
--------- ----- ---- - ---- - - ----------_ .- Series/1

. 1
SC34-0639-0

Event Driven Executive
Problem Determination Guide
Version 5.0

library Guide and
Common Index

SC34·0645

language
Reference

SC34-0643

Operation Guide

SC34-0642

Problem
Determination
Guide

SC34·0639

Installation and
System Generation
Guide

SC34-0646

Communications
Guide

SC34·0638

Event Driven
Language
Programming Guide

SC34·0637

Customization
Guide

SC34·0635

Operator Commands
and
Utilities Reference

SC34·0644

Messages and
Codes

SC34-0636

Reference
Cards

SBOF·1625

Internal
Design

LY34·0354

--------- - ------- - ---- - - ----------_.-

SC34-0639-0

o

o

Event Driven Executive
Problem Determination Guide
Version 5.0

Problem
Determination
Guide

SC34·0639

Series/1

First Edition (December 1984)

Use this publication only for the purpose stated in the Preface.

Changes are made periodically to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your
country. Such references or information mustnot be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers' comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, 3406, P. O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1984

o

o

o

o

Summary of Changes for Version 5.0

The following additions and changes have been made to this document:

•

A new section has been added to Chapter 4, Analyzing and Isolating Run Loops, which shows
you how to examine an unmapped storage area in your program for the cause of a run loop.

A new section has been added to Chapter 6, Analyzing and Isolating a Program Check, which
shows you how to examine an unmapped storage area in your program for the cause of a
system or application program check.

Chapter 7, Analyzing a Failure Using a Storage Dump has been updated to include a
description of how to interpret the unmapped storage information provided in the storage
dump.

Chapter 9, Recording Device I/O Errors and Program Check Information includes a
description of how to record and print the contents of any program check messages that
may occur on your system.

• A new appendix (Appendix B) has been added to the book which describes the hardware
requirements and procedures for using the Remote Support Link feature of the Event
Driven Executive. This feature enables an IBM support center representative to get direct
access to your Series/l system through a remote terminal.

Summary of Changes for Version 5.0 iii

I'

O-
'~'

c
iv SC34-0639

o

C,,"'" \'\

,I

o

Audience

About This Book

This book is a guide to assist you in determining the causes of problems you encounter while
using the system. It explains how to use many of the diagnostic tools available to help identify
the problem. Use this book when the Messages and Codes cannot point you to the source of the
problem or the corrective action to take.

This book is intended for anyone who uses the Series/land encounters a hardware or software
problem. The Operation Guide describes how you can recognize symptoms of the problems
discussed in this book.

How This Book Is Organized

This book contains 9 chapters and 3 appendixes:

• Chapter 1. Some Things You Should Know About Problem Determination overviews the
process of problem determination.

Chapter 2. Determining the Problem Type presents some common problem symptoms that can
help you determine the type of problem you encounter.

• Chapter 3. Analyzing and Isolating an IPL Problem describes some procedures that can help
identify the cause of an IPL failure.

About This Book v

About This Book
How This Book Is Organized (continued)

• Chapter 4. Analyzing and Isolating Run Loops explains how to pinpoint the cause of run loop
in an application program.

Chapter 5. Analyzing and Isolating a Wait State describes how to determine the cause of a
wait state during normal system operation.

Chapter 6. Analyzing and Isolating a Program Check discusses how to isolate the cause of a
system or application program check.

Chapter 7. Analyzing a Failure Using a Storage Dump describes how to to read a stand-alone
or $TRAP storage dump to isolate failures.

Chapter 8. Tracing Exception Information explains how you can isolate the cause of
exceptions by analyzing the software trace table CIRCBUFF.

Chapter 9. Recording Device I/O Errors and Program Check Information discusses the use of
the $LOG utility to record device I/O errors and program check messages.

Appendix A. How to Use the Programmer Console describes the functions of the optional
Series/l programmer console and how you can use it during problem analysis.

Appendix B. Allowing IBM Access to Your System describes the hardware requirements and
procedures for using the Remote Support Link feature of the Event Driven Executive. This
feature enables an IBM support center representative to get direct access to your Series/l
system through a remote terminal.

Appendix C. Conversion Table contains a conversion table for hexadecimal, binary, EBDCIC,
and ASCII equivalents of decimal values.

Aids in Using This Book

Several aids are provided to assist you in using this book:

• A Glossary that defines terms and acronyms used in this book and in other EDX library
publications.

• An Index of topics covered in this book.

A Guide to the Library

vi SC34-0639

Refer to the Library Guide and Common .Index for information on the design and structure of the
Event Driven Executive library and for a bibliography of related publications.

o

o

o

o

o

Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find with this book by completing and
mailing the Reader's Comment Form provided in the back of the book.

If you have a problem with the Series/l Event Driven Executive services, you should fill out an
authorized program analysis report (APAR) as described in the IBM Series/l Software Service
Guide, GC34-0099.

About This Book vii

o

viii SC34-0639

o

o

Contents

Chapter 1. Some Things You Should Know About Problem Determination PD-I

Chapter 2. Determining the Problem Type PD-3
Some Hints to Determine the Possible Problem Type PD-3

Can You Operate the System After Pressing the Load Button? PD-3
Is the Run Light On and Solidly Lit? PD-4
Is the System or a Program Idle While You Expect Activity? PD-4
Did the System Issue a Program Check Message? PD-4

Chapter 3. Analyzing and Isolating an IPL Problem PD-5
What You Should Check First PD-5
How to Recognize a Problem with the IPL Device PD-6

How to Correct the IPL Text PD-7
How to Reload the Supervisor PD-7

Determining the Failure in a Tailored Supervisor PD-8
Detecting an IPL Stop Code Error PD-9
Isolating a Failing Terminal Using the Terminal Control Block PD-I0
Analyzing the INITT ASK Task Control Block PD-ll

Chapter 4. Analyzing and Isolating Run Loops PD-I7
How to Identify a Program in a Run Loop PD-18

Using the Programmer Console to Identify a Looping Program PD-18
Using $C to Identify a Looping Program PD-19

Using $DEBUG to Isolate a Run Loop PD-20
Determining the Starting and Ending Points of the Loop PD-21

Some Common Causes of Run Loops PD-23
Using the Compiler Listing to Locate the Loop PD-23
Examining an Unmapped Storage Area for the Cause of a Loop PD-26
How to Detect Loops Caused by Device Interrupts PD-32

Contents ix

Contents

x SC34-0639

Chapter 5. Analyzing and Isolating a Wait State PD-33
How to Find the Address of the Waiting Instruction Using $DEBUG PD-34
Analyzing the Instruction that Caused the Wait State PD-35

Analyzing an ENQ Instruction PD-35
Common Causes of a Program Wait Using QCBs PD-38
Analyzing an ENQT Instruction PD-39
Analyzing aWAIT Instruction PD-40
Common Causes of a Program Wait Using ECBs PD-41
Other Possible Causes of a Wait State PD-42

Chapter 6. Analyzing and Isolating a Program Check PD-43
How to Interpret the Program Check Message PD-44

Interpreting the Standard Program Check Message PD-44
How to Interpret the Processor Status Word PD-47
Interpreting the Processor Status Word Bits PD-47
Interpreting the Program Check Message from $$EDXIT PD-50

How to Analyze an Application Program Check PD-54
Examining an Unmapped Storage Area for the Cause of a Program Check

Some Common Causes of Application Program Checks PD-66
How to Analyze a System Program Check PD-67

Analyzing the Program Causing the System Program Check PD-67

Chapter 7. Analyzing a Failure Using a Storage Dump PD-71
Interpreting the Dump PD-72

Hardware Level and Register Contents PD-72
Floating-Point Registers and Exception Information PD-76
Segmentation Registers PD-78
Storage Map PD-80
Level Table and TCB Ready Chain PD-82
Terminal Device Information PD-83
Disk, Diskette, and Tape Device Information PD-84
EXIO, BSC, and Timer Information PD-86
Storage Partition Information PD-87
Unmapped Storage Information PD-88

Analyzing a Wait State PD-94
Analyzing a Program Check PD-I00
Analyzing a Run Loop PD-I05

Chapter 8. Tracing Exception Information PD-I07
Dispiaying the Software Trace Table PD-I08
Software Trace Table Format PD-II0

Control Information Format PD-II0
Exception Entry Format PD-112

Finding the Program Load Point Address PD-115

PD-60

Chapter 9. Recording Device 110 Errors and Program Check Information PD-117
Allocating the Log Data Set PD-118
Starting and Controlling Error Logging PD-118

o

o

o

c

o

Printing or Displaying the Log Information PD-120
Interpreting the Printed Output PD-122

Appendix A. How to Use the Programmer Console PD-127
Reading the Console Indicator Lights PD-128
Displaying Main Storage Locations PD-130
Storing Data into Main Storage PD-131
Displaying Register Contents PD-132
Storing Data into Registers PD-132
Stopping at a Storage Address PD-133
Stopping When an Error Occurs PD-133
Executing One Instruction at a Time PD-134

Appendix B. Allowing IBM Access to Your System PD-135
Hardware Requirements PD-136
Authorizing the Link PD-136
Disconnecting the Link PD-138

Appendix C. Conversion Table PD-139

Glossary of Terms and Abbreviations PD-145

Index PD-155

Contents xi

0_","'''·'' , I,j

o

o
xii SC34-0639

o

I.
2.
3.
4.

C
5.
6.
7.
8.
9.

10.
II.
12.
13.
14.
15.
16.
17.
18.
19.
20.
2l.
22.
23.
24.
25.
26.
27.
28.
29.
30.
3l.
32.
33.
34.
35.
36.

0

Sample INITT ASK Register Contents PD-15
Sample Program Compiler Listing PD-20
Sample Trace Addresses from $DEBUG PD-22
Sample Program Compiler Listing PD-27
Sample Listing from $DEBUG PD-30
Sample Processor Status Word Bit Settings PD-47
Processor Status Word Bit Assignments PD-48
Sample Listing from $DEBUG PD-64
Hardware Level and Register Contents PD-72
Floating-point Registers and Exception Information PD-76
Segmentation Registers of a Four-partition System PD-78
Segmentation Registers with Supervisor Mapped Across Partitions PD-79
Storage Map PD-80
Level Table and Task Ready Chain PD-82
Terminal Device Information PD-83
Disk, Diskette, and Tape Device Information PD-84
EXIO, BSC, and Timer Device Information PD-86
Sample Contents of a Partition PD-87
Unmapped Storage Pointers PD-88
Sample Storage Control Block Listing PD-90
Sample Segmentation Register Values PD-93
Sample Storage Map for a Wait State PD-95
Sample Storage Dump for a Wait State PD-97
Compiler Listing of Wait State Program PD-98
Register Contents from Program Check PD-100
Storage Map and Level Table for Program Check PD-101
Compiler Listing of Program Check Program PD-103
Sample Software Trace Table Entries PD-109
Control Information Example PD-110
Example of Allocating a Log Data Set PD-118
Example of Starting Error Logging PD-119
Example of Printing the Log Data Set PD-121
Example of Log Entries for I/O devices PD-122
Example of Program Check Log Entries PD-125
Indicator Lights - Example 1 PD-128
Indicator Lights - Example 2 PD-128

Figures

Figures xiii

Figures

O··~.'''·', 'I
1 ,

37. Indicator Lights - Example 3 PD-129

c

o
xiv SC34-0639

o

o

Chapter 1. Some Things You Should Know
About Problem Determination

Problem determination involves analyzing a software or hardware error. The system can
indicate in various ways that a problem exists. The two most common ways are by displaying
messages on a terminal or by returning a return code to your application program. By using the
Messages and Codes manual before you use this book, you may be able to determine the type of
problem you have and the corrective action to take. If, however, you cannot determine the type
of problem you have or how to correct it, use this book.

This book can help you isolate the cause of an error and indicate what actions you need to take
to correct the error.

The cause of an error may not always be immediately apparent. An error may occur in an
IBM -supplied software component, a hardware unit, or in an application program. A software
component refers to programs or program modules such as $EDXASM, $SIASM, $EDXLINK,
and the rest of the software you install on your Series/I. A hardware unit refers to a particular
device attached to your Series/I. Application programs are programs you write.

Some problems you encounter may require you to place a service call. However, by using this
book before you place a call for service:

• You might be able to correct the problem and continue operations.

• You might be able to circumvent the problem while you arrange for servicing.

Chapter 1. Some Things You Should Know About Problem Determination PD-l

Some Things You Should Know About Problem
Determination

PD-2 SC34-0639

You may find that the problem is caused by equipment or programming other than that
supplied by IBM.

The information you gather can reduce the time it takes to correct the problem if you do call
;f for service.

EDX provides various aids, such as utilities and operator commands, that help you to pinpoint
the source of a problem. The programmer console, an optional Series/l hardware feature,
enables you to perform more extensive analysis.

Some of the topics presented in this book show the use of the programmer console in analyzing
problems. For more information on using this feature, see Appendix A, "How to Use the
Programmer Console" on page PD-127.

To start the problem investigation, turn to Chapter 2, "Determining the Problem Type" on page
PD-3.

o

o

o

c

o

Chapter 2. Determining the Problem Type

Before you begin analyzing a problem, you must determine the type of problem you have. Some
problem types you encounter may be very apparent while others may not be so apparent. The
following section presents some problem indicators and symptoms to help you determine the
problem type.

Some Hints to Detennine the Possible Problem Type

To help you determine your problem type, review the following problem indicators and
symptoms. After reviewing these items and finding the indicator or symptom that best describes
your problem, turn to the chapter indicated. The chapter you are referred to will help you to
further analyze and isolate the problem.

Can You Operate the System After Pressing the Load Button?

When you press the Load button on your Series/I, the system performs an initial program load
(IPL). When the IPL process ends, the system is ready for use. If you cannot use the system
after attempting an IPL, see Chapter 3, "Analyzing and Isolating an IPL Problem" on page
PD-S.

Chapter 2. Determining the Problem Type PD-3

Determining the Problem Type
Some Hints to Detennine the Possible Problem Type (continued)

Is the Run Light On and Solidly Lit?

When the Series/1 performs an operation, the Run light is on. Typically, the Run light flickers
on and off during the operation. However, if you observe that the Run light remains on with a
steady glow, the system or your program may be in a loop. If this is your problem symptom,
Chapter 4, "Analyzing and Isolating Run Loops" on page PD-17 will help you isolate this
problem type.

Is the System or a Program Idle While You Expect Activity?

When the Series/1 is not performing any operation or servicing an interrupt, the Wait light is on.
The Wait light indicates the system is inactive. If, however, you notice the Wait light on solidly
while programs should be active, the system or a program is probably in a wait state. Another
symptom indicating a wait state is that you do not receive the" greater than" symbol (» after
you press the attention key on your terminal. If your system or program has these symptoms,
see Chapter 5, "Analyzing and Isolating a Wait State" on page PD-33.

Did the System Issue a Program Check Message?

PD-4 SC34-0639

When the system encounters an abnormal condition, it issues a program check message. Two
kinds of program checks can occur: a system program check or an application program check.
The system displays the program check message on the $SYSLOG device. The system also
records the program check message in a log data set if $LOG is active.

If you observe a program check message, Chapter 6, "Analyzing and Isolating a Program
Check" on page PD-43 can help you isolate the problem.

(~ ')

~ .. ~'

(",
I "
\~

o

o

o

o

Chapter 3. Analyzing and Isolating an IPL
Problem

If your system fails to IPL correctly, there are a number of possible causes. This chapter
presents some problem symptoms and procedures that can help you identify the failing area and
provide help in solving the problem.

What You Should Check First

Before you begin troubleshooting the problem, review the items in the following list. By
ensuring that these items are correct, you may be able to pinpoint the problem immediately:

Is the power switch in the ON position for all devices?

Is the IPL Source switch in the correct position for the device from which you are trying to
IPL?

• For diskette IPL, is the IPLable diskette inserted correctly?

For diskette IPL, is the door on the diskette device closed?

• If this is a new installation (EDX is not installed) and you are trying to IPL the starter
system, verify with your service representative that the devices are at the addresses
supported in the starter system. Refer to the Program Information Department (PID)
directory or the Installation and System Generation Guide for the device addresses.

Chapter 3. Analyzing and Isolating an IPL Problem PD-S

Analyzing and Isolating an I PL Problem
What You Should Check First (continued)

• If EDX is already installed and the supervisor previously IPLed, does a backup supervisor (or
starter system) IPL from the alternate IPL device? If the alternate device IPLs, go to the
section "How to Recognize a Problem with the IPL Device."

If the starter system IPLs but your tailored supervisor does not IPL, go to the section
"Determining the Failure in a Tailored Supervisor" on page PD-8.

If the previous items do not point out the problem, the problem may lie in the IPL device, IPL
text, the supervisor, or other attached devices. The following sections describe how to isolate
problems in these three areas.

How to Recognize a Problem with the IPL Device

PD-6 SC34-0639

If the Load light remains on and you cannot IPL from the primary and the alternate IPL device
and you have ensured that all the items in the section "What You Should Check First" on page
PD-S are correct, call your service representative for corrective action. This symptom indicates
that the hardware could not read the IPL text (bootstrap program) from the IPL device. If you
have a programmer console, you may also notice that the console lights indicate either X'EO' or
X'ES'. The value X'EO' indicates that there is a hardware problem with the IPL device. The
value X'ES' may indicate either a hardware or software problem.

If you can IPL from one IPL device, the following procedures can help you determine if the
failure is due to:

No IPL text written when the disk or diskette was initialized

Def ective IPL text

IPL text points to an invalid supervisor

Hardware problem on that IPL device.

o

o

o

o

How to Recognize a Problem with the IPL Device (continued)

How to Correct the IPL Text

Use the following procedure to correct the IPL text:

1. Set the IPL Source switch for an IPL from the device from which you can IPL.

2. Press the Load button to IPL the system.

3. Load $INITDSK and rewrite the IPL text (II command) to the failing IPL device.

4. Set the IPL Source switch to IPL from the failing IPL device.

5. Press the Load button to IPL the system.

If this procedure does not correct the IPL problem, the problem may be with the supervisor on
the failing IPL device or it may be a hardware problem. By reloading the supervisor, you may
correct the problem. How to do this is described next.

How to Reload the Supervisor

Use the following procedure to reload the supervisor:

1. Set the IPL Source switch for an IPL from the device from which you can IPL.

2. Press the Load button to IPL the system.

3. Load $COPYUTI and copy (CM command) the IPLabie supervisor from the current IPL
device to the failing IPL device. Copy also $LOADER and any initialization modules you
require.

4. Load $INITDSK and rewrite the IPL text (II command) to point to the supervisor you
copied to the failing IPL device.

5. Set the IPL Source switch to IPL from the failing IPL device.

6. Press the Load button to IPL the system.

If this procedure does not correct the IPL problem, you have a hardware problem with that IPL
device. Call your service representative for corrective action.

Chapter 3. Analyzing and Isolating an IPL Problem PD-7

Analyzing and Isolating an IPL Problem
Determining the Failure in a Tailored Supervisor

PD-8 SC34-0639

Review the following items before you begin analyzing the failure:

Did you receive a -1 completion code (successful) from the system generation assembly and
link-edit?

• Did you include all the modules you need (on the INCLUDE statements) to support the
attached devices?

Is $EDXNUC the first seven characters of the $XPSLINK output?

• Does this tailored supervisor fail to IPL, although it did IPL previously? If it did IPL
previously, go to the section "How to Recognize a Problem with the IPL Device" on page
PD-6.

• If this tailored supervisor never IPLed, the following sections may assist you in isolating the
failure. In order to use this information, however, you must have a programmer console or
be able to use the $D operator command (in partition 1) after the IPL failure.

If you do not have a programmer console but can use the $D operator command (in partition 1)
after the IPL failure, go to the section "Analyzing the INITTASK Task Control Block" on page
PD-ll.

If you have a programmer console, begin with the section "Detecting an IPL Stop Code Error"
on page PD-9.

If you do not have a programmer console 'and cannot use $D after the failure, do the following:

1. IPL the starter system.

2. Load $IOTEST and verify all hardware configured and their addresses (LD command).

3. Review the system generation listing and ensure that all devices are defined correctly and
that all modules required to support those devices are included.

1 'I 0"··'

o

o

o

o

Detennining the Failure in a Tailored Supervisor (continued)

Detecting an I PL Stop Code Error

If the system encounters an error during terminal initialization or it encounters an error within
the cross-partition supervisor you are trying to IPL, the error could cause the system to enter a
run loop or a wait state. For example, the error could be caused by a defective attachment card
or perhaps a missing random access memory load module. When such errors exist, the system
issues a stop code. The stop code can help you identify which area is failing.

This section explains how to determine if the failure is due to a stop code error. You will need a
programmer console to perform this step.

To determine if the IPL failed because of a stop code, follow these procedures:

1. Set the IPL Source switch to point to the device from which you will IPL.

2. Set the Mode switch to Diagnostic mode position.

3. If the IPL is from diskette, insert the IPL diskette and close the door on the diskette device.

4. Press the Load button.

If the system encounters a stop code condition, the processor will stop. The Stop light also
comes on.

5. Press the Op Reg button on the programmer console.

After pressing the Op Reg button, the stop code is displayed in the indicator lights. The stop
code is in the form X'64nn'. The nn portion indicates the error condition. Refer to the
Messages and Codes manual for an explanation of the stop code and the corrective action.

The next section presents another method you can use to determine if a terminal is the cause of
the failure.

Chapter 3. Analyzing and Isolating an IPL Problem PD-9

Analyzing and Isolating an IPL Problem
Detennining the Failure in a Tailored Supervisor (continued)

Isolating a Failing Terminal Using the Terminal Control Block

PD-IO SC34-0639

This procedure enables you to determine if the system fails to initialize a terminal. The terminal
control block (CCB) may point to the failing terminal. To help you detect if a terminal is
causing the problem, you need the system generation link map listing for your supervisor. Look
in the link map and find the address of the entry NEXTERM in module TERMINIT.

Using the programmer console, do the following:

1. Press the Reset key.

2. Press the Stop On Address key.

3. Enter the address of NEXTERM.

4. Press the Store key.

5. IPL the system. Each time the processor stops, the terminal whose terminal control block
(CCB) address is in register 3 (R3) has been successfully initialized.

If the processor does not stop, the failure occurred prior to terminal initialization. If this is
the case, go to the section "Analyzing the INITTASK Task Control Block" on page PD-ll.

6. When the processor stops, press R3 on the programmer console to determine which terminal
was initialized. The address shown in R3 will match a CCB address in the section
$EDXDEF of the link map. The name of the terminal also appears beside the address.

If R3 does not contain a CCB address and you have overlay support, press Start. When the
processor stops, press R3 again. Repeat this step until R3 contains a CCB address.

7. Press Start after checking off the CCB address in your link map. The system initializes each
terminal in the order the terminals are specified in $EDXDEFS data set during system
generation.

8. If the system then enters a run loop or a wait state, the terminal whose address follows the
last CCB that you checked off is probably the cause of the problem.

Ensure that all required initialization modules (if any) for that terminal were included during
system generation. Also check to see if that terminal is defined correctly on the
TERMINAL statement. If both the terminal and the support modules are defined correctly,
call your service representative for corrective action on that terminal or attachment.

o

o

o Detennining the Failure in a Tailored Supervisor (continued)

c

o

9. If the system does not enter a run loop, go to step 6 on page PD-10 .

If you still cannot identify the cause of the IPL failure using the previous procedure, go to the
section "Analyzing the INITT ASK Task Control Block."

Analyzing the INITTASK Task Control Block

The technique discussed in this section requires you to examine the INITT ASK task control
block. By examining this control block, you may be able to identify the cause of the IPL failure.
INITT ASK is the label of the task control block (TCB) used by the system initialization
routines. The address of INITTASK (in module EDXSTART) is in the supervisor link map
from system generation.

If you have a programmer console, begin with the section "Storing the Address of IN ITT ASK"
on page PD-12.

If, after the IPL failure has occurred, you can press the attention key, enter $D from a terminal
in partition 1, and receive a prompt for input, go to the section "Displaying the INITT ASK Task
Control Block with $D."

Displaying the INITTASK Task Control Block with $D

Do the following when you receive the prompt ENTER ORIGIN: from $D:

1. Enter 0000.

The next prompt, ADDRESS, COUNT: , asks you for an address and the number of words you
want to display.

2. For ADDRESS, enter the address for INITTASK shown in the supervisor link map.

3. For COUNT, enter the value 14. This value represents the first 14 words in the INITTASK
TCB.

The system then displays the 14 words of information.

4. Record all the values displayed on the terminal.

5. ReplyN to the prompt ANOTHER DISPLAY?

6. Go to the section "Interpreting the Task Control Block Information" on page PD-13.

Chapter 3. Analyzing and Isolating an IPL Problem PD-11

Analyzing and Isolating an I PL Problem
Determining the Failure in a Tailored Supervisor (continued)

Storing the Address of INITTASK

After you locate the address of INITTASK in the supervisor link map, do the following at the
programmer console:

1. Press the Stop key.

2. Press the AKR key.

3. Enter X'D'.

4. Press the Store key.

5. Press the SAR key.

6. Enter the address of INITTASK.

7. Press the Store key.

The next step is to display the contents of the INITT ASK task control block.

Displaying the INITTASK Task Control Block using the Programmer Console

PD-12 SC34-0639

By displaying the values contained in the INITT ASK task control block, you may get a clue as to
what is causing the IPL failure.

The procedure discussed here requires you to display and record the first 14 words of
information in the INITT ASK TCB.

To read the first word of the TCB:

1. Press the Main Storage key. The contents is displayed in the indicator lights.

2. Record the value displayed in the indicator lights.

Each time you press the Main Storage key, a new value is displayed.

3. Repeat the two previous steps 13 more times to obtain the remaining values in the TCB.

o

o

o

o

o

Detennining the Failure in a Tailored Supervisor (continued)

Interpreting the Task Control Block Information

The first three words (words 0-2) of the INITTASK TCB make up the event control block
(ECB). The next 11 words (words 3-13) contain the level status block (LSB) information.
This 14-word area appears as follows:

Word 0-2 ECB
Word 3 IAR
Word 4 AKR
WordS LSR
Word 6 RO
Word 7 Rl
WordS R2
Word 9 R3
Word 10 R4
Word 11 R5
Word 12 R6
Word 13 R7

The information in the LSB (words 3-13 of the TCB) is what you use to identify the failure.
Since many of the system initialization modules are written in EDL, the register contents usually
indicate the following:

IAR The instruction address register (IAR) contains the address of the last machine
instruction the system executed when the failure occurred.

AKR The last 3-hexadecimal digits indicate in which address space operand 1, operand 2,
and the IAR reside. Bit 0 of the AKR is the equate operand spaces (EOS) bit. If bit 0
is set to 1, the address space key indicated for operand 2 is the address space key used
for operand 1 and operand 2.

LSR The value of level status register (LSR). The bits, when set, indicate the following:

Bits 0-4 - The status of arithmetic operations. Refer to the processor description
manual for the meanings of these bits.

• Bit 8 - Program is in supervisor state.
• Bit 9 - Priority level is in process.

Bit 10 - Class interrupt tracing is active.
Bit 11 - Interrupt processing is allowed.

Bits 5-7 and bits 12-15 are not used and are always zero.

Chapter 3. Analyzing and Isolating an IPL Problem PD-13

Analyzing and Isolating an IPL Problem
Detennining the Failure in a Tailored Supervisor (continued)

PD-14 SC34-0639

RO Because the supervisor uses this register as a work register, the contents are usually not
significant.

R1 The address in storage of the last EDL instruction executed in the initialization module
when the failure occurred.

R2 The address in storage of the active task control block (TCB).

R3 The address in storage of EDL operand 1 of the failing instruction.

R4 The address in storage of EDL operand 2 (if applicable) of the failing instruction.

R5 The EDL operation code of the failing instruction. The first byte contains flag bits
which indicate how operands are coded. For example, the flag bits indicate whether
the operand is in #1, #2, or is specified as a constant. The second byte is the operation
code of the EDL instruction.

R6 Because the supervisor uses this register as a work register, the contents are usually not
significant. However, you can determine if the system was emulating EDL code when
the failure occurred if R6 is twice the value shown in the second byte of R5. For
example, if the second byte of R5 contained X'32' and the system was emulating EDL,
R6 would contain X'0064'.

R7 The supervisor uses this register as a work register. However, in many cases, R7 may
contain the address of a branch and link instruction. The address may give you a clue
as to which module passed control to the address in the IAR.

After you record all the TCB values, compare the value you recorded for R2 against the address
of INITT ASK. If these addresses do not match, you either have the wrong storage area or
wrong link map.

If R2 does contain the address of INITT ASK, start looking at the addresses in the remaining
registers for a possible clue. Not all the registers may point to the failing area, but you should
check the addresses that the registers point to nevertheless. Comparing the addresses you
recorded and the addresses in the supervisor link map can help you identify the failure.

You can generally get an idea of which device is failing by the name or names of the supervisor
modules. For example, if several of the addresses you recorded point to disk routines, you could
assume that the IPL failure was related to a disk device.

()

o

o

o

o

Detennining the Failure in a Tailored Supervisor (continued)

The following discussion illustrates how the register contents can identify the problem area.

In this example, the IPL failure occurred because a disk device was defined incorrectly during
system generation. The registers in the INITT ASK TCB, and what they pointed to in the link
map, are shown in Figure 1 . The registers that did not help identify the problem in this example
are shown as "not applicable".

Register Address Module pointed to by register

IAR X'27FA' TAPEOSO in DISKIO module

AKR X '0000' (not applicable)

LSR X'SSDO' (not applicable)

RO X '0000' (not applicable)

R1 X'77SE' DSKINIT1 in module DSKINIT2

R2 X'20DE' INITTASK in module EDXSTART

R3 X'709A' DINITDS1 in module DISKINIT

R4 X'OSSA' DMDDB in module $EDXDEF

R5 X'OOOO' (not applicable)

RS X '0000' (not applicable)

R7 X'27FS' TAPEOSO in DISKIO module

Figure 1. Sample INITT ASK Register Contents

Notice that the names of the supervisor modules are all disk related. Since the address in R4
(X'06BA') in this example is within the module $EDXDEF, you can identify exactly which
device is causing the failure as follows:

1. Subtract the address of $EDXDEF from the address in R4. The link map showed that
$EDXDEF is at address X'052E'. Thus, the resulting address is X'0188'.

2. Using the resulting address from step 1 and the assembly listing, look at the device
definition statement at that address and identify which device is defined. The device
defined on the definition statement is the cause of the IPL failure.

As was previously mentioned, the disk device was defined incorrectly. The disk was defined as a
4963-23. It should have been defined as a 4963-64.

Chapter 3. Analyzing and Isolating an IPL Problem PD-15

Analyzing and Isolating an IPL Problem
Detennining the Failure in a Tailored Supervisor (continued)

No IPL Completion Messages on $SYSLOG

PD-16 SC34-0639

If R5 contains the value X'0016', the supervisor has issued a DETACH for INITTASK and has
completed the IPL process. (X'0016' is the EDL operation code for a DETACH.) However, if
no IPL completion messages were displayed on $SYSLOG, $SYSLOG may be the possible
cause of the problem.

Ensure that $SYSLOG is at the address you specified for $SYSLOG during system generation.

If R5 is not X'0016' and R6 does not contain X'002C', look at the remaining TCB values and
see what supervisor modules they point to. The names of the modules may give you a clue as to
which device is failing.

o

o

o

c

o

Chapter 4. Analyzing and Isolating Run Loops

A loop is a sequence of instructions that the system executes a repeated number of times. Often
in application programs, you may have a need to intentionally code a loop to manipulate data
and then exit the loop based on some exit condition you establish. Occasionally, a system or
programming error can cause the system to execute a sequence of instructions endlessly. This
type of loop is not intended and when it occurs, you must isolate the cause. To isolate the cause
of the loop, however, you must be able to identify the program.

This chapter explains how you can identify which program is in a run loop when multiple
programs are active. In addition, this chapter shows you how to isolate a run loop using
$DEBUG. If you already know which program is in a run loop, refer to the section "Using
$DEBUG to Isolate a Run Loop" on page PD-20.

It is possible for the system to enter a run loop if a device generates more interrupts than the
system can handle. The section "How to Detect Loops Caused by Device Interrupts" on page
PD-32 explains how you can determine if device interrupts are the cause of a system run loop.

When the error is such that it causes the system to enter a loop and you cannot issue any
operator commands from a terminal, you should take a stand-alone or $TRAP dump. Chapter
7, "Analyzing a Failure Using a Storage Dump" on page PD-71 explains how to determine
system failures of this sort. Refer to the Operation Guide for details on taking a stand-alone
dump. The Operator Commands and Utilities Reference explains how to invoke $TRAP.

Chapter 4. Analyzing and Isolating Run Loops PD-17

Analyzing and Isolating Run Loops
How to Identify a Program in a Run Loop

This section explains how to identify which program is in a run loop when multiple programs are
active. Two methods are discussed: using the programmer console and using the $C operator
command.

Using the Programmer Console to Identify a Looping Program

PD-18 SC34-0639

Several steps using the programmer console will require you to stop all activity on the system.
Before you begin, consider what effect stopping the system will have on any active programs, in
particular, any time-dependent programs.

To identify the looping program, do the following:

1. Press the attention key and enter the $A ALL operator command.

2. Write down the program names and their load point for each partition.

3. Set the Mode switch on the console to the Diagnostic position.

4. Look at the Level indicators for levels 0-3 on the programmer console. You may notice a
particular level indicator showing more activity (pulsing more) than the other Level
indicators. Further, you may notice a particular Level indicator pulsing at the same time the
Run light is on. Noticing these indicators can help you determine on which hardware level
the looping program is running.

Note: Programs generally run on level 2 (the default) and level 3. Programs with an
attention list task active (A TTNLIST instruction) run on level 1.

5. Press Stop on the programmer console. If the Level indicator light is on for the level on
which you suspect the program is running (determined in step 4), go to step 6.

If the Level indicator light is not on, continue pressing Start and Stop until the light is on,
then go to step 6.

6. Press R1; a value is displayed.

0,·11\

.}

o

o

c

o

How to Identify a Program in a Run Loop (continued)

7. Record the hexadecimal address displayed in the lights.

To identify which program is at the address displayed for Rl, you must determine the
partition number:

a. Press AKR.

b. Press the Level indicator for the level you determined in step 4 on page PD-18 .

c. Record the sum of the hexadecimal value displayed in lights 5-7. The number of the
partition in which the program is running is 1 plus the value shown in lights 5-7. For
example, if the sum of the lights had the value X'3', the partition number is partition 4.

8. Do steps 5 through 7 several times. This sequence will give you a range of instruction
addresses. By comparing these addresses to the program load point addresses from step 1
on page PD-18, you can get an idea of which program might be looping and some of the
instruction addresses within the loop.

After you have identified which program is in a run loop, you must determine where in the
program the loop starts. The section "Using $DEBUG to Isolate a Run Loop" on page PD-20
explains how to do this.

Using $C to Identify a Looping Program

The purpose of using $C is to identify the looping program through a process of elimination.

Before you begin canceling programs, consider what impact that may have on any programs
running normally. Also, consider whether you can recreate the environment from when the loop
began. You may be able only to identify the failing program and not be able to analyze it until
that program fails again. It is possible that the loop could be caused by this particular mix of
running programs. When this is the case, canceling programs may make it harder to determine
the cause of the loop. Consider taking a stand-alone or $TRAP dump as an alternative to $C.

When you issue $C, first cancel the programs you suspect are least likely to cause the problem.
If the run loop condition still exists, continue canceling programs until the problem goes away.
The last program you canceled is probably the cause of the run loop.

After canceling the program that caused the run loop, run that program again in an attempt to
recreate the loop, then go to "Using $DEBUG to Isolate a Run Loop" on page PD-20.

If you cancel all but one program and the run loop condition still exists, go to the section "Using
$DEBUG to Isolate a Run Loop" on page PD-20.

Chapter 4. Analyzing and Isolating Run Loops PD-19

Analyzing and Isolating Run Loops
Using $DEBUG to Isolate a Run loop

LOC +0

0000 0008
0034
0034 8026
0052 8026
0072
0072 402F
0078 AOA2
0080 005A
0086 835C
008C 835C
0092
0092 065A
0098 8332
009E 025A
00A4 8332
OOAA 8332
OOBO AOA2
00B8 8035
OOBE OOAO

00C2 0026
00C6 902A
OOCC OOAO
OODO
OODO 0022
00D4 2828
OOFE 5050
0150 0000
0152 40
0154 0000

This section explains how to isolate a run loop with $DEBUG. The $DEBUG utility is
described in detail in the Operator Commands and Utilities Reference. To show some techniques
of isolating a run loop with $DEBUG, a sample program, MYPROG, is presented. The sample
program contains a coding error which causes it to loop.

The sample program should display a prompt message requesting up to 40 characters of input
data. After receiving input, the program should insert a blank between each character and then
display the data. You end the program by entering a /*.

You will need the compiler listing for your program when using $DEBUG. Figure 2 shows the
compiler listing for the sample program MYPROG.

The first step in isolating a run loop is to determine the starting point and ending point of the
instructions causing the loop. How you do this using $DEBUG is discussed in the section
"Determining the Starting and Ending Points of the Loop" on page PD-21.

+2 +4 +6 +8
PRINT NODATA

D7D9 D6C7 D9C1 D440 MYPROG PROGRAM LABEL 1
LABEL 1 EQU *

1A1A C5D5 E3C5 D940 PRINTEXT 'ENTER UP TO 40 CHARACTERS@'
1C1C C5D5 E3C5 D940 PRINTEXT 'ENTER A "/*' , TO END PROGRAM@'

LABEL2 EQU *
00D6 0000 READTEXT INPUT,PROMPT=COND
00D6 615C OODO IF (INPUT,EQ,C'/*') ,GOTO,LABEL4
0151 00D5 MOVE COUNT+1,INPUT-1, (1,BYTE)
0000 00D6 MOVEA #1,INPUT
0002 0100 MOVEA #2,OUTPUT

LABEL3 EQU *
0000 0000 MOVE (0,#2), (0,#1), (1,BYTE)
0002 0001 ADD #2, 1
0000 0152 MOVE (0, # 2) , BLANK, (1 , BYTE)
0000 0001 ADD # 1 , 1
0002 0001 ADD #2, 1
0150 0000 00C2 IF (COUNT,NE,O) ,THEN
0150 0001 SUB COUNT, 1
0092 GOTO LABEL3

ENDIF
0100 PRINTEXT OUTPUT
0001 0000 PRINTEXT SKIP=1
0072 GOTO LABEL2

LABEL4 EQU *
FFFF PROGSTOP
4040 4040 4040 4040 INPUT TEXT LENGTH=40
4040 4040 4040 4040 OUTPUT TEXT LENGTH=80

COUNT DATA F'O'
BLANK DATA C' ,

0000 0000 0234 0000 ENDPROG
END

Figure 2. Sample Program Compiler Listing

PD-20 SC34-0639

o

('--"'\

'I'h.,c.'
;

o

o

o

o

Using $DEBUG to Isolate a Run loop (continued)

Determining the Starting and Ending Points of the Loop

While the program is running and in a loop, do the following:

1. Load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the looping
program was loaded. If you cannot use a different terminal, then load $DEBUG from the
terminal used by the looping program.

2. Enter the name of the looping program when $DEBUG asks you for a program name and
volume. Because the program is already loaded, you do not need to enter the volume name.

3. When $DEBUG asks for a partition, enter the number of the partition which contains the
looping program. If $DEBUG and the looping program are in the same partition, press the
enter key.

4. Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter if you loaded $DEBUG in partition 2, with
the sample program MYPROG running in partition 1:

> $L $DEBUG
LOADING $DEBUG 31P,00:00:00, LP=B600; PART=2
PROGRAM (NAME,VOLUME): MYPROG
PARTITION (DEFAULT IS CURRENT PARTITION):
ALREADY ACTIVE AT 8400
DO YOU WANT A NEW COPY TO 8E LOADED? N

5. Press the attention key and enter AT to set the first breakpoint at the address of the
program's entry point. The entry point is the address of the first operand of the
PROGRAM statement. Enter TASK when you are prompted for an option.

The entry point for the sample program MYPROG is at address X'0034'. This sequence
follows:

> AT
OPTION (*/ADDR/TASK/ALL): TASK
LOW ADDRESS: 34

6. Set the next breakpoint at the address of the last executable instruction. This will ensure
that all instructions within the loop are traced by $DEBUG.

The last executable instruction for MYPROG is the PROGSTOP at address X'OODO'.

Chapter 4. Analyzing and Isolating Run Loops PD-21

Analyzing and Isolating Run loops
Using $DEBUG to Isolate a Run Loop (continued)

PD-22 SC34-0639

Because only the starting and ending points of the loop are needed at this point, the NOLIST
and NOSTOP options are selected:

7. Press the attention key and enter GO. $DEBUG displays the addresses of the instructions
that the program executes.

An example showing the output that $DEBUG displays while tracing the sample program
MYPROG follows. Notice that the low address (starting point of the loop) is X'0072'. The
high address (ending point of the loop) is X'OOCC'.

Figure 3. Sample Trace Addresses from $DEBUG

8. Ensure that all addresses displayed by $DEBUG are repeated at least once before you end
$DEBUG. You end $DEBUG by pressing the attention key and entering END. When all
the addresses have been repeated, you now have ali the instructions within the loop.

9. Using the trace addresses from $DEBUG, try to determine the cause of the loop from the
compiler listing. "Using the Compiler Listing to Locate the Loop" on page PD-23 explains
how you use the trace addresses to follow the logic of the loop.

The section "Some Common Causes of Run Loops" on page PD-23 gives some hints as to what
might be the cause of the loop.

o

o

o

o

o

Some Common Causes of Run Loops

Run loops are often caused by some exit condition not being met within a program. The reason
the exit condition is not met could be any of the following:

Counters or variables that are never initialized when the program begins.

Counters or variables that are not tested for an exit condition.

Counters that never reach the limit you expected.

Control passed to the wrong label in the program.

Check your program listing to be sure that none of the previous logic errors exist. If you cannot
immediately pinpoint any of these conditions, continue reading this chapter.

Using the Compiler Listing to Locate the loop

LOC +0

0034 8026
0052 8026
0072
0072 402F
0078 AOA2

+2

The compiler listing and the trace addresses displayed by $DEBUG enable you to follow the
flow of the loop. Do the following steps to determine the problem:

1. Locate in the compiler listing, the lowest trace address displayed by $DEBUG. The lowest
address for the sample program, MYPROG, is X'0072' (see Figure 3 on page PD-22).

At address X'0072', the instruction executed is a READTEXT.

+4 +6 +8
•
•
•

1A1A C5D5 E3C5 D940 PRINTEXT 'ENTER UP TO 40 CHARACTERS@'
1C1C C5D5 E3C5 D940 PRINTEXT 'ENTER A "/ * ' , TO END PROGRAM@'

LABEL2 EQU *
00D6 0000 READTEXT INPUT,PROMPT=COND
00D6 615C OODO IF (INPUT,EQ,C'/*') ,GOTO,LABEL4

•
•
•

The symptoms of the loop appear to be that the READTEXT did not allow you to enter input
data when the program issued a message to do so.

Chapter 4. Analyzing and Isolating Run Loops PD-23

Analyzing and Isolating Run Loops
Using the Compiler Listing to Locate the Loop (continued)

PD-24 SC34-0639

2. Again, reload $DEBUG in any available partition to determine the problem.

In this example, $DEBUG is loaded in partition 1, the same partition as MYPROG:

,> $:L,~DEBUG , '. ".
LOA9.1 NG$PE~UG)lP;OO:Oo.:o.o.; 'I.P;"'S60o.,
PRo.GRAM(NAME, VOLUME) :'. MYPROG
PARTITlo.N (DEFAULT 'ISCURRENTPARTITlo.N'):
ALREADY ACTIVEATB400
00. YOU WANT ANEW COpy TO. BE LOADED? N

3. Press the attention key to set a breakpoint at the address following the READTEXT
(address X'0078'):

> AT
o..PTlo.N (*/ADDR/TASK/ALLh ADDR
BREAKPo.lNT ADDR: 78
LIST/No.LIST: No.LIST
STo.P/No.STOP: STOP

1 BREAKPOINT(S) SET

When the following message is displayed, $DEBUG has suspended the program's execution:

lTASK0154 STOPPED AT 0078

At this point, you can look at any area of storage the program uses. If you set counters or
variables in programs you run, examine those fields first. For MYPROG, you want to look at
the number of characters the program read in as a result of the READ TEXT .

The area labeled INPUT receives the input data upon a READTEXT:

LOC +0 +2 +4 +6 +8

0072 402F 00D6 0000

00D4 2828 4040 4040 4040 4040 INPUT

•
•
•

READTEXT INPUT,PROMPT=COND
•
•
•

TEXT LENGTH=40

o

o

c

o

Using the Compiler listing to locate the loop (continued)

4. Press the attention key and enter the following to see the number of characters stored in
INPUT:

> LIST
OPTION (*/ADDR/RO ... R7/#1/#2/IAR/TCODE/UNMAP): ADDR
ADDRESS: 04
LENGTH: 1
MODE(X/F/D/A/C): X

$DEBUG displays the following information:

L 0004 x' 2800'

This information shows the length and count bytes for INPUT. The X'28' indicates the buffer
size is 40 characters in length. However, the X'OO' indicates that no characters were read in as a
result of the READTEXT. If INPUT contained any data, the count byte would indicate the
number of bytes.

Because INPUT contains no data, the problem might be either the TEXT statement coded for
INPUT or the READ TEXT instruction. Because you use READTEXT instructions to receive
input data, the problem is probably with the READTEXT.

5. Review the description of READTEXT in the Language Reference to determine if the
READTEXT is coded correctly. The READTEXT is coded as follows in the sample
program:

READTEXT INPUT,PROMPT=COND

The description for PROMPT=COND explains that when you use this operand, you must also
code message text. No message text is coded on READ TEXT in the sample program. The
description further explains that when no message text is specified, READTEXT sets the count
byte to zero and does not wait for input.

The sample program entered a run loop because the READ TEXT is coded incorrectly. Isolating
the run loop for this sample program is now complete.

6. Press the attention and enter END to end $DEBUG.

Chapter 4. Analyzing and Isolating Run Loops PD-25

Analyzing and Isolating Run Loops
Using the Compiler Listing to Locate the Loop (continued)

7. Cancel the looping program using the $C operator command.

8. Correct the coding error on the READ TEXT as follows:

READTEXT INPUT,'ENTER NEW DATA: ',PROMPT=COND

9. Recompile the program.

The techniques discussed up to this point in the chapter were useful in isolating the run loop in
the sample program, MYPROG. The error, in this case, was somewhat obvious. However, you
can apply these same techniques when the cause of a run loop in your program is not so
apparent. The next section introduces additional techniques that may be helpful if you are
trying to locate the cause of a run loop in a program that uses unmapped storage.

Examining an Unmapped Storage Area for the Cause of a Loop

PD-26 SC34-0639

A program may occasionally receive invalid or incorrect data. If the program is not prepared to
handle such a situation, it could go into a run loop.

By using the LIST command of $DEBUG, you can examine the data areas in your program to
see if any of the data in these areas is invalid or incorrect. (For more information on using the
LIST command of $DEBUG, refer to the Operator Commands and Utilities Reference.) If the
failing program uses unmapped storage, you may also want to look at the data in the unmapped
storage areas. This section explains how to examine an unmapped storage area to find the cause
of a run loop.

The sample program used in this section is called ADDNAMES. ADDNAMES processes a list
of names and addresses which it reads from a data set into unmapped storage. The program
should end when it encounters a -1 (X'FFFF') or when it processes more than 1,000 bytes of
data. When ADDNAMES was loaded last, however, it went into a run loop. Figure 4 on page
PD-27 shows the compiler listing for the sample program.

('" J

o

0 Examining an Unmapped Storage Area for the Cause of a Loop (continued)

LOC +0 +2 +4 +6 +8

0000 0008 D7D9 D6C7 D9C1 D440 ADDNAMES PROGRAM START, DS=((DATA,DONORS))
OOOA 0000 0104 0184 0000 0000
0014 0188 0000 0001 0000 0100
001E 0186 0000 0000 0000 0000
0028 0000 0000 0000 0000 0000
0032 FFFF 0000 0000 0808 C4C1
003C E3C1 4040 4040 0606 C4D6
0046 D5D6 D9E2 4040 0000 0000
0050 0000 0001 0000 0001 0000
005A 0000 0000 0000 0000 0000
006E 0000 0000 0000 0000
0076 0000 C1C1 0000 0000 0008 STORBLK1 STORBLK TWOKBLK1=1,MAX=2
0080 0001 FFFF 0000 0000 0090
008A 0000 0000 0000 FFFF FFFF
0094 0000 TOTAL DC F'O'
0096 0000 LENGTH DC F'O'

START EQU * 0098 00B9 0076 0000 0000 0101 GETSTG STORBLK1,TYPE=ALL
00A2 035C 0000 0082 MOVE #1,STORBLK1+$STORMAP
00A8 80B9 0076 0001 0000 0300 SWAP STORBLK1 ,1
00B2 8120 0000 0008 0000 020C READ DS 1 , (0, # 1) , 8
OOBC 0032
OOBE OOAO OOCA 90A2 0094 03E8 DO UNTIL, (TOTAL,GT,1000)
00C8 00F6
OOCA 045C 0096 0000 MOVE LENGTH, (0, # 1)

0
OODO AOA2 0096 FFFF 00F6 IF (LENGTH,EQ,-1) ,GOTO,QUIT
00D8 EOA2 0096 0000 00F2 IF (LENGTH,GT,O) ,

•
•
•

0100 8332 0000 0002 ADD # 1 ,2
0106 0332 0000 0096 ADD #1,LENGTH
010C 0032 0094 0096 ADD TOTAL, LENGTH
0112 ENDIF
0112 OOAO 00C2 ENDDO

QUIT EQU * 0116 00B9 0076 0000 0000 0201 FREESTG STORBLK1,TYPE=ALL
0120 0022 FFFF PROGSTOP

COpy STOREQU
•
•
•

Figure 4. Sample Program Compiler Listing

When $DEBUG is used to trace the execution of the program, the starting point of the loop
(low address) is at X'OOBE'. The ending point of the loop (high address) is at X'Ol12'. (The
procedure for locating a run loop in a program is shown under "Determining the Starting and
Ending Points of the Loop" on page PD-21.)

o
Chapter 4. Analyzing and· Isolating Run Loops PD-27

Analyzing and Isolating Run Loops
Examining an Unmapped Storage Area for the Cause of a Loop (continued)

PD-28 SC34-0639

The compiler listing for the sample program shows a DO instruction at address X'OOBE'. The
DO instruction marks the beginning of the loop. The loop ends with the ENDDO instruction at
address X'0112'.

Looking at the contents of the DO loop, the program should be able to exit the loop when one
of two conditions are met:

(1) The total length of the data read into storage exceeds 1000 bytes. At this point, the DO
instruction at X'OOBE' would satisfy the condition that it execute until the value in TOTAL
is greater than 1000.

(2) The program finds a -1 in the data area. In this case, the IF instruction atX'OODO'
would detect the condition and send the program to the label QUIT.

Since neither of these conditions occurred, it appears that the program had less than 1000 bytes
of data to process but did not encounter a -1 when the data ended. Looking at the data in the
unmapped storage area should reveal the source of the problem. To look at the contents of an
unmapped storage area, do the following:

1. While the program is running and in the loop, load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the looping
program was loaded. If you cannot use a different terminal, then load $DEBUG from the
terminal used by the looping program.

2. Enter the name of the looping program when $DEBUG asks you for a program name and
volume. Because the program is already loaded, you do not need to enter the volume name.

3. When $DEBUG asks for a partition, enter the number of the partition which contains the
looping program. If $DEBUG and the looping program are in the same partition, press the
enter key.

4. Reply N when asked if you want a new copy of the program loaded.

The sample program ADDNAMES is running in partition 1. In the following example,
$DEBUG also is loaded in partition 1:

[. >'$~'$OEBt~G'<..'." . ' ..•...•. ' .
. LOAQI ~G'$bEBUG .' 45;p,06:g7:;Q5;LP~B76~f~
P~~OGRAM./{NAME,VO.Ll)t4~) .. ::ADPNAME S :•... ''<'.' .••••••..•

PARTIT} ON' (DEFAVl:T1S C.~RREN,,·.~'AR!tTl()N}:
ALREADY ACTIVE. ··.AT· 5COO·., ,.",:' . ,'"' ,
DO¥OUWANT ··A··NEW.CO/lYTO· BE.l:0.ADED1

o

o

o

c

o

Examining an Unmapped Storage Area for the Cause of a Loop (continued)

5. Press the attention key and enter AT to set a breakpoint at the address following the
instruction that reads the data into unmapped storage.

Note: Your program may be using several unmapped storage areas. If the SW AP
instruction refers to a variable to find out the number of the unmapped storage area it
should gain access to, check the contents of this variable to see which area was in use when
the loop began.

In the sample program, the address of the instruction following the READ instruction is
X'OOBE':

> AT
OPTION (*/ADDR/TASK/ALL); ADDR
BREAKPOINT ADDR; BE
LIST/NOLIST; NOllST
STOP/NO$TOP: STOP

1 BREAKPOINT(S) SET

6. Press the attention key and enter GO.

$DEBUG displays a message when it suspends the program's execution at the breakpoint:

l fASK0124 STO~PED~T OOSE

7. Press the attention key and enter the LIST command. After you enter this command, do the
following:

a. For "OPTION", enter UNMAP.

b. For "STORBLK ADDRESS", enter the address of the STORBLK statement that
defines the unmapped storage area you want to see.

c. For "SW AP#", enter the number of the unmapped storage area you want to see.

d. For "DISPLACEMENT", indicate how far from the beginning of the unmapped storage
area the utility should go before listing the contents of the area. Enter a number of
bytes (in hexadecimal). For example, if you enter lA, $DEBUG will begin the listing
after the 26th byte in the unmapped storage area.

e. For "LENGTH", enter the number of words, doublewords, or characters you want to
list, depending on the MODE you select. Enter a decimal number.

f. For "MODE", enter the format you want the data to appear in.

Chapter 4. Analyzing and Isolating Run Loops PD-29

Analyzing and Isolating Run Loops
Examining an Unmapped Storage Area for the Cause of a Loop (continued)

PD-30 SC34-0639

The sample program reads eight 256-byte records into unmapped storage. The following
example lists the first 256-byte record in the unmapped storage area:

Figure 5 shows how $DEBUG displays the first record of the unmapped storage area for the
ADDNAMES program.

000·OX.'0024.CS4B C6C5 C4C5 b96B'F1F2 .F340DSD6'
00'10 X' D9E3.C~.4p C8C9 G3Q2. D6D9.E:&~B])7h6:.D~.E;3.'
OOZO::X.' E2D4D6E4 E3C~f 0026 DJ4B'P7c:!;9i';E!:9E;9))6p3'1
od3.d x;"Cl?3tJ66B'F'2E'2 .40E2 Ei8C3. C1D4 D.6D9G'540'
OQ4QX" C4D9· 4B€?B9?c!) CJE5q~l)9J?~~9;, I?Jp~g040:'

. 005Q . Xl])3'4[816309 D.5·C7·6B40r5~5,;;F54n04.CLC9P51.
0060X~HqEl~.'E34;I3 6.}?;Cl .])3D3. C!)PS .. 1¥3P6..:~~:P·· ·~,·4Q.'·

:«g~~~;~g6~L~~;~~§ .. ~g~~~Sit> .. ~~~~~ ..•
. 0090 X' op2Jr.PJ~J3.¢JriS.·~~G,1·\ .~ti~.\·
:·60A.()~X,:'·4QE6.C.!,)1¥2·· E~B;5.·;~C9,C$;;:
;56:!3:o.X!. D9D6.C:D:D2. C3D9·.GS·05·
.. 9.0. cQ. {.x ..•. ·.i.:, 0 .••. ··.O·.G. o.:·.;· ... ·sio. D .. '.0. b'OO!:)"
·;oo'nO'·x'··Ob:o·{j,·'tioo6 'o6&ii
a OEO.· :x:"~('OQO~'000n dOO{)' "·0000 dQ 60
o OFQ.<::'x;~\·()'O~;eJ;:Q:ooo ·.·oo9Q·b,BoQ. 0000

Figure 5. Sample Listing from $DEBUG

Each "logical record" that ADD NAMES processes consists of a name and address preceded by
a "length" word. The length word indicates the length of the name and address in bytes. The
program checks the length word, processes the amount of data that follows it, and moves to the
next length word. The following is what the contents of the first logical record in Figure 5
would look like if they were translated into EBCDIC.

Data

IE.FEDER,123 NORTH HICKORY,PORTSMOUTH (Length - X' 24 1 bytes) ,

If you were to list out the rest of the contents of the unmapped storage area, you would see that
no more data exists. A brief examination of the storage contents in Figure 5 reveals that less
than 1000 bytes of data were processed by the program. However, when you look for the
second exit condition, a -1 (X'FFFF') at the end of the data, no -1 exists.

o

()

c

o

c

o

Examining an Unmapped Storage Area for the Cause of a Loop (continued)

In the compiler listing for the ADDNAMES program, the first IF instruction in the DO loop
looks for a -1 and the second IF instruction checks to see if the length of the data being
processed is greater than O. (See Figure 4 on page PD-27.) If no -1 is found, and if the length
word contains only zeros, the program begins the loop again. Without a -1 to indicate the end
of the data, the program preforms the DO loop endlessly.

In this case, the sample program obviously needs to be modified. However, to ensure that you
have diagnosed the cause of the error correctly, you could place a -1 at the end of the data with
the PATCH command of $DEBUG.

To use the PATCH command:

1. Press the attention key and enter PATCH.

2. After you enter the command, do the following:

a. For "OPTION", enter UNMAP.

b. For "STORBLK ADDRESS", enter the address of the STORBLK statement that
defines the unmapped storage area you want to modify.

c. For "SWAP#", enter the number of the unmapped storage area you want to modify.

d. For "DISPLACEMENT", indicate how far from the beginning of the unmapped storage
area the utility should go before listing the contents of the area. Enter a number of
bytes (in hexadecimal). For example, if you enter lA, $DEBUG will begin the listing
after the 26th byte in the unmapped storage area.

e. For "LENGTH", enter the number of bytes, up to 16, that you want to modify. You
cannot modify more than 16 bytes of data at a time. Enter a decimal number.

f. For "MODE", enter the format you want the data to appear in.

3. The PATCH command displays the data to be modified. Enter your new data following the
"DATA:" prompt message. Separate each word of data with a space.

If you enter less data than the amount displayed, the command pads the remaining area with
blanks (for character data) or zeros (for all other types of data).

Chapter 4. Analyzing and Isolating Run Loops PD-31

Analyzing and Isolating Run Loops
Examining an Unmapped Storage Area for the Cause of a Loop (continued)

4. The command displays the data you entered and issues the prompt message
"YES/NO/CONTINUE." Respond Y to confirm the change, N to cancel the change, or
CONTINUE to confirm the change and to continue modifying data.

The following example uses the PATCH command to place a -1 at the end of the data in the
unmapped storage area. After the change is made, program execution is resumed by pressing
the attention key and entering GO.

> PATCH
OPTION (*/ADDR/RO ... R7/#1/#2/IARITCODE/UNMAP): UNMAP
STORBLK ADDRESS (0 TO CANCEL PATCH):· 76
SWAP/I: 1
DISPLACEMENT: BA
LENGTH: 1
MODE(X/F/D/A/C}: X
NOW IS

OOBA Xl 0000'
DATA: FFFF
NEW DATA

OOBA Xl FFFFI
YES/NO/CONTINUE: Y

>GO

How to Detect Loops Caused by Device Interrupts

PD-32 SC34-0639

The system can go into a run loop when device interrupts fill up the buffer area the system uses
to contain interrupts. When this is the case, the loop begins at entry point SVCIBFOF in the
supervisor module EDXSVCX.

If you have a programmer console installed, you can detect this condition by setting the Mode
switch in the Diagnostic position while the system is looping. If the interrupt buffer becomes
full, the system will stop and display a X'64FB' in the console indicator lights.

This run loop condition can be caused for two reasons:

1. The value you specified on the IABUF= operand of the SYSTEM statement (in
$EDXDEFS) is not large enough to contain the number of interrupts. The default for
IABUF = is 20. You may have to increase the value specified. Refer to the Installation and
System Generation Guide for details on this operand.

2. A hardware problem on a device causes the device to send excessive interrupts which in turn
causes IABUF to become full. Loading the $LOG utility, which records I/O errors, may
identify the device experiencing errors. The $LOG utility is discussed in Chapter
9, "Recording Device I/O Errors and Program Check Information" on page PD-117.

o

o

o

o

o

Chapter 5. Analyzing and Isolating a Wait State

A wait state is a condition where the system or a program is waiting for the completion of an
event or operation, but because of an error, the completion of the event or operation never
occurs. When this condition exists, you must determine what prevented the event or operation
from completing.

This chapter describes how to determine the cause of a wait state in an application program.

If, during a wait state, you press the attention key and the system does not display a "greater
than" symbol (», you should take a stand-alone or $TRAP dump. Chapter 7, "Analyzing a
Failure Using a Storage Dump" on page PD-71 explains how you can determine the cause of the
problem from the dump. Refer to the Operation Guide for details on taking a stand-alone dump.
The Operator Commands and Utilities Reference explains how to invoke $TRAP.

In order to determine what caused the wait state in the application program, you must first find
the address of the waiting instruction. How to do this is described next.

Chapter 5. Analyzing and Isolating a Wait State PD-33

Analyzing and Isolating a Wait State
How to Find the Address of the Waiting Instruction Using $DEBUG

PD-34 SC34-0639

To find the address of the waiting instruction, do the following while the program is in the wait
state:

1. Load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the waiting
program was loaded. If you cannot use a different terminal, then load $DEBUG from the
terminal used by the waiting program.

2. Enter the name of the waiting program when $DEBUG asks you .for a program name and
volume. Because the program is already loaded, you do not need to enter the volume name.

3. When $DEBUG asks for a partition, enter the number of the partition which contains the
waiting program. If $DEBUG and the waiting program are in the same partition, press the
enter key.

4. Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter if the name of the program were
WAITPGM and it was loaded in partition 1. $DEBUG, in this example, is loaded in partition 2:

'" . "., ~

:> 'LoteUG. '. '. • .. " '•.... ', .,
LOApING,$:O,,~~YG·. ..•• ...".3te~Qo:i.o.();do.'~
'p ROGRAM"~NAt.te:.~'\lOl.:.l:JME:J:'WA'IT.Jl(l~' ; r .•...•••.. '" '

PAR~iTL~~;(OE~A~LT ,IS.CljRREtilPARTn:! ON):

~.~.~··~.~I~iw~~F,~~· •• N~W·····t6~·~·'.:fo:a·~· ···LOAQ;E·O··J,·'N·

5. Press the attention key and enter the WHERE command. $DEBUG then displays the
instruction address where the program is waiting. The following is an example of this
sequence:

6. Using the address displayed by $DEBUG, look at the compiler listing of that program to see
what instruction is at that address.

7. Press the attention key and enter END to end $DEBUG.

After you identify the instruction that caused the wait, you must determine the reason why it
was waiting. The following section can help you analyze the instruction that caused the wait
state.

o

c

o

o

o

Analyzing the Instruction that Caused the Wait State

This section discusses how you can analyze the wait state if the program is stopped at any of the
following instructions:

ENQ

ENQT

WAIT.

If the program is not waiting on any of these instructions, go to the section "Other Possible
Causes of a Wait State" on page PD-42.

Analyzing an ENQ Instruction

When the program is pointing to an ENQ instruction, you must examine the queue control block
(QCB) the program tried to enqueue. By examining the queue control block, you can determine
which task has control of that queue control block.

This section explains how to examine the queue control block when :

The queue control block is defined within the program with a QCB statement.

The queue control block is defined in the system common area, $SYSCOM.

Examining a Queue Control Block Defined in the Program

Do the following steps to examine the queue control block defined in the program:

1 . Find the address of the QCB statement in the program compiler listing.

2. While the program is in the wait state, load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the waiting
program was loaded. If you cannot use a different terminal, then load $DEBUG from the
terminal used by the waiting program.

3. Enter the name of the waiting program when $DEBUG asks you for a program name and
volume. Because the program is already loaded, you do not need to enter the volume
name.

4. When $DEBUG asks for a partition, enter the number of the partition which contains the
waiting program. If $DEBUG and the waiting program are in the same partition, press the
enter key.

Chapter 5. Analyzing and Isolating a Wait State PD-35

Analyzing and Isolating a Wait State
Analyzing the Instruction that Caused the Wait State (continued)

PD-36 SC34-0639

5. Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter for the program W AITPGM located in
partition 1. $DEBUG, in this example, is loaded in partition 2:

>" $L •.•. $DEBUG
. LOAD ING$OEBUG.. ',' J1P,OO :00: 00, Lp=f360tr,'
PROGRAM (NAMr;:,VOLUMEJ:'WAI TPGM
pARt I TI ON . (Dr;:F AULT .1 S •. ·. CUP-RENT . PART HI ON):
ALREADY ACT IVE AT.B400
DO YOU WANTA NEW COpy TO BE LQAOEO?N

6. Press the attention key and enter the LIST command.

7. Respond to the prompts to display the S-word queue control block. For example, if the
address of the OCB statement were at X'OSE8', you would respond to the prompts as
follows:

An example of the output follows:

USE 8 X '00000000 0000 CJ)3 8 000 I '

8. Look at word 3 of the queue control block. (The first word of the OCB is word 0.) Word
3 contains the task control block (TCB) address of the task that owns the OCB. In the
sample output, the TCB address is X'CD38'. Word 4 contains the address space in which
that task resides. Word 4 in the example shows address space 1 (partition 2).

9. Examine the task at the address (identified in step 8) and determine why that task did not
issue a DEQ instruction.

The section "Common Causes of a Program Wait Using OCBs" on page PD-38 presents
some hints as to what might be the cause of the problem.

10. Press the attention key and enter END to end $DEBUG.

o

o

o

c

o

Analyzing the Instruction that Caused the Wait State (continued)

Examining a Queue Control Block Defined in $SYSCOM

Do the following steps to examine the queue control block defined in $SYSCOM:

1. Using the link map listing of the current supervisor, find the address of the queue control
block in $SYSCOM that you attempted to enqueue.

2. Press the attention key and enter $CP 1.

3. Press the attention key and enter $0.

4. Enter 0000 as the origin. Enter the queue control block address from step 1. Enter the
number 5 for the count.

The following is an example of the output displayed for a queue control block at address
X'19DO':

l 1900: 0000 C038 0000 1FOO 0001

The first word of the QCB (word 0) indicates the status of the QCB. The value X'FFFF' means
that the QCB is available. A value of X'OOOO' means that the QCB is enqueued upon.

5. Look at words 3 and 4 of the QCB. Word 3 is the task control block (TCB) address of the
task that owns the QCB. In the sample output, this TCB address is X'lFOO'. Word 4
contains the address space in which that task resides. In the sample output, the address
space in which that task resides is address space 1 (partition 2).

Word 1 contains the TCB address of the waiting task. Word 2 contains the address space
in which that task resides. The waiting task is at address X'CD38" in address space 0
(partition 1).

6. Press the attention key and enter $CP, specifying the partition number you identified in
step 5.

7. Press the attention key and enter $A

Chapter 5. Analyzing and Isolating a Wait State PD-37

Analyzing and Isolating a Wait State
Analyzing the Instruction that Caused the Wait State (continued)

8. Find the program whose load point is within the range of the TCB address you identified in
step 5 on page PD-37.

Note: If the $A shows that no programs are active, the task whose TCB address you
identified in step 5 on page PD-37 is no longer in storage and failed to issue a DEQ.
When this is the case, you must IPL the system to clear the wait state and to release the
enqueued QCB.

To prevent this condition in the future, determine what other programs use that QCB. If
possible, also determine which of those programs was previously active. Examine those
programs and determine which one failed to dequeue the QCB. The section "Common
Causes of a Program Wait Using QCBs" presents some hints as to what might have caused
the problem.

9. Subtract the program load point address from the TCB address of the task that owns the
QCB. In this example, the TCB address is X'lFOO'.

10. Using the resulting address from step 9, locate that address in the compiler listing for that
program.

11. If that address points to an ENDPROG, ENDTASK, or DETACH statement, examine that
program and determine why it did not issue a DEQ.

12. If that address does not point to an ENDPROG, ENDTASK, or DETACH statement, then
the program in storage is not the program that enqueued the QCB. When this is the case,
you must IPL the system to clear the wait state and to release the enqueued QCB.

To prevent this condition in the future, determine what other programs use that QCB. If
possible, also determine which of those programs was previously active. Examine those
programs and determine which one failed to dequeue the QCB. The section "Common
Causes of a Program Wait Using QCBs" presents some hints as to what might have caused
the problem.

Common Causes of a Program Wait Using aCBs

PD-38 SC34-0639

Wait states are often caused when:

• A program fails to issue a DEQ to an enqueued QCB.

A program issues an ENQ to a queue control block defined in $SYSCOM when $SYSCOM
is not mapped in that program's partition. You map $SYSCOM across partitions during
system generation (COMMON= operand on the SYSTEM statement).

()

o

'0

o

Analyzing the Instruction that Caused the Wait State (continued)

If $SYSCOM is not mapped in the partition in which you issued the ENQ or DEQ, ensure
you use cross-partition services to enqueue or dequeue the QCB. Also check that the field
$TCBADS of the program's TCB points to the address space in which the QCB resides.
This consideration applies to any QCB not residing in a program's partition. See the
Language Reference for examples of cross-partition operations.

• A program overlays the QCB area in storage (QCB destroyed).

Review the compiler listing of your program and ensure none of the previous conditions exist.

Analyzing an ENQT Instruction

When the program is pointing to an ENQT instruction, you must examine the terminal control
block (CCB) of the device the program tried to enqueue. By examining the terminal control
block, you can determine which task has control of that device.

Do the following steps to examine the terminal control block:

1.

2.

3.

In the compiler listing, find the name of the terminal to which the program issued the
ENQT.

Look in the link map listing of your current supervisor and locate the section labeled
$EDXDEF. In that section, find the label that matches the name of the device the
program tried to enqueue.

Add X'60' to the address of that device. The resulting address points to word 3 of the field
$CCBQCB in the terminal control block.

4. At the terminal, press the attention key and enter $CP 1.

5. Press the attention key and enter $D.

6. Enter 0000 as the origin. Enter the address you calculated in step 3. Enter the number 2
for the count.

7. The first word displayed is the task control block (TCB) address of the program that has
control of the device. The partition in which that program is running is the value of the
second word plus 1.

8. Press the attention key and enter $CP, specifying the partition number from step 7.

9. Press the attention key and enter $A,

Chapter 5. Analyzing and Isolating a Wait State PD-39

Analyzing and Isolating a Wait State
Analyzing the Instruction that Caused the Wait State (continued)

10. The TCB address from step 7 on page PD-39 will be within the range of the load point
address for the program that has control of the device.

11. Examine the compiler listing of that program and determine why it has not issued a DEQT.

Analyzing a WAIT Instruction

PD-40 SC34-0639

If the event control block the program is waiting on is defined with an ECB statement, go to the
section "Common Causes of a Program Wait Using ECBs" on page PD-41 for some hints as to
what might be the problem.

If the event control block the program is waiting on is defined as a result of coding the
EVENT = operand on a PROGRAM or TASK statement, do the following:

1. While the program is in the wait state, load $DEBUG in any partition.

Try to load $DEBUG from a terminal other than the terminal from which the waiting
program was loaded. If you cannot use a different terminal, then load $DEBUG from the
terminal used by the waiting program.

2. Enter the name of the program which contains the EVENT= operand when $DEBUG asks
you for a program name and volume. Because the program is already loaded, you do not
need to enter the volume name.

3. When $DEBUG asks for a partition, enter the number of the partition which contains the
waiting program. If $DEBUG and the waiting program are in the same partition, press the
enter key.

4. Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter for the program W AITPGM located in
partition 1. $DEBUG, in this example, is loaded in partition 2:

:> ... ,$L SOEJllJ(l
LOAbJNG$DEQUG . 31P;OO:OO:OO, LP=B600,
pROGRAM (NAME, VOLUME):.WAITPGM
J!'Il",,·ft1'" I '"f"".". "u', I·" ~·I\IJI "T"'··.,.,.··,...tfti\.· · '¥. ·""":.,..I:·~ .. ""l.t\· ,
t'1:\~ II/IUN\ Vr.r;I-\ULIIi:lI..UI\.I\I:.R 11"1-\1\.1. II lUI, ,:

·ALR~ADV~.::!JVEATB400.. '.' .
DO··,YOU· .• ~ANT A·'/NEW •.• COP.y:rO.· .. BE:LOADE[l~<N

5. Press the attention key and enter the WHERE command.

o

o

o

Analyzing the Instruction that Caused the Wait State (continued)

6. Using the compiler listing of that program, locate the instruction address displayed in step 5
on page PD-40 and determine why that program has not ended.

7. Press the attention key and enter END to end $DEBUG.

The next section, "Common Causes of a Program Wait Using ECBs," gives some hints as to
what might be the problem.

Common Causes of a Program Wait Using ECBs

Wait states are often caused when a program:

• Fails to post an event control block (ECB) which another program is waiting on. Ensure
that all attached tasks post the ECB before issuing a DETACH.

• Issues aWAIT with the RESET operand specified when the event has already been posted.
Coding aWAIT followed by a RESET instruction may resolve the problem.

Waits on an ECB defined in $SYSCOM when $SYSCOM is not mapped in the program's
partition. You map $SYSCOM across partitions during system generation (COMMON =
operand on the SYSTEM statement).

If $SYSCOM is not mapped in the partition in which you issued the WAIT or POST, ensure
you use cross-partition services to wait or post the ECB. Also check that the field
$TCBADS of the program's TCB points to the address space the ECB resides. This
consideration applies to any ECB not residing in a program's partition. See the Language
Reference for examples of cross-partition operations.

Has a logic error that unintentionally branches to a WAIT instruction.

Review the compiler listing of your program and ensure none of the previous conditions exist.

Chapter 5. Analyzing and Isolating a Wait State PD-41

Analyzing and Isolating a Wait State
Analyzing the Instruction that Caused the Wait State (continued)

Other Possible Causes of a Wait State

PD-42 SC34-0639

When the program stops at an instruction other than ENQ, ENQT, or WAIT, consider the
following:

Is the program waiting for operator input to instructions such as READTEXT,
GETV ALUE, or QUESTION? The problem may be that the operator never responded to a
prompt message or a prompt message requesting input was not coded.

Is the instruction a READ or WRITE? It is possible that a hardware problem on disk
prevented a device interrupt being sent to the supervisor. The system would wait until it
received the device interrupt signaling completion of the 110 request.

Any of the following may verify that a disk problem exists:

Verifying the disk using $INITDSK (VD command). If $INITDSK indicates errors, load
$DASDI and try assigning alternate sectors on the device.
Allocating a data set using $DISKUTI.
Verifying the hardware configuration using $IOTEST (LS or LD command).
Sending messages to another terminal using $TERMUT3.

If any or all of these attempts fail, the disk probably has a hardware problem. Contact your
service representative for corrective action.

• Is a program, while using full screen support, enqueued to $SYSLOG? If the supervisor is
unable to display a program check message to $SYSLOG, the system enters a wait state.

o

o

o

o

Chapter 6. Analyzing and Isolating a Program
Check

The system issues a program check message to provide you with status information on an error
that occurred during processing. This message is written to the terminal defined as $SYSLOG.

The system provides two types of program check messages: one for a system program check and
one for an application program check. Application program checks are caused by errors within
an application program. System program checks typically occur when the supervisor detects an
error in its own code or when an application program somehow overlays part of the supervisor.

This chapter explains how to analyze the status information in a program check message so that
you can determine the cause of a problem. A sample program that causes a program check
when executed is included to show the steps required to isolate an error.

The first step in determining the cause of the problem is understanding the information
displayed in the message. The following section explains the program check message.

Chapter 6. Analyzing and Isolating a Program Check PD-43

Analyzing and Isolating a Program Check
How to Interpret the Program Check Message

The program check message can be in one of the following three formats:

The standard format issued by the supervisor for application and all system program checks.
The system issues the standard program check message for application programs when you
do not code the ERRXIT= operand on the PROGRAM or TASK statement. Go to the
section "Interpreting the Standard Program Check Message" when you receive the standard
program check message.

The format displayed when you code the ERRXIT= operand on the PROGRAM or TASK
statement and specify the task error exit routine $$EDXIT. Refer to the Event Driven
Executive Language Programming Guide for details on how to use $$EDXIT. Go to the
section "Interpreting the Program Check Message from $$EDXIT" on page PD-SO when
you receive this application program check message.

Any format you create when you code the ERRXIT= operand on the PROGRAM or TASK
statement and supply your own error exit routine. Refer to the Customization Guide for
details on how to provide your own task error exit routine.

Interpreting the Standard Program Check Message

PD-44 SC34-0639

This section explains the information displayed in the standard program check messages. A
description of the information follows the sample messages.

The following is an example of the standard application program check message:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
3AOO 0120 8002 2AD6 0110 8000 0064 3BOA 3B20 3A37 3A34 015C 00B8 0000

The next example shows the system program check message:

SYSTEM PGM CHECK:
PSW IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
8002 2AD6 0110 8000 0064 3BOA 3B20 3A37 3A34 015C 00B8 0000

The 11 words of information beginning with IAR and ending with R7 is called the level status
block (LSB).

The headings displayed in the message and what the information means follows. (Normally
when you analyze an EDL application program check, you need only be concerned with PLP,
TCB, PSW, Rl, R3, and R4.)

o

o

o

o

How to Interpret the Program Check Message (continued)

PLP The address in storage of the program load point. This is the address at which the
program was loaded for execution and represents the first word of your program listing.

For a system program check message, this field is omitted because the failing
instruction is within the supervisor.

TCB The address of the active task control block (TCB) as per the compiler listing
(nonrelocated).

For a system program check message, this field is omitted because the failing
instruction is within the supervisor.

PSW The value of the processor status word (PSW) when the program check occurred.
Refer to the section "How to Interpret the Processor Status Word" on page PD-47 to
determine the meaning of this value.

IAR The contents of the instruction address register (IAR) at the time of the error. The
value shown is the address of the machine instruction currently executing.

AKR The value of the address key register (AKR) at the time of the error. This last
3-hexadecimal digits indicate in which address space operand 1, operand 2, and the
IAR reside. Bit 0 of the AKR is the equate operand spaces (EOS) bit. If bit 0 is set to
1, the address space key indicated for operand 2 is the address space key used for both
operand 1 and operand 2.

LSR The value of the level status register (LSR) when the error occurred. The bits, when
set, indicate the following:

Bits 0-4 - The status of arithmetic operations. Refer to the processor description
manual for the meanings of these bits.

Bit 8 - Program is in supervisor state.

• Bit 9 - Priority level is in process.

Bit 10 - Class interrupt tracing is active.

• Bit 11 - Interrupt processing is allowed.

Bits 5-7 and bits 12-15 are not used and are always zero.

Chapter 6. Analyzing and Isolating a Program Check PD-45

Analyzing and Isolating a Program Check
How to Interpret the Program Check Message (continued)

PD-46 SC34-0639

The next portion of the program check message displays the contents of the general purpose
registers RO-R7. If the failing program were written in a language other than EDL, refer to the
user's guide for that language to determine the register usage.

RO Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program.

Rl The address of the failing EDL instruction.

R2 The address in storage of the active task control block (TCB). The address in R2 is the
sum of the TCB address and the load point address.

R3 The address in storage of EDL operand 1 of the failing instruction.

R4 The address in storage of EDL operand 2 (if applicable) of the failing instruction.

RS The EDL operation code of the failing instruction. The first byte contains flag bits
which indicate how operands are coded. For example, the flag bits indicate whether
the operand is in #1, #2, or specified as a constant. The second byte is the operation
code of the EDL instruction.

R6 Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program. However, you can determine if the system was
emulating EDL code when the failure occurred if R6 is twice the value shown in the
second byte of RS. For example, if the second byte of RS contained X'32' and the
system was emulating EDL, R6 would contain X'0064'.

R7 Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program. Sometimes the supervisor uses this register for a
branch and link instruction. The address may give a clue as to which function passed
control to the address in the IAR.

After reviewing the information shown in the program check message, you must analyze the
contents displayed for the processor status word (PSW).

The processor status word is a 16-bit register the system uses to save error status. By looking at
the processor status word, you can determine whether the error is hardware or software related.
The next section explains how to interpret the processor status word.

()

n
"""",J

o

o

o

How to Interpret the Program Check Message (continued)

How to Interpret the Processor Status Word

The value of the processor status word is shown as 4 hexadecimal digits. Each hexadecimal digit
represents the sum of 4 binary bits. Starting from left to right, the value of each bit (when set)
is 8, 4, 2, and 1. Thus to interpret what bits are on, you must convert each hexadecimal digit to
binary. For example, if the PSW indicated the value X'8002', the binary representation and the
bit positions would be as shown in Figure 6:

Hex Binary PSW
value value bits

8 1000 0-3
0 0000 4-7

a 0000 8-11
2 0010 12-15

Figure 6. Sample Processor Status Word Bit Settings

In the previous example, note that bits 0 and 14 are set. These bit settings are the same as
X'8002'.

After you convert the value to binary and identify which bit positions are set, refer to
"Interpreting the Processor Status Word Bits" for an explanation of what each bit indicates.
Remember that bit 0 is the leftmost bit in the 16-bit string.

Interpreting the Processor Status Word Bits

The information indicated by the processor status word bits can be categorized into three types:

Software problems - bits 0-6

Hardware problems - bits 8, 10, or 11

Processor status - bit 7 and bits 12-15.

Figure 7 on page PD-48 shows the PSW bits and their general assignment for the different
processors. An explanation of the bit settings follows Figure 7.

Refer to the specific processor description manual for details on class interrupts, 110 interrupts,
and the basic instruction set (including indicator settings and possible exceptions conditions).

If the PSW indicates a hardware error (machine check), call your service representative for
corrective action.

If the PSW indicates a software problem and the program check occurred in an application
program, read the section "How to Analyze an Application Program Check" on page PD-54.

Chapter 6. Analyzing and Isolating a Program Check PD-47

Analyzing and Isolating a Program Check
How to Interpret the Program Check Message (continued)

Review the section "How to Analyze a System Program Check" on page PD-67 if the error is a
system program check.

Processor
type 495x Class

Bit 2 3 4 5 6 Condition interrupt

0 X X X X X Specification check Program check
1 X X X X X Invalid storage address Program check
2 X X X X X Privilege violate Program check
3 X X X X Protect check Program check

4 X X X X X Invalid function Soft-exception
5 X X X Floating-point exception Soft-exception
6 X X X X X Stack exception Soft-exception
7 Extended Address Mode None
8 X X X X X Storage parity check Machine check
9 Not used

10 X X X X X Processor control check Machine check
11 X X X X X I/O check Machine check

12 X X X X X Sequence indicator None
13 X X X X X Auto IPL None
14 X X X X Translator enabled None
15 X X X X X Power/thermal warning Power/thermal

Figure 7. Processor Status Word Bit Assignments

Processor Status Word Bit Descriptions

PD-48 SC34-0639

An explanation of the bit settings follows.

Bit 0 - Specification Check: Set to 1 if (1) the storage address violates the boundary
requirements of the specified data type, or (2) the effective (computed) address is odd.

" This error would occur, for example, if a program attempted to do a word move to an area on an
odd-byte boundary. You can identify which operand (R3 or R4 addresses) violates the
boundary if the last hex digit of the operand address is either 1, 3, 7, 9, B, D, or F.

This is a software error.

Bit 1 - Invalid Storage Address: Set to 1 when an attempt is made to access a storage
address outside the storage size of the partition or when an attempt is made to refer to a storage
address in a nonexistent partiton,

This error would occur, for example, if a program attempted to do a cross-partition move to a
nonexistent partition.

This is a software error.

c.-
~ ,\

I

(~
~I

o

o

o

How to Interpret the Program Check Message (continued)

Bit 2 - Privilege Violate: Set to 1 if a program in problem state attempts to issue a
privileged instruction. The processor can run in either supervisor or problem state. Some
assembler instructions can be used only while in supervisor state. If an assembler program in
problem state attempts to issue a privileged instruction, the privilege violate condition occurs.

Normally, this error would never occur in an EDL program.

This is a software error.

Bit 3 - Protect Check: Set to 1 if a program attempts to access protected storage. The
processor can control access to areas in storage by using a storage protect feature. If a program
attempts to address any part of the protected storage, the protect check indicator is set.

Normally, this error would never occur in an EDL program.

This is a software error.

Bit 4 -Invalid Function: Set to 1 by if any of the following conditions occur:

Attempted execution of an illegal operation code or function combination.

The processor attempts to execute an instruction associated with a feature that is not
contained in the supervisor.

An EDL program can cause this error attempting to use floating-point instructions (FADD,
FSUB, FMULT, or FDVID) when the floating-point support is not in the supervisor.

This is a software error.

Bit 5 - Floating-Point Exception: Set to 1 when an exception condition is detected by the
optional floating-point processor. Floating-point hardware sets this bit to indicate underflow,
overflow, and divide check exceptions. An EDL program can detect these exceptions by the
return code from a floating-point instruction. No program check message is issued when this
exception occurs.

This is a software error.

Bit 6 - Stack Exception: Set to 1 when an attempt has been made to pop an operand from
an empty processor storage stack or push an operand into a full processor storage stack. A stack
exception also occurs when the stack cannot contain the number of words to be stored by an
assembler Store Multiple (STM) instruction.

Normally, this error would never occur in an EDL program.

This is a software error.

Chapter 6. Analyzing and Isolating a Program Check PD-49

Analyzing and Isolating a Program Check
How to Interpret the Program Check Message (continued)

Bit 7 - Extended Address Mode: Set to 1 when the processor is operating in Extended
Address Mode.

This is a status indicator.

Bit 8 - Storage Parity: Set to 1 when the hardware detects a parity error on data being read
out of storage by the processor.

This is a hardware error.

Bit 10 - Processor Control Check: Set to 1 if no levels are active but execution continues.

This is a hardware error.

Bit 11 - I/O Check: Set to 1 when a hardware error has occurred on the I/O interface that
may prevent further communication with any I/O device.

This is a hardware error.

Bit 12 - Sequence Indicator: Set to 1 to reflect the last I/O interface sequence to occur.
This indicator is used in conjunction with I/O check (bit 11).

This is a status indicator.

Bit 13 - Auto I PL: Set to 1 by the hardware when an automatic IPL occurs.

This is a status indicator.

Bit 14 - Translator Enabled: Set to 1 when the Storage Address Relocation Translator
Feature is installed and enabled.

This is a status indicator.

Bit 15 - Power Warning and Thermal Warning: Set to 1 when these conditions occur
(refer to the appropriate processor manual for a description of a power/thermal warning class
interrupt).

This is a status indicator.

Interpreting the Program Check Message from $$EDXIT

PD-50 SC34-0639

When you specify $$EDXIT as the task error exit for an EDL program, the output you receive
is formatted with descriptive headings. In addition, $$EDXIT provides more information than
the standard program check message. $$EDXIT also interprets the processor status word and
tells you what it means.

o

o

c

o

How to Interpret the Program Check Message (continued)

When a program check occurs, the program check message is directed to $SYSLOG and
$SYSPRTR.

The following is an example of a program check message issued by $$EDXIT. An explanation
of each numbered item in the sample output follows the example.

• II
II
II
II
II
II
II
111

fI

**
* WARNING!! AN EXCEPTION HAS OCCURRED!! *
**

PROGRAM NAME
PROGRAM VOLUME
PROGRAM LOAD POINT
ADDRESS OF ACTIVE TCB
ADDRESS OF CCB
NUMBER OF DATA SETS
NUMBER OF OVERLAYS
$TCBADS
ADDRESS OF FAILURE
«REL. TO PGM LOAD PT)

DUMP OF fAILADDR£SS

= PCHECK
= MYVOL

0000

II PSW = 8002
.. IAR = 2AD6
II AKR = 0110

0120 II LSR = 8000
OF5E DB RO (WORK REGI STER)

o
0001

010A

OlOA:015C00000034 8332

o me Rl (EDL INSTR ADDR)
DB R2 (EDL TCB ADDR)
1m R3 (EDL OP1 ADDR)
III R4 (EDL OP2 ADDR)
lID R5 (EDL COMMAND)
II R6 (WORK REGISTER)
fI . R7 (WORK REGISTER)
II #1 == 0037 11 $.TCBCO = -1 DEC; FFFF HEX

Ell $TCBC02 = 0 DEC; 0000 HEX

EI PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

II #2· = 0000

0064
010A
0120
0037
0034
015C
00B8
0000

After this message is issued, $$EDXIT displays the following message on the loading terminal:

A MALFUNCTION HAS OCCURRED -- CALL SYSTEM PROGRAMMER

The previous message is not displayed if you code an extension error routine to $$EDXIT with
the entry point name PCHKRTN. Refer to the Customization Guide for details on how to code
an extension to $$EDXIT.

Chapter 6. Analyzing and Isolating a Program Check PD-51

Analyzing and Isolating a Program Check
How to Interpret the Program Check Message (continued)

PD-52 SC34-0639

A description of the sample program check message follows.

.. The PROGRAM NAME field identifies the name of the failing application program. In this
example, the program PCHECK failed.

II The PSW field indicates the value of the processor status word when the error occurred.
$$EDXIT interprets this value and displays its meaning as shown in field PI of this sample
message.

A detailed description of the processor status word and the associated bits are presented in the
section "Interpreting the Processor Status Word Bits" on page PD-47.

II The VOLUME NAME field identifies the name of the volume from which the failing
application program was loaded. In this example, the name of the volume is MYVOL.

.. The JAR field (instruction address register) contains the address of the currently executing
machine instruction.

II The PROGRAM LOAD POINT field contains the address at which the program was loaded
for execution. The address represents the first word of your program listing.

II The AKR field contains the value of the address key register (AKR). The last 3-hexadecimal
digits indicate in which address space operand 1, operand 2, and the IAR reside. Bit 0 of the
AKR is the equate operand spaces (EOS) bit. If bit 0 is set to 1, the address space key indicated
for operand 2 is the address space key used for both operand 1 and operand 2.

II The ADDRESS OF THE ACTIVE TCB field contains the address (nonrelocated) of the
active task control block (TCB) as per the compiler listing.

II The LSR field level status register (LSR) information. The bits, when set, indicate the
following:

• Bits 0-4 - The status of arithmetic operations. Refer to the processor description manual
for the meanings of these bits.

• Bit 8 - Program is in supervisor state.

• Bit 9 - Priority level is in process.

• Bit 10 - Class interrupt tracing is active.

• Bit 11 - Interrupt processing is allowed.

Bits 5 - 7 and bits 12-15 are not used and are always zero.

o

o

c

o

How to Interpret the Program Check Message (continued)

II The ADDRESS OF CCB field contains the address of the terminal control block (CCB)
assigned to the failing program.

III The RO field contains the contents of hardware register 0 when the error occurred. Because
the supervisor uses this register as a work register, the contents are usually not significant when
you analyze the failing program.

III The NUMBER OF DATA SETS field shows the number of data sets specified on the DS=
operand of the PROGRAM statement.

III The Rl field contains the address of the failing EDL instruction.

II The NUMBER OF OVERLAYS field indicates the number of overlay programs specified on
the PGMS= operand of the PROGRAM statement.

III The R2 field contains the address in storage of the active task control block. This address is
the sum of the TCB address and the program load point.

II The $TCBADS field contains the target task address space. The value of this field plus 1
indicates the partition number in which the program was running.

III The R3 field contains the address of EDL operand 1 for the failing EDL instruction.

II The ADDRESS OF FAILURE field contains the address of the failing EDL instruction.
This is the address shown in the compiler listing. This is also the address shown in field III in
this sample output. In this example, the failing EDL instruction is at address X'010A'.

II The R4 field contains the address of EDL operand 2 (if applicable) for the failing EDL
instruction.

III The R5 field contains the EDL operation code of the instruction that was executing when
the failure occurred. The first byte contains flag bits which indicate how operands are coded.
For example, the flag bits indicate whether the operand is in #1, #2, or specified as a constant.
The second byte is the operation code of the EDL instruction.

aD The DUMP OF FAIL ADDRESS field shows the location and content of the instruction that
was executing when the failure occurred. The information at this address also appears in the
compiler listing.

til The R6 field contains the contents of hardware register 6 when the error occurred. Because
the supervisor uses this register as a work register, the contents are usually not significant when
you analyze the failing program. However, you can determine if the system was emulating EDL
code when the failure occurred if R6 is twice the value shown in the second byte of RS. For
example, if the second byte of RS contained X'32' and the system was emulating EDL, R6
would contain X'0064'.

Chapter 6. Analyzing and Isolating a Program Check PD-S3

Analyzing and Isolating a Program Check
How to Interpret the Program Check Message (continued)

fB The R7 field contains the contents of hardware register 7 when the error occurred. Because
the supervisor uses this register as a work register, the contents are usually not significant when
you analyze the failing program.

Sometimes the supervisor uses this register for a branch and link instruction. The address may
give you a clue as to which function passed control to the address in the IAR.

11 The $TCBCO field shows the value in the first word of the failing program's task control
block (TCB). The value is displayed in decimal and followed by the hexadecimal equivalent.

fII The #1 field shows the contents of index register 1 when the failure occurred. In this
example, #1 contains the value X'0037'.

fI The $TCBC02 field shows the value in the second word of the failing program's task
control block (TCB). The value is displayed in decimal and followed by the hexadecimal
equivalent.

m The #2 field shows the contents of index register 2 when the failure occurred.

m The PSW ANALYSIS field explains the meanings of the bit settings in the processor status
word (PSW). The hexadecimal format of the processor status word is shown in field II. This
information indicates the type of error that occurred.

Refer to the section "Processor Status Word Bit Descriptions" on page PD-48 to determine the
type of error the "PSW ANALYSIS" field indicates.

If the error points to hardware, call your service representative for corrective action.

If the error points to software, read the following section.

How to Analyze an Application Program Check

PD-54 SC34-0639

When the processor status word (PSW) indicates a software error, you need to find out where in
the program the error occurred. The information in the program check message can help you
find the error.

Presented in this section is a sample program check message and the program that caused the
program check. Using both the program check message and the compiler listing of the sample
program, this section will explain the steps required to find the problem. The techniques used
can help you to isolate program checks in your application programs. The section "Examining
an Unmapped Storage Area for the Cause of a Program Check" on page PD-60 presents
techniques that may be helpful if your program uses unmapped storage.

The section "Some Common Causes of Application Program Checks" on page PD-66 provides
some additional hints about what may cause this type of error.

o

;<-<\ ', .. ",

c

o

o

o

How to Analyze an Application Program Check (continued)

To find the cause of the program check, do the following:

1. Look at the program check message and determine what type of software error the
processor status word indicates.

The program check message from the sample program follows:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
3AOO 0120 8002 2A06 0110 8000 0064 3BOA 3B20 3A37 3A34 015C 00B8 0000

The PSW indicates that a specification check occurred and that the translator was enabled. A
specification check indicates a boundary violation. Thus, the specification check is the cause of
the error.

2. Look at the addresses for operands 1 and 2 and determine which operand is on an
odd-byte boundary. R3 contains the address of operand 1. R4 contains the address of
operand 2.

Determining which operand is on an odd-byte boundary can help you analyze the failing
instruction.

In the sample program check message, notice that the address of operand 1 (X'3A37') is on an
odd-byte boundary.

3. Find the address of the failing instruction. Subtract the program load point (PLP) from the
address of RI. The result is the address of failing instruction.

The program load point of the sample program is X'3AOO'. The value of RI is X'3BOA'. The
result of subtracting these addresses is X'OIOA'.

At this point you know the address of the failing instruction and which operand is on an
odd-byte boundary.

4. Look in the compiler listing and determine if the instruction at the address you calculated in
step 3 is coded correctly.

Chapter 6. Analyzing and Isolating a Program Check PD-55

Analyzing and Isolating a Program Check
How to Analyze an Application Program Check (continued)

PD-56 SC34-0639

In the compiler listing of the sample program, a MOVE instruction is at address X'OlOA':

LOC +0 +2 +4 +6 +8
0000 0008 D7D9 D6C7 D9Cl D440 PCHK PROGRAM START
OOOA 0000 0120 01AO 0000 0000
0014 01A4 0000 0000 0000 0100
001E 01A2 0000 0000 0000 0000
0028 0000 0000 0000 0000 0000
0032 0000
0034 4040 A DATA X'4040'
0036 0000 0000 0000 0000 0000 B DATA 100F'0'
OOFE START EQU *
OOFE 835C 0000 0036 MOVEA # 1 , B
0104 809C 0116 0064 DO 100
010A 015C 0000 0034 MOVE (0,#1) ,A
a 11 a 8332 0000 0001 ADD # 1 , 1
0116 009D 0000 0001 ENDDO
011 C 0022 FFFF PROGSTOP
0120 0000 0000 0000 0234 0000 ENDPROG
012A OODO 0000 OOFE 0120 0000
0134 0000 0000 0000 0000 0000
013E 0002 0096 0000 0000 FFFF
0148 0000 0000 014C 0000 0000
0152 014E D7C3 C8D2 4040 4040
015C 0000 0000 0000 0000 0000
0166 0000 0000 FFFF 0000 0000
0170 0000 0000 0000 0120 0000
017A 0000 0000 0000 0000 0000
0198 0000 0000 0120 0080 0000
01A2 0000 0000 0000 0000 0000
01B6 0000
01B8 END

In this example, the MOVE instruction and its operands are coded correctly. Because the cause
of the error is not apparent by looking the the failing instruction, you can use $DEBUG to trace
the program's execution.

5. At the terminal, press the attention key and load $DEBUG. Enter the name of the
program (and volume if not on EDX002) when $DEBUG asks you for the program name
and volume.

When $DEBUG asks you for a partition, enter the number of the partition where you want
the failing program to be loaded. If you want the program loaded in the same partition as
$DEBUG, press the enter key. For the "TER~YlINAL" piompt, enter the terminal on
which you want $DEBUG to load the program. If you press the enter key, $DEBUG
loads the program on the terminal it is currently using.

0

rr---"\
~,/

C\
1, ___ 1 I

o

c

o

How to Analyze an Application Program Check (continued)

In this example, $DEBUG is loaded in partition 2. The utility loads the failing program, PCHK,
in the same partition and the program and the utility share the same terminal.

>$L $DEBUG
LOADING $DEBUG 31P,00:00:00, LP=OOOO, PART=2
PROGRAM (NAME,VOLUME): PCHK
PARTITION (DEFAULT IS CURRENT PARTITION):
TERM I NAL (DEFAULT IS CURR.ENT TERM I NAL):
LOADING PCHK 2P.00:00:00, LP=lFOO, PART=2

REQUEST "HELP" TO GET LIST OF DEBUG COMMANDS
PCHK STOPPED AT OOFE

6. Press the attention key and enter AT to set the first breakpoint at the address of the
program's entry point (low address). Entel TASK when you are prompted for an option.
The entry point in the sample program is at address X'OOFE'. This sequence follows:

> AT
OPTION(*/ADDR/TASK/ALL): TASK
t:.OWADDRESS:FE

7. Set the next breakpoint at the address of the last executable instruction (high address).
The last executable instruction of the sample program is the PROGSTOP at address
X'OllC'.

Because you only need the trace addresses at this point, select the NOLIST and NOSTOP
options:

~I GHADDRESs'! l'lC
" LI ST/NOLI S,.:N:ottST
, STOPINOSTOP; ·"NOSTOP

J .. BREAKPQINT (S)

8. Press the attention key and enter GO.

The program will run until it program checks again. During its execution, however, $DEBUG
will display all the instruction addresses up to the point of the program check.

The following is an example of the trace addresses from the sample program:

Chapter 6. Analyzing and Isolating a Program Check PD-5 7

Analyzing and Isolating a Program Check
How to Analyze an Application Program Check (continued)

PD-58 SC34-0639

9. Look at the trace addresses. Notice that in the sample trace output, the instruction at
address X'OI0A' (MOVE) executed successfully the first time. However, the second time
the program executed the instruction at X'OI0A', the program failed with a program check.
The supervisor cancels the program.

Because the last instruction the program executed was at address X'OI0A', you need to reload
the program under $DEBUG, set a breakpoint at address X'OI0A', and examine index register 1
(#1). The sample program uses the index of #1 to point to the target address of the MOVE
instruction.

By examining #1 before the program executes the instruction at X'OI0A', you can determine if
#1 points to an odd-byte boundary.

10. Press the attention key and enter END to end the current $DEBUG.

11 . Reload $DEBUG and specify the name of the program.

12. Press the attention key and enter AT.

13. For the sample program, reply to the prompts as follows to set a breakpoint at address
X'OI0A' and to examine #1:

OPTI()N(~/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDR: lOA
LIST/NOlIST: LfST
OPTION! */ADDR/RO ... R7/#1/#2/IAR/TCODE/UNMAP): #1
LENGTH: 1
MODE(X/F/D/A/C): X
STOP/NOSTOP: STOP

1 BREAKPOINT(S) SET

14. Press the attention key and enter GO.

$DEBUG stops the program's execution at address X'OI0A' and displays the contents of #1.
The following is an example of the output:

I . PCHK STOPPED AT 01 OA
\... # 1 PCHK X I 1 F36 1

The value X'IF36' in #1 is the address in storage of the variable labeled "B". This address·gets
stored in #1 on the previous MOVEA instruction. Notice that at this point, the address for
operand 1 (#1) points to an even address (word aligned).

()

c

o How to Analyze an Application Program Check (continued)

0

o

The trace output showed that no problem occurred the first time through the DO loop. Thus,
you can assume that some instruction after that point caused the address in #1 to point to an
odd-byte boundary.

The next sequence shows how you can identify the cause of the problem.

15. Press the attention key and enter GO.

Again $DEBUG stops the program's execution at address X'010A' and displays the contents of
#1. The following sample output shows what #1 points to now:

PCHK STOPPED AT 010A
#1 PCHK Xl 1F37 1

Notice that the address #1 points to is on an odd-byte boundary (X'lF37'). Further
examination of the compiler listing shows that immediately after the MOVE instruction, the
program incremented the value in #1 by 1:

•
•
•

OOFE 835e 0000 0036 MOVEA #1,B
0104 80ge 0116 0064 DO 100
010A 015e 0000 0034 MOVE (0,#1),A
0110 8332 0000 0001 ADD # 1 , 1
0116 009D 0000 0001 ENDDO

Because the program attempts to move a word of data and #1 points to an odd-byte boundary
(X'lF37'), the program fails with a specification check.

Although the program check message indicates that the MOVE instruction failed, the cause of
the problem is the ADD instruction at address X'Ol10'.

Because the MOVE instruction attempts to move a word of data, the program should have
incremented #1 by 2. Adding 2 to #1 enables the program to receive the next word of data on a
word boundary.

Chapter 6. Analyzing and Isolating a Program Check PD-59

Analyzing and Isolating a Program Check
How to Analyze an Application Program Check (continued)

Examining an Unmapped Storage Area for the Cause of a Program Check

PD-60 SC34-0639

An application program check can occur if a program receives invalid data. By using the LIST
command of $DEBUG, you can examine the data areas in your program to see if any of the data
in these areas is invalid. (For more information on using the LIST command of $DEBUG, refer
to the Operator Commands and Utilities Reference.) If the failing program uses unmapped
storage, you may also want to look at the data in the unmapped storage areas. This section
explains how to examine an unmapped storage area to determine the cause of an application
program check.

The sample program used in this section is named CODE. The CODE program reads a set of
addresses into unmapped storage, acquires the data at those addresses, and processes the data.
The last time CODE was loaded, however, the operator received a program check message. The
program check message from the sample program follows:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO Rl R2 R3 R4 R5 R6 R7
0000 095A 4002 3CBA 0330 8800 0080 080E 0904 OOAO 8210 025C 00B8 0000

The PSW in the message indicates that the sample program attempted to use an invalid storage
address. This error can occur if a program attempts to use an address that is outside of the
partition in which the program was loaded. It also can occur if a program refers to a storage
address in a nonexistent partition. In addition to the software error, the PSW also shows that
the translator was enabled. (See "Interpreting the Processor Status Word Bits" on page PD-47
for an explanation of the bit settings.)

To find the address of the failing EDL instruction, subtract the program load point (PLP) from
the contents of Rl in the program check message. The value of Rl in the program check
message is X'08DE'. Since the program load point for the sample program is X'OOOO', the
address of the failing EDL instruction is X'08DE'.

o

~\

'V

c

0 How to Analyze an Application Program Check (continued)

In the compiler listing for the sample program, a MOVE instruction is at address X'08DE':

LOC +0 +2 +4 +6 +8
0000 0008 D7D9 D6C7 D9C1 D440 CODE PROGRAM START,DS=«DATA,VOL))
OOOA 0000 0104 0184 0000 0000
0014 0188 0000 0001 0000 0100
001E 0186 0000 0000 0000 0000
0028 0000 0000 0000 0000 0000
0032 FFFF 0000 0000 0808 C4C1
003C E3C1 4040 4040 0606 E5D6
0046 D340 4040 0000 0000 0000
0050 0000 0001 0000 0001 0000
005A 0000 0000 0000 0000 0000
006E 0000 0000 0000 0000
0076 0000 C1C1 0000 0000 0008 BLOCK STORBLK TWOKBLK=1,MAX=2
0080 0002 FFFF 0000 0000 0090
008A 0000 0000 0000 FFFF FFFF
0094 FFFF FFFF
0098 0000 INDEX DC F'O'
009A 0000 0000 0000 0000 0000 ENTRY DC 1024F'0'
0892 0000 0000 0000 0000
089A START EQU *
089A 00B9 0076 0000 0000 0101 GETSTG BLOCK, TYPE=ALL
08A4 80B9 0076 0001 0000 0300 SWAP BLOCK, 1
08AE 035C 0000 0082 MOVE #1,BLOCK+$STORMAP
08B4 8120 0000 0008 0000 020C READ DS 1 , (0, # 1) , 8
08BE 0032
08CO 835C 0002 009A MOVEA #2,ENTRY
08C6 805C 0098 0000 809C 08FO DO 128,TIMES,INDEX=INDEX

C' 08DO 0080 8032 0098 0001
,I

08D8 045C 08E2 0000 MOVE ADDRESS, (0,#1)
08DE 025C 0000 08E2 MOVE (0,#2) ,*,P2=ADDRESS
08E4 8332 0000 0002 ADD #1,2
08EA 8332 0002 0002 ADD #2,2
08FO 009D 0000 0001 ENDDO

•
•
•

0946 00B9 0076 0000 0000 0201 FREESTG BLOCK, TYPE=ALL
OAOO 0022 FFFF PROGSTOP

COPY STOREQU
•
•
•

The MOVE instruction at X'08DE' should take a word of data from an address in storage and
place it in the data area labeled ENTRY at X'009A'. The address of ENTRY is contained in #2.
The MOVE instruction moves data from addresses supplied by the previous MOVE instruction
at X'08D8'. The addresses reside in the unmapped storage area obtained by the program.

From the program check message, it appears that the MOVE instruction at X'08DE' received a
storage address that was not in the partition in which the program was loaded. To determine if
this was the case, you first need to know the partition CODE was loaded in and the largest
storage address in that partition.

o
Chapter 6. Analyzing and Isolating a Program Check PD-61

Analyzing and Isolating a Program Check
How to Analyze an Application Program Check (continued)

PD-62 SC34-0639

In this example, the operator loaded CODE in partition 2. You can find the largest storage
address in a partition by looking at the storage map for your system. The storage map appears
on the last page of the listing created when you generated your system. It also is displayed when
you IPL your system.

Look under the heading "TOTAL SIZE (HEX)" in the storage map and find the value listed for
the partition. Subtract 1 from this value to get the largest usable storage address in the partition.
For the sample system on which CODE is running, the storage map shows a total size for
partition 2 of X'8000'. Therefore, the largest usable address in partition 2 is X'7FFF'.

To see if the sample program attempted to gain access to a storage address greater than
X'7FFF', you need to look at the data in the unmapped storage area used by the program. To
examine the contents of an unmapped storage area, do the following:

1. Load $DEBUG in any available partition.

2. Enter the name of the failing program (and volume if not on EDX002).

3. When $DEBUG asks for a partition, enter the number of the partition where the utility
should load the failing program. If you want the program loaded in the same partition as
$DEBUG, press the enter key.

4. For the "TERMINAL" prompt, enter the terminal on which you want $DEBUG to load the
program. If you press the enter key, $DEBUG loads the program on the terminal it is
currently using.

In the following example, $DEBUG is loaded in partition 1. The utility loads the sample
program in partition 2, but $DEBUG and the program share the same terminal.

o

c

o

o

o

How to Analyze an Application Program Check (continued)

5. Press the attention key and enter AT to set a breakpoint at the address following the
instruction that reads the data into unmapped storage.

Note: If your program obtains several unmapped storage areas, you may need to trace the
execution of the program to determine what area was in use when the program check
occurred. Review the trace procedure beginning with step 6 on page PD-57.

In the sample program, the address following the READ instruction is X'08BE':

> AT
OPTION (*/ADDR/TASK/ALL): AOOR
BREAKPOINT ADDR: SBE
LIST/NOLIST: NOllST
STOP/NOSTOP: STOP

1 BREAKP01NT(S) SET

6. Press the attention key and enter GO.

$DEBUG displays a message when it suspends the program's execution at the breakpoint:

7. Press the attention key and enter the LIST command. After you enter this command, do the
following:

a. For "OPTION", enter UNMAP.

b. For "STORBLK ADDRESS", enter the address of the STORBLK statement that
defines the unmapped storage area you want to see.

C. For "SW AP#", enter the number of the unmapped storage area you want to see.

d. For "DISPLACEMENT", indicate how far from the beginning of the unmapped storage
area the utility should go before listing the contents of the area. Enter a number of
bytes (in hexadecimal). For example, if you enter lA, $DEBUG will begin the listing
after the 26th byte in the unmapped storage area.

e. For "LENGTH", enter the number of words, doublewords, or characters you want to
list, depending on the MODE you select. Enter a decimal number.

f. For "MODE", enter the format you want the data to appear in.

Chapter 6. Analyzing and Isolating a Program Check PD-63

Analyzing and Isolating a Program Che~k
How to Analyze an Application Program Check (continued)

PD-64 SC34-0639

The following example shows how you would list the first 256-byte record the sample program
read into unmapped storage.

Figure 8 shows how $DEBUG displays the first record of the unmapped storage area for the
CODE program.

0000 X' OB36 OB38 OB3A OB3C OB3E OB40 OB42 OB44 ,
0010 X' OB46 OB48 OB4A OB4C OB4E OBSO OBS2 OBS4'
0020 X' OBS6 OBS8 OBSA OBSC OBSE OB60 OB62 OB64'
0030 X' OB76 OB78 OB7A OB7C OB7E oeoo OC02 OC04'
0040 X' OC06 OC08 OCOA OCOC OCOE OC10 OC12 OC14,'
0050 x' OC16 OC18 OC1A OC1C OelE OC20 OC22 OC24 ,
0060 X'" OC26 OC28 OC2A OC2C OC2E OC30 OC32 oC34 ,
0070 X' ODOO OD02 OD04 0006 0008 ODOA oboe OOOE'
0080 X' 01)10 OD12 OD14 0016 01)18 bnlA OD1qO~lE'
0080 x' 7200 7202 7204 7206 7208 720A 720C720E',
0090 X' 8210 7212 7214 721'6 7218 "7'21 A 721C'721E' ,
OOAO x' 7220 7222 7224 7226 7228 722A 722C 722E'
OOSO X' 21.0.0 . 2102 2J04. 2106 210.8 210A 210C 210E'
OOCO X" 2110 2112 2114 2116 2118 211A 211C 211E'
OODO X' 2120 2122 2124 2126 2128 212A 212C 212E'
OOEO X' 2130 2132 2134 2136 2138 213A 213C 213E'
OOFO XI 2140 2J42 2144 2146, 2148 214A 214C 214E'

Figure 8. Sample Listing from $DEBUG

Notice the word of data at address X'0090' in Figure 8. The word contains the value X'8210'.
When the MOVE instruction in the sample program attempted to use this value as an address, it
went beyond the bounds of the partition and caused the program check.

o

(-~/

o

o

o

o

How to Analyze an Application Program Check (continued)

To verify that the address caused the program check, you could replace it with a valid address
(one smaller than X'7FFF') and see if the program runs successfully. You can replace data in
an unmapped storage area with the PATCH command of $DEBUG.

To use the PATCH command:

1. Press the attention key and enter P ATeH ..

2. After you enter the command, do the following:

a. For "OPTION", enter UNMAP.

b. For "STORBLK ADDRESS", enter the address of the STORBLK statement that
defines the unmapped storage area you want to modify.

c. For "SWAP#", enter the number of the unmapped storage area you want to modify.

d. For "DISPLACEMENT", indicate how far from the beginning of the unmapped storage
area the utility should go before listing the contents of the area. Enter a number of
bytes (in hexadecimal). For example, if you enter lA, $DEBUG will begin the listing
after the 26th byte in the unmapped storage area.

e. For "LENGTH", enter the number of bytes, up to 16, that you want to modify. You
cannot modify more than 16 bytes of data at a time. Enter a decimal number.

f. For "MODE", enter the format you want the data to appear in.

3. The PATCH command displays the data to be modified. Enter your new data following the
"DATA:" prompt message. Separate each word of data with a space.

If you enter less data than the amount displayed, the command pads the remaining area with
blanks (for character data) or zeros (for all other types of data).

Chapter 6. Analyzing and Isolating a Program Check PD-65

Analyzing and Isolating a Program Check
How to Analyze an Application Program Check (continued)

4. The command displays the data you entered and issues the prompt message
"YES/NO/CONTINUE". Respond Y to confirm the change, N to cancel the change, or
CONTINUE to confirm the change and to continue modifying data.

The following example uses the PATCH command to replace the invalid address in the
unmapped storage area with the address X'721 0'. After the change is made, program execution
is resumed by pressing the attention key and entering GO.

> PATCH
OPTION (*/ADDR/R() • •• R7I#1/fl211 AR/T~ODE/UNMAPh UNMAP
STORBLK ADDRESS (0 TO CANCEL PATCH): 76
SWAP#: 1
DtSPLACEMENT: go
.LENGTH: 1
MOD.E(X/F/D/A/C}: X
NOW IS

0090 Xl 8210 1

DATA: 7210
NEW DATA

0090 Xl 7210'
YES/NO/CONTINUE: Y

> GO

Some Common Causes of Application Program Checks

Program checks in an application program are commonly caused by the following:

• PROGSTOP statement omitted in the program

Failure to link-edit programs with external references (EXTRNs)

• Nonexecutable statements coded within inline executable code

Attempting to move a word of data to an odd-byte boundary

• Reading or moving data into a storage area too small to contain the data.

PD-66 SC34-0639

o

o

o

o

o

How to Analyze a System Program Check

Generally a system program check is caused by either of the following:

An error in the assembly or link-edit of the current supervisor during system generation.

An application program that somehow overlays a part of the supervisor in storage.

This section describes some methods you may be able to use to isolate the cause of a system
program check.

To begin analyzing the system program check, do the following:

1. Review the compiler and link-edit listings of the current supervisor for -1 completion codes.
If either of the listings do not indicate successful completion, correct the errors and perform
another system generation.

2. Try to reproduce the failure by rerunning all the programs that were active. Ensure those
programs run in the same partition they were running in when the failure occurred. While
you rerun the programs, identify which program caused the failure.

A program that was running in a partition containing supervisor code or a program doing a
cross-partition move is most likely the cause of the problem.

After determining which program caused the failure, go to the section" Analyzing the
Program Causing the System Program Check."

3. If you determine that the cause of the failure was not due to an application program, submit
an authorized program analysis report (AP AR) along with a stand-alone dump the next time
the failure occurs.

Analyzing the Program Causing the System Program Check

The program you identified as the cause of the system program check probably overlaid an area
of the supervisor. To correct the problem, you need to find the instruction in the program that
overlays the supervisor area.

This section explains two techniques you can use to isolate the cause of the failure. The
technique you use depends on the contents of the instruction address register OAR) shown in
the system program message.

If the address shown in the IAR does not contain all zeros, review the following section. Go to
the section "Technique 2 - IAR is All Zeros" on page PD-69 when the IAR address is all
zeros.

Chapter 6. Analyzing and Isolating a Program Check PD-67

Analyzing and Isolating a Program Check
How to Analyze a System Program Check (continued)

Technique 1 - IAR is Non-Zero

PD-68 SC34-0639

To isolate the problem, do the following:

1. Record the address shown for the instruction address register (IAR) in the system program
check message.

2. Press the Load button to re-IPL the system.

3. Press the attention key and enter $CP 1 .

4. Press the attention key and enter $0 .

5. EnterOOOO as the origin. Enter the IAR address from step 1. Enter the number 1 for the
count.

6. Record the value displayed for that address.

7. Press the attention key and load $DEBUG.

8. Enter the name of the program you identified as the cause of the problem.

The next sequence of steps enable you to determine if the contents displayed in step 6 change
during the program's execution. By setting breakpoints at various addresses in the program and
determining when the value from step 6 changes, you can locate the portion of the program that
causes the error.

9. U sing the compiler listing of the program, select several addresses throughout the program
at which you want $DEBUG to stop the program's execution.

10. Press the attention key and enter AT.

11. At the prompts, enter AOOR., a breakpoint address, and the NOLIST and STOP options.

12. Repeat steps 10 and 11 for each breakpoint address you selected.

13. Press the attention key and enter GO .

14. When $DEBUG stops the program's execution at the breakpoint, press the attention key
and enter $0 in partition 1.

o

c

o

c

o

How to Analyze a System Program Check (continued)

15. Enter 0000 as the origin. Enter the IAR address from step 1. Enter the number 1 for the
count.

16. Determine whether the value now displayed is the same value you recorded in step 6 on
page PD-68.

17. Repeat steps 13 through 16 until you notice a value other than the value shown in step 6
on page PD-68. When you notice a different value, go to step 18.

18. In the compiler listing, look at the instructions between the last two breakpoint addresses.
One or more of the instructions within those breakpoint addresses are the instructions that
overlaid a supervisor area and caused a system program check.

19. Determine what instructions caused the failure and correct the error.

Technique 2 - tAR is All Zeros

This technique uses $DEBUG to trace the program's execution. To isolate the problem, do the
following:

1. Press the attention key and enter $CP 1.

2. Press the attention key and load $DEBUG.

3. Enter the name of the program you identified as the cause of the problem.

4. Press the attention key and enter AT to set the first breakpoint at the address of the
program's entry point. Enter TASK when $DEBUG prompts for an option. For the low
address, enter the address of the program's entry point.

5. Enter the address of the program's last executable instruction as the high address.

6. Press the attention key and enter GO.

7. When the system program check occurs, the instruction that caused the failure is most likely
at one of the last few addresses shown in the trace output.

8. Examine the compiler listing and determine which instruction caused the failure.

9. Correct the error and recompile the program.

Chapter 6. Analyzing and Isolating a Program Check PD-69

Notes

(/'~"\

',-=-,,/

()

PD-70 SC34-0639

o

c

o

Chapter 7. Analyzing a Failure Using a Storage
Dump

This chapter explains how you can use a storage dump created by either $TRAP or the
stand-alone dump method to analyze a failure. The discussions include how to analyze a wait
state, run loop, and a program check.

Very often when you use a dump to analyze a failure, you may have to look at control blocks to
find information about the failure. You can obtain a control block equate listing (copy code) by
including a COpy statement in your program and specifying the name of the control block you
need. The Language Reference contains a list of commonly used control block equate names.
The control block equates reside on volume ASMLIB and end with the characters "EQU". The
Internal Design shows the control blocks in detail.

Before you begin to analyze a failure using a dump, you need to know how to interpret the
various fields shown in a dump and what they mean. The following section explains the various
fields of a dump.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-71

Analyzing a Failure Using a Storage Dump
Interpreting the Dump

This section explains the various fields of a sample dump. $TRAP was used to produce the
sample dump presented in this section.

Some of the fields shown in a dump differ depending on whether you created the dump using
$TRAP or the stand-alone dump method. These differences are noted in the explanation of the
sample dump where appropriate. In addition, some of the fields that can appear in a dump
depend on the devices and features installed on your system.

The examples presented show how $DUMP prints the information when you select the "format
control block" option. The order in which the examples are presented is the same order the
information would appear in a dump.

Note: If you are using a processor in Extended Address Mode, see the Extended Address Mode
and Performance Analyzer User Guide for additional information on the format of the dump.

The various pieces of the dump shown in this section have numbered items. An explanation of
the numbered items follows each example.

Hardware Level and Register Contents

PD-72 SC34-0639

Figure 9 shows the first part of the dump.

.. EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

II AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL

II LEVEL a LEVEL 1 LEVEL 2 LEVEL 3
II IAR 1FFA 2AD6 1F32 1F32
lEI AKR 0100 0110 0000 0000
II LSR 8090 OODO 0090 0090
II RO 0000 0001 0000 0000

R1 0000 0044 0000 0000
R2 02C2 02C2 0000 0000
R3 02B6 004D 0000 0000
R4 0000 0048 0000 0000
RS 0001 80SC 0002 0003
R6 0000 00B8 8000 8000
R7 0000 0000 0000 0000

Figure 9. Hardware Level and Register Contents

SVC-LSB
1F32
0000
OOCO
0000
0000
0000
0000
0000
0001
8000
0000

SVCI-LSB
1FOA
0000
ooco
0000
0000
0000
0000
0000
0000
0000
0000

o

C)

o

c

o

Interpreting the Dump (continued)

Item D as shown in Figure 9 on page PD-72 indicates what type of dump was taken. This
example indicates a $TRAP dump. If a stand-alone dump were taken, the text STAND ALONE
STORAGE DUMP would appear.

Item II indicates the value of the processor status word (PSW) and the active hardware
interrupt level. In the sample dump, the PSW value indicates X'8006' on hardware level 1. A
$TRAP dump always shows the value of the PSW and the active level; a stand-alone dump
never contains this line of information.

Refer to the section "How to Interpret the Processor Status Word" on page PD-47 for the
meaning of the processor status word.

The column headings at item II identify six level status blocks (LSB). There is an II-word
level status block shown for each of the system's hardware interrupt levels (0-3). In addition,
the contents of the SVC (supervisor call) LSB and the SVCI (supervisor call immediate action)
LSB are shown.

The contents of a level status block for a particular hardware interrupt level is shown vertically
beginning with IAR and ending with R 7. The fields shown for a level status block in the dump
are also displayed in a program check message.

Level 0 is inaccurate in the stand-alone dump. This is the level on which the dump program
runs; therefore, none of the information for level 0 in a stand-alone dump is relevant to the
problem being analyzed. However, the information shown for level 0 in a $TRAP dump is
reliable; $TRAP saves the information for level 0 as well as levels 1, 2, and 3.

EDX uses the four hardware levels as follows. Level 0 is the highest priority level:

Level 0 - Timer interrupts and task dispatcher

Level 1 - Attention list tasks, supervisor tasks, and 110 interrupts

Level 2 - EDL tasks with a priority of 1-255

Level 3 - EDL tasks with a priority of 256-510.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-73

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

PD-7 4 SC34-0639

Item II shows the contents of the instruction address register OAR). The value shown is the
address of the machine instruction currently executing.

Item II shows the value of the address key register (AKR). The last 3-hexadecimal digits
indicate in which address space operand 1, operand 2, and the IAR reside. Bit 0 of the AKR is
the equate operand spaces (EOS) bit. If bit 0 is set to 1, the address space key indicated for
operand 2 is the address space key used for both operand 1 and operand 2.

The value of the AKR for level 1 in the sample dump (X'0110') indicates operands 1 and 2
reside in address space 1 (partition 2). The IAR resides in address space 0 (partition 1).

Item II shows the value of the level status register (LSR). The bits, when set, indicate the
following:

Bits 0-4 - The status of arithmetic operations. Refer to the processor description manual
for the meanings of these bits.

Bit 8 - Program is in supervisor state.

• Bit 9 - Priority level is in process.

Bit 10 - Class interrupt tracing is active.

Bit 11 - Interrupt processing is allowed.

Bits 5-7 and bits 12-15 are not used and are always zero.

The LSR value (X'OODO') for level 1 in the sample dump indicates that bits 8, 9, and 11 are set.

Item II shows the contents of general-purpose registers RO through R7 for each hardware
interrupt level.

For programs written in EDL, the contents of these registers are described as follows. If the
program were written in a language other than EDL, refer to the user's guide for that language
to determine the register usage.

RO Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program.

Rl The address in storage of the failing EDL instruction.

R2 The address in storage of the active task control block (TCB).

R3 The address in storage of EDL operand 1 of the failing instruction.

R4 The address in storage of EDL operand 2 (if applicable) of the failing instruction.

o

o

o

o

o

Interpreting the Dump (continued)

R5 The'EDL operation code of the failing instruction. The first byte contains flag bits which
indicate how operands are coded. For example, the flag bits indicate whether the operand
is in #1, #2, or specified as a constant. The second byte is the operation code of the EDL
instruction.

R6 Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program. However, you can determine if the system was
emulating EDL code when the failure occurred if R6 is twice the value shown in the
second byte of R5. For example, if the second byte of R5 contained X'32' and the system
was emulating EDL, R6 would contain X'0064'.

R 7 Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program.

If the hardware registers in your dump do not follow the EDL register conventions previously
discussed, you should examine the IAR and the AKR.

The IAR contains the address of the last machine instruction the system executed when the
failure occurred. The AKR tells you in which address space the IAR resides.

To determine where the program failed, you must check the AKR for the correct address space
(partition) and check the IAR to find out what was executing at that address.

Look in the supervisor link map from system generation and see if the JAR address is within one
of the supervisor modules. If that IAR address appears in the link map, the name of the module
that contains the IAR address may give you a clue as to what function was executing when the
failure occurred.

Since register usage can vary from one supervisor module to another, the contents of each
register mayor may not be meaningful to you. You should, however, check the contents of each
register.

Sometimes a register may point to a control block. For example, if R3 points to a terminal
control block (CCB), you can assume that the program was doing terminal I/O when the failure
occurred.

Sometimes the supervisor uses a register (R7 in many cases) for a branch and link instruction.
The address in R 7 may give you a clue as to which function passed control to the current IAR
address.

If the address shown in the IAR is within your program, subtract the program load point from
the IAR. Using the resulting address, look in the compiler listing and/or link-edit listing of that
program and determine which instruction is at that address and why it failed.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-75

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

Floating-Point Registers and Exception Information

Figure 10 shows the next part of the sample dump.

II FRO FFDF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF 0000 0000 0000 0000 FFFF FFFF

FR1 FFFF FFFF FFFF FFDF 0000 0010 0000 0000
0000 0080 0000 0000 0000 0008 0000 0000

FR2 OODD FFFF FFFF FFFF FFFF FFFF FFFF FFFE
FFFF FFFF 0000 0000 0000 0000 FFFF FFFF

FR3 FFFF FFFF FFFF FFFF 0000 0000 0000 0000
0020 0000 0000 0000 0000 0008 0080 0000

II MACHINE/PROGRAM CHECK LOG BUFFER - LATEST ENTRY PRINTS LAST

S/EAK TCBA PSW SAR IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
0100 0120 8006 B437 2AD6 0000 80DO 0064 850A B520 B437 B434 015C 00B8 0000

Figure 10. Floating-point Registers and Exception Information

PD-76 SC34-0639

Item II shows the contents of the floating-point registers (FRO-FR3) for each hardware level.
This information is printed if the system has the floating-point feature installed.

Item II shows entries from the system's software trace table, CIRCBUFF (if included during
system generation). The system uses the software trace table to record any program and
machine-check entries that occurred since the last IPL. The software trace table is described in
greater detail in Chapter 8, "Tracing Exception Information" on page PD-l 07.

o

/f--\

~,./:

o

o

o

o

Interpreting the Dump (continued)

The 2-byte S/EAK field indicates a state variable and an error address key.

The state variable (first byte) can be one of the following values:

0- No interrupt in process

1 - Standard processing (the default value)

2 - Now processing task error exit

3 - Undefined.

The error address key (second byte) is the address key (1 plus this value is the partition number)
that was in use when the error occurred.

The SAR (storage address register) field indicates the address in storage last accessed when the
failure occurred.

The remaining fields shown in item II also appear in a program check message.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-77

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

Segmentation Registers

PD-78 SC34-0639

Item III in Figure 11 shows the next part of the dump which contains the segmentation registers.
In this example, the segmentation registers indicate a system with four partitions and no
supervisor mapping across partitions. The partitions are 64K each.

The heading ADSa represents partition 1, ADS 1 represents partition 2, and so on, up through
ADS7 which represents partition 8.

The leftmost column (BLOCK) shows the addresses mapped for each segmentation register.
Each segmentation register maps 2K of storage. The segmentation registers are listed below
each address space (ADS) l}eading.

III STORAGE SEGMENTATION REGISTERS:

BLOCK ADSO ADS1 ADS2 ADS3 ADS4 ADS5 ADS6 ADS7

0000 0004 0104 0204 0304
0800 OOOC 010C 020C 030C
1000 0014 0114 0214 0314
1800 001C 011C 021C 031C
2000 0024 0124 0224 0324
2800 002C 012C 022C 032C
3000 0034 0134 0234 0334
3800 003C 013C 023C 033C
4000 0044 0144 0244 0344
4800 004C 014C 024C 034C
5000 0054 0154 0254 0354
5800 005C 015C 025C 035C
6000 0064 0164 0264 0364
6800 006C 016C 026C 036C
7000 0074 0174 0274 0374
7800 007C 017C 027C 037C
8000 0084 0184 0284 0384
8800 008C 018C 028C 038C
9000 0094 0194 0294 0394
9800 009C 019C 029C 039C
AOOO 00A4 01A4 02A4 03A4
A800 OOAC 01AC 02AC 03AC
BOOO 00B4 01B4 02B4 03B4
B800 OOBC 01BC 02BC 03BC
COOO 00C4 01C4 02C4 03C4
C800 OOCC 01CC 02CC 03CC
DOOO 00D4 01D4 02D4 03D4
D800 OODC 01DC 02DC 03DC
EOOO 00E4 01E4 02E4 03E4
E800 OOEC 01EC 02EC 03EC
FOOO 00F4 01F4 02F4 03F4
F800 OOFC 01FC 02FC 03FC

Figure 11. Segmentation Registers of a Four-partition System

>/-~

(:
~/

o

o

0

o

Interpreting the Dump (continued)

Figure 12 shows another example of the segmentation registers in which the supervisor is
mapped across three partitions.

EDX maps partitions starting at address X'OOOO'. As shown in Figure 12 , address spaces 0 and
1 both have 32 segmentation registers mapped. Address space 2 contains only 10 segmentation
registers.

Because the first five segmentation registers in each partition are identical (up to item" in
Figure 12), you can see that the first 10K of the supervisor in partition 1 is mapped across each
partition. Mapping the partitions in this manner leaves partitions 1 and 2 with 54K of storage
and partition 3 with 10K of storage which can be used for either supervisor code or application
programs.

STORAGE SEGMENTATION REGISTERS:

BLOCK ADSO ADSl ADS2 ADS3 ADS4 ADS5 ADS6 ADS7

0000 0004 0004 0004
0800 OOOC OOOC OOOC
1000 0014 0014 0014
1800 001C 001C 001C
2000 0024 0024 0024 .. 2800 002C 0104 01DC
3000 0034 010C 01E4
3800 003C 0114 01EC
4000 0044 011 C 01F4
4800 004C 0124 01FC
5000 0054 012C
5800 005C 0134
6000 0064 013C
6800 006C 0144
7000 0074 014C
7800 007C 0154
8000 0084 015C
8800 008C 0164
9000 0094 016C
9800 009C 0174
AOOO 00A4 017C
A800 OOAC 0184
BOOO 00B4 018C
B800 OOBC 0194
COOO 00C4 019C
C800 OOCC 01A4
DOOO 00D4 01AC
D800 OODC 01B4
EOOO 00E4 01BC
E800 OOEC 01C4
FOOO 00F4 01CC
F800 OOFC 01D4

Figure 12. Segmentation Registers with Supervisor Mapped Across Partitions

Chapter 7. Analyzing a Failure Using a Storage Dump PD-79

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

Storage Map

PD-80 SC34-0639

The next section of the sample dump shows the activity in each partition when the dump was
taken. This part is called the storage map.

STORAGE MAP: II $SYSCOM AT ADDRESS 19C6

II EDXFLAGS 4000 II SVCFLAGS 1000

III PART# NAME ADDR PAGES ATASK TCB(S)

II P1 ADS=O 0000 256

m $ TRAP B400 23 C9E4(A) C964
$FSEDIT CBOO 31 E8AC

II **FREE** EAOO 22

P2 ADS=1 0000 256 m
lID SAMPLA 0000 4 02C2(A) 0242 01A6 010E 0072

FREE 0400 252

P3 ADS=2 0000 256
$SMURON 0000 5 038A
$DISKUT1 0500 59 2FF6(A) 2F76
FREE 4000 192

m P4 ADS=3 0000 256
FREE 0000 256

Figure 13. Storage Map

Item II in Figure 13 shows the address (X'19C6') of the system common area, $SYSCOM (if
specified during system generation).

Item II is the EDXFLAGS field. The first two digits (40) shown for this field represent the
version and modification level of the supervisor. The dump programs do not use the third digit.
The last digit (0) indicates the program temporary fix (PTF) level.

Item II, SVCFLAGS, contains status information. The bits, when set, indicate the following:

Bit 0 - Supervisor busy
Bit 1 - Interrupt address (IA) buffer active
Bit 2 - Dequeue request

• Bit 3 - Floating-point hardware
• Bit 4 - A task is active

Bit 5 - Remote IPL through Communications Facility
Bit 6 - W AITM posting in progress

• Bit 7 - Single partition supervisor
• Bit 8 - Supervisor initialization complete

Bit 9 - Copy of $MEMDISK active
• Bit 10 - Extended Address Mode support active.

o

r--"\
I

~,~./

c

o

o

o

Interpreting the Dump (continued)

Bits 11-15 are not used. The value shown in the example, X' 1000', indicates floating-point
hardware is installed.

The column headings at item II mean the following:

PART# Partition number.

NAME Program name.

ADDR Program load point address.

P AGES The size of the address space (partition) or program in pages. A page is 256 bytes in
length. Programs loaded for execution always begin on a page boundary.

AT ASK The task control block (TCB) address of the attention list task, if one exists. Task
control block addresses of attention list tasks also have (A) beside the address.

TCB(S) The task control block addresses in a task chain. The first address in the task chain is
always the main task.

Item IE indicates that partition 1 (address space 0) begins at address X'OOOO' and is 256 pages
in length (64K). Because the whole supervisor resides in partition 1 in this example, the load
point of the first program in this partition, $TRAP, begins at address X'B400'. $TRAP is shown
at item IEl The dump also shows that $TRAP is 23 pages in length.

The TCB address X'C9E4' is the address of $TRAP's attention list task. The main TCB for
$TRAP is at address X'C964'.

Item 1& indicates the free space in partition 1 beginning at address X'EAOO'. The 22 pages of
free storage are contiguous.

Item m indicates the program SAMPLA is loaded at address X'OOOO' in partition 2 (address
space 1). SAMPLA has an attention list task at address X'02C2'. Also notice that the TCB
chain shows the addresses of four task control blocks (item II). The task control block at
address X'0242' is the main TCB for SAMPLA. The program SAMPLA consists of five task
control blocks.

Task control block addresses shown on the TCB chain are the addresses of the tasks defined
within the main program. If the main program attaches a task that was link-edited to the main
program, and the ATTACH instruction has CHAIN=NO, the address of that task does not
appear on the TCB chain.

Because the load point of SAMPLA is at address X'OOOO', all addresses shown for these tasks
would be identical to the compiler listing of SAMPLA.

Item !I shows that no programs are running in partition 4 (address space 3) and that there are
256 pages of free contiguous storage.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-81

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

Level Table and TCB Ready Chain

PD-82 SC34-0639

Figure 14 shows the next part of the sample dump.

BD EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE

2
3

02C2-1
NONE
NONE

READY (TCB-ADS)

NONE
010E-1 0242-1
NONE

am LOADER QCB CUR-TCB CHAIN (TCB-ADS)

94F4 FFFF NONE NONE

Figure 14. Level Table and Task Ready Chain

Item BD shows the level table and TCB ready chain. The level table keeps pointers to the
currently active tasks, all ready tasks for levels 1, 2, and 3, and the address space key in which
the tasks reside.

Item fB shows an active TCB on level 1 at address X'02C2'. The -1 that appears beside this
address indicates the address space. Notice also that for levell, there are no TCBs on the ready
chain.

The active TCB at address X'02C2' belongs to the attention list task in partition 2 for program
SAMPLA (item IE in Figure 13 on page PD-80).

Item Il shows no tasks active on level 2 and two tasks on the ready chain. Notice that these
two ready tasks are in address space 1 (partition 2).

The TCB at address X'OI0E' will be the first task on level 2 to become active if no other task on
level 1 or level 2 (with a higher priority) becomes active. Also notice that these two ready tasks
reside in program SAMPLA (item III in Figure 13 on page PD-80).

Item am shows the address (X'94F4') of the loader queue control block (QCB). This address is
the entry point of LOADQCB in the resident loader. This entry point appears in the supervisor
link map from system generation.

The value X'FFFF' indicates that no tasks are enqueued. If programs were being loaded, this
value would be X'OOOO' and the address of a TCB would be shown.

o

«"\
\,=,;!

o

o

c

o

Interpreting the Dump (continued)

Terminal Device Information

Figure 15 shows the terminals defined in the supervisor (item !I).

!I TERMINAL LIST:

II NAME CCB ID IODA FEAT QCB CUR-TCB CHAIN

fI CDRVTA 09FA FFFF 0040 0800 FFFF NONE NONE
CDRVTB OBAA FFFF 0000 0000 FFFF NONE NONE

til $SYSLOG OD84 0406 0004 0400 0000 E8AC-0 NONE
TERM2 OF5E 040E 0024 0400 0000 02C2-1 NONE
TERM3 1138 040E 0025 0400 0000 2F76-2 NONE
$SYSPRTR 131C 0306 0021 0020 FFFF NONE NONE
MPRTR 1534 0206 0001 0020 FFFF NONE NONE
T3101 177A 2816 0058 0440 FFFF NONE

Figure 15. Terminal Device Information

The column headings at item II mean the following:

NAME

CCB

ID

IODA

FEAT

QCB

The label on the TERMINAL statement for this device.

The address of the terminal control block (CCB).

This value identifies the type of terminal. The values shown also appear when you
issue the LD or LS commands of $IOTEST. The value X'FFFF' as shown in item
fI indicates that both CDRVTA and CDRVTB are virtual terminals.

The device address specified on the TERMINAL statement. For virtual terminals,
ignore any addresses that appear under this heading.

This value indicates the device characteristics defined at system generation, such as
output pause or spoolable device.

The queue control block (QCB) for the terminal. The value X'FFFF' indicates that
no task has enqueued the terminal. If the value were X'OOOO' as shown in item til,
a task has enqueued the terminal. For example, the task control block at address
X'E8AC' in address space 0 (partition 1) belongs to $FSEDIT as shown in the
storage map (Figure 13 on page PD-80).

CUR-TCB The address of the task control block and address space of the task currently
enqueued on the terminal.

CHAIN The task control block chain. If a task issued an ENQT to any of these terminals
while the terminal is currently enqueued by a different task, the TCB address and
address space of the task attempting to enqueue that terminal would appear on the
chain.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-83

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

Disk, Diskette, and Tape Device Information

PD-84 SC34-0639

Information on disk, diskette, and tape devices is presented in Figure 16 , which is the next
portion of the dump.

These three device types have volume directory entry (VDE) and device data block (DDB)
information listed. The VDE and DDB information is listed under separate headings in the
dump. Because of the interrelationship between the VDE and the DDB, the meanings of the
headings are explained first.

DISK(ETTE)/TAPE VDE

fD VDE NAME DDB FLAGS QCB CUR-TCB CHAIN (TCB-ADS)

Ell 06DC *DDE* 0738 0800 FFFF NONE NONE
070A EDX002 0738 8000 FFFF NONE NONE
07FO *DDE* 081E 2900 FFFF NONE NONE

II DDB IODA DEVID DSCB-> TASK DSCB-CHAIN

II 0738 0003 OOCA 94A6-0 08DE NONE
081E 0002 0106 CA5A-0 08DE NONE

Figure 16. Disk, Diskette, and Tape Device Information

The column headings for the volume directory entry are shown at item fD and mean the
following:

VDE

NAME

DDB

FLAGS

QCB

The volume descriptor entry (VDE) control block describes a volume on disk,
diskette, or tape. One VDE is created for each DISK or TAPE statement specified
during system generation. If the VOLNAME= operand is coded, one additional
VDE is generated for each performance volume.

The name of the volume. The first VDE for each device is identified as *DDE*. If
you coded the VOLNAME= operand on the DISK statement, the performance
volumes you specified for the device also appear here.

The device data block (DDB) describes the physical disk, diskette, or tape device.
One DDB is created for each device.

This value indicates information about the volume such as performance volume,
diskette, or disk directory.

The queue control block (QCB) for the disk, diskette, or tape device. The value
X'FFFF' indicates that no task has enqueued the device. If the value is X'OOOO', a
task has enqueued the device.

CUR-TCB The task control block address and address space of the task currently enqueued on
the device.

o

c

c

o

o

o

Interpreting the Dump (continued)

CHAIN The task control block chain. If a task attempts to enqueue any of these devices
while that device is currently enqueued by a different task, the TCB address and
address space of the task attempting to enqueue the device would appear on the
chain.

The column headings for the device data block (DDB) are shown at item ED and mean the
following:

DDB

10DA

DEVID

DSCB->

TASK

The device data block (DDB) describes the physical disk, diskette, or tape
device. One DDB is created for each device.

The device address.

The value identifies the type of device. The values shown also appear when
you issue the LD or LS commands of $IOTEST.

A pointer to the data set control block (DSCB) that is currently performing
I/O.

The address of the disk task TCB. If T ASK= YES were coded on each DISK or
T APE statement during system generation, one task control block is created for
each statement.

DSCB-CHAIN Identifies the data set control block (DSCB), and its address space, in the chain
waiting for service.

If the system encounters erroneous data within a DDB, the dump would show *ERROR-x
following the line of DDB information. The "x" could be any of the following characters:

A Control block pointer is an odd address.

D Address does not exist.

L Dump facility can dump up to 150 DSCBs. This limit was exceeded.

T TCB points to itself.

Item III in Figure 16 on page PD-84 shows the address of the VDE for a device descriptor entry
(DDE). A device descriptor entry describes the entire device and points to the volume
directory. The device data block (DDB) for this device is at address X'0738'. Volume
EDX002, which was defined as a performance volume, also has X'0738' as the DDB address.

By looking at the DDB address at item II, you can obtain further information about this device.
This information shows that the device is at address X'0003'. The device ID, X'OOCA', means
that this device is a 4962 disk model 3.

Because T ASK= YES was not specified for either device during system generation, the disk task
TCB address (X'08DE') is identical for the DDBs at addresses X'0738' and X'081E'.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-85

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

EXIO, BSC, and Timer Information

PD-86 SC34-0639

Figure 17 shows the last part of the formatted control block section of the dump.

am EXIO DEVICE LIST

NO EXIO DEVICE SYSGENED

1m BSCA DEVICE LIST

NO BSCA DEVICE SYSGENED

1m 7840 TIMER ATTACHMENT

TIMER DDB CHAIN (TCB-ADS) 1m 10:01:28 mm/dd/yy

095E 0072-1 01A6-1

Figure 17. EXIO, BSC, and Timer Device Information

Item am indicates that no EXIO devices are defined in this system. If any EXIO devices were
defined, the DDB address, device type, and device address would appear.

Item 1m also indicates that no binary synchronous communications (BSC) devices are defined.
An example of the information you would see if BSC devices were defined follows:

BSCA DEVICE LIST

DDB ID IODA

2864 1006 0009

This example shows the DDB at address X'2864'. The value X'1006' indicates a single-line
ACCA connection. The device address is X'0009'.

Item 1m indicates the type of timer attached to the system.

Item 1m indicates the time and date of the dump.

ltetnJlj shows the timer DDB and the TCB address and address space in the TCB chain. If any
tasks were executing an STIMER instruction, the entries on the chain are indicated. In this
example, the TCBs at addresses X'0072' and X'OlA6' (both in address space 1) are on the
timer chain. By looking at the storage map section of this sample dump (Figure 13 on page
PD-80), you can see that at item Ill, these two TCB addresses are on the TCB chain for the
program SAMPLA.

o

o

o

C .. ' ~\

)

o

Interpreting the Dump (continued)

Storage Partition Information

The next portion of the dump shows some of the information dumped from a partition.

ED P2 BEGINNING AT ADDRESS 0000 FOR 256 PAGES

Ell SNAP DUMP REQUESTED FOR 0000 THRU 045E

II E
m 0000 0808 E2C1 D4D7 D3C1 4040 0000 0242 0034 I •. SAMPLA I

0010 0000 OF5E 0344 0000 0000 0000 0100 0342 I ••• ; .••••••••••• I
0020 0000 0000 0000 02C2 0000 0000 C5C4 E7FO I ••••••. B EDXO I
0030 FOF2 0000 0001 0404 C6C9 D5C9 003E 0019 102 FINI I
0040 004E FFFF 805C 004D 0001 001D 0000 FFFF I • + ... *. (........ I
0050 0000 0001 90A9 1388 0015 0072 FFFF 0015 I •••••••••••••••• I
•
•
•

03FO 0000 0000 0000 0000 0000 0000 0000 0000 I .•.....•....•..• I

III SAME AS ABOVE

II 0450 0000 0000 0000 0000 0000 0000 0000 0000 I •••••••..••••••. I

Figure 18. Sample Contents of a Partition

Item ED indicates which partition number was dumped and the size of that partition in pages. In
this example, partition 2 was dumped and is 256 pages in length (64K).

Item Ell shows the range of storage addresses dumped. The partition addresses X'OOOO' through
X'0400' appear because the "partial dump" option of $DUMP was selected.

Item m shows the beginning address (X'OOOO') of partition 2. Each line of information shown
for an address is 8 words in length. The information shown is the contents of this location in
storage when the dump was taken.

Below item II, the value X'E2C l' is shown. The dump shows that this value is at address
X'0002' and begins on a word boundary.

Below item E is the EBCDIC representation of the values that were in storage. Thus, the value
X'E2Cl' shown for item II translates to EBCDIC as the characters SA. These are the first two
characters as shown in the name SAMPLA. All characters that are not printable are shown as
periods.

The text at item III appears in the dump whenever the address that would have been printed for
this line contains all null characters (X'OO'). In this example, you can see this because the
address after X'03FO' is X'0450'.

Item II shows the ending address that was specified for the partial dump display.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-87

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

Unmapped Storage Information

If you choose to dump and format the unmapped storage areas of your system, the storage dump
also will contain a list of unmapped storage pointers. Each unmapped storage pointer refers to a
2K-byte block of unmapped storage that has been obtained by an application program.
Figure 19 shows a portion of a dump that contains unmapped storage pointers .

.. UNMAPPED STORAGE POINTER - 0780

II
0000 AAAA 0000 0000 0000 0000 0000 0000 0000 I I
0010 0000 0000 0000 0000 0000 0000 0000 0000 I I

SAME AS ABOVE
0100 AAAA 0000 0000 0000 0000 0000 0000 0000 I I
0110 0000 0000 0000 0000 0000 0000 0000 0000 I I

SAME AS ABOVE
•
•
•

0700 AAAA 0000 0000 0000 0000 0000 0000 0000 I., •....•......... I
0710 0000 0000 0000 0000 0000 0000 0000 0000 I•......... I

11 UNMAPPED STORAGE POINTER - 0788

UNMAPPED STORAGE POINTER - 0790

UNMAPPED STORAGE POINTER - 0798

Figure 19. Unmapped Storage Pointers

Item" in the figure shows how the unmapped storage pointers are displayed in the dump.

Beneath item II is a listing of the contents of the unmapped ,storage area. The contents of the
unmapped storage area appear in the dump if the area was moved into mapped storage with a
SW AP instruction. If, at the time the dump was taken, a program had acquired an area of
unmapped storage but had riot yet used it, only the pointer to that area appears in the dump.
The contents of the area are not listed. See' item 11.

When the dump occurs, you may have several programs running which are using unmapped
storage. Determining which unmapped storage areas belong to a particular program and which
of those areas were in use when the dump occurred is described next.

Locating the Unmapped Storage Areas That Belong to a Program

PD-88 SC34-0639

You can locate the unmapped storage areas that belong to your program by following the steps
in this section. You will need the compiler listing for your program and a storage dump. The
dump should include the formatted control blocks, a list of the unmapped storage pointers, and
the contents of the partition in which the program was running.

The examples in this section refer to a sample program, MAILSORT, and portions of a sample
dump.

o

,.-(' ""'"
i

,~;

c

o

Cl .;I'

0

Interpreting the Dump (continued)

To identify which unmapped storage areas belong to your program, do the following:

1. Look in the compiler listing for your program and find the address of the STORBLK
statement. The STORBLK statement creates a storage control block that defines the size
and number of unmapped storage areas your program can use. If your program contains
more than one STORBLK statement, repeat the steps described in this section for each
statement.

In the sample program, the STORBLK statement is at address X'0034':

•
•
•

0034 0000 C1Cl 0000 0000 0040 BLK STORBLK TWOKBLK=8,MAX=3
003E 0003 FFFF 0000 0000 006A
0048 0000 0000 0000 0000 0000
0066 0000 0000 FFFF FFFF FFFF
0070 FFFF FFFF FFFF FFFF FFFF

2. Look at the storage map section of the dump to find the partition in which the program was
running and the load point of the program.

In the sample storage map shown below, MAILSORT is in partition 6 (item II). The load point
of the program is X'5000' (item II).

STORAGE MAP: $SYSCOM AT ADDRESS 19C6

EDXFLAGS 4000 SVCFLAGS 1000

PART# NAME ADDR PAGES ATASK TCB(S)

Pl ADS=O 0000 256
FREE 0000 256

P2 ADS=l 0000 256
FREE 3DOO 3
* *DATA* * 4000 64
FREE 8000 128

P3 ADS=2 0000 256
CATALOG 0000 4 0242 01A6 010E
FREE 0400 252

P4 ADS=3 0000 256
FREE 0000 256

P5 ADS=4 0000 96
REORDER 0000 4 0240
FREE 0400 92

P6 ADS=5 0000 160
DATA 0000 80

II
II MAILSORT 5000 4 52DO

FREE 5400 76

Chapter 7. Analyzing a Failure Using a Storage Dump PD-89

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

PD-90 SC34-0639

3. Add the address of the STORBLK statement to the program's load point. The result is the
address in storage of the storage control block.

Adding the address of the STORBLK statement in MAILSORT to the program's load point
yields a result of X'5034'.

4. Look at the portion of the dump which lists the contents of the partition in which the
program was running. Search this portion of the dump for the address you calculated in
step 3.

Figure 20 shows the portion of the sample dump that contains the storage control block for
MAILSOR T. The beginning of the control block is shown at item II.

P6 BEGINNING AT ADDRESS 0000 FOR 160 PAGES
•
•
• II

5030 E2E3 0000 0000 C1C1 0000 0000 0040 0003 1ST AA• I

B
5040 4000 0001 0000 506A 0000 0144 0000 014C I ••••• & •••••••• < I
5050 0000 0154 0000 015C 0000 0164 0000 016C I •.•.••. * % I

II
5060 0000 0174 0000 017C 0000 078C 0000 0794 I •.•.•...•.••..•• I
5070 0000 079C 0000 07A4 0000 07AC 0000 07B4 I •.••••.••.••...• I
5080 0000 07BC 0000 07C4 0000 07CC 0000 07D4 I •.•••.. D MI
5090 0000 07DC 0000 07E4 0000 07EC 0000 07F4 I •.••••• 0 41
50AO 0000 07FC 0000 0804 0000 080C 0000 0814 I •...••.......... I
50BO 0000 081C 0000 0824 0000 082C 0000 0834 I •.•..•...•....•. I

50CO 0000 083C
II

0000 0844 0000 0007 0003 0001 I •••..•.•.•...••. I
50DO D02A 0001 0000 802C 50CE 50EO 0001 3231 I •.•...•• &. &/ •••• I

Figure 20. Sample Storage Control Block Listing

(,(-~~'Y\

\,J

o

o

o

Interpreting the Dump (continued)

5. Within the storage control block, find the address of the first pointer to the unmapped
storage areas your program obtained. To find this address, do the following:

a. Refer to the list of unmapped storage equates in your program. These equates are
generated when you code

COpy STOREQU

in your program. The list of equates in the MAILSORT program is as follows:

$STRPCHN EQU
$STRPID EQU
$STRPLEN EQU
$STRPRES EQU
$STORBLK EQU
$STORMAX EQU
$STORMAP EQU
$STORMPK EQU
$STORRSV EQU
$STORUSR EQU
$STORFLG EQU
$STOROVY EQU
$STORMSR EQU

o
$STRPCHN+2
$STRPID+2
$STRPLEN+2
$STRPRES+2
$STORBLK+2
$STORMAX+2
$STORMAP+2
$STORMPK+2
$STORRSV+2
$STORUSR+2
X'8000'
$STORFLG+2

Note: The equates shown above are only for use in this example. For a current listing
of the STOREQU equates, refer to the list generated in your program or refer to the
control block equates shown in the Internal Design.

b. Find the $STORUSR equate in the list. This equate points to the word in storage that
contains the address of the first unmapped storage pointer. The location of $STORUSR
in the list reflects the displacement of this word from the beginning of the storage
control block.

In the equates in the MAILSORT program, $STORUSR is the tenth equate in the list.
Therefore, in this example, the word that contains the address of the first unmapped
storage pointer is the tenth word from the beginning of the storage control block. See
item Bin Figure 20 on page PD-90.

c. Using the displacement into the storage control block, find the word that contains the
address of the first unmapped storage pointer. When you have found the address of the
pointer, locate this address in the dump.

The tenth word from the beginning of the MAILSORT control block contains the
address X'506A'. Item Dn Figure 20 on page PD-90 shows the location of this address
in storage. In this example, the first pointer to an unmapped storage area is the
doubleword 078C 0000.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-91

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued)

PD-92 SC34-0639

6. Now that you have found the first unmapped storage pointer, refer back to the STORBLK
statement in your program. The statement tells you how many 2K-byte blocks of unmapped
storage the program obtained. The dump will contain one pointer for each 2K-byte block of
unmapped storage. Use the STORBLK statement to calculate the number of unmapped
storage pointers your program required.

The STORBLK statement for the MAILSORT program is:

BLK STORBLK TWOKBLK=8,MAX=3

The STORBLK statement defines three unmapped storage areas of 16K-bytes apiece. The
number of unmapped storage pointers required then is 24.

7. Note that each unmapped storage pointer is a doubleword. The second word of the
double word consists of zeros (0000) and can be ignored. Return to the storage dump and,
beginning with the first unmapped storage pointer, list the first word of each pointer that
belongs to the program.

In the MAILSORT storage control block, the first word of the second unmapped storage pointer
is 0794. The first word of third pointer is 079C. The first word of the fourth pointer is 07 A4,
and so on. The first word of the last pointer (number 24) is 0844. (See item II in Figure 20 on
page PD-90.)

8. The list of pointer values you collected in step 7 tells you which unmapped storage areas
belong to your program. To determine which unmapped storage areas were in use when the
dump occurred, look at the portion of the dump that lists the segmentation registers for your
system. Scan this list for any of the pointer values that belong to your program. If your
program was using a block of unmapped storage when the dump occurred, the pointers to
that block of unmapped storage will appear in the segmentation register list.

The following is the list of pointer values which belong to MAILSORT. Each of these values is
the first word of an unmapped storage pointer contained in Figure 20.

078C
0794
079C
07A4
07AC
0784
07BC
07C4

07CC
0704
070C
07E4
07EC
07F4
07FC
0804

080C
0814
081C
0824
082C
0834
083C
0844

Figure 21 on page PD-93 shows the segmentation register information in the sample dump.
Looking at the segmentation register values for partition 2 (address space 1), you can see eight
of the pointer values that belong to MAILSORT. The pointers are highlighted.

()

C" ...) J

o

0

o

Interpreting the Dump (continued)

The pointers indicate that MAILSORT was using one of the three 16K-byte blocks of
unmapped storage it obtained with a GETSTG instruction. The segmentation register values
also show that MAILSORT obtained its mapped storage area in partition 2.

STORAGE SEGMENTATION REGISTERS:

BLOCK ADSO ADSl ADS2 ADS3 ADS4 ADS5 ADS6 ADS7

0000 0004 0104 0204 0304 0404 073C
0800 OOOC 010C 020C 030C 040C 0744
1000 0014 0114 0214 0314 0414 074C
1800 001C 011C 021C 031C 041C 0754
2000 0024 0124 0224 0324 0424 075C
2800 002C 012C 022C 032C 042C 0764
3000 0034 0134 0234 0334 0434 076C
3800 003C 013C 023C 033C 043C 0774
4000 0044 080C 0244 0344 0444 077C
4800 004C 0814 024C 034C 044C 0784
5000 0054 081C 0254 0354 0454 0464
5800 005C 0824 025C 035C 045C 046C
6000 0064 082C 0264 0364 0000 0474
6800 006C 0834 026C 036C 0000 047C
7000 0074 083C 0274 0374 0000 0484
7800 007C 0844 027C 037C 0000 048C
8000 0084 0184 0284 0384 0000 0494
8800 008C 018C 028C 038C 0000 049C
9000 0094 0194 0294 0394 0000 04A4
9800 009C 019C 029C 039C 0000 04AC
AOOO 00A4 01A4 02A4 03A4 0000 0000
A800 OOAC 01AC 02AC 03AC 0000 0000
BOOO 00B4 01B4 02B4 03B4 0000 0000
B800 OOBC 01BC 02BC 03BC 0000 0000
COOO 00C4 01C4 02C4 03C4 0000 0000
C800 OOCC 01CC 02CC 03CC 0000 0000
DOOO 00D4 01D4 02D4 03D4 0000 0000
D800 OODC 01DC 02DC 03DC 0000 0000
EOOO 00E4 01E4 02E4 03E4 0000 0000
E800 OOEC 01EC 02EC 03EC 0000 0000
FOOO 00F4 01F4 02F4 03F4 0000 0000
F800 OOFC 01FC 02FC 03FC 0000 0000

Figure 21. Sample Segmentation Register Values

Once you find which unmapped storage areas were in use by your program, return to the portion
of the dump which lists the contents of the unmapped storage areas (see Figure 19 on page
PD-88). You can then examine the contents of the unmapped storage areas that belong to your
program.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-93

Analyzing a Failure Using a Storage Dump
Analyzing a Wait State

PD-94 SC34-0639

This section explains how you analyze a wait state using a stand-alone or $TRAP dump. A
sample program and portions of a $TRAP dump are presented to show how you analyze the
failure.

When you begin analyzing the dump for a wait state, first check to see if a value is shown for
the processor status word (PSW). If a value is shown, examine that value to determine if a
program check occurred also. The section "How to Interpret the Processor Status Word" on
page PD-47 explains what the PSW indicates. If the PSW value does indicate a program check,
refer to the section "Analyzing a Program Check" on page PD-IOO to help you analyze the
failure.

The sample program, WTPGM, prints a test pattern on $SYSPRTR. An ATTNLIST defined in
the program should enable you to print the test pattern again when you press the attention key
and enter YES. However, when you attempt to repeat the test pattern, the program enters a
wait state.

The following discussion explains how to use the dump and the compiler listing to identify the
problem:

1. Look in the storage map section of the dump and find all the task control block (TCB)
addresses of the waiting tasks.

As shown for item D in the following sample dump, the TCB addresses of the waiting tasks are
X'CC28' and X'CBA8'. The task control block at address X'CC28' is the TCB address of the
program's attention list task. The task control block at address X'CBA8' is the TCB address of
the main task WTPGM.

Notice also for item II that the level table shows no active or ready tasks on any hardware level.
This further indicates that WTPGM is in a wait state. The dump also shows that $TRAP is not
active on any hardware level because the dump was taken using the "programmer console
interrupt" option of $TRAP.

o

o

o

o

o

Analyzing a Wait State (continued)

STORAGE MAP: $SYSCOM AT ADDRESS 19C6

EDXFLAGS 4000 SVCFLAGS 0000

PART# NAME ADDR PAGES ATASK TCB(S)

P1 ADS=O 0000 256
$ TRAP B400 23 C9E4(A) C964 .. WTPGM CBOO 2 CC28(A) CBA8
FREE CDOO 51

P2 ADS=1 0000 256
FREE 0000 256

P3 ADS=2 0000 256
FREE 0000 256

P4 ADS=3 0000 256
FREE 0000 256

EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE READY (TCB-ADS)

II 1 NONE NONE
2 NONE NONE
3 NONE NONE

LOADER QCB CUR-TCB CHAIN (TCB-ADS)

94F4 FFFF NONE NONE

Figure 22. Sample Storage Map for a Wait State

Because no tasks were active on any hardware level (except the supervisor on level zero), the
section of the dump showing the hardware registers does not point to the last instruction
executed (R 1).

Chapter 7. Analyzing a Failure Using a Storage Dump PD-95

Analyzing a Failure Using a Storage Dump
Analyzing a Wait State (continued)

PD-96 SC34-0639

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

AT TIME OF TRAP PSW WAS 0002 ON HARDWARE LEVEL a

LEVEL a LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
IAR 1F32 1F32 1F32 1F32 1F32 1FOA
AKR 0000 0000 0000 0000 0000 0000
LSR OOCO 0090 0090 0090 OOCO OOCO
RO 0000 0000 0000 0000 0000 0000
R1 0000 0000 0000 0000 0000 0000
R2 0000 0000 0000 0000 0000 0000
R3 0000 0000 0000 0000 0000 0000
R4 0000 0000 0000 0000 0000 0000
R5 0000 0001 0002 0003 0000 0002
R6 8000 8000 8000 8000 8000 0000
R7 0000 0000 0000 0000 0000 114C

Because you need the address to which R1 is pointing to determine that last instruction executed
by each task, you must examine a dump of the partition containing the TCB address for each
task. By reviewing the dump of that partition, you can find the address that R1 points to within
the TCB of each task.

Figure 23 on page PD-97 shows a sample dump of partition 1. The dump begins at the
program's load point (X'CBOO') and continues up to the beginning of the free storage area
(X'CDOO').

2. Do the following to find R1 in the TCB:

a. Look in the dump and find the TCB address (as shown in Figure 22 on page PD-95) of
the first task. The first TCB address of the sample program is at address X'CC28'. This
address appears under item D in Figure 23.

b. Using the TCB equates, find the R1 save area ($TCBS1) in the dump. You locate this
field by adding the offset X'OE' to the address of the TCB. In this case, the address
X'CC36' points to the address of R1 for the program's attention list task. This address
is X'CB60' and appears under item II.

c. Subtract the program load point from the address shown for Rl. The program load
point of the sample program is at X'CBOO'. The resulting address for the program's
attention list task is X'0060'. You use this address and the compiler listing to identify
which instruction the program was executing when the dump was taken. The compiler
listing for the sample program is shown,in Figure 24 on page PD-98 .

Because the sample program consists of two tasks (an attention list task and the main program),
you must also determine what address R1 points to for the second task (main program). The
steps you follow are the same as steps 1 through 2c but using the TCB address X'CBA8' of the
main task.

C)

c

o Analyzing a Wait State (continued)

o

o

The TCB address for the main task is shown under item II. The address Rl points to for the
main task is X'CB96' and is shown under item g.

Again, after subtracting the program load point from the address Rl points to for the main task,
the resulting address is X'0096'.

Pl BEGINNING AT ADDRESS 0000 FOR 256 PAGES

SNAP DUMP REQUESTED FOR CBOO THRU CDOO

CBOO 0808 E6E3 D7C7
CB10 0000 OD84 CCAA
CB20 0000 0000 0000
CB30 FOF2 0000 0000
CB40 D5D6 CB4C 0403
CB50 0002 0019 CB34
CB60 001D A025 8026
CB70 C9Dl D2D3 D4D5
CB80 E4E5 E6E7 E8E9
CB90 7C40 001A CB34

CBAO CB62 00B2 0022

CBBO 0000 88DO 0000
CBCO 002E 2094 0000
CBDO 0000 0000 CBD4
CBEO C740 4040 0000
CBFO 0000 FFFF 0000
CCOO 0000 0000 0000

SAME AS ABOVE
CC20 0000 0000 CBA8

CC30 0000 88DO 0000
CC40 003A 49D2 0000
CC50 0000 0000 CC54
CC60 C1E2 D240 0000
CC70 0000 FFFF 0000
CC80 0000 0000 0000

SAME AS ABOVE
CCAO 0000 0000 CC28
CCBO 0000 0000 0000
CCCO 0000 0000 0000
CCDO 0000 aleE E3Cl
CCEO 0000 0000 0000
CCFO 0000 0000 0000
CDOO Dl1E 0000 DllC

D440
0000
CC28
CBA8
E8C5
FFFF
1212
D6D7
F1F2
0017

FFFF
g
CB96
02BE
0000
0000
0000
0000

0080

II
CB60
0001
CC28
8000
0000
0000

0080
0000
0000
E2D2
0000
0108
BOA2

4040
0000
CBOO
0000
E240
001D
C1C2
D8D9
F3F4
CB34

II
FFFF

CBA8
0096
0000
0000
131C
0000

D
FFFF

CC28
OOOA
OD84
49CE
OD84
0000

0000
0000
0000
F340
0000
0000
DllE

Figure 23. Sample Storage Dump for a Wait State

0000 CBA8 CB3C
0000 0100 CCA8
0000 C5C4 E7FO
0001 0002 0202
CB5A 805C CB3A
805C CB3A 0001
C3C4 C5C6 C7C8
8026 1413 E2E3
F5F6 F7F8 F9FO
AOA2 CB3A 0001

0000 0000 2098

CB34 AOA2 0017
0000 0000 0000
CBD6 C4C5 C2E4
0000 0000 0000
CBOO 0000 CBA8
0000 0000 0000

0000 0000 49D6

OD84 FBOO 001D
0000 0000 FFFF
CC56 5BCl E3E3
0000 0000 0000
CBOO 0000 CBA8
0000 0000 0000

0000 0000 0000
0000 0000 0000
0000 01CC 0000
4040 0000 0000
FFFF 0000 0000
0000 0000 0000
0000 CD1A 805C

I .. WTPGM I
I •••••••••••••••• I
I EDXO I
102 I
I NO . < .. YES .!. * .. I
I .•..•.....• * I
I ABCDEFGHI
IIJKLMNOPQR STI
IUVWXYZ12345678901
I ••••••••••••••• I

I •••••••••••••••• I

I I
I •••••••••••••••• I
I M ODEBUI
IG 1
I .•....•..••.•••• I
I .••......••••••• I

I ••.••....•.•••• 01

I •••..•. - .•..•••. I
I •.. K •••••••••••• I
I $ATTI
IASK I
I ..•..•••.••••••• I
I .••..••.•••••••• I

I •••.•••••••••••. I
I ••••••••••..•••• I
I •••••••••.•.•••. I
I TASK3 I
I .••••••••.•••.•• I
I ...•..........•. I
IJ ... J ... J *I

3. Using the resulting address from step 2c on page PD-96, look at the instruction at that
address in the compiler listing and try to determine what caused the wait.

Figure 24 on page PD-98 shows the compiler listing of the sample program. The attention list
task points to an END ATTN instruction at address X'0060'. This address is shown as item D
in Figure 24 .

Chapter 7. Analyzing a Failure Using a Storage Dump PD-97

Analyzing a Failure Using a Storage "Dump
Analyzing a Wait State (continued)

PD-98 SC34-0639

The main task points to aWAIT instruction at address X'OO96'. This address is shown as
item B.

LOC +0 +2 +4 +6 +8

0000 0008 D7D9 D6C7 D9C1 D440 DEBUG PROGRAM START
OOOA 0000 00A8 003C 0000 0000
0014 01AA 0000 0000 0000 0100
001E 01A8 0000 0000 0000 0128
0028 0000 0000 0000 0000 0000
0032 0000
0034 FFFF 0000 0000 EVENT ECB
003A 0000 PRINT DATA F'O'
003C 0002 0202 D5D6 004C 0403 ALIST ATTNLIST (NO,POST1,YES,POST2)
0046 E8C5 E240 005A
004C POST1 EQU *
004C 80SC 003A 0002 MOVE PRINT,2
0052 0019 0034 FFFF POST EVENT
0058 001D ENDATTN
005A POST2 EQU *
005A 80SC 003A 0001 MOVE PRINT, 1 .. 0060 001D ENDATTN
0062 START EQU *
0062 A025 ENQT $SYSPRTR
0064 8026 1212 C1C2 C3C4 C5C6 PRINTEXT 'ABCDEFGHIJKLMNOPQR'
006E C7C8 C9D1 D2D3 D4D5 D6D7
0078 D8D9
007A 8026 1413 E2E3 E4E5 E6E7 PRINTEXT 'STUVWXYZ1234567890@'
0084 E8E9 F1F2 F3F4 F5F6 F7F8
008E F9FO 7C40
0092 001A 0034 RESET EVENT

B 0096 0017 0034 WAIT EVENT
009A AOA2 003A 0001 0062 IF PRINT,EQ,1,START
00A2 00B2 DEQT
00A4 0022 FFFF PROGSTOP
00A8 0000 0000 0000 0234 0000 ENDPROG
00B2 OODO 0000 0062 00A8 0000
OOBC 0000 0000 0000 0000 0000
•
•
•

01BE END

Figure 24. Compiler Listing of Wait State Program

Because the dump indicates that the attention list task is at the ENDATTN, you can assume the
program did pass control to the code at label POST2. The code at POST2 handles the YES
response. At this label, a value of 1 is moved to the field PRINT. The main task is supposed to
repeat the test pattern (branch to START) when PRINT is equal to 1.

0

(1"'\
\ '
~"-o"J1

o

o

o

o

Analyzing a Wait State (continued)

By examining the contents of PRINT in the storage dump, you can see that PRINT does contain
a 1. The field PRINT is at address X'CB3A' and is under item II:

P1 BEGINNING AT ADDRESS 0000 FOR 256 PAGES

SNAP DUMP REQUESTED FOR CBOO THRU CDOO

CBOO 0808 E6E3 D7C7 D440 4040 0000 CBA8 CB3C I .. WTPGM I
CB10 0000 OD84 CCAA 0000 0000 0000 0100 CCA8 I I
CB20 0000 0000 0000 CC28 CBOO 0000 C5C4 E7FO I EDXOI

CB30 FOF2 0000 0000 CBA8
II

0000 0001 0002 0202 102 I
•
•
•

However, even though the value of PRINT signals the program to repeat the test pattern, the
main task is still in a wait state.

By further examining the code at label POST2, notice that an END ATTN is coded immediately
after the MOVE:

005A
005A
0060
0062

805C 003A 0001
001D

0096 0017 0034
009A AOA2 003A 0001 0062

POST2

START

•
•
•

EQU *
MOVE PRINT, 1
ENDATTN
EQU *
•
•
•

WAIT EVENT
IF PRINT,EQ,1,START

Because the main task is waiting on the event control block EVENT to be posted, you must
determine what in the program prevents that event control block from being posted.

Closer examination of the code at label POST2 shows that a POST instruction, required to post
the event control block, was omitted. Because the attention list routine that processes the YES
response never posts EVENT, control never passes to the IF instruction which causes a branch
to label START.

In order to correct the problem of the wait state in the sample program, the code at label POST2
should look as follows:

POST2 EQU
MOVE
POST
ENDATTN

*
PRINT, 1
EVENT

Chapter 7. Analyzing a Failure Using a Storage Dump PD-99

Analyzing a Failure Using a Storage Dump
Analyzing a Program Check

This section explains how you analyze a program check using a stand-alone or $TRAP dump. A
sample program, SAMPLA, and portions of a $TRAP dump are presented to show how you
analyze the failure.

The failure discussed in this section occurred while SAMPLA, which has an attention list, was
executing in partition 2. $FSEDIT was loaded in partition 1 and was enqueued to $SYSLOG.
When an operator entered the attention list command FINI, the system stopped processing and
the terminal from which SAMPLA was loaded would not respond to the attention key. The
operator, in this case, IPLed the system, loaded $TRAP to trap all exception types, and
reproduced the situation in which the failure occurred. The failure occurred again and the
operator printed the dump using $DUMP. The "format control blocks" option was selected.

To analyze the failure, do the following:

1. Look at the portion of the dump that;~hows the contents of the hardware registers and see if
the processor status word (PSW) indicates a program check. The section "How to Interpret
the Processor Status Word" on pag~ PD-47 explains the meaning of the PSW.

Note: If a stand-alone dump was/taken, begin with step 2 on page PD-101.

Figure 25 shows a portion of the $TRAP dump which contains the hardware registers when the
failure occurred:

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP .. AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
IAR lFFA 2AD6 lF32 lF32 lF32
AKR 0100 0110 0000 0000 0000
LSR 8090 OODO 0090 0090 OOCO
RO 0000 0001 0000 0000 0000
Rl • 0000 0044 0000 0000 0000
R2 02C2 02C2 0000 0000 0000
R3 02B6 004D 0000 0000 0000
R4 0000 0048 0000 0000 0000
RS 0001 80SC 0002 0003 0001
R6 0000 00B8 8000 8000 8000
R7 0000 0000 0000 0000 0000

Figure 25. Register Contents from Program Check

Because the PSW value shown at item" (X'8006') indicates that a program check did occur on
levell, you must determine which task was active on level 1.

PD-100 SC34-0639

lFOA
0000
OOCO
0000
0000
0000
0000
0000
0000
0000
0000

o

~.,
~ ..• ~

I' .'.
I j

\\J

o

o

o

o

Analyzing a Program Check (continued)

2. Look at the level table portion of the dump and find the active task on the highest level.

Figure 26 shows the portion of the sample dump containing the storage map and level table.
Item II shows that level 1 has an active TCB at address X'02C2' in address space 1 (partition
2). The storage map shows that this TCB is the attention list task (item II) for program
SAMPLA. The load point for SAMPLA is X'OOOO'.

II

STORAGE MAP: $SYSCOM AT ADDRESS 19C6

EDXFLAGS 4000 SVCFLAGS 1000

PART# NAME ADDR PAGES ATASK TCB(S)

Pl ADS=O
$ TRAP
$FSEDIT
FREE

P2 ADS=l
SAMPLA
FREE

P3 ADS=2
FREE

P4 ADS=3
FREE

0000
B400
CBOO
EAOO

0000
0000
0400

0000
0000

0000
0000

256
23 C9E4(A)
31
22

256 II
4 02C2(A)

252

256
256

256
256

EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE READY (TCB-ADS)

1
2
3

02C2-1
NONE
NONE

NONE

LOADER QCB CUR-TCB

010E-l 0242-1
NONE

CHAIN (TCB-ADS)

94F4 FFFF NONE NONE

C964
E8AC

0242 01A6 010E 0072

Figure 26. Storage Map and Level Table for Program Check

Chapter 7. Analyzing a Failure Using a Storage Dump PD-IO 1

Analyzing a Failure Using a Storage Dump
Analyzing a Program Check (continued)

3. Look at the portion of the dump containing the hardware registers and see if the address of
the active TCB is in R2 of the level 1 registers.

At item II in the following example, notice that the address for R2 on level 1 does show the
address X'02C2'.

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

LEVEL a LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
IAR 1FFA 2AD6 1F32 1F32 1F32
AKR 0100 0110 0000 0000 0000
LSR 8090 OODO 0090 0090 OOCO
RO 0000 0001 0000 0000 0000
R1 0000 110044 0000 0000 0000
R2 02C2 lIo2C2 0000 0000 0000
R3 02B6 004D 0000 0000 0000
R4 0000 0048 0000 0000 0000
RS 0001 80SC 0002 0003 0001
R6 0000 00B8 8000 8000 8000
R7 0000 0000 0000 0000 0000

Notice also that the address for Rl (item II), which points to the failing EDL instruction, points
to address X'0044'. Because the program load point for SAMPLA is at address X'OOOO', the
address X'0044' corresponds to address X'0044' in the compiler listing of SAMPLA.

When a program load point is other than X'OOOO', subtract the load point address from the
address of Rl. Use the resulting address to find the failing EDL instruction in the compiler
listing.

4. Using the address of the failing EDL instruction (the address in Rl in this case), look at that
address in the compiler listing and determine the cause of the failure.

PD-I02 SC34-0639

1FOA
0000
OOCO
0000
0000
0000
0000
0000
0000
0000
0000

o

0 Analyzing a Program Check (continued)

Figure 27 shows the compiler listing for the program SAMPLA. As shown for item II, notice
that at address X'0044' the program attempts to move a word of data to an odd-byte boundary
(WORD+1).

LOC +0 +2 +4 +6 +8

PRINT NODATA
0000 0008 D7D9 D6C7 D9C1 D440 SAMPLA PROGRAM START
0034 0001 0404 C6C9 D5C9 003E ATTNLIST (FINI,DONE)
003E 0019 004E FFFF DONE POST ECB

110044 805C 004D 0001 MOVE WORD+1 , 1
004A 001D ENDATTN
004C 0000 WORD DC F'O'
004E 0000 0000 0000 ECB ECB 0
0054 90A9 1388 START STIMER 5000,WAIT
0058 0015 0072 FFFF ATTACH TASK1
005E 0015 010E FFFF ATTACH TASK2
0064 0015 01A6 FFFF ATTACH TASK3
006A 0017 004E WAIT ECB
006E OOAO 023E GOTO END
0072 0000 0000 0000 0234 0000 TASK1 TASK START 1
00F2 835C 0000 0014 START 1 MOVE #1 ,20

•
•
•

0106 0016 FFFF OOAO 00F2 ENDTASK

C
010E 0000 0000 0000 0234 0000 TASK2 TASK S TART 2
018E 835C 0000 0028 START2 MOVE #1,40

•
•
•

019E 0016 FFFF OOAO 018E ENDTASK
01A6 0000 0000 0000 0234 0000 TASK3 TASK START3
0226 835C 0000 0080 START3 MOVE # 1 , 128

•
•
•

0236 0016 FFFF OOAO 0226 ENDTASK
023E 0022 FFFF END PROGSTOP
0242 0000 0000 0000 0234 0000 ENDPROG

END

Figure 27. Compiler Listing of Program Check Program

o
Chapter 7. Analyzing a Failure Using a Storage Dump PD-I03

Analyzing a Failure Using a Storage Dump
Analyzing a Program Check (continued)

In the following example of the hardware registers for levell, item II shows that R3 (operand
1) is at address X'004D', which is on an odd-byte boundary. Item II shows that the address of
R4 (operand 2) is at address X'0048', which is on a word boundary. Thus, any attempt to move
a word of data to a byte boundary causes a specification check as indicated by item II.

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

II AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

LEVEL a LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
IAR 1FFA 2AD6 1F32 1F32 1F32
AKR 0100 0110 0000 0000 0000
LSR 8090 OODO 0090 0090 OOCO
RO 0000 0001 0000 0000 0000
R1 0000 0044 0000 0000 0000
R2 02C2 02C2 0000 0000 0000
R3 02B6 1I004D 0000 0000 0000
R4 0000 110048 0000 0000 0000
RS 0001 80SC 0002 0003 0001
R6 0000 00B8 8000 8000 8000
R7 0000 0000 0000 0000 0000

Because $FSEDIT had the $SYSLOG terminal enqueued, the system was unable to display the
program check message, and as a result, caused the system to stop processing.

PD-I04 SC34-0639

1FOA
0000
OOCO
0000
0000
0000
0000
0000
0000
0000
0000

()

o

o

o

o

Analyzing a Run loop

This section explains an approach you can use to analyze a run loop with the help of a
stand-alone or $TRAP dump.

Because a run loop occurs within a range of instruction addresses in a program, the dump would
only show the instruction address at which the program was executing when the dump was
taken. You can, however, use a dump to identify which task was active and the hardware level
on which the task was executing.

To analyze a run loop using a dump, do the following:

1. Look at the level table in the dump and find the TCB address of the active task on the
highest level.

2. Look in the storage map of the dump and find the name of the program whose TCB address
matches the TCB address from step 1 .

3. Rerun that program.

4. Turn to the section "Determining the Starting and Ending Points of the Loop" on page
PD-21. That section explains how to trace the addresses within the loop using $DEBUG.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-I05

Notes

o

PD-I06 SC34-0639

o

o

o

Chapter 8. Tracing Exception Information

The system sets aside an area in storage that it uses to record program check, soft exception, and
machine check information. This area in storage is called the software trace table. However, in
order for this storage area to be present, you must include the module CIRCBUFF during
system generation.

The software trace table provides you with an alternate method of identifying the cause of an
exception. For example, if for some reason you were not able to record the information
displayed in a program check message, you could use the information in the trace table to help
you analyze the exception.

The system makes an entry into the software trace table when an exception occurs. The system
does not record exceptions that occur in a program or task that has the ERRXIT = operand
coded on the PROGRAM or TASK statement.

The software trace table can contain a maximum of eight entries. When the maximum number
of entires is reached, the system overlays the oldest entry in the table with the newest entry.
Thus, the system records these entries in a "circular" fashion.

The entries in the trace table reflect the number of exceptions since the last IPL. The system
resets (clears) this table during each IPL.

If any entries are in the trace table when you take a stand.:-alone or $TRAP dump, these entries
are also shown in the dump. Figure lOon page PD-76 shows an example of how an entry
appears in a dump.

You can display the contents of the trace table on a terminal using the $D operator command.
How you do this is described next.

Chapter 8. Tracing Exception Information PD-I07

Tracing Exception Information
Displaying the Software Trace Table

You can display the contents of the software trace table at your terminal. In order to display the
trace table, first you need the supervisor link map listing from system generation.

To display the software trace table, do the following:

1. Change your terminal to partition 1 by pressing the attention key and entering $CP 1.

2. Press the attention key and enter $D.

3. At the prompt for ORIGIN:, enter 0000.

The next prompt, ADDRESS,COUNT:, asks you for an address and the number of words you
want to display.

4. For ADDRESS, enter the address of the software trace table. The address of the software
trace table appears beside the entry point name CIRCBUFF in the supervisor link map
listing.

5. For COUNT, enter the value 125. This value is the number of words in storage the trace
table occupies.

The system then displays the contents of the trace table at the terminal. An explanation of the
information displayed is in the section "Software Trace Table Format" on page PD-IIO.

6. Reply Nto the prompt ANOTHER DISPLAY?

PD-I08 SC34-0639

o

/'-~,

\'--~

o

o

o

o

Displaying the Software Trace Table (continued)

Figure 28 is an example showing steps 1 through 5 on page PD-I08. The address of the trace
table (CIRCBUFF) in this example is X'8F64'. The trace table contains two entries.

> $CP 1

PROGRAMS AT 00:00:15
IN PARTITION #1 NONE

PARTITION ADDRESS: B400 HEX; SIZE: 19456 DECIMAL BYTES
> $0
ENTER ORIGIN: noaa
ENTER AOORESS,COUNT: 8F64,125
8F64: 8F6E 8FAA 905E 0002 001E 0100 0120 S002
SF74: B437 2A06 0000 SODa 0064 B50A B520 B437
SFS4: B434 01SC OOBS 0000 0101 alAS S002 01A9
SF94: 2BS6 0110 SOOO 0192 013C 01A8 019A 01A9
SFA4: OOSE OOBC 0000 0000 0000 0000 0000 0000
SFB4: 0000 0000 0000 0000 0000 0000 0000 0000
SFc4: 0000 0000 0000 00000000 0000 0000 0000
SFD4: 0000 0000 0000 0000 0000 0000 0000 0000
SFE4: 0000 0000 0000 0000 0000 0000 0000 0000
SFF4: 0000 0000 0000 0000 0000 0000 0000 0000
9004: 0000 0000 0000 0000 0000 0000 0000 0000
9014: 00000000 0000 0000 0000 0000 0000 0000
9024: 000000000000 0000 0000 0000 0000 0000
'9034: 9000 nooO OOOQ 0000 0000 0000 OOOC>, 0000
9044: 0000,000000000000 0000 000000000000
9054:'000000000000 0000 0000

Figure 28. Sample Software Trace Table Entries

The next section explains the format and contents of the software trace table.

Chapter 8. Tracing Exception Information PD-I09

Tracing Exception Information
Software Trace Table Fonnat

The software trace table is a 125-word area in processor storage. The trace table consists of
control information and exception entries. This area in storage is described in the following
sections.

Control Information Format

The first 5 words of the trace table are control information. This 5-word area contains the
following information:

Word Contents

o The address of the first entry in the table.

1 The address at which the next entry will be written.

2 The ending address of the table. This address points to the first byte beyond the end
of the table.

3 The number of exceptions that occurred since the last IPL.

4 The size (in bytes) of each entry in the table. This field contains the value X'IE'
which indicates each entry is 30 bytes (15 words) in length.

Figure 29 shows several lines of control information from the previous example. An explanation
of each numbered item follows the figure.

SF64: sHE SPAA ISE I II II o 2 001E 0100 0120 S002
SF74: B437 2AD6 0000 SODO 0064 B50A BS20 B437

SFS4: B434 015C OOBS 0000
II

0101 01AS S002 01A9
SF94: 2BS6 0110 SODO 0192 013C 01AS 019A 01A9

SFA4: OOSE OOBC 0000
II

0000 0000 0000 0000 0000
•
•
•
• II

90S4: 0000 0000 0000 0000 0000

Figure 29. Control Information Example

PD-II0 SC34-0639

f)

C" ... ,' i

o

c

o

Software Trace Table Fonnat (continued)

The address (X'8F6E') shown below item" points to the first exception entry in the trace
table. The first exception entry is shown below item II.

The address (X'8FAA') shown below item II points to the address at which the next exception
entry will be written. This address is shown below item g.

Item II points to the first byte of storage following the trace table. This address (X'90SE') is
not shown in the example, but would begin immediately after item II.

Item II indicates that two exceptions have occurred since the last IPL. The second exception
entry begins below item II.

The value (X'OOlE') below item II indicates the length (in bytes) of each entry.

The next section explains the format and contents of an exception entry.

Chapter 8. Tracing Exception Information PD-lll

Tracing Exception Information
Software Trace Table Fonnat (continued)

Exception Entry Format

Each exception entry in the trace table is 15 words (30 bytes) in length. The first entry, which
follows the five words of control information, begins at word 5 in the table. When the maximum
number of entries (eight) is reached, the system writes the next entry at word 5 again,
overlaying the previous entry. Each entry contains the following information:

Word

o

1

Contents

This word contains a state variable and an address key.

The state variable, which is the first byte, can have any of the following values:

0- No interrupt in process

1 - Standard (default) processing

2 - Now processing task error exit

3 - Undefined

The address key, which is the second byte, indicates the address space that was in use
when the exception occurred. The partition in which the exception occurred is this
value plus 1.

The task control block (TCB) address of the failing task.

2 The value of the processor status word (PSW). The section "How to Interpret the
Processor Status Word" on page PD-47 explains the meaning of this value.

3 The contents of the storage address register (SAR). This field indicates the address in
storage last accessed when the failure occurred.

4 The contents of the instruction address register OAR). This field indicates the
address of the machine instruction currently executing.

5 The contents of the address key register (AKR). The last 3-hexadecimal digits
indicate in which address space operand 1, operand 2, and the IAR reside. Bit 0 of
the AKR is the equate operand spaces (EOS) bit. If bit 0 is set to 1, the address
space key indicated for operand 2 is the addreSS space key used for operand i and
operand 2.

6 The contents of the level status register (LSR). The bits, when set, indicate the
following:

PD-112 SC34-0639

Bits 0-4 - The status of arithmetic operations. Refer to the processor
description manual for the meanings of these bits.

o

o

o

o

Software Trace Table Fonnat (continued)

Bit 8 - Program is in supervisor state.

Bit 9 - Priority level is in process.

Bit 10 - Class interrupt tracing is active.

Bit 11 - Interrupt processing is allowed.

Bits 5-7 and bits 12-15 are not used and are always zero.

7 The contents of hardware register 0 (RO). Because the supervisor uses this register as
a work register, the contents are usually not significant to the failing program.

8 The contents of hardware register 1 (Ri). This field contains the address in storage
of the failing EDL instruction.

9 The contents of hardware register 2 (R2). This field contains the address in storage
of the active task control block (TCB).

10 The contents of hardware register 3 (R3). This field contains the address in storage
of EDL operand 1 of the failing instruction.

11

12

The contents of hardware register 4 (R4). This field contains the address in storage
of EDL operand 2 (if applicable) of the failing instruction.

The contents of hardware register 5 (R5). This field contains the EDL operation code
of the failing instruction. The first byte contains flag bits which indicate how
operands are coded. For example, the flag bits indicate whether the operand is in #1,
#2, or specified as a constant. The second byte is the operation code of the EDL
instruction.

13 The contents of hardware register 6 (R6). Because the supervisor uses this register as
a work register, the contents are usually not significant to the failing program.
However, you can determine if the system was emulating EDL code when the failure
occurred if R6 is twice the value shown in the second byte of R5. For example, if the
second byte of R5 contained X'32' and the system was emulating EDL, R6 would
contain X'0064'.

14 The contents of hardware register 7 (R7). Because the supervisor uses this register as
a work register, the contents are usually not significant to the failing program.
However, in many cases, R 7 may contain the address of a branch and link instruction.
The address may give you a clue as to which module passed control to the address in
the IAR.

Chapter 8. Tracing Exception Information PD-113

Tracing Exception Information
Software Trace Table Fonnat (continued)

Excluding the address of the program load point, all entries in the trace table contain the same
information that the system displays in a program check message, plus two additional fields: the
state variable and address key word, and the storage address register (SAR). The section
"Finding the Program Load Point Address" on page PD-115 explains how you can find the
address of the program load point.

The following application program check message caused the system to create the exception
entry in the trace table shown below the message.

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
B400 0120 8002 2A06 0000 8000 0064 B50A B520 B437 B434 015C 00B8 0000

The exception entry for the previous program check message begins below item" and ends
below item IE.

8F64: 8F6E 8FAA 905E 0002 001E O~O II
812 0120

II II II II II II IE III
8F74: B437 2AD6 0000 80DO 0064 B50A B520 B437

II ~ III IE
8F84: B434 01 C 00B8 0000 0101 01A8 8002 01A9

Item" shows the value of the state variable and address key. The value of the state variable
(X'Ol') indicates standard processing. The address key indicates address space 0 (partition O.

Item II shows the task control block (TCB) address X'0120'.

Item II shows the value of the processor status word (PSW). The value X'8002' indicates a
specification check occurred and that the translator was enabled. The specification check was
caused by a word move to a odd-byte boundary.

Item II shows the value (X'B43T) of the storage address register (SAR).

Item II shows the value (X'2AD6') of the instruction address register (IAR).

Item Ii shows the value (X'OOOO') of the address key register (AKR).

Item II shows the value (X'80DO') of the level status register (LSR).

Items II through IE show the contents of hardware registers RO through R 7.

PD-114 SC34-0639

o

o

o

c

o

Finding the Program Load Point Address

In order to determine where the failure occurred in the application program, you need the
address of the program load point. An exception entry in the trace table does not contain this
address, but you can find the load point address by using the value of the address key and the
TCB address.

If the area in storage that contained the failing program's task control block (TCB) has been
overlaid by other active tasks, you cannot find the load point address in the failing program's
TCB. The note under step 1 may apply, however.

This discussion assumes that you are using the most recent exception entry in the trace table and
that you were unable to record the program check message displayed for this exception. The
following steps explain how to find the program load point address:

1. Look at the value in the address key (word 0, second byte) and determine the partition in
which the failing program was active.

Note: If the failing program was the only program active in that partition, the load point
address is the address at which the partition begins. The $A ALL operator command
displays the beginning address of each partition. Using the beginning address of that
partition as the program load point address and the rest of the information in the exception
entry, turn to the section "How to Analyze an Application Program Check" on page PD-54.

If multiple programs were active in that partition, go to step 2 .

2. Add the value X'52' to the address shown for the TCB (word 1 in the exception entry).
Adding this value to the TCB address points to the field $TCBPLP in the task control block.
$TCBPLP contains the program load point address.

3. Press the attention key and enter $CP specifying the partition number from step 1.

4. Press the attention key and enter $D.

5. At the prompt for ORIGIN:, enter 0000.

6. At the prompt for ADDRESS,COUNT:, enter the address you calculated in step 2. Enter
the value 1 for the count.

The value the system displays is the program load point address of the failing program.

7. Reply N to the prompt ANOTHER DISPLAY?

Chapter 8. Tracing Exception Information PD-115

Tracing Exception Information
Finding the Program Load Point Address (continued)

The following items are ways in which you can determine if the program load point is valid:

• Check to see if the address is within the size of the partition in which the program was
running.

Subtract the load point address from the address shown for Rl (word 8 in the exception
entry). Using the resulting address and the compiler listing of the failing program,
determine if that address is within the program.

Make sure that if the address is within the program, it is the address of an executable
instruction.

If all of the above items seem correct, the address of the program load point is probably valid
and belongs to the failing program. Using this program load point address and the rest of the
information in the exception entry, turn to the section "How to Analyze an Application Program
Check" on page PD-54.

PD-116 SC34-0639

o

C",,', ' \
J

o

o

o

Chapter 9. Recording Device I/O Errors and
Program Check Information

When the system detects an I/O error for a device or encounters an error that interrupts normal
processing, it can supply you with information to help you pinpoint the cause of the problem.
The $LOG utility provides you with a way to record such error information whenever the
system issues it.

Typically, when the system detects an I/O error for one of the devices attached to your
Series/I, it issues status information about the device. When $LOG is active, it writes this
status information to a log data set on diskor diskette. If the system encounters an error during
processing that causes it to issue a program check message, $LOG, if active, also writes the
contents of the program check message to a log data set. The system provides two types of
program check messages: a system program check and an application program check. (Refer to
Chapter 6, "Analyzing and Isolating a Program Check" on page PD-43 for more details on
program check messages.)

The information stored in the system's log data set lets you know that an error occurred and can
help you to find the source of the error. The information is especially useful when you are
experiencing intermittent I/O errors and you have to call a service representative to analyze the
problem. For this reason, it is recommended that you keep the $LOG utility active whenever
you operate your system.

This chapter explains how to allocate a log data set, how to load and run $LOG, how to print or
display the information in the log data set, and how to interpret the error information you
receive.

Chapter 9. Recording Device I/O Errors and Program Check Information PD-117

Recording Device I/O Errors and Program Check
Information
Allocating the Log Data Set

Before you use $LOG, you must allocate a data set to contain any error information that the
utility may record. You can allocate the log data set with the AL command of the $DISKUT1
utility. You can name the data set anything you wish (1 to 8 characters) and it can reside on
any disk or diskette volume.

$LOG writes a single 256-byte record in the log data set for each device I/O error or program
check error that it records. Allocate as many records for the data set as you feel you require.
You must allocate at least three records because $LOG uses the first two records of the data set
for control information.

The following example shows how to allocate a log data set that can contain up to 30 "log
records." In the example, the name of the log data set is LOGDS and it resides on volume
EDX002:

Figure 30. Example of Allocating a Log Data Set

If the log data set is empty, $LOG begins writing to the third record in the data set. If the log
data set already contains entries, $LOG adds new entries after the old ones.

Starting and Controlling Error Logging

To start error logging, use the $L operator command to load $LOG into any partition. $LOG
asks you for the name and volume of the log data set. After you specify the data set name and
volume, $LOG is ready io siari iogging errors.

Note: For the remote manager (RM1) to receive error log information, you must also load
either the host program (CJUALTHL) or the send program (CJUALTSL).

Figure 31 on page PD-119 shows an example of how to start error logging. In this example,
item" shows how to load $LOG. The prompt message at item EI requests the name and
volume of the log data set. The example uses the data set created in Figure 30.

PD-118 SC34-0639

o

4\.
V

o

o

o

Starting and Controlling Error Logging (continued)

Item Dhows the attention commands you can enter to control $LOG. You can issue those
commands at any time. $LOG displays the message shown at item II to indicate logging is
active . ..
II

> $L $LOG
LOGOS (NAME,VOLUME): lOGDS,EDX002

LOADING $LOG 23P,OO:OO:15, LP=OOOO, PART=2

* $LOG UT I LI TY
*

II: THE FOLLOWING ATTENTION COMMANDS ARE AVAILABLE:
ATTN/$LOGOFF - TEMPORARILY DEACTIVATE LOGGING

* ATTN/$LOGON - REACTIVATE LOGGING
* ATTN/$LOGINIT - INITIALIZE LOG DATA SET
* REACTIVATE LOGGING
* ATTN/$LOGTERM - TERMINATE LOGGING
* ATTN/$LOG - REISSUE COMMAND LtST ... ATTN/$LOGDISP - DISPLAY ERROR MSG ON OCCURRENCE ... ATTN/$LOGTDW - TERMINATE ON DATA SET WRAP
* WARNING: DO NOT CANCEL ($C) THIS PROGRAM

Figure 31. Example of Starting Error Logging

As shown in Figure 31, $LOG has attention commands that enable you to control its activity.
To issue a command, press the attention key, type in the command name, and press the enter
key. You can use the commands as follows:

Command Use

$LOGOFF Suspend error logging ($LOG is still loaded).

$LOGON Restart error logging

$LOGINIT Clear the log data set and restart error logging. When you use the $LOGINIT
command, the system writes a new log control record to indicate that no entries
are in the log data set.

$LOGTERM End error logging ($LOG is no longer loaded).

$LOG Display the list of attention commands. This command also displays any error
messages issued by the $LOG utility. These error messages are from the utility
itself and have nothing to do with the errors that $LOG is tracking.

Chapter 9. Recording Device I/O Errors and Program Check Information PD-119

Recording Device I/O Errors and Program Check
Information
Starting and Controlling Error Logging (continued)

Command Use

$LOGDISP Display any error messages issued by $LOG when they occur. For example, if
the log data set becomes full during error logging, an error message will be
displayed immediately. If you don't enter $LOGDISP, you must use the $LOG
command to display errors.

$LOGTDW End the $LOG utility if the log data set becomes full during error logging. If
you do not enter this command, $LOG returns to the third record in the data
set and begins writing over the existing entries.

Printing or Displaying the Log Infonnation

By reviewing the log information, you can determine if any device I/O errors or program check
errors occurred while $LOG was active. The $DISKUT2 utility enables you to display the log
information on a terminal (LL command) or print it on any printer (PL command).

Note: If you use the remote manager (RMl), use the LR command of $DISKUT2 to display the
log information on a terminal or the PR command to print the information on a printer. See the
Operator Commands and Utilities Reference for more information on using these commands.

$DISKUT2 also enables you to display or print the following:

PD-120 SC34-0639

The log entries for an I/O device at a particular address. If you do not know the I/O device
addresses on your system, load the $IOTEST utility and issue the LS or LD command.

The log entries for all program checks issued by the system while $LOG was active
(application program checks and system program checks).

All log entries in the log data set. This includes log entries for the I/O devices on your
system and for program check errors.

o

o

o

Printing or Displaying the Log Infonnation (continued)

Figure 32 shows an example of how to print all of the log entries in the log data set. An
explanation of the numbered items follows the example.

II

B
II
D
II

II

> $l $DISKUT2
LOADING$DISKUT2 51P,00:29:36, LP=OOOO, PART~ 2

$~tSKUT2 - DATA SET MGMT. UTILITY I I

USING VOLUME EDX002

COMMAND(?): PL
LOG OS NAME: LOGOS
ENTER DEVICE ADDRESS, NULL FOR ALL ENTRIES,
OR 'FFFF' FOR PROGRAM/SYSTEM CHECKS ONLY:

DUMP ALL .OF· LOG? Y

COMMAND(?): EN

$DISKUT2 ENDED AT 00:30:34

Figure 32. Example of Printing the Log Data Set

Item II shows how you load $DISKUT2 after pressing the attention key.

As shown at item II, $DISKUT2 assumes that you are using the IPL volume. If the log data set
does not reside on the IPL volume, enter the CV command (change volume) at the first
COMMAND prompt and specify the volume on which the log data set resides.

The PL command entered at item II instructs the utility to print the log information on a
printer. $SYSPRTR is the default printer. If you enter the LL command, $DISKUT2 displays
the log information on your terminal.

The prompt message at itemD asks for the name of the log data set. In this example, the name
of the log data set is LOGDS.

The prompt message shown at item II asks you to specify the type of log information you want
printed. To print the log entries for a specific I/O device, enter the address of the device. To
print only the log information on program check errors, enter FFFF. Press the enter key if you
want to print all of the log entries in the log data set. In this example, the enter key is pressed (a
null reply) to print the contents of the entire log data set.

If you press the enter key, you receive the prompt shown at item II. Reply Y to confirm your
choice to print the entire log data set. If you reply N, $DISKUT2 asks you again for the type of
log information you want printed.

Chapter 9. Recording Device I/O Errors and Program Check Information PD-121

Recording Device I/O Errors and Program Check
Information
Printing or Displaying the Log Infonnation (continued)

Interpreting the Printed Output

The figures in this se_. 'es of the printed output created by $DISKUT2. An
explanation of the numbered items follows each example. Figure 33 shows the general format
of error log entries for I/O devices.

D ERROR LOG LIST, DATASET: LOGDS ON EDX002

II I/O LOG ERROR COUNTERS (BY DEVICE ADDR) :

II
0000 0000 0100 0000 0000 0000 0000 0000 0000
0010 0000 0000 0000 0000 0000 0000 0000 0000

II
0020 0001 0000 0000 0000 0000 0000 0000 0000
0030 0000 0000 0000 0000 0000 0000 0000 0000
0040 0000 0000 0000 0000 0000 0000 0000 0000
0050 0000 0000 0000 0000 0000 0000 0000 0000
0060 0000 0000 0000 0000 0000 0000 0000 0000
0070 0000 0000 0000 0000 0000 0000 0000 0000
0080 0000 0000 0000 0000 0000 0000 0000 0000
0090 0000 0000 0000 0000 0000 0000 0000 0000
OOAO 0000 0000 0000 0000 0000 0000 0000 0000
OOBO 0000 0000 0000 0000 0000 0000 0000 0000
OOCO 0000 0000 0000 0000 0000 0000 0000 0000
OODO 0000 0000 0000 0000 0000 0000 0000 0000
OOEO 0000 0000 0000 0000 0000 0000 0000 0000
OOFO 0000 0000 0000 0000 0000 0000 0000 0000

II PERM ERR

II II
DEV ADDR: 0002 DEV ID: 0106

II
9/15/84

II IE
DATE: LVL: 0001 AKR: 0000

III II 11
TIME: 0:20:22 RETRY: 10 IDCB: 7002 0852

III II
INTCC: 0002 ISB: 0080

lEI DCB 1 : 8007 0000 0000 0000 0000 0862 0000 0000

DCB 2 : 8005 0001 0000 0001 0000 0872 0000 0000

DCB 3 : 2109 0000 0000 1001 0001 0000 0100 lD4C

!& CSSW: 0881 4000 1001 0001

PERM ERR
00" 106 DEV ADDR: DEV ID:

DATE: 9/16/84 LVL: 0003 AKR: 0100
TIME: 0: 2:53 RETRY: 2 IDCB: 0000 0000
INTCC: 0002 ISB: 0080
CSSW: 12Dl 2041 0015 4200 0000 FFFF 00F8 6080
LOG LISTING ENDED

Figure 33. Example of Log Entries for I/O devices

PD-122 SC34-0639

o

1\
~)

o

c

o

Printing or Displaying the Log Infonnation (continued)

Item" identifies the name and volume of the log data set $DISKUT2 is printing. In this
example, the log data set is LOGDS on volume EDX002.

The information shown below item II lists device addresses and the number of I/O errors that
have occurred at those addresses. The device addresses range from X'OO'-X'FF', or 0-255.

Each byte indicates a device address and the number of I/O errors (in hexadecimal) logged at
that address since the log data set was last initialized. For example, the value X'Ol' shown
below item II indicates that one I/O error occurred at device address X'02'. Further, item"
indicates that one I/O error occurred at device address X'21'.

Item II indicates the type of I/O error. $DISKUT2 indicates either a permanent error (PERM

ERR) or a soft-recoverable error (SOFT RECOV ERR). A permanent error is an I/O error from
which the device cannot recover after attempting to retry the I/O operation.

A soft-recoverable error is one that through retrying the I/O operation, the device is able to
recover from the error.

Item II identifies the address of the device encountering the I/O error. The device address is
contained in the right-most byte of the word. In this example, the device is at address X'02'

Item II identifies the device type. The value X'0106' in this the example, indicates a 4964
diskette unit. The device type is also shown when you issue the LS or LD command of
$IOTEST.

Item II shows the date, according to the system clock, when the I/O error occurred.

Item II indicates the the hardware interrupt level that was active when the I/O error occurred.
This example shows that hardware interrupt level 1 was active.

Item II shows the value of the address key register (AKR). This value indicates the address
space that contained the active task when the error occurred. In this example, address space 0
(partition 1) contained the active task.

Item III shows the time, according to the system clock, when the I/O error occurred.

Item IE shows the number of times that the supervisor issued the I/O instruction to the device
before logging the error.

Item III shows two words of immediate device control block (IDCB) information. The first
word contains the I/O operation and the device address. The second word can contain either an
immediate data word, a DCB address, or zeros. The contents of this word are device
dependent. Refer to the device description manual for the meaning of the two words of IDCB
information.

Chapter 9. Recording Device I/O Errors and Program Check Information PD-123

Recording Device I/O Errors and Program Check
Information
Printing or Displaying the log Infonnation (continued)

Item III shows the value of the interrupt condition code. The code indicates successful or
unsuccessful completion of the I/O operation. The meaning of the interrupt condition code is
device dependent Refer to the device description manual for the meaning of this code.

Item lEI shows the value of the interrupt status byte (ISB). ThelSBcontains additional
information about the I/O error. The meaning of the ISB is device dependent. Refer to the
device description manual for the meaning of this value.

Item lID shows the device control block (DeB) information for this device when the I/O error
occurred. If the device did not require a DeB to perform the I/O operation, this item would not
appear in the listing. This example shows the contents of three chained DeBs the device needed
to perform the I/O.

Item II shows the contents of the cycle steal status words (eSSW) when the I/O error
occurred. Each word provides some information about the error. The number of words varies
by device type and in some cases by error type. Refer to the device description manual for the
meaning of the cycle steal status words.

Item III shows information about the I/O error that occurred on the device at address X'21'.
Item II shows that only one I/O error occurred at this address.

The value X'0306' shown below item III means that this device is a 4973 printer.

Notice that. for this device, no DeBs were required to do the I/O and that eight words of cycle
steal status were logged.

PD-124 SC34-0639

o

o

o

o

o

Printing or Displaying the Log Infonnation (continued)

Figure 34 shows the format of a log entry for an application program check and a system
program check. Refer to "How to Interpret the Program Check Message" on page PD-44 for
more information on the various fields shown in this example .

..
II

II

*** PROGRAM CHECK ***
DATE: 11/15/85 TIME: 08:25: 31

II II II
SAR = 904B PSW = 8002 PSW ANALYSIS: SPECIFICATION CHECK

TRANSLATOR ENABLED
ADDRESS OF TCB = 004C II PROGRAM NAME: TESTRUN

II II III
IAR = 2E7A AKR 0330 LSR = OODO

III
RO (WORK REG) 0000 R4 (EDL OP2 ADDR) 1E45
R1 (INSTR ADDR) 1E40 R5 (EDL COMMAND) 815C
R2 (EDL TCB ADDR) 1E4C R6 (WORK REG) 00B8
R3 (EDL OP1 ADDR) 0000 R7 (WORK REG) 1E7A

*** SYSTEM CHECK ***
DATE: 11/15/85 TIME: 08:25:31
SAR = 90C2 PSW = 8002 PSW ANALYSIS: SPECIFICATION CHECK

ADDRESS OF TCB = 004C
IAR = 7B20 AKR = 0300
RO 02BE
R1 FFFF
R2 = 0904
R3 = A7A7

LSR = 10DO
R4 2222
R5 7AFE
R6 8888
R7 2222

TRANSLATOR ENABLED

Figure 34. Example of Program Check Log Entries

Item" indicates the type of program check information in the log record. $DISKUT2 indicates
either an application program check (PROGRAM CHECK) or a system program check (SYSTEM

CHECK).

Item II shows the date and time when the program check occurred, according to the system
clock.

The contents of the' Storage Address Register (SAR) are shown under item II. The SAR tells
you which storage address the system was referring to when the program check occurred.

Item II shows the value of the processor status word (PSW) when the program check occurred.
The PSW indicates the type of error encountered. The meaning of the PSW is shown under item
II. In this example, a specification check occurred in the program. The PSW ANALYSIS field
also shows that the Storage Address Relocation Translator Feature was installed and enabled.

Item II shows the address of the active task control block (TCB). The address is not relocated
and reflects the address of the TCB in the program's compiler listing.

Item II shows the name of the failing program.

Chapter 9. Recording Device 110 Errors and Program Check Information PD-125

Recording Device I/O Errors and Program Check
Information
Printing or Displaying the Log Information (continued)

Item II shows the contents of the instruction address register (IAR). The address in the register
is the address of the machine instruction that was executing when the program check occurred.

Item II shows the contents of the address key register (AKR). Item IE shows the contents of
the level status register.

The information under item III is a list of the general purpose registers (RO-R 7) and their
contents. For programs written in EDL, the contents of these registers are as follows:

Register

RO

Rl

R2

R3

R4

R5

R6

R7

Contents

Work register. The contents of this register are usually not significant.

The address of the failing EDL instruction.

The address in storage of the active task control block (TCB). The address in R2
is the sum of the TCB address and the load point address of the program.

The address in storage of the operand 1 of the failing EDL instruction.

The address in storage of operand 2 (if applicable) of the failing EDL instruction.

The operation code of the failing EDL instruction.

Work register. The contents of this register are usually not significant.

Work register. The contents of this register are usually not significant.

Item IE is a sample of a log record for a system program check. The format of ~he system
program check is similar to that used for application program checks. Notice, however, that the
general purpose registers are not labeled in the log entry for the system program check. The
registers are not labeled because system program checks normally involve Series/l assembler
code where the contents of the registers can vary.

PD-126 SC34-0639

o

o

o

Appendix A. How to Use the Programmer
Console

The programmer console, which is an optional Series/l processor feature, is a useful tool when
you analyze problems.

Several of the chapters in this book mention the use of the programmer console to display
storage locations. However, you can perform many more functions with the programmer
console. This appendix explains some additional functions you can do. You can use the
programmer console to:

• Display or alter main storage locations

Store data into main storage

Display or alter register contents

Store data into registers

Stop on a selected address

Stop on an error condition

Execute one instruction at a time.

The topics discussed in this appendix use the term "console" when referring to the programmer
console.

Before the various functions of the console are discussed, a section on how to read the indicator
lights is presented. This section follows.

Appendix A. How to Use the Programmer Console PD-127

How to Use the Programmer Console
Reading the Console Indicator Lights

Across the top of the console is a row of 16 indicator lights. These lights represent the 16
binary bits of a Series/l word or two bytes. You refer to each indicator light as a bit position.
The bit positions are numbered left to right as bit position 0 through bit 15. When an indicator
light is on, this means that that bit is on or set to 1.

The value displayed in the lights may represent data in storage or registers, or it may represent a
storage address. What the value represents depends on the function you are performing. How
the console represents a value and how you read that value is described as follows.

Each group of four binary indicators represents four bits of a word area. Byte 0 (group 1 and
group 2) is the leftmost byte. Each light in a group of four has a binary-coded decimal value, as
follows:

x X X X
842 1

Group

x X X X
842 1

Group 2

X X X X
842 1

Group 3

Figure 35. Indicator Lights - Example 1

X X X X
842 1

Group 4

If you add the values of anyone group of four lights when each of the lights are on in that
group, the total is 15 or F in hexadecimal.

Because data and addresses in the Series/l are represented in hexadecimal, it is good practice to
convert the binary-coded decimal values displayed by the lights to hexadecimal. Appendix
C, "Conversion Table" on page PD-139 contains a table to help you convert from binary to
hexadecimal.

In the following example, assume that the top row represents the indicator lights. The 0
represents lights that are off (set to 0) and X represents the lights that are on (set to O.

o 0 0 X
1

Group

o 0 X 0
2

Group 2

o X 0 X
4 1

Group 3

Figure 36. Indicator Lights - Example 2

X 0 0 0
8

Group 4

In the second row is the decimal equivalent that corresponds to the X above the value. Add the
values within each group of four to get the total value of each group. Thus, the value of the
indicator lights in Figure 36 is 1 2 5 8.

PD-128 SC34-0639

o

o

o

o

o

Reading the Console Indicator Lights (continued)

Figure 37 shows a value which requires conversion to hexadecimal. The value of the indicator
lights in this example is 1 3 9 A.

000 X

Group

o 0 X X
2 1

Group 2

X 0 0 X
8

Group 3

Figure 37. Indicator Lights - Example 3

X 0 X 0
8 2

Group 4

The remaining sections explain the various functions· of console.

Appendix A. How to Use the Programmer Console PD-129

How to Use the Programmer Console
Displaying Main Storage Locations

To display an area in main storage, do the following:

1. Press the Stop key.

2. Press the AKR (address key register) key. The contents of the AKR are displayed in the
indicator lights.

3. Key in one hexadecimal value (new address key). This is the value of the address space
(partition number minus 1) in which you want to display main storage. For example, to
display main storage in partition 2, you would key in the value 1 on the console. The value
you enter is displayed in bits 13 -15 of the indicator lights.

4. Press the Store key to store the new address key into the AKR.

5. Press the SAR (storage address key) key. The contents of the SAR are displayed in the
indicator lights.

6. Key in the address (four hexadecimal characters) you want to display. This address is
displayed in the indicator lights.

7. Press the Store key. The address displayed in the lights is stored into the SAR.

8. Press the Main Storage key. The contents of storage at the address you entered is displayed
in the indicator lights. To display sequential main storage locations, continue pressing the
Main Storage key.

Each time you press the Main Storage key, the system increments the storage address by 2 and
displays the contents at that address.

PD-130 SC34-0639

o

o

o

o

Storing Data into Main Storage

To store data area into main storage, do the following:

1 . Press the Stop key.

2. Press the AKR (address key register) key. The contents of the AKR are displayed in the
indicator lights.

3. Key in one hexadecimal value (new address key). This is the value of the address space
(partition number minus 1) in which you want to store data. For example, to store data in
partition 1, you would key in the value 0 on the console. The value you enter is displayed
in bits 13 -15 of the indicator lights.

4. Press the Store key to store the new address key into the AKR.

5. Press the SAR (storage address register) key. The contents of the SAR are displayed in the
indicator lights.

6. Key in the address (four hexadecimal characters) at which you want to store data. The
address you enter is displayed in the indicator lights.

7. Press the Store key. The address displayed in the indicator lights is stored into the SAR.

8. Press the Main Storage key. The contents of the address you entered is displayed in the
indicator.

9. Key in the data (four hexadecimal digits) that you want stored at that address in main
storage. The value you entered is displayed in the indicator lights.

10. Press the Store key. The value shown in the indicator lights is stored at the address you
entered in step 6.

Each time you press the Store key, the system increments the SAR by 2, and the data stored at
that location is displayed.

Appendix A. How to Use the Programmer Console PD-131

How to Use the Programmer Console
Displaying Register Contents

To display the contents of a register, do the following:

1. Press the Stop key.

2. Press the Level key for the hardware level that contains the register(s) you want to display.
Timers run on level O. The supervisor and attention list tasks run on levell. User programs
and tasks run on levels 2 and 3.

You can display the contents of any of the following registers on that level by pressing the
key for that register:

LSR Level status register

AKR Address key register

JAR Instruction address register

RO-R7 Hardware registers 0 through 7.

After you press the register key, the contents of that register are displayed in the indicator lights.

Storing Data into Registers

You can store data into the IAR or registers RO-R 7 using the following procedure. The address
key register (AKR) and level status register (LSR) are displayable only.

To store data into a register, do the following:

1. Press the Stop key.

2. Press the Level key for the hardware level that contains the register(s) in which you want to
store data.

3. Press the key for the register in which the data is to be stored. The contents of that register
are displayed in the indicator lights.

4. Key in the data that you want to store. The value you enter is displayed in the indicator
lights.

PD-132 SC34-0639

5. Press the Store key. The value displayed in the indicator lights is stored in the register you
selected.

o

/-""
(,

\'l~,.

o

c

o

Stopping at a Storage Address

To stop on an address, do the following:

1. Press the Stop key.

2. Press the AKR (address key register) key. The contents of the AKR are displayed in the
indicator lights.

3. Key in one hexadecimal value (new address key). This is the value of the address space
(partition number minus 1) which contains the address on which you want the system to
stop. For example, to set a stop address in partition 1, you would key in the value 0 on the
console. The value you enter is displayed in bits 13 -15 of the indicator lights.

4. Press the Store key to store the new address key into the AKR.

5. Press the Stop On Address key.

6. Key in the address at which you want execution to stop.

7. Press the Store key. The address and address key are placed in the stop on address buffer.

8. Press the Start key. Execution begins at the current IAR address on the current hardware
level.

When the system loads the address you specified into the IAR, the processor enters the stop
state. At this point, you can examine the contents of storage. To exit the stop state, press the
Start key; execution begins at the next sequential address.

Stopping When an Error Occurs

Pressing the Stop On Error key causes the system to stop immediately if it detects a program
check, machine check, or power/thermal warning. To determine the error type, press the PSW
(processor status word) key. The value of the PSW is displayed in the indicator lights. The
section "Interpreting the Processor Status Word Bits" on page PD-47 explains what the bits
indicate.

To restart the processor, press the Reset key then the Start key. Pressing only the Start key
enables the processor to proceed with its error handling as if stop mode had not occurred.

Appendix A. How to Use the Programmer Console PD-133

How to Use the Programmer Console
Executing One Instruction at a Time

Pressing the Instruct Step key causes the system to execute one instruction and then stop.

To enable the system to execute one instruction at a time, do the following:

1. Press the Stop key.

2. Press the AKR (address key register) key. The contents of the AKR are displayed in the
indicator lights.

3. Key in one hexadecimal value (new address key). This is the value of the address space
(partition number minus 1) which contains the IAR address on which you want the system
to stop. For example, if the IAR address was in partition 1, you would key in the value 0
on the console. The value you enter is displayed in bits 13 -15 of the indicator lights.

4. Press the Store key to store the new address key into the AKR.

5. Press the Stop On Address key.

6. Key in the IAR address at which you want the system to stop.

7. Press the Store key. The IAR address and address key are placed in the stop on address
buffer.

8. Press the Start key. When the system attempts to execute the IAR address, the processor
stops.

9. Press the Instruct Step key. The system resets the Stop On Address to off.

10. Press the Start key. The system executes the instruction at the IAR address you entered
and then stops. The system updates the IAR to point to the next instruction address.

Each time you press the Start key, one instruction is executed and the IAR is updated to the
next instruction address.

If your supervisor contains timer support, interrupts will occur while you are single-instruction
stepping through your program. \Vhen this happens, you enter the system interrupt handier at
the time you press the Start key. You can set stop-on-address mode on your program's next
instruction and press the Start key; then, single-step until the next interrupt.

If the processor is in run state, pressing the Instruct Step key causes the processor to enter the
stop state. Pressing the Instruct Step key a second time resets instruction-step mode; the
processor remains in the stop state.

PD-134 SC34-0639

o

c

o

o

o

Appendix B. Allowing I BM Access to Your
System

On occasion, you may need to call an IBM support center to assist you in analyzing a problem
with your system. If the problem is complex, the IBM support center representative may ask to
establish a Remote Support Link. The Remote Support Link enables the support center
representative to get direct access to your Series/l system through a remote terminal. The link
is established over a switched telephone line.

Using the Remote Support Link, an IBM support center representative can issue operator
commands to your system and run EDX utilities. You can use the link to transfer disk data sets
to the support center to assist representatives in diagnosing your problem.

This appendix describes the hardware you need to set up a Remote Support Link and the
procedures for authorizing and disconnecting the link. To use these procedures, you must have
defined a remote support terminal and included the necessary supervisor modules during system
generation. See the Installation and System Generation Guide for more details.

You are responsible for ensuring the security and integrity of your data and software before
giving IBM access to your system. You must, for example, give IBM permission to establish a
Remote Support Link and should remove all confidential data from your system. IBM takes
every precaution to ensure the integrity of your data and software, but IBM assumes no
responsibility in this regard.

Appendix B. Allowing IBM Access to Your System PD-13S

Allowing IBM Access to Your System
Hardware Requirements

To set up a Remote Support Link, you need the following hardware:

One of the following communications adapters:

An Asynchronous Communications Single-Line Controller (#1610)

An Asynchronous Communications 8-Line Controller (#2091) with a 4-Line Adapter
(#2092)

A Multifunction Attachment - Port 0 (#1310)

A Feature Programmable 8-Line Controller (#2095) with a 4-Line Adapter (#2096).

A Communications Power Feature (#2010)

• An EIAt Communication Cable (#2057)

A modem (compatible with the American Telephone & Telegraph Co. 212A modem)

• A voice-grade switched telephone line, preferably one that is not routed through a
manually-operated switchboard.

Note: It is easier for the IBM support center to assist you if you have a second telephone
line available near your Series/I. The second line enables you to speak with a support
center representative while your system is linked to the IBM support center.

In addition to the hardware just described, your system also must have a disk and diskette unit.

Authorizing the Link

If the IBM support center representative determines that a Remote Support Link would help in
isolating or resolving your problem, you can use the following procedure to authorize the link.
Remember, you are responsible for ensuring the security and integrity of your data and software
before authorizing the link. You should, for example, remove all confidential data from your
system.

1. Check to see that your modem is switched on and ihai ihe Hne is ready for use.

Electronic Industries Association

PD-136 SC34-0639

o

o

o

o

o

Authorizing the Link (continued)

2. Load the IBM-supplied program called ANSWER. The ANSWER program resides on the
IPL volume. You can load this program from any terminal and in any partition but all
messages issued by the program appear on the operator console, $SYSLOG. To load the
ANSWER program, press the attention key on your terminal and enter $L ANSWER

> $L ANSWER·
LOADING ANSWER 3P,02:09:56, LP=OOOO, PART=r2

IF YOU AGREE THAT IBM SHOULD IN ITIATETHEREMOTE SUPPORTl.:INK, .AND
YOU HAVE TAKEN APPROPR lATE STEPS TO SAFEGUARD YOUR DATA, ENTER "y"

OR' .
ENTER liN II TO EXIT AND NOT ALLOW REMOTE SUPPORT ACCESS ==>

3. If you have taken the appropriate steps to safeguard the data in your system, enter Yto
authorize the Remote Support Link.

IF YOU AGREE THAT IBM SHOULD INITIATE THE REMOTE SUPPORT
TAKEN APPBOPRIATESTEPS TO SAFEGUARD YOUR

Entering N ends the program and prevents access to your system.

4. Enter the name of the remote support terminal. This name is the same as the label on the
TERMINAL definition statement for the remote support terminal. In this example, the
name of the terminal is REMSUPT.

IF" YOlJAGREE THAT. ·IBf1 SHOU.LD J N.IJIATE tHEREM~TESUPPORT·.L[NK.,AND
YOU HAVE TAKEN APPROPR lATE STEPS TO SAfEGUARD YOURDATA,ENTER"y"

qR. ' .. ' .. ' '.
ENTER "N".·TOE)UTANDNOTALLOW REMOTE
NAME OF. REMOTETER·M.INAL"==>REMSUPT .. .

When you complete this step, the program enables the communications adapter and
answers the phone when it receives a ring interrupt.

5. The IBM support center representative now has access to your Series/Ito diagnose a
problem or to transfer a correction over the line. The support center representative can
communicate with you by sending messages over the Remote Support Link or by talking
with you on a separate telephone line.

Appendix B. Allowing IBM Access to Your System PD-137

Allowing I BM Access to Your System
Disconnecting the Link

To disconnect the line and end the ANSWER program, press the attention key and enter
HANGUP.

It is your responsibility to ensure that the Remote Support Link has been disconnected and
disabled at the end of the problem-solving session.

Note: To communicate with your system, the IBM support center representative loads a
program called RSLEDX 1 from the remote terminal. If you disconnect the line before the
support center representative ends RSLEDX 1, the program will still be running on your system.
You can cancel RSLEDX 1 in this case by pressing the attention key and entering the $C
command.

PD-138 SC34-0639

o

/---\

\,-_/

o

o

o

Appendix C. Conversion Table

This appendix contains a conversion table for the hexadecimal, binary, EDCBIC, and ASCII
equivalents of decimal values. The table also contains transmission codes for communications
devices.

Appendix C. Conversion Table PD-139

Conversion Table

o
ASCII EBASC*

(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

0 00 00000000 NUL NUL NUL

1 01 0001 SOH SOH NUL space space

2 02 0010 STX STX @ 1 1,1

3 03 0011 ETX ETX @

4 04 0100 PF EaT space 2 2

5 05 0101 HT ENQ space

6 06 0110 LC ACK

7 07 0111 DEL BEL 3

8 08 1000 BS OLE 4 5

9 09 1001 RLF HT OLE

10 OA 1010 SMM LF P

11 OB 1011 VT VT P 5 7

12 OC 1100 FF FF 0

13 00 1101 CR CR 0 6 6

14 DE 1110 SO SO p 7 8

15 OF 1111 SI SI p

16 10 0001 0000 OLE OLE BS 8 4

17 11 0001 DCl DCl BS

18 12 0010 DC2 DC2 H

19 13 0011 TM DC3 H 9 0

20 14 0100 RES DC4 (

21 15 0101 NL NAK (0 Z

22 16 0110 BS SYN h @ (EOA) @ (EOA),9

23 17 0111 IL ETB h

24 18 1000 CAN CAN CAN

25 19 1001 EM EM CAN

26 lA 1010 CC SUB X RS RS

27 lB 1011 CUl ESC X

28 lC 1100 IFS FS 8 upper case upper case

29 10 1101 IGS GS 8 A

30 lE 1110 IRS RS x
31 1 F 1111 IUS US x © (EaT) @ (EaT)

32 20 00100000 OS space EOT @ t
33 21 0001 SOS ! EaT
34 22 0010 FS " 0
35 23 0011 # 0 / x
36 24 0100 BYP $ $
37 25 0101 LF % $ s n

38 26 0110 ETB & d t u

39 27 0111 ESC d
40 28 1000 (DC4
41 29 1001) DC4 u e
42 2A 1010 SM * T v d
43 28 W11 CU2 + T
44 2C 1100 4 w k
45 20 1101 ENQ 4
46 2E 1110 ACK t
47 2F 1111 BEL / t x c
48 30 0011 0000 0 form feed
49 31 0001 1 form feed y I
50 32 0010 SYN 2 L z h

*The no-parity TWX code for any given character is the code that has the rightmost bit position off.

c
PD-140 SC34-0639

o
ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

51 33 0011 3 L
52 34 0100 PN 4
53 35 0101 RS 5
54 36 0110 UC 6 1 SOA
55 37 0011 0111 EOT 7 1 ® (SOA),comma b
56 38 1000 8 FS
57 39 1001 9 FS
58 3A 1010 : \

59 3B 1011 CU3 \ index index
60 3C 1100 OC4 < <
61 3D 1101 NAK = < ® (EOB)
62 3E 1110 > I
63 3F 1111 SUB ? I
64 40 0100 0000 space @ STX @ (NAK),- !

65 41 0001 A STX
66 42 0010 B B
67 43 0011 C B I m
68 44 0100 0 "

69 45 0101 E " k
70 46 0110 F h I v

71 47 0111 G h

72 48 1000 H OC2
73 49 1001 I OC2 m

o 74 4A 1010 ¢ J R n r

75 4B 1011 K R
76 4C 1100 < L 2 0 i

77 40 1101 (M 2
78 4E 1110 + N r

79 4F 1111 1 0 r p a
80 50 0101 0000 & P line feed
81 51 0001 Q line feed q 0

82 52 0010 R J r s
83 53 0011 S J
84 54 0100 T
85 55 0101 U .
86 56 0110 V J

87 57 0111 W J $ w

88 58 1000 X SUB
89 59 1001 y SUB
90 5A 1010 ! Z Z
91 5B 1011 $ [Z CRLF CRLF
92 5C 1100 * \

93 50 1101) 1 backspace backspace
94 5E 1110 /\ z idle idle
95 5F 1111 ---, - z
96 60 0110 0000 ACK
97 61 0001 / a ACK & j

98 62 0010 h F a 9

99 63 0011 c F
100 64 0100 d & b
101 65 0101 e &
102 66 0110 f f
103 67 0111 9 f c f

o
Appendix C. Conversion Table PD-141

Conversion Table

o
ASCII EBASC*

(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

104 68 1000 h SYN d p

105 69 1001 i SYN

106 6A 1010
I

j V I

107 6B 1011 k V e

108 6C 1100 % 1 6

109 60 1101 m 6 f q

110 6E 1110 > 11 v 9 comma

111 6F 1111 ? 0 v
112 70 0111 0000 p shift out h /
113 71 0001 q shift out

114 72 0010 r N

115 73 0011 s N i y

116 74 0100 t
117 75 0101 u

b 118 76 0110 v n (YAK),period
119 77 0111 w n

120 78 1000 x RS
121 79 1001 y RS
122 7A 1010 z 1\ horiz tab tab
123 7B 1011 # I 1\
124 7C 1100 @ I > lower case lower case
125 70 1101 f >
126 7E 1110 = ~ "-'
127 7F 1111 " DEL "-' delete
128 80 10000000 NUL SOH
129 81 0001 a SOH SOH space space
130 82 0010 b STX A = ±,[
131 83 0011 c ETX A
132 84 0100 d EOT ! < @

133 85 0101 e ENO !
134 86 0110 f ACK a
135 87 0111 9 BEL a #
136 88 1000 h BS DCl %
137 89 1001 I HT DCl
138 8A 1010 LF 0
139 8B 1011 VT 0 % &
140 8C 1100 FF 1
141 80 1101 CR 1 ¢
142 8E 1110 SO q > *
143 8F 1111 SI q
144 90 1001 0000 OLE horiz tab * $
145 91 0001 j DCl horiz tab
146 92 0010 k DC2 I
147 93 OOii I DC3 I ()

148 94 0100 m DC4)

149 95 0101 n NAK)) Z
150 96 0110 0 SYN i 0 (EOA)," (

151 97 0111 p ETB i
152 98 1000 q CAN EM
153 99 1001 r EM EM
154 9A 1010 SUB Y
155 9B 1011 ESC Y
156 9C 1100 FS 9 upper case upper case

o
PD-142 SC34-0639

o
ASCII EBASC*

(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

157 90 1101 GS 9

158 9E 1110 RS y

159 9F 1111 US y C (EOT) C (EOT)

160 AO 1010 0000 Space ENO ¢ T
161 Al 0001 ! ENO

162 A2 0010 5 " E

163 A3 0011 t # E ? X
164 A4 0100 u $ %

165 A5 0101 v % % S N

166 A6 10100110 w & e T U
167 A7 0111 x e

168 A8 1000 y (NAK

169 A9 1001 z) NAK U E
170 AA 1010 * U V 0
171 AB 1011 + U
172 AC 1100 5 W K
173 AD 1101 5
174 AE 1110 u
175 AF 1111 / u X C
176 BO 1011 0000 a return
177 Bl 0001 1 retu rn Y L
178 B2 0010 2 M Z H
179 B3 0011 3 M

o 180 B4 0100 4
181 B5 0101 5
182 B6 0110 6 m

183 B7 0111 7 m ® (SOA),I B
184 B8 1000 8 GS
185 B9 1001 9 GS
186 BA 1010 J

187 BB 1011 J index index

188 BC 1100 <
189 BO 1101 = = ® (EOBl,ETB
190 BE 1110 > 1
191 BF 1111 ? !
192 CO 1100 0000 I @ ETX @ (NAK),-
193 Cl 0001 A A ETX
194 C2 0010 B B C
195 C3 0011 C C C J M
196 C4 0100 0 0 #
197 C5 0101 E E # K
198 C6 0 0110 F F c L V
199 C7 0111 G G c
200 C8 1000 H H OC3
201 C9 1001 I I OC3 M "
202 CA 1010 J S N R
203 CB 1011 K S
204 CC 1100 J L 3 0 I
205 CO 1101 M 3
206 CE 1110 T N 5

207 CF 1111 0 5 P A
208 DO 1101 0000 f p vertical tab
209 01 0001 J 0 vertical tab 0 0

o
Appendix C. Conversion Table PD-143

Conversion Table

0,"" , - __ ',1

ASCII EBASC*

(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

210 D2 0010 K R K R S

211 D3 0011 L S K
212 D4 0100 M T +
213 D5 0101 N U +
214 D6 0110 0 V k

215 D7 0111 P W k ! W

216 D8 1000 Q X ESC

217 D9 1001 R Y ESC

218 DA 1010 Z [

219 DB 1011 [[CRLF CRLF

220 DC 1100 \
221 DD 1101 J backspace backspace

222 DE 1110 j\ I idle idle

223 DF 1111 I
224 EO 1110 0000 \ bell

225 El 0001 d bell t J

226 E2 0010 S h G A G
227 E3 0011 T c G
228 E4 0100 U d B +
229 E5 0101 V e
230 E6 0110 W f q

231 E7 0111 X CJ 9 C F

232 E8 1000 Y h ETB D P

233 E9 1001 Z I ETB
234 EA 1010 J W
235 EB 1011 k W E
236 EC 1100 rl I 7
237 ED 1101 m 7 F Q
238 EE 1110 n W G comma
239 EF 1111 0 W
240 FO 11110000 0 p shift In H ?
241 Fl 0001 1 q shift in
242 F2 0010 2 r 0
243 F3 0011 3 s 0 I Y
244 F4 0100 4 t /
245 F5 0101 5 u /
246 F6 0110 6 v 0 G) (YAK), ---,

247 F7 0111 7 W 0

248 F8 1000 8 x US
249 F9 1001 9 y 'US
250 FA 1010 LVM z - horiz tab tab
251 FB 1011 I -

252 Fe 1100 I ? lower case lower case
253 FD 1101 I ? I
254 FE 1110 "- DEL
255 FF 1111 DEL DEL delete

Notes:

1. ASCII terminals attached via ,;;1310, =7850, =2095 With #2096, or :::1:2095 with RPQ D02350.

2. ASCII terminals attached via =1610 or =2091 With =2092.

3. There are two entries for each character, depending on whether the parity is odd or even.

c
PD-144 SC34-0639

o

c

o

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations used in the Series/1 Event Driven Executive software publications. All software and
hardware terms pertain to EDX. This glossary also serves as a supplement to the IBM Data Processing Glossary, GC20-1699.

$SYSLOGA, $SYSLOGB. The name of the alternate system
logging device. This device is optional but. if defined, should be
a terminal with keyboard capability, not just a printer.

$SYSLOG. The name of the system logging device or operator
station; must be defined for every system. It should be a terminal
with keyboard capability, not just a printer.

$SYSPRTR. The name of the system printer.

abend. Abnormal end-of-task. Termination of a task prior to its
completion because of an error condition that cannot be resolved
by recovery facilities while the task is executing.

ACCA. See asynchronous communications control adapter.

address key. Identifies a set ofSeries/1 segmentation registers
and represents an address space. It is one less than the partition
number.

address space. The logical storage identified by an address key.
An address space is the storage for a partition.

application program manager. The component of the Multiple
Terminal Manager that provides the program management
facilities required to process user requests. It controls the
contents of a program area and the execution of programs within
the area.

application program stub. A collection of subroutines that are
appended to a program by the linkage editor to provide the link
from the application program to the Multiple Terminal Manager
facilities.

asynchronous communications control adapter. An ASCII
terminal attached via #1610, #2091 with #2092, or #2095 with
#2096 adapters.

attention key. The key on the display terminal keyboard that, if
pressed, tells the operating system that you are entering a
command.

attention list. A series of pairs of 1 to 8 byte EBCDIC strings
and addresses pointing to EDL instructions. When the attention
key is pressed on the terminal. the operator can enter one of the
strings to cause the associated EDL instructions to be executed.

backup. A copy of data to be used in the event the original data
is lost or damaged.

base record slots. Space in an indexed file that is reserved for
based records to be placed.

base records. Records are placed into an indexed file while in
load mode or inserted in process mode with a new high key.

basic exchange format. A standard format for exchanging data
on diskettes between systems or devices.

binary synchronous device data block (BSCDDB). A control
block that provides the information to control one Series/1
Binary Synchronous Adapter. It determines the line
characteristics and provides dedicated storage for that line.

Glossary of Terms and Abbreviations PD-145

Glossary of Terms and Abbreviations

block. (1) See data block or index block. (2) In the Indexed
Method, the unit of space used by the access method to contain
indexes and data.

block mode. The transmission mode in which the 3101 Display
Station transmits a data data stream, which has been edited and
stored, when the SEN D key is pressed.

BSCAM. See binary synchronous communications access
method.

binary synchronous communications access method. A form
of binary synchronous I/O control used by the Series/1 to
perform data communications between local or remote stations.

BSCOOB. See binary synchronous device data block.

buffer. An area of storage that is temporarily reserved for use in
performing an input/output operation, into which data is read or
from which data is written. See input buffer and output buffer.

bypass label processing. Access of a tape without any label
processing support.

CCB. See terminal control block.

central buffer. The buffer used by the Indexed Access Method
for all transfers of information between main storage and indexed
files.

character image. An alphabetic, numeric, or special character
defined for an IBM 4978 Display Station. Each character image
is defined by a dot matrix that is coded into eight bytes.

character image table. An area containing the 256 character
images that can be defined for an IBM 4978 Display Station.
Each character image is coded into eight bytes, the entire table of
codes requiring 2048 bytes of storage.

character mode. The transmission mode in which the 3101
Display Station immediately sends a character when a keyboard
key is pressed.

cluster. In an indexed file, a group of data blocks that is pointed
to from the same primary-level index block, and includes the
primary-level index block. The data records and blocks
contained in a cluster are logically contiguous, but are not
necessarily physically contiguous.

COO (change of direction). A character used with ACCA
terminal to indicate a reverse in the direction of data movement.

cold start. Starting the spool facility by erasing any spooled jobs
remaining in the spool data set from any previous spool session.

command. A character string from a source external to the
system that represents a request for action by the system.

common area. A user-defined data area that is mapped into the
partitions specified on the SYSTEM definition statement. It can

PD-146 SC34-0639

be used to contain control blocks or data that will be accessed by
more than one program.

completion code. An indicator that reflects the status of the
execution of a program. The completion code is displayed or
printed on the program's output device.

constant. A value or address that remains unchanged thoughout
program execution.

controller. A device that has the capability of configuring the
GPIB bus by designating which devices are active, which devices
are listeners, and which device is the talker. In Series/1 GPIB
implementation, the Series/1 is always the controller.

conversion. See update.

control station. In BSCAM communications, the station that
supervises a multipoint connection, and performs polling and
selection of its tributary stations. The status of control station is
assigned to a BSC line during system generation.

cross-partition service. A function that accesses data in two
partitions.

cross-partition supervisor. A supervisor in which one or more
supervisor modules reside outside of partition 1 (address space
0).

data block. In an indexed file, an area that contains control
information and data records. These blocks are a multiple of 256
bytes.

data record. In an indexed file, the records containing customer
data.

data set. A group of records within a volume pointed to by a
directory member entry in the directory for the volume.

data set control block (OSCB). A control block that provides
the information required to access a data set, volume or directory
using READ and WRITE.

data set shut down. An indexed data set that has been marked
(in main storage only) as unusable due to an error.

OCE. See directory control entry.

device data block (DO B). A control block that describes a disk
or diskette volume.

direct access. (1) The access method used to READ or WRITE
records on a disk or diskette device by specifying their location
relative the beginning of the data set or volume. (2) In the
Indexed Access Method, locating any record via its key without
respect to the previous operation. (3) A condition in terminal I/O
where a READTEXT or a PRINTEXT is directed to a buffer which
was previously enqueued upon by an IOCB.

o

c

o

o

o

directory. (1) A series of contiguous records in a volume that
describe the contents in terms of allocated data sets and free
space. (2) A series of contiguous records on a device that
describe the contents in terms of allocated volumes and free
space. (3) For the Indexed Access Method Version 2, a data set
that defines the relationship between primary and secondary
indexed files (secondary index support).

directory control entry (DCE). The first 32 bytes of the first
record of a directory in which a description of the directory is
stored.

directory member entry (OM E). A 32-byte directory entry
describing an allocated data set or volume.

display station. An IBM 4978,4979, or 3101 display terminal or
similar terminal with a keyboard and a video display.

DME. See directory member entry.

DSCB. See data set control block.

dynamic storage. An increment of storage that is appended to a
program when it is loaded.

end-of-data indicator. A code that signals that the last record of
a data set has been read or written. End-of-data is determined
by an end-of-data pointer in the DME or by the physical end of
the data set.

ECB. See event control block.

EDL. See Event Driven Language.

emulator. The portion of the Event Driven Executive supervisor
that interprets EDL instructions and performs the function
specified by each EDL statement.

end-of-tape (EOT). A reflective marker placed near the end of a
tape and sensed during output. The marker signals that the tape
is nearly full.

enter key. The key on the display terminal keyboard that, if
pressed, tells the operating system to read the information you
entered.

event control block (ECB). A control block used to record the
status (occurred or not occurred) of an event; often used to
synchronize the execution of tasks. ECBs are used in conjunction
with the WAIT and POST instructions.

Event Driven Language (EDL). The language for input to the
Event Driven Executive compiler ($EDXASM), or the Macro and
Host assemblers in conjunction with the Event Driven Executive
macro libraries. The output is interpreted by the Event Driven
Executive emulator.

EXIO (execute input or output). An EDL facility that provides
user controlled access to Series/1 input/output devices.

external label. A label attached to the outside of a tape that
identifies the tape visually. It usually contains items of
identification such as file name and number, creation data,
number of volumes, department number, and so on.

external name (EXTRN). The 1- to 8-character symbolic
EBCDIC name for an entry point or data field that is not defined
within the module that references the name.

FCA. See file control area.

FCB. See file control block.

file. A set of related records treated as a logical unit. Although
file is often used interchangeably with data set, it usually refers to
an indexed or a sequential data set.

file control area (FCA). A Multiple Terminal Manager data area
that describes a file access request.

file control block (FCB). The first block of an indexed file. It
contains descriptive information about the data contained in the
file.

file control block extension. The second block of an indexed
file. It contains the file definition parameters used to define the
file.

file manager. A collection of subroutines contained within the
program manager of the Multiple Terminal Manager that provides
common support for all disk data transfer operations as needed
for transaction-oriented application programs. It supports
indexed and direct files under the control of a single callable
function.

floating point. A positive or negative number that can have a
decimal point.

formatted screen image. A collection of display elements or
display groups (such as operator prompts and field input names
and areas) that are presented together at one time on a display
device.

free pool. In an indexed data set, a group of blocks that can be
used for either data blocks or index blocks. These differ from
other free blocks in that these are not initially assigned to specific
logical positions in the file.

free space. In an indexed file, records blocks that do not
currently contain data, and are available for use.

free space entry (FSE). An 8-byte directory entry defining an
area of free space within a volume or a device.

FSE. See free space entry.

general purpose interface bus. The IEEE Standard 488-1975
that allows various interconnected devices to be attached to the
GPIB adapter (RPQ D02118).

Glossary of Terms and Abbreviations PD-147

Glossary of Terms and Abbreviations

GPIB. See general purpose interface bus.

group. A unit of 100 records in the spool data set allocated to a
spool job.

H exchange format. A standard format for exchanging data on
diskettes between systems or devices.

host assembler. The assembler licensed program that executes
in a 370 (host) system and produces object output for the
Series /1. The source input to the host assembler is coded in
Event Driven Language or Series/l assembler language. The
host assembler refers to the System/370 Program Preparation
Facility (5798-NNQ).

host system. Any system whose resources are used to perform
services such as program preparation for a Series /1. It can be
connected to a Series/1 by a communications link.

IACB. See indexed access control block.

IAR. See instruction address register.

ICB. See indexed access control block.

liB. See interrupt information byte.

image store. The area in a 4978 that contains the character
image table.

immediate data. A self-defining term used as the operand of an
instruction. It consists of numbers, messages or values which
are processed directly by the computer and which do not serve as
addresses or pointers to other data in storage.

index. In an indexed file, an ordered collection of pairs of keys
and pointers, used to sequence and locate records.

index block. In an indexed file, an area that contains control
information and index entries. These blocks are a multiple of 256
bytes.

indexed access control block (lACB/ICB). The control block
that relates an application program to an indexed file.

indexed access method. An access method for direct or
sequential processing of fixed-length records by use of a
record's key.

indexed data set. Synonym for indexed file.

indexed file. A file specifically created, formatted and used by
the Indexed Access Method. An indexed file is sometimes called
an indexed data set.

index entry. In an indexed file, a key-pointer pair, where the
pointer is used to locate a lower-level index block or a data block.

PD-148 SC34-0639

index register (#1, #2). Two words defined in EDL and
contained in the task control block for each task. They are used
to contain data or for address computation.

input buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area for terminal input and output.

input output control block (lOCB). A control block containing
information about a terminal such as the symbolic name, size and
shape of screen, the size of the forms in a printer, or an optional
reference to a user provided buffer.

instruction address register (lAR). The pointer that identifies
the machine instruction currently being executed. The Series/1
maintains a hardware IAR to determine the Series/1 assembler
instruction being executed. It is located in the level status block
(LSB).

integer. A positive or negative number that has no decimal
point.

interactive. The mode in which a program conducts a
continuous dialogue between the user and the system.

internal label. An area on tape used to record identifying
information (similar to the identifying information placed on an
external label). Internal labels are checked by the system to
ensure that the correct volume is mounted.

interrupt information byte (liB). In the Multiple Terminal
Manager, a word containing the status of a previous input/ output
request to or from a terminal.

invoke. To load and activate a program, utility, procedure, or
subroutine into storage so it can run.

job. A collection of related program execution requests
presented in the form of job control statements, identified to the
jobstream processor by a JOB statement.

job control statement. A statement in a job that specifies
requests for program execution, program parameters, data set
definitions, sequence of execution, and, in general. describes the
environment required to execute the program.

job stream processor. The job processing facility that reads job
control statements and processes the requests made by these
statements. The Event Driven Executive job stream processor is
$JOBUTIL.

jumper. (1) A wire or pair of wires which are used for the
arbitrary Connection between two circuits or pins in an
attachment card. (2) To connect wire(s) to an attachment card or
to connect two circuits.

key. In the Indexed Access Method, one or more consecutive
characters used to identify a record and establish its order with
respect to other records. See also key field.

o

o

o

c

o

key field. A field, located in the same position in each record of
an indexed file, whose content is used for the key of a record.

level status block (LSB). A Series/1 hardware data area that
contains processor status. This area is eleven words in length.

library. A set of contiguous records within a volume. It contains
a directory, data sets and / or available space.

line. A string of characters accepted by the system as a single
input from a terminal; for example, all characters entered before
the carriage return on the teletypewriter or the ENTER key on the
display station is pressed.

link edit. The process of resolving external symbols in one or
more object modules. A link edit is performed with $EDXLlNK
whose output is a loadable program.

listener. A controller or active device on a G PI B bus that is
configured to accept information from the bus.

load mode. In the Indexed Access Method, the mode in which
records are loaded into base record slots in an indexed file.

load module. A single module having cross references resolved
and prepared for loading into storage for execution. The module
is the output of the $UPDATE or $UPDATEH utility.

load point. (1) Address in the partition where a program is
loaded. (2) A reflective marker placed near the beginning of a
tape to indicate where the first record is written.

lock. In the Indexed Access Method, a method of indicating that
a record or block is in use and is not available for another request.

logical screen. A screen defined by margin settings, such as the
TOPM, BOTM, LEFTM and RIGHTM parameters of the
TERMINAL or IOCB statement.

LSB. See level status block.

mapped storage. The processor storage that you defined on the
SYSTEM statement during system generation.

member. A term used to identify a named portion of a
partitioned data set (PDS). Sometimes member is also used as a
synonym for a data set. See data set.

menu. A formatted screen image containing a list of options.
The user selects an option to invoke a program.

menu-driven. The mode of processing in which input consists of
the responses to prompting from an option menu.

message. In data communications, the data sent from one
station to another in a single transmission. Stations
communication with a series of exchanged messages.

multifile volume. A unit of recording media, such as tape reel or
disk pack, that contains more than one data file.

multiple terminal manager. An Event Driven Executive licensed
program that provides support for transaction-oriented
applications on a Series/ 1. It provides the capability to define
transactions and manage the programs that support those
transactions. It also manages multiple terminals as needed to
support these transactions.

multivolume file. A data file that, due to its size, requires more
than one unit of recording media (such as tape reel or disk pack)
to contain the entire file.

new high key. A key higher than any other key in an indexed
file.

nonlabeled tapes. Tapes that do not contain identifying labels
(as in standard labeled tapes) and contain only files separated by
tapemarks.

null character. A user-defined character used to define the
unprotected fields of a formatted screen.

option selection menu. A full screen display used by the
Session Manager to point to other menus or system functions,
one of which is to be selected by the operator. (See primary
option menu and secondary option menu.)

output buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area used for screen output and to pass data to
subsequent transaction programs.

overlay. The technique of reusing a single storage area allocated
to a program during execution. The storage area can be reused
by loading it with overlay programs that have been specified in
the PROGRAM statement of the program or by calling overlay
segments that have been specified in the OVERLAY statement of
$EDXLlNK.

overlay area. A storage area within a program reserved for
overlay programs specified in the PROGRAM statement or
overlay segments specified in the OVERLAY statement in
$EDXLlNK.

overlay program. A program in which certain control sections
can use the same storage location at different times during
execution. An overlay program can execute concurrently as an
asynchronous task with other programs and is specified in the
EDL PROGRAM statement in the main program.

overlay segment. A self-contained portion of a program that is
called and sequentially executes as a synchronous task. The
entire program that calls the overlay segment need not be
maintained in storage while the overlay segment is executing. An
overlay segment is specified in the OVERLAY statement of
$EDXLlNK or $XPSLlNK (for initialization modules).

overlay segment area. A storage area within a program or
supervisor reserved for overlay segments. An overlay segment
area is specified with the OVLAREA statement of $EDXLlNK.

Glossary of Terms and Abbreviations PD-149

Glossary of Terms and Abbreviations

parameter selection menu. A full screen display used by the
Session Manager to indicate the parameters to be passed to a
program.

partition. A contiguous fixed-sized area of storage. Each
partition is a separate address space.

performance volume. A volume whose name is specified on
the DISK definition statement so that its address is found during
IPL, increasing system performance when a program accesses
the volume.

physical timer. Synonym for timer (hardware).

polling. In data communications, the process by which a
multipoint control station asks a tributary if it can receive
messages.

precision. The number of words in storage needed to contain a
value in an operation.

prefind. To locate the data sets or overlay programs to be used
by a program and to store the necessary information so that the
time required to load the prefound items is reduced.

primary file. An indexed file containing the data records and
primary index.

primary file entry. For the Indexed Access Method Version 2,
an entry in the directory describing a primary file.

primary index. The index portion of a primary file. This is used
to access data records when the primary key is specified.

primary key. In an indexed file, the key used to uniquely identify
a data record.

primary-level index block. In an indexed file, the lowest level
index block. It contains the relative block numbers (RBNs) and
high keys of several data blocks. See cluster.

primary menu. The program selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The first full screen display provided by
the Session Manager.

primary station. In a Series/1 to Series/1 attachment, the
processor that control communication between the two
computers. Contrast with secondary station.

primary task. The first task executed by the supervisor when a
program is loaded into storage. It is identified by the PROGRAM
statement.

priority. A combination of hardware interrupt level priority and a
software ranking within a level. Both primary and secondary
tasks will execute asynchronously within the system according to
the priority assigned to them.

PD-150 SC34-0639

process mode. In the Indexed Access Method, the mode in
which records can be retrieved, updated, inserted or deleted.

processor status word (PSW). A 16-bit register used to (1)
record error or exception conditions that may prevent further
processing and (2) hold certain flags that aid in error recovery.

program. A disk- or diskette-resident collection of one or more
tasks defined by a PROGRAM statement; the unit that is loaded
into storage. (See primary task and secondary task.)

program header. The control block found at the beginning of a
program that identifies the primary task, data sets, storage
requirements and other resources required by a program.

program/storage manager. A component of the Multiple
Terminal Manager that controls the execution and flow of
application programs within a single program area and contains
the support needed to allow multiple operations and sharing of
the program area.

protected field. A field in which the operator cannot use the
keyboard to enter, modify, or erase data.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queue control block (QCB). A data area used to serialize access
to resources that cannot be shared. See serially reusable
resource.

queue descriptor (QD). A control block describing a queue built
by the DEFINEQ instruction.

queue element (QE). An entry in the queue defined by the
queue descriptor.

quiesce. To bring a device or a system to a halt by rejection of
new requests for work.

quiesce protocol. A method of communication in one direction
at a time. When sending node wants to receive, it releases the
other node from its quiesced state.

record. (1) The smallest unit of direct access storage that can be
accessed by an application program on a disk or diskette using
READ and WRITE. Records are 256 bytes in length. (2) In the
Indexed Access Method, the logical unit that is transferred
between $IAM and the user's buffer. The length of the buffer is
defined by the user. (3) In BSCAM communications, the portions
of data transmitted in a message. Record length (and, therefore,
message length) can be variable.

recovery. The use of backup data to re-create data that has
been lost or damaged.

o

C,
-----_.' ..

o

c

o

reflective marker. A small adhesive marker attached to the
reverse (nonrecording) surface of a reel of magnetic tape.
Normally, two reflective markers are used on each reel of tape.
One indicates the beginning of the recording area on the tape
(load point), and the other indicates the proximity to the end of
the recording area (EaT) on the reel.

relative block address (RBA). The location of a block of data on
a 4967 disk relative to the start of the device.

relative record number. An integer value identifying the
position of a record in a data set relative to the beginning of the
data set. The first record of a data set is record one, the second
is record two, the third is record three.

relocation dictionary (RLD). The part of an object module or
load module that is used to identify address and name constants
that must be adjusted by the relocating loader.

remote management utility control block (RCB). A control
block that provides information for the execution of remote
management utility functions.

reorganize. The process of copying the data in an indexed file to
another indexed file in a manner that rearranges the data for more
optimum processing and free space distribution.

restart. Starting the spool facility w the spool data set contains
jobs from a previous session. The jobs in the spool data set can
be either deleted or printed when the spool facility is restarted.

return code. An indicator that reflects the results of the
execution of an instruction or subroutine. The return code is
usually placed in the task code word (at the beginning of the task
control block).

roll screen. A display screen which is logically segmented into
an optional history area and a work area. Output directed to the
screen starts display at the beginning of the work area and
continues on down in a line-by-line sequence. When the work
area gets full, the operator presses ENTER/SEND and its contents
are shifted into the optional history area and the work area itself
is erased. Output now starts again at the beginning of the work
area.

SBIOCB. See sensor based I/O control block.

second-level index block. In an indexed data set, the
second-lowest level index block. It contains the addresses and
high keys of several primary-level index blocks.

secondary file. See secondary index.

secondary index. For the Indexed Access Method Version 2, an
indexed file used to access data records by their secondary keys.
Sometimes called a secondary file.

secondary index entry. For the Indexed Access Method
Version 2, this an an entry in the directory describing a secondary
index.

secondary key. For the Indexed Access Method Version 2, the
key used to uniquely identify a data record.

secondary option menu. In the Session Manager, the second in
a series of predefined procedures grouped together in a
hierarchical structure of menus. Secondary option menus provide
a breakdown of the functions available under the session
manager as specified on the primary option menu.

secondary task. Any task other than the primary task. A
secondary task must be attached by a primary task or another
secondary task.

secondary station. In a Series/1 to Series/1 attachment, the
processor that is under the control of the primary station.

sector. The smallest addressable unit of storage on a disk or
diskette. A sector on a 4962 or 4963 disk is equivalent to an
Event Driven Executive record. On a 4964 or 4966 diskette, two
sectors are equivalent to an Event Driven Executive record.

selection. In data communications, the process by which the
multipoint control station asks a tributary station if it is ready to
send messages.

self-defining term. A decimal, integer, or character that the
computer treats as a decimal, integer, or character and not as an
address or pointer to data in storage.

sensor based I/O control block (SBIOCB). A control block
containing information related to sensor I/O operations.

sequential access. The processing of a data set in order of
occurrence of the records in the data set. (1) In the Indexed
Access Method, the processing of records in ascending collating
sequence order of the keys. (2) When using READ/WRITE, the
processing of records in ascending relative record number
sequence.

serially reusable resource (SRR). A resource that can only be
accessed by one task at a time. Serially reusable resources are
usually managed via (1) a OCB and ENO/DEO statements or (2) an
ECB and WAIT/POST statements.

service request. A device generated signal used to inform the
GPIB controller that service is required by the issuing device.

session manager. A series of predefined procedures grouped
together as a hierarchical structure of menus from which you
select the utility functions, program preparation facilities, and
language processors needed to prepare and execute application
programs. The menus consist of a primary option menu that
displays functional groupings and secondary option menus that
display a breakdown of these functional groupings.

.shared resource. A resource that can be used by more than one
task at the same time.

Glossary of Terms and Abbreviations PD-151

Glossary of Terms and Abbreviations

shut down. See data set shut down.

source module/program. A collection of instructions and
statements that constitute the input to a compiler or assembler.
Statements may be created or modified using one of the text
editing facilities.

spool job. The set of print records generated by a program
(including any overlays) while engueued to a printer designated as
a spool device.

spool session. An invocation and termination of the spool
facility.

spooling. The reading of input data streams and the writing of
output data streams on storage devices, concurrently with job
execution, in a format convenient for later processing or output
operations.

SRQ. See service request.

stand-alone dump. An image of processor storage written to a
diskette.

stand-alone dump diskette. A diskette supplied by IBM or
created by the $DASDI utility.

standard labels. Fixed length aO-character records on tape
containing specific fields of information (a volume label
identifying the tape volume, a header label preceding the data
records, and a trailer label following the data records).

static screen. A display screen formatted with predetermined
protected and unprotected areas. Areas defined as operator
prompts or input field names are protected to prevent accidental
overlay by input data. Areas defined as input areas are not
protected and are usually filled in by an operator. The entire
screen is treated as a page of information.

station. In BSCAM communications, a BSC line attached to the
Series/l and functioning in a point-to-point or multipoint
connection. Also, any other terminal or processor with which the
Series/l communicates.

subroutine. A sequence of instructions that may be accessed
from one or more points in a program.

supervisor. The component of the Event Driven Executive
capable of controlling execution of both system and application
programs.

system configuration. The process of defining devices and
features attached to the Series/l.

SYSGEN. See system generation.

system generation. The processing of defining I/O devices and
selecting software options to create a supervisor tailored to the
needs of a specific Series/l hardware configuration and
application.

PD-152 SC34-0639

system partition. The partition that contains the root segment
of the supervisor (partition number 1, address space 0).

talker. A controller or active device on a GPIB bus that is
configured to be the source of information (the sender) on the
bus.

tape device data block (TOB). A resident supervisor control
block which describes a tape volume.

tapemark. A control character recorded on tape used to
separate files.

task. The basic executable unit of work for the supervisor. Each
task is assigned its own priority and processor time is allocated
according to this priority. Tasks run independently of each other
and compete for the system resources. The first task of a
program is the primary task. All tasks attached by the primary
task are secondary tasks.

task code word. The first two words (32 bits) of a task's TCB;
used by the emulator to pass information from system to task
regarding the outcome of various operations, such as event
completion or arithmetic operations.

task control block (TCB). A control block that contains
information for a task. The information consists of pointers, save
areas, work areas, and indicators required by the supervisor for
controlling execution of a task.

task supervisor. The portion of the Event Driven Executive that
manages the dispatching and switching of tasks.

TCB. See task control block.

terminal. A physical device defined to the EDX system using the
TERMINAL configuration statement. EDX terminals include
directly attached IBM displays, printers and devices that
communicate with the Series/l in an asynchronous manner.

terminal control block (CCB). A control block that defines the
device characteristics, provides temporary storage, and contains
links to other system control blocks for a particular terminal.

terminal environment block (TEB). A control block that
contains information on a terminal's attributes and the program
manager operating under the Multiple Terminal Manager. It is
used for processing requests between the terminal servers and
the program manager.

terminal screen manager. The component of the Multiple
Terminal Manager that controls the presentation of screens and
communicatioJ'ls between terminals and transaction programs.

terminal server. A group of programs that perform all the
input/ output and interrupt handling functions for terminal devices
under control of the Multiple Terminal Manager.

o

c

o

o

o

terminal support. The support provided by EDX to manage and
control terminals. See terminal.

timer. The timer features available with the Series/1 processors.
Specifically, the 7840 Timer Feature card (4955 only) or the native
timer (4952, 4954, and 4956). Only one or the other is supported
by the Event Driven Executive.

trace range. A specified number of instruction addresses within
which the flow of execution can be traced.

transaction oriented applications. Program execution driven by
operator actions, such as responses to prompts from the system.
Specifically, applications executed under control of the Multiple
Terminal Manager.

transaction program. See transaction-oriented applications.

transaction selection menu. A Multiple Terminal Manager
display screen (menu) offering the user a choice of functions,
such as reading from a data file, displaying data on a terminal, or
waiting for a response. Based upon the choice of option, the
application program performs the requested processing
operation.

tributary station. In BSCAM communications, the stations
under the supervision of a control station in a multipoint
connection. They respond to the control station's polling and
selection.

unmapped storage. The processor storage in your processor
that you did not define on the SYSTEM statement during system
generation.

unprotected field. A field in which the operator can use the
keyboard to enter, modify or erase data. Also called
non-protected field.

update. (1) To alter the contents of storage or a data set. (2) To
convert object modules, produced as the output of an assembly
or compilation, or the output of the linkage editor, into a form that
can be loaded into storage for program execution and to update
the directory of the volume on which the loadable program is
stored.

user exit. (1) Assembly language instructions included as part of
an EDL program and invoked via the USER instruction. (2) A
point in an IBM-supplied program where a user written routine
can be given control.

variable. An area in storage, referred to by a label, that can
contain any value during program execution.

vary offline. (1) To change the status of a device from online to
offline. When a device is offline, no data set can be accessed on
that device. (2) To place a disk or diskette in a state where it is
unknown by the system.

vary online. To place a device in a state where it is available for
use by the system.

vector. An ordered set or string of numbers.

volume. A disk, diskette, or tape subdivision defined using
$INITDSK or $TAPEUT1.

volume descriptor entry (VDE). A resident supervisor control
block that describes a volume on a disk or diskette.

volume label. A label that uniquely identifies a single unit of
storage media.

Glossary of Terms and Abbreviations PD-153

o

o

o
PD-154 SC34-0639

o

c

o

Index

The following index contains entries for this book only. See the Library Guide and Common Index for a Common
Index to all Event Driven Executive books.

Special Characters

$$EDXIT task error exit routine
interpreting the output PD-52
message description PD-51
output example PD-50

$DEBUG utility
analyzing program checks PD-56, PD-60
analyzing wait state PD-34
examine unmapped storage PD-26, PD-60
isolating run loops PD-20
list

storage area PD-25
unmapped storage PD-62

modify data in unmapped storage PD-31, PD-65
setting breakpoints PD-21, PD-63

$EDXNUC supervisor data set
analyzing problems with PD-8
reloading PD-7
rewriting IPL text PD-7

$LOG utility
commands PD-119
description PD-117
loading PD-118
log data set, allocating PD-118
print or display errors PD-120
record I/O errors PD-117
record program check messages PD-117
sample output, explanation PD -122
use with remote manager (RM1) PD-118

$TRAP utility
interpreting the dump PD-72

A

activate
error logging PD -117

address key register (AKR) PD-13, PD-74
address, failing instruction PD-46, PD-74
AKR

See address key register (AKR)
analyze failures, how to

IPL problems PD-5
program checks PD-43
programs checks PD-100
run loops PD-17, PD-105
wait states PD-33, PD-94

ANSWER program, use for remote support PD-136
application program check

analyzing PD-54
logging occurrences PD-117

auto IPL, description PD-50

B

bit settings
level status register PD-13, PD-45, PD-74
processor status word PD-47
programmer console PD-128
SVCFLAGS PD-80

bootstrap, rewriting PD-7
boundary

Index PD-155

Index

violations PO-48, PO-55
breakpoint and trace range

settings PO-21, PO-56

c
CCB

See terminal control block (CCB)
CIRCBUFF, software trace table PO-l07
class interrupt descriptions PO-48
codes

obtaining I PL stop PO-9
communications features

used with remote support link PO-136
console, programmer

displaying main storage PO-130
displaying registers PO-132
instruction step PO-134
reading indicator lights PO-128
stop on address PO-133
stop on error PO-133
storing data into main storage PO-131
storing data into registers PO-132

control blocks
analyzing queue control block PO-35
INITTASK task control block PO-ll

cross- partition supervisor
obtaining IPL stop codes PO-9
segmentation registers PO-79

D

display
an error log PO-120
registers PO-132
software trace table PO-l08
storage

on the programmer console PO-130
dump, interpreting a storage

BSC information PO-86
disk/ diskette information PO-84
exception information PO-76
EXIO information PO-86
floating-point registers PO-76
hardware level and registers PO-72
level table PO-82
loader QCB PO-82
part~oncon~n~ PO-87
segmentation registers PO-78
storage map PO-80
tape information PO-84
TCB ready chain PO-82
terminal information PO-83
timer information PO-86
unmapped storage contents PO-88

PD-156 SC34-0639

E

ENQT instruction
examining the terminal control block PO-39
identifying the task in control PO-39

error handling
error logging PO-117
program checks PO-43
remote manager (RM 1) considerations PO-118, PO-120

errors
determining the type PO-3
IBM assistance in diagnosing PO-135
recording I/O PO-117
recording program check PO-117

event control block
causes of a wait state PO-41
waiting task, identifying PO-40

exception interrupt
how to trace PO-l07
types of PO-48

F

floating-point
exception PO-49
registers PO-76

H

hardware
registers

contents during program check PO-45
INITTASK task control block PO-13
software trace table PO-112
storage dump PO-72

hardware level, determining PO-18

I

I/O check, description PO-50
I/O error logging

controlling PO-119
data set list utility, $0ISKUT2 PO-120
for remote manager (RM1) PO-118
interpreting sample output PO-122
log data set PD-118
starting PO-118
utility, $LOG PO-117

IBM support center, communication with PO-135
INITTASK, analyzing at IPL

interpreting register contents PO-13
using $0 operator command PO-l1
using programmer console PO-12

instruction address register (lAR)
description PO-75
displaying PO-67, PO-132

o

c

o

o

o

instruction address, failing PD-46, PD-74
instruction step (console) PD-134
interrupt

class PD-48
invalid function, description PD-49
invalid storage address, description PD-48
I PL problems

detecting stop codes PD-9
disk/ diskette device PD-6
initialization failures

displaying INITTASK PD-11, PD-12
no messages on $SYSLOG PD-16
register contents PD-13

isolating terminal control blocks PD-10
reloading supervisor PD-7
rewriting IPL text PD-7
tailored supervisor PD-8
terminal errors PD-9
what to check first PD-5

L

level status block (LSB)
analyzing an IPL problem PD-13
interpreting a program check message PD-44
interpreting a storage dump PD-73
software trace table PD-112

level status register (LSR) PD-74
level, determining active hardware PD-18
link, remote support PD-135
load light, symptom at IPL PD-6
log data set

allocating PD-118
list on printer PD-120
list on terminal PD-120

logging errors ($LOG) PD-117
loops, analyzing run

caused by device interrupts PD-32
how to identify the program

using $C operator command PD-19
using the programmer console PD-18

locating the loop in the compiler listing PD-23
some common causes PD-23
using $DEBUG

examining storage locations PD-24
examining unmapped storage PD-26
sample trace output PD-22
setting breakpoints PD-28
tracing the loop addresses PD-21

LSB (level status block)
analyzing an IPL problem PD-13
interpreting a program check message PD-44
interpreting a storage dump PD-73
software trace table PD-112

M

main storage
displaying PD-130
storing data into PD-131

mapped storage
segmentation register use PD-78

messages, interpreting exception
$$EDXIT program check PD-50
application program check PD-44
system program check PD-44

N

NEXTERM, stop on address PD-10
nucleus, reloading PD-7

o
odd-byte boundary, analyzing PD-55

p

partition
size, finding PD-78

patch
data in unmapped storage PD-31, PD-65

power /thermal warning, description PD-50
print

an error log PD-120
privilege violate, description PD-49
problem determination

definition PD-1
how to start PD-1
IBM support center assistance PD-135
identifying problem type PD-3
reading a dump PD-71
using a remote support link PD-135

processor control check, description PD-50
processor status word (PSW)

bit descriptions PD-48
auto IPL indicator PD-50
Extended Address Mode PD-50
floating-point exception PD-49
I/O check PD-50
invalid function PD-49
invalid storage address PD-48
power /thermal warning PD-50
privilege violate PD-49
processor control check PD-50
protect check PD-49
sequence indicator check PD-50
specification check PD-48
stack exception PD-49
storage parity PD-50
translator enabled indicator PD-50

Index PD-157

Index

converting to bits PO-47
how to interpret PO-47

program check
analyzing PO-43
analyzing system PO-67
bit settings, interpreting PSW PO-47
displaying log records of PO-120
examine unmapped storage for cause of PO-60
exception types PO-48
failing instruction PO-46
how to analyze application PO-55
locating failing instruction PO-74
logging occurrences PO-117
message description PO-45
message types PO-44

$$EOXIT error exit PO-51
application check Pp-44
system check PO-44

printing log records of PO-120
processor status word, analysis PO-47
register contents at failure PO-46, PO-74
using $OEBUG to analyze PO-57

programmer console
displaying main storage PO-130
displaying registers PO-132
instruction step PO-134
reading indicator lights PO-128
stop on address PO-133
stop on error PO-133
storing data into main storage PO-131
storing data into registers PO-132

protect check, description PO-49
PSW (processor status word)

bit descriptions PO-48
auto IPL indicator PO-50
Extended Address Mode PO-50
floating-point exception PO-49
I/O check PO-50
invalid function PO-49
invalid storage address PO-48
power /thermal warning PO-50
privilege violate PO-49
processor control check PO-50
protect check PO-49
sequence indicator check PO-50
specification check PO-48
stack exception PO-49
storage parity PO-50
translator enabled indicator PO-50

converting to bits PD-47
interpreting PO-47

PD-158 SC34-0639

Q

queue control block
analyzing

causes of wait state PO-38
defined in $SYSCOM PO-37
defined in program PO-35
task ownership PO-36, PO-37

R

recording
I/O errors PO-117
program checks PO-117

registers
contents

in a storage dump PO-74
program check PO-46

displaying PO-132
floating-point PO-76
INITTASK during IPL failure PO-13
level status block PO-73
segmentation PO-78
shown in software trace table PO-112
storing data into PO-132

Remote Support Link
authorizing the link PO-136
customer responsibilities PO-135
description PO-135
disconnecting the link PO-138
hardware requirements PO-136

run loops, analyzing
caused by device interrupts PO-32
how to identify the program

using $C operator command PD-19
using the programmer console PO-18

locating the loop in the compiler listing PO-23
some common causes PO-23
using $OEBUG

examining storage locations PO-24
examining unmapped storage PO-26
sample trace output PO-22
setting breakpoints PO-28
tracing the loop addresses PO-21

s
segmentation registers

mapping PO-78
sequence indicator error, description PO-50
software trace table

control table format PO-ll0
displaying PO-l08
exception entry format PO-112

specification check, description PO-48
stack exception, description PO-49
stand-alone dump

o

c

o

o

BSC information PO-86
disk/ diskette information PO-84
EXIO information PO-86
floating-point registers PO-76
hardware level and registers PO-72
interpreting PD-72
level table PD-82
loader QCB PD-82
partition contents PD-87
segmentation registers PD-78
storage map PD-80
tape information PD-84
TCB ready chain PO-82
terminal information PD-83
timer information PD-86
unmapped storage contents PD-88

standard program check message, formats PD-44
stop

on error PD-133
stop codes

obtaining PD-9
storage

displaying
on programmer console PD-130

locate unmapped PD-88
mapping PD-78
parity error PD-50

storage dump
how to interpret PD-71
used to analyze a program check PD-100
used to analyze a run loop PO-105
used to analyze a wait state PD-94

storage map, I PL
find last usable address in partition PD-62

supervisor
IPL problems with PD-8
reloading PD-7

system
program check, analyzing PD-67
program check, logging PD-117

T

task control block (TCB)
INITTASK during IPL PD-11
ready chain in dump PD-82

task error exit routine
interpreting output of $$EDXIT PD-50

terminal
errors at IPL PD-9

information in dump PD-83
used for remote support PO-137

terminal control block (CCB)
displaying during IPL PD-1O
enqueuing task, determining PD-39
task partition, determining PD-39

trace
exceptions PD-107
loop addresses PD-21
program check addresses PD-56

trace table, CIRCBUFF software
control table format PD-110
displaying PD-108
exception entry format PD-112

translator enabled, description PD-50
types of problems, determining PD-3

u

unmapped storage
data in storage dump PD-88
examine using $DEBUG PD-26, PD-60
find areas in use PO-88
modify data in PD-31, PD-65

w
WAIT instruction
wait state

analyzing
ENQ instruction PD-35
ENQT instruction PD-39
finding the waiting instruction PD-34
some common causes PD-38, PD-41, PD-42
using $DEBUG PD-34
WAIT instruction PD-40

cause of PD-40
sample program PD-98
using a dump to analyze

finding the TCB address PD-94
locating R1 in the TCB PD-96
locating the error in the compiler listing PD-97
multiple tasks active PD-96

Index PD-159

Oc'"
"

c
PD-160 SC34-0639

E : :i~~ Series/1 Event Driven Executive
C:>~P·U·b~li·c·a·ti·o·n·s·O~rd·e·r"F·o·rm"""""""""""""""

o

Instructions:

1. Complete the order form, supplying all of the
requested information. (Please print or type.)

2. If you are placing the order by phone, dial
1-S00-IBM-246S.

3. If you are mailing your order, fold the order
form as indicated, seal with tape, and mail.
We pay the postage.

Ship to:

Name:

Address:

City:

State: Zip:

Bill to:

Customer number:

Name:

Address:

City:

State: Zip:

Your Purchase Order No.:

Phone: (

Signature:

Date:

Order:

Description

Reference books:

:~e:"Q'f'ih~,'fQ,'1'16~i~~'ii)(~'~~,kS:!OOr~~,~'
.:t?~,ryi~~~I'¢~l?i~s/~$,e,;thef9n9WiO~:,9r~er·
;'·~}nu(Y').~ers·:~i: ~~;>',:i'~,::};'~':'~"':~"" {O' ';'L:>;:·,.~".,,, '

Communications Guide

Extended Address Mode and
Performance Analyzer User Guide

Installation and System Generation Guide

Language Reference

Library Guide and Common Index

Messages and Codes

Operator Commands and Utilities Reference

Guides and reference cards:

Customization Guide

Event Driven Language Programming Guide

Operation Guide

Problem Determination Guide

Language Reference Card

Operator Commands and Utilities
Reference Card

Conversion Charts Reference Card

Reference Card Envelope

Binders:

3-ring easel binder with 1 inch rings

3-ring easel binder with 2 inch rings

Standard 3-ring binder with 1 inch rings

Standard 3-ring binder with 1 1/2 inch rings

Standard 3-ring binder with 2 inch rings

Diskette binder (Holds eight 8-inch diskettes.)

Order
number

SC34-0638

SC34-0591

SC34-0646

SC34-0643

SC34-0645

SC34-063G

SC34-0644

SC34-0635

SC34-0637

SC34-0642

SC34-0639

SX34-0165

SX34-0164

SX34-0163

SX34-0166

SR30-0324

SR30-0327

SR30-0329

SR30-0330

5R30-0331

5830-0479

Oty.

Publications Order Form

Fold and tape Please Do Not Staple

/11111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WI LL BE PAID BY ADDRESSEE:

I BM Corporation
1 Culver Road
Dayton, New Je rsey 08810

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
~
c::
r+

Q
"Tl
0
ii
»
'0
:J
IC

c:
:J
(\)

.. J
Fold and tape Please Do Not Staple Fold and tape

--------- - ------- - ---- - - ----------_.-
®

International Business Machines Corporation

0

o

o

~
c
Q)

E
0-
·s
cr
Q)

OJ
C

'.j:;

0
II>

'ro
E
-0
Q)
+-'
CO

E
0
+-'
:::l

f~
CO

.r:.
+-'
.~

II>

E
Q)

.D
0

0.
Q)
II>
:::l
co
u
c
co
U
II>
Q)

0.
co
+-'

Cf)

Q)
+-'
0

Z

o

E
0

'+-
Il>

.r:.
+-'

co
Q)
II>

0
+-'
Q)

0-
CO
+-'

-0
Q)

E
E
:::l
OJ
....
Q)

.r:.
+-'
0

0
Q)

>
'.j:;
'Vi
C
Q)
II>

~
:::l
II>
II>
Q)

0.
Q)
II>
:::l
Q)
II>
co
Q)

c:

IBM Series/l Event Driven Executive
Problem Determination Guide

Order No. SC34-0639-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publicatiollS are not stocked at the location to which this form is addressed.
Please direct allY requests for copies ofpublicatiollS, or for assistance in using your IBM system, to
your IBM represelltative or to the lBA1 branch office serving your locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0639-0
Printed in U.S.A.

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - ----------_.-
®

Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
I
I
I
h
c

c

o

...,;
c
OJ

E
0.

':5
cr
OJ

C'l
C

'';::;

0
Vl

'co
E

"0
OJ
+-'
ro
E
0
+-'
~

f-
ro

.!:
+-'
'~

Vl

E
OJ

::0
0

0.
OJ
Vl
~
ro
(,)

c
ro
(,)

Vl
OJ

0.
ro
+-'
Cf)

OJ
+-'
0

Z

o

E
0

'+-
Vl

.!:
+-'

ro
OJ
Vl

0
+-'

OJ
0.
ro
+-'

"0
OJ

E
E
~
Cl
~

OJ
.!:
+-'
0

0
OJ
>

'';::;
'Vi
c
OJ
Vl

~
~
Vl
Vl
OJ

Q.
OJ
Vl
~

OJ
Vl
ro
OJ

c:::

IBM Series/1 Event Driven Executive
Problem Determination Guide

Order No. SC34-0639-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems, You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you,
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate,

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct allY requests for copies o/publications, or for assistance in Llsing your IBM system, to
your IBM represelltative or to the IBM branch office serving your locality,

Thank you for your cooperation, No postage stamp necessary if mailed in the U,S,A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page,)

SC34-0639-0
Printed in U.S.A.

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------ ---- - - -----------,-
®

Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
I
I
I
h
c

o

/r'~:,

.~I

--------- - ------- - ---- - - ----------_ . -
<I>

International Business Machines Corporation

SC34-0639-0
Program Number: 5719-XS5
File Number : S1 -37
Pri nted in U .S.A .

5C34-0639-0

