record, or setting an end of data
(EOD) marker. Both programs are presented in the following lan
guages:

• Event Driven language (see "EDl Sample Progl" on page 190
and "EDl Sample Prog2" on page 191)

• COBOL (see "COBOL Sample Progl" on page 193 and "COBOL
Sample Prog2" on page 195)

• FORTRAN (see "FORTRAN Samp Ie Prog 1" on page 197 and
"FORTRAN Sample Prog2" on page 198)

Pl/I (see "Pl/I Sample Progl" on page 200 and "Pl/I Sample
Prog2" on page 202)

The first program displays a screen which requests the fi Ie
parameters which include data set name and relati ve record num
ber. It then LINKs to the second program, passing the file
parameters.

The second program builds a file control area CFCA) from the
file parameters and performs the requested file I/O operation.
The results of the operation are displayed on the screen, and
the program ends.

The following is a detailed explanation of each program state
ment in Event Driven language and the effects of program exe
cution of the application.

The first statements in the first program are dec larat ions.

EXTRN BEEP,SETPAN,MENU,ACTION,LINK
ENTRY MTMSUB
SUBROUT MTMSUB,INBADDR,OUTBADDR,TEBADDR,IIBADDR

EXTRN declares Multiple Terminal Manager functions as
external, so they may be accessed by the application. ENTRY
declares the application as an entry point. All Multiple Termi
nal Manager applications are subroutines, as depicted in the
SUBROUT statement, called MTMSUB. They all have four parame
ters, the addresses of the Input Buffer, Output Buffer, Termi
nal Environment Block and Interrupt Information Byte. (The
latter two are not used in th i s example.)

The next instruct ions put the buffer addresses into reg i sters 1
and 2.

MOVE
MOVE

182 SC34-0316

il,INBADDR
i2,OUTBADDR o

o

o

o

The terminal is prepared to sound the audible alarm by:

CALL BEEP

A screen image is retr i eved from a disk data set and placed into
the buffers.

RC
REQSCRN

CALL SETPAN,(REQSCRN),(RC)

DATA
DATA

F ' 0 '
CL8'REQ'

A screen image consists of two portions. These are protected
data, which may be considered a screen template or form, and
unprotected data, usually considered default information. The
protected data is a screen sized (24 x 80) image consisting of
character data which is displayed, and fields of nulls used for
data entry. Default data is written by the ACTION call into
these null fields and operator inputs are read from them.
(Screen images are constructed using the $IMAGE utility. See
the Utilities, Operator Commands, Program Preparation, Mes
sages and Codes for detai led information on $IMAGE.)

Note that both the protected and unprotected parts of a screen
b u i It by $ I MAG E must be explicitly i nit i a I iz e d by the user;
fai lure to do so causes CALL SETPAN to return return code 2 when
the screen is retrieved for use by an application program.

After the call to SETPAN, the Input Buffer contains the screen
as shown in SCREEN 1, t.Jith five null fields as depicted by dol
lar signs. The $ is for illustrative purposes only, null fields
are actuallY displayed as blanks.

SCREEN 1

DATA SET, VOLUME NAME ==>$$$$$$$$,$$$$$$
REQUEST (READ, WRIT, SEOD) ==>$$$$
RELATIVE RECORD NUMBER ==>$$$$
NUMBER OF RECORDS ==>1
DATA TO BE WRITTEN:

$$$

Chapter 5. Multiple Terminal Manager 183

The Output Buffer contains data used to initialize (unpro
tected) input fields. It cons i sts of 14 blanks, followed by
READ0001, fo llowed by 80 blanks. When wr i tten to the unpro
tected portion of the screen, the terminal appears as shown in
SCREEN 2. An example of SCREEN 2 is on the following p~ges.

(14 BLANKS) READOOOl (80 BLANKS)

The Input Buffer holds the screen format, and the Output Buffer
contains fields to initialize input fields.

A test of the return code from SETPAN is done. If the return
code does not indicate a successful return, the program ends by
giving control to the primary menu routine.

IF (RC,NE,-l)
CALL MENU

ENDIF

Call the ACTION routine to display the contents of the buffers,
and read the operator response.

CALL ACTION

ACTION's effects are:

• Write the Input Buffer's contents to the terminal as pro
tected characters.

• Write the Output Buffer contents, if any, into the null
fields as unprotected characters.

• Wa it for the operator to enter data and press ENTER or a PF
key.

• Read the c~ntents of the unprotected fields, (that is the
operator input) into the Input Buffer.

This results in SCREEN 2 appearing on the terminal, where the
default characters are highlighted.

184 SC34-0316

c

o

o

o

SCREEN 2

DATA SET, VOLUME NAME ==>
REQUEST (READ, WRIT, SEOD) ==>READ
RELATIVE RECORD NUMBER ==>0001
NUMBER OF RECORDS ==>1
DATA TO BE WRITTEN:

The operator then enters data, changing the default data asso
ciated with relative record number. For example, to read the
third record of data set "K" on volume EDX013, the following
data would be entered. See highlighted fields on SCREEN 3.

SCREEN 3

DATA SET, VOLUME NAME ==>K ,EDX013
REQUEST (READ, WRIT, SEOD) ==>READ
RELATIVE RECORD NUMBER ==>0003
NUMBER OF RECORDS ==>1
DATA TO BE WRITTEN:

The operator signals that the input is ready by pressing ENTER
or a PF key. ACTION then completes the input cycle by reading
the contents of the unprotected fields into the Input Buffer.
See the following example of the Input Buffer.

Chapter 5. Multiple Terminal Manager 185

K EDX013READ0003 (80 blanks)

In order for PROG2 ("EDL Sample Prog2" on page 191, "COBOL
Sample Prog2" on page 195, "FORTRAN Sample Prog2" on page 198
and "PL/I Sample Prog2" on page 202), to receive the file
parameters they must be passed through the Output Buffer. The
next instruction moves the input data from the Input Buffer to
the Output Buffer.

MOVE (O,#2),(O,#I),(106,BYTES)

Finally, PROG2 is LINKed to.

CALL LINK,(IOPROG)

IOPROG DATA CL8'PROG2'

A call to MENU to terminate the transaction is placed after the
LINK, in case the LINK is unsuccessful.

CALL MENU

The first four lines of PROG2 are similar to those of PROGl,
except that other functions are declared external, and only
reg i ster 2 is ass i gned a buf fer address.

EXTRN FILEIO,SETPAN,MENU,ACTION
ENTRY MTMSUB
SUBROUT MTMSUB,INBADDR,OUTBADDR,TEBADDR,IIBADDR
MOVE #2,OUTBADDR

At th i s po i nt the Output Buffer (po i nted to by reg i ster #2)
contains various file parameters. A file control area eFCA) is
constructed using these parameters. For example, the request
type is moved from the Output Buffer to the FCA.

MOVE FCAREQ,(REQTYPE,#2),(4,BYTES)

FCAREQ DATA CL4'

REQTYPE EQU 14

Simi larly, other fields must be moved, and relcati ve record num
ber must be converted to numer i c.

186 SC34-0316

c

c

o

o

o

* SET UP FILE CONTROL AREA AND BUFFER.

* FILE
FCA
FCAREQ
FCADSN
FCANUM

FCAEOD

FCARRN
FCAVOL

MOVE FCAREQ,(REQTYPE,i2),(4,BYTES) REQUEST TYPE
MOVE FCADSN,(DSNAME,#2),(8,BYTES) DATA SET NAME
MOVE FCANUM,1 NUMBER OF RECS
CONVTD FCARRN,(RRN,#2),FORMAT=(4,O,I) CONVERT RRN
MOVE FCAVOL,(VOLNAME,i2),(6,BYTES) VOLUME NAME
MOVE BUFFER,(BUFFDISP,i2),(80,BYTES) DATA BUFFER

CONTROL AREA.
EQU * DATA CL4'
DATA CL8'
DATA F ' 1 '
DATA F ' 0 '
DATA F ' 0 '
DATA F ' 0 '
DATA F ' 0 '
DATA CL6'

,
,

,

REQUEST TYPE
DATA SET NAME
NUMBER OF RECORDS

EOD RELATIVE RECORD NUMBER

RELATIVE RECORD NUMBER
VOLUME NAME

* EQUATES FOR OUTPUT BUFFER DATA.
DSNAME EQU
VOLNAME EQU
REQTYPE EQU
RRN EQU

0
8
14
18

DATA SET NAME
VOLUNE NAME
REQUEST TYPE

BUFFDISP EQU 22
RELATIVE RECORD NUMBER
BUFFER DISPLACEMENT

EODRRN EQU
RCDISP EQU

102
106

EOD RRN DISPLACEMENT
RETURN CODE DISPLACEMENT

A screen image with which to display the file data is
retrieved, and the return code is checked. This screen is simi
lar to the previous screens shown with the addition of two new
fields.

CALL SETPAN,(LISTSCRN),(RC)
IF (RC,NE,-l)

CALL MENU
ENDIF

LISTSCRN DATA CL8'LST'

Chapter 5. Multiple Terminal Manager 187

At th i s po i nt the j mage dep i cted in SCREEN 4 is j n the buffers.
Since there is no default data, the Output Buffer 1S empty.

SCREEN 4

DATA SET, VOLUME NAME ==>,
REQUEST (READ, WRIT, SEOD) ==>
RELATIVE RECORD NUMBER ==>
NUMBER OF RECORDS ==>1
DATA TO BE WRITTEN:

EOD RELATIVE RECORD NUMBER ==>
RETURN CODE ==>

The actual FILEIO operation is performed, specifying the FCA, a
buffer, and a return code.

RC
BUFFER

CALL

DATA
DATA

FILEIO,(FCA),(BUFFER),(RC)

F ' 0 '
256X'0'

Note that the buffer is 256-bytes 1n length (the length of an
Event Driven Executive record) even though only the first BO
bytes are used.

Now that all the file data is available, it is placed in the
Output Buffer so that it can be displayed. The data is taken
from the FCA, the buffer and return code, and concatenated so
that it may be written into the unprotected fields of the
screen image.

* PUT DATA INTO
MOVE
MOVE
CONVTB
CONVTB
MOVE
MOVE
CONVTB

lBB SC34-03l6

OUTPUT BUFFER SO IT WILL BE DISPLAYED.
(REQTYPE,i2),FCAREQ,(4,BYTES) REQUEST TYPE
(DSNAME,i2),FCADSN,(B,BYTES) DATA SET NAME
(EODRRN,#2),FCAEOD,FORMAT=(4,0,I) CONV EOD RRN
(RRN,i2),FCARRN,FORMAT=(4,O,I) CONVERT RRN
(VOLNAME,#2),FCAVOL,(6,BYTES) VOLUME NAME
(BUFFDISP,#2),BUFFER,(80,BYTES) DATA
(RCDISP,#2),RC,FORMAT=(4,O,I) CONV RET CODE c

o

c

o

The Output Buffer now looks as follows:

K EDX013READ0003RECORD 3(72 blanks)OOOS-OOl

Both Input and Output buffers are displayed on the screen by
the following:

CALL ACTION

The following is an example of the displayed screen:

RECORD 3

SCREEN 5

DATA SET, VOLUME NAME ==>K ,EDX013
REQUEST (READ, WRIT, SEOD) ==>READ
RELATIVE RECORD NUMBER ==>0003
NUMBER OF RECORDS ==>1
DATA TO BE WRITTEN:

EOD RELATIVE RECORD NUMBER ==>0005
RETURN CODE ==>0000

A call to ACTION waits for operator input followed by an ENTER
or PF key. In th i s case no input is des ired; however, the use of
ACTION allows the user to view the screen and press ENTER after
the contents have been read. At that point the program ends.

CALL MENU

The following pages contain the applications used to perform
the example previously shown.

The first sample application uses Event Driven Language, the
second uses COBOL, the th i rd FORTRAN, and the fourth PL/I.

Chapter 5. Multiple Terminal Manager 189

EDL Sample Prog!

EXTRN BEEP,SETPAN,MENU,ACTION,LINK
ENTRY MTMSUB
SUBROUT MTMSUB,INBADDR,OUTBADDR,TEBADDR,IIBADDR
MOVE #1,INBADDR GET INPUT BUFF ADDRESS
MOVE #2,OUTBADDR GET OUTPUT BUFF ADDRESS

* BEEP UPON TERMINAL 10.
CALL BEEP

* RETRIEVE SCREEN IMAGE AND ABORT IF ERROR.
CAll SETPAN,(REQSCRN),(RC) GET SCREEN IMAGE
IF (RC,NE,-l) OK?

CALL MENU NO
ENDIF

* DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE.
CAll ACTION

* MOVE DATA FROM INPUT BUFFER TO OUTPUT BUFFER (106 BYTES).
MOVE (0,#2),(0,#I),(106,BYTES)

* LINK TO PROGRAM WHICH WILL PERFORM FILE 10.
CALL lINK,(IOPROG)

* ABORT IF LINK FAILS.
CAll MENU

* *
*
*

DATA ITEMS *
*

REQSCRN DATA Cl8'REQ' NAME OF REQUEST SCREEN
IOPROG DATA Cl8'PROG2' NAME OF 10 PROGRAM
RC DATA F'O' RETURN CODE

ENDPROG
END

190 SC34-0316

c

c

o

o

0

EDl Sample Prog2

EXTRN FILEIO,SETPAN,MENU,ACTION
ENTRY MTMSUB
SUBROUT MTMSUB,INBADDR,OUTBADDR,TEBADDR,IIBADDR
MOVE i2,OUTBADDR GET O/P BUFFER ADDR

* SET UP FILE CONTROL AREA AND BUFFER.
MOVE FCAREQ,(REQTYPE,i2),(4,BYTES)
MOVE FCADSN,(DSNAME,i2),(8,BYTES)
MOVE FCANUM,1
CONVTD FCARRN,(RRN,t2),FORMAT=(4,O,I)
MOVE FCAVOL,(VOLNAME,i2),(6,BYTES)

REQST TYPE
DATA SET NAME
NUMBER OF RECS

MOVE BUFFER,(BUFFDISP,i2),(8Q,BYTES)

CONVERT RRN
VOLUME NAME
DATA BUFFER

* RETRIEVE LISTING SCREEN AND ABORT IF ERROR.
CALL SETPAN,(LISTSCRN),(RC)
IF (RC,NE,-1)

CALL MENU
ENDIF

GOT SCREEN IMAGE OK?
NO

PERFORM FILE 10.
CALL FILEIO,(FCA),(BUFFER),(RC)

* PUT DATA INTO OUTPUT BUFFER SO IT WILL BE DISPLAYED.
MOVE (REQTYPE,t2),FCAREQ,(4,BYTES) REQUEST TYPE
MOVE (DSNAME,t2),FCADSN,(8,BYTES) DATA SET NAME
CONVTB (EODRRN,#2),FCAEOD,FORMAT=(4,O,I) CON V EOD RRN
CONVTB (RRN,#2),FCARRN,FORMAT=(4,Q,I) CONVERT RRN
MOVE (VOLNAME,12),FCAVOL,(6,BYTES) VOLUME NAME
MOVE (BUFFDISP,i2),BUFFER,(8Q,BYTES) DATA
CONVTB (RCDISP,#2),RC,FORMAT=(4,Q,I) CONV RET CODE

* DISPLAY SCREEN IMAGE AND DATA.
CALL ACTION

* END PROGRAM.
CALL MENU

* * * DATA ITEMS *
* *

* LISTSCRN DATA CL8'LST' NAME OF LISTING SCREEN
RC DATA F ' Q ' RETURN CODE
BUFFER DATA 256X'Q' DATA BUFFER
* FILE CONTROL AREA.
FCA EQU * FCAREQ DATA CL4' , REQUEST TYPE
FCADSN DATA CL8' , DATA SET NAME
FCANUM DATA F ' 1 ' NUMBER OF RECORDS

DATA F ' Q'
FCAEOD DATA F ' Q ' EOD RELATIVE RECORD NUMBER

DATA F ' Q '
FCARRN DATA F ' ° ' RELATIVE RECORD NUMBER
FCAVOL DATA CL6' , VOLUME NAME

Chapter 5. Multiple Terminal Manager 191

EDl Sample Prog2 (continued)

* EQUATES FOR OUTPUT BUFFER DATA.
DSNAME EQU 0
VOLNAME EQU 8
REQTYPE EQU 14
RRN EQU 18
BUFFDISP EQU 22
EODRRN EQU 102
RCDISP EQU 106

ENDPROG
END

192 SC34-0316

DATA SET NAME
VOLUME NAME
REQUEST TYPE
RELATIVE RECORD NUMBER
BUFFER DISPLACEMENT
EOD RRN DISPLACEMENT
RETURN CODE DISPLACEMENT

c

o

o

o

COBOL Sample Prog!

*

*

IDENTIFICATION DIVISION.
PROGRAM-ID.

MTMSUB.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.

IBM-S1.
OBJECT-COMPUTER.

IBM-S1.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 REQUEST-SCREEN PIC X(8) VALUE "REQ "
77 IO-PROGRAM PIC X(8) VALUE "PROG2 "
77 RC PIC S99 USAGE IS COMPUTATIONAL.
LINKAGE SECTION.
01 INPUT-BUFFER.

05 DATA-SET-NAME PIC X(8).
05 VOLUME-NAME PIC X(6).
05 REQUEST-TYPE PIC X(4).
05 RELATIVE-RECORD-NUMBER PIC 9999.
05 BUFFER-DATA PIC X(80).

01 OUTPUT-BUFFER.
05 DATA-SET-NAME PIC X(8).
05 VOLUME-NAME PIC X(6).
05 REQUEST-TYPE PIC X(4).
05 RELATIVE-RECORD-NUMBER PIC 9999.
05 BUFFER-DATA PIC X(80).
05 EOD-RRN PIC 9999.
05 RETURN-CODE PIC 9999.

77 TEB PIC X(lOO).
77 lIB PIC 99 CaMP.

Chapter 5. Multiple Terminal Manager 193

COBOL Sample Progl (cont i nued)

* PROCEDURE DIVISION
USING INPUT-BUFFER, OUTPUT-BUFFER, TEB, lIB.

BEGIN.
* BEEP UPON TERMINAL 10.

CALL "BEEP".
* RETRIEVE SCREEN IMAGE AND ABORT IF ERROR.

CALL "SETPAN" USING REQUEST-SCREEN, RC.
IF RC IS NOT EQUAL TO -1

CALL "MENU".
* DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE.

CALL "ACTION".
* MOVE DATA FROM INPUT BUFFER TO OUTPUT BUFFER.

MOVE CORRESPONDING INPUT-BUFFER TO OUTPUT-BUFFER.
* LINK TO PROGRAM WHICH WIll PERFORM FILE 10.

CAll "LINK" USING IO-PROGRAM.
* ABORT IF LINK FAILS.

CALL "MENU".
RETURN-POINT.

EXIT PROGRAM.

194 SC34-0316

o

0

c

COBOL Sample Prog2

*

*

IDENTIFICATION DIVISION.
PROGRAM-ID

MTMSUB.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.

IBM-S1.
OBJECT-COMPUTER.

IBM-S1.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 LIST-SCREEN PIC X(B) VALUE "LST
77 RC PIC S99 USAGE IS COMP.
77 BUFFER PIC X(256).
01 FILE-CONTROL-AREA.

05 REQUEST-TVPE PIC X (4) •
05 DATA-SET-NAME PIC X(B).
05 NUMBER-OF-RECORDS PIC S999 USAGE COMP
05 FILLER PIC S99.
05 EOD-RRN PIC S999 USAGE IS COMP.
05 FILLER PIC S99.
05 RELATIVE-RECORD-NUMBER PIC S999 USAGE
05 VOLUME-NAME PIC X(6).

LINKAGE SECTION.
01 INPUT-BUFFER PIC X(1920).
01 OUTPUT-BUFFER.

05 DATA-SET-NAME PIC X(B).
05 VOLUME-NAME PIC X(6).
05 REQUEST-TVPE PIC X(4).
05 RELATIVE-RECORD-NUMBER PIC 9999.
05 BUFFER-DATA PIC X(BO).
05 EOD-RRN PIC 9999.
05 RETURN-CODE PIC 9999.

77 TEB PIC X(100).
77 lIB PIC 99 COMP.

"

VALUE

CaMP.

Chapter 5. Multiple Terminal Manager 195

1 •

COBOL Sample Prog2 (cont; nued)

* PROCEDURE DIVISION
USING INPUT-BUFFER, OUTPUT-BUFFER, TEB, lIB.

BEGIN.
* SET UP FILE CONTROL AREA.

MOVE CORRESPONDING OUTPUT-BUFFER
TO FILE-CONTROL-AREA.

MOVE BUFFER-DATA TO BUFFER.
* RETRIEVE LISTING SCREEN AND ABORT IF ERROR.

CALL "SETPAN" USING REQUEST-SCREEN, RC.
IF RC IS NOT EQUAL TO -1

CALL "MENU".
* PERFORM FILE 10.

CALL "FILEIO" USING FILE-CONTROL-AREA, BUFFER, RC.
* PUT DATA INTO OUTPUT BUFFER SO IT WILL BE DISPLAYED.

MOVE CORRESPONDING FILE-CONTROL-AREA
TO OUTPUT-BUFFER.

MOVE BUFFER TO BUFFER-DATA OF OUTPUT-BUFFER.
MOVE RC TO RETURN-CODE OF OUTPUT-BUFFER.

* DISPLAY SCREEN IMAGE.
CALL "ACTION".

* END PROGRAM.
CALL "MENU".

RETURN-POINT.
EXIT PROGRAM.

196 SC34-0316

o

o

o

o

FORTRAN Sample Progl

*PROCESS NOCMPAT

C

SUBROUTINE MTMSUBCINBUFF, OUTBUF, TEB, lIB)
IMPLICIT INTEGER (A-Z)
INTEGER TEB(SO), lIB
INTEGER*2 INBUFF(960), OUTBUF(SI2)
EXTERNAL BEEP,SETPAN,ACTION,MENU,LINK
REAL*8 REQSCR /'REQ . '/, IOPROG /'PROG2 '/
INTEGER RC

C BEEP UPON TERMINAL 10.
C

CALL EDX(BEEP, 0)
C
C RETRIEVE SCREEN AND ABORT IF ERROR.
C

C

CALL EDX(SETPAN, 2, IADDRCREQSCR), IADDRCRC))
IF (RC.NE.-l) CALL EDXCMENU, 0)

C DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE.
C

CALL EDXCACTION, 0)
C
C MOVE DATA FROM INPUT BUFF TO OUTPUT BUFF.CI06 BYTES)
C

10
C

DO 10 1=1,53
OUTBUF(I) =

CONTINUE
INBUFFCI)

C LINK TO PROGRAM WHICH WILL PERFORM FILE 10.
C

CALL EDXCLINK, 1, IADDR(IOPROG))
C
C ABORT IF LINK FAILS.
C

CALL EDX(MENU, 0)
RETURN
END

Chapter 5. Multiple Terminal Manager 197

FORTRAN Sample Prog2

*PROCESS NOCMPAT
SUBROUTINE MTMSUBCINBUFF, OUTBUF, TEB, liB)
IMPLICIT INTEGER (A-Z)
INTEGER TEBCSO), liB
INTEGER*2 INBUFF(960), OUTBUFCSI2)
EXTERNAL FILEIO,SETPAN,ACTION,MENU
EXTERNAL $12COT,$12CIN
INTEGER BUFFER(128)
REAL*8 LSTSCR /'LST '/
INTEGER RC, FOUR/4/, RES/O/

C FILE CONTROL AREAS
INTEGER FCACI4)

C REQUEST TYPE
EQUIVALENCE (REQ,FCAC1»,CREQ1,FCAC1»,(REQ2,FCAC2»
INTEGER*4 REQ
INTEGER*2 REQ1, REQ2

C DATA SET NAMES
EQUIVALENCE CDSN, FCA(3»
INTEGER DSN(4)

C NUMBER OF RECORDS
EQUIVALENCE (NUMREC, FCA(7»
INTEGER NUMREC /1/

C END OF DATA R~LATIVE RECORD NUMBER
EQUIVALENCE (EODRRN, FCA(9»
INTEGER EODRRN

C RELATIVE RECORD NUMBER
EQUIVALENCE CRRN, FCACll»
INTEGER RNN

C VOLUME NAME

C

EQUIVALENCE (VOL, FCA(12»
INTEGER VOL (3)
CALL EDX(ACTION, 0)

C SET UP FILE CONTROL AREA.
C

DO 10 1=1,4
10 DSNCI) = OUTBUFCI)

DO 20 1=1,3
20 VOL(I) = OUTBUF(I+4)

REQI = OUTBUF(8)
REQ2 = OUTBUF(9)

C
C CONVERT RELATIVE RECORD NUMBER TO NUMERIC
C

198 SC34-0316

CALL $I2CIN(RRN,FOUR,QUTBUF(10),RES,RES,RES,RES)
DO 30 1=1,40

BUFFER(I)= OUTBUFCI+ll)

o

o

o

FORTRAN Sample Prog2 (cont i nued)

30 CONTINUE
C
C RETRIEVE LISTING SCREEN AND ABORT IF ERROR.
C

c

CALL EDX(SETPAN, 2, IADDR(LSTSCR), IADDR(RC))
IF (RC.NE.-1) CALL EDX(MENU, 0)

C PERFORM FILE 10.
C

CALL EDX(FILEIO,3,IADDR(FCA),IADDR(BUFFER),IADDR(RC»
C
C PUT DATA INTO OUTPUT BUFFER SO THAT IT IS DISPLAYED.
C

DO 40 1=1,4
OUTBUF(I)= DSN(I)

40 CONTINUE
DO 50 1=1,3

OUTBUF(I+4) = VOL(I)
50 CONTINUE

OUTBUF(8) = REQI
OUTBUF(9) = REQ2

C
C CONVERT RELATIVE RECORD NUMBER TO EBCDIC
C

CALL $I2COT(RRN,FOUR,OUTBUF(10),RES,RES,RES,RES)
DO 60 1=1,40

OUTBUF(I+11) = BUFFER(I)
60 CONTINUE
C
C CONVERT EOD RELATIVE RECORD NUMBER TO EBCDIC
C

CALL $I2COT(EODRRN,FOUR,OUTBUF(52),RES,RES,RES,RES)
C
C CONVERT RETURN CODE TO EBCDIC
C

CALL $I2COT(RC,FOUR,OUTBUF(S4),RES,RES,RES,RES)
C
C DISPLAY SCREEN IMAGE.
C

CALL EDX(ACTION, 0)
C
C END PROGRAM.
C

CALL EDX(MENU, 0)
RETURN
END

Chapter 5. Multiple Terminal Manager 199

I PL/I Sample Progl

MTMSUB: PROCEDURE (INPUT_BUFFER,
OUTPUT_BUFFER,
TEB,
lIB);

DECLARE
01 INPUT_BUFFER,

05 DATA_SET_NAME
OS VOLUME_NAME
OS REQUEST_TYPE
05 RELATIVE_RECORD_NUMBER
05 BUFFER_DATA

DECLARE
01 OUTPUT_BUFFER,

OS DATA_SET_NAME
OS VOLUME_NAME
05 REQUEST_TYPE
OS RELATIVE_RECORD_NUMBER
OS BUFFER_DATA
05 EOD_RRN
05 RETURN_CODE

DECLARE
(TEB, lIB) BINARY FIXED CIS);

DECLARE

CHARACTER (8),
CHARACTER (6),
CHARACTER (4),
CHARACTER (4),
CHARACTER (80);

CHARACTER (8),
CHARACTER (6),
CHARACTER (4),
PICTURE '9999',
CHARACTER (80),
PICTURE '9999',
PICTURE 'S999';

(SETPAN, ACTION, BEEP, LINK, MENU) ENTRY;

DECLARE
REQUEST_SCREEN CHARACTER (8) INITIAL ('REQ') STATIC;

DECLARE
PROGRAM_NAME CHARACTER (8) INITIAL ('PROG2') STATIC;

DECLARE
RETURN_CODE BINARY FIXED (IS) STATIC;

200 SC34-0316

o

o

o

o

PL/I Sample Progl (continued)

/* BEEP UPON TERMINAL 10. */
CALL BEEP;

/* RETRIEVE SCREEN IMAGE AND ABORT IF ERROR. */
CALL SETPAN (REQUEST_SCREEN, RETURN_CODE);
IF RETURN_CODE ~= -1

THEN CALL MENU;

/* DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE. */
CALL ACTION;

/* MOVE DATA FROM INPUT BUFFER TO OUTPUT BUFFER */
OUTPUT_BUFFER.DATA_SET_NAME = INPUT_BUFFER.DATA_SET_NAME;
OUTPUT_BUFFER.VOLUME_NAME = INPUT_BUFFER.VOLUME_NAMEi
OUTPUT_BUFFER.REQUEST_TYPE = INPUT_BUFFER. REQUEST_TYPE;
OUTPUT_BUFFER.RELATIVE_RECORD_NUMBER

= INPUT_BUFFER.RELATIVE_RECORD_NUMBER;
OUTPUT_BUFFER. BUFFER_DATA = INPUT_BUFFER.BUFFER_DATA;

/* LINK TO PROGRAM WHICH WILL PERFORM FILE 10. */
CALL LINK (PROGRAM_NAME);

/* ABORT IF LINK FAILS. */
CALL MENU;

END;

Chapter 5. Multiple Terminal Manager 201

I PL/I Sample Prog2

MTMSUB: PROCEDURE (INPUT_BUFFER,
OUTPUT_BUFFER,
TEB,
PF_KEY);

DECLARE
01 OUTPUT_BUFFER,

05 DATA_SET_NAME
05 VOLUME_NAME
05 REQUEST_TYPE
05 RELATIVE_RECORD_NUMBER
05 BUFFER_DATA
05 EOD_RRN
05 RETURN_CODE

DECLARE
(INPUT_BUFFER, TEB, PF_KEY)
BINARY FIXED (15);

DECLARE

CHARACTER (8),
CHARACTER (6),
CHARACTER (4),
PICTURE '9999',
CHARACTER (80),
PICTURE '9999',
PICTURE 'S999';

(SETPAN, ACTION, FILEIO, MENU) ENTRY;

DECLARE
RETURN_CODE BINARY FIXED (15) STATIC;

DECLARE
01 BUFFER

05 FIRST_BO
05 LAST_176

DECLARE

STATIC,
CHARACTER (BO),
CHARACTER (176);

LIST_SCREEN CHARACTER (B) INITIAL ('LST') STATIC;

DECLARE
01 FILE_CONTROL_AREA

05 REQUEST_TYPE
05 DATA_SET_NAME
05 NUMBER_OF_RECORDS
05 FILLERI
05 EOD_RRN
05 FILLER2
05 RELATIVE_RECORD NUMBER
05 VOLUME_NAME

202 SC34-0316

STATIC,
CHARACTER (4),
CHARACTER (B),
BINARY FIXED (15) INITIAL (1),
BINARY FIXED (15),
BINARY FIXED (15),
BINARY FIXED (15),
BINARY FIXED (15),
CHARACTER (6');

fr~
\J

c

o

o

o

PL/I Sample Prog2 (cont;nued)

/* SET UP FILE CONTROL AREA. */
FILE_CONTROL_AREA.REQUEST_TYPE =

OUTPUT_BUFFER.REQUEST_TYPEi
FILE_CONTROL_AREA.DATA_SET_NAME =

OUTPUT_BUFFER.DATA_SET_NAME;
FILE CONTROL_AREA. VOLUME_NAME =

OUTPUT_BUFFER.VOLUME_NAMEi
FILE_CONTROL_AREA.RELATIVE_RECORD_NUMBER =

OUTPUT_BUFFER.RELATIVE_RECORD_NUMBER;
BUFFER.FIRST_BO = OUTPUT_BUFFER.BUFFER_DATA;

/* RETRIEVE LISTING SCREEN AND ABORT IF ERROR. */
CALL SETPAN (liST_SCREEN, RETURN_CODE);
IF RETURN_CODE -= -1

THEN CAll MENU;

/* PERFORM FILE 10. */
CAll FllEIO (FilE_CONTROL_AREA, BUFFER, RETURN_CODE);

/* MOVE DATA TO OUTPUT BUFFER SO IT WILL BE DISPLAYED. */
OUTPUT_BUFFER.DATA_SET_NAME =

FILE_CONTROL_AREA.DATA_SET_NAME;
OUTPUT_BUFFER.VOLUME NAME =

FILE_CONTROL_AREA.VOlUME_NAME;
OUTPUT_BUFFER.REQUEST_TYPE =

FILE_CONTROL_AREA.REQUEST_TYPEi
OUTPUT_BUFFER.RELATIVE_RECORD_NUMBER

= FILE_CONTROL_AREA.RELATIVE_RECORD_NUMBER;
OUTPUT_BUFFER.BUFFER_DATA = BUFFER.FIRST_BO;
OUTPUT_BUFFER.EOD_RRN = FILE_CONTROL_AREA.EOD_RRNi
OUTPUT_BUFFER.RETURN_CODE = RETURN_CODE;

/* DISPLAY SCREEN IMAGE. */
CALL ACTION;

/* END PROGRAM. */
CALL MENU;

END;

Chapter 5. Multiple Terminal Manager 203

c
204 SC34-0316

o

0

o

CHAPTER 6. REMOTE MANAGEMENT' UTILITY

The Event Driven Executive Remote Management Utility provides
facilities for the management of a remote Series/I. The remote
Series/l is controlled by a host system. The utility waits for
a request sent from the host, and then performs the particular
function as specified by the request. Through implementation
of this utility, the concept of distributed processing can be
realized.

This chapter describes these facilities and their operation,
discusses the interface requirements, and provides information
about the installation and execution of the Remote Management
Utility.

The Remote Management Utility runs as a program in the remote
Ser i es/l and supports such funct ions as file a llocat i on and
transfer, and remote operator interaction, thus minimizing the
need for an operator at the remote Ser i es/I.

The remote Series/I is controlled by the host system via a
point-to-point or multipoint binary synchronous communication
line using the Event Driven Executive Binary Synchronous Com
munication Access Method (BSCAM).

Remote Host
Series/l System

Remote) / Host
Management / Program
Utility / (

A user-written host program communicates with the Remote Man
agement Utility via a record exchange. Through this record
exchange, the host requests function execution on the remote
system. Any system support i ng BSCAM-compat i b Ie binary synchro
nous line protocol including transparency mode, and the Remote
Management Utility record exchange interface may serve as the
host system.

Chapter 6. Remote Management Utility 205

REMOTE MANAGEMENT FUNCTIONS

The utility provides various remote management functions that
can be invoked through a request issued by the host program.
Listed here is a br i.ef descr i pt i on of the f unct ions prov 1 ded by
the utility:

AL LOCATE Allocate a d i sk/d i skette data set on the Ser i es/l

DELETE Delete a disk/diskette data set on the Series/l

DUMP

EXEC

IDCHECK

Dump storage to a d i sk/d i skette data set on the
Series/l

In it i ate execut i on of a program on the Ser i es/l

Verify identification between the host and the
Remote Management Ut 11 i ty

PASSTHRU Establ ish an interact i ve connect i on between the host
and an appl i cat i on or ut iii ty on the remote Ser i es/l

RECEIVE Rece i ve data from the host and wr i te 1 t to an
ex i st i ng d i sk/d i skette data set on the Ser i es/l

SEND Read a d i sk/d i skette data set on the Ser i es/l and
transmit it to the host

SHUTDOWN Terminate the Remote Management Utility and free up
any allocated resources; may also initiate execution
of another program

WRAP Transmit a block of data just received back to the
host

The section "Remote Management Utility Functional Operation"
on page 213 describes in detail these functions and how they
operate.

206 SC34-0316

()

o

o

o

o

HARDWARE REQUIREMENTS

The Remote Management Utility requires approximately 7K bytes
of storage plus buffer space. The default buffer space is 1024
bytes. In addition, the following are the minimum require
ments:

• 4952, 4953, or 4955 processor (64K minimum recommended)

• One of the following BSC features:

Single-line adapter (#2074 or 12075)

Multiline controller (12093) and one or two ,4-line
adapters (12094)

• Point-to-point (leased or switched) or multipoint (remote
Ser i es/1 as a tr i butary) binary synchronous commun i cat ions
line

• Disk or diskette

Disk (4962 or 4963)

Diskette (4964 or 4966)

SOFTWARE REQUIREMENTS

The Remote Management Utility executes with Event Driven Exec
utive Version 2.0. The Event Driven Executive utilities are
required for the installation-of the Remote Management Utili
ty. A user-written program is required on the host to communi
cate with the Remote Management Ut iii ty.

REMOTE MANAGEMENT UTILITY INTERFACE

The Remote Management Utility requires a user-written host
program that will provide inter-program communication between
the host system and the remote Series/1. The Remote Management
Uti lity interface is comprised of two levels of communication:
the binary synchronous communication eBSC) protocol, and a
Remote Management Utility record exchange between the host
system and the remote Ser i es/1. A feature of the record
exchange interface provides data-record blocking operations.

Chapter 6. Remote Management Utility 207

B;nary Synchronous Commun;cat;on Protocol

The Remote Management Utility uses the BSC protocol as defined
by the Event Driven Executive BSCAM. A general introduction to
binary synchronous communications and details of the line pro
tocol can be found in General Information - Binary Synchronous
Communications, GA27-3004. Specific implementations of BSC
with the Remote Management Uti lity are as follows:

• The utility sends EDT as "abort". The host program should
also send EDT to abort.

• The utility will not time out when receiving data. The host
pr9gram may send TTD, which wi 11 be responded to by NAK.

• EDT is sent whenever the utility expects a delay. The util
ity wi 11 not send TTD in the event of unforeseen delays.

• Transparent EBCDIC mode is used exclusively. The host must
be capable of communicating with transparent EBCDIC.

• Point-to-point communications (leased or switched) or
multipoint communications are supported. If multipoint
commun i cat ions are used, the ut iIi ty funct ions as a
tributary on the multipoint line.

Record Exchange

The second level of communication of the Remote Management
Ut iii ty interface is that of a record exchange between the host
and the remote Ser i es/l .

Records are transmitted between the host system and the remote
Series/l in a predefined format. As the content of the record
determines the function to be performed, this predefined for
mat ensures that all necessary information is properly commu
nicated between the host system and the remote. The host is
respons i b I e for formatt i ng records sent to the remote
Ser i es/l, and process i ng records rece i ved from the remote
Ser i es/l. After rece i vi ng a funct i on request, the ut iIi ty
sends a record containing a status code to the host signaling
the result of the function execution.

208 SC34-0316

C"
=.:l

o

o

o

c

Record Format

Each Remote Management Ut i 1 i ty record has 4 bytes at the beg i n
nlng, that are referred to as the header. The first 2 bytes of
the header contain the BSC control characters DLE STX, and are
represented as X'1002'. The third byte contains the character
'X' J identifying it as an Event Driven Executive Remote Manage
ment Utility record. The fourth byte contains a character code
identifying the record type. Figure 13 lists the various
record types. The rema i nder of the record J or the record exten
s i on, is determ i ned by the record type as spec if i ed in the
header. There are 10 types of record extensions for a Request
type record. Figure 14 on page 210 illustrates the structure of
the Remote Management Ut i 1 i ty record scheme.

The section at the end of this chapter, "CDRRM Equate Listing"
on page 292 illustrates the various record types, including the
extensions. This set of equates defining the Remote Management
Uti lity record is obtainable through copy code "COPY CDRRM".

Code Type Usage

R Request Sent by host to request a func-
tion

S Status Sent by either system to indi-
cate success or failure of a
function

C Count Sent by the remote Series/1
after transfer of a data set, to
indicate the number of data
records processed

D Data Used for transfer of a data set

P Passthru Used to pass data and data
requests between the host and an
application on the remote
Series/1

Figure 13. Remote Management Ut iIi ty Record Types

Chapter 6. Remote Management Utility 209

•

WRAP
Request

•
• (7 other requests)

4-byte header I DELETE

1002
(hex)

ALLOCATE
Request

Status
Record

Icl Lco~unt ----' U ~ecord

Iol LDa_ta -----' U ~ecord

I No Data

I Program End

I Request Data

I Text or PFK

Passthru
Record

Figure 14. Remote Management Ut iIi ty Record Scheme

210 SC34-0316

o

o

o

0 .. '" "

Record Blocking

On data transfer operations'(SEND and RECEIVE), the Remote Man
agement Utility performs two types of record blocking, which
are performed independently of one another, and thus, may be
combined. A field in the SEND and RECEIVE record header dynam
ically determines the number of aD-byte or 256-byte records to
be sent over the BSC line per transmission. In addition, if
data sets are specified as containing 80-byte records (as in
Event Driven Executive source files), the redundant 48 bytes
per line of text are not transmi tted.

The following example illustrates a 256-byte record containing
"text":

80 bytes 48 bytes 80 bytes 48 bytes
TEXT (unused) TEXT (unused)

The use 0 fbi 0 c kin g w i I lin ere a set he e f fie i e n c y wit h w hie h the
commun i cat ions 1 i ne is used. Th i sis for two reasons:

• Blocking decreases the amount of data transmitted. The
4-byte header, along with other communications control
i nformat i on is sent on 1 yonce per block.

• Blocking decreases the number of delays associated with
each message sent over a commun i cat ions line.

Provided sufficient storage resources are available,
advantageous to use large block sizes. However, the
occurs when, due to errors on the cbmmunications line,
recovery makes use of large blocks less efficient.

Buffer Allocation

i tis
point
error

The Remote Management Utility contains a constant that deter
mines the amount of storage to allocate for buffers. Records
rece i ved by the ut iii ty may not exceed th is buffer length. I f a
record is received greater than this length, a Status record
indicating this condition (BSC I/O fai lure) is sent to the host
and the function in progress (if any) is terminated. The
default buffer size is lK (1024 bytes). The section "Modifying
Defaults" on page 283 describes how this buffer size may be
modified.

Chapter 6. Remote Management Utility 211

Parameter Pass;ng

The EXEC, PASSTHRU, and SHUTDOWN functions of the Remote Man
agement Utility allow programs to be loaded for execution if
specified on the request. Many programs require parameters to
be passed to them in the form of a character field. An example
of some of the programs requ i ring parameters are $EDXASM,
$lINK, and $UPDATE, any of which may be specified on the
request. The format of the par ameter (s) to be passed is
described in program preparation via the $JOBUTIl utility in
Utilities, Operator Commands, Program Preparation, Messages
and Codes.

The parameter is coded for $JOBUTIl on the PARM statement in
columns 10 through 72. To provide the equivalent information on
the PASSTHRU request for example, you should code a parameter
of 64 characters with the same content as columns 10 through 72
of the PARM statement. The length of the parameter is 32 words.

The following two examples illustrate how parameters would be
passed to $EDXASM by way of the $JOBUTI l ut iii ty and the Remote
Management ut iii ty v i a a PASSTHRU request:

$JOBUTIL statements:

PROGRAM
PARM
DS
DS
DS
EXEC

$EDXASM,ASMLIB
ERRORS *
MYSRC,MYVOL
ASMWORK
ASMOBJ

PASSTHRU Request:

RMHBSCC DATA X'1002'
RMHID DATA C'X'
RMHTYP DATA C' R '
RMREQ DATA F ' 12'

DATA H ' 0 '
RMPRPTN DATA H ' 0 '
RMPRPGM DATA Cl8'$EDXASM'
RMPRVOL DATA CL6'ASMLIB'
RMPRLFS DATA F ' 0 '
Rf1PRBLK DATA F ' 0 '
RMPRPRMi DATA F'32'
RMPRPRM DATA Cl64'ERRORS
RMPRDS# DATA F ' 3 '
RMPRDS DATA CL14'MYSRC

DATA CLI4'ASMWORK'
DATA CLI4'ASNOBJ'

212 SC34-0316

*'

MYVOL'

c

(, ~\

'~

o

o

c

REMOTE MANAGEMENT UTILITY FUNCTIONAL OPERATION

Th i s sect i on descr i bes the remote management funct ions in
detail, including the communications flow and record formats
for each function. The section "Sample Host Programs" on page
259 illustrates several host programs which perform some of the
funct ions prov i ded by the Remote Management Ut iIi ty.

The examples in this section of "the communications flow between
the host and the remote Series/l reflect the SSCAM level of
access used by the host program and the uti lity. The DATA
statements in these examples reflect code passed to the uti lity
from the host program. The responses sent to the host from the
utility are preceded by equal signs (=). Additional detail on
the access method and SSC functions can be found in "Chapter 3.
Binary Synchronous Commun i cat ions" on page 35.

Chapter 6. Remote Management Utility 213

ALLOCATE Function

The ALLOCATE function requests the utility to allocate a
d i sk/d i skette data set on the remote Ser i es/I.

The host sends the remote Series/l a Request record with the
ALLOCATE function specified. After receiving and executing the
ALLOCATE request, the uti lity sends a Status record to the host
indicating the results of the function execution. The utility
the n wa its for a new r e que s t fro m the h o's t •

The ALLOCATE function uses the $OISKUT3 utility in performing
its function. Thus, data sets with the names: $EOXNUC,
$$EOXVOL, and $$EDXLIB may not be allocated with the ALLOCATE
function.

Required Field Descriptions

Spec i fy the fo llow i ng fie Ids for the ALLOCATE funct i on:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters OLE STX, specified as X'1002'.

RMHID

RMHTYP

RMREQ

RMADSN

RMAVOl

A I-byte alphameric field containing the header 10
'X', identifying the record as an Event Driven Execu
t i ve Remote Management Ut iIi ty record.

A I-byte alphameric field identi fying the header
type. Th is fie ld conta ins the character' R', spec i fy
i ng a Request record type.

A 2-byte numeric field specifying the request type.
For an ALLOCATE request, this field contains the num
be r 2.

An 8-byte alphameric field containing the name of the
data set to be allocated.

A 6-byte alphameric field specifying the name of the
volume on which the data set is to be allocated. If
RMAVOL is blank, the volume name defaults to the IPL
volume.

RMANREC A 4-byte (double word) numeric field containing the
number of 256-byte records to be allocated for the
data set. On 1 y the second word of th i s fie ld 'i s used.

214 SC34-0316

t~--"

~."?/

(--~\

~,~

c

o

0

o

RMADST A 2-byte numeric field identifying the type of data
set to be allocated. Specify one of the following
types:

o User def i ned
1 Data
3 Program

Figure 15 illustrates the host-remote interaction for the
ALLOCATE function. In the example, the host requests a data set
named "MYDATA" to be allocated on the volume "MYVOL". The data
set type is 1 (data) and is to contain ten 256-byte records. The
remote sends a status of -1 (successful) to the host, and the
operation is completed.

Host Program Host Remote

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'1002' TEXT ------->
RMHID DATA C'X'
RMHTYP DATA C' R '
RMREQ DATA F ' 2 '
RMADSN DATA CL8'MYDATA'
RMAVOL DATA CL6'MYVOL'
RMANREC DATA D' 10'
RMADST DATA F ' 1 '

<------- ACK*
Write End EDT ------->
Read Initial - Status <------- ENQ

ACK* ------->
R~1HTYP=' S' <------- TEXT
RMSREQ=2
RMSFN=-1

Read Continue - EDT ACK* ------->
<------- EDT

Figure 15. Commun i cat ions F low for the AL LOCATE Funct i on

Chapter 6. Remote Management Utility 215

DELETE Function

The DELETE funct i on requests the ut i 1 i ty
d i sk/d i skette data set on the remote Ser i es/l •

to delete a

The host sends the remote Series/l a Request record with the
DELETE function specified. After receiving and executing the
DELETE request, the utility sends a Status record to the host
indicating the results of the function execution. The utility
then wa its for a new request from the host.

The DELETE funct i on uses the $DISKUT3 ut i 1 i ty in performi ng its
function. Thus, data sets with the names: $EDXNUC, $$EDXVOL,
and $$EDXLIB may not be deleted with the DELETE function.

Required Field Descriptions

Specify the following fields for the DELETE function:

RMHBSCC A 2-byte hexadec i rna 1 fie ld conta i n i ng the BSC contra 1
characters DLE STX, spec if i ed as X' 1002' •

RMHID

RMHTYP

RMREQ

RMDDSN

RMDVOL

A 1-byte alphameric field containing the header ID
'X', identifying the record as an Event Driven Execu
t i ve Remote Management Ut iIi ty record.

A I-byte alphameric field identifying the header
type. Th i s field conta i ns the character' R', spec i fy
i ng a Request record type.

A 2-byte numeric field specifying the request type.
For a DELETE request, this field contains the number
3.

An 8-byte alphameric field containing the name of the
data set to be deleted.

A 6-byte alphameric field specifying the name of the
volume that contains the data set to be deleted. If
RHDVOL is blank, the volume name defaults to the IPL
volume.

216 SC34-0316

C)

c

o

0

c

Figure 16 illustrates the host-remote interaction for the
DELETE function. In the example, the host specifies a data set
named "MYDATA" to be deleted from the volul'le "MYVOL". The
remote sends a status of -1 (successful) to the host, and the
ope rat i on is comp leted.

Host Program HOll Remote

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'1002' TEXT ------->
RMHID DATA C'X'
RMHTYP DATA C ' R '
RMREQ DATA F ' 3 '
RMDDSN DATA CL8'MYDATA'
RMDVOL DATA CL6'MYVOL'

<------- ACK*
Write End EOT ------->
Read Initial - Status <------- ENQ

ACK* ------->
RMHTYP='S' <------- TEXT
RMSREQ=3
RMSFN=-1

Read Continue - EOT ACK* ------->
<------- EOT

Figure 16. Communications Flow for the DELETE Function

Chapter 6. Remote Management Utility 217

DUMP Function

The DUMP function requests the utility to dump an Event Driven
Executive storage partition to a disk/diskette data set on the
remote Ser i es/l.

The host sends the remote Series/l a Request record with the
DUMP function specified. After receiving and executing the
DUMP request, the ut i 1 i ty sends a Status record to the host
indicating the results of the function execution. The utility
then wa its for a new request from the host.

Required Field Descriptions

Spec i fy the fo llow i ng fie Ids for the DUMP funct ion:

RMHBSCC

RMHID

RMHTVP

RMREQ

RMDPDSN

RMDPVOL

filler

RMDPPTN

A 2-byte hexadecimal field containing the BSC
control characters DLE STX, speci fied as X' 1002'.

A I-byte alphameric field containing the header ID
'X', identifying the record as an Event Driven Exec
ut i ve Remote Management Ut i 1 i ty record.

A I-byte alphameric field identifying the header
type. This field contains the character 'R', speci
fy i ng a Request record type.

A 2-byte numeric field specifying the request type.
For a DUMP request, this field contains the number 4.

An 8-byte alphameric field containing the name of a
previously allocated data set into which the storage
of the part it i on is to be dumped.

A 6-byte alphameric field specifying the name of the
volume containing the dump data set. If RMDPVOL is
blank, the volume name defaults to the IPL volume.

A I-byte reserved field (unused).

A I-byte numeric field specifying the partition to
be dumped. Specify one of the following:

-1
1-8

Remote Management Ut iIi ty part it i on
Specific partition

218 SC34-0316

()

c

o

0

o

Figure 17 illustrates the host-remote interaction for the DUMP
funct ion. In the examp Ie, the host requests that part i t i on 1 be
dumped to the data set "MYDATA" on the volume "MYVOL". The
remote sends a status of -1 (successful) to the host, and the
operation is completed.

Host Program Host Remote

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'1002' TEXT ------->
RMHID DATA C'X'
RMHTYP DATA C'R'
RNREQ DATA F ' 4 '
RMDPDSN DATA CL8'MYDATA'
RMDPVOL DATA CL6'MYVOL'

DATA H ' 0 '
RMDPPTN DATA H' 1 '

<------- ACK*
Write End EOT ------->
Read Initial - Status <------- ENQ

ACK* ------->
RMHTVP='S' <------- TEXT
RMSREQ=4
RMSFN=-1

Read Continue - EOT ACK* ------->
<------- EOT

Figure 17. Commun i cat ions F low for the DUMP Funct ion

Chapter 6. Remote Management Utility 219

EXEC Function

The EXEC funct i on requests the ut iii ty to load and invoke
execut i on of a program on the remote Ser i es/I.

The hosts sends the remote Series/I a Request record with the
EXEC function specified. After receiving and executing the
EXEC request, the utility sends a Status record to the host
indicating the results of the function execution. The utility
then wa i ts for a new request from the host.

If the program specified by the host requires a parameter and
the parameter is not supplied, the load (via LOAD) of the pro
gram will fail. For further information on parameter passing,
refer to the section "Parameter Passing" on page 212.

Required Field Descriptions

Specify the following fields for the EXEC function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters OLE STX, specified as X'I002'.

RMHID

RMHTYP

RMREQ

filler

RMXFlG

A I-byte alphameric field containing the header 10
'X', identifying the record as an Event Driven Execu
t i ve Remote Management Ut iii ty record.

A I-byte alphameric field identifying the header
type. Th i s fie ld conta i ns the character' R', spec i fy
i ng a Request record type.

A 2-byte numeric field specifying the request type.
For an EXEC request, th is field conta i ns the number 9.

A 2-byte reser ved fie ld (unused).

A I-byte numeric field containing the RMXFlGl and
RMXFlGW bits. RMXFlGl and RMXFlGW correspond to the
usage of the lOGMSG and WAIT parameters of the Event
Driven language lOAD instruction.

RMXFLGl - When set on, this bit indicates that a "pro
gram loaded" message is to be printed on the terminal
which loaded the utility. The value for RMXFlGl when
set on is X'40'.

220 SC34-03I6

,r-~\

~~y!

c

o

o

c

RMXPTN

RMXPGM

RMXVOL

RMXLFS

RMXF LGW - When set on, th is bit i nd i cates that the
utility is to wait for the completion of the program
before sending a status record to the host. Other
wise, the program executes asynchronously with the
utility, and the utility sends a status record after
invoking the LOAD instruction. If the utility waits
for the completion of the program, the PROGSTOP code
from the program is returned in the RMSST fie Id of the
Status record. The value for RMXFLGW when set on is
X'20'.

A I-byte numeric field specifying the partition the
program is to run in. Specify one of the following:

-1
o
1-8

Remote Management Ut iii ty part i t i on
Any partition
Specific partition

An 8-byte alphameric field specifying the program to
be executed.

A 6-byte alphameric field specifying the name of the
volume which contains the program. If RMXVOL is
blank, the volume name defaults to the IPL volume.

A 2-byte numeric field specifying the amount of free
space (i n bytes) to pass to the program.

RMXPRMi A 2-byte numeric field specifying the length of the
parameter (s), in words, to pass to the program. Th is
field must be zero if no parameters are passed.

RMXPRM

RMXDSi

RMXDS

A variable length field containing the parameter(s)
to be passed to the program. The length of th i s fie ld,
in words, must correspond to the value contained in
the RMXPRNi fie ld. See the sect i on "Parameter
Passing" on page 212 for details on this field.

A 2-byte numeric field specifying the number of data
set names to pass to program. The maximum number of
data sets that may be specified is nine. This field
must be zero rf no data set names are passed.

A var i ab Ie number 0 f 14-byte a lphamer i c fie Ids
specifying the data set and volume names to be passed
to the program. The first eight bytes conta i n the data
set name, and the last six bytes contain the volume
name. If the volume name is blank, the name of the
volume defaults to the IPL volume. The number of data
set and volume names specified must correspond to the
value contained in the RMXDSi field.

Chapter 6. Remote Man~gement Utility 221

Figure 18 illustrates the host-remote interaction for the EXEC
function. In the example, the host specifies a program named
"MVPROG" on the volume "MVVOl", is to be executed in partition
1 wi th 256 bytes of free space passed to the program. The RMXFlG
field specifies that both RMXFlGl and RMXFlGW bits are set on.
No parameters or data sets are passed to "MVPROG". The program
ends with a return code of -1. The remote sends a status of -1
(successful) to the host, along with the return code and the
operation is completed.

Host Program Host Remote

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'lOO2' TEXT ------->
RMHID DATA C ' X '
RMHTVP DATA C ' R '
RMREQ DATA F ' 9 '

DATA F ' 0 '
RMXFlG DATA X'60'
RMXPTN DATA H' 1 '
RMXPGM DATA Cl8'MVPROG'
RMXVOl DATA Cl6'MVVDl'
RMXlFS DATA F'256'
RMXPRMi DATA F' 0 '
RMXPRM EQU *
RMSDS# DATA F' 0 '
RMSDS EQU *

<------- ACK*
l~ r i t e End EOT ------->
Read Initial - Status <------- ENQ

ACK* ------->
RMHTVP='S' <------- TEXT
RMSREQ=9
RMSFN=-l
RMSST=-1

Read Continue - EDT ACK* ------->
<------- EDT

Figure 18. Commun i cat ions F low for the EXEC Funct i on

222 SC34-0316

t~\

~)

n ', V

o

o

o

IDCHECK Function

The IDCHECK function allows the host and the remote system to
verify each others identification.

The host sends the remote Series/l a Request record with the
IDCHECK function and the host 10 specified. The utility com
pares this 10 with a constant defined in the uti lity as the host
ID. If the IDs match, the uti lity returns a status record which
contains the 10 of the remote system, which is another con
stant. If the IDs do not match, an error status is returned to
the host and the ID of the remote Series/l is not returned. In
either case, after the status record is sent to the host, the
ut i 1 i ty then wa its for a new request from the host.

The default host 10 for the host system is "HOSTRMUX", and
"REMTRMUX" is the default ID of the remote system.

Required Field Descriptions

Specify the following fields for the IDCHECK function:

RMHBSCC A 2-byte hexadec i rna 1 fie ld conta i n i ng the BSC contra 1
characters DLE STX, specified as X'l002'.

RMHID

RMHTVP

RMREQ

RMICHK

A I-byte alphameric field containing the header ID
'X', identifying the record as an Event Driven Execu
t i ve Remote Management Ut i 1 i ty record.

A I-byte alphameric field identifying the header
type. Th is fie Id conta i ns the character 'R', spec i fy
i ng a Request record type.

A 2-byte numeric field specifying the request type.
For an IDCHECK request, this field contains the num
ber 6.

An 8-byte a lphamer i c fie ld spec i fy i ng the host 10.

Chapter 6. Remote Management Utility 223

Figure 19 illustrates the host-remote interaction for the
IDCHECK function. In the example, the host specifies the ID
"HOSTRMUX". The remote validates the host ID , sends a status
of -1 (successful) to the host along with the remote system's
ID, "REMTRMUX", thus comp let i ng the ope rat ion.

Host Program Host Remote

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'1002' TEXT ------->
RMHID DATA C'X'
RMHTYP DATA C' R '
RMREQ DATA F ' 6 '
RMICHK DATA C'HOSTRMUX'

<------- ACK*
Write End EOT ------->
Read Initial - Status <------- ENQ

ACK* ------->
RMHTYP='S' <------- TEXT
RMSREQ=6
RMSFN=-l
RMSRID='REMTRMUX'

Read Continue - EOT ACK* ------->
<------- EOT

Figure 19. Communications Flow for the IDCHECK Function

224 SC34-0316

o

(--~ I \

~c-_yI

o

o

o

o

PASSTHRU Funct;on

The PASSTHRU function provides the host with an interface which
s i mu lates the capab iii ties of a term ina I connected to a
Series/I. Through this interface, the host can interact with
the Event Driven Executive supervisor by issuing operator com
mands, or by interacting with a program as if that program was
loaded from a terminal on the Series/I. The host's interaction
wi th the superv i sor or a program is conducted ina PASSTHRU
session.

Most programs which do not require full screen terminal sup
port, including most Event Driven Executive utilities may be
used with the PASSTHRU function. Characteristics of programs
which prevent programs from running under the PASSTHRU func
tion are discussed in the section "Considerations on Using
PASSTHRU" on page 237.

An example of the use of PASSTHRU could be a host program that
formats a host terminal to look like a remote Series/l termi
nal. The operator on the host system could then interact with
the program as if the terminal was on the remote Series/I.

The PASSTHRU function is initiated by the host sending a
PASSTHRU request to the utility. After the request is sent, a
ser i es of records are exchanged between the host and the ut ili
ty, similar to the way messages are written to and read from a
terminal. This procedure will be discussed in two parts:

• Estab l i sh i ng a PASSTHRU Sess ion

• Conduct i ng a PASSTHRU sess i on

Establishing a PASSTHRU Session

As was previously discussed, a PASSTHRU function is initiated
by the host send i ng a PASSTHRU request to the ut iii ty. The ses
sion is established after the host receives a successful Status
record and an EDT. The PASSTHRU request may specify (RMPRPGM
field) one of two ways of establishing a session:

• Commun i cat i on wi th the Event Dr i ven Execut i ve superv i sor

• Communication with a program which the utility will load

Chapter 6. Remote Management Utility 225

If a session with the supervisor is established, the utility
will issue an "attention" (as if the attention key on the ter
minal was pressed). Following the attention, the PASSTHRU ses
sion will be conducted with the terminal on the host receiving
the caret symbol (», and continued by the operator entering an
operator command, for example $L.

If a session with a program is established, the host specifies
the name of the program and the program is loaded by the ut ili
ty. The PASSTHRU session wi 11 be conducted with the host inter
act i ng with the program.

The following fields must be specified on the PASSTHRU request
to establ i sh a PASSTHRU sess i on:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'I002'.

RMHID A I-byte alphameric field containing the header 10
'X', identifying the record as an Event Driven Execu
t i ve Remote Management Ut iIi ty record.

RMHTYP A I-byte alphameric field identifying the header
type. This field contains the character 'R', specify
i ng a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For a PASSTHRU request, this field contains the num
be r 12.

RMPRBLK A 2-byte numeric field indicating whether the host is
to recei ve blocked records from the remote. A value of
o specifies that records are unblocked. A value
greater than 0 specifies the size, in bytes, of the
record block (size of "Text or PF Key" extension after
the RMPTYP fie ld) • See the sect i on "PASSTHRU
Blocking" on page 237 for detai Is on this field.

RMPRFLG A I-byte reserved field (unused).

RMPRPTN A I-byte numeric field specifying the partition the
program is to run in. Specify one of the following:

-1
o
1-8

Remote Management Ut iii ty part it i on
Any partition
Specific partition

RMPRPGM An 8-byte alphameric field speci fying the name of the
program or utility to interact with the host. If this
field is blank, a session with the Event Driven Execu
tive is established.

RMPRVOL A 6-byte alphameric field specifying the name of the
volume a,lhich contains the program or utility. If
blank, the name defaults to the IPL volume name.

226 SC34-0316

(~ .. '

'J

c

O.,! , "1

o

0.', , ,

RMPRLFS A 2-byte numeric field specifying the amount of free
space (i n bytes) to pass to the program.

RMPRPRMt A 2-byte numeric field specifying the length of the
parameter(s), in words, to pass to the program. This
field must be zero if no parameters are passed.

RMPRPRM A variable length field containing the parameter(s)
to be passed to the program. The length of th is fie ld,
in words, must correspond to the value contained in
the RMPRPRMt fie ld. See the sect i on "Parameter
Passing" on page 212 for detai Is on this field.

RMPRDSi A 2-byte numeric field specifying the length of data
sets to pass to the program. The max i mum number of
data sets that may be specified is nine. This field
must be zero if no data sets are passed.

RMPRDS A variable number of 14-byte alphameric fields
specifying the data set and volume names to be passed
to the program. The first eight bytes conta in the data
set name, and the last six bytes contain the volume
name. If the volume name is blank, the name of the
volume defaults to the IPL volume. The number of data
set and volume names specified must correspond to the
value conta i ned in the RMPRDSt field.

Figure 22 on page 241 illustrates the host-remote interaction
in estab Ii sh i ng a PASSTHRU sess i on.

Conducting a PASSTHRU Session

Once the PASSTHRU sess ion is estab 1 i shed, the sess ion is
conducted with Passthru type records exchanged between the
host and the remote Series/I. The Passthru records provide
information to and receive information from the host program,
as if the host program were a terminal on the remote Series/I.
Four Passthru records are defined to provide this information.
These records are descr i bed as fo llows:

• Text or Program Function (PF) Key - Passthru record which
passes messages or program funct i on keys.

• Request for Data - Passthru record wh i ch i nd i cates data
should be sent.

•

•

Program End - Passthru record which indicates termination •

No Data - Passthru record which indicates no messages are
are available.

Chapter 6. Remote Management Utility 227

The content and format of these records is discussed in the
section "Passthru Record Types" on page 232.

Figure 20 on page 230 graphically illustrates how a PASSTHRU
session is conducted. In this illustration, each vertical line
represents a "state" the host may be in at any time during the
session. The name attached at the top of each vertical line is
the name of the state. The state of the host may change by one
of the following:

• Rece i vi ng a Passthru record from the ut iii ty. Th i sis
represented by a solid horizontal line with an arrow point
i ng to the new state.

• Sending a Passthru record to the utility. This is repres
ented by a horizontal line of dashes with an arrow pointing
to the new state.

• A change of state with no Passthru record transfer. This is
represented by a dotted line with an arrow pointing to the
new state.

The PASSTHRU sess i on beg ins with the host in the state
"READTEXT" as shown in the figure. The host issues a "read" to
the communications line and will receive either a "Text or PF
Key", "Request for Data", or "Program End" record. The type of
record the host rece i ves is determ i ned by the term ina I act i vi ty
occurr i ng in the remote Ser i es/l.

If the host receives a Text or PF Key record, data is being sent
to the host. The program (or the supervisor) has issued a
PRINTEXT or other terminal I/O instruction, and the message is
transmi tted to the host as if the host were a termi nal. As shown
in the figure, the state of the host changes from "READTEXT" to
"READING" because the host received a Text or PF Key record.
The state then changes back to "READTEXT". Effectively the host
rema ins in the "READTEXT" state as long as Text or PF Key
records are received.

If the host receives a Request for Data record, data is needed
from the host. The program (or the supervisor) has issued a
READTEXT or other terminal I/O instruction, and requires data
from the host as if the host were a terminal. As shown in the
figure, the state of the host changes from "READTEXT" to "PGM
NEEDS DATA". Note that an EDT follows the the Request for Data
record. The host must read the EDT also.

In the host's current state, "PGM NEEDS DATA", the host must
send a Text or PF Key record followed by an EDT. The Text or PF
Key record the host sends may contain either text or a PF key
(the host, as a terminal, has entered text or a program func
t i on key in response to Request for Data).

228 SC34-0316

o

o

o

o

I,', 0'·

If the has'\: sends text, the state of the host changes from "PGM
NEEDS DATA" back to "READTEXT". If the host sends a program
function key, the host goes to the state "PFK SENT". The host
issues a read to the communications line and will receive a
Request for Data record followed by an EDT. This Request for
Data is sent to the host because the original request was not
satisfied by the program function key. As a result, the host is
now in the state "SEND TEXT". The host must send a Text or PF
Key record which contains text, followed by an EDT. The host is
then back to the state "READTEXT".

The last poss i b iii ty from the state "READTEXT" is that the host
will rece i ve a Program End record, fo llowed by an EDT. Th is
i nd i cates either the program, the operator command, or an
attention exit has completed. The host changes from the state
"READTEXT" to "CONTINUE 1". At th is po i nt, the host must deter
mine whether the PASSTHRU sess i on shou Id cont i nue.

If the PASSTHRU session was with a program and the program has
ended (while in the "CONTINUE 1" state), the host would most
likely decide not to continue. If the session was with the
supervisor and a $L command was successfully entered, the host
would most likely decide to continue the session and communi
cate with the program which was loaded.

To term i nate the PASSTHRU sess ion, the host sends a Program End
record, followed by an EDT. This changes the state of the host
from "CONTINUE ?" to "EXIT". The PASSTHRU sess i on is now termi
nated and the Remote Management ut iii ty will wa i t for a new
request from the host. To continue the session, the host should
send a Request for Data record followed by an EDT. The state of
the host then changes from "CONTINUE ?" to "ACTIVITY 1".

At t his poi nt, the uti 1 i t y de t e r m i.n e s i f the rei san y t e r min a I
act i vi ty on the remote Ser i es/l for the host. I f there is
activity, one of the three Passthru records which can be
received from the "READTEXT" state will be received by the
host. These three records are Text or PF Key, Request for Data,
or Program End. The state of the host will change as it would
from the state "READTEXT".

If there is no terminal activity, the host will receive a No
Data record followed by an EDT, and the host's state changes
from "ACTIVITY 1" to "CONTINUE 1". The host may then determine
again whether it should continue. If the program in the remote
Series/l has any delays in performing terminal I/O while the
h 0 s tis i nth e " CON TIN U E 1" 5 tat e, the h 0 s t may c han g e f r om
"CONTINUE 1" to "ACTIVITY 1" and back again several times. How
ever, if no acti vity ever occurs, the host must eventually send
a Program End record and termi nate the PASSTHRU sess i on.

Chapter 6. Remote Management Utility 229

READTEXT

READING

Recv "Text or PFK"
x------------------------>
< •••••••••••••••••••••

PGM NEEDS
DATA

Recy "Req Data" & EDT
x-------------------------------->

Text &
Send "Text or PFK" - EDT

<----------------------------
Send

Utility to Host
Host to Utility
Change of State
(no record transfer)

PFK
SENT

PF Key
"Text or PFK" - & EDT

--------------------------->-
SEND
TEXT

Text &
Send "Text or PFK" - EDT Recv "Req Data" & EDT

<---------------------------- <

CONTINUE
?

Recv "Pgm End" & EDT Send "Pgm End" & EOT ~
XIT

x---------------------------------> ----------------------->

ACTIVITY
?

Send "Req Data" & EDT
------------------------>-

Recv "No Data" & EDT
<-----------------------------x NO

ACTV

< .. x ACTV

r"\
~~

Figure 20. log i c F low of a PASSTHRU Sess i on 0

230 SC34-0316

o

o

c

The preceding discussion and Figure 20 on page 230 summarizes
the flow of a PASSTHRU session. The only addition to this is
that of a severe error be i ng encountered, in wh i ch case the
host may receive or send a status record followed by an EDT. An
example of where this error condition could occur is if the
host sends an invalid Passthru record. The uti lity wi 11 respond
to this invalid record with a Status record. Similarly, the
host may send a 4-byte Status record (preceded by "abort" if
necessary). In either case, the PASSTHRU sess ion is termi nated
and the utility will wait for a new request.

The following is the format of the status record sent by the
host:

RMHBSCC
RMHID
RMHTYP

DATA X'1002'
DATA C'X'
DATA C'S'

Chapter 6. Remote Management Utility 231

Passthru Record Types

This section describes in detail the format and content of the
four types of Passthr u records prey i ous I y ment i oned.

Text or Program Function Key

This record is comprised of two segments. The first six bytes,
or the main segment, identifies this record as a Passthru Text
or Program Function (PF) Key record. Following the main segment
is one or more text or PF key segments. The following is an
i llustrat i on of these two segments:

Main segment:

RMHBSCC
RMHID
RMHTYP
RMPTYP

DATA X'l002'
DATA C'X'
DATA C'P'
DATA F'l'

Text or program function key segment:

RMPST
RMPTXTL
RMPTXT

DATA F'nnnn'
DATA F'nnnn'
DATA C'xxxx'

In the main segment, all values are constants as shown. The
text or program function key segment contains the information
to be transferred:

RMPST

RMPTXTL

RMPTXT

A 2-byte value of the return
contains a value only on records
host.

code. This field
rece i ved by the

A 2-byte numeric field specifying either the length
of the text, or indicating a PF key is being sent.

Either a variable-length alphameric field
containing text, or a 2-byte numeric field contain
ing the PF key value.

I f the Text or PF Key record is not blocked, it will conta i none
of each segment. If the record is blocked, it will contain one
main segment followed by more than one text or program function
key segments. All records sent by the host are unb locked.
Records rece i ved by the host may be blocked if spec if i ed on the
PASSTHRU request. Details on how to specify blocking is dis
cussed in the sect i on "PASSTHRU Block i ng" on page 237.

232 SC34-0316

o

o

o

()

o

When the host sends a Text or PF Key record, the record may con
tain either text (the host as a terminal has entered text), or a
PF key (the host as a terminal has entered a program function
key). If text is sent, the length of the text is specified in
the RMPTXTL field, and the text is specified in the RMPTXT
field. The RMPST field is not used.

The following example illustrates a record sent by the host
wh i ch conta i ns the text "MESSAGE FROM HOST PROGRAM":

Text record sent by the host:

RMHBSCC DATA X'1002'
RMHID DATA C'X'
RMHTYP DATA C' P'
RMPTYP DATA F ' 1 '
RNPST DATA F ' 0 ' (IGNORED)
RMPTXTL DATA F'2S'
RMPTXT DATA C'MESSAGE FROM HOST PROGRAM'

When the host sends a program function key, the value of the
RMPTXTL field is set to -1 and the program function key is spec
ified as a 2-byte numeric value in the RMPTXT field. A PF key
value of 0 is the equivalent of an "attention".

The following example illustrates a program function key 3
be i ng sent by the host:

Program function key record sent by host:

RNHBSCC DATA X'1002'
RMHID DATA C'X'
R~1HTYP DATA C'P'
RNPTYP DATA F ' 1 '
RMPST DATA F ' 0 ' (IGNORED)
RMPTXTL DATA F ' -1 ' (INDICATES PF KEY)
RNPPF DATA F ' 3 ' PF KEY 3

All Text or PF Key records recei ved by the host wi 11 always con
tain text; the host will never receive a program function key.
Each Text or PF Key record begins with the 6-byte main segment
followed by one or more text segments. The fields in each text
segment are def i ned as fo llows:

RMPST A 2-byte numer i c conta in i ng the return code
associated with the text. For example, the return
code i nd i cates whether the text is to appear on a new
line. Some return codes ha~e no text associated with
them. For a complete description of the possible
return codes, refer to virtual terminal communi
cations return codes as described for the READTEXT
instruction in the Language Reference.

Chapter 6. Remote Management Utility 233

RMPTXTL

RMPTXT

The return codes which are applicable are:

X'BFnn' LINE=nn received

X'BEnn' SKIP=nn received

-2 Line received (no CR)

-1 New line received

A 2-byte numeric field containing the text length.
If there is no text, t~is field will contain the val
ue O.

A variable-length alphameric field containing the
text received by the host. The length of this field,
in bytes, is the value of RMPTXTL. If RMPTXTL is an
odd number, one byte of blanks (X'40') follows the
text.

If records are blocked, multiple text segments are received on
a Text or PF Key record. The host must determine the length of
the record in order to process each segment. Figure 21 on page
235 is an example of the records the host receives from a pro
gram which executes a PRINTEXT instruction.

234 SC34-0316

c

()

c

o

C')

o

Issued by program on remote Series/I:

PRINTEXT 'ENTER COMMAND',SKIP=l

Passthru record received by host
with no blocking:

RMHBSCC
RMHID
RMHTYP
RMPTYP
RMPST
RMPTXTL

RMHBSCC
RMHID
RMHTYP
RMPTYP
RMPST
RMPTXTL
RMPTXT

DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

X'l002'
C'X'
C'P'
F ' 1 '
X'8EOI'
F ' 0 '

X'l002'
C'X'
C'P'
F ' I '
F'-2'
F'13'

(SKIP=I)
(NO TEXT)

C'ENTER COMMAND'
C' , (PAD)

Passthru record received by host
with blocking:

RMHBSCC
RMHID
RMHTYP
RMPTYP

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

X'I002'
C'X'
C'P'
F ' I '
X'BEOI'
F ' 0 '
F'-2'
F ' 13 '

(SKIP=!)
(NO TEXT)
(NEXT SEGMENT)

C'ENTER COMMAND'
C' , (PAD)

Figure 21. Example of Passthru Records Received by Host

Chapter 6. Remote Management Utility 235

Request for Data

The Request for Data record is a 6-byte record which contains
constant values. A Request for Data record is always followed
by an EDT.

The followi ng is the format of the Request for Data record:

RMHBSCC
RMHID
RMHTYP
RMPTYP

Program End

DATA
DATA
DATA
DATA

X'l002'
C'X'
C'P'
F ' 2 '

The Program End record is a 6-byte record which contains con
stant values. A Program End record is always followed by an
EDT.

The following is the format of the Program End record:

RMHBSCC
RMHID
RMHTYP
RMPTYP

No Data

DATA X'l002'
DATA C'X'
DATA C'P'
DATA F'3'

The No Data record is a 6-byte record which contains c~nstant
values. A No Data record is always followed by an EDT.

The following is the format of the No Data record:

RMHBSCC
RMHID
RMHTYP
RMPTYP

DATA X'l002'
DATA C'X'
DATA C'P'
DATA F'4'

236 SC34-0316

o

o

o

c

PASSTHRU Blocking

When Passthru records are blocked, the communications line is
used more efficiently. Without blocking, each Text or PF Key
record contains only one text segmen~. With blocking, each
record may contain multiple text segments. Through use of
blocking, the amount of information and the number of records
transm i tted over the commun i cat ions 1 i ne is reduced. Thus
blocking allows more efficient usage of the communications
line, especially for PASSTHRU sessions in which the host
receives many consecutive lines of output, such as a result of
a "list" command to a utility.

To use PASSTHRU blocking, the host must determine the length of
the Text or PF Key record and process each text segment until
the end of the record is reached.

The host specifies blocking on the PASSTHRU request in the
RMPRBLK field. If this field is set to zero blocking is not per
formed. A value greater than zero indicates the maximum length
of the text segments which the host can process. To determine
the value for the RMPRBLK field, start with the si ze of the
buffer at the host. Subtract 6 from the size of the host buffer
for the 6-byte rna in segment of each record. Then subtract 2
more to allow space for the ETX plus one byte for word align
ment. The resulting number is the maximum blocking size the
host may use. This number would then be specified in the
RMPRBLK field of the PASSTHRU request. The utility will use
this value if it can. If, however, the utility does not have a
buffer of sufficient size to provide records of the size
requested, the utility will block to the largest size it can
handle. Refer to the section "Modifying Defaults" on page 283
for additional information on the maximum blocking size of the
utility.

If a single text record should exceed the size specified for
RMPRBLK, the utility will send that record to the host. This
may resu 1 tin a "wrong length record" cond it ion; the host
should ensure that it can handle the longest length record
expected from the utility. For example, if the longest text
length is 132 bytes, a minimum block size of 136 would be suffi
c i ent for a 11 records.

Considerations on Using PASSTHRU

As mentioned earlier, most programs can be used with the
PASSTHRU funct i on of the Remote Management Ut iIi ty. In th is
sect ion, cons i derat ions on the use of the PASSTHRU funct i on are
discussed. These include a discussion of restrictions on the
use a f the PASSTHRU funct i on and programm i ng techn i ques.

Chapter 6. Remote Management Utility 237

The PASSTHRU function uses the virtual terminal support of the
Event Driven Executive, and therefore has any restrictions
inherent in th i s support. The pr i mary one is that stat i c
screens are not supported, therefore programs requ i ring stat i c
screens can not be run under the PASSTHRU funct ion. Th is
includes such programs as the full screen editor, $FSEDIT.
Another restr i ct i on is that message length may be no longer
than 254 bytes.

The utility allows the host to transmit a program function key
or an attention only when the remote is already requesting
data. Therefore output from the remote may not be "interrupted"
by an "attent ion", as it cou ld be on a loca 1 term ina 1. For exam
ple, a listing produced by the $DISKUT2 utility could not be
interrupted by an "attent i on" and cancel command.

If a program stops communicating with the terminal which loaded
it, and waits on the terminal to enter commands by way of "at
tent i on" or program funct i on keys, it will not run direct 1 y
under the PASSTHRU funct i on. Th i s occurs because the Remote
Management Utility will wait indefinitely on a "READTEXT" to
the virtual channel while the remote program is waiting on an
attention or PF key. When this happens, this is referred to as a
deadlock situation. Programs which do this include the follow
i ng:

$DEBUG
$TRAP
$LOG
$BSCTRCE
STERMUT3 (Attention-entered commands)
SIOTEST (Attention-entered commands)
CAlCDEMO (Sample program)

A program has been provided L..Jhich wi 11 break the deadlock situ
ation when it occurs. The program name is $RMUPA. It must be
started under the PASSTHRU funct i on pr i or to start i ng a
PASSTHRU session with one of the programs which may have this
problem. $RMUPA will cause a "disconnect", resulting in a Pro
gram End Passthru record being received at the host whenever
the following sequence of events occurs:

1. No activity has occurred over the virtual channel for 20
seconds.

2. The utility is waiting on completion of a "READTEXT"
instruction.

3. The remote program is not ENQT' ed on its vi rtua 1 term ina 1.

The program uses the STIMER instruction, and therefore
requires timer support to be included in the remote system.

238 SC34-0316

c

o

o

c

Due to a timing situation when multiple programs are communi
cat i ng over a vi rtua I channe I, block i ng must be used wh i Ie run
n i ng these programs.

The sample PASSTHRU host program in the section "Sample Host
Programs" on page 259 illustrates how to use the program $RMUPA
from a host program. $RMUPA is first started under the PASSTHRU
funct i on. When a Program End Passthru record is rece i ved at the
host, the host responds with a Program End Passthru record and
the PASSTHRU session with $RMUPA is terminated. Only one copy
of $RHUPA should be running at a time. Ii may run in any parti
t ion. I t con tin u e s run n i n gun til an" a t ten t ion" f 0 I low ett b y
"$RMUPA" is entered.

Once $RMUPA is running, another program may be started. The
sample PASSTHRU host program interaction in the section
"Sample Host Programs" on page 259 illustrates how $DEBUG may
be used. Note that "$PFO" is entered to provide the same func
t i on as enter i ng the "attent i on" key.

If a remote program should take longer than 20 seconds between
performing terminal I/O, $RMUPA wi 11 cause a Program End record
to be sent even though the program is still running. If this
happens, the host should respond with a Request for Data record
unti I the remote program performs terminal I/O.

If a program is run under the PASSTHRU function which issues an
ENQT instruction for a terminal other than the terminal which
loaded the program and the program terminates, the uti lity does
not receive a "disconnect" over the virtual channel and the
host will not receive a Program End record. The utility will
wait indefinitely. One example of where this will occur is in
running $EDXASM, with output directed to a printer. This condi
tion can be avoided in two ways:

• Load the program from another program (such as the $JOBUTIL
utility) which will wait on the program to complete.

• Load the program through a session with the Event Driven
Executive via a $L command and respond with a Program End
when the command terminates. Programs requiring terminal
interaction after being loaded, such as $EDXASM, will not
work in th i s manner, so shou ld be hand led in the first way.

When multiple programs are communicating over a virtual chan
nel, blocking must be used. As mentioned previously, this is
due to a timing situation with multiple programs.

Only one PASSTHRU session may be conducted at a time, since the
utility uses a predefined set of virtual terminals, CDRVTA and
CDRVTB. While a PASSTHRU session is being conducted, another
copy of the utility (defined for another communications line)
may be performing any other function except PASSTHRU.

Chapter 6. Remote Management Utility 239

In the event a PASSTHRU session is abruptly terminated (status
received from host, invalid message received from host, or an
error in the BSC), the ut iIi ty will cause a term ina 1 I/O return
code 5 ("Disconnected") to be received by the program for the
outstanding terminal request. This code will only be received
once by the PASSTHRU-invoked program, and the program sh~uld
then take appropriate action, which would most likely be to
terminate. However, if the program does not recognize the ter
minal error and continues to perform terminal I/O, the program
will interfere with attempts to establish a new PASSTHRU ses
sion. If the new session is being established with a program,
the ut iIi ty wi 11 return the status "v i rtual termi nal busy". The
host may establish a session with the Event Driven Executive
and issue a $C command to cancel the suspended program. The $C
command should be used with caution, as noted in the Utilities,
Operator Commands, Program Preparation, Messages and Codes.

When a $L command is issued during a PASSTHRU session with the
Event Driven Executive supervisor, a Program End Passthru
record, resulting from completion of the command, may be
rece i ved by the host. Whether it is rece i ved depends on how
qu i ck 1 y the loaded program beg i ns per form i ng term ina I I/O.

As described in the System Guide, two virtual terminals, named
CDRVTA and CDRVTB, must be defined for using the PASSTHRU func
tion. Also, virtual terminal support must be included at system
generat ion time. Refer to the System Gu i de for deta i Is.

The utility will not time-out while it is receiving messages
dur i ng a PASSTHRU sess i on. However, if the host does not
acknowledge recept i on of messages sent by the ut iIi ty, a
time-out will occur and the PASSTHRU session is terminated.
This can be avoided in two ways:

• Avoid any long delays at the host while messages are being
rece i ved from the remote Ser i es/l.

• Define a high retry count for the RETRIES parameter of the
BSCL INE statement in the remote system.

Figure 22 on page 241 illustrates the host-remote interaction
for the PASSTHRU function. In the example, the host specifies
the program "MVPROG" on the volume "MVVOL" is to be executed.
While executing, the program writes one message to the virtual
terminal via a Passthru record, receives one message from the
virtual terminal via a Passthru record, and terminates.

240 SC34-0316

o

0

C;

o

Host Program Host Remote

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'lOO2' TEXT ------->
RMHID DATA C'X'
RMHTYP DATA C' R '
RMREQ DATA F ' 12'
RMPRFLG DATA H ' 0 '
RMPRPTN DATA H ' 0 '
RMPRPGM DATA CL8'MYPROG'
RMPRVOL DATA CL6'MYVOL'
RMPRLFS DATA F'2S6'
RMPRBLK DATA F ' 0 '
RMPRPRMt DATA F ' 0 '
RMPRPRM EQU *
R~1PRDSt DATA F ' 0 '
RMPRDS EQU *

<------- ACK*
Write End EOT ------->
Read In;t;al - Status <------- ENQ

ACK* ------->
RMHTYP='S' <------- TEXT
RMSREQ=12
RMSFN=-l

Read Continue - EOT ACK* ------->
<------- EOT

Figure 22. Communications Flow for the PASSTHRU Function (Part
1 0 f 2)

Chapter 6. Remote Management Utility 241

Read Initial - Passthru Data <------- ENQ
ACK* ------->

RMHTVP='P' <------- TEXT
RMPTVP=!
RMPST=Status from READTEXT
RMPTXTL=Message length
RMPTXT=Message text

Read Continue - Request for Data ACK* ------->
RMHTVP='P' <------- TEXT
RMPTVP=2

Read Continue - EaT ACK* ------->
<------- EaT

Write Initial - Passthru Data ENQ ------->
<------- ACK*

RMHTVP='P' TEXT ------->
RMPTVP=!
RMPST=O (Unused)
RMPTXTL=Message length
RMPTXT=Message text

<------- ACK*
Write End EaT ------->
Read Initial - Passthru Program End <------- ENQ

ACK* ------->
RMHTVP='P' <------- TEXT
RMPTVP=3

Read Continue - EaT ACK* ------->
<------- EaT

Write Initial - Passthru Program End
ENQ ------->

<------- ACK*
RMHTVP='P' TEXT ------->
RMPTVP=3

<------- ACK*

Write End EaT ------->

Figure 23. Communications Flow for the PASSTHRU Function (Part
2 of 2)

242 SC34-03!6

(" "".J

o

o

o

o

RECEIVE Funct;on

The RECE I VE funct i on requests the ut i 11 ty to rece 1 ve a data set
transmitted from the host and to write it to a disk/diskette
data set on the remote Ser i es/l.

The host can spec i fy it is send i ng a data set cons i st i ng of
256-byte data records, or a source data set, consisting of
80-byte text records. The host may also specify blocking, in
which case, the utility receives records containing multiples
of 256-byte or 80-byte records.

The host sends the remote Ser1es/l a Request record with the
RECEIVE function specified. After receiving and executing the
R E C E I V Ere que s t, the uti 1 i t y c h e c k s t 0 see i fit can han d ,1 e
records of the size requested and attempts to open the data
set. The uti lity then sends a Status record to the host. If a -1
(successful) status i~ returned to the host the RECEIVE func
tion continues, otherwise the function is terminated.

Upon receipt of the successful status, the host sends Data
records to the utility. The data contained within the Data
records sent by the host should have a length which is a multi
ple of 256 or 80, depending on the data set type. If the uti lity
receives a record whose length is not a multiple of 256 or 80
(short record), the record is padded with zeroes, and then
written to disk or diskette. For example, assume that a
256-byte record data set with a blocking factor of 3 is speci
f i ed. A r"ecord rece i ved wi th wi th a length of 256 wi 11 cause one
record to be written. A record received with a length of 512
will cause two records to be written, and similarly, a length
of 768 wi 11 cause three records to be written, all with no pad
ding. However, a record received with a length of 300 would
cause two records to be wr i tten. The first conta i n i ng the first
256 bytes of data, and the second containing the last 44 bytes
of data followed by 212 zeroes (X'OO'), thus padding it to a
length of 256 bytes.

If the utility receives a Data record whose length is greater
than the length specified on the request, the RECEIVE function
i s t e r min ate d wit has tat u sin d i cat i n g "B SCI /0 Fa i I u r e", and a
BSC return code 29 (wrong length record - long).

At the completion of the data set transfer, the utility per
forms a SETEOD on the data set, and sends the host a Count
record. The Count record spec if i es the number of records
received in the RMCCNT field, and if padding occurred at any
time, the RMCFLGPD bit of the RMCFLG field is set to 1. The
RMCFLGPD bit is defined by the value X'8000'.

I f the data set to be rece i ved by the ut iii ty is empty, the host
should send one Data record which contains no data (only the
4-byte header), and then the EDT.

Chapter 6. Remote Management Utility 243

In the event of unrecoverable errors, such as disk or diskette
errors, the utility interrupts the host transmission by send
ing an EDT ("abort") and a status record containing the appro
priate error code. The utility terminates the RECEIVE
operation, and then reads again for another request from the
host. The host should accept the Status record to determine the
reason for fa i lure.

The host may terminate the RECEIVE function at any time by
send i ng a Status record fa llowed by an EDT.

The RECEIVE function has no restrictions on receiving data sets
wit h n a me s s u c has $ E D X N U C, $ $.E D X VOL, 0 r $ $ E D X LIB • Howe v e r ,
care should be exercised if these data sets are transferred. As
was previously mentioned, a SETEOO is performed upon com
pletion of a data set transfer. The SETEOD may not be performed
on data sets with the names $$EDXVOL or $$EDXLIB. Thus, 1 f
these data sets are transferred, the host wi 11 recei ve a Status
record indicating a SETEOD error. Additionally, SETEOD will
fa iIi f the data set type is "program". Th i s fa i lure is ignored
by the Remote Management ut i 1 i ty.

Required Field Descriptions

Specify the following fields for the RECEIVE function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002'.

RMHID

RMHTYP

RMREQ

RMRDSN

RMRVOL

A I-byte alphamer i c field conta i n i ng the header ID
, X', i dent i f yin g t he r e cor d as a n E vent Dr i v e n E x e c u -
t i ve Remote Management Ut iIi ty record.

A I-byte alphameric field identifying the header
type. 'his field contains the character 'R', specify
i ng a Request record type.

A 2-byte numeric field specifying the request type.
For a RECEIVE request, th i s field conta i ns the number
1 •

An 8-byte alphameric field specifying the name of the
data set to rece i ve data from the host.

A 6-byte alphameric field specifying the name of the
volume containing the data set. If RMRVOL is blank,
the volume name defaults to the IPL volume.

244 SC34-03I6

0 ',','
, ,

o

RMRSTR

RMRTYP

RMRBLK

A 4-byte (double word) numeric field specifying the
starting record of the host data set. Only the second
word of this field is used. If a value of 0 is speci
fied, the data set is received and written from the
beg inn i ng record. I f a va 1 ue greater than zero is
spec if i ed, the ut i 1 i ty issues a POINT instruct i on and
starts rece i vi ng data at the record spec if i ed.

A 2-byte numeric field specifying the type of data to
be received. Specify one of the following:

o Standard (256-byte records, poss i b 1 y blocked)
1 Source (aO-byte records, poss i b 1 y blocked)

A 2-byte numeric field specifying blocking. A value
of 0 or 1 specifies no blocking; otherwise it speci
fies the number of aO-byte or 256-byte records to be
received on each Data record.

Figure 24 on page 246 illustrates the host-remote interaction
for the RECEIVE function. In the example, the host specifies a
data set named "MYDATA" on the volume "MYVOL" is to recei ve two
256-byte data records. The records to be received start at the
beginning of the host data set, and are unblocked. The remote
returns a Count record, and the RECEIVE function terminates.

Chapter 6. Remote Management Utility 245

Host Program Host Remote r'" I,-c_}
Write Initial - Request ENQ ------->

<------- ACK*
RMHBSCC DATA X'lOO2' TEXT -------->
RMHID DATA C'X'
RMHTYP DATA C ' R '
RMREQ DATA F ' 1 '
Rt1RDSN DATA CL8'MYDATA'
RMRVOL DATA CL6'MYVOL'
RMRSTR DATA D' 0 '
RMRTYP DATA F' 0 '
RMRBLK DATA F ' 1 '

<------- ACK*
Write End EDT ------->
Read Initial - Status <------- ENQ

ACK* ------->
RMHTYP='S' <------- TEXT
RMSREQ=l
RMSFN=-l

Read Continue - EDT ACK* ------->
<------- EDT

Write Initial - Data ENQ ------->
<------- ACK*

RMHBSCC DATA X'lOO2' TEXT ------->
RMHID DATA C'X'
RMHTYP DATA C'D'
RMDDATA DATA C text

<------- ACK*
Write Continue - Data
RMHBSCC DATA X'lOO2' TEXT ------->
RMHID DATA C'X'
RMHTYP DATA C'D'
R~1DDATA DATA C text

<------- ACK*

Write End EDT ------->
Read Initial - Count <------- ENQ

ACK* ------->
RMHTYP='C' <------- TEXT
RMCREQ=l
RMCCNT=2

Read Continue - EDT ACK* ------->
<------- EDT

Figure 24. Communications Flow for the RECEIVE Function o
246 SC34-0316

o

o

o

SEND Function

The SEND function requests the utility to read a disk/diskette
data set on the remote Ser i es/l and transmi tit to the host.

The ,host can spec i fy whether it wants a data set cons i st i ng of
256-byte data records, or a source data set, consisting of
80-byte te'xt records sent from the remote. The host may also
specify blocking, in which case, the uti lity sends records can
t a i n i n g m u 1 tip 1 e s 0 f 2 5 6 - b y teo r 80 - b y t ere cor d s .

The host sends the remote Series/l a Request record with the
SEND function specified. After receiving and executing the
request, the utility checks to see if it can handle records of
the size requested and attempts to open the data set. The uti 1-
ity then sends a Status record to the host. If a -1 (successful)
status is returned to the host the SEND funct i on cont i nues,
otherw i se the funct i on is term i nated.

After send i ng a successfu 1 status to the host, the remote
Ser i es/l reads the records from the data set and transmi ts Data
records containing the data to the host. If blocking is speci-

·fied, the utility sends blocked Data records to the host. The
length of the data portion of each Data record, except for the
last, will be the blocking factor times 256 or 80, depending on
the data set type. The data portion of the last Data record wi 11
have a length of a multiple of 256 or 80, however that multiple
may be less than the block i ng factor. For example, if a
256-byte record data set contains 14 records and a blocking
factor of 5 is specified, the utility will send two 1285-byte
records (256x5=1280+5), and one 1029-byte record
(256x4=1024+5). The actual records are five bytes longer due to
the 4-byte header and the ETX.

If the host requests a data set to be sent as source (80-byte
records) and the data set is not source, the uti lity wi 11 treat
the data set as source, and discard the remaining 48-bytes
following the 80-byte records.

l>Jhen the last record (the logical end) of the data set is trans
mitted to the host, the utility will send a Count record. The
RMCCNT field of the Count record contains the number of records
that were sent. The RMCFLG field of the Count record is not used
for the SEND function. The host should compare this number to
the number of records received to verify a complete fi Ie trans
fer.

In the event of an unrecoverable error, such as a disk or
diskette read error, the utility sends the host a Status
record, with the appropriate error code, and terminates the
SEND function. The host may terminate a SEND function by send
ing an EOT ("abort"), followed by a Status record and another
EOT.

Chapter 6. Remote Management Utility 247

Required Field Descriptions

Specify the following fields for the SEND function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002'.

RMHID A I-byte alphameric field containing the header 10
'X', identi fying the record as an Event Driven Execu
t i ve Remote Management Ut iIi ty record.

RMHTYP A I-byte alphameric field identifying the header
type. This field contains the character 'R', speci fy
i ng a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For a SEND request, this field contains the number o.

RMSDSN An 8-byte alphameric field specifying the the name of
the data set to be transmitted to the host.

RMSVOL A 6-byte alphameric field specifying the name of the
volume containing the data set. If RMSVOL is blank,
the volume name defaults to the IPL volume.

RMSSTR

RMSTYP

RMSBLK

A 4-byte (double word) numeric field specifying the
start i ng record of the data set. Onl y the second word
is used. If a value of 0 is specified, the data set is
sent beginning with the first record. If a value
greater than zero is specified, the utility issues a
POINT instruction to start at the record specified.

A 2-byte numeric field specifying the type of data set
to send. Speci fy one of the following:

o Standard (256-byte records, possibly blocked)
1 Source (80-byte records, possibly blocked)

A 2-byte numeric field specifying blocking. A value
of 0 or 1 specifies no blocking; otherwise it speci
fies the number of 80-byte or 256-byte records to be
transm i tted on each Data record.

248 SC34-0316

o

o

o

o

Figure 25 on page 250 illustrates the host-remote interaction
for the SEND function. In the example, the host requests that a
256-byte record data set named "MYDATA" on the volume "MYYOl"
is to be sent, starting with the first record, with no blocking
requested. The utility transmits three Data records, sends a
Count record to the host, and the SEND function terminates.

Chapter 6. Remote Management Utility 249

Host Program Host Remote 0,
~.,)

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'1002' TEXT ------->
RMHID DATA C ' X '
RMHTYP DATA C ' R '
RMREQ DATA F ' 0 '
RMSDSN DATA CL8'MYDATA'
RMSVOL DATA CL6'MYVOL'
R~1SSTR DATA D ' 0 '
R~1STYP DATA F ' 0 '
RMSBLK DATA F ' 1 '

<------- ACK*
Write End EOT ------->
Read Initial - status <------- ENQ

ACK* ------->
RMHTYP='S' <------- TEXT
RMSREQ=O
RMSFN=-l

Read Continue - Data ACK* ------->
RMHTYP='D' <------- TEXT
RMDDATA=Data Text

Read Continue - Data ACK* -------> J
RMHTYP='D' <------- TEXT
RMDDATA=Data Text

Read Continue - Data ACK* ------->
RMHTYP='D' <------- TEXT
RMDDATA=Data Text

Read Continue - Count ACK* ------->
RMHTYP='C' <------- TEXT
RMCREQ=O
R~tCCNT=3

Read Continue - EOT ACK* ------->
<------- EDT

Figure 25. Commun i cat ions Flow for the SEND Funct i on

o
250 SC34-0316

o

o

o

SHUTDOWN Function

The SHUTDOWN function requests the utility to terminate and to
free up any remote Ser i es/l resources it has allocated. In
addition, the SHUTDOWN function can optionally start a program
to replace the utility.

The host sends the remote Series/l a Request record with the
SHUTDOWN function specified. The request may also specify the
name of a program to be executed, simi lar in format to the EXEC
function.

When a program is spec if i ed on the SHUTDOWN request, the ut ili
ty issues a LOAD instruct i on for the program. If the LOAD
instruction fails, the utility sends the host a Status record
indicating the error, and the utility remains active. Other
wise, the uti lity sends a successful status via a Status record
and termi nates.

If the program specified by the host requires a parameter and
the parameter is not supplied, the load (via LOAD) of the pro
gram wi 11 fai 1. The character str i ng is the parameter (s). For
further i nformat i on on parameter pass i ng, refer to the sect i on
"Parameter Passing" on page 212.

Required Field Descriptions

Specify the following fields for the SHUTDOWN function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters OLE STX, specified as X'1002'.

RMHID A 1-byte alphameric field containing the header ID
'X', identifying the record as an Event Driven Execu
t i ve Remote Management Ut i 1 i ty record.

RMHTYP A I-byte a lphamer i c fie ld i dent i fy i ng the header
type. Th is field conta i ns the character' R', spec i fy
i ng a Requejst record type.

RMREQ

filler

A 2-byte numeric field specifying the request type.
For a SHUTDOWN request, this field contains the num
ber 7.

A 2-byte reserved field (unused).

Chapter 6. Remote Management Utility 251

RMSDFLG A I-byte numeric field containing the RMSDFLGX and
RMSDFLGL bits.

RMSDF LGX - When set on, th i s bit i nd i cates that a pro
gram is to be executed. The value for RMSDFLGX when
set on is X'80'.

RMSDFLGL - When set on, this bit indicates that a
"program loaded" message is to be printed on the sys
tem logging terminal. RMSDFLGL corresponds to the
usage of the LOGMSG parameter of the Event Driven
Language LOAD instruction. The value for RMSDFLGL
when set on is X' 40' •

RMSDPTN A I-byte numeric field specifying the partition the
program is to run in. Specify one of the following:

-1
o
1-8

Remote Management Ut i 1 i ty part it ion
Any partition
Specific partition

RMSDPGM An 8-byte alphameric field specifying the name of the
program to be executed.

RMSDVOL A 6-byte alphameric field specifying the name of the
volume containing the program. If RMSDVOL is blank,
the volume name defaults to the IPL volume.

RMSDLFS A 2-byte numeric field specifying the amount of free
space (i n bytes) to pass to the program.

RMSDPRM# A 2-byte numeric field spec~fying the length of the
parameterCs), in words, to pass to the program. This
field must be zero if no parameters are passed.

RMSDPRM A variable length field containing the parameter(s)
to be passed to the program. The length of this field,
in words, must correspond to the value contained in
the RMSDPRM# field. See the section "Parameter
Passing" on page 212 for details on this field.

RMSDDSi A 2-byte numeric field specifying the number of data
set names to be passed to the program. The max i mum
number of data set names that may be specified is
nine. Th i s fie ld must be zero if no data set names are
passed.

RMSDDS A variable numbe'r of I4-byte alphameric fields
specifying data set and volume names to be passed to
the program. The first eight bytes contain the data
set name, and the last six bytes contain the volume
name. If the volume name is blank, the name of the
volume defaults to the IPL volume. The number of data
set and volume names speci fied must correspond to the
value contained in the RMSDDSi field.

252 SC34-0316

o

c

o

0

o

Figure 26 illustrates the host-remote interact i on for the
SHUTDOWN function. In the example, the host sends the remote a
SHUTDOWN request with a program name specified. The program,
"MVPROG" on the volume "MYVOL" is to execute in partition 1,
has 256 bytes of free space passed to it, and has no parameters
or data sets passed to it. The RMSDFLG field specifies that a
program is to be executed and a "program loaded" message is to
be printed following a successful LOAD of the program. The
remote sends a status of -1 (successful) to the host, loads the
program, and the uti lity terminates itself.

Host Program Host Remote

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'lOO2' TEXT ------->
RMHID DATA C'X'
RMHTYP DATA C' R '
RMREQ DATA F ' 7 '
RMSDFLG DATA X'CO'
RMSDPTN DATA H ' 1 '
RMSDPGM DATA CL8'MVPROG'
RMSDVOL DATA CL6'MYVOL'
RMSDFLS DATA F'2S6'
RMSDPRMi DATA F ' 0 '
RMSDPRM EQU *
RMSDDS:ft: DATA F ' 0 '
RMSDDS EQU *

<------- ACK*
Write End EOT ------->
Read Initial - status <------- ENQ

ACK* ------->
RMHTVP='S' <------- TEXT
RMSREQ=7
RMSFN=-l

Read Continue - EOT ACK* ------->
<------- EOT

Figure 26. Communications Flow for the SHUTDOWN Function

Chapter 6. Remote Management Utility 253

WRAP Function

The WRAP function requests the utility to send a block of data
just rece i ved back to the host.

The host sends the remote Series/l a Request record with the
WRAP function specified. Th~ text to be wrapped (transmitted)
is specified in the RMWTXT field of the record extension. The
uti lity transmits the Request record including the text back to
the host exactly as it was received, and the function termi
nates. The utility does not send a Status record to the host
after execution of a WRAP function.

A possible use of the WRAP function could be for testing the
host/remote communications.

Required Field Descriptions

Specify the following fields for the WRAP function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'l002'.

RMHID

RMHTYP

RMREQ

RMWTXT

A I-byte alphameric field containing the header ID
'X', i dent i fy i ng the record as an Event Dr i ven Execu
t i ve Remote Management Ut i 1 i ty record.

A 1-byte alfJhameric field identifying the header
type. Th i s fie ld conta i ns the character 'R', spec i fy
i ng a Request record type.

A 2-byte numeric field specifying the request type.
For a WRAP request, th i s field conta i ns the number 5.

A field of any length (not greater than the buffer)
spec i fy i ng text to be transm i tted back to the host.

254 SC34-0316

o

o

0

o

Figure 27 illustrates the host-remote interaction for the WRAP
function. In the example, the host sends the remote a WRAP
request along with the text "WRAP TEXT" specified. The remote
receives the request and transmits the identical request back
to the host, and the operation is completed.

Host Program Host Remote

Write Initial - Request ENQ ------->
<------- ACK*

RMHBSCC DATA X'lOO2' TEXT ------->
RMHID DATA C'X'
RMHTVP DATA C'R'
RMREQ DATA F ' 5 '
RMWTXT DATA C'WRAP TEXT'

<------- ACK*

Write End EDT ------->
Read Initial - Wrap <------- ENQ

ACK* ------->
RMHBSCC=X'lOO2' <------- TEXT
RMHID=C'X'
RMHTVP=C'R'
RMREQ=F'5'
RMWTXT=C'WRAP TEXT'

Read Continue - EDT ACK* ------->
<------- EDT

Figure 27. Communications Flow for the WRAP Function

Chapter 6. Remote Management Utility 255

Count Record

The Remote Management utility sends a Count record to the host
after an end-of-data condition is detected during a data set
transfer (from either a SEND or RECEIVE request). This record
conta i ns the number of records sent or rece i ved by the ut iii ty.
Additionally, the Count record indicates if record padding has
o c c'u r red d uri n g the d a t a set t ran s fer. The h 0 s t s h 0 u 1 d use t his
record to veri fy whether a complete fi Ie transfer has occurred.

The following is the format of the Count record:

RMHBSCC A 2-byte hexadec i rna 1 fie ld conta i n i ng the BSC contra 1
c h a r act e r s D l E S TX, s p e c i fie d a s X' 1002 ' •

RMHID A I-byte alphameric field containing the header ID
'X', identifying the record as an Event Driven Execu
t i ve Remote Management Ut i 1 i ty record.

RMHTYP A I-byte alphameric field identifying the header
type. This field contains the character 'C', specify
i ng a Count record type.

RMCREQ

RMCFlG

RMCCNT

A 2-byte numer i c fie ld spec i fy i ng the request type
(O=SEND,l=RECEIVE).

A 2-byte field indicating if record padding has
occurr~d during a data set transfer. The bit defined
by RMCFlGPD (X'8000') is set to 1 if padding has
occurred, otherwise o.

A 4-byte numer i c fie ld spec i fy i ng the number of
records transmitted. This number reflects the number
o flo g i cal r e c '0 r d s (8 0 - b y teo r 2 5 6 - b y t ere cor d s)
transmitted, independent of how the records were
blocked.

256 SC34-03I6

c

o

o

o

Data Record

The Data record is used by the Remote Management Ut iii ty to
send data to or receive data from the host. This record con
ta i ns the 80-byte or 256-byte records from a spec if i ed data set
on a SEND or RECEIVE request.

The fo llow i ng is the format of the Data record:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters OLE STX, specified as X'I002'.

RMHID A I-byte alphameric field containing the header ID
'X', identifying the record as an Event Driven Execu
t i ve Remote Management Ut iii ty record.

RMHTYP A I-byte a lphamer i c fie ld i dent i fy i ng the header
type. This field contains the character 'D', specify
i ng a Data record type.

RMDDATA A variable-length field containing the data to be
transmitted (from a SEND or RECEIVE request). The
length of this field will be a multiple of 80 or 256,
depend i ng on the type of data transfer.

Chapter 6. Remote Management Utility 257

status Record

The status is sent to the host by the Remote Management Ut iii ty
to i nd i cate the success or fa i lure 0 f a requested funct i on.

The fo llow i ng is the format of the status record:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters OLE STX, specified as X'1002'.

RMHID A I-byte alphameric field containing the .header ID
'X', i dent i fy i ng the record as an E vent Dr i ven E xecu
t i ve Remote Management Ut iIi ty record.

RMHTYP A I-byte alphameric field identifying the header
type. Th is fie Id conta i ns the character'S', spec i fy
i ng a status record type.

RMSREQ A 2-byte numer i c fie ld spec i fy i ng the request type.

RMSFN A 2-byte numeric field indicating the success of the
request. If the request is successful this field wi 11
contain a -1, otherwise this field will contain a pos
itive value indicating the error which occurred. The
equated values, included in the copy code CORRM, with
the names beginning with the RMSFN field define these
errors.

RMSST

RMSRID

A 2-byte numeric field with a return code if an Event
Driven Executive function failed. For example, if
RMSFN contained the value 24 (LOAD failed), RMSST
wi 11 conta i n the return code from the LOAD
instruction.

An 8-byte alphameric field specifying the ID of the
remote Series/Ion completion of a successful IDCHECK
request. This field is not sent to the host if the
IDCHECK request fa i Is.

258 SC34-0316

c

o

o

o

Sample Host Programs

The following sample programs illustrate host programs (on a
host Series/I) which can communicate with and perform func
tions of the Remote Management Utility.

Chapter 6. Remote Management Utility 259

This sample host program can perform all the functions of the
utility except SEND, RECEIVE, and PASSTHRU. This program sends
an ALLOCATE request and prints a status message, but could be
used for the other functions by simply defining the fields of
the des i red request at label "RM".

UT
START

*

*

*

TERM

* BSCERR

* IOCB

*
*
* ST

*
*
*
*
*
*

PROGRAM START
EQU *
BSCOPEN IOCB,ERROR=BSCERR OPEN BSC LINE

LENGTH OF REQUEST MOVE IOCB3,+REQLEN
IN IOCB

BSCWRITE IX,IOCB,ERROR=BSCERR
BSCWRITE E,IOCB,ERROR=BSCERR

WRITE REQUEST
WRITE EDT

MOVEA IOCB2,ST ADDRESS OF STATUS
LENGTH OF STATUS MOVE IOCB3,20

BSCREAD
SUB
ADD
SHIFTR
PRINTEXT
PRINTNUM
BSCREAD
IF

IN IOCB
I,IOCB,ERROR=BSCERR,TIMEOUT=NO READ STATUS
IOCB,IOCB2,RESULT=PN2 LENGTH INTO PRINTNUM
PN2,+1
PN2,1 CONVERT LENGTH TO WORDS
'~STATUS MESSAGE:~'

ST,0,MODE=HEX,P2=PN2 PRINT STATUS MSG
C,IOCB,ERROR=BSCERR,TIMEOUT=NO READ EOT
(ST+6,EQ,-I) IF SUCCESSFUL STATUS

THEN
PRINTEXT

ELSE
'~FUNCTION SUCCESSFUL'

ELSE
PRINTEXT '~FUNCTION FAILED'

ENDIF ENDIF
TERMINATION POINT
CLOSE BSC LINE

EQU * BSCCLOSE IOCB
PROGSTOP

EQU
MOVE
PRINTEXT
PRINTNUM
GO TO

* ST,UT
'~BSC ERROR:'
ST
TERM

BSC ERROR ROUTINE
MOVE RETURN CODe

PRINT RETURN CODE
GO TO TERMINATION

BSCIOCB 9,RM,0,P2=IOCB2,P3=IOCB3 IOCB

DATA 10F'0'

P2=IOCB2 IS MESSAGE ADDRESS
P3=IOCB3 IS MESSAGE LENGTH

AREA FOR STATUS RECORD
10 BYTES NORMAL STATUS RECORD

8 BYTES IDCHECK STATUS EXT.
1 BYTE ETX

19 BYTES TOTAL, ROUNDED UP TO
10 WORDS

260 SC34-0316

c

-- THE FOLLOWING MAY BE CHANGED FOR OTHER REQUESTS --

0 * RM EQU * REQUEST
RMHBSCC DATA X'1002' BSC CTRL CHARS (DLE STX)
RMH1D DATA C'X' HEADER 1D
RMHTYP DATA C' R ' HEADER TYPE: REQUEST
RMREQ DATA F ' 2 ' REQUEST TYPE: ALLOCATE
RMADSN DATA CL8'MYDATA' DATA SET NAME: MYDATA
RMAVOL DATA CL6'MYVOL' VOLUME NAME: MYVOL
RMANREC DATA D' 10' ·NUMBER RECORDS: 10
RMADST DATA F ' 1 ' DATA SET TYPE: DATA
REQLEN EQU *-RM LENGTH OF REQUEST
*

ENDPROG
END

o

o
Chapter 6. Remote Management Utility 261

This sample host program receives data set "MVDATA" at the
remote Series/I from the host Series/I. Data is blocked with a
factor of 2, and transferred as 80-byte records.

EXRECV
START

*

*

*

DATA

RDEND

PROGRAM START,DS=«RECVDS,??»
EQU * BSCOPEN IOCB,ERROR=BSCEOPN OPEN BSC LINE

MOVE IOCB3,+REQLEN LENGTH OF REQUEST IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EDT

MOVE A IOCB2,ST ADDRESS OF STATUS
MOVE IOCB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD I,IOCB,ERROR=BSCERR READ STATUS
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (STSFN,NE,-l) IF STATUS INDICATES ERROR

PRINTEXT 'aSTATUS INDICATES ERROR' THEN PRINT IT
PRINTNUM ST,5,MODE=HEX
GOTO TERMl TERMINATE

ENDIF ENDIF

MOVEA IOCB2,DT ADDRESS OF DATA
MOVE IOCB3,+DTL SET LENGTH
EQU *
READ DSl,DISKREC,ERROR=RDERR,END=RDEND READ RECORD
MOVE DTDATA,DISKREC,(80,BVTE) FIRST RECORD
MOVE DTDATA+80,DISKREC+128,(80,BVTE) SECOND RECORD
IF (COUNT,EQ,O) IF FIRST TIME THEN

BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE INITIAL
ELSE ELSE

BSCWRITE CX,IOCB,ERROR=BSCERR,END=BSCAB WRITE CONTINUE
ENDIF ENDIF
ADD COUNT,2 ADD 2 TO COUNT
GOTO DATA CONTINUE TRANSFERRING DATA
EQU * TO HERE WHEN AT ENDFILE
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
BSCREAD I,IOCB,ERROR=BSCERR READ COUNT
BSCREAD C,IOCB,ERROR.=BSCERR READ EOT
IF (DTCCNT,EQ,COUNT) IF COUNT OK THEN

PRINTEXT 'COUNT OK:' PRINT IT
PRINTNUM COUNT

ELSE ELSE
PRINTEXT 'aCOUNT FAILED. COUNTED:'
PRINTNUM COUNT PRINT COUNTS
PRINTEXT' COUNT RECORD:'
PRINTNUM DTCCNT

ENDIF ENDIF

262 SC34-03I6

()

c

o

o

TERM!

TERM2

BSCAB

* BSCERR

* BSCEOPN

* RDERR

*

*

EQU
BSCCLOSE
EQU
PROGSTOP
EQU
BSCREAD
BSCREAD
PRINTEXT
PRINTNUM
GOTO

EQU *
MOVE
PRINTEXT
PRINTNUM
GO TO

EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

EQU *
MOVE
PRINTEXT
PRINTNUM
MOVEA

MOVE
MOVE

* IOCB

*

EXIT POINT FOR NORMAL TERM
CLOSE BSC LINE
EXIT POINT FOR OPEN FAILED

* ABORT RECEIVED ON WRITE
I,IOCB,ERROR=BSCERR READ STATUS
C,IOCB,ERROR=BSCERR READ EOT
'~ABORT RECEIVED. STATUS:'
DT,5,MODE=HEX
TERM! TERMINATE

BSC ERROR ROUTINE
ST,EXRECV MOVE RETURN CODE
'~BSC ERROR:'
ST PRINT RETURN CODE
TERM! GO TO TERMINATION

OPEN ERROR
ST,EXRECV MOVE RETURN CODE
'~BSC OPEN ERROR:'
ST PRINT RETURN CODE
TERM2 GO TO TERMINATION

DISK READ ERROR
ST,EXRECV
'~DISK READ ERROR:'
ST
IOCB2,ST

IOCB3,4
ST,X'!002'

MOVE RETURN CODE

PRINT RETURN CODE
POINT IOCB TO
STATUS MESSAGE
SET LENGTH TO 4
SET UP STATUS MESSAGE

MOVE ST+2,C'XS'
BSCWRITE IX,IOCB,ERROR=BSCERR SEND STATUS MESSAGE
BSCWRITE E,IOCB,ERROR=BSCERR SEND EOT
GO TO TERM2 GO TO TERMINATION

IOCB BSCIOCB 9,RM,O,P2=IOCB2,P3=IOCB3 IOCB
* P2= IS RECORD ADDRESS
* P3= IS RECORD LENGTH

* RLEN DATA F ' 0 ' RECORD LENGTH

* COUNT DATA F'O' RECORD COUNT

Chapter 6. Remote Management Utility 263

*-- REQUEST TO RECEIVE A DATA SET

* RM EQU *
RMHBSCC DATA X'1002'
RMHID DATA C'X'
RMHTYP DATA C'R'
RMREQ DATA F'l'
RMRDSN DATA CL8'MYDATA'
RMRVOL DATA CL6'
RMRSTR DATA 0'0'
RMRTYP DATA F'l'
RMRBLK DATA F'2'
REQLEN EQU *-RM
*-- STATUS RECORD

* ST

*
*
* STSFN
STL

*

DATA 6F'0'

EQU ST+6
EQU *-ST

*-- DATA AND COUNT RECORD

* DT

DTCCNT
DTDATA
DTL

*

DATA X'1002'
DATA C'XD'
EQU DT+10
DATA 160C' ,
EQU *-DT

DISKREC DATA 128F'0'
ENDPROG
END

264 SC34-0316

REQUEST
BSC CNTRL CHARS (DLE STX)
HEADER 10
HEADER TYPE:
REQUEST TYPE:
DATA SET NAME:
VOLUME NAME:
STARTING RECORD:
RECEIVE TYPE:
BLOCKING FACTOR:

LENGTH OF REQUEST

REQUEST
RECEIVE
MYDATA
(IPL VOL)
NONE
SOURCE
2

AREA FOR STATUS RECORD
10 BYTES FOR STATUS RECORD,
1 BYTE FOR ETX, ROUNDED UP
TO 6 WORDS

STATUS FUNCTION
STATUS RECORD LENGTH

DATA RECORD: DLE STX
HEADER 10, TYPE (DATA)
LOCATION OF COUNT

LENGTH

DISK RECORD AREA

C,'~,',\ I _,' ,I

o

o

o

o

This sample host program executes a PASSTHRU session through
the utility. The session is established with the Event Driven
Executive supervisor. Blocking is used. All terminal I/O is
performed to make the host terminal appear as if the terminal
were connected at the remote Series/l.

EXPASST PROGRAM START,TERMERR=TERMl

*
*
*
*
*
*
*
*
*
*
*
*
*
* START

*

THIS EXAMPLE HOST PROGRAM USES THE PASSTHRU FUNCTION
OF THE REMOTE MANAGEMENT UTILITY. THE OPERATOR IS
ASKED WHETHER TO START THE PASSTHRU ASSIST PROGRAM.
IF SO, THE PROGRAM $RMUPA IS INVOKED. AFTER THIS, A
SESSION IS ESTABLISHED WITH THE EDX SUPERVISOR.

WHENEVER A "PROGRAM END" PASSTHRU RECORD IS RECEIVED,
A "REQUEST DATA" RECORD IS SENT. WHEN A "NO DATA"
RECORD IS RECEIVED, THE OPERATOR IS ASKED WHETHER TO
"ATTN" (END THE SESSION AND START ANOTHER), "READ"
(TRY TO ACQUIRE DATA FROM THE HOST), OR "QUIT" (END
THE PASSTHRU SESSION AND THEN TERMINATE.

EQU *
BSCOPEN IOCB,ERROR=BSCEOPN OPEN BSC LINE

*-- START UP PASSTHRU ASSIST PROGRAM ($RMUPA) IF NEEDED

*

*

*

QUESTION 'START PASSTHRU ASSIST PROGRAM?',NO=START2

MOVEA IOCB2,REQPTAS ADDRESS OF REQUEST IN IOCB
MOVE IOCB3,+REQPTASL LENGTH OF REQUEST IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT

MOVEA IOCB2,ST
MOVE IOCB3,+STL
BSCREAD I,IOCB,ERROR=BSCERR
BSCREAD C,IOCB,ERROR=BSCERR
IF (STSFN,NE,-l)

PRINTEXT '@STATUS INDICATES
PRINTNUM ST,5,MODE=HEX
GOTO TERMl

ENDIF

ADDRESS OF STATUS
LENGTH OF STATUS IN
READ STATUS
READ EOT
IF STATUS INDICATES
ERROR' PRINT IT

TERMINATE
ENDIF

IOCB

ERROR

Chapter 6. Remote Management Utility 265

*

*

MOVEA
MOVE
BSCREAD

IOCB2,DT ADDRESS OF DATA
IOCB3,+DTL SET LENGTH
I,IOCB,ERROR=BSCERR,TIMEOUT=NO

READ, EXPECT PROGRAM END
BSCREAD
IF

C,IOCB,ERROR=BSCERR,TIMEOUT=NO READ EOT
(EXPASST,EQ,+l),AND,(DT+RMPTVP,EQ,+RMPTVPPE)

MOVE
MOVE
MOVE
BSCWRITE
BSCWRITE

ELSE
MOVE
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
GOTO

ENDIF

IF PGM END AND EOT THEN
DT,X'l002' SET UP PTHRU PGM END
DT+RMPTVP,+RMPTVPPE PTHRU TYPE IS PGM END
IOCB3,+RMPX SET UP LENGTH IN IOCB
IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
E,IOCB,ERROR=BSCERR WRITE EOT

ELSE
ST,EXPASST SAVE RETURN CODE

LOAD OF PASSTHRU ASSIST PGM.' 'Q)UNSUCCESSFUL
'aLAST MESSAGE
DT,lO,MODE=HEX
'aLAST RETURN CODE
ST,MODE=HEX
TERM!

READ:'
PRINT MESSAGE

FROM READ:'
PRINT RETURN
TERMINATE

ENDIF

CODE

*-- MAIN PASSTHRU PROCESSING.

*
SEND REQUEST

START2

*

MOVEA IOCB2,REQPT ADDRESS OF REQUEST IN IOCB
MOVE IOCB3,+REQLEN LENGTH OF REQUEST IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT

MOVEA IOCB2,ST
MOVE IOCB3,+STL
BSCREAD I,IOCB,ERROR=BSCERR
BSCREAD C,IOCB,ERROR=BSCERR
IF (STSFN,NE,-l)

PRINTEXT 'aSTATUS INDICATES
PRINTNUM ST,5,MODE=HEX
GO TO TERMl

ENDIF

ADDRESS OF STATUS
LENGTH OF STATUS IN
READ STATUS
READ EOT
IF STATUS INDICATES
ERROR' PRINT IT

TERMINATE
ENDIF

IOCB

ERROR

266 SC34-03!6

n
V

o

C)

o

READ EQU *
MOVEA IOCB2,DT ADDRESS OF DATA
MOVE IOCB3,+DTL SET LENGTH
IF (BSCST,NE,+BSCSTRD) IF BSC STATE IS NOT READ

BSCREAD I,IOCB,ERROR=BSCERR,TIMEOUT=NO READ INIT
MOVE BSCST,+BSCSTRD BSC STATE = READ

ELSE ELSE
BSCREAD C,IOCB,ERROR=BSCERR,TIMEOUT=NO READ CONT

ENDIF ENDIF

* IF (DT+RMHTYP,NE,C'P',BYTE) IF NOT PASSTHRU THEN
PRINTEXT 'aNON-PASSTHRU MESSAGE RECEIVED:'
PRINTNUM DT,5,MODE=HEX PRINT WHAT WAS RECEIVED

* (WILL BE STATUS)
BSCREAD C,IOCB,ERROR=BSCERR,TIMEOUT=NO READ EOT
GOTO TERM1 TERMINATE

ENDIF ENDIF
*-- CASE: PASSTHRU TYPE

* TEXT

*
*
*

*

GOTO (ERRPT,TEXT,REQD,PGME,NODA),DT+RMPTYP

EQU
MOVEA
DO

* #l,DT+RMPST
UNTIL,(11,EQ,IOCB)

PASSTHRU TYPE: DATA
SET 11 TO BEGINNING OF TXT
DO UNTIL AT END OF TEXT
(IO~ CONTAINS ADDRESS
OF B~TE PAST LAST BYTE
OF DATA)

IF ((O,11),EQ,-1),OR,((O,#1),EQ,-2) IF TEXT
PRINTEXT (4,11),MODE=LINE
IF ((O,#l),EQ,-l)

PRINTEXT SKIP=l
ENDIF
ADD
ADD
AND

ELSE

11,(2,11)
11,5
#l,X'FFFE'

PRINT TO TERMINAL
IF NEWLINE

THEN DO NEWLINE
ENDIF
POINT 11 TO NEXT TEXT
ADD HEADER LENGTH + 1
POINT TO EVEN BOUNDARY

ELSE
IF ((O,11),EQ,X'8F',BYTE) IF LIN!= THEN

(O,11),X'OOFF',RESULT=N1 DB IT AND
PRINTEXT

ELSE
LINE=N1 ON TERMINAL

ELSE
IF ((O,11),EQ,X'8E',BYTE) IF SKIP= THEN

(O,#1),X'OOFF',RESULT=N1 DO IT AND
PRINTEXT

ENDIF
SKIP=N1 ON TERMINAL

ENDIF
ENDIF ENDIF

ADD

ENDIF
ENOOo
GOTo READ

POINT 11 TO NEXT
TEXT BLOCK

ENDIF
ENDDo
END TEXT PROCESSING

Chapter 6. Remote Management Utility 267

REQD

* PGME

*

* NODA

NODAQ

*
*

*
*

*
*

EQU
BSCREAD
MOVE
READTEXT
MOVE
~10VE

MOVE
IF

* C,IOCB,ERROR=BSCERR
DT+RMPTXTL,X'FEOO'
DT+RMPTXT,MODE=LINE

PASSTKRU TYPE: REQ DATA
READ EOT
SET UP "TEXT" STATEMENT
GET TEXT FROM TERMINAL

DT,X'l002' SET UP PTHRU TEXT RECORD
DT+RMPTYP,+RMPTYPTX PTHRU TYPE IS TEXT OR PFK
DT+RMPTXTL,O,BYTE ZERO HI-ORDER LENGTH BYTE
(DT+RMPTXTL,GE,4),AND,(DT+RMPTXT,EQ,C'$P'),

AND,(DT+TXT2,EQ,C'F',BYTE) IF "$PFN" ENTERED
MOVE DT+RMPTXTL,-l INDICATE PF KEY
MOVE DT+RMPTXT,DT+TXT2 PLACE NUMBER IN MSG
AND DT+RMPTXT,X'OOOF' PURIFY NUMBER
MOVE IOCB3,2+RMPTXT LENGTH IN IOCB

ELSE ELSE
MOVE IOCB3,DT+RMPTXTL SET UP LENGTH IN IOCB
ADD IOCB3,+RMPTXT INCLUDING HEADER

ENDIF ENDIF
BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EDT
MOVE BSCST,+BSCSTO BSC STATE = RESET
GO TO READ END REQ TEXT PROCESSING

EQU * PASSTHRU TYPE: PROGRAM END
(DISCONNECT)

BSCREAD C,IOCB,ERROR=BSCERR READ EDT
GOTO SNDRQD GO AND REQUEST DATA

EQU
BSCREAD
PRINTEXT
READTEXT
IF

* PASSTHRU TYPE: NO DATA
C,IOCB,ERROR=BSCERR READ EOT
'~"NO DATA" RECEIVED. ENTER ONE:'
INMSG,'@ A(TTN), R(EAD), Q(UIT) ,
(INMSG,EQ,C'A',BYTE),OR,(INMSG,EQ,C'Q',BYTE)

IF "ATTN" OR "QUIT" THEN

MOVE
MOVE
MOVE
BSCWRITE
BSC~'JRITE

MOVE
IF

GOTO
ELSE

IF

GOTO
ENDIF

SEND PROGRAM END
DT,X'l002' SET UP PTHRU PGM END
DT+RMPTYP,+RMPTYPPE PTHRU TYPE IS PGM END
IOCB3,+RMPX SET UP LENGTH IN IOCB
IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
E,IOCB,ERROR=BSCERR WRITE EOT
BSCST,+BSCSTO BSC STATE = RESET
(INMSG,EQ,C'A',BYTE),GOTO,START2

TERMl

IF "A" THEN START NEW
SESSION
OTHERWISE TERMINATE

ELSE (NOT "ATTN"
OR "QUIT")

(INMSG,EQ,C'R'),GOTO,SNDRQD IF "R" THEN
REQUEST DATA

NODAQ ELSE ASK AGAIN
ENDIF

268 SC34-0316

rf\.
V

o

o

c

ERRPT

*

EQU * PASSTHRU TYPE: UNKNOWN
PRINTEXT '~INVALID PASSTHRU RECORD RECEIVED:'
PRINTNUM DT,20,MODE=HEX
GOTO TERMl TERMINATE

*-- END OF CASES

* SNDRQD

*
* TERM!

TERM2

* BSCAB

* BSCERR

*

EQU
MOVE
MOVE
MOVE
BSCWRITE
BSCWRITE
MOVE
GOTO

* SEND REQUEST DATA
DT,X'!002' SET UP PTHRU REQUEST DATA
DT+RMPTYP,+RMPTYPRD PTHRU TYPE IS REQEST DATA
IOCB3,+RMPX SET UP LENGTH IN IOCB
IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
E,IOCB,ERROR=BSCERR WRITE EOT
BSCST,+BSCSTO BSC STATE = RESET
READ END REQ TEXT PROCESSING

EQU * EXIT POINT FOR NORMAL TERM
eLOSE Bse LINE BSCCLOSE 10CB

EQU * EXIT POINT FOR OPEN FAILED
PROGSTOP

EQU
BSCREAD
BSCREAD
PRINTEXT
PRINTNUM
GOTO

EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

* ABORT RECEIVED ON WRITE
I,IOCB,ERROR=BSCERR READ STATUS
C,IOCB,ERROR=BSCERR READ EOT
'~ABORT RECEIVED. STATUS:'
DT,20,MODE=HEX
TERM! TERMINATE

BSC ERROR ROUTINE
ST,EXPASST MOVE RETURN CODE
'aBse ERROR:'
ST PRINT RETURN CODE
TERM! GO TO TERMINATION

BSCEOPN EQU * OPEN ERROR
MOVE ST,EXPASST MOVE RETURN CODE
PRINTEXT 'aBse OPEN ERROR:'
PRINTNUM ST PRINT RETURN CODE
GOTO TERM2 GO TO TERMINATION

Chapter 6. Remote Management Utility 269

*-- DATA AREA

* INMSG TEXT

*
LENGTH=4 INPUT MSG FROM OPERATOR

IOCB BSCIOCB 9,O,O,P2=IOCB2,P3=IOCB3 IOCB
* P2= IS RECORD ADDRESS
* P3= IS RECORD LENGTH

* *-- REQUEST FOR PASSTHRU

* REQPT

REQLEN

*

EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
EQU

* X'l002'
C'X'
C'R'
A(RMREQPST)
A(PBl)
H ' 0 '
H'O'
CL8' ,
CL6' ,
3F'O'
*-REQPT

REQUEST
BSC CONTROL CHARS (DLE STX)
HEADER ID
HEADER TYPE: REQUEST
REQUEST TYPE: PASSTHRU (12)
PASSTHRU BLKING
FLAG (UNUSED)
PARTITION (UNUSED)
PROGRAM: EDX SUPERVISOR
VOLUME (UNUSED)
(REMAINDER UNUSED)

LENGTH OF REQUEST

*-- PASSTHRU REQUEST: START PASSTHRU ASSIST PROGRAM

* REQPTAS EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

REQPTASL EQU

270 SC34-0316

* X'1002'
C'X'
C' R '
A(RMREQPST)
A(O)
H ' 0 '
H ' 0 '
CL8'$RMUPA'
Cl6' ,
F ' 0 '

F • 0 •
F ' 0 •
*-REQPTAS

REQUEST
BSC CONTROL CHARS (DlE STX)
HEADER ID
HEADER TYPE: REQUEST
REQUEST TYPE: PASSTHRU (12)
PASSTHRU BLKING (NONE)
FLAG (UNUSED)
PARTITION
PROGRAM:
VOLUME:
FREE SPACE:
PARAMETERS:
DATA SETS:

LENGTH OF REQUEST

(ANY)
$RMUPA
IPL
NONE
NONE
NONE

""\

o

o

o

* *-- STATUS RECORD

* ST DATA 6F'0'

*
*
* STSFN EQU ST+6
STL EQU *-ST

* *-- PASSTHRU SESSION AREA

* DT
DTL
PBL

*
*
*
*

DATA
EQU
EQU

256F'0'
*-DT
DTL-8

*-- MISCELLANEOUS VARIABLES

* BSCST
BSCSTO
BSCSTRD
NI

*
TXT2

*

DATA
EQU
EQU
DATA

F ' 0 '
o
1
F ' 0 '

COPY CDRRM
EQU RMPTXT+2

ENDPROG
END

AREA FOR STATUS RECORD
10 BYTES FOR STATUS RECORD,
I BYTE FOR ETX, ROUNDED UP
TO 6 ~JORDS

STATUS FUNCTION
STATUS RECORD LENGTH

RECORD
LENGTH
PASSTHRU BLOCK LENGTH

LENGTH OF DATA AREA -
6 BYTES FOR HEADER AND 2
FOR ETX AND WORD ROUND UP

BSC STATE:
RESET
READING

WORK WORD

INCLUDE DEFINITION OF RMU MSGS
BYTE 2 OF PASSTHRU TEXT

Chapter 6. Remote Management Utility 271

This sample interaction with the PASSTHRU host program illus
trates runn i ng the $DEBUG ut iIi ty under the PASSTHRU funct i on.

CAttention)
> $L EXPASST
EXPASST 9P lP=C900
START PASSTHRU ASSIST PROGRAM? Y
> $L $DEBUG
$DEBUG 27P,09:44:08 LP=BFOO
PROGRAM NAME: $DISKUTI
$DISKUTI 30P,09:44:14 LP=DAOO
REQUEST "HELP" TO GET LIST OF DEBUG COMMANDS
TASK STOPPED AT 0064
"NO DATA" RECEIVED. ENTER ONE:

ACTTN), RCEAD), Q(UIT) A
> WHERE
TASK STOPPED AT 0064
$ATTASK AT 2600
"NO DATA" RECEIVED. ENTER ONE:

ACTTN), RCEAD), QCUIT) A
> GO
OPTIONC*/ADDR/TASK/ALL): ALL

1 BREAKPOINTCS) ACTIVATED
USING VOLUME EDX002
COMMAND (?): LA ZZZZ
USING VOLUME EDX002

NAME FREC SIZE
12845 FREE RECORDS IN LIBRARY

COMMAND (?): $PFO
XX
> WHERE
INVALID COMMAND
TASK AT 0274
$ATTASK AT 2600
COMMAND (?): $PFO
XX
> AT
INVALID COMMAND
OPTIONC*/ADDR/TASK/ALL): A
BREAKPOINT ADDR: 274
LIST/NOLIST: N
STOP/NOSTOP: S

1 BREAKPOINT(S) SET
COMMAND: XX
TASK STOPPED AT 0274
"NO DATA" RECEIVED. ENTER ONE:

A(TTN), RCEAD), Q(UIT) A
> LIST A 274 5 X
0274 X' 80AF 1010 C9D5 E5Cl D3C9'
"NO DATA" RECEIVED. ENTER ONE:

ACTTN), R(EAD), QCUIT) A
> END

1 BREAKPOINTCS) REMOVED
INVALID COMMAND

272 SC34-0316

o

c

o

o

COMMAND (?): EN
"NO DATA" RECEIVED. ENTER ONE:

A(TTN), R(EAD), Q(UIT) R
"NO DATA" RECEIVED. ENTER ONE:

ACTTN), RCEAD), QCUIT) A
> $RMUPA
"NO DATA" RECEIVED. ENTER ONE:

A(TTN), RCEAD}, Q(UIT) A
> $A
PROGRAMS AT 09:50:26
IN PARTITION #1 NONE
"NO DATA" RECEIVED. ENTER ONE:

A(TTN), RCEAD), Q(UIT) Q

EXPASST ENDED

Chapter 6. Remote Management Utility 273

This sample host program sends data set "MVDATA" from the
remote Series/l to the host Series/I. Data is blocked with a
factor of 3, and transferred as 256-byte records.

EXSEND
START

DATA

PROGRAM START,DS=((SENDDS,??))
EQU *
BSCOPEN IOCB,ERROR=BSCEOPN OPEN BSC LINE
MOVE IOCB3,+REQLEN LENGTH OF REQUEST IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVEA IOCB2,ST ADDRESS OF STATUS
MOVE IOCB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD I,IOCB,ERROR=BSCERR READ STATUS
IF (STSFN,NE,-l) IF STATUS INDICATES ERROR

BSCREAD C,IOCB,ERROR=BSCERR READ EOT
PRINTEXT 'aSTATUS INDICATES ERROR' THEN PRINT IT
PRINTNUM ST,5,MODE=HEX
GO TO TERMI

ENDIF
TERMINATE

ENDIF
MOVEA
EQU
MOVE

IOCB2,DT ADDRESS OF DATA

* IOCB3,+DTL SET LENGTH TO MAX
BSCREAD
SUB
IF

SUB

SHIFTR

WRITE
ADD

C,IOCB,ERROR=BSCERR READ DATA OR COUNT
IOCB,IOCB2,RESULT=RLEN COMPUTE LENGTH
(DTHTVPR,EQ,C'D',BVTE) IF DATA THEN

RLEN,+4 -4 FROM LENGTH
FOR HEADER

RLEN,8 RLEN = NUMBER RECORDS
WRITE RECORDS NEXT

DSl,DTDATA,RLEN,ERROR=WRERR,END=WRERR
COUNT,RLEN ADD NUMBER WRITTEN

TO COUNT
GOTO DATA GO READ NEXT RECORD

ELSE ELSE
IF (DTHTVPR,EQ,C'C',BVTE) IF COUNT THEN

IF (DTCCNT,EQ,COUNT) IF COUNT OK THEN
PRINTEXT 'COUNT OK:' PRINT IT
PRINTNUM COUNT

ELSE ELSE
PRINTEXT 'COUNT FAILED. COUNTED:'
PRINTNUM COUNT PRINT COUNTS
PRINTEXT' COUNT RECORD:'
PRINTNUM DTCCNT

ENDIF
ELSE

PRINTEXT
PRINTNU~1

ENDIF
ENDIF

ENDIF
ELSE MUST

'ERROR MSG RECEIVED:'
DT,5,MODE=HEX PRINT IT

ENDIF
ENDIF

BE STATUS

274 SC34-0316

o

(~

n
~)

0

o

0

TERMl

TERM2

BSCERR

*
BSCEOPN

* WRERR

* IOCB

*
*
* RLEN

* COUNT

*

BSCREAD
EQU
BSCCLOSE
EQU
PROGSTOP
EQU *
MOVE
PRINTEXT
PRINTNUM
GO TO

EQU *
MOVE
PRINTEXT
PRINTNUM
GO TO

EQU *
MOVE
PRINTEXT
PRINTNUM
BSCWRITE
MOVEA
MOVE
MOVE
MOVE
BSCWRITE
BSCWRITE
GOTO

BSCIOCB

DATA

DATA

C,IOCB,ERROR=BSCERR READ EOT
* EXIT POINT FOR NORMAL TERM
IOCB CLOSE BSC LINE
* EXIT POINT FOR OPEN FAILED

BSC ERROR ROUTINE
ST,EXSEND MOVE RETURN CODE
'~BSC ERROR: '
ST PRINT RETURN CODE
TERMl GO TO TERMINATION

OPEN ERROR
ST,EXSEND MOVE RETURN CODE
'(])BSC OPEN ERROR: '
ST PRINT RETURN CODE
TERM2 GO TO TERMINATION

WRITE ERROR
ST,EXSEND MOVE RETURN CODE
'~DISK WRITE ERROR:'
ST
E,IOCB,ERROR=BSCERR
IOCB2,ST

PRINT RETURN CODE
WRITE EOT (ABORT)
POINT IOCB TO STATUS
SET LENGTH TO 4 IOCB3,4

ST,X'lQQ2' SET UP STATUS MESSAGE
ST+2,C'XS'
IX,IOCB,ERROR=BSCERR WRITE STATUS
E,IDCB,ERROR=BSCERR WRITE EOT
TERM! GO TO TERMINATION

9,RM,Q,P2=IOCB2,P3=IOCB3 IOCB

F ' Q '

F ' 0 '

P2=IOCB2 IDENTIFIES MSG ADDRESS
P3=IOCB3 IDENTIFIES MSG LENGTH

RECORD LENGTH

RECORD COUNT

*-- REQUEST TO SEND DATA SET

* RM EQU * REQUEST
RMHBSCC DATA X'lOO2' BSC CNTRL CHARS (OLE STX)
RMHID DATA C ' X ' HEADER ID
RMHTYP DATA C ' R ' HEADER TYPE: REQUEST
RMREQ DATA F ' 0 ' REQUEST TYPE: SEND
RMSDSN DATA CL8'MYDATA' DATA SET NAME: MYDATA
RMSVOL DATA CL6' VOLUME NAME: (IPL VOL)
RMSSTR DATA D ' 0 ' STARTING RECORD: NONE
RMSTYP DATA F ' 0 ' SEND TYPE: NORMAL
RMSBLK DATA F ' 3 ' BLOCKING FACTOR: 3
REQLEN EQU *-RM LENGTH OF REQUEST

Chapter 6. Remote Management Utility 275

*-- STATUS RECORD
*
ST DATA 6F'0'
*
*
*
STSFN EQU ST+6
STL EQU *-ST
*
*-- DATA AND COUNT RECORD
*
DT DATA 387F'0'
*
*
*
*
*
* DTHTYPR
DTDATA
DTCCNT
DTL

EQU DT+3
EQU DT+4
EQU DT+I0
EQU *-DT
ENDPROG
END

276 SC34-0316

AREA FOR STATUS RECORD
10 BYTES FOR RECORD,
1 BYTE FOR EXT, ROUNDED
UP TO 6 WORDS

STATUS FUNCTION
STATUS RECORD LENGTH

AREA FOR DATA RECORD
4 BYTES MESSAGE HEADER

768 BYTES 3 256-BYTE RECS
1 BYTE ETX

773 BYTES TOTAL, ROUNDED UP
TO 387 WORDS

RECORD TYPE
DATA
COUNT
LENGTH

~.
1,--/

()

c

o

o

o

ERROR HANDLING

This section describes the error handling procedures of the
Remote Management Utility, as well as the procedures the host
program should follow upon encountering an error. The error
messages displayed by the utility are also described in this
section.

Types of Errors

As was discussed in the section "Remote Management Utility
Interface" on page 207, the utility is comprised of two levels
of commun i cat ions protoco 1. Errors encountered dur i ng the
transmission of these protocols by either the host or remote
can be classified as follows:

• Communications errors

• Errors detected by the utility or the host program while a
function is executing

• Errors detected by the ut iii ty at any time

If a communications error is encountered during a Remote Man
agement Utility session, an error message is written to the
term ina 1 wh i ch loaded the ut iIi ty. I f the funct i on requested is
running when the error occurs, the function is terminated imme
diately by the utility. The SEND, RECEIVE, and PASSTHRU func
tions could however remain executing, in that these functions
require multiple message exchanges between the host and the
remote, before the function is completed. If the error is
recoverable, the utility sends the host a Status record fol
lowed by an EDT. If necessary, an EDT ("abort") will precede
the Status record. After this sequence is. completed, the host
may then issue a new request.

Errors detected by the utility or the host program while a
function is executing include such errors as disk/diskette I/O
errors dur i ng a SEND or RECEIVE ope rat i on. If the ut iIi ty
detects such an error, a Status record indicating the error
cond it ion is sent to the host, followed by an EDT, and the func
tion is terminated. If necessary, an EDT ("abort") wi 11 precede
the Status record. After this sequence is completed the host
may issue a new request. If the host program detects an error
condition, it should terminate the function in the same
sequence as' the ut iIi ty. However, the Status record the host
sends the remote requires only the (t-byte header information of
a Status record (RMHBSCC, RMHID, RMHTYP fields).

Chapter 6. Remote Management Utility 277

Errors detected by the uti lity at any time include:

• Short record (text length is less than four bytes)

• Header ID (RMHID f i aId) is not "X"

• Invalid request

• LOAD of overlay fai led

• EDT not sent by the host after a request

These errors may occur any time the host sends a record to the
utility. When the utility detects any of these errors, the
utility sends an EDT ("abort") if necessary, followed by a Sta
tus record. The RMSST field of the Status record will contain
the appropriate error code. In addition, the RMSREQ field of
the status record will contain the type of request that was in
execut i on at the time, or a "-1" if no request was execut i ng.

Figure 28 and Figure 29 on page 279 illustrate error handling
on a SEND request.

Host Program

(Utility sending data set)

Read Continue - Data

(At this point, Utility gets I/O
error on READ to disk/diskette)

Read Continue - Status
RMHTYP='S' Status
RMSREQ=O S~ND
RMSFN=2 READ failed
RMSST=Disk I/O return code

Read Continue - EDT

Remote

ACK* ------->
<------- TEXT

ACK* ------->
<------- TEXT

ACK* ------->
<------- EDT

Fig u r e 2 8. Err 0 r Han d lin 9 b y the R e,m 0 t e Man age men t Uti lit y

278 SC34-0316

0

o

o

Host Program Host Remote

(Utility sending data set)

Read Continue - Data ACK* ------->
<------- TEXT

(At this point, host gets error
processing data record)

Write End - Abort EOT ------->
Write Initial - Status ENQ ------->

<------- ACK*
RMHBSCC DATA X'lOO2' TEXT ------->
RMHID DATA C' X '
RMHTVP DATA C'S'

<------- ACK*
Write End - EOT EDT ------->

Figure 29. Error Handl i ng by the Host Program

Error Messages

This section describes the error messages returned when the
Remote Management Utility encounters an error. These messages
are written to the terminal that loaded the uti lity.

$RMU ERROR 1 - INSUFFICIENT BUFFER. SIZE: nnnn

The size of the buffer defined for use by the utility is less
than the 512-byte minimum. The default l024-byte buffer size
has been modi fied incorrectly.

$RMU ERROR 2 - COMMUNICATIONS OPEN FAILED, RETURN CODE: nnnn

The OPEN of the BSC commun; cat ions 1 i ne fa i led. The return code
is defined in the description of the SSC Access Method for the
Event Dr i ven Execut i ve.

Chapter 6. Remote Management Utility 279

$RMU ERROR 3 - COMMUNICATIONS CLOSE FAILED, RETURN CODE: nnnn

The CLOSE of a BSC communications line failed. The return code
is defined in the description of the BSC Access Method for the
Event Driven Executive.

$RMU ERROR 4 - COMMUNICATIONS I/O ERROR.
I/O FUNCTION: aaaaaa
RETURN CODE: nnnn

A communications error has been detected by the utility. The
I/O function ("aaaaaa") will indicate the type of request, and
is one of the following:

READ INITIAL
READ CONTINUE
WRITE EOT
WRITE INITIAL
WRITE EDT (ABORT)
WRITE CONTINUE

The return code is def i ned in the descr i pt i on of the BSC Access
Method for the Event Dr i ven Execut i ve.

$RMU ERROR 5 - LOAD OVERLAY FAILED, RETURN CODE: nnnn
OVERLAY NUMBER: mmmm

The ut iii ty attempted to load an over lay program v i a a LOAD
instruction, and the load failed. The return code is defined
for the LOAD instruction.

$RMU ERROR 6 - OVERLAY FUNCTION MISSING. FUNCTION: nnnn
OVERLAY NUMBER: mmmm

The utility's function table defined a function as being con
tained within an overlay, but it was not. This error may occur
if a user-written function is not added properly to the func
tion table.

280 SC34-0316

r~
I. I

~

c

o

o

o

INSTALLATION

The software requirements necessary to install the Event Driv
en Executive Remote Management Utility on a Series/l are dis
tributed as part of the Event Driven Executive Version 2.0
product. The section "Hardware Requirements" on page 207
discusses the minimum hardware requirements. The host program,
however, must be prov i ded by the user.

This section describes the modul~s which comprise the Remote
Management Utility, system generation requirements, storage
requirements, and the Remote Management Utility defaults and
how they can be mod if i ed.

Remote Management ut;l;ty Modules

The uti lity consists of the following modules:

$RMU
$RMUPA
CDROV1
CDROV2
CDROV3
CDROV4
CDROV5
CDROVCP
CDRJP

In addition, the $DISKUT3 utility module is required by the
Remote Management Utility.

System Generat;on Requ;rements

The Remote Management Utility uses the Event Driven Executive
BSC access method (BSCAM) and the BSC line protocol in communi
cating with the host system. To satisfy the BSC requirements,
the BSCLINE statement must be defined at system generation. See
"Chapter 3. Binary Synchronous Communications" on page 35 for
detai Is and syntax of the BSCLINE statement.

The INCLUDE statements required for binary synchronous commu
n i cat ions are as follows:

INCLUDE BSCAM,XS2002
•
•
•

INCLUDE BSCINIT,XS2002

Chapter 6. Remote Management Utility 281

If the PASSTHRU function is to be invoked by the host program,
the following INCLUDE statement is required to provide the vir
tual terminal support of the Event Driven Executive:

INCLUDE IOSVIRT,XS2002

No. t e: A s dis c u sse din the sec t ion "P ASS T H R U Fun c t ion" 0 n p age
225, the names of the virtual terminals must be CDRVTA and
CDRVTB.

Refer to the System Guide for information on including modules
at system generat i on.

Upon meeting the system generation requirements previously
discussed, the Remote Management Ut iii ty can be loaded for exe
cution via the $L operator command as follows: $L $RMU.

storage Requirements

The storage requirements for the Remote Management Utility
descr i bed in th i s sect i on are in add it i on to the storage
required by the Event Driven Executive supervisor/emulator and
the superv i sor/emulator' s requ ired dev ice support programs and
control blocks.

The Remote Management Utility storage requirements are as fol
lows:

• Max i mum of 7K bytes plus buffer space for any funct i on.

• The storage required by the utility can be reduced from 7K
bytes to 5K bytes. If the storage is reduced to 5K bytes,
all functions except ALLOCATE and DELETE can be performed
with a 2K byte savings. However, when the ALLOCATE and
DELETE functions are invoked, the utility will momentarily
require additional storage for the $DISKUT3 utility (which
is approximately 4.5K). The storage will be obtained from
the partition the Remote Management Utility is executing
in.

• storage requ i red for load i ng other programs invoked
through the EXEC, PASSTHRU, or SHUTDOWN functions is not
cons i de red storage requ i red by the Remote Management ut i I
i t y •

Refer to the section "Modi fying Defaults" on page 283 for
deta i Is on mod i fy i ng storage requ i rements.

282 SC34-0316

c

o

o

c

Remote Management ut;l;ty Defaults

This section describes the defaults and constants within the
Remote Management ut iIi ty as d i str i buted:

• Host system 10 of "HOSTRMUX"

• Remote system 10 of "REMTRMUX"

• BSC device address of X'09'

• Communications line is point-to-point

• storage requ ired is 7K for all funct ions

• Buffer si ze is 1024 bytes

Mod;fy;ng Defaults

This section describes how the Remote Management Utility
defaults can be modified to meet specific user programming
requirements. The defaults can be modified via "patching"
through use of the $D1SKUT2 ut'ility. Detailed information on
the $DISKUT2 utility can be found in Utilities, Operator Com
mands, Program Preparation, Messages and Codes.

Chapter 6. Remote Management Utility 283

Host 10

The default host 10 expected by the IDCHECK function is
"HOSTRMUX". This 10 may be modified by applying the patch to
the address illustrated in the following example, where the 10
is set to "HOSTSYSA".

(Attention)
> $L $DISKUT2

USING VOLUME EDX002

COMMAND(?): PA $RMU
$RMU IS A PROGRAM
ADDRESS: 6B6 4
CD)EC, CE)BCDIC OR (H)EX? E

NOW IS:
06B6 C8D6 E2E3 D9D4 E4E7

ENTER DATA: HOSTSYSA

NEW DATA:
0686 C8D6 E2E3 E2E8 E2Cl

OK? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND(?): EN

284 SC34-0316

IHOSTRMuxl

IHOSTSVSAI

c

o

o

o

Remote 10

The default remote system 10 returned on a successful IDCHECK
function is "REMTRMUX". This 10 may be modified by applying the
patch to the address illustrated in the following example,
where the ID is set to "REMTSYSA".

(Attention)
> $L $DISKUT2

USING VOLUME EDX002

COMMAND(?): PA $RMU
$RMU IS A PROGRAM
ADDRESS: 6AE 4
(D)Ee, (E)BCDIC OR (H)EX? E

NOW IS:
06AE D9C5 D4E3 D9D4 E4E7

ENTER DATA: REMTSYSA

NEW DATA:
06AE D9C5 D4E3 E2E8 E2Cl

OK? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND(?): EN

IREMTRMuxl

IREMTSYSAI

Chapter 6. Remote Management Utility 285

BSC Device Address

The default B S C de vic e add res s de fin e dint h e utility i s X' 09 ' •
This device address may be modified by applying the patch to
the address illustrated in the following example, where the
address is set to X'19'.

(Attention)
> $L $DISKUT2

USING VOLUME EDX002

COMMAND(?): PA $RMU
$RMU IS A PROGRAM
ADDRESS: 6CO 1
(D)EC, (E)BCDIC OR (H)EX? H

NOW IS:
06CO 0009

ENTER DATA: 0019

NEW DATA:
06CO 0019

OK? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND(?): EN

286 SC34-0316

I · ·

I · ·

o

o

C~
)

o

Communications Line

The ut i 1 i ty is d i str i buted to run on a binary synchronous
commun i cat ions po i nt-to-po i nt commun i cat ions line, e i t her
leased or switched. If the uti lity is to be used as a tributary
station on a multipoint line (TVPE=MT on the BSCLINE
statement), the patch to the address iII ustrated in the fo llow
i ng examp Ie must be app lied:

(Attention)
> $L $DISKUT2

USING VOLUME EDX002

COMMAND(?): PA $RMU
$RMU IS A PROGRAM
ADDRESS: 6D8 1
(D)EC, (E)BCDIC OR (H)EX? H

NOW IS:
06D8 0000

ENTER DATA: 0001

NEW DATA:
06D8 0001

OK? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND(?): EN

I · ·

I · ·

Chapter 6. Remote Management Utility 287

Storage

As was discussed in the section "Storage Requirements" on page
282, storage may be reduced from 7K to SK. This modification
can be done by applying the patch ("CDRJP") to the address
illustrated in the following example.

(Attention)
> $l $DISKUT2

USING VOLUME EDX002

COMMAND(?): FA $RMU
$RMU IS A PROGRAM
ADDRESS: 102 4
CD)EC, (E)BCDIC OR (H)EX? E

NOW IS:
0102 05BC4 C9E2 D2E4 E3F3

ENTER DATA: CDRJP

NEW DATA:
0102 C3C4 D9D1 D740 4040

OK? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND(?): EN

288 SC34-0316

r$DISKUT3r

ICDRJP

()

;:/~
I

~-yI

c

o

o

o

Buffer Size

The default buffer size defined in the utility is 1024 bytes.
This buffer size may be modified by applying the patch to the
address illustrated in the following example (nnnn is the buff
er size).

(Attention)
> $L $DISKUT2

USING VOLUME EDX002

COMMAND(?): 55 $RMU nnnn

OLD STORAGE SIZE WAS 1024
OK TO CONTINUE? Y

COMMAND(?): EN

Buffer sizes may be modified to allow different sizes of block
ing. The following table defines maximum blocking factors and
sizes for var i ous buf fer sizes:

Buffer
Size

Max Blocking
Factor -
Standard
Data set

Max Blocking
Factor -
Source
Data Set

Max Block
Size -
Passthru
Data

--
512 (min) 1 3 248
768 2 6 504
1024 (default) 3 9 760
2048 7 22 1784
4096 15 47 3832
32512 (max) 126 403 32248

The calculations required to determine the blocking factor for
the different data set types wi 11 be discussed next. The buffer
si ze chosen should be a multiple of 256 bytes (the Event Dri yen
Executi ve rounds up to the next multiple of 256 bytes).

Chapter 6. Remote Management Utility 289

Standard Data Set

To determine the blocking factor for a standard data set, use
the following calculation:

MSTD = (BUFF - 6) / 256

where BUFF = buffer size (bytes)
MSTD = blocking factor

Note: The remainder is discarded. The value "6" accounts for a
4-byte header, I-byte ETX, and 1 byte for word alignment.

Source Data Set

To determine the blocking factor for a source data set, use the
following calculation:

MSRC = (BUFF - 262) / 80

where BUFF = buffer size (bytes)
MSRC = blocking factor

Note: The remainder is discarded. The value "262" accounts for
a 4-byte header, I-byte ETX, I byte for word al i gnment, and 256
bytes in which the disk/diskette record is read or written.

If space is avai lable for more than one disk/diskette record in
the buffer, the utility will read or write as many records as
possible at a time to increase the efficiency of disk/diskette
I/O.

For example, if the buffer
factor is 6, the utility
records at a time.

290 SC34-0316

size is 1024 bytes and the blocking
will read or write two 256-byte

()

c

o

o

o

Passthru Data

To calculate the blocking factor for Passthru data, use the
following calculation:

MPSD = BUFF - 264

where BUFF = buffer size (bytes)
MPSD = Passthru data size

(this is the size of the data segment of
the Passthru "Text or PF Key" record)

Note: The value "264" accounts for a 6-byte header, I-byte ETX,
1 byte for word alignment, and 256 bytes for a TEXT statement
for I/O to the vi rtual channel.

Chapter 6. Remote Management Utility 291

CDRRM Equate Listing

*
* RM
RMH
RMHBSCC
RMHID
RMHIDX
RMHTVP
RMHTYPR
RMHTVPS
RMHTYPC
RMHTVPD
RMHTYPP

* RMHX

*
*
*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

RMREQ EQU
RMREQSND EQU
RMREQRCV EQU
RMREQALC EQU
RMREQDEL EQU
RMREQDMP EQU
RMREQWRP EQU
RMREQIDC EQU
RMREQSHT EQU
RMREQEXC EQU
RMREQPST EQU

* RMRX

*
*
* RMSDSN
RMSVOL
RMSSTR

* RMSTYP
RMSTYPN

* RMSTYPS

* RMSBLK

EQU

EQU
EQU
EQU

EQU
EQU

EQU

EQU

o
o
o X'1002'
2 C'X'
C'X'
3 CL1
C 'R '
C'S '
C'C '
C'D '
C' P ,

4

REMOTE MANAGEMENT UTILITY
RECORD DESCRIPTION

HEADER
BSC CONTROL CHARS (DLE STX)
HEADER 10

HEADER TYPE
R REQUEST
S STATUS
C COUNT
o DATA
P PASSTHRU

EXTENSION AFTER HEADER

RECORD TYPE: REQUEST

RMHX+O
o

F REQUEST TYPE:

1
2
3
4
5
6
7
9
12

RMHX+2

o SEND
1 RECEIVE
2 ALLOCATE
3 DELETE
4 DUMP
5 WRAP
6 IDCHECK
7 SHUTDOWN
9 EXEC
12 PASSTHRU

REQUEST EXTENSION

EXTENSION: SEND

RMRX+O CLB
RMRX+B CL6
RMRX+14 D

DATA SET NAME
VOLUME NAME (BLANK=IPL VOLUME)
STARTING RECORD OF DATA SET
(ONLY SECOND HALF USED)

RMRX+IB F
o

1

RMRX+20 F

TYPE OF SEND
o NORMAL (256-BYTE RECORDS,

POSSIBLY BLOCKED)
1 SOURCE (BO-BYTE RECORDS,

POSSIBLY BLOCKED)
BLOCKING FACTOR (0 OR l=NONE)

Figure 30. CDRRM Copy Code (Part 1 of 6)

292 SC34-0316

c

o

o

o

*
* RMRDSN
RMRVOL
RMRSTR

* RMRTYP
RMRTYPN

* RMRTYPS

* RMRBLK

*
*
* RMADSN
RMAVOL
RMANREC

* RMADST
RMADSTU
RMADSTD
RMADSTP

*
*
* RMDDSN
RMDVOL

*
*
*

EQU
EQU
EQU

EQU
EQU

EQU

EQU

EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU

RMDPDSN EQU
RMDPVOL EQU

* RMDPPTN EQU

*
*
*
*
*
* RMWTXT EQU

EXTENSION: RECEIVE

RMRX+O CLB
RMRX+B CL6
RMRX+14 D

RMRX+IB F
o

1

RMRX+20 F

DATA SET NAME
VOLUME NAME (BLANK=IPL VOLUME)
STARTING RECORD OF DATA SET
(ONLY SECOND HALF USED)
TYPE OF RECEIVE

o NORMAL (256-BYTE RECORDS,
POSSIBLY BLOCKED)

1 SOURCE (BQ-BYTE RECORDS,
POSSIBLY BLOCKED)

BLOCKING FACTOR (0 OR I=NONE)

EXTENSION: ALLOCATE

RMRX+O CLB
RMRX+B CL6
RMRX+14 D

RMRX+IB F
o
1
3

DATA SET NAME
VOLUME NAME (BLANK=IPL VOLUME)
NUMBER OF 256-BYTE RECORDS
(ONLY SECOND HALF USED)
DATA SET TYPE

o UNDEFINED
1 DATA
3 PROGRAM

EXTENSION: DELETE

RMRX+O CLB DATA SET NAME
RMRX+8 CL6 VOLUME NAME (BLANK=IPL VOLUME)

EXTENSION: DUMP

RMRX+O CLB
RMRX+8 CL6

H
RMRX+15 H

DATA SET NAME
VOLUME NAME (BLANK=IPL VOLUME)
(UNUSED)
PARTITION NUMBER
-1 REMOTE MANAGEMENT

UTILITY PARTITION
I-B SPECIFIC PARTITION

EXTENSION: WRAP

RMRX+O C WRAP TEXT (MAY BE ANY LENGTH)

Figure 31. CDRRM Copy Code (Part 2 of 6)

Chapter 6. Remote Management Utility 293

*
* RMICHK

*
*
*
*

EQU

RMSDFLG EQU
RMSDFLGX EQU
RMSDFLGL EQU
RMSDPTN EQU

*
*
*
* RMSDPGM EQU
RMSDVOL EQU
RMSDLFS EQU
RMSDPRMt EQU
RMSDPRM EQU
RMSDDSt EQU

* RMSDDS EQU

*
*
*
*
* RMXFLG
RMXFLGL
RMXFLGW
RMXPTN

*
*
*
* RMXPGM
RMXVOL
RMXLFS
RMXPRMt
RMXPRM
RMXDSt

* RMXDS

*

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EXTENSION: IDCHECK

RMRX+O CL8 ID OF HOST

EXTENSION: SHUTDOWN

F
RMRX+2 H
X'80'
X'40'
RMRX+3 H

RMRX+4 CL8
RMRX+12 CL6
RMRX+18 F
RMRX+20 F
RMRX+22 NF
RMRX+24 F

RMRX+26 NF

(UNUSED)
FLAG

PROGRAM TO BE EXECUTED
LOGMSG=YES

PARTITION NUMBER
-1 REMOTE MANAGEMENT

UTILITY PARTITION
o ANY PARTITION
1-8 SPECIFIC PARTITION

PROGRAM (DATA SET NAME)
VOLUME NAME (BLANK=IPL VOLUME)
FREE SPACE PASSED TO PROGRAM
NUMBER OF PARAMETER WORDS
PARAMETER WORDS
NUMBER OF DATA SET NAMES
PASSED
DATA SET NAMES (DATA SET, VOL
UME; BLANK VOLUME=IPL VOLUME)

EXTENSION: EXEC

F
RMRX+2 H
X'40'
X'20'
RMRX+3 H

RMRX+4 CL8
RMRX+12 CL6
RMRX+18 F
RMRX+20 F
RMRX+22 NF
RMRX+24 F

RMRX+26 NF

(UNUSED)
FLAG

LOGMSG=YES
WAIT=YES

PARTITION NUMBER
-1 REMOTE MANAGEMENT

UTILITY PARTITION
o ANY PARTITION
1-8 SPECIFIC PARTITION

PROGRAM (DATA SET NAME)
VOLUME NAME (BLANK=IPL VOLUME)
FREE SPACE PASSED TO PROGRAM
NUMBER OF PARAMETER WORDS
PARAMETER WORDS (VARIABLE)
NUMBER OF DATA SET NAMES
PASSED
DATA SET NAMES (DATA SET, VOL
UME; BLANK VOLUME=IPL VOLUME)

Figure 32. CDRRM COpy Code (Part 3 of 6)

294 SC34-0316

~-~

1,_./1

o

o

o

*
* RMPRBLK EQU

*
*
*
* RMPRFLG EQU
RMPRPTN EQU

*
*
*
* RMPRPGM EQU

* RMPRVOL EQU
RMPRLFS EQU
RMPRPRMI EQU
RMPRPRM EQU
RMPRDSI EQU

* RMPRDS EQU

*
*
*
* RMSREQ EQU
RMSFN EQU
RMSFNOK EQU

*
*
*
* RMSFNID EQU
RMSFNBF EQU

* RMSFNSHR EQU

* RMSFNHIH EQU
RMSFNHID EQU

* RMSFNRQX EQU
RMSFNREQ EQU
RMSFNRQS EQU

* RMSFNSRT EQU
RMSFNBLF EQU
RMSFNIM EQU

*

EXTENSION: PASSTHRU

RMRX+O

RMRX+2
RMRX+3

F

H
H

BLOCKING FOR RECORDS FROM
REMOTE

o
OTHER

NONE
LARGEST BLOCK HOST
CAN RECEIVE

FLAG (UNUSED)
PARTITION NUMBER
-1 REMOTE MANAGEMENT

UTILITY PARTITION
o ANY PARTITION
1-8 SPECIFIC PARTITION

RMRX+4 CL8 PROGRAM (DATA SET NAME) OR

RMRX+12 CL6
RMRX+18 F
RMRX+20 F
RMRX+22 F
RMRX+24 F

BLANK FOR EDX SUPERVISOR
VOLUME NAME (BLANK=IPL VOLUME)
FREE SPACE PASSED TO PROGRAM
NUMBER OF PARAMETER WORDS
PARAMETER WORDS (VARIABLE)
NUMBER OF DATA SET NAMES
PASSED

RMRX+26 CL8 DATA SET NAMES (DATA SET, VOL
CL6 UME; BLANK VOLUME=IPL VOLUME)

RMRX+O F
RMRX+2 F
-1

1
2

3

4
5

6
7
8

9
10
11

RECORD TYPE: STATUS

REQUEST TYPE
FUNCTION
-10K; REQUEST SUCCESSFUL

1 - 20: REMOTE MANAGEMENT
UTILITY FUNCTION

1 IDCHECK FAILED
2 BUFFER AREA TOO SMALL

FOR RECORD
3 SHORT RECORD (LESS THAN

4 BYTES)
4 HEADER ID IS 'H' (INVALID)
5 INVALID HEADER ID

(NOT 'X' OR 'H')
6 REQUEST EXPECTED
7 INVALID REQUEST
8 REQUEST SHORT (MISSING

INFORMATION)
9 INVALID SEND/RECEIVE TYPE

10 INVALID BLOCKING FACTOR
11 INVALID MESSAGE RECEIVED

DURING REQUEST

Figure 33. CDRRM COpy Code (Part 4 of 6)

Chapter 6. Remote Management Utility 295

RMSFNPD EQU

* RMSFNDPN EQU

* RMSFNRQR EQU

* RMSFNEOT EQU

* RMSFNVTB EQU

*
*
*
*'
* RMSFNR EQU

* RMSFNW EQU

* RMSFNL EQU
RMSFNLFP EQU
RMSFNBIO EQU
RMSFNVTP EQU

*
*
*'
*'
*'
*'
*
* RMSFNAD EQU
RMSFNOPN EQU
RMSFNSED EQU
RMSFNLDP EQU

*'
*'
*'
*'
*' RMSFNOFM EQU

*' RMSST

*'
* RMSX

*'
*
* RMSRID

EQU

EQU

EQU

12

13

14

15

16

21

22

24
25
26
27

31
32
33
34

41

RMRX+4 F

RMRX+6

12 INVALID PASSTHRU RECORD
TYPE

13 INVALID DUMP PARTITION
NUMBER

14 REQUEST RECEIVED WHILE
ANOTHER RUNNING

15 EOT EXPECTED AND NOT
RECEIVED

16 VIRTUAL TERMINAL BUSY

21 - 30: EVENT DRIVEN
EXECUTIVE FUNCTION (RMSST
CONTAINS RETURN CODE)

21 READ DISK/DISKETTE
FAILED

22 WRITE DISK/DISKETTE
FAILED

24 LOAD FAILED
25 LOAD OF OVERLAY FAILED
26 BSC I/O FAILURE
27 PRINTEXT FAILED FOR

VIRTUAL TERMINAL

31 - 40: EVENT DRIVEN
EXECUTIVE ADDITIONAL FUNCTION
(RMSST CONTAINS RETURN CODE
FROM SDISKUT3 FOR CODES
31-33)

31 ALLOCATE/DELETE FAILED
32 OPEN FAILED
33 SETEOD FAILED
34 PARAMETERS TO BUILD LOAD

INSTRUCTIONS ARE INVALID

41 - 50: REMOTE MANAGEMENT
UTILITY ERROR

41 OVERLAY FUNCTION MISSING

STATUS OF FAILING FUNCTION
(CONTAINS RETURN CODE IF
INDICATED BY RMSFN)
STATUS EXTENSION

EXTENSION: IDCHECK STATUS

RMSX+O CL8 10 OF REMOTE SYSTEM

Figure 34. CDRRM Copy Code (Part 5 of 6)

296 SC34-0316

o

o

o

o

*
*
* RMCREQ EQU
RMCFLG EQU
RMCFLGPD EQU
RMCCNT EQU
RMCL EQU

*
*
* RMDDATA EQU

*
*
* RMPTYP EQU
RMPTYPTX EQU
RMPTYPRD EQU
RMPTYPPE EQU
RMPTYPND EQU
RMPX EQU

*
*
* RMPST
RMPTXTL

* RMPTXT

*
* RMPPF

*
*
*
*
*

EQU
EQU

EQU

EQU

RMHX+O
RMHX+2 F
X'BOOO'
RMHX+4 D
RMHX+B

RMHX+O C

RMHX+O F
1
2
3
4
RMHX+2

RMPX+O
RMPX+2

RMPX+4

RMPX+4

F
F

C

F

RECORD TYPE: COUNT

REQUEST TYPE
FLAG
PADDING OCCURED
COUNT (NUMBER LOGICAL RECORDS)
LENGTH OF COUNT MESSAGE

RECORD TYPE: DATA

DATA (VARIABLE LENGTH)

RECORD TYPE: PASSTHRU

PASSTHRU TYPE
1 TEXT OR PF KEY
2 REQUEST FOR DATA
3 PROGRAM END (DISCONNECT)
4 NO DATA

PASSTHRU EXTENSION

EXTENSION: TEXT OR PF KEY

STATUS OF LTERM MESSAGE
TEXT LENGTH (BYTES) OR -1 IF
PF KEY
TEXT (VARIABLE SIZE) IF LENGTH
IS NOT -1

PK KEY NUMBER (IF LENGTH IS -1)
(THESE FIELDS MAY BE REPEATED

FOR INPUT TO HOST IF BLOCKING
IS REQUESTED. IF "RMPTXTL" IS
AN ODD NUMBER, ONE BYTE OF
FILLER FOLLOWS "RMPTXT".)

Figure 35. CDRRM COpy Code (Part 6 0 f 6)

Chapter 6. Remote Management Utility 297

o
298 SC34-0316

o

o

o

CHAPTER 7. GRAPHICS

General Description

The graphics instructions, used with the terminal support
described in this book, provide a tool for the development of
graph i cs app I i cat ions. They can aid in the preparat i on of
graphic messages, allow interactive input, and draw curves on a
display terminal.

These instructions are only valid for ASCII terminals having a
po i nt-to-po i nt vector graph i cs capab iIi ty, and compat i b Ie with
the coord i nate convers i on a Igor i thm descr i bed in Interna 1
Design for graphics mode control characters. The function of
the various ASCII control characters used by a terminal are
described in the appropriate device manual. Such terminals may
be connected to the Ser i es/1 v i a the 17850 Te letypewr iter
adapter.

Seven graphic instructions are supplied. They are used in the
same manner as other instructions, except that the supporting
code wi 11 be included in the user's program, rather than in the
supervisor. If all instructions are coded in a program, this
code requires approximately 1500 bytes of storage.

When using the instructions described in this chapter,
detailed manipulation of terminal instructions and text mes
sages are not required. All of the graphics instructions deal
with ASCII data, and when sending an ASCII text string to the
terminal, the XLATE=NO parameter should be coded.

Use of the graph i cs instruct ions requ i res that the user's
object program be processed by the linkage editor program,
$LINK, in order to include the graphics functions which are
supplied as object modules. Refer to the Utilities, Operator
Com m.a n d s, Pro g ram Pre par a t ion, Me s sag e san d Cod e s f o·r the
description of the autocall option of $LINK, and for informa
tion on the use of the "AUTO=$AUTO,ASMLIB" option of $LINK.

The following is a list of the graphics instructions provided
by the Event Dr i ven Execut i ve. These instruct ions are
descr i bed in deta iIi n the Language Reference.

CONCAT
GIN
PLOTCB
PLOTGIN
SCREEN
XYPLOT
YTPLOT

Concatenate two data strings
Unsealed cursor coordinate inputs
Defines graphics data area
Scaled cursor coodinate inputs
Converts x,y coordinates to text string
Draws a x,y curve on a display
Plots Y points on a display

Chapter 7. Graphics 299

Additionally, three graphic utilities are provided. They are
$DIUTI L, $DICOMP, and $DI INTR. Re fer to the Ut iIi ties,
Operator Commands, Program Preparation, Messages and Codes for
a description.

Hardware Considerations

Terminal support is provided for the Tektronix 4010 series of
display terminals equipped the General Purpose Parallel Inter
face (Tektronix Custom Feature Number CM021-0109-03 with cable
CMOI2-0541-00) or other digital I/O devices having equivalent
hardware interfaces. The software provides addressing logic
such that up to eight terminals may be shared on one digital
input group and one digital output group, with one process
interrupt bit for each term ina I.

The parallel interface is intended to connect directly to the
intergrated digital input/output feature (11560). This inter
face cons i sts of a dr i ver and a rece i ver card, each of wh i ch has
several selectable options. These options allow the user to
customize the interface to his requirements. The user must
refer to the manufacturer's manuals for detailed installation
procedures.

The following description is intended only to supplement those
manuals and guide the user when using the Event Driven Execu
tive terminal support on the Series/I. The following Tektronix
4010 Series display terminal options should be selected:

Receiver Card

INTR (interrupt)

ADDRESS

PERM ADD

PARITY

DELAY

LOGIC SENSE (3)
HANDSHAKE
CONTROL
DATA

THRESHOLD

MASTER OPTION

300 SC34-0316

PROG

000(0)-111(7) to match
TERMINAL definition

OFF

EVEN

3.5-18 (depends on distance)

Set all to LOW

+2 volts

None

()

c

o

(\
)

o

Driver Card

LOGIC SENSE (4)
STATUS
HANDSHAKE
INTERRUPT
DATA

INTERRUPT CHANNEL

AUX TSUP

ECHO

PARITY

Set as shown
HIGH
HIGH
LOW
HIGH

Use INTR

OUT

OUT

EVEN, BIT 8 IN
AB to A, CD to D

Before the terminal may be used with the computer, some other
cons i derat ions are necessary. As noted above, the common
interrupt line (INTR) should be used. It is recommended that
the user select the interrupt line (0 - 7) corresponding to the
terminal address. If fewer than eight terminals are attached,
some of the interrupt lines will not be used. All digital input
and process interrupt lines must be terminated for proper oper
ation. If only one terminal is used, the 01 terminations may
have been installed by the manufacturer. With multiple termi
nals, all 01 lines and PI lines should be terminated at the
computer. A 1000-ohm resistor across the DI and PI inputs is
recommended. The BAUD Rate Selection Switch should be in the
"stand by" pos it i on and the J 261 Connector Sw itch set to
"interface". Both of these switches are on the Tektronix 4010
series display terminals.

When t he term ina lis powered on, it may be necessary to "reset"
the terminal. The procedure is to put the LOCAL/LINE switch in
LOCAL, back to LINE, and simultaneously press the SHIFT and
RESET keys. If the terminal does not respond during normal
ope rat i on, it may be necessary to perform th is sequence to
reset the internal circuits.

Since all input/output is done with upper case ASCII character
codes, the TTY LOCK key should be activated when using the ter
minal with the Series/I.

The last items which merit special discussion are the GIN mode
and the PAGE FULL BREAK strap options on the terminal control
card (TC-2). The user must press the appropriate key followed
by carr i age return (CR). The PAGE FU L L BREAK term i nat i on may be
set to either OUT or IN, depending on the user's preference. If
it is IN, the terminal will always stop when a full page condi
t ion is reached. The user must press the PAGE RESET key in order
to continue. If it is OUT, the terminal will automaticallY go
to the home address and continue printing without erasing the
screen.

Chapter 7. Graphics 301

302 SP34-0316

f~
'~f

o

o

()

o

APPENDIX A. CODE TYPES

Eight-bit 2741
data interchange 2741 PTTC/

ASCII EBASC* PTTC/EBCD Correspondence

Decimal Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD CRSP

0 00 0000 0000 NUL NUL NUL (even)
1 01 0001 SOH SOH NUL (odd) space space
2 02 0010 STX STX @ (odd) 1 1,]
3 03 0011 ETX ETX @ (even)
4 04 0100 PF EaT space (odd) 2 2
5 05 0101 HT ENQ space (even)
6 06 0110 LC ACK ' (even)
7 07 0111 DEL BEL ' (odd) 3
8 08 1000 BS DLE (odd) 4 5
9 09 1001 RLF HT DLE (even)

10 OA 1010 SMM LF P (even)
11 OB 1011 VT VT P (odd) 5 7
12 OC 1100 FF FF o (even)
13 OD 1101 CR CR o (odd) 6 6
14 OE 1110 SO SO p (odd) 7 8
15 OF 1111 SI SI p (even)
16 10 0001 0000 DLE DLE BS (odd) 8 4
17 11 0001 DC1 DC1 BS (even)
18 12 0010 DC2 DC2 H (even)
19 13 0011 TM DC3 H (odd) 9 0
20 14 0100 RES DC4 ((even)
21 15 0101 NL NAK ((odd) 0 Z
22 16 0110 BS SYN h (odd) @ (EOA) @ (EOA),9
23 17 0111 IL ETB h (even)
24 18 1000 CAN CAN CAN (even)
25 19 1001 EM EM CAN (odd)
26 1A 1010 CC SUB X (even) RS RS
27 1B 1011 CUI ESC X (odd)
28 1C 1100 IFS FS 8 (odd) upper case upper case
29 1D 1101 IGS GS 8 (even) A

30 IE 1110 IRS RS x (even)
31 IF 1111 IUS US x (odd) © (EaT) © (EaT)
32 20 0010 0000 DS space EaT (odd) @ t
33 21 0001 SOS ! EaT (even)
34 22 0010 FS " D (even)
35 23 0011 # D (odd) / x
36 24 0100 BYP $ $ (even)
37 25 0101 LF % $ (odd) s n
38 26 0110 ETB & d (odd) t u
39 27 0111 ESC

, d (even)
40 28 1000 (DC4 (even)
41 29 1001) DC4 (odd) u e
42 2A 1010 SM * T (odd) v d
43 2B 1011 CU2 + T (even)
44 2C 1100 , 4 (even) w k
45 2D 1101 ENQ - 4 (odd)
46 2E 1110 ACK t (even)
47 2F 1111 BEL / t (odd) x c
48 30 0011 0000 0 form feed (even)
49 31 0001 1 form feed (odd) y 1
50 32 0010 SYN 2 L (odd) z h

*The no-parity TWX code for any given character is the code that has the rightmost bit position off. The parity of the code is
indicated in the parenthesis (either odd or even).

Appendix A. Code Types 303

Eight-bit 2741
data interchange 2741 PTTC/

ASCII EBASC* PTTC/EBCD Correspondence
Decimal Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD CRSP

c
51 33 0011 3 L (even)
52 34 0100 PN 4 , (odd)
53 35 0101 RS 5 ,(even)
54 36 0110 UC 6 I (even) SOA
55 37 0011 0111 EOT 7 1 (odd) ® (SOA),comma b
56 38 1000 8 FS (odd)
57 39 1001 9 FS (even)
58 3A 1010 : \ (even)
59 3B 1011 CU3 ; \ (odd) index index
60 3C 1100 DC4 < < (even)
61 3D 1101 NAK = < (odd) ® (EOB)
62 3E 1110 > I (odd)
63 3F 1111 SUB ? I (even)
64 40 0100 0000 space @ EOA (odd) @ (NAK),- !
65 41 0001 A EOA (even)
66 42 0010 B B (even)
67 43 0011 C B (odd) i m
68 44 0100 D " (even)
69 45 0101 E " (odd) k
70 46 0110 F b (odd) I v
71 47 0111 G b (even)
72 48 1000 H DC2 (even)
73 49 1001 I DC2 (odd) m ,

74 4A 1010 ¢ J R (odd) n r
75 4B 1011 K R (even)
76 4C 1100 < L 2 (odd) 0 i
77 4D 1101 (M 2 (even)
78 4E 1110 + N r (even)
79 4F 1111] 0 r (odd) p a
80 50 0101 0000 & P line feed (even)
81 51 0001 Q line feed (odd) q 0

82 52 0010 R J (odd) r s
83 53 0011 S J (even)
84 54 0100 T * (odd)
85 55 0101 U * (even)
86 56 0110 V ; (even)
87 57 0111 W ; (odd) $ w
88 58 1000 X SUB (odd)
89 59 1001 Y SUB (even)
90 5A 1010 ! Z Z (even)
91 5B 1011 $ [Z (odd) CRLF CRLF
92 5C 1100 * \ : (even)
93 5D 1101)] : (odd) backspace backspace
94 5E 1110 ; /\ z (odd) idle idle
95 5F 1111 -----, - z (even)
96 60 0110 0000 - ACK (even)
97 61 0001 / a ACK (odd) & j
98 62 : 0010 b F (odd) a g
99 63 0011 c F (even)
100 64 0100 d & (odd) b
101 65 0101 e & (even)
102 66 0110 f f (even)
103 67 0111 g f (odd) c f
104 68 1000 h SYN (odd) d p
105 69 1001 i SYN (even)
106 6A 1010 I j V (even) I

107 6B 1011 , k V (odd) e
108 6C 1100 % I 6 (even)

c
304 SC34-0316

Eight-bit 2741

o data interchange 2741 PTTC/
ASCII EBASC* PTTC/EBCD Correspondence

Decimal Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD CRSP

109 6D 1101 m 6 (odd) f q
110 6E 1110 > n v (odd) g comma
111 6F 1111 ? 0 v (even)
112 70 0111 0000 p shift out (even) h /
113 71 0001 q shift out (odd)
114 72 0010 r N (even)
115 73 0011 s N (odd) i y

116 74 0100 t . (even)
117 75 0101 u . (odd)
118 76 0110 v n (odd) (X) (YAK), period
119 77 0111 w n (even)
120 78 1000 x RS (even)
121 79 1001 y RS (odd)
122 7A 1010 : z t (odd) horiz tab tab
123 7B 1011 # { t (even)
124 7C 1100 @ I > (odd) lower case lower case
125 7D 1101

,
} > (even)

126 7E 1110 = ~ "Iv (even)
127 7F 1111 " DEL "Iv (odd) delete
128 80 1000 0000 SOM (odd)
129 81 0001 a SOM (even) space space
130 82 0010 b A (even) = ±, [
131 83 0011 c A (odd)
132 84 0100 d ! (even) < @

133 85 0101 e ! (odd)
134 86 0110 f a (odd)
135 87 0111 g a (even) ; #
136 88 1000 h X-QN (even) : %
137 89 1001 i X-QN (odd)
138 8A 1010 Q (odd)
139 8B 1011 Q (even) % &
140 8C 1100 1 (odd)
141 8D 1101 1 (even)

,
¢

142 8E 1110 q (even) > *
143 8F 1111 q (odd)
144 90 1001 0000 horiz tab (even) * $
145 91 0001 j horiz tab (odd)
146 92 0010 k I (odd)
147 93 0011 1 I (odd) ()

148 94 0100 m) (odd)
149 95 0101 n) (odd)) Z
150 96 0110 0 i(even) D (EOA)," (
151 97 0111 p i (odd)
152 98 1000 q EM (odd)
153 99 1001 r EM (even)
154 9A 1010 Y (even)
155 9B 1011 Y (odd)
156 9C 1100 9 (even) upper case upper case
157 9D 1101 9 (odd)
158 9E 1110 y (odd)
159 9F 1111 y (even) C (EOT) C (EOT)
160 AO 1010 0000 WRU (even) ¢ T
161 Al 0001 ~ WRU (odd)
162 A2 0010 s E (odd)
163 A3 0011 t E (even) ? X
164 A4 0100 u % (odd)
165 AS 0101 v % (even) S N

o
Appendix A. Code Types 305

Eight-bit 2741
data interchange 2741 PTTC/

ASCII EBASC* PTTC/EBCD Corresponden ce
Decimal Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD 2741 o
166 A6 1010 0110 w e (even) T U
167 A7 0111 x e (odd)
168 A8 1000 y NAK (odd)
169 A9 1001 z NAK (even) U E
170 AA 1010 U (even) V D
171 AB 1011 U (odd)
172 AC 1100 5 (even) W K
173 AD 1101 5 (odd)
174 AE 1110 u (odd)
175 AF 1111 u (even) X C
176 BO 1011 0000 return (odd)
177 Bl 0001 return (even) Y L
178 B2 0010 M (even) Z H
179 B3 0011 M (odd)
180 B4 0100 - (even)
181 B5 0101 - (odd)
182 B6 0110 m (odd)
183 B7 0111 m (even) ® (SOA), I B
184 B8 1000 GS (even)
185 B9 1001 GS (odd)
186 BA 1010] (odd)
187 BB 1011] (even) index index
188 BC 1100 = (odd)
189 BD 1101 = (even) ® (EOB),ETB
190 BE 1110 } (even)
191 BF 1111 \ (odd)
192 CO 1100 0000 } EOM (even) ® (NAK),-
193 Cl 0001 A EOM (odd)
194 C2 0010 B C (odd)
195 C3 0011 C C (even) J M
196 C4 0100 D # (odd)
197 C5 0101 E # (even) K
198 C6 0110 F c (even) L V
199 C7 0111 G c (odd)
200 C8 1000 H X-OFF (odd)
201 C9 1001 I X-OFF (even) M "
202 CA 1010 S (even) N R
203 CB 1011 S (odd)
204 CC 1100 J 3 (even) 0 I
205 CD 1101 3 (odd)
206 CE 1110 ~ s (odd)
207 CF 1111 s (even) p A
208 DO 1101 0000 } vertical tab (odd)
209 Dl 0001 J vertical tab (even) Q 0
210 D2 0010 K K (even) R S
211 D3 0011 L K (odd)
212 D4 0100 M + (even)
213 D5 0101 N + (odd)
214 D6 0110 0 k (odd)
215 D7 0111 P k (even) ! W
216 D8 1000 Q ESC (even)
217 D9 1001 R ESC (odd)
218 DA 1010 [(odd)
219 DB 1011 [(even) CRLF CRLF
220 DC 1100 ; (odd)
221 DD 1101 ; (even) backspace backspace
222 DE 1110 { (even) idle idle

c
306 SC34-0316

Eight-bit 2741

o data interchange 2741 PTTC/
ASCII EBASC* PTTC/EBCD Correspondence

Decimal Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD CRSP

223 DF 1101 1111 { (odd)
224 EO 1110 0000 \ bell (odd)
225 E1 0001 bell (even) + J
226 E2 0010 S G (even) A G
227 E3 0011 T G (odd)
228 E4 0100 U ' (even) B +
229 E5 0101 V ' (odd)
230 E6 0110 W g (odd)
231 E7 0111 X g (even) C F
232 E8 1000 Y ETB (even) D P
233 E9 1001 Z ETB (odd)
234 EA 1010 W (odd)
235 EB 1011 W (even) E
236 EC 1100 r1 7 (odd)
237 ED 1101 7 (even) F Q
238 EE 1110 w (even) G comma
239 EF 1111 w (odd)
240 FO 1111 0000 0 shift in (even) H ?
241 F1 0001 1 shift in (odd)
242 F2 0010 2 o (odd)
243 F3 0011 3 o (even) I Y
244 F4 0100 4 / (odd)
245 F5 0101 5 / (even)
246 F6 0110 6 a (even) @ (YAK), ---,
247 F7 0111 7 a (odd)
248 F8 1000 8 US (odd)
249 F9 1001 9 US (even)
250 FA 1010 LVM <= (even) horiz tab tab

() 251 FB 1011 <= (odd)
252 FC 1100 ? (even) lower case lower case
253 FD 1101 ? (odd)
254 FE 1110 rub out (odd)
255 FF 1111 rub out (even) delete

Notes.

1. ASCII terminals attached via #7850 or #2095 with #2096.
2. ASCII terminals attached via #1610 or #2091 with #2092.

o
Appendix A. Code Types 307

308 SC34-0316

c

/ .. ~

(\

~~

o

o

(

"1\

)

o

BIBLIOGRAPHY

EVENT DRIVEN EXECUTIVE LIBRARY SUMMARY

The library summary is a guide to the Event Driven Executive
library. By briefly listing the content of each book and
providing a suggested reading sequence for the library, it
should assist you in using the library as a whole as well as
direct you to the individual books you require.

The IBM Series/l Event Driven Executive
consist of five full-sized books, a quick
book, and a set of tabs:

library materials
reference pocket

• IBM Series/l Event Driven Executive System Guide (or
System Guide), SC34-0312

• IBM Ser i es/l Event Dr i ven Execut i ve Ut iIi ties, Operator
.k.o m man d s, Pro ~ m Pre par at ion , Me s sag e san d Cod e s (a r
Utilities), SC34-0313

• IBM Ser i es/l Event Dr i ven Executi ve Language Reference (or
Language Reference), SC34-0314

• IBM Series/l Event Driven Executive Communications and
Terminal Application Guide (or Communications Guide),
SC34-0316

• IBM Series/l Event Driven Executive Internal Design (or
Internal Design), LY34-0168

• IBM Series/l Event Driven Executive Multiple Terminal Man
ager Internal Design (or Multiple Terminal Manager
Internal Design), LY34-0190

• IBM Series/l Event Driven Executive Indexed Access Method
Internal Design (or Indexed Access Nethod Internal
Design), LY34-0189

• IBM Series/l Event Driven Executive Reference Summary (or
Reference Summary), SX34-0101

• IBM Ser i es/l Event Dr i ven Execut i ve Tabs (or Tabs),
SX34-0030

Bibliography 309

Summary of L;brary

System Guide

The System Guide introduces the concepts and capabilities Qf
the Event Driven Executive system. It discusses multi-tasking,
program and task structure, program overlays, storage manage
ment, and data management.

Planning aids include hardware and software requirements,
along with guidelines for storage estimating.

The System Guide also presents step-by-step procedures for
generating a supervisor tailored to your Series/l hardware
configuration and software needs.

The description of the Indexed Access Method contains the
information on how to write applications that use indexed data
sets.

The description of the session manager includes a procedure for
modifying the session manager to include application programs
in the primary option menu so that you can execute them under
the session manager. You can also add a procedure to compile,
link, and update programs.

Information is also provided concerning partitioned data sets,
tape data organization, diagnostic aids, inter-program commu
nication, logical screens, and dynamic data set allocation.

Utilities

Utilities describes:

• Event Driven Executive utility programs

• Operator commands

• Procedures to prepare and execute system and application
programs

• The session manager -- a menu-driven interface program
that will invoke the programs required for program devel
opment

• Messages and codes issued by the Event Driven Executive
system

310 SC34-0316

c

f~
/ \

o

o

()

o

The operator commands, program preparation facilities, and
sess i on manager are grouped by funct i on and discuss ions
include detailed syntax and explanations. The utilities are
presented in alphabetical order.

language Reference

The language Reference familiarizes you with the Event Driven
language by first grouping the instructions into functional
categories. Then the instructions are listed alphabetically,
with complete syntax and an explanation of each operand.

The final section of the language Reference contains examples
of us i ng the Event Dr i ven language for appl i cat ions such as:

• Program loading

• User exit routine

• Graphics

• I/O level control program

• Index i ng and hardware reg i ster usage

Communications Guide

The Communications Guide introduces the Event Driven Executive
communications support -- binary synchronous communications,
asynchronous communications, and the Host Communications
Facility.

The Communications Guide contains coding details for all util
ities and Event Driven language instructions needed for commu
nications support and advanced terminal applications.

Internal Desi9Jl

Internal Design describes the internal logic flow and specifi
cations of the Event Driven Executive system so that you can
understand how the system interfaces with application pro
grams. It familiarizes you with the design and implementation
by descr i bing the purpose, funct ion, and operat i on of the var i
ous Event Dr i ven Execut i ve system programs.

Bibliography 311

Multiple Terminal Manager Internal Design and Indexed Access
Method Internal Design describe the internal logic flow and
s p e c i f i c_a t ion s 0 f the s e pro g ram s •

Unlike the other manuals in the library, the Internal D~sign
boo k s con t a i n mat e ria I t hat i s ·t h eli c ens e d pro per t y 0 fIB Man d
they are available only to licensed users of the Event Driven
Executive system.

Reference Summary

The Reference Summary is a pocket-sized booklet to be used for
qu i ck reference. It I j sts the Event Dr i ven language
instructions with their syntax, the uti lity and program prepa
rat i on commands, and the comp let i on codes.

The tabs package must be ordered separately. The package con
tains 33 index tabs by subject, Lilith additional blank tabs.
These extended tabular pages can be inserted at the front of
various sections of the library. The tabs are color coded
accord i ng to the major library top i cs.

Reading Sequence

All readers of the Event Driven Executive library should begin
with the first three chapters of the ~tem Guide
("Introduction," "The Supervisor and Emulator," and "Data Man
agement") for an overview of the Event Driven Executive con
cepts and facilities.

Readers responsible for installing and preparing the system
should then continue in the System Guide with "System Config
urat i on" and "System Generat ion."

All readers should review the Utilities "Introduction" to
become familiar with the utility functions available for the
Event Driven Executive system. Then you can read more specific
sections for particular utilities, operator commands, and pro
gram preparation facilities.

After you have a bas i c understand i ng of the Event Dr i ven Execu
t i ve system and how you can best use the system for your appl i
cations, you should read the language Reference
"Introduction." This will familiarize you with the potential

312 SC34-0316

c

(-~\

~--)

CI..' , .i

o

o

o

of the Event Driven Language and prepare you to start coding
application programs.

I f you have commun i cat ions support for your Event Dr i ven Execu
tive system, you should read the Communications Guide, LoJhich is
an extension of the System Guid~, utilities, and the Language
Reference.

After you know the functions of the various Event Driven
Language i nstr uct ions, ut iii ties, and program preparat i on
faci lities, you may wish to refer only to the Reference Summary
for correct syntax wh i Ie cod i ng your appl i cat ions.

Only readers responsible for the support or modification of the
Event Dr i ven Execut i ve system need to read Interna 1 Des i gn.

OTHER EVENT DRIVEN EXECUTIVE PROGRAMMING PUBLICATIONS

• IBM Ser i es/l Event Dr i ven Execut i ve FORTRAN IV User's
Guide, SC34-0315.

•

•

IBM Ser i es/l Event Dr i ven Executive PL/I language
Reference, GC34-0147.

IBM Series/l Event Driven Executive Pl/I User's Guide,
GC34-0148.

• IBM Series/l Event Driven Executive COBOL Programmer's
Guide, Sl23-0014.

• IBM Series/l Event Dri ven Executi ve Sort/Merge Program
mer's Guide, Sl23-0016

• IBM Series/l Event Driven Executive Macro Assembler
Reference,GC34-0317.

• IB~1 Ser; es/l Event Driven Executive study Guide,
SR30-0436.

OTHER SERIES/! PROGRAMMING PUBLICATIONS

• IBM Series/l Programming System Summary, GC34-0285.

• IB~' Ser i es/l COBOL language Reference, GC34-0234.

• IBM Series/l FORTRAN IV Language Reference, GC34-0133.

Bibliography 313

•

•

IBM Series/l Host Communications Facility Program
Description Manual, SH20-1819.

IBM Series/l Mathematical and Functional Subroutine
Library User's Guide, SC34-0139.

• IBM Ser;es/l Macro Assembler Reference SummarY, SX34-0128

• IBM Series/l Data Collection Interactive Programming RPQ
P82600 User's Guide, SC34-1654.

OTHER PROGRAMMING PUBLICATIONS

• IBM Data Process i ng Glossary, GC20-1699.

• IBM Series/l Graphic Bibliography, GA34-0055.

• IBM OS/VS Basic Telecommunications Access Method (BTAM),
GC27-6980.

• General Information Binary Synchronous Communications,
GA27-3004.

• IBM System/370 Program Preparation Faci lity, SB30-1072.

SERIES/! SYSTEM LIBRARY PUBLICATIONS

• IBM Series/l 4952 Processor and Processor Features
Description, GA34-0084.

• IBM Series/l 4953 Processor and Processor Features
Description, GA34-0022.

• IBM Series/l 4955 Processor and Processor Features
Description, GA34-0021.

• IBM Series/l Communications Features Description, GA34
-0028.

• IBM Series/l 3101 Display Terminal Description, GA34-2034.

• IBM Series/l 4962 Disk Storage Unit and 4964 Diskette Unit
Description, GA34-0024.

• IBM Series/l 4963 Disk Subsystem Description, GA34-0051.

• IBM Series/l 4966 Diskette Magazine Unit Description,
GA34-0052.

314 SC34-0316

c

o

o

o

•

•

IBM Series/l 4969 Magnetic Tape Subsystem Description,
GA34-0087.

IBM Series/l 4973 Line Printer Description, GA34-0044.

• IBM Ser i es/l 4974 Pr inter Descr i pt ion, GA34-0025.

• IBM Series/l 4978-1 ~isplay Station (RPQ 002055) and
Atta6hment (RPQ 002038) General Information, GA34-1550

• IBM Series/l 4978-1 Display Station, Keyboard (RPQ 002056)
General Information, GA34-1551

• IBM Series/l 4978-1 O;splay Station, Keyboard (RPQ 002057)
General Information, GA34-1552

• IBM Series/l 4978-1 Display Station Keyboards (RPQ 002064
and 002065) General Information, GA34-1553

• IBM Series/l 4979 Display Station Description, GA34-0026

• IBM Ser i es/l 4982 Sensor Input/Output Un it Oeser i pt i on,
GA34-0027

• IBM Series/l Data Collection Interactive RPQs 002312,
002313, and 002314 Custom Feature, GA34-1567

Bibliography 315

c

o
316 SC34-0316

o

o

o

GLOSSARY

This glossary contains terms that are used in the Series/l Event Driven
Executive software publications. All software and hardware terms are
Series/l oriented. This glossary defines terms used in this library and
serves as a supplement to the IBM Data Processing Glossary (GC20-1699).

$SYSLOGA. The name of the
alternate system logging device.
This device is optional but, if
defined, should be a terminal with
keyboard capability, not just a
printer.

the Multiple Terminal Manager
facilities.

asynchronous communicat;ons con
trol adapter. An ASCII terminal
attached via #1610, #2091 with
32092, or 32095 with 32096 adapt-

$SYSLOG. The name of the system ers.
logging device or operator
station; must be defined for every
system. It should be a terminal
with keyboard capability, not just
a printer.

$SYSPRTR. The name of the system
printer.

ACCA. See asynchronous
communications control adapter.

address key. Identifies a set of
S~ries/1 segmentation registers
and represents an address space.
It is one less than the partition
number.

address space. The logical
storage identified by an address
key. An address space is the
storage for a partition.

application program manager. The
component of the Multiple Terminal
Manager that provides the program
management facilities required to
process user requests. It con
trols the contents of a program
area and the execution of programs
within the area.

application program stUb. A
collection of subroutines that are
appended to a program by the link
age editor to provide the link
from the application program to

attention list. A series of pairs
of 1 to 8 byte EBCDIC strings and
addresses pointing to EDl
instructions. When the attention
key is pressed on the terminal,
the operator can enter one of the
strings to cause the associated
EDl instructions to be executed.

backup. A copy of data to be used
in the event the original data is
lost or damaged.

base records. Records that have
been placed into an indexed data
set while in load mode.

basic exchange format. A standard
format for exchanging data on
diskettes between systems or
devices.

binary synchronous device data
block (BSCDDB1. A control block
that provides the information to
control one Series/1 Binary Syn
chronous Adapter. It determines
the line characteristics and pro
vides dedicated storage for that
line.

block. (1) See data block or
index block. (2) In the Indexed
Method, the unit of space used by
the access method to contain
indexes and data.

Glossary 317

BseDDB. See binary synchronous
device data block.

buffer. An area of storage that
is temporarily reserved for use in
performing an input/output oper
ation, into which data is read or
from which data is written. See
input buffer and output buffer.

bypass label process;ns. Access
of a tape without any label proc
essing support.

eCB. See terminal control block.

character ;mage. An alphabetic,
numeric, or special character
defined for an IBM 4978 Display
Station. Each character image is
defined by a dot matrix that is
coded into eight bytes.

character ;mage table. An area
containing the 256 character
images that can be defined for an
IBM 4978 Display Station. Each
character image is coded into
eight bytes, the entire table of
codes requiring 2048 bytes of
storage.

cluster. In an indexed file, a
group of data blocks that is
pointed to from the same
primary-level index block, and
includes the primary-le~el index
block. The data records and
blocks contained in a cluster are
logically contiguous, but are not
necessarily physically contiguous.

COD (change of d;rect;on). A
character used with ACCA terminal
to indicate a reverse in the
direction of data movement.

command. A character string from
a source external to the system
that represents a request for
action by the system.

common area. A user-defined data
area that is mapped into every
partition at the same address. It

318 SC34-0316

can be used to contain control
blocks or data that will be
accessed by more than one program.

completion code. An indicator
that reflects the status of the
execution of a program. The com
pletion code is displayed or
printed on the program's output
device.

conversion. See update.

cross part;t;on serv;ce. A
function that accesses data in two
partitions.

data block. In an indexed file,
an area that contains control
information and data records.
These blocks are a multiple of 256
bytes.

data set. A group of contiguous
records within a volume pointed to
by a directory member entry in the
directory for the volume.

data set control block (DSeB). A
control block that provides the
information required to access a
data set, volume or directory
using READ and WRITE.

data set shut down. An indexed
data set that has been marked (in
main storage only) as unusable due
to an error.

DeE. See directory control entry.

DDB. See disk data block.

direct access. (1) The access
method used to READ or WRITE
records on a disk or diskette
device by specifying their
location relative the beginning of
the data set or volume. (2) In
the Indexed Access Method, locat
ing any record via its key without
respect to the previous operation.

O,'~." , ~~ ~ I

o

0.·."\ ,,'

C1
~/

o

directory. A series of contiguous
records in a volume that describe
the contents in terms of allocated
data sets and free spaces.

directory control entry
(DeE). The first 32 bytes of the
first record of a directory in
which a description of the direc
tory is stored.

directory member entry (DNE). A
32-byte directory entry describing
an allocated data set.

disk data block (008). A control
block that describes a direct
access volume.

display station. An IBM 4978 or
4979 display terminal or similar
terminal with a keyboard and a
video display.

ONE. See directory member entry.

DSCB. See data set control block.

dynamic storage. An increment of
storage that is appended to a pro
gram when it is loaded.

end-of-data indicator. A code
that signals that the last record
of a data set has been read or
written. End-of-data is deter
mined by an end-of-data pointer in
the DME or by the physical end of
the data set.

ECB. See event control block.

EDL. See Event Driven Language.

emulator. The portion of the
Event Driven Executive supervisor
that interprets EDL instructions
and performs the function speci
fied by each EDL statement.

end-of-tape (EOT). A reflective
marker placed near the end of a
tape and sensed during output.
The marker signals that the tape
is nearly full.

event control block (ECB). A
control block used to record the
status (occurred or not occurred)
of an event; often used to syn
chronize the execution of tasks.
ECBs are used in conjunction with
the WAIT and POST instructions.

event driven language (EDL). The
language for input to the Event
Driven Executive compiler
($EDXASM), or the Macro and Host
assemblers in conjunction with the
Event Driven Executive macro
libraries. The output is inter
preted by the Event Driven Execu
tive emulator.

EXIO (execute input or
output). An EDL facility that
provides user controlled access to
Series/l input/output devices.

external label. A label attached
to the outside of a tape that
identifies the tape visually. It
usually contains items of iden
tification such as file name and
number, creation data, number of
volumes, department number, and so
on.

external name (EXTRN). The 1- to
8-character symbolic EBCDIC name
for an entry point or data field
that is not defined within the
module that references the name.

FCA. See file control area.

FCB. See file control block.

file control area (FCAl. A
Multiple Terminal Manager data
area that describes a file access
request.

file control block (FeB). In an
indexed data set, the first block
of the data set. It contains
descriptive information about the
data contained in the data set.

Glossary 319

f;le manager. A collection of
subroutines contained within the
program manager of the Multiple
Terminal Manager that provides
common support for all disk data
transfer operations as needed for
transaction-oriented application
programs. It supports indexed and
direct files under the control of
a single callable function.

formatted screen image. A
collection of display elements or
display groups (such as operator
prompts and field input names and
areas) that are presented together
at one time on a display device.

free pool. In an indexed data
set, a group of blocks that can be
used as either a data block or an
index block. These differ from
other free blocks in that these
are not initially assigned to spe
cific logical positions in the
data set.

free space. In the Indexed Access
Method, record spaces or blocks
that do not currently contain
data, and are available for use.

free space entry (FSE). A 4-byte
directory entry defining an area
of free space within a volume.

FSE. See free space entry.

hardware timer. The timer
features available with the
Series/1 processors. Specif
ically, the 7840 Timer Feature
card or the native timer (4952
only). Only one or the other is
supported by the Event Driven
Executive.

host assembler. The assembler
licensed program that executes in
a 370 (host) system and produces
object output for the Series/1.
The source input to the host
assembler is coded in Event Driven
language or Series/1 assembler
language. The host assembler

320 SC34-0316

refers to the System/370 Program
Preparation Facility (S798-NNQ).

host system. Any system whose
resources are used to perform
services such as program prepara
tion for a Series/I. It can be
connected to a Series/1 by a com
munications link.

IACB. See indexed access control
block.

IAR. See instruction address
register.

ICB. See indexed access control
block.

lIB. See interrupt information
byte.

image store. The area in a 4978
that contains the character image
table.

index. In the Indexed Access
Method, an ordered collection of
pairs, each consisting of a key
and a pointer, used to sequence
and locate the records in an
Indexed Access Method data set.

index block. In an indexed file,
an area that contains control
information and index entries.
These blocks are a multiple of 256
bytes.

indexed access control block
(IACB/ICB). The control block
that relates an application pro
gram to an indexed data set.

indexed access method. An access
method for direct or sequential
processing of fixed-length records
by use of a record's key.

indexed data set. A data set
specifically created, formatted
and used by the Indexed Access
Method. An indexed data set may
also be called an indexed file.

o

o

o

0.' 1

;ndexed f;le. Synonym for indexed
data set.

;ndex entry. In an indexed file,
a key-pointer pair, where the
pointer is be used to locate a
lower-level index block or a data
block.

index register (11, 12). Two
words defined in EDL and contained
in the task control block for each
task. They are used to contain
data or for address computation.

input buffer. (1) See buffer.
(2) In the Multiple Terminal Man
ager, an area for terminal input
and output.

;nput output control block
(IOCB). A control block cont~in
ing information about a terminal
such as the symbolic name, size
and shape of screen, the size of
the forms in a printer.

;nstruction address register
(IAR). The pointer that identi
fies the instruction currently
being executed. The Series/1
maintains a hardware IAR to deter
mine the Series/1 assembler
instruction being executed. It is
located in the level status block
(LSB).

interactive. The mode in which a
program conducts a continuous
dialogue between the user and the
system.

internal label. An area on tape
used to record identifying infor
mation (similar to the identifying
information placed on an external
label). Internal labels are
checked by the system to ensure
that the correct volume is
mounted.

interrupt information byte
(lIB). In the Multiple Terminal
Manager, a word containing the
status of a previous input/output

request to or from a terminal.

job. A collection of related
program execution requests pre
sented in the form of job control
statements, identified to the
jobstream processor by a JOB
statement.

job control statement. A
statement in a job that specifies
requests for program execution,
program parameters, data set defi
nitions, sequence of execution,
and, in general, describes the
environment required to execute
the program.

job stream processor. The job
processing facility that reads job
control statements and processes
the requests made by these state
ments. The Event Driven Executive
job stream processor is $JOBUTIl.

key. In the Indexed Access
Method, one or more consecutive
characters in a data record, used
to identify the record and estab
lish its order with respect to
other records. See also key
field.

key field. A field, located in
the same position in each record
of an Indexed Access Method data
set, whose content is used for the
key of a record.

level status block (LSB). A
Series/1 hardware data area that
contains processor status.

library. A set of contiguous
records within a volume. It con
tains a directory, data sets
and/or available space ..

line. A string of characters
accepted by the system as a single
input from a terminal; for exam
ple, all characters entered before
the carriage return on the tele
typewriter or the EHTER key on the
display station is pressed.

Glossary 321

link edit. The process of
resolving symbols in one or more
object modules to produce another
single module that is the input to
the update process.

load mode. In the Indexed Access
Method, the mode in which records
are initiallY placed in an indexed
file.

load module. A single module
having cross references resolved
and prepared for loading into
storage for execution. The module
is the output of the $UPDATE or
$UPDATEH utility.

load paint. A reflective marker
placed near the beginning of a
tape to indicate where the first
record is written.

lock. In the Indexed Access
Method, a method of indicating
that a record or block is in use
and is not available for another
request.

LSB. See level status block.

mgmber. A term used to identify a
named portion of a partitioned
data set (PDS). Sometimes member
is also used as a synonym for a
data set. See data set.

menu. A formatted screen image
containing a list of options. The
user selects an option to invoke a
program.

menu-driven. The mode of
processing in which input consists
of the responses to prompting from
an option menu.

multifile volume. A unit of
recording media, such as tape reel
or disk pack, that contains more
than one data file.

multiple terminal manager. An
Event Driven Executive licensed
program that provides support for

322 SC34-0316

transaction-oriented applications
on a Series/I. It provides the
capability to define transactions
and manage the programs that sup
port those transactions. It also
manages multiple terminals as
needed to support these trans
actions.

multivolume file. A data file
that, due to its size, requires
more than one unit of recording
media (such as tape reel or disk
pack) to contain the entire file.

non-labeled tapes. Tapes that do
not contain identifying labels (as
in standard labeled tapes) and
contain only. files separated by
tapemarks.

null character. A user-defined
character used to define the
unprotected fields of a formatted
screen.

option selection menu. A full
screen display used by the Session
Manager to point to other menus or
system functions, one of which is
to be selected by the operator.
(See primary option menu and sec
ondary option menu.)

output buffer. (1) See buffer.
(2) In the Multiple Terminal Man
ager, an area used for screen
output and to pass data to subse
q~ent transaction programs.

overlay. The technique of reusing
a single storage area allocated to
a program during execution. The
storage area can be reused by
loading it with overlay programs
that have been specified in the
PROGRAM statement of the program.

overlay area. A storage area
within a program reserved for
overlay programs specified in the
PROGRAM statement.

C,,' ... '·\ i !

o

o

o

o

parameter selection menu. A full
screen display used by the Session
Manager to indicate the parameters
to be passed to a program.

partition. A contiguous
fixed-sized area of storage. Each
partition is a separate address
space.

physical timer. Synonym for
hardware timer.

prefind. To locate the data sets
or overlay programs to be used by
a program and to store the neces
sary information so that the time
required to load the prefound
items is reduced.

primary-level index block. In an
indexed data set, the lowest level
index block. It contains the rel
ative block numbers (RBNs) and
high keys of several data blocks.
See cluster.

primary menu. The program
selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The first
full screen display provided by
the Session Manager.

primary task. The first task
executed by the supervisor when a
program is loaded into storage.
It is identified by the PROGRAM
statement.

priority. A combination of
hardware interrupt level priority
and a software ranking within a
level. Both primary and secondary

"tasks will execute asynchronously
within the system according to the
priority assigned to them.

process mode. In the Indexed
Access Method, the mode in which
records may be retrieved, updated,
inserted or deleted.

processor status word (PSWJ. A
16-bit register used to (1) record
error or exception conditions that
may prevent further processing and
(2) hold certain flags that aid in
error recovery.

program. A disk- or
diskette-resident collection of
one or more tasks defined by a
PROGRAM statement; the unit that
is loaded into.storage. (See pri
mary task and secondary task.)

program header. The control block
found at the beginning of a
program that identifies the prima
ry task, data sets, storage
requirements and other resources
required by a program.

program/storage manager. A
component of the Multiple Terminal
Manager that controls the
execution and flow of application
programs within a single program
area and contains the support
needed to allow multiple oper
ations and sharing of the program
area.

protected field. On a display
device, a field in which the oper
ator cannot enter, modify, or
erase data from the keyboard. It
can contain text that the user can
read.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queue control block (QCB1. A data
area used to serialize access to
resources that cannot be shared.
See serially reusable resource.

queue descriptor (QD1. A control
block describing a queue built by
the DEFINEQ instruction.

Glossary 323

queue element (QEJ. An entry in
the queue defined by the queue
descriptor.

record. (1) The smallest unit of
direct access storage that can be
accessed by an application program
on a disk or diskette using READ
and WRITE. Records are 256 bytes
in length. (2) In the Indexed
Access Method, the logical unit
that is transferred between $IAM
and the user's buffer. The length
of the buffer is defined by the
user.

recovery. The use of backup data
to recreate data that has been
lost or damaged.

reflective marker. A small
adhesive marker attached to the
reverse (nonrecording) surface of
a reel of magnetic tape.
Normally, two reflective markers
are used on each reel of tape.
One indicates the beginning of the
recording area on the tape (load
point), and the other indicates
the proximity to the end of the
recording area (EOT) on the reel.

relative record number. An
integer value identifying the
position of a record in a data set
relative to the beginning of the
data set. The first record of a
data set is record one, the second
is record two, the third is record
three.

reorganize. For an indexed data
set, the copying of the data to a
new indexed data set in a manner
that rearranges the data for more
optimum processing and free space
distribution.

return code. An indicator that
reflects the results of the exe
cution of an instruction or sub
routine. The return code is
placed in the task code word (at
the beginning of the task control
block).

324 SC34-0316

roll screen. A display screen on
which data is displayed 24 lines
at a time or data is entered line
by line, beginning with line 0 at
the top of the screen and continu
ing through line 23 at the bottom
of the screen. When a roll screen
device's screen is full (all 24
lines used), an attempt to display
the next line results in removal
of the old screen (screen is
erased) and the new line on line 0
is displayed at the top of the
screen.

SBIOCB. See sensor based I/O
control block.

second-level index block. In an
indexed data set, the
second-lowest level index block.
It contains the addresses and high
keys of several primary-level
index blocks.

secondary option menu. In the
Session Manager, the second in a
series of predefined procedures
grouped together in a hierarchical
structure of menus. Secondary
option menus provide a breakdown
of the functions available under
the session manager as specified
on the primary option menu.

secondary task. Any task other
than the primary task. A second
ary task must be attached by a
primary task or another secondary
task.

sector. The smallest addressable
unit of storage on a disk or
diskette. A sector on a 4962 or
4963 disk is equivalent to an
Event Driven Executive record. On
a 4964 or 4966 diskette, two sec
tors are equivalent to an Event
Driven Executive record.

sensor based I/O control block
(SBIOCBJ. A control block con
taining information related to
sensor I/O operations. o

0 ,
",.,'.

o

o

sequential access. The processing
of a data set in order of occur
rence of the records in the data
set. (1) In the Indexed Access
Method, the processing of records
in ascending collating sequence
order of the keys. (2) When using
READ/WRITE, the processing of
records in ascending relative
record number sequence.

serially reusable resource
(SRRJ. A resource that can only
be accessed by one task at a time.
Serially reusable resources are
usually managed via (1) a QCB and
ENQ/DEQ statements or (2) an ECB
and WAIT/POST statements.

session manager. A series of
predefined procedures grouped
together as a hierarchical struc
ture of menus from which you
select the utility functions, pro
gram preparation facilities, and
language processors needed to pre
pare and execute application pro
grams. The menus consist of a
primary option menu that displays
functional groupings and secondary
option menus that display a break
down of these functional
groupings.

shared resource. A resource that
can be used by more than one task
at the same time.

shut down. See data set shut
down.

source module/program. A
collection of instructions and
statements that constitute the
input to a compiler or assembler.
Statements may be created or modi
fied using one of the text editing
facilities.

standard labels. Fixed length
SO-character records on tape con
taining specific fields of infor
mation (a volume label identifying
the tape volume, a header label
preceding the data records, and a

trailer label following the data
records).

static screen. A display screen
formatted with predetermined
protected and unprotected areas.
Areas defined as operator prompts
or input field names are protected
to prevent accidental overlay by
input data. Areas defined as
input areas are not protected and
are usually filled in by an opera
tor. The entire screen is treated
as a page of information.

subroutine. A sequence of
instructions that may be accessed
from one or more points in a pro
gram.

supervisor. The component of the
Event Driven Executive capable of
controlling execution of both sys
tem and application programs.

system configuration. The process
of defining devices and features
attached to the Series/I.

SYSGEN. See system generation.

system generation. The processing
of user selected options to create
a supervisor tailored to the needs
of a specific Series/l configura
tion.

system partition. The partition
that contains the supervisor (par
tition number 1, address space 0).

tapemark. A control character
recorded on tape used to separate
files.

task. The basic executable unit
of work for the supervisor. Each
task is assigned its own priority
and processor time is allocated
according to this priority. Tasks
run i~dependently of each other
and compete for the system
resources. The first task of a
program is the primary task. All
tasks attached by the primary task

Glossary 325

are secondary tasks.

task code word. The first two
words (32 bits) of a task's TeB;
used by the emulator to pass
information from system to task
regarding the outcome of various
operations, such as avent com
pletion or arithmetic operations.

task control block (TCB). A
control block that contains infor
mation for a task. The informa
tion consists of pointers, save
areas, work areas, and indicators
required by the supervisor for
controlling execution of a task.

task supervisor. The portion of
the Event Driven Executiva that
manages the dispatching and
switching of tasks.

TCB. See task control block.

terminal. A display station,
teletypewriter or printer.

terminal control block (CCBl. A
control block that defines the
device characteristics, provides
temporary storage, and contains
links to other system control
blocks for a particular terminal.

terminal environment block
(TEB). A control block that con
tains information on a terminal's
attributes and the program manager
operating under the Multiple Ter
minal Manager. It is used for
processing requests between the
terminal servers and the program
manager.

terminal screen manager. The
component of the Multiple Terminal
Manager that controls the presen
tation of screens and communi
cations between terminals and
transaction programs.

terminal server. A group of
programs that perform all the
input/output and interrupt handl-

326 SC34-0316

ing functions for terminal devices
under control of the Multiple Ter
minal Manager.

trace range. A specified number
of instruction addresses within
which the flow of execution can be
traced.

transaction oriented
applications. Program execution
driven by operator actions, such
as responses to prompts from the
system. Specifically, applica
tions executed under control of
the Multiple Terminal Manager.

transaction program. See
transaction-oriented applications.

transaction selection menu. A
Multiple Terminal Manager display
screen (menu) offering the user a
choice of functions, such as read
ing from a data file, displaying
data on a terminal, or waiting for
a response. Based upon the choice
of option, the application program
performs the requested processing
operation.

unprotected field. On a display
device, a field in which the user
can enter, modify, or erase data
using the keyboard. Unprotected
fields on a static screen are
defined by the null character.

update. (1) To alter the contents
of storage or a data set. (2) To
convert object modules, produced
as the output of an assembly or
compilation, or the output of the
linkage editor, into a form that
can be loaded into storage for
program execution and to update
the directory of the volume on
which the loadable program is
stored.

user exit. (1) Assembly language
instructions included as part of
an EDL program and invoked via the
USER instruction. (2) A point in
an IBM-supplied program where a o

o

o

o

user written routine can be given
control.

vary offl;ne. (1) To change the
status of a device from online to
offline. When a device is off
line, no data,set can be accessed
on that device. (2) To place a
disk or diskette in a state where
it is not available for use by the
system; however, it will still be
available for executing I/O at the
basic access level (EXIQ).

vary on!;ne. To restore a device
to a state where it is available
for use by the system.

volume. A disk or diskette
subdivision defined during system
configuration. A volume may con
tain up to 32,767 records. As
many volumes may be defined for a
disk as will physically fit. A
diskette is limited to one volume.

volume label. A label that
uniquely identifies a single unit
of storage media.

Glossary 327

()

328 SC34-0316

o

o

o

COMMON INDEX

This index is common to the Event Driven Executive library. The index
includes entries from the seven publications listed below. (The Glossary
is not indexed.) Each publication has a copy of the index, which provides
a cross-reference between the pUblications.

Each page number entry contains a single letter prefix which identifies
the publication where the listed subject can be found. The letter pre
fixes have the following meanings:

• C = Communications and Terminal Application Guide

• I = Internal Design

• L = Language Reference

• 5 = 5ystem Guide

• U = Utilities, Operator Commands, Program Preparation, Messages and
Codes

• M = Multiple Terminal Manager Internal Design

• A = Indexed Access Method Internal Design

Spec;al Characters

$$EDXLIB system name L-228, 5-57
$$EDXVOL system name L-228, 5-57
$A display active programs,
operator command 5-63, U-11

$ATTASK special task control
block L-61

$AUTO link edit auto call data
set 5-403, U-401

$B blank (clear) screen, operator
command S-63, U-12

$BSCTRCE trace utility for B5e
lines C-61

$BSCUT1 trace printing utility for
BSC C-62

$BSCUT2 test utility for B5C
lines e-64

$C cancel a program, operator
command 5-63, U-13

$COMPRE5 library compress 5-64,
U-S7

$COPY copy data sets 5-64, U-59
$COPYUT1 copy data sets with
allocation 5-64, U-64

$CP change terminal's partition
assignment command

overview 1-73, 5-63
syntax U-14

$D dump storage, operator command
5-63, U-15

$DA5DI format disk or diskette
5-64, U-68

$DBUGNUC debug module description
1-77

$DEBUG debugging tool U-82
$DICOMP display composer

command description U-106
create partitioned data set

member 5-247
invoking U-10S
overview S-67

$DIINTR display interpreter U-1S0

$DI5KUT1 allocate/delete, list
directory data

$JOBUTIL procedure 5-229
allocate partitioned data set

5-248
command descriptions U-135
overview 5-64

$DI5KUT2 patch, dump, or clear
member

description U-142
overview 5-64
printing I/O error logs 5-275
syntax U-143

$DI5KUT3 data management utility
description 5-315
input to 5-316
request block contents 5-317
return codes 5-319, U-444

$DIUTIL display data base utility
5-248, U-150

$DUMP dump saved storage and
registers utility U-163

$E eject printer page, operator
command S-63, U-16

$EDIT1/$EDIT1N text editors
command syntax

EDIT U-174
EDIT mode subcommands

U-182
END U-175
LI5T U-176
READ U-177
5UBMIT U-179
WRITE U-180

control keys U-172
data set requirements U-169
line editing commands U-203
overview S-66, U-169
summary of commands and

subcommands U-171
$EDXA5M Event Driven Language
compiler

features supported U-361
internal overview 1-5, 1-211
invoking

with $JOBUTIL U-368

Common Index 329

with $L U-370
with session manager

U-369
listing program ($EDXLI5T)

U-370
options U-358
output U-359
overlay program example 1-244
overview 5-71, U-356
programming considerations

U-361
arithmetic expression
operators U-365

ATTNLI5T U-365
COPY statements U-362
ECB and QCB U-362
EQU U-365
GETEDIT and PUT EDIT U-365
instructions requiring
support modules U-365

IODEF statement placement
U-364

multiple declarations on
DATA/DC U-363

source line continuation
U-361

required data sets U-357
usage example 5-397
using the compiler U-356

$EDXAT5R supervisor interface
routine 1-48

$EDXDEF hardware configuration
editing to match hardware con
figuration 5-117

overview 1-5, 1-6
storage map 1-7

$EDXL language control data set of
$EDXASM 1-221, U-357

$EDXLIST compiler listing program
U-370

$EDXNUC supervisor data set
in system generation S-126
overview 1-5
with $LINK utility U-399

$EDXNUC supervisor data sets
U-399

$EXEC language emulator linkage
1-279, 1-313

$EXEC session manager option
S-216, U-41

$FONT 4978 character image tables
utility 5-68, U-205

$FSEDIT full-screen editor, host
and native

data set requirements U-209
options

BROWSE U-213
EDIT U-214
END U-218
READ U-216
SUBMIT U-217
WRITE U-216

overview S-66, U-209
primary commands U-218
program function (PF) keys

U-211
scrolling U-210
summary of options and

commands U-212
$HCFUTI Host Communications
Facility utility C-I07

$IAM Indexed Access Method load
module S-155

$IAM task error exit S-178

330 SC34-0316

$IAMUTI Indexed Access Method
utility S-148, U-235

$IDEF $EDXASM instruction
definition

description 1-241
instruction format 1-226

$IMAGE define screen image
utility S-68, U-250

usage example S-387
$IMDATA subroutine S-303

usage example S-375
$IMDEFN subroutine S-301

usage example S-375
$IMOPEN subroutine S-300

usage example S-374
$IMPROT subroutine S-302

usage example S-375
$INDEX subroutine, $EDXASM 1-233
$INITDSK initialize or verify

volume S-64, U-256
$INITIAL automatic initialization
and restart

description 5-129
with session manager S-209,

U-28
$IOTEST test sensor I/O, list con
figuration S-67, U-263

$JOBUTIL job stream processor
S-69, U-271

commands U-272
set up procedure U-271
usage example S-408, U-290

$L load program, operator command
internals 1-23
overview S-63
syntax U-17

$LEMSG $LINK message data set
U-401

$LINK linkage editor
data set requirements U-400
description U-390
in system generation 1-5
invoking

with $JOBUTIL U-405
with $L U-405
with session manager
U-406

overview S-71
usage example S-402

$LNKCNTL data set S-118
$LOADER 1-19, 1-22

module description 1-78
$LOG I/O error logging utility

description 5-270, U-292
overview 5-67

$LPARSE subroutine 1-240
$MOVEVOL disk volume dump/restore
S-65, U-294

$P patch storage, operator
command S-63, U-18

$PACK/$UNPACK subroutines S-309
$PDS partitioned data set utility

in a program 5-259
overview S-65

$PFMAP identify 4978 program
function keys S-68, U-301

$PREFIND prefind data sets and
overlays S-69, U-302

$PRT2780 spooled print utility
C-72

$PRT3780 spooled print utility
C-72

$RJE2780 remote job entry utility
C-73, S-66 c

o

o

o

$RJE3780 remote job entry utility
C-73, 5-66
$RMU (see Remote Management Util
ity)

$5MCTl session manager program
5-209, 5-212

$5MEND session manager program
5-212

$5MJOBR session manager program
5-212

$5MlOG session manager program
5-212

$5MMAIN session manager program
5-210, 5-212, U-28

$5MMlOG, logon menu for session
manager 5-212

$5MMPRIM, primary option menu for
session manager 5-212, U-27,
U-35

$5MM02, program preparation sec
ondary option menu 5-214, U-37

$5MM03, data management secondary
option menu 5-215, U-39

$5MM04, terminal utilities
secondary option menu 5-215,
U-41

$5MM05, graphics utilities second
ary option menu 5-216, U-41

$5MM06, execute program utilities
secondary option 5-216

$5MM07, job stream processor
utilities secondary option 5-216

$5MM08, communications utilities
option 5-217, U-43

$5MM09, diagnostic utilities
5-217, U-44

$5TART supervisor entry point
1-279, 1-313

$5TOREMAP example 1-27
$5Y5COM data area 1-12, 1-279,

1-313, 5-113
$5Y5l0G system logging device

overview 5-110
$5Y5l0GA alternate system logging
device

overview 5-111
$5Y5PRTR system printer

overview 5-111
$51A5M 5eries/l macro assembler

description U-372
internals 1-5, 1-253
overview 5-9
storage map, general 1-256

$T set date/time, operator
command 5-63, U-19

$TAPEUT1 tape management utility
U-311

$TCBCCB (ATTACH) l-59
$TERMUT1 change terminal
parameters 5-68, U-334

$TERMUT2
process 4978 image or control
store 5-68, U-339

restore 4974 image U-339
$TERMUT3 send message to a
terminal 5-68, U-344

STRAP class interrupt trap
utility 5-67, U-348

$UNPACK/$PACK subroutines 5-309
$UPDATE object program converter

description U-408
in system generation 1-5
overview 5-69
usage example 5-407

$UPDATEH object program converter
(host) 5-69, U-418

$VARYOFF set disk, diskette, or
tape offline 5-63, U-20

$VARYON set disk, diskette, or
tape online 5-63, U-22

with standard labeled tape
5-237

$W display date/time, operator
command 5-63, U-25

11 index register 1 l-6
12 index register 2 l-6

A after, $F5EDIT line command
U-226

A-conversion l-153
A/I (see analog input)
A/O (see analog output)
abort task level (5VC abend) 1-49
ACCA terminal C-7, l-295
Access Method, Indexed

(see Indexed Access Method)
ACTION, Multiple Terminal Manager

CALL
coding description C-130,

L-360
internals M-9
overview C-117, L-29

activate

AD

add

error logging, $LOG utility
U-293

realtime data member, RT
$DICOMP subcommand U-124

stopped task, GO $DEBUG
command U-93

task supervisor execution
state 1-43

TRAP function of storage dump)
$TRAP utility U-348

add member, $DICOMP command
U-106

advance, $DICOMP subcommand
U-111

advance X,Y (PD5) 5-255
assign define key, $TERMUT2

command U-342

add member, AD $DICOMP com
mand U-I06

null data set on tape volume,
TA STAPEUTI command U-330

options to the session
manager 5-224

support for new I/O terminals
1-117

calling conventions 1-118
code translation tables

1-118
linkage conventions 1-119
terminal instruction
modification 1-119

ADD data manipulation instruction
coding description L-52
overview L-19
precision table L-53

address relocation translator
1-71, 5-42

addressing indexing feature L-6

Common Index 331

ADDV data manipulation
instruction

coding description L-54
index register use L-55
overview L-19
precision table L-55

advance, AD $DICOMP subcommand
U-111

advance and prompting input, ter
minal I/O L-46

AI (see analog input)
AL

allocate
command

allocate
command

allocate
command

allocate
command

allocate
data set

data member, $DIUTIL
U-151

data set, $DISKUT1
U-137

data set, $JOBUTIL
U-273

member, $DICOMP
U-107

$JOBUTIL command U-273
AL $DISKUT1 command U-137
ALLOCATE function C-214
tape, TA $TAPEUT1 command

U-333
member

$DICOMP command U-107
$DIUTIL command U-151
$PDS 5-261

ALLOCATE function C-216, 1-166,
1-174

allowable precision table L-20
alter member AL $DICOMP command

U-107
alter terminal configuration,

$TERMUT1 U-334
alternate system logging device

($SYSLOGA) 5-47
alternate tracks 5-58, U-73, U-78
ALTIAM Indexed Access Method
subroutine 5-167

analog input 5-49
AI $IOTEST command U-268
control block 1-129
IODEF statement L-187
overview 5-49
SBIO instruction L-263
SENSORIO configuration

statement L-39
analog output

AO $IOTEST command U-264
control block 1-129
description 5-49
IODEF statement L-186
SBIO instruction L-264
SEN50RIO configuration

statement L-39, 5-84
AND data manipulation instruction

coding description L-57
overvie~oJ L-19

AO (see analog output)
application program

automatic initialization and
restart 5-129

indexed access 5-149
introduction L-1
manager C-119
preparation U-351
size estimating 5-344
structure L-8
support 5-20

ASCII terminals
codes 5-110

332 SC34-0316

configuring 5-96
devices supported C-6, 5-14
graphics L-26, 5-46
TERMINAL statement examples

5-106
ASMERROR, $EDXA5M instruction

1-230
assembler

(see $EDXASM)
(see $SlA5M)
(see host assembler)

assign
alternate for defective 4963
sector, $DASDI utility U-78

DEFINE key in 4978 control
store, AD $TERMUT2 command
U-341

asynchronous communications con
trol adapter (see ACCA)

AT set breakpoints and trace
ranges, $DEBUG command U-90

ATTACH task control instruction
coding description L-59
internals 1-44
overview L-42, 5-34

attention handling, terminal I/O
1-108, L-47, 5-63

attention keys, terminal I/O L-47
attention list (see ATTNLI5T)
ATTN key (see attention handling)
ATTNLI5T task control statement

$ATTA5K L-61
coding description L-61
overview L-42, 5-30

attribute character, 3101 C-122
autocall

option, $LINK U-401
AUTOCALL statement requirement

(WXTRN) L-323
automatic

application initialization
5-13, 5-129

application restart 5-13,
5-129

B before, $FSEDIT line command
U-226

backup disk or disk volume on
tape, ST $TAPEUT1 command U-330

backup dump restore utility,
$f'lOVEVOL U-294

base records, indexed data set
definition 5-149
loading 5-160

basic exchange
diskette data set copy utili
ty, $COPY U-S9

basic supervisor and emulator (see
supervisor/emulator)

batch job processing (see
$JOBUTIL)

BEEP, Multiple Terminal Manager
CALL

coding description C-137,
L-361

internals M-9
overview C-117, L-29

binary synchronous communications
automatic retry 5-17
BSCAM/B5CAMU module

o

(
\1
/

o

o

o

descriptions 1-80
BSCLINE configuration state

ment C-42, S-76
control flow (BSCAM) 1-147
device data block (BSCDDB)

1-133
features C-35, S-16
Host Communications Facility
protocol 1-156

instruction formats C-38,
1-144

multipoint operation C-36,
S-16

overview S-16
point-to-point lines S-16
Remote Management Utility

requirements C-208
sample programs C-59
special labels for,
description 1-149

system internal design 1-133
test utility, $BSCUT2 C-64
trace printing routine,

$BSCUT1 C-62
trace routine, $BSCTRCE C-61

blank screen, $B operator command
S-63, U-12

BLANK TERMCTRL function L-288
BLDTXT subroutine, $EDXASM 1-237
BLINK TERMCTRl function L-288
BlP (see bypass label processing)
BOT (beginning-of-tape) l-40
BOTTOM reposition line pointer,

$EDIT1/N editor subcommand U-183
boundary requirement, full-word

DO l-34
IF L-34
PROGRAM l-225

BP list breakpoints and trace
ranges, $OEBUG command U-92

breakpoints and trace setting, AT
$DEBUG command U-90

BROWSE display data set, $FSEDIT
option U-213

BSC (see binary synchronous
communications)

BSCAM (see binary synchronous com
munications)

BSCClOSE BSC statement 1-144,
1-148

coding description C-38
BSCDOB binary synchronous device
data block

description of 1-133
equates 1-291

BSCEQU L-11
BSCIA immediate action routine

(SSC) 1-148
BSCIOCB BSC statement C-39, 1-144
BSClINE configuration statement

C-42, S-76
BSCOPEN BSC statement C-44,
1-145, 1-148

BSCREAD BSC statement C-45,
1-145, 1-148

BSCWR1TE BSC statement C-49,
1-146, 1-148

BSF (backward space file) l-75
BSR (backward space record) L-75
BTE, buffer table entry A-20
BU build data member, $D1UTIL

command U-153
buffer

table entry
definition A-20

description A-31
terminal I/O buffer
management 1-109

BUFFER data definition statement
coding description L-65
overview l-17

build data member, BU $DIUTIL
command U-153

building an indexed data set
U-247

burst output with electronic dis
play screens L-46

bypass label processing U-311
description S-244

C
change a key definition,

$TERMUT2 command U-342
copy line, $FSEDIT line

command U-226
CA cancel

assembly, $EDXASM attention
request U-358

copy, $COPYUTI attention
request U-64

list option, $FSEDIT attention
request U-217

listing, $EDXLIST attention
request U-358

CAD copy all data members,
$COPYUT1 command U-64

CALL
copy all members, $COPYUT1

command U-64
program control instruction

coding description L-68
Indexed Access Method

syntax S-146
Multiple Terminal Manager

syntax L-359
overview l-32, S-31
program L-68
subroutine L-68

callable routines L-30
CALLFORT program control

instruction
coding description L-70
overview L-32

cancel
$C operator command U-13
assembly, CA $EDXASM attention

request U-358
copy, CA $COPYUT1 attention

request U-64
dump, CA $DUMP command U-165
list option, CA $FSEDIT
attention request U-217

listing, CA $EDIT/N attention
request U-172

CAP copy all programs, $COPYUT1
command U-64

CC copy block, $FSEDIT line
command U-226

CCB
equate table 1-292
internals 1-105, 1-119
interprocessor communications
C-30

use in terminal I/O support
1-113

Common Index 333

CCBEQU L-ll
CD

clear data set, $DISKUT2 com
mand U-144

copy data set, $COPY command
U-61

copy data set, $TAPEUTI
command U-313

CDATA, Multiple Terminal Manager
CALL

coding description C-139,
L-362

internals M-9
overview L-29

CDRRM equates C-292
CG copy all members (generic)

$COPYUTI command U-64
CH

change hardcopy device,
$BSCUT2 command C-70

change host library, $UPDATEH
command U-420

chain, ECB/QCB/TCB I-55
CHAIN supervisor service routine

I-54
CHAIND supervisor service routine

I-54
CHAINE supervisor service routine

I-54
chaining L-27
CHAINP supervisor service routine

I-54
change

address assignment of termi
nal, RA $TERMUTI command
U-336

base address, QUALIFY $DEBUG
command U-IOI

character string, CHANGE
$EDITI/N editor subcommand
U-184

character string, change
$FSEDIT primary command
U-219

execution sequence, GOTO $DE
BUG command U-94

graphics or report display
profile, $DICOMP utility
U-I05

hardcopy device, CH $BSCUT2
command C-70

hardcopy device, RH $TERMUTI
command U-338

host library, CH $UPDATEH
command U-420

key definition in 4978 control
store, C $TERMUT2 U-342

name of logical device, RE
$TERMUTI command U-337

output volume, CV $UPDATE
command U-409

page formatting parameters of
a terminal, CT $TERMUTI
U-335

partition assignment, $CP
operator command U-14

realtime data member name RT
($PDS) S-258

tape label support U-322
volume

CV
CV
CV
CV
CV

$BSCUTI command
$COPYUTI command
$DISKUT1 command
$DISKUT·2 command
$UPDATEH command

334 SC34-0316

C-62
U-64
U-137
U-143
U-418

character constants L-89
character image table U-205
CHGPAN, Multiple Terminal Manager

CALL
coding description C-135,

L-364
internals M-9
overview C-124, L-29

CL clear work data set, $FSEDIT
primary command U-221

class interrupt vector table
I-~' 1-277

cIa interrupts, intercepting,
$TR P utility U-348

clear
data set, CD $DISKUT2 command

U-144
screen, $B operator command

U-12
CLOSE Host Communications Facili-
ty, TP operand C-90

CL5RU (close tape data set) L-75
cluster, indexed data set S-200
CM copy member

$COPYUTI command U-64
$DIUTIL command U-155

CMDEQU L-12
CMDSETUP 1-13, 1-67
CNG copy all members

(non-generic),$COPYUTl command
U-64

CO command, $RJE2780/$RJE3780
C-76

COBOL
execution requirements S-23
link editing S-71
overv i eloJ 5-7
program preparation

requirements 5-23
use with Multiple Terminal

Manager C-193
code translation

new support tables 1-111
terminal I/O layer 2 1-109

code words, task L-8
COLS display columns, $F5EDIT line

command U-228
command area, $EDXASM 1-214
command descriptions U-235
COMMAND send to host,

$RJE2780/$RJE3780 C-75
command table 1-68, 1-282, 1-301
common data area (see $SY5COM)
common emulator setup routine

command table 1-13, 1-282,
1-301

operating conventions 1-67
communication error function

1-166
communications utilities

$BSCTRCE C-61
$BSCUTI C-62
$B5CUT2 C-64
$HFCUT1 C-I07
$PRT2780 C-72
$PRT3780 C-72
$RJE2780 C-73
$RJE3780 C-73
$RMU C-282

communications utilities (session
manager) 5-217, U-42

communications vector table 1-11,
1-278, 1-313

compiler (see $EDXA5M) o

o

o

o

completion codes (see return
codes)

$EDXASM U-436
$IAMUT1 U-437
$JOBUTIL U-439
$LINK U-440
$UPDATE U-443

compress
data base, CP $DIUTIL command

U-154
library, $COMPRES utility

U-57
compressed byte string S-309
CONCAT graphics instruction

coding description L-72
overview L-26

concatenating indexed data sets
S-167

concurrent access L-27
concurrent execution L-42
configuration statements S-75
configure terminal CT $TERMUT1

command U-335
connecting an indexed data set

S-159
continuation, source program line,

$EDXASM U-361
control, device instruction level

L-24
control block (see DSCB)
control block and parameter
tables

BSCEQU 1-133, 1-291, L-11
CCBEQU (see also CCB> L-11
CMDEQU (see also emulator

command table> L-12
DDBEQU 1-92, 1-308, L-12
DSCBEQU (see also DSCB) L-12
ERRORDEF L-12
FCBEQU A-20, L-12
IAr'1EQU L-12
PROGEQU 1-312, L-13
referencing 1-289
TCBEQU (see also TCB) L-13

control block module (ASMOBJ)
description 1-76

CONTROL IDCB command L-175
control keys for text editors

U-172
control records, $LINK U-396
control statements, program

listing L-28
task L-42
terminal I/O forms control

L-45
CONTROL tape instruction L-74
conversion

algorithm for graphics 1-201
alphameric data L-152
definition
EBFLCVT module description

I-SO
floating point/binary 1-205
numeric data L-148
program modules by $UPDA1E/H

U-418
terminal I/O binary/EBCDIC

1-110
CONVTB data formatting
instruction

coding description L-79
internals 1-207
overview L-18

CONVTD data formatting
instruction

coding description L-82
internals 1-207
overview L-18

copy
block of text, CC $F5EDIT line

command U-226
data members, all, CAD

$COPYUT1 command U-64
data set, CD $COPY command

U-61
data sets with allocation,

$COPYUT1 utility U-64
line of text, C $FSEDIT line

command U-226
member

CM $COPYUTl command U-64
CM $DIUTIL command U-155

members
all, CALL $COPYUT1 com

mand U-64
generic, CG $COPYUT1

command U-64
non-generic, CNG $COPYUT1

command U-64
programs, all, CAP $COPYUT1

command U-64
text, $EDIT1/N editor

subcommand U-186
volume, CV $COPY command U-62

copy code library, instruction
parsing ($EDXASM) 1-222

COpy instruction
coding description L-86
overview L-33

Count record C-256
CP compress data base, $DIUTIL

command U-154
CR invoke $DISKUT1, $IAMUT1

command U-236
create

character image tables, $FONT
U-205

source data set, $F5EDIT
U-214

supervisor for another
Series/l 5-132

unique labels, $SYSNDX
($EDXA5M) 1-242

create indexed data set 5-156
cross partition instructions I-71
cross partition services S-286
C5ECT list, supervisor

Version 1.1 5-347
Version 2 5-357

C5ECT program module sectioning
statement

CT

CV

coding description L-87
overview L-33

change tape drive attributes,
$TAPEUT1 command U-315

configure terminal, $TERMUT1
command U-335

change output volume U-409
$UPDATE command U-409
$UPDATEH command U-418

change volume
$BSCUT1 command C-62
$COPYUT1 command U-64
$DI5KUT1 command U-137
$D15KUT2 command U-143

copy volume, $COPY command
U-59

Common Index 335

CYCLE
coding description C-132,

L-365
internals M-9
overview C-116, L-29

cylinder S-60
cylinder track sector (CTS) U-135

D delete line, $FSEDIT line com-
mand U-228

D/I (see digital input)
D/O (see digital output)
data

conversion (see conversion)
conversion specifications (see
also conversion) L-146

definition statements L-17
files for $S1ASM 1-254
floating-point arithmetic

instructions L-20
formatting functions L-18
formatting instructions L-18
integer and logical
instructions L-19

length of transmitted, host
communications 1-159

management S-45
management system, Indexed

Access Method L-27
manipulation instructions

L-19
record contents, text editor

1-325
representation L-20

floating-point L-20
integer L-19
terminal input L-45
terminal output l-45

transfer initialization,
terminal I/O support 1-112

transfer rates, Host
Communications Facility C-84

transfer ready, (DTR) BSCOPEN
1-148

Data Collection Interactive S-11
DATA data definition statement

coding description L-88
overview L-17

data management utilities
$COMPRES S-64, U-57
$COPY S-64, U-59
$COPYUT1 S-64, U-64
$DASDI S-64, U-68
$DISKUTI S-64, U-135
$DISKUT2 S-64, U-142
$DISKUT3 S-315
$IAMUT1 S-148, U-235
$INITDSK S-64, U-256
$MOVEVOL S-65, U-294
$PDS S-247
$TAPEUTI U-311
session manager S-215, U-38

data manipUlation, vector l-19
data manipulation instructions

L-19
Data record C-257
data representation, terminal I/O

L-45
data set

allocation/deletion

336 SC34-0316

$DISKUTI U-137
$DISKUT3 S-315
$JOBUTIL U-273
$PDS S-248
session manager U-29

characteristics, HCF C-83
format

$FSEDIT U-210
$PDS S-249
$PRT2780 C-72
$PRT3780 C-72

naming conventions C-82, S-56
transfer

RECEIVE function C-243
SEND function C-247

utilities (see data management
utilities)

data set naming conventions, Host
Communications Facility C-82

data-set-shut-down condition
S-179

date/time
display, $W operator command

U-25
set, $T operator command U-19

DC data definition statement
coding description L-88
overview L-17

DCB EXIO control statement
coding description L-91
overview L-24

DCE directory control entry
format 1-88

DCI (Data Collection Interactiv~)
S-11

DD block delete, $FSEDIT line
command U-228

DDB disk data block
description 1-92
equate table 1-308

DDBEQU L-12
DE delete member

$DISKUTI command U-137
$DIUTIL command U-156
delete data set, $JOBUTIL

command U-274
deadlocks C-238, S-180
debug

$EDXASM overlay programs
1-248

aids (see also diagnostic
aids) S-18

facility, $DEBUG utility U-82
define

horizontal tabs, HTAB $IMAGE
command U-252

image dimensions, DIMS $IMAGE
command U-251

indexed data set, DF $IAMUT1
command U-237

null representation, NULL
$IMAGE command U-253

vertical tabs, VTAB $IMAGE
command U-254

DEFINEQ queue processing
statement

coding description L-94
overview L-37

definition statements, data L-17
delete

-jata set
$JOBUTIL command U-274
DELETE function C-216
tape data set, TA $TAPEUT1

command U-333

(/.~ ..

\~cJ

o

o

o

o

elements, IN $DICOMP command
U-107

member

text

$PDS S-261
DE $DISKUT1 command U-137
DE $DIUTIl command U-156

$EDIT1(N) editor subcom
mand U-188

line, D $FSEDIT line
command U-228

with $PREFIND U-305
DELETE function C-216, 1-166,

1-174
DELETE instruction

coding description L-329
overview l-27, S-147
return codes L-330

DEQ task control instruction
coding description L-95
internals I-59
overview l-42, S-33
supervisor function 1-46

DEQBSe dequeue BSe DDB routine
1-149

DEQT terminal 1/0 instruction
coding description L-97
overview l-44, S-47

DETACH task control instruction
coding description l-98
internals 1-45
overview l-42, S-30

detached, task supervisor
execution state 1-43

device
busy (EXOPEN) l-129
data block description, EXIO

1-123
instruction level control

L-24
interrupt handling, EXIO
1-125

test utility, $IOTEST U-263
vector table 1-11, 1-278

DF define indexed file, $IAMUT1
command U-237

DI (see digital input)
diagnostic

aids S-265
summarized S-18

utilities
$DEBUG U-82
$DUMP U-163
$IOTEST U-263
$LOG U-292
$TRAP U-348
with session manager

S-217, U-38
digital input

$IOTEST command U-266
digital 1/0 control block

1-129
direct output,$DICOMP subcom

mand U-112
direct output to another
device ($PDS) S-255

display parameters, $IAMUTI
command U-239

external sync, XI $IOTEST
command U-266

IODEF statement L-186
overview S-48
SBIO instruction l-265
SENSORIO configuration
statement S-84

digital output
digital 1/0 control block
1-129

DO $IOTEST command U-265
external sync, XO $IOTEST

command U-266
IODEF statement L-186
overview S-48
SBIO instruction L-267
SENSORIO configuration
statement l-84

DIMS define image dimensions,
$IMAGE command U-251

direct access common 1/0 module,
DISKIO, description 1-77

direct access storage device
organization S-52

direct output, DI $DICOMP
subcommand U-112

directory
control entry (DCE) 1-88
entries S-249
member entry (DME) 1-89

disaster recovery from tape, RT
$TAPEUT1 command U-326

DISCONN Indexed Access Method
CALL

coding description L-332
overview L-27, S-148
return codes L-333

DISCONNECT Multiple Terminal
Manager utility C-119, C-159

disconnecting an indexed data set
S-159

DISK configuration statement S-78
disk/diskette

capacity 5-58
data block (DDB) 1-92
fixed-head S-15, 5-61
1/0 task 1-95
IPl 5-16, 5-61
primary volume 5-60
resident loading code 1-19
secondary volume 5-60
symbolic addressing l-10
utilities

$COMPRE5 5-64, U-57
$COPY 5-64, U-59
$COPYUT1 5-64, U-64
$DA5DI 5-64, U-68
$DI5KUT1 S-64, U-135
$DI5KUT2 5-64, U-142
$DI5KUT3 5-315
$IAMUT1 5-148, U-235
$INITD5K 5-64, U-256
$MOVEVOL 5-65, U-294
$PD5 5-247

utility function table U-49
volume 5-16, S-52

disk 1/0 instructions L-22
DI5KIO direct access common 1/0

module description 1-77
display (see also list)

character image tables, DI5P
$FONT command U-205

contents of storage or
registers, lI5T $DEBUG com
mand U-95

control member ($PD5) 5-250
control member format ($PD5)

5-252
initial data values for image
S-303

processor composer, $DICOMP
U-105

Common Index 337

processor interpreter,
$D11NTR U-150

processor utility, $D1UT1l
U-150

processor utility, general
description U-I05

profile elements ($PDS) 5-252
protected and null fields of

an image 5-302
report line items ($PDS)
5-255

status of all tasks, WHERE
$DEBUG command U-I02

storage, $0 operator command
5-63, U-15

time and data, TO ($PDS)
5-258

time and date, $W operator
command S-63, U-25

utility program set ($PDS)
S-248

variable, VA($PDS) 5-254
4978 program function keys,

$PFMAP utility U-301
DISPLAY TERMCTRl function l-288
DIVIDE data manipulation

instruction
coding description l-99
overview l-19
precision table l-lOO

DME directory member entry
format 1-89

DO
updated by SETEOD 5-324

digital output (see digital
output)

program sequencing
instruction

coding description l-101
overview l-34

double-precision l-19
floating-point arithmetic

l-21
integer and logical l-19

DOWN move line poiner, $EDIT1/N
editor subcommand U-189

DP
dump to printer

$D1SKUT2 command U-144
$TAPEUT1 command U-317

print trace file, $BSCUTI
command C-62

DR draw symbol, $DICOMP
subcommand U-112

DR draw symbol ($PDS) S-254
draw

line, II $D1COMP subcommand
U-120

line relative lR ($PDS) 5-257
symbol, DR $DICOMP subcommand

U-112
OS data set identifier, $JOBUTIl

command U-275
DSCB data set control block

statement
coding description l-105
equate table, DSCBEQU 1-311
for tape, internals 1-99
internals 1-92
overview l-22

DSCBEQU l-12
DSECT (see control block and
parameter equate tables) l-11

DSOPEN subroutine
description S-322

338 SC34-0316

DSR data set ready in BSCOPEN
1-148

DTR data transfer ready in
BSCOPEN 1-148

DU

dump

dump on terminal, $DISKUT2
command U-144

dump trace file on terminal,
$BSCUT1 command C-62

restore volume utility
$MOVEVOl U-294

storage partition, DUMP
function C-218

to printer
$DUMP utility U-163
DP $DISKUT2 command U-143
DP $TAPEUT1 command U-317
PR $DICOMP command U-108

to terminal
$DUMP utility U-163
DP $TAPEUT1 command U-317
DU $D1SKUT2 command U-143
PR $DICOMP command U-I08

trace file on printer, DP
$BSCUT1 command C-62

trace file on terminal, DU
$BSCUTI command C-62

DUMP function C-218, 1-166, 1-175
04969, tape device handler module
description 1-82

E-conversion (Ew.d) l-150
EBFlCVT, EBDIC to floating-point
conversion 1-205

module description 1-80
EC control echo mode, $IAMUTI

command U-240
ECB task control statement

coding description l-107
internals I-55

EDIT

overview l-42, S-30
with SBI0CB 1-128

begin editing source data,
$EDIT1/N command U-174

create or change data set,
$FSEDIT option U-214

enter edit mode, $FONT
command U-205

enter edit mode, $1MAGE
command U-251

edit data set subroutine examples,
text editor 1-326

editor subcommands, $EDITI/N
U-182

EDl (see Event Driven language)
compiler ($EDXASM) U-356
instruction format 1-67
interpreter, EDXAlU, module
description 1-77

operation codes 1-67
EDXAlU Event Driven language
interpreter description 1-5,
1-77

EDXFlOAT floating-point operations
module description 1-79

EDXINIT supervisor initialization
control module 1-15

description 1-81

o

o

o

EDXLI5T host listing formatter
U-383

EDXSTART supervisor initialization
task module description 1-81

EDXSVCX/EDXSVCXU task supervisor
addr. trans. support desc 1-5,
1-76

EDXSYS system data tables,
description 1-75

EDXTIMER 7840 timer feature card
module description 1-80

EDXTIMR2 4952 timer module
description 1-80

EDXTIO terminal I/O
EDXTI0/EDXTIOU module
description 1-78

internals 1-105
EJECT listing control statement

coding description L-109
overview L-28

eject printer page
$E operator command U-16

ELSE program sequencing
instruction

coding description L-110,
L-178

overview L-34
emulator (see
supervisor/emulator)

emulator command table 1-13,
1-282, 1-301

emulator functional flow 1-69
emulator setup routine 1-67

command table 1-13, 1-282,
1-301

EN end program, $IAMUT1 command
U-235

END
$LINK control record U-396
option selection, $EDXASM

command U-358
option selection, $EDXLIST

command U-371
option selection, $S1ASM

U-378
primary command input, $F5EDIT

primary command U-221
task control statement

coding description L-111
overview L-42

end display, EP $DICOMP
subcommand U-118

end-of-file, indicating with
SETEOD S-324

ENDATTN task control instruction
coding description L-112
overview L-42, S-30

ENDDO program sequencing
instruction

coding description l-103,
L-113

overview l-34
ENDIF program sequencing
instruction

coding description L-114,
l-178

overview L-34
ENDPROG task control statement

coding description L-115
overview L-42, S-30

ENDSEQ Indexed Access Method CALL
coding description l-334
overview L-27, S-147
return codes L-335

ENDSPOOl switch spool to print,
$RJE2780/$RJE3780 C-75

ENDTASK task control instruction
coding description L-116
overview l-42, 5-30

ENQ task control instruction
coding description L-117
internals 1-60
overview L-42, S-33
supervisor function 1-45

ENQT terminal I/O instruction
S-293

coding description l-119
overview l-44, S-47

enqueue, task supervisor function
(see ENQ)

entering and editing source state
ments S-66, U-192

entry points, supervisor
Version 1.1 S-347
Version 2 5-357

ENTRY program module sectioning
statement

coding description L-121
overview L-33

EOF (end-of-file) l-74
EOJ end of job, $JOBUTIL command

U-276
EOP end of nested procedure,

$JOBUT1L command U-276
EOR data manipulation instruction

coding description l-122
overvie~o,J L-19

EOT (end-of-tape) l-41
EP end display, $DICOMP

subcommand U-118
EQ (equal) L-34
EQU data definition instruction

coding description l-124
overview l-17

equate tables
$EDXASM compiler common area
1-214

BSCDDB, BSC line control
block 1-291

CCB, terminal control block
1-292

DDB, disk/diskette control
block 1-308

DDB for sensor I/O 1-309
DSCB, data set control block

1-311
emulator command table 1-282,

1-301
Indexed Access Method A-19
parameter and control block
l-ll

program header 1-312
referencing 1-30

supervisor 1-279, 1-313
TCB, task control block 1-314

ERASE terminal I/O instruction
coding description L-126
overview l-44, S-47

error codes (see return codes)
error handling

I/O error logging S-270
Indexed Access Method error
exit S-178

Remote Management Utility
C-277

software trace S-265
task error exit S-33, 5-268
terminal I/O l-44

ERRORDEF L-12

Common Index 339

ERRORS list error option
$EDXASM command U-358
$EDXLIST command U-370

estimating storage (see storage
estimating)

event control block (see ECB)
Event Driven Language (see EDL)
EX exercise tape~ $TAPEUTI com-

mand U-319
EXEC function C-220, I-166~ 1-178
EXEC load and execute program,

$JOBUTIL command U-277
execute program

EXEC function C-220
PASSTHRU function C-225
SHUTDOWN function C-251
utilities (session manager)

S-216
executing, task supervisor exe
cution state 1-43

exercise tape, EX $TAPEUTI
command U-319

EXFLIH command start 1-125
EXIO control instruction

coding description L-128
EXIODDB device data block
description 1-123

internals 1-125
overview L-24, 5-51

EXIOCLEN, EXIO termination module
1-126

EXIODEV configuration statement
5-82

EXIOINIT, system initialization
1-125

EXOPEN EXIO control instruction
coding description l-129
internals 1-125
interrupt codes L-132
overview L-24
return codes L-131

external sync 01/00, XI/XO $IOTEST
command U-266

EXTRACT, Indexed Access Method
CALL

coding description L-336
overview l-26, S-148
return codes L-337

EXTRN program module sectioning
statement

coding description L-134
overview L-33

F-conversion (Fw.d) L-149
FADD data manipulation
instruction

coding description L-135
overview L-19
return codes L-136

FAN, Multiple Terminal Manager
CALL

coding description C-139,
L-366

overview L-31
FCA file control area~ Multiple
Terminal Manager C-143

FCB file control block for Indexed
Access Method

definition A-9, A-20
description A-II, A-21, S-194

340 SC34-0316

location A-20
map provided by FCBEQU S-155

FCBEQU Indexed Access Method copy
code module L-12, S-155

FDIVD data manipulation
instruction

coding description L-137
overview L-19
return codes L-138

FETCH Host Communications
Facility, TP operand C-92

fetch record ($PDS) S-261
fetch status, FE $HCFUTI command

C-II0
file L-75

backward space file (BSF)
L-75

control area (see FCA)
control block (see FCB)
definition L-40
forward space file (FSF) L-75
manager, Multiple Terminal

Manager M-8
tape control commands L-75

FILE10, Multiple Terminal Manager
CALL

FIND

coding description C-141,
L-367

internals M-9
overview C-118, L-29

editor commands
character string, $EDITI/N

subcommand U-191
character string, $FSEDIT

primary command U-222
program sequencing

instruction
coding description L-139
overview L-34

FINDNOT program sequencing
instruction

coding description L-141
overview L-34

FIRSTQ queue processing
instruction

coding description L-143
overview l-37, S-32

fixed-head devices S-61
fixed storage area, contents 1-9
floating-point

arithmetic instruction
equates 1-283, 1-303

arithmetic instructions L-20
binary conversions 1-205
command entries module,

NOFLOAT, description 1-79
operations module, EDXFLOAT,
description 1-79

return codes L-21
FMULT duta manipulation
instruction

coding description L-144
overview L-19
return codes L-145

format
illustrated L-5
instruction (general) L-3

FORMAT data formatting statement
'A' conversion L-153
'E' conversion L-150
'F' conversion L-149
'H' conversion L-152
'I' conversion L-148
coding description L-146

o

\.

c

o

o

o

conversion of alphameric data
l-153

conversion of numeric data
l-148

data conversion specifica-
tions l-146

module names l-18
multiple field format l-155
overview l-18
repetitive specification

l-155
using multipliers l-155
X-type format L-154

formatted screen images 5-300,
U-250

formatting instructions, data
l-18

forms control
burst output with electronic
display screens L-46

forms interpretation l-46
output line buffering l-46
parameters, terminal I/O l-44
terminal I/O L-45

FORTRAN IV
execution requirements 5-24
link editing 5-71
overv i et4 5-6
program preparation

requirements 5-24
use with Multiple Terminal

Manager C-197
FPCONV data manipulation
instruction

coding description l-157
overview l-19

free pool in Indexed Access
Method L-27

free space
definition 5-148
estimating 5-168
in Indexed Access Method l-27

free space entry 1-90
FREEMAIN storage allocation
function 1-25

FSE free space entry 1-90
FSR (forward space record) l-75
FSUB data manipulation
instruction

coding description l-159
index registers L-160
overview l-19
return codes L-160

FTAB, Multiple Terminal Manager
CALL

coding description C-138,
L-372

overview C-124, L-31
return codes L-373

full-screen static configuration
5-293

full-screen text editor host and
native, $F5EDIT U-209

full-word boundary requirement
DO L-34
IF L-34
PROGRA~l l-225

function process overlays 1-162
function process subroutines

1-162, 1-170
new subroutines 1-187

function table 1-164. 1-167

GE (greater than or equal) l-34
general instruction format l-3
generating the supervisor 5-115
GENxxxx macro 1-120
GET Indexed Access Method CAll

coding description L-338
overview l-27, S-147
return codes l-340

GETEDIT data formatting
instruction

coding description L-162
overview l-18

GETMAIN storage allocation
instruction 1-25

GETPAR3 1-69
GETSEQ Indexed Access Method CALL

coding description l-342
overview L-27, 5-147
return codes l-343

GET5TORE TERMCTRL function l-288
GETTIME timing instruction

coding description L-167
overview L-50, 5-32

GETVAl subroutine, $EDXA5M 1-234
GETVAlUE terminal I/O instruction

coding description l-169
overview L-44, 5-47

GIN graphics instruction
coding description L-172
overview L-26

global area, $EDXA5M 1-224
GLOBAL ATTNlI5T L-61
GO activate stopped task, $DEBUG

command U-93
GOTO

change execution sequence,
$DEBUG command U-94

coding sequencing instruction
coding description L-173
overview L-34

graphics
conversion algorithm 1-201
functions overview L-26
hardware considerations C-6,

C-300
instructions l-26

CONCAT l-72
GIN L-172
PlOTGIN l-210
SCREEN L-270
XYPLOT L-324
YTPlOT l-325

requirements L-26
terminals 5-46
utilities

$DICOMP U-105
$DIINTR U-127
$DIUTIl U-150
session manager S-216,

U-40
summarized 5-64, U-5

GT (greater than) l-34

Common Index 341

H-conversion L-152
hardcopy function for terminals

PF6 1-114 , U-7
hardware levels 5-30
HCF (see Host Communications
Facility)

HDR1 tape label 5-239
header labelsl tape 5-235
header record

Remote Management Utility
C-209

header record format, text editor
1-323

HELP list debug commands l $DEBUG
command U-94

higher-level index block 5-197
horizontal tabs l defining with

$IMAGE U-252
host assembler U-382
Host Communications Facility

C-81, 1-153
data set naming conventions

C-82
Program Preparation

5ystem/370 1-153, U-382
TPCOM module description 1-81
utility program, $HCUT1 C-107

host program, Remote Management
Utility C-205

host system considerations C-83
H05TCOMM configuration statement

5-83
HX display hex words, $DICOMP

subcommand U-118

I
initialization, $INITD5K com
mand U-257

insert line, $F5EDIT line
command U-229

I-conversion (Iw) L-148
I/O device instruction level L-24
I/O error logging

data set list utility,
$DI5KUT2 U-142

device table 5-276
invoking 5-273, U-292
log control record 5-276
log data set U-292
lOG macro

equates S-278
syntax 5-272

printing the errors 5-275
recording the errors S-270
tape log entries 5-245
utility, $LOG U-292

I/O functions
disk/diskette 1-95, l-22

summarized S-46
EXIO control 1-123, L-24

summarized S-51
HOSTCOMM configuration
statement l-39, 5-83

overview 5-45
sensor 1-127

summarized S-51

342 5C34-0316

tape L-40, l-75
terminal S-46
timers l-50, S-32

I/O instructions
disk L-22
diskette l-22
tape L-40

lACB indexed access control block
built by connecting data set

5-159
definition A-20
description A-35
location A-14

lAM Indexed Access Method link
module 5-155

IAMEQU Indexed Access Method copy
code module L-12, 5-155

IDCB EXIO control statement
coding description l-175
overview l-24

IDCHECK function C-223 , 1-166 ,
1-177

identification, verify
host system C-223
IDCHECK function C-223
remote system C-223

IF program sequence instruction
coding description L-177
overview L-34

II insert block, $FSEDIT line
command U-231

lIB interrupt information byte,
Multiple Terminal Manager C-128

1M insert member
$DICOMP subcommand U-118
$PD5 5-257

image dimensions, define, DIMS
$IMAGE command U-251

image store U-205
immediate action routines 1-46

binary synchronous access
method 1-149

specifying maximum number
5-88

task supervisor 1-48
immediate data l-4
IN

initialize data base, $DIUTIL
command U-157

insert or delete elements,
$DICOMP command U-I07

INCLUDE $lINK control record
U-398

INCLUDE statement requirement
(EXTRN) L-134

index block A-20, A-33
overview 5-151

index entry A-12
index record contents, text
editor 1-323

index registers
floating-point operations
using L-21

integer operations using l-19
software introduction L-6

indexed access control block (see
IACB/ICB)

Indexed Access Method l-26, L-327
$IAM load module 5-155
$IAMUTI utility U-235

overview 5-148
parameters S-187
used in data set

reorganization 5-166
application program

o

o

o

o

preparation
$JOBUTIL procedure 5-158
link edit control 5-158

CALL instruction syntax L-68,
5-146

CALL processing A-4
coding instructions L-327
control block linkages A-15
control flow A-3
data block location
calculation A-9

devices supported by 5-146
diagnostic aids A-I0
I/O requests

DELETE L-329, 5-147
DI5CONN L-332, 5-148
END5EQ L-334, 5-147
EXTRACT L-336, 5-148
GET L-338, 5-147
GET5EQ L-341, 5-147
LOAD L-344, 5-147
PROCE55 L-347, 5-147
PUT L-350, 5-147
PUTDE L-352, 5-147
PUTUP L-354, 5-147
RELEA5E L-356, 5-147

lAM link module 5-155
operation 5-148
overview L-27, 5-145
performance 5-205
program preparation procedure

5-155
record processing A-6
request processing A-5
request verification A-I0
storage requirements 5-204

indexed applications, planning and
designing

connecting and disconnecting
data sets 5-159

handling errors
data-set-shut-down condi
tion 5-179

deadlocks 5-180
error exit facilities

5-178
long-lock-time condition

5-180
system function return

cty.Jes 5-179 ...
loading· base records 5-160
processing indexed data sets

delete 5-165
direct read 5-161
direct update 5-162
extract 5-165
insert 5-146
sequential read 5-162
sequential update 5-146

resource contention 5-181
indexed data set

base records 5-149
building U-247
concatenating with AlTIAM
~subroutine 5-167

control block arrangement A-8
creation with $IAMUTI utility

U-236
formatting 5-187
procedure 5-156

design A-7
determining size and format

U-247
format

blocks 5-192

cluster 5-200
data block 5-194
file control block (FCB)
5-151, 5-194

free blocks 5-200
free pool 5-203
free records 5-200
free space 5-184
higher-level index block

5-197
index 5-195
index block 5-194
introduction 5-151
last cluster 5-203
primary-level index block

(PIXB) 5-152, 5-195
relative block number

(RBN) 5-152
reserve blocks 5-201
reserve index entries

5-202
second-level index block

(5IXB) 5-152, 5-197
sequential chaining 5-203

loading and inserting records
5-150

maintenance
backup and recovery 5-165
deleting 5-167
dumping 5-167
recovery without backup

5-166
reorganization 5-166

overview 5-148
physical arrangement A-a
preparing the data

defining the key 5-166
estimating free space

5-168
selecting the block size

5-167
putting records into 5-149
RBN, relative block number

A-7, A-12
record locking 5-146, 5-160
verification A-II

indexed data set, defining U-237
indexed file (see Indexed Access
Method)

indexing, address feature L-6
initial program load (see also

IPL) 1-15
initialization

automatic application 5-129
disk (4962) U-68, U-73
disk (4963) U-68, U-78
diskette (4964,4966) U-68
libraries, $INITDSK utility

U-256
modules 1-16
nucleus 1-15
Remote Management Utility,
internals 1-166, 1-171

tape, $TAPEUT1 utility U-322
task 1-15

initialize data base, IN $DIUTIL
command U-157

initializing secondary volumes
5-132

INITMOD5, initialization modules
1-16

INITTA5K, initialization task
1-15

input, terminal I/O L-46

Common Index 343

Input Buffer, Multiple Terminal
Manager C-116

contents during 4978/4979/3101
buffer operation C-129

description C-116
input data parsing, description
of 1-218

Input Error function 1-166, 1-182
input/output (see ~/O)
input output control block (see

IOCB)
INPUT switch to input mode,

$EDITI/N editor subcommand U-192
insert

block, II $F5EDIT line com
mand U-231

elements, IN $DICOMP command
U-107

line, I $F5EDIT line command
U-229

member, 1M $DICOMP subcommand
U-118

instruction address register (see
IAR)

instruction and statements - over
view L-15

instruction definition and
checking ($EDXA5M) 1-241

instruction format, Event Driven
Language 1-67, L-3

instruction format, general L-3
instruction operands L-3
integer and logical instructions

L-19
interactive program debugging
5-67, U-82

interface routines, supervisor
1-61

interprocessor communications
C-29

interprogram dialogue 5-282
interrupt, from EXIO device 1-125
interrupt information byte (see
lIB)

interrupt line 5-313
interrupt servicing 1-46, 1-113
INTIME timing instruction

coding description L-181
overview L-50, 5-32

introduction to EDL L-1
invoking the loader 1-23
invoking the session manager U-27
invoking the utilities U-47
IOCB terminal I/O instruction

coding description L-183
constructing, for formatted

screen ($IMDEFN) 5-301
overview L-44, 5-47
structure 5-296
terminal I/O instruction

L-183
TERMINAL statement converted
to 5-96

IODEF sensor based I/O statement
U-364

coding description L-185
overview L-39, 5-51
5PECPI - process interrupt
user routine l-189

IOlOADER, function of 1-127
IOlOADER/IOLOADRU sensor based I/O
init. module desc. 1-78

lOR data manipulation instruction
coding description L-191
overview L-19

344 5C34-0316

IPL
automatic application initial

ization and restart 5-129
messages U-421

date and time U-425
IPL operation U-421
load utility location

U-424
sensor I/O status check

U-424
storage map generation

U-423
tape initialization U-423
volume initialization

U-422
procedure U-421

IPL5CRN, Multiple Terminal
Manager C-125

job U-278
job control statement U-278
JOB job identifier, $JOBUTIL

command U-278
job stream processor, $JOBUTIL
5-69, U-271

job stream processor utilities
(session manager) 5-216

JP
jump ($PD5) 5-255
to address, $DICOMP

subcommand U-118
JR jump reference, $DICOMP

subcommand U-118
JUMP, $JOBUTIL command U-279
jump reference, JR $DICOMP

subcommand U-118
jump to address, JP $DICOMP

subcommand U-118

key (see program function (PF)
keys

keyboard and ATTNLI5T tasks, ter
minal I/O L-47

keyboard define utility for 4978,
$TER~'UT2 U-339

KEY5 list program function keys
$IMAGE command U-253

keyword operand L-5

LA
display directory, $DIUTIL

command U-158
list all members, $DI5KUT1

command U-135, U-136
list terminal assignment,

$TERMUT1 command U-336
label L-3

field L-3
syntax description L-4 o

o

o

o

LABEL end jump, $JOBUTIL command
U-280

labels, tape (see tape)
LABELS subroutine, $EDXASM 1-238
LACTS list all members CTS mode,

$DISKUT1 command U-135
language control data set,

$EDXASM 1-221, U-357
LASTQ queue processing
instruction

coding description L-191
overview L-37, S-32

layers, terminal I/O 1-108
LB display characters

$DICOMP display character sub
command U-119

$PDS S-252
LC load control store, $TERMUT2

command U-342
LO

list all hardware devices,
$IOTEST command U-269

list data members, $DISKUT1
command U-138

LDCTS list data members CTS mode,
$DISKUT1 command U-135

LE (less than or equal) L-34
level status block (see LSB)
LEWORK1 work data set for $LINK

U-400
LEWORK2 work data set for $LINK

U-400
LH display member header, $OIUTIL

command U-159
LI

draw line $DICOMP subcommand
U-120

draw line $PDS S-253
load image store, $TERMUT2

command U-342
library

definition S-52
directory, disk or diskette

1-87
origin S-60

line
commands, $FSEDIT U-229
continuation, source

statement L-4
editing, $EDIT1/N U-203
pointer reposition (see move
line pointer)

source line continuation
U-361

LINK, Multiple Terminal Manager
CALL

coding description C-131,
l-374

internals M-9
overview C-115, L-29

link edit process, $LINK U-394
autocall option U-393
building an EDX supervisor

U-394
combining program modules

U-392
control records U-396
elimination of duplication
control sections U-393

formatting modules for
$UPDATE U-392

input to $LINK U-396
multiple control sections

U-392
object module record format

U-407
output from $LINK U-403
storage map U-393

link edit program object modules
U-390

link module, Indexed Access
Method S-155

linkage editor S-71, U-353
LINKON, Multiple Terminal Manager

CALL

list

coding description C-132,
L-376

internals M-9
overview C-115, L-29

active programs, $A operator
command U-l1

breakpoints and trace ranges,
BP $DEBUG command U-92

characters, LB $OICOMP
subcommand U-119

data members, LD $DISKUT1
command U-138

data members, LDCTS $DISKUT1
command U-135

data set
BROWSE $FSEOIT option

U-213
LP $DISKUT2 command U-143
LU $DISKUT2 command U-146
status, ST $DIUTIL

command U-162
date/time, $W operator

command U-25
date/time, TO $DICOMP

subcommand U-124
devices, LO $IOTEST command

U-269
end, EP $DICOMP subcommand

U-117
error specification, ERRORS

$EDXASM command U-358
hardware configuration, LO

$IOTEST command U-264
insert mask, MASK $FSEOIT line

command U-232
member, LM $DISKUT1 command

U-138
member, PR $OICOMP command

U-I08
member header, LH $OIUTIL com

mand U-159
memberst all

LA $DISKUT1 command U-135
LA $OIUTIL command U-158
LACTS $OISKUTI command

U-135
processor program, $EDXLIST

U-370
program function

$PFMAP utility
program function

$Ir1AGE command
program members,

command U-139

key codes,
U-301
keys, KEYS
U-253
LP $DISKUTI

program members, LPCTS
$DISKUTI command U-135

status of all tasks, WHERE
$DEBUG command U-I02

storage, $0 operator command
U-15

terminal
names/types/addresses, LA
$TERMUTI command U-335

variables, VA $DICOMP

Common Index 345

subcommand U-125
volume information, VI $IOTEST

command U-270
LIST commands

data set
lIST $EDITI/N command

U-193
LIST $FSEDIT option U-217

display lines ~f'text,
$EDIT1/N editor subcommand
U-193

display storage or registers,
$DEBUG command U-95

lines of text, LIST $EDIT1/N
editor command U-176

list device option, $EDXASM
command U-358

list device option, $EDXLIST
command U-370

obtain full listing, LIST
$EDXASM command U-358

print data set, $EDITI/N
command U-176

print data set, $FSEDIT
option U-217

registers, lIST $DEBUG
command U-95

storage, LIST $DEBUG command
U-95

listing control functions U-29
listing control in~tructions

EJECT L-I09
overview L-28
PRINT L-216
SPACE L-275
TITLE L-308

lISTP list to $SYSPRTR, $DISKUTI
command U-135

LISTT list to terminal, $D1SKUTI
command U-135

LL list log data set, $DISKUT2
command U-145

LM list member, $DISKUT1 command
U-138

lO load indexed file, $IAMUT1
command U-241

LOAD
Indexed Access Method CALL

coding description L-344
connect file S-159
overview L-27, S-146
return codes L-346

task control instruction
coding description L-194
internals 1-24
overv i e~oJ L-42
return codes L-199

used with automatic
initialization S-129

used with overlays S-40
load mode S-149
load point defined L-40
load program

$L operator command 1-23,
U-17

automatic initialization
S-129

EXEC $JOBUTIL command U-277
loading overlays 1-22
loading programs I-19
locate data sets and overlay
programs, $PREFIND U-302

LOCATE locate requested line
number $FSEDIT primary comman
U-223

346 SC34-0316

location dictionary 1-250
lock

locks, block and record A-16
locks, file A-17
record S-146

LOCK TERMCTRL function l-288
LOG

I/O error logging macro S-271
job processor commands,

$JOBUTIL command U-281
log data set for I/O errors U-292
logical end-of-file on disk S-324
logical screens S-293
logon menu for session manager
S-212, U-27

long-lock-time condition S-180
low storage

LP

during IPL 1-16
during program load 1-20

list data set on printer,
$DISKUT2 command U-144

list program members, $DISKUTI
command U-139

LPCTS list program members CTS
mode, $DISKUT1 command U-135

LR draw line relative

lS

$DICOMP subcommand U-121
$PDS S-257 '

list space, $DISKUTI command
U-140

list supervisor configuration,
$IOTEST command U-270

lSB level status block I-52,
U-427

IT (less than) l-34
lU list data set on console,

$DISKUT2 command U-146
lV list through volumes, $DISKUT1

U-141

M move line, $FSEDIT line command
U-233

macro assembler
internal overview $S1ASM
1-253

overview S-9
macro library S-6
macro library/host S-5
magazine diskette (see 4966
diskette magazine unit)

magnetic tape (see tape)
MASK display insert mask, $FSEDIT
line command U-232

master control block (see MCB)
Mathematical and Functional Sub

routine library S-6
MCB master control block

$PDS S-260
definition A-20
description A-28

MD move data base, $DIUTIL
command U-160

member area S-250
member control block (MCB) S-260
MENU

Multiple Terminal Manager
CALL

coding description C-137,

o

c

o

o

o

L-377
internals M-9
overview C-116, L-29

return to primary option,
$FSED1T U-223

menu-driven U-2
menus

(see option selection menu)
(see parameter selection
menu)

(see primary menu)
(see primary option menu)
(see secondary option menu)
(see session manager, menus)
(see transaction selection
menu)

MENUSCRN, Multiple Terminal Manag
er C-126

MERGE merge data, $FSED1T option
U-217

message, PRINTEXT instruction
L-217

message sending utility, $TERMUT3
U-344

messages U-421
error U-427

$DUMP U-431
$LOG U-432
$RMU U-433
$TRAP U-435
program check U-427
system program check

U-429
1PL (see IPL messages)
Multiple Terminal Manager

C-178
Remote Management Utility

C-279
minimum execution system config

uration S-22
minimum program preparation

requirements S-22
mirror image

description C-7, S-109
in TERMINAL configuration
statement S-101

mixed precision combinations L-20
MM move block, $FSED1T line

command U-233
modified data S-307
modify character image tables

U:-339
modify character string, CHANGE

$EDIT1/N editor subcommand
U-184

$FSEDIT primary command U-219
modify default storage allocation,

$D1SKUT2 U-149
modifying an existing data set,

$FSED1T U-215
modifying TERMINAL statement for

new I/O terminal 1-119
module descriptions

$SlASM 1-269
supervisor 1-75

module names and entry points,
supervisor

move

Version 1.1 S-347
Version 2 S-357

block, MM $FSED1T line com
mand U-233

line pointer
BOTTOM $EDIT1/N editor

subcommand U-183

DOWN $EDIT1/N editor
subcommand U-189

TOP $ED1T1/N editor
subcommand U-200

UP $ED1T1/N editor
subcommand U-201

tape U-324
text

$EDIT1/N editor subcom
mand U-195

$FSEDIT line command
U-233

volumes on disk or diskette,
$MOVEVOL utility U-294

MOVE data manipulation
instruction

coding description L-201
overview L-19

MOVEA data manipUlation
instruction

coding description L-204
overview L-19

MOVEBYTE subroutine, $EDXASM
1-236

MP
move beam, $DICOMP subcommand

U-121
move position ($PDS) 5-253

MT move tape, $TAPEUT1 command
U-324

MTMSTORE file, Multiple Terminal
Manager C-120, C-171, M-12

MTMSTR, Multiple Terminal Manager
C-169, C-170, M-12

multiple field format L-155
multiple program execution 1-36
multiple program structure 5-26
multiple-task programs 1-33
Multiple Terminal Manager

accessing the terminal envi
ronment block C-139, M-22

application program C-116
application program languages

L-30
application program manager

C-119, M-4
automatic OPEN/CLOSE C-140,

M-8
CALL

ACTION C-130, L-360
BEEP C-137, L-361
CDATA C-139, L-362
CHGPAN C-135, L-364
CYCLE C-132, L-365
FAN C-139, L-366
FILEIO C-141, L-367
FTAB C-138, L-372
LINK C-131, L-374
LINKON C-132, L-376
MENU C-137, L-377
SETCUR C-137, L-378
SETPAN C-134, L-379
WRITE C-133, L-381

coding instructions L-359
components C-123, M-4
considerations for 3101
terminal C-122

data files C-120
MTMSTORE file C-120,

C-171, M-12
PRGRMS volume C-120,

C-173
SCRNS volume C-120, C-173
TERMINAL volume C-120,

C-171

Common Index 347

direct file request types
C-144, l-370

disk file support C-140
distribution and installation

C-161
dynamic screen modification
and creation C-136

file control area C-142
file I/O considerations (Event

Driven Executive) C-146
file management C-118, M-8
FILEIO, disk file support

C-140
FIlEIO Indexed Access Method
considerations C-148

fixed screen formats C-125
functions (callable routines)

C-117, C-124
indexed file request types
C-144, l-369

indexed file support C-140,
l-367

initialization programs
C-119, C-158, M-4, M-6

Input Buffer C-116, C-127
Input Buffer Address C-116
Input Buffer during

4978/4979/3101 buffer oper
ation C-127

interrupt information byte
C-128

messages C-178
module list M-4
operation C-115
Output Buffer C-116
Output Buffer Address C-127
Output Buffer during

4978/4979/3101 buffer oper
ation C-128

overview l-29, S-10
program management C-115, M-4
program preparation

COBOL C-166
Event Driven Language

C-164
FORTRAN C-165
PL/I C-167

programming considerations
COBOL C-153
Event Driven language

C-151
FORTRAN C-152
Pl/I C-155

return codes (FIlEIO) C-145,
l-371

screen definition C-121
screen formats C-125

IPlSCRN C-125
MENUSCRN C-126
SCRN5REP C-126
SIGNONSC C-126

screen panel manager M-7
5IGNON/5IGNOFF C-156

5IGNONFl C-174
storage requirements C-168
swap out data set C-116
system generation
considerations C-169

data set requirements
C-171, C-175

volume requirements C-169
terminal environment block

(TEB) C-128, M-13
TERMINAL file C-124, C-172
terminal manager C-121

348 SC34-0316

terminal/screen management
C-117

terminal server C-119, M-7
terminal support C-114, C-126
transaction oriented
applications C-121

user application programs
C-124

utilities C-159
DISCONNECT turn off
specified terminals
C-159

programs report C-159
RECONNECT turn on
specified terminals
C-159

screens report C-160
terminal activity report

C-159
work areas, control blocks and
tables M-l1

buffer areas M-15, M-29
common area M-l1, M-25
file table M-15, M-27
MTMSTORE data set M-12
program table M-14, M-21
screen table M-14, M-21
terminal environment block

(TEB) M-13, M-22
terminal table M-13, M-21

MULTIPLY data manipulation
instruction

coding description l-205
overview l-19
precision table L-206

multiprogramming
automatic application initial

ization 5-129
design feature 5-13

multitasking 1-42

NE (not equal) l-34
newline subroutine, terminal I/O

1-112
NEXTQ queue processing

instruction
coding description l-207
overview l-37, 5-32

NOFlOAT floating-point command
entries module description 1-79

NOLI5T no list option, $EDXA5M
command U-358

NOMSG message suppression,
$JOBUTIL command U-282

non-compressed byte string 5-309
non-labeled tapes

description S-241
layout 5-242
processing 5-243

NOTE disk/tape I/O instruction
coding description l-209
overview L-22

notify of an event (see POST)
NQ reset prompt mode, $COPYUT1

command U-64
nucleus initialization 1-15
null character U-253
NUll define null representation

$IMAGE command U-253

o

o

o

o

o

null representation, defining
U-253

number representation conversion
(see conversion)

object data set for $EDXA5M U-357
object module record format,

$LINK U-407
object text elements, format of,

$EDXA5M 1-215
OFF (set tape offline) L-75
OFF remove breakpoints and trace

ranges, $DEBUG command U-97
OLE operand list element, $EDXA5M

format of 1-216
in instruction parsing

($EDXA5M) 1-220
used in $IDEF 1-241

online debug aids 5-67
op (operation field) L-3
OPCHECK subroutine, $EDXA5M 1-232
opcode table, instruction parsing

($EDXA5M) 1-220, 1-223
open a data set

disk or diskette 1-90
tape 1-99

open EXIO device, EXOPEN 1-125
open member ($PD5) 5-261
OPENIN Host Communications
Facility, TP operand C-93

OPENOUT Host Communications
Facility, TP operand C-94

operands
defined L-3
keyword L-5
parameter naming (Px) L-8

operating conventions, supervisor
program 1-67

operating environment 5-22
operation code, instruction
parsing ($EDXASM) 1-220

operation codes, Event Driven
Language 1-68

operations using index registers
L-20

operator commands 5-63, U-9
op~rator signals, terminal I/O

L-49
option selection menu U-33
optional features support L-15
OTE define object text element

$EDXA5M instruction 1-227
OUTPUT $LINK control record U-399
Output Buffer, Multiple Terminal

Manager C-116, C-128
contents during 4978/4979/3101
buffer operation C-129

definition M-29
overflow L-20
overlay function processor table
1-167, 1-220

overlay program 5-40.
instructions, $EDXASM 1-259
loading 1-22
locating, $PREFIND U-302
subroutines, $EDXA5M 1-231
user 1-38

overlay program execution I-38
overlay selection, instruction
parsing ($EDXASM) 1-223

overlay table 1-167, 1-220
overview

data definition statements
L-17

data formatting instructions
L-18

data format module names
L-18

data manipulation
instructions L-19

data representation L-19
mixed-precision
operations L-20

operations using index
registers L-20

overflow L-20
vector L-19

disk I/O instructions L-22
EXI0 control instructions

L-24
floating-point arithmetic

L-20
floating-point arithmetic
instructions L-20

data representation L-21
operations using index
registers L-21

return codes L-21
graphics instructions L-26
Indexed Access Method
instructions L-27

instructions and statements
L-15

integer and logical
instructions L-19

listing control statements
L-28

Multiple Terminal Manager
instructions L-29

program control statements
L-32

program module sectioning
statements L-33

program sequencing
instructions L-34

queue processing L-37
sensor-based I/O statements

L-39
single-precision L-19
system configuration
statements L-39

tape I/O instructions L-40
task control instructions

L-42
terminal I/O instructions

L-44
timing instructions L-50

P/l (see process interrupt)
PA patch, $DlSKUT2 command U-147
page eject S-63, U-16
parameter equate tables L-11
parameter naming operands in the

instruction format L-8
parameter passing, Remote

Management Utility C-212
parameter selection menu U-33
parameter tables, control block

and L-11

Common Index 349

PARM program parameter passing,
$JOBUTIL command U-283

parsing, input data ($EDXASM)
1-218

partition assignment changing, $CP
operator command U-14

partitioned data sets S-247
partitions S-42
PASSTHRU function

conducting a session C-227
establishing a session C-225
internals 1-166, 1-179
overview C-225
programming considerations

C-237
sample program C-265
types of records C-232
virtual terminals C-239

Passthru record C-209
patch

disk/diskette, PA $DISKUT2
command U-147

Remote Management Utility
defaults C-283

storage, $P operator command
S-63, U-18

storage or registers, PATCH
$DEBUG command U-98

PATCH modify storage or registers,
$DEBUG, command U-98

PAUSE operator intervention,
$JOBUTIL command U-284

PC plot curve
$DICOMP subcommand U-119
from plot curve data member

($PDS) S-255
PD pulse DO, $IOTEST command

U-265
PF,code TERMCTRL function L-288
PF keys (see program function

keys)
phase execution and loading,

$S1ASM 1-255
PI process interrupt (see process

interrupt) U-267
PID program directory S-27
PIXB (see primary-level index
block)

PL/I
execution requirements S-24
link editing S-71
overview 5-8
program preparation

requirements S-23
supported by Multiple Terminal

Manager C-200
PL plot data, $DICOMP subcommand

U-122
plot control block (see PLOTCB)
plot curve data member ($PDS)

S-251
PLOTCB graphics plot control

block L-210
PLOTGIN graphics instruction

coding description L-210
overview L-26

POINT
disk/tape instruction

coding description L-212
overview L-22, S-54

point-to-point (B~C) 5-65
point-to-point vector drawing

S-46
POST

post an event, $DEBUG command

350 SC34-0316

U-100
task control instruction

coding description L-213
internals I-58
overview L-42, S-34
supervisor function 1-46

power outage, restoring after
S-129

PR print member, $DICOMP command
U-I08

preC1Sl0n L-19
floating-point arithmetic

L-21
integer and logical L-19
precision combinations,
allowed L-20

precision table
ADD L-53
ADDV L-54
DIVIDE L-I01
MULTIPLY L-206
overview L-20
SUBTRACT L-284

prefind U-302
PREPARE IDeB command L-175
PRGRMS volume, Multiple Terminal

Manager C-120, C-173
primary

commands, $FSEDIT U-218
option menu, $FSEDIT U-213
option menu, session manager

5-218, U-35
task

internals 1-29
overview S-29

volume 5-60
primary-level index block

description 5-195
overview S-151

PRINDATE terminal I/O instruction
coding description L-215
overview L-44, S-47
timer-related instruction

S-33
PRINT listing control statement

coding description L-216
overview L-28

print member, PR $DICOMP command
U-108

PRINTEXT terminal I/O instruction
coding description L-217
overview L-44, 5-47
return codes L-219

PRINTIME terminal I/O instruction
coding description L-221
overview L-44, L-50, 5-47
timer-related instruction
5-33

PRINTNUM terminal I/O instruction
coding description L-222
overview L-44, S-47

PRINTON define terminal name,
$RJE2780/$RJE3780 C-75

priority
assigned to tasks S-29
design feature 5-13
illustrated S-38
internals t-31
task l-226, l-286

PROC identi fy ne'sted procedure,
$JOBUTIL command U-286

procedures, session manager (see
session manager)

PROCESS Indexed Access Method
CALL

c

(j
~_J

0·· .
- I"

o

o

o

coding description L-347
overview L-27, S-147
return codes L-349

process interrupt
control block (SBIOCB) 1-128
description S-48
IODEF statement L-189
IOTEST command U-267
supported by sensor I/O S-15
user routine (SPECPI) L-189

process mode
definition S-150

processing compiler output with
$LINK or $UPDATE U-360

processor status word (see PSW)
PROGEQU L-13
program

equates 1-312
assembly/compilation U-352
control L-32
disabling S-102
entry (see $FSEDIT, $EDIT1/N)
function (PF) keys L-47

internals 1-108
listing, KEYS $IMAGE

command U-253
listing 4978, $PFMAP
utility U-301

when using $FONT edit
mode U-206

when using $FSEDIT U-211
when using $IMAGE edit

mode U-255
when using session

manager U-28
header 1-30
identifier, $JOBUTIL command

U-287
internal processing 1-30
library update (see $UPDATE)
load process, $PREFIND U-302
loading (see also LOAD) 1-19
module sectioning functions

L-33
organization S-29
sequencing functions L-34
structure S-29
termination, EXIO 1-126
types 1-32

program check error messages
U-427

program execution via Remote Man-
agement Utility

EXEC function C-220
PASSTHRU function C-225
SHUTDOWN function C-251

PROGRAM identifier, $JOBUTIL
command U-287

program preparation
$EDXASM 1-211, U-356
$SlASM 1-253, U-372
host assembler U-382
of Remote Management Utility

1-184
summary S-18
usage example S-367

Pro~ram Preparation Facility
description S-71
overview S-5

program preparation utilities
U-351

program preparation utilities
(session manager) OU-36, S-214

program/storage manager, Multiple
Terminal Manager M-4

program structure S-36
internals 1-33

program/task concepts 1-29, S-29
PROGRAM task control instruction

coding description L-225
internals 1-30
overview L-42, S-31

PROGSTOP task control statement
coding description L-234
overview L-42, S-31

prompting and advance input,
terminal I/O L-46

protected field S-307, U-253
protocol, BSC transmission 1-156
PSW processor status word U-430
PU PUNCHO/PUNCHS function,

$RJE2780/$RJE3780 reset type
C-76

pulse a digital output address, PD
$IOTEST command U-264

PUNCHO/PUNCHS define output file,
$RJE2780/$RJE3780 C-75

purpose of EDL L-1
PUT Indexed Access Method CALL

coding description L-350
overview L-27
return codes L-351

PUTDE Indexed Access Method CALL
coding description L-352
overview L-27
return codes L-353

PUTEDIT data formatting
instruction

coding description L-236
overview L-18
return codes L-238

PUTSTORE TERMCTRL function L-288
PUTUP Indexed Access Method CALL

coding description L-354
overview L-27
return codes L-355

Px L-8

QCB task control statement 5-33
coding description L-240
overview L-42
queue control block 1-45,

I-54
QD queue descriptor 1-64, L-37
QE queue entry

functions 1-64
overview L-37
processing S-32

QUALIFY modify base address,
$DEBUG command U-101

QUESTION terminal I/O instruction
coding description L-242
overview L-44, S-47

queuable resource 5-33
queue control block (see QCB)
queue descriptor (see QD)
queue entry (see QE)
queue processing 1-64
queue processing instructions

L-37
queue processing support module,

QUEUEIO, description 1-81
QUEUEIO queue processing support

module description 1-81

Common Index 351

RA reassign address, $TERMUT1 com
mand U-33~

random access S-53
random work file operation,

$S1ASM 1-260
RCB (see Remote Management
Utility, control block)

RDCURSOR terminal I/O instruction
coding description l-244
overview l-44, S-47

RE

read

copy from basic exchange data
set, $COPY command U-59

rename, $TERMUT1 command
!U-337
rename member, $DISKUTI com

mand U-135, U-136
rename member, $DIUTIl

command U-161
reset parameters, $IAMUT1

command U-243
restore 4974 to standard
character set, $TERMUT2
U-339

analog input, AI $IOTEST
U-268

character image table from
4978, GET $FONT U-206

data set into work file
$EDIT1 U-177
$EDIT1N U-176
$FSED1T U-216

digital input, D1 $IOTEST
command U-266

digital input using external
sync U-266

Host Communications Facility,
TP operand C-95

IDCB command l-175
operations (BSC) 1-157
program, RP command

$UPDATE U-410
$UPDATEH U-419

READ instruction
disk/diskette return codes

l-249, U-455
disk/diskette/tape I/O

instruction
coding description l-245
overview l-22

tape return codes l-249,
U-456

READDATA read data from host,
$HCFUT1 command C-I08

READID IDCB command l-175
READOBJ read object module,

$HCFUT1 command C-I09
READTEXT terminal I/O instruction

coding description l-251
overview l-44, 5-48
return codes l-255
return codes, virtual terminal
communications l-256

ready a task supervisor execution
state 1-43

READ1 IDCB command L-175
READ80 read 80 byte records,

$HCFUT1 command C-I09
real image ACCA terminals C-7

352 SC34-0316

realtime data member
$PDS S-251
RT $D1COMP subcommand U-124

RECEIVE function
overview C-243
sample program C-262

RECONNECT Multiple Terminal
Manager utility C-120, C-159

record
blocking, Remote Management
UtiUty C-211

definition S-53
exchange, Remote Management
Utility C-208

format for object module,
$lINK U-407

header, Remote Management
Utility C-209

sizes, Host Communications
Facility C-83

reformat diskettes U-68
register, index l-6
register, software l-6
register conventions

$51A5M 1-257
B5CAM processing 1-147
common emulator setup routine

1-68
EBCDIC to floating-point
conversion 1-205

summary chart $51ASM 1-258
terminal I/O support 1-106

REl release a status record,
$HCFUTI command C-I10

relational statements l-180
RELEASE

Host Communications Facility,
TP operand C-96

Indexed Access Method CAll
5-147

coding description l-356
overview l-27, S-147
return codes l-357

release a status record, REl
$HCFUT1 command C-I10

release space ($PDS) 5-261
relocating program loader 1-19
relocation dictionary, $EDXASM
1-250

REMARK operator comment, $JOBUT1l
command U-288

remote job entry to host,
$RJE2780/$RJE3780 C-73

Remote Management Utility
CDRRM equates C-292
control block (RCB)

description 1-164, 1-169
equate tables C-292,

1-295
use in problem determi-
nation I-190

defaults C-283
error handling C-277
function table 1-164, 1-167
functions C-206, 1-166
installation C-281
interface C-207
internals 1-216
logic flow 1-170
messages C-279
modifying defaults C-283
module descriptions 1-191
module list 1-186
operation C-213
overlay function processor

o

o

o

table 1-167, 1-220
overlay table 1-167, 1-220
overVlew C-205
program preparation 1-184
requirements C-207
sample host programs C-259
system generation
considerations C-281

TERMINAL statement example
S-107

terminating C-251
remote system (see Remote
Management Utility) C-205

remove breakpoints and trace
ranges, OFF $DEBUG command U-97

rename member
RE $DISKUT1 command U-135,

U-136
RE $DIUTIl command U-161

RENUM renumber lines
$EDIT1/N subcommand U-196
$FSEDIT primary command U-224

reorganize an indexed data set
U-242

procedure S-166
report data member ($PDS) 5-251
reposition line pointer (see move
line pointer)

Request record C-209
reserved labels l-4
reset

function, $RJE2780/$RJE3780
attention request C-76

IDCB command l-176
Indexed Access Method

ECHO mode, EC $IAMUT1 com
mand U-240

SE command parameters, RE
$IAMUT1 command U-243

line command, $FSEDIT primary
command U-225

RESET task control instruction
coding description l-258
overview l-42, S-31

resident assembler routines 1-256
resolution, enhanced 1-201
resolution, standard graphics

1-201
resource control, supervisor I-54
restart, automatic S-129
restore

disk or disk volume from tape,
RT $TAPEUT1 command U-326

dump volume utility, $MOVEVOl
U-294

4974 to standard character
set, RE $TERMUT2 command
U-343

resulting field (EOR) l-122
return codes (see also completion
codes)

$DISKUT3 5-319, U-444
$PDS U-445
BSC C-57, U-446
COHVTB L-80
COHVTD l-83
data formatting instructions

U-447
DELETE l-330
DISCONN l-333
ENDSEQ l-335
EXIO U-448
EXIO instruction l-131
EXIO interrupt l-132
EXTRACT l-337

FADD l-136
FDIVD l-138
FIlEIO C-145
floating point instruction

U-450
FMUlT L-145
formatted screen image U-450
FSUB L-160
FTAB C-138, l-373
GET L-340
GETSEQ l-343
in Remote Management Utility
control block 1-190

Indexed Access Method U-451
LOAD l-199, U-452
LOAD (Indexed Access Method)
l-346

Multiple Terminal Manager
U-453

PRINTEXT L-219
PROCESS L-349
PUT L-351
PUTDE L-353
PUTEDIT L-238
PUTUP L-355
READ disk/diskette l-249,

U-455
READ tape L-250, U-456
READTEXT L-255
RELEASE L-357
SBIO U-457
SBIO instruction L-262
SETPAN C-135
tape L-77
TERMCTRL L-288
terminal I/O l-255, U-458

ACCA U-459
interprocessor
communications C-31,
U-460

virtual terminal L-256,
U-461

TP (Host Communications Facil
ity) C-102, U-463

WHERE5 L-316
WRITE disk/diskette L-320,

U-455
WRITE tape L-320, U-456

return from immediate action
routine (SUPEXIT) 1-49

return from task level (SUPRTURN)
1-49

RETURN program control
instruction

coding description L-259
overview L-32, S-31
supervisor entry point 1-279,
1-313

supervisor interface 1-62
REW (rewind tape) L-75
rewind tape, MT $TAPEUT1 command

U-324
RH reassign hardcopy, $TERMUTI

command U-338
RI read
transparent/non-transparent,
$BSCUT2 command C-68

RJE (see Remote Job Entry)
RLOADER 1-19, 1-22

RlOADER/RLOADRU module
description 1-78

RO reorganize indexed file,
$IAMUTI command U-242

ROFF (rewind offline) L-75

Common Index 353

roll screen, terminal I/O L-48,
S-293

RP read program
$UPDATE command U-410
$UPDATEH command U-419

RPQ D02038, 4978 display station
attachment C-6, S-97

different device
configurations C-8

RSTATUS IDCB command L-175
RT

activate realtime data member,
$DICOMP subcommand U-124

change realtime data member
name ($PDS) S-258

disk or disk volume from tape,
$TAPEUT1 utility U-326

RWI read/write non-transparent,
$BSCUT2 command C-58

RWIV read/write non-transparent
conversational, $BSCUT2 C-71

RWIVX read/write transparent
conversational, $BSCUT2 C-70

RWIX read/write transparent,
$BSCUT2 command C-67

RWIXMP read/write multidrop
transparent, $BSCUT2 command
C-60

SA save data, $DICOMP subcommand
U-124

SAVE
data set on disk, $IMAGE com

mand U-254
work data set, $EDIT1/N

subcommand U-197
save current task status

(TASKSAVE) I-54
save data, SA $DICOMP subcommand

U-124
save disk or disk volume on tape,

$TAPEUT1 utility U-330
save storage and registers, $TRAP
utility U-348

SB special PI bit, $IOTEST
command U-267

SBAI sensor based I/O support
module description 1-80

SBAO sensor based I/O support
module description 1-80

SBCOM sensor based I/O support
module description 1-80

SBDIDO sensor based I/O support
module description 1-80

SBIO sensor based I/O instruction
coding description L-260
control block (SBIOCB) 1-127
overview l-39, S-51
return codes L-262

SBIOCB sensor based I/O control
block 1-127

SBPI sensor based I/O support
module description 1-80

SC save control store, $TERMUT2
command U-343

screen format builder utility,
$IMAGE S-68, U-250

SCREEN graphics instruction
coding description l-270
overview L-26

354 SC34-0316

screen image format building
U-250

screen images, retrieving and dis
playing S-300

screen management, terminal I/O
l-48

SCRNS volume, Multiple Terminal
Manager C-120, C-173

SCRNSREP, Multiple Terminal
Manager C-125

scrolling, $FSEDIT U-210
SCSS IDCB com~and l-176
SE set parameters, $IAMUT1

command U-244
SE set status, $HCFUT1 command

C-110
second-level index block

description S-197
overview S-153

secondary
disk volumes S-132
volumes S-60

secondary option menus S-218,
U-36

(see session manager)
sectioning of program modules
l-33

sector S-52
self-defining terms l-4
send

data, HX $DICOMP subcommand
U-118

data set, SEND function C-247
message to another terminal,

$TERMUT3 utility U-344
SEND function

internals 1-166, 1-172
overview C-247
sample program C-274

sensor based I/O
assignment L-188
I/O control block (SBIOCB)

1-127
modules (10l0ADER/I0l0ADRU)

1-78
statement overview l-39
support module descriptions

1-81
symbolic l-9

SENSORIO configuration statement
S-51, S-84

sequence chaining l-27
sequencing instructions, program

L-34
sequential access

in Indexed Access Method
S-145

overview S-53
sequential work file operations

($SlASM) 1-259
serially reusable resource (SRR)
I-59, S-33

session, PASSTHRU
conducting C-227
establishing C-225
logic flow diagram C-230
using $DEBUG utility C-272

session manager U-27
$SMAllOC data set allocation
control data set S-222, U-30

$SMDElET data set deletion
control data set S-222, U-32

adding an option S-209, S-224
communications utilities U-42

communications utilities

o

0 ,
.,.,,-,' :

o

0,
, ,

5-217
data management 5-215
diagnostic utilities

S-217
disk utilities (see data

management)
execute program utilities

S-216
graphics utilities S-216
job stream processor
utilities S-216

logon menu U-27
primary S-218~ U-35
program preparation
utilities 5-214

secondary S-218~ U-36
summary of S-213
terminal utilities S-215
updating primary option

5-224
creating a new menu 5-224
data management U-38
data set deletion U-32
data sets creation U-29
diagnostic utilities U-43
execute program utilities

U-41
graphics utilities U-40
invoking U-27
invoking a $JOBUTIl procedure
S-229

job stream processor
utilities U-42

menus U-33
minimum partition size

required U-27
operational overview 5-209
primary option menu, $SMMPRIM
5-218, U-35

procedures
communications utilities

S-217
data management utilities

S-215
diagnostic utilities

S-217
execute program utilities

S-216
graphics utilities 5-216
job stream processor
utilities S-216

overv i e1.J S-220
program preparation
utilities S-214

terminal utilities S-215
updating S-225

program function keys U-28
program preparation utilities

U-36
secondary option menus 5-218,

U-36
storage usage 5-211
terminal utilities U-40
text editing utilities U-36
utilities not supported U-46

SET,ATTN TERMCTRl function l-288
set breakpoints and trace ranges,

AT $OEBUG command U-90
set date and time, $T operator

command S-63, U-19
SET Host Communications Facility

TP operand C-97
5ET~lPI TERMCTRl function l-288
set status, SE $HCFUT1 command

C-110

set tape offline, MT $TAPEUT1 com
mand U-324

set time, $T operator command
U-19

SETBU5Y supervisor busy routine
1-48, 1-63

SETCUR, Multiple Terminal Manager
CAll

coding description C-137,
l-378

internals M-9
overview C-117, l-29

5ETEOD subroutine 5-324
SETPAN, Multiple Terminal Manager

CAll
coding description C-134,

L-379
internals M-9
overview C-117, L-29
return codes l-380

setup procedure for $JOBUTIl
U-271

5G special PI group, $IOTE5T com
mand U-267

SHIFTL data manipulation
instruction

coding description l-271
overview l-19

5HIFTR data manipulation
instruction

coding description l-273
overview l-19

5HUTDOWN function C-251, 1-166,
1-181

SI save image store~ $TERMUT2 com
mand U-341

5IGNON/5IGNOFF, Multiple Terminal
Manager C-156

SIGNONFl C-174
single program execution 1-35
single-task program 1-33
single task program S-34
SIXB (see second-level index

block)
5lE sublist element, $EOXASM

format of 1-217
in instruction parsing

($EDXASM) 1-220
instruction description and
format 1-229

used in $IDEF 1-241
software register l-6
software trace table 5-265
sort/merge 5-9
source program compiling 5-71
source program entry and editing
S-66, U-351

source program line continuation
using $EDXASM l-4, U-361

source statements, $EDXASM overlay
generated 1-243

5P spool function~
$RJE2780/$RJE3780 reset type
C-76

5PACE listing control statement
coding description l-275
overview l-28

special control characters 5-46
special PI

bit, 5B $IOTEST command U-267
group, SG $IOTE5T command

U-267
specifications, data conversion
l-146

Common Index 355

SPECPI define special process
interrupt L-189

SPECPIRT instruction
coding description L-276
overview L-39

split screen configuration S-293
SPOOL define spool file,

$RJE2780/$RJE3780 C-76
SQ set prompt made, $COPYUT1

command U-64
SQRT data manipulation

instruction
coding description L-277
overview L-19

SS set program storage parameter,
$DISKUT2 command U-149

ST
display data set status,

$DIUTIL command U-162
save disk or disk volume on
tape, $TAPEUTI command U-330

standard labels, tape
EOFI S-240
EOVI S-239
fields S-238
HDRI S-239
header label S-235
layouts S-236
processing S-236
trailer label S-235
volume label S-235
VOLI S-238

START
IDCB command L-176
PROGRAM statement operand

L-225
start and termination procedure,

$DEBUG U-85
STARTPGM 1-16
statement label L-4
static screen, terminal I/O

accessing example S-297
overview L-48

status, set, SE $HCFUT1 command
C-II0

STATUS data definition statement
coding description L-278
overview L-17

status data set, system Host
Communications Facility C-85

Status record C-258
STIMER timing instruction

coding description L-280
overview L-50, S-32
with PASSTHRU function C-238

storage estimating
application program size

S-344
supervisor size S-333
utility program size S-342

storage management
address relocation translator

1-71, S-42
allocating 1-25
description S-42
desigri feature S-13

storage map, resident loader 1-26
storage map ($SlASM) phase to
phase 1-262

storage resident loader, RLOADER
1-19

storage usage during program load
1-20

store next record ($PDS) S-261
store record ($PDS) S-261

356 SC34-0316

strings, relational statement
L-180

SU
submit (X) function,

$RJE2780/$RJE3780 reset type
C-77

submit job to host, $HCFUT1
command C-l11

SUBMIT
Host Communications Facility,

TP operand C-98
send data stream to host,

$RJE2780/$RJE3780 C-77
submit job to host, $EDIT1

command U-179
submit job to host, $FSEDIT
option U-217

SUBMITX send transparent,
$RJE2780/$RJE3780 C-77

SUBROUT program control statement
coding description .L-281
overview L-32, S-31

subroutines
$IMDATA S-303
$IMDEFN S-301
$IMOPEN S-300
$IMPROT S-302
ALTIAM concatenation S-167
DSOPEN S-322
overview S-31
SETEOD S-324

SUBTRACT data manipulation
instruction

coding description L-283
overvieLoJ L-19
precision table L-284

suggested utility usage U-48
supervisor/emulator

class interrupt vector table
1-10, 1-277

communications vector table
1-11, 1-278, 1-313

control block pointers 1-11
design features S-13
device vector table 1-11,

1-278
emulator command table 1-13,
1-282, 1-301

entry routines 1-47
equate table 1-279, 1-313
exit routines 1-49
features S-13
fixed storage area I-9
functions 1-44

calling 1-60
generation 1-5, S-115
initialization control module,

EDXIN1T, description 1-81
initialization task module,

EDXSTART, description 1-81
interface routines 1-61
introduction 1-5
module names and entry points

S-309
module summary 1-8
overview S-29
PASSTHRU session with C-225
referencing storage locations

in 1-12
service routines I-53
size, estimating S-333
task supervisor work area

1-13, 1-280
utility functions (see
operator commands)

c

(/ -"\

'~-)

o

o

o

o

with the address translator
support 1-72

5UPEXIT supervisor exit routine
1-49, 1-63

support for optional features
L-15

5UPRTURN supervisor exit routine
1-49

surface analysis of tape, $TAPEUT1
utility U-319

5VC supervisor entry routine
1-47, 1-62

5VCABEND supervisor exit routine
1-49

SVCBUF supervisor request buffer
1-48

5VCl supervisor entry routine
1-48

symbol dictionary, $EDXA5M 1-250
symbol table types, $EDXA5M 1-216
symbolic L-10

address (disk,tape) L-10
disk/tape I/O assignments

L-10
diskette L-10
reference to terminals 5-110
sensor I/O addresses L-9
terminal I/O L-10

symbols (EXTRN) L-134
symbols (WXTRN) L-323
syntactical coding rules L-4
syntax checking in instruction
parsing ($EDXASM) 1-221

syntax rules L-4
5Y5GEN (see system generation)
system

alternate logging device
5-46, 5-111

class interrupt vector table
1-10, 1-277

commands (see operator
commands)

common area 1-12
communications vector table

1-11, 1-278, 1-313
control blocks, referencing

1-289
data tables, EDX5Y5, module
description 1-75

device vector table 1-11,
1-278

emulator command table 1-13,
1-282, 1-301

generation
procedure S-115

host/remote C-205
logging device 5-46, 5-110
operational and error
messages U-421

printer S-46, 5-110
program check and error
messages U-427

task supervisor work area
1-13, 1-280

5Y5TEM configuration statement
L-39, 5-86

system configuration statements
5-75

system control blocks 5-42
system reserved labels L-4

TA allocate tape data set,
$TAPEUT1 command U-333

tables, parameter equate L-11
tabs

HTAB $IMAGE command U-252
TAB5ET $EDIT1/N subcommand

U-198
VTAB $IMAGE command U-254

TAB5ET establish tab values
$EDIT1/N editor subcommand U-198

tape
bypass label processing 5-244
control L-74
data set L-40
defining volumes 5-62
definitions for data sets

L-40
end-of-tape (EOT) L-41
I/O instructions L-40
internals 1-97
labels

external 5-233
internal 5-233

load point (BOT) L-40
non-label

layout 5-242
processing 5-243
support 5-241

record L-40
return codes L-77, U-455
standard label

fields 5-238
layout 5-236
processing 5-236
support 5-235

storage capacity 5-59
symbolic addressing L-10
utility, $TAPEUT1 5-233,

U-311
volume L-40

TAPE configuration statement 5-94
tape data set control block 1-99
tape device data block (see TDB)
TAPEINIT, tape initialization mod-
ule description 1-82

tapemark L-74
task

active/ready level table I-50
concepts 1-29
control 1-42
control block (see TCB)
definition and control func-
tions

dispatching I-52
error exit facility

check and trap handling
5-268

linkage conventions 5-269
execution states 1-43, 5-39
internals 1-42
multiple-task program 1-33,

5-34
overview L-42, 5-29
priority (see priority, task
execution)

single-task program 1-33,
5-34

states S-39
status display, WHERE $DEBUG

command U-102
structure 5-29

Common Index 357

supervisor 1-42
supervisor address translator

support module 1-76
supervisor functions 1-44
supervisor work area 1-13,

1-280
switching I-51, S-30
synchronization and control
I-54, S-3"0

task code words L-8
TASK task control statement

coding description L-285
overview L-42, S-31

TASKSAVE supervisor service
routine I-54

TCB task control block 1-32,
1-43, 1-49, I-56, 1-314

TCBEQU L-13
TO

display line and data ($POS)
S-258

display time and date, $OICOMP
subcommand U-124

test display, $DICOMP command
U-I08

TOB, tape device data block
description 1-97
equate listing 1-316

TEB terminal environment block
C-128, M-13

Tektronix C-6
devices supported S-14, S-45
support for digital I/O S-312

teleprocessing (see TP)
teletypewriter adapter C-7, C-21
TERMCTRL terminal I/O instruction

coding description L-288
overview L-44
return codes L-301

TERMERR L-44
terminal

#7850 teletypewriter adapter
C-21

ACCA support C-7, L-295
ASCII C-7
assignment list, LA $TERMUTI

command U-336
attention handling L-47
attention keys L-47
code types C-303
configuration utility,

$TERMUTI U-334
connected via digital I/O

S-312
control block (see CCB)
data representation L-46
definition and control
functions S-47

device configurations C-8
EDXTIO/EOXTIOU module
description 1-78

environment block (see TEB)
error handling L-44
forms control L-46
forms interpretation for
display screens L-46

functions
data formatting C-16
definition C-16
interrupt processing C-17

hardware jumpers C-18
I/O L-46

attention handling L-47
data representation L-45
error handling L-44

358 SC34-0316

forms control L-45
prompting and advance

input L-46
screen management L-48

I/O internal design 1-105
I/O support layer 3 1-112
input L-46
keyboard and ATTNLIST tasks

L-47
message sending utility,

$TERMUT3 U-344
new I/O terminal support

1-117
operations C-14
operator signals L-49
output L-46
output line buffering L-46
program function keys L-47
prompting and advance input

L-46
return codes C-20, L-219,

L-255, U-458
roll screens L-48
sample terminal support

program C-26
screen management L-48
server, Multiple Terminal
Manager C-119, M-7

session manager (see session
manager)

special considerations for
attachments of devices

via #1610 or #2091 with
#2092 adapters C-17

via #2095 with #2096
adapters C-21

special control characters
S-46

static screens L-48
supported devices and
features C-6

terminal I/O L-47
terminology for supported
terminals C-7

transmission protocol C-31
utilities (session manager)
S-215, U-40

virtual I/O 1-115
TERMINAL configuration statement

defaults S-105
definition S-96
overview S-48

TERMINAL volume, Multiple Terminal
Manager C-120, C-171

terminate

test

logging, $LOG utility U-292
Remote Management Utility

C-251

BSC lines, $BSCUT2 utility
C-64

generated report or graphics
profile member U-I08

label types, $TAPEUT1 utility
U-319

process interrupt for
occurrence of event, $IOTEST
U-267

TEXI data definition statement
coding description L-305
overview L-17

text editing utilities
edit dataset subroutine exam
ples 1-326

full screen-editor $FSEOIT

C
·~~

, ~ ~ I

c

o

o

o

U-209
line editors, $EDIT1/H U-169
overview S-66
work data set, format of

1-321
text wrapping, WRAP function

C-254
time/date

diaplay, $W operator command
U-25

set, $T operator command U-19
set, automatic initialization
facility S-130

time of day
GETTIME instruction L-167

TIMEDATE Host Communications
Facility, TP operand C-100

TIMER configuration statement
S-33, S-112

timer control L-50
timer module descriptions

(EDXTIMER, EDXTIMR2) 1-80
timing instructions L-50, S-32
TITLE listing control statement

coding description L-308
overview L-28

TONE TERMCTRL function L-288
TOP repostiton line pointer,

$EDIT1/N editor subcommand U-200
TP host communication instruction
description

coding description C-90
internals 1-153
subcommand operations 1-157

TPCOM host communications support
module description 1-81

trace printing routine for BSC,
$BSCUT1 C-62, S-65

trace ranges and breakpoints
setting, AT $DEBUG command U-90

trace routine for BSC, $BSCTRCE
C-61

trace table, software S-265
transaction program, Multiple

Terminal Manager
functions L-28
Multiple Terminal Manager

C-121
transfer data set to host

SEND function C-247
WR $HCFUTl command C-112
WRITE $EDIT1 command U-180
WRITE $FSEDIT option U-216

transfer rates for data, Host
Communications Facility C-84

transient program loader 1-19
transmission codes S-98
transmission protocol, host

communications 1-156
transmitted data, length of, host

communications 1-159
TRAP DUMP force trap dump, STRAP
attention command U-349

TRAP END end $TRAP use, $TRAP
attention command U-349

TRAPOFF deactivate error trap,
$TRAP attention command U-349

TRAPON activate error trap, $TRAP
attention command U-349

UN unload indexed file, $IAMUTI
command U-246

UNBlINK TERMCTRL function L-288
und~fined length records, tape

S-245
UNLOCK TERMCTRl function l-288
unprotected field S-307, U-253
UP move line pointer, $EDIT1/N
editor subcommand U-201

update utility
$UPDATE convert object program
to disk U-408

$UPDATEH convert host object
program to disk U-418

updating a menu for the session
manager S-224

user defined data member ($PDS)
S 252

user exit routine l-310
requires Macro Assembler 5-71

us~r initialization modules 1-17
USeR program control instruction

coding description L-310
overview l-32

ut 111 ties U-47
B5C communications C-61
invoking U-2
listed by type 5-64, U-3
overview 5-5

utilities not supported by session
manager menu U-46

utility program size S-342
utility usage U-48

V verify, $IHITD5K command U-260
VA

display, variable, $DICOMP
subcommand U-125

display variable ($PD5) 5-254
variable length record, Host

Communications Facility C-84
variable length rqcords, tape

5-244
variable names L-4
vary disk, diskette, or tape
offline, $VARYOFF U-20

vary disk, diskette, or tape
online, $VARYOH U-22

v,ector
addition L-19, l-54
data manipulation l-19

vector addition (ADDV)
coding description l-54
overview L-19

verify
disk or diskette data set, V

$IHITD5K U-260
tape executing correctly, EX

$TAPEUT1 command U-319
tape surface free of defects,

EX $TAPEUT1 command U-319
verify and initialize disk or
diskette library, $lNITD5K U-256

verify identification
host system C-223
remote system C-223

Common Index 359

VERIFY verify changes~ $EOIT1/N
editor subcommand U-202

vertical tabs~ defining U-254
VI list volume information,

$IOTEST command U-270
virtual terminal communications

accessing the virtual termi
nal S-281

creating a virtual channel
S-280

establishing the connection
S-280

inter-program dialogue S-282
internals 1-115
loading from a virtual
terminal S-281

Remote Management Utility
requirements C-281

volume
definitions (disk/diskette)

L-22, S-52
dump restore utility,

$MOVEVOL U-294
labels S-60

VTAB define vertical tab setting~
$IMAGE command U-254

WAIT program sequencing statement
coding description L-313
overview L-42 , S-31
supervisor function 1-45~
I-58

wait state, put program in, WS
$IOTEST command U-264

waiting, task execution state
1-43

WE copy to basic exchange diskette
data set, $COPY command U-63

WHERE display status of all tasks,
$OEBUG command U-102

WHERES task control function
coding description L-315
overview L-42, S-287
return codes L-316

WI wri te non-tr'ansparent, $BSCUT2
command C-69

WIX write transparent, $BSCUT2
command C-69

word boundary requirement
DO L-34
IF L-34
PROGRAM L-225

work data set
$EDXASM 1-249
$L1NK U-400
$SlASM 1-258

work files, $SlASM, how used
1-258

WR write a data set to host,
$HCFUT1 command C-112

WRAP function C-254~ 1-166, 1-176
WRITE

disk/diskette I/O instruction
coding description L-317
overview L-22
return codes L-320, U-455

Host Communications Facility,
TP operand C-I01

IDCB command L-175
Multiple Terminal Manager

360 SC34-0316

CALL
coding description C-133,

L-381
internals M-9
overview C-118, L-29

save work data set
$EDITI command U-180
$EDIT1N command U-181
$FSEOIT primary option

U-216
tape I/O instruction

coding description L-317
overview L-22
return codes L-320, U-456

write data set to host, WR $HCFUTI
command C-112

write operations, HCF 1-156
WRITE1 IDCB command L-175
WS put program in wait state,

$IOTEST command U-264
WTM (write tape mark) L-75
WXTRN program module sectioning

statement
coding description L-323
overview L-33

x-type format L-154
XI external sync 01, $IOTEST

command U-266
XO external sync DO, $IOTEST

command U-266
XYPLOT graphics instruction

coding description L-324
overview L-26

YTPLOT graphics instruction
coding descrition L-325
overview L-26

ZCOR, sensor I/O L-189

Numeric Subjects

1560 integrated digital
input/output non-isolated fea
ture C-6

different device
configurations C-8

use with different terminals
C-7

1610 asynchronous communications
single l~ne controller C-6

considerations for attachment
of devices C-17

different device
configurations C-8

for interprocessor
communications C-29

to a single line controller
S-99

use with different terminals
C-7

2091 asynchronous communications
eight line controller C-6, S-99

considerations for attachment
of devices C-17

different device
configurations C-8

use with different terminals

o

o

o

C-7
2092 asynchronous communications
four line adapter C-6

considerations for attachment
of devices C-17

different device
configurations C-8

to attach ACCA terminal S-99
use with different terminals

C-7
2095 feature programmable eight
line controller C-6

considerations for attachment
of devices C-21

different device
configurations C-8

use with different terminals
C-7

2096 feature programmable four
line adapter C-6

considerations for attachment
of devices C-21

different device
configurations C-8

use with different terminals
C-7

2741 Communications Terminal
supported S-45
TERMINAL statement example

5-106
3101 Display Terminal

attribute character C-122
block mode considerations

C-25
character mode considerations

C-22
interface with Multiple
Terminal Manager C-121, L-29

TERMINAL configuration
statement examples 5-108

3585 4979 display station
attachment C-6, 5-97

4952 Processor
partitions on 5-42
timer feature installed on

5-32
4953 Processor

partitions on S-42
timer feature installed on

5-32
4955 Processor

partitions on S-42
timer feature installed on

5-32
4962 Disk 5torage Unit

storage capacity 5-58
supported by Indexed Access

Method 5-146
4963 Disk 5ubsystem

storage capacity S-58
supported by Indexed Access

Method 5-146
4964 Diskette 5torage Unit

part of minimum system config
uration 5-22

required for program
preparation 5-22

supported by Indexed Access
Method 5-146

4966 Diskette Magazine Unit
part of minimum system config
uration 5-22

required for program
preparation S-22

supported by Indexed Access
Method S-146

4969 Magnetic Tape Subsystem
5-233

4973 Line Printer
defined in TERMINAL configura
tion statement 5-96

end of forms S-307
TERMINAL statement example
5-105

4974 Matrix Printer
defined in TERMINAL configura
tion statement 5-96

end of forms 5-307
restore to standard character
set, RE $TERMUT2 U-339

TERMINAL statement example
5-105

4978 Display Station
defined in TERMINAL configura
tion statement 5-96

part of minimum system
configuration S-22

reading modified data S-307
required for program
preparation 5-22

TERMINAL statement example
5-105

4979 Display Station
defined in TERMINAL configura
tion statement 5-96

part of minimum system
configuration 5-22

required for program
preparation 5-23

TERMINAL statement example
5-105

4982 sensor I/O unit S-84
5230 Data Collection Interactive

5-11
5620 4974 matrix printer
attachment C-6

defined in TERMINAL statement
5-97

different device
configurations C-8

5630 4973 line printer attachment
C-6

defined in TERMINAL statement
5-97

5719-AM3 (see Indexed Access
Method)

5719-A5A (see Macro Assembler)
5719-CB3 (see COBOL)
5719-CB4 (see COBOL)
5719-F02 (see FORTRAN IV)
5719-LM3 (see
Mathematical/Functional Subrou
tine Library)

5719-LM5 (see Macro Library)
5719-M51 (see Multiple Terminal

Manager)
5719-5M2 (see Sort/Merge)
5719-UT3 (see Utilities)
5719-UT4 (see Utilities)
5719-X51 (see Basic Supervisor and

Emulator)
5719-XX2 (see Program Preparation
Facility)

5740-LM2 (see Macro Library/Host)
5799-TDE (see Data Collection
Interactive)

7850 teletypewriter adapter C-6,
C-21

Common Index 361

o

c
362 SC34-0316

o

(')

S-
o
TI
0
a:
»
0"
::s

~)
to

C
::s
CD

o

READER'S COMMENT FORM

IBM Series/1 Event Driven Executive Communications
and Terminal Applications Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I BM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

SC34-0316-2

Reader's Comment Form

Fold and tape

Fold and tape

~--%§ - - ---- - - ---==-=":'=
®

Please Do Not Staple

BUSINESS REPLY MAl L
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC34-0316-2
Printed in U.S.A.

o

o

(")

s
0 ..,
."
0
0:
»

~)
5"
:l
to

C
:l
(l)

o

READER'S COMMENT FORM

IBM Series!1 Event Driven Executive Communications
and Terminal Applications Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in prepari ng updates to the publ ications. I BM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publ ications; this only delays the response. I nstead, direct your
inqu iries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an I BM office or representative will be happy to forward your comments.)

SC34-0316-2

Reader's Comment Form

Fold and tape

Fold and tape

--- ------ - ---- ---- - ---- - - -------------
®

Please Do Not Staple

III

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Pu bl ications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC34-031 6-2
Printed in U.S.A.

n
S

I

-I

c

o

o

(")

s
0 ..,

" 0
a:
»

()
0"
::l
to

C
::l
(I)

o

READER'S COMMENT FORM

IBM Series!1 Event Driven Executive Communications
and Terminal Applications Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. IBM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your IBM representative or the IBM branch office serving
your locality.

Corrections or c~arifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

SC34-0316-2

Reader's Comment Form

Fold and tape

Fold and tape

®

Please Do Not Staple

II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WI LL BE PAl D BY ADDRESSEE

I BM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC34-0316-2
Printed in U.S.A.

(")

S

c

o

()

o

(")

S
o ...
" o
c::
»
0"
~
to

c:
~
CD

READER'S COMMENT FORM

IBM Series/1 Event Driven Executive Communications
and Terminal Applications Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I BM may
use and distribute any of the information you supply in any way it believes appro

priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publ ications; this only delays the response. I nstead, direct your

inquiries or requests to your I BM representative or the I BM branch office serving
your local ity.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

SC34-0316-2

Reader's Comment Form

Fold and tape

Fold and tape

=== -=-:. ==. :-- ---= =-:. === ----------
®

Please Do Not Staple

IIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IFMAILED

IN THE
UNITED STATES

Fold and tape

SC34-031 6-2
Printed in U.S.A.

()

S
(.'~i .~j/

c

--- ------ ----- ---- - ---- - - ----------_ .-
<l>

SC34-0316-2
Printed in U.S.A.

• •

