
--------- - ------- - --- Series/1 - - - ----------- ,-

Event Driven Executive
Language Reference

Version 6.0

Library Guide and
Common Index

SC34-0938

Language
Reference

SC34-0937

Operation
Guide

SC34-0944

Problem
Determination
Guide

SC34-0941

Installation and
System Generation
Guide

SC34-0936

Communications
Guide

SC34-0935

Event Driven
Language
Programming Guide

SC34-0943

Customization
Guide

SC34-0942

SC34-0937-0

Operator Commands
and
Utilities Reference

SC34-0940

Messages and
Codes

SC34-0939

APPC
Programming Guide
and Reference

SC34-0960

Internal
Design

LY34-0364

o

o

()

--------- -------- - ---- - - -----------,-

Language
Reference

SC34-0937

Series/1

Event Driven Executive
Language Reference

Version 6.0

SC34-0937 -0

First Edition (September 1987)

Use this publication only for the purposes stated in the section entitled "About This Book."

Changes are made periodically to the information herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM publications should be
made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers' comments
is provided at the back of this publication. If the form has been removed, address your comments to IBM
Corporation, Information Development, Department 28B (5414), P. O. Box 1328, Boca Raton, Florida
33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1987

o

o

o

o

o

0 '1 !,

Summary of Changes for Version 6.0

This document contains the following changes.

3151 Display Terminal

• Chapter 2, "Instruction and Statement Descriptions" has been updated to
include the 3151 display in the READTEXT, TERMCTRL, and WAIT
instructions everywhere a reference to the 3161 display appears.

• Appendix A, "Formatted Screen Subroutines" includes information for the 3151
display everywhere a reference to the 3161 display appears.

EDX Line Sharing Support

• The TERMCTRL instruction contains updates to the LOCK and UNLOCK
parameters (3101,3151, and 3l6x terminals) for use with line sharing.

4202 Pro printer XL

• The TERMCTRL instruction has been updated to include the 4202 printer
everywhere a reference to the 4201 printer _appears.

Extended Address Mode Support

• The BUFFKEY operand for the LCCIOCB instruction has been updated to
allow values 0[0-31 for the 4956 J and K processors.

• The PART operand for the LOAD instruction has been updated to allow 1- 32
partitions for the 4956 J and K processors.

• The FKEY and TKEY operands for the MOVE instruction has been updated to
allow 1 - 32 partitions for the 4956 J and K processors.

• The EXBREAK instruction cannot be used with extended address mode.

System Partition Statements

• References to the SYSTEM statement have been replaced by the appropriate
system partition statement: SYSPARTS, SYSPARMS, SYSCOMM, or
SYSEND.

Editorial/Usability Changes

• Numerous editorial and usability changes have been made throughout this book.

Summary of Changes for Version 6.0 iii

o

o

o
iv SC34-0937

o Contents

o

o

Chapter 1. Introduction 1-1
The Event Driven Language 1-1
The Format of EDL Instructions and Statements 1-1

Sample EDL Instruction 1-4
Common Terms 1-5
Syntax Rules 1-6
Software Register Usage 1-8
U sing the Parameter Naming Operands (Px =) 1-10

Rules to Remember 1-12

Chapter 2. Instruction and Statement Descriptions 2-1
Instructions and Statements Chart 2-1
$ID - Identify System Release Level 2-4
ADD - Add Integer Values 2-6
ADDV - Add Two Groups of Numbers (Vectors) 2-9
ALIGN - Instruction or Data to a Specified Boundary
AND - Compare the Binary Values of Two Data Strings
ATTACH - Start a Task 2-16

2-13
2-14

ATTNLIST - Enter Attention-Interrupt-Handling Routine 2-18
BSCCLOSE - Free a BSC Line for Use by Other Tasks 2-22
BSCIOCB - Specify BSC Line Address and Buffers 2-23
BSCOPEN - Prepare a BSC Line for Use 2-25
BSCREAD - Read Data from a BSC Line 2-28
BSCWRITE - Write Data to a BSC Line 2-32
BUFFER - Define a Storage Area 2-39
CACLOSE - Close a Channel Attach Port 2-43
CAIOCB - Create a Channel Attach Port I/O Control Block 2-45
CALL - Call a Subroutine 2-46
CALLFORT - Call a FORTRAN Subroutine or Program 2-49
CAOPEN - Open a Channel Attach Port 2-51
CAPRINT - Print Channel Attach Trace Data 2-53
CAREAD - Read from a Channel Attach Port 2-55
CASTART - Start Channel Attach Device 2-57
CASTOP - Stop a Channel Attach Device 2-59
CATRACE - Control Channel Attach Tracing 2-61
CA WRITE - Write to a Channel Attach Port 2-63
COMP - Define Location of Message Text 2-65
CONCAT - Concatenate Two Character Strings 2-67
CONTROL - Perform Tape Operations 2-68
CONVTB - Convert Numeric String to EBCDIC 2-74
'CONVTD - Convert EBCDIC String to Numeric String 2-77
COpy - Copy Source Code into Your Source Program 2-82
CSECT - Identify Object Module Segments 2-85
DATA/DC - Define Data 2-87
DCB - Create a Device Control Block 2-91
DEFINEQ - Define a Queue 2-93
DEQ - Release a Resource for Use 2-97
DEQT - Release a Terminal for Use 2-99
DETACH - Deactivate a Task 2-101

. DIVIDE - Divide Integer Values 2-103
DO - Perform a Program Loop 2-106
DSCB - Create a Data Set Control Block 2-112

Contents V

ECB - Create an Event Control Block 2-113
EJECT - Continue Compiler Listing on a New Page 2-115
ELSE - Specify Action for a False Condition 2-116
END - Signal End of Source Statements 2-117 o
ENDATTN -- End Attention-Interrupt-Handling Routine 2-118
ENDDO - End a Program Loop 2-119-
ENDIF - End an IF-ELSE Structure 2-120
ENDPROG - End a Program 2-121
ENDTASK - End a Task 2-123
ENQ - Gain Exclusive Control of a Resource other than a Terminal 2-125
ENQT - Gain Exclusive Control of a Terminal 2-127
ENTRY - Define a Program Entry Point 2-130
EOR - Compare the Binary Values of Two Data Strings 2-132
EQU - Assign a Value to a Label 2-134
ERASE - Erase Portions of a Display Screen 2-137
EXBREAK - Break Circular Chained DCBs 2-143
EXCLOSE - Close an EXIO Device 2-145
EXIO - Execute I/O 2-146
EXOPEN - Open an EXIO Device 2-150
EXTRN - Resolve External Reference Symbols 2-152
FADD - Add Floating-Point Values 2-154
FDIVD - Divide Floating-Point Values 2-157
FIND - Locate a Character 2-160
FINDNOT - Locate the First Different Character 2-162
FIRSTQ - Acquire the First Queue Entry in a Chain 2-165
FMULT - Multiply Floating-Point Values 2-167
FORMAT - Format Data for Display or Storage 2-170
FPCONV - Convert to or from Floating Point 2-180
FREESTG - Free Mapped and Unmapped Storage Areas 2-183
FSUB - Subtract Floating-Point Values 2-185
GETEDIT - Collect and Store Data 2-188
GETSTG - Obtain Mapped and Unmapped Storage Areas 2-195
GETTIME - Get Date and Time 2-197
GETVALUE -- Read a Value Entered at a Terminal 2-199
GIN - Enter Unscaled Cursor Coordinates 2-206
GOTO - Go to a Specified Instruction 2-207
HASHV AL - Condense a Character String 2~209
IDCB - Create an Immediate Device Control Block 2-211
IF - Test If a Condition Is True or False 2-213
INTIME - Provide Interval Timing 2-219
IOCB - Define Terminal Characteristics 2-221
IODEF - Assign a Symbolic Name to a Sensor-Based I/O Device 2-224

IODEF (Analog Input) 2-225
IODEF (Analog Output) 2-226
IODEF (Digital Input) 2-227
IODEF (Digital Output) 2-228
IODEF (Process Interrupt) 2-229

lOR - Compare the Binary Values of Two Data Strings 2-231
LASTQ - Acquire the Last Queue Entry in a Chain 2-233
LCCIOCB - Specify Device Subchannel Command and Buffer 2-234
LCCCLOSE - Close the Device Subchannel 2-236
LCCCNTL - Initiate Control Functions -2-237
LCCOPEN - Open Device Subchannel 2-238
LCCRECV - Receive Data from a Series/Ion a Ring 2-239 o
LCCSEND - Send Data to a Series/Ion a Ring 2-241
LOAD - LO(;ld a Program 2-243

vi SC34-0937

MECB - Create a List of Events 2-250

o MESSAGE - Retrieve a Program Message 2-252
MOVE - Move Data 2-256
MOVEA - Move an Address 2-260
MULTIPLY - Multiply Integer Values 2-261
NETCTL - Controlling SNA Message Exchange 2-264
NETGET - Receive Messages from the SNA Host 2-269
NETHOST - Build an SNA Host ID Data List 2-273
NETINIT - Establish an SNA Session 2-275
NETP ACT - Activate a Specific PU 2-282
NETPUT - Send Messages to the SNA Host 2-284
NETTERM - End an SNA Session 2-288
NEXTQ - Add Entries to a Queue 2-291
NOTE - Store Next-Record Pointer 2-294
PLOTGIN - Enter Scaled Cursor Coordinates 2-296
POINT - Set Next-Record Pointer 2-298
POST - Signal the Occurrence of an Event 2-300
PRINDATE - Display the Date on a Terminal 2-302
PRINT - Control Printing of a Compiler Listing 2-304
PRINTEXT - Display a Message on a Terminal 2-307

Request Special Terminal Function (4975-0IA) 2-316
Code Extension Sequences 2-317
Set Spacing Increment (SPI) 2-317
Resetting to Initial State (RIS) 2-320
Data Stream Example 2-320
Terminal I/O Return Codes 2-322

PRINTIME - Display the Time on a Terminal 2-328
PRINTNUM - Display a Number on a Terminal 2-330
PROGRAM - Define Your Program 2-335 o
PROGSTOP - Stop Program Execution 2-342
PUTEDIT - Collect and Store Data from a Program 2-344
QCB - Create a Queue Control Block 2-350
QUESTION - Ask Operator for Input 2-352
RDCURSOR - Store Static Screen Cursor Position 2-357
READ - Read Records from a Data Set 2-359
READTEXT - Read Text Entered at a Terminal 2-367
RESET - Reset an Event or Process Interrupt 2-383
RETURN - Return to the Calling Program 2-385
SBIO - Specify a Sensor-Based I/O Operation 2-386

SBIO Analog Input 2-387
SBIO (Analog Output) 2-389
SBIO (Digital Input) 2-391
SBIO (Digital Output) 2-393

SCREEN - Convert Graphic Coordinates to a Text String 2-396
SETBIT - Set the Value of a Bit 2-397
SHIFTL - Shift Data to the Left 2-398
SHIFTR - Shift Data to the Right 2-400
SP ACE - Insert Blank Lines in a Compiler Listing 2-402
SPECPIRT - Return from Process Interrupt Routine 2-403
SQRT - Find the Square Root 2-404
STATUS - Set Fields to Check Host Status Data Set 2-405
STIMER - Set a System Timer 2-407
STORBLK - Define Mapped and Unmapped Storage Areas 2-412
SUBROUT - Define a Subroutine 2-414
SUBTRACT - Subtract Integer Values 2-416

o
SWAP - Gain Access to an Unmapped Storage Area 2-418

Contents vii

TASK - Define a Program Task 2-421
TCBGET - Get Task Control Block Data 2-424
TCBPUT - Store Data in a Task Control Block 2-425
TERMCTRL - Request Special Terminal Function 2-426 o

TERMCTRL Functions Chart 2-426
2741 Communications Terminal 2-435
3101,3151,3161, 3163, and 3164 Display Terminals (Block Mode) 2-436
4013 Graphics Terminal 2-439
4201/4202 Printer 2-440
4224 Printer 2-456
4973 Printer 2-495
4974 Printer 2-496
4975 Printer 2-498
4978 Display 2-502
4979 Display 2-505
4980 Display 2-507
5219 Printer 2-509
5224, 5225, and 5262 Printers 2-515
ACCA Attached Devices 2-519
General Purpose Interface Bus 2-521
Series/ I-to-Series/ 1 2-524
Teletypewriter Attached Devices 2-527
Virtual Terminal 2-528

TEXT - Define a Text Message or Text Buffer 2-530
TITLE - Place a Title on a Compiler Listing 2-533
TP Instruction - Perform Host Communications Facility Operations 2-534

TP (CLOSE) - End a Transfer Operation 2-535
TP (FETCH) - Test for a Record in the System-Status Data Set 2-536
TP (OPENIN) - Prepare to Read Data from a Host Data Set 2-537 o
TP (OPENOUT) - Prepare to Transfer Data to a Host Data Set 2-538
TP (READ) - Read a Record from the Host 2-539
TP (RELEASE) - Delete a Record in the System-Status Data Set 2-540
TP (SET) - Write a Record in the System-Status Data Set 2-541
TP (SUBMIT) - Submit a Job to the Host 2-542
TP (TIMEDATE) - Get Time and Date from the Host 2-543
TP (WRITE) - Write a Record to the Host 2-544

USER - Use Assembler Code in an EDL Program 2-547
WAIT - Wait for an Event to Occur 2-550
WAITM- Wait for One or More Events in a List 2-553
WHERES - Locate an Executing Program 2-555
WRITE - Write Records to a Data Set 2-558
WXTRN/EXTRN - Resolve Weak External Reference Symbols 2-565
XYPLOT - Draw a Curve 2-567
YTPLOT - Draw a Curve 2-568

Appendix A. Formatted Screen Subroutines A-I
$IMDATA Subroutine A-2
$IMDEFN Subroutine A-4
$IMOPEN Subroutine A-6
$IMPROT Subroutine A-9
$PACK Subroutine A-ll
$UNPACK Subroutine A-12

Appendix B. Program-Communication Through Virtual Terminals B-1 o
Requirements for Defining Virtual Terminals B-1
Considerations for Coding a Virtual Terminal Program B-2

viii SC34-0937

Virtual Terminal Communication B-2
Sample Virtual Terminal Programs B-4

o Appendix C. Communicating with Programs in Other Partitions (Cross-Partition
Services) C-l

Transferring Data Across Partitions C-l
Starting a Task in Another Partition (ATTACH) C-8
Synchronizing Tasks and the Use of Resources in Different Partitions C-I0

Appendix D. EDX Programs, Subroutines, and In-Line Code D-l
EDX Programs D-l

$DISKUT3 - Manage Data from an Application Program D-l
$PDS - Use Partitioned Data Sets D-9
$RAMSEC - Replace Terminal Control Block (4980) D-23
$SUBMITP - Submit a Job for Execution D-26
$USRLOG - Log Specific Errors From a Program D-28
Tape Source Dump Program Example D-30

EDX Subroutines D-36
DSOPEN - Open a data set D-37
Formatted Screen Subroutines (Syntax Only) D-42
Indexed Access Method (Syntax Only) D-43
Multiple Terminal Manager (Syntax Only) D-44
SETEOD - Set the Logical End-of-File on Disk D-45
UPDT APE - Add Records to a Tape File D-46

In-Line Code (EXTRACT) D-46

Appendix E. Creating, Storing, and Retrieving Program Messages E-l
Creating a Data Set for Source Messages E-l
Entering Source Messages into a Data Set E-l
Formatting and Storing Source Messages (using $MSGUT1) E-4
Retrieving and Printing Formatted Messages E-4

Appendix F. Conversion Table F-l

Index X-I

o
Contents ix

o

o

o
X SC34-0937

o

o

o

About This Book

Audience

This book contains details and examples of how to code the instructions and
statements you can use to write Event Driven Language application programs.

This book is intended for application programmers who write and maintain
programs using the Event Driven Language. You can learn the Event Driven
Language by using the Language Programming Guide.

How This Book Is Organized
This book contains two chapters and six appendixes:

• Chapter 1. Introduction describes how instructions and statements are presented
in this book. The chapter also describes the syntax rules for the language,
defines key terms used throughout the book, and provides information about a
number of special features available with the Event Driven Language.

• Chapter 2. Instruction and Statement Descriptions contains a detailed description
of each EDL instruction and statement and shows the syntax of the instruction
or statement, the required operands, and the default values. The instructions
and statements are arranged in alphabetical order.

• Appendix A. Formatted Screen Subroutines contains a description of each of the
formatted screen subroutines ($IMAGE routines) along with its syntax, required
operands, and default values.

• Appendix B. Programs Communication Through Virtual Terminals contains a
description of the virtual terminal facility that allows application programs to
communicate as if they were EDX terminals.

• Appendix C. Communicating with Programs in Other Partitions (Cross-Partition
Services) contains examples that show how programs can share data and
communicate with other programs across partitions.

• Appendix D. EDX Programs, Subroutines, and Inline Code lists the syntax,
optIons and default values for the Indexed Access Method, Multiple Terminal
Manager, and Formatted Screen subroutines. In addition, the appendix
describes a data management program and subroutines, a program for using
partitioned data sets, and a copy code routine for identifying device types.

• Appendix E. Creating, Storing, and Retrieving Program Messages describes how
to build and use formatted program messages in your EDL application
programs.

• Appendix F. Conversion Table contains a table that shows the hexadecimal,
binary, EBCDIC, and ASCII equivalents of decimal values. The table also
shows transmission codes for communications devices.

About This Book xi

Aids in Using This Book
This book contains the following aids to using the information it presents:

• A table of contents that lists the major headings in the book.

• An -Instructions and Statements Chart that groups EDL instructions and
statements by the common tasks they perform. The chart also lists the
statements used during system generation.

• An index of the topics covered in this book.

Using the Enter and Attention Keys
This book uses the term "enter key" to mean the key that indicates that you have
completed input to a screen and want the system to process the data you keyed in.
It uses the term "attention key" to mean the key that indicates that you want to
direct keyboard input to the operating system supervisor. If your keyboard does not
have these keys, use the corresponding keys on your keyboard.

A Guide to the Library
Refer to the Library Guide and Common Index for information on the design and
structure of the Event Driven Executive Library, for a bibliography of related
publications, for a glossary of terms and abbreviations, and for an index to the
entire library.

Contacting IBM about Problems

xii SC34-0937

You can inform IBM of any inaccuracies or problems you find when using this book
by completing and mailing the Reader's Comment Form provided in the back of the
book.

If you have a problem with the IBM Series/1 Event Driven Executive services, refer
to the IBM Series/l Software Service Guide, GC34-0099.

o

o

o

o

o

o

Introduction

Chapter 1. Introduction

The Event Driven Language (EDL) is a programming language designed for use on
the Series/1 computer. The language enables you to write programs that perform
specific tasks. This chapter describes how the various instructions and statements
that make up the Event Driven Language are presented in this book. The chapter
also includes:

• Definitions of terms commonly used throughout the book

• A list of syntax rules you need to know to code EDL instructions and statements

• A description of how to use parameter naming operands and the two software
registers available to your program.

Note: For a detailed description of how to write and structure EDL programs, refer
to the Language Programming Guide.

The Event Driven Language
The Event Driven Language is composed of instructions and statements. Instructions
allow you to perform specific operations such as adding or subtracting data or
printing a message on a terminal. Instructions generate object code that the system
can process and execute. Statements enable you to define the parts of a program,
define data and system resources, and format compiled output, but not all EDL
statements generate object code. The system typically uses the code that is generated
by statements to set up storage locations.

Because statements do not execute in the same manner as instructions, you should
not place statements between the instructions in your programs. The exception to
this rule is the four statements used to control the formatting of compiler listings:
PRINT, SPACE, TITLE, and EJECT. You can code these statements between
program instructions because the system ignores them after the compile operation.

The Format of EDl Instructions and Statements
EDL instructions and statements have the general format:

ilabel operation operands

where these terms have the following meanings:

label

operation

operands

The symbolic name you assign to an instruction or statement. You
can use this name in your program to refer to that specific instruction
or statement. In most cases, a label is optional.

The name of the instruction or statement you are coding.

These constitute the body of the instruction or statement. An operand
can represent data that is required to complete an operation, or it can
define how an operation is to be performed.

Chapter 1. Introduction 1-1

Introduction

The Event Driven Language has two types of opeqmds: positional operands and
keyword operands. Positional operands must be coded in the position shown in the
operand field for the instruction or statement. These operands appear in lowercase.
Positional operands usually require a specific value, address, or label. Keyword
operands can be coded in any order following the positional operands (if any)
contained in an instruction or· statement. These operands are in the form
KEYWORD = . Keyword operands typically enable you to control how the system
performs an operation.

Depending on the type of operation you are performing, you may need to code an
operand with a specific value or label. For the purposes of this book, such values or
labels are generally referred to as parameters. Figure 1-1 shows the syntax of the
EDL ADD instruction.

label ADD opndl ,opnd2,count,RESULT = ,PREC =,
PI = ,P2 = ,P3 =

Figure 1-1. ADD Instruction Syntax

In the following example, operand 2 (a value of 5) is added to operand 1 (the
contents in A). The system places the result of this operation in SUM, the location
specified on the keyword operand RESULT = .

•
•
•

ADD A,5,RESULT=SUM
•
•
•

A DATA F'B'
SUM DATA F' 0 1

•
•
•

The parameter for opndl in the above operation is A. The parameter specified for
opnd2 is 5, and SUM is the parameter coded for the RESULT = operand.

Instruction and Statement Descriptions

1-2 SC34-0937

This book describes each EDL instruction and statement beginning in Chapter 2.
Each description begins with an explanation of what the instruction or statement
does. This explanation is followed by a syntax box which shows the operands that
make uP. the instruction or statement. Positional operands are shown in the order
you must code them.

Each syntax box also contains a list with the following headings:

Required:

Defaults:

Indexable:

You are required to code the· operand or operands listed here.

The system will supply the data shown if you do not specify the
operand or operands listed hete.

You can use the two software registers, #1 and #2, for the operands
listed here. See "Software Register Usage" on page 1-8 for further
information on the software registers.

o

0

o

o

o

Introduction

All operands that make up an instruction or statement are defined in a list following
each syntax box. The operands are listed in the order they appear in the syntax box.
The operand description details the use of the operand and any restrictions that may
apply to its use.

Special Considerations

Syntax Examples

Coding Examples

Certain IBM devices may require you to code an EDL instruction in a special way.
Other devices offer additional features which expand the use of an instruction.
Special considerations that can affect the way you use an instruction are described
after the operand list.

Most instructions and statements in this book contain syntax examples. Syntax
examples show the various ways you could code an instruction or statement. They
generally consist of a single line of code.

Many instructions and statements in this book also contain one or more coding
examples. These examples consist of entire programs or pieces of programs. Coding
examples illustrate how an instruction or statement works in relation to other
instructions and statements in the language.

Return or Post Codes
If an instruction issues return or post codes, these are listed after the examples.
Return and post codes are issued as follows:

Return cones Issued as a result of executing an EDL instruction to indicate
whether the operation was a success or a failure. Return codes are
returned in the first word of the task control block of the program
or task issuing the instruction, unless otherwise stated. The label of
the task control block (TCB) is the taskname (label) you specify on
the PROGRAM or TASK statement. You can examine the return
code from an instruction by referring to the taskname in your
program or by using the TCBGET instruction.

Post" codes

The following example shows several ways you can check the return
code:

START
BEGIN

PROGRAM
EQU
READTEXT
IF
TCBGET
PRINTEXT
PRINTNUM
•
•
•

BEGIN
*

(START,EQ,-l),GOTO,MESSAGE
RC,$TCBCO
'ERROR RETURN CODE IS: I

RC

MESSAGE PRINTEXT 'OPERATION IS SUCCESSFUL '
•
•
•

RC DATA F'e '

Issued by the system to signal the occurrence of an event. Unless
otherwise stated, post codes are returned in the first word of the
event control block (ECB) that is posted when the event occurs.
You must specify the ECB to be posted with an ECB statement.

Chapter 1. Introduction 1-3

Introduction

Sample EDL Instruction

Syntax Example

Coding Example

1-4 SC34-0937

The following example shows how instructions and statements are presented in this ~

book. A full description of the MESSAGE instruction and its operands appears in
"MESSAGE - Retrieve a Program Message" on page 2-252.

The MESSAGE instruction retrieves a program message from a data set or module
and displays or prints the message.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

msgno

COMP=

SKIP =

LINE =

SPACES =

PARMS=

MSGID=

XLATE=

PROTECT =

Pl=

MESSAGE msgno,COMP = ,SKIP = ,LINE = ,SPACES =,
P ARMS = (parml, ... parm8),MSGID = ,
XLATE=,PROTECT=,Pl =

msgno,COMP =
MSGID=NO,XLATE=YES,PROTECT=NO
none

Description

Positional operand

Keyword operand

Keyword operand

Keyword operand

Keyword operand

Keyword operand

Keyword operand

Keyword operand

Keyword operand

Parameter-naming operand

Retrieve the first message in the disk data set to which the COMP statement points.

MSGI MESSAGE 1,COMP=MSGSET
•
•
•

PROGSTOP
MSGSET COMP 'ERRS',DSl,TYPE=DSK

The following example uses the MESSAGE instruction to retrieve a message
contained in a disk data set. The program named TASK loads a second program,
CALCPGRM. A WAIT instruction suspends the execution of TASK until
CALCPGRM completes. When CALCPGRM finishes, it posts the ECB at label
LOADECB. The MESSAGE instruction at label MSG 1 retrieves the first message
in the disk data set MSGDSI on volume EDX002.

o

o

o

0

o

o

Return Codes

TASK PROGRAM
LOADECB ECB
START EQU

•
•
•
LOAD
WAIT

MSGI MESSAGE
•
•
•
PROGSTOP

A DATA
MSGSET COMP

ENDPROG
END

START,DS ((MSGDSl,EDX002))

*

CALCPGRM,EVENT=LOADECB
LOADECB
1,COMP=MSGSET,SKIP=1,PARMS=A,MSGID=YES

'CALCPGRM '
'STAT',DSl,TYPE=DSK

Introduction

The return codes are returned in the first word of the Task Control Block (TCB) of
the program issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code Description

-1 Successful completion.

301-316 Error while reading message from disk.

•

•

•
335 Disk messages not supported (MINMSG support only).

Common Terms
The following list contains some terms commonly used in the Language Reference,
along with their definitions:

constant A value or address that remains unchanged throughout program
execution. The number 5 is an example of an integer constant. An
address in a program, such as 009E, is an example of an address
constant.

self-defining term

variable

A decimal, integer, or character that the computer treats as data and
not as an address or pointer to data in storage. Self-defining terms
include expressions such as C I A I and X I 5B I

An area in storage, referred to by a label, that can contain any value
during program execution. In the example below, the label A refers to
an area in storage. The area contains the value 10. When the
DIVIDE instruction executes, it divides the contents of A by 5. The
system places the result of the operation in A. The variable A now
contains a value of 2.

Chapter 1. Introduction 1-5

Introduction

Syntax Rules

1-6 SC34-0937

immediate

data

precision

DIVIDE A,5
•
•
•

A DATA FI10 1

Immediate data refers to the way you can use a self-defining term.

If you code a self-defining term such as 8 for an operand in an
instruction, you are using this term as "immediate data." Operand 2
in the following example uses immediate data. The MULTIPLY
instruction multiplies the value of B by 8 and puts the result in B.

MULTIPLY 8,8

The number of words in storage needed to contain a value in an
operation.

This section contains syntax rules you should be aware of when coding programs in
the Event Driven Language. These rules apply whether you are using the Event
Driven Executive Compiler ($EDXASM) or the IBM Series/l Macro Assembler
($SlASM).

• An "alphabetic string" can contain one or more alphabetic characters (A - Z)
and any of the following special characters: $, #, @

• An "alphanumeric string" can contain one or more alphabetic or numeric
characters (0 - 9).

• You must code all instructions, statements, and keyword operands in upper case
letters (as shown in the syntax descriptions starting in Chapter 2, "Instruction
and Statement Descriptions" on page 2-1).

• When you.code a keyword operand, you must also code the equal sign (=) that
follows it as shown in the following example.

PREC=

• Operands must be separated by commas. Operands also must be separated from
the operation name by one or more blanks.

• An ellipsis (...) indicates that an operand may be repeated a variable (n) number
of times.

• A vertical bar (I) between two operands indicates that you can use one operand
or the other, but not both.

• All labels must be alphanumeric strings 1 - 8 characters in length. The first
character of the label must be a letter or one of the following special characters:
$, #, or @

• Instruction and statement labels must begin in column 1. Operation names can
begin in column 2, but must not go beyond column 71.

• To continue a line of code on another line, code any nonblank character in
column 72, for example an "X," and begin the next line in column 16. If the
continuation line contains a blank between column 16 and colu!lln 71, the
system ignores any information after that blank. The system concatenates the
data on the continuation line to the data on the preceding line.

o

o

o

o

o

o

Introduction

The number of continuation lines allowed is limited only by the maximum of
254 characters allowed in the operands field.

You can code operands through column 71 of the line to be continued, or you
can break off the line after a comma following an operand. An example of
breaking off the line before column 71 follows:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7--

label PRINTEXT . 'ANNUAL STATUS AND RECOMMENDATION REPORT',
SPACES=20,SKIP=1

x

• To include a comment following an instruction in your program, separate the
comment from the operands field by at least one blank. You can reserve an
entire line in the program for comments by coding an asterisk (*) in column 1.
The system ignores everything on the line following the asterisk.

Avoid the use of commas within comments for any of the following instructions
or statements: DEQT, ECB, ENQT, IOCB, PROGSTOP, or QCB.

• The system interprets any label you assign a value to with the EQU statement as
an address unless you code a plus sign (+) in front of the label. The plus sign
indicates that the label represents a numeric value.

• The following labels are reserved for system use:

All labels beginning with a $

RO, R1, R2, R3, R4, R5, R6, R7, FRO, FRI, FR2, FR3

#1, #2

RETURN (except when used in the instruction to end a user subroutine)

SETBUSY

SUPEXIT

SVC.

Note: You can refer to these labels within your program in the instruction
operands.

• The maximum number of delimiters allowed in the operands field is 70.
Delimiters are () or , or I

• To indicate an apostrophe mark within a text message, code double apostrophe
marks (' I).

• The EDX arithmetic operators are + (plus), - (minus), * (multiply), and /
(divide).

You can use the plus and minus operators to create expressions that refer to
specific addresses in your program. The expression B + 2, for example, defines
an address equal to the address of B plus 2 bytes. The expression C - A defines
an address equal to the address of C minus the address of A. You can use the
expressions you create with the plus and minus operators in all EDL instructions
that allow you to code a label for an operand. You can use an expression
instead of a label.

Chapter 1. Introduction 1-7

Introduction

The multiply and divide operators are valid only when you use them in an
arithmetic expression that you equate with a label. You equate arithmetic
expressions with labels by using the EQU instruction. The multiply operator
multiplies an address by the number of bytes you specify. The expression B*2
multiplies the address of B by 2. The divide operator divides an address by the
number of bytes you specify. In the expression C/D, the address of C is divided
by the value of D. See the EQU statement for examples that use the multiply
and divide operators.

Each arithmetic expression can contain only one operator. For example, the
expressions A + B, C - 1 D*4, and E/2 are all valid. If you require an expression
containing more than one operator, you can code it using multiple equate
(EQU) statements. The EQU statement equates a label with a value. To
compute the address of A + B-2, for example, you could code the following:

APB EQU A+B EQUATE APB WITH A+B
APBM2 EQU APB-2 EQUATE APBM2 WITH APB-2

An arithmetic expression normally consists of two terms separated by an
operator. You can construct an expression, however, consisting of an operator
followed by a symbol. In this case, the system assumes that the first term of the
expression is O. For example, if the value 2 is at location A, then + A is 2, - A
is -2, *A is 0, and /A is O.

• Operands that do not belong with an instruction are normally not flagged as
errors when . compiled under $EDXASM. The erroneous operand does not
generate any code and does not affect the execution of the instruction.

Software Register Usage

1 ~8 SC34-0937

Each task in your program has access to two software registers. You can use these
registers to hold data during an operation or as a means of computing addresses.
You can also ~se the registers as counters. The registers are named #1 and #2.
With operands that are listed as "indexable," you can treat the registers in the same
manner as any other variable. For example, you can code instructions in your
program to set, modify, or test these registers.

In the example below, the MOVE instruction moves the value 0 into #1. The 0
value replaces any existing data in #1, thereby setting the software register to O.

MOVE #1,0 SET #1 TO ZERO

The MOVE instruction in the next example moves the contents of variable A into
#2.

MOVE #2,A SET #2 TO THE CONTENTS OF A

An example of a register used as the second operand in an instruction is:

ADD A,#1

Here,. the ADD instruction adds the contents of #1 to the variable A, and places the
result in A.

You m~y also want to place the address of a variable into a software register. You
can 'accomplish this by using the MOVEA instruction. For example,

MOVEA #2,BUFFER1

sets register #2 to the address of the variable BUFFERI.

o

o

o

o

0

o

Introduction

Indexing with the Software Registers
You can use #1 and #2 to modify addresses in your program while the program is
executing. The process is called "indexing" and #1 and #2 are referred to as "index
registers." In the following example,

MOVE A,(B,#1)

the MOVE instruction moves the contents specified by (B,#I) into variable A. The
system treats the second operand of the MOVE instruction as an address because
this operand is in the form~

(parameter,#r)

where parameter is either a label or an integer and r is either a 1 or a 2. If #1 in the
preceding example contains a 5, then the data the. system moves into variable A is
located at the address of B plus 5 bytes. This sum is called the "indexed address."
Note that only one of the variables in an operand with the (parameter,#r) format,
either the parameter or the index register, can represent an address. The other
variable must be an integer or a label preceded by a plus sign (+) that is equated to
an integer. (Use the EQU statement to equate a label with an integer.)

The following example shows how you could use an index register to find the
location of data in a buffer. The example uses a DO loop to find the value - 350 in
a buffer containing 1000 entries.

•
•
•

MOVE #1,0
DO 1000,TIMES

IF «BUF,#1),EQ,-350),GOTO,FOUND
ADD #1,2

ENDDO
•
• (DID NOT FIND A MATCH)
•

FOUND MOVE DISP,#1
•
•
•

PROGSTOP
BUF BUFFER 1000,WORDS

The first MOVE instruction sets the index register, #1, to O. A DO instruction is
coded to perform the operations within the loop 1000 times. The IF instruction
checks to see if the first word in the buffer BUF is equal to - 350. If the first word
is not equal to - 350, the ADD instructions adds the value 2 to #1. When the loop
repeats, (BUF,#I) points to the address of BUF plus two bytes (one word). With
each succeeding loop, the program increments #1, and points to the next word in the
buffer. BUF has a length of 1000 words (2000 bytes).

If the program finds the value - 350 in the buffer, it executes the MOVE instruction
at label FOUND. The MOVE instruction saves the displacement from the start of
the buffer, which is contained in #1, at the location DISP.

Chapter 1. Introduction 1-9

Introduction

Register Considerations
Because each task in a program has its own software registers, the values in #1 and
#2 can vary from task to task. The system will use whatever values are in the
software registers of the task that is executing.

If several different tasks call a subroutine, the subroutine uses the software registers
belonging to the calling task. Overlay programs, however, are independent programs
with their own tasks. They have their own registers and do not use the calling task's
registers.

Using the Parameter Naming Operands (Px =)

1-10 SC34-0937

Often, when you create a program, you do not know the exact data the program will
use-when it executes. Normally, you can code a label with a DATA, DC or TEXT
statement. In the MOVE instruction, for example, you may not know the byte
count until a previous instruction executes. When the instruction executes, it uses
whatever data is stored at the location defined by the label. Sometimes, however, a
label cannot be coded for instruction parameters.

In the following example, the number of bytes to move is dependent on the value of
the variable called NUMBER. The count parameter of the MOVE instruction does
not allow use of a label. So, multiple MOVE instructions are needed for every count
parameter option. In the following example, only two values for NUMBER exist.
A separate MOVE instruction is needed for each value. Note that this technique
requires a great deal of storage.

•
•
•

IF (NUMBER,EQ,6)
MOVE A,B,(6,bytes)

ELSE
IF (NUMBER,EQ,lG)

MOVE A,B,(lG,bytes)
ENDIF

ENDIF
•
•
•

A TEXT LENGTH=lG
B TEXT LENGTH=lG
NUMBER DATA FIG I

If the value of NUMBER is a 6, then 6 bytes are moved from location B to A. If
the value of NUMBER is 10, 10 bytes are moved from location B to A.

The parameter naming operand (Px =) enables you to supply data to an instruction
in your program without having to define it with a DATA, DC or TEXT statement.

The Px = operands correspond to other operands in the instruction syntax. PI =
represents the first operand in an instruction, P2 = represents the second operand,
P3 = represents the third operand, and so on. The number of parameter naming
operands allowed within each instruction varies.

Figure 1-2 on page 1-11 shows the syntax for the MOVE instruction. The MOVE
instruction has three parameter naming operands. PI = refers to opndJ, P2 = refers
to opnd2, and P3 = refers to count.

o

0

o

o

o

o

label MOVE opndl , opnd2,count, FKEY = , TKEY = ,
PI =,P2=,P3=

Introduction

Figure 1-2. MOVE Instruction Syntax

To use a Px = operand, you must first code it with a label. The label refers to a
storage location within the instruction. The system refers to the label you assign to
the Px = operand when your program executes. The system treats the label as the
parameter of the operand to which the Px = operand refers. Once you assign a label
to the Px = operand, you can use that label in other instructions in your program.

In the following example, a parameter naming operand (P3 =) is used on the MOVE
instruction to provide the number of bytes to be moved.

A
B

•
•
•

MOVE A,B,(0,bytes),P3=NUMBER
•
•
•

TEXT
TEXT

•
•
•

LENGTH=10
LENGTH=10

This single line of code can replace the previous example. The system generates the
label and data area NUMBER when it assembles the MOVE instruction. The count
parameter of the MOVE instruction updates automatically when the variable called
NUMBER contains the value 6 or 10. This method of coding does not require an
IF instruction because the NUMBER variable is in the MOVE instruction. The
system generates the variable called NUMBER from the Px = operand code.
Storage is significantly reduced because it uses only one MOVE instruction.

In the following program, the GETV ALUE instruction asks you for the number of
bytes to move from B to A. Since the TEXT statement is only 10 bytes, the
program checks for errors in data by making sure INPUT is between 1 and 10 bytes.
When the GETV AL UE instruction receives the value for INPUT, the system
automatically updates the MOVE instruction's byte count field. At that point the
data and characters moved from location B to A are printed on the terminal.

TEST
START
RETRY

A
B
MESSAGE

PROGRAM
EQU
GETVALUE
IF
MOVE
PRINTEXT
PRINTEXT
PROGSTOP
TEXT
TEXT
TEXT
ENDPROG
END

START
*
INPUT,MESSAGE
(INPUT,LT,0),or,(INPUT,GT,10),GOTO,RETRY
A,B,(0,bytes),P3=INPUT
A
SKIP=1

I , LENGTH=10
'ABCDEFGHIJ ' ,LENGTH=10
'ENTER BYTE COUNT I

Chapter 1. Introduction 1-11

Introduction

Rules to Remember
You should remember the following rules when coding parameter naming operands
in your program.

Coding Labels on Px = Operands
When the compiler sees a Px = operand, it generates the label that you specify. The
compiler flags an error if you attempt to define that label again in your program.

Referring to Px = Operand Labels
You can refer to the label you code on the Px = operand more than once in your
program. However, once you have defined a label with a Px = operand, you cannot
use the same label on another Px = operand in the program.

Coding the Operand that Px = Replaces
When you code a Px = operand, you must still code a value or label for the operand
that Px = replaces. The system does not process the Px = operand if the label you
specified for it contains a 0 when the instruction executes. (The system defines the
value of the label on the Px = operand to be 0 at compilation time.) The example
that follows shows a case in which the system does not process the P2 = operand
until the instruction at GETDATA executes and supplies label B with a value other
than O.

CHECK PROGRAM START
START EQU *
ADDVAL ADD A,0,P2=B

IF (A,GT,10),GOTO,END
GETDATA GETVALUE B,IENTER NUMBER FROM 1 TO 10 I,SKIP=l

GOTO ADDVAL
END PRINTNUM A,SKIP=l

PROGSTOP
A DATA Fill

ENDPROG
END

On the first pass through the program, the label B contains a O. The system adds
the va~ue coded for operand 2 (0) to the value in A. After the GETVALUE
instruction executes, B contains whatever value was entered at the terminal. The
GOTO instruction passes control to the ADD instruction at the label ADDVAL.
When the ADD instruction executes the second time, the system adds the value in B
to the value in A. The system replaces the 0 value coded for operand 2 with the
val ue entered in B.

Matching Operand and Px = Operand Data Types

1-12 SC34-0937

The type of data that the Px = operand supplies in an instruction must match the
type of data that is being replaced. For example, if you specify the label of an
address for operand 2, P2 = must also supply an address. If you specify a constant
for operand 2, P2 = must supply a constant.

o

~-\

~)

o

o

c;

o

Introduction

In the example that follows, the ADD instruction contains a P2 = operand. The
P2 = operand refers to operand 2 which is coded with the constant 5. Because the
parameter coded for operand 2 is a constant, the P2 = operand must replace this
parameter with another constant to get the desired results. In this case, the MOVE
instruction moves the value 2 into A. The system adds 2 to C and stores a result of
2 in SUM.

•
•
•

MOVE
ADD

•
•
•

C DATA
SUM DATA

•
•
•

A,2
C,5,RESULT=SUM,P2=A

F'E)'
F'E)'

In the next example, operand 2 of the ADD instruction is coded with the label D.
The label refers to the address of a data area. Because the parameter coded for
operand 2 (D) is an address, the P2 = operand must 'replace this parameter with
another address to get the desired results. In this case, a MOVEA instruction moves
the address of B into A. The system adds the contents of B to the contents of C and
places the result in SUM.

•
•
•

MOVEA
ADD

•
•
•

B DATA
C DATA
0 DATA
SUM DATA

A,B
C,D,RESULT=SUM,P2=A

F 121

F'E)'
F' 5

1

F'E)'

Instruction and Operand Address Boundaries
Some functions of the Series/l require that instructions conform to certain storage
restrictions. These functions include those that deal with I/O data buffers, program
entry points, branch-to labels, and general data areas. Requirements can be for
byte, word, or doubleword alignment. The ALIGN instruction is used to ensure that
boundary requirements are met. For additional information refer to "ALIGN -
Instruction or Data to a Specified Boundary" on page 2-13. Check boundary
requirements when establishing data areas and when assigning labels.

Chapter 1. Introduction 1-13

Introduction

1-14 SC34-0937

All storage addressing is defined by byte location. Instructions can refer to bits,
bytes, byte strings, words, or doublewords as data operands. All fullword and
doubleword operand addresses must be on even-byte boundaries. All fullword and
doubleword operand addresses point to the most significant (leftmost) byte in the
operand. Bit addresses are specified by a byte address and a bit displacement.

• All instructions must be on an even-byte boundary.
• The effective address for all branch-type instructions must be on an even-byte

boundary to be valid.

If the rules of even-byte addressing are violated, a program check interrupt occurs
with specification check set in the processor status word (PSW).

o

o

o

o

o

Instruction and Statement Descriptions

Chapter 2. Instruction and Statement Descriptions

This chapter presents the Event Driven Language (EDL) instructions and statements
in alphabetical order. A description of the use of each instruction and statement is
provided, followed by its syntax, required operands, and the default values the
system uses when you do not specify certain operands. Each operand is listed and
described. Examples and other information, such as return codes and post codes,
also are provided. See "The Format of EDL Instructions and Statements" on
page 1-1 for more details on how this book presents instructions and statements.

Note: The Installatian and System Generation Guide contains the statements you use
to define and generate your system. These statements are listed in the "Instructions
and Statements Chart."

Instructions and Statements Chart
The chart on the following pages groups EDL instructions and statements by the
common tasks they perform. The chart also lists the statements you use to define
and generate a system.

Chapter 2. Instruction and Statement Descriptions 2-1

Instruction and Statement Descriptions

Add Device Support Define Data

DCB EXCLOSE ALIGN EOU
EXIO EXOPEN BUFFER STATUS

o
EXBREAK IDCB DATA/DC TEXT

Call Programs and Subroutines Define I/O

CALL RETURN BSCIOCB 10DEF
CALLFORT USER CAIOCB PROGRAM
SUBROUT IOCB SBIO

Code Graphics Applications End a Program

CON CAT SCREEN END
GIN XYPLOT ENDPROG
PLOTGIN YTPLOT PROGSTOP

Control Program Logic Format and Identify Compiler Listings

DO FINDNOT $ID SPACE
ELSE GOTO EJECT TITLE
ENDIF IF PRINT
ENDDO OUESTION
FIND

Control Tasks Initiate and Terminate Telecommunications

ATTACH PROGRAM BSCCLOSE NETHOST
ATTN LIST PROGSTOP BSCOPEN NETINIT
DETACH PROGRAM CACLOSE NETTERM
END OBC CAOPEN TP CLOSE
ENDATTN RESET CASTART TP OPENIN o
ENDPROG TASK CASTOP TP OPENOUT
ENDTASK WHERES NETCTL
LOAD

Control the Terminal Manipulate Data

ATTN LIST 10CB ADD HASHVAL
ENDATTN RDCURSOR ADDV lOR
ERASE TERMCTRL AND MOVE

CONCAT MOVEA
Convert Data DIVIDE MULTIPLY

CONVTB FPCONV
EOR SETBIT

CONVTD GETEDIT
FADD SHIFTL

FORMAT PUTEDIT
FDIVD SHIFTR
FMULT SORT
FPCONV SUBTRACT
FSUB

BG0555

o
2-2 SC34-0937

Instruction and Statement Descriptions

o Obtain Date and Time Respond to Errors

GETTIME CATRACE SBIO
PRINTDATE FREESTG SWAP
PRINTIME GETEDIT TCBGET

GETSTG TCBPUT
LOAD WRITE
READ

Obtain and Release Resources Retrieve User-Written Messages

DEQ COMP QUESTION
DEQT GETVALUE READTEXT
ENQ MESSAGE
ENQT Refer to External Modules
FREESTG COpy EXTRN GETSTG
STORBLK

CSECT WXTRN

SWAP
ENTRY

Perform Comm.,unication I/O Send or Receive Terminal Data

CAREAD TP (READ) GETEDIT PRINTEXT
CAWRITE TP (RELEASE) GETVALUE PRINTIME
CAPRINT TP (SET) MESSAGE PUTEDIT
NETGET TP (SUBMIT) PRINTDATE QUESTION
NETPUT TP (WRITE) PRINTNUM READTEXT
TP (FETCH)

Perform Disk, Diskette, and Tape I/O Set Timers

CONTROL POINT INTIME
DSCB READ STIMER
NOTE WRITE

Process I nterru pts Synchronize Tasks

ATTN LIST ECB STIMER
10DEF INTIME WAIT
SPECPIRT POST

Queue Processing System Generation

DEFINEQ ADAPTER SNALU
FIRSTQ BSCLINE SNAPU
LASTQ DISK SYSTEM
NEXTQ EXIODEV TAPE

HOSTCOMM TERMINAL
SENSORIO TIMER

BG0556

o
Chapter 2. Instruction and Statement Descriptions 2-3

$ID

$10 - Identify System Release Level

2-4 SC34-0937

The $ID statement enables you to record within an application program the EDX
system release level that you use to compile the program. If you dump the program
at a later date to diagnose a problem, the $ID statement eliminates the need to refer
back to the original source listing to find out the system release level in use when the
program was compiled.

The system release level coded with $ID appears as the last word in the dumped
program.

Code the $ID statement between the ENDPROG and END statements of your
program. This is an exception to the rule that ENDPROG and END must be the
last two statements of your program.

The $ID statement generates a I-word constant in the form of VMLP. Each
parameter is packed into four bits and is specified in hexadecimal notation.

The $ID statement is already coded on all EDX supplied software.

Syntax

label

Required:
Defaults:

Operand

V=

M=

L=

P=

$ID V=,M=,L=,P=

None
V = ,M =, and P = default to the current release level
of the EDX program product

Description

The EDX system release level; it ranges from 0 - 9, A - F
(hexadecimal).

The EDX modification or revision level; it ranges from 0 - 9, A - F
(hexadecimal).

The unique identifier you assign to programs not prepared by IBM; it
ranges from 1- 9, A - F (hexadecimal). The value 0 is reserved for
IBM use.

The. program temporary fix (PTF) release level; it ranges from 0 - 9,
A - F (hexadecimal).

o

()

o

Syntax Examples

o

o

$ID

1) In the following example, only operand L, which is designated for your use, is
coded. Operands V, M, and P are allowed to default to the current release level of
the EDX program product.

•
•
•

ENDPROG
IDNOTE $ID L=2

END

2) The $ID statement in the example below will cause the identifier, 3121, to be
printed out as the last word in the program when it is dumped. The identifier shows
that the program was compiled under EDX system release level 3, modification level
1, and program temporary fix 1. The 2 on the L = operand is for the programmer's
use.

•
•
•

ENDPROG
IDNOTE $ID V=3,M=1,L=2,P=1

END

Chapter 2. Instruction and Statement Descriptions 2-5

ADD

ADD - Add Integer Values

2-6 SC34;'0937

The ADD instruction adds an integer value in operand 2 to an integer value in
operand 1. The values can be positive or negative. To add floating-point values, use
the FADD instruction.

See the DATA/DC statement for a description of the various ways you can represent
integer data.

EDX does not indicate an overflow condition for this instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

ADD opndl,opnd2,count,RESUL T = ,PREC = ,
PI =,P2=,P3=

opndl,opnd2
count = I,RESULT = OPNDl,PREC = S
opndl,opnd2,RESUL T

Description

The label of the data area to which opnd2 is added. Opndl cannot be
a self-defining term. The system stores the result of the ADD
operation in opndl unless you code the RESULT operand.

The value added to opnd1. You can specify a self-defining term or the
label of a data area. The value of opnd2 does not change during the
operation.

count The number of consecutive values in opndl upon which the system
performs the operation. The maximum value allowed is 32767.

RESULT = The label of a data area or vector in which the result is placed. The
data area you specify for opndl is not modified if you specify
RESULT. This operand is optional.

PREC = xyz Specify the precision of the operation in the form xyz, where x is the
precision for opndl, y is the precision for opnd2, and z is the precision
of the result ("Mixed-Precision Operations" on page 2-7 shows the
precision combinations allowed forthe ADD instruction). You can
specify single-precision (S) or double-precision (D) for each operand.
Single precision is a word in length; double precision is two words in
length. The default for opndl, opnd2, and the result is single
precision.

If you code a single letter for PREC, the letter applies to opndl and
the result. Opnd2 defaults to single precision. If, for example, you
code PREC = D, opndl and the result are double precision and opnd2
defaults to single precision.

If you code two letters for PREC, the first letter applies to opndl and
the result, and the second letter applies to opnd2. With PREC = DD,
for example, opndl and the result are double precision and opnd2 is
double precision.

o

o

o

o

0

o

Px=

ADD

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Mixed-Precision Operations

Coding Example

The following table shows the precision combinations allowed with the ADD
instruction:

opndl opnd2 Result Precision

S S S S
S S D SSD
D S D D
D D D DD

Opnd2 is one or two words long depending on the precision you specify on the
PREC= keyword. The length of opndl is equal to the operand's precision
multiplied by the value of the count operand. SSSS is the default.

The following example moves the value 0 to index register #1. Next, the value 5 is
added to #1. Index register #1 now contains the value 5. The contents of variable
A are then added to each of three words starting at label VI. The results are placed
in three words starting at label V2. The contents of VI and A remain unchanged
because the keyword RESULT is specified. The third ADD instruction adds 15 to
the double-precision value at label E.

•
•
•

MOVE #1,0 MOVE 0 TO #1
ADD #1,5 INCREASE #1 BY 5
ADD V1,A,3,RESULT=V2 ADD THE VALUE IN A TO EACH OF 3 WORDS

* STARTING AT VI AND PLACE THE RESULT
* IN 3 WORDS STARTING AT V2
*

ADD E,15,PREC=D ADD 15 TO DOUBLE-PRECISION VALUE E
*
A DATA FI10 1
VI DATA Fill

DATA FI21
DATA FI31

V2 DATA FI01
DATA FI01
DATA FI01

E DATA 01100000 1

•
•
•

Chapter 2. Instruction and Statement Descriptions 2-7

ADD

The results from the previous coding example follow:

Before After 0
#1 F'O' #1 F' 51

A F' 10 ' A F' 10 '
V1 Fill V1 Fill

F'21 F'21
F' 31 F' 31

V2 F'O' V2. F'll'
F'O' F'121
F'O' F'13 1

E D'100000 I E D' 100015 1

o

o
2-8 SC34-0937

o

c

o

ADD V

ADDV - Add Two Groups of Numbers (Vectors)
The add vector instruction (ADDV) adds two groups of numbers or "vectors." The
number of times the operation occurs depends on the count you specify. The
instruction adds each consecutive value in operand 2 to the corresponding value in
operand 1.

Note: An overflow condition is not indicated by EDX.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

ADDV opndl,opnd2,count,RESULT = ,PREC = ,
PI =,P2=,P3=

opndl,opnd2,count
count = 1,RESUL T = opndl,PREC = S
opndl,opnd2,RESUL T

Description

The label of the data area that is modified by opnd2. Opndl cannot
be a self-defining term.

Do not code the software registers, #1 or #2, for this operand.
However, you can use the software registers to create an indexed
address for opnd1.

The value by which opndl is modified. You can specify a self-defining
term or the label of a data area.

count The number of consecutive values in both opndl and opnd2 upon
which the system performs the operation. The maximum value
allowed is 32767.

RESULT = The label of a data area or vector in which the result is placed. The
data area you specify for opndl is not modified if you specify
RESULT. This operand is optional.

PREC = xyz Specify the precision of the operation in the form xyz, where x is the
precision for opndl, y is the precision for opnd2, and z is the precision
of the result. ("Mixed-Precision Operations" on page 2-10 shows the
precision combinations allowed for the ADDV instruction.) You can
specify single-precision (S) or double-precision (D) for each operand.
Single precision is a word in length; double precision is two words in
length. The default for opnd1, opnd2, and the result is single
precision.

If you code a single letter for PREC, the letter applies to opndl and
the result. Opnd2 defaults to. single precision. If, for example, you
code PREC = D, opnd1 and the result are double precision and opnd2
defaults to single precision.

If you code two letters for PREC, the first letter applies to opndl and
the result, and the second letter applies to opnd2. With PREC = DD,
for example, opndl and the result are double precision and opnd2 is
double precision.

Chapter 2. Instruction and Statement Descriptions 2-9

ADDV

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Mixed-Precision Operations

Syntax Example

Coding Example

2-10 SC34-0937

The following table lists the precisions allowed with the ADDV instruction:

opndl opnd2 Result Precision

S S S S
S S D SSD
D S D D
D D D DD

-PREC= S is the default.

The ADDV instruction in the following example adds each consecutive value in VI
to the corresponding value in V2. After the instruction executes, VI contains
32F ' 3 1

VI
V2

ADDV VI,V2,32
•
•
•

DATA 32F ' I '
DATA 32F '21

THE COUNT IS 32

The following example moves the value 10 to Xl and the value 20 to X2. The first
ADDV instruction adds the value in CI to Xl and the value in C2 to X2. Because
the keyword RESULT is specified, the values in CI, C2, Xl, and X2 remain
unchanged. The system places the results in DI and D2. The second ADDV
instruction adds the values of the five words, starting at BI, to the values of the five
words starting at AI. The ADDV operation occurs in the following sequence: The
value in BI is added to. the value in AI, the value in B2 is added to the value in A2,
and so on through B5 and A5.

o

o

o

ADDV

Results of the example follow on the next page.

0 •
•
•

MOVE X1,18 MOVE 18 TO Xl
MOVE X2,28 MOVE 28 TO X2

*
ADDV X1,C1,2,RESULT=D1 ADD VALUE OF C1 TO Xl AND

* THEN C2 TO X2

* PLACE RESULTS IN
* LOCATIONS 01 and 02
*

ADDV A1,81,5 ADD THE VALUE OF THE 5 WORDS
* STARTING AT 81 TO THE 5 WORDS
* STARTING AT A1
Xl DATA F'81
X2 DATA F'81

*
A1 DATA Fill
A2 DATA F'21
A3 DATA F' 31
A4 DATA F'41
A5 DATA F' 51

*
81 DATA F'18 1
82 DATA F'28 1
83 DATA F' 38 1

0 84 DATA F'48 1
85 DATA F' 58 1

*
C1 DATA F' 51
C2 DATA F'18 1

*
D1 DATA F'81
D2 DATA F'81

o
Chapter 2. Instruction and Statement Descriptions 2-11

ADD V

Results of the previous coding example follow:

Before After 0
Xl F' 00 1 Xl F'lQ'
X2 F' G0 1 X2 F'20 1

Al Fill Al F'll'
A2 F'21 A2 F'221
A3 F' 31 A3 F' 33 1

A4 F'41 A4 F'441
A5 F' 51 A5 F' 55 1

Bl F'l0 1 Bl F'lQ'
B2 F'20 1 B2 F'20 1
B3 F' 30 1 B3 F'30 1

B4 F'40 1 B4 F'40 1

B5 F' 50 1 B5 F' 50 1

Cl F' 51 Cl F' 5'
C2 F'l0' C2 F'lQ'

Dl F'0' Dl F'l5'
D2 F'B' D2 F' 30'

o

o
2-12 SC34-0937

o

c

o

ALIGN

ALIGN - Instruction or Data to a Specified Boundary

Coding Example

The ALIGN statement ensures that the next instruction or data item in a source
statement list begins on a specified boundary: an odd byte, a word, or a doubleword.
The ALIGN statement is nonexecutable and should only be used to align data
within data areas.

When coding the ALIGN instruction, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, you must
also code the type operand. The comment must be separated from the operand field
by at least one blank and it cannot contain commas.

Syntax:

blank

Required:
Default:
Indexable:

Operand

type

ALIGN type comment

type (if you include a comment)
WORD
none

Description

WORD (the default) or blank aligns data on a fullword boundary.

BYTE aligns data on an odd-byte boundary.

DWORD aligns data on a doubleword boundary.

Note: If the data field is already aligned at the boundary requested, no action
results. WORD and BYTE align the data a maximum of 1 byte. DWORD aligns
the data a maximum of 3 bytes.

The ALIGN statement in the following example aligns the data area labeled BUFF
on a word boundary (even address).

Loc

0200
020B
020C

PROGNME

BUFF

DC
ALIGN
DC

C' EDX UTI LITY'
WORD ALIGN TO WORD BOUNDARY
CL'64'

Chapter 2. Instruction and Statement Descriptions 2-13

AND

AND - Compare the Binary Values of Two Data Strings

·2-14 SC34-0937

The AND instruction compares the binary value of operand 2 with the binary value
of operand I. The instruction compares each bit position in operand 2 with the
corresponding bit position in operand I and yields a result, bit by bit, of I or O. If
both of the bits compared are I, the result is 1. If either or both of the bits
compared are 0, the result is O.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opnd1

opnd2

AND opnd1,opnd2,count,RESULT =,
PI =,P2=,P3=

opnd1,opnd2
count = (1, WORD),RESUL T = opnd1,
opnd1,opnd2,RESULT

Description

The label of the data area to which opnd2 is compared. Opndl cannot
be a self-defining term. The system places the result of the operation
into opndl unless you code the RESULT operand.

The length of opndl is equal to the operand's precision multiplied by
the value of the count operand.

The value compared to opndl. You can specify a self-defining term or
the label of a data area.

count The number of consecutive vall;les in opndl upon which the operation
is to be performed. The maximum value allowed is 3'4767.

The count operand can include the precision of the data. Select one
precision which the system uses for opndl, opnd2, and the resulting bit
string. When specifying a precision, code the count operand in the
form,

(n,precision)

where "n" is the count and "precision" is one of the following:

BYTE
WORD.
DWORD

Byte precision
Word precision (default)
Doubleword precision

The precision you specify for the count operand is the portion of
opnd2 that is used in the operation. If the count is (3,BYTE), the
system compares the first byte of data in opnd2 with the first three
bytes of data in opndl.

RESULT = The label of a data area or vector iIi which the result is to be placed.

Px=

When you specify this operand, the value of opndl does not change
during the operation.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 fora detailed description of how to
code these operands.

o

o

o

Syntax Exanlples

o

o

o

AND

1) In the following example, the AND instruction turns off the rightmost four bits in
DATAl without affecting the other data field bits. After the instruction executes,
DATAl contains X'EO' (binary 11100000).

AND DATA1,MASK,(1,BYTE)
•
•
•

DATAl DC
MASK DC

X' E7 1

X' F0 1

binary 1110 0111
binary 1111 0000

2) The AND instruction in this example compares opnd2 with the first three bytes of
data in opndl. The system places the result in RESULTX.

AND OPERl,OPER2,(3,BYTE),RESULT=RESULTX
•
•
•

OPER1 DC
DC
DC

OPER2 DC
RESULTX DC

X' 00 1

X' A5 1

X' 01 1

X'FF'
2F ' 0 1

binary 0000 0000
binary 1010 0101
binary 0000 0001
binary 1111 1111
binary 0000 0000 0000 0000

After the AND operation, RESULTX contains X '00A5 0100 1 (binary 0000 0000
1010 0101 0000 0001).

3) In the following example, the AND instruction compares the first byte of data in
TEST to the first three bytes of data in INPUT. The system stores the result in
OUTPUT.

AND INPUT,TEST,(3,BYTE),RESULT=OUTPUT
•
•
•

INPUT DC
TEST DC
OUTPUT DC

C' 1.21
C' 0.0 1

3C ' 0 1

binary 1111 0001 0100 1011 1111 0010
binary 1111 0000 0100 1011 1111 0000
binary 1111 0000 1111 0000 1111 0000

After the AND operation, the contents of OUTPUT are C 10.0 I (binary 1111 0000
0100 1011 1111 0000).

Chapter 2. Instruction and Statement Descriptions 2-15

ATTACH

ATTACH - Start a Task

2-16 SC34-0937

The ATTACH instruction starts the execution of or "attaches" another task. If the
task you specify has already been attached, no operation occurs. You deactivate
tasks with the DETACH instruction.

The task to be attached is usually in the same partition as the ATTACH instruction.
However, you can attach a task in another partition by using the cross-partition
capability of ATTACH.

Note that the program load point of the attaching task is placed in the $TCBPLP
field of the task being attached. The system, however, will not reference the
$TCBPLP of the attached task if the attaching task is in another partition. To avoid
this problem, put the load point of the task to be attached in the $TCBPLP field of
the attaching task before the ATTACH instruction is executed. Be sure to restore it
after the ATTACH instruction is completed.

See Appendix C, "Communicating with Programs in Other Partitions
(Cross-Partition Services)" on page C-I for an example of attaching a task in
another partition. Refer to the Lanl?uage Programming Guide for more information
on cross-partition services.

The system records the address space in which a task is executing in the $TCBADS
field of the task's task control block (TCB). When your program attaches a task,
the system moves the address space in the program's TCB into the $TCBADS field
of the attached task's TCB.

When the A TT ACH instruction executes, the system stores the address of the
terminal from which the main task was loaded in the $TCBCCB field of the attached
task. In this way, the same terminal is active for both tasks.

If your program is to be link edited, place all TASKs to attach via the ATTACH
instruction in the same module. The assembler will chain all the TASKs within the
module it assembles. Your application program will have to chain the tasks together
if they are not within the same module. Modify the correct field in the TCB to
chain tasks accross modules.

Syntax:

label

Required:
Defaults:
Indexable:

ATTACH taskname,priority,CODE=,
PI =,P2=,P3=

taskname
CODE =-1
none

o

o

o

o

Coding Example

o

o

Operand

taskname

priority

CODE =

ATTACH

Description

Label of the task to be attached. You must define this task with a
T ASK statement.

The priority you assign to the task. This priority replaces the one you
assigned on the TASK statement. It remains in effect unless it is
overridden by a subsequent ATTACH instruction. See the TASK
statement for a description of the valid priorities you can assign a task.

A code word to be inserted in the first word of the task control block
of the task being attached. This code word could help your program
determine at what point the task is being attached. The attached task
could examine the code word by referring to the taskname operand.
The code word should be examined immediately upon entry into the
attached task because execution of certain instructions (for example,
I/O instructions) cause this word to be overlaid.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

In the following example, the ATTACH instruction attaches a task that reads a
record from a data set. The program begins by attaching TASKl. T ASKI is the
label of a TASK statement. T ASKI prints the message at label PI and reads a
record from MYFILE into the buffer BUF. The MOVE instruction moves the first
8 bytes of BUF into the text buffer labeled REC. When TASKl ends, it posts the
event specified on the EVENT = operand of the TASK statement. The main
program receives control and the WAIT instruction at label WI checks to see if
TASK! has ended. The PRINTEXT instruction at label P2 prints the message
I PROGRAM COMPLETE I ,and the program ends.

SAMPLE PROGRAM START,DS=((MYFILE,EDX40))
START EQU *

Wl
P2

BUF
REC

ATTACH TASKl
WAIT
PRINTEXT
PROGSTOP
BUFFER
TEXT

EVENT
'PROGRAM COMPLETE ' ,SKIP=2

256,BYTES
LENGTH=8

TASKl TASK NEXT, EVENT=EVENT
NEXT ENQT $SYSPRTR
Pl PRINTEXT '@TASKl ATTACHED I

READ DS1,BUF,1
MOVE REC,BUF,(8,BYTES)
DEQT $SYSPRTR
ENDTASK

ENDPROG
END

Chapter 2. Instruction and Statement Descriptions 2-17

ATTNLIST

ATTNLIST - Enter Attention-Interrupt-Handling Routine

2-18 SC34-0937

The ATTNLIST statement provides entry to one or more
attention-interrupt-handling routines.

With the ATTNLIST statement, you can produce a list of command names and
associated routine entry points. When you press the attention key on a terminal,
your program waits for you to enter a 1 - 8 character command. If the command
you enter matches one that is specified in the list, the associated routine receives
control. No action occurs if the ~ommand you enter is not contained in the list or if
the system cannot find the entry point of the routine.

The character $ is reserved for system use and should not be used as the first
character of a command name unless you are assigning PF keys. The characters
ERAP are also reserved. All other character combinations are allowed. Your
attention routines must end with an END ATTN instruction.

Your program and the ATTNLIST routine execute asynchronously. When the
ATTNLIST routine finishes, control passes to the instruction that was executing
when you pressed the attention key. Figure 2-1 on page 2-21 shows the operation
of the A TTNLIST instruction.

The attention list for programs you compile with $EDXASM can be up to 254
characters long and can contain a total of 24 ATTNLIST entries. Programs
compiled under $EDXASM can contain one LOCAL ATTNLIST and one
GLOBAL ATTNLIST statement. (See the SCOPE = operand for an explanation of
LOCAL and GLOBAL ATTNLIST.) The Series/1 macro and host assemblers allow
multiple attention lists with a maximum of 125 characters in each list.

ATTNLIST routines should execute quickly. Because the routines execute on
hardware level 1, lengthy routines can slow the execution of other application
programs or system tasks.

Notes:

1. You should not use the following instructions in an A TTNLIST routine:
DEQT, DETACH, ENDTASK, ENQT,LOAD, PROGSTOP, READ,
STIMER, TP, WAIT, and WRITE.

2. ATTNLIST routines cannot gain access to an enqueued terminal until the
program that ha's exclusive access releases the terminal by issuing a DEQT or
PROGSTOP instruction.

3. Do not use $DEBUG command names as command names in your attention list
routine. Refer to the Operator Commands and Utilities Reference for a list of the
$DEBUG command names.

Syntax:

label ATTNLIST (ccl,locl,cc2,loc2, ... ,ccn,locn),SCOPE =

Required: ccl,locl
Defaults: SCOPE = LOCAL
Indexable: none

o

o

o

o

Syntax Example

0

Operand

eel

ATTNLIST

Description

A command name consisting of 1 - 8 alphanumeric characters. Do not
use the character $ as the first character of the command name unless
you are assigning PF keys. For a description of using and assigning
the 4979, 4978, 4980, and 3101 terminal program function (PF) keys to
use ATTNLIST routines, refer to the Operation Guide.

loel N arne of the routine to be called.

SCOPE = GLOBAL; allows the ATTNLIST command routines to be used on
. any terminal assigned to the same storage partition.

LOCAL, limits the use of ATTNLIST commands to the specific
terminal (assigned to the same partition) from which the program
containing the commands was loaded.

A program can have one LOCAL ATTNLIST and one GLOBAL
ATTNLIST.

The ATTNLIST statement that follows allows you to use the PCODEI routine by
pressing the attention key and entering PCl. To use the PCODE2 routine, you
would press the attention key and enter PC2.

ATTNLIST (PCl,PCODEl,PC2,PCODE2)
•
•
•

PCODEl MOVE CODE,l
ENDATTN
•
•
•

PCODE2 POST EVENT,2
ENDATTN

Chapter 2. Instruction and Statement Descriptions 2-19

ATTNLIST

Coding Examples

2-20 SC34-0937

1) The following example uses the ATTNLIST statement to control the printing of
repetitive test patterns. Once the test pattern begins printing, it can only be stopped 0
by pressing the attention key- and entering the command "CA."

The program begins printing a test pattern consisting of 10 numbers. You can
expand the test pattern to include 24 special characters by pressing the PFI key.

If you press the PF2 key, the test pattern includes the alphabet, the 10 numbers
(0 - 9), and the 24 special characters.

TEST LOOP PROGRAM START

CANCEL

PFl

PF2

START

SWITCH

ATTNLIST(CA,CANCEL,$PF1,PF1,$PF2,PF2)
EQU *
MOVE SWITCH,99
ENDATTN

* EQU
MOVE
ENDATTN

SWITCH,l

* EQU
MOVE
ENDATTN

SWITCH ,2

EQU *
ENQT
DO WHILE, (SWITCH,NE,99)

PRINTEXT
IF
PRINTEXT
ENDIF
IF
PRINTEXT
ENDIF

ENDDO
DEQT
PROGSTOP
DATA
ENDPROG
END

'@1234567890 '
(SWITCH,GE,l)
I I#$%¢&*() __ +=!~":;?/>.<,I

(SWITCH,EQ,2)
I ABCDEFGHIJKLMNOPQRSTUVWXYZ I

F'O'

o

o

o

0

o

ATTNLIST

2) The following example also illustrates coding of the ATTNLIST statement.
However, it uses PF keys to call ATTNLIST instead of entering a command.

ATTEST

PCODEl

PCODE3

ATLIST

VAR

Figure 2-1. Function of A TTNLIST

PROGRAM
ATTNLIST
PRINTEXT
MOVE
ENDATTN
PRINTEXT
MOVE
ENDATTN
EQU
DO
MOVE
ENDDO
PROGSTOP
DATA
ENDPROG

ATTN LIST

.. abc,exit1
•
•

xyz,exit2
•
•
•

ATLIST
($PF1,PCODE1,$PF3,PCODE3)
'PF1 KEY WAS PRESSED@'
VAR,l

'PF1 KEY WAS PRESSED@'
VAR,3

*
(WHILE,(VAR,NE,l)
#1,#2

exit1 •

ENDATTN

exit2 •

ENDATTN

A0937001

Chapter 2. Instruction and Statement Descriptions 2-21

BSCCLOSE

BSCCLOSE - Free a BSC Line for Use by Other Tasks

Return Codes

2-22 SC34-0937

The BSCCLOSE instruction frees a binary synchronous line for uSe by other tasks.
If the line is a switched line (TYPE = SM or SA), this instruction disconnects it.

Syntax:

label BSCCLOSE bsciocb,ERROR = ,PI = ,P2 =

Required: bsciocb
Defaults: none
Indexable: bsciocb

Operand Description

bsciocb The label or indexed location of the BSCIOCB statement associated
with the close operation.

ERROR =

Px=

The label of the instruction to be executed if an error occurs while
closing the line. If you do not code this operand, control passes to the
next sequential instruction. In either case, the return code reflects the
results of the operation.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

All BSC instruction return codes are listed with the BSCWRITE instruction under
"Return Codes" on page 2-36.

o

o

o

o

o

BSCIOCB

BSCIOCB - Specify BSC Line Address and Buffers
The BSCIOCB statement specifies the line address and buffer(s) needed to perform
BSCCLOSE, BSCOPEN, BSCREAD, and BSCWRITE operations.

If you are sending variable-length records, the length field (length! operand) must
contain the actual length of the message to be written. Reset the value coded for the
length field to the buffer length before issuing a READ. Figure 2-2 on page 2-24
lists the number of buffers required for each type of BSCREAD and BSCWRITE
operation.

Syntax:

label BSCIOCB lineaddr ,buffer l,lengthl ,buffer2,
length2,pollseq,pollsize,Pl = ,P2 = ,
P3=,P4=,P5 =,P6=,P7 =

Required: lineaddr
Defaults: none
Indexable: none

Operand Description

label

lineaddr

buffed

lengthl

buffer2

length2

pollseq

pollsize

The label of the BSCIOCB. The BSCCLOSE, BSCOPEN,
BSCREAD, and BSCWRITE instructions refer to this label.

Other instructions can use the label to obtain additional status
information stored in the first word of the BSCIOCB. After text is
successfully received, this word contains the address of the last
character received. For all other conditions, the word contains the
Interrupt Status Word from the Series/! BSC Adapter.

The hardware address, in hexadecimal, of the line on which the
operation is to be performed.

The label of the first buffer used in an I/O operation. This buffer is
located in the target address space. The target address space is
determined during a BSCOPEN operation and is defined in
$TCBADS. This address space is used as the address space of the
buffer until another BSCOPEN operation changes it.

The length, in bytes, of the first buffer.

The label of the second buffer used in an I/O operation. This buffer is
located in the target address space as defined by $TCBADS.

The length, in bytes, of the second buffer.

The address of the poll or selection sequence to be used in a multipoint
control line initial operation.

The length, in bytes, of the poll or selection sequence.

Chapter 2. Instruction and Statement Descriptions 2-23

BSCIOCB

2-24 SC34-0937

The polling and selection sequences consist of one to seven characters
followed by: ENQ,(Read or Write Initial)!. You can find specific
sequences for a given device in the device component description
manual. Generally, a 3-byte pollsize is sufficient for a sequence of
address,address,ENQl between Series/1 processors. The device type
tributary determines the actual sequence.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Number Number
Read of Write of
Type Buffers Type Buffers

e 1 e
D 0 ev 2
E 1 evx 2
I 1 ex 1
P 1 eXB 1
Q 0 D 0
R 1 E 0
U 1 EX 0

I 1
IV 2
IVX 2
IX
IXB
Q 1
N 0
U
UX 2

Figure 2-2. Required Buffers for BSCREAD and BSCWRITE

1 Commas are for readability only and are not part of the data stream.

o

0

o

o

c

o

BSCOPEN

BSCOPEN - Prepare a BSC Line for Use
The BSCOPEN instruction prepares a binary synchronous line for use by a task.
The instruction acquires use of the BSC line and prepares it for a subsequent read or
write operation.

If the line is a switched manual line (TYPE = SM), BSCOPEN requests a Data
Terminal Ready acknowledgement and waits for the telephone connection to be
estab~ished. If the line is a switched auto-answer line (TYPE = SA), BSCOPEN waits
indefinitely for the ring interrupt and then requests a Data Terminal Ready
acknowledgement.

Note: BSCOPEN assumes that point-to-point lines have Data Terminal Ready
(DTR) permanently set on.

Syntax:

label BSCOPEN bsciocb,ERROR = ,X2IRN = ,PI = ,P2 = ,P3 =

Required: bsciocb
Defaults: none
Indexable: bsciocb

Operand Description

bsciocb The label or indexed location of the BSCIOCB statement associated
with the open operation.

ERROR = The label of the instruction to be executed if an error occurs while
opening the line. If you do not code this operand, control passes to
the next sequential instruction. In either case, the return code reflects
the results of the operation.

X2lRN = The label of the data area containing the name of a member in the
X.21 Circuit Switched Network Support' connection data set. This
member contains the connection information for this BSCOPEN. See
"X21RN Coding Example" on page 2-26 for the layout of the data
area.

This parameter must be coded for auto-call (TYPE = SE or
TYPE = SM) if the default data set name is not used. This parameter
is optional for direct call (TYPE = DC) and is ignored for all other
connection types. (The default name and the data set contents are
explained in the Communications Guide.)

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-25

BSCOPEN

X21 RN Coding Example

Return Codes

2-26 SC34-0937

The following example shows how to code the data area referred to by the X21RN
operand. This data area contains the name of the X.21 Circuit Switched Network
connection record data set. The data area must be eight characters long. If the data
set name contains fewer than 8 characters, the remaining positions in the data area
must contain blanks. (Refer to the Communications Guide for additional information
about the connection data set.)

•
•
•

BSCOPEN BSCIOCB,X21RN=MYDS
•
•
•

MYDS DC CL8'X21RNDS ' DATA SET NAME

The following are the return codes for X.21 Circuit Switched Network. All other
BSC instruction return codes are listed with the BSCWRITE instruction under
"Return Codes" on page 2-36.

Return
Code Condition

-32 System is unable to find X.21 support. IPL the system.

- 31 Not enough storage available to handle the number of X.21 requests.
Use the $DISKUT2 SS command to allocate more storage for $X21.
You can issue three simultaneous requests for every 256 bytes of
storage allocated.

-30 Your supervisor does not contain X.21 support.

-29 System does not have enough storage available to load the X.21
support or the connection record data set, $$X21DS, is not on the IPL
volume.

-27 Unrecoverable hardware error. If $LOG is active, check the error log
record for the X.21 device for more details.

-26 Hardware error for the 2080 feature card. Invalid interrupt received.

-25 Connection failed.

-24 Time expired for the completion of a call request. Call request failed.

-23 You cancelled a call request with an SNADACT or $C command.

-22 Call request failed due to Public Data Network problems. Call
progress signals invalid.

-21 Call request failed due to Public Data Network problems. Call
progress signals incomplete.

-20 Call request failed and network would not allow the request to be
retried. If $LOG is active, check the error log record for the X.21
device for more details.

-19 Number of retries exhausted for the call request. If $LOG is active,
check the error log record for the X.21 device for more details.

o

o

o

BSCOPEN

Return

o Code Condition

-18 Hardware error for the 2080 feature card. I/O request could not be
completed.

-17 No call request in progress.

-16 The Network information field of the X.21 connection record has no
plus sign or only a plus sign.

-15 The value in the Retry or Delay field of the X.21 connection record
exceeds the maximum value allowed.

-14 The Retry or Delay field of the X.21 connection record contains a
negative value.

-l3 A comma must separate the Retry, Delay, and Network information
fields of an X.21 connection record.

-12 The Retry or Delay field of the X.21 connection record contains an
invalid character.

-11 System does not have enough storage to execute a call request.

-10 Not enough storage in partition 1 for X.21 to execute a request.

-9 Either the connection record was never created or an EDL instruction
failed.

-1 Successful completion.

0 You cancelled a call request with an SNADACT or $C command.

1 Registration or cancellation request processed.

2 Redirection activated.

3 Redirection deactivated.

o
Chapter 2. Instruction and Statement Descriptions 2-27

BSCREAD

BSCREAD - Read Data from a BSC Line

2-28 SC34-0937

The BSCREAD instruction reads data from a binary synchronous line. If the read
operation is sl!ccessful, the first word of the associated BSCIOCB contains the
address of the last character read.

SyntaX'-

label

Required:
Defaults:
Indexable:

Operand

type

bsciocb

BSCREAD type,bsciocb,ERROR = ,END = ,CHAIN = ,
TIMEOUT = ,PI = ,P2 = ,P3 =

type,bsciocb
CHAIN = NO, TIMEOUT = YES
bsciocb

Description

The type of read operation you want to perform. The read operations
listed below are described in detail under "BSCREAD Types" on
page 2-30.

C Read Continue

D Read Delay

E Read End

I Read Initial

P Read Poll

Q Read Inquiry

R Read Repeat

U Read User.

The label or indexed location of the BSCIOCB statement associated
with the read operation.

ERROR = The label of the instruction to be executed if an error occurs (return
codes 10 through 99). If you do not code this operand, control passes
to the next sequential instruction. In either case, the return code
reHects the results of the operation.

END = The label of the instruction to be executed if an ending condition
occurs (return codes 1 through 6). If you do not code this operand,
control passes to the next sequential instruction. In either case, the
return code reflects the results of the operation.

o

,,~~

V

o

o

C'~
.I.

Return Codes

o

CHAIN =

TIMEOUT =

BSCREAD

YES, to cause a write operation to take place before the read
operation. Code CHAIN=YES for Read Poll (type P) and Read User
(type U). The system chains the DCB for the read operation to the
DCB for the write operation.

You must provide the address of the data for the write operation in
the buffer2 field of the BSCIOCB instruction. This buffer is located in
the target address space as defined by $TCBADS during a BSCOPEN
operation. You also must define the length (in bytes) of the data for
the write operation in the length2 field of the BSCIOCB.

Your program receives an error return code if the address of the data
or the length of the data for the write operation is zero. No write or
read operation is performed.

NO, to cause the read operation to take place before any write
operation.

Note: You can code CHAIN = YES to respond to a POLL with an
EOT and then immediately set up the next read poll operation. This
may be necessary in direct-connect environments where the Series/l is
a tributary to an extremely fast polling device.

YES, to cause a time-out error to occur if the access method does not
receive data within three seconds during a receive operation.
Normally, the access method attempts to recover from the error the
number of times that you coded on the RETRIES operand of the
BSCLINE statement that defines this line. Retry on time-out is not
performed by the access method for the following BSCREAD and
BSCLINE types:

BSCREAD Type BSCLINE Type

I

p

U

PP,MC

any

any

NO, to prevent a time-out error from occurring if the access method
does not receive data within three seconds during a receive operation.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

All BSC instruction return codes are listed with the BSCWRITE instruction under
"Return Codes" on page 2-36.

Chapter 2. Instruction and· Statement Descriptions 2-29

BSCREAD

BSCREAD Types

2-30 SC34-0937

Type Operation

C Read Continue - Reads subsequent blocks of data after an initial block has
been received with a Read Initial.

D Read Delay - Acknowledges that a block of data was correctly received and
asks the transmitting station to wait before sending the next block. You can
issue several Read Delays before resuming transmission of data with a Read
Continue.

E Read End - Acknowledges that a block of data was correctly received and
asks the transmitting station to stop sending data. You should issue only one
Read End during a single transmission. Once you issue the Read End, issue
Read Continues until you actually receive an EOT.

I Read Initial - Reads the first block of data in a transmission. After a
successful Read Initial operation, issue Read Continues until you receive an
EOT.

P

For a point-to-point operation (TYPE = PT,SA,SM), Read Initial monitors the
line for an ENQ sent by the transmitting station, writes a positive response
(ACK-O), andreads the message block that follows.

In a multipoint controller operation (TYPE = MC), Read Initial polls a
tributary station and, if the response to polling is positive, reads the message
text.

For a multipoint tributary operation (TYPE = MT), Read Initial writes a
positive response (ACK-O) and reads the message block that follows.

Read Poll - Reads the poll or select sequence received when the Series/1 is
acting as a tributary station on a mUltipoint line (TYPE = MT). If the
operation is successful, the specified buffer contains the sequence received
starting with the second station (control unit) address character. The access
method does not check the contents of the. received data stream, including
control characters.

Once it is polled or selected, your program should check the next operation
requested and issue the appropriate Read/Write Initial operation.

If you code CHAIN = YES, you can provide data to be transmitted by a write
operation before the Read Poll operation. For example, you can provide three
synchronization (SYN) characters and an EOT to be transmitted before the
Read Poll operation.

Q Read Inquiry - Reads an ENQ character. Read Inquiry returns an invalid
sequence error if ENQ or EOT is not received. If EOT is received, the access
method takes the END = exit, if specified.

o

o

o

o

Return Codes

CJ

rJ"

o

R

U

BSCREAD

Read Repeat - Requests that the last block of data be retransmitted following
an unsuccessful read operation.

The RETRIES operand on the BSCLINE statement determines the number of
times the read operation attempts to recover from a common error condition.
You can use Read Repeat, however, to attempt further recovery depending on
the actual error encountered.

Read User - Receives data without issuing a response. The access method
does not check the data or attempt any error recovery.

If you code CHAIN = YES, you can provide data to be transmitted by a write
operation before the Read User operation.

All BSC instruction return codes are listed with the BSCWRITE instruction under
"Return Codes" on page 2-36.

Chapter 2. Instruction and Statement Descriptions 2-31

BSCWRITE

BSCWRITE - Write Data to a esc Line

2-32 SC34-0937

The BSCWRITE instruction writes data to a binary synchronous line.

Syntax:

label

I Required:
Defaults:
Indexable:

Operand

type

bsciocb

BSCWRITE type,bsciocb,ERROR = ,END = ,CHECK = ,
PI = ,P2= ,P3 =

type,bsciocb
CHECK = YES
bsciocb

Description

The type of write operation you want to perform. The write
operations listed below are described in detail under "BSCWRITE
Types" on page 2-33.

C Write Continue

CV Write Continue Conversational

CVX Write Continue Conversational Transparent

CX Write Continue Transparent

CXB Write Continue Transparent Block

D Write Delay

E Write End

EX Write End Transparent

I W ri te Initial

IV Write Initial Conversational

IVX Write Initial Conversational Transparent

IX Write Initial Transparent

IXB Write Initial Transparent Block

N Write NAK (negative acknowledgement)

Q Write Inquiry

U Write User

UX Write User Transparent

The label or indexed location of the BSCIOCB statement associated
with the write operation.

ERROR = The label of the instruction to be executed if an error occurs (return
codes 10 through 99). If you do not code the operand, control passes
to the next sequential instruction. In either case, the return code
reflects the results of the operation.

o

0

o

o

BSCWRITE Types

C'"
l

o

END =

BSCWRITE

The label of the instruction to be execut~d if an ending ,condition
occurs (return codes 1 through 6). If you do not code this operand,
control passes to the next sequential instruction. In either case, the
return code reflects the results.

CHECK = YES, to allow normal checking of the response to occur. This
parameter is only valid for type CV or CVX operations.

NO, to prevent the response from being checked for protocol validity.
CHECK =.NO provides a chained write-to.,.read operation similar to
Write User and Read User.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Type Operation

C Write Continue - Writes subsequent blocks of data after an initial block has
been written with a Write Initial operation.

CV

CVX

Write Continue writes the message text and reads a response from the
receiving station.

Write Continue Conversational - Writes subsequent blocks of data after an
initial block has been written in conversational mode.

Write Continue Conversational writes the message text and reads a response
into your buffer. The access method checks acknowledgement sequences
and attempts error recovery when necessary. If text is received, a - 2 return
code is returned instead of the normal - 1.

Write Continue Conversational Transparent - Writes subsequent blocks of
transparent data after an initial block has been written in conversational
mode.

Write Continue Conversational Transparent writes the message text and the
ending characters DLE ETX. It then reads a response into your buffer.
The access method checks acknowledgement sequences and attempts error
recovery when necessary. If text is received, a - 2 return code is returned
instead of the normal - 1.

CX Write Continue Transparent - Writes subsequent blocks of transparent data
after an initial block has been written.

Write Continue Transparent writes the message text and the ending
characters DLE ETX. The operation then reads a response from the
receiving station.

CXB Write Continue Transparent Block - Writes subsequent blocks of
transparent data after an initial block has been written. This operation is
the same as BSCWRITE type ex except that it uses ETB as the ending
character instead of ETX.

Write Continue Transparent Block writes the message text and the ending
characters DLE ETB. It then reads a response from the receiving station.

Chapter 2. Instruction and Statement Descriptions 2-33

· BSCWRITE

2-34 SC34-0937

D Write Delay - Informs the remote station that the transmission of the next
block of data will be delayed. You can perform several Write Delay
operations before data transmission resumes.

Write Delay writes a temporary text delay (TTD) to the receiving station
and reads a NAK response. The purpose of this operation is to inform the
receiving station of a TTD before data transmission resumes.

E Write End - Informs the remote station that the previous block of data
completed the write operation. Write End writes an EaT.

EX Write End Transparent - Writes a transparent EaT (DLE EaT). You can
use this operation to notify the receiving station on a switched line that the
transmitting station is disconnecting from the line.

I Write Initial - Writes the first block of data in a transmission. Write Initial
establishes the correct initial sequence (depending on the type of line), writes
the first block, and checks the response.

For a point-to-point operation (TYPE = PT,SA,SM), Write Initial:

• Writes an ENQ to gain use of the line

• Reads a positive response (ACK-O)

• Writes the message text

• Reads the response to the message text.

Ina multipoint controller operation (TYPE = MC), Write Initial:

• Selects a tributary station

• Waits for a positive response to the selection

• Writes the message text

• Reads the response to the message text.

For a multipoint tributary operation (TYPE = MT), Write Initial:

• Writes the message text

• Reads a response from the controller station.

IV Write Initial Conversational - Writes the first block of data for a
transmission in conversational mode.

Write Initial Conversational establishes the correct initial sequence
(depending on the type of line), writes the first block of the message text,
and reads a response into your buffer. The access method checks
acknowledgement sequences and attempts error recovery when necessary. If
text is received, a - 2 return code is returned instead of the normal - 1.

For a point-to-point operation (TYPE = PT,SA,SM), Write Initial
Conversational:

• Writes an ENQ to gain use of the line

• Reads a positive response (ACK-O)

• Writes the message text

• Reads the response to the message text.

o

o

o

o

o

BSCWRITE

In a multipoint controller operation (TYPE = MC), Write Initial:

• Selects a tributary station

• Waits for a positive response to the selection

• Writes the message text

• Reads the response to the message text.

For a multipoint tributary operation (TYPE = MT)~ Write Initial:

• Writes the message text

• Reads a response from the controller station.

IVX Write Initial Conversational Transparent - Writes the first block of
transparent data of a transmission in conversational mode.

IX

IXB

Write Initial Conversational Transparent establishes the correct initial
sequence (depending on the type of line), writes the first block of the
message text and the ending characters DLE ETX. It then reads a response
into your buffer. The access method checks acknowledgement sequences
and attempts error recovery when indicated. If text is received, a - 2 return
code is returned instead of the normal - 1.

For point-to-point operation (TYPE = PT,SA,SM), Write Initial
Conversational Transparent:

• Writes an ENQ to gain use of the line

• Reads a positive response (ACK-O)

• Writes the message text

• Writes the required ending characters DLE ETX

• Reads the response to the message text.

In a luultipoint controller operation (TYPE = MC), Write Initial:

• Selects a tributary station

• Waits for a positive response to the selection

• Writes the message text

• Writes the required ending characters DLE ETX

• Reads the response to the message text.

For a multipoint tributary operation (TYPE = MT), Write Initial:

• Writes the message text

• Writes the required ending characters DLE ETX

• Reads a response from the controller station.

Write Initial Transparent - Writes the first block of transparent data in a
transmission. Write Initial Transparent establishes the correct initial
sequence (depending on the type of line), writes the first block of transparent
data, and checks the response. The access method ends the message text
with DLE ETX.

Write Initial Transparent Block - Same as Write Initial Transparent (IX)
except that ETB is used as the ending character instead of ETX.

Chapter 2. Instruction and Statement Descriptions 2-35

BSCWRITE

Return Codes

2-36 SC34-0937

Q Write Inquiry - Writes an ENQ character and reads the response into your
buffer. The response is either a control sequence or text.

Use this operation to request that a response to a message block be
retransmitted. The access method retries the operation if it times out.

N Write NAK - Writes a NAK (negative acknowledgement) character. Use
this operation to respond "device not ready" to polling or selection when the
Series!l operates as a tributary station on a multipoint line (TYPE = MT).

U Write User - Transmits a character stream. The access method does not
perform an associated read operation or attempt error recovery.

UX Write User Transparent - Transmits a transparent character stream. The
access method does not perform an associated read operation or attempt
error recovery.

The operation concludes with one of the following character pairs contained
in BSCIOCB buffer2: DLE ETX, DLE ETB, or DLE ENQ.

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code Condition

-32 System is unable to find X.21 support. IPL the system. 7

-31 Not enough storage available to handle the number of X.21 requests.
Use the $DISKUT2 SS command to allocate more storage for $X21.
You can issue three simultaneous requestsfor every 256 bytes of
storage allocated. 7

-30 Your supervisor does not contain X.21 support. 7

-29 System does not have enough storage available to load the X.21
support or the connection record data set, $$X21 DS, is not on the IPL
volume. 7

-27 Unrecoverable hardware error. If $LOG is active, check the error log
record for the X.21 device for more details. 7

-25 Connection failed. 7

-24 Time expired for the completion of a call request. Call request failed. 7

-23 You cancelled a call request with a $C command. 7

-22 Call request failed due to Public Data Network problems Call progress
signals invalid. 7

-21 Call request failed due to Public Data Network problems. Call
progress signals incomplete. 7

-20 Call request failed and network would not allow request to be retried.
If $LOG is active, check the error log record for the X.21 device for
more details. 7

-19 Number of retries exhausted for the call request. If $LOG is active,
check the error log record for the X.21 device for more details. 7

o

o

o

BSCWRITE

Return

o Code Condition

-18 Hardware error for the 2080 feature card. I/O request could not be
completed. 7

-16 The Network information field of the X.21 connection record has no
plus sign or only a plus sign. 7

-15 The value in the Retry or Delay field of the X.21 connection record
exceeds the maximum value allowed. 7

-14 The Retry or Delay field of the X.21 connection record contains a
negative value. 7

-13 A comma must separate the Retry, Delay, and Network information
fields of an X.21 connection record. 7

-12 The Retry or Delay field of the X.21 connection record contains an
invalid character. 7

-11 System does not have enough storage to execute a call request. 7

-10 Not enough storage in partition I for X.21 to execute a request. 7

-9 AnEDL instruction failed. If $LOG is active, check the error log
record for the X.21 device to find the failing instruction. 7

-2 Text received in conversational mode.

-1 Successful completion.

I EOT received.

2 DLE EOT received.

3 Reverse interrupt received.

4 Forward abort received.

5 Remote station not ready (NAK received). 4

6 Remote station busy (WACK received). 4

10 Time-out occurred. 1

11 Unrecovered transmission error (BSC error). 1

12 Invalid sequence received. 3

13 Invalid multipoint tributary write attempt. 2

14 Disregard this block sequence received. 1

15 Remote station busy (WACK received). 1

16 Your supervisor does not contain X.21 support. 7

17 The .connection type you defined on the BSCLINE statement is not
valid for the X.21 Circuit Switched Network. 7

18 The 2080 feature card is incorrectly jumpered for use with the X.21
Circuit Switched Network. 7

19 The X.21 network has been deactivated (DCE CLEAR). 7

20 Wrong length record - long (No COD). 6

21 Wrong length record - short (write only). 2

22 Invalid buffer address. 2

o
Chapter 2. Instruction and Statement Descriptions 2-37

BSCWRITE

2-38 SC34-0937

Return
Code Condition

23 Buffer length zero. 2

24 Undefined line address. 2

25 Line not opened by calling task. 2

26 Registration or cancellation request processed. 7

27 Redirection activated. 7

28 Redirection deactivated. 7

30 Modem interface error. 2

31 Hardware overrun. 2

32 Hardware error. 5

33 Unexpected ring interrupt. 2

34 Invalid interrupt during auto-answer attempt. 2

35 Enable or disable DTR error. 2

99 Access method error. 2

Notes:

1. Retried up to the limit specified in the RETRIES = operand of the BSCLINE
statement.

2. Not retried.

3. Retried during write operation only when a wrong ACK is received following an
ENQ request after timeout (indicating that no text had been received at the
remote station).

4. Returned only during an initial sequence with no retry attempted.

"5. Retried only after an unsuccessful start I/O attempt.

6. Retried only during read operations.

7. Returned only if your system contains support for the X.21 Circuit Switched
Network.

o

()

o

o

o

o

BUFFER

BUFFER - Define a Storage Area
The BUFFER statement defines a data storage area. The standard buffer contains
an index word, a length word, and a data buffer.

The index word indicates the number of data items (words or bytes) stored in the
buffer, but only when incremented by your program. A label assigned to the index
word in your program will enable you to increment and reset the index word from
the program. The system sets the index word to 0 when it creates the buffer. The
length word indicates the total length of the buffer in data items (words or bytes).

Certain instructions, for example INTIME and SBIO allow you to add new entries
sequentially to a buffer by referring to and incrementing the index word.

You can use a BUFFER statement to define the storage area needed for use with the
Host Communications Facility TP READ/WRITE instruction. The use of the
BUFFER statement to set up a temporary I/O buffer for a terminal is explained
under the IOCB statement.

READTEXT and GETEDIT instructions can be used to modify the BUFFER
statement. PRINTEXT and PUTEDIT instructions use the BUFFER statement to
determine the number of values to print.

Figure 2-3 on page 2-41 shows the physical layout of a buffer.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

length

BUFFER length,item,INDEX =

length
item = WORD
none

Description

The length of the buffer in terms of the data item (words or bytes) you
specify. The system allocates two words of control information, the
index word and the length word, in addition to the buffer itself. The
length must not exceed 16380 words or 32760 bytes.

If your program includes a READ instruction that will use the buffer,
the buffer area should be a multiple of 256 bytes.

Note: When filling a buffer, you should be careful not to exceed the
buffer size. The system does not check for an overflow condition.

Chapter 2. Instruction and Statement Descriptions 2-39

BUFFER

item

INDEX =

2-40 SC34-0937

Code BYTE or BYTES if the buffer length is defined in terms of bytes.
Code WORD or WORDS if the buffer length is defined in terms of
words. The default for this operand is WORD.

Code BYTE or BYTES if you are using the BUFFER statement with
a CALL $IMOPEN instruction.

Code TPBSC to generate a buffer for use with the TP READ/WRITE
instruction (Host Communications Facility). The count operand
reflects the length of the buffer in bytes when you code TPBSC.

The label of the buffer index word. Do not code this operand if you
coded TPBSC for the item operand. You can think of this operand as
a pointer to the next available data location in the buffer.

o

o

o

BUFFER

0
Standard BU FFER

label BUFFER length,item, INDEX = name

I

~ name index }
2 words

length

~ label "" " x

x
> index-

x

x

0 length in
bytes

0

0

0

0 j

TPBSC BU FFER

label BUFFER length, TPBSC

0 L length size in bytes 1 word

pad DLE/STX word

request TP request block 8 words

~ label

data length in
bytes

pad ETX word

A0937Q02

Figure 2-3. Physical Layout of a Buffer

Chapter 2. Instruction and Statement Descriptions 2-41

BUFFER

Coding Example

2-42 SC34-0937

The BUFFER statement labeled BUFF defines a l02-word storage area. The first 0
word

d
of thi~ areha is labeled

f
IhNDX als codebd onftBhe kFeyEwRord I~DEXTh' The s~c~nd _

wor contams t e count 0 t e tota num er 0 U F entnes. e remammg
100 words are the actual BUFFER storage area.

BUFF
DATAl

•
•
•

SUBROUT
IF

ENQT
PRINTEXT
DEQT
RETURN

ENDIF
MOVEA
ADD
MOVE
ADD
RETURN
BUFFER
DATA

STORE
(INDX,GE,19a)

$SYSPRTR
'@BUFFER IS FULL '

#l,BUFF MOVE ADDR OF BUFF
#l,INDX INCREMENT #1
(O,#l),DATAl,(l,WORD) MOVE DATA TO BUFF
INDX,2 INCREMENT BUFFER INDEX

lOO,WORDS,INDEX=INDX
F'O'

o

o

o

o

CACLOSE

CACLOSE - Close a Channel Attach Port

Syntax Examples

The CACLOSE instruction ends the connection between your application program
and a Channel Attach port and disables the port from receiving interrupts from the
System/370.

Syntax:

label CACLOSE caiocb,ERROR = ,PI =

Required: caiocb
Defaults: none
Indexable: caiocb

Operand Description

caiocb The label or indexed location of the Channel Attach I/O control block
defined for this port.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CACLOSE and your program must test for errors before issuing a
WAIT.

Pl= Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

1) The following example closes a port defined by the CAIOCB at USERIOCB.

CLOSEIO CACLOSE USERIOCB

2) This example closes a port defined by the CAIOCB at the indexed location of
USER plus the contents of #1. If an error occurs, the instruction at label El
receives control.

CLOSEFC CACLOSE (USER,#l),ERROR=El

Return and Post Codes
Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than -1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CACLOSE post codes are retl,lrned to the first word of the CAIOCB you defined for
the instruction.

Chapter 2. Instruction and Statement Descriptions 2-43

CACLOSE

2-44 SC34-0937

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation

FEOC -500 Data pending from host.

-1 FFFF -1 Successful.

501 01F5 EXIO error; device not attached.

502 01F6 EXIO error; busy.

503 01F7 EXIO error; busy after reset.

504 01F8 EXIO error; command reject.

505 01F9 EXIO error; intervention required.

506 01FA EXIO error; interface data check.

507 01FB EXIO error; controller busy.

508 OIFC EXIO error; channel command not
allowed.

509 OIFD EXIO error; no DDB found.

510 OIFE EXIO error; too many DCBs chained.

511 01FF EXIO error; no residual status address.

512 0200 EXIO error; zero bytes specified for
residual status.

513 0201 EXIO error; broken DCB chain.

516 0204 EXIO error; device already opened.

524 020C Timeout.

0234 564 User's CAIOCB not linked to port.

567 0237 567 System error; CAPGM terminating.

0238 568 Port not opened.

Note: Channel Attach codes 501- 513 are the same as the EXIO post codes 1-13
respectively.

o

o

o

o

o

CAIOCB

CAIOCB - Create a Channel Attach Port 1/0 Control Block

Syntax Example

The CAIOCB statement creates a Channel Attach port I/O control block that
contains the information your program requires to use a port.

You supply the device address, the port number, and the label of the first buffer
control area. You must provide a CAIOCB for all operations to a port. Do not try
to modify the CAIOCB during program execution.

Syntax:

label CAIOCB address,PORT = ,BUFFER =

Required: label,address,PORT = ,BUFFER =

Defaults: none
Indexable: none

Operand Description

label The label of the CAIOCB for use with the CAOPEN, CACLOSE,
CAREAD, and CA WRITE instructions.

address A 2-digit hexadecimal device address.

PORT = The number of the port (0 - 31) for which this I/O control block is
being created.

BUFFER = The label of a 3-word area containing:

• First word - the address of the buffer to be used for the first
read.

• Second word - the number of bytes to be used.

• Third word - the partition number of the buffer. If this word is
zero, the system assumes the buffer is in the partition in which you
loaded your program.

The following statement creates a Channel Attach port I/O control block for port 3.
The device address is 10.

USERIOCB CAIoeB 10,PORT=3,BUFFER=AREA

Chapter 2. Instruction and Statement Descriptions 2-45

CALL

CALL - Call a Subroutine

2-46 SC34-0937

The CALL instruction executes a system subroutine or a subroutine that you write.
You can pass up to five parameters as arguments to the subroutine. If the
subroutine you call is a separate object module to be link-edited with your program,
you must code an EXTRN statement with the subroutine name in the calling
program. Figure 2-4 on page 2-48 shows an example of a primary task calling a
subroutine which in tum calls a second subroutine.

Syntax:

label CALL name,parl, ... ,par5,Pl = , ... ,P6 =

Required: name
Defaults: none
Indexable: none

Operand Description

name The name of the subroutine to be executed.

par(n) The parameters you want to pass to the subroutine. You can pass up
to five single-precision integers or the labels of single-precision integers
or null parameters to the subroutine. The CALL instruction replaces
the parameters specified in the subroutine with the parameters you
specify. For example, the instruction replaces the first parameter of
the subroutine with parI, the second parameter with par2, and so on.

If the parameter name is enclosed in parentheses, for example (parI),
the instruction passes the address of the variable to the subroutine
parameter. The address can be the label of the first word of any type
of data item or data array. Within the subroutine it will be necessary
to move the passed address of the data item into one of the index
registers, #1 or #2, in order to refer to the actual data item location in
the calling program. If the parameter name enclosed in parentheses is
the label of an EQU instruction, the instruction passes the value of
that label as the parameter.

If the parameter to be passed is the label of an EQU instruction, you
can code a plus sign (+) in front of that label. The plus sign causes
the value equated to the label to be passed to the subroutine. If you
do not code a plus sign in front of the label, the instruction assumes
that the value equated to the label is an address and passes the data at
that address as the parameter.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

o

o

o

Syntax Examples

o

Coding Example

o

o

CALL

1) Call the PROG subroutine and pass it a value of 5.

CALL PROG,5

2) Call the PROG subroutine and pass it a value of 5 and the null parameterO.

CALL PROG,5,

3) Call the SUB ROUT subroutine and pass it the contents of P ARM l, the address
of PARM2, and the value of the equated label FIVE.

CALL SUBROUT,PARMl,(PARM2),+FIVE

The following coding example shows a use of the CALL instruction. The main
routine calls the subroutine READREC. A relative record number is passed to the
subroutine as RECNUMBR and is received as RECORD#.

Two methods of passing an address to a subroutine are illustrated. First, at label
MA, the address of ENDFILE is moved to EOF. Then EOF is passed to the
subroutine as a parameter of a CALL instruction.

Second, in the same CALL instruction, the address of READERR is passed to the
subroutine by enclosing the label in parentheses. When EOF and READERR are
passed to the subroutine, they are referred to as EOFEXIT and ERREXIT,
respectively.

The EOFEXIT and ERREXIT parameters are addresses. In order to branch to the
locations these parameters represent, they must be enclosed in parentheses as the
object of a GOTO instruction.

The subroutine uses the relative record number defined by RECORD# to read the
data file. An end-of-file condition causes a branch to the appropriate exception
routine whose address is contained in EOFEXIT.

A read error will cause a branch to the location whose address is contained in
ERREXIT. If no exception condition is encountered, control is returned to the
calling routine by the RETURN instruction.

Chapter 2. Instruction and Statement Descriptions 2-47

CALL

•
•
•

CALL name1

•
•
•

•
•
•

MA MOVEA EOF,ENDFILE
CALL READREC,RECNUMBR,EOF,(READERR)
GOTO CONTINU

READ ERR EQU *
PRINTEXT '@ ERROR ENCOUNTERED READING DISK FILE RECORD NUMBER'
PRINTNUM RECNUMBR
PROGSTOP

ENDFILE EQU *
PRINTEXT '@ END OF INPUT DATA FILE REACHED'
PROGSTOP

CONTINU EQU
•
•
•

SUBROUT
READ
RETURN

ENDEXIT EQU
GOTO

ERRORXIT EQU
GOTO
•
•
•

--... ...

*

READREC,RECORD#,EOFEXIT,ERREXIT
DSl,DISKBUFR,l,RECORD#,END=ENDEXIT,ERROR=ERRORXIT

*
(EOFEXIT)
*
(ERREXIT)

SUBROUT name1
•
•
• 1 CALL name2 • SUBROUT name2

L
• •
• ~ •
• •

RETURN
'--- RETURN

A0937003

Figure 2-4. Execution of Subroutines

2-48 SC34-0937

o

o

o

o

o

o

CALLFORT

CALLFORT - Call a FORTRAN Subroutine or Program
The CALLFORT instruction calls a FORTRAN program or subroutine from an
Event Driven Executive program. If you call a FORTRAN main program, the
name you specify for the name operand is the name you coded on the FORTRAN
PROGRAM statement or the default name, MAIN, if no PROGRAM statement
was coded. If you call a FORTRAN subroutine, specify the name of the subroutine
for the name operand. You can pass parameters to FORTRAN subroutines.
Standard FORTRAN subroutine conventions apply to the use of CALLFORT.

If separate tasks within an EDL program each contain CALLFORT instructions, the
tasks should not execute concurrently because the FORTRAN subroutines are
serially reusable and not reentrant.

For a more complete description of the use of the CALLFORT instruction, refer to
the IBM Series/l Event Driven Executive FORTRAN IV Program 5719-F02 User's
Guide, SC34-0315.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

na~e

ai,a2,an

pi,p2,pn

CALLFORT name,(al,a2, ... ,an),P = (pl,p2, .. pn)

name
none
none

Description

The name of a FORTRAN program or subroutine, consisting of 1-6
alphanumeric characters, that begins with an alphabetic character.
You must also code this name, or entry point, on an EXTRN
statement.

A list of parameters or arguments (al,a2, and so on) that you want to
pass to the subroutine. The argument can be a constant, a variable, or
the name of a buffer. If you are passing the subroutine only one
argument, you do not have to enclose it in parentheses.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands. Each name in this list can be up to 8 characters
long. The system assigns the first name in the list to the first
argument, the second name in the list to the second argument, and so
on.

Chapter 2. Instruction and Statement Descriptions 2-49

CALLFORT

Syntax Examples

2-50 SC34-0937

1) Call the SORTI subroutine.

SAMPLE PROGRAM START
EXTRN SORT!

START EQU *
CALLFORT SORT!

2) Call the SUM subroutine and pass it an integer consiant of 5.

SAMPLE PROGRAM START
EXTRN SUM

START EQU *
CALLFORT SUM,5

3) Call the SUM subroutine and pass it variables A and B.

SAMPLE PROGRAM START
EXTRN SUM

START EQU *

A
B

CALLFORT SUM, (A,B)
•
•
•

DATA
DATA

F'5'
F'0'

4) Call the SUM subroutine and pass it variables A and B. Assign the label INPUT
to argument A and OUTPUT to argument B.

SAMPLE PROGRAM START
EXTRN SUM

START EQU *

A
B

CALLFORT SUM, (A,B),P=(INPUT,OUTPUT)
•
•
•

DATA
DATA

F'5'
2F'0'

o

o

o

o

CI

0,
I ,,'

CAOPEN

CAOPEN - Open a Channel Attach Port

Syntax Examples

The CAOPEN instruction establishes a connection between your application
program and a Channel Attach device port.

You must issue a CAOPEN instruction before your program can use a port for data
transfer. When your program opens a Channel Attach port, it has exclusive use of
the port until the port is closed. The system rejects any request to open a port
already opened.

Syntax:

label CAOPEN caiocb,ERROR = ,PI =

Required: caiocb
Defaults: none
Indexable: caiocb

Operand Description

caiocb The label or indexed location of the Channel Attach port I/O control
block you defined for this port.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CAOPEN and your program must test for errors before issuing a
WAIT.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

1) Open a port defined by the CAIOCB at label USERIOCB.

OPENIO CAOPEN USERIOCB

2) Open a port defined by the CAIOCB at the indexed location of USER plus the
contents of #1. If an error occurs, the instruction at label E1 receives control.

OPENFC CAOPEN (USER,#l),ERROR=El

Chapter 2. Instruction and Statement Descriptions 2-51

CAOPEN

Return and Post Codes

2-52 SC34-0937

Return codes are returned in. the first word of the task control block of the program
or task issuing the instruction. A return code other than -1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CAOPEN post codes are returned to the first word of the CAIOCB you defined for
the instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation

-1 FFFF -1 Successful.

501 01F5 EXIO error; device not attached.

502 01F6 EXIO error; busy.

503 01F7 EXIO error; busy after reset.

504 01F8 EXIO error; command reject.

505 01F9 EXIO error; intervention required.

506 01FA EXIO error; interface data check.

507 OlFB EXIO error; controller busy.

508 01FC EXIO error; channel command not
allowed.

509 01FD EXIO error; no DDB found.

510 01FE EXIO error; too many DCBs chained.

511 01FF EXIO error; no residual status address.

512 0200 EXIO error; zero bytes specified for
residual status.

513 0201 EXIO error; broken DCB chain.

516 0204 EXIO error; device already opened.

520 0208 Interrupt error.

524 020C Timeout.

0227 551 Device not started.

0228 552 Stop in progress.

022C 556 Port out of range.

022D 557 Port already open.

022E 558 Read buffer not provided.

022F 559 Read buffer count = O.

567 0237 567 System error; CAPGM terminating.

023A 570 Device in diagnostic mode.

Note: Channel Attach codes 501- 513 are the same as the EXIO post codes 1-13,
respectively.

o

()

o

o

c

o

CAPRINT

CAPRINT - Print Channel Attach Trace Data
The CAPRINT instruction prints the entire trace area on your printer or terminal.
Use this instruction for problem determination. Tracing is disabled while printing is
being done.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

address

event

TITLE =

CONSOLE =

CAPRINT address,event,TITLE = ,CONSOLE = ,ERROR =,
PI =,P2=,P3=,P4=

address
CONSOLE = $SYSPRTR
EVENT, TITLE

Description

A 2-digit hexadecimal device address.

The label or indexed location of the event to be posted when printing
has completed. If you do not code this operand, your program is not
posted when printing completes.

The label or indexed location of a 2-word area defining the title on the
trace data listing. The first word contains the address of the title. The
second word contains the length, in bytes, of the title. If you do not
code this operand, no title appears on the trace data listing. TITLE =
cannot exceed 72 bytes if you are using the $CHANUTI utility.

The label of the IOCB statement that defines the terminal used as the
output device for this trace print request.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CAPRINT and your program must test for errors before issuing a
WAIT.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-53

CAPRINT

Syntax Examples

Return Codes

2-54 SC34-0937

1) Print trace data for the device at address 10 on $SYSPRTR.

PRINT10 CAPRINT 10,ERROR=ERROR2

2) Print trace data for the device at address FC on PRTR2. When the printing
completes, the instruction posts the event at the indexed location of address A plus
the contents of #1.

PRINTFC CAPRINT FC,(A,#l),TITLE=HEAD, x
CONSOLE=PRTR2,ERROR=El

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code indicates that the link module found
an error before the instruction performed an I/O operation. Your program must
check the return code before it issues a WAIT because a WAIT should only be used
if an I/O operation is being performed.

For detailed explanations of the return codes, refer to Messages and Codes.

Return
Hex Code Explanation

0227 551 Device not started.

0228 552 Stop in progress.

022A 554 Device not found.

o

o

o

o

o

CAREAD

CAREAD - Read from a Channel Attach Port

Syntax Examples

The CAREAD instruction reads data from a Channel Attach port. The operation
occurs at the port you specify in the CAIOCB statement.

Syntax:

label

Required:
Defaults:

CAREAD caiocb,thisbuf,nextbuf,ERROR = ,

PI =,P2=,P3=

caiocb, thisbuf,nextbuf
none

Indexable: caiocb, thisbuf,nextbuf

Operand

caiocb

thisbuf

nextbuf

Description

The label or indexed location of the Channel Attach port I/O control
block defined for this port.

The label of a 3-word area containing:

• First word - the address of the buffer receiving the data from this
read

• Second word - the number of bytes to be read into the buffer

• Third word - the partition number of the buffer

The label of a 3-word area containing:

• First word - the address of the buffer to be used for the next read

• Second word - the number of bytes to be read into the buffer

• Third word - the partition number of the buffer.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CAREAD, and your program must test for errors before issuing a
WAIT.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) Read data from the port defined by the CAIOCB at label USERIOCB. The
address of the buffer receiving the data is in the 3-word area at label BUFI.

READlO CAREAD USERIOCB,BUF1,BUF2

2) Read data from the port defined by the CAIOCB at the indexed location of
USER plus the contents of #1. The address of the buffer receiving the data is in the
3-word area at the indexed location of BUFI plus the contents of #2.

READFC CAREAD (USER,#1),(BUF1,#2),
(BUF2,#1),ERROR=El

x

Chapter 2. Instruction and Statement Descriptions 2-55

CAREAD

Return and Post Codes

2-56 SC34-0937

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than -1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CAREAD post codes are returned to the first word of the CAIOCB you defined for
the instruction. For detailed explanations of the return and post codes, refer to
Messages and Codes.

Post Return
Code Hex Code Explanation

-1 FFFF -1 Successful.

501 01F5 EXIO error; device not attached.

502 0lF6 EXIO error; busy.

503 OIF7 EXIO error; busy after reset.

504 0lF8 EXIO error; command reject.

505 0lF9 EXIO error; intervention required.

506 OIFA EXIO error; interface data check.

507 01FB EXIO error; controller busy.

508 01FC EXIO error; channel command not
allowed.

509 OIFD EXIO error; no DDB found.

510 OIFE EXIO error; too many DCBs chained.

511 OIFF EXIO error; no residual status .address.

512 0200 EXIO error; zero bytes specified for
residual status.

513 0201 EXIO error; broken DCB chain.

516 0204
'"

EXIO error; device already opened.

524 020C Timeout.

520 0208 Interrupt error.

521 0209 Negative acknowledgement (write only).

522 020A Buffer overlay (read only).

523 020B Protocol error.

022E 558 Buffer not provided.

022F 559 Buffer count = O.

0232 562 Write buffer not provided.

0233 563 Write buffer count = O.

0234 564 Users CAIOCB not linked to port.

567 0237 567 System error; CAPGM terminating.

0238 568 Port not opened.

Note: Channel Attach codes 501- 513 are the same as the EXIO post codes 1-13,
respectively.

o

o

o

o

c;

o

CAST ART

CAST ART - Start Channel Attach Device

Syntax Example

The CAST ART instruction starts a Channel Attach device. Your program must
start the Channel Attach device before it can open any of the device's ports.

The first CASTART instruction you issue loads the Channel Attach device handler
program, initializes the control blocks for the device, and prepares the device to
accept interrupts from the System/370. Subsequent CASTART instructions connect
to the device handler program initially loaded.

Syntax:

label CAST ART address,ecb,ERROR = ,PI = ,P2 =

Required: address,eeb
Defaults: none
Indexable: eeb

Operand Description

address A 2-digit hexadecimal device address.

eeb The label or indexed location of the event to be posted upon
completion of the CAST ART operation.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CASTART, and the program must test for errors before issuing a
WAIT.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

The CASTART instruction in the following example starts the device at address 10.
When the start operation ends, the instruction posts the event at $ECB.

START10 CASTART 10,$ECB

Chapter 2. Instruction and Statement Descriptions 2-57

CAST ART

Return and Post Codes

2-58 SC34-093J

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than -1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
pro gram must check the return code before it issues aWAIT because aWAIT
should only be used if an I/O operation is being performed.

CAST AR T post codes are returned to the first word of of the event control block
(ECB) you defined in the instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation

-1 FFFF -1 Successful.

501 01F5 EXIO error; device not attached.

502 01F6 EXIO error; busy.

503 01F7 EXIO error; busy after reset.

504 01F8 EXIO error; command reject.

505 01F9 EXIO error; intervention required.

506 01FA EXIO error; interface data check.

507 01FB EXIO error; controller busy.

508 01FC EXIO error; channel command not
allowed.

509 01FD EXIO error; no DDB found.

510 OIFE EXIO error; too many DCBs chained.

511 01FF EXIO error; no residual status address.

512 0200 EXIO error; zero bytes specified for
residual status.

513 0201 EXIO error; broken DCB chain.

516 0204 EXIO error; device already opened.

524 020C Timeout.

525 0200 Not a Channel Attach device.

0228 552 Stop in progress.

022A 554 Device not found.

567 0237 567 System error; CAPGM terminating.

0239 569 Device already started.

Note: Channel Attach codes 501- 513 are the same as the EXIO post codes 1-13,
respectively.

o

o

o

o

c

()

CASTOP

CASTOP Stop a Channel Attach Device

Syntax Example

The CASTOP instruction stops a Channel Attach device and disables the device
from receiving interrupts from the System/370. Your program can stop a device
only if no ports are open. When your program stops the last device, the Channel
Attach device handler program ends.

Syntax:

label CASTOP address,ecb,ERROR = ,PI = ,P2 =

Required: address,ecb
Defaults: none
Indexable: eeb

Operand Description

address A 2-digi t hexadecimal device address.

eeb The label or indexed location of the event to be posted upon
completion of the CASTOP operation.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CASTOP, and your program must test for errors before issuing a
WAIT.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

The CASTOP instruction in the following example stops the device at address 10.
When the operation ends, the instruction posts the event at $ECB.

STOPl0 CASTOP l0,$ECB

Return and Post Codes
Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than -1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues aWAIT because aWAIT
should only be used if an I/O operation is being performed.

CASTOP post codes are returned to the first word of the event control block (ECB)
you defined in the instruction.

Chapter 2. Instruction and Statement Descriptions 2-59

CAS TOP

2-60 SC34-0937

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation

-1 FFFF -1 Successful.

501 01F5 EXIO error; device not attached.

502 01F6 EXIO error; busy.

503 01F7 EXIO error; busy after reset.

504 01F8 EXIO error; command reject.

505 01F9 EXIO error; intervention required.

506 01FA EXIO error; interface data check.

507 01FB EXIO error; controller busy.

508 01FC EXIO error; channel command not
allowed.

509 01FD EXIO error; no DDB found.

510 01FE EXIO error; too many DCBs chained.

511 01FF EXIO error; no residual status address.

512 0200 EXIO error; zero bytes specified for
residual status.

513 0201 EXIO error; broken DCB chain.

516 0204 EXIO error; device already opened.

524 020C Timeo~t.

0227 551 Device not started.

0228 552 Stop in progress.

0229 553 Device in use.

022A 554 Device not found.

567 0237 567 System error; CAPGM terminating.

023A 570 Device in diagnostic mode.

599 0257 $CAPGM has ended.

Note: Channel Attach codes 501- 513 are the same as the EXIO post codes 1-13,
respectively.

o

o

o

o

o

o

CATRACE

CATRACE - Control Channel Attach Tracing

Syntax Examples

The CATRACE instruction controls the collection of I/O trace data for a Channel
Attach device. You can turn tracing on or off.

This instruction collects Channel Attach trace data in processor storage which can
slow system performance. For this reason, you should use the CATRACE
instruction primarily for problem determination.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

address

CATRACE address,ENABLE = ,ERROR = ,PI =

address
ENABLE = YES
none

Description

A 2-digit hexadecimal device address.

ENABLE = YES (the default), to turn on or enable tracing.

NO, to turn off or disable tracing.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CATRACE and your program must test for errors.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

1) Turn on tracing for the device at address 10.

TRACEI0 CATRACE 10

2) Turn off tracing for the device at address FC. If an error occurs, the instruction
at label El receives control.

TRACEFC CATRACE FC,ENABLE=NO,ERROR=El

Chapter 2. Instruction and Statement Descriptions 2-61

CATRACE

Return Codes

2-62 SC34-0937

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code indicates that the link module found
an error before the instruction performed an I/O operation. Your program must
check the return code before it issues a WAIT because a WAIT should only be used
if an I/O operation is being performed.

For detailed explanations of the return codes, refer to Messages and Codes.

Return
Hex Code Explanation

0227 551 Device not started.

0228 552 Stop in progress.

022A 554 Device not found.

0235 565 Trace already on. ;

0238 566 Trace already off.

o

()

o

o

c

()

CAWRITE

CA WRITE - Write to a Channel Attach Port

Syntax Examples

The CAWRITE instruction sends data to a Channel Attach port. The operation
occurs at the port you specify in the CAIOCB statement.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

caiocb

buffer

CA WRITE caiocb,buffer,ERROR = ,PI = ,P2 =

caiocb,buffer
none
caiocb,buffer

Description

The label or indexed location of the Channel Attach port I/O control
block defined for this port.

The label of a 3-word area containing:

• First word - the address of the buffer containing the data to be
sent.

• Second word - the number of bytes to be sent.

• Third word - the partition number of the buffer. If this word is
zero, the system assumes the buffer is in the partition in which you
loaded your program.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CA WRITE, and your program must test for errors before issuing a
WAIT.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) Write data to a port defined by the CAIOCB at label USERIOCB. BUFA is the
label of the 3-word area that contains the address of the buffer from which the data
is to be sent.

WRITE10 CAWRITE USERIOCB,BUFA

2) Write data to a_port defined by the CAIOCB at a location specified in #1. The
address of the buffer containing the data to be sent is specified in a 3-word area
located at an address in #2.

WRITEFC CAWRITE #1,#2,ERROR=ERRORl

Chapter 2. Instruction and Statement Descriptions 2-63

CAWRITE

Return and Post Codes

2-64 SC34-0937

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than -1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues aWAIT because aWAIT
should only be used if an I/O operation is being performed.

CA WRITE post codes are returned to the first word of the CAIOCB you defined for
the instruction. For detailed explanations of the return and post codes, refer to
Messages and Codes.

Post Return
Code Hex Code Explanation

-1 FFFF -1 Successful.

501 01F5 EXIO error; device not attached.

502 01F6 EXIO error; busy.

503 01F7 EXIO error; busy after reset.

504 01F8 EXIO error; command reject.

505 OlF9 EXIO error; intervention required.

506 01FA EXIO error; interface data check.

507 01FB EXIO error; controller busy.

508 01FC EXIO error; channel command not
allowed.

509 01FD EXIO error; no DDB found.

510 01FE EXIO error; too many DCBs chained.

511 01FF EXIO error; no residual status address.

512 0200 EXIO error; zero bytes specified for
residual status.

513 0201 EXIO error; broken DCB chain.

516 0204 EXIO error; device already opened.

520 0208 Interrupt error.

521 0209 Negative acknowledgement (write only).

522 020A Buffer overlay (read only).

523 020B Protocol error.

524 020C Timeout.

022E 558 Buffer not provided.

022F 559 Buffer count = O.

0232 562 W rite buffer not provided.

0233 563 Write buffer count = O.

0234 564 Users CAIOCB not linked to port.

567 0237 567 System error; CAPGM terminating.

0238 568 Port not opened.

Note: Channel Attach codes 501- 513 are the same as the EXIO post codes 1-13,
respectively.

o

o

o

o

o

COMP

COMP - Define Location of Message Text
The COMP statement points to a data set or module that contains formatted
program messages. The MESSAGE, READTEXT, GETV ALUE, and QUESTION
instructions refer to the label of the COMP statement when retrieving program
messages.

The COMP statement also assigns a 4-character prefix to the messages your program
obtains. This prefix, the number of the message being retrieved, and the message
text are the compone"nts that make up a complete program message.

You must code at least one COMP statement in a program that retrieves program
messages. The message utility, $MSGUT1, formats the messages you write for your
programs. Refer to the Operator Commands and Utilities Reference for a description
of this utility. See Appendix E, "Creating, Storing, and Retrieving Program
Messages" on page E-l for more information.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

label

'idxx'

name

TYPE =

COMP 'idxx',name,TYPE =

label,'idxx' ,name
TYPE=STG
none

Description

The label you specified for the COMP = keyword on a MESSAGE,
READTEXT, GETV ALUE, or QUESTION instruction.

A 4-character prefix that identifies the messages your program obtains
through this COMP statement. The system displays this prefix with
the message text when you code MSGID=YES on a MESSAGE,
READTEXT, GETVALUE or QUESTION instruction"

The name of the module or data set that contains the formatted
messages.

For a module, this is the name you assigned to the module with the
STG option of the message utility, $MSGUTI. This name can be up
to 8 characters long.

Note: You must link-edit the message module with your program.

For a disk or diskette data set, specify the name in the form DSx,
where "x" indicates the position of the message data set in the list of
data sets you defined on the PROGRAM statement. DS1, for
example, refers to the first data set in the list. DS2 refers to the
second data set in the list, and so on. The valid range for "x" is 1-9.

If your program contains a DSCB instruction, you can use the label
you coded on the DS# = operand for this operand.

STG (the default), if the messages reside in a module that you link-edit
with your program.

DSK, if the messages reside in a disk or diskette data set.

Chapter 2. Instruction and Statement Descriptions 2-65

COMP

Syntax Examples

2-66 SC34.,0937

1) The COMP statement in this example points to the message module PROMPTS.
The MESSAGE instruction, which retrieves the first message in PROMPTS, refers O~ "
to the label of the COMP statement. Because the MESSAGE instruction contains
MSGID = YES, the system displays the prefix PROM and the number of the
message before the message text.

MESSAGE 1,COMP=A,SKIP=1,MSGID=YES
•
•
•

PROGSTOP
A COMP I PROM I ,PROMPTS,TYPE=STG

2) The COMP statement in this example points to the message data set MESSAGEl
on volume EDX002. The GETVALUE instruction, which retrieves the fifth message
from MESSAGE!, refers to label of the COMP statement.

MESSAGE PROGRAM START,DS=(MESSAGEl,EDX002)
•
•
•

GETVALUE INPUT,5,SKIP=1,COMP=B
PROGSTOP

B COMP 'MSGl',DSl,TYPE=DSK

o

o

o

o

o

CONCAT

CONCAT - Concatenate Two Character Strings

Syntax Examples

The CONCAT instruction concatenates two character strings, or a character string
and a graphic-control character. The instruction places the contents of string2 to the
right of any contents in stringl. The resulting character string remains in stringl.

CONCAT changes the character count of stringl after the operation to reflect the
original contents of stringl plus the concatenated data from string2. Truncation on
the right occurs if the combined counts exceed the physical length of string 1.

Note: To use the CONCAT statement, you must specify an AUTOCALL to
$AUTO,ASMLIB during program preparation (link-edit.)

Syntax:

label

Required:
Defaults:
Inde~able:

Operand

string 1

string2

CONCAT stringl,string2,RESET,REPEAT = ,PI = ,P2 =

string 1 ,string2
REPEAT=1
none

Description

The label of a data string to which the contents of string2 are
conca tena ted.

The data to be concatenated to stringl. You can code the label of a
character string, a I-character constant (left-justified, for example
C I A I or X I 07 I), or a symbol representing one of the following ASCII
graphic-control characters: OS, BEL, ESC, ETB, ENQ, FF, CR, LF,
SUB, or US.

RESET Resets the character count of stringl to zero before starting the
CONCAT operation. The count is not reset if you omit this operand.

REPEAT = The number of times string2 is to be concatenated to stringl. For
example, if string2 contains C I I and you code REPEAT = 5, five
blanks are concatenated to the contents of stringl. Code a positive
integer for this operand.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) Concatenate ESC to TEXTl. Reset the character count of TEXTI before the
operation.

CONCAT TEXTl,ESC,RESET

2) Concatenate the control character FF to TEXTI.

CONCAT TEXTl,FF

Chapter 2. Instruction and Statement Descriptions 2-67

CONTROL

CONTROL - Perform Tape Operations

2-68 SC34-0937

The CONTROL instruction allows you to execute tape functions. You can space
forward or backward a specified number of records or files (a file is the data between
the beginning tapemark and the ending tapemark). You can also write tapemarks,
rewind the tape, erase the tape, set'the tape drive offline, or rewind the tape and set
the tape drive offline. With the 4968 tape unit, the CONTROL instruction allows
you to write at a density of 1609 bits per inch or 3200 bits per inch.

In addition, you can use the CONTROL instruction to close tape data sets. You
should close all tape data sets. If you do not close data sets, you must control the
tape drive directly with the various CONTROL functions.

When you close an SL (standard-label) output tape, the CONTROL instruction
writes the following trailer label: TM EOFI TM TM. The instruction writes the
following label when you close an NL (nonlabeled) tape: TM TM.

Input tapes are automatically rewound as the result of a close operation. An
attempt to write a tapemark to an unexpired file is an error condition.

If you have two tape drives on one controller and they receive concurrent rewind
requests, one tape drive waits for the other to complete. To allow concurrent rewinds
to multiple standard label tape drives on one controller, you must issue the
"CONTROL DSxx,REW" instruction to each open tape drive.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

DSx

CONTROL DSx,type,count,END = ,ERROR = , WAIT = ,PI = ,P3 =

DSx,type
count = 1 ,WAIT = YES
count

Description

The data set you want to use. Code DSx, where "x" is the relative
number of the data set in the list of data sets you defined on the
PROGRAM statement. DS1, for example, points to the first data set
in the list; DS2 points to the second data set, and so on.

You can substitute a DSCB name defined by a DSCB statement for
this operand.

type The CONTROL function to be performed. The following functions
are available:

FSF Forward space file (tapemark). Regardless of where the
tape is currently positioned, the tape searches forward the
number of tape marks indicated in the count operand. If
the specified number of tapemarks indicated by the count
field is not on the tape, the positioning of the tape is
unpredicta ble.

o

o

o

o

o

o

BSF

FSR

BSR

WTM

REW

ROFF

OFF

CONTROL

Backward space file (tapemark). The tape searches
backward until the next tapemark is read. The default value
for count is 1. If the tape is at load point when your
program issues this command, the load point return code is
returned.

Forward space record. The tape will space forward past the
number of records specified in the count field. The default
value for count is 1.

Backward space record. The tape spaces backward past the
number of records specified in the count field. The default
value for count is 1. If the tape is at load point when your
program issues this command, the load point return code is
returned.

Write tapemark. This function writes a tape mark on the
tape. If the count field is coded, successive tapemarks are
written according to the count value.

Rewind tape to load point (beginning of tape).

Rewind tape and set the tape drive to offline.

Set tape drive to offline.

CLSRU Close tape data set and allow it to be reused (reopened by
another task without an intervening $VARYON command).
For standard-label tapes, the tape is repositioned to the
HDRI label of the data set. For nonlabeled tapes, the tape
is positioned to the beginning of the first data record. You
can use $VARYON to change the file number being
processed or you can use a CONTROL function.

Once you close a tape data set, you must call DSOPEN to
open the data set before you can use it again. You can call
DSOPEN with the CALL instruction or call the subroutine
implicitly by having the name of the data set in another
program header.

CLSOFF Close tape data set, rewind tape, and set the tape drive to
offline.

DEN16 Sets the density of the 4968 tape unit to 1600 bits per inch.
This function is not valid for other tape devices.

To set the density, the tape must be at the load point.

DEN32 Sets the density of the 4968 tape unit to 3200 bits per inch.
This function is not valid for other tape devices.

To set the density, the tape must be at the load point.

ERASE Erases forward from the point where the tape is positioned
to a point five feet beyond the end-of-tape marker (EOT).
The function then rewinds the tape and unloads it.

The system sends out a device interrupt when the tape is at
the load point and ready.

Chapter 2. Instruction and Statement Descriptions 2-69

CONTROL

Syntax Examples

2-70 SC34-0937

count

END =

The number of files or records to be skipped or the number of
tapemarks to be written. You can code a constant or the label of a
count value. The default is count = L

The label of the first instruction of the-routine to be called if the
system detects an "end-of-data-set" (EOD) condition (return
code = 10). If you do not specify this operand, the system treats an
EOD as an error. Do not code this operand if you code WAIT = NO.

If END is not coded, a tapemark being encountered is also treated as
an error. The physical position of the tape, under this condition, is the
read/write head position immediately following the tapemark. See the
CONTROL close functions for the repositioning of the data set.
Remember also that the count field might not be decremented to zero.

ERROR = The label of the first instruction of the routine to be called if an error
condition occurs during this operation. If you do not specify this
operand, control passes to the next sequential instruction in your
program and you must test the return code in the first word of the task
control block for errors. Do not code this operand if you code
WAIT=NO.

WAIT = If WAIT is not coded, or if it is coded as WAIT = YES, the current
task will be suspended until the operation is complete. If the function
selected is CLSRU or CLSOFF, then WAIT =; YES is the only valid
option for this operand, and any other option will be ignored.

For functions other than close, if the operand is coded as WAIT = NO,
control is returned after the operation is initiated and a subsequent
WAIT DSx must be issued in order to determine when the operation is
complete.

END and ERROR cannot be coded if WAIT = NO is coded. You
must subsequently test the return code in the Event Control Block
(ECB) named DSx or in the first word of the task control block (TCB)
(referred to by "taskname"). Two codes are of special significance. A
-1 indicates a successful end of operation. A + 10 indicates an "End
of Data Set" and may be of logical significance to the program rather
than being an error. For prograniming purposes, any other return
codes should be treated as errors.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) The instruction closes the tape data set specified by DSl, rewinds the tape, and
sets the tape drive offline.

CONTROL DSl,CLSOfF

2) The instruction causes the tape data set specified by DS2 to be spaced forward 16
data records.

CONTROL DS2,FSR,16

o

o

o

Coding Example

o

o

()

CONTROL

The following program uses the CONTROL FSF command, at label C1, to advance
the "master name file" to the third data set on a nonlabeled tape. The program asks
the operator if he or she wants to search the file for a particular name. If the answer
is yes, the program requests the file name.

At label C2, a CONTROL FSR command advances the tape file to record 90. If the
end-of-file is reached before the tape is positioned to the target record, control passes
to an error routine (not shown).

The program then reads a record and compares the name field in it to the name the
operator entered. This sequence continues until the program finds the name the
operator entered or until the end-of-file is reached.

Assuming the program finds the name, it prints the name (and accompanying file
information) and the record for the names before and after it.

If the name is the first on the file (INDEX = 1), the program can only print the name
and the record that immediately follows it. Therefore, the CONTROL BSR
command, at label C3, uses the P3 = parameter naming operand to determine
dynamically how many records to back space. The count is 1, if the name is in the
first data record on the file, or 2, if the name is not in the first data record on the
file.

A DO loop at label LOOP2 reads the name records and prints them. If the
end-of-file is reached before the last record can be printed, the program passes
control to an error routine (not shown).

At label C4, the tape is backspaced past the tapemark preceding the name file and at
label C5, the tape is positioned to the first record on the file. Control then passes to
the beginning of the program.

Chapter 2. Instruction and Statement Descriptions 2-71

CONTROL

FILESRCH PROGRAM START,DS=(NAMEFILE,TAPE01)
START EQU *
C1 CONTROL DS1,FSF,3,ERROR=DS1ERROR 0 INQUIRE EQU *

QUESTION '@DO YOU WISH TO SEARCH THE MASTER NAME FILE ?',NO=END
PRINTEXT '@PRECEEDING AND SUCCEEDING NAMES WILL ALSO BE LISTED '
READTEXT NAME,'@ENTER SUBJECT NAME UP TO 12 CHARACTERS 1

C2 CONTROL DS1, FSR, 90 ,.END=DS1ENDFl, ERROR=DS1ERROR
MOVE INDEX,0

LOOP EQU *
ADD INDEX, 1 <

READ DS1,BUFR,END=DSIENDF2
IF (BUFR,NE,NAME,(12,BYTES))
GOTO LOOP
ENDIF
IF (INDEX,LE,l)

PRINTEXT '@NAME AT BEGINNING OF FILE - ONLY 2 LISTED '
MOVE COUNT,2

ELSE
MOVE COUNT,3
MOVE INDEX,2

ENDIF
C3 CONTROL DS1,BSR,2,P3=INDEX

DO 1,TIMES,P1=COUNT
READ DS1,BUFR,END=LASTONE
MOVE BUFR,TEXT,(50,BYTES)
PRINTEXT TEXT,SKIP=l
ENDDO

C4 CONTROL DS1,BSF

0 C5 CONTROL DS1,FSF
GOTO INQUIRE

DATA X' 3232 1

TEXT DATA 50C' 1

NAME TEXT LENGTH=12
DSIERROR EQU *

•
•
•

DSIENDFl EQU *
•
•
•

DSIENDF2 EQU *
•
•
•

LASTONE EQU *
•
•
•

o
2-72 SC34-0937

o

o

o

CONTROL

Tape Return Codes and Post Codes
Tape return codes are returned in the first word of the task control block of the
program that issues the instruction.

Return
Code Condition

~1 Successful completion.

1 Exception but no status.

2 Error reading cycle steal status.

3 I/O error; retry count exhausted.

4 Error issuing READ CYCLE STEAL STATUS.

6 I/O error issuing I/O operations.

10 End of data; a tape mark was read.

21 Wrong length record.

22 Device not ready.

23 File protected.

24 End of tape.

25 Load point.

26 Unrecoverable I/O error.

27 SL data set not expired.

28 Invalid blocksize.

29 Offline, in use, or not open.

30 Incorrect device type.

31 Close incorrect address.

32 Block count error during close.

33 Close detected on EOVl.

34 Write - Defective reel of tape.

The following post codes are returned to the event control block (ECB) of the calling
program.

Post
Code Condition

-1 Function successful.

101 T APEID not found.

102 Device not offline.

103 Unexpired data set on tape.

104 Cannot initialize BLP tapes.

Chapter 2. Instruction and Statement Descriptions 2-73

CONVTB

CONVTB - Convert Numeric String to EBCDIC

2-74 SC34-0937

The CONVTB instruction converts both integer-and floating-point values to. an
EBCDIC character string. You can also convert floating-point values to E notation.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

PREC=

CONVTB opndl,opnd2,PREC = ,FORMAT = ,PI = ,P2 =

opndl,opnd2
PREC = S,FORMAT = (6,0,1)
opndl,opnd2

Description

The label of a storage area where the converted results are to be
placed. The system stores the results beginning at the label referred to
by this operand. The converted results are in EBCDIC.

Opndl must be a different storage location than opnd2.

The label of a storage area containing the'value to be converted to
EBCDIC. You must know the form (precision) of the data. The
following opnd2 types are supported:

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

The form of opnd2. The valid precisions are:

S - Single-precision integer
D - Double-precision integer
F - Single-precision floating-point

- 1 word
- 2 words
- 2 words
- 4 words

L - Extended-precision floating-point

FORMAT = The format (w,d,t) of the value after the system converts it:

Px=

w Width of the EBCDIC field in bytes. If the field will contain a
decimal point or sign character (+ or -), include it in the count.

d Number of digits to the right of the decimal point. This is valid
for floating-point variables only. Code a 0 for integer values.

t Type of EBCDIC Data. Code I for integer data, F for
floating-point data (XXXX~XXX), or E for a number in
exponent (E) notation. See the value operand under the
DATA/DC stateinent for a description of E notation format.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

0 ",,'
"

o

o

o

Syntax Examples

C'

()

CONVTB

Notes:

1. Co~version routines assume that the type of variable to be converted is specified
by the PREC operand. If the_ PREC operand is not specified, and if the variable
is not of the default precision, incorrect results can occur.

2. Exponent (E) notation should be used for floating-point numbers greater than
1012

. Otherwise, a conversion error will occur.

1) The CONVTB instruction in the following example uses an integer value.

CONVTB TEXTA,VALUE,PREC=S,FORMAT=(8,0,I)

VALUE
TEXTA

•
•
•

DATA
TEXT

FI 12345 1
LENGTH=8

The value 12345 in the variable VALUE is converted to EBCDIC at TEXTA in the
following format (b represents a blank):

bbb12345

If conversion of double-precision integers is required, PREC = D is coded.

2) In this example, the CONVTB instruction uses floating-point values.

CONVTB
CONVTB

•
•
•

VALUE DATA
VALUEl DATA
TEXTB TEXT
TEXTI TEXT

TEXTB,VALUE,PREC=F,FORMAT=(15,4,F)
TEXT1,VALUEl,PREC=L,FORMAT=(20,14,E)

E 162421.16 1
L14926139.2916 1
LENGTH=15
LENGTH=20

The result of the CONVTB operation (where b represents a blank) is:

TEXTB = bbbbb62421.1600

TEXTl = b.49261392916000Eb07

Chapter 2. Instruction and Statement Descriptions 2-75

CONVTB

Coding Example

Return Codes

2-76 SC34-0937

This example demonstrates one use of the CONVTB instruction.

HEADER EQU *

*
CONVERT

*

*

*

BNUMEXP
ENUMEXP
BMANHRS
EMANHRS

READTEXT TITLE,TITLEMSG
PRINTEXT SKIP=4

EQU
CONVTB
PRINTEXT
PRIN.TEXT

CONVTB
PRINTEXT
PRINTEXT

CONVTB
PRINTEXT

PRINTEXT
•
•
•

DATA
TEXT
DATA
TEXT

*
ENUMEXP,BNUMEXP
'@NUMBER OF EXPERIMENTS CONDUCTED :',SKIP=l
ENUMEXP

EMANHRS,BMANHRS,PREC=F,FORMAT=(10,2,F)
'@TOTAL MANHOURS EXPENDED ON PROJECT: I, SKIP=l
EMANHRS

EAVERAGE,BAVERAGE,PREC=L,FORMAT=(20,14,E)
'@AVERAGE PENETRATION IN CONCRETE (MILLIMETERS): I

EAVERAGE

BINARY VALUE - # EXPERIMENTS

BAVERAGE DATA

F'O'
LENGTH=6
L'O'
LENGTH=8
L'O'
LENGTH=20
LENGTH=40

EBCDIC VALUE - # EXPERIMENTS
BINARY VALUE ~ MAN-HOURS USED
EBCDIC VALUE - MAN-HOURS USED
BINARY VALUE - AVERAGE RESULT
EBCDIC VALUE - AVERAGE RESULT EAVERAGE TEXT

TITLE TEXT
TITLEMSG TEXT 'ENTER A 40 CHARACTER TITLE FOR YOUR REPORTS I

If, for example, the initial value of BNUMEXP is X 10038 I , the value of
BMANHRS is X ' 431BOCOO', and the value of BAVER AGE is
X '4087915E8CA84482 I, the results of the program would appear as follows:

NUMBER OF EXPERIMENTS CONDUCTED : 56

TOTAL MAN-HOURS EXPENDED ON PROJECT: 432.75

AVERAGE PENETRATION IN CONCRETE (MILLIMETERS) . 52956191000000E+00

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description

-1 Successful completion.

3 Conversion error.

o

o

o

o

()

CONVTD

CONVTD - Convert EBCDIC String to Numeric String
The CONVTD instruction converts an EBCDIC character string to an integer or
floa ting-point numeric string.

Syntax:

label CONVTD opndl,opnd2,PREC = ,FORMAT = ,PI = ,P2 =

Required:
Defaults:
Indexable:

opndl,opnd2
PREC = S,FORMAT = (6,0,1)
opndl,opnd2

Description Operand

opndl The label of a storage area where the converted results are to be
placed. Opndl must be a different storage location than opnd2. Make
sure that you reserve enough space to accommodate the results.

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

- 1 Word
- 2 Words
- 2 Words
- 4 Words

opnd2 A label that points to the first character of the EBCDIC character
string. You can code the following range of data values:

Single-precision integer:
Double-precision integer:
Single-precision floating-point:
Extended-precision floating-point:
*Valid range is from 10-85 through l075

- 32768 to 32767
- 2147483648 to 2147483647
6 decimal digits*
15 decimal digits*

The. EBCDIC field should contain only those characters that are valid for the
operation being performed. For example:

• Integers-

Leading blanks
Sign character + or -
Digits 0 through 9
Trailing blanks

Chapter 2. Instruction and Statement Descriptions 2-77

·CONVTD

2-78 SC34-0937

• Floating-point -

Leading blanks
Sign character + or -
Digits 0 through 9
Decimal point
The character E, if E notation, followed by a sign character, + or -, or the
digits 0 through 9.

If the system finds any other character during the conversion, it takes the following
action:

• If the delimiters , or / are found within a string:

The system stops the conversion and returns a "successful completion" code
(-1). Opndl contains the data the system converted before it found the
delimiter.

• If the delimiter , or / or * or . is the first character found in a string:

The system returns a "field omitted" code (2). The variable you defined in
opnd 1 (the target field) remains unchanged.

• If all blanks are found in opnd2:

The system places zeros in opndl and returns a "successful completion"
code (-1).

• If any other character (for example, an alphabetic character) is found within a
string:

The system returns a code of I, "invalid data encountered during
conversion." Data converted before the system found the invalid character
is stored in opndl.

• If only an invalid character is found in opnd2 or the value being converted is too
large or too small:

The system returns a "conversion error" (3). The contents of the variable
you defined for opndl (the target field) are unknown.

o

o

c

o

CONVTD

The following table shows the results of several conversion operations using the
default format (6,0,1):

Input

12

12,

12/

(blanks)

12C

12.B

12 C

,

/

*

A

1234567

PREC=

Return
Code Output

-1 12

-1 12

-1 12

-1 0

1 12

1 12

1 12

2 Target field unchanged

2 Target field unchanged

2 Target field unchanged

2 Target field unchanged)

3 Target field unchanged

3 Value of target field unknown

The form of opndl. The valid precisions are:

S
D
F
L

Single-precision integer
Double-precision integer
Single-precisi on fl oa ting -point
Extended -precisi on floating -point.

FORMAT = The format (w,d,t) of the value to be converted:

w Width of the EBCDIC field in bytes. If the field will contain a
decimal point or sign character (+ or -), include it in the count.

d Number of digits to the right of the decimal point. This option
is valid only for floating-point variables. Code a ° for integer
values.

t Type of EBCDIC Data. Code I for integer data, F for
floating-point data (XXXX.XXX), or E for a number in
exponent (E) notation. See the value operand under the
DATA/DC statement for a description of E notation format.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-79

CONVTD

Syntax Examples

Coding Example

2-80 SC34-0937

1) The following CONVTD instruction uses an integer value.

VALUE
TEXT

CONVTD VALUE,TEXT,PREC=S,FORMAT=(8,0,I)
•
•
•

DATA
TEXT

F'0'
'12345' ,LENGTH=8

Note: The value in EBCDIC, 12345, will be converted to a single-precision binary
value and stored at VALUE as X' 3039'. Double-precision integers can also be
converted by using the PREe = D parameter and using a 2-word variable at
VALUE.

2) The CONVTD instruction in this example uses floating-point values.

VALUE
VALUEl
TEXT1
TEXT2

CONVTD
CONVTD

•
•
•

DATA
DATA
TEXT
TEXT

VALUE,TEXT1,PREC=F,FORMAT=(5,1,F)
VALUE1,TEXT2,PREC=L,FORMAT=(15,0,E)

2F'0'
4F'0'
'100.5',LENGTH=18
'0.1085E3' ,LENGTH=15

Note: Both values shown in the TEXT statements result in the same binary data
values being stored in the two DATA statements. The only difference is that at
V ALUEl, an extended-precision value is stored.

The following example demonstrates one use of the CONVTD instruction:

CONVERT EQU *

*

*

UNIT
BUNIl
MILES
BMILES
RESPONSE
BRESPONS

READTEXT UNIT,'@ENTER UNIT NUMBER'
CONVTD BUNIT,UNIT,PREC=S,FORMAT=(6,8,I)

READTEXT
CONVTD

READTEXT
CONVTD

•
•
•

TEXT
DATA
TEXT
DATA
TEXT
DATA

MILES,'@ENTER MILES FROM FIRE'
BMILES,MILES,PREC=F,FORMAT=(10,4,F)

RESPONSE,'@ENTER UNIT RESPONSE TIME'
BRESPONS,RESPONSE,PREC=L,FORMAT=(15,8,E)

LENGTH=6
F'8'
LENGTH=10
0'0'
LENGTH=15
20'8'

EBCDIC VALUE/UNIT 10
BINARY VALUE/UNIT 10
EBCDIC VALUE/MILES FROM FIRE
BINARY VALUE/MILES FROM FIRE
EBCDIC VALUE/RESPONSE TIME
BINARY VALUE/RESPONSE TIME

o

o

o

o

Return Codes

o

CONVTD

Assuming that unit #6553 took 42.45292378 minutes to respond to an alarm for a
fire 41.5429 miles from the station, the results of the CONVTD operations would be:

opodl Before After

BUNIT X'OOOO' X'1999'
BMILES X' 00000000 ' X '42298AFB '
BRESPONS X'OOOOOOOOOOOOOOOO' X' 422A 73F2DO 16AE42 •

opod2 Before After

UNIT 6553bb X' F6F5F5F34040'
MILES 41. 5429bbb X' F4F14BF5F4F2F9404040'
RESPONSE 42.45292378bbbb X'F4F24BF4F5F2F9F2F3F7F840404040'

The return codes are returned in the first word of the task control block (TCB) of
the program or task-issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description

-1 Successful completion.

1 Invalid data encountered during conversion.

2 Field omitted.

3 Conversion error.

Chapter 2. Instruction and Statement Descriptions 2-81

COpy

COpy - Copy Source Code into Your Source Program

System Equates

2-82 SC34-0937

The COpy statement copies source code into your source program. The operation
occurs each time you compile or assemble the program containing the COpy
statement.

The source code you copy must be in a disk or diskette data set. The source code
must not contain a COpy statement. The system copies the source code into your
source program immediately following the COpy statement.

To prevent the system from printing the source code in your listing each time you
compile your program, code PRINT OFF before the COpy statement and PRINT
ON following it. See the program example given in "PRINT - Control Printing of
a Compiler Listing" on page 2-304 for more detail.

Syntax:

blank

Required:
Defaults:
Indexable:

Operand

name

COPY name

name
none
none

Description

The name of the data set on disk or diskette that contains the source
code to be copied into your source program.

Notes:

1. When using the $EDXASM compiler, if the source code to be
copied is not on volume ASMLIB, you must code a *COPYCOD
statement in the $EDXL data set to indicate on what volume the
source code resides. $EDXL is on volume ASMLIB. Refer to the
Customization Guide for an explanation of the *COPYCOD
statement.

2. For details on using the COpy statement with the Series/l macro
assembler, refer to IBM Series/1 Event Driven Executive Macro
Assembler (5719-ASA).

3. For details on using the COpy statement with the System/370
macro assembler, refer to the IBM System/370 Program
Preparation Facility, SB30-1072.

This section contains the equate names for some commonly used system control
blocks. Coding the COPY statement with the equate name gives you a listing of the
control block. You can use the equates in the control block listing to refer to and
obtain data from fields within the control block. When you compile programs with
the host or Series/1 macro assemblers, the system includes the following equate
names in your program when it encounters a PROGRAM statement: PROGEQU,
TCBEQU, DDBEQU, CMDEQU, and DSCBEQU.

The Internal Design contains a complete list of the control blocks in the system. The
control block equates reside on volume ASMLIB and end with the characters EQU.

o

o

o

o

o

o

BSCEQU

COpy

Provides a map of the control block built by the BSCLINE system
definition statement.

Note: BSCEQU is also the name of a macro in the macro libraries
that the host and Series/1 macro assemblers use. Do not attempt to
copy BSCEQU when using either of the macro assemblers.

CCBEQU Provides a map of the control block (CCB) built by the TERMINAL
system definition statement.

CMDEQU Provides a map of the supervisor's emulator command table built by
the PROGRAM statement.

DDBEQU Provides a map of the device data block (DDB) built by the DISK
system definition statement.

DDODEFEQ
Provides a table that defines the format of disk directory control
entries (DCEs) and member entries.

DSCBEQU Provides a map of the data set control block (DSCB) built by the
PROGRAM or DSCB statements.

ERRORDEF

FCBEQU

Provides equates for use in checking the return codes from the LOAD,
READ, WRITE, and SBIO instructions.

Provides a map of an Indexed Access Method file control block (FCB)
for use with the EXTRACT subroutine.

IAMEQU Provides a set of symbolic parameter values for use in constructing
parameter lists for calls to Indexed Access Method subroutines.

PROGEQU Provides maps of the program header, built by the PROGRAM
statement, and the supervisor's communication vector table (CVT).

TCBEQU Provides a map of the task control block (TCB) built by the TASK or
PROGRAM statements.

STOREQU Provides a map of the storage control block built by the STORBLK
statement.

Chapter 2. Instruction and Statement Descriptions 2-83

COpy

Coding Example

2-84 SC34-0937

The following example uses a COpy statement to copy the source code labeled
CHKBUFR into a source program.

•
•
•

CALL CHKBUFR,BUFRSIZE,(EOBUFFER)
•
•
•

COpy CHKBUFR
•
•
•

When the source program is compiled, the COpy statement copies the following
code into the source. program:

MAX

SUBROUT CHKBUFR,BUFFLEN,BUFFEND
SUBTRACT BUFFLEN,l
IF (BUFFLEN,GE,MAX)
GOTO (BUFFEND)
ENDIF
ADD BUFFLEN,l
RETURN

•
•
•

DATA F'256 1

•
•
•

o

o

o

o

o

o

CSECT

CSECT - Identify Object Module Segments
The CSECT instruction names a program module to identify its location within the
program output from $EDXLINK.

The CSECT instruction is optional and if it is omitted, the program module has a
blank name.

Program modules assembled by $EDXASM can have mUltiple CSECT instructions.
However, all CSECTs, after the first one, generate ENTRY instead of CSECT
defini tions.

Program modules assembled by the Series/l Macro Assembler or host assembler are
also permitted to have multiple CSECT instructions in a single assembly. These
assemblers will generate a separate program module for each uniquely-named
CSECT.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

CSECT

label
none
none

Description

label The label must be the name of the program module for the first
CSECT. For following CSECTs the label must be an entry name.

Chapter 2. Instruction and Statement Descriptions 2-85

CSECT

Coding Example
In module A, the first CSECT statement signifies that the program can be entered at 0"
label GETTIME. In module B, the CSECT statement defines label GOTTIME as
being an entry point. The ENTRY statement in module A will allow the time to be
printed without the 'THE TIME IS NOW' text.

MQDULEA

•
•
•

GETTIME CSECT
ENTRY GETTIME2
EXTRN GOTTIME

•
•
•

GETTIME EQU *
PRINTEXT '@THE TIME IS NOW'

GETTIME2 EQU *
PRINTIME
GOTO GOTTIME

•
•
•

MODULEB

•
• 0 •

GOTTIME CSECT
EXTRN GETTIME

•
•
•

TIME EQU *
GOTO GETTIME

GOTTIME EQU *
•
•
•

o
2-86 SC34-0937

o

o

DATA/DC

OAT AIDC - Define Data
The DATA/DC statement defines the data you are using in your program. You can
represent data in the following forms: binary, integer, hexadecimal, character,
floating-point, or address.

Within a single DATA statement, you can define one or more character strings or
variables. With programs you compile under $EDXASM, you can code up to 10
separate data specifications on a single DATA statement by separating the individual
specifications with commas. However, a DATA statement can contain only 8
hexadecimal digits (4 bytes). When you assemble programs under $SlASM, a
DAT A statement can contain only one data specification.

Syntax:

label
label

Required:
Defaults:
Indexable:

Operand

dup

type

Code

C

X

B

F

H

D

E

L

A

DATA
DC

type, value
dup=l
none

Description

dup type value
dup type value

Duplication factor for the data type you define.

Data type or form of data representation. The valid data types are:

Data Type Storage Format

EBCDIC 8-bit code for each character

Hexadecimal 4-bit code for each digit

Binary 1 bit for each digit (not allowed with
$EDXASM)

Integer, signed fullword 2 bytes

Integer, signed I byte
halfword

Integer, signed 4 bytes
doubleword

Floating-point Floating-point binary; 4 bytes

Floating-point Floating-point binary; 8 bytes

Address Value of address or expression; 2 bytes

Note: A halfword definition may cause data to fall on an odd-byte boundary.
Fullword data must, however, be on an even-byte boundary to be accessed as a byte
or as bytes. For this reason, use the ALIGN statement when coding data areas. See
"ALIGN - Instruction or Data to a Specified Boundary" on page 2-13 or
"Instruction and Operand Address Boundaries" on page 1-13 for additional
information.

Chapter 2. Instruction and Statement Descriptions 2-87

DATA/DC

value

Notes:

The value to be assigned to the data area. This operand is also the
field length for some data types. The value is enclosed in quotes for
all data types except A, in which the value is enclosed in parentheses.

1. Except for A-type data (address), the value must be a self-defining term and
cannot be defined with an EQU statement.

2. The maximum number of hexadecimal digits you can specify for this operand is
8; the maximum number of characters you can specify is 15.

3. For programs compiled under $EDXASM, the value operand can define a
maximum of 65535 bytes.

Considerations when Defining Data

2-88 SC34-0937

The allowable ranges for data values are:

Single-precision integer - 32768 to 32767
Double-precision integer - 2147483648 to 2147483647
Single-precision floating-point - 6 decimal digits (valid range is from 10-85 to
1075)

Extended-precision floating-point - 15 decimal digits (valid range is from 10-85

to 1075)

You can express floating-point values as real numbers with decimal points (for
example 1.234) or in exponent (E) notation. E notation uses the form:

SX.XXESYY

where:

S=
X=

E=
YY =

Optional sign character (+ or -); default is (+)
Characteristic of 1 to 6 numeric digits for PREC = E,
or 15 digits for PREC=L
Decimal point anyplace within characteristic
Designation of E notation
Mantissa, range - 85 to + 75; the base is 10
(for example, 3.1415E-2 = .031415)

When coding character strings (C), you can specify a field length by coding the type
as CLn, where "n" is the . length of the field in bytes. If the length of the character
string you specify is less than the field length chosen, the balance of the field· to the
right of the string is filled with blanks. To specify the field length for hexadecimal
values (X), code the type as XLn. If the length of the hexadecimal value you specify
is less than the field . length chosen, the balance of the field to the left of the value is
filled with zeros.

Neither $EDXASM nor $SIASM supports such complex data expressions as:

DATA A(B-C)

where B is an external label.

o

()

o

Syntax Examples

o

o

DATA/DC

The following examples show some of the ways that you can define data in your
program.

1) Hexadecimal 30F in binary. This format is not allowed with $EDXASM.

BINCON DATA B' 00II00001111 1

2) An integer constant of 1.

A DATA FIll

3) 128 words of O.

BUF DC 128F ' 0'

4) The EBCDIC string IXYZI.

CHAR DATA CIXYZ I

5) 80 EBCDIC blanks.

BLANK DC 80C' I

6) The character I $ I followed by seven blanks.

C8 DC CL8 1$'

7) The integer 241 in hexadecimal.

HEXV DATA X' 00F1 1

8) The address of I BUF I.

ADDR DATA A(BUF)

9) The 2-word integer constant 100000.

DBL DATA 01100000 1

10) The floating-point value 1.234.

F1 DATA E'1.2341

11) Four floating-point values of 0.123 (4 bytes for each value).

F2 DATA 4E '0.123 1

12) Four extended-precision floating-point values of 12345678.9 (8 bytes for each
value).

L2 DATA 4L ' 12345678.9 1

13) An extended-precision floating-point vallie in exponent (E) form.

L3 DATA L' 123456E-40 '

14) A word with a value of 1 and a doubleword with a value of 2.

MANY DATA F' 11,D ' 21

Chapter 2. Instruction and Statement Descriptions 2-89

DATA/DC

15) The hexadecimal string X' 0001 ' .

X DC XL2'1' o
16) The hexadecimal string X ' 000123 ' .

Y DC XL3'123'

o

o
2-90 SC34-0937

o

0,",
.. i~~

DCB

DCB - Create a Device Control Block
The DCB statement creates a standard device control block (DCB) for use with
EXIO. For additional information on'DCBs refer to the description manual for the
processor in use.

Syntax:

label DCB PCI = ,IOTYPE = ,XD = ,SE = ,DEVMOD = ,DVP ARMl = ,
DVPARM2 = ,DVPARM3 = ,DVPARM4 = ,CHAINAD =,
COUNT = ,DATADDR =

Required: label
Defaults: PCI = NO,IOTYPE = OUTPUT ,XD = NO,SE = NO
Indexable: none

Operand

PCI=

Description

YES, to cause the device to present a program-controlled interrupt at
the completion of the DCB fetch before data transfer.

NO (the default), does not cause the device to present a
program-controlled interrupt.

IOTYPE = INPUT, for operations involving transfer of data from device to
processor or for bidirectional transfers under one DCB operation.

OUTPUT (the default), for operations involving transfer of data from
processor to device or for control operations involving no data
transfer.

XD = YES, if the DCB is a nonstandard type.

NO (the default), if the DCB is a standard type.

SE = YES, to allow the device to suppress the reporting of certain exception
conditions.

DEVMOD=

DVPARMl=

DVPARM2=

DVPARM3=

NO (the default), to report all exception conditions.

The byte. that describes functions unique to a particular device. This
byte is in word 0 of the device's DCB. Code two hexadecimal digits.

The value of device-dependent parameter word 1. Code as four
·hexadecimal digits, or the label of an EQU preceded by a plus sign
(+).

The value of device-dependent parameter word 2. Code as four
hexadecimal digits or the label of an EQU preceded by a plus sign
(+).

The value of device-dependent parameter word 3. Code as four
hexadecimal digits or the label of an EQU preceded by a plus sign
(+).

Chapter 2. Instruction and Statement Descriptions 2-91

DCB

Syntax Examples

Coding Example

2-92 ~C34-0937

DVPARM4=

CHAINAD=

The value of device-dependent parameter word 4. Code as four
hexadecimal digits or, if SE = YES, the label of the first byte to which
residual status data is to be transferred. The length of the residual
status area is device dependent.

The label of the next DCB in the chain if chained DCBs are desired.

COUNT = The number of data bytes to be transferred. Code a decimal number
from 0 to 32767 or the label of an EQU preceded by a plus sign (+).

DATADDR=
The label of the first byte of data to be transferred.

For information on the contents of DVPARMl- DVPARM4 and DEVMOD, refer
to the description manual of the device you are using.

1) The DeB labeled WRIDCB is for an output operation in which the 120-byte
field labeled MSG 1 will be transferred to the device. IOTYPE = defaults to
OUTPUT. The device places any status information from the operation in
RESTAT.

WRIDCB DCB SE=YES,DVPARMl=0300,DVPARM2=3048,DVPARM3=1100, X
DVPARM4=RESTAT,CHAINAD=WR2DCB,COUNT=120, X
DATADDR=MSGI

•
•
•

MSGI DATA 120X '00 1

RESTAT DATA 2F '01

2) The DCB labeled WR2DCB is for a type of device-control operation. IOTYPE
defaults to OUTPUT but no data transfer occurs because the statement does not
contain the DATADDR or COUNT operands. The device places any status
information from the operation in RESTAT.

WR2DCB DCB SE=YES,DVPARMl=20A0,DEVMOD=6F,DVPARM4=RESTAT
•
•
•

RESTAT DATA 2F '01

For a coding example using a DCB statement, see the example following the
description of the EXIO instruction.

o

()

o

o

o

DEFINEQ

DEFINEQ - Define a Queue

Queue Layout

The DEFINEQ statement defines the queue descriptor (QD) and a set of queue
entries (QEs) used by FIRSTQ, LASTQ, and NEXTQ. DEFINEQ can optionally
define a pool of data storage areas or data buffers. For additional information refer
to the discussion of queue processing in the Language Programming Guide.

Syntax:

~--~

label

Required:
Defaults:

Indexable:

Operand

label

COUNT =

SIZE =

DEFINEQ COUNT = ,SIZE =

label, COUNT =
SIZE = 2 (2 bytes of data for each element in the
free queue chain)
none

Description

The label of the queue that this statement creates.

The number of 3-word queue entries (QEs) to be generated. The
system also generates a 3-word queue descriptor (QD) and assigns the
first word of the QD the label of the DEFINEQ statement.

"Queue Layout" describes the structure of a queue.

The COUNT operand must be specified using a self-defining term; an
equated value is not allowed. This operand must also be a positive
number greater than O.

The size, in bytes, of each buffer (data area) to be included in the
buffer pool in the initial queue. The system generates as many buffers
as 'you specified in the COUNT operand. It initializes each buffer to
binary zeros. Each QE in the queue contains the address of an
associated buffer in the buffer pool.

If you do not specify the SIZE operand, the system places all QEs in
the free chain and the queue is defined as empty. If you specify SIZE,
the system includes all QEs in the active chain and the queue is defined
as full.

A queue is composed of a queue descriptor (QD) and one or more queue entries
(QEs). Figure 2-5 on page 2-95 shows the layout of a queue.

The DEFINEQ statement generates a 3-word QD. Word 1 of the QD is a pointer
to the most recent entry in a chain of active QEs. Word 2 is a pointer to the oldest
entry in a chain of active QEs. Word 3 is a pointer to the first QE in a chain of free
QEs. If the queue is empty, words 1 and 2 contain the address of the queue (the
address of the QD). If the queue is full, word 3 contains the address of the que1.le.

DEFINEQ also generates several 3-word QEs. Word 1 of the oldest QE in the
active chain points back to the QD. For the rest of the QE's in the active chain,
word 1 is a pointer to the next most recent QE in the chain.

Chapter 2. Instruction and Statement Descriptions 2-93

DEFINEQ

2-94 SC34-0937

Word 2 of the most recent QE in the active chain points back to the QD. For the
rest of the QEs in the active chain, word 2 is a pointer to the next oldest QE in the
chain.

Word 3 of a QE in the active chain is a queue entry. The entry is a 16-bit word that
can be a data item or the address of an associated data buffer.

When a QE is in the free chain, word 3 is a pointer to the next element in the free
chain. Word 3 of the last QE in the free chain is a pointer back to the QD.

o

o

o

()

o

o

~
~0500

~ r--

QD
Chain

3000

1000

4000 f--

~ 4000

Figure 2-5. Layout of a Queue

~ 1000

...
r

~ 2000

... ,

3000

0500

5000

0500

Active QE
buffer pool

0500 J Oldest
entry

2000

Queue
entry

1000 J
3000

Queue
entry

2000 J Most
recent

0500 entry

Queue
entry

Free QE
chain

...

... ,

DEFINEQ

Optional
buffer areas

BG1153

Chapter 2. Instruction and Statement Descriptions 2-95

DEFINEQ

Syntax Examples

2-96 SC34-0937

1) The following statement generates a 3-word queue descriptor (QD), followed by
four 3-word queue entries (QE). All four of the QEs are placed in the QE free
chain.

QUEI DEFINEQ CQUNT=4

2) The following statement generates a 3-word QD, followed by two 3-word QEs
and two 6-word queue data areas (one 6-word area for each of the QEs) initialized
to binary zeros. Because the SIZE operand is specified, all QEs are included in the
active chain and the queue is defined as full.

QUE2 DEFINEQ CQUNT=2,SIZE=12

()

o

o

o

":
~/

()

DEQ

DEQ - Release a Resource for Use
The DEQ instruction releases exclusive control of a resource other than a terminal
by releasing control of the queue control block (QCB) associated with that resource.

You acquire exclusive control. of the QCB associated with a resource with the ENQ
instruction. (See the ENQ instruction for more information.) Your program must
release exclusive control of, or "dequeue," a QCB associated with a resource before
other programs can use the resource again. Note that any task may dequeue a QCB,
even if it is not the owner of that QCB.

DEQ p.ormally assumes that the QCB for the resource is defined in the same
pa.rtition as the current program. However, your program can dequeue a QCB in
another partition by using the cross-partition service capability of DEQ. See
Appendix C, "Communicating with Programs in Other Partitions (Cross-Partition
Services)" on page C-l for an example that dequeues a resource in another
partition. Refer to the Language Programming Guide for more information on
cross-partition services.

When you use the $SIASM macro assembler or the host assembler, the DEQ
instruction causes the assembler to generate a QCB for a resource at the end of the
program. When you use $EDXASM, no QCBs are generated; you must use the
QCB statement to generate the QCBs your program requires.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

qcb

DEQ

qcb
code = -1
qcb

Description

qcb,code,Pl = ,P2 =

The label of the QCB to be dequeued. This must be the same label
used for the ENQ instruction and is usually the label of a QCB
statement.

code A code word to be inserted into the queue control block (QCB)
associated with the resource. Your program can examine the code
word by referring to the label of the QCB. A code of 0 is interpreted
by the ENQ instruction to mean that the resource is unavailable for·
use; all nonzero codes show that the resource is available. You must
code a self-defining term for this operand.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-97

DEQ

Coding Example

2-98 SC34-0937

See "ENQ - Gain Exclusive Control of a Resource other than a Terminal" on
page 2-125 for an example using the DEQ instruction. o

C""I·

.,/

o

o

DEQT

DEQT - Release a Terminal for Use
The DEQT instruction releases control of the terminal that your program acquired
control of with an ENQT instruction.

When an ENQT instruction redefines the characteristics of a terminal through an
IOCB statement, DEQT restores the terminal characteristics defined on the
TERMINAL definition statement. (Refer to the Installation and System Generation
Guide for information on the TERMINAL statement.) DEQT also causes partially
full buffers to be written t'O the terminal, completes all pending I/O, and forces the
cursor or forms to the next line (carriage return.) In addition, you can use the
DEQT instruction to end spooling to a printer assigned to your program.

Your program also releases exclusive control of a terminal when it executes a
PROGSTOP instruction.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a DEQT instruction causes a terminal I/O operation to occur.
If the return code is not a-I, the address of this instruction will be placed in the
second word of the task control block (taskname + 2). The terminal I/O return codes
are described at the end of the PRINTEXT and READTEXT instructions in this
manual and also in Messages and Codes.

When coding the DEQT instruction, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, you must
also code the CLOSE operand. The comment must be separated from the operand
field by at least one blank and it cannot contain commas.

Syntax:

label DEQT CLOSE = comment

Required: none
Defaults: CLOSE = NO
Indexable:· none

Operand Description

CLOSE = This operand provides additional control for spool jobs.

Code CLOSE = YES to logically end a spool job. Logically ending a
SPOOL job allows the executing program to create separate printed
output on the spool device. This operand has no effect on the DEQT
instruction if the device to which the DEQT is directed is not a spool
device, or if spool is not active.

Code CLOSE = ALL to end all spool jobs associated with this task and
all other tasks in the program that have previously issued a DEQT
instruction.

Coding CLOSE = NO (the default) has no affect on the DEQT
instruction or spool operation.

Chapter 2. Instruction and Statement Descriptions 2-99

DEQT

Syntax Examples
1) Release control of the system printer, $SYSPRTR.

ENQT $SYSPRTR o •
•
•

DEQT

2) Release control of the device .TTYl.

ENQT TERMl,BUSY=AlTERN
•
•
•

DEQT CLOSE=NO THIS IS A COMMENT
•
•
•

PROGSTOP
TERM! IOCB TTYl,PAGSIZE=24

o

o
2-100 SC34-0937

, .. "! 0.'"

DETACH

DETACH - Deactivate a Task

Coding Example

The DETACH instruction removes a task from operational status. A task can only
detach itself. If a program reattaches a task, execution begins with the instruction
following the DETACH in the reattached task.

Syntax:

label DETACH code,PI =

Required: none
Defaults: code = - I
Indexable: none

Operand Description

code The posting code to be inserted in the terminating ECB ($TCBEEC) of
the task being detached. A complete list of TCB equates is in the
Internal Design.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

The following program announces the start of each race at a racetrack.

TASKA is the program's primary task. It starts, or "attaches," TASKB, which
enqueues the track announcement board at label RACEBORD (code not shown).
T ASKB then prints the time of day and the number of the race that is about to
begin. When TASKB completes, it executes a DETACH instruction and detaches
itself from the program.

When the primary task reattaches T ASKB at label A2, the GOTO instruction
immediately following the DETACH instruction executes. The GOTO instruction
passes control back to the beginning of the T ASKB and execution resumes at the
label BEGIN.

Chapter 2. Instruction and Statement Descriptions 2-101

DETACH

TASKA PROGRAM START
START EQU *

• 0 •
•

ATTACH TASKB
•
•
•

A2 ATTACH TASKB
•
•
•

PROGSTOP
•
•
•

TASKB TASK BEGIN
BEGIN EQU *

. ENQT RACEBORD
ADD NUMBER,l
PRINTEXT '@THE TIME IS NOW '
PRINTIME
PRINTEXT I AND RACE# I

PRINTNUM NUMBER
PRINTEXT I OF THE DAY IS ABOUT TO BEGIN I

DEQT
DETACH
GOTO BEGIN

0 NUMBER DATA F'O'
ENDTASK
ENDPROG
END

o
2-102 SC34-0937

()

1"\1
V

DIVIDE

DIVIDE - Divide Integer Values
The DIVIDE instruction divides an integer value in operand 1 by an integer value in
operand 2. The'values can be positive or negative. To divide floating-point values,
use the FDIVD instruction.

See the DATA/DC statement for a description of the various ways you can represent
integer data.

The system stores the remainder of the operation (an integer) in the first word of the
task control block (TCB). This remainder will be lost if a subsequent instruction
issues a return code and updates the TCB. The remainder is double-precision only if
operand 2 is double precision.

The system indicates an overflow for the DIVIDE operation by placing a
X 180000000 1 in the first two words of the TCB. X 180000000 1 is also the result of a
divide by zero operation.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

count

DIVIDE

opndl,opnd2

opndl,opnd2,count,RESUL T = ,PREC = ,
PI =,P2=,P3=

count = I,RESUL T = opndl,PREC = S
opndl,opnd2,RESUL T

Description

The label of the data area containing the value divided by opnd2.
Opnd 1 cannot be a self-defining term. The system stores the result of
the DIVIDE operation in opnd1 unless you code the RESULT
operand.

The value by which opnd1 is divided. You can specify a self-defining
term or the label of a data area. The value of opnd2 does'not change
during the operation.

The number of consecutive values on which the system performs the
operation. The maximum value is 32767.

RESULT = The label of a data area or vector in which the result is placed. The
data area you specify for opndl is not changed if you specify
RESULT. This operand is optional.

PREC = xyz Specify the precision of the operation in the form xyz, where the
precision for opnd1 is x. The precision for opnd2 is y, and the
precision of the result is z ("'Mixed-precision Operations" on
page 2-104 shows the precision combinations allowed for the DIVIDE
instruction). You can specify single precision (S) or double precision
(D) for each operand. Single precision is a word in length; double
precision is two words in length. The default for opndl, opnd2,and
the result is single precision.

Chapter 2. Instruction and Statement Descriptions 2-103

DIVIDE

If you code a single letter for PREC, the letter applies to opndl and
the result. Opnd2 defaults to single precision. If, for example, you
code PREC = D, opndl and the result are double precision and opnd2
defaults to single precision.

If you code two letters for PREC, the first letter applies to opndl and
the result, and the second letter applies to opnd2. With PREC = DD,
for example, opndl and the result are double precision and opnd2 is
double precision.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Mixed-precision Operations

Syntax Example

Coding Example

2-104 SC34-0937

The following table lists the precision combinations allowed for the DIVIDE
instruction:

opndl opnd2 Result Precision

S S S S
S S D SSD
D S D D
D D D DD
D S S DSS

PREC= S is the default.

The following DIVIDE instruction divides the value at location DATA by a value at
a location defined by the label TAB plus the contents of index register 1. Both
operands are single precision because no precision is specified.

DIVIDE DATA, (TAB,#l)

The following example uses the DIVIDE instruction to determine the amount of
time an experiment required in hours, minutes, and seconds. If the data area labeled
TIME contained a value of 4796 (seconds), the first DIVIDE instruction would place
a result of 1 in HOURS. It would also leave a remainder of 1196 in the first word
of the TCB. The label of the TCB is TASK, the label of the PROGRAM statement.

o

()

o

0

DIVIDE

The second DIVIDE instruction at label GETMINS would divide the remainder by
60 and place a result of 19 in MINUTES and a remainder of 56 in the TCB. This
remainder represents the number of seconds and would be moved into SECONDS.
The program would print out a final result of 1 hour, 19 minutes, and 56 seconds.

TASK PROGRAM START
START EQU *

•
•
•

NEXTIME EQU *
•
•
•

GETHOURS EQU *
DIVIDE TIME,3600,RESULT=HOURS NUMBER OF HOURS

GETMINS EQU *
DIVIDE TASK,60,RESULT=MINUTES NUMBER OF MINUTES

GETSECS EQU *
MOVE SECONDS, TASK, (l,WORD) GET REMAINDER

PRINTIME EQU *
PRINTEXT I ELAPSED TIME IN HOURS:MINUTES:SECONDS '
PRINTNUM HOURS
PRI NTEXT I : I

PRINTNUM MINUTES
PRINTEXT I : I

PRINTNUM SECONDS
GOTO NEXTIME CONVERT ANOTHER COUNT
•
•
•

TIME DATA 01 01 BEGINNING VALUE
HOURS DATA F'0 1 NUMBER OF ELAPSED HOURS
MINUTES DATA F'01 NUMBER OF ELAPSED MINUTES
SECONDS DATA F'0 1 NUMBER OF ELAPSED SECONDS

Chapter 2. Instruction and Statement Descriptions 2-105

DO

DO - Perform a Program Loop

2-106 SC34-0937

The DO instruction begins a program loop. A loop is a set of one or more
instructions that executes repeatedly until a condition you specify in the DO
instruction is satisfied. You must end the DO loop with an ENDDO instruction.

You can code a loop within another loop. This technique is called "nesting." You
can include up to 20 nested loops within your initial DO-END DO structure.

There are three forms of the DO instruction. DO UNTIL and DO WHILE provide
a means of looping until or while a condition is true. The third form of the DO
instruction causes a loop to be executed a specific number of times. In all of these
forms, a branch out of the loop is allowed.

You also can use the DO instruction to perform a loop while or until a certain bit is
on (set to 1) or off (set to 0).

The syntax box shows the DO UNTIL and DO WHILE forms of the DO instruction
with a single conditional statement. You can specify several conditional statements,
however, by using the AND and OR keywords. These keywords allow you to join
conditional statements. The keywords are described in the operands list and
examples using the keywords are shown under "Syntax Examples with DO and
ENDDO" on page 2-109.

Syntax:

label
label
label

DO
DO
DO

count, TIMES,INDEX = ,PI =
UNTIL,(datal,condition,data2, width)
WHILE;(datal,condition,data2,width)

Required: count or one conditional statement
with UNTIL or WHILE

Defaults: width is WORD
Indexable: count or datal and data2 in each statement

Operand Description

count The number of times the loop is to be executed. You can specify a
constant or the label of a variable. The maximum value is 32767. The
system completes one loop each time it encounters the ENDDO
instruction.

TIMES

INDEX =

UNTIL

Note: If count = 0, the system executes the loop one time.

This optional operand serves only as a comment for the count
operand.

The label of a data area that the system resets to 0 before starting the
DO loop and increases by 1 each time the instruction following the
DO instruction executes. The first time the DO loop executes, the
index has a value of 1.

This operand defines a loop that executes until the condition you
specify is true. The loop executes at least once, even if the condition
is initially true.

()

(.. ~ ..
. J

;;/

o

o
WHILE

datal

condition

data2

width

DO

This operand defines a loop that executes as long as the condition you
specify is true. The loop does not execute if the condition is initially
false.

The label of a data item to be compared to data2 or the label of the
data area that contains the bit to be tested. This operand is valid only
in a conditional statement with UNTIL or WHILE.

An operator that indicates the relationship or condition to be tested.
Only code this operand in a conditional statement with UNTIL or
WHILE. The valid operators for the DO instruction are as follows:

EQ - Equal to
NE - Not equal to
GT - Greater than
L T - Less than
GE - Greater than or equal to
LE - Less than or equal to

ON - Bit is on
OFF - Bit is off

The data to be compared to datal or the position, in datal, of the bit
to be tested. Only code this operand in a conditional statement with
UNTIL or WHILE. You can specify immediate data or the label of a
variable. Immediate data can be an integer from 1- 32768 or a
hexadecimal value from 1-65535 (X'FFFF').

Bit 0 is the leftmost bit of the data area.

Specifies an integer number-of bytes or one of the following:

BYTE
WORD
DWORD
FLOAT
DFLOAT

- Byte (8 bits)
- Word (16 bits)
- Doubleword (32 bits)
- Single-precision floating point (32 bits)
- Extended-precision floating point (64 bits)

Code this operand only in a conditional statement using UNTIL or
WHILE. The default is WORD.

AND Enables you to join conditional statements when you code DO UNTIL
or DO WHILE. Code the operand between the conditional statements
you want to join. With DO UNTIL, the AND indicates that the loop
should execute until all the conditional statements that the operand
joins are true. With DO WHILE, the AND indicates that the loop
should execute while all the conditional statements the operand joins
are true.

OR

You can join several pairs of conditional statements with several AND
operands. You also can use the AND and OR operands within the
same DO instruction.

Enables you to join conditional statements when you code DO UNTIL
or DO WHILE. Code the operand between the conditional statements
you want to join. With DO UNTIL, the OR indicates that the loop
should execute until one of the conditional statements the operand
joins is true. With DO WHILE, the OR indicates that the loop should
execute while any of the conditional statements the operanci joins is
true. See the syntax examples for this instruction.

Chapter 2. Instruction and Statement Descriptions 2-107

DO

You can join several pairs of conditional statements with several OR
operands. You also can use the AND and OR operands within the
same DO instruction.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Rules for Evaluating Statement Strings Using AND and OR

2-108 SC34-0937

The IF and DO instructions permit logically connected statements in the form of
either:

statement,O R,statement

statement,AND,statement

More than two statements may be logically connected in an instruction. Logically
connected statement strings are not evaluated according to normal Boolean
reduction. Instead, the string is evaluated to be true or false by evaluating each
sequence of:

statement, conjunction

to be true or false as follows:

• The expression is evaluated from left to right.

• If the condition is true and the next conjunction is OR, or if there are no more
conjunctions, the string is true and evaluation ceases.

• If the condition is true and the next conjunction is AND, the next conjunction is
checked.

• If the condition is false and the next conjunction is OR, the next condition is
checked.

• If the condition is false and the next conjunction is AND, or if there are no more
conjunctions, the string is false and the evaluation ceases.

The order of the statements and the conjunctions in a statement string determines
the evaluation of the string. It may be possible, by reordering the sequence of
statements and conjunctions, to produce a statement string that will be evaluated to
the same results as Boolean reduction of the statement. For example, the statement
string:

(A,EQ,B),AND,(C,GT ,D),OR,(E,LT ,F)

could be reordered as

(E,LT ,F),OR,(A,EQ,B),AND,(C,GT ,D)

without changing the results if evaluated by Boolean reduction. As a statement
string in the IF or DO instructions, however, the two forms produce different
evaluations. If A is not equal to B, but E is less than F, the first statement string
will be evaluated false and the evaluation will cease as soon as (A,EQ,B,) is
evaluated; however, the second statement string will 'be evaluated true if E is less
than F, as would be expected from Boolean reduction for either the first or second
statement string.

o

()

o

c

c

DO

Syntax Examples with DO and ENDDO
See the IF instruction for more samples of conditional statements.

1) Execute a loop 100 times.

DO 100
•
•
•

ENDDO

2) Execute a loop the number of times specified in N. The TIMES operand serves
as a comment.

DO N, TIMES
•
•
•

ENDDO

3) Execute a loop until the first 4 bytes of A are less than the first 4 bytes of B.

DO UNTIL,(A,LT,B,4)
•
•
•

ENDDO

4) Execute a loop until A contains a floating-point value equal to 1000.

DO UNTIL, (A,EQ, 1000, FLOAT)
•
•
•

ENDDO

5) Execute a loop while the first word of B is not equal to the first word of C.

DO WHILE,(B,NE,C)
•
•
•

ENDDO

6) Execute a loop while the first 4 bytes of A are less than the first 4 bytes of B.

DO WHILE,(A,LT,B,4)
•
•
•

ENDDO

7) Execute a loop until the third bit starting at label A is a 1.

DO UNTIL,(A,ON,2)
•
•
•

ENDDO

Chapter 2. Instruction and Statement Descriptions 2-109

DO

2-110 SC34-0937

8) Execute a loop until the bit number contained in BITl, starting at label A, is a O.

DO UNTIL,(A,OFF,BIT1)
•
•
•

ENDDO

9) Execute a loop until A equals.B and A equals C.

DO UNTIL,(A,EQ,B),AND,(A,EQ,C)
•
•
•

ENDDO

10) Execute a loop while A is not equal to 1, or while the first doubleword in D is
equal to the first doubleword in E, and while register 1 is not equal to 14.

DO WHILE,(A,NE,1),OR,(D,EQ,E,DWORD),AND,(#1,NE,14)
•
•
•

ENDDO

11) This example shows a nested DO loop.

DO UNTIL,(A,EQ,B,DFLOAT),OR,(#1,EQ,1000)
•
•
•

DO 10, TIMES
•
•
•

ENDDO
ENDDO

12) This example shows a nested DO loop that is also within an IF-ELSE-ENDIF
structure.

DO
IF

DO

WHILE, (A,GT,B,DWORD)
(CHAR,EQ,C'A',BYTE)

40, TIMES
•
•
•

ENDDO
ELSE

•
•
•

ENDIF
ENDDO

c

o

Coding Example

o

c~

DO

The following example shows three DO loops.

The first DO loop, at label D1,executes twice and ends. The second DO loop, at
label D2, executes at least once and continues to loop until the value of INDEX1 is
greater than or equal to 2.

The third DO loop, at label D3, executes as long as (WHILE) the value of INDEX2
is less than or equal to 1. If the condition is not initially true, the third loop does
not execute at all.

•
•
•

01 00 2,TIMES,INOEX=INOEX
MOVE INDEX1,0

02 00 UNTIL,(INOEX1,GE,2)
AOD INDEXl,l
MOVE INDEX2,0

03 00 WHILE,(INDEX2,LE,l)

INDEX
INOEXl
INOEX2

ADO INOEX2,l
PRINTNUM INDEX,3,3,4

ENOOO
ENDOO

ENODO
•
•
•
OAT A Fill
OAT A Fill
DATA Fill
•
•
•

The above example generates the following printout:

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

Chapter 2. Instruction and Statement Descriptions 2-111

DSCB

OSCB - Create a Data Set Control Block

Syntax Example

2-112 SC34-0937

The DSCB statement creates a data set control block (DSCB). A DSCB provides
the information the system requires to use a data set within a particular volume.

The first 3 words of every DSCB contain the event control block (ECB) information.
You can refer to fields within a DSCB by using the DSCB equate table, DSCBEQU.

Syntax:

Required:
Defaults:
Indexable:

Operand

DS#=

DSCB DS# = ,DSNAME = ,VOLSER = ,DSLEN =

DS# = ,DSNAME =
VOLSER = null, DSLEN = 0
none

Description

The alphanumeric label that is used to refer to a DSCB in disk or tape
I/O instructions. This label will be assigned to the first word (ECB) of
the generated DSCB. Specify 1- 8 characters.

DSNAME = The data set name field within the DSCB. Specify 1 - 8 characters.

VOLSER = The volume label to be assigned to the volume label field of the DSCB.
Specify 1- 6 characters. A null entry (blanks) will be generated if you
do not specify VOLSER.

Note: If the DSCB is for a tape data set, you must specify VOLSER
prior to DSOPEN. In addition, you must supply the 1- 6 character
tape drive ID if there is no volume label. The tape drive ID is
assigned during system generation with the TAPE definition 'statement.

DSLEN = The size of the referenced direct access space. If no number is
specified, this value will be set to O. This parameter is not used if the
DSOPEN routine will be used to open the DSCB.

When a data set is defined using the DSCB statement it must be opened before
attempting disk or tape I/O operations such as READ or WRITE. The routines
DSOPEN and $DISKUT3 are provided for this purpose. DSOPEN must be copied
into your program with the COpy statement and then called with the CALL
instruction. The $DISKUT3 utility is loaded with the LOAD instruction. For more
information on DSOPEN and $DISKUT3 see Appendix D or refer to the Language
Programming Guide.

The following DSCB statement creates a data set control block with the label
INDATA.

DSCB DS#=INDATA,DSNAME=MASTER,VOLSER=EDX003

o

o

o

o

C,I

ECB

ECB - Create an Event Control Block
The ECB statement generates a 3-word event control block (ECB) that defines an
event. The system places a value in the first word of the control block when an
event has occurred. When the system signals the occurrence of an event in the ECB,
the ECB is said to have been "posted."

Normally this statement is not needed for application programs you assemble with
the host or Series/l macro assemblers. The host and Series/l macro assemblers
automatically generate a control block for an event named in a POST instruction.

You must code the necessary ECBs in programs assembled under $EDXASM,
except for those ECBs created when you code the EVENT = operand on the
PROGRAM or TASK statement.

You can code a maximum of 25 ECB statements in a prog~am. If your program
requires more than 25 ECBs, you must create them using DATA statements. An
example of how to create an ECB is shown following the description of this
statement.

When coding the ECB statement, you can include a comment that will appear with
the statement on your compiler listing. If you include a comment, you must also
specify the code operand. The comment must be separated from the operand field
by at least one blank and it cannot contain commas.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

label

code

ECB code comment

label
code = -1
none

Description

The label of the event that you specify in a POST instruction.

Initial value of the code field (word 1). If this word is not a zero when
aWAIT is issued, no wait occurs unless the WAIT has RESET coded.
You must leave the comment section blank if you plan to take the
default (-1) for this operand.

Chapter 2 .. Instruction and Statement Descriptions 2-113

ECB

Syntax Example

2-114 SC34-0937

The ECB statement:

ECBI ECB

is- equivalent to coding,

ECBI DATA
DATA

F'-I'
2F '01

The ECB statement:

ECB2 ECB o

is equivalent to coding,

ECB2 DATA
DATA

F' 0
1

2F '01

o

CODE IS 0, NOT DEFAULT

()

o

EJECT

EJECT - Continue Compiler Listing on a New Page

Coding Example

The EJECT statement causes the next line of the listing to appear at the top of a
new page. This statement provides a convenient way to separate sections of a
program. It does not change the page title if you are using one.

You can place EJECT within executable instructions.

Syntax:

blank EJECT -

Required: none
Defaults: none
Indexable: none

Operand Description

none none

See the PRINT statement for an example using EJECT.

Chapter 2. Instruction and Statement Descriptions 2-115

ELSE

ELSE - Specify Action for a False Condition

Syntax Examples

2-116 SC34-0937

The ELSE statement defines the start of the false-path code associated with the
preceding IF instruction. The end of the false-path code is the next ENDIF
statement.

When coding the ELSE statement, you may include a comment that will appear with
the instruction on your compiler listing. If you include a comment, we recommend
that the first character of the comment text not be a special character. If the"
comment starts with one or more special characters, it must be separated from the
instruction by a comma with a blank on each side.

Syntax:

label ELSE

Required: none
Defaults: none
Indexable: none

Operand Description

none none

The examples for IF, ELSE, and ENDIF are shown following the IF instruction.

o

o

o

o

END

END - Signal End of Source Statements

Coding Example

The END statement signals the compiler that the program contains no further
source statements.

END must be the last statement in a program, a separately compiled task, or a
subroutine. Unpredictable results can occur if you do not code an END statement.

Syntax:

blank END

Required: none
Defaults: none
Indexable: none

Operand Description

none none

The following example enqueues $SYSLOG, prints the time and date, dequeues
$SYSLOG, and ends. END is the last statement in the program.

PRINDATE
START

PROGRAM
EQU
ENQT
PRINTIME
PRINDATE
DEQT
PROGSTOP
ENDPROG
END

START
*
$SYSLOG

Chapter 2. Instruction and Statement Descriptions 2-117

ENDATTN

ENDATTN - End Attention-Interrupt-Handling Routine

Coding Example

2-118 SC34-0937

The END ATTN instruction ends an attention-interrupt-handling routine, as
described under ATTNLIST, and is the last instruction of that routine.

Syntax:

label ENDATTN

Required: none
Defaults: none
Indexable: none

Operand Description

none none

See the A TTNLIST statement for an example using the END ATTN instruction.

o

o

o

o

ENDDO

ENDDO - End a Program Loop

Coding Example

The ENDDO statement defines the end of a DO loop. It must be preceded by a DO
instruction.

Syntax:

label ENDDO

Required: none
Defaults: none
Indexable: none

Operand Description

none none

See the examples following the DO instruction.

Chapter 2. Instruction and Statement Descriptions 2-119

ENDIF

ENDIF - End an IF-ELSE Structure

Syntax Examples

2-120 SC34-0937

The ENDIF statement indicates the end of an IF-ELSE structure. If ELSE is coded,
ENDIF indicates the end of the false-condition code associated with the preceding
IF instruction. If ELSE is not coded, ENDIF indicates the end of the true code
associated with the preceding IF instruction.

When coding theENDIF statement, you can include a comment that will appear
with the instruction on your co~piler listing. If you include a comment, we
recommend that the first character of the comment text not be a special character.
If the comment starts with one or more special characters, it must be separated from
the instruction by a comma with a blank on each side.

Syntax:

label ENDIF

Required: none
Defaults: none
Indexable: none

Operand Description

none none

The examples for IF, ELSE, and ENDIF are shown following the IF instruction.

o

o

o

o

o

ENDPROG

ENDPROG - End a Program
The ENDPROG statement ends a program. It must be the next to the last
statement in your program (except when you include a $ID statement). The last
statement must be END. You can code the RETURN = operand on the
ENDPROG statement to acquire the system-return subroutine support without
link-editing the subroutine with your program.

The ENDPROG statement generates a task control block (TCB) for the main
program. You can locate the TCB by referring to the label on the PROGRAM
statement.

Syntax:

blank

Required:
Defaults:

Indexable:

Operand

ENDPROG RETURN =

none
RETURN = NO (if your program contains
a USER instruction, the default is YES)
none

Description

RETURN = RETURN = YES generates the $$RETURN subroutine in your
program. $$RETURN enables you to return to an EDL program
from an assembler subroutine when you code

BAL RETURN,Rl

in the assembler subroutine. When you specify RETURN = YES, it is
not necessary to link-edit the $$RETURN subroutine to your
program.

If your program has a USER instruction coded, then the RETURN
operand is not necessary on the ENDPROG statement. The USER
instruction causes the system module $$RETURN to be generated as
part of your program.

RETURN = NO is the default value for the RETURN operand unless
your program contains a USER instruction. If you code
RETURN = NO or allow the default, th~ system module is not
generated as part of your program.

RETURN = EXTRN generates an external reference to the system
subroutine $$RETURN. If you code RETURN = EXTRN, you must
link-edit the $$RETURN subroutine to your program.

Chapter 2. Instruction and Statement Descriptions 2-121

ENDPROG

Syntax Example
The ENDPROG statement precedes the END statement. o •

•
•

PROGSTOP
FIELD DATA F'G '
MESSAGE TEXT 'ENTER YOUR NAME' I

ENDPROG
END

o

o
2-122 SC34-0937

()

c

ENDTASK

ENOT ASK - End a Task

Coding Example

The ENDT ASK instruction defines the end of a task. Each task, except the primary
task, requires one ENDT ASK as its final instruction. When this instruction
executes, the task is detached. If another ATTACH is issued, execution begins at
the first instruction of the task.

ENDT ASK actually generates two instructions: DET ACH and GOTO start, where
"start" is the label of the first instruction to be executed when the system attaches
the task.

Syntax:

label ENDT ASK code,Pl =

Required: none
Defaults: code = - 1
Indexable: none

Operand Description

code The post code can be any I-word value. This code will be inserted in
the terminating ECB ($TCBEEC) of the task being detached. A
complete list of TCB equates is in the Internal Design.

Pl= Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

The main program in the following example, PROGA, attaches both T ASKA and
T ASKB during execution. Both tasks must be coded within the main program; you
cannot code the tasks in subprograms that are later link-edited with the main
program. The main program code always ends with the ENDPROG and END
statements (unless you code an intervening $ID statement). The task source code
always ends with the ENDTASK statement.

The first ATTACH instruction starts TASKA. T ASKA begins by setting its post
code to -1. If an error occurs, the task ends with a post code of 999. The second
A TT ACH instruction starts T ASKB.

The IF instruction at label CHECK examines the post code of TASKA to see if the
task ended successfully. If the task did not end successfully, another ATTACH
instruction reattaches TASKA. Because TASKA can only end with an ENDTASK
statement, execution always resumes at the instruction following the BEGINA label.

If T ASKB detaches at the DETACH instruction, execution resumes at the
instruction following the DETACH. If TASKB detaches at the ENDT ASK
statement, the task resumes execution at BEGINB.

Chapter 2. Instruction and Statement Descriptions 2-123

ENDTASK

PROGA PROGRAM START

0 START EQU *
•
•
•

ATTACH TASKA
•
•
•

ATTACH TASKB
•
•
•

CHECK IF ($TCBEEC+TASKA,NE,-l)
ATTACH TASKA

ENDIF
•
•
•

ATTACH TASKB
•
•
•

PROGSTOP
•
•
•

TASKA TASK BEGINA 0 BEGINA EQU *
MOVE CODE,-l
•
•
•

IF (RESULT,EQ,ERROR)
MOVE CODE,999

ENDIF
ENDTASK 1,P1=CODE

*
TASKB TASK BEGINB
BEGINB EQU *

ADD C,D
•
•
•

DETACH
•
•
•

ENDTASK
ENDPROG
END

0

2-124 SC34-0937

o

o

ENQ

ENQ - Gain Exclusive Control of a Resource other than a Terminal
The ENQ instruction gains exclusive cohtrol of a resource other than a terminal by
acquiring control of the queue control block,(QCB) associated with that resource.
Use ENQ to gain control of logical or physical resources such as sensor-based I/O
devices, subroutines, and data sets. The task remains the owner of the QCB until
the QCB is dequeued.

Note: Use the ENQT instruction to acquire exclusive use of any resource you define
with a TERMINAL statement, such as a display station or printer. .

When several programs need to use the same resource, the ENQ instruction can
ensure serial (one at a time) use of the resource. Programs try to acquire control of,
or "enqueue," a specific QCB before trying to use the resource. If the QCB is
"busy," the program can wait for the resource to become available or execute
another routine.

In general, there are two types of resources, system and user. System resources can
be shared serially by all programs and are defined by labels that are known across
the system. The QCBs associated with these resources must reside in $SYSCOM, the
system common area. (Refer to the Installation and System. Generation Guide for a
discussion of $SYSCOM.) User resources are shared serially by different parts of
one user program and are identified by labels known only within that program. The
QCBs associated with these resources reside within the program.

You must define each QCB contained in a program compiled under $EDXASM with
the QCB statement. The QCB statement generates the 5-word queue control block
in your program. The S~pes/l and host macro assemblers automatically create a
required QCB if you include a DEQ instruction naming the QCB in your program.

ENQ normally assumes that the QCB to be enqueued is in the same partition as the
current program. However, your program can enqueue a QCB in another partition
by using the cross-partition capability of ENQ. See Appendix C, "Communicating
with Programs in Other Partitions (Cross-Partition Services)" on page C-I for an
example of enqueuing a resource in another partition. Refer to the Language
Programming Guide for more information on cross-partition services.

Syntax:

label ENQ qcb,BUSY = ,PI =

Required: qcb
Defaults: none
Indexable: qcb

Chapter 2. Instruction and Statement Descriptions 2-125

ENQ

Coding Example

2-126 SC34-0937

Operand

qcb

BUSY =

Description

The label of the QCB to be enqueued.

The label of the instruction to receive control if the QCB you try to
enqueue is in use. If you do not code this operand and the QCB is in
use, the system suspends the execution of your program until the
resource associated with the QCB becomes available.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand. -

The following example shows the use of ENQ and DEQ instructions.

The ENQ instruction attempts to enqueue the queue control block labeled
SBRTNQCB. If the first word of the QCB contains a zero, the subroutine labeled
SUBRTN is being used by another program. The program, in this case, would wait
for the resource to become available. If the first word of the QCB is not a zero, the
program can call SUBRTN.

When SUBRTN ends, it places a code of 99 in RETURNCD. The DEQ instruction
releases exclusive control of the QCB and places the value of RETURNCD (99) in
the first word of the QCB. The nonzero value in the QCB serves as a signal to other
programs that the resource associated with the QCB is available.

•
•
•

ENQ
CALL
DEQ

•
•
•

SUBROUT
•
•
•

MOVE
RETURN

•
•
•

SBRTNQCB QCB
•
•
•

SBRTNQCB
SUBRTN
SBRTNQCB,0,P2=RETURNCD

SUBRTN

RETURNCD,99

-1

o

o

o

o

c

ENQT

ENQT - Gain Exclusive Control of a Terminal
The ENQT instruction acquires exclusive control of a terminal. To acquire exclusive
control of a terminal is to "enqueue" it. A "terminal" is any device, such as a
display station or printer, that you define with a TERMINAL statement during
system generation.

Your program releases exclusive control of a terminal when it executes a DEQT or
PROGSTOP instruction. Once your program enqueues a terminal, it must release
control of that terminal with a DEQT instruction before attempting to enqueue
another terminal.

When coding the ENQT instruction, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, you must
specify at least one operand with the instruction. The comment must be separated
from the operand field by one or more blanks and it cannot contain commas.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

name

ENQT name,BUSY = ,SPOOL = ,PI = comment

none
SPOOL=YES
name - label of the terminal that is currently in use

by the program
none

Description

The label of an lOeB statement or one of two special device names:
$SYSLOG or $SYSPR TR. $SYSLOG is the name of the system
display station; $SYSPRTR is the name of the system printer. Your
program enqueues the terminal from which you loaded it if you allow
this operand to default.

When you specify $SYSLOG or $SYSPR TR, the system refers to the
TERMINAL statement you set up for each of these devices during
system generation. Do not code an lOeB statement for these devices.

When you want to specify a terminal other than $SYSLOG or
$SYSPRTR, you can code the label of an lOeB statement for this
operand. The ENQT instruction refers to the lOeB statement for the
name of the terminal you want to controL The name on the lOeB
statement is the name you assigned to the terminal during system
generation. By referring to an lOeB statement, you also can redefine
certain terminal characteristics. You can, for example, reset screen or
page margins, or change a terminal from a roll screen device to a static
screen device. (See the lOeB statement for a description of the
terminal characteristics you can redefine.) The terminal characteristics
you specify with an lOeB statement remain in effect until you release
control of the terminal.

Chapter 2. Instruction and Statement Descriptions 2-127

ENQT

BUSY = The label of the instruction to receive control if the terminal you try to
enqueue is in use. If you do not code this operand and the terminal is
in use, the system suspends the execution of your program until the
terminal you request becomes available.

SPOOL = YES, the default, to allow the system to send spooled output to the
spool device you enqueue when the spool facility is active. This
operand has no effect if the spool facility is not active or if the device
you enqueue is not a spool device.

NO, to prevent the system from sending spooled output to the spool
device you enqueue when the spool facility is active.

This operand remains in effect until your program executes a DEQT or
PROGSTOP instruction.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Special Considerations

2-128 SC34-0937

You should note the following considerations when using the ENQT instruction:

• If your program has exclusive control of a terminal and loads another program,
the system dequeues the terminal unless you coded DEQT = NO on the LOAD
instruction. See "LOAD - Load a Program" on page 2-243 for a description
of the DEQT operand.

• ATTNLIST instructions cannot gain access to an enqueued terminal.

• If your program attempts to enqueue a terminal it already controls, the ENQT
instruction can change the characteristics of the terminal in use if it refers to an
IOCB statement that defines new terminal characteristics.

• If an ENQT instruction refers to an IOCB that sets up the limits of a logical
screen, the output for that screen starts at the top of the working area. The
system, however, does not immediately move the cursor to this location. Your
program can position the cursor at the top of the working area by issuing a
TERMCTRL DISPLAY.

• To preserve the correct current line pointer when the system sends spooled
output to an enqueued terminal, code a TERMCTRL DISPLAY as the last I/O
instruction. Do this before your program issues an ENQT instruction redefining
the characteristics of that terminal.

o

o

Syntax Examples

o

Coding Example

c

ENQT

1) Enqueue the system printer, $SYSPRTR.

ENQT $SYSPRTR
•

DEQT

2) Enqueue the devi~e TTYl. The ENQT instruction refers to the IOCB labeled
TERMl for the name of the device. If TTYl is not available, the program passes
control to the label ALTERN and enqueues $SYSLOG.

TEST PROGRAM START
TERMl IOCB TTYl,PAGSIZE=24
START EQU *

ENQT TERMl,BUSY=ALTERN
•
•
•

DEQT
ALTERN ENQT

•
•
•

$SYSLOG

The first ENQT instruction in the program attempts to enqueue $SYSPRTR. If the
device is busy, the program displays a message and attempts to enqueue an alternate
printer ($SYSLIST). If the alternate printer is busy, the program waits for it. When
the program obtains a printer, it executes the CALL instruction at the label
GOTPRTR. The DEQT instruction at the label RELEASE releases exclusive
control of the enqueued printer (either $SYSPRTR or $SYSLIST).

•
•
•

GETPRTR EQU
ENQT
GOTO

BUSYEXIT EQU
PRINTEXT
ENQT

GOTPRTR EQU
CALL
•
•
•

RELEASE EQU
DEQT
PROGSTOP

PRTRIOCB IOCB
ENDPROG
END

*
$SYSPRTR,BUSY=BUSYEXIT
GOTPRTR
*
'$SYSPRTR IS BUSY. ATTEMPTING TO ENQT ALTERNATE I

PRTRIOCB
*
SUBRTN

*

$SYSLIST

Chapter 2. Instruction and Statement Descriptions 2-129

ENTRY

ENTRY - Define a Program E,ntry Point

2-130 SC34-0937

The ENTRY statement defines one or more labels as being entry points within a
program module. Each ENTRY statemant allows a maximum of 10 labels. These
entry-point labels can be referred to by instructions in other program modules that
are link-edited with the module that defines the entry-point label. The program
modules that refer to an entry-point label must contain either an EXTRN or
WXTRN statement for the label.

Syntax:

blank ENTRY one or more relocatable symbols
separated by commas

Required: one symbol
Defaults: none
Indexable: none

Operand Description

symbol One or more symbols that appear as instruction labels within the
program module.

o

o

o

Coding Example

o

ENTRY

In module A, the first ENTRY statement signifies that the program can be entered
at label GETTIME. In module B, the entry defines label GOTTIME as being an
entry point. Both of these labels are also used with EXTRN statements so that their
addresses can be resolved when the two modules are link-edited together. The
second ENTRY statement in module A allows the time to be printed without 'THE
TIMp IS NOW I text.

MODULE A

•
•
•

ENTRY
ENTRY
EXTRN

•
•
•

GETTIME EQU
PRINTEXT

GETTIME2 EQU
PRINTIME
GOTO

•
•
•

MODULEB

•
•
•

ENTRY
EXTRN

•
•
•

TIME EQU
GOTO

GOTTIME EQU
•
•
•

GETTIME
GETTIME2
GOTTIME

*
'@THE TIME IS NOW I

*

GOTTIME

GOTTIME
GETTIME

*
GETTIME
*

Note: The two ENTRY statements in module A also could be coded as follows:

ENTRY GETTIME,GETTIME2

Chapter 2. Instruction and Statement Descriptions 2-131

EOR

EOR - Compare the Binary Values of Two Data Strings

2-132 SC34-0937

The Exclusive OR instruction (EaR) compares the binary value of operand 2 with
the binary value of operand 1. The instruction compares each bit position in
operand 2 with the corresponding bit position in operand 1 and yields a result, bit by
bit, of 1 or O. If the bits compared are the same, the result is O. If the bits
compared are not the same, the result is 1. If both input fields are identical, the
resulting field is O. If one or more bits differ, the resulting field contains a mixture
of Os and Is.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

EOR

opndl,opnd2

opndl,opnd2,count,RESUL T = ,
PI =,P2=,P3=

count = (1, WORD),RESULT = opndl
opndl,opnd2,RESUL T

Description

The label of the data area to be compared with opnd2. Opndl cannot
be a self-defining term. The system stores the result of the operation
in this operand unless you code the RESULT operand.

This operand can be a byte, word, or doubleword.

The value compared with opndl. You can specify a self-defining term
or the label of a data area. This operand can be a byte, word, or
doubleword.

count The number of consecutive values in opndl on which the operation is
to be performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one
precision that the system uses for opndI, opnd2, and the resulting bit
string. When specifying a precision, code the count operand in the
form,

(n,precision)

where "n" is the count and "precision" is one of the following:

BYTE - byte precision
WORD - word precision (default)
DWORD - doubleword precision

The precision you specify for the count operand is the portion of
opnd2 that is used in the operation. If the count is (3,BYTE), the
system compares the first byte of data in opnd2 to the first three bytes
of data in opndl.

RESULT = The label of a data area or vector in which the result is to be placed.
When you specify RESULT, the value of opndl does not change
during the operation. This operand is optional.

o

o

o

o
Syntax Examples

o

EOR

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) The EOR instruction compares the first byte of data in D to the first byte of data
in C and places the result in R.

C
D
R

EOR C,D,(l,BYTE),RESULT=R
•
•
•

DATA X' 92 1

DATA X'8F '
DATA X'88 1

binary 1001 0010
binary 1000 1111

After the operation, R contains:

X lID I - hexidecimal

0001 1101 - binary.

2) The EOR instruction compares the first byte of data in OPER2 to the first three
bytes of data in OPER1. The result of the operation is stored in RESUL TX.

EOR OPER1,OPER2,(3,BYTE),RESULT=RESULTX
•
•
•

OPER1 DC XIOO I binary 0000 0000
DC X' A5 1 binary 1810 0101
DC X lEn I binary 0000 0001

OPER2 DC X I FF' binary 1111 1111
RESULTX DC 2F '0'

•
•
•

After the operation, RESUL TX contains:

X I FF5A FEOO I - hexidecimal

1111 1111 0101 1010 1111 111 0 0000 0000 - binary.

3) The EOR instruction compares the first byte of data in TEST to the first three
bytes of data in INPUT. The result of the operation is stored in OUTPUT.

INPUT
TEST
OUTPUT

EOR INPUT,TEST,(3,BYTE),RESULT=OUTPUT
•
•
•

DC
DC
DC
•
•
•

C'1.21
CIO.OI
3C '0'

binary 1111 0001 0100 1010 1111 0010
binary 1111 0000
binary 1111 0000 1111 0000 1111 0000

After the operation, OUTPUT contains:

0000 0001 1011 1010 0000 0010 - binary.

Chapter 2. Instruction and Statement Descriptions 2-133

EQU

EQU - Assign a Value loa Label
The EQU statement assigns a value to a label. The value is a word in length. You
can use the label you define with the EQU statement as an operand in other
instructions that permit the use of labels. The "value" the statement assigns, or
equates, to a label can consist of an integer constant, another label, an expression
containing an arithmetic operator (for example, A + 2), or an asterisk (*). See
"Syntax Rules" on page 1-6 for a description of the four arithmetic operators: +
(plus), - (minus), * (multiply), and / (divide).

Syntax:

label EQU value

Required:label, value
Defaults: none
Indexable: none

Operand Description

label The label to be assigned a value. Do not define this label elsewhere in
your program.

value An integer constant, another label, an expression containing an
arithmetic operator, or an asterisk (*). The asterisk points to the next
available storage location in a program. It allows you to generate
convenient labels that you can use within your program. Do not
confuse this use of an asterisk with the arithmetic operator that
signifies multiplication (*).

Your program must define any labels you code for this operand before
the system processes the EQU statement. For example, if you code:

A EQU 8

you must have defined the label B in your program previously.

Special Considerations

2 .. 134 SC34-0937

Here are some things to consider when you use the EQU statement in your program:

• When you use the label on the EQU statement as an operand in another
instruction, the system interprets the label as a storage address unless you
include a plus (+) sign before it. The system interprets a label preceded by a
plus sign as a constant.

• Because EQU assigns a word value to a label, a byte-precision move of a label
preceded by a plus sign would only move the leftmost byte of the word. If you
equated the label A to the value 4 ex I 0004 I), for example, tp.e system would
move only the value X I 00 I •

• If you equate a DATA or DC statement with a label, the system interprets the
label as the address of the DATA or DC statement. If you try to use this label
with a plus sign, however, the label will no longer point to the data when the
load point of the program changes.

()

o

o
Syntax Examples

c

EQU

• You can equate a hexadecimal value to a label if the value can fit in a word (for
example, XIFED11). You can also equate one or two EBCDIC characters with
a label (for example, C I AB I). You cannot form EQU expressions with the
following types of data: H, D, E, and A. (See DATA/DC for a description of
each of these data types.)

1) Assign a value of 2 (X 100021) to A.

A EQU 2

2) Assign the value of A to label B. If A has a value of 5 ex I 0005 I), B also has a
value of 5.

B EQU A

3) Assign the value of B plus 2 bytes to label A.

A EQU B+2

4) CALLA is equivalent to CALLSUB. The asterisk (*) points to the next available
storage location in the program.

GO TO CALLA
•
•
•

CALLA EQU *
CALLSUB CALL PROGA

5) Move the contents at address X I 0002 I to C.

A EQU
MOVE

2
C,A

6) Move A, a value of 2, to C.

A EQU
MOVE

2
C,+A

7) Move 7 to the indexed location of A plus #1.

A EQU
MOVE

2
(A,#1),7

8) Add the value of C (X" 0002 I) to D (X I 0008 I). The example defines the labels B
and A before they appear in the EQU statements.

SAMPLE PROGRAM
B DATA
START EQU

C

A
D

•
•
•
EQU B
ADD D,C
PROGSTOP
DATA FI 81

EOU A

Chapter 2. Instruction and Statement Descriptions 2-135

EQU

Coding Example

2-136 SC34-0937

9) A has a word value of X I 0005 I. The leftmost byte (value X I 00 I) moves to
location C.

A EQU 5
MOVE C,+A,(l,BYTE)

10) Equate C to the address of FlO I. Move a value of 0 into TEMP.

C EQU
DATA
MOVE

*
F'e '
TEMP,C

11) HERE has a value of 20. Move a value of 0 to address X ' 00141.

HERE EQU
MOVE

2e
HERE,e

The following program moves data from three storage locations labeled A, C, and E.
Label A is equal to the address of B times 2. Label C is equal to the address of D
divided by 4. Label E is equal to the address of F divided by 5.

If the address of B is X I 0052 1, the arithmetic expression B*2 refers to address
X '00A41. If the address of Dis X ' 0054 1, the arithmetic expression Dj4 refers to
address X 'OOl5'. For label F, if the address is X '0056 1, the arithmetic expression
F j 5 yields the address X I 0017 I. The system disregards the remainder in an
arithmetic expression using the divide operator.

OPERATOR PROGRAM START
START EQU *

•
•
•

Ml MOVE HOLDl,A
M2 ~10VE HOLD2,C
M3 MOVE HOLD3,E

•
•
•

PROGSTOP
HOLDl DATA F'e '
HOLD2 DATA F'e '
HOLD3 DATA F'e '
B DATA Fill
D DATA F'2
F DATA F' 31

A EQU B*2
C EQU D/4
E EQU F/5

ENDPROG
END

o

0

o

o

o

ERASE

ERASE - Erase Portions of a Display Screen
The ERASE instruction clears or blanks a portion of a display screen. The
instruction is only for terminals that have static screens. You can specify a static
screen with the SCREEN operand of the TERMINAL statement or the IOCB
instruction.

With a 4978, 4979 or 4980 terminal, the ERASE instruction clears a portion of the
screen by setting that portion to a no data (null characters) condition. For a 3101
terminal in block mode, the instruction normally clears a portion of the screen by
writing unprotected blanks to that area.

The ERASE instruction works differently on a 4978, 4979, or 4980 terminal than it
does on a 3101 terminal in block mode. These differences are described under "31xx
Display Considerations" on page 2-139.

The supervisor places a return code in the first word of the task control block
(taskname) whenever an ERASE instruction causes a terminal I/O operation to
occur. If the return code is not a-I, the address of this instruction will be placed
in the second word of the, task control block (taskname + 2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163., and 3164
terminals, unless otherwise noted.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

count

MODE =

ERASE count,MODE = ,TYPE = ,SKIP = ,LINE = ,SPACES =

none
count = maximum,MODE = FIELD, TYPE = DATA,
SKIP = O,LINE = current line,SP ACES = 0
count,SKIP ,LINE,SP ACES

Description

The number of bytes to be erased. Both nonprotected and protected
characters contribute to the count, even if only nonprotected
characters are ~o be erased. The ERASE instruction can erase up to
an entire logical screen.

FIELD, to end the erase operation when the display characters change
from nonprotected to protected, or when the operation reaches the end
of the current line.

LINE, to end the erase operation at the end of the current line.

SCREEN, to end the erase operation at the end of the logical screen.

Chapter 2. Instruction and Statement Descriptions 2-137

ERASE

2-138 SC34-0937

TYPE =

SKIP =

LINE =

When the ERASE instruction erases the number of bytes you specified
for the count, the operation will end. It will do so even though the
condition you specified on the MODE operand is not satisfied. The
MODE operand determines the end of the erase operation if you do
not code a count value or if the condition you specify for MODE =
occurs before the i,nstruction erases the number of bytes in count.

DATA, to erase only unprotected characters.

ALL, to erase both protected and unprotected characters.

The number of lines to be skipped before the system does an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP = 6, the system does the I/O operation on line 8.
For a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify.

The line number on which the system is to do an I/O operation. Code
a value between zero and the. number of the last usable line on the
page or logical screen. The line count begins at the top margin you
defined for the printer or display screen. LINE = ° positions the cursor
at the top line of the page or screen you defined; LINE = I positions
the cursor at the second line of the page or screen.

For printers, if you code a value less than or equal to the current line
number, the system does the I/O operation at the specified line on the
next page or logical screen. For static screens, if you code a value
within the limits of the logical screen, the system does the I/O
operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE = 22 and your static screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system does an I/O
'operation. SPACE.= 0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

o

o

o

o

ERASE

31 xx Display Considerations

Syntax Examples

The following consid~rations apply to the use of the ERASE instruction on a 31xx
terminal in block mode.

If you code an ERASE instruction in with TYPE = DATA, the system ignores the
count value. The instruction erases from the current cursor position to the end of
the screen, clearing all unprotected data.

If you code TYPE = ALL on the ERASE instruction, the erase operation ends when
the instruction erases the number of bytes in count, or when the operation reaches
the end of a logical screen (whichever happens first). The default for count, when
you code TYPE = ALL, is from the current cursor position to the end of the screen.

The system clears the entire 31xx screen if the cursor is in the home position (line
zero, space zero), and an ERASE instruction with a c~unt of 1920 executes.

The MODE operand on the ERASE instruction is affected by the TYPE operand in
the following ways:

• MODE defaults to MODE = SCREEN if you code TYPE = DATA. The system
forces the MODE operand to SCREEN even if you code MODE = LINE or
MODE = FIELD.

• You can code the MODE = SCREEN or MODE = LINE if you code
TYPE = ALL.

• The system forces the MODE operand to MODE = LINE if you code
MODE = FIELD with TYPE = ALL.

If you code an ERASE instruction after a READTEXT instruction and the
READ TEXT buffer or TEXT statement is smaller than the number of characters
actually transmitted by the 31xx, you will need a delay between the READ TEXT
and ERASE instructions. The delay is necessary because your program should not
issue an ERASE instruction until the 31xx completes sending the screen buffer.
Depending on your application, you can use either an STIMER or WAIT KEY
instruction to cause the delay.

1) Erase 4 bytes of unprotected data. End operation if protected data or the end of
the line is reached.

ERASE 4,MODE=FIELD,TYPE=DATA

2) Erase the entire screen of protected and unprotected data.

ERASE LINE=0,SPACES=0,MODE=SCREEN,TYPE=ALL

3) Erase all protected and unprotected data on line 1 of the screen.

ERASE LINE=l,MODE=LINE,TYPE=ALL

Chapter 2. Instruction and Statement Descriptions 2-139

ERASE

Coding Examples

2-140 SC34-0937

1) The following example is part ofa program a company uses to update its
personnel files. The example shows how you can use the ERASE instruction to
erase portions of a display screen, and it begins by enqueuing the terminal from
which the program is loaded. The ENQT instruction refers to the label of an IOCB
instruction that sets up a static screen for the terminal. This example assumes that
the enqueued terminal is a 4978 or 4980.

The ERASE instruction at label El clears the entire screen, erasing both prot~cted
and unprotected characters (TYPE = ALL). Once the program erases the screen, it
asks the operator to enter the employee's name and address in the three fields it
displays on the screen. The WAIT key at label WI prevents the program from
reading the data until the operator presses the enter key. When the operator presses
the enter key, the first READTEXT instruction reads in the data from the name
field, the second READTEXT instruction reads in the data from the street field, and
the third READTEXT instruction reads in data from the city field.

After the READTEXT instructions execute, the ERASE instructions at labels E2
through E4 erase all the data the operator entered on the screen. The ERASE
instruction at label E2 clears the name field and ends after erasing 71 bytes of
unprotected data. The count value overrides the MODE = SCREEN operand. The
ERASE instruction at label E3 defaults to MODE = FIELD and clears the street
field. The instruction stops erasing when it reaches the end of the line. The last
ERASE instruction at label E4 clears the city field and continues to erase to the end
of the line because MODE = LINE is coded.

•
•
•

ENQT TERMINAL
El ERASE MODE=SCREEN,TYPE=ALL,LINE=8

PRINTEXT MSGl,LINE=4,SPACES=2,PROTECT=YES
PRINTEXT MSG2,LINE=5,SPACES=2,PROTECT=YES
PRINTEXT FIELDl,LINE=6,SPACES=2,PROTECT=YES
PRINTEXT FIELD2,LINE=7,SPACES=2,PROTECT=YES
PRINTEXT FIELD3,LINE=8,SPACES=2,PROTECT=YES

WI WAIT KEY
READTEXT NAME,LINE=6,SPACES=11,MODE=LINE
READTEXT STREET,LINE=7,SPACES=II,MODE=LINE
READTEXT CITY,LINE=8,SPACES=II,MODE=LINE

E2 ERASE 71,MODE=SCREEN,TYPE=DATA,LINE=6,SPACES=11
E3 ERASE LINE=7,SPACES=11
E4 ERASE MODE=LINE,LINE=8,SPACES=11

DEQT
PROGSTOP

TERMINAL IOCB SCREEN=$TATIC
MSGI TEXT 'ENTER EMPLOYEE'S NAME, STREET ADDRESS, AND CITY '
MSG2 TEXT lIN THE LABELED FIELDS. PRESS ENTER WHEN FINISHED '
FIELDI TEXT I NAME : I

FIELD2 TEXT I STREET: I

FIELD3 TEXT I CITY : I

NAME TEXT LENGTH=48
STREET TEXT LENGTH=68
CITY TEXT LENGTH=38

ENDPROG
END

o

o

o

o

ERASE

2) The example that follows is similar to Example 1 but uses a 31xx terminal in
block mode. The example begins by enqueuing the 31xx terminal. The IOCB
instruction labeled TERMINAL sets up a static screen and a temporary I/O buffer
for the device. The buffer area, labeled BUFFER, is 1920 bytes long.

As shown in Example 1, the ERASE instruction at label E1 erases the entire screen
of protected and unprotected data. The program then issues a message asking the
operator to enter the employee's name and address in three fields: NAME,
STREET, and CITY. The program creates unprotected fields for the operator's
input with the PRINTEXT instructions at labels PI, P2, and P3.

The WAIT key at label WI prevents the program from reading the data until the
operator presses the SEND key. When the operator presses the SEND key, the
READTEXT instruction reads the entire display screen (protected and unprotected
data) into the buffer area. A READTEXT instruction on 3lxx terminals in block
mode starts reading at the beginning of the display screen if it does not issue a
prompt message. The program reads the entire screen into the buffer area and then
moves the desired data from the name, street, and city fields into three text buffers.

The ERASE instructions at label E2 through E4 erase all the employee data the
operator entered on the screen. TYPE = ALL is coded on the ERASE instructions
so that the count operand is not ignored. The ERASE instruction at label E2 clears
the name field and ends after erasing 71 bytes of unprotected and protected data.
The count value overrides the MODE = SCREEN operand. The ERASE instruction
at label E3 clears the street field and also ends after erasing 71 bytes of protected
and unprotected data. Because the instruction has TYPE = ALL, the system changes
the default MODE = FIELD to MODE = LINE. The last ERASE instruction at
label E4 clears the city field and ends after erasing 20 bytes of protected and
unprotected data.

Chapter 2. Instruction and Statement Descriptions 2-141

ERASE

2-142 SC34~0937

Note: The coding of the data fields in this example differs slightly from Example 1
to allow for the attribute byte at the beginning of each field.

•
•
•

ENQT TERMINAL
E1 ERASE MODE=SCREEN, TYPE=ALL, LINE=0

PRINTEXT MSG1,LINE=4,SPACES=1,PROTECT=YES
PRINTEXT MSG2,LINE=5,SPACES=1,PROTECT=YES
PRINTEXT FIELD1,LIN£=6,SPACES=2,PROTECT=YES

Pl PRINTEXT NAME,LINE=6,SPACES=10,PROTECT=NO
PRINTEXT FIELD2,LINE=7,SPACES=2,PROTECT=YES

P2 PRINTEXT STREET,LINE=7,SPACES=10,PROTECT=NO
PRINTEXT FIELD3,LINE=8,SPACES=2,PROTECT=YES

P3 PRINTEXT CITY,LINE=8,SPACES=10,PROTECT=NO
Wl WAIT KEY

READTEXT BUFFER,TYPE=ALL,MODE=LINE,LINE=0,SPACES=0
MOVEA #l,BUFFER
MOVE NAME,(492,#1),(40,BYTES)
MOVE STREET,(572,#1),(60,BYTES)
MOVE CITY,(652,#1),(7,BYTES)

E2 ERASE 71,MODE=SCREEN,TYPE=ALL,LINE=6,SPACES=11
E3 ERASE 71,LINE=7,SPACES=11,TYPE=ALL
E4 ERASE 20,MODE=SCREEN,LINE=8,SPACES=11,TYPE=ALL

DEQT
PROGSTOP

TERMINAL IOCB SCREEN=STATIC,BUFFER=BUFFER
MSGl TEXT 'ENTER EMPLOYEE'S NAME, STREET ADDRESS, AND CITY'
MSG2 TEXT 'IN THE LABELED FIELDS. PRESS ENTER WHEN FINISHED'
FIELDl TEXT 'NAME:'
FIELD2 TEXT 'STREET:'
FIELD3 TEXT 'CITY:'
NAME TEXT LENGTH=40
STREET TEXT LENGTH=60
CITY TEXT LENGTH=30
BUFFER BUFFER 1920,BYTES

ENDPROG
END

()

o

o

()

o

EXBREAK

EXBREAK - Break Circular Chained DCBs

Syntax Example

The EXBREAK instruction enables you to break a circular chain of DeBs. Once
you initiate the I/O with an EXIO start I/O request, you can "break" the chained
DeBs at whichever DeB you specify in the EXBREAK instruction.

When using this instruction, code operands 1 and 2 as absolute values.

Note: You cannot use the EXBREAK instruction with extended address mode
support.

Syntax:

label EXBREAK devaddr,deb,ERROR = ,PI = ,P2 =

Required: devaddr,deb
Defaults: none
Indexable: none

Operand Description

devaddr The device address. Specify two hexadecimal digits.

deb The number of the DeB in the chain of DeBs where the break will
occur. EXBREAK will turn this DeB's chaining flag off. The
number must be a self-defining term. It cannot be a label or variable.

ERROR = The label of the first instruction to be executed if an error occurs
during the execution of this instruction.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

The following example removes the chaining flag in DeB number 2 for the EXIO
device at address XI 08 1

•

EXOPEN
EXIO

EXIO
EXBREAK

•
•
•

08, EXIOADDR
PREPARE

CIRCIOCB
08,02

Chapter 2. Instruction and Statement Descriptions 2-143

EX BREAK

Return Codes

Return o
Code Description

19 DCB specified in the EXBREAK instruction was not in the valid
range.

20 DCB specified in EXBREAK instruction was found, but the chaining
bit was not on.

21 Device address specified in the EXBREAK instruction has no circular
chained I/O in progress.

Special Consideration
I/O activity continues until the I/O operation detects the DeB with the chain bit off.

o

o
2-144 SC34-0937

o

EXCLOSE

EXCLOSE· - Close an EXIO Device

Syntax Example

The EXCLOSE instruction closes, or disables, an EXIO device that you opened with
the EXOPEN instruction.

Syntax:

label EXCLOSE devaddr,ERROR = ,PI =

Required: devaddr
Defaults: none
Indexable: none

Operand Description

devaddr The device address. Specify two hexadecimal digits.

ERROR = The label of the first instruction to be executed if an error occurs
during the execution of this instruction.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Close the EXIO device at the address X I 08 I.

EXOPEN
EXIO
•
•
•

08,EXIOADDR
PREPARE

EXCLOSE 08

Chapter 2. Instruction and Statement Descriptions 2-145

EXIO

EXIO - Execute 1/0

Coding Example

2-146 SC34-0937

The EXIO instruction executes a command in an immediate device control block
(IDCB) that you define using the IDCB statement. This instruction can execute only
in a static partition. Attempting to read or write to a dynamic partition will produce
unpredictable results.

See "EXBREAK - Break Circular Chained DCBs" on page 2-143 for information
on breaking circular chained I/O.

Syntax:

label EXIO idcb,ERROR = ,PI =

Required: idcb
Defaults: none
Indexable: idcb

Operand Description

idcb The label of an IDCB statement.

ERROR = The label of the first instruction to be executed if an error occurs
during the operation. This instruction will not be executed if an error
is detected at the occurrence of an interrupt caused by the command.
The condition code (ccode) returned at interrupt time is posted in an
ECB (seeJhe EXOPEN instruction).

Note: If the ECB being posted has not been reset, then the system
posts the ECB provided for posting after an exception interrupt.

A "device busy" bit is set on by the EXIO instruction if a START
command is executed. It is reset after the device interrupts if the
operation is complete. If a device fails to interrupt or complete an
operation, it will be necessary to reset the "device busy" bit so that
another command may be executed. The device busy bit can be reset
by issuing an EXIO instruction to the appropriate IDCB that points to
an IDCB instruction with COMMAND = RESET.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

In the following example, the first instruction (EXOPEN) specifies that, for the
device at address X I 08 1

, information returned after an EXIO device interrupt is to
be returned at the addresses pointed to by the 3 words following the EXIOADDR
label.

The first EXIO instruction prepares the device at address X 108 I so it can interrupt
on level 1.

The second EXIO instruction resets the device so any incomplete I/O operation is
ended.

o

()

o

EXIO

The tQird EXIO instruction issues a START I/O command with the IDCB labeled
STARTRD. The STARTRD IDCB uses the DCB labeled WRITEDCB.

() WRITEDCB is built for an ACCA device so that a WRITE operation will be
, '

executed with the receiving station having the capability to BREAK the
transmission. The TIMER 1 (pre and posttransmit delays) value is set to 33
milliseconds and the TIMER2 value (HALF-DUPLEX TURNAROUND) is set to
6.6 milliseconds. There is to be no DCB chaining and 12 bytes of data are to be
transmitted starting at the address labeled MSG.

OPEN EQU *
EXOPEN 08,EXIOADDR
EXIO PREPARE
•
•
•

EXIO RESET
•
•
•

EXIO STARTRD,ERROR=IOERROR
EXCLOSE 08
•
•
•

IOERROR EQU *
PRINTEXT '@IOERROR OCCURRED DURING INITIALIZATION@'
•
•

C) •
MSG DATA X 154484953 I

DATA X'20414E20 '
DATA X'41534349 1

*
PREPARE IDCB COMMAND=PREPARE~ADDRESS=08,LEVEL=1,IBIT=1

RESET IDCB COMMAND=RESET,ADDRESS=08
STARTRD IDCB COMMAND=START,ADDRESS=08,DCB=WRITEDCB
*
WRITEDCB DCB IOTYPE=OUTPUT,DEVMOD=03,DVPARMl=O,DVPARM2=0002, X

DVPARM3=000A,DVPARM4=0, CHAINAD=0,COUNT=12,DATADDR=MSG
*
EXIOADDR DATA A(EXIOl) POINTER TO 3-WORD INTERRUPT BLOCK

DATA A(EXECBS) ADDRESS OF ECB ADDRESSES
DATA A(EXSCSDCB) ADDRESS OF START CYCLE STEAL STATUS DCB

EXIOI DATA F'O' INTERRUPT ID WORD
DATA F'O' LSR AT ,INTERRUPT
DATA F'O' ADDRESS OF ECB POSTED

*
EXECBS DATA A(EXCEND) CONDITION CODE 0 ECB ADDR

DATA F'O' NOT USED
DATA A(EXEXECP) CONDITION CODE 2 ECB
DATA A(EXDEND) CONDITION CODE 3 ECB ADDR

*
EXSCSDCB DCB IOTYPE=INPUT,COUNT=6,DATADDR=EXSCSWDS
* START CYCLE STEAL STATUS DCB
EXSCSWDS DATA 3F ' 0'

'" EXCEND ECB ° CONTROLLER END ECB
~ EXEXECP EC!3 (.) EXCEPTION ECB

EXDEND ECB 0 DEVICE END EeB

Chapter 2. Instruction and Statement Descriptions 2-147

EXIO

Return Codes

2-148 SC34-0937

Note: Additional examples using EXIO are shown in the Customization Guide.

The following codes are issued by the EXIO, EXOPEN, and EXBREAK
instructions and are returned in word 0 of the TCB. Word 1 of the TCB contains
the supervisor instruction address.

Return
Code Condition

-1 Command accepted.

1 Device not attached.

2 Busy.

3 Busy after reset.

4 Command reject.

5 Intervention required.

6 Interface data check.

7 Controller busy.

8 Channel command not allowed.

9 No DDB found.

10 Too many DCBs chained.

11 No address specified for residual status.

12 EXIODEV specified zero bytes for residual status.

13 Broken DCB chain (program error).

16 Device already opened.

17 Device not opened or already closed.

18 Attempt to read or write to dynamic partition failed. Use a static
partition.

19 DCB specified in the instruction was not in the valid range.

20 DCB specified in EXBREAK instruction was found, but the chaining
bit was not on.

21 Device address specified in the instruction has no circular chained I/O
in progress.

o

o

o

Interrupt Codes

o

o

EXIO

The following codes are issued when an EXIO instruction completes successfully but
the hardware performing the operation encounters an error. The hardware interrupt
condition codes are returned in bits 4 -7 of the ECB (word 0). If bit 0 is on, then
bits 8 -15 equal the device address.

Return
Code Condition

0 Controller end.

1 Program Controlled Interrupt (PCI).

2 Exception.

3 Device end.

4 Attention.

5 Attention and PCl.

6 Attention and exception.

7 Attention and device end.

8 Not used.

9 Not used.

10 SE on and too many DCBs chained.

11 SE on and no address specified for residual status.

12 SE on and EXIODEV specified no bytes for residual status.

13 Broken DCB chain.

14 ECB to be posted not reset.

15 Error in Start Cycle Steal Status (after exception).

Chapter 2. Instruction and Statement Descriptions 2-149

EXOPEN

EXOPEN - Open an EXIO Device

2-150 SC34-0937

The EXOPEN instruction opens an EXIO device and ~pecifies the locations where
information is to be returned after an EXIO device interrupt. EXOPEN does not
reset device status or device busy.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

devaddr

listaddr

EXOPEN devaddr,listaddr,ERROR = ,PI = ,P2 =

devaddr,listaddr
none
listaddr

Description

The device address. Specify 2 hexadecimal digits.

The label of a 3-word list containing the following addresses:

Word 1

Word 2

Word 3

The address of a 3-word block where, after an interrupt,
the system will store:

1. Interrupt ID word
2. Level status register at time of the interrupt
3. Address of ECB posted.

Note: If this address is zero, the information is not
returned.

The address of a list of ECB addresses. The interrupt
condition code (ccode) received from the device will
determine which ECB in the list will be posted. A
ccode = 0 will cause posting at the first ECB in the. list, and
so on. The same ECB can be specified for more than one
condition code. The ECB specified for ccode = 2
(exception) will be posted in the event of a program error.
The posting code contains:

Bi t 0 of the posting code is on (1). Bits 4 - 7 contain the
ccode; bits 8 -15 contain the device address.

Interrupt condition codes are shown in "Return Codes" on
page 2-148.

The address of a DCB statement containing the parameters
of a start cycle steal status operation. This operation will
be started by the system, using this DCB, if an exception
interrupt is received from this device. If this address is
zero, the operation is not performed.

ERROR = The label of the· first instruction to be executed if an error is

Px=

encountered during the execution of this instruction.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

o

o

o

o
Coding Example

EXOPEN

Note: Refer to the description manual for the processor in use for more information
on interrupt ID, level status register, interrupt condition codes, and DeBs. Refer to
the description manual for the device in use for information on the causes of various
condition codes and the status information available using start cycle steal status.

The EXOPEN instruction specifies that, for the device at address X I 08 I ,

information returned after an EXIO device interrupt is to be returned at the
addresses pointed to by the 3 words following the EXIOADDR label.

OPEN EQU *

EXIOADDR

EXIOI

*
EXECBS

*
EXSCSDCB
EXSCSWDS
EXCEND
EXEXECP
EXDEND

EXOPEN 08,EXIOADDR
•
•
•

EXCLOSE 08
•
•
•

DATA A(EXIOl) POINTER TO 3-WORD INTERRUPT BLOCK
DATA A(EXECBS) ADDRESS OF ECB ADDRESSES
DATA A(EXSCSDCB) ADDRESS OF START CYCLE STEAL STATUS DCB
DATA F'O' INTERRUPT ID WORD
DATA F'O' LSR AT INTERRUPT
DATA F'O' ADDRESS OF ECB POSTED

DATA A(EXCEND) CONDITION CODE 0 ECB ADDR
DATA F'O' NOT USED
DATA A(EXEXECP) CONDITION CODE 2 ECB
DATA A(EXDEND) CONDITION CODE 3 ECB ADDR

DCB
DATA
ECB
ECB
ECB

IOTYPE=INPUT,COUNT=6
3F '0'

START CYCLE STEAL STATUS DCB

o
o
o

CONTROLLER END ECB
EXCEPTION ECB
DEVICE END ECB

Return Codes and Interrupt Codes
For a list of return codes and interrupt condition codes, see the EXIO instruction.

Chapter 2. Instruction and Statement Descriptions 2-151

EXTRN

EXTRN - Resolve External Reference Symbols

2-152 SC34-0937

The EXTRN and WXTRN statements identify labels that are not defined within an
object module. These labels reside in other object modules that will be link-edited to
the module containing the EXTRN or WXTRN statements. The system resolves the
reference to an EXTRN or WXTRN label when you link-edit the object module
containing the EXTRN or WXTRN statement with the module that defines the
label. The module that defines the label must contain an ENTRY statement for that
label. (See the ENTRY statement for more information.)

If the system cannot resolve a label during the link-edit, it assigns the label the same
address as the beginning of the program. You can include up to 255 EXTRN and
WXTRN symbols in your program.

WXTRN labels are resolved only by labels that are contained in modules included
by the INCLUDE statement in the link-edit process or by labels found in modules
called by the AUTOCALL function. However, WXTRN itself does not trigger
A UTOCALL processing.

Only labels defined by EXTRN statements are used as search arguments during the
A UTOCALL processing function of $EDXLINK. Any additional external labels
found in the module found by AUTOCALL are used to resolve both EXTRN and
WXTRN labels. Refer to the description of $EDXLINK in the Operator Commands
and Utilities Reference for further information.

The main difference between the WXTRN and EXTRN statements is that you must
resolve an EXTRN label at link-edit time. It is not necessary to resolve a WXTRN
label at link-edit time. The unresolved label coded as an EXTRN receives an error
return code from the link process. The same unresolved label coded as a WXTRN
receives a warning return code. Both the error and the warning codes indicate
unresolved labels. If you know that your application program does not need a label
resolved, code it as a WXTRN and your program should execute successfully. Your
application will not execute correctly, however, if you try to reference an unresolved
label coded in your application program as a WXTRN.

Syntax:

blank EXTRN label
blank WXTRN label
Required: one label
Defaults: none
Indexable: none

Operand Description

label An external label. You can code up to 10 labels, separated by
commas, on a single EXTRN or WXTRN statement.

o

o

o

Coding Example

o

0

EXTRN

The following coding example shows a use of the EXTRN statement.

The labels DATAl, DATA2, LABELl, and LABEL2 are defined outside this
module. The ADD instruction adds the values at DATAl and DATA2 although the
values are defined outside the module where they are being added. The GOTO
instructions also can pass control to the two externally defined labels, LABELl and
LABEL2.

Each of the external labels could have been entered on a separate line, or all three of
the EXTRN labels could have been entered with a single EXTRN stateJ;I1ent.

•
•
•
EXTRN
EXTRN
WXTRN
•
•
•
ADD
IF

GOTO
ELSE

GOTO
ENDIF
•
•
•

INDEX DATA
•
•
•

DATAl,DATA2
LABEll
LABEL2

DATAl,DATA2,RESULT=INDEX
(INDEX,GT ,6)
LABEll

LABEL2

F'E)'

Chapter 2. Instruction and Statement Descriptions 2-153

FADD

FADD - Add Floating-Point Values

2-154 SC34-0937

The floating-point add instruction (FADD) adds a floating-point value in operand 2
to a floating-point value in operand 1. You can use positive or negative values.

You must code FLOAT=YES on the PROGRAM statement of a program using
floating-point instructions in its initial task and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

FADD opndl,opnd2,RESUL T = ,PREC = ,PI = ,P2 = ,P3 =

opndl,opnd2
RESULT = opndl,PREC = FFF
opndl,opnd2,RESUL T

Description

The label of the data area to which opnd2 is added. Opndl cannot be
a self-defining term. The system stores the result of the operation in
opndl unless you code the RE;SUL T operand.

, :.

The value added to opnd1. You can specify a self-defining term or the
label of a data area. The valid range for this operand is from - 32768
to +32767.

RESULT = The label of a data area in which the result is to be placed. When you
specify RESULT, the value of opndl does not change during the
operation. This operand is optional.

PREC = All possible combinations of single and extended precision are
permitted. An immediate value for opnd2 will be converted to a
single-precision value regardless of any other method of precision
specification discussed in the following paragraphs.

The PREe operand is specified as xyz where x, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT
operands, respectively. Either 2 or 3 characters can be specified
depending on whether the RESULT operand was coded. Permissible
characters are:

F - Single-precision
L - Extended-precision
* - Default (single-precision)

The default is single precision.

(32 bits)
(64 bits)

Px = Parameter naming .operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

o

o

o

Index Registers

o
Syntax Examples

o

FADD

You cannot use the index registers (#1 and #2) as operands in floating-point
operations because they are only 16 bits in length. You can, however, use the
software registers to specify the address of a floating-point operand.

1) The FADD instruction adds two single-precision floating-point values and stores
the result in RESUL TF.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FADD OP1F,OP2F,RESULT=RESULTF,PREC=FFF
•
•
•

OP1F DC
OP2F DC
RESULTF DC

E 11.5 1

E'0.21
E' 0 1

After the F ADD operation, RESUL TF contains the value 1.70 .

2) The FADD instruction adds two extended-precision floating-point values and
stores the result in RESUL TL.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FADD
•
•
•

OP1L DC
OP2L DC
RESULTL DC

OP1L,OP2L,RESULT=RESULTL,PREC=LLL

L' 50000.5 1

L'40.41
L' 0

1

After the F ADD operation, RESUL TL contains the value 50040.90 .

3) The FADD instruction adds two single-precision floating-point values written in
exponent (E) notation. The result is stored in RESUL TFE.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FADD OP1FE,OP2FE,RESULT=RESULTFE,PREC=FFF
•
•
•

OP1FE DC
OP2FE DC
RESULTFE DC

E'2.5E+l'
E' 0.5E-l'
E' 0 1

Equals decimal 25.0
Equals decimal .05

After the F ADD operation, RESUL TFE contains the value .2505E + 02. This value
is equal to the decimal value 25.05 .

Chapter 2. Instruction and Statement Descriptions 2-155

FADD

Return Codes

2-156 SC34-0937

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). You must test for the return code immediately after
the floating-point instruction is executed or the code may be destroyed by any
instructions that follow.

Return
Code Description

-1 Successful completion.

1 Floating-point overflow.

5 Floating-point underflow.

o

o

o

o

FDIVD

FDIVD - Divide Floating-Point Values
The floating-point divide instruction (FDIVD) divides a floating-point value in
operand 1 by a floating-point value in operand 2. You can use positive or negative
values.

You must code FLOAT=YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

FDIVD opndl,opnd2,RESUL T = ,PREC = ,
PI =,P2=,P3=

opndl,opnd2
RESULT = opndl,PREC = FFF
opndl,opnd2,RESUL T

Description

The label of the data area containing the value divided by opnd2.
Opndl cannot be a self-defining term. The system stores the result of
the operation in opndl unless you code the RESULT operand.

The value by which opndl is divided. You can specify a self-defining
term or the label of a data area. The valid range for this operand is
from - 32768 to + 32767.

RESULT = The label of a data area in which the result is to be placed. When you
code RESULT, the value of opndl does not change during the
operation.

PREC= All possible combinations of single and extended precision are
permitted. An immediate value for opnd2 will be converted to a
single-precision value regardless of any other method of precision
specification discussed in the following paragraphs.

The PREC operand is specified as xyz where x, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT
operands, respectively. Either 2 or 3 characters can be specified
depending on whether the RESULT operand was coded. Permissible
characters are:

F - Single-precision
L - Extended-precision
* - Default (single-precision)

The default is single precision.

(32 bits)
(64 bits)

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-157

FDIVD

Index Registers

Syntax Examples

2-158 SC34-0937

You cannot use the index registers (#1 and #2) as operands in floating-point
operations because they are only 16 bits in length. You can, however, use the
software registers to specify the address of a floating-point operand.

1) The FDIVD instruction divides two single-precision floating-point values and
stores the result in RESUL TF.

FLOAT PROGRAM START,~LOAT=YES

•
•
•

FDIVD OPIF,OP2F,RESULT=RESULTF,PREC=FFF
•
•
•

OPIF DC
OP2F DC
RESULTF DC

E'1.5'
E'El.2'
E'El'

After the FDIVD operation, RESULTF contains the value 7.50 .

2) The FDIVD instruction divides two extended-precision floating-point values and
stores the result in RESUL TL.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FDIVD OPIL,OP2L,RESULT=RESULTl,PREC=LLL
•
•
•

OPIL DC
OP2L DC
RESULTL DC

L'5ElElElEl.5'
L'4El.4'
L'El'

After the FDIVD operation, RESULTL contains the value 1237.64 .

3) The FDIVD instruction divides two single-precision floating-point values written
in exponent (E) notation. The result is stored in RESULTFE.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FDIVD OPIFE,OP2FE,RESULT=RESULTFE,PREC=FFF
•
•
•

OPIFE DC
OP2FE DC
RESULTFE DC

E'2.5E+l'
E'El.5E-l'
E'El'

Equals decimal 25.El
Equals decimal .El5

After the FDIVD operation, RESULTFE contains the value .5000E+03. This
value is equal to the decimal value 500 .

o

o

o

Return Codes

o

c

FDIVD

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). You must test for the return code immediately after
the floating-point instruction is executed or the code may be destroy~d by any
instructions that follow.

Return
Code Description

-1 Successful completion.

1 Floating point overflow.

3 Floating point divide check (divide by 0).

5 Floating point underflow.

Chapter 2. Instruction and Statement Descriptions 2-159

FIND

FIND - Locate a Character

Syntax Examples

2-160 SC34-0937

The FIND instruction searches a character string for the first occurrence of a
specific character (byte).

Syntax

label

Required:
Defaults:
Indexable:

Operand

character

string

length

where

notfound

DIR=

FIND character ,string,length, where,
notfound,DIR = ,PI = ,P2 = ,P3 = ,P4 = ,P5 =

character, string, length, where, notfound
DIR=FORWARD
string, length, and where

Description

The character that is the object (target) of the search. You can specify
a text character or a hexadecimal value.

The label of the string to be searched. The search will begin at the
address of the label.

The number of bytes to be searched. You can code a positive integer
or the label of a data area containing a positive integer.

The label of a data area where the address of the target character is to
be stored if it is found. If the target character is not found, this data
area remains unchanged,.

The label of the instruction to be executed if the target character is not
found.

FORWARD (the default), to search from left to right.

REVERSE, to search from right to left.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) The FIND instruction searches the first 20 bytes of MSG 1 for the character I $ I.
If it finds a $, it stores the address of the character in the data area labeled
POINTER. If the instruction does not find a $, it passes control to the instruction
at label NOTFOUND. The direction of search is from left to right.

FIND C' $',MSG1,20,POINTER,NOTFOUND

2) The FIND instruction searches for the string X I 05 I beginning at the address
contained in index register 1. The search continues for the length value stored in the
data area labeled LSTR. If the instruction finds the X I 05 I string, it stores the
address of the string in the data area labeled POINTER. If the instruction does not
find the string, it passes control to the instruction at label NOGOOD. The direction
of the search is left to right.

FIND X'05 1 ,(0,#1),LSTR,POINTER,NOGOOD

o

o

Coding Example

o

C:

FIND

To determine if a hyphen has been included in a 40-byte parts inventory number" the
FIND instruction could be used as follows:

•
•
•

GETPART# EQU *

*

READTEXT PARTNUM,'ENTER REQUESTED PART NUMBER',
SKIP=l

FINDASH EQU *
FIND C' - ' ,PARTNUM,40,POINTER,NOTVALID
MOVEA #l,PARTNUM GET PARTNUM ADDRESS
SUBTRACT POINTER,#l,RESULT=LENGTH FIND LENGTH OF PREFIX

x

IF (LENGTH,LE,l),GOTO,BADPREFX IF FEWER THAN 2, REJECT IT
*

IF (LENGTH,LE,4),GOTO,GETCOST IF FEWER THAN 5, IT'S OK
*
BADPREFX EQU * ELSE REJECT IT

PRINTEXT PARTNUM,SKIP=l
PRINTEXT I IS INVALID (PREFIX NOT OF ALLOWABLE SIZE) I

GOTO GETPART# RETRY
*
NOTVALID EQU *

*
GETCOST

PARTNUM
POINTER
LENGTH

PRINTEXT PARTNUM,SKIP=l
PRINTEXT I IS INVALID (MISSING HYPHEN) - REENTER I

GOTO GETPART# RETRY

EQU
•
•
•

TEXT
DATA
DATA

*

LENGTH=40
F' 0

1

F' 0
1

TEXT BUFFER FOR PART #
POINTER TO ADDR OF CHAR
LENGTH OF PART # PREFIX

If the part number entered was 1213-9234, and the label PARTNUM was at address
X 12040 I, the instruction would place a result of X I 2044 I in the data area labeled
POINTER. The data area labeled LENGTH would contain a value of 4, and the
program would branch to the label GETCOST.

Chapter 2. Instruction and Statement Descriptions 2-161

FINDNOT

FINDNOT - Locate the First Different Character

Syntax Examples

2-162 SC34~0937

The FINDNOT instruction searches a character string for the first occurrence of a
character (byte) that is different than the character you specify.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

character

string

length

where

notfound

DIR=

FINDNOT character ,string,length, where,
notfound,DIR = ,PI = ,P2 = ,P3 = ,P4 = ,P5 =

character, string, length, where, notfound
DIR=FORWARD
string, length, and where

Description

FINDNOT searches for a character that is different than the one you
specify for this operand. You can specify a text character or a
hexadecimal value.

The label of the string to be searched. The search will begin at the
address of the label.

The number of bytes to be searched. You can code a positive integer
or the label of a data area containing a positive integer.

The label of a data ;.area where the address of the first different
character is to be stored if it is found. If a different character is not
found, this data area remains unchanged.

The label of the instruction to be executed if a different character is
not found.

FORWARD (the default), to search from left to right.

REVERSE, to search from right to left.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1 ~ 10 for a detailed description of how to
code these operands.

1) The FINDNOT instruction searches for the first nonblank character, starting at
label INPUT. The search continues for 80 bytes. If a nonblank character is found,
the character's address is stored in the data area labeled CPOINTER. If no
characters are found during the 80~byte search, the FIND NOT instruction passes
control to the instruction at label ALLBLANK. The direction of the search is from
left to right.

FINDNOT C" ,INPUT,80,CPOINTER,ALLBLANK

o

o

o

Coding Example

o

FINDNOT

2) This instruction searches for the first bit string other than X '40'. The search
starts at label CARD + 79 and continues for 80 bytes. If a bit string other than
X '40' is found, the address of the bit string is stored in the data area labeled
LASTCHAR. If no bit string other than X '40' is found during the search, the
FINDNOT instruction passes control to the instruction at label ALLBLANK. The
direction of search is from right to left.

FINDNOT X'40',CARD+79,80,LASTCHAR,ALLBLANK,DIR=REVERSE

To reduce fixed-length, 80-byte records to variable-length records, the FINDNOT
instruction could be used as follows:

•
•
•

NEXTCARD EQU
ADD

*
CARDNUM,l

•
•
•

FINDLAST EQU *

*

FINDNOT X'40',CARD+79,80,POINTER,BLANKCRD,
DIR=REVERSE

GOTCHAR EQU *

*

MOVEA #l,CARD
SUBTRACT POINTER,#l,

RESULT=LENGTH
ADD LENGTH,l
MOVE (0,#2),LENGTH
ADD #2,2

GET ADDRESS CARD BUFFER

GET NOMINAL LENGTH
BUMP TO TRUE LENGTH
STORE LENGTH OF DATA
BUMP BUFFER POINTER

MOVE (0,#2),CARD,(l,BYTES),
P3=LENGTH STORE CARD DATA

ADD #2,LENGTH BUMP BUFFER BY DATA SIZE
GOTO NEXTCARD GET ANOTHER CARD

BLANKCRD EQU *

*

*
CARDNUM
POINTER
CARD
BLANKS

PRINTEXT ' CARD # '
PRINTNUM CARDNUM

PRINT MESSAGE ON
LISTING INDICATING THAT
THE CARD WAS BLANK

PRINTEXT ' IS REJECTED AS BLANK'
ADD BLANKS,l INCR. BLANK CARD COUNT
GOTO NEXTCARD GET ANOTHER CARD

DATA F'0' CARDS READ COUNTER
DATA F'0' POINTER TO ADDR OF CHAR
DATA CL80' , STORAGE BUFFER
DATA F'0' BLANK CARD COUNTER
•
•
•

x

x

X

Chapter 2. Instruction and Statement Descriptions 2-163

FINDNOT

If the data on the card occupied the first 15 character positions and the next
available buffer location (indexed by register #2) was X I 5COO I , POINTER would 0
return asX ' 5COE'. LENGTH would compute as X'OOOF' (XI OOOE I + X ' OOOll). .)
Locations X I 5COO I - X I 5CO 11 would contain X '-OOOF I and addresses X I 5C02 I
through X I 5C 1 0 I would receive the data. Register #2 would then be set to X I 5011 1

and another card would be searched.

o

o
2-164 SC34-0937

o

FIRSTQ

FIRSTQ - Acquire the First Queue Entry in a Chain

Coding Example

The FIRSTQ instruction acquires the first (oldest) entry in a queue. You define a
queue with the DEFINEQ statement. A queue entry can contain data or the address
of a data buffer.

When you acquire the oldest entry with the FIRSTQ instruction, the second oldest
entry becomes the first or oldest entry in the queue. After you acquire the contents
of the oldest entry, the system adds the entry to the free chain of the queue.

Syntax:

label FIRSTQ qname,loc,EMPTY = ,PI = ,P2 =

Required: qname,loc
Defaults: none
Indexable: qname,loc

Operand Description

qname The name of the queue from which the entry is to be fetched. The
queue name is the label of the DEFINEQ statement that creates the
queue.

loc The label of a word of storage where the entry is placed. You can use
the index registers, #1 and #2.

EMPTY = The first instruction of the routine to be called if a "queue empty"
condition is detected during the execution of this instruction. If you
do not specify this operand, control returns to the next instruction
after the FIRSTQ.

A return code of - 1 in the first word of the task control block
indicates that the operation completed successfully. A return code of
+ 1 indicates that the queue is empty.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

See the example of queuing instructions in the example following the NEXTQ
instructi on.

Chapter 2. Instruction and Statement Descriptions 2-165

FIRSTQ

Return Codes

2-166 SC34-0937

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. TheJabel of the rCB is the label of
your program -or task (taskname).

Return
Code Description

-1 Successful completion.

1 Queue is empty ..

o

C, .. I :c_,

o

o

C'
. "

FMULT

FMUL T - Multiply Floating-Point Values
The floating-point multiply instruction (FMUL T) multiplies a floating-point value in
operand I by a floating-point value in operand 2. You can use positive or negative
values.

You must code FLOAT=YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

FMULT opndl,opnd2,RESULT = ,PREC = ,
PI =,P2=,P3=

opndl,opnd2
RESULT = opndl,PREC = FFF
opndl,opnd2,RESUL T

Description

The label of the data area containing the value multiplied by opnd2.
Opnd1 cannot be a self-defining term. The system stores the result of
the operation in opnd1 unless you code the RESULT operand.

The value by which opnd1 is multiplied. You can specify a
self-defining term or the label of a data area. The valid range for this
operand is from - 32768 and + 32767.

RESULT = The label of a data area in which the result is placed. When you
specify RESULT, the value of opndl does not change during the
operation.

PREC= All possible combinations of single and extended precision are
permitted. An immediate value for opnd2 will be converted to a
single-precision value regardless of any other method of precision
specification discussed below.

The PREe operand is specified as xyz, where x, y, and z are characters
representing the precision of opnd1, opnd2, and the RESULT
operands, respectively. Either 2 or 3 characters must be specified
depending on whether the RESULT operand was coded. Permissible
characters are:

F - Single-precision
L - Extended-precision
* - Default (single-precision)

The default is single-precision.

(32 bits)
(64 bits)

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-167

FMULT

Index Registers

Syntax Examples

2-168 SC34-0937

You cannot use the index registers (#1 and #2) as operands in floating-point
operations because they are only 16 bits in length. You can, however, use the
software registers to specify the address of a floating-point operand.

1) The FMULT instruction multiplies two single-precision floating-point values and
stores the result in RESULTF.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FMULT OPIF,OP2F,RESULT=RESULTF,PREC=FFF
•
•
•

OPIF DC
OP2F DC
RESULTF DC

E'1.5 1

E'0.21
E'O'

After the FMUL T operation, RESUL TF contains the value .30.

2) The FMULT instruction multiplies two extended-precision floating-point values
and stores the result in RESUL TL.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FMULT OPIL,OP2L,RESULT=RESULTL,PREC=LLL
•
•
•

OPIL DC
OP2L DC
RESULTL DC

L' 50000.S '
L'40.41
L'O'

After the FMUL T operation, RESULTL contains the value 2020020.20.

3) The FMUL T instruction multiplies two single-precision floating-point values
written in exponent (E) notation. The result is stored in RESUL TFE.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FMULT OPIFE,OP2FE,RESULT=RESULTFE,PREC=FFF
•
•
•

OPIFE DC
OP2FE DC
RESULTFE DC

E'2.SE+l'
E'0.5E-l'
E'O'

Equals decimal 25.0
Equa 1 s decimal .05

After the FMULT operation, RESULTFEcontains the value .1250E+01. This
value is equal to the decimal value 1.250.

o

o

o

Return Codes

o

c

FMULT

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). You must test for the return code immediately after
the floating-point instruction is executed or the code may be destroyed by
subsequent instructions.

Return
Code Description

-1 Successful'completion.

1 Floating-point overflow.

5 Floating-point underflow.

Chapter 2. Instruction and Statement Descriptions 2-169

FORMAT

FORMAT - Format Data for Display or Storage

2-170 SC34-0937

The FORMAT statement specifies the type of conversion to be performed when data
is transferred from storage to a text buffer by a PUTEDIT instruction, or from a
text buffer to storage by a GETEDIT Instruction.

The FORMAT statement must be contained in the assembly in which it is referred
to and cannot be placed within a sequence of executable instructions.

Note: The FORMAT statement can be continued on multiple lines, but each line
(except the last) must be coded through column 71 and must have a continuation
symbol in column 72. Commas cannot be used to continue a line before column 71.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

list

Item Type

I

F

E

H

X

A

FORMAT (Iist),gen

(list)
gen=BOTH
none

Description

The format you want the data to be in after it is converted.

The valid options are:

Definition

Integer numeric

Floating-point numeric

Floating-point numeric E notation

Literal alphanumeric data, enclosed in quotes

Blanks

Alphanumeric data.

gen GET, if this FORMAT statement is for the exclusive use of GETEDIT
instruction.

PUT, if this format statement is for the exclusive use of PUTEDIT
instructions.

BOTH, if this format statement can be used with GETEDIT and
PUTEDIT instructions. BOTH, the default, requires more storage
than either GET or PUT.

o

o

o

c

FORMAT

The PUTEDIT instruction retrieves each variable in the list, converts it according to
the respective item specification in the FORMAT statement, and loads it into the
text buffer specified. Spaces (blanks), line control characters (@), and self-defining
terms can be inserted.

The GETEDIT instruction moves data from the text buffer, converts it as specified
in the FORMAT statement, and stores it at specified addresses. Characters in the
input buffer may be skipped.

The slash (/) in a FORMAT statement associated with a GETEDIT instruction acts
as a delimiter, performing the same function as a comma.

Successive items in the buffer transfer list are converted and moved according to
successive specifications in the FORMAT statement until all items in the list are
transferred. If there are more items in the list than there are specifications in the
FORMAT statement, control transfers to the beginning of the FORMAT statement
and the same specifications are used again until the list is exhausted .. The entire
transfer is treated as a single record.

No check is made to see that the specifications in a FORMAT statement correspond
in mode with the list items in the GETEDIT or PUTEDIT instructions. It is your
responsibility to ensure that integer variables are associated with I-type format
specification and real variables with F-type or E-type format specifications. You
must also ensure that ample storage is available for transfer of data in a PUTEDIT
operation.

Conversion of Numeric Data
The following specifications, or conversion codes, are available for the conversion of
numeric data:

Item Type

I

F

E

where:

w

d

Form Definition

Iw Integer numeric

Fw.d Floating-point numeric

Ew.d Floating-point numeric E notation

is an unsigned integer constant specifying the total field length of the
data. This specification may be greater than that required for the
actual digits to provide spacing between numbers; however, the
maximum width allowed is 40 for I or F specifications.

is an unsigned integer constant specifying the number of decimal places
to the right of the decimal point. The allowable range is 0 to w - 1 for
F-type specifications and 0 to w - 6 for E-type specifications.

Note: The decimal point between the wand d portions of the specification is
required.

The following discussion of conversion codes deals with loading a text buffer, using
PUTEDIT, in preparation for printing a line. The concepts, however, apply to all
permissible text buffer operations.

Chapter 2. Instruction and Statement Descriptions 2-171

FORMAT

2-172 SC34-0937

Integer Numeric Conversion: General form is Iw.

The specification Iw loads a text buffer with an EBCDIC character string
representing a number in integer form; "w" print positions are reserved for the
number. The number is right-justified. If the number to be loaded is greater than
w -1 positions and the number is negative, an error condition will occur. A print
position must be reserved for the sign if negative values are possible. Positive values
do not require a position for the sign. If the number has fewer than "w" digits, the
leftmost print positions are filled with blanks. If the quantity is negative, the
position preceding the leftmost digit contains a minus sign.

The following examples show how each quantity on the left is converted, according
to the specification "I3":

Internal Value Value in the Buffer

721 721

-721 ***
-12 -12

8114 ***
0 -0

-5 -5

9 9

Note that all error fields are stored and printed as asterisks.

Floating-Point Numeric Conversion: General form is Fw.d.

For F-type conversion, "w" is the total field length and "d" is the number of places
to the right of the decimal point. For output, the total field length must include
positions for a sign, if any, and a decimal point. The sign, if negative, is also
loaded. For output, "w" should be at least equal to d + 2.

If insufficient positions are reserved by "d," the number is rounded upwards. If
excessive positions are reserved by "d," zeros are filled in from the right for the
insignificant digits.

If the integer portion of the number has fewer than w - d - 1 digits, the leftmost
print positions are filled with blanks. If the number is negative, the position
preceding the leftmost digit contains a minus sign.

o

o

o

o

o

FORMAT

The following examples show how quantities are converted according to the
specification F5.2:

Internal Value Value in the Buffer

12.17 12.17

-41.16 *****

-.2 -0.20

7.3542 ,b7.35

-1. -1.00

9.03 b9.03

187.64 *****

Notes:

1. A "b" represents a blank character stored in the text buffer.

2. Internal values are shown as their equivalent decimal value, although actually
stored in floating-point binary notation requiring two or four words of storage.

3. All error fields are stored and printed as asterisks.

4. Numbers for F-conversion input need not have the decimal point appearing in
the input field (in the text buffer). If no decimal point appears, space need not
be allocated for it. The decimal point is supplied when the number is converted
to an internal equivalent; the position of the decimal point is determined by the
format specification; However, if the position of the decimal point within the
field differs from the position in the format specification, the position in the field
overrides the format specification. For example, for a specification of F5.2, the
following conversions would be performed:

Text Buffer Characters Converted Internal Value

12.17 12.17

b1217 12.17

121.7 121.7

Floating-Point Number Conversion (E-notation): General form is Ew.d.

For E-type conversion, "w" is the total field length and "d" is the number of places
to the right of the decimal point. For -output, the total field length must include
enough positions for a sign, a decimal point, and space for the E-notation (4 digits).
For output, "w" should be at least equal to d + 6. For input, "d" is used for the
default decimal position if no decimal is found in the input character string.

If insufficient positions are reserved by "d," the digits to the right of "d" digits are
truncated. If excessive positions are reserved by "d," zeros are filled in from the
right for the insignificant digits.

Chapter 2. Instruction and Statement Descriptions 2-173

FORMAT

The following examples show how each value on the left is converted according to
the specification EI0.4:

Internal Value Value in the Buffer

12.17 b.1217Eb02

-41.16 - .4116Eb02

-.2 - .2000EbOO

7.3542 b.7354EbOl

-1. - .1000EbOl

9.03 b.9030EbOl

.00187 b.1870E-02

Notes:

1. A "b" represents a blank character stored in the text buffer.

2. Internal values are shown in their equivalent decimal value, although actually
stored in floating-point binary requiring 2 or 4 words of storage.

3. All error fields are stored and printed as asterisks.

4. Numbers for E-conversion need not have the decimal point appearing in the
input field (in the text buffer). If no decimal point appears, you need not
allocate space for it. The decimal point is supplied when the number is
converted to an internal equivalent; the position of the decimal point is
determined by the format specification. However, if the position of the decimal
point within the field differs from the position in the format specification, the
position in the field overrides the format specification. For example, for a
specification of E7.2, the following conversions would be performed:

Text Buffer Characters Converted Internal Value

12.17EO 12.17

b1217El 121.7

121.7E- 2 1.217

Alphanumeric Data Specification
The following specifications are available for alphanumeric data:

Item Type Form Definition

H 'data' Literal alphanumeric data

A A Alphanumeric data

X X Insert blanks (output) or skip input fields

2-174 SC34-0937

()

o

o

' , 0',

c

FORMAT

The H-specification is used for alphanumeric data· that a program does not change,
such ,as printed headings.

The A-specification is used for alphanumeric data in storage that a program operates
on, such as a line that is to be printed.

The X-specification is used to bypass one or more input characters or to insert
blanks (spaces) on an output line.

Literal Specification: General form is H.

The H-specification is used to create alphanumeric constants. The maximum length
for a literal is 255.

Literals must be enclosed in apostrophes. For example:

FORMAT (IINVENTORY REPORT I)

The apostrophe (') and ampersand (&) characters within literal data are represented
by two successive characters. For example, the characters DO & DON'T must be
represented as:

FORMAT (100 && DONI ITI)

Literal data can be used only in loading a text buffer; it is invalid in a GETEDIT
instruction. All characters between the apostrophes (including blanks) are loaded
into the buffer in the same relative position they appear in the FORMAT statement.
The lines:

FM FORMAT (ITHIS IS alphanumeric DATA I,3X,A6)
•
•
•
PUTEDIT FM,TEXT,(ALP)

cause the following record to be loaded into the buffer labeled TEXT.

THIS IS alphanumeric DATA EASY12

Literal data may also be included with variable data.

For example, the instructions:

FM FORMAT (ITOTAL OFI,I2,1 VALUES = I,F5.2)
•
•
•
PUTEDIT FM,TEXT,(TOTAL,VALUE)

cause a record such as the one in the following example to be loaded into the buffer.

TOTAL OF 5 VALUES = 35.42

Chapter 2. Instruction and Statement Descriptions 2-175

FORMAT

2-176 SC34-0937

Alphanumeric Specification: General form is Aw.

The specification Aw is used to transmit alphanumeric data to or from data areas in
storage. It causes the first w characters to be stored into or loaded from the area of
storage specified in the text buffer transfer list. For example, the statements:

FM FORMAT (A4)
•
•
•

GETEDIT FM,TEXT,(ERROR)

cause four alphanumeric characters to be transferred from the buffer TEXT into the
variable named ERROR.

The following statements:

FM FORMAT ('XY=',F9.3,A4)
•
•
•

PUTEDIT FM,TEXT,(A,ERROR,B,ERROR)

may produce the following line:

XY= 5976.000 XY= 6173.500

In this example, the ellipsis (....) represents the contents of the character string field
ERROR.

The A-specification provides for storing alphanumeric data into a field in storage,
manipulating the data (if required), and loading it back to a text buffer.

The alphanumeric field can be defined using the DATA statement or the TEXT
statement. On input (GETEDIT) the alphanumeric field is set to blanks before data
conversion. The alphanumeric data is left justified in the field.

Blank Specification: General form is X.

The X-specification allows you to insert blank characters into an output buffer
record and to skip characters of an input buffer record.

When the nX specification is used with an input record, "n" characters are skipped
before the transfer of data begins. When the nX specification is used with an output
record, "n" characters are inserted before the transfer of data begins. For example,
if a buffer has four lO-position fields of integers, the statement:

FORMAT (I10,10X,I10,I10)

could be used to avoid transferring the second field.

When the X-specification is used with an output record, "n" positions are set to
blanks, allowing for spaces on a printed line. For example, the statement:

FORMAT (F6.2,5X,F6.2,5X,F6.2,5X)

can be used to set up a line for printing as follows:

-23.45bbbbbb17.32bbbbbb24.67bbbbb

where b represents a blank.

o

o

o

o

o

o

FORMAT

Blank Lines in Output Records
You can insert blank lines between output records by using consecutive slashes (j).
The slash causes a line-control character to be inserted into the buffer. The number
of blank lines inserted between output records depends on the number and
placement of the slashes within the statement.

If there are "n" consecutive' slashes at the beginning or end of a format specification,
"n" blank lines are inserted between output records. For "n" consecutive slashes
elsewhere in the format specification, the number of blank lines inserted is n - 1.
For example, the statements:

PUTEDIT FM,TEXT,(X,(Y,D),Z)
•
•
•

FM FORMAT ('SAMPLE OUTPUT ' ,/,I5////19,I4//)

X DC
Y DC
Z DC
TEXT TEXT

F' -1234 1
D'111222333 1
F'221
LENGTH=50

result in the following output:

SAMPLE OUTPUT
-1234

(3 blank lines)

111222333 22

(2 blank lines)

Repetitive Specification
You can repeat a specification, within the limits of the text buffer size, by coding an
integer from 1 to 255 before the specification.

F or example,

(2F10.4)

is equivalent to:

(F10.4,F10.4)

and uses less storage.

You can use a parenthetical expression with a multiplier (repeat constant) to repeat
data fields according to the format specifications contained within the parentheses.
All item types are permitted within the parenthetical expression except another
parenthetical expression. You can specify multiple parenthetical expressions within
the same FORMAT statement. For example, the statement:

FORMAT (2(F10.6,F5.2),I4,3(I5))

is equivalent to:

FORMAT (F10.6,F5.2,F10.6,F5.2,I4,I5,I5,I5)

Chapter 2. Instruction and Statement Descriptions 2-177

FORMAT

Storage Considerations

Coding Example

2-178 SC34-0937

In general, the fewer items in the FORMAT list, the less storage required. An item
is defined as a single conversion specification, a literal data string, one or more 0 1

grouped record delimiters, or a parenthetical multiplier. For example, the following . __ .1
format statements all have three items:

FORMAT (15,15,16)

FORMAT (15,315, 'ITEM 31
)

FORMAT (3(15) ,315)

FORMAT (15/,15)

FORMAT (15,///,15)

FORMAT (/,/,/)

FORMAT (2(/) ,j)

FORMAT (2 (lX) ,2X)

FORMAT (15/ ,2X)

The following example begins by executing a PRINTEXT instruction that prints a
message requesting the model year and serial numbers for the automobile of interest.
The first GETEDIT actually reads the two requested numbers into a TEXT
statement labeled TEXTl.

The GETEDIT instruction searches the TEXTl data and converts the first entry to a
single-precision variable called LISTl. The second entry is converted to a
double-precision variable called LIST2. Both LISTl and LIST2 are then converted
back to EBCDIC and displayed on the printer by the first PUTEDIT instruction
using the PElFMT FORMAT statement. The PUTEDIT instruction and
FORMAT statement determine the layout of the data as it is displayed.

The GETEDIT instruction f{)llowing label GE2 takes the data already entered into
TEXTl with the preceding READTEXT and again converts it into the two binary
variables called LISTl (single-precision) and LIST2 (double-precision). Because
ACTION=STG, a READTEXT must be issued before executing the GETEDIT.

The PUTEDIT instruction at label PE2 converts the two variables back to EBCDIC
and places them into the TEXT2 statement as formatted by the PE2FMT FORMAT
statement. Again, the keyword ACTION = STG prevents the data from being
printed until the following PRINTEXT instruction is executed.

o

o

0

0

GEl

*
PEl

*

GE2

*

*
PE2

ERRl

*
ERR2

*
GElFMT
PElFMT
GE2FMT
PE2FMT

EQU *
PRINTEXT '@ENTER MODEL YEAR AND SERIAL NUMBER@'
GETEDIT GElFMT,TEXTl,(LISTl,(LIST2,D»,

ACTION=IO,ERROR=ERRl

EQU *
ENQT $SYSPRTR
PUTEDIT PElFMT,TEXT2,(LISTl,(LIST2,D»,

ACTION=IO

EQU *
READTEXT TEXTl,'@ENTER YOUR DEPT. AND SYSTEM ID NUMBER@'

GETEDIT GE2FMT,TEXTl,(LISTl,(LIST2,D)),
ACTION=STG,ERROR=ERRl

EQU *
PUTEDIT PE2FMT,TEXT2, (LISTl, (LIST2,D)),ACTION=STG
ENQT $SYSPRTR
PRINTEXT TEXT2
DEQT
•
•
•

EQU *
PRINTEXT '@GETEDIT GEl HAS FAILED@'
GOTO ERROROUT

EQU *
PRINTEXT '@GETEDIT GE2 HAS FAILED@'
GOTO

FORMAT
FORMAT
FORMAT
FORMAT

ERROROUT

(14, lX, 18)
('MDL. YR. = ',14,6X,:'SER. NO. = 1,18)
(I3,lX,16),

LISTl DATA
('DEPT. = I ,13,4X, 'SYST. ID. = 1,16)
F'e '

LIST2 DATA Dle l

TEXTl TEXT LENGTH=l3
TEXT2 TEXT LENGTH=42
ERROROUT EQU *

FORMAT

X

X

X

Chapter 2. Instruction and Statement Descriptions 2-179

FPCONV

FPCONV - Convert to or from Floating Point o

2-180 SC34-0937

The FPCONV instruction converts integer values to or from floating-point numbers
by using the optional floating-point hardware feature.

You must code FLOAT=YES on the PROGRAM statement of programs whose
primary task uses floating-point instructiDns and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

FPCONV opndl,opnd2,COUNT = ,PREC = ,
PI = ,P2 = ,P3=

opndl,opnd2
COUNT = I,PREC =FS
opndl,opnd2

Description

The label of the data area to receive the result of the conversion.

The label of the data area that contains the value to be converted.
You can also code an integer number between - 32768 and + 32767.

COUNT = The number of values in opnd2 to be converted and stored at locations
beginning at opndl. If opnd2 is immediate data, it is converted and O"_!
placed in the storage area defined by opndl in the number of ""
consecutive locations defined by this operand.

PREC = xy Defines the precision of opndl and opnd2 and the type of data (integer
or floating-point) you coded for these operands. Specify the precision
and data type in the form PREC = xy, where "x" is the precision and
data type for opndl and "y" is the precision and data type for opnd2.
Opndl and opnd2 cannot be the same data type.

The valid precision$ and data types for "x" and "y" are as follow:

S - Single-precision integer (1 word)
D - Double-precision integer (2 words)
F - Single-precision floating-point value
L - Extended-precision floating-point value
* - Use default (FS)

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

o

Syntax Examples

o

Coding Example

o

o

FPCONV

1) Convert five double-precision integers beginning at label B to extended-precision
floating-point values. Store the result beginning at label A.

FPCONV A,B,COUNT=5,PREC=LD

2) Convert an extended-precision floating-point value at label L4 to a
double-precision integer. Store the result beginning at label X.

FPCONV X,L4,P~EC=DL

3) Convert a single-precision integer value at label C to a single-precision
floating-point value. Store the result beginning at the indexed location (6,#1).

FPCONV (6,#1),C

4) Convert an extended-precision floating-point value at the indexed location of
(X,#l) to a double-precision integer. Store the result beginning at the indexed
location (Y,#2).

FPCONV (X,#1),(Y,#2),PREC=DL

The example estimates the number of hours required for a plane, carrying a specified
load weight, to travel to a destination a given number of miles from its departure
point.

The FPCONV instruction at label FPl converts a single-precision integer to
single-precision floating-point value. This instruction uses the default precision.

The FPCONV instruction, at label FP2, converts a double-precision integer to a
single-precision floating-point value.

At label FP3, the FPCONV instruction converts two single-precision integers to
single-precision floating-point values. The values to be converted are indexed and
the parameter naming operand (PI =) allows the result field locations to be assigned
dynamically.

The FPCONV instruction at label FP4 converts a single-precision floating-point
value to a single-precision integer.

Chapter 2. Instruction and Statement Descriptions 2-181

FPCONV

2-182 SC34-0937

CONVERT PROGRAM START,FLOAT=YES
START EQU *

GETVALUE MILES,'@ENTER MILES TO DESTINATION '
FPl FPCONV FMILES,MILES

GETVALUE FREIGHT, '@POUNDS OF CARGO ? I ,FORMAT=(10 ,0, I) ,TYPE=D
FP2 FPCONV FFREIGHT,FREIGHT,PREC=FD

READTEXT TYPE,'@ENTER PLANE TYPE '
CALL FINDTYPE,TYPE
MOVEA #l,BUFR
MOVEA RESULT,FFUELUSE

•
•
•

FP3 FPCONV *,(32,#1),COUNT=2,Pl=RESULT
CALL CALCTIME

•
•
•

FP4 FPCONV ELAPSED,FELAPSED,PREC=SF
PRINTEXT '@NUMBER OF HOURS OF ELAPSED FLIGHT TIME I

PRINTNUM ELAPSED
•
•
•

BUFR DATA 256H '01

TYPE TEXT LENGTH=4
MILES DATA F'01

FREIGHT DATA D'01

ELAPSED DATA F'01

*
FMILES DATA E'01

FFREIGHT DATA E'01

FFUELUSE DATA E'01

FSPEED DATA E'01

FELAPSED DATA E' 0. '
•
•
•

o

0

o

o

o

FREESTG

FREESTG - Free Mapped and Unmapped Storage Areas

Syntax Examples

The FREESTG instruction releases the mapped and unmapped storage areas you
obtained with the GETSTG instruction.

Note: "Mapped storage" is the physical storage you defined on the PARTS operand
of the SYSPARTS statement during system generation. '~Unmapped storage" is any
physical storage that you did not include on the PARTS operand of the SYSPARTS
statement.

Syntax:

label FREESTG name, TYPE = ,ERROR = ,PI =

Required: name
Defaults: TYPE = ALL
Indexable: none

Operand Description

name The label of a STORBLK statement. The STORBLK statement
defines the mapped and unmapped storage areas that your program
uses.

TYPE = ALL, the default, to release the mapped storage area and all the
unmapped storage areas your program acquired with GETSTG
instruction.

UNMAP, to release only the unmapped storage areas your program
acquired with the GETSTG instruction.

ERROR = The label of the first instruction of the routine to be called if an error
occurs during the execution of this instruction.

PI = Parameter nami~g operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

1) Release the mapped storage area and all unmapped storage areas defined by the
STORBLK statement labeled BLOCK.

FREESTG BLOCK

2) Release only the unmapped storage areas defined by the STORBLK statement
labeled BLOCK.

FREESTG BLOCK,TYPE=UNMAP

3) Release the mapped storage area and all unmapped storage areas defined by the
STORBLK statement labeled BLOCK. The label of the first instruction of the error
routine is OUT.

FREESTG BLOCK,TYPE=ALL,ERROR=OUT

Chapter 2. Instruction and Statement Descriptions 2-183

FREESTG

Coding Example

Return Codes

2-184 SC34-0937

See the SWAP instruction for an example that uses the FREESTG instruction.

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description

-1 Successful completion.

1 No storage entires exist in storage control block.

2 Error occurred while freeing the mapped storage area.

100 No unmapped storage support in the system.

o

o

o

, " (j"."

FSUB

FSUB - Subtract Floating-Point Values
The floating-point subtract instruction (FSUB) subtracts a floating-point value in
operand 2 from a floating-point value in operand 1. You can use positive or
negative values.

You must code FLOAT=YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

FSUB opndl,opnd2,RESULT = ,PREC = ,
PI =,P2=,P3=

opndl,opnd2
RESULT = opndl,PREC = FFF
opndl,opnd2,RESUL T

Description

The label of the data area from which opnd2 is subtracted. Opndl
cannot be a self-defining term.. The system stores the result of the
operation in opndl unless you code the RESULT operand.

The value subtracted from opndl. You can specify a seif-defining
term or the label of a data area. The valid range for this operand is
from - 32768 to + 32767.

RESULT = The label of a data area in which the result is to be placed. When you
specify RESULT, the value of opndl does not change during the
operation.

PREC= All possible combinations of single and extended precision are
permitted. An immediate value for opnd2 will be converted to a
single-precision value regardless of any other method of precision
specification discussed below.

The PREC operand is specified as xyz, where x, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT
operands, respectively. Either 2 or 3 characters must be specified
depending on whether the RESULT operand was coded. Permissible
characters are:

F
L
*

Single-precision (32 bits)
Extended-precision (64 bits)
Default (single-precision)

The default is single-precision.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Chapter 2. Instruction and Statement Descriptions 2-185

FSUB

Index Registers

Syntax Examples

2-186 SC34-0937

You cannot use the index registers (#1 and #2) as operands in floating-point
operations because they are only 16 bits in length. You can, however, use the
software registers to specify the address of a floating-point operand.

1) The FSUB instruction subtracts two single-precision floating-point values and
stores the result in RESUL TF.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FSUB OP1F,OP2F,RESULT=RESULTF,PREC=FFF
•
•
•

OP1F DC
OP2F DC
RESULTF DC

EI1.5 1
E10.21
EI 0 1

After the FSUB operation, RESULTF contains the value 1.30.

2) The FSUB instruction subtracts two extended-precision floating-point values and
stores the result in RESUL TL.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FSUB OP1L,OP2L,RESULT=RESULTL,PREC=LLL
•
•
•

OP1L DC
OP2L DC
RESULTL DC

L150000.5 1
L140.41
L I 0 1

After the FSUB operation, RESULTL contains the value 49960.10.

3) The FSUB instruction subtracts two single-precision floating-point values written
in exponent (E) notation. The result is stored in RESUL TFE.

FLOAT PROGRAM START,FLOAT=YES
•
•
•

FSUB OP1FE,OP2FE,RESULT=RESULTFE,PREC=FFF
•
•
•

OP1FE DC
OP2FE DC
RESULTFE DC

EI2.5E+11
EI0.5E-11
EI 0 1

Equals decimal 25.0
Equals decimal .05

After the FSUB operation, RESULTFE contains the value .2495E + 02. This value
is equal to the decimal value 24.95.

o

o

o

Return Codes

o

o

FSUB

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). You must test for the return code immediately after
the floating-point instruct~on is executed or the code may be destroyed by
subsequent instructions.

Return
Code Description

-1 Successful completion.

1 Floating-point overflow.

5 Floa ting -poin t underflow.

Chapter 2. Instruction and Statement Descriptions 2-187

GETEDIT

GETEDIT - Collect and Store Data

. 2-188 SC34-0937

The GETEDIT instruction acquires data from a terminal or storage area, converts
the data according to a FORMAT list, and stores the data in your program at the
locations specified by the data list.

When you use the GETEDIT instruction in your program, you must link-edit your
program using the "autocaU" option of $EDXLINK. Refer to the Language
Programming Guide for information on how to link-edit programs.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a GETEDIT instruction causes a terminal I/O operation to
occur. If the return code is not a - 1, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes. See Figure 2-6 on
page 2-193 for an illustration of how the GETEDIT instruction works.

Note: Any references to 31xx terminals means 3101,3151,3161,3163, and 3164
terminals, unless otherwise noted.

Syntax:

label

Required:

Defaults:

GETEDIT format,text,(list),(format list),
ERROR = ,ACTION = ,SCAN = ,SKIP = ,LINE = ,
SPACES=,PROTECT=

text, (list), and either format
or (format list)
ACTION = IO,SCAN = FIXED,PROTECT = NO

Indexable: none

Operand Description

format The label of a FORMAT statement or the label to be attached to the
format list optionally included in this statement. This statement or list
will be used to control the conversion of the data. This operand is
required if the program is compiled with $EDXASM.

text The label of a TEXT statement defining a storage area for character
data. If data is moved from a terminal, this area stores the data as an
EBCDIC character string before it is converted and moved into the
variables.

list A description of the variables or locations that will contain the desired
data. The list will have one of the following forms:

«variable,count,type), ...)
or

(variable, ...)
or

« variable,coun t), ...)
or

«variable, type), ...)

o

o

o

o

o

where:

variable

count

type

GETEDI'I

is the label of a variable or group of variables to be
included.

is the number of variables that are to be converted.

.is tile type of variable to be converted. The type can be:

S Single-precision integer (default)
D Double-precision integer
F Single-precision floating-point
L Extended-precision floating-point

The type defaults to S for integer format data and to F
for floating-point format data.

format list Refer to the FORMAT statement description for coding FORMAT
operands that are to be used by GETEDIT instructions. This operand
is not allowed if the program is compiled with $EDXASM. If you
wish to refer to this format statement from another GETEDIT
instruction, then both the format and format list operands must be
coded.

ERROR = The label of the routine to receive control if the system detects an error
during the GETEDIT operation. The system returns a return code to
the task even if you do not code this operand.

Errors that might cause the system to call the error routine are:

• Use of an incorrect format list

• Field omitted (attempt is made to convert the rest)

• Not enough data in input text buffer to satisfy the data list

• Conversion error (value too large).

ACTION = 10 (the default), causes a READ TEXT instruction to be executed
before conversion.

SCAN =

SKIP =

STG, causes the conversion of a text buffer that has been previously
obtained. The data must be in EBCDIC.

FIXED, data elements in the input text buffer must be in the format
described in the. format statement. That is, if a field width is specified
as 6, then there are 6 EBCDIC characters used for the conversion.
Leading and trailing blanks are ignored.

FREE, data elements in the input text buffer must be separated by
delimiters: blank, comma, or slash. If A-format-type items are
included, they must be enclosed in apostrophes; for example, I xyz I •

This allows you to include any alphanumeric characters except the
apostrophe.

The number of lines to be skipped before the system does an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP = 6, the system does the I/O operation on line 8.
For a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

Chapter 2. Instruction and Statement Descriptions 2-189

GETEDIT

LINE =

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen's bottom margin minus the number of history lines
and the screen's top margin.

The line number on which the system is to do an I/O operation. Code
a value between zero 'and the number of the last usable line on the
page or logical screen. The line count begins at the top margin you
defined for the printer or display screen. LINE = 0 positions the cursor
at the top line of the page or screen you defined; LINE = I positions
the cursor at the second line of the page or screen. For roll screens,
line 0 equals the screen's top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system does the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system does
the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE = 22 and your roll screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system does an I/O
operation. SPACES =0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

PROTECT = Code PROTECT = YES if the input text is not to be printed on the
terminal. This operand is effective only for devices that require the
processor to echo input data for printing.

The PROTECT operand does not apply to the 3lxx in block mode.

31 xx Display Considerations

2-190 SC34-0937

When using a 3lxx in block mode, the attribute byte associated with the prompt
message and the input data will depend on the current TERMCTRL SET,ATTR in
effect. The default is SET,ATTR = HIGH (high intensity) for the attribute byte.

o

o

o

Syntax Examples

o

Coding Example

o

GETEDIT

1) The following GETEDIT instruction converts the first four characters to an
integer and stores them at A. It converts the next six characters to a single-precision
floating-point value and stores them at B. The next two characters are bypassed,
and the last 10 characters are converted to an extended-precision floating-point value
(because of the E-type specification) and are stored at C.

GETEDIT FM,TEXTl,(A,(B,F),(C,L))

TEXTl
FM

•
•
•

TEXT
FORMAT

LENGTH=24
(I4,F6.2,2X,El0.4)

2) This GETEDIT instruction converts four integer values contained in the text
buffer XSCREEN to a single hexadecimal word. The GETEDIT instruction places
the results in the location SCREEN.

GETEDIT FMl,XSCREEN,((SCREEN,S)),ACTION=STG
•
•
•

FMl FORMAT
XSCREEN TEXT

(14) ,GET
LENGTH=4

The example begins by executing a PRINTEXT instruction that issues a message
requesting the model year and serial numbers for the automobile of interest. The
first GETEDIT actually reads the two requested numbers with a TEXT statement
labeled TEXTI.

The GETEDIT instruction searches the TEXTI data and converts the first entry to a
single-precision variable called LISTl. The second entry is converted to a
double-precision variable called LIST2. The first PUTEDIT instruction, using the
FORMAT statement labeled PEIFMT, converts LISTI and LIST2 back to
EBCDIC and displays these values on the printer. The PUTEDIT instruction and
FORMAT statement determine the layout of the data as it is displayed.

The GETEDIT instruction after label GE2 takes the data already entered into
TEXTI with the preceding READTEXT and converts it into the two binary
variables called LISTI (single-precision) and LIST2 (double-precision). Because
ACTION = STG, a READ TEXT must be issued before executing the GETEDIT.

The PUTEDIT instruction at label PE2 converts the two variables back to EBCDIC
and places them into the TEXT2 statement as formatted by the PE2FMT FORMAT
statement. Again, the keyword ACTION = STG prevents the data from being
printed until the following PRINTEXT instruction is executed.

Chapter 2. Instruction and Statement Descriptions 2-191

GETEDIT

2-192 SC34-0937

GEl

*

EQU *
PRINTEXT '@ENTER MODEL YEAR AND SERIAL NUMBER@'
GETEDIT GElFMT,TEXTl,(LISTl,(LIST2,D»,

ACTION=IO,ERROR=ERRI

PEl EQU *

*

ENQT $SYSPRTR
PUTEDIT PElFMT,TEXT2,(LISTl,(LIST2,D»,ACTION=IO
DEQT

GE2 EQU *

*

*

READTEXT TEXTl,'@ENTER YOUR DEPT. AND SYSTEM ID NUMBER@'

GETEDIT GE2FMT,TEXTl,(LISTl,(LIST2,D»,
ACTION=STG,ERROR=ERRI

PE2 EQU *
PUTEDIT PE2FMT,TEXT2,(LISTl,(LIST2,D»,ACTION=STG

ENQT $SYSPRTR
PRINTEXT TEXT2
DEQT

•
•
•

ERRl EQU *
PRINTEXT '@GETEDIT GEl HAS FAILED@'
GO TO ERROROUT

*
ERR2 EQU *

PRINTEXT '@GETEDIT GE2 HAS FAILED@'
GOTO ERROROUT

GEIFMT FORMAT (I4,lX,I8)
PEIFMT FORMAT ('MDL. YR. = ',I4,6X,'SER. NO. = ',18)
GE2FMT FORMAT (I3,lX,I6)
PE2FMT FORMAT ('DEPT. = ',I3,4X,'SYST. ID. = ',16)
LISTI DATA F'0'
LIST2 DATA D'0'
TEXTI TEXT LENGTH=13
TEXT2 TEXT LENGTH=42
ERROROUT EQU *

X o

X

o

o

o

o

IREADTEXT TEXT1, '@ENTER YOUR DEPT. AND SYSTEM 10 NUMBER@'I
~~

"---ITEXT1 TEXT LENGTH=131

GETEDIT

GE2FMT,TEXT1,(LlST1,(LlST2,D)),ACTION=STG,ERROR= ERR11

LlST1 0042

LlST2 0000 00E9

GE2FMT FORMAT (13,1 X,16)

A0937004

Figure 2-6. GETEDIT Overview

Chapter 2. Instruction and ~tatement Descriptions 2-193

GETEDIT

Return Codes

2-194 SC34-0937

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

For several errors, the system returns the return code with the highest value.

Return
Code Description

-1 Successful completion.

1 Invalid data encountered during conversion.

2 Field omitted.

3 Conversion error.

o

o

o

o

o

()

GETSTG

GETSTG - Obtain Mapped and Unmapped Storage Areas
The GETSTG instruction obtains mapped and unmapped storage areas.

The SWAP instruction allows your program to use the unmapped storage areas you
acquire with the GETSTG instruction. You release mapped and unmapped storage
areas with the FREESTG instruction.

Note: "Mapped storage" is the physical storage you defined on the PARTS operand
of the SYSPARTS statement during system generation. "Unmapped storage" is any
physical storage that you did not include on the PARTS operand of the SYSPARTS
statement. This instruction obtains unmapped storage areas only from the partition
in which the program is executing.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

name

TYPE =

GETSTG name,TYPE = ,ERROR = ,PI =

name
TYPE = ALL
none

Description

The label of a STORBLK statement. The STORBLK statement
specifies the size of the mapped storage. area and the number of
unmapped storage areas the GETSTG im~truction can obtain.

MAP, to acquire only the mapped storage area you defined on the
STORBLK statement.

NEXT, to acquire one of the unmapped storage areas you defined on
the STORBLK statement. The instruction also obtains the mapped
storage area if it has not acquired it already.

ALL, the default, to acquire all the unmapped storage areas you
defined on the STORBLK statement. The instruction also obtains the
mapped storage area if it has not acquired it already.

ERROR = The label of the first instruction of the routine to be called if an error
occurs during the execution of this instruction.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Chapter 2. Instruction and Statement Descriptions 2-195

GETSTG

Syntax Examples

Coding Example

Return Codes

2-196 SC34-0937

1) Obtain all the unmapped storage areas and the mapped storage area defined on
the STORBLK statement labeled BLOCK.

GETSTG BLOCK,TYPE=ALL

2) Obtain only the mapped storage area defined on the STORBLK statement
labeled BLOCK.

GETSTG BLOCK,TYPE=MAP

3) Obtain one of the unmapped storage areas defined on the STORBLK labeled
BLOCK. The label of the first instruction of the error routine for this instruction is
OUT.

GETSTG BLOCK,TYPE=NEXT,ERROR=OUT

See the SWAP instruction for an example that uses the GETSTG instruction.

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code Description

-1 Successful completion.

I A mapped storage entry already exists in the storage control block.

2 Mapped storage area is not available in the system.

99 No unmapped storage table exists.

100 No unmapped storage support in system.

3 Unmapped storage is not available or only partial storage was
obtained. Check the second word of the TCB. A zero shows that no
unmapped storage is available. A nonzero value equals the number of
unmapped storage areas obtained by the instruction.

4 All unmapped storage entries in the storage control block are in use.

o

o

o

o

o

GETTIME

GETTIME - Get Date and Time
The GETTIME instruction places the contents of the system' s time-of-day clock in a
3-word table that you define in your program. The 3 words contain the hours,
minutes, and seconds, in that order. You also can specify that the date be stored in
an additional 3 words, resulting in a 6-word table containing hours, minutes,
seconds, month, day, and year. Use this instruction when you want to store the time
of day and date as you collect data.

The maximum time on the clock is 23.59.59. At midnight, the supervisor resets the
time-of-day clock to 0 and increases the date by 1. The supervisor resets the month
and year as necessary.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

loe

DATE =

GETTIME loe,DATE = ,PI =

loe
DATE=NO
loe

Description

The label of a 3-word table where the system stores the time of day as
hours, minutes, and seconds; or the label of a 6-word table where the
time of day and the date are stored as hours, minutes, seconds, month,
day, and year. The time and date are in hexadecimal format.

YES, to obtain the date as well as the time of day. If the task control
block code word, $TCBCO, contains a - 2, the date is in the form:
day, month, year. If $TCBCO contains a -1, the date is in the form:
month, day, year. The format of the date was specified on the
SYSPARMS statement during system generation.

NO, to obtain only the hours, minutes, and seconds, in that order.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-197

GETTIME

Syntax Example

Coding Example

2-198 SC34-0937

This GETTIME instruction obtains the time and date and places the result in a
6-word table beginning at the label TAB.

GETTIME TAB,DATE=YES

The following example shows the possible contents of TAB (in hexadecimal format)
after the GETEDIT operation:

TAB OOOD
0018
0005
0006
001B
0053

(hours)
(minutes)
(seconds)
(month)
(day)
(year)

The time and date shown is 13:24:05 on June 27, 1983.

The following program demonstrates a method of acquiring the system date and
time then displaying both on a terminal according to the coded FORMAT
statement.

DTERTN PROGRAM START
START EQU *

ENQT $SYSLOG
GETTIME TAB,DATE=YES
PUTEDIT FORMAT,TEXT,((TAB,6,S)),LINE=8,ERROR=ERR
GOTO DONE

*
ERR EQU *

IF DTERTN+2,NE,-1
MOVE CODE,DTERTN+2
PRINTEXT I@RETURN CODE:
GO TO DONE
ENDIF

*
DONE EQU *

DEQT
PROGSTOP

CODE TEXT LENGTH=2
TAB DATA 6F I81
TEXT TEXT LENGTH=36
FORMAT FORMAT (ITIME 1,12,1:1,12,1:1 ,12,18X, X

IDATE 1,12,1/1,12,1/1,12)
ENDPROG
END

o

0

o

o

0 '1
,I

o

GETVALUE

GETVALUE - Read a Value Entered at a Terminal
The GETVALVE instruction reads one or more integer values, or a single
floating-point value, entered at a terminal. The values can be decimal or
hexadecimal, and of single or double precision. The system treats invalid characters
as delimiters.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a GETVALVE instruction causes a terminal I/O operation to
occur. If the return code is not a - 1, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes.

Note: Any reference to 31xx terminals means 3101, 3151, 3161, 3163 and 3164
terminals, unless otherwise noted.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

loc

pmsg

GETV ALUE loc,pmsg,count,MODE = ,PROMPT = ,

loc

FORMAT = ,TYPE = ,SKIP = ,LINE = ,SPACES = ,
COMP = ,P ARMS = (parml, ... ,parm8),
MSGID = ,PI = ,P2 = ,P3 =

MODE = DEC,PROMPT = UNCOND,count = I (word)
FORMAT = (6,0,1), TYPE = S,SKIP = °
LINE = current line,SPACES = O,MSGID = NO
pmsg,SKIP,LINE,SP ACES

Description

The label of the variable to receive the input value. If your program
requests more than one value, the system stores the successive values in
successive words or doublewords depending on the precision you
specify in the count operand.

The prompt message. Code the label of a TEXT statement or an
explicit text message enclosed in single quotes. The GETV AL VE
instruction issues this prompt according to the parameter you code for
the PROMPT keyword.

To retrieve a prompt message from a data set or module containing
formatted program messages, code the number of the'message you
want displayed or printed. You must code a positive integer or a label
preceded by a plus sign (+) that is equated to a positive integer. If
you retrieve a prompt message from storage, you must also code the
COMP = operand. See Appendix E, "Creating, Storing, and
Retrieving Program Messages" on page E-l for more information.

Chapter 2. Instruction and Statement Descriptions 2-199

GET VALUE

2-200 SC34-0937

count

MODE =

The number of integer values to be entered. If the FORMAT
parameter is used, the count is forced to I regardless of the value
specified. The precision specification can be substituted for the count
specification. If the precision is substituted for the count, the count
defaults to 1. The precision can accompany the count in the form of a
sublist: (count,precision). The default value for precision is word, or
the keyword WORD can be specified. If double-precision is desired,
code the precision keyword DWORD. Only the WORD and
DWORD precisions can be specified.

With conditional prompting, the system issues the prompt message if
you do not enter advance input. Once a prompt message has been
issued, however, you may enter one or more values. Omitted values
leave the corresponding internal variables unchanged and are indicated
by coding two consecutive delimiters. The delimiters allowed between
values are the characters slash (/), comma (,), period (.), or blank ().
The number of values entered is stored at taskname + 2 when the
instruction completes.

HEX, for hexadecimal input.

DEC, the default, for decimal input.

PROMPT = COND (conditional), to prevent the system from displaying the prompt
message if you enter a value before the prompt.

UNCOND (unconditional), to have the system display the prompt
message without exception. UNCOND is the default.

FORMAT = The format of the value to be read in. Use the FORMAT operand
where the default is not desired. The count parameter is ignored. The
format is specified as a 3-element list (w,d,f), defined as follows:

w A decimal value equal to the maximum field width expected from
the terminal. Count the decimal point as part of the field width.

d A decimal value equal to the number of digits to the right of an
assumed decimal point. (An actual decimal point in the input
will override this specification.) For integer variables, code this
val ue as zero.

f Format of the input data. Code I for integer data, F for
floating-point data (XXXX.XXX), or E for floating-point data in
E notation. See the value operand under the DATA/DC
statement for a description of E notation format.

Note: You can use the floating-point format for data even if you
do not have floating-point hardware installed in your system.
Floating-point hardware is required, however, to do
floating-point arithmetic.

The first FORMAT operand to execute generates a work area that all
subsequent FORMAT operands will use also. The generated work
area is nonreentrant in a multitasking environment, and all tasks must
use the ENQ/DEQ functions to serialize access to it.

Note: If you code the FORMAT parameter and you are entering
advanced input (PROMPT = COND) for multiple GETV ALUE
statements, a blank must be used to separate the input values. No
other delimiters are valid.

o

o

o

o

c

o

TYPE =

SKIP =

LINE =

GET VALUE

The type of variable to receive the input. Use this operand with
FORMAT= only. The valid types are:

S Single-precision integer (1 word)
D Double-precision integer (2 words)
F Single-precision floating-point (2 words)
L Extended-precision floating-point (4 words)

The number of lines to be skipped before the system does an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP = 6, the system does the I/O operation on line 8.
For a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen's bottom margin minus the number of history lines
and the screen's top margin.

The line number on which the system is to do an I/O operation. Code
a value between zero and the number of the last usable line on the
page or logical screen. The line count begins at the top margin you
defined for the printer or display screen. LINE = 0 positions the cursor
at the top line of the page or screen you defined; LINE = 1 positions
the cursor at the second line of the page or screen. For roll screens
line 0 equals the screen's top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system does the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system does
the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE = 22 and your roll screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system does an I/O
operation. SPACES = 0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

Chapter 2. Instruction and Statement Descriptions 2-201

GETVALUE

COMP= The label of a COMP statement. You must specify this operand if the
GETVALUE instruction is retrieving a prompt message from a data
set or module containing formatted program messages. The COMP
statement provides the location of the message. (See the COMP
statement for more information.)

PARMS = The labels of data areas containing information to be included in a
message you are retrieving from a data set or module containing
formatted program messages. You can code up to eight labels. If you
code more than one label, you must enclose the list in parentheses.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to the
Installation and System Generation Guide for a description of this
module.

MSGID = YES, if you want the message number and 4-character prefix to be
printed at the beginning of the message you are retrieving from a data
set or module containing formatted program messages. See the COMP
statement operand "idxx" for a description of the 4-character prefix.

Px=

NO (the default), to prevent the system from printing or displaying this
information at the beginning of the message.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to the
Installation and System Generation Guide for a description of this
module.

Parameter naming operands. See -"Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

31 xx Display Considerations

Syntax Examples

2-202 SC34-0937

When using a 31xx in block mode, the attribute byte associated with any prompt
message and the input data will depend on the current TERMCTRL SET,ATTR in
effect. The default is SET,ATTR = HIGH (high intensity) for the attribute byte.
Also TERMCTRL SET,STREAM=NO should be in effect when the GETVALUE
instruction is executed for a 31xx in block mode.

The syntax examples for this instruction use the following data areas:

MSG
A
B
C
D
E
F
L

TEXT
DC
DC
DC
DC
DC
DC
DC

IENTER NEXT NUMBER I
FI 0 1

F I 0 1

F I 0 1

DI 0 1

DI 01

E10.0000 1

L1 0.000 1

1) Read a single-precision integer of up to 6 decimal digits into data area A.

GETVALUE A,MSG

GETVALUE A,MSG,TYPE=S,FORMAT=(6,0,I)

o

o

o

o

o

GETVALUE

2) Read 3 consecutive single-precision integers (of 6 decimal digits or fewer) into
data areas A, B, and C.

GETVALUE A,MSG,(3,WORD)

3) Read a double-precision integer of up to 10 decimal digits into doubleword data
area D.

GETVALUE D,MSG,DWORD

GETVALUE D,MSG,TVPE=D,FORMAT=(10,0,I)

4) Read 2 consecutive single-precision integers (of 6 decimal digits or fewer) into
data areas Band C.

GETVALUE B,MSG,2

5) Read 2 consecutive double-precision integers (of 10 decimal digits or fewer) into
data areas D and E.

GETVALUE D,MSG,(2,DWORD)

6) Ignore the count and read a single-precision integer of up to 4 decimal digits into
data area A.

GETVALUE A,MSG,3,TVPE=S,FORMAT=(4,0,I)

7) Read a double-precision integer of up to 6 decimal digits into doubleword data
area E.

GETVALUE E,MSG,TVPE=D,FORMAT=(6,0,I)

8) Read a single-precision floating-point (F-format) number of 7 digits, with 4 digits
to the right of an assumed decimal point, into data area F.

GETVALUE F,MSG,TVPE=F,FORMAT=(8,4,F)

9) Read an extended-precision floating-point (E-format) number of 8 digits, with 3
digits to the right of an assumed decimal point, into data area E.

GETVALUE G,MSG,TVPE=L,FORMAT=(9,3,E)

Chapter 2. Instruction and Statement Descriptions 2-203

GET VALUE

Coding Examples

2-204 SC34-0937

1) If, in the following example, the operator entered 55 23A5 68 in response to the
prompt from the third GETVALDE, the first three of five storage locations in
DATA3 would assume the values 0055, 23A5, and 0068, respectively. The other 2
word locations would remain unchanged (X' 0000').

•
•
•

GETVALUE
GETVALUE
GETVALUE

•
•
•

MESSAGE TEXT
MSG TEXT
DATA DATA
DATA2 DATA
DATA3 DATA

•
•
•

DATA,MESSAGE
DATA2,'@ENTER A: ',PROMPT=COND
DATA3,MSG,5,MODE=HEX

'ENTER YOUR AGE'
'DATA· ,
F'O'
F'O'
5F'O'

2) In the following example, the GETV AL DE instruction, at label G I, prints a
message then reads a value entered by an operator. Note that the message in single
quotes is printed and provides an unconditional prompt. Also, the value read uses
the following defaults: decimal, integer, I - 6 digits, and single-precision.

The GETVALUE at G2 issues a prompt only if there is no advance input and it
reads 1 hexadecimal input value. Default values are in effect for the FORMAT and
TYPE parameters.

The GETVALUE at G3 reads a variable number of hexadecimal input values, using
the default FORMAT and TYPE parameters.

The G4 GETVALUE uses the, FORMAT parameter to read a single, floating-point
value of up to 9 digits in length and then places the result in a doubleword field.

•
•
•

Gl GETVALUE COUNT,'@ HOW MANY WORDS OF STORAGE? '
G2 GETVALUE DATA,'@ ENTER START ADDRESS',MODE=HEX,PROMPT=COND

MOVE #l,DATA
AND #l,X'FFFE' INSURE EVEN STORAGE ADDRESS
PRINTEXT '@ CURRENT VALUE(S) NOW:'
PRINTNUM (O,#1),1,MODE=HEX,P2=COUNT
MOVE KOUNT,COUNT

G3 GETVALUE DATA,'@ ENTER NEW VALUE(S), ,1,P3=KOUNT,MODE=HEX
•
•
•

G4 GETVALUE FLOAT,'@ ENTER DATA' ,FORMAT=(9,2,F),TYPE=D
•
•
•

o

o

o

o

o

GETVALUE

3) In this example, the GETVALUE instruction displays a prompt message
contained in the disk data set MSGSET on volume EDX002. Because + MSG9
equals 9, the system retrieves the ninth message in MSGSET.

SAMPLE PROGRAM START,200,DS=((MSGSET,EDX002))
•
•
•

GETVALUE PNUMB,+MSG9,PROMPT=COND,COMP=MSGSTMT

MSG9 EQU
PNUMB DATA
MSGSTMT COMP

Message Return Codes

•
•
•

9
F'O'
'SRCE',DS1,TYPE=DSK

The system issues the following GETVALUE return codes when you retrieve a
prompt message from a data set or module containing formatted program messages.
The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description

-1 Message successfully retrieved.

301-316 Error while reading message from disk. Subtract 300 from this value
to get the actual return code. See the disk return codes following the
READ or WRITE instruction for a description of the code.

326 Messag~ number out of range.

327 Message parameter not found.

328 Instruction does not supply message parameter(s).

329 Invalid parameter position.

330 Invalid type of parameter.

331 Invalid disk message data set.

332 Disk message read error.

333 Storage resident module not found.

334 Message parameter output error.

335 Disk messages not supported (MINMSG support only).

Chapter 2. Instruction and Statement Descriptions 2-205

GIN

GIN - Enter Unsealed Cursor Coordinates

Syntax Example

2-206 SC34-0937

.The GIN instruction allows you to specify unscaled cursor coordinates interactively~
The instruction rings the bell, displays cross-hairs, and waits for you to position the
cross-hairs and enter a single character. GIN then stores the coordinates of the
cross-hair cursor. It also stores the character you entered, if you request this.

Cursor coordinates are unscaled. The PLOTGIN instruction obtains coordinates
scaled by the use of a PLOTCB control block.

Syntax:

label GIN x,y,char,Pl = ,P2 =,P3 =

Required: x,y
Defaults: no character returned
Indexable: none

Operand Description

x The location where the x cursor coordinate value is to be stored.

y The location where the y cursor coordinate value is to be stored.

char The location where the character you select is to be stored. The
character is stored in the right-hand byte. The left byte is set to zero.
If you do not code this operand, the instruction does not store the
selected character.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Store the x coordinate in X and the y coordinate in Y. Store the character in the
location CHAR.

GIN X,Y,CHAR

o

()

o

o

o

o

GOTO

GOTO - Go to a Specified Instruction
The GOTO instruction allows you to pass control, or "branch," to another
instruction in the program.

The statement can:

• Pass control directly to the label of an instruction.

• Pass control to an address defined by a label.

• Pass control to one of the labels in a list based on the value of an index word.

GOTO can also be used as an operand of the IF instruction.

Syntax:

label
label
label

GOTO
GOTO
GOTO

loe,Pl =

(loe),Pl =

(loeO,loel,loe2, ... ,loen),index,Pl = ,P2 =

Required: loe
Defaults: none
Indexable: index

Operand

loe

Description

The label of the instruction to receive control. Enclose this label in
parentheses if the label points to a data area containing the address of
the next instruction to be executed. It may also be a displacement
value from index register #1 or #2.

The instruction you branch to must be on a fullword boundary.

loeO,loel, ... ,loen
The labels in ,a list of instruction labels that can receive control
depending on the value of the index word. The label at locI receives
control if the index value is equal to 1. The label at loc2 receives
control if the index value is equal to 2, and so on. The first label,
locO, is the label of the instruction that receives control if the value of
the index word is not in the range of locl-Iocn.

The number of instruction labels in the list plus I must not exceed 50.

index The label of an index word containing a value that determines the
label to branch to in a list of labels.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-207

GOTO

Syntax Examples

2-208 SC34-093 7

1) Branch to the label EXIT.

GO TO EXIT

2) Move the address of the ADD instruction into HOLD and branch to that
address.

MOVEA HOLD,NEXT
•
•
•

GOTD (HOLD)
•
•
•

NEXT ADD A,B
•
•
•

HOLD DATA F'G'

3) The branch depends on the value in INDEX. If the value in INDEX is 1, the
instruction branches to label Ll. If the value in INDEX is 2, the instruction
branches to label L2. Any other value in INDEX causes the instruction to branch to
ERR.

GOTO (ERR,Ll,L2),INDEX

Another example using GOTO is shown under "Syntax Examples with IF, ELSE,
and END IF" on page 2-215.

o

o

o

o

C~

o

HASHVAL

HASHVAL - Condense a Character String
The HASHVAL instruction generates a value that is the sum of the binary values of
a specified character string. You can use this value to provide a compressed form of
character strings. Although other applications are possible, the following two uses
are most common:

• You can use the hash value as an element in a list of nearly unique I-byte values
corresponding to a list of character strings. Your program can search this list
for a match condition using a computed hash value.

• You can use the hash value as an index into a table of up to 256 bytes.

Because there are far more combinations of 8-byte character strings than can be
represented in one byte, duplicate hash values can result from unique character
strings. Using a hash technique should provide help in dealing with this potential
condition. When the number of duplicate hash values exceeds approximately one
half of the total number of character strings, the hash technique begins to lose its
advantage.

The algorithm used to get the hash value is as follows:

1. The character string is padded with blanks on the right to the length specified in
the instruction; then, if required, the string is padded with zeros to make a total
of eight characters.

2.

3.

The first four bytes are added to the second four bytes to form a partial result.

The first two bytes of the partial result are then added to the second two bytes,
forming a second partial result.

4. The resulting two bytes are then added together forming the final result or
1-byte hash total.

Syntax:

label

Required:
Defaults:
Indexable:

HASHV AL 'character string',RANGE = ,LENGTH =,
TYPE =

'character string'
RANGE =256,LENGTH=8,TYPE = DATA
none

Ch~pter 2. Instruction and Statement Descriptions 2-209

HASHVAL

Syntax Examples

2-210 SC34-0937

Operand Description

character string
Code the actual character string and enclose it in quotes. The
maximum length is 8 bytes (characters) unless specified as less with the
LENGTH operand. If fewer characters are coded than the default or
specified length, the string is padded to the right with blanks to fill the
field.

RANGE = A value from.I to 256 that specifies the maximum range of resulting
hash values (the modulus function). The resulting hash value is the
remainder of the I-byte sum divided by either the range value specified
or the default value of 256.

LENGTH = A value from 1 to 8 that specifies the maximum number of characters
to be used in calculating the hash value. If you specify a character
string with fewer characters than the maximum, the system pads the
character string to the right with blanks until it equals the length
specification.

TYPE = EQU, assigns the resulting hash value the label you coded for the
HASHV AL instruction.

DATA (the default), does not equate the final hash value with the
instruction label.

1) Generate a hash value of X '7F I.

HASHVAL 'EIGHTCNT '

2) Generate a hash value of X I 5C I •

HASHVAL I FOUR'

3) Generate a hash value of X I 5A I. The value is not padded with blanks because
LENGTH=4.

HASHVAL 'FOUR ' ,LENGTH=4

4) Generate a hash value of X I 2A I (X I 5C I modulus 50).

HASHVAL 'FOUR ' ,RANGE=58

5) Generate a hash value of X I 5C I and assign the HASHV AL label this value
(LABEL EQU X I 5C I).

LABEL HASHVAL 'FOUR',TYPE=EQU

o

o

o

o

o

IDCB

IDCB - Create an Immediate Device Control Block
The IDCB statement creates a standard immediate device control block that specifies
a hardware operation. You must use this statement when doing EXIO processing.

Note: Refer to the description manual for the processor in use for more information
on IDCBs.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

IDCB COMMAND=,ADDRESS=,DCB=,DATA=,
MOD4 = ,LEVEL = ,IBIT =

label,COMMAND = ,ADDRESS =
LEVEL = 1,IBIT = ON
not applicable

Description

COMMAND =

READ

READl

REA DID

RSTATUS

WRITE

WRITEl

PREPARE

CONTROL

RESET

START

SCSS

The specific I/O operation. Code one of the keywords from the
following list. In the following keyword list the resulting hexadecimal
command code is shown in parentheses. An x represents a character
that is filled in by the value specified by MOD4.

Transfer a byte or word from the device. (Ox)

Same as READ plus function bit set. (Ix)

Read the device-identification word. (20)

Read the device status. (2x)

Transfer a byte or word to the device. (4x)

Same as WRITE plus function bit set. (5x)

Prepare the device for interrupts or initialization. (60)

Initiate a control action to the device. (6x)

Initiate a device reset operation. (6F)

Initiate a cycle-steal operation. (7x)

Initiate a start-cycle-steal-status operation. (7F)

ADDRESS = The device address as two hexadecimal digits.

DCB=

DATA =

MOD4=

The label of a DCB statement. See your hardware description
manual to determine whether you need to code this operand for the
operation you want to perform.

The data word to be transferred to the device by a WRITE,
WRITE 1 , or CONTROL command. Code the actual data as four
hexadecimal digits.

A 4-bit device-dependent value that modifies the command code
specified by the COMMAND operand. Code one hexadecimal digit.

Chapter 2. Instruction and Statement Descriptions 2-211

IDCB

Syntax Examples

2-212 SC34-0937

LEVEL =

IBIT=

The hardware interrupt level to be assigned to the device by a
PREPARE command.

ON (the default), to allow the device to present interrupts.

OFF, if the device should not present interrupts.

1) Transfer data to the device and set the function bit.

IOCBl IOCB COMMANO=WRITE1,AOORESS=00,OATA=0041

2) Prepare the device for interrupts on hardware level 3.

PREPIOCB IOCB COMMANO=PREPARE,AOORESS=E4,LEVEL=3,IBIT=ON

3) Start a cycle steal operation for the device.

WRIIOCB IOCB COMMANO=START,AOORESS=El,OCB=WRlOCB

o

o

o

o

0'·"
, ,

IF - Test If a Condition Is True or False
The IF instruction determines whether a conditional statement is true or false and,
based on its decision, determines the next instruction to execute.

A conditional statement can compare two data items or ask whether a bit is "on"
(set to 1) or "off' (set to 0). The instruction syntax shows the general format of
conditional statements used with the IF instruction.

IF

You can compare data in two ways: arithmetically or logically. When you compare
data arithmetically, the system interprets each number as a positive or negative
value. The system, for example, interprets X I OFFF I as 4095. It interprets
X I FFFF I , however, as a-I. Although X I FFFF I seems to be a larger hexadecimal
number than X I OFFF I , the system recognizes the former as a negative number and
the latter as a positive number. X'FFFF' is a negative number to the system
because the leftmost bit is "on."

When you compare data logically, the system compares the data areas byte by byte.
The system interprets X I FFFF I not as a -1 but as a string of 2 bytes with all bits
"on. "

With EBCDIC or ASCII character data, the system makes a logical comparison of
the characters byte by byte. In a logical comparison of a capital 'A' (X I Cl') with a
capital "H" (X I C8'), the system recognizes the capital A to be "less than" the capital
H. By comparing character data logically, you can use the IF instruction to sort
items alphabetically ("a" is less than "c" which is greater than "b").

The syntax box shows the IF instruction with a single conditional statement. You
can specify several conditional statements on a single IF instruction, however, by
using the AND and OR keywords. These keywords allow you to join conditional
statements. "Rules for Evaluating Statement Strings Using AND and OR" on
page 2-108 provides additional information regarding use of the IF instruction. The
keywords are described in the operands list and examples using the keywords are
shown following the instruction description.

Syntax:

label

label

Required:
Defaults:
Indexable:

IF (datal,condition,data2, width)

IF (datal,condition,data2, width), GOTO,loc

one conditional statement
width is WORD for arithmetic comparison
datal and data2 in each statement

Chapter 2. Instruction and Statement Descriptions 2-213

IF

2-214 SC34-0937

Operand

datal

condition

data2

width

GOTO

loc

Description

The label of a data item to be compared to data2 or the label of the
data area that contains the bit to be tested.

An operator that indicates the relationship or condition to be tested.
The valid operators for the IF instruction are as follows:

Arithme tic and Logical
Comparisons

EQ - Equal to
NE - Not equal to
GT - Greater than
L T - Less than
GE - Greater than or equal to
LE - Less than or equal to

Testing a Bit
Setting

ON or OFF

The label of a data item to be compared to datal or the label of the
data area that contains the bit in datal to be tested. For an arithmetic
comparison, specify immediate data or the label of a data area.
Immediate data can be an integer from 0 to 32767, or a hexadecimal
value from 0 to 65535 (X I FFFF I). For a logical comparison, specify
the label of a data area. For a bit comparison, specify immediate
data.

When you check a bit setting, remember that bit 0 is the leftmost bit of
the data area.

Specify an integer number of bytes in the range of I to 65535 for a
logical comparison (no default). For a bit comparison, specify an
immediate data area in words. This form specifies that both DATAl
and DATA2 are storage locations; an immediate operand is not
permitted.

For an arithmetic comparison, you can specify one of the following:

BYTE
WORD
DWORD
FLOAT
DFLOAT

Byte (8 bits)
Word (16 bits), the default
Doubleword (32 bits)
Single-precision floating-point (32 bits)
Extended-precision floating-point (64 bits)

If the statement is true and GOTO is coded, control passes to the
instruction at the address specified in the loc operand. If the statement
is false, execution proceeds sequentially.

If GOTO is not coded, THEN is assumed and the next instruction is
determined by the IF-ELSE-ENDIF structure. If the condition is true,
execution proceeds sequentially. If the condition is false, execution
continues with the next ELSE statement (if one is coded) or ENDIF
statement.

U sed with GOTO to specify the address of the instruction to be
executed if the statement is true. The instruction must be on a
fullword boundary.

o

o

o

o

()

o

AND

OR

Notes:

IF

Enables you to join conditional statements. Code the operand between
the conditional statements you want to join. The AND operand
indicates that each of the conditional statements must be true before a
program will execute. See the syntax examples for this instruction.

You can join several pairs of conditional statements by using several
AND operands. You also can use the AND and OR operands within
the same IF instruction.

Enables you to join conditional statements. Code the operand between
the conditional statements you want to join. The OR operand
indicates that one of the conditional statements must be true before a
program will execute.

You can join several pairs of conditional statements by using several
OR operands. You also can use the OR and AND operands within
the same IF instruction.

1. See "Rules for Evaluating Statement Strings Using AND and OR" on
page 2-108 for information on use of the OR and AND operands to connect
statements logically within the IF instruction.

2. Code the word THEN after the conditional statement to make the program
easier to read. See Syntax Example 2.

Syntax Examples with IF, ELSE, and ENDIF
1) If A equals B, pass control to the instruction at label ERROR. This is an
arithmetic comparison.

IF (A,EQ,B),GOTO,ERROR

2) If the first 4 bytes of A are greater than or equal to the first four bytes of B, pass
control to the instruction at label RETRY. This is a logical comparison.

IF (A,GE,B,4),GOTO,RETRY

3) If C is not equal to D, execute the code that follows the IF instruction. This is
an arithmetic comparison.

IF (C,NE,D) ,THEN
•
•
•

ENDIF

4) If register #1 is equal to 1, execute the code that follows the IF instruction; if #1
is not equal to 1, execute the code following the ELSE statement. This is an
arithmetic comparison.

IF (#l,EQ,l)
•
•
•

ELSE
•
•
•

ENDIF

Chapter 2. Instruction and Statement Descriptions 2-215

IF

2-216 SC34-0937

5) If the first three bytes of A are less than the first three bytes of B, execute the
code following the IF instruction. If the first three bytes of A are greater than or

. equal to the first three bytes of B, execute the code following the ELSE statement.
This is a logical comparison.

IF (A,LT,B,3)
•
•
•

ELSE
•
•
•

ENDIF

6) Test whether A is equal to B and whether C is equal to D. If both conditional
statements are true, execute the code that follows the IF instruction; if either one or
both of the conditional statements are false, execute the code following the ELSE
statement. This is an arithmetic comparison.

IF (A,EQ,B),AND,(C,EQ,D)
•
•
•

ELSE
•
•
•

ENDIF

7) If A equals B and X is greater than Y, instructions xl, x2, and x3will execute. If
A equals B, but X is not greater than Y, instructions xl and x3 will execute. If A
does not equal B, only instruction x4 executes.

IF (A,EQ,B)
xl

IF (X,GT,Y)
x2

ENDIF
x3

ELSE
x4

ENDIF

8) If the third bit starting at label A is a I, execute the code following the IF
instruction. If the third bit starting at label A is a 0, execute the code following the
ELSE statement.

IF (A,ON,2)
•
•
•

ELSE
•
•
•

ENDIF

o

o

o

o

o

IF

9) If the bit in A at the position defined by BIT! is a 0, execute the code following
the IF instruction. If the bit is not a 0, set the value of the bit to 0.

IF (A,OFF,BIT1)
•
•
•

ELSE
SETBIT A,BIT1,OFF

ENDIF

Sample Conditional Statements

Arithmetic Comparisons

(A,EQ,O)

(A,EQ,X I 0022 I)

(A,NE,B)

Comments

A equal to 0, WORD

A equal to hexadecimal 22, WORD

A not equal to B, WORD

(DATA1,LT,DATA2,WORD) DATAl less than DATA2, WORD

(CHAR,EQ,C I A I ,BYTE) CHAR equal to I A I, BYTE

(XV AL,GT,Y,DWORD) XVAL greater than Y, DWORD

((A,#I),EQ,I) (A,#I) equal to 1, WORD

((Al,#I),LE,(B 1,#2)) (Al,#I) LE (Bl,#2), WORD

(#I,EQ,I) #1 equal to 1, WORD

(#I,GT,#2) #1 greater than #2, WORD

((C,#2),EQ,CHAR,BYTE) (C,#2) equal to CHAR, BYTE

(Fl,GT,O,FLOAT) Fl greater than 0, FLOAT

(L2,LT,L3,DFLOAT) L2 less than L3, DOUBLEWORD
FLOATING-POINT

((BUF,#l),LE, 1,FLOAT) (BUF,#I) less than or equal 1, FLOAT

D EQU 2 D has a word value of X 10002 I

IF (B,EQ, + D,BYTE) B equal to X I 00 I (leftmost byte of D)

Logical Comparisons Comments

(A,EQ,B,8) A equal to B, 8 bytes

((BUF,#1),NE,DATA,3) (BUF,#l) not equal to DATA, 3 bytes

(A,EQ,B,2) A equal to B, 2 bytes

(DATAl,LT,DATA2,3) DATAl less than DATA2, 3 bytes

((BUF,# 1),GE,DATA,4) (BUF,#I) greater than or equal to DATA, 4 bytes

Testing a Bit Comments

(A,ON,B) The bit at position B in data area A is a 1

(A,OFF,C I BB I) The bit at the hexadecimal displacement represented
by the characters I BB I in data area A is a 0. Actual
displacement is X I C2C2 I •

(DATA1,ON,X'413C') Bit at displacement X '413C ' in DATA1 is a 1.

Chapter 2. Instruction and Statement Descriptions 2-217

IF

Sample Conditional Statement Strings

2-218 SC34-0937

(A,EQ,B),AND,(A,EQ,C)
(A,NE,1),OR,(D,EQ,E,DWORD),AND,(#1,NE,14)
(F,EQ,G,8),AND,(#1,EQ,#2),AND,(X,EQ,1),OR,(RESULT,GT,0)
(DATA,EQ,C'/',BYTE),OR,(DATA,EQ,C'*',BYTE)
((BUF~#1),NE,(BUF,#2»,OR,(#1,EQ,#2)

o

o

o

o

o

INTIME

INTIME - Provide Interval Timing
The INTIME instruction provides two forms of interval timing information, rei time
and loco The first form, reltime, is a 2-word area in your program where INTIME
stores a value each time an INTIME instruction executes. This value is equal to the
elapsed time since system IPL. The count is expressed in milliseconds and is in
double-precision integer format. The maximum value for reltime is reached after
approximately 49 days of continuous operation. The system resets the counter to 0
at that time.

The second form, loc,.is a single-precision integer variable where INTIME stores the
time in milliseconds since the previous execution of an INTIME instruction in this
task. The maximum interval between calls to INTIME (that is, the maximum value
that can be stored at loc) is 65,535 milliseconds (65.535 seconds).

Note: Each task in the system has available to it one software-driven timer that
operates with a precision of 1 millisecond. Use the STIMER instruction to operate
this timer in any task.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

reltime

loe

INDEX

Px=

INTIME reltime,loe,INDEX,P2 =

reltime,loe
no indexing
loe

Description

The label of a 2-word table where a relative time marker can be stored.
This field should be defined by DATA 2F '0'. The relative time
marker is a double-precision count, in milliseconds, that indicates the
relative time at which the last INTIME was issued. It should be
initialized to O. Proper use of this parameter allows you to measure
different intervals from the same origin in time.

The label of a buffer of data area where interval time data is to be
stored. When reltime = 0, as after initialization, the first interval
returned will also be O.

Automatic indexing is to be used. The operand loc must be defined by
a BUFFER statement when INDEX is used.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2':219

INTIME

Coding Example

2-220 SC34-0937

When the INTIME instruction executes, it places the number of milliseconds that 0'.' ,
have elapsed since system IPL in the UPTIME variable. Because the LOC variable
refers to a BUFFER statement and automatic indexing is used, the interval count
since execution of the previous INTIME instruction will be placed in the next
available BUFFER location. The PRINTEXT and PRINTNUM instructions print
the data on the appropriate forms.

GETTIME EQU
INTIME
DIVIDE
DIVIDE
DIVIDE

*

*
UPTIME, INTERVAL, INDEX
UPTIME,lOOO,DWORD
UPTIME,3600,DWORD
TASK,60,RESULT=MIN

ENQT $SVSPRTR

GET TIME IN MILLISECONDS
CONVERT TIME TO SECONDS
DIVIDE TO GET HOURS
DIVIDE THE REMAINDER TO
GET MINUTES

PRINTEXT '@ADDITIONAL 100 BARRELS OF OIL
PROCESSED AT HR:MIN '

PRINTNUM UPTIME,TVPE=D
PRINTNUM MIN
PRINTEXT '@AFTER BEGINNING OF PROCESSING RUN@'
PRINTEXT '@CURRENT BATCH TOOK I

MULT ENTRIES,2,RESULT=INDX
MOVEA #l,INTERVAL
ADD #l,INDX
DIVIDE (O,#l),lOOO,RESULT=SECONDS
PRINTNUM SECONDS
PRINTEXT I SECONDS TO PRODUCE@'
DEQT

•
•
•

UPTIME DATA 2F '0'
MIN DATA
SECONDS DATA
INTERVAL BUFFER
INDX DATA

F'O'
F'O'
1000,WORDS,INDEX=ENTRIES
FIO'

x

o

o

o

o

o

loeB

loeB - Define Terminal Characteristics
The IOCB statement defines a terminal name and terminal characteristics for use
with the ENQT instruction. You can use this statement to change such terminal
characteristics as screen or page margins temporarily. You define these and other
terminal characteristics during system generation. When your program releases
control of a terminal, the . characteristics you defined with the IOCB statement are no
longer in effect.

When coding the IOCB instruction, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, you must
specify at least one operand with the instruction. The comment must be separated
from the operand field by one or more blanks and it cannot contain commas.

Do not code PAGSIZE, TOPM, BOTM, LEFTM, RIGHTM, or NHIST IOCB
instruction operands for a 3lxx in block mode.

Note: Any references to 31xx terminals means 3101,3151,3161,3163, and 3164
terminals, unless otherwise noted.

Syntax:

label

Required:
Defaults:

IOCB

none

name,PAGSIZE = ,TOPM = ,BOTM = ,LEFTM =,
RIGHTM = ,SCREEN = ,NHIST = ,OVFLINE =,
BUFFER = comment

see discussion below
Indexable: none

Operand Description

name The name of a terminal as defined by the label on a TERMINAL
definition statement used in system generation. Refer to the
Installation and System Generation Guide for a description of the
TERMINAL definition statement. This operand generates an
8-character EBCDIC string, padded as necessary with blanks, whose
label is the label on the IOCB instruction. It may, therefore, be
modified by the program. If unspecified; the string is blank and
implicitly refers to the terminal that is currently in use by the program.

PAGSIZE=

Note: Except for the BUFFER operand, the following operands have
default values established by the TERMINAL definition statement

The physical page size (form length) of the I/O medium. Specify an
integer between 1 and the maximum value taht is meaningful for the
device. For printers, specify the number of lines per page. For screen
devices, specify the size of the screen in lines. This operand is not
required for the 4978, 4979, or 4980 display terminal.

If you specify this operand, BOTM must be between TOPM plus
NHIST, and PAGSIZE -1. Otherwise, unpredictable results will
occur.

Chapter.2. Instruction and Statement Descriptions 2-221

IOCB

2-222 SC34-0937

TOPM=

BOTM=

The top margin (a decimal number between zero and PAGSIZE-I) to
indicate the top of the logical page within the physical page for the
device. The default is O.

The bottom margin~ the last usable line on a page. Its value must be
between TOPM + NHIST and PAGSIZE - I. The default is
PAGSIZE - I. If an output instruction would cause the line number
to increase beyond this value, then a page eject, or wrap to line zero, is
done before the op~ration is continued.

LEFTM = The left margin, the character position at which input or output
begins. The default is O. Specify a decimal value between zero and
LINSIZE-I.

RIGHTM = A value (between LEFTM and LINSIZE -1) that determines the last
usable character position within a line. Position numbering begins at
zero.

If a BUFFER statement is not specified, the default is LINSIZE - 1.
If a BUFFER statement is specified, the value you specify should be
one less than the buffer size value.

SCREEN = ROLL, the default, for screens that are to be operated similar to a
typewriter. For screen devices that are attached through the
teletypewriter adapter, ROLL indicates that the system will pause
when a screen-full condition occurs during continuous output.

NHIST=

OVFLINE=

ST ATIC, for a full-screen mode of operation, if full-screen mode is
supported for the device. For a 31xx terminal, STATIC is valid only
for block mode.

The number of history lines to be retained when a page eject is
performed on the 4978, 4979, or 4980 display. The default is O. The
line at TOPM + NHIST corresponds to logical line zero for the
terminal I/O instructions. When a page eject (LINE = 0) is performed,
the screen area from TOPM to TOPM + NHIST - 1 will contain lines
from the previous page.

YES, if output lines that exceed the right margin are to be continued
on the next line. '

NO, the default, if the lines are not to be continued.

The overflow condition occurs when the system buffer (or a buffer in
an application program) becomes full and the application program has
taken no action to write the buffer to the device.

BUFFER = If the application requires a temporary I/O buffer of a different size
from that defined by the LINSIZE parameter on the TERMINAL
statement, then set this operand with the label of a BUFFER
statement allocating the desired number of bytes. The buffer size then
temporarily replaces the LINSIZE value and is also the maximum
amount that can be read or written at a time. For data entry
applications that require full screen data transfers, for example, this
avoids the need for allocation of a large buffer within the resident
supervisor.

o

o

o

o

c

o

loeB

Note that when the buffer size is greater than the 80-byte linesize of
the 4978, 4979, and 4980 displays, all data transfers take place as if
successive lines of the display were concatenated. Screen positions are
still designated, however, by the LINE and SPACES parameters with
respect to an 80-byte line.

If the buffer size is less than the 80-byte line size of the 4978, 4979, or
4980 display, the logical screen boundaries are adjusted accordingly. If
the RIGHTM is not specified or has a value greater than the buffer
size, it is adjusted to one less than the buffer size value. Portions of
the screen outside this range are not accessible by the application
program.

Direct I/O Considerations

Coding Example

If the temporary buffer is not directly addressed by a terminal I/O instruction, then
it acts as a normal system buffer of sizeRIGHTM + 1. It may also be used,
however, for direct terminal I/O. Direct terminal I/O occurs when the buffer,
defined by an active IOCB, is directly addressed by a PRINTEXT or READTEXT
instruction. In this case the data is transferred i1nmediately and the new line
character (for carriage return, line feed, and so on) is not recognized.

When doing direct output operations, you must insert the output character count in
the index word of the BUFFER before the PRINTEXT (output) instruction. This
mode of operation allows the transfer of large blocks (larger than can be
accommodated by a TEXT buffer) of data to and from buffered devices such as the
4978, 4979, 4980, and 3lxx displays or buffered teletypewriter terminals. On
execution of DEQT, the buffer defined by the TERMINAL statement is restored.

The following example shows a use of the IOCB instruction.

In this program an ENQT instruction enqueues an IOCB whose label is
TERMINAL. The IOCB instruction refers to a terminal that was assigned the label
TERM24 during system generation. If no terminal named TERM24 had been
defined in the system generation, the terminal currently in use by the program would
be used by default. The IOCB defines a logical static screen that is 40 columns wide
and 12 rows deep, in the middle of the physical display.

The terminal does not use the system-defined buffer for I/O operations, but instead
uses a program-defined data buffer area called BUFR. The terminal retains the
characteristics defined in the IOCB until the program executes a DEQT or
PROGSTOP instruction.

· -
•
•

GETPRTR EQU
ENQT
•
•
•

*
TERMINAL

TERMINAL IOCB TERM24,TOPM=6,BOTM=17,LEFTM=20,RlGHTM=59,
SCREEN=STATIC,BUFFER=BUFR

BUFR BUFFER 480,BYTES
•
•
•

C

Chapter 2. Instruction and Statement Descriptions 2-223

IODEF

10DEF - Assign a Symbolic Name to a Sensor-Based 1/0 Device

2-224 SC34-0937

The I/O definition statement (IODEF) defines the hardware address and attributes of
a sensor-based- I/O device and assigns a label to that device.

The device label consists of two characters that define the type of sensor-based I/O
device you are using, followed by a number from one to 99 that identifies the
individual device. The types of devices are: AI (Analog Input), AO (Analog
Output), DI (Digital Input), DO (Digital Output), and PI (Process Interrupt).

You use the label assigned by IODEF to code a sensor-based I/O instruction (SBIO),
The SBIO instruction only refers to the label of the I/O device. You specify the
actual physical address of the device and the device attributes on the IODEF
statement. (See the SBIO instruction for more details on using the symbolic device
name.) The WAIT and POST instructions refer to the IODEF Process Interrupt
statement.

Each IODEF statement creates an SBIO control block (SBIOCB). The control
block provides the link between the IODEF statement and the SBIO instruction that
refers to it. The control block also provides a location into which your program can
read data or from which it can write data. The system stores data in the control
block if you have not specified another storage location on the SBIO instruction.
The contents of the SBIOCB are described in the Internal Design.

Each type of sensor-based I/O device requires a specific type of IODEF statement.
You must group all IODEF statements that refer to the same type of device together
in your application program. In addition, you must place all IODEF statements in
your program before the SBIO instructions that refer to them.

In EDL, All IODEF statements must be in the same assembly module as the TASK
or ENDPROG statement. If the SBIO instructions are to be in a separate module,
you can provide symbolic names using ENTRY/EXTRN statements. You must
create a separate IODEF for each task; different tasks cannot use the same IODEF
statement.

The syntax of the IODEF statement for each device type (AI, AO, DI, DO, and PI)
appears on the following pages.

o

o

o

()

o

o

IODEF (Analog Input)

IODEF (Analog Input)

Syntax Example

Syntax:

label

Required:
Defaults:
Indexable:

Op.erand

AIx

ADDRESS =

POINT =

RANGE =

ZCOR=

IODEF AIx,ADDRESS = ,POINT = ,RANGE = ,ZCOR =

AIx,ADDRESS = ,POINT =
RXNGE=5V, ZCOR=NO
none

Description

Analog Input, where "x" is the number (1- 99) you assign to an I/O
device to identify it in your application program. If you include more
than one IODEF AIx statement in the program, you must group these
statements together.

A 2-digit hexadecimal address.

The analog input point. The point is 0 -7 for AI relay or 0 -15 for
AI solid state.

Range for the multi range amplifier.

5V = 5 Volts
500MV = 500 Millivolts
200MV =<= 200 Millivolts
100MV = 100 Millivolts
50MV = 50 Millivolts
20MV = 20 Millivolts
10MV = 10 Millivolts

YES, to use the zero-correction facility of AI.

NO (the default), not to use the zero-correction facility.

Define an analog input device with the label All.

INPUT IODEF AIl,ADDRESS=72,POINT=1,RANGE=50MV,ZCOR=YES

Chapter 2. Instruction and Statement Descriptions 2-225

IODEF (Analog Output)

IODEF (Analog Output)

Syntax Example

Syntax:

label

Required:
Defaults:
Indexable:

Operand

AOx

ADDRESS =

POINT =

IODEF AOx,ADDRESS=,POINT=

AOx,ADDRESS =
POINT =0
none

Description

Analog Output, where "x" is the number (1 - 99) you assign to an I/O
device to identify it in your application program. If you include more
than one IODEF AOx statement in the program, you must group these
statements together.

A 2-digit hexadecimal address.

The analog output point. The point range is 0 - 1.

Define an analog output device with the label A02.

OUTPUT IODEF A02,ADDRESS=75,POINT=1

2-226 SC34-0937

o

o

o

o

c

o

. IODEF (Digital Input)

IODEF (Digital Input)

Syntax Example

Syntax:

label IODEF Dlx,TYPE = GROUP,ADDRESS =
or

Dlx,TYPE = SUBGROUP,ADDRESS = ,BITS = (u,v)
or

DIx, TYPE = EXTSYN C,ADDRESS =

Required: All
Defaults: none
Indexable: none

Operand Description

DIx Digital input, where "x" is the number (1 - 99) you assign to an I/O
device to identify it in your application program. If you include more
than one 10DEF Dlx statement in the program, you must group these
statements together.

TYPE = The type of DI operation you are performing. Code one of the
following:

ADDRESS =

GROUP The I/O operations will use the entire group of 16 DI
points. DI operates in unlatched mode.

SUBGROUP The I/O operations will use a subset of the 16-bit
group. The subgroup is stored right-adjusted in the
input word with the leftmost bits set to O. DI operates
in unlatched mode.

EXTSYNC The I/O operations will use the hardware external
synchronization feature for DI. You must code the
count field on the associated SBIO instructions. DI
operates in latched mode.

A 2-digit hexadecimal address.

BITS = (u,v) Theportion of the 16-point group you are using when you specify
TYPE = SUBGROUP. The portion starts at bit u (0 to 15) for a
length of v (l to 16 - u).

Define a digital input device with the label DII.

INPUT IODEF DI1,TYPE=GROUP,ADDRESS=49

Chapter 2. Instruction and Statement Descriptions 2-227

10 DEF (Digital· Output)

IODEF (Digital Output)

Syntax Examples

2-228 SC34-0937

Syntax:

. label IODEF DOx,TYPE = GROUP,ADDRESS =

or
DOx,TYPE = SUBGROUP,ADDRESS = ,BITS = (u,v)

or
DOx,TYPE = EXTSYNC,ADDRESS = ,BITS = (u,v)

Required: All
Defaults: none
Indexable: none

Operand Description

DOx Digital output, where "x" is the number (1- 99) you assign to an I/O
device to identify it in your application program. If you include more
than one 10DEF DOx statement in the program, you must group
these statements together.

TYPE = The type of DO operation you are performing. Code one of the
following:

ADDRESS =

GROUP The I/O operations will use the entire group of 16 DO
points.

SUBGROUP The I/O operations will use a subset of the 16-bit
group. Bits that are not part of the subset you specify
remain unchanged.

EXTSYNC The I/O operations will use the hardware external
synchronization feature for DO. You must code the
count field on the associated SBIO instructions.

A 2-digit hexadecimal address.

BITS = (u,v) The portion of the 16-point group you are using when you specify
TYPE = SUBGROUP. The portion starts at bit u (0 to 15) for a
length ofv (1 to 16-u).

1) Define a digital output device with the label DOL The I/O operations will use
the entire group of 16 DO points (TYPE = GROUP).

OUTPUT IODEF D01,TYPE=GROUP,ADDRESS=4B

2) Define a digital output device with the label D02. The I/O operations will use
the hardware external synchronization feature (TYPE = EXTSYNC).

OUTPUT2 IODEF D02,TYPE=EXTSYNC,ADDRESS=4A

o

o

o

o

0""
1/

o

IODEF (Process Interrupt)

Syntax:

label

IODEF (Process Interrupt)

IODEF PIx,ADDRESS = ,BIT = ,SPECPI =
or

PIx,ADDRESS = ,TYPE = BIT ,BIT = ,SPECPI =
or

PIx,ADDRESS = ,TYPE = GROUP,SPECPI =

Required: PIx, ADDRESS =

Defaults: none
Indexable: none

Operand Description

PIx Process interrupt, where "x" is the number (1 - 99) you assign to an
I/O device to identify it in your application program. If you include
more than one IODEF PIx statement in the program, you must group
these statements together.

ADDRESS =

BIT =

TYPE =

A 2-digi t hexadecimal address.

The bit number (0&ndash15) used for PI.

Indicates when the system will call the special process interrupt routine
you provide. Code one of the following:

GROUP The supervisor gives control to the special interrupt routine
you provide if an interrupt occurs on any bit in the PI
group. The PI group is not read or reset; reading or
resetting the PI group is the responsibility of your routine.

BIT

Control returns to the supervisor with a branch to the entry
point SUPEXIT. You must include the module
$EDXATSR with your program to use SUPEXIT. If the
routine processes the interrupt on level 0, it can issue a
Series/1 hardware exit level instruction (LEX) instead of
returning to SUPEXIT. Issuing the LEX instruction
greatly improves performance.

Note: To use TYPE = GROUP, you must be familiar with
the operation of the Series/1 process interrupt feature.
Your routine must contain all the instructions necessary to
read and reset the process interrupt group to which it
refers.

The supervisor gives control to the special interrupt routine
you provide only when an interrupt occurs on the bit
specified in the BIT = operand.

When control returns to the supervisor, the contents of Rl
must be the same as when the system called your routine
and RO must contain either 0 or a POST code. If RO
contains a POST code, R3 must contain the address of an
ECB to be posted by the POST instruction.

Chapter 2. Instruction and Statement Descriptions 2-229

IODEF (Process Interrupt)

Syntax Examples

Coding Examples

2-230 SC34-0937

R~gister 7 contains the supervisor return address on entry.
If your routine is in partition 1, you can return control to
the supervisor by using the assembler instruction BXS (R7).
The SPECPIRT instruction allows you to return control to
the supervisor from any partition. (See the SPECPIR T
instruction for a coding description.)

SPECPI = The label of the first instruction of a special process interrupt routine.
You must write the routine in Series/1 assembler language.

The supervisor executes the routine when the defined interrupt occurs.
This routine bypasses the normal supervisor response and allows you
to handle process interrupts quickly.

You can include more than one special process interrupt routine in
your program.

1) Define a process interrupt device with the label PII.

A IODEF PIl,ADDRESS=48,BIT=2

2) Define a process interrupt device with the label PI2.

B IODEP PI2,ADDRESS=49,BIT=15

1) The supervisor passes control to the special interrupt routine FASTPII when an
interrupt occurs on bit 3.

IODEF

FASTPIl EQU

MVW
•
•
•
MVA
MVWI
MVW
SPECPIRT

PI2,ADDRESS=48,BIT=3,TYPE=BIT,SPECPI=FASTPII

*

Rl,SAVERl

PI2,R3
3,R0
SAVERl,Rl

SAVE Rl

PUT THE ADDR OF PI2 IN R3
POSTING CODE IN R0
RESTORE Rl
RETURN TQ SUPERVISOR

2) The supervisor passes control to the special interrupt routine labeled F ASTPI2
when an interrupt occurs on anyone of the PI group bits at address 49.

IODEF PI6,ADDRESS=4~,TYPE=GROUP,SPECPI=FASTPI2
•
•
•

FASTPI2 EQU *

o

o

o

o

o

lOR

lOR - Compare the Binary Values of Two Data Strings
The Inclusive OR instruction (lOR) compares the binary value of operand 2 with the
binary value of operand 1. The instruction compares each bit position in operand 2
with the corresponding bit position in operand 1 and yields a result, bit by bit, of 1
or O. If either or both of the bits compared is 1, the result is 1. If neither of the bits
compared is I, the result is O.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

count

lOR

opndl,opnd2

opndl,opnd2,count,RESUL T = ,
PI =,P2=,P3=

count = (I,WORD),RESULT = opndl
opndl,opnd2,RESUL T

Description

The label of the data area to be compared with opnd2. Opndl cannot
be a self-defining term.

The value to be compared with opndl. You can specify a self-defining
term or the label of a data area.

Specify the number of consecutive values in opndl on which the
operation is to be performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one
precision that the system uses for opndl, opnd2, and the resulting bit
string. When specifying a precision, code the count operand in the
form,

(n,precision)

where "n" is the count and "precision" is one of the following:

BYTE Byte precision
WORD Word precision (default)
DWORD Doubleword precision

The precision you specify for the count operand is the portion of
opnd2 that is used in the operation. If the count is (3,BYTE), the
system compares the first byte of data in opnd2 with the first three
bytes of data in opndl.

RESULT = The label of the data area or vector in which the result is to be placed.
When you specify RESULT, the value of opndl does not change
during the operation. This operand is optional.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1:-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-231

lOR

Syntax Examples

2-232 SC34-0937

1) Compare X I F008 1 with the contents of STRING and place the result in the data
area labeled ANS.

STRING
ANS

lOR STRING,X'F008 1,RESULT=ANS
•
•
•

DATA X' 0F08 1

DATA F' 01
binary 0000 1111 0000 1000
binary zeros

After the lOR operation, ANS contains:

Hexadecimal - X I FF08 I

Binary - 1111 1111 0000 1000

2) Compare the contents of OPER2 to the first three doublewords beginning at
label OPERI and place the result in the data area labeled RESUL TX.

lOR
•
•
•
•

OPER1 DC
DC
DC
DC
DC
DC

OPER2 DC
RESULTX DC

OPER1,OPER2,(3,DWORD),RESULT=RESULTX

X'FFFF '
X' 0000 1

X'8888 1

X' 4567 1

X 111111
X'AAAA '
2X'AAAAI
6F ' 0

1

binary 1111 1111 1111 1111
binary zeros
binary 1000 1000 1000 1000
binary 0100 1010 01100111
binary 0001 0001 0001 0001
binary 1010 1010 1010 1010

After the operation, RESUL TX contains:

Hexadecimal - X I FFFF AAAA AAAA EAEF BBBB AAAA I

3) Compare the first byte of data in TEST to the first three bytes of data in
INPUT. Place the result in the data area labeled OUTPUT.

INPUT
TEST
OUTPUT

lOR
•
•
•

DC
DC
DC
•
•
•

INPUT,TEST,(3,BYTE),RESULT=OUTPUT

C' 1.21 binary 1111 0001 0100 1010 1111 0010
C' 0.0 1 binary 1111 0000
3C ' 01 binary 1111 0000 1111 0000 1111 0000

After the operation, OUTPUT contains:

Binary - 1111 0001 1111 1010 1111 0010

o

o

o

o

o

Coding Example

Return Codes

o

LASTQ

The LASTQ instruction acquires the last (most recent) entry in a queue. You define
a queue with the DEFINEQ statement. The queue entry can contain data or the
address of a data buffer. After you acquire the contents of the queue entry, the
system adds the entry to the free chain of the queue.

Syntax:

label

Required:
Default:
Indexable:

Operand

qname

loe

LASTQ

qname,loe
none
qname,loe

Description

qname,loe,EMPTY = ,PI = ,P2 =

The name of the queue from which the entry is to be fetched. The
queue name is the label on the DEFINEQ statement that creates the
queue.

The label of a word of storage where the entry is placed. #1 or #2 can
be used.

EMPTY = Specify the first instruction of the routine to be called if a "queue
empty" condition is detected during the execution of this instruction.
If this operand is not specified, control returns to the next instruction
after the LASTQ. A return code of -1 in the first word of the task
control block indicates that the operation completed successfully. A
return code of + 1 indicates that the queue is empty.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px = r' on page 1-10 for a detailed description of how to
code these operands.

See the examples following the NEXTQ instructions.

The return codes are returned in the first word of the task control block (TCB) of
the program issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code Description

-1 Successful completion.

1 Queue is empty

Chapter 2. Instruction and Statement Descriptions 2-233

LCCIOCB

LCCIOCB - Specify Device Subchannel Command and Buffer

2-234 SC34-0937

The LCCIOCB statement specifies the device sub channel command and buffer for
Local Communications Controller instructions.

Refer to the Communications Guide for programming considerations and an example
of the LCCIOCB statement.

Syntax:

label LCCIOCB ADDRESS = ,BUFFER = ,BUFFKEY = ,RINGADR = ,

Required:
Defaults:
Indexable:

Operand

ADDRESS =

COMMAND=,ATTNECB=,Pl=,P2=,
P3=,P4=,P5=

label,ADDRESS = ,COMMAND =
None
None

Description

The hexadecimal device address of the subchannel on which the system
will perform the operation.

BUFFER = The label of the area from which to send and receive data.

BUFFKEY=

RINGADR=

The number (0-31, depending on your processor) of the address that
contains the buffer. If you omit this operand, the buffer must be in
the same address space as the requesting program.

A I-byte hexadecimal address designating the label of an area storing
data you send or receive. After a receive operation completes, the
system updates the field to indicate the sending ring address.

Note: Ring addresses are determined when the attachment card is
installed. If you are unsure of your ring address, issue the RA
command of $LCCUTI to determine what it is.

COMMAND =
IndIcate one of the following options.

Receive Operations:

RSP. Receive specific data. This operation receives data from the
ring address specified by the RINGADR operand. If your system
issues this command to subchanne11, the device times out if it receives
no data within seven seconds.

RUS. Receive unsolicited data. This operation receives data from any
ring address. This type of receive does not involve a time out.

Send Operations Received on Subchannel 0:

SIPL. Send IPL request. This send places the specified ring address
in the IPL state. The next command you issue should be a send
containing the bootstrap loader.

()

o

o

o

o

ATTNECB=

LCCIOCB

ST. Send status request. This send requests the hardware status from
the specified ring address. Issue a receive to subchannel 0 before this
send.

SREQ. Send request. You may send up to 1000 bytes of data with
this message.

RREQ. Receive request. You may receive up to 1000 bytes of data
with this message.

BC. Broadcast. Broadcast up to 1000 bytes of data to all Series/Is on
the ring.

Send Operations Received on Subchannell:

SSP. Send specific data. This command sends up to 64K bytes of
data to the specified ring address.

SSPE. Send specific data end. This command sends up to 64K bytes
of data to the specified ring address and indicates to the receiving
Series/l that data transfer is complete.

SUN. Send unsolicited data. This command sends up to 64K bytes of
data to the specified ring address.

SUSE. Send unsolicited data end. This command sends up to 64K
bytes of data to the specified ring address and indicates to the
receiving Series/l that data transfer is complete.

Control Operations:

CLR. Clear the ring.

RBP. Reset bypass. This command connects this LCC device to the
ring.

SBP. Set bypass. This command disconnects this LCC device from
the ring.

The label of the attention ECB that will be posted when your system
receives an attention interrupt. When the attention task has finished
processing the request, the task should detach itself to wait for another
attention interrupt.

Px = Parameter-naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Use the following guide when using parameter naming operands for
the LCCIOCB statement.

Parameter
PI
P2
P3

P4
P5

Operand
ADDRESS =
BUFFER=
BUFFKEY= (one byte)
RINGADDR= (one byte)
COMMAND =
ATTNECB=

Chapter 2. Instruction and Statement Descriptions 2-235

LCCCLOSE

LCCCLOSE - Close the Device Subchannel

Return Codes

2-236 SC34-0937

The LCCCLOSE instruction closes the device sub channel and allows no further
interrupts. Issue it to end I/O immediately and to post any waiting ECBs with a
HALT status code.

Refer to the Communications Guide for programming considerations and an example
of the LCCCLOSE instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

IOCB

LCCCLOSE IOCB = ,ERROR =

IOCB=
None
IOCB=

Description

The label of the LCCIOCB statement associated with the close
operation. Close processing uses this statement to determine which
subchannel to close.

ERROR = The label of the next instruction to be executed if an error occurs
during closing of the subchannel. If ERROR = is omitted, control
returns to the next sequential instruction.

Return
Code Description

-1 Successful completion.

4 The $DDBTYPE field of the DDB does not specify Local
Communications Controller.

()

o

o

()

o

o

LCCCNTL

LCCCNTL - Initiate Control Functions

Return Codes

The LCCCNTL instruction initiates control functions to the Local Communications
Controller device.

Refer to the Communications Guide for programming considerations and an example
of the LCCCNTL instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

IOCB

LCCCNTL IOCB=,ERROR=,WAIT=

IOCB=
WAIT=YES
IOCB=

Description

The label of the LCCIOCB statement to be associated with the control
operation.

ERROR = The label of the next instruction to be executed if an error occurs.

WAIT =

Return
Code

-1

4

6

7

8

13

ERROR = is valid only when WAIT = YES. If ERROR = is omitted,
control returns to the next sequential instruction.

An indicator of whether or not the current task is suspended until the
operation ends.

YES, the task is suspended until the operation ends.

NO, control returns after the system initiates the operation. Issue a
subsequent WAIT to determine when the operation is complete.

Description

Successful completion.

The $DDBTYPE field of the DDB does not specify Local
Communications Controller.

An unrecoverable I/O error occured.

The Local Cqmmunications Controller subchannel is not open or the
task issuing the LCC instruction is not the same task that issued the
LCCOPEN instruction.

I/O in progress.

Request ended by CLOSE.

Chapter 2. Instruction and Statement Descriptions 2-237

LCCOPEN

LCCOPEN - Open Device Subchannel

Return Codes

2-238 SC34-0937

The LCCOPEN instruction opens and prepares the device subchannel for interrupts.

Refer to the Communications Guide for programming considerations and an example
of the LCCOPEN instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

IOCB=

ERROR =

Return
Code

-1

4

5

6

12

LCCOPEN IOCB = ,ERROR =

IOCB=
None
IOCB=

Description

The label of the LCCIOCB statement associated with the open
operation. Open processing uses this statement to determine which
subchannel to open.

The label of the next instruction the system should execute if an error
occurs during opening of the subchannel. If ERROR = is omitted,
control returns to the next sequential instruction.

Description

Successful completion.

The $DDBTYPE field of the DDB does not specify Local
Communications Controller.

Subchannel already open.

An unrecoverable error occurred during the Local Communications
Controller RESET BYPASS command.

The DDB indicates that device initialization was not completed
successfully.

(
.~

-J

o

o

o

o

LCCRECV

LCCRECV - Receive Data from a Series/1 on a Ring
The LCCRECV instruction allows reception of data from another Series/1 on the
ring.

Refer to the Communications Guide for programming considerations and an example
of the LCCRECV instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

IOCB=

LCCRECV IOCB=,ERROR=,WAIT=

IOCB=
WAIT=YES
IOCB=

Description

The label of the LCCIOCB statement associated with the receive
operation.

ERROR = The label of the next instruction the system should execute if an error
occurs during a receive operation. ERROR = is valid only when
WAIT = YES. If ERROR = is omitted, control returns to the next

WAIT =

Return
Code

-1

4

6

7

9

10

11

sequential instruction.

YES, the task is suspended until the operation ends.

NO; control returns after the system Initiates the operation. A
subsequent WAIT must be issued to determine when the operation is
complete.

Description

Successful completion.

The $DDBTYPE field of the DDB does not specify Local
Communications Controller.

An unrecoverable I/O error occurred.

The Local Communications Controller subchannel is not open or the
task issuing the LCC instruction is not the same task that issued the
LCCOPEN instruction. I/O in progress.

The record length specified is less than the length of the data received;
no data movement will take place.

A DCB specification check occurred.

An invalid address was specified; a protect check occurred, or the
address is past the end-of-storage.

Chapter 2. Instruction and Statement Descriptions 2-239

,LCCRECV

Return
Code Description

13 ! Request ended by CLOSE.

14 The cycle-steal status command failed.

15 The cycle-steal status data, bytes 4 and 5, are available in the
LCCIOCB.

()

o
2-240 SC34-Q937

o

o

o

LCCSEND

LCCSEND - Send Data to a Series/1 on a Ring

Return Codes

The LCCSEND instruction allows you to send data to another Series/Ion the ring.

Refer to the Communications Guide for programming considerations and an example
of the LCCSEND instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

IOCB=

ERROR =

WAIT =

Return
Code

-1

4

6

7

8

9

10

11

LCCSEND IOCB = ,ERROR = ,WAIT =

IOCB=
WAIT = YES
IOCB=

Description

The label of the LCCIOCB statement associated with the send
operation.

The label of the next instruction the system should execute if an error
occurs. ERROR= is valid only when WAIT=YES. If ERROR = is
omitted, control returns to the next sequential instruction.

YES, the task is suspended until the operation ends.

NO, control returns after the system initiates the operation. A
subsequent WAIT must be issued to determine when the operation is
complete.

Description

Successful completion.

The $DDBTYPE field of the DDB does not specify Local
Communications Controller.

An unrecoverable I/O error occurred (LCCOPEN, LCCRECV, and
LCCSEND).

The Local Communications Controller subchannel is not open or the
task issuing the LCC instruction is not the same task that issued the
LCCOPEN instruction.

I/O in progress.

The record length specified is less than the length of the data received;
no data movement will take place;

A DCB specification check occurred.

An invalid address was specified; a protect check occurred, or the
address is past the end-of-storage.

Chapter 2. Instruction and Statement Descriptions 2 .. 241

LCCSEND

Return
Code Description

13 Request ended by CLOSE. o
14 The cycle-steal-status command failed.

15 The cycle-steal-status data, bytes 2 and 3, are available in the
LCCIOCB.

o

o
2-242 SC34-0937

o

o

o

LOAD

LOAD - Load a Program
The LOAD instruction allows one program to load another main program or
overlay program from a program library on disk or diskette. The loaded program
runs parallel with, and independently of, the loading program, regardless of whether
it is a main program or an overlay. The loading program may, however,
synchronize its own execution with the loaded program.

The LOAD instruction also allows you to load a program in another partition and
to pass that program parameters. See Appendix C, "Communicating with
Programs in Other Partitions (Cross-Partition Services)" on page C-l for an example
of such a cross-partition operation. Refer to the Language Programming Guide for
more information on cross-partition services. See "Coding the LOAD Instruction
for Extended Address Mode" on page 2-248 for information on coding the LOAD
instruction for the extended address mode.

A program can be loaded in two ways:

• As an independent program in its own contiguous storage area

• As an overlay program within the storage area allocated for the loading
program.

The advantages of the independent LOAD operation are:

• Main storage is allocated only when required

• More than one program may be loaded for simultaneous execution.

The advantages of the overlay LOAD operation are:

• The availability of main storage can be guaranteed by the loading program since
it is within its own storage area

• The loaded program is brought into storage more quickly than by an
independent LOAD.

Figure 2-7 on page 2-247 illustrates the two ways of loading a program.

You can test the first word of the task control block (TCB) of the loading program
to determine the result of the load operation. The label of the TCB is the label of
the program (taskname). If this word is -1, the operation was successful.

When a LOAD instruction loads either an independent program or an overlay, the
address of the currently active terminal of the loading program is stored in the
program header of the program being loaded.

Chapter 2. Instruction and Statement Descriptions 2-243

LOAD

2-244 SC34-0937

Syntax:

label

label

Required:
Defaults:
Indexable:

Operand

progname

LOAD

LOAD

progname,parmname,DEQT =

DS = (dsnamel, ... ,dsname9),EVENT = ,
LOGMSG = ,PART = ,ERROR = ,STORAGE = ,P2 =

or
PGMx,parmname,DS = (DSx, ...),DEQT =,
EVENT = ,ERROR = ,P2 =

progname or PGMx
LOGMSG = YES,STORAGE = O,DEQT = YES
none

Description

The 1 - 8 character name of a program stored in an Event Driven
Executive library. You can specify the volume from which to load the
program by separating the program name and the volume name by a
comma and enclosing both in parentheses. To load program PROGA
on volume EDX003, you would code: (PROGA,EDX003). The
program must reside on disk or diskette. The volume name can be
1 - 6 characters long.

PGMx The parameter "x" is a number from 1 to 9 that specifies which of the
overl3:Y programs defined in the PROGRAM statement is to be
loaded. PGMx is not valid with PART; overlay programs are loaded
in space included with the loading program.

parmname The label of the first word in a list of consecutive parameter words to
be passed to the loaded program. (See the PROGRAM statement for
the maximum length of this list.)

DEQT= YES (the default), dequeues the terminal currently in use by the
loading program.

NO, prevents the terminal from being dequeued when the LOAD
instruction executes. Coding DEQT = NO also forces the LOGMSG
operand to LOGMSG = NO.

Note: Allow this operand to default or code DEQT = YES for a
virtual terminal program.

DS = The names of the data sets to be passed to the loaded program.

If your program loads another program, you can pass the loaded
program the names of 1 to 9 data sets. This operand enables the main
program to define, during the load operation, the names of the data
sets the loaded program will use. On the PROGRAM statement of the
program to be loaded, the data set list contains the sequence "??" for
each missing data set name. This sequence indicates that the data set
name will be supplied at load time. (See the PROGRAM statement
for more information.)

o

o

o

o

c

LOGMSG=

EVENT =

()

LOAD

For example, if the PROGRAM statement in the program to be
loaded contained the data set list:

... DS=(PARMFILE,??,RESULTS)

the LOAD instruction in the main program,

LOAD MYPROG,DS=(MYDATA)

would pasa the data set name MYDATA to the loaded program and
produce the following list for the loaded program:

... DS=(PARMFILE,MYDATA,RESULTS)

The LOAD instruction, in this case, replaces the sequence "??" with
the data set name MYDATA.

When the main program loads an overlay program, you must code
DSx, where "x" is the relative position (number) of the data set in the
list of data set names on the PROGRAM statement of the main
program.

The parameter "x" can be a number from I to 9. For example, to pass
the second data set name in a list to an overlay program named
OVPGM, you would code:

LOAD OVPGM,DS=DS2

All unspecified data set names in the program being loaded must be
resolved at LOAD time or the load operation will fail.

If the main program passes a tape data set to another program, the
main program's data set control block (DSCB) is no longer associated
with the tape data set. This allows the loaded program to have access
to the tape data set using the main program's DSCB. When the
loaded program ends, the system closes the tape data. If the main
program needs to use the tape data set again, the main program must
call DSOPEN or load $DISKUT3 to reopen the tape data set.

YES (the default), to print or display the "PROGRAM LOADED"
message on the terminal being used by the program.

NO, to avoid printing or displaying this message.

The label of an event (ECB statement) that the system posts complete
when the loaded program issues a PROGSTOP.

By issuing a LOAD and a subsequent WAIT for this event, the main
program can synchronize its own execution with the loaded program.
The ECB, however, must not be reset with a RESET instruction or
with the RESET operand of aWAIT instruction, or synchronization
may be lost.

Chapter 2. Instruction and Statement Descriptions 2-245

LOAD

2-246 SC34-0937

PART =

Notes:

1. If you specify this operand, the main program must wait for the
loaded program to end. Otherwise, the system will post the ECB
when the loaded program ends even though the main program
may no longer be active. The results, in such a case, are
unpredictable.

2. If a program check occurs, the ECB will be posted with the value
of the PSW. Refer to the Problem Determination Guide for
information qn the PSW.

The number of the partition in which you want to load the program.
If you do not code this operand, the system loads the program in the
same partition as the main program. See
Appendix C, "Communicating with Programs in Other Partitions
(Cross-Partition Services)" on page C-l for an example of loading a
program in another partition. See "Coding the LOAD Instruction for
Extended Address Mode" on page 2-248 for information on coding
the PART = operand for extended address mode support.

You can code one of the following:

• A number from 1 to 32 (partition I to 32, depending on your
processor)

• PART = ANY, to load the program in any available partition.

• The label of a I-word data area that contains the partition
number.

If the data area contains a 0, the system loads the program in any
available partition.

Do not use this operand if the main program loads an overlay
program.

ERROR = The label of the first instruction of the routine to receive control if an
error condition occurs during the load operation. If you do not code
this operand, control passes to the instruction following the LOAD
instruction and you can test for errors by referring to the return code
in the first word of the task control block (TCB).

STORAGE =

P2=

The number of bytes of additional storage to be added to the loaded
program. This operand overrides the value of the STORAGE operand
on the PROGRAM statement of the program to be loaded.

Some application programs have a minimum storage requirement; be
sure you know what it is before using this override. The load
operation will fail if the loaded program requires more storage than is
available. (See the PROGRAM statement for more information on
allocating program storage.)

This operand does not override the STORAGE operand on the
PROGRAM statement if you code a 0 or allow the operand to default.

Do not use this operand if the main program loads an overlay
program.

Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

()

o

o

o

o

LOAD

The following figure illustrates two ways the system can load a program.

PROGRAM

•
•
•

LOAD

•
•
•
•
•
•
•
• 4111

•
•

LOAD

•
•
•
•

Loa~ PROGRAM
•
•
•

Figure 2-7. Two Ways of Loading a Program

JOe)
~

I

..... ...

and
independent
execution

,Overlay program
within storage area
of loading program.
Independent execution.

L

Independent
program in its
own stoIge area

PROGRAM

•
•
•
•

----I~PI •

A0937005

Chapter 2. Instruction and Statement Descriptions 2-247

LOAD

Coding the LOAD Instruction for Extended Address Mode

Syntax Example

2-248 SC34-0937

When you use the LOAD instruction with extended address mode support, you have
several options for the PART = operand. The P ART = operand indicates the
number of the partition in which you want to load the program. If you do not code
this operand, the system loads the program in the same partition as the main
program.

Note: Do not use the PART = operand if the main program loads an overlay
program.

You can code one of the following for the PART = operand:

• A partition number from I to 32 (depending on your processor).

• PART = ANY to load the program into any available partition. If you specified
LOADER = (S,) in the $SRPROF data set, then the loader will try to load the
program into one of the static partitions only.

• PART = DYNAMIC to load the program in any available dynamic partition.
This option overrides the LOADER = (S,) option in the $SRPROF data set.

• PART = STATIC to load the program in any available static partition.

• The label of a I-word data area that contains the partition number. If the data
area contains a 0, the system loads the program into any available partition
depending on what you specified in $SRPROF.

In the following example, the system tries to load program PGMA into any available
static partition.

LOAD PGMA,PART=STATIC

Note: If you specify the PART = operand as ANY, STATIC, or DYNAMIC, then
the order of the partitions into which the system attempts to load a program
depends on the LOADER = statement in the IPL configuration data set, $SRPROF.
Refer to the Installation and System Generation Guide for an explanation of
$SRPROF and static and dynamic partitions.

o

()

o

Return Codes

o

c

o

LOAD

The return codes are returned in the first word of the task control block (TCB) of
the program issuing the instruction.

Return
Code Condition

-1 Successful completion.

61 $LOADER (the transient loader) is not included in the system.

62 In an overlay request, no overlay area exists.

63 In an overlay request, the overlay area is in use.

64 No space available for the transient loader.

65 In an overlay load operation, the number of data sets passed by the
LOAD instruction does not equal the number required by the overlay
program.

66 In an overlay load operation, no parameters were passed to the loaded
program.

67 A disk(ette) I/O error occurred during the load process.

68 Reserved.

69 Reserved.

70 Not enough main storage available for the program.

71 Program not found on the specified volume.

72 Disk or diskette I/O error while reading directory.

73 Disk or diskette I/O error while reading program header.

74 Referenced module is not a program.

75 Referenced module is not a data set.

76 One of the data sets was not found on referenced volume.

77 Invalid data set name.

78 LOAD instruction did not specify required data set(s).

79 LOAD instruction did not specify required parameters(s).

80 Invalid volume label specified (two or more programs referenced the
same volume).

-81 Cross partition LOAD requested, support not included at system
generation.

82 Requested partition number greater than number of partitions in the
system.

83 Load instruction attempted to access a 1024-bytes-per-sector diskette
without $101024 preloaded in storage.

Note: If the program being loaded is a sensor I/O program and a sensor I/O error is
detected, the return c-ode will be a sensor I/O return code, not a load return code.

Chapter 2. Instruction and Statement Descriptions 2-249

MEeB

MECB - Create a List of Events

2-250 SC34-0937

The MECB statement creates a control block for use by a W AITM instruction. The
control block contains control information and a list of the ECBs for the events on
which the W AITM instruction must wait.

You can specify labels for several of the fields in the MECB so that you can get
access to them from your application program. The fields you can get access to are:

• The number of events posted
• The pointer to the last (most recent) event posted
• The post code received by each event in the list.

You must use the ECB statement to code the necessary ECBs in programs assembled
under $EDXASM, except for those ECBs specified with the EVENT = operand on
the LOAD instruction or on the PROGRAM or TASK statement. In programs
assembled with the host or Series/l macro assemblers, the system automatically
generates an ECB for an event named in a POST instruction.

See "WAITM - Wait for One or More Events in a List" on page 2-553 for the
description and syntax of the W AITM instruction. See "ECB - Create an Event
Control Block" on page 2-113 for the description and syntax of the ECB statement.

Note: To use the MECB statement, you must have included the SWAITM module
in your system and specified the MECBLST keyword on the SYSPARMS statement
during system generation. (Refer to the Installation and System Generation Guide for
additional information.)

Syntax:

label

Required:
Defaults:

Indexable:

Operand

MECB

label

(ecbl,ecb2, ... ecbn),nwait,MAXECB = ,CODE =,
NUMP = ,LAST = ,PI = (lbll,lbI2, .. .lbln),P2 =

nwait=l, CODE =-1,
MAXECB = number of ECB labels coded
none

Description

ecb 1 ,ecb2, ... ,ecbn
The label of each ECB you are including in the MECB list. The
system generates additional blank entries if the number of labels is less
than the value coded for MAXECB = .

nwait The number of events that must occur before the waiting program can
continue.

MAXECB = The number of events (ECBs) in the MECB list. If this value is larger
than the number of ECB labels coded, the system generates blank
entries to make up the difference.

o

o

o

o

Syntax Example

c

o

CODE =

NUMP=

LAST =

PI =(...)

P2=

MECB

The initial value of the MECB post code. If this word is not 0 when,
your program issues the W AITM instruction, the system does not wait
unless the W AITM instruction has the RESET operand coded. (The
default is -1.)

The label for the field containing the number of events posted.

The label for the pointer to the last event posted.

Parameter naming operand. Specify labels for the fields in the MECB
that contain the post code for the respective ECBs. (The system places
the post code received by an ECB in the first word of the MECB entry
for that ECB.)

Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Wait for two of the three specified events to occur before continuing. Place labels
on the pointer to the last event that occurred and on the post codes.

MECBl MECB (ECBl,ECB2,ECB3),2,LAST=LASTECB,Pl=(POSTl,POST2,POST3)

Chapter 2. Instruction and Statement Descriptions Z-251

MESSAGE

MESSAGE - Retrieve a Program Message

2-252 SC34-0937

The MESSAGE instruction retrieves a formatted program message from a data set
or module and displays or prints the message. See Appendix E, "Creating, Storing,
and Retrieving Program Messages" on page E-l for more information.

The instruction also allows you to include data or text generated by your program
within the message.

Note: Any references to 3lxx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

msgno

COMP=

SKIP =

LINE =

MESSAGE msgno,COMP = ,SKIP = ,LINE = ,SPACES =,
PARMS = (parml, ... ,parm8),MSGID = ,
XLATE = ,PROTECT = ,PI =

msgno,COMP =
MSGID = NO,XLATE = YES,PROTECT = NO
none

Description

The number of the message you want displayed or printed. This
operand must be a positive integer or a label preceded by a plus sign
(+) and equated to a positive integer.

The label of the COMP statement that points to the data set or
module that contains the formatted program messages. See the COMP
statement description for more information.

The number of lines to be skipped before the system prints or displays
the message. If your cursor is at line 2 on a display screen and you
coded SKIP = 6, the system displays the message on line 8. For a
printer, the SKIP operand controls forms movement.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen's bottom margin minus the number of history lines
and the screen's top margin.

The line number on which the message is to be printed or displayed.
Code a value from 0 to the number of the last usable line on the page
or logical screen. The line count begins at the top margin you defined
for the printer or display screen. LINE = 0 positions the cursor at the
top line of the page or screen you defined; LINE = 1 positions the
cursor at the second line of the page or screen. For roll screens, line 0
equals the screen's top margin plus the number of history lines.

o

o

o

o

o

o

MESSAGE

For printers and roll screens, if you code a value less than or equal to
the current line number, the system prints or displays the message at
the specified line on the next page or logical screen. For static screens,
if you code a value within the limits of the logical screen, the system
displays the message on the line you specified.

If you code a value greater than the last usable line number, the system
div'ides this value by the logical page size and uses the remainder as the
line number on which to print the message. For example, if you code
LINE = 22 .. and your roll screen has a logical page size of 20, the
message appears on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system prints or displays
the message. SPACES = 0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

PARMS=

MSGID=

XLATE=

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

The labels of data areas containing information to be included in the
message. You can code up to eight labels. If you code more than one
label, you must enclose the list in parentheses.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to Installation
and System Generation Guide for a description of this module.

YES, if you want the message number and 4-character prefix to be
printed at the beginning of the message you are retrieving from a data
set or module containing formatted program messages. See the COMP
statement operand "idxx" for a description of the 4-character prefix.

NO (the default), to avoid printing this information.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to Installation
and System Generation Guide for a description of this module.

NO, to send the message to the terminal as is, without translation.
Code this option if the message contains special characters that should
not be altered or interpreted by the terminal.

YES (the default), to cause translation of characters from EBCDIC to
the code the terminal uses to display the message.

With a 31xx in block mode, XLATE = NO also prevents the system
from inserting the attribute byte and escape sequences into the
message, and overrides the effects of TERMCTRL
SET,STREAM=YES.

Note: For a description of 31xx escape sequences, refer to the
appropriate display terminal description manual.

Chapter 2. Instruction and Statement Descriptions 2-253

MESSAGE

Syntax Examples

Coding Example

2-254 SC34-0937

PROTECT =
YES, to write protected characters to a static screen device that
supports this feature, such as an IBM 4978, 4979, 4980, or 3lxx in
block mode. Protected characters cannot' be typed over.

NO (the default), to avoid writing protected characters to a static
screen.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)", on page 1-10 for a detailed description of how to
code this operand.

Note: $TCBADS must contain the address space of the task control block when the
MESSAGE statement is executed.

1) Retrieve and print the first message in the disk data set to which the COMP
statement points.

MSGl MESSAGE 1,COMP=MSGSET
•
•
•

PROGSTOP
MSGSET COMP 'ERRS',DS1,TYPE=DSK

2) Retrieve and print the fifth message in the module to which the COMP statement
points. Insert the parameter "ACCOUNTS" in the message.

MSG2 MESSAGE +MSG,PARMS=A,COMP=MSGSET
•
•
•

PROGSTOP
MSG EQU
A DATA
MSGSET COMP

5
C'ACCOUNTS '
'ERRS',ERRORS,TYPE=STG

The following example uses the MESSAGE instruction to retrieve and print a
message contained in a disk data set. The program TASK loads a second program
called CALCPGRM. A WAIT instruction suspends the execution of TASK until
CALCPGRM completes. When CALCPGRM finishes, it posts the ECB at label
LOADECB. The MESSAGE instruction at label MSG 1 retrieves the first message
in the disk data set MSGDSI on volume EDX002. The first message in this data se1
is:

< <PROGRAM> > HAS FINISHED PROCESSING/*

The MESSAGE instruction inserts the parameter CALCPRGM into the
"PROGRAM" field of the message and displays the message as follows:

STATOOOI CALCPGRM HAS FINISHED PROCESSING

o

o

o

, I 0,,'

Return Codes

c

()

MESSAGE

Because the MESSAGE instruction contains MSGID = YES, the number of the
message and the 4-character prefix "STAT" appear at the beginning of the message.
The COMP statement assigns the 4-character prefix to the message.

TASK PROGRAM START,DS=((MSGDS1,EDX002))
LOADECB ECB
START EQU *

•
•
•

LOAD CALCPGRM,EVENT=LOADECB
WAIT LOADECB

MSGl MESSAGE 1,COMP=MSGSET,SKIP=1,PARMS=A,MSGID=YES

A
MSGSET

•
•
•

PROGSTOP
DATA
COMP
ENDPROG
END

'CALCPGRM '
'STAT',DS1,TYPE=DSK

The return codes are returned in'the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description

-1 Successful completioB.

301- 325 Error while reading message from disk. Subtract 300 from this value
to get the actual return code. See the disk return codes following the
READ or WRITE instruction for a description of the code.

326 Message number out of range.

327 Message parameter not found.

328 Instruction does not supply message parameter(s).

329 Invalid parameter position.

330 Invalid type of parameter.

331 Invalid disk message data set.

332 Disk message read error.

333 Storage-resident module not found.

334 Message parameter output error.

335 Disk messages not supported (MINMSG slJPport only).

Chapter 2. Instruction and Statement Descriptions 2 .. 255'

MOVE

MOVE - Move Data

2-256 SC34-0937

The MOVE instruction moves data from operand 2 to operand 1. If operand 2 is
"immediate data," it must meet the requirements listed in the opnd2 description.

For an example of moving data across partitions, see Appendix C, "Communicating
with Programs in Other Partitions (Cross-Partition Services)"on page C-l. Refer to
the Language Programming Guide for more information on cross-partition services.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opnd1

opnd2

MOVE opnd1,opnd2,count,FKEY = ,TKEY =,
PI =,P2=,P3=

opndI,opnd2
count = (1, WORD)
opnd1,opnd2

.Description

The label of the data area to receive the data from opnd2. Opndl
cannot be a self-defining term.

The value moved into opndl. You can specify a self-defining term or
the label of a data area.

If opnd2 is a self-defining term, it must be one of the following:

• An integer, whose value is from - 32768 to + 32767

• An EBCDIC character string of one or two bytes, enclosed in
single quotes, and preceded by the constant type indicator C

• A hexadecimal character string of 1 to 4 hexadecimal digits,
enclosed in single quotes, and preceded by the constant type
indicator X.

count The number of consecutive values on which the operation is to be
performed. Do not code a label for count. The maximum value
allowed for the count operand is 32767.

The count operand can include the precision of the data. Since these
operations are parallel (the two operands and the result are implicitly
of the same precision) only one precision specification is required.
That specification may take one of the following forms:

BYTE
WORD
DWORD
FLOAT
DFLOAT

Byte precision
Word precision (the default)
Doubleword precision
Single-precision floating-point
Extended;.precision floating-point

You can substitute the precision specification· for the count
specification, in which case the count defaults to 1, or the precision
specification can accompany the count in the form of a sublist:
(count,precision). For example, MOVE A,B,BYTE is equivalent to
MOVE A,B,(1,BYTE). When using the sublist form of the count
operand, you must specify both the count and the precision.

o

o

o

o

o FKEY=

TKEY=

MOVE

For all precisions other than BYTE, opnd1 and opnd2 must specify
even addresses.

The precision is always BYTE when you do a cross-partition MOVE
operation. For example, MOVE A,B,(4,DWORD) becomes MOVE
A,B,(16,BYTE). This precision change is important to remember when
you use the P3 = operand to change the count. The instruction,

.MOVE A,B,(4,WORD),FKEY=0,P3=COUNT

really has a count of 8 bytes. If you want to change the count to
(2,WORD), you must move a value of 4 into COUNT.

If FLOAT or DFLOAT precision is specified, the system converts the
immediate data field to floating-point format.

If BYTE precision is specified and opnd2 is immediate data, the system
moves different bytes of opnd2 depending on which assembler is used.
The macro assembler causes the system to to move the leftmost byte of
opnd2.

F or example, if the following is coded:

Q EQU Xl 1234 1

MOVE HERE,+Q,(l,BYTE)

The system moves X I 34 I to location HERE if the instruction is
assembled with a macro assembler. The system moves X 1121 to
location HERE if the instruction is assembled with $EDXASM.

This operand provides a cross-partition capability for opnd2 of
MOVE. FKEY designates the address key of the partition containing
opnd2 (the address key is one less than the partition number). FKEY
can specify either an immediate value from 0 to 31 (depending on your
processor) or the label of a word containing a value from 0 to 31. If
FKEY is not specified, opnd2 is in the same partition as the MOVE
instruction. If FKEY is specified, opnd2 cannot be immediate data or
an index register. However, it can contain an index register in the
(parameter,#r) format. See "Software Register Usage" on page 1-8 for
further information.

This operand provides a cross-partition capability for opnd1 of
MOVE. TKEY designates the address key of the partition containing
opnd1 (the address key is one less than the partition number). TKEY
can specify either an immediate value from 0 to 31 (depending on your
processor) or the label of a word containing a value from 0 to 31. If
TKEY is not specified, opnd1 must be in the same partition as the
MOVE instruction. If TKEY is specified, opnd1 cannot be an index
register. However, opnd1 can contain an index register if it is of the
format (parameter,#r). See "Software Register Usage" on page 1-8 for
further information.

If you specify TKEY and opnd2 is immediate data, opnd2 is always
one word in length regardless of the precision specified. The values
you code for the precision and the count operand determine the
amount of data that is moved.

Chapter 2. Instruction and Statement Descriptions 2-257

MOVE

Syntax Examples

2.;.258 SC34-0937

When you specify byte precision in a cross-partition move and opnd2
is immediate data, the system reads an entire word of data and moves
that word one byte at a time. Por example, if opnd2 is X I PSI, the
system reads that value as X lOOPS I and moves X I 00 I as the first byte.

Px = Parameter naming operands. If P~ is coded, only the count operand is
altered. The precision specification remains unchanged. See "Using
the Parameter Naming Operands (Px =)" on page 1-10 for a detailed
description of how to use these operands.

The following syntax examples show the variety of ways you can code the MOVE
instruction:

1) Move a word of B to A.

MOVE A,B

2) Move 64 EBCDIC blanks to TEXT.

MOVE TEXT ,C I I, (64,BYTE)

3) Move 16 words of V2 to VI.

MOVE Vl,V2,16

4) Move the contents of index register 1 to SAVE.

MOVE SAVE,#l

5) Move contents of INDEX into index register 2.

MOVE' #2,INDEX

6) Move four doublewords of C to D.

MOVE D,C, (4,DWORD)

7) Move a single-precision floating-point value from PI to P2.

MOVE F2,Fl~(1,FLOAT)

8) Move the address of $START into index register 1.

MOVE #l,+$START

9) Move 6 doubleword floating-point numbers (24 words) from Ll to LR.

MOVE LR,Ll,(6,DFLOAT)

()

o

o

o

10) Move 10 floating-point zero values to the indexed address of (BUF,#I).

MOVE (BUF,#1),0,(10,FLOAT)

11) Move one word from $START in partition 1 to HERE.

MOVE HERE,$START,FKEY=0

12) Move the contents of index register 2 to the indexed address (0,#1) in a
partition defined by KEY.

MOVE (0,#1),#2~TKEY=KEY

MOVE

13) Move 4 words of blanks to the indexed address ($NAME,#I) in partition 1.
Operand 2 must be a word value.

MOVE ($NAME,#l),C ' ',(4,WORD),TKEY=0

14) Move the leftmost byte value X'OO' to B when assembling with $EDXASM.
Move the rightmost byte value XI 02 1 to B when assembling with the macro
assemblers. A has a value of XI 0002 I.

A 'EQU 2
•
•
•

MOVE B,+A,ll,BYTE)

15) Move the 4-byte character string '3333' to the indexed address (HERE,#I) in
partition 1.

MOVE (HERE,#1),C '3 1 ,(4,BYTE),TKEY=0

16) Move the character string 1222222221 to the indexed address (HERE,#I) in
partition 1.

. MOVE (HERE,#1),C ' 12 1 ,(8,BYTE),TKEY=0

Only one character may be specified in immediate mode. When assembled with the
macro assembler the system takes the rightmost character. In this example the
character string has been truncated and 8 characters of 2 have been moved.

17) Move the data string XI 0505050505 1 to the indexed address (THERE,#I) in
partition 1.

MOVE (THERE,#1),X '05 1 ,(5,BYTE),TKEY=0

Chapter 2. Instruction and Statement Descriptions 2-259

MOVEA

MOVEA - Move an Address

Syntax Examples

2-260 SC34-0937

The MOVEA instruction moves the address of operand 2 to operand 1.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

Px=

MOVEA opndl,opnd2,Pl = ,P2 =

opndl,opnd2
none
opndl

Description

The label of the data area to receive the address of opnd2. This
operand must be a word in length.

The label of the data area whose address is moved to opndl.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) Move the address of A into PTR.

MOVEA PTR,A

2) Move the address of B plus 4 bytes into PTR.

MOVEA PTR,B+4

o

o

o

o

o

MULTIPLY

MULTIPLY - Multiply Integer Values
The MUL TIPL Y instruction multiplies an integer value in operand 1 by an integer
value in operand 2. The values can be positive or negative. To multiply
floating-point values, use the FMUL T instruction.

See the DATA/DC statement for a description of the various ways you can represent
integer data.

The supervisor places X I 80000000 I in the first two words of the task control block if
an overflow condition occurs during double-precision multiplication.

Note: You can abbreviate the instruction as MUL T.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

MUL TIPL Y opndl,opnd2,count,RESUL T = ,PREC = ,
PI =,P2=,P3=

opndl,opnd2
count = 1,RESUL T = opndl,PREC = S
opndl,opnd2,RESUL T

Description

The label of the data area containing the value to be multiplied by
opnd2. Opndl cannot be a self-defining term. The system stores the
result of the MULTIPLY operation in opndl unless you code the
RESULT operand.

opnd2 The value by which opndl is multiplied. You can specify a
self-defining term or the label of a data area. The value of opnd2 does
not change during the operation.

count The number of consecutive values in opndl on which the operation is
to be performed. The maximum value allowed is 32767.

RESULT = The label of a data area or vector in which the result is placed. The
variable you specify for opndl is not changed if you specify RESULT.
This operand is optional.

PREC = xyz Specify the precision of the operation in the form xyz, where x is the
precision for opndl, y is the precision for opnd2, and z is the precision
of the result ("Mixed-Precision Operations" on page 2-262 shows the
precision combinations allowed for the MULTIPLY instruction). You
can specify single precision (S) or double precisian (D) for each
operand. Single precision is a word in length; double precision is two
words in length. The default for opndl, opnd2, and the result is single
precision.

If you code a single letter for PREe, the letter applies to opndl and
the result. Opnd2 defaults to single precision. If, for example, you
code PREC = D, opndl and the result are double precision and opnd2
defaults to single precision.

Chapter 2. Instruction and Statement Descriptions 2-261

MULTIPLY

If you code two letters for PREC, the first letter applies to opndl and
the result, and the second letter applies to opnd2. With PREC = DD,
for example, opndl and the result are double precision and opnd2 is
double precision.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these opera'nds.

Mixed-Precision Operations

Syntax Examples

2-262 SC34-0937

The following table lists the precision combinations allowed for the MULTIPLY
instruction:

opndl opnd2 Result Precision

S S S S (the default)
S S D SSD
D S D D
D D D DD

1) Multiply a value in C by a value in D and put the result in E. The result of the
operation is double precision.

MULT C,D,RESULT=E,PREC=SSD

2) Multiply a double-precision value in A by 10. The result of the operation is
double precision.

MULT A,lO,PREC=D

3) Multiply the single-precision values at X and X + 2 by 10.

MULTIPLY X,lO,2

o

o

o

Coding Example

o

c

o

MULTIPLY

The MULTIPLY instruction at label M I multiplies a full-word value in the data
area labeled HOURS by 60. The instruction places the result in the data area
labeled MINUTES. MINUTES is defined with the P2 = parameter naming operand
on the MULTIPLY instruction labeled M2.

At label M2, the second operand, defined with the parameter naming operand P2~,
is multiplied by the value located at label SIXTY. The result is placed in the data
area labeled SECONDS.

The first pair of MULTIPLY instructions uses the single-precision default for opnd I,
opnd2, and RESULT = .

The third MUL TIPL Y instruction, at M3, multiplies the doubleword value at label
MILLISEC by 1000, and places the doubleword result in MILLISEC.

The last MULTIPLY instruction, at label M4, multiplies the value at label OPll by
the value at label OP12, and places the result in the data area labeled RESULTX.
Because the count operand equals 2, this instruction also multiplies the value at label
OP21 by the value at label OP12, and places the result at RESULTX + 2.

Ml
M2

M3

•
•
•
MULTIPLY HOURS,60,RESULT=MINUTES
MULT SIXTY,O,RESULT=SECONDS,P2=MINUTES
MOVE MILLISEC,O
MOVE MILLISEC+2,SECONDS
MULT MILLISEC,MILLI,PREC=DSD
•
•
•

M4 MULTIPLY OPll,OP12,2,RESULT=RESULTX
•
•
•

HOURS DATA FIOI
SECONDS DATA F'O '
SIXTY DATA FI60 1
MILLISEC DATA DIO I
MILLI DATA FllOOO I

OPl1 DATA Fill
OP2'l DATA F'21
OP12 DATA FI31

RESULTX DATA 2F IOI

•
•
•

Chapter 2. Instruction and Statement Descriptions 2-263

NETCTL

NETCTL - Controlling SNA Message Exchange

2-264 SC34-0937

The NETCTL instruction controls the exchange of status and error information
between your Series!l application program and the host program.

You can use the instruction to:

• Send error or status messages to the host application program

• Receive error or status messages from the host application ,program.

Before you can use the NETCTL instruction, you must establish a session with the
host. You can use NETCTL to receive status information regardless of which
session partner has the right-to-send.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

LU=

BUFF =

NETCTL LU = ,BUFF = ,TYPE = ,EXIT = ,
PI =,P2=

LU=
TYPE=RECV
none

Description

A I-word field containing the number of the logical unit (LU) and the
number of the physical unit (PU) to be used for the session. The
high-orde~ byte identifies the PV and can be any value from 0 to 4 (0
indicates use PU #1 and is the same as specifying 1). The low-order
byte is the LU number. LV = can be any value from I to 32.

The label of a 6-byte status area that is used when you code
TYPE=RECV, TYPE = REJECT, or TYPE = LUSTAT.

If you do not specify RECV, REJECT, or LUSTAT for the TYPE
operand, the BUFF operand is ignored. The use of the status area is
as follows:

• If you specify TYPE = RECV, the status received from the host is
placed in this area. The format of the status information varies
depending on what type of information it is. The NETCTL return
codes indicate the type of status information received.

If the return code indicates message reject, status message, or
requestfor right-to-send, the status area is as follows:

Message reject The first two bytes of the area are the system sense
code. The next two bytes are the user sense code.

If you do not select message resynchronization support for the
session, the last two bytes are the message number of the message
rejected by the host. If you do select message resynchronization
support for the session, the message rejected by the host is always
the last message sent.

o

o

o

o

TYPE =

EXIT =

o Px=

NETCTL

Status message The first two bytes of the area are the status value.
The next two bytes are the status extension field.

Request for right-to-send The first two bytes of the area are the
signal value. The next two bytes are the signal extension field.

• If you specify TYPE = REJECT, you must supply the sense codes
indicating the reason the host message is unacceptable. The first
two bytes of the area are the system sense code. The next two
bytes are the user sense code. If you do not specify the sense
codes,the host receives a system sense code of X I 081C I (Request
Not Executable) along with a user sense code of X 10000 I

(No-operation).

The host message rejected is always the last message received from
the host.

• If you specify TYPE = LUSTAT, you must supply the status codes
to be sent to the host. The first two bytes of the area are the
status value. The next two bytes are the status extension field.

The control operation to be performed. Code one of the following:

RECV Receive status information from the host. The return code
indicates the type of status information received. If
applicable, the area specified in the BUFF operand receives
data associated with the status. RECV is the default.

ACCEPT Send the host a message acceptance, if necessary, for the
message received.

REJECT Send the host a message rejection for the message received.
The sense code, containing the reason for the rejection, is
returned in the area specified in the BUFF operand.

CANCEL Cancel a partially transmitted message.

QEC

RELQ

SIG

Ask the host to temporarily stop transmitting messages
after the current message.

Ask the host to resume sending messages. This operand is
valid only if you have issued TYPE = QEC previously.

Ask the host to give the right-to-send to the Series/1 SNA
application.

LUSTAT Send status information to the host. The 4-byte status
code to be sent is contained in the area you specified with
the BUFF operand.

RTR N~tify the host that the SNA application is ready to
receive the next message.

The BUFF parameter is required if TYPE = RECV,
RETECT,or-LUSTAT.

The label of the error-processing routine for your program. Control
passes to this label if any return code other than -1 is returned to
your program.

Parameter naming operands. See "Using the Parameter Naming
Operands (px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-265

NETCTL

Coding Examples

2-266 SC34-0937

The examples presented here illustrate various ways in which you can use the
NETCTL instruction to control the exchange of messages.

1) ,Receiving Status from Host

This example shows the use of a NETCTL instruction to receive status information
from the host program. The location STATUS receives the status data (if any).

NETLU
STATUS

NETCTL LU=NETLU,TYPE=RECV,BUFF=STATUS
•
•
•

DATA
DATA

Fill
FI 6 1

2) Rejecting a Message

This example shows a NETCTL instruction that rejects a message received from the
host program.

NETLU
STATUS

NETCTL LU=NETLU,TYPE=REJECT,BUFF=STATUS
•
•
•

DATA
DATA

Fill
FI 6 1

3) Sending Status to Host

In this example, a NETCTL -instruction sends status information to the host
program. The location STATUS receives the status data.

NETLU
STATUS

NETCTL LU=NETLU,TYPE=LUSTAT,BUFF=STATUS
•
•
•

DATA
DATA

Fill
FI 6 1

o

o

Return Codes

o

o

o

NETCTL

The NETCTL return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

The positive return codes from NETCTL TYPE = RECV have bit-significant values
to allow for efficient analysis in the Series/l SNA application. The bit positions
have the following meanings:

.... 1

.... 1.
End of transaction received .
Right-to-send received .

The following values are returned in combination with the above bit-significant
information:

X'OOlO' Status message received.

X'OO20' Message being received from host canceled.

X'OO30' Session termination request received.

X'OO50' Request for right-to-send received.

X'OO60' Host permission to resume sending received.

X'OO70' Message sent to host rejected.

Chapter 2. Instruction and Statement Descriptions 2-267

NETCTL

2-268 SC34-0937

The valid combinations of the values and bit positions are listed in the following
decimal return codes.

Return
Code Condition

-26 No status available.

-25 Not right-to-send.

-24 The selected PU is not active.

-23 Invalid PU number.

-22 Session reset. CLEAR and SDT commands received.

-21 More than two tasks running under this LU. Limit is two tasks.

-20 UNBIND HOLD received.

-19 $SN A not currently loaded.

-18 Session quiesced.

-17 Status available.

-16 Session abnormally terminated by host.

-15 NETTERM in progress.

-14 SNA system error.

-13 Invalid request.

-12 Invalid L U number.

-11 Instruction must be issued under program linked to $NETCMD.

-10 Session does not exist.

-9 LU is busy with another operation.

-8 $SNA is deactivating.

-7 SN A is in the process of loading or unloading and is not usable
temporarily.

-1 Operation successful.

1 END BRACKET received.

2 CHANGE DIRECTION received.

16 LUSTAT received.

17 LUSTAT with EB received.

18 LUST AT with CD received.

32 CANCEL received.

33 CANCEL with EB received.

34 CANCEL with CD received.

48 SHUTDOWN received.

80 SIGNAL received.

96 RELQ received.

112 Negative response received.

The valid combinations of the values and bit positions are listed in the following
decimal return codes.

o

o

o

o

o

NET GET

NETGET - Receive Messages from the SNA Host
The NET GET instruction allows your application to receive messages from the host
application program. Before you can use the NET GET instruction, you must
establish a logical-unit-to-logical-unit session.

When you issue the NETGET instruction, Series/l SNA passes messages received
from the host's application program into a buffer area provided by NETGET. If the
buffer area is not large enough to contain the complete message, you can issue
additional NETGET'instructions.

NETGET supplies a return code when it receives the complete message.

Syntax:

label NET GET LU = ,BUFF = ,BYTES = ,RECLEN =,
EXIT = ,PI = ,P2 = ,P3 = ,P4 =

Required: LU,BUFF,BYTES,RECLEN
Defaults: none
Indexable: none

Operand Description

LU=

BUFF =

BYTES =

A one-word field containing the number of the logical unit (L U) and
the number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4 (0
indicates use PU #1 and is the same as specifying 1). The low-order
byte is the LU number. It can be any value from 1 to 32.

The buffer area where the message or partial message is to be received.

A word value containing the length, in bytes, of the buffer area you
specified in the BUFF operand.

RECLEN = A word value to receive the actual length, in bytes, of the message or
partial message received.

EXIT =

Px=

The label of the error-processing routine for your program. Control
passes to this label if a return code less than - 1 is returned to your
application.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands. For NETGET, Px = corresponds to the
following parameters:

PI LU
P2 BUFF
P3 BYTES
P4 RECLEN

Chapter 2. Instruction and Statement Descriptions 2-269

NET GET

Coding Example

Return Codes

2-270 SC34-0937

This example issues a NETGET instruction to receive a message or partial message
stored at address INBUFF. In addition:

• The LU is number 1 at location NETLU.

• The length of the input area is at location INBLEN.

• The length of the message or partial message received is stored at location
COUNT.

NETLU
INBUFF
INBLEN
COUNT

NETGET LU=NETLU,BUFF=INBUFF,BYTES=INBLEN;
RECLEN=COUNT

•
•
•

DATA Fill
DATA XLB0
DATA FIB0 1

DATA FIOI

C

The NET GET return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

The positive return codes from NETGET contain bit-significant values to allow for
efficient analysis in the Series/l SNA application. The bit positions have the
following meaning:

.... 1

.... 1.

.... 1 ..

.... 1 .. .

.... 1

.... . --- .. 1

Function management header received .
End. of message received .
Right-to-send received .
Response to message requested .
End of transaction received .
Start of transaction received .

The valid combinations of the bit positions are listed ill the following decimal return
codes:

Return
Code Condition

-26 Host initiated transaction.

-25 No messages available.

-24 The selected PU is not active.

-23 Invalid PU number.

-22 Session reset. CLEAR and SDT commands received.

-21 More than two tasks running under this LU. Limit is two tasks.

-20 UNBIND HOLD received.

-19 $SNA not currently loaded.

o

o

NET GET

Return o Code Condition

-17 Status available.

-16 Session abnormally terminated by host.

-15 NETTERM in progress.

-14 SNA system error.

-13 Invalid request.

-12 Invalid LU number.

-11 Instruction must be issued under program linked to $NETCMD.

-10 Session does not exist.

-9 LU is busy with another operation.

-8 $SNA is deactivating.

-7 SNA is in the process of loading or unloading and is not usable
temporarily.

-1 Operation successful.

1 FMH received.

2 End of message received.

3 End of message and FMH received.

6 End of message and right-to-send received.

7 End of message, FMH, and right-to-send.

10 End of message received, response requested received.

11 End of message, and FMH received, response requested. c
14 End of message, and right-to-send received, response requested.

15 End of message, FMH, and right-to-send received, response requested.

18 End of transaction and end of message received.

19 End of transaction, end of message and FMH received.

26 End of transaction and end of message received, response requested.

27 End· of transaction, end of message and FMH received, response
requested.

32 Start of transaction received.

33 Start of transaction and FMH received.

34 Start of transaction and end of message received.

35 Start of transaction, end of message, and FMH received.

38 Start of transaction, end of message, and right-to-send received.

39 Start of transaction, end of message, FMH, and right-to-send received.

42 Start of transaction, end of message, and response requested.

43 Start of transaction, end of message, and FMH received, response
requested.

46 Start of transa~tion, end of message, and right-to-send received,

o response requested.

Chapter 2. Instruction and Statement Descriptions 2-271

NET GET

Return
Code Condition

47 Start of transaction, end of message, FMH, and right-to-send received, o
response requested.

50 Start and end of transaction, and end of message received.

51 Start and end of transaction, end of message and FMH received.

58 Start and end of transaction, and end of message received response
requested.

59 Start and end of transaction, end of message and FMH received,

I
response requested.

()

o
2-272 SC34-0937

o

o

NETHOST

NETHOST - Build an SNA Host ID Data List
The NETHOST instruction generates an assembly-time host ID data list that defines
logical unit (LV) requirements and session resources.

Certain operands in the NETHOST instruction can affect the performance of other
LV operations. You may, therefore, need the help of the host system programmer
when coding the instruction. You also may require the host system programmer's
knowledge of SNA protocols;

Syntax:

label

Required:
Defaults:

Indexable:

Operand

NETHOST ISAPPID = ,ISMODE = ,ISPASWD = ,IS QUEUE =,
ISRQID = ,ISUSFLD = ,SSCPID =

ISAPPID ;::: ,ISMODE =

ISPASWD = ,ISRQID = ,ISUSFLD = (all default to 8 blanks)
IS QUEUE = NO,SSCPID = 6X'OO' (bytes)
none

Description

ISAPPID = A·l - 8 character name that identifies the host user program
identification (APPLID) to be used for a session. Trailing blanks are
ignored by NETINIT.

ISMODE = A 1- 8 character name that identifies the set of rules and protocol for
a session. The system services control point (SSCP) also uses the name
to build the CINIT request.

ISPASWD=

ISQUEUE=

A 1- 8 character password used to verify the identity of a Series/l
user. The default of 8 blanks causes NETINIT to generate a null (zero
length) field in the INITSELF command. NETINIT ignores trailing
blanks.

YES, to place the INITSELF request in a queue if it cannot be
executed immediately.

NO (the default), to prevent the request from being held in a queue.

ISRQID = The 1-8 character name that identifies the Series/l user initiating a
request. You can also use ISRQID to establish authority for you to
use a particular resource. The default of eight blanks causes
NETINIT to generate a null (zero length) field in the INITSELF
command. NETINIT ignores trailing blanks.

Chapter 2. Instruction and Statement Descriptions 2 .. 273

NETHOST

2'-274 SC34-0937

ISUSFLD = A 1-20 character string for carrying data you specify. 'Network
services request processors do not process this data. The Series/1 SNA
support passes the data to the primary logical unit (PLU) .. The default
of ~ight blanks causes NETINIT to generate a null (zero length) field
in the INITSELF command. NETINIT ignores trailing blanks.

SSCPID = The system services control point (SSCP) identification for the network
to be attached. You can code this operand using 0 -12 hexadecimal
digits. A 0 value specifies the session is to be opened with any SSCP
attached.

You can specify any 6-byte binary value. However, to be meaningful,
the bit representation must match the identification of the attached
SSCP. The default is 6 bytes containing zeros.

(}

()

o

o

o

NETINIT

NETINIT - Establish an SNA Session
The -NETINIT instruction initiates a request for establishing a session with the host
application program. The established session remains in effect until you end it by
issuing a NETTERM instruction.

Note: In coding your program, you can (if the system resources are available)
establish multiple sessions for each task. All tasks using these sessions must be
within the same program.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

LU=

NETINIT LU= IHOLDLU=,HOSTID=,MSGDATA=,
SESSPRM = ,ATTNEV = ,RDSCB = ,ERRCODE =,
FULLDPX = ,ACQUIRE = ,RESYNC = ,RTYPE =,
LUSW AIT = ,MSGPRIO = ,PTHRU = ,PACB =,
EXIT = ,PI = ,P2 = ,P3 = ,P4 = ,P5 = ,P6 = ,P7 =

LU = IHOLDLU = ,HOSTID = ,PACB = (if PTHRU = YES)
LUSWAIT = YES,MSGPRIO = 255,PTHRU = NO,
ACQUIRE = YES,RESYNC = YES,RTYPE = DISK,
FULLDPX=NO
none

Description

A one-word field containing the number of the logical unit (LU) and
the number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4
(0 indicates use PU #1 and is the same as specifying 1). The
low-order byte is the LV number. It can be any value from 0 to 32.
If you code the LV number with a value of 0, the Series/l SNA
support returns the LV number in the second code word of the TCB
($TCBC02), along with the PU number.

If you specify this operand, you cannot specify the HOLDLU
operand on this instruction.

HOLDLU = The LU number of the session to be reestablished after receiving an
UNBIND HOLD. A one-word field containing the number of the
logical unit (L U) and the number of the physical unit (PU) to be
used for the session. The high-order byte identifies the PU and can
be any value from 0 to 4 (0 indicates use PU #1 and is the same as
specifying 1). The low-order byte is the LU number. It can be any
value from I to 32.

·HOSTID = The label of the NETHOST data definition.

MSGDATA = The label of a 6-byte data area where the SNA support s~Qres
information about messages exchanged during the session.

If RESYNC = YES or IN IT , the following considerations apply:

• If RTYPE = DISK, MSGDATA is ignored.
• If RTYPE=STG, MSGDATA is required.

Chapter 2. Instruction and Statement Descriptions 2~27 5

NETINIT

2-276 SC34-0937

SNA uses the data area you specify with MSGDATA for
resynchr<?nization data. SNA returns the resynchronization data
on successful completion of an SNA operation. The
resynchronization data is reserved for SNA use only and must
be supplied on the NETINIT instruction when the session is
restarted.

If RESYNC=NO, MSGDATA is optional. When you specify
MSGDATA, SNA uses the area to hold message data. When a
NETPUT LAST = YES operation is successful, SNA stores the
number assigned to the message sent to the host in the first and
second bytes of the data area; The remaining bytes of the area are
reserved for SNA use only.

SESSPRM == The label of a data area where SNA stores session-establishment
parameters (BIND) received from the host. The area contains the
parameters after the NETINIT operation completes successfully.
This area must be 256 bytes.

ATTNEV=

RDSCB=

The address of an event control block (ECB) to be posted when an
attention event occurs while no SNA operations are active. You
should issue a NETGET instruction to determine whether the event
is for status information or data if the session is not a pass-through
session. If the session is a pass-through session (PTHRU = YES),
the post code in the first word of the ECB indicates the new status
of the pass-through session. ATTNEV is recommended for
pass-through operations.

The address of an opened data set control block (DSCB) to be used
by SNA resynchronization processing. Code this operand only if
you specify RTYPE = DISK.

ERRCODE = The label of a 4-byte data area where SNA stores extended error
information. If you code this operand and the SNA operation
returns a negative return code (other than - I), this data field
identifies the SNA instruction and the related SNA function that
failed, plus the return code of the SNA function. A breakdown of
the data area follows:

• Byte I - The SNA operation in progress when the error was
encol1')ltered:

00 NET IN IT
01 NETPUT
02 NETGET
03 NETCTL
05 NETTERM

• Byte 2 - The Event Driven Executive or SNA base function
that reported the error. The following hexadecimal codes are
returned:

01 NETOPEN
02 NETRECV
03 NETSEND
04 NETCLOSE
05 NETBIND
06 NETUBND
08 BIND event post code
OA READ

o

o

o

o

o

o

NETINIT

OB WRITE
OC Session termination

Note: Refer to IBM Series/l Event Driven Executive Systems
Network Architecture and Remote Job Entry Guide, SC34-0773
for additional information on the return codes for these
functions.

• Bytes 3 and 4 - The error return code from the Event Driven
Executive or SNA base function.

FULLDPX = YES, to establish a session in a duplex transmission mode.

Note: If you code FULLDPX = YES, you cannot use message
resynchronization and attention event processing.

NO (the default), to establish a session in a half-duplex transmission
mode.

ACQUffiE = YES (the default), to cause SNA to initiate the session for your
application program.

RESYNC=

RTYPE=

NO, to indicate that the host is to initiate the session.

YES (the default), to use the contents of the resynchronization data
set during session establishment.

NO, to disable session resynchronization. You must specify
RESYNC=NO ifPTHRU=YES or if FULLDPX=YES.

INIT, to initialize the contents of the resynchronization data set
during establishment of a session.

DISK (the default), to save session resynchronization data on disk.
You must code the RDSCB operand if you specify this parameter.

STG, to save session resynchronization data in storage. You must
code the MSGDATA operand if you specify this parameter.

This operand is ignored if you code RESYNC = NO.

Note: Your program must open and close the 256-byte
resynchronization data set.

LUSWAIT = YES (the default), to force NETINIT to wait for the LU SSCP
session to activate. You must specify LUSWAIT=YES if
PTHRU=YES.

NO, to force NET IN IT to fail if the LU SSCP session is not active.

MSGPRIO = The message priority for all outgoing messages for this LU while in
session. This value overrides the value specified on the SNALU
statement for the LU.

When the session ends, the value reverts back to the value on the
SNALU statement. This operand specifes the order of messages as
they are presented to SDLC. If messages are queued to SDLC
waiting to be sent, then higher priority messages will be placed in the
queue ahead of all lower priority messages. Specify MSGPRIO as
any number from 1 to 255, with 1 as the highest priority. 255 is the
default.

Chapter 2. Instruction and Statement Descriptions 2-277

NETINIT

PTHRU=

PACB=

EXIT =

Px=

2-278 SC34-0937

YES, means the session is part of a pass-through session and all
messages are to be passed through the Series/I to the remotely
attached L U s. PTHR U = YES is valid only when used in
conjunction with Primary SNA. ATTNEV is recommended for
pass-through sessions.

NO, indicates the messages are to be handled by the application
issuing the NETINIT. This is the default.

PACB establislies the logical connection between two
remotely-connected applications and is valid only when
PTHRU = YES. The primary side 'of the pass-through session
establishes communications with the remote secondary application
using NETOPEN. The secondary side establishes communications
with the remote primary application using NETINIT. You must
issue NETINIT and NET OPEN for a pass-through session to exist.
The second command (whether NETINIT or NET OPEN) must
specify PACB to link the two commands. Do no specify P ACB on
the forst command issued for the pass-through session. For
NETINIT, PACB contains the session Access Control Block (ACB)
returned to the application when NET OPEN is issued.

The label of the error-processing routine for the Series/I application.
Control passes to this label if a return code other than - I is
returned to your program.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands. Px = corresponds to the following parameters:

PI LU/HOLDLU
P2 MSGDATA
P3 SESSPRM
P4 ATTNEV
P5 RDSCBjPACB
P6 ERRCODE
P7 MSGPRIO

()

o

o

Coding Examples

o

o

NETINIT

The examples presented here illustrate various ways you can use the NETINIT
instruction to establish a session.

1) Session with Resynchronization Data to Disk

This example illustrates establishing a session where the resynchronization data
resides on a disk. In addition:

• Series/1 SNA initiates the session with the host. SNA saves the extended error
information at location SAVERC.

• The resynchronization data set RDSCB is RESTART.

• The LV is number 1, on PV L specified at location NETLV.

• NETINIT should wait if the LV-SSCP session is not active.

• Priority for all outbound messages is 40 while the LV is in session.

NETINIT LU=NETLU,HOSTID=SNAID,ACQUIRE=YES,
ERRCODE=SAVERC,RESYNC=YES,RTYPE=DISK,
RDSCB=RESTART

•
•
•

NETLU DATA Fill
SAVERC DATA 4F IQI

RESTART DSCB DS#=RSYNC,DSNAME=RSYNDSCB
SNAID NETHOST ISAPPID=IMS,ISMODE=INQUIRY

C
C

Chapter 2. Instruction and Statement Descriptions 2-279

NETINIT

Return Codes

2-280 SC34-0937

2) Session with Resynchronization Data to Storage

This example illustrates establishing a session where the resynchronization data
resides in storage. In addition:

• Series/l SNA support waits for the host to initiate the session.

• SNA initializes the contents of the resynchronization data set when the session
starts.

• SNA saves the resynchronization data at address RDATA.

NETINIT LU=NETLU,HOSTID=SNAID,ACQUIRE=NO,
RESYNC=INIT,RTYPE=STG,MSGDATA=RDATA

•
•
•

c

NETLU DATA Fill
RDATA DATA 6F ' 0'
SNAID NETHOST ISAPPID=CICS, ISMODE=INQUIRY

3) Session without Resynchronization

This example illustrates establishing a session without resynchronization support.
SNA saves the message numbers at address MDATA.

• NETINIT for any LV on PV #3.

• NETINIT should fail if the LV-SSCP session is not active.

• Priority for all outbound messages is 80 while the LV is in session.

NETLU
MDATA
SNAID
MPRIO

NETINIT LU=NETLU,
HOSTID=SNAID,
ACQUIRE=NO,
RESYNC=NO,
MSGDATA=MDATA,
LUSWAIT=NO,
MSGPRIO=MPRIO

•
•
•

ANY LU ON PU 3 C
SPECIFY WHICH HOST APPL C
LET THE HOST START THE SESSION C
NO MESSAGE RESYNCHRONIZATION USED C
PASS BACK THE SEQUENCE NUMBERS C
FAIL IF LU-SSCP SESSION IS INACTIVE C
MESSAGE PRIORITY IS 80

DATA X'0300 ' PU NUMBER 3, ANY LU
DATA 6F '0 1 MSGDATA AREA
NETHOST ISAPPID=JES2,ISMODE=RMT26 TALK TO JES2 APPL ON HOST
DATA F'80 ' MESSAGE PRIORITY = 80

NETINIT return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

If you code the ERRCODE operand on the NETINIT instruction, additional error
information is returned, when appropriate, to the area you specified. Refer to the
IBM Series/l Event Driven Executive Systems Network Architecture and Remote Job
Entry Guide, SC34-0773 for a description of this extended error code information.

()

()

o

o

o

NETINIT

The positive return codes from NETINIT have bit-significant values to allow for
efficient analysis in the Series/1 SNA application. For a description of the
bit-significant values, refer to the Systems Network Architecture and Remote Job
En try Guide.

The following are the decimal return codes that could be returned from a NET IN IT
operation:

Return
Code Condition

-33 Invalid message priority specified.

-32 No NETTERM HOLD=YES issued.

-31 STSN error.

-30 BIND from host rejected.

-27 No logical unit available.

-26 Logical unit already open.

-24 The selected PU is not active.

-23 Invalid PU number.

-19 $SNA not currently loaded.

-16 Session abnormally terminated by host.

-15 NETTERM in progress.

-14 SNA system error.

-12 Invalid L U number.

-8 $SNA is deactivating.

-7 SNA is in the process of loading or unloading and is not usable
temporarily.

-1 Operation successful.

2 Unpresented message from host lost.

4 Partially presented message from host lost.

17 Message flow to host cold-started, no messages to host lost. Message
flow from host cold-started, no messages from host lost.

19 Message flow to host cold-started. Message flow from host
cold-started, message from host lost.

32 Message to host lost.

49 Message flow to host cold-started, message to host lost. Message flow
from host cold-started no messages from host lost.

81 Message flow to host cold-started, message to host possibly lost.
Message flow from host cold-started, no messages from host lost.

Chapter 2. Instruction and Statement Descriptions 2-281

NETPACT

NETPACT - Activate a Specific PU

Coding Example

2-282 SC34-0937

The NETPACT instruction makes it possible for you to start a PU from an
application program.

Syntax:

label NETPACT PU = ,PART# = ,IDSSCP = ,EXIT =
PI =,P2=,P3=

Required: PU =
Defaults: none
Indexable: none

Operand Description

PU= A I-word field containing the number of the PU to be started. Valid
values are 1 - 4.

PART# = A one-word field containing the partition number ~here the PU
control blocks are to be loaded. If specified, this value overrides the
value specified in SNAINIT for the PU. Valid values are 0 - 8. 0
indicates that the PU can be loaded into any static partition.

IDSSCP = Specifies a three byte field containing the SSCP id for the PU if the
PU is on a switched line. If spe,?ified, this value overrides the value
specified on the SNAPU statement when the PU was defined. The
SSCP is a 5-nibble value and must be left justified in the field.

EXIT =

Px=

The label of the error-processing routine for the Series/l application.
Control passes to this label if any return code other than -1 is
;-etumed to your application.

Parameter naming operands. See"Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

The following example illustrates starting a PU from an application program.

• The PU being started is number 4.

• The program loads the PU into partition #4.

• The program overrides the SSCPID given in the SNAPU statement with OOOC!.

NETPU
SSCPID
PART

NETPACT PU=NETPU,
PART#=PART,
IDSSCP=SSCPID

•
•
•

DATA F'41
DATA 3X I 000C10 I

DATA F'41

START PU #4
OVERRIDE THE PARTITION # IN SNAINIT
OVERRIDE THE SSCPID IN THE GEN

PU NUMBER 4
SSCP ID (LAST NYBBLE IGNORED)
PARTITION NUMBER 4

C
C

o

o

NETPACT

Return Codes

o Return
Code Condition

-9 Error reading SNA initialization dataset (SNAINIT).

-8 Invalid partition number in SNAINIT for PU requested to be
activated.

-7 Invalid partition number. You coded a partition number out of the
required range (0 through 8).

-6 Load failed for $SNA.

-5 $SNA is unusable. All PUs are deactivated and $SNA is waiting to
unload. The request to activate a PU is ignored.

-4 PU load of control blocks failed.

-3 $SNA is deactivating all PUs. When they are deactivated $SNA will
attempt to unload. The request to activate a PU is ignored.

-2 Invalid PU number.

-1 PU load successful.

1 SNA and PU load successful.

2 PU already activated.

o

o '" .

Chapter 2. Instruction and Statement Descriptions 2-283

NETPUT

NETPUT - Send Messages to the SNA Host

2-284 SC34-0937

The NETPUT instruction transmits messages from a Series/l application program to
the host application program. You can issue a NETPUT instruction only after
establishing a session successfully.

You can send a complete message to the host with one NETPUT operation, or, if
necessary, you can send a single message with multiple NETPUT operations.

You must have the right-to-send for the NETPUT operation to be successful. If you
are receiving and need to send, issue the NETCTL instruction with TYPE = SrG to
request the right-to-send. When no transaction is active on the session, both you
and the host have the right-to-send.

You can cancel a message during transmission to the host by issuing a NETCTL
instruction with TYPE = CANCEL. The host discards any part of the message it has
already received. See the NETCTL instruction for more coding information.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

LU=

BUFF =

BYTES =

EOT=

FMH=

NET PUT LU = ,BUFF = ,BYTES = ,EOT = ,FMH = ,INVITE = ,
LAST = ,VERIFY = ,EXIT = ,PI = ,P2 = ,P3 =

LU = ,BUFF = ,BYTES =
EOT = NO,FMH = NO,INVITE = YES,
LAST = YES, VERIFY = NO
none

Description

A one-word field containing the number of the logical unit (LU) and
the number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4 (0
indicates use PU #1 and is the same as specifying 1). The low-order
byte is the LU number. It can be any value from 1 to 32.

The message, or partial message, to be sent.

A word containing the number of bytes in the message or partial
message to be sent.

YES, to end the transaction after the message is sent.

NO (the default), to avoid ending the transaction after the message is
sent.

This operand is recognized only on the first NETPUT instruction you
issue for a message.

YES, if the message contains function management (FM) headers.

NO (the default), if the message does not contain FM headers.

This operand is recognized only on -the first NETPUT instruction you
issue for a message.

o

o

o

o

Coding Examples

o

o

NETPUT

INVITE = YES (the default), to give the host the right to send after this message
is transmitted.

NO, if you do not want to give the host the right to send.

This operand is ignored unless you specify LAST = YES (see the LAST
operand).

LAST = YES (the default), if this is the last NETPUT operation for the
message.

NO, if this "is not the last NETPUT operations for the message.

VERIFY = YES, if the host should verify that it received the message.

NO (the default), if you do require verification.

This operand is ignored if you do not specify LAST = Y,ES.

EXIT = The label of the error-processing routine for the Series/l application.
Control passes to this label if any return code other than -1 is
returned to your application.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

The examples presented here illustrate various ways you can use the NETPUT
instruction to send messages.

1) Sending a Message with a Single NETPUT

This example illustrates sending a message to the host using one NETPUT
instruction. In addition:

• The LU is number 1 at location NETLU.

• The message to be sent is at location OUTBUFF.

• The length of the message to be sent is at location BYTECNT.

• The data is to be sent as a complete message.

• The host receives the right-to-send.

• Function management headers are included in the data.

NETPUT LU=NETLU,BUFF=OUTBUFF,BYTES=BYTECNT,
INVITE=YES,FMH=YES,LAST=YES

•
•
•

NETLU DATA Fill
OUTBUFF DATA CL8e lMESSAGE I

BYTECNT DATA FI 8e l

C

Chapter 2. Instruction and Statement Descriptions 2-285

NETPUT

Return Codes

2~286 SC34-0937

2) Sending a Message with Multiple NET PUT Operations

This example illustrates one message being sent to the host with three NETPUT
instructions. In addition:

• The lengths of the "partial messages" to be sent are at locations BYTECNTl,
BYTECNT2, and BYTECNT3.

• The host should verify that it received the message.

• The transaction ends after sending the message.

NETPUT LU=NETLU,BUFF=OUTBUFFl,BYTES=BYTECNTl,
EOT=YES,LAST=NO

NETPUT LU=NETLU,BUFF=OUTBUFF2,BYTES=BYTECNT2,
LAST=NO

NETPUT LU=NETLU,BUFF=OUTBUFF3,BYTES=BYTECNT3,
VERIFY=YES,LAST=YES

•
•
•

NETLU DATA FIll
OUTBUFFI DATA CL40 1MESSAGE PART 11
OUT'BUFF2 DATA CL20 1MESSAGE PART 21
OUTBUFF3 DATA CL20 1MESSAGE PART 31
BYTECNTI DATA F'40 1
BYTECNT2 DATA F'20 1
BYTECNT3 DATA F'20 1

C

C

C

NETPUT return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

o

o

o

o

o

NETPUT

The positive return codes from NETPUT have bit-significant values to allow for
efficient analysis in the Series/I SNA application. The bit positions have the
following meaning:

.... 1 Host attempted to start a transaction .

The valid combinations of the bit positions are listed in the following decimal return
codes:

Return
Code Condition

-26 Bracket state manager is pending begin bracket (sent RTR). Issue a
NETGET.

-25 Not right-to":send.

-24 The selected PU is not active.

-23 Invalid PU number.

-22 Session reset. CLEAR and SDT commands received.

-21 More than two tasks running under this LU. The limit is two tasks.

-20 UNBIND HOLD received.

-19 $SNA not currently loaded.

-18 Session quiesced.

-17 Status available.

-16 Session abnormally terminated by host.

-15 NETTERM in progress.

-14 SNA system error.

-13 Invalid request.

-12 Invalid L U number.

-11 Instruction must be issued under program linked to $NETCMD.

-10 Session does not exist.

-9 LU is busy with another operation.

-8 $SNA is deactivating.

-7 SN A is in the process of loading or unloading and is not usable
temporarily.

-1 Operation successful.

1 Host attempted to start transaction.

Chapter 2. Instruction and Statement Descriptions 2-287

NETTERM

NETTERM - End an SNA Session

2-288 SC34-0937

The NETTERM instruction releases the logical communications path previously
established between session partners with the NETINIT instruction. NETTERM
ends the session and releases the Series/l resources used for the session.

You can use the system resources freed with the NETTERM instruction to establish
other sessions.

At any time~ either the host program or your application program can end the
session.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

LU=

HOLD =

TYPE =

EXIT =

NETTERM LU=,HOLD=,TYPE=,EXIT=,Pl=

LU=
HOLD = NO,TYPE = NORMAL
none

Description

A one-word field containing the number of the logical unit (LU) and
the number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4 (0
indicates use PU #1 and is the same as specifying 1). The low-order
byte is the LU number. It can be any number from 1 to 32.

YES, to keep session resources if the host issues a BIND command
following the NETTERM instruction.

NO (the defau1t)~ to end the session and release all session resources.

Code this operand only when the host issues an UNBIND HOST
command.

The type of session termination requested by the Series/l application.
Specify one of the following:

NORMAL

QUICK

IMMED

The Series/l application requests the host LU
to terminate the session. NORMAL is the
default.

The Series/l application requests VT AM to
terminate the session between itself and the host
LU.

The Series/l applications requests that the
Series/l SNA support terminate the session
between itself and the host LU~ without waiting
for any response from the host.

Note: TYPE = IMMED may not be supported
by all host systems.

The label of the error-processing routine for your program. Control
passes to this label if any return code other than -1 is· returned to
your application.

(}

o

o

o
Coding Example

Return Codes

o

Px=

NETTERM

Parameter naming operand. See "Using the Parameter· Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

The following example sho\Ys the use of the NETTERM instruction to end a session.
The LV address for the ended session is at address NETLU.

NETTERM LU=NETLU
•
•
•

NETLU DATA Fill

The NETTERM return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

The positive return codes from NETTERM have bit-significant values to allow for
efficient analysis in the Series!1 SNA application. The bit positions have the
following meaning:

.... 1

.... 1.

.... 1 ..

.... 1 ...

Message from host rejected during termination .
Message to host rejected during termination .
Message to host aborted during termination .
Message from host aborted during termination .

The valid combinations of the bit positions are listed in the following decimal return
codes:

Return
Code Condition

-25 No UNBIND HOLD received.

-24 The selected PU is not active.

-23 Invalid PU number.

-20 UNBIND HOLD received.

-19 $SNA never loaded.

-16 Session abI).ormally terminated by host.

-15 NETTERM in progress.

-14 SNA system error.

, -12 Invalid LU number.

-11 Instruction must be issued under program linked to $NETCMD.

-10 Session does not exist.

-7 SNA is in the process of loading or unloading and is not usable
temporarily.

-1 Operation successful.

Chapter 2. Instruction and Statement Descriptions 2-289

NETTERM

Return
Code Condition

1 Negative response sent during NETTERM. o
2 Negative response received during NETTERM.

3 Negative response received during NETTERM and negative response
sent during NETTERM.

4 CANCEL ~ent during NETTERM.

5 CANCEL sent during NETTERM and negative response sent.

6 CANCEL sent during NETTERM and negative response received
during NETTERM.

7 CANCEL sent during NETTERM, negative response received during
NETTERM, and negative response sent during NETTERM.

8 CANCEL received during NETTERM.

9 CANCEL received during NETTERM and negative response sent
during NETTERM.

o

o
2-290 SC34-0937

o

o

NEXTQ

NEXTQ - Add Entries to a Queue
The NEXTQ instruction allows you to add entries to a queue defined with the
DEFINEQ statement. The system removes a queue entry from the free chain of the
queue and places the entry in the queue's active chain.

Syntax:

label

Required:
Default:
Indexable:

Operand

qname

loc

FULL =

NEXTQ qname,loc,FULL = ,PI = ,P2 =

qname,loc
none
qname,loc

Description

The name of the queue in which to place the entry. The queue name is
the label of the DEFINEQ statement that creates the queue.

The label of a word of storage which will become an entry in the
queue. This might be a single word of data or the address of an
associated data area. If loc is coded as #1 or #2 then the contents of
the selected register will become the entry in the queue.

The label of the first instruction of the routine to be called if a "queue
full" condition is detected during the execution of this instruction. If
you do not specify this operand, control returns to the next instruction
after the NEXTQ. A return code of -1 in the first word of the task
control block indicates that the operation completed successfully. A
return code of + 1 indicates that the queue is full.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2.' Instruction and Statement Descriptions 2-291

NEXTQ

Coding Examples
1) The following example uses each of the queuing instructions. The program
defines a queue area that contains four 6-word buffers. The FIRSTQ instruction 0
obtains the oldest entry in TIMEBUF. The GETTIME instruction obtains the date ..
and time and updates the contents of the entry obtained by FIRSTQ. The program
stores the new time and date in TIMEQI and TIMEQ2. When all buffers are
allocated, the queue entries are printed on a first-in-first-out basis, then on a
last-in-first-out basis, and the buffers used are freed. Each queue instruction
executes 8 times.

QTEST PROGRAM START
START FIRSTQ TIMEBUF, LOC

IF (QTEST,EQ,l),GOTO,EMPTY
GETTIME *,DATE=YES,Pl=LOC
NEXTQ TIMEQl,LOC,FULL=ERRORl
NEXTQ TIMEQ2,LOC,FULL=ERRORl
ADD CTR,l
GOTO START

*
EMPTY FIRSTQ TIMEQl,OUTADDRl,EMPTY=CHKCTR

LASTQ TIMEQ2,OUTADDR2,EMPTY=CHKCTR
ENQT $SYSPRTR
PRINTEXT SKIP=l
PRINTNUM *,fi,6,Pl=OUTADDRl
PRINTEXT SPACES=5
PRINTNUM *,6,6,Pl=OUTADDR2
DEQT
NEXTQ TIMEBUF,OUTADDRl

C GOTO EMPTY
*
CHKCTR IF (CTR,GE,8),GOTO,DONE

GOTO START
ERRORl PRINTEXT '@TIMEQ PREMATURELY FULL@'
DONE PROGSTOP
*
* DATA AREA
*
TIMEBUF DEFINEQ COUNT=4,SIZE=l2
TIMEQl DEFINEQ COUNT=10
TIMEQ2 DEFINEQ COUNT=l0
CTR DATA F'01

ENDPROG
END

o
2-292 SC34-0937

o

Return Codes

o

NEXTQ

2) In this example, index register 1 points to a block of storage in a buffer area.
The NEXTQ instruction places the address of that location (contained in register #1)
into the queue defined by the QUE 1 label. If the queue is full, the program
branches to the FULLQUEI label. Otherwise, the MOVE instruction places 32
bytes of data, beginning at the address labeled DATAREC, into the buffer area.
The ADD instruction updates #1 so that it points to the next sequential block of
storage in the buffer.

SUBROUT NEXTQUE1
*

NEXTQ QUE1,#1,FULL=FULLQUE1
MOVE (O,#1),OATAREC,(32,BYTES)
ADD #1,32
RETURN

*
FULLQUE1 EQU *

PRINTEXT '@QUE1 QUEUE BUFFER FULL '
GOTO ENOll

•
•
•

QUE1 DEFINEQ COUNT=8
•
•
•

ENOll EQU
PROGSTOP

OATAREC DATA

*

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description

-1 Successful completion.

1 Queue is full.

Chapter 2. Instruction and Statement Descriptions 2-293

NOTE

NOTE - Store Next-Record Pointer

2-294 SC34-0937

The NOTE instruction causes the value of a data set's next-record-pointer, which is
maintained by the system, to be stored in your program. The next-record-pointer is
the relative record number that will be retrieved by the next sequential READ or
WRITE instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

DSx

loe

PREC=

NOTE

DSx,loe
PREC=S
loe

Description

DSx,loe,PREC = ,P2 =

Code DSx, where "x" is the relative position (number) of a data set in
the list of data sets you define on the PROGRAM statement. The first
data set is DSI, the second is DS2, and so on. A DSCB name defined
by a DSCB statement can be used in place of DSx.

This operand specifies the address of a full word or doubleword of
storage that will contain the next-record-pointer as the result of
executing a NOTE instruction. This value can be used as the relative
record number (relrecno) in a subsequent POINT or direct READ or
WRITE operation.

When this operand is coded as an indexable value or as an address
label, the PREC operand can be used to further define whether
relrecno is to be a single-word or double-word value.

If the PREC operand is coded as PREC = D, then the range of
relrecno is extended beyond the 32767 value to the limit of a
double-word value.

This optional operand further defines the relrecno operand only when
relrecno is coded as an address or as an indexable value. The default
value is S and has the same effect on relrecno as coding PREC = S.
That effect is to limit the value of relrecno to single-word precision or
a value of X I 7FFF I (32767).

Coding PREC = D gives a double-word precision attribute to the
relrecno operand and, therefore, extends its maximum value range to a
double-word value.

P2 = Parameter naming operand. See "Using the Parameter Naming
Operands (px =)" on page 1-10 for a detailed description of how to
code this operand.

o

o

o

Syntax Examples

o

o

NOTE

1) The following NOTE instruction is valid for records that do not exceed a length
of 32767.

NOTELl NOTE DS2,LOCS
•
•
•

LOCS DATA

2) The NOTE instruction in this example is valid for records that exceed 32767
because the variable LOCD is double-word precision.

NOTEL2 NOTE DS3,LOCD,PREC=D
•
•
•

LOCD DATA DIOI

Chapter 2. Instruction and Statement Descriptions 2-295

PLOTGIN

PLOTGIN - Enter Scaled Cursor Coordinates
The PLOTGIN instruction allows you to specify scaled cursor coordinates
interactively. The instruction uses the coordinates you specify to plot curves.
PLOTGIN rings the bell and displays the cross-hair cursor. It waits for you to
position the cross-hairs and enter a single character. The cursor coordinates you
enter are scaled with the use of the plot control clock (PLOTCB). A description of
the control block follows this instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

x

y

char

pcb

PLOTGIN x,y,char,pcb,Pl = ,P2 = ,P3 = ,P4 =

x,y,pcb
no character returned
none

Description

The location where the x cursor coordinate value is to be stored.

The location where the y cursor coordinate value is to be stored.

The location where the character you select is to be stored. The
character is stored in the rightmost byte. The left byte is set to o. If
you do not code this operand, the instruction does not store the
selected character.

Label of an 8-word plot control block.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Plot Control Block (PLOTCB)

2-296 SC34-0937

The plot control block defines the size and position of the plot area on the screen
and the data values associated with the edges of the plot area. The PLOTCB
consists of eight words of data defined by DATA statements.

You must build a PLOTCB in your graphics program when using the PLOTGIN,
XYPLOT or YTPLOT instructions. The format of the control block is:

label DATA F'xls'
DATA F'xrs'
DATA F'xlv'
DATA F'xrv'
DATA F'ybs '
DATA F'yts'
DATA F'ybv'
DATA F'ytv'

o

o

0

o

Syntax Example

C:

o

PLOTGIN

You must specify an explicit value for all eight statements. The required values are
defined below:

xIs x screen location at left edge of plot area

xrs x screen location at right edge of plot area

xlv x data value plotted at left edge of plot

xrv x data value plotted at right edge of plot

ybs y screen location at bottom edge of plot

yts x screen location at top edge of plot

ybv y data value plotted at bottom edge of plot

ytv y data value plotted at top edge of plot.

Read x and y cursor coordinates and store them in X and Y, respectively. Store
characters in the data area labeled CHAR. The plot control block is at label PCB.

PLOTGIN
•
•
•

PCB DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

X,Y,CHAR,PCB

F' 500 '
F'lOOO'
F'O'
F'lO '
F'lOO '
F' 600 '
F'-5 1

F' 5 1

Chapter 2. Instruction and Statement Descriptions 2-297

POINT

POINT - Set Next-Record Pointer

2-298 SC34-0937

The POINT instruction causes the value of a data set's next-record-pointer, which is
maintained by the system, to be set to a new value. The system uses this new value
in later sequential READ or WRITE operations.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

DSx

relrecno

PREC=

POINT DSx,relrecno,PREC = ,P2 =

DSx,relrecno
PREC=S
relrecno

Description

Code DSx, where "x" is the relative position (number) of the data set
in the list of data sets you define on the PROGRAM statement. The
first data set is DSl, the second is DS2, and so on. A DSCB name
defined by a DSCB statement can be substituted for DSx.

This operand sets a new value in the system-maintained
next-record-pointer. This parameter can be either a constant or the
label of the value to be used.

If this value is coded as a self-defining term, or an equated value which
is preceded by a plus sign (+), then it is assumed to be a single-word
value and is, therefore, generated as an inline operand. Because this is
a one-word value, it is limited to a range of 1 to 32767.

When this operand is coded as an indexable value or as an address, the
PREC operand can be used to further define whether relrecno is to be
a single-word or double-word value.

If the PREC operand is coded as PREC = D, then the range of
relrecno is extended beyond the 32767 value to the limit of a
double-word value (2147483647).

This operand further defines the relrecno operand when you code an
address or an indexable value for relrecno.

PREC = S (the default) limits the value of the relrecno operand to a
single-precision value of 32767 (X I 7FFF I).

PREC=D extends the maximum range for the relrecno operand to a
doubleword value of 2147483647 (X I 7FFFFFFF I).

P2 = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

o

o

Syntax Examples

o

o

POINT

1) The following POINT instruction is valid for records that do not exceed a length
of 32767.

POINTLl POINT DS2,LOCS
•
•
•

LOCS DATA FI 0 1

2) This POINT instruction is valid for records that exceed 32767 because the
variable LOCD is double-word precision.

POINTL2 POINT DS3,LOCD,PREC=D
•
•
•

LOCD DATA DI 0 1

Chapter 2. Instruction and Statement Descriptions 2-299

POST

POST - Signal the Occurrence of an Event

2-300 SC34-0937

The POST instruction signals the occurrence of an event.

A POST instruction normally assumes the event is in the same partition as the
executing program. However, it is possible to POST an event in another partition
using the cross-partition capability of POST. ,See Appendix C, "Communicating
with Programs in Other Partitions (Cross-Partition Services)" on page C-I for an
example of posting an event in another partition. You can find more inforn1ation
on cross-partition services in the Language Programming Guide.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

event

POST

event
code =-1
event

Description

event,code,P1 = ,P2 =

The label of an event control block (ECB) that defines the event. You
must code an ECB statement in your program if you compile the
program under $EDXASM.

$SIASM and the S/370 host assembler generate the ECB for the event
named in the POST instruction. You do not need to code an ECB
statement when using either of these macro assemblers.

Process interrupts are special events that can be simulated with a
POST. This is useful when one task is waiting fot a process interrupt
and a second task wishes to start the first, as in a program termination
sequence. In this case, issue a POST PIx, where "x" is a process
interrupt number from 1- 99 as specified in an IODEF statement.

code A value, other than 0, to be inserted into the control block for the
event. You may want to use this value as a flag that indicates a
certain condition or status. To check the code value, refer to the label
of the ECB statement.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

o

()

o

Coding Examples

o

C~~

o

POST

1) The POST instruction in the following example posts the event control block
labeled ECBl when TASKl is finished processing. TASKl reads a record from the
data set MYFILE and places the record in the buffer labeled BUF. The primary
task, PRINTOUT, waits for ECBl to be posted before it continues processing.
When the POST instruction posts ECB l, the primary task enqueues the system
printer and prints the first 50 bytes of the record.

PRINTOUT PROGRAM START,DS=((MYFILE,EDX40))
START EQU *

ATTACH TASKl
WAIT ECBl
ENQT $SYSPRTR
MOVE REC,BUF,25
PRINTEXT REC,SKIP=l
•
•
•

PROGSTOP
BUF BUFFER 256,WORD
ECBl ECB
REC TEXT LENGTH=50

TASKl TASK NEXT
NEXT READ DSl,BUF,l

POST ECBl
ENDTASK
ENDPROG
END

2) The following example posts an ECB labeled ECBl which is declared as external
to the assembly module.

EXTRN

MOVEA
POST

END

•
•
•

•
•
•

ECBl

B,ECBl
*,Pl=B

Chapter 2. Instruction and Statement Descriptions 2-301

PRINDATE

PRINDATE - Display the Date on a Terminal
The PRINDATE instruction prints the date on a terminal. The system prints the
date in the form MMjDDjYY or DDjMM/YY, depending on the option coded on
the SYSPARMS statement when the supervisor was generated.

Note: You must include timer support in the system and have timer hardware
installed to use the PRINDATE instruction. Otherwise, a program check will occur.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a PRINDATE instruction causes a terminal 1/0 operation to
occur. If the return code is not a-I, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label PRINDATE

Required: none
Defaults: none
Indexable: none

Operand Description

none none

31 xx Display Considerations

2-302 SC34-0937

If you are using a 31xx in block mode, it will display the output from a PRINDATE
instruction according to the SET,ATTR and SET,STREAM operands of a
TERMCTRL statement currently in effect. For details on these operands see
"TERMCTRL - Request Special Terminal Function" on page 2-426.

o

0

o

Coding Example

o

c

o

PRINDATE

The following example prints the date and a message on the system printer.

•
•
•

ENQT $SYSPRTR
PRINTEXT I@ THE DATE IS I

PRINDATE

The data appears in one of two formats, depending on the option coded on the
DATEFMT keyword of the SYSP ARMS statement during system generation.

If the SYSPARMS statement has DATEFMT = MMDDYY (the default), the
PRINDATE instruction in the above example would produce the following result on
February 25, 1984:

THE DATE IS 02/25/84.

If the SYSPARMS statement has DATEFMT=DDMMYY, the result of the
PRINDATE operation would be:

THE DATE IS 25/02/84.

Chapter 2. Instruction and Statement Descriptions 2-303

PRINT

PRINT - Control Printing of a Compiler Listing

2,,:,304 SC34-0937

The PRINT statement controls the printing of the compiler listing. Because no
instructions or constants are generated in the object program by this statement, it
can be placed between executable instructions in your source statement data set.

A program can contain any number of PRINT statements. Each PRINT statement
controls the printing of the compiler listing until another PRINT statement is
encountered.

Syntax:

blank PRINT ONjOFF,GENjNOGEN,DATAjNODATA

Required:
Defaults:
Indexable:

none
(Initially) ON,GEN,NODATA
none

The GENjNOGEN option is not supported by $EDXASM.

Operand

ON

OFF

GEN

NOGEN

Description

A listing is printed.

No listing is printed, except for the PRINT OFF statement itself.

The listing includes all object code generated by the compiler. (Not
supported by $EDXASM.)

No object code appears with the instructions in the listing. Error
messages appear regardless of NOGEN. The PRINT instruction also
appears in the listing. (Not supported by $EDXASM.)

DATA Constants are printed out in full in the listing.

NODATA Only the leftmost 8 bytes of constants are printed on the listing.

o

o

o

Coding Example

o

c

o

PRINT

The following sample program is compiled under $EDXASM using. the formatting
aids PRINT, TITLE, SPACE, and EJECT. The TITLE statement places the
program title, "Compiler Listing Control Demonstration," at the top of each page of
the listing. PRINT OFF stops the printing of the listing, which is resumed when the
system encounters the PRINT ON statement. In this case, the MOVE instruction
between two PRINT statements is omitted.

The SPACE statement inserts a specified number of blank lines between instructions,
improving the readability of the listing. When the EJECT statement is reached, the
printer ejects the page and begins printing the next line of the listing at the top of a
new page. PRINT DATA causes the hexadecimal value of the first TEXT statement
to be printed out in full in the left-hand column of the listing. When the default,
PRINT NODAT A, is coded before the second TEXT statement, the system prints
only the leftmost 8 bytes of constants.

Sample Program:

DEMO
START

LOOP

TITLE 'COMPILER LISTING CONTROL DEMONSTRATION I

PROGRAM START
EQU *
PRINT OFF
MOVE COUNT,0
PRINT ON
EQU *
ADD COUNT,l
SPACE 5
IF (COUNT,LE,l0)

PRINTEXT MESSAGEl
PRINTNUM COUNT

SPACE 2
ELSE

IF (COUNT,LE,20)
PRINTEXT MESSAGE2
PRINTNUM COUNT

ENDIF
ENDIF
SPACE 4
IF (COUNT,GT,20)

PRINTEXT '@TERTIARY TEST MESSAGE NUMBER I

PRINTNUM COUNT
PROGSTOP

ELSE
GOTO LOOP
ENDIF
EJECT

COUNT DATA F' 01

PRINT DATA
MESSAGEl TEXT '@PRIMARY TEST MESSAGE NUMBER I

PRINT NODATA
MESSAGE2 TEXT '@SECONDARY TEST MESSAGE NUMBER I

ENDPROG
END

Chapter 2. Instruction and Statement Descriptions 2-305

PRINT

Compiler Listing:

()
COMPILER LISTING CONTROL DEMONSTRATION

lot ·0 .~ .6 ·1 SOORCE STATE"ENT

0000 0001 0709 06Cl 09C1 0It~0 OE"O PROG'U~ START
OOOA 0000 OOEI 0168 0000 0000
001~ 016C 0000 0000 0000 0100
DOlE 016A 0000 0000 0000 0000
0028 0000 0000 0000 0000 0000
0032 0000
003~ START EQU •

PaINT OFF
003A lOOP EQU •
003A 8032 OOA~ 0001 ADO COUNT. 1

001tO 90AZ OOA~ 000 A 0056 IF (COUNT.lE.10)
001t8 0026 00A8 PR I NTEXT MESSAGEl
OOItC 0028 OOA~ 0001 PRINTNUM COUNT

0052 OOAO 0068 ELSE
0056 90A2 OOU 0014 0068 IF (COUNT.LE.20)
005E 0026 00C8 PRINTElCT MESSAeE2
0062 OOZI OOA~ 0001 PRINTNU'" COUNT
0068 ENDIF
0068 ENOIF

0068 EOA2 OOAIt 0016 OOAO IF (COUNT.eT.20)

0 0070 8026 lElE l(El C509 ElC9 PRINTEXT 'iTERTURY TEST MESSAGE NU"'8ER •
001A tl09 E8~0 ElC5 E2E3 ~001t
0080\ C5E2 E2(1 (1(' ~005 HO~
DOle C2(5 O~O
0092 0021 OO'~ 0001 PRINTNUM COUNT
0098 0022 FFFF PRoeSTOP
009C OOAO OOA~ ELSE
OOAO OOAO 003A GOTO lOOP
00,1t ENOIF

COMPILER LISTING (ONTROL DEMONSTRATION

laC ·0 ·z ... ·6 ·8 SOURCE STATEMENT

OOAIt 0000 COUNT DATA F"O'
PRI NT DATA

00A6 lE1D 7CD7 09(9 DItC 1 D9E8 MESSAGE 1 TEXT ".PRIIolARY TEST MESSAGE ~U"'BER '
0080 .. OE3 (5E~ E31t0 OltC5 E2EZ
OOBA (l(7 (51t0 D5EIt DIt(2 (509
00(1t It Olt a

PR I NT NODAl A
00(6 201F 7CEl C5C3 0605 (4Cl '1ESSAGE2 TEXT 'Q)SE(ON:JARY TEST ~ESSAGF NUMBER'
00E8 0000 0000 0000 0234 0000 ENDPROG

END

o
2-306 SC34-0937

0""',
"

CI

o

PRINTEXT

PRINTEXT - Display a Message on a Terminal
The PRINTEXT instruction allows you to print or display a message on any
enqueued terminal, not only the loading terminal. As the delault terminal, the
loading terminal requires no ENQT instruction to perform a PRINTEXT. The
PRINTEXT instruction also allows you to control cursor or forms movement.

The PRINTEXT instruction generally does cursor or forms movement before writing
the message to the terminal.

Output for the terminal normally accumulates in the system buffer (or user buffer, if
provided). The system writes this output to the terminal when it encounters a new
line character (@), a forms control operand (SKIP, LINE, or SPACES), a
PROGSTOP instruction, or a DEQT instruction for a terminal.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a PRINTEXT instruction causes a terminal I/O operation to
occur. If the return code is not a -1, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). The terminal I/O
return codes are described at the the end of this instruction and the READTEXT
instruction and also in Messages and Codes.

Note: Any references to 3lxx terminals mean 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label PRINT EXT msg,SKIP = ,LINE = ,SPACES = ,XLATE = ,
MODE = ,PROTECT = ,CAPS = ,PI =

Required: At least one operand from the following
list: SKIP, LINE, SPACES, or msg

Defaults: SKIP = O,LINE = (current line),SPACES = 0,
XLATE = YES,PROTECT = NO

Indexable: msg,LINE,SKIP ,SPACES

Operand Description

msg The label of a TEXT statement which defines the message to be
displayed or printed, or the actual message enclosed in apostrophes.
You can also code the label of a BUFFER statement. When using a
BUFFER statement, you must:

• Code the buffer label on the BUFFER= operand of the 10CB
statement for the terminal your program enqueues.

• Move the number of characters to be printed into the index field
of the BUFFER statement (msg - 4).

When you use a BUFFER statement, the system does not recognize
the new line character (@), and the operation executes immediately.

Chapter 2. Instruction and Statement Descriptions 2-307

PRINT EXT

2-308 SC34-0937

SKIP =

LINE =

The maximum line size for a terminal depends on how the
TERMINAL definition statement was coded during system generation.
Refer to the TERMINAL statement in the Installation and System
Generation Guide for information on default sizes.

The number of lines to be skipped before the system does an I/O
operation. For exam.ple, if your cursor is at line 2 on a display screen
and you code SKIP = 6, the system does the I/O operation on line 8.
For a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen's bottom margin minus the number of history lines
and the screen's top margin.

The line number on which the system is to do an I/O operation. Code
a value from ° to the number of the last usable line on the page or
logical screen. The line count begins at the top margin you defined for
the printer or display screen. LINE = ° positions the cursor at the top
line of the page or screen you defined; LINE = 1 positions the cursor at
the second line of the page or screen. For roll screens line ° equals the
screen's top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system does the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system does
the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE = 22 and your roll screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system does an I/O
operation. SPACES = 0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

XLATE=

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

YES (the default), to cause translation of characters from EBCDIC to
the code the t't!rminal uses to display the message.

NO, to send the message to the device as is, without translation. If
you code XLATE = NO for output to a printer, the printer support
suppresses the left margin. This option might be used, for example, to
send graphic control characters and data.

o

o

o

o

MODE =

PROTECT =

o
CAPS =

o

PRINT EXT

With a 3lxx in block mode, XLATE=NO also prevents.the system
from inserting the attribute byte and escape sequences into the message
and overrides the effects of TERMCTRL SET,STREAM = YES.

Note: For a description of 3lxx escape sequences, refer to the
appropriate display terminal description manual.

If the terminal requires that characters be sent in fnirror image and
you code XLATE = NO, it is your responsibility to provide the proper
bit representation. For more details on mirror image, refer to the
Communications Guide.

LINE, to prevent the system from interpreting each @ character it
finds in the text as a request for a new line.

For 4978,4979, and 4980 screens accessed in STATIC mode, the
coding of MODE = LINE and the SPACES operand causes protected
fields to be skipped over as the data is transferred to the screen
("scatter write" operation). Protected positions do not contribute to
the count. For a 3lxx in block mode with a static screen, the
protected fields are overwritten.

Do not code this operand if you want the system to recognize @ as a
new line character.

YES, to write protected characters to a static screen device that
supports this feature, such as an IBM 4978, 4979, 4980 and 3lxx in
block mode. Protected characters are displayed and cannot be typed
over.

NO (the default), not to write protected characters to a static screen.

When the PRINTEXT instruction is being coded for a
Series/l-to-Series/l operation, it is recommended that this operand be
coded PROTECT = YES.

Code this operand to convert a PRINTEXT message to uppercase
characters. This operand is valid only for EBCDIC data that is
defined by a TEXT or BUFFER statement.

Code CAPS = Y to convert all data defined by a TEXT or BUFFER
statement to uppercase characters. When specifying CAPS = Y, you
must link edit your program using the autocall feature of $EDXLINK.

To convert a specific number of bytes to uppercase, code that number
with the CAPS operand. Capitalization starts from the first byte of
the message text. For example, CAPS = 3 capitalizes the first three
bytes of data defined by the TEXT or BUFFER statement.

The count you ,specify should not exceed the length of the TEXT or
BUFFER statement that defines the message. If the length is
exceeded, the operation is still performed, but data beyond the TEXT
or BUFFER statement may be modified.

Chapter 2. In.struction and Statement Descriptions 2-309

PRINTEXT

When you code a value with the CAPS operand, the system does an
inclusive OR (lOR) of an X 140 I byte to each EBCDIC byte. (See
Coding Example 3 at the end of this section). A lowercase "a"
(X 181 1), for example, is converted to an uppercase "A" (X I CII).
Characters already capitalized remain unchanged. The lOR operation
is done before the PRINTEXT instruction executes. The data is
converted to uppercase in the application program.

Notes:

1. Only CAPS = Y is valid when you use the PI = operand with this
instruction.

2. Coding XLATE=NO and the CAPS operand causes an assembly
error.

3. When using the 497~ printer, do not code the CAPS operand if
you are using the spacing character and a space modifier to
increase the spacing between printed characters. See "4975
Spacing Capabilities" on page 2-311 for details on how to use the
spacing character and the space modifier. This note does not refer
to the 4975-0IA ASCII Printer.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Buffer Considerations
When a buffer overflow condition occurs, what happens to accumulated data
depends on how the system definition TERMINAL statement or 10CB statement is
coded. If the TERMINAL or 10CB statement contains OVFLINE = YES, the
system writes the data in the buffer to the terminal and then uses the available buffer
space for overflow data.

If the TERMINAL or 10CB statement contains OVFLINE = NO, any data
following a buffer overflow condition is lost. Until the system writes the buffer data
to the terminal, an imbedded @ will not be recognized following a buffer overflow
condition. (For details on the TERMINAL definition statement, refer to the
Installation and System Generation Guide.)

When using direct I/O or when the keyword XLATE=NO is coded, the output to a
terminal is written immediately.

31 xx Display Considerations

2-310 SC34-0937

A 3lxx in block mode normally will write an attribute byte before the output data.
The attribute byte controls the characteristics of the field that it precedes. One such
characteristic, intensity, can be either HIGH or LOW and the field can be either
blinking or nonblinking, depending on how the SET ,ATTR operand was coded on
the TERMCTRL statement in effect. If no attribute byte is desired, such as when
writing to an existing formatted screen, code TERMCTRL ATTR = NO before using
the PRINTEXT instruction. TERMCTRL ATTR = YES should then be coded to
restore the writing of attribute bytes.

When the TERMCTRL statement that is in effect is coded STREAM = NO or is
allowed to default to NO by not coding this operand, terminal I/O support provides
the attribute byte for you. Terminal I/O also provides escape sequences for you
under this condition. For a description of 3Ixx escape sequences, refer to the
~appropriate display terminal description manual.

o

o

o

c)

o

o

PRINTEXT

If the last TERMCTRL statement was coded SET,STREAM=YES, then the
SET,ATTR operand is not considered. Under this condition, terminal I/O support
does not provide any attribute bytes or escape sequences.

With either STREAM = YES or NO, translation of data from EBCDIC will be
performed. See the XLATE operand description.

If you are using a 3lxx in block mode, the system does not recognize a new-line
character (@).

Note: Do not press the SEND key on a 3lxx terminal while the system is doing a
PRINTEXT operation to that terminal. The SEND key can affect the data being
displayed.

4975 Spacing Capabilities
The following information refers to spacing capabilities only on the 4975 printer. It
does not refer to such capabilities on the 4975-0lA ASCII nor any other model
printer.

When using the 4975 printer in draft mode, you can increase the amount of space
left between printed characters on a line by inserting special spacing characters into
the TEXT or BUFFER statement that defines the PRINTEXT message.

To insert additional space between characters, you must include the spacing
character X 1271 followed by a space modifier. The space modifier defines the
percentage of additional space to be included. It is a hexadecimal value in the form
1 Fx I, where "x" is a number from 0 to 9. The space modifier 1 FO 1 adds no
additional space, 1 Fl' adds 10 percent additional space, and 1 F21 adds 20 percent
additional space. 1 F9 1 adds 90 percent additional space and is the maximum value
you can specify.

You must insert the spacing character and the space modifier into the TEXT or
BUFFER statement at each point where you want additional space. The second
coding example at the end of this section shows one way to do this operation.

All printers with the exception of the 4975-0lA ASCII Printer treat XI 00 1 as a
blank. The 4975-0 lA ASCII Printer ignores XI 00 1 and treats it as a null character.
This may cause a spacing difference if you send XI 00 1 in your PRINTEXT
instruction.

Chapter 2. Instruction and Statement Descriptions 2-311

PRINTEXT

Syntax Examples

2-312 SC34-0937

1) Print the contents of a TEXT statement at label TEXT!.

PRINT EXT TEXTl

2) Print the text message within quotes on a new line (the new line character @ is
not printed).

PRINTEXT '@START OF PROGRAM I

3) Add fpur to the current cursor position and print the contents of a text statement
at label TEXT2.

PRINTEXT TEXT2,SPACES=4

4) If not currently at the first line of a page or screen, skip to a new page and then
skip two lines and print the contents of a text statement at TEXT3.

PRINTEXT TEXT3,LINE=l,SKIP=2

5) Skip one line. If any output is residing in the system buffer or the terminal I/O
buffer, the system prints it before doing the SKIP operation.

PRINTEXT SKIP=l

6) Write out the contents of the text statement at the label CODES and do not
translate the data.

PRINTEXT CODES,XLATE=NO

o

o

o

Coding Examples

o

0

'0'" , ,

PRINTEXT

1) The PRINTEXT instruction at label PI sends an untranslated message to an
ASCII terminal indicating that a program has begun processing. The example then
uses a set of PRINTEXT instructions to print the title of a report on the system
printer.

TERMMSG EQU *
ENQT ASCI ITEM

Pl PRINTEXT UNXLATED,XLATE=NO
DEQT

*
HEADER EQU *

ENQT $SYSPRTR GET EXCLUSIVE ACCESS TO PRINTER

PRINTEXT COMPANY,LINE=3,SPACES=39
PRINTEXT 'ANNUAL INVENTORY REPORT ' ,SPACES=4G,SKIP=2
PRINTEXT 'SCHEDULE D' ,SPACES=46,SKIP=1

*
PROCESS EQU

•
•
•

DC
UNXLATED DC

DC
DC
DC
DC

*
DC
DC
DC

*
COMPANY TEXT
ASCI ITEM lOCB

*

X' 1F1F '
XI 53434845 1

X' 44554C45 1

X' 2G442G5G '
XI 524F4345 I
XI 5353494E I

X' 472G4841 '
XI 532G4245 I
X'47554E '

DEFINE LENGTH/COUNT BYTES

I SMITH & JONES CORPORATION I
ACCA64

The message written to the ASCII terminal would be displayed as:

SCHEDULE D PROCESSING HAS BEGUN

Chapter 2. Instruction and Statement Descriptions 2-313

PRINTEXT

.~~

2-314 SC34-0937

The sequence of lines issued to the enqueued printer would appear as:

SMITH & JONES CORPORATION

ANNUAL INVENTORY REPORT
SCHEDULE 0

(line 0)
(line 1)
(line 2)
(line 3)
(1 ine 4)
(line 5)
(line 6)
(l i ne 7)
(line 8)

Note that the line numbers at the right are for reference purposes only and are not
part of the printed output.

2) This example shows how to print a message using the character spacing
capabilities of the 4975 printer. The MOVE instruction at MI moves the number of
bytes in the PRINTEXT message into CNT + 1. After index registers moves the first
character of the text message into the buffer BUF. The MOVE instruction at label
M2. inserts the spacing character (X 127 I) 0, a DO loop and the space modifier
(X I F5 I) into the buffer. The ADD instructions update the pointers. The loop
continues until it moves the entire text message into the buffer. The spacing
character and the space modifier are inserted between each character in the message.

After the loop completes, the message in the buffer is printed~ The spacing between
characters in the printed message has increased by 50 percent.

SPACING PROGRAM START
START EQU *
M1 MOVE CNT+1,MSG-l,(1,BYTE) FIND NUMBER OF BYTES IN MESSAGE

MOVE #1,0 INITIALIZE #1
MOVE #2,0 INITIALIZE #2

*
* THE FOLLOWING LOOP INSERTS SPACING CHARACTERS INTO THE DATA STREAM
*

ENQT $SYSPRTR ENQUEUE 4975 PRINTER
DO 0, TIMES, P1=CNT DO FOR NUMBER OF MESSAGE BYTES
MOVE (BUF,#2),(MSG,#1},(1,BYTE) MOVE THE MESSAGE CHARACTER

M2 MOVE (BUF+1,#2),FRACT,(2,BYTE) INSERT SPACING CHARACTER
* AND SPACE MODIFIER

ADD #1,1 INCREMENT POINTERS
ADD #2,3 INCREMENT POINTERS
ENDDO
MOVE CNT,#2 GET TOTAL NUMBER OF CHARACTERS

* TO PRINT
MOVE BUF-1,CNT+l,(1,BYTE)
PRINTEXT BUF,SKIP=1 PRINT THE MESSAGE
DEQT
PROGSTOP

*
FRACT DATA XI27F5 1 THE SPACING CHARACTER AND
* SPACE MODIFIER
MSG TEXT ITHIS IS A TEST MESSAGE I
BUF TEXT LENGTH=230

ENDPROG
END

o

0

0

o

0

o

PRINT EXT

The message, after the spacing operation, appears as follows:

THIS IS A TEST MESSAGE

If no additional spacing is added, the message appears as follows:

THIS IS A TEST MESSAGE

3) When you code a value with the CAPS operand, the system generates an lOR
instruction to capitalize the specified data. The example below shows the use of the
CAPS operand and how you can achieve the same results by coding an lOR
instruction directly in your application program.

With the CAPS operand

•
•
•

PRINTEXT A,CAPS=5
•
•
•

A TEXT LENGTH=5

Without the CAPS operand

•
•
•

lOR A,X I 40 1 ,(5,BYTES)
PRINTEXT A

•
•
•

A TEXT LENGTH=5

Chapter 2. Instruction and Statement Descriptions 2-315

PRINT EXT

4) The following example shows how you can use the PRINTEXT instruction to
highlight characters in printed output.

SAMPLE
START

PROGRAM START
EQU *
ENQT $SYSPRTR
PRINTEXT IAN EXAMPLE OF',MODE=LINE
PRINTEXT 'HIGHLIGHTING OF CHARACTERS',MODE=LINE
TERMCTRL DISPLAY
PRINTEXT 'HIGHLIGHTING OF CHARACTERS',MODE=LINE,

SPACES=27
TERMCTRL DISPLAY
PRINTEXT ION THE PRINTER ' ,MODE=LINE,SPACES=54
PROGSTOP
ENDPROG
END

The highlighted characters appear in bold in the sample below:

AN EXAMPLE OF HIGHLIGHTING OF CHARACTERS ON THE PRINTER

Request SpeCial Terminal Function (4975-01A)

2-316 SC34-0937

To request special terminal control function on the 4975-01A ASCII Printer, you
must issue a data stream. A data stream provides terminal control capabilities for
the 4975-01A ASCII Printer similar to those provided by the TERMCTRL
statement. Unlike the TERMCTRL statement, however, a data stream requires
terminal control statements called code extension sequences. These sequences of
hexadecimal control characters provide print control instructions that the printer
interprets to print the text.

This section contains some of the basic sequences required in a data stream on the
4975-01A ASCII Printer. For more information on code extension sequences used
with the 4975-01A ASCII Printer, refer to the IBM 4975 Printer Model OlA (7 Bit
Code) Description, GA34-1595.

Do not confuse the 4975-01A ASCII Printer with other 4975 printers. The 4975-01A
ASCII Printer uses the International Standards Organization Standard 7-Bit Coded
Character Set for Information Processing Interchange (lSO-7). Other 4975 printers
do not use this character set, and they use TERMCTRL statements, not data
streams. See "4975 Printer" on page 2-498 for information about TERMCTRL
statements for other 4975 model printers.

Although most existing programs will generate output on the 4975-01A ASCII
Printer, this printer ignores TERMCTRL statements.

o

o

o

o

o

o

PRINT EXT

Code Extension Sequences
Code extension sequences tell the 4975-01A ASCII Printer how to interpret data that
will follow. Among the sequences your printer interprets is one that indicates the
type of unit spacing. It is called the Positioning Unit Mode (PUM) sequence. Two
choices are available for unit spacing: lines-and-characters PUM and decipoint
PUM. The first produces lines and characters per inch; the second allows you to
space units of text precisely within a fraction of an inch called a decipoint. (A
decipoint is one tenth of a point, a point is 1/12 of a pica, and a pica is 1/6 of an
inch.) There are 720 d~cipoints in one inch.

Setting Lines-and-Characters Positioning Unit Mode (PUM)
The 4975-01A ASCII Printer prints text in lines-and-characters PUM when you code
the hexadecimal characters IB5B3l316C in your data stream before you indicate the
actual lines and characters spacing increments. The printer interprets these
characters as follows:

Hex Byte Field

IB 0 Control Sequence Introducer

5B 1 Control Sequence Introducer

31 2 Numeric Parameter for PUM

31 3 Numeric Parameter for PUM

6C 4 Final Character

However, since lines and characters per inch is the system default, you do not need
to include this PUM code unless decipoint PUM was requested previously and you
want to reset spacing on the 4975-01A Printer to lines and characters PUM.

Set Spacing Increment (SPI)
In order to set spacing increments in lines and characters or decipoints on the
4975-01A ASCII Printer, include SPI code in the data stream after the PUM code.
The SPI code used for indicating lines and characters or decipoints is
IB5Bnp3Bnp2047, where the "np" means numeric parameter. The first numeric
parameter indicates vertical spacing or lines per inch; the second indicates horizontal
positioning or characters per inch.

Numeric parameters in a data stream are simply code equivalents for decipoint
spacing values. Numeric parameter values for each digit of a decipoint value range
from 30 to 39 for 0 to 9 respectively. For example, the np value 35 equals 5
decipoints, and the np value 313230 equals 120 decipoints. Decipoint values allowed
in a data stream range from 1 to 120; np coded equivalents range from 31 to 313230.

When you specify lines and characters per inch, you may find it easier to think of
decipoint values in terms of points.

Chapter 2. Instruction and Statement Descriptions 2-317

PRINTEXT

2-318 SC34-0937

The following table illustrates the relationship among the np values, decipoint values,
points, and inch eqUivalents;

np Decipoint Value Points Inch Equivalent

313230 120 12 6 lines per inch

3930 90 9 8 lines per inch

3732 72 7.2 10 characters per inch

3438 48 4.8 15 characters per inch

A 12-point vertical type spacing results in 6 lines per inch. A request for 9-point
vertical type spacing allows 8 lines per inch. Horizontal spacing of 7.2 points results
in 10 characters per inch. 4.8 points allows more characters per inch, 15. These are
the only options available on the 4975-01A ASCII Printer in lines and characters
PUl\1. The default number of lines per inch is 6. The default number of characters
per inch is 10.

If you want to use any of these parameters, code the following in hexadecimal ("cpi"
means characters per inch; "lpi" means lines per inch):

Coded SPI Parameter Inch Equivalent

IB5B39303B34382047 8 lpi, 15 cpi

IB5B3B34382047 6 lpi, 15 cpi

1 B5B39303B204 7 8 lpi, 10 cpi

IB5B3B2047 6 lpi, 10 cpi

IB5B3132303B37322047 6 lpi, 10 cpi

o

o

o

o

o

PRINTEXT

The hexadecimal code has the following meanings:

Hex Byte Field

IB 0 Control Sequence Introducer

5B 1 Control Sequence Introducer

30-39 +n Numeric Parameter (vertical)

3B +1 Separator

30-39 +n Numeric Parameter (horizontal)

20 +1 Intermediate Character

47 +1 Final Character

The + n represents the np value and can be 1 to 3 bytes.

Setting Decipoint Positioning Unit Mode (PUM)
If you want to space text more precisely than lines and characters PUM will allow,
you can use the decipoint PUM parameters. The 4975-01A. ASCII Printer prints text
in decipoint PUM when you code the hexadecimal characters IB5B313168 in your
data stream before you code specific decipoint horizontal and vertical spacing
numeric parameters (np). The SPI code that follows this PUM code allows data to
be positioned in any increment of decipoints.

The printer interprets these characters as follows (see "Set Spacing Increment (SPI)"
on page 2-317 for how to code SPI):

Hex Byte Field

IB 0 Control Sequence Introducer

5B 1 Control Sequence Introducer

31- 2 Numeric Parameter for PUM

31 3 Numeric Parameter for PUM

68 4 Final Character

Chapter 2. Instruction and Statement Descriptions 2-319

PRINTEXT

The following table illustrates the relationship between the np values and the
decipoint values.

np Decipoint Value

313230 120

313130 110

3930 90

3830 80

3730 70

3330 30

Resetting to Initial State (RIS)
To reset the printer to its initial ~tate, code the hexadecimal characters IB63. The
initial state is the printer's state when it was switched on. This code sequence can
replace coding for printer defaults. The printer interprets these characters as follows:

Hex Byte Field

IB 0 Escape Character

63 1 Final Character

Data Stream Example

2-320 SC34-0937

The following program example demonstrates how to change print density on the
4975-01A ASCII Printer.

Once enque~ed, the printer prints text in lines and characters per inch PUM, the
default positioning unit mode. Lines and characters will automatically print with a
density of 6 lines and 10 characters per inch. The ASCII printer retains any print
density information you specify until you request new values by numeric parameter
specification or the RIS sequence.

The XLATE = NO operand used in this example sends the message to the device
without translation. Results of the program follow the example.

o

o

o

PRINTEXT

-- PGM PROGRAM START

0 *
START EQU *
*

ENQT ASCIPRNT ENQT ON THE PRINTER
PRINTEXT 'THIS IS 6 LINES/INCH, 10 CHARACTERS/INCH (DEFAUL T) 1

PRINTEXT SKIP=1
PRINTEXT 'THIS IS 6 LINES/INCH, 10 CHARACTERS/INCH (DEFAUL T) 1

*
PRINTEXT ~P815,XLATE=NO CHANGE PRINT DENSITY TO 8 LPI 15 CPI

*
PRINTEXT 'THIS IS 8 LINES/INCH, 15 CHARACTERS/INCH 1 ,SKIP=1
PRINTEXT 'THIS IS 8 LINES/INCH, 15 CHARACTERS/INCH 1 ,SKIP=1

*
PRINTEXT P615,XLATE=NO CHANGE PRINT DENSITY TO 8 LPI 15 CPI
PRINTEXT 'THIS IS 6 LINES/INCH, 15 CHARACTERS/INCH ' ,SKIP=1
PRINTEXT 'THIS IS 6 LINES/INCH, 15 CHARACTERS/INCH 1 ,SKIP=1

*
DEQT DEQT THE PRINTER
PROGSTOP

*
ASCIPRNT IOCB $SYSPRT2 IOCB FOR THE 4975-01A
*

DC X' 0909 1 DATA TO DEFINE TEXT STRING LENGTH
P815 DC X' 1B5B ' BEGINNING SEQUENCE

DC X'3930 ' SPECIFIES 8 LPI
DC X' 3B ' SEPARATOR

0 DC X' 3438 1 SPECIFIES 15CPI
DC X' 2047 1 ENDING SEQUENCE

*
ALIGN WORD ALIGN DATA STREAM

*
DC X'0707 1 DATA TO DEFINE TEXT STRING LENGTH

*
P615 DC X '1B5B ' BEGINNING SEQUENCE
* NO PARAMETER, MEANS 6 LPI (DEFAULT)

DC X' 3B ' SEPARATOR
DC X' 3438 1 SPECIFIES 15 CPI
DC X' 2047 1 ENDING SEQUENCE

*
ENDPROG
END

The program produces the following output:

or H 1 ~:::; J ~::; ':-::0 1..0:1: i'--.! [~:::; .. / I (001 C: H .. ' 1 () C H (0, F;~ t) C T F F: ~::; i J (01 C: 1--1 (:0 [F (°,1...1 i... or)
T H 1 ~:::, J ~::; (:0:. !.. J j"-) [::::; ... / 1 (.! C: H... :I. () C: H (0) h: (:°1 C or F I? ~::; 1 f"-.~ C H (II F F (\ 1...11... or)
THIS IS 8 LINES/INCH; 15 CHARACTERS/INCH
THIS IS 8 LINES/INCH! 15 CHARACTERS/INCH
THIS IS 6 LINES/INCH 1 15 CHARACTERS/INCH
THIS IS 6 LINES/INCH, 15 CHARACTERS/INCH

o
Chapter 2. Instruction and Statement Descriptions 2-321

PRINTEXT

Terminal 1/0 Return Codes

2-322 SC34-0937

The terminal I/O return codes are ~isted here as well as following the READTEXT
instruction. A complete list of all return codes can also be found in Messages and
Codes. You must select the group. of codes that represents the particular device type
you are using. The terminal I/O return code groups are:

• General Terminal I/O
• Virtual Terminal
• ACCA/Serial Printer Devices
• Interprocessor Communication
• General Purpose Interface Bus
• Series/l-to-Series/l Adapter.

If you combine message output and forms movement (SKIP = or LINE =) on the
same statement, the system processes this as two distinct I/O requests. The forms
movement, which is processed first, causes actual output to the device. If an I/O
error occurs, the system places a return code in the first word of the· TCB.

The message output causes the transfer of datd to a system buffer, but causes no
actual I/O. However, this transfer also causes a return code (usually -1) to be
placed in the first word of the TCB.

If your application checks the return code after a combined PRINTEXT, it may be
missing an I/O error. To prevent this from happening, specify TERMERR = on the
PROGRAM statement, or separate forms movement and message output into two
PRINTEXT instructions and check the return code after each one.

o

o

o

o

o

o

PRINTEXT

General Terminal 1/0 Return Codes
The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
Code Condition

-1 Successful completion.

1 Device not attached.

2 System error '(busy condition).

3 System error (busy after reset).

4 System error (command reject).

5 Device not ready.

6 Interface data check.

7 Overrun received.

8 Printer power has been switched off and switched back on or a power
failure has occurred.

9 Printer I/O error retry count exhausted.

IOS31Ol has detected an invalid data stream from the 3101/3l6x and
3151 terminals.

>10 A code greater than 10 can indicate multiple errors. To determine the
errors, subtract 10 from the code and convert the result to an 8-bit
binary,value. Each bit (numbering from the left) represents an error as
follows:

Bit 0 Unused
Bit 1 System error (command reject)
Bit 2 Not used
Bit 3 System error (DCB specification check)
Bit 4 Storage data check
Bit 5 Invalid storage address
Bit 6 Storage protection check
Bit 7 Interface data check.

Notes:

1. If the return code is for devices supported by IOS2741 (2741, PROC) and a code
greater than 128 is returned, subtract 128; the result then contains status word 1
of the ACCA. Refer to the IBM Series/l Asynchronous Communications Feature
Description, GA34-0243 to determine this error condition.

2. If your program receives a return code of 5 while attempting to perform a
PRINTEXT operation on a 4975 printer, the program shouldretry the operation
a maximum of three times.

Chapter 2. Instruction and Statement Descriptions 2-323

PRINT EXT

Virtual Terminal Return Codes

2-324 SC34-0937

The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return Transmit Receive
Code Condition Condition

X"8F' Not applicable. LINE = nn received.

X ' 8E ' Not applicable. SKIP = nn received.

-2 Not applicable. Line received (no CR).

-1 Successful completion. New line received.

1 Not attached. Not attached.

5 Disconnect. Disconnect.

8 Break. . Break.

A further description of each of the virtual terminal return codes follows:

LINE=nn (X'8Fnn')
Returned for a READ TEXT or GETVALUE instruction if the other
program issued an instruction with a LINE = operand. This operand tells
the system to perform an I/O operation on a certain line of the page or
screen. The return code allows the receiving program to reproduce on an
actual terminal the output format intended by the sending program.

SKIP=nn (X'8Enn')
The other program issued an instruction with a SKIP = operand. This
operand tells the system to skip several lines before performing an I/O
operation.

Line Received (- 2)
Indicates that an instruction (usually READ TEXT or GETVALUE) has
sent information but has not issued a carriage return to move the cursor to
the next line. The information is usually a prompt message.

New Line Received (-1)
Indicates transmission of a carriage return at the end of the data. The
cursor is moved to a new line. This return code and the Line Received
return code help programs to preserve the original format of the data they
are transmitting.

Not attached (1)
A virtual terminal does not or cannot refer to another virtual terminal.

Disconnect (5)
The other virtual terminal program ended because of a PROGSTOP or an
operator command.

Break (8)
Indicates that both virtual terminal programs are attempting to perform the
same type of operation. When one program is reading (READTEXT or
GETVALUE), the return code means the other program has stopped
sending and is waiting for input. When one program is writing
(PRINTEXT or PRINTNUM), the return code means the other program is
also attempting to write.

If you defined only one virtual terminal with SYNC = YES, then that task
always receive.s the· break code. If you defined both virtual terminals with
SYNC = YES, then the task that last attempted the operation receives the
break code.

o

o

o

o

o

PRINTEXT

ACCA/Serial Printer Return Codes
The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
Code Condition

-1 Successful completion~

80 Attachment detected that Data Set Ready is down for an asynchronous
printer.

96 4224 printer is not responding (MODE = VERIFY).

Bits Value Description

1-8 ISB In the case of I/O completion 'error or when an
error is reported as an attention interrupt, refer
to the hardware description manual for status on
the device you are using.

9 On Interpret return code as a word value.

10 On Error reported as an attention interrupt.

11 On I/O error on write operation.

12 On I/O error on read operation.

10-12 Off All 3 bits off: immediate I/O error.

13-15 Immediate I/O condition code + 1.

Chapter 2. Instruction and Statement Descriptions 2-325

PRINTEXT

Interprocessor Communication Return Codes
The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
CODTVPE= Code Condition

EBCDIC FDFF End of transmission (EOT).

EBCDIC FEFF Erid of record (NL).

EBCDIC FCFF End of subrecord (EOSR).

EBCD/CRSP IF End of transmission (EOT).

EBCD/CRSP 5B End of record (NL).

EBCD/CRSP (None) End of subrecord (EOSR).

General Purpose Interface Bus Return Codes

2-326 SC34-0937

The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
Code Condition

-1 Successful completion.

1 Device not attached.

2 Busy condition.

3 Busy after reset.

4 Command reject.

6 Interface data check.

256 + ISB: Read exception.

512 + ISB: Write exception.

1024 Attention received during an operation (may be combined with an
exception condition).

o

o

o

o

o

o

PRINT EXT

Series/1-To-Series/1 Return Codes
The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
Code Condition

-1 Successful.

1 Device not attached.

2 System error (busy condition).

3 System error (busy after reset).

4 System (command reject).

5 Device not ready (not reported for S/I-S/l).

6 Interface data check.

7 Overrun recieved (not reported for S/I-Sj1).

138, 154 An error has occurred that can only be determined by displaying the
device cycle steal status word with the TERMCTRL STATUS function
and checking the bits to determine the cause of the error.

1002 Other system not active.

1004 Checksum error detected.

1006 Invalid operation code or sequence.

1008 Time-out on data transfer.

1010 TERM CTRL ABORT issued by responding processor.

1012 Device reset (TERMCTRL RESET) issued by the other processor.

1014 Microcode load to attachement failed during IPL.

1016 Invalid or unsolicited interrupt occurred.

1050 TERMCTRL ABORT issued and no operation pending.

1052· TERMCTRL IPL attempted by slave processor.

1054 Invalid data length.

Chapter 2. Instruction and Statement Descriptions 2-327

PRINTIME

PRINTIME - Display the Time on a Terminal
The PRINTIME instruction prints the time of day on the currently enqueu(;!d
terminal. The system prints the time in the form HH:MM:SS (hours, minutes,
seconds), according to a 24-hour clock. You set the 24-hour clock with the $T
command.

Note: To use the PRINTIME instruction, you must have installed timer hardware
and included timer support in the system during system generation. A program
check will occur if you try to use this instruction without the proper hardware or
software support.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a PRINTIME instruction causes a terminal I/O operation to
occur. If the return code is not a-I, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label PRINTIME

Required: none
Defaults: none
Indexable: none

Operand Description

none none

31 xx Display Considerations

2-328 SC34-0937

If you use a 31xx in block mode, the current TERMCTRL command in effect will
control the output. For details on the TERMCTRL SET,ATTR and SET,STREAM
operands, see the discussion under "TERMCTRL - Request Special Terminal
Function" on page 2-426.

o

0

o

Coding Example

o

o

o

PRINTIME

The following coding example prints a message on the system printer, followed by
the current time of day.

•
•
•

ENQT $SYSPRTR
PRINTEXT I@ THE TIME IS I

PRINTIME
DEQT
•
•
•

If, for example, the PRINTIME instruction executes at 10 minutes and 13 seconds
past 2 o'clock in the afternoon, the instruction prints the following message on the
system printer:

THE TIME IS 14:10:13

Chapter 2. Instruction and Statement Descriptions 2-329

PRINTNUM

PRINTNUM - Display a Number on a Terminal

2-330 SC34-0937

The PRINTNUM instruction displays or prints a floating-point value or one or
more integer values on a terminal in the format that you specify. The output can
appear in decimal or hexadecimal form.

If the PRINTNUM output is too large for the system buffer, the system first fills the
buffer, prints that data, and then stores the excess data in the buffer area. The next
I/O operation forces the excess data to be printed or displayed before any other
output.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a PRINTNUM instruction causes a terminal I/O operation to
occur. If the return code is not a-I, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). However, if an I/O
error occurs during this instruction, terminal I/O will not pass control to any
terminal error routine. The terminal I/O return codes are described at the end of the
PRINTEXT and READTEXT instructions in this manual and also in Messages and
Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

loc

count

nline

nspace

PRINTNUM loc,count,nline,nspace,MODE = ,FORMAT =,
TYPE = ,SKIP = ,LINE = ,SPACES = ,PROTECT = ,
PI =,P2=,P3=,P4=

loc
count = l,nspace = I,MODE = DEC,PROTECT = NO,
FORMAT = (6,O,I),TYPE = S,
SKIP = O,LINE = current line,SP ACES = °
If nline is not specified, then it is
determined by the terminal margin settings.
loc,SKIP,LINE,SP ACES

Description

The label of the first value to be printed or displayed. Successive
values are taken from successive words or doublewords.

The number of values to be printed or displayed. You can substitute a
precision for the count, in which case the count defaults to 1. The
valid precisions are WORD (the default) and DWORD (doubleword).
You can also express the count in the form: (count,precision).

The number of values to be printed or displayed on each line.

The number of spaces left between values. Code the nline operand
before coding this operand.

o

o

o

o

o

o

PRINTNUM

MODE = HEX, for hexadecimal output.

DEC, the default, for decimal output.

FORMAT = The format of the value to be printed or displayed. If you code this
operand, the system ignores the count, nline, nspace, and MODE =

operands.

TYPE =

SKIP =

The format is FORMAT = (w,d,f) where:

w An integer value equal to the width of the data field to be
printed or displayed. If the data contains a decimal point or sign
character (+ or -), include it in the count.

d The number of digits to the right of the decimal point. For the
integer format, this value must be 0; for the floating-point F
format, it must be less than or equal to w - 2, and for the
floating-point E format, less than or equal to w - 6.

f Format of the output data. Code I for integer data, F for
floating-point data (XXXX.XXX), or E for floating-point data in
E notation. See the value operand under the DATA/DC
statement for a description of E notation format.

Note: You can use the floating-point format for data even if you
do not have floating-point hardware installed in your system.
Floating-point hardware is required, however, to do
floating-point arithmetic.

The first FORMAT operand to execute generates a work area which
all subsequent FORMAT operands also use. The generated work area
is non reentrant in a multitasking environment, and all tasks must use
the ENQ and DEQ instructions to acquire serial access to it.

The type of variable that contains the data you want to print or
display. Code this operand only when you code the FORMAT
operand.

S Single-precision integer (l word)
D Double-precision integer (2 words)
F Single-precision floating-point (2 words)
L Extended-precision floating-point (4 words).

The number of lines to be skipped before the system does an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP = 6, the system does the I/O operation on line 8.
For a printer, the SKIP operand~ontrols the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen's bottom margin minus the number of history lines
and the screen's top margin.

Chapter 2. Instruction and Statement Descriptions 2-331

PRINTNUM

2-332 SC34-0937

LINE = The line number on which the system is to do an I/O operation. Code
a value from 0 to the number of the last usable line on the page or
logical screen. The line count begins at the top margin you defined for
the printer or display screen. LINE = 0 positions the cursor at the top
line of the page or screen you defined; LINE = 1 positions the cursor at
the second line of the page or screen. For roll screens, line 0 equals
the screen's top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system does the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system does
the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE = 22 and your roll screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system does an I/O
operation. SPACES = 0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

PROTECT =

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

Code PROTECT = YES to write protected characters to a device for
which this feature is supported.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

o

o

o

o

PRINTNUM

31 xx Display Considerations

Syntax Examples

If you use a 31xx in block mode, the most recent TERMCTRL command will
control the output. For details about TERMCTRL SET,ATTR and SET,STREAM
operands, see "TERMCTRL - Request Special Terminal Function" on page 2-426.

1) Print the first value in A in integer format.

PRINTNUM A

2) Print the first 10 values in BUFI in integer format.

PRINTNUM BUF1,10

3) Print the first value in AX in hexadecimal form.

PRINTNUM AX,MODE=HEX

4) Print the first 10 values in BUF2, put five values on each line, and
print three spaces between each value.

PRINTNUM BUF2,lO,5,3

5) Print the first 10 doublewords of BZ in hexadecimal form.

PRINTNUM BZ,(10,DWORD),MODE=HEX

6) Print 8 numbers, four in a line, with 5 spaces between the numbers.

PRINTNUM NUMBERS,8,4,5

Chapter 2. Instruction and Statement Descriptions 2-333

PRINTNUM

Coding Example

2-334 SC34-0937

The following example uses the PRINTNUM instruction to display a floating-point
value and an integer value on a terminal. The system displays the values on the
terminal you use to load the program.

The program first asks you to enter a floating-point number. The GETVALUE
instruction places the number you enter in FLCOUNT. At label LOOPl, the
program begins a loop that adds the floating-point number in FLCOUNT to the
contents of FLSUM ten times.., The second GETVALUE instruction asks you to
enter an integer. It places the value you enter in INTCOUNT. The DO loop at
label LOOP2 adds the integer value in INTCOUNT to the contents of INTSUM ten
times.

The PRINTNUM instruction at PRINTl displays the contents of FLSUM in
floating-point format. The PRINTNUM instruction at PRINT2 displays the
contents of INTSUM in integer format.

PIiOGl
START

LOOPl

LOOP2

PROGRAM START,FLOAT=YES
EQU *
GETVALUE FLCOUNT,IENTER FLOATING POINT NUMBER: I

TYPE=F,FORMAT=(4,3,F)
DO lO,TIMES

FADD FLSUM,FLCOUNT
ENDDO
GETVALUE INTCOUNT,IENTER INTEGER NUMBER: I
DO lO,TIMES

ADD INTSUM,INTCOUNT
ENDDO
PRINTEXT I@FLOATING POINT RESULT= I

PRINTl PRINTNUM FLSUM,FORMAT=(5,2,F),TYPE=F
PRINTEXT I@INTEGER RESULT= I

PRINT2 PRINTNUM INTSUM
PROGSTOP

INTCOUNT DATA
FLCOUNT DATA
FLSUM DATA
INTSUM DATA

ENDPROG
END

FlO I

EIO.OOOI
EIOO.OOI
FIOI

x

o

o

o

o

PROGRAM

PROGRAM - Define Your Program
The PROGRAM statement defines the primary task of your program and the
resources your program uses. PROGRAM is the first statement you code in every
application program assembled using $EDXASM or $SIASM.

You can only omit the PROGRAM statement when you are compiling a
subprogram under $EDXASM. (See the MAIN operand for a definition of a
subprogram.) When program assembly is to be done by the Host or Series/l macro
assemblers, you must code a PROGRAM statement even for subprograms.

Syntax:

taskname

Required:
Defaults:

Indexable:

Operand

taskname

start

priority

EVENT =

PROGRAM start,priority,EVENT = ,

DS = (dsnamel, ... ,dsname9),P ARM = n,
PGMS = (pgmnamel, ... ,pgmname9), TERMERR = ,
FLOAT = ,MAIN = ,ERRXIT = ,STORAGE =

taskname,start (except when MAIN = NO)
priority = 150,P ARM = O,FLOAT = NO,MAIN = YES,

STORAGE =0
none

Description

The label you assign to the primary task of the program.

The system generates a control block for each task in the program.
This control block is known as a task control block (TCB). The
system generates the TCB when it encounters an ENDPROG
statement.

The label of the primary task's TCB is the label you specify with this
operand. The supervisor uses the TCB to store instruction return
codes. By referring to the TCB (the taskname) in your program, you
can determine if an operation completed successfully.

The label of the first instruction to be executed in your program. The
instruction must be on a fullword boundary.

The priority of the program's primary task. The system uses priorities
to establish the order in which it executes tasks. Tasks with high
priorities are executed before tasks with low priorities. The range is
from 1 (highest priority) to 510 (lowest priority). Priorities 1- 255
imply foreground operation and are executed on hardware interrupt
level 2. Priorities 256 - 510 imply background operation and are
executed on interrupt level 3.

The label of the event to be posted when the system detaches the
primary task. Use this operand only if another task will issue aWAIT
for this event. Do not code an event control block (ECB) with this
label because the system generates the ECB for you. An error message
appears at the end of the program compiler listing if this event is
defined more than once.

Chapter 2. Instruction and Statement Descriptions 2-335

PROGRAM

DS=

2-336 SC34-0937

Names of 1-9 disk, diskette, or tape data sets to be used by this
program. Each name is composed of 1 - 8 alphanumeric characters,
the first of which must be alphabetic. Only one tape dataset for each
tape volume can be specified.

If your program retrieves formatted messages from a disk or diskette
data set, you must specify the data set name with this operand. The
COMP statement in your program provides the location of the
message by referring to the data set list on the PROGRAM statement.

The system automatically generates one data set control block (DSCB)
in the program header for each data set you specify on the DS operand
of the PROGRAM statement. The system gives each DSCB the name
DSx, where x is the position of a data set in the list of data sets you
code on this operand. The DSCB named DS1, for example,
corresponds to the first data set in the DS = list. You can refer to
fields within a DSCB with the expression DSx + name, where "name"
is a label defined in the DSCB equate table, DSCBEQU. You must
include the following statement in your source program when you refer
to DSCB fields:

COpy DSCBEQU

If the special characters ## are found in a program header in place of
a volume name, the n~me of the volume from where the main program
was loaded is substituted for the ## characters. This allows data sets
specified in the program header to reside on the same volume as the
main program.

All tape data sets are of the form (DSN,VOLUME). The specification
of tape data sets is dependent on the type of label processing being
done.

For standard label (SL) processing the DSN is the data set name as it
is specified in the HDRI label. VOLUME is the volume serial as it is
specified in the VOLl label.

When doing no label (NL) processing or bypass label processing (BLP)
the volume must be specified as the I - 6 digits that represent the tape
unit ID. The tape unit ~D was assigned at system generation time.
The DSN is ignored during NL or BLP processing, but it must be
supplied for syntax checking purposes. It also provides identification
of the data set for things such as error logging.

If more than one disk or diskette logical volume is being used, a
volume label must be specified if the data set resides on other than the
IPL volume. The data set name and volume are separated by a
comma and enclosed in parentheses. In addition, the entire list of data
set/volume names is enclosed in a second set of parentheses. For
example:

... ,DS=«MYDS,MYVOL»

refers to the data set MYDS on volume MYVOL.

o

o

PROGRAM

In the following example:

.•. ,OS=((ACTPAY,EOXOOl),(OSOATA2,EOX003»

DS = refers to the data set ACTP A Y on volume EDXOO 1 and to
DSDATA2 on volume EDX003.

If you do not specify a volume, the default is the IPL volume. When
one data.set is used and it is in the IPL volume, no parentheses are
required. For example:

... , DS=CUSTFI L

When more than one data set is used and they reside in the IPL
volume, the data set names are separated by commas and enclosed in
parentheses. For example:

... ,OS=(CUSTFIL,VENDFIL)

Four special data set names are recognized: ??, $$EDXLIB, and $$ or
$$EDXVOL. A data set control block (DSCB) is created just as for
any other data set name. However, special processing occurs when the
program is loaded for execution.

If the sequence "??" is used as a data set name, the final data set name
and volume specification is done at program load time. If the program
is loaded by another program, this information must be contained in
the DS operand of the LOAD instruction. If the program is loaded
using the system command "$L", the system will query the operator
for these names. If the specified sequence is of the form,

..• DS=((string,??»):

where "string" is 1- 8 alphanumeric characters, you will receive the
following prompt message:

string(NAME,VOLUME)

If the specified sequence is of the form,

... OS=??

you will receive the prompt message,

DSn(NAME,VOLUME):

where "n" is a digit from 1 to 9.

If $$EDXLIB or $$ is used as a data set name with disks, the entire
volume is opened for processing as if it were a single data set. The
library directory and any data sets on the volume are accessible.
Symbol $$ also can be used to reserve a DSCB in the program header
so that it can be filled in and opened (using DSOPEN) after execution
begins.

Chapter 2. Instruction and Statement Descriptions 2-337

PROGRAM

PARM=

PGMS=

2-338 SC34-0937

With diskettes, $$EDXVOL only references records on cylinder O. If a
single-density diskette is used, $$EDXVOL references records 1 to 26.
With a double-density diskette, $$EDXVOL references records 1 to 39.
Symbol $$ and $$EDXLIB referenc~ diskette records beginning with
cylinder 1.

Note: $$EDXLIB or $$EDXVOL can be used as data set names when
using multivolume diskettes if you refer to a specific volume on the
diskette and dO.not refer to the volume label (VOL1).

A word count specifying the length of a parameter list to be passed to
this program at load time. Each word in the list can be referred to by
the name $PARMx, where "x" is the position or number of the word
in the list beginning with 1. The maximum length of this list is 742
words less 33 for each data set name you specified in the DS operand
and each overlay program name you specified in the PGMS operand.

This operand is valid for programs to be loaded by a LOAD
instruction. The list address is specified as an operand of that
instruction. The list would be filled in by the loading program and
there are no restrictions on its contents. If a program is loaded using
$L and it has a PARM specification, the parameters will be initialized
to O.

The names of 1 - 9 programs that can be loaded as overlay programs
during the execution of this program. Programs are specified by name
only if they reside on the IPL volume or by (name,volume) if they
reside elsewhere. The same coding rules that apply to the DS operand
apply to this operand.

The system reserves space within this program for the largest of the
overlay programs identified in this list, thus ensuring that space will be
available for the overlays when the program is executed.

You load program overlays with the LOAD instruction. Only one
overlay program can execute at a time because each uses the same
storage area. See the description of the LOAD instruction for
additional information.

Note: You can code this operand only in a main program and not on
the PROGRAM statement of an overlay program. In addition, you
cannot code this operand for tape data sets.

The system automatically generates one DSCB in the program header
for each overlay program you specify on the PGMS operand of the
PROGRAM statement. The system gives each DSCB the name
PGMx, where "x" is the position of an overlay in the list of overlay
programs you code on this operand. The DSCB named PGM 1, for
example, corresponds to the first data set in the PGMS = list. You
can refer to fields within a DSCB with the expression PGMx + name,
where "name" is a label defined in the DSCB equate table,
DSCBEQU. You must include the following statement in your source
program when you refer to DSCB fields:

COpy OSCBEQU

c

TERMERR=

FLOAT =

MAIN =

o

ERRXIT=

•

PROGRAM

If the special characters ## are found in a program header in place of
a volume name, the name of the volume from where the main program
was loaded is substituted for the ## characters. This allows overlays
specified in the program header to reside on the same volume as the
main program.

The label of the routine to receive control if an unrecoverable terminal
I/O error occurs.

If such an error occurs, the first word of the task control block (TCB)
contains the return code indicating the error. The second word of the
TCB contains the address of the instruction that was executing when
the error occurred.

If TERMERR is not coded, the return code is available in the task
code word. Use of TERMERR, however, is the recommended method
for detecting errors because the task code word is subject to
modification by numerous system functions. It may not, therefore,
always reflect the true status of terminal I/O operations.

YES, if the primary task uses floating-point instructions.

NO (the default), if the primary task does not use floating-point
instructions.

YES, if this program contains the primary task.

NO, if this program does not contain the primary task. For example,
code MAIN = NO if this program is a subroutine or any other section
of a program that is being prepared separately and will later be
link-edited to a main program. Such a program is called a
subprogram. When a subprogram is to be assembled by $EDXASM,
the' PROGRAM statement can be omitted entirely.

MAIN = NO suppresses the generation of the program header and the
task control block, thereby reducing the storage size of the
subprogram. If MAIN = NO is specified, then none of the other
operands of the PROGRAM statement are meaningful.

You link-edit program modules with the $EDXLINK utility. For
information on the $EDXLINK utility, refer to the Operator
Commands and Utilities Reference

Note: Subprograms must not contain TASK, ENDTASK, IODEF, or
A TTNLIST statements.

The label of a 3-word area that points to a routine that is to receive
control if a hardware error or program exception occurs while the
primary task is executing. This task error exit routine must be
prepared to completely handle any type of program or machine error.
Refer to the Language Programming Guide for additional information
on the use of task error exit routines.

If the primary task is part of a program that shares resources such as
QCBs, ECBs, or Indexed Access Method update records with other
programs, it is often necessary to release these resources even though
your program cannot continue because of an error. The supervisor
does not release resources for you, but the task error exit facility
allows you to take whatever action is appropriate.

Chapter 2. Instruction and Statement Descriptions 2-339

PROGRAM

STORAGE =

2-340 SC34-0937

The format of the task error exit area is:

WORD 1 The count of the number of parameter words that follow
(always F'2').

WORD 2 The address of your error exit routine.

WORD 3 The address of a 24-byte area in which the Level Status
Block (LSB) and Processor Status Word (PSW) from the
point of error are placed before the exit routine is entered.
Refer to a Series!l processor description manual for a
description of the LSB and PSW.

A default task error exit routine is available to aid in problem
diagnosis and correction. (Refer to the Language Programming Guide
for a detailed description of this routine and how to use it in your
application program.)

The number of bytes of additional storage the system should allocate
for this program when the program is loaded for execution. This
provides a dynamic increment of storage at load time. This value can
be overridden by a parameter on the LOAD instruction, dynamically
altering the space available to the program. The address and length of
the additional storage is contained in the variables $STORAGE and
$LENGTH, respectively, and can be referred to by your program
during execution. Do not use this operand if you are loading the
program as an overlay.

The amount of storage is rounded up to a multiple of 256 bytes.
$LENGTH contains the number of 256-byte pages that are available
for current execution. If no dynamic area is specified, $LENGTH
contains 0 and $STORAGE contains the address of the program's
primary task.

Storage can be any value from 0 to 65535 minus the size of the
program itself. If the storage required is not available at LOAD time,
the program will not be loaded.

The amount of storage required by a program for such things as
buffers, queues, or data often varies depending on its input. Dynamic
storage provides a way to adjust the amount of storage available
without recompiling your program. The PROGRAM statement can be
used to define the amount of dynamic storage for either minimal or
typical processing requirements and the LOAD instruction can be used
to expand the work space when processing will require more storage.
For example, on a daily basis a program may have to read about 1000
bytes of data into storage, analyze it and format it into a report.
Once a month it may be required to process 30 days worth of data
(30000 bytes) in the same way. Instead of wasting 29000 bytes of
storage every day, dynamic storage can be used to adjust the size to
meet requirements.

o

Syntax Examples

o

o

o

PROGRAM

1) TASKI is the label of the primary task and the label of the first executable
instruction is START. The priority of TASKI is the default priority, 150.

TASK1 PROGRAM START

2) The primary task, TASK2, has a priority of 300 and starts at the label BEGIN.
The program uses floating-point instructions.

TASK2 PROGRAM BEGIN,300,FLOAT=YES

3) The primary task, TASK3, starts at GOPROG. One data set, NAMEI, is
defined and is located in the volume from which the main program will be loaded.
Disk I/O instructions in the program refer to NAMEI by the symbolic name DSI.

TASK3 PROGRAM GOPROG,DS=((NAME1,##))

4) The primary task, TASK4, starts at START4 and uses one tape data set. The
data set is on a standard labeled tap~ where the VOLI label contains 110011 as the
volume serial number and the HDRI label contains MYDATA as the data set name.
You write such labels using the INITIALIZE function of the $TAPEUTI utility.

TASK4 PROGRAM START4,DS=((MYDATA,110011))

5) The primary task, TASKS, starts at STARTS and uses one tape data set. The
tape data set is either on a no label tape or bypass label processing is being used and
the tape device ID is TU088.

TASK5 PROGRAM START5,DS=(($$EDXVOL,TU088))

6) The primary task, TASK6, starts at START6. Two data sets are defined. The
name of the first data set will be specified at program load time. The second data
set has the name NAME2 and resides on the logical volume named EDX002. Two
overlays are defined, OLAYI and OLAY2. A 1000-byte area will be appended to
the program and its address placed in $STORAGE.

TASK6 PROGRAM START6,DS=(??,(NAME2,EDX002)),

7) The primary task, TASK7, starts at START7 and uses 4 data sets. MYDSI is a
disk or diskette data set on the IPL volume. MYDS2 is a tape data set on standard
labeled tape number 100001. The program prompts the operator for the last two
data sets. The prompt for the third data set appears as
OUTPUT(NAME,VOLUME); the prompt for the fourth data set appears as
DS4(NAME,VOLUME). The operator can specify the third and fourth data sets as
disk, diskette, or tape data sets.

TASK? PROGRAM START?,DS=(MYDS1,(MYDS2,100001),
(OUTPUT,??),??)

Chapter 2. Instruction and Statement Descriptions 2-341

PROGSTOP

PROGSTOP - Stop Program Execution

2-342 SC34-0937

The PROGSTOP instruction ends program execution and releases the storage
allocated to the program. You can have more than one PROGSTOP instruction in
a program. You are responsible for ensuring that any secondary tasks in a program
are inactive before a PROGSTOP statement is executed by the primary task. The
results of executing a PROGSTOP in a program with multiple active tasks are
unpredicta ble.

You are also responsible for assuring that no asynchronous events remain
outstanding. If your program contains an ECB for an event that has not yet
occurred, you must WAIT on the event before issuing a PROGSTOP. The following
instructions can generate asynchronous events: READ, WRITE, STIMER, LOAD,
ENQ, and ENQT. Also, if another program can post your program, you must wait
for the post or prohibit the other program from posting before the PROGSTOP
executes.

PROGSTOP does a close (CONTROL CLSOFF) for any open tape data set that
was defined by the PROGRAM statement or passed by another program.

PROGSTOP will do a DEQT of the terminal currently in use by the program.

When coding the PROGSTOP instruction, you can include a comment which will
appear with the instruction on your compiler listing. If you include a comment, you
must specify at least one operand with the instruction. The comment must be
separated from the operand field by one or more blanks and it may not contain
commas.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

code

PROGSTOP code,LOGMSG = ,PI =

none
code = -1, LOGMSG=YES
none

Description

comment

The posting code to be inserted in the EVENT named in the associated
LOAD instruction. The PROGSTOP instruction causes the system to
post the ECB for this event, following the post code rules.

Note: If a program check occurs, the ECB will be posted with.the
value of the PSW. Refer to the Problem Determination Guide for
information on the PSW.

This operand must be a self-defining term other than O.

o

·0

o

LOGMSG=

PROGSTOP

Code either YES or NO to show whether a "PROGRAM ENDED"
message is to be displayed on the terminal being used by this program.

Notes:

1. Programs loaded by the virtual terminal facility do not recognize
the LOGMSG operand. Therefore, if a program is loaded by a
virtual terminal, the program-ended message is never displayed.

2. If you coded LOGMSG = YES, but another task has control of the
terminal when your program ends, the system does not display the
program-ended message.

3. If LOGMSG=YES and the return code is not equal to -1,
PROGSTOP will display the return code.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Chapter 2. Instruction and Statement Descriptions 2-343

PUT EDIT

PUTEDIT - Collect and Store Data from a Program

2-344 SC34-0937

The PUTEDIT instruction obtains data from variables within a program, converts
the data to a character string, and either stores the data in a storage area or sends it
to a terminal.

PUTEDIT uses the specified FORMAT statement and the data list to convert and
move elements one by one into a storage area.

When you use the PUTEDIT instruction in your program, you must link-edit your
program using the "autocall" option of $EDXLINK. Refer to the Language
Programming Guide for information on how to link-edit programs.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a PUTEDIT instruction causes a terminal I/O operation to
occur. If the return code is not a-I, the address of this instruction will be placed
in the second word of the task control block (taskriame + 2).

The system will not pass control to a terminal error routine if an I/O error occurs
while this instruction is executing. The terminal I/O return codes are described at
the end of the PRINTEXT and READTEXT instructions in this manual and also in
Messages and Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label PUTEDIT format,text,(Iist),(format list),
ERROR = ,ACTION = ,SKIP = ,LINE = ,SPACES = ,

PROTECT = ,MODE =

Required:. text, (list), and either format
or (format list)

Defaults: ACTION = IO,PROTECT = NO,MODE = none
Indexable: none

Operand Description

format The label of a FORMAT statement or the name to be attached to the
format list optionally included within this instruction. This statement
or list will be used to control the conversion of the data. This operand
is required if the program is compiled with $EDXASM.

text The label of a TEXT statement defining a storage area for character
data. If data is moved to a terminal, this area stores the data (as an
EBCDIC character string) after it is converted from the variables and
before it is sent to the terminal.

Note: The TEXT statement must be large enough to contain all the
EBCDIC characters generated by' this instruction.

o

o

o

o

list

where:

variable

count

type

PUTEDIT

A description of the variables or locations which contain the input
data, having the form:

«variable,count, type), ...)
or

(variable, ...)
or

«varia ble,coun t), ...)
or

«varia ble, type), ...)

The label of a variable or group of variables that are to be converted to
EBCDIC.

The number of variables that are to be converted.

The type of variable to be converted:

S Single-precision integer (Default)
D Double-precision integer
F Single-precision floating-point
L Extended-precision floating-point.

type defaults to S for integer format data and to F for
floating-point format data.

format list A FORMAT list. If you want to refer to this format statement from
another PUTEDIT instruction, then both the format and format list
operands must be coded. See the FORMAT statement for coding
instruction operands that are to be referred to by PUTEDIT
instructions.

This operand is not allowed if the program is assembled with
$EDXASM.

ERROR = The. label of the first instruction of the routine to receive control if an
error occurs during the PUTEDIT operation. The system returns a
return code to the task even if you do not code this operand.

Errors that might cause the system to call the error routine are:

• Use of incorrect format list

• Not enough space in text buffer to satisfy the data list.

Chapter 2. Instruction and Statement Descriptions 2-345

PUTEDIT

2-346 SC34-0937

ACTION = 10 (the default), causes a PRINTEXT to be executed following the
data conversion. If output is being directed to a 31xx in block mode,
see "PRINTEXT - Display a Message on a Terminal" on page 2-307
for special considerations.

SKIP =

LINE =

STG, causes the conversion and movement of data into a text buffer.
No I/O takes place.

The number of lines' to be skipped before the system performs an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKJP = 6, the system does the I/O operation on line 8.
For.a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen's bottom margin minus the number of history lines
and the screen's top margin.

The line number on which the system is to perform an I/O operation.
Code a value from 0 to the number of the last usable line on the page
or logical screen. The line count begins at the top margin you defined
for the printer or display screen. LINE = 0 positions the cursor at the
top line of the page or screen you defined; LINE = 1 positions the
cursor at the second line of the page or screen. For roll screens, line 0
equals the screen's top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system performs the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system
performs the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to perform the I/O operation. For example, if
you code LINE = 22 and your roll screen has a logical page size of 20,
the I/O operation occurs o~ the second line of the logical ,screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system performs an I/O
operation. SPACES = 0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the.system begins
indenting from the last cursor position on the line.

()

o

o

PROTECT =

MODE =

PUTEDIT

YES, to write protected characters to a static screen device that
supports this feature, such as an IBM 4978, 4979, 4980, or 3lxx
terminal in block mode. Protected characters cannot be typed over
nor displayed.

NO (the default), to inhibit writing protected characters to a static
screen device.

Tells the system whether you want imbedded @ characters interpreted
as new-line designators. Code LINE if the text includes imbedded @
characters which are not to be interpreted as new-line designators.

For 4978, 4979, and 4980 screens accessed in static mode, the coding
of MODE = LINE and the spaces parameter (SPACES=) causes the
system to skip over protected fields as the data is transferred to the
screen. (Protected fields do not contribute to the count.)

For a 3lxx in block mode with a static screen, the system overwrites
protected fields.

Do not code this parameter if you want the system to interpret @
characters as new line designators.

31 xx Display Considerations

Syntax Example

Coding Example

When using a 3lxx in block mode, the output will be controlled by the most recent
TERMCTRL command. For details on the discussion under TERMCTRL
SET,ATTR and SET,STREAM operands, see "TERMCTRL - Request Special
Terminal Function" on page 2-426.

This example converts the integer A into the first four positions of TEXT 1 followed
by a carriage return command. Then, the next six positions will contain the variable
B followed by two spaces. The literal 'DATA =' then follows with the
extended-precision variable C converted into the last 10 positions.

TEXTl
FM

PUTEDIT FM,TEXTl,(A,(B,F),(C,L))
•
•
•

TEXT
FORMAT

LENGTH=28
(I4/F6.2,2X,'DATA=',El0.4)

The program issues a PRINTEXT instruction that requests the model year and serial
numbers for the automobile of interest. The first GETEDIT reads the two requested
numbers into a TEXT statement labeled TEXTl.

The GETEDIT instruction searches the TEXTl data and converts the first entry to a
single-precision variable called LISTI. The second entry is converted to a
double-precision variable called LIST2. The first PUTEDIT instruction, using the
FORMAT statement labeled PEIFMT, converts LISTl and LIST2 back to
EBCDIC and displays these values on the screen or printer. The PUTEDIT and
FORMAT statements determine the layout of the data as it is displayed.

Chapter 2. Instruction and Statement Descriptions 2-347

PUTEDIT

2-348 SC34-0937

The GETEDIT instruction after label GE2 takes the data already entered into
TEXTl with the preceding READ TEXT and converts it into the two binary
variables called LISTl (single-precision) and LIST2 (double-precision). Because
ACTION=STG, a READ TEXT must be issued before executing the GETEDIT.

The PUTEDIT instruction at label PE2 converts the two variables back to EBCDIC
and places them into the TEXT2 statement as formatted by the PE2FMT FORMAT
statement. Again the keyword ACTION = STG prevents the data from being
displayed until the following PRINTEXT instruction is executed.

GEl EQU *
PRINTEXT '@ENTER MODEL YEAR AND SERIAL NUMBER@'
GETEDIT GEIFMT,TEXTI,(LISTI,(LIST2,D)),ACTION=IO,ERROR=ERRI

*
PEl EQU *

*

ENQT $SYSPRTR
PUTEDIT PEIFMT,TEXT2,(LISTI,(LIST2,D)),ACTION=IO
DEQT

GE2 EQU *

*

*

READTEXT TEXTI,'@ENTER YOUR DEPT. AND SYSTEM 10 NUMBER@'

GETEDIT GE2FMT,TEXTI,(LISTI,(LIST2,D)),
ACTION=STG,ERROR=ERRI

PE2 EQU *

*
PUTEDIT PE2FMT,TEXT2,(LISTI,(LIST2,D)),ACTION=STG

ENQT $SYSPRTR
PRINTEXT TEXT2
DEQT
•
•
•

ERRI- EQU *
PRINTEXT '@GETEDIT GEl HAS FAILED@'
GOTO ERROROUT

*
ERR2 EQU *

PRINTEXT '@GETEDIT GE2 HAS FAILED@'
GO TO ERROROUT

*
ERROROUT •

GElFMT
PElFMT
GE2FMT
PE2FMT
LISTI
LIST2
TEXTI
TEXT2

•
•

FORMAT
FORMAT
FORMAT
FORMAT
DATA
DATA
TEXT
TEXT

(14, IX, 18)
('MOL. YR. = ',I4,6X,'SER. NO. = ',18)
(13, IX, 16)
('DEPT. = ',I3,4X,'SYST. 10. = ',16)
F'0'
0'0'
LENGTH=13
LENGTH=42

x

o

()

o

Return Codes

o

o

PUTEDIT

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description

-1 Successful completion.

3 Conversio"n error.

Chapter 2. Instruction and Statement Descriptions 2-349

QeB

QCB - Create a Queue Control Block

2-350 SC34-0937

The QCB statement generates a 5-word queue control block (QCB) for use with the
ENQ and DEQ instructions.

Normally this statement will not be needed in application programs if the program is
to be assembled by the Host or Series!l macro assemblers. In this case queue
control blocks are generated for you automatically as a consequence of naming a
QCB in a DEQ instruction. However, this statement can be used for special
purposes such as contr,olling the location of the QCB within a program. You must
code any necessary QCBs in programs you compile with $EDXASM.

A program can contain a maximum of 25 QCB statements. If more than 25 QCBs
are required, you must create them with the DATA statement. For example:

QCBI QCB

is equivalent to coding,

QCBI DATA
DATA
DATA

F'-I'
2F ' O'
2F ' O'

When coding the QCB statement, you can include a comment that will appear with
the statement on your compiler listing. If you include a comment, you must also
specify the code operand. The comment must be separatec1 from the operand field
by at least one blank and it cannot contain commas.

Syntax:

label QeD code comment

Required: label
Defaults: code = -1
Indexable: none

Operand Description

label The label of the QCB statement. The. ENQ and DEQ instructions
refer to this label.

code Initial value of the code field (word 1). If this word is nonzero, the
resource this QCB refers to is available for use by a program or task.

o

Coding Example

()

o

QCB

The QCB statement labeled SBRTNQCB generates a 5-word queue control block
(QCB). The ENQ instruction checks the QCB to see if the subroutine named
SUBRTN is being used by another program or task. The initial value of the QCB 1s
99, indicating that the resource is initially available for use.

ENQ SBRTNQCB
CALL SUBRTN
DEQ SBRTNQCB
•
•
•

SUBROUT SUBRTN
•
•
•

RETURN
•
•
•

SBRTNQCB QCB 99

Chapter 2. Instruction and Statement Descriptions 2 .. 351

QUESTION

QUESTION - Ask Operator for Input

2-352 SC34-0937

The QUESTION instruction allows the terminal operator to choose the direction of
a conditional branch in a program. The prompt message (normally in the form of a
question) is printed unconditionally, after which the operator may enter Y (or any
string beginning with Y) for yes, or N (or any string beginning with N) for no. Note
that advance input may accompany the response. If an invalid response is entered,
the operator is prompted until a Y or N is entered. The QUESTION instruction
must be issued only to terminals which have input capability for response to the
prompt.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a QUESTION instruction causes a terminal I/O operation to
occur. If the return code is not a-I, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, inless otherwise noted.

Syntax:

label

Required:
Defaults:

QUESTION pmsg,YES = ,NO = ,SKIP = ,LINE = ,SPACES =,
COMP = ,PARMS = (parml,oo.,parm8),
MSGID=,Pl=

pmsg and either YES = or NO =
If the operator enters a response and you have
not coded a keyword for that response (YES = or NO =),

the system executes the next instruction in the program.
MSGID=NO

Indexable: pmsg,SKIP,LINE,SPACES

Operand Description

pmsg The prompt message. Code either the label of a TEXT statement or
an explicit text message enclosed in single quotes.

YES =

NO=

To retrieve a prompt message from a data set or module containing
formatted program messages, code the number of the message you
want displayed or printed. You must code a positive integer or a label
preceded by a plus sign (+) that is equated to a positive integer. If
you retrieve a prompt message from storage, you must also code the
COMP = operand. See Appendix E, "Creating, Storing, and
Retrieving Program Messages" on page E-l for more information.

The label of the instruction at which execution will continue if the
answer is YES.

The label at which execution will continue if the answer is NO.

o

o

SKIP =

LINE =

QUESTION

The number of lines to be skipped before the system does an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP = 6, the system does the I/O operation on line 8.
For a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen's bottom margin minus the number of history lines
and the screen's top margin.

The line number on which the system is to do an I/O operation. Code
a value from.O to the number of the last usable line on the page or
logical screen. The line count begins at the top margin you defined for
the printer or display screen. LINE = 0 positions the cursor at the top
line of the page or screen you defined; LINE = I positions the cursor at
the second line of the page or screen. For roll screens, line 0 equals
the screen's top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system does the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system does
the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE = 22 and your roll screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system does an I/O
operation. SPACES =0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

COMP=

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

The label of a COMP statement. You must specify this operand if the
QUESTION instruction is retrieving a prompt message from a data set
or module containing formatted program messages. The COMP
statement provides the location of the inessage. (See the COMP
statement description for more information.)

Chapter 2. Instruction and Statement Descriptions 2-353

QUESTION

PARMS = The labels of data areas containing information to be included in a
message you are retrieving from a data set or module containing .
formatted program messages. You can code up to eight labels. If you
code more than one label, you must enclose the list in parentheses.

MSGID=

Note: To use,this operand, you must have included the FULLMSG
module in your system during system generation. Refer to the
Installation and System Generation Guide for a description of this
module.

YES, if you want the message number and 4-character prefix to be
printed at the beginning of the message you are retrieving from a data
set or module containing formatted program messages. See the COMP
statement operand "idxx" for a description of the 4-character prefix.

NO (the default), to prevent the system from printing or displaying this
information at the beginning of the message.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to the
Installation and System Generation Guide for a description of this
module.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Special Considerations

31 xx Terminals

Syntax Examples

2-354 SC34-0937

To use the QUESTION instruction with a static screen, you must create an
unprotected input area for the answer to the QUESTION prompt. The QUESTION
instruction regards the first nonblank character following the QUESTION prompt as
the answer to the prompt message. One or more blanks can precede the answer, but
they are not required.

If you use a 31xx in block mode, the most recent TERMCTRL SET,ATTR will
control the attribute bytes used for the prompt and response.

Neither a TERMCTRL SET,ATTR=BLANK nor SET,STREAM=YES should be
in effect when a QUESTION instruction executes.

1) Ask the operator if he or she wants to start a second routine. If the operator
answers YES, branch to the label ROUTINE2. If the operator answers NO, execute
the next instruction.

QUESTION TEXT1,YES=ROUTINE2 NO = NEXT STATEMENT
•
•
•

ROUTINE2 EQU *
•
•
•

TEXT3 TEXT IGO TO SECOND ROUTINE?I

c

0

()

o Coding Example

o

QUESTION

2) Ask the operator if he or she wants to perform an operation again. If the
operator answers NO, branch to the label EXIT. If the operator answers YES,
execute the next instruction.

EXIT

QUESTION 100 IT AGAIN?',NO=EXIT YES = NEXT STATEMENT
•
•
•

EQU
PROGSTOP

*

3) Ask the operator if he or she wants to restart an operation. If the operator
answers YES, branch to the label INITIAL. If the operator answers NO, branch to
the label END.

INITIAL EQU *
•
•
•

QUESTION 'RESTART?',YES=INITIAL,NO=END
•
•
•

END EQU *
PROGSTOP

In the following example, the QUESTION instruction displays a prompt message
contained in MSGMOD, a storage-resident message area. Because + MSG77 equals
77, the system retrieves message 77 in MSGMOD.

QUESTION +MSG77,COMP=MSGSTMT,YES=OKAY
•
•
•

OKAY EQU *
PROGSTOP

•
•
•

MSG77 EQU 77
MSGSTMT COMP 'SRCE',MSGMOD,TYPE=STG

Chapter 2. Instruction and Statement Descriptions 2-355

QUESTION

Message Return Codes

2-356 SC34-0937

The system issues the following return codes when you retrieve a prompt message
from a data set or module containing formatted program messages. The return
codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or
task (taskname).

Return
Code Description

-1 Message successfully retrieved.

301-316 Error while reading message from disk. Subtract 300 from this value
to get the actual return code. See the disk return codes following the
READ or WRITE instruction for a description of the code.

326 Message number out of range.

327 Message parameter not found.

328 Instruction does not supply message parameter(s).

329 Invalid parameter position.

330 Invalid type of parameter.

331 Invalid disk message data set.

332 Disk message read error.

333 Storage-resident module not found.

334 Message parameter output error.

335 Disk messages not supported (MINMSG support only).

o

()

o

o

o

RDCURSOR

RDCURSOR - Store Static Screen Cursor Position
The RDCURSOR instruction stores the cursor position in a set of data areas you
specify. The cursor position is defined as the line number and the number of spaces
the cursor is indented from the left margin of the logical screen. RDCURSOR is
only valid for terminals with a static screen. For information on defining a static
screen, see the SCREEN = operand of the IOCB statement or refer to the Language
Programming Guide.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a RDCURSOR instruction causes a terminal I/O operation to
occur. If the return code is not a -1, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messflges and Codes.

If you code RDCURSO R after a WAIT KEY instruction for a 3101 in block mode,
use a PF key and not the SEND key to end the wait. If you use the SEND key, it
positions the cursor at the beginning of the next line and RDCURSOR cannot
capture the screen coordinates.

Syntax:

label RDCURSOR line,indent

Required:
Defaults:
Indexable:

Operand

line

indent

line,indent
none
line,indent

Description

The label of the variable in which the cursor position, relative to the
top margin of the logical screen, is to be stored. If the cursor lies
outside the line range of the logical screen, then a value of - 1 is
stored.

The label of the variable in which the cursor position, relative to the
left margin of the logical screen, is to be stored. If the cursor position
is not within the left and right margins of the logical screen, then a
value of - 1 is stored.

Chapter 2. Instruction and Statement Descriptions 2-357

RDCURSOR

Coding Example

'2-358 SC34-0937

This example defines a terminal with an IOCB statement, then issues an ENQT
instruction to that terminal. The terminal name is DISP2. An ERASE instruction
clears the screen. The example uses the RDCURSO R instruction to find the cursor
position. RDCURSOR puts the relative line position of the logical screen in the
variable labeled LN. It puts the spaces value or column position in the variable
labeled COL. Because the exact position of the cursor is known, any terminal I/O
issued to this terminal can position the cursor using the LN and COL values as a
reference point.

After additional processing, index register #1 is set to a value of 2 with a MOVE
instruction. A second RDCURSOR instruction is issued and #1 is used to increase
the storage locations by a value of 2 where the new locations are to be stored. This
RDCURSOR places the cursor line number and spaces in variables NEXTI and
NEXT2, respectively. NEXTI and NEXT2 then become the new reference point of
the cursor for any additional I/O operations.

TUBE IOCB DISP2,SCREEN=STATIC DEFINE THE TERMINAL TO BE
* USED

•
•
•

ENOT GET EXCLUSIVE ACCESS OF
* DISP2

ERASE MODE=SCREEN,TYPE=ALL CLEAR THE SCREEN
*

RDCURSOR LN,COL GET CURSOR POSITION AND PUT
* LINE NUMBER IN LN AND SPACES
* IN COL

•
•
•

MOVE #1,2 SET #1 TO 2
RDCURSOR (LN,#I),(COL,#I) GET CURSOR POSITION AND PUT

* VALUES IN NEXTI AND NEXT2
* COL

DEQT RELEASE EXCLUSIVE CONTROL OF
* THE TERMINAL

•
•
•

LN DATA FIf)1
NEXTI DATA FIf)1
COL DATA FIf)1
NEXT2 DATA FIf)1

When the first RDCURSO R is issued, if the cursor is on the third line of the logical
screen and ten spaces from the left margin, then, following. the execution of the
RDCURSQR, variable LN will contain 3 and variable COL will contain 10.

When the second RDCURSOR is executed, if the cursor is outside the logical screen,
then both NEXTI and NEXT2 will be set to a value of -1.

o

()
.J

e

o

READ

READ - Read Records from a Data Set
The READ instruction retrieves one or more records from a disk, diskette, or tape
data set and places them in a buffer area you define. You must allocate enough
buffer space for the operation.

You can read disk or diskette data sets either sequentially or directly. These data
sets are read in 256-byje record increments. The Operator Commands and Utilities
Reference describes the format of a record created with the text editor, $FSEDIT.
(For information on using I024-byte-per-sector diskettes, refer to the Installation and
System Generation Guide.) You can only read tape data sets sequentially. A READ
operation for tape can retrieve a record from 18 to 32767 bytes long.

You have the option to place a disk read request at the top of the disk I/O chain.
Such requests are made with the disk immediate READ option. A disk immediate
read request will be serviced before others in the chain. A coding example follows in
this section. For additional information see "Coding Example - Disk Immediate
Read" on page 2-364. The disk immediate READ operation will function only for
the primary part of a data set with extents. The system converts disk immediate
read requests to extent parts of a dataset to regular READ operations.

The READ instruction can take advantage of the cross-partition capability that
enables your program to share data with a program or task in another partition.
Appendix C, "Communicating with Programs in Other Partitions (Cross-Partition
Services)" on page C-l contains an example of a cross-partition READ operation.
You can find more information on cross-partition services in the Language
Programming Guide.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

DSx

loc

READ DSx,loc,count,relrecno I blksize,END = ,
ERROR = , WAIT = ,PREC = ,PI = ,P2 = ,P3 = ,P4 =

DSx,loc
count = I,relrecno = 0 or blksize = 256,
WAIT = YES,PREC = S
loc,count,relrecno or blksize

Description

The data set from which you are reading. Code DSx, where "x" is a
positive integer that indicates the relative position (number) of the data
set in the list of data sets you defined on the PROGRAM statement.
The value can range from I to the maximum number of data sets
defined in the list. The maximum range is from 1-9.

You can substitute a DSCB name defined by a DSCB statement for
DSx.

The label of the buffer area where the data is to be placed. When
reading disk or diskette data sets, you must make sure that this area is
a multiple of 256 bytes. When reading tape data sets, this area must
equal or exceed the value you code for the blksize operand.

Chapter 2. Instruction and Statement Descriptions 2-359

READ

count

relrecno

blksize

2-360 SC34-0937

READ normally assumes the buffer is in the same partition as the
currently executing program. You can read records into a buffer in
another partition, however, by using the cross-partition capability of
the READ instruction.

The number of contiguous records to be read. The maximum value
for this field is 255. If the program sets the field to 0, no I/O
operation is performed. A count of the actual number of records read
is returned in- the second word of the task control block if
WAIT = YES is coded. Note,. however, if the incorrect blocksize is
specified, the correct blocksize is stored in the second word of the
TCB, not the number of records transferred. If an end-of-data
condition occurs (fewer records remaining in the data set than specified
by the count field), the system reads the remaining records and returns
an end-of-data return code to the program.

The number of the record that is to be read from a disk or diskette
data set. The record number is relative to the first record in the data
set, and the numbering starts with 1. You can code a positive integer
or the label of a data area containing the value.

You can request a sequential read operation by coding a 0 or by
allowing this operand to default. If an end-of-data (EOD) indicator
was previously set, an EOD is returned when the logical EOD is
encountered. If the EOD indicator has not been set, the EOD
returned represents the physical end-of-data.

A value other than 0 indicates that a direct READ is requested. An
EOD indication is returned if an attempt is made to access a record
outside the physical data set.

If you code, a self-defining term, or an equated value indicated by a
plus sign (+), then it is assumed to be a single-word value and is,
therefore, generated as an inline operand. Because this is a one-word
va]ue, it is limited to a range of 1 to 32767 (X '7FFF I).

If you code an index able value or an address for this operand, the
PREe operand can be used to further define whether relrecno is to be
a single-word or double-word value.

PREC = D extends the maximum range of relrecno beyond the 32767
value to the limit of a double-word value (2147483647 or
X I 7FFFFFFF I).

A sequential READ starts with relative record number 1 or the record
number specified by a POINT instruction. The supervisor keeps track
of sequential READ instructions and increments an internal
next-record-pointer for each record read in sequential mode (relrecno is
0). Direct READ operations (relrecno is not 0) can be intermixed with
sequential operations, but this does not change the next-record-pointer
used by sequential operations.

The number of bytes to be read from a tape data set. The range is
from 18 to 32767. You can code a self-defining term or the label of a
data area containing the value. The default for this operand is 256
bytes of data. If you code 0 or do not code this operand, the
instruction reads the default number of bytes.

(....

~ ./

()

o

o

PREC=

END =

READ

The first word of the TCB contains the return code for the READ
operation. If the specified blksize does not equal the actual blksize,
the ERROR path will be taken and the second word of the TCB will
contain the actual blksize. Note, however, that theblksize is stored
only in the second word of the TCB if you code WAIT = YES or allow
the WAIT = operand to default to YES. If you code WAIT = NO and
the blksize specification is incorrect, you can check the $DSCBR3 field
in the DSCB for the actual number of records read or the actual
blksize.

Do not code this operand in a READ instruction containing the
relrecno operand.

This operand further defines the relrecno operand when you code an
address or an index able value for that operand. PREC = S (the
default) limits the value of relrecno to single-word precision or to a
value of 32767 (X I 7FFF I).

Coding PREC = D gives the relrecno operand a doubleword precision
and extends the range of its maximum value to a doubleword value of
2147483647 (X '7FFFFFFF I).

Do not code this operand in a READ instruction containing the
blksize operand.

The label of the first instruction of the routine to be called if an
end-of-data set condition is detected during ,the READ operation
(return code = 10). If you do not code this operand, the system treats
an end-of-data set condition as an error.

For tape data sets, if END is not coded, the system treats reading a
tapemark as an error. The physical position of the tape, under this
condition, is the read/write head position immediately following the
tape mark. See the CONTROL instruction close functions for
repositioning of the data set. Remember also that the count field
might not be decremented to O.

Do not code this operand if you code WAIT = NO.

You can set or change the end-of-data by using the SE command of
$DISKUTI. Refer to the Operator Commands and Utilities Reference
for additional information.

ERROR = The label of the first instruction of the routine to be called if an error
condition occurs during the execution of this operation. If you do not
specify this operand, control passes to the instruction following the
READ instruction and you must test the return code in the first word
of the task control block for errors.

WAIT =

Do not code this operand if you code WAIT = NO.

YES (the default), to suspend the current task until the operation is
complete.

NO, to return control to the current task after the operation is
initiated. Your program must issue a subsequent WAIT DSx to
determine when the operation is complete.

Chapter 2. Instruction and Statement Descriptions 2-361

READ

Syntax Examples

2-362 SC34-0937

You cannot code the END and ERROR operands if you code
WAIT = NO. You must subsequently test the return code in the Event
Control Block (ECB) named DSx or in the first word of the task
control block (TCB). The label of the TCB i~ the label of your
program or task.

Two codes are of special significance. A -1 indicates a successful end
of operation. A + 10 indicates an "End of Data Set" and may be of
logical significance to the program rather than being an error. For
programming purposes, any other return codes should be treated as
errors.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) The following READ instruction reads a single 327-byte record from a standard
label (SL) tape. If an end-of-data set tape mark is detected, control passes to the
statement named END!. If an error occurs, control passes to the statement named
ERR.

ABC PROGRAM STARTl,DS=((MYDATA,234567»
STARTl READ DSl,BUFF,l,327,END=ENDl,ERROR=ERR,WAIT=YES

2) The following READ instruction does the same as in the previous example except
that two records are read into your storage buffer (BUFF2). BUFF2 must be at
least 654 bytes long.

ABCD PROGRAM START2,DS=((MYDATA,234567»
START2 READ DSl,BUFF2,2,327,END=ENDl,ERROR=ERR,WAIT=YES

c

o

o

o

o

READ

Coding Example - Read
The READ instruction in this example reads the next sequential record from the first
relative data set specified in the list of data sets in the PROGRAM statement. If
end-of-file is encountered during the read, the program passes control to the
NOTFOUND label. If an unrecoverable I/O error is encountered, the program
passes control to the label DSKRDERR. Otherwise, the instruction reads the record
and places the data in the 256-byte buffer area labeled DISKBUFF.

READ
LOOKUP

*

PROGRAM
EQU
READ
MOVEA
DO

IF
ENDIF
ADD

ENDDO
GOTO

NOT FOUND EQU *

LOQKUP,DS=(CHART1,CHART2)
*
DS1,DISKBUFF,1,B,ERROR=DSKRDERR,END=NOTFOUND
#l,DISKBUFF
16,TIMES

«0,#1),EQ,$NAME,(16,BYTE»,GOTO,GOTNAME

#1,16

LOOKUP

PRINTEXT I@EMPLOYEE FILE DOES NOT CONTAIN EMPLOYEE NAME I
PRINTEXT $NAME
GOTO ENDIT

*
DSKRDERR EQU *

PRINTEXT I@UNRECOVERABLE DISK READ ERROR ON EMPLOYEE FILEI
GOTO ENDIT

*
GOTNAME EQU
ENDIT PROGSTOP
DISKBUFF BUFFER

ENDPROG
END

*

265.BYTES

Chapter 2. Instruction and Statement Descriptions 2-363

READ

Coding Example - Disk Immediate Read
There are situations in which you have 1 or more applications already active on a
Series/l and you want to perform a disk read without having to wait for the
completion 6f active programs. Use the disk immediate read option to make such
requests. This special READ request is placed at the top of a disk I/O chain and
serviced before other requests.

The following coding example illustrates how to code $DSCBPRI to set the priority
read bit in the DSCB. Any READ request made directly after $DSCBPRI is set
executes immediately. The bit resets automatically to continue normal operations as
soon as the prioritized instruction completes.

PROGI PROGRAM START
COpy DSCBEQU
•
•
•

START EQU
•
•
•
IOR INDATA+$DSCBFLG,+$DSCBPRI SET PRIORITY READ BIT IN DSCB
READ INDATA,BUF,l,l READ A RECORD
•
•
•
ENDPROG

BUF DC 128F '0 1

DSCB DS#=INDATA,DSNAME=TEST
END

Disk and Tape Return Codes

2-364 SC34-0937

Disk and tape I/O return codes are returned in two places:

• The first word of the DSCB (either DSn or DSCB name) named DSn, where "n"
is the number of the data set.

• The first word of the task control block (TCB). The label of the TCB is the
label of your program or task (taskname).

The possible return codes and their meaning for disk and tape are shown in tables
later in this section.

If a tape error occurs, the read/write head positions itself immediately following the
record in which the error occurred. This indicates that a retry has been attempted,
but was unsuccessful. The count field, in the READ instruction, mayor may not
have been set to 0 under this condition.

You can get detailed information on an error by using the $LOG utility to capture
the I/O error. Refer to the Problem Determination Guide for information on how to
use $LOG.

Note: If an error is encountered during a sequential I/O operation, the relative
record number for the next sequential request is not updated. This can cause errors
on all following sequential I/O operations.

0

o

READ

Disk/Diskette Return Codes

() Return
Code Condition

-1 Successful completion.

1 I/O error and no device status present (this code may be caused by the
I/O area starting at an odd byte address).

2 I/O error trying to read device status.

3 I/O error retry count exhausted.

4 Read device status I/O instruction error.

5 Unrecoverable I/O error.

6 Error on issuing I/O instruction.

7 A no record found condition occurred, a seek for an alternate sector
was performed, and another no record found occurred, for example.
No alternate is assigned.

8 A system error occurred while processing an I/O request for a
1024-byte sector diskette.

9 Device was offline when I/O was requested.

10 READ request is beyond the end of the data set. Write request is
beyond the end of the nonextended data set.

11 Data set not open or device marked unusable when I/O was requested.

12 DSCB was not OPEN; DDB address = O.

13 If extended deleted record support was requested ($DCSBFLG bit 3
on), the referenced sector was not formatted at 128 bytes/sector or the
request was for more than one 256-byte sector. If extended deleted o
record support was not requested ($DSCBFLG bit 3 off), a deleted
sector was encountered during I/O.

14 The first sector of the requested record was deleted.

15 The second sector of the requested record was deleted.

16 The first and second sectors of the requested record were deleted.

17 Cache fetch error. Contact your IBM customer engineer.

18 Invalid cache error. Contact your IBM customer engineer.

19 Insufficient table space for data set extent.

20 Insufficient disk storage available for a new extent. No directory
member entry available.

21 Insufficient disk storage available for extellt. Directory member entry
IS available, but no storage on volume for allocation of the extent data
area.

24 End of tape.

30 Device not a tape.

o
Chapter 2. Instruction and Statement Descriptions 2-365

READ

Tape Return Codes and Tape Post Codes

2-366 SC34-0937

Return
Code Condition

-1 Successful completion.

1 Exception but no status.

2 Error reading cycle steal status.

3 I/O error; retry count exhausted.

4 Error issuing READ CYCLE STEAL STATUS.

6 I/O error issuing I/O operations.

10 End of data; a tape mark was read.

21 Wrong length record.

22 . Device not ready.

23 File protected.

24 End of tape.

25 Load point.

26 Unrecoverable I/O error.

27 SL data set not expired.

28 Invalid blocksize.

29 Offline, in use, or not open.

30 Incorrect device type.

31 Close incorrect address.

32 Block count error during close.

33 Close detected on EOVI.

34 Write - Defective reel of tape.

The following post codes are returned to the event control block (ECB) of the calling
program.

Post
Code Condition

-1 Function successful.

101 T APEID not found.

102 Device not offline.

103 Unexpired data set on tape;

104 Cannot initialize BLP tapes.

()

o

()

o

o

READTEXT

READTEXT - Read Text Entered at a Terminal
The READTEXT instruction reads an alphanumeric character string entered by the
terminal opera tor.

The instruction can also print or display a prompt message to request input.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a READTEXT instruction causes a terminal I/O operation to
occur. If the return code is not a-I, the address of this instruction will be placed
in the second word of the task control block (taskname + 2). The terminal I/O
return codes are described under "Terminal I/O Return Codes" on page 2-377 and
also in Messages and Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

loc

READTEXT loc,pmsg,PROMPT = ,ECHO =, TYPE = ,MODE =,
XLATE = ,SKIP = ,LINE = ,SPACES = ,CAPS = ,
COMP = ,P ARMS = (parml, ... ,parm8),MSGID =,
PI =,P2=

loc
PROMPT =UNCOND,ECHO =YES,TYPE=DATA,
MODE = WORD,XLATE = YES,SKIP = O,LINE = current line,.
SPACES = O,MSGID = NO
loc,pmsg,SKIP ,LINE,SP ACES

Description

This operand is normally the label of a TEXT statement defining the
storage area which is to receive the data. The storage area can be
defined by DATA or DC statements, but you must adhere to the
format of the TEXT statement. To satisfy the length specification, the
input is either truncated or padded to the right with blanks, as
necessary. The TEXT statement count field is also updated. If a static
screen is in use, null characters are not translated into blanks.

The loc operand can also be the label of a BUFFER statement
referred to by an 10CB statement. If this is the case, the input is
direct; that is, the maximum input count is taken from the word at
loc - 2, imbedded blanks are allowed, and the final input count is
placed in the buffer index word at loc - 4.

If the length specification is greater than the system buffer size, then
the length is limited to the buffer size. If a user buffer is specified on
an 10CB statement and you have issued an ENQT to the
corresponding terminal, then the user buffer size will apply to the input
kn~~ I

Chapter 2. Instruction and Statement Descriptions 2-367

READ TEXT

2-368 SC34-0937

The maximum line size for the terminal is -established by the
TERMINAL statement used to define the terminal during system
generation. Refer to the TERMINAL statement in the Installation and
System Generation Guide for information on the default sizes.

pmsg The prompt message. Code the label of a TEXT statement or an
explicit text message enclosed in single quotes. The READ TEXT
instruction issues this prompt according to the parameter you code for
the PROMPT keyword.

PROMPT =

ECHO =

MODE =

To retrieve a prompt message from a data set or module containing
formatted program messages, code the number of the message you
want displayed or printed. You must code a positive integer or a label
preceded by a plus sign (+) that is equated to a positive integer. If
you retrieve a prompt message, you must also code the COMP =
operand. See Appendix E, "Creating, Storing, and Retrieving
Program Messages" on page E-l for more information.

COND (conditional), to prevent the system from displaying the
prompt message if you enter text before the prompt.

If you code PROMPT = COND without specifying a prompt message,
the instruction does not wait for input if advance input is not
presented; instead, the receiving TEXT buffer is filled with blanks and
its input count is set to 0.

UNCOND (unconditional), to have the system display the prompt
message without exception. UNCOND is the default.

YES (the default), to allow the input text to be printed on the
terminal.

NO, if the input text is not to be printed on the terminal. This
operand is effective only for devices that require the processor to echo
~nput data for printing.

Note: The ECHO operand in READ TEXT is equivalent to
PROTECT = YES. in other terminal I/O instructions.

WORD (the default), to end the READ TEXT operation when the
system encounters a blank character (space). Leading blanks, however,
are ignored. Lowercase input characters, including terminal control
characters, are converted to uppercase automatically. The 4978 and
4980 terminals, however, leave characters in uppercase or lowercase as
entered. A 31xx terminal in block mode with a static screen separates
all fields by blanks.

LINE, if the string to be read can include imbedded blanks. Any
lowercase characters entered are left in lowercase. For a 31xx terminal
in block mode with a static screen and with TYPE = ALL coded, a
blank precedes each field.

Any portion of the input that extends beyond the count indicated in
the receiving TEXT statement is ignored and is not retained as
advance input.

o

()

o

o

TYPE =

XLATE=

SKIP =

c

READTEXT

For a 4978, 4979, or 4980 with a static screen, the READTEXT
operation normally ends when the instruction fills the entire text field,
when it reaches a protected field, or when it reaches the end of the
logical line. For a 31xx terminal in block mode, the READTEXT
operation normally ends when the instruction fills the entire text field
or when it reaches the end of the screen. However, the TYPE operand
determines what fields are read in.

The input operation may continue beyond the logical screen boundary
to the end of the physical screen. In this case, input continues from
the end of each physical screen line to the beginning of the next line.

The type of data to be transferred from a 4978, 4979, 4980, or a 31xx
terminal in block mode with a static screen.

When a READTEXT has been issued to a 31 xx terminal in block
mode, any changed fields are reset to an unmodified condition.

Code TYPE = DATA (the default) to transfer only data fields.

Code TYPE = ALL to transfer both protected and data (unprotected)
fields.

Code TYPE = MODDATA to transfer only those data fields that have
been changed by the terminal operator (4978, 4980, or 31xx terminals
in block mode) for static screens.

Code TYPE = MOD ALL to transfer, along witli each changed data
field, the protected fields that precede it.

If coded for a 31xx terminal in block mode with static screens,
TYPE = MODALL defaults to TYPE = MODDATA.

NO, if the input line is not to be translated to EBCDIC. The
character-delete and line-delete codes lose their line-editing functions
under this option, and MODE = LINE is implied.

For a 31xx terminal in block mode, terminal I/O support does not
remove the escape sequences or attribute bytes from the data stream.
Also, the TERMCTRL SET,ATTR or TERMCTRL SET,STREAM
operands are ignored while the instruction executes. For a description
of 31xx escape sequences, refer to the appropriate display terminal
description manual.

If the terminal transmits characters in mirror image format and
XLATE = NO is coded, the characters will be placed in storage in the
terminal's native format.

YES (the default), causes the supervisor to translate the terminal's
binary code to EBCDIC, the standard Series/l representation of data.
Code XLATE = YES when you are coding a READTEXT instruction
for Series/l-to-Series/l communication.

The number of lines to be skipped before the system performs an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP = 6, the system performs the I/O operation on line
8. For a printer, the SKIP operand controls the movement of forms.

Chapter 2. Instruction and Statement Descriptions 2-369

READTEXT

2-370 SC34-0937

LINE =

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen's bottom margin minus the number of history lines
and the screen's top margin.

The line number on which the system is to perform an I/O operation.
Code a value from 0 to the number of the last usable line on the page
or logical screen. The line count begins at the top margin you defined
for the printer or display screen. LINE = 0 positions the cursor at the
top line of the page or screen you defined; LINE = I positions the
cursor at the second line of the page or screen. For roll screens, line 0
equals the screen's top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system performs the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system
performs the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to perform the I/O operation. F9r example, if
you code LINE = 22 and your roll screen has a logical page size of 20,
the I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES = The number of spaces to indent before the system performs an I/O
operation. SPACES = 0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

CAPS =

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

For an IBM 3lxx terminal in block mode,.if no prompt message is
specified, a READTEXT instruction will read data from the beginning
of the screen and will ignore any cursor positioning by this operand.

Converts EBCDIC data received in a READTEXT operation to
uppercase characters. This operand is valid only for data that is
defined by a TEXT or BUFFER statement.

Code CAPS = Y to convert all the data defined by a TEXT or
BUFFER statement to uppercase characters. When specifying
CAPS=Y, you must link-edit your program using the autocall feature
of $EDXLINK.

To convert a specified number of bytes to uppercase, code that number
with the CAPS operand. Capitalization starts from the first byte of
the data received. For example, CAPS = 3 capitalizes the first three
bytes of data defined by the TEXT or BUFFER statement.

o

o

o

o

()

COMP=

READTEXT

The count you specify should not exceed the length of the TEXT or
Bl)FFER statement that contains the data. If the length is exceeded,
the operation is still performed, but data beyond the TEXT or
BUFFER statement may be modified.

When you code a value with the CAPS operand, the system performs
an inclusive OR (lOR) of aX 140 I byte to each EBCDIC byte. (See
Coding Example 2 at the end of this section.) A lowercase "a"
(X I811), for example, is converted to an uppercase "A" (XICl').
Characters already capitalized remain unchanged. The lOR operation
is performed after the READTEXT instruction reads in the data.

Notes:

1. Coding XLATE=NO and the CAPS operand causes an assembly
error.

2. If you specify MODE = WORD with the CAPS operand, the
CAPS operand has no effect. MODE = WORD automatically
converts lowercase input characters to uppercase.

The label of a CaMP statement. You must specify this operand if the
READ TEXT instruction is retrieving a prompt message from a data
set or module containing formatted program messages. The CaMP
statement provides the location of the message. (See the CaMP
statement description for more information.)

PARMS = The labels of data areas containing information to be included in a
message you are retrieving from a data set or module contaimng
formatted program messages. You can code up to eight labels. If you
code more than one label, you must enclose the list in parentheses.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to the
Installation and System Generation Guide for a description of this
module.

MSGID = YES, if you want the message number and 4-character prefix to be
printed at the beginning of the message you are retrieving from a data
set or module containing formatted program messages. See the CaMP
statement operand "idxx" for a description of the 4-character prefix.

NO (the default), to prevent the system from printing or displaying this
information at the beginning of the message.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to the
Installation and System Generation Guide for a description of this
module.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-371

READTEXT

Advance Input Considerations
Input that you enter before a program requests it (advance input) normally resides in
the system buffer. When your program issues a READTEXT instruction, the
instruction immediately reads the advance input from the buffer. If a terminal
output operation takes place just before the READ TEXT operation, however, the
READTEXT instruction does not read the advance input because the terminal
output operation has used the system buffer.

31 xx Display Considerations

2.;.372 SC34-0937

When using a 3lxx in block mode, special considerations are required. The most
recent TERMCTRL SET,ATTR or its default value determines both the attribute
byte to be used for a prompting message and the field to be read. The TERMCTRL
SET,ATTR, or its default value, allows the fields for the prompt (ifused) and
response to be programmed according to one of the attributes allowed by the 31xx.
After the data is read from the device, terminal I/O ~upport will remove all the
escape sequences from the 31xx data stream before transferring it to your application
program. (For a description of 31xx escape sequences, refer to the appropriate
display terminal description manual.

In static screen mode, if there is no prompt message, the read will start from the
beginning of the screen, regardless of any SKIP, LINE, or SPACES parameters in
effect, because the 31xx in block mode does not have a direct read capability.

If a TERMCTRL SET,STREAM = YES is in effect, the data read is converted to
EBCDIC. However, the escape sequences and attribute bytes are not removed from
the data stream.

A TERMCTRL SET,ATTR=NO has no effect on input data.

Input operations for just the 3151, 3161, 3163, and 3164 terminals operating in block
mode are the same as for 31xx terminals except as noted below.

• Wrapped Fields

The 3151, 3161, 3163, and 3164 terminals in block mode with static screens wrap
unprotected fields while 3101 block mode terminals do not. A wrapped
unprotected field extends from the last character position on the screen to the
first character position on the screen.

To prevent data from wrapping, ensure that the first character position on the
screen is protected from operator input. The first character should be either a
protected data character or a field attribute character.

• Input Location Size

If your buffer is specified for terminal input (with the 10CB statement), the
buffer length must be adjusted for terminal escape sequences. Block mode 3151,
3161, 3163, and 3164 terminal escape sequences are, as a general rule, longer
than 3101 block mode terminal escape sequences. An input buffer which was
previously used for a 3101 block mode terminal may need to be increased for
3151,3161, 3163, and 3t64 block mode terminals.

o

o

o

o

Syntax Examples

o

o

READTEXT

• Input Translation

Terminal I/O support will remove only start fields and set buffer address escape
sequences from input data. Applications generating their own output data
streams with escape sequences such as set character attribute should also issue
the corresponding READTEXT operation with XLATE = NO. Unpredictable
results will occur if the. terminal I/O support attempts to remove escape
sequences other than start field and set buffer address.

1) Read text into the data area labeled OPTION. The prompt, "ENTER
OPTION," is conditional.

READTEXT OPTION,'ENTER OPTION: ',PROMPT=COND
•
•
•

OPTION TEXT LENGTH=2

2) Read text into the data area labeled NAME. The prompt, "ENTER YOUR
NAME," is unconditional.

READTEXT NAME,'ENTER· YOUR NAME: '
•
•
•

NAME TEXT LENGTH=44

3) Read text into the data area labeled PASSWORD. The prompt, "ENTER
PASSWORD," is unconditional.

READTEXT PASSWORD, 'ENTER PASSWORD: ',PROTECT=YES
•
•
•

PASSWORD TEXT LENGTH=8

4) Read text into the data area labeled NEXTLINE. The text string can include
imbedded blanks because MODE = LINE.

READTEXT NEXTLINE,MODE=LINE
•
•
•

NEXTLINE TEXT LENGTH=80

Chapter 2. Instruction and Statement Descriptions 2-373

READ TEXT

Coding Examples

2 ... 37.4 SC34-0937

1) The following example uses a series of READTEXT instructions to set up a
logon sequence for employees using an online time-sharing system.

The WELCOME message is displayed on the third line of the screen. This message
is followed on the fifth line of the screen by a prompt message requesting entry of a
LOGON command. The LOGMSG2 prompt always appears because PROMPT
defaults to unconditional. An unconditional PROMPT is then displayed requesting
entry of an employee :number. If a blank is entered, the logon process ends.
Otherwise, the code verifies that the employee number is six digits long. If the
employee number is not six digits, a branch to EMPLOYEE causes a retry.

The READTEXT for the password is conditional so that the prompt is not
displayed if there is advanced input accompanying a proper length ID number. The
READTEXT contains the MODE = LINE keyword so that the text can contain
embedded blanks.

A proper match of ID and password is made by calling subroutine CHKPASS. A
correct match causes a branch to the GOODPASS label; otherwise, the next
sequential instruction is executed which is the beginning of an error routine.

A maximum of four incorrect passwords are examined for each logon attempt. If
logon is not successful by the fourth attempt, the process ends.

If the logon is accepted, a READTEXT is issued for a title line. This title line is
used on system reports that are produced during the current logon session.

()

o

()

C

()

READ TEXT

LOGON

*

EQU *
PRINTEXT LOGMSG1,LINE=3,SPACES=35
READTEXT LOGCMD,LOGMSG2,LINE=5,SPACES=35

EMPLOYEE EQU *
READTEXT EMPNUM,'@ENTER YOUR EMPLOYEE NUMBER'
IF (EMPNUM,EQ,BLANK,(l,BYTE»,GOTO,LOGON
IF (EMPNUM-l,NE,6),GOTO,EMPLOYEE

*
GETPASS EQU *

READTEXT PASSWORD,'@ENTER PASSWORD' ,PROMPT=COND,MODE=LINE, X
TYPE=ALL

*
* VERIFY ID NUMBER & PASSWORD
*

CALL CHKPASS
IF (PASSCHK,EQ,-l),GOTO,GOODPASS

*
BADPASS EQU *

PRINTEXT 'INVALID PASSWORD FOR USERID',SKIP=l
PRINTEXT EMPNUM
ADD BADWORD,l
IF (BADWORD,LT,4),GOTO,GETPASS
MOVE BADWORD,0
GOTO LOGON

•
•
•

SUBROUT CHKPASS
•
•
•

MOVE PASSCHK,-l
RETURN

•
•
•

GOOD PASS EQU *
READTEXT TITLE,TITLEMSG,SKIP=l,MODE=LINE

•
•
•

LOGMSGl TEXT
LOGMSG2 TEXT
LOGCMD TEXT
EMPNUM TEXT
PASSWORD TEXT
TITLE TEXT
TITLEMSG TEXT

BADWORD DATA
BLANK DATA
PASSCHK DATA
*

, WELCOME TO ONLINE TIME SHARING'
, PLEASE ENTER YOUR LOGON COMMAND'
LENGTH=2
LENGTH=6
LENGTH=3
LENGTH=60
'ENTER A 60 CHARACTER TITLE FOR

YOUR REPORTS'
F'0'
C' ,
F'0' CODE WORD TO INDICATE

VALIDITY OF PASSWORD

X

Chapter 2. Instruction and Statement Descriptions 2-375

READ TEXT

2-376 SC34-0937

2) When you code a value with the CAPS operand"the system generates an lOR
instruction to capitalize the specified data. The following example shows the use of
the CAPS operand and how you can achieve the &ame results by coding an lOR
instruction directly in your application program.

'With the CAPS operand:

•
•
•

READTEXT A,CAPS=5,MODE=LINE
•
•
•

A TEXT LENGTH=5

Without the CAPS operand:

•
•
•

READTEXT A lOR A,X ' 40 1 ,(5,BYTES)
•
•
•

A TEXT LENGTH=5

3) In the following example, the READ TEXT instruction displays a prompt
message contained in MSGMOD, a storage-resident message area. Because
+ MSG8 equals 8, the system retrieves the eighth message in MSGMOD.

READTEXT NAME,+MSG8,PROMPT=COND,COMP=MSGSTMT
•
•
•

MSG8 EQU 8
•
•
•
PROGSTOP

NAME TEXT LENGTH=8
MSGSTMT COMP 'SRCE',MSGMOD,TYPE=STG

o

o

o

o

o

READTEXT

Message Return Codes
The system issues the following return codes when you retrieve a prompt message
from a data set or module containing formatted program messages. The return
codes are returned in the first word of the task control block (TCB) of the program
or task issuing the instruction. The label of the TCB is the label of your program or
task (taskname).

Return
Code Description

~

-1 Message successfully retrieved.

301-316. Error while reading message from disk. Subtract 300 from this value
to get the actual return code. See the disk return codes following the
READ or WRITE instruction for a description of the' code.

326 Message number out of range.

327 Message parameter not found.

328 Instruction does not supply message parameter(s).

329 Invalid parameter position.

330 Invalid type of parameter.

331 Invalid disk message data set.

332 Disk message read error.

333 Storage-resident module not found.

334 Message parameter output error.

335 Disk messages not supported (MINMSG support only).

Terminal 1/0 Return Codes
The terminal I/O return codes are all listed here and following the PRINTEXT
instruction. A complete list of all return codes also can be found in Messages and
Codes. You must select the group of codes that represents the particular device type
you are using. A list of the terminal I/O return code groups follows:

• General Terminal I/O

• Virtual Terminal

• ACCA/Serial Printer Devices

• Interprocessor Communication

• General Purpose Interface Bus

• Series/l-to-Series/l Adapter.

Chapter 2. Instruction and Statement Descriptions 2-377

READTEXT

General Terminal 1/0 Return Codes

2-378 SC34-0937

The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
Code Condition

-1 Successful completion.

1 Device not attacped.

2 System error (busy condition).

3 System error (busy after reset).

4 System error (command reject).

5 Device not ready.

6 Interface data check.

7 Overfun received.

8 Printer power has been switched off and switched back on or a power
failure has occurred.

9 Printer I/O error retry count exhausted.

IOS3101 has detected an invalid data stream from the 3101/316x and
3151 terminals.

>10 A code greater ,than 10 can indicate multiple errors. To determine the
errors, subtract 10 from the code and convert the result to an 8-bit
binary value. Each bit (numbering from the left) represents an error as
follows:

Bit 0 Unused
Bit 1 System error (command reject)
Bit 2 Not used
Bit 3 System error (DCB specification check)
Bit 4 Storage data check
Bit 5 Invalid storage address
Bit 6 Storage protection check
Bit 7 Interface data check.

If the return code is for devices supported by IOS2741 (2741, PROC) and a code
greater than 128 is returned, subtract 128; the result then contains status word 1 of
the ACCA. Refer to the IBM Series/l Asynchronous Communications Feature
Description, GA34-0243 for help in determining the special error condition.

o

o

o

o

READTEXT

Virtual Terminal Return Codes
The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return Transmit Receive
Code Condition Condition

X '8F ' Not applicable. LINE = nn received.

X '8E ' Not applicable. SKIP = nn received.

-2 Not applicable. Line received (no CR).

-1 Successful completion. New line received.

1 Not attached. Not attached.

5 Disconnect. Disconnect.

S Break. Break.

A further description of the virtual terminal return codes follows.

LINE=nn (X'SFnn')
Returned for a READ TEXT or GETVALUE instruction if the other
program issued an instruction with a LINE = operand. This operand tells
the system to do an I/O operation on a certain line of the page or screen.
The return code enables the receiving program to reproduce on an actual
terminal the output format intended by the sending program.

SKIP=nn (X'SEnn')
The other program issued an instruction with a SKIP = operand. This
operand tells the system to skip several lines before doing an I/O operation.

Line Received (- 2)
Indicates that an instruction (usually READ TEXT or GETVALUE) has
sent information but has not issued a carriage return to move the cursor to
the next line. The information is usually a prompt message.

New Line Received (-1)
Indicates transmission of a carriage return at the end of the data. The
cursor is moved to a new line. This return code and the Line Received
return code help programs to preserve the original format of the data they
are transmitting.

Not attached (1)
A virtual terminal does not or cannot refer to another virtual terminal.

Disconnect (5)

Break (S)

The other virtual terminal program ended because of a PROGSTOP or an
operator command.

Indicates that both virtual terminal programs are attempting to do the same
type of operation. When one program is reading (READTEXT or
GETVALUE), the return code means the other program has stopped
sending and is waiting for input. When one program is writing
(PRINTEXT or PRINTNUM), the return code means the other program is
also attempting to write.

Chapter 2. Instruction and Statement Descriptions 2-379

READTEXT

If you defined only one virtual terminal with SYNC = YES, then that task
always receives the break code. If you defined both virtual terminals with
SYNC = YES, then the task that last attempted· the operation receives the
break code.

ACCA/Serial Printer Return Codes
The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
Code Condition

-1 Successful completion.

80 Attachment detected that Data Set Ready is down for an asynchronous
printer.

96 4224 printer is not responding (MODE = VERIFY).

Bits Value Description

1-8 ISB In the case of I/O completion error or when an
error is reported as an attention interrupt, refer
to the hardware description manual for status on
the device you are using.

9 On Interpret return code as a word value.

10 On Error reported as an attention interrupt.

11 On I/O error on write operation.

12 On I/O error on read operation.

10-12 Off All 3 bits off: immediate I/O error.

13 -15 Immediate I/O condition code + 1.

Interprocessor Communication Return Codes

2-380 SC34-0937

The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
CODTYPE= Code Condition

EaCDIC FDFF End of transmission (EOT).

EBCDIC FEFF End of record (NL).

EBCDIC FCFF End of subrecord (EOSR).

EBCD/CRSP IF End of transmission (EOT).

EBCD/CRSP 5B End of record (NL).

EBCD/CRSP (None) End of subrecord (EOSR).

o

o

()

o

o

READTEXT

General Purpose Interface Bus Return Codes
The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
Code Condition

-1 Successful completion.

1 Device not attached.

2 Busy condition.

3 Busy after reset.

4 Command reject.

6 Interface data check.

256 + ISH: . Read exception.

512 + ISH: Write exception.

1024 Attention received during an operation (may be combined with an
exception condition).

Series/1-To-Series/1 Return Codes
The return codes are returned in the first word of the task control block of the
program issuing the instruction.

Return
Code Condition

-1 Successf1,ll.

1 Device not attached.

2 System error (busy condition).

3 System error (busy after reset).

4 System (command reject).

5 Device not ready (not reported for S/I-S/I).

6 Interface data check.

7 Overrun recieved (not reported for S/I-S/I).

138, 154 An error has occurred that can only be determined by displaying the
device cycle steal status word with the TERMCTRL STATUS function
and checking the bits to determine the cause of the error.

1002 Other system not active.

1004 Checksum error detected.

1006 Invalid operation code or sequence.

1008 Time-out on data transfer.

1010 TERMCTRL ABORT issued by responding processor.

1012 Device reset (TERMCTRL RESET) issued by the other processor.

1014 Microcode load to attachement failed during IPL.

Chapter 2. Instruction and Statement Descriptions 2-381

READTEXT

Return
Code Condition

1016 Invalid or unsolicited interrupt occurred.
()

1050 TERMCTRL ABORT issued and no operation pending.

1052 TERMCTRL IPL attempted by slave processor.

1054 Invalid data length.

()

2-382 . SC34-0937

o

0

()

RESET

RESET - Reset an Event or Process Interrupt
The RESET instruction resets an event or a Process Interrupt.

When an event occurs for which a task is waiting, the task will again become active.
If the task subsequently issues another WAIT instruction for the same event, without
taking any special action, the event is still defined as having occurred and no wait
would be performed. It is necessary to define the event as not occurred to cause a
new wait. This is the function of the RESET instruction.

The RESET instruction need not be used for the event defined by the EVENT
operand of either a PROGRAM or a TASK statement. RESET must not be used
for this event before executing the ATTACH instruction, since RESET will cause the
ATT ACH to operate as though the task were already attached.

Events are named logical entities which are represented in storage by a system
control block called an Event Control Block (ECB). Resetting an event is done
physically by setting the first word of its ECB to O.

Note: Specify the address key of an event to be reset with the task target address
key, $TCBADS.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

event

Pl=

RESET event,Pl =

event
none
event

Description

The label of the event being reset. For process interrupt, use PIx,
where x is a user process interrupt number in the range 1 - 99.

Paramete!" naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Chapter 2. Instruction and Statement Descriptions 2-383

RESET

Coding Example
The RESET instruction at label RESI refers to a specific ECB and can operate only
on the ECB labeled ECBI. 0
The RESET instruction at label RES2 uses the parameter naming operand, PI =, to
supply the address of the ECB on which RESET is to operate. The applkation
program then ensures that the address of the ECB that is to be cleared is moved to
the label named by the PI = operand in the RESET instruction:

•
•
•

RESI RESET ECBl
WAIT ECBl

•
•
•

MOVEA ANYECB,WAITECB
RES2 RESET ECBl,Pl=ANYECB

•
•
•

ECBl ECB
WAITECB ECB

•
•
•
• ()

o
2-384 SC34-0937

()

0

()

RETURN

RETURN - Return to the Calling Program

Coding Example

The RETURN instruction provides linkage back to a calling program from a
subroutine. Each subroutine must contain at least one RETURN instruction.

Syntax:

label RETURN

Required: none
Defaults: none
Indexable: none

Operand Description

none none

In the example, each of the three RETURN instructions at labels RETl, RET2, and
RET3 causes task execution to resume at the instruction following the RETURNl
label. This occurs because each of the instructions passes control to the instruction
following the subroutine call.

RETURNI

•
•
•

CALL DISKERR,MSGNUMBR
EQU *

•
•
•

SUBROUT DISKERR,MSGNO
IF (MSGNO,EQ,l)

PRINTEXT I@ DISK DATA SET HAS REACHED END-OF-FILE'
RETl RETURN

ELSE
IF (MSGNO,EQ,2)

PRINTEXT I@ DISK DATA SET IS NOT CATALOGUED I
RET2 RETURN

ELSE
PRINTEXT I@ DISK DATA SET IS READ~ONLY'

ENDIF
ENDIF

RET3 RETURN

Chapter 2. Instruction and Statement Descriptions 2-385

SBIO

SBIO - Specify a Sensor-Based 1/0 Operation o

5BI0 Control Block

2-386 SC34-0937

The SBIO instruction specifies the sensor-based I/O operation you want to perform.

The instruction has a separate format for analog input, analog output, digital input,
and digital output operations. Each of these formats is shown on the following
pages.

Options available with the SBIO instruction allow you to:

• Automatically index using a previously defined BUFFER statement.

• Automatically update a buffer address after each operation.

• Use a short form of the instruction, omitting the "loc" operand (data location),
to imply a data address within the SBIO control block.

You canalso provide PULSE output and manipulate portions of the 16-bit I/O
group with the BITS = (u,v) keyword.

The SBIO instruction refers to a 3-to-4-character device label assigned with an
IODEF statement. The IODEF statement contains the actual hardware, address and
the attributes you defined for the I/O .device~ (See IODEF for a description of how
to code the statement.)

Each IODEF statement you code creates a sensor-based input/output control block
(SBIOCB) in your application program. The SBIOCB acts as a link between the ('J
SBIO operation and the device information contained in the IODEF statement. The J

SBIOCB, which contains a data I/O area and an event control block (ECB), also
serves as a location where the supervisor can either store data (for AI and DI
operations) or can fetch data (for AO and DO operations).

When your program executes an SBIO instruction, the supervisor either reads or
writes data from or to a location in the IOCB with the label of a specified I/O point
(for example, All, DI2, D033, .AOl). An application program can refer to these
locations in the same way it refers to any other variable. This fact allows you to use
the short form of the SBro instruction (for example, SBIO 011) and to refer to the
label (DIl) in other instructions. You, can equate device labels with more descriptive
labels. For example, you could equate the device label DIl5 with the label SWITCH
as follows:

SWITCH EQU 0115

You must code the device label, however, in the SBIO instruction.

Each control block also contains an ECB to be used by those operations that require
the supervisor to respond to an interrupt and to "post" an operation as complete.
Such operations include analog input (AI), process interrupt (PI), and digital I/O
with external synchronization (DI/DO). For process interrupt, the label on the ECB
is the same as the symbolic I/O point (PI3, for example). For analog and digital
I/O, the label is the same as the symbolic I/O point with the suffix "END" (for
example, DIxEND).

o

()

()

S810 Analog Input

Syntax:

label

label

label

label

Required:
Defaults:
Indexable:

Operand

AIx

loe

EOB=

opnd3

SEQ =

SBIO
or

SBIO
or

SBIO
or

SBIO

AIx

SBIO (Analog Input)

AIx,ERROR = ,PI =

AIx,loe,ERROR = ,PI = ,P2 =

AIx,loe,INDEX.,EOB = ,ERROR = ,PI = ,P2 =

AIx,loe,opnd3,SEQ = ,ERROR = ,PI = ,P2 = ,P3 =

no indexing, SEQ = NO
loe

Description

The label you assigned to an analog input device on the associated
IODEF statement. AIx acts as the label of a single data storage
location if you do not specify the loc operand.

Buffer address or location where the system will store analog input. If
you do not code the loc operand, the supervisor stores data from the
operation in the SBIOCB created for the instruction.

You can use this operand for buffer operations with automatic
indexing. Code the label of a branch to be taken if:

1. The SBIO operation uses the last element of the buffer you
defined. A return code of $OK is placed in the task name.

2. The buffer is full when the SBIO operation begins. The branch
occurs without executing the SBIO instruction and the system
places a return code of $BFRPFE in the task name.

Note: If your program branches to the label you defined, you must
reset the buffer count.

Code INDEX to specify that the system is to do automatic indexing of
a buffer you defined. You must define the buffer with a BUFFER
statement.

If you code a label or a constant for opnd3, the operand is the number
of consecutive AI points to be used in the operation or the number of
times to repeat the operation on the same point. The SEQ operand
determines the function of the operand.

NO (the default), to repeat the operation on the same point the
number of times indicated by opnd3.

YES, to use the number of consecutive AI points indicated by opnd3
in the operation.

Chapter 2. Instruction and Statement Descriptions 2-387

SBIO (Analog Input)

Coding Example

Return Codes

2-388 SC34-0937

The input voltage converted by the analog-to-digitalconverter (ADC)
is represented in a 16-bit data word by 11 binary bits plus a sign bit,
depending on the amplifier range you select. Bits 13 -15 of this word 0
contain the binary number representing the range of the AI reading.
Bit 12 is O. (Refer to the IBM Series/l 4982 Sensor Input/Output Unit
Description, GA34-0027 for a detailed discussion of the
analog-to-digital conversion.)

ERROR = The label of the instruction to be executed if the SBIO instruction is
unsuccessful after two retries. If you do not code ERROR = ,
execution proceeds sequentially~ In either case, the first word of the
task control .block contains the return code.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

This example shows a sensor-based I/O operation using the SBIO instruction and an
IODEF statement to read analog input.

*

*
*

IODEF AII,ADDRESS=72,POINT=5

SBIO All
SBIO All ,OAT
SBIO AII,BUF,INDEX
SBIO AII,(BUF,#I)
SBIO AII,BUF,2,SEQ=YES

SBIO AII,BUF,2,SEQ=NO

DATA INTO LOCATION All
DATA INTO LOCATION DAT
All INTO NEXT LOC OF IBUF I
All INTO LOCATION (BUF,#I)
READ 2 SEQUENTIAL AI POINTS INTO
NEXT 2 LOCATIONS OF IBUF I

READ THE SAME POINT TWO TIMES
AND ~UT THE INFORMATION IN TWO
LOCATIONS OF IBUF I

The return codes for all SBIO instruction formats are listed under "SBIO (Digital
Output)" on page 2-393.

c

o

()

o

o

5810 (Analog Output)

Syntax:

label

label

label

Required:
Defaults:
Indexable:

Operand

AOx

loc

EOB=

opnd3

SBIO
or

SBIO
or

SBIO

AOx
no indexing
loc

Description

SBIO (Analog Output)

AOx,ERROR=,PI=

AOx,loc,ERROR = ,PI = ,P2 =

AOx,loc,INDEX,EOB = ,ERROR = ,PI = ,P2 =

The label you assigned to an analog output device on the associated
IODEF statement. AOx acts as the label of a single data storage
location if you do not specify the loc operand.

·An explicit constant or the address of the location of the output data.
If you do not code the loc operand, the supervisor fetches data from
the SBIOCB created for the instruction.

You can use this operand for buffer operations with automatic
indexing. Code the label of a branch to be taken if:

1. The SBIO operation uses the last element of the buffer you
defined.. A return code of $OK is placed in the task name.

2. The buffer is logically empty when the SBIO operation begins.
The branch occurs without executing the SBIO instruction and the
system places a code of $BFRPFE in the task name.

Note: If your program branches to the label you defined, you must
reset the buffer count.

Code INDEX to specify that the system is to do automatic indexing of
a buffer you defined. You must define the buffer with a BUFFER
statement.

ERROR = The label of the instruction to be executed if the SBIO instruction is
unsuccessful after two retries. If you do not code ERROR = ,
execution proceeds sequentially. In either case, the first word of the
task control block contains the return code.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-389

SBIO (Analog Output)

Coding Example

Return Codes

2-390 SC34-0937

This example shows a sensor-based 1/0 operation using the SBIO instruction and an
IODEF statement to write analog output. 0

IODEF AOl,ADDRESS=63
*

SBID AOI SET AOI TO VALUE IN IAOl l

SBIO AOl,DATA SET AOI TO VALUE IN I DATA I
SBIO AOl,1000 SET AOI TO 1000
SBIO AOl,(0,#I) SET AOI TO VALUE IN (0,#1)
SBIO AOl,BUF,INDEX SET AOI TO VALUE IN NEXT

The return codes for all SBIO instruction formats are listed under "SBIO (Digital
Output)" on page 2-393.

()

o

()

o

()

S810 (Digital Input)

Syntax:

label

label

label

label

label

Required:
Defaults:
Indexable:

Operand

DIx

loc

EOB=

opnd3

SBIO
or

SBIO
or

SBIO
or

SBIO
or

SBIO

DIx

SBIO (Digital Input)

DIx,ERROR = ,PI =

DIx,loc,ERROR = ,PI = ,P2 =

DIx,loc,INDEX,EOB = ,ERROR = ,PI = ,P2 =

DIx,loc,BITS = (u,v),LSB = ,ERROR;::::: ,PI = ,P2 =

DIx,loc,opnd3,ERROR = ,PI = ,P2 = ,P3 =

no indexing,LSB;::::: 15
loc

Description

The label you assigned to a digital input device on the associated
IODEF statement. DIx acts as the label of a single data storage
location if you do not specify the loc operand.

Buffer address or location where the system will store digital input. If
you do not code the loc operand, the supervisor stores data from the
operation in the SBIOCB created for the instruction.

You can use this operand for buffer ~operations with automatic
indexing. Code the label of a branch to be taken if:

1. The SBIO operation uses the last element of the buffer you
defined. A return code of $OK is placed in the task name.

2. The buffer is full when the SBIO operation begins. The branch
occurs without executing the SBIO instruction and the system
places a code of $BFRPFEin the task name.

Note: If your program branches to the label you defined, you must
reset the buffer count.

Code INDEX to specify that the system is to do automatic indexing of
a buffer you defined. You must define the buffer with a BUFFER
statement.

If opnd3 is the label of a variable or a constant representing the count
of external synchronization read cycles, you must specify EXT SYNC
(external synchronization) in the associated IODEF statement.
Specifying EXT SYNC also provides a latched DI operation. The
system reads the entire 16-bit group.

If you specify EXTSYNC on the IODEF statement but do not code
opnd3, the system does a single unsynchronized I/O operation.

BITS = (u,v) The portion of a DI group to be read starting at bit u, for a length v.
Bits are numbered from 0-15. Bit u is the relative bit number starting
at 0, within the group or subgroup defined in the IODEF statement.

Chapter 2. Instruction and Statement Descriptions 2-391

SBIO (Digital Input)

Coding Example

Return Codes

2-392 SC34-0937

LSD = Input data is right justified to this bit with all unused bits set to O.
Code this operand only if you coded BITS =. The default is bit 15.

ERROR = The label of the instruction to be executed if the SBIO instruction is
unsuccessful after two retries. If you do not code ERROR = ,
execution proceeds sequentially. In either case, the first word of the
task control block contains the return code.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

This example shows a sensor-based I/O operation using the SBIO instruction and
three IODEF statements to read digital input.

*

*

IOOEF OIl,TYPE=GROUP,AOORESS=49
IOOEF OI2,TYPE=SU8GROUP,AOORESS=48,8ITS=(7,3)
IOOEF DI3,TYPE=EXTSYNC,AOORESS=62

S8IO 011
S8IO OIl ,OATA
S8IO OIl, (O,#1)
S8IO OIl,8UF,INOEX
5810 OIl,80AT,8ITS=(3,5)

S8IO 012
S8IO OI2,OAT2
5810 OI2,0,8ITS=(0,3)
S8IO OI2,E,8ITS=(0,1)
S8IO OI2,F,8ITS=(2,1),LS8=7

5810 0I3,G,128

OATA INTO LOC 'OIl'
011 INTO LOC 'OATA'
011 INTO LOC (O,#1)
011 INTO NEXT LOC OF '8UF'
8ITS 3 TO 7 OF 011 INTO '80AT'

8ITS 7-9 OF 012 INTO '012'
8ITS 7 TO 9 OF 012 INTO 'OAT2'
8ITS 7-9 OF 012 INTO '0'
8IT 7 OF 012 INTO 'E:
8IT 9 OF 012 INTO

LOCATION F 8IT 7
REAO 128 WOROS INTO 'G'

USING EXTERNAL SYNC

The return codes for all SBIO instruction formats are listed under "SBIO (Digital
Output)" on page 2-393.

o

()

o

()

0

o

S810 (Digital Output)

Syntax:

label

label

label

label

label

label

Required:
Defaults:
Indexable:

Operand

DOx

loe

EOB=

opnd3

SBIO
or

SBIO
or

SBIO
or

SBIO
or

SBIO
or

SBIO

DOx

SBIO (Digital Output)

DOx,ERROR = ,PI =

DOx,loc,ERROR = ,PI = ,P2 =

DOx,loc,INi>EX,EOB = ,ERROR = ,PI = ,P2 =

DOx,loc,BITS = (u,v),LSB = ,ERROR = ,PI = ,P2 =

DOx,loc,opnd3,ERROR = ,PI = ,P2 = ,P3 =

DOx,(PULSE,dir),ERROR =

no indexing,LSB = 15
toe

Description

The label you assigned to a digital output device on the associated
IODEF statement. DOx acts as the label of a single data storage
location if you do not specify the loc operand.

An explicit constant or the address of the location of the output data.
If you do not code the loc operand, the supervisor fetches data from
the SBIOCB created for the instruction.

You can use this operand for buffer operations with automatic
indexing. Code the label of a branch to be taken if:

1. The SBIO operation uses the last element of the buffer you
defined. A return code of $OK is placed in the task name.

2. The buffer is logically empty when the SBIO operation begins.
The branch occurs without executing the SBIO instruction and the
system places a code of $BFRPFE in the task name.

Note: If your program branches to the label you defined, .you must
reset the buffer count.

Code INDEX to specify that the system is to do automatic indexing of
a buffer you defined. You must define the buffer with a BUFFER
statement.

If you specify a label or constant for opnd3, external synchronization
is used.

BITS = (u,v) Indicates that the specified value is to be written into a portion of the
DO group starting at bit u for a length of v. This does not affect the
condition of the other bits in the group. Bits are numbered from
0-15. Bit u is the relative bit number starting at 0, within the group
or subgroup defined in the IODEF statement.

Chapter 2. Instruction and Statement Descriptions 2-393

SBIO (Digital Output)

Coding Examples

2-394 SC34-0937

LSB= Output data is taken from the output word with this bi~ being the least
significant bit. Use this operand only if you coded BITS =. The
default is bit 15.

(PULSE,dir) Code this operand to generate a pulse on the digital output group or
subgroup you specified. Allowable directions (dir) are ON (or UP)
and OFF (or DOWN).

ERROR = The label of the instruction to be executed if the SBIO instruction is
unsuccessful after two retries. If you do not code ERROR = ,
execution proceeds sequentially. In either case, the firsfword of the
task code block contains the return code.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

1) This example uses the SBIO instruction and three IODEF statements to write
digital output.

IODEF D03,TYPE=GROUP,ADDRESS=4B
IODEF D012,TYPE=SUBGROUP,ADDRESS=4A,BITS=(5,4)
IODEF D013,TYPE=EXTSYNC,ADDRESS=4F

*
SBIO D03 VALUE OF LOCATION ID03 1 to D03
SBIO D03,DODATA VALUE OF I DODATAI TO D03
SBIO D03,1023 SET D03 TO 1023
SBIO D03, (DATA, #1) VALUE AT (DATA,#l) TO D03
SBIO D03,7,BITS=(3,3) SET BITS 3 TO 5 OF D03 TO 7

*
SBIO D012,15 SET BITS 5 TO 8 OF D012 TO 15
SBIO D012,X,BITS=(0;4), SET BITS 5 TO 8 OF D012

* TO VALUE IN IX I
SBIO D012,1,BITS=(0,1) SET BIT 5 OF D012 TO 1
SBIO D013,Y,80 WRITE 80 LOCATIONS OF lyl

TO D013 EXTERNAL SYNC

2) This example shows pulse digital output.

IODEF D013,TYPE=SUBGROUP,BITS=(3,1)
IODEF D014,TYPE=SUBGROUP,BITS=(7,4)

*
SBIO D013, (PULSE,UP) PULSE D013 BIT 3 TO ON

* AND THEN OFF
SBIO D014,(PULSE,DOWN) PULSE D014 BITS 7-10

* OFF AND THEN ON

o

Cl

o

Return Codes

()

c

o

SBIO (Digital Output)

You can find the return code for an SBIO operation by referring to the first word in
the task control block (TCB). The label of the TCB is the label of your program or
task (taskname).

Each condition shown below has a return code and an equate for that condition. If
you refer to the equate in your program rather than the actual return code, your
source code will always be current. You can obtain these equates when using
$EDXASM by coding COpy ERRORDEF before the ENDPROG statement in
your program.

Return
Code EQU Description

-1 $OK Command successful.

90 $DNA Device not attached.

91 $DNU Busy or in exclusive use.

92 $BAR Busy after RESET.

93 $CMDREJ Command reject.

94 $INVREQ Invalid request.

95 $IDC Interface data check.

96 $CTLBSY Controller busy.

97 $OVRVOLT AI over voltage.

98 $INVRG AI invalid range.

100 $INVCHA AI invalid channel (point).

101 $INVCNT AI invalid count field (AI/DI/DO count).

102 $BFRPFE Buffer previously full or empty (indexing).

104 $DCMDREJ Delayed command reject.

In the following example, the program branches to label REDO if the condition "AI
over voltage" occurs. The program refers to the equate $OVRVOLT. Note the use
of the leading plus sign (+) with the equate to specify that it is a constant.

SBIO AI1,ERROR=AIERR
•
•
•

AIERR IF (taskname,EQ,+$OVRVOLT),GOTO,REDO

Chapter 2. Instruction and Statement Descriptions 2-395

SCREEN

SCREEN - Convert Graphic Coordinates to a Text String

Syntax Example

2-396 SC34-0937

The SCREEN instruction converts the x and y coordinates that represent a point on
a screen to a 4-character text string that becomes the graphic address of the point.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

text

x,y

SCREEN text,x,y,CONCAT = ,ENHGR = ,PI = ,P2 = ,P3 =

text,x,y
CONCAT = NO,ENHGR = NO
none

Description

Location of a text string at least 4 characters long.

Screen coordinates of a point to be translated. The range is 0 -1023
for the full width of the screen and 0 - 779 for the screen height. You
can extend this range by coding the ENHGR operand.

Operands x and y can be locations containing data or explicit values,
but both must be of the same type.

CONCAT= Code CONCAT=YES to concatenate the results of the operation to
the contents in text. The length of the text string is increased by 4 or 5
if you also code ENHGR = YES.

The length of the text string is set to 5 if you code CON CAT = NO
and ENHGR=YES. If you code CONCAT=NO and
ENHGR = NO, the length of the text string is set to 4.

ENHGR = YES, to extend the range for the full width of the screen to 0 - 4095
and to extend the range for the screen height to 0-3120. When you
·,::ode ENHGR = YES, a 5-character graphic instruction is compiled.

NO (the default), not to extend the range for the screen width or
height.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Convert coordinates 520 and 300 to a text string. Concatenate the string to the
contents of TEXTl.

SCREEN TEXTl,520,300,CONCAT=YES

o

o

()

0,
"

SETBIT

SETBIT - Set the Value of a Bit

Syntax Examples

The SETBIT instruction sets the value of a bit to I or O. The bit is "on" if it
contains a I and "off' if it contains a O.

You can test to see if a bit is "on" or "off' with the IF instruction. The DO
instruction allows your program to do a loop while or until a certain bit is "on" or
"off."

Syntax:

label

Required:
Defaults:

SETBIT data1,data2,ONIOFF,P1 = ,P2 =

data1,data2,ON or OFF
none

Indexable: data1,data2

Operand

datal

data2

ON

OFF

Description

The label of a data string that contains the bit to be set to I or O.

The location in datal of the bit to be changed. You can code:

• An integer or the label of an integer from I to 32767.

• A hexadecimal value or the label of a hexadecimal value from 1 to
65535 ex I FFFF I).

Bit 0 is the leftmost bit of the data area.

Sets the value of the bit to 1.

Sets the value of the bit to O.

1) Tum on the fifth bit in CONTROL.

SETBIT CONTROL,BIT ,ON
•
•
•

BIT DATA

2) Turn off the third bit in CONTROL.

SETBIT CONTROL,2,OFF

3) Tum on bit 15 in STATUS.

SETBIT STATUS,BIT,ON
•
•
•

BIT DATA X' 000E '

Chapter 2. Instruction and Statement Descriptions 2-397

SHIFTL

SHIFTL - Shift Data to the Left

2-398 SC34-0937

The SHIFTL instruction shifts the contents of operand 1 to the left by the number
of bit positions specified in operand 2. Vacated positions on the right are filled with
zeroes. If operand 2 is a variable, it is assumed to be single-precision, and the shift
count is its value.

Note: The precision of opnd2 should not exceed the precision of opndl.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

count

SHIFTL opndl,opnd2,count,RESUL T = ,
PI =,P2=,P3=

opndl,opnd2
count = I,RESUL T = opndl
opndl,opnd2,RESUL T

Description

The label of a data area containing the data to be shifted left. You
cannot code a self-defining term.

The value by which the first operand is shifted. Code a self-defining
term or the label of a data area.

The number of consecutive values in opndl on which the operation is
to be performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Because
these operations are parallel (the two operands and the result are
implicitly of like precision) only one precision specification is required.
That specification can take one of the following forms:

BYTE Byte precision
WORD Word precision
DWORD Doubleword precision

RESULT = The label of a data area or vector in which the result is to be placed.
If you code this operand, opndl is not modified.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (px =)" on page 1-10 for a detailed description of how to
code these operands.

o

o

Syntax Example

o

o

()

SHIFTL

The SHIFTL instruction in this example changes the value in the data area labeled
A from X I 82Fli to X 10BC4 1 by shifting the bit string two positions to the left.

•
•
•

SHIFTL A,2
•
•
•

PROGSTOP
A DATA X 182F11 binary Ieee ee1e 1111 eeel

•
•
•

After the operation, A equals:

Hexadecimal - X I OBC4 I

Binary - 0000 1011 1100 0100

Chapter 2. Instruction and Statement Descriptions 2-399

SHIFTR

SHIFTR - Shift Data to the Right

2-400 SC34-0937

The SHIFTR instruction shifts the contents of operand I to the right by the number
of bit positions specified in operand 2. Vacated positions on the left are filled with
zeros. If operand 2 is a variable. it is assumed to be single-precision, and the shift
count is its value.

Note: The precision of opnd2 should not exceed the precision of opndl.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

count

SHIFTR opndl,opnd2,count,RESUL T = ,
PI =,P2=,P3=

opndl,opnd2
count = I,RESUL T = opndl
opndl,opnd2,RESUL T

Description

The label of the data area to be shifted. You cannot code a
self-defining term.

The value by which the first operand is shifted. Code a self-defining
term or the label of a data area.

The number of consecutive values in opndl on which the operation is
to be performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Because
these operations are parallel (the two operands and the result are
implicitly of like precision) only one precision specification is required.
That specification can take one of the following forms:

BYTE Byte precision
WORD Word precision
DWORD Doubleword precision

RESULT = The label of a data area or vector in which the result is to be placed.
If you code this operand, opndl is not modified.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

o

o

o

Syntax Example

()

o

SHIFTR

The SHIFTR instruction in this example shifts the contents of C 24 bits to the right
and stores the result of the operation in the data area labeled E. The value in C
remains the same.

•
•
•

SHIFTR C,24,DWORD,RESULT=E
•
•
•

PROGSTOP
C DATA X'A794Ble9'
E DATA x'eeeeeeee'

•
•
•

Before:

or
binary 1010 0111 1001 0100 1011 0001 0000 1001

E = X' 00000000 '
or

binary 0000 0000 0000 0000 0000 0000 0000 0000

After:

C = X'A794B109'
or

binary 1010 0111 1001 0100 1011 0001 0000 1001

E = X'000000A7'
or

binary 0000 0000 0000 0000 0000 0000 1010 0111

Chapter 2. "Instruction and Statement Descriptions 2-401

SPACE

SPACE - Insert Blank Lines in a Compiler Listing

Coding Example

2-402 SC34-0937

The SPACE statement inserts one or more blank lines in a compiler listing.

Because this statement does not generate code or constants in the object program, it
can be placed between executable instructions in your source statement data set.

Syntax:

blank SPACE value

Required: none
Defaults: value = 1

Operand Description

value A positive integer specifying the number of blank lines to be inserted.
If no value is entered, the system inserts one blank. If the value
exceeds the number of lines remaining on the page, the statement has
the same effect as an EJECT statement.

See the PRINT statement for an example using SPACE.

(" ~)

o

o

o

c

o

SPECPIRT

SPECPIRT - Return from Process Interrupt Routine
The SPECPIR T instruction returns control to the supervisor from a special process
interrupt (SPECPI) routine that you provide. If the routine is in partition 1, control
returns to the supervisor with a branch instruction~ To return to the supervisor from
another partition, your routine must execute a Series/1 assembler SELB instruction
after registers RO and R3 are saved in the level status block (LSB) you select.

You can use SPECPIRT only when you specify TYPE = BIT on the IODEF (Process
Interrupt) statement.

Syntax:

label SPECPIRT

Required: none
Defaults: none
Indexable: none

Operand Description

none none

Chapter 2. Instruction and Statement Descriptions 2-403

SQRT

SQRT - Find the Square Root

Syntax Example

2-404 SC34-0937

The SQRT instruction finds the square root of a double-precision integer variable.
The instruction is implemented through the USER instruction facility. It is not
included in the supervisor. To use the SQRT instruction you,must link-edit your
program with $EDXLINK and specify $$SQRT,ASMLIB on an INCLUDE
statement.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

rsq

root

rem

Px=

SQRT rsq,root,rem,Pl = ,P2 = ,P3 =

. rsq,root,rem
none
none

Description

The label of a double-precision integer that the square root routine is
to use. This value must be from 0 to 1073741823.

The label of a I-word data area where the square root is to be stored.

The label of a I-word data area where the remainder is to be stored.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Calculate the square root of the integer value in VALUE.

GETSQRT EQU
SQRT

VALUE
ROOT
REMAIN

DATA
DATA
DATA

*
VALUE,ROOT,REMAIN
•
•
•
0 1 0 1

F'O'
F'O'

If the data area labeled VALUE contains the number 18611 (X I 00004863 I), the
SQRT instruction would place a result of 136 (X '0088 1

) in ROOT and a remainder
of 115 (X'0073 1

) in REMAIN.

()

o

c

o

o

o

STATUS

STATUS - Set Fields to Check Host Status Data Set

Coding Example

The STATUS instruction defines the fields required to refer to a record in the
"System Status Data Set" on the host computer.

TP SET, TP FETCH, and TP RELEASE refer to the label of the STATUS
instruction. Refer to the Communications Guide for information on how to use the
System Status Data Set.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

index

key

length

STATUS index,key,length,PI = ,P2 = ,P3 =

label,index,key
length =0
none

Description

A 1 - 8 alphanumeric character string. This defines an index in the
status data set. One or more entries may be associated with this index,
each with a unique key field. We suggest that a unique index be
specified for each Series/I, but this is not a requirement.

A 1 - 8 alphanumeric character string. The index and key together
define a unique status data set entry. A different key might be used
for each application program on a Series/l which communicates to a
host.

Specifies the length of an optional buffer to be used in the SET,
FETCH, and RELEASE functions of the TP instruction.

The maximum buffer length, which can be specified in bytes, is 256. If
this operand is omitted, no buffer is defined. If a buffer is specified
wi th a length greater than 0, then it can be named by using the Px =
operand.

The contents of the buffer can be stored in the System Status data set
with a TP SET instruction. For a TP FETCH or TP RELEASE, this
buffer will serve as an input area.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

The following coding example shows a use of the STATUS instruction. The host
communications facility (HCF) is required to execute the TP instructions that are
used in this example.

In this example, a Series/l program (PROGA) creates a message and sends it to the
host computer. The sending Series/l then waits for another. Series/l program
(PROGB, possibly from a different Series/I) to receive the message and acknowledge
the receipt by deleting the message.

Chapter 2. Instruction and Statement Descriptions 2-405

STATUS

2-406 SC34-0937

The STATUS instruction in PROGA, at label STATUSA, defines the index and key
needed to refer to a record. The TP SET instruction at label BEGINA makes an
entry in the system status data. After creating the entry, PROGA goes into a loop
of TP PETCH instructions that ends when the entry is not found.

The STATUS instruction in PROGB, at label STATUSB, defines the same index
and key defined in PROGA. PROGB executes a TP PETCH instruction, at label
TPBI, in an attempt to fetc)1 the system status data set entry which it defined by the
STATUS instruction parameters at label ST ATUSB.

If PROGA has not yet created the entry (through execution of the TP SET
instruction at label BEGINA), an error occurs and PROGB will loop through the
TP-PETCH instruction until it does find an entry with the required index and key.
Aft~r finding the entry, the TP RELEASE instruction deletes it and executes a
PROGSTOP.

Deleting the entry causes the TP PETCH instruction in PROGA to take the error
exit. PROGA then executes a PROGSTOP and ends.

PROGA PROGRAM
STATUSA STATUS
BEGINA EQU

TP
1 PLOOPA EQU

TP
GOTO

ENDIT PROGSTOP
•
•
•

ENDPROG
END

PROGB PROGRAM
STATUSB STATUS
TPLOOP EQU
TPBl TP
TPB2 TP
ENDALL EQU

PROGSTOP
•
•
•

ENDPROG
END

BEGINA
PROGID,KEYSTRNG
*
SET,STATUSA
*
FETCH,STATUSA,ERROR=ENDIT
TPLOOPA

TPLOOP
PROGID,KEYSTRNG
*
FETCH,STATUSB,ERROR=TPLOOPB
RELEASE,STATUSB
*

()

()

c

o

o

o

STIMER

STIMER - Set a System Timer
The STIMER instruction sets the system timer for the number of seconds or
milliseconds that you specify. You can use the instruction to:

• Delay program execution

• Post an event control block (ECB) in your program after a certain interval has
elapsed

• Produce a return code after a certain interval has elapsed.

To avoid unnecessary program delays, you can code the STIMER instruction before
instructions that request input, such as READTEXT or GETV ALUE. When the
instruction prompts an operator for data, the STIMER- instruction gives the operator
a specific amount of time to respond. If the operator does not respond to the
prompt within the. interval you specify, your program can continue processing. The
STIMER instruction also prevents a program from tying up a terminal indefinitely
while waiting for a response.

Syntax:

label

label

Required:
Defaults:
Indexable:

Operand

count

action

STIMER count,action,SECS,Pl = ,P2 =
or

STIMER RESET

count or RESET
count in milliseconds
count

Description

A positive integer or the label of a positive integer (a word value) that
specifies the timer setting in milliseconds or seconds.

The minimum timer setting is either I millisecond or second. The
maximum setting is either 65535 milliseconds or seconds.

Note: When using a 4952, 4954, or 4956 processor, the minimum
setting should not be less than 3 milliseconds.

Specifies how the system timer operates. You can code one of three
options: WAIT,TIO, or ecbad. If you omit this operand and specify
SECS, you must code a comma in its place to show that you have left
the positional operand blank. IIi addition, if you do not code one of
the three options, you must code a subsequent WAIT instruction with
the keyword TIMER specified as the event for which you are waiting.

Chapter 2. Instruction and Statement Descriptions 2-407

STIMER

2-408 SC34-0937

SEes

RESET

The timer options are as follows:

WAIT Suspends program execution until the interval you specified
on the count operand has expired.

TIO Provides a return code of - 5 in the task control ,block6f the
task containing the STIMER instruction when the interval
you specified on count operand has expired. The first word
of the task control block will contain the return code.

Use this option when you want to set a time limit on an
instruction that requests operator input.

ecbad Code the label of an event control block (ECB) that the
system posts when the interval you specified on the count
operand has expired. The system places a value of - 5 in the
ECB.

Note: If the ECB to be posted is in another partition, you
must move the address space of the ECB into $TCBADS
before executing the STIMER instruction. The address space
is equal to the partitiori number minus 1. An ECB in
partition 2, for example, is in address space 1.

Specifies that the value of the count operand is in seconds rather than
milliseconds.

Cancels the timer if the event the program is waiting for occurs before
the interval on the timer has expired. You must code STIMER with
RESET when you have specified TIO or ecbad on a previous STIMER
instruction.

When you specify TIO, code an STIMER with RESET following the
instruction that has the time limit on it. When you specify ecbad, code
an STIMER with RESET following the WAIT instruction that waits
for the ECB to be posted. Both uses of the RESET operand are
-shown in the coding examples for this instruction.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

o

o

o

o

o

STIMER

Special Considerations

Syntax Examples

The following are some special considerations to keep in mind when you code the
STIMER instructi&n:

• If you code an error exit routine that your program can call while a timer is set,
you must reset the timer in your routine.

• Two STIMER instructions without an intervening WAIT will cause the interval
specified by the first STIMER instruction to be replaced by the interval specified
by the second STIMER ipstruction.

• With a 2741 terminal, if you use the TIO option of STIMER to set a timer for
an instruction that requests input (for example, a READTEXT), normal
program execution can be affected if the interval on the timer is allowed to
expire. When the timer expires, the 2741 will be in a transmit state. For this
reason, the device will be unable to do any output operations, such as a
PRINTEXT. In this case, your program must reissue the instruction that
requested input and an operator must respond to it by pressing the attention or
RETURN key.

1) The STIMER instruction starts a 20-second timer. The WAIT instruction
suspends task execution until the 20-second interval has elapsed. The WAIT
instruction is required because the STIMER instruction does not specify one of the
timer options.

S1 STIMER 20.,SECS
•
•
•

WAlT TIMER

2) The STIMER instruction sets a timer for '30000 milliseconds. Execution does not
resume until after that interval has elapsed.

S2 STIMER 30000,WAIT

3) The MOVE instruction moves a value of 100 into SECONDS. The parameter
naming operand on the STIMER instruction, PI =, receives the value for the count
operand. The STIMER instruction halts task execution for 100 seconds, then passes
control to the instruction following the S3 label.

S3
MOVE
STIMER

SECONDS,100
0,WAIT,SECS,P1=SECONDS

Chapter 2. Instruction and Statement Descriptions 2-409

STIMER

Coding Examples

2-410 SC34-0937

1) In the following example, the STIMER instruction at label SI sets a timer for
120 seconds. If the operator does,not enter his name within that period, the system
places a return code of - 5 'in the task control block of the task. If the operator
enters his name within the time limit, the STIMER with RESET following the
READTEXT instruction cancels· the .portion of time remaining on the timer.

S1

•
•
•

ENQT
STIMER
READTEXT
STIMER
DEQT

•
•
•

120, TIO ,SEeS
INPUT,'ENTER YOUR NAME ' ,SKIP=1
RESET

2) In this example, the STIMER instruction at the label TIME sets a timer for 60
seconds. Because the instruction contains the label of the event control block
TIMEOUT, the system will post TIMEOUT if the 60-second interval expires before
an event occurs. The STIMER with RESET following the WAIT instruction will
cancel any time remaining on the timer if the system posts the ECB being waited on
before the· 60 seconds have elapsed.

•
•
•

RESET TIMEOUT
•
•
•

TIME STIMER 60, TIMEOUT ,SEeS
•
•
•

WAIT TIMEOUT
STIMER RESET

•
•
•

PROGSTOP
TIMEOUT EeB

(' '\
)

0

o

o

o

Return Code

o

STIMER

3) The STIMER instruction at label TIMEl, in the following example, s~ts a timer
for 180 seconds. When the interval expires, the system will 'post ECBl unless the
ECB is posted before that event. If the ECB is posted before the interval expires,
the STIMER instruction at TIME2 prevents the system from posting theECB again.

•
•
•

RESET ECBl
MOVE TIME,180
MOVEA ECBADDR,ECBl

TIMEl STIMER 0,*,SECS,Pl=TIME,P2=E€BADDR
WAIT ECBl

TIME2 STIMER RESET
IF (ECBl,EQ,-5),GOTO,TIMEOUT

•
•
•

TIMEOUT PRINTEXT 'TIMER HAS EXPIRED '
PROGSTOP

ECBl ECB

4) In the following example, the STIMER instruction at label SET sets a timer for
600 milliseconds. If the operator does not respond to the prompt message within the
time interval, the system places a return of -5 in the first word of the task control
block (TCB). The STIMER instruction at label RESET cancels any remaining time
on the timer if the operator responds to the prompt message within 600 milliseconds.
The IF instruction tests the return code to see if the interval has expired.

DATA PROGRAM START
•
•
•

SET STIMER 600,TIO
READTEXT HOLD, I ENTER YOUR WEIGHT',SKIP=l

RESET STIMER RESET
IF (DATA,EQ,-5),GOTO,T1MEOUT

•
•
•

TIMEOUT PRINTEXT 'TIMER HAS EXPIRED '

The return code is returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code Description

-5 In terval has expired.

Chapter 2. Instruction and Statemen.t Descriptions 2-411

STORBLK

STORBLK - Define Mapped and Unmapped Storage Areas

2-412 SC34-0937

The STORBLK statement defines the size and number of the storage areas your
program can obtain with the GETSTG instruction. The SWAP instructIon uses the
mapped storage area which you define with this statement to' gain access to the
unmapped storage areas that you define.

Note: "Mapped storage" is the physical storage you defined on the PARTS operand
of the SYSPARTS.statement during system generation. "Unmapped storage" is any
physical storage that you did not include on the PARTS operand of the SYSPARTS
statement.

The STORBLK statement also creates a storage control block that:

• Contains the address of the mapped storage area your program acquires with
GETSTG.

• Contains the location of and entries for the unmapped storage areas your
program acquires with the GETSTG instruction.

• Records which unmapped storage area your program is using.

Your program can refer to the various fields in the storage control block by using
the equates contained in the STOREQU module. To use these equates, code

COpy STOREQU

in your program. The STOREQU equates that may be of most use to you when
coding your program are shown following the instruction operands.

The system releases the mapped and unmapped storage areas you defined with a
STORBLK statement if the program containing the statement issues a PROGSTOP,
if a program check occurs, or if you cancel the program with the $C command. You
can also release storage areas with the FREESTG instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

STORBLK TWOKBLK = ,MAX = ,EXT =

label,TWOKBLK = ,MAX =
EXT = (points to an address in the storage control block)
none

Description

TWOKBLK=

MAX =

The size of the mapped storage area in 2K-byte blocks. Each 2K~byte
block is equal to 2048 bytes of storage. Code a positive integer. The
unmapped storage areas you define with the MAX = operand will also
be this size.

The maximum value you can specify for this operand is 31.

The number of unmapped storage areas your program requires. The
GETSTG instruction obtains these unmapped storage areas for your
program.

()

o

o

o

STOREQU Equates

Syntax Examples

o

Coding example

o

EXT =

STORBLK

The label of an optional area outside the storage control block where
the values that point to the unmapped storage areas can reside. The
word size of this area must be equal to twice the value of the
TWOKBLK parameter times the MAX parameter. For example, if
you specify TWOKBLK = 2 and MAX = 8, the extension area would
have to be 32 words long.

You must initialize each word of the extension area to - 1
(XIFFFFI).

If you do nof code this operand, the STORBLK statement generates
an area to store the values that point to the unmapped storage areas
that your program obtains.

You may find the following equates helpful when coding a program that uses
unmapped storage:

$STORMAP Address of the mapped storage area.

$STORMPK Address space of the mapped storage area (partition number minus
one).

1) Defines a mapped storage area of 40K bytes and two unmapped storage areas of
40K bytes each.

BLOCK STORBLK TWOKBLK=20,MAX=2

2) Defines a mapped storage area of 20K bytes and four unmapped storage areas of
20K bytes each.

BLOCKI STORBLK TWOKBLK=10,MAX=4

3) Defines a mapped storage area of 4K bytes and eight unmapped storage areas of
4K bytes each. The values that point to these unmapped storage areas reside in A.
Note that the extension area is 32 words long because your program specifies
TWOKBLK = 2 and MAX = 8; You must initialize the extension area to '- l'.

BLOCK2
A

STORBLK
DC

TWOKBLK=2,MAX=8,EXT=A
32F I -l 1

4) Defines a mapped storage area of 2K bytes and 20 unmapped storage areas of
2K bytes each. The values that point to these unmapped storage areas reside in
HOLD.

BLOCK2
HOLD

STORBLK
DC

TWOKBLK=1,MAX=20,EXT=HOLD
40F 1-11

See the SW AP instruction for a coding example that contains the STORBLK
statement.

Chapter 2. Instruction and Statement Descriptions 2-413

SUBROUT

SUBROUT - Define a Subroutine

2-414 SC34-0937

The SUBROUT statement defines a callable subroutine. You can pass up to five
parameters, or arguments, to the subroutine. The subroutine must include a
RETURN instructioll to provide linkage back to the calling task. Nested
subroutines are allowed, and a maximum of 99 subroutines are permitted in each
Event Driven Executive program. If a subroutine is to be assembled as an object
module which can be link-edited, an ENTRY statement must be coded for the
subroutine entry point name.

You can call a subroutine from more than one task. When called, the subroutine
executes as part of the calling task. Because subroutines are not reentrant, you
should ensure serial use of the subroutine with the ENQ and DEQ instructions.

Note: Do not code a TASK statement within a subroutine.

Syntax:

label SUBROUT name,parl, ... ,par5

Required: name
Defaults: none
Indexable: none

Operand Description

name

parl, .•.

Name of the subroutine.

Names used within the subroutine for arguments or parameters passed
from the calling program. These names must be unique to the
complete program. All parameters defined outside the subroutine are
known within the subroutine. Thus, only parameters which may vary
with each call to a subroutine need to be defined in the SUB ROUT
statement. These parameters are defined automatically as
single-precision values.

For instance, assume you have two calls to the same subroutine. At
the first, parameters A and C are to be passed, while at the second, B
and C are to be passed. Because C is common to both, it need not be
defined in the SUBROUT statement. However, a new parameter D
would be specified to account for passing either A or B.

()

o

o

Coding Example

o

o

SUBROUT

The CALL instruction in this example calls the subroutine named CHKBUFF. The
calling program passes two parameters to the CHKBUFF subroutine. The first
parameter, BUFFLEN, is a variable containing the maximum allowable buffer
count. The second parameter, BUFFEND, is the address of the next instruction to
be executed if the buffer is full.

CALL CHKBUFF,BLEN,BEND
•
•
•

SUBROUT CHKBUFF,BUFFLEN,BUFFEND
*

SUBTRACT BUFFLEN,l
IF (BUFFLEN,GE,MAX)

GOTO (BUFFEND)
ENDIF
ADD BUFFLEN,l
RETURN

*
*
MAX DATA F\256\

Chapter 2. Instruction and Statement Descriptions 2-415

SUBTRACT

SUBTRACT - Subtract Integer Values

2-416 SC34-0937

The SUBTRACT instruction subtracts an integer value in operand 2 from an integer
value in operand 1. The values can be positive or negative. (See the DATA/DC
statement for a description of the various ways you can represent integer data.) To
subtract floating-point values. lise the FSUB .instruction.

You can abbreviate this instruction as SUB.

EDX does not indicate an overflow condition for this instruction.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

SUBTRACT opndl,opnd2,count,RESULT = ,PREC =,
PI =,P2=,P3=

opndl,opnd2
count = 1,RESUL T = opndl,PREC = S
opndl,opnd2,RESUL T

Description

The label of the data area from which opnd2 is subtracted. Opndl
cannot be a self-defining term. The system stores the result of the
SUBTRACT operation in opndl unless you code the RESULT
operand.

The value subtracted from opndl. You can specify a self-defining
term or the label of a data area. The value of opnd2 does not change
during the operation.

count The number of consecutive values in opndl on which the operation is
to be performed. The maximum value allowed is 32767.

RESULT = The label of a data area or vector in which the result is placed. Opndl
is not changed if you specify RESULT. This operand is optional.

PREC = xyz Specify the precision of the operation in the form xyz, where x is the
precision for opndl, y is the precision for opnd2, and z is the precision
of the result ("Mixed-Precision Operations" on page 2-417 shows the
precision combinations allowed for the SUBTRACT instruction). You
can specify single-precision (S) or double-precision (D) for each
operand. Single-precision is one word in length; double-precision is
two words in length. The default for opndl, opnd2, and the result is
single-precisi on.

If you code a single letter for PREC, the letter applies to opndl and
the result. Opnd2 defaults to single precision. If, for example, you
code PREC = D, opndl and the result are double-precision and opnd2
defaults to single-precision.

If you code two letters for PREC, the first letter applies to opndland
the result, and the second letter applies to opnd2. With PREC = DD,
for example, opndl and the result are double-precision and opnd2 is
double-precision.

()

o

o

c

o

Px=

SUBTRACT

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Mixed-Precision Operations

Syntax Examples

The following table lists the precision combinations allowed for the SUBTRACT
instruction:

opndl opnd2 Result Precision

S S S S (the default)
S S D SSD
D S D D
D D D DD

1) Subtract 2 from 5 and place the result of the operation in C.

A
B
C

SUB A,B,RESULT=C
•
•
•

PROGSTOP
DATA F'51
DATA . F'21
DATA F' 01

•
•
•

SINGLE-PRECISION SUBTRACT

2) Subtract the value at the address defined by 2 plus the contents of #2 from the
value in data area A. Replace the contents of A with the results of the operation.

•
•
•

SUB A,(2,#2) SUBTRACT DATA AT (2,#2) FROM A
•
•
•

PROGSTOP
A DATA F'lO '

•
•
•

Chapter 2. Instruction and Statement Descriptions 2-417

SWAP

SWAP - Gain Access to an Unmapped Storage Area

2-418 SC34-0937

The SWAP instruction gains access to an unmapped storage area you obtained with
the GETSTG instruction. Your program gives up the use of a block of mapped
storage you obtained with GETSTG to gain access to one or more blocks of
unmapped storage.

Note: "Mapped storage" is the physical storage you defined on the SYSPARTS
statement during system generation. "Unmapped storage" is any physical storage
that you did not include on the SYSPARTS statement.

Refer to the Language Programming Guide for more information on how to code
program-s that use unmapped storage.

Syntax:

label SWAP name,number,ERROR = ,PI = ,P2 =

Required: name
Defaults: value of 0 for number
Indexable: none

Operand Description

name

number

The label of a STORBLK statement that defines the mapped and
unmapped storage areas this instruction uses.

The number of the unmapped storage area that you want to use. Your
program has access to this area until it issues another SWAP
instruction. The number must be from 0 to the maximum number of
unmapped storage areas you defined on the STORBLK statement.
You can code a positive integer or the label of a positive integer.

By coding 0 for this operand, your programs regains access to the
mapped storage area.

It is your responsibility to keep track of the contents of each
unmapped storage area.

ERROR = The label of the first instruction of the' routine to receive control if an
error condition occurs while this instruction is executing.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed. description of how to
code these operands.

c

Syntax Examples

o

Coding Example

c

o

SWAP

1) Get access to the second unmapped storage area defined in the STORBLK
statement, BLOCK.

SWAP BLOCK,2

2) Get access to the fourth unmapped storage area defined in the STORBLK
statement, BLOCK.

SWAP BLOCK,A
•
•
•

A DATA

The following program reads payroll data into three unmapped storage areas,
updates the data, and writes the data back to a disk data set. The program begins
by acquiring a mapped storage area of 2K bytes and three unmapped storage areas
of 2K bytes apiece. The STORBLK statement at label A defines the size of the
mapped storage area and the number of unmapped storage areas to be acquired.

The MOVE instruction at label Ml moves the address of the mapped storage area
into register 1. The MOVE instruction uses the STOREQU equate $STORMAP to
find the address. The MOVE instruction at label M2 moves the number of the first
unmapped storage area the program uses into the COUNT field. The DO loop
beginning at label LOOPI executes a SWAP instruction that gives up access to the
mapped storage area and uses its segmentation register to get access to the first
unmapped storage area. The READ instruction reads 8 records into the first
unmapped storage area. The program updates the COUNT field and reads 8
records into the next unmapped storage area.

When the program reads the payroll records into each of the unmapped storage
areas, the COUNT field is reset to 1, and the loop at label LOOP2 begins. This DO
loop moves the data in PA YCODE into the PA YCODE field of each record in the
unmapped storage area. The WRITE instruction then writes the records back to the
disk data set. The loop continues until the program has updated the records in each
unmapped storage area.

The FREESTG instruction releases the mapped and unmapped storage areas
acquired with the GETSTG instruction. This instruction also restores the
segmentation register values for the mapped storage area.

Chapter 2. Instruction and Statement Descriptions 2-419

SWAP

Return Codes

2-420 SC34-0937

PAYROLL
START

M1
*
M2
*
LOOP1
SWAP1

LOOP2
SWAP2
LOOP3

A
COUNT
PAY COD
PYCD
*

PROGRAM
EQU
GETSTG
MOVE

MOVE

DO
SWAP
READ
ADD

ENDDO
MOVE
DO

SWAP
DO

MOVE
ADD

ENDDO
MOVE
WRITE

ADD
ENDDO
FREESTG
PROGSTOP
STORBLK
DATA
DATA
EQU

COpy
ENDPROG
END

START,DS=(PAYROLL) GET MAPPED AND UNMAPPED AREAS
* GET MAPPED AREA ADDRESS FROM
A,TYPE=ALL STORAGE CONTROL BLOCK
#1,A+$STORMAP FIRST UMMAPPED AREA

COUNT,1

3
A,COUNT
DS1,(8,#1),8
COUNT,1

COUNT,1
3

A,COUNT

FOR EACH UNMAPPED AREA
SUBSTITUTE UNMAPPED AREA
READ· IN DATA FROM DISK
GET NEXT UNMAPPED AREA

FIRST UNMAPPED AREA
FOR EACH UNMAPPED AREA

8 FOR RECORDS IN UNMAPPED AREA
(+PYCD,#1),PAYCODE UPDATE PAYCODE
#1,256 NEXT RECORD

#1,A+$STORMAP
DS1,(8,#1),8

COUNT,1

A,TYPE=ALL

TWOKBLK=1,MAX=3
F I 8 1

F I 8 1

18

STOREQU

GET MAPPED AREA ADDRESS
WRITE BACK TO DISK
GET NEXT UNMAPPED AREA

PAYCODE FIELD IS 18 BYTES
INTO RECORD

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code Description

-1 Successful completion.

1 The number of the unmapped storage area you request is beyond the
number of areas defined on the STORBLK statement.

2 SW AP area is not initialized.

100 No unmapped storage support in the system.

()

~\
V

o

()

o

()

TASK

TASK - Define a Program Task
The TASK statement defines a task that executes asynchronously with the task that
starts or "attaches" it. The system executes tasks according to their priority. Use
the PROGRAM statement to define the primary task or main program.

Each task in a program, except the primary task, begins with a TASK statement and
must end with an ENDT ASK statement.

If you want to link-edit your program, place all TASKS you wish to attach using the
A TT ACH instruction in the same module. The assembler will only chain TASKS
within the module it assembles. Your application program will have to chain the
T ASKS together if they are not within the same module. Modify the correct field in
the TCB to chain tasks across modules.

Code TASK statements only within main programs, not within subprograms
(MAIN=NO on the PROGRAM statement);

Syntax:

taskname

Required:
Defaults:
Indexable:

Operand

taskname

start

priority

EVENT =

TASK start,priority ,EVENT = ,TERMERR = ,FLO AT = ,
ERRXIT=

taskname,start
priority = 150,FLOAT = NO
none

Description

The label you assign to the task.

The system generates a control block for each task in the program.
Refer to this control block as the task control block (TCB). The
system generates the TCB when it encounters an ENDPROG
statement.

The label of the task's TCB is the label you specify with this operand.
The supervisor uses the TCB to store instruction return codes. By
referring to the TCB (the taskname) in your program, you can
determine if an operation completed successfully.

The label of the first instruction you want the system to execute when
the task first attaches.

The priority you assign to the task. The range is from I (highest
priority) to 510 (lowest priority). Tasks with priorities 1 - 255 run on
hardware interrupt level 2 and those with 256 - 510 run on hardware
interrupt level 3.

Priorities rank tasks according to their real-time needs for processor
time. Priority assignments must, therefore, account for other programs
expected to be executing simultaneously.

Name of an end event. This event will be posted as complete at end of
this task. The attaching task can, if desired, synchronize its operation
by issuing aWAIT for this event. Do not define this event name
explicitly by an ECB since your system generates it automatically.

Chapter 2. Instruction and Statement Descriptions 2-421

TASK

Coding Example

2-422 SC34-0937

TERMERR=

FLOAT =

The label of the routine to receive control if an unrecoverable terminal
I/O error occurs.

If such an error occurs, the first word of the task control block (TCB)
contains the return code indicating the error. The second word of the
TCB contains the address of the instruction that was executing when
the error occurred. If you do not code TERMERR, the return code is
available in the task code word. You should use TERMERR for
detecting errors because the task code word is subject to modification
by numerous system functions. Therefore, it may not always reflect
the true status of terminal I/O operations.

YES, if this task uses floating-point instructions.

NO (the default), if this task does not use floating-point instructions.

ERRXIT = Specifies the label of a three-word list. That list points to a routine
which is to receive control if a hardware error or program exception
occurs while this task is executing. Prepare the task error exit routine
to handle any type of program or machine error completely. Refer to
the Language Programming Guide for additional information on the
use of task error exit routines. It is often necessary to release resources
even though your program cannot continue because of an error. This
is the case if the primary task is part of a program which shares
resources with other programs. These resources may be, for example,
QCBs, ECBs, or Indexed Access Method update records. The
supervisor does not release resources for you, but the task error exit
facility allows you to take whatever action is appropriate.

The format of the task error exit list is:

WORD 1 The count of the number of parameter words which follow
(always F'2').

WORD 2 The address of the user's error exit routine.

WORD 3 The address of a 24-byte area. Two types of informational
code are placed here from .the point where an error
occurred before the exit routine is entered. These are the
Level Status Block (LSB) and the Processor Status Word
(PSW). Refer to a Series/l processor description manual
for a description of the LSB and PSW.

A default task error exit routine is available to aid in problem
diagnosis and correction. (Refer to the Language Programming Guide
for a detailed description of this routine and how to use it in your
application program.)

The following example shows the use of the TASK statement in a program with
multiple tasks. The program reads a record from the data set MYFILE and prints
the first 8 bytes of that record. The'program begins by attaching TASKl. TASKI
is the label of a T ASl{ statement. T ASKI prints the message at label PI and reads
a record from MYFILE into. the buffer BUF. The MOVE instruction moves the
first 8 bytes of BUF into the text buffer labeled REC. When TASK! ends, it signals
the event by posting the ECB at label ECBl.

()

o

o

0'''',
' ,

c

()

TASK

The main program attaches the task at label TASK2. The WAIT instruction at label
WI checks ECBl to see if TASKI has completed. TASK2 then enqueues the printer
and prints the contents of REC. When TASK2 ends, it posts the event specified on
the EVENT = operand of the TASK statement. The main program receives control
and the WAIT instruction at label W2 checks to see if T ASK2 has ended. The
PRINTEXT instruction at label P4 prints the message "PROGRAM COMPLETE"
and the program ends.

READTASK PROGRAM START,DS=((MYFILE,EDX40))
START EQU *

ATTACH TASKI
ATTACH TASK2

W2 WAIT EVENT
P4 PRINTEXT 'PROGRAM COMPLETE I ,SKIP=2

PROGSTOP
ECBI ECB
BUF BUFFER 256,BYTES
REC TEXT LENGTH=8

TASKI TASK NEXT
NEXT ENQT $SYSPRTR
PI PRINTEXT '@TASKI ATTACHED I

READ DSI,BUF,I
MOVE REC,BUF,(8,BYTES)
POST ECBI
DEQT $SYSPRTR
ENDTASK

TASK2
WI

P2
P3

TASK
WAIT
ENQT
PRINTEXT
PRINTEXT
DEQT
ENDTASK

W2,EVENT=EVENT
ECBl
$SYSPRTR
'@TASK2 ATTACHED',SKIP=I
REC,SKIP=I
$SYSPRTR

ENDPROG
END

Chapter 2. Instruction and Statement Descriptions 2-423

TCBGET

TCBGET - Get Task Control Block Data

Syntax Examples

2-424 SC34-0937

The TCBGET instruction obtains data from a specified field in the task control
block (TCB) of the currently executing task.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

TCBGET opndl,opnd2,Pl =

opndl
$TCBVER (opnd2)
opndl

Description

The label of a one-word data area where the system stores the specified
TCB field.

This operand determines which TCB field the system will copy. If y·ou
do not code this operand, the default $TCBVER will be used.
$TCBVER contains the address of the current TCB.

Code this operand using any of the TCB equate names. Some
examples are:

$TCBCO The first word of the TCB.

$TCBC02 The second word of the TCB.

$TCBADS The current address key.

$TCBVER The address of the current TCB.

You will find a complete list of TCB equates in the Internal Design.

Note: Spell entries for this operand as specified in the TCB equates.
The EDX assembler may not flag ones you spell incorrectly.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

1) The following example does not include code for opnd2. Therefore, it defaults to
$TCBVER. The system stores the contents of $TCBVER (current TCB address) at
variable A.

LABELl TCBGET A
•
•
•

A DATA FIOI

2) In this example, the contents of the TCB field $TCB are stored in software
register 1.

LABEL2 TCBGET #l,$TCBCO

o

()

o

o

c

o

TCBPUT

TCBPUT - Store Data in a Task Control Block

Syntax Examples

The TCBPUT instruction stores a value in the specified field of the task control
block (TCB) of the currently executing task.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

opndl

opnd2

TCBPUT opndl,opnd2,PI =

opndl
$TCBCO (opnd2)
opndl

Description

The TCB field opnd2 points to and the data your system stores in
opndl. You can specify the label of a one-word data area containing
the data to be stored or you can specify a self-defining term.

This operand specifies which TCB field the system will modify. Use
the following names and corresponding fields in opnd2:

$TCBCO The first word of the TCB.

$TCBC02 The second word of the TCB.

$TCBADS The current address key.

A complete list of TCB equates is in the Internal Design.

Note: Spell entries for this operand as specified in the TCB equates.
The EDX assembler may not flag ones you spell incorrectly.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

I) The following program example moves the value 7 into the first word of the
TCB. It allows opnd2 to default to $TCBCO.

LABELl TCBPUT +7

2) Your system adds 6 to the contents of the word at the address to which #2
points. It then stores the result in the $TCBADS field of the current TCB.

LABEL2 TCBPUT (6,#2),$TCBADS

Chapter 2. Instruction and Statement Descriptions 2-425

TERMCTRL

TERMCTRL - Request Special Terminal Function
The TERMCTRL instruction requests the execution of special terminal-control
functions. The functions available with the TERMCTRL instruction vary depending
on the device you are using.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a TERMCTRL instruction causes a terminal I/O operation to
occur. If the return code is not a -1, your system places the address of this
instruction in the second word of the task control block (taskname + 2). The
terminal I/O return codes are described at the end of the PRINTEXT and
READT~XT instruction sections in this book and in this section with TERMCTRL
instruction descriptions for individual printers. Return codes are also located in
Messages and Codes.

TERMCTRL Functions Chart

2-426 SC34-0937

The chart on the following pages shows the devices to which you can issue a
TERMCTRL instruction, and the various functions available with each device. The
device names appear across the top of the chart and the functions for these devices
are listed down the left side of the chart. You will find the syntax of the
TERMCTRL instruction for each of these devices on the pages that follow the chart.

All 3151, 3161, 3163, and 3164 devices listed below describe operations in 3101
emulation block mode. Refer to each device's respective hardware manual for
information on other types of operations. The 4975 terminal device described on
this chart does not include the 4975-01A ASCII Printer because this printer uses data
streams and not TERMCTRL statements to control its operations. ("Request
Special Terminal Function (4975-01A)" on page 2-316 explains data streaming on
the 4975-01A ASCII Printer.)

c

o

o

TERMCTRL

o Functions 2741 3101C 3101B 3151B 3161B 3163B 3164B

BARCODE

BLANK FIELD X X X X X

BLANK SCREEN X X X X X

BLINK CURSOR

BLINK FIELD X X X X X

BOLD

CHARSET

DELFONT

DENSITY

DISABLE

DISPLAY X X X X X X X

DOUBLESTRIKE

DOUBLEWIDTH

ENABLE

ENABLEA

ENABLEAT

ENABLET

GETSTORE

HIGH/LOW intensity X X X X X

INITFONT o
ITALICS

LOAD FONT

LOCK/UNLOCK X X X X X
keyboard

LPI (LINE SPACING)

OVERSCORE

PRINT COLOR

PRINT DENSITY

PF

PUTSTORE

RESTORE

RING

RINGT

SET keyword X X X X X X

SETFONT

SET lines per inch

SUB/SUPERSCRIPT

o
Chapter 2. Instruction and Statement Descriptions 2-427

TERMCTRL

2-428 SC34-0937

Functions 2741 3101C 3101B 3151B 3161B 3163B 3164B

TONE X X X X X

UNBLINK

UNDERSCORE

Special Functions X X X X

Note: This chart describes the 3151, 3161, 3163, and 3164 terminals in 3101 block
emulation mode only. The device suffix B designates 3101 block mode or its
emulation and C designates 3101 character mode.

o

o

o

TERMCTRL

Functions 4013 4201/4202 4224 4973 4974

() BARCODE X

BLANK FIELD

BLANK SCREEN

BLINK CURSOR

BLINK FIELD

BOLD X X

CHARSET X

DELFONT X

DENSITY X X

DISABLE

DISPLAY X X X X X

DOUBLESTRIKE X X

DOUBLEWIDTH X X

ENABLE

ENABLEA

ENABLEAT

ENABLET

GETSTORE X

HIGH/LOW intensity

IN IT FONT X o
ITALICS X

LOAD FONT X

LOCK/UNLOCK keyboard

LPI (LINE SPACING) X X

OVERSCORE X X

PRINT COLOR , X

PRINT DENSITY X X

PF

PUTSTORE

RESTORE X X

RING

RINGT

SET keyword X X X

SETFONT X X

SET lines per inch X X X X

SUB/SUPERSCRIPT X X

TONE

o
Chapter 2. Instruction and Statement Descriptions 2-429

TERMCTRL

Functions 4013 4201/4202 4224 4973 4974

UNBLINK ()
UNDERSCORE X X

Special Functions

o

c
2-430 SC34 .. 0937

TERMCTRL

Functions 4975 4978 4980 4979 5219 5224 5225

BARCODE

BLANK FIELD

BLANK SCREEN X X X

BLINK CURSOR

BLINK FIELD X X

BOLD

CHARSET

DELFONT

DENSITY

DISABLE

DISPLAY X X X X X X X

DOUBLESTRIKE

DOUBLEWIDTH

ENABLE

ENABLEA

ENABLEAT

ENABLET

GETSTORE X X

o HIGH/LOW intensity

INITFONT

ITALICS

LOAD FONT

LOCK/UNLOCK X X X
keyboar:d

LPI (LINE SPACING)

OVERSCORE

PRINT COLOR

PRINT DENSITY

PF

PUTSTORE X X

RESTORE

RING

RINGT

. SET keyword X X X

SETFONT

SET lines per inch X X X X

SUB/SUPERSCRIPT

0·,·"
I '

Chapter 2. Instruction and Statement Descriptions 2-431

TERMCTRL

Functions 4975 4978 4980 4979 5219 5224 5225

TONE X X (
...

~
.1

UNBLINK X X

UNDERSCORE

Special Functions X X X X

o

c
2-43l SC34-0937

TERMCTRL

o FUNCTIONS 5262 ACCA/MODEM ACCA TTY VIRT GPIB SI/SI

BARCODE

BLANK FIELD

BLANK SCREEN

BLINK CURSOR

BLINK FIELD

BOLD

CHARSET

DELFONT

DENSITY

DISABLE X

DISPLAY X X X X

DOUBLESTRIKE

DOUBLEWIDTH

ENABLE X

ENABLEA X

ENABLEAT X

ENABLET X

GETSTORE

HIGH/LOW intensity

INITFONT

ITALICS

LOAD FONT

LOCK/UNLOCK keyboard

LPI (LINE SPACING)

OVERSCORE

PRINT COLOR

PRINT DENSITY

PF X

PUTSTORE

RESTORE

RING X

RINGT X

SET keyword X X X X

SETFONT

SET lines per inch X

SUB/SUPERSCRIPT

TONE

o
Chapter 2. Instruction and Statement Descriptions 2-433

TERMCTRL

FUNCTIONS 5262 ACCA/MODEM ACCA TTY VIRT GPIB SI/SI

UNBLINK

UNDERSCORE

Special Functions X X X

Note: "ACCA" and "ACCA with MODEM" are listed as devices in this chart.

o
2-434 SC34-0937

()

c

o

TERMCTRL (2741)

2741 Communications Terminal
Syntax:

label TERMCTRL DISPLAY

Required: DISPLAY
Defaults: none
Indexable: none

Operand Description

DISPLAY Causes any buffered output to be written to the 2741.

Coding Example
The following example displays the contents of the buffer on a 2741 terminal.

TERMCTRL DISPLAY DISPLAY BUFFER

Chapter 2. Instruction and Statement Descriptions 2-435

TERMCTRL (3101,3151,3161,3163,3164)

3101, 3151, 3161, 3163, and 3164 Display Terminals (Block Mode)

2-436 SC34-0937

This section describes the use of TERMCTRL instructions with 3101 display
terminals in block mode.

Note: For purposes of this section, all references to the 3101 terminal in block mode
will also apply to 3151, 3161, 3163, and 3164 terminals in 3101 block mode
emulation since they operate in the same way.

The 3101 in block mode uses an attribute byte at the beginning of a data field. The
attribute byte defines the characters of the field as protected, unprotected, modified,
or not modified. The attribute byte also defines the display mode as high intensity,
low intensity, blinking, or nondisplay. The data ,field extends up to the next
attribute byte or to the end-of-screen, whichever occurs first. The attribute byte
appears as a protected blank on the screen. The attribute byte controls the way data
is displayed on the screen.

I/O operations directed to the 3101 in block mode result 111 a 3101 data stream being
transferred between the 3101 and processor storage. The 3101 data stream consists
of escape sequences, attribute characters, and data. For input operations, the 3101
transfers a 3101 data stream into processor storage. For output operations, a 3101
data stream must be built in processor storage to be transferred to the 3101. The
3101 interprets the escape sequences as control commands-

Terminal I/O allows you to write messages in any display mode'to a 3101 in block
mode. The 3101 block mode support inserts the correct attribute bytes in the 3101
data stream for you before the write operation. Terminal I/O also allows you to
enter data in any display mode for a roll screen read operation. The 3101 block
mode support places the correct attribute byte at the beginning of the input field.
The data you enter takes on the display mode defined by the attribute byte.

You set the display mode for input and output operations with the ATTR operand.
To specify the ATTR operand, you must code the SET function. Do not include
other operands in the instruction when you are defining the attribute byte. Once set
from a program with the TERMCTRL SET,ATTR= instruction, the attribute byte
set will remain in effect until you change it again. There are two ways to change it
for the 3101 terminal in block mode. One way is to issue another TERMCTRL
SET,ATTR= instruction from an application program. The other way is to request
a new attribute byte for the terminal with the $TERMUTI utility.

When you code STREAM = YES, the system ignores the attribute byte specified with
the ATTR operand. Neither the system nor aDEQT or PROGSTOP instruction
resets the attribute byte in this case; the attribute byte remains seteven after the
program has ended.

The STREAM operand gives you control over whether terminal I/O will remove or
insert 3101 special characters during input or output operations. To specify the
STREAM operand, you must code. the SET function. Once a program issues the
TERMCTRL SET,STREAM = instruction to a 3101 in block mode, the STREAM
remains in effect until the program issues another TERMCTRL SET,STREAM =
instruction to the terminal or until you change the STREAM option with the
$TERMUTI utility. A DEQT or-PROGSTOP instruction does not reset the option
you select with the STREAM operand, and it remains in effect even after the
program has ended.

o

c

o

C!

o

TERMCTRL (3101,3151,3161,3163,3164)

The ACCA TERMCTRL functions are also applicable to a 3101 in block mode.
For a description of those functions, see "ACCA Attached Devices" on page 2-519.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

ATTN =

ATTR=

TERMCTRL function,ATTN = ,ATTR = ,STREAM =

function
STREAM=NO
none

Description

TONE Causes the 3101 in block mode to sound the audible
alarm.

DISPLAY Causes the system to write to the device any buffered
output. In addition, for 3101 block mode, the cursor
position is updated accordingly.

LOCK Locks the keyboard for a 3101 in block mode.

Note: If you are using the EDX line sharing support,
this function also will obtain exclusive use of the shared
line if an ENQT has already been issued.

UNLOCK Unlocks the keyboard for a 3101 in block mode.

Note: If you are using EDX line sharing support, this
function will release the shared line.

SET The action of the SET function for a 3101 in block mode
depends on how you code the ATTN =, A TTR =, and
STREAM = operands.

YES, to enable the attention and PF key functions.

NO, to disable the attention and PF key functions.

high (the default), for a display mode of high intensity for both input
and output.

LOW, for a display mode of low or normal intensity for both input
and output.

BLINK, causes a blinking display for both input and output.

BLANK, prevents the display of input or output characters. This
mode is useful for reading data, such as a password, that should not be
displayed on the screen. Change this option when you no longer
require it. The terminal is unable to display data while
A TTR = BLANK is in effect.

Chapter 2. Instruction and Statement Descriptions 2-437

TERMCTRL (3101,3151,3161,3163,3164)

2-438 SC34-0937

NO, for output, specifies that no attribute byte is to be placed in the
data stream. For input, the attribute byte depends on the current
TERMCTRL SET ,ATTR =. If a SET ,ATTR = has not been issued,
the system uses the default, ATTR=HIGH.

YES, clears a previous TERMCTRL SET,ATTR=NO instruction.
This operand has no effect if the previous TERMCTRL SET,ATTR=
instruction does not contain ATTR=NO.

STREAM = YES, for output operations, shows that you have already supplied in
the text or buff~r area the attribute bytes and escape sequences the
terminal needs for an output operation. For input operations, it
allows you to receive the entire 3101 data stream in processor storage
exactly as it is transmitted by the device.

If you code STREAM = YES in your application program, issue a
TERMCTRL SET,STREAM=NO before a PROGSTOP or
DETACH instruction to restore the default.

Note: Certain terminal I/O instructions, such as GETEDIT,
GETVALUE, and QUESTION, are not recommended for use with
STREAM=YES. You also should be familiar with the 3101 device
and terminal I/O internals to use this option effectively.

NO, for output operations, shows that the system should insert the
required escape sequences and attribute bytes in the text or buffer area
before displaying data on the 3101 screen. For input operations, it
allows the system to remove 3101 special characters from the 3101 data
stream before returning control to your program.

The default is STREAM = NO.

For either YES or NO, conversion to and from EBCDIC takes place
for both input and output. The only exception to this occurs when
you code XLATE = NO on a READTEXT or PRINTEXT instruction.
Then, for the duration of that instruction, the system ignores the
STREAM option you coded and no "EBCDIC conversion takes place.
The system does not insert or remove any 3101 special characters.

o

o

()

o

TERMCTRL (4013)

4013 Graphics Terminal
Syntax:

Coding Example

label TERMCTRL function,ATTN =

Required: function
Defaults: none
Indexable: none

Operand Description

function:

ATTN =

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for the
device (when ATTN = NO).

DISPLAY Causes the system to write to the 4013 any buffered output.

YES, to enable the attention function.

NO, to disable the attention function.

The ATTN operand is required when function is SET.

The following example displays the contents of the buffer on a 4013 terminal. The
program then disables the attention key and loads an application program named
PAYROLL. When the PAYROLL program returns control to the loading program,
the instructions at ENABLE1, enables the attention key before the program stops.

TERMCTRL DISPLAY DISPLAY BUFFER
DISABLEl TERMCTRL SET,ATTN=NO DISABLE ATTENTION FUNCTION

LOAD PAYROLL,DS=(EMPFILE,ADDRFILE)
•
•
•

ENABLEl rERMCTRL SET,ATTN=YES ENABLE ATTENTION FUNCTION
PROGSTOP

Chapter 2. Instruction and Statement Descriptions 2-439

TERMCTRL (4201/4202)

420114202 Printer

Syntax Example

2-440 SC34-0937

The 4201 and 4202 printers provide the same basic support as other ASCII printers.

Note: Throughout this book, references to the 4201 printer also include the 4202
prin ter, since they operate in the same manner.

The system translates text data you send to the 4201 using the table you specify at
system generation (CODTYPE =) unless you specify XLATE = NO in the
PRINTEXT instruction. Code XLATE = NO in the PRINTEXT instruction to
activate the 4201 data streaming mode.

Note: Many of following functions are available through the $TERMUT1-utility.
Refer to the Operator Commands and Utilities Reference for information on the use
of the $TERMUTI utility with the 4201 printer.

Syntax:

label TERMCT~L DISPLAY

Required: DISPLAY
Defaults: none
Indexable: none

Operand Description

DISPLAY Causes the system to write to the 4201 any buffered output, and causes
a carriage return to occur on the 4201.

The following example displays the contents of the buffer on a 4201 printer.

TERMCTRL DISPLAY DISPLAY BUFFER

o

()

o

()

Syntax Example

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

STATE =

TERMCTRL (4201/4202)

TERMCTRL function, STATE =

function
STATE = START
none

Description

UNDER Turns the continuous underscore function on or off.

OVER Turns the continuous overscore function on or off.

DSTRIKE Turns the double strike print function on or off. This
function yields NLQ (near letter quality) printing for the
4201.

DWIDE Turns the double width print function on or off. With
this function, the character being printed is adjusted to
occupy twice its current width.

BOLD Turns the bold (emphasized) print function on or off.
With this function, each dot printed is accompanied by a
second dot appearing just to the right of and partially
overlapping the first dot. This gives the appearance of a
thicker print stroke.

Specifies the status of the function. Once you activate any of the
operands described above, the operand remains active until you issue a
TERMCTRL with STATE = STOP. Select a state for the function
with the following parameters:

Parameter
START
STOP

Description
Turns the function on.
Turns the function off.

The following example starts bold printing on a 4201 printer.

TERMCTRL BOLD,STATE=START BEGIN BOLD PRINTING

Chapter 2. Instruction and Statement Descriptions 2-441

TERMCTRL (4201/4202)

Syntax Example

2-44i SC34-0937

Syntax:

label

Required:
Defaults:
Indexable:

Operand

SCRIPT

TYPE =

STATE =

TERMCTRL SCRIPT, TYPE = ,STATE =

SCRIPT, TYPE =
STATE = START
none

Description

Turns one of two different print modes on or off.

Specifies your choice of script types.

Parameter
SUB
SUPER

Description
Subscript print mode.
Superscript print mode.

The 4201 prints subscripts and superscripts by using
half-high NLQ characters. Subscript and superscript
modes cannot be in effect at the same time.

Specifies the status of the function. Once you activate any of the
operands described above, that operand remains active until you issue
a TERMCTRL with STATE = STOP. Select a state for the function
with the following parameters:

Parameter
START
STOP

Description
Turns the function on.
Turns the function off.

Note: If either subscript mode or superscript mode is activated,
specifying TERMCTRL SCRIPT, STATE = STOP will deactivate that
mode regardless of whether you specify TYPE = SUB or
-TYPE = SUPER.

The following example stops superscripting on a 4201 printer.

TERMCTRL SCRIPT,TYPE=SUPER,STATE=STOP STOP SUPERSCRIPT

(~I
J

o

o

()

Syntax Example

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

LPI

HEIGHT =

TERMCTRL LPI,HEIGHT =

LPI
HEIGHT =36
HEIGHT =

Description

TERMCTRL (4201/4202)

Alters the line spacing (height of a line). Issuing this command will
not cause buffered output to be printed.

A I-word value from 1 to 255 in 1/216 inch increments that specifies
line neight. The default, HEIGHT = 36 (36/216 inch), results in 6 lines
per inch. To get 8 lines per inch, specify HEIGHT=27 (27/216 of an
inch). To calculate line height values, divide 216 by the desired
number of lines per inch.

To maximize printer accuracy, choose a height which is a multiple
of 3.

The line spacing you choose in combination with the logical page size (line count)
must match the physical length of the forms. For example, a line height of 27/216
inch or 8 lines per inch along with a logical page size of 88 matches a physical page
size of 11 inches.

See "Special Considerations" on page 2-453 for additional information about page
size.

The following example sets lines per inch to 8 on a 4201 printer.

TERMCTRL LPI,HEIGHT=27 SET LPI TO 8 LINES PER INCH

Chapter 2. Instruction and Statement Descriptions 2-443

TERMCTRL (4201/4202)

Syntax Example

2-444 SC34-0937

Syntax:

label TERMCTRL SETFONT,FONTID=

Required: SETFONT ,FONTID =
Defaults: none
Indexable: FONTID =

Operand Description

SETFONT Set font specifies the new active font for subsequent printing.

FONTID = A l-w0rd font ID that specifies the font you select as the active font.
You can select one of the permanent printev fonts or one you have
defined.

Code Font Name
o Normal quality (standard font). This is equivalent to the 4224

DP (Data Processing) font.
2 NLQ (near letter quality) font, not proportionally spaced.
4 Normal quality font you loaded in data str~aming mode.
6 NLQ font you loaded in data streaming mode.

Note: The near letter quality font (2) is the same as double strike print
mode.

The following example sets the near letter quality font for use on the 4201 printer.

TERMCTRL SETFONT,FONTID=2 SET LOCAL NLQ FONT

o

o

o

o

Syntax Example

c

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

PDEN

DENSITY =

TERMCTRL PDEN,DENSITY =

PDEN
DENSITY = NORMAL
DENSITY·=

Description ~

TERMCTRL (4201/4202)

Sets the print density to 10, 12, or 17.1 characters per inch. This
command provides the same function as SET,PDEN = .

A word value specifying the desired density.

Mnemonic
LARGE
NORMAL
DENSE

Description
10 CPI
12 CPI
17.1 CPI

Note: Print density DENSE cannot be combined with BOLD or DOUBLE STRIKE
print modes or with the Near Letter Quality font (2). This is a hardware restriction
which assures that the printed output is legible.

The following example sets the print density to 12 characters per inch on the 4201
printer.

TERMCTRL PDEN,DENSITY=NORMAL DENSITY IS 12 CPI

Chapter 2. Instruction and Statement Descriptions 2-445

TERMCTRL (4201/4202)

Syntax:

. label

Required:
Defaults:
Indexable:

Operand

SET

LPI=

TERMCTRL SET,keyword or RESTORE

SET
none
CHARSET = ,PDEN = ,PMODE =

Description

Allows any of the following functions.

You must code one of the four operands (LPI = , CHARSET = ,
PDEN=, PMODE=) or RESTORE. The 4201 printer support does
not allow the DCB = operand since the 4201 is a serial device driven
by control characters and escape sequences.

You can code only one print operand on each TERMCTRL
instruction. When specifying parameters ,on the PMODE = or
PDEN = operands, you can code the parameter name, an indexed
value, or an address.

Existing applications that contain TERMCTRL SET do not need to be
reassembled to run on the 4201 printer. See "Special Considerations"
on page 2-453 for additional information. To use the TERMCTRL
SET, you must link module $4975 with your application. Equivalent
TERMCTRL instructions that do not require a link with this module
are:

SET Function
SET,PDEN
SET,LPI
SET,PMODE
SET,RESTORE

Equivalent Code
PDEN,DENSITY =
LPI,HEIGHT=
SETFONT,FONTID =
RESTORE

Sets the number of lines per inch. Code either 6 (6 lines per inch) or 8
(8 lines per inch).

,LPI causes any buffered output to be printed. The system also resets
the current output position to' the beginning of the left margin.

PMODE = Specifies the print mode to be used.

2-446 SC34-0937

Parameter
DRAFT
TEXT 1
TEXT

Description
The font is Normal Quality (Local Font ID X '00 I).
The font is Normal Quality (Local Font ID X '00 I).
Near Letter Quality (Local Font ID X I 02 I). The font is
not proportionally spaced.

o

o

o

o
Syntax Example

o

PDEN=

CHARSET=

TERMCTRL (4201/4202)

Specifies the density of printed characters on each line. The three
values for this operand are described below'

Parameter
NORM

COMP

EXPD

Description
The printer sets density to 17.1 characters per inch.
allows a maximum of 136 characters per line.
The printer sets density to 17.1 characters per inch,
compressed density. This allows a maximum of 136
characters per line.
The printer sets density to 10 characters per inch,.
expanded density. This allows a maximum of 80
characters per line.

This

This is a null operation. The only character set available for 4975
emulation i~ PC character set 2 (PC2). Specifying a unique translation
table at system generation provides some flexibility by allowing you to
establish a correspondence between code points and ASCII printable
images. This is done by creating your own translation table and then
properly coding the CODTYPE parameter on the terminal ,statement.

RESTORE Resets the 4201 printer to its default state by setting PDEN, PMODE,
and LPI to those values you specified with the CT command of
$TERMUTI or to their initial values. These values are:

Operand
PDEN
PMODE
LPI

Initial Value
EXPD
DRAFT
6

When you change printer functions with a TERMCTRL statement,
code the RESTORE option on another TERMCTRL statement to
restore the default values before your program ends.

The f()llowing example uses the TERMCTRL SET instruction to print buffered
output, to set the current output position at the beginning of the left margin and to
prepare the printer to print 6 lines per inch on the 4201 printer.

TERMCTRL SET,LPI=6 SELECT 6 LPI

Chapter 2. Instruction and Statement Descriptions 2-447

TERMCTRL (4201/4202)

Syntax Example

2-448 SC34-0937

Syntax:

Label TERMCTRL RESTORE

Required: RESTORE
Defaults: none
Indexable: none

Operand Description

RESTORE RESTORE resets the printer to its default state. The state variables
PDEN, SETFONT, LPI, BOLD, DSTRIKE~ and DWIDE are set to
those values specified by the CT command of the $TERMUTI utility
or, if the CT command has not been used, tQ the following default
values:

Operand
PDEN
SETFONT
LPI
BOLD
DSTRIKE
DWIDE

Default
LARGE (10 CPI)
o (4201 DP Font)
6
off
off
off

When you change printer functions with a TERMCTRL statement, code the
RESTORE option on another TERMCTRL statement to restore the default values
before your program ends.

The following example restores the six printer defaults on the 4201 printer.

TERMCTRL RESTORE RESTORE DEFAULT SETTINGS

o

o

c

Coding Example

()

CI

o

TERMCTRL (4201/4202)

The following example demonstrates coding for 4201 printer functions described
above.

TEST4201 PROGRAM START
*
START EQU *

* INPUT PRINTER ~AME AND ENQUEUE ON PRINTER. *

READTEXT PRINTER,'@ENTER 4201 PRINTER NAME:
MOVE IOCB4201,PRINTER,(8,BYTES)
ENQT IOCB4201

* DEMONSTRATE UNDERSCORE / OVERSCORE FUNCTIONS. *

TERMCTRL RESTORE RESTORE PRINTER DEFAULTS
PRINTEXT SKIP=1
PRINTEXT ~YOU MAY WISH TO '
TERMCTRL UNDER BEGIN UNDERSCORE
PRINTEXT 'UNDERSCORE'
TERMCTRL UNDER,STATE=STOP STOP UNDERSCORE
PRINTEXT ' OR I

TERMCTRL OVER BEGIN OVERSCORE
PRINTEXT 'OVERSCORE'
TERMCTRL OVER,STATE=STOP STOP OVERSCORE
PRINTEXT ' A POINT, I

PRINTEXT lOR YOU MAY WISH ',SKIP=1
TERMCTRL UNDER BEGIN UNDERSCORE
TERMCTRL OVER BEGIN OVERSCORE
PRINTEXT I TO DO BOTH. I

TERMCTRL UNDER,STATE=STOP STOP UNDERSCORE
TERMCTRL OVER,STATE=STOP STOP OVERSCORE
PRINTEXT SKIP=2

* DEMONSTRATE BOLD, DOUBLE STRIKE, AND DOUBLE WIDE FUNCTIONS. *

PRINTEXT
TERMCTRL
PRINTEXT
TERMCTRL
PRINTEXT
TERMCTRL
PRINTEXT
TERMCTRL
PRINTEXT
TERMCTRL
PRINTEXT
TERMCTRL
PRINTEXT
PRINTEXT

lyOU MAY WISH TO I

BOLD BEGIN BOLD PRINT
'BE BOLD '
BOLD,STATE=STOP STOP BOLD PRINT
I OR TO '
DSTRIKE BEGIN DOUBLE STRIKE
'STRIKE TWICE.'
DSTRIKE,STATE=STOP STOP DOUBLE STRIKE
SKIP=2
DWIDE BEGIN DOUBLE WIDE
'DOUBLE WIDE MODE'
DWIDE,STATE=STOP STOP DOUBLE WIDE
, ALWAYS GETS ATTENTION. I

SKIP=2

Chapter 2. Instruction and Statement Descriptions 2:-449

TERMCTRL (4201/4202)

2 ... 450 SC34-0937

* DEMONSTRATE THE THREE PRINT DENSITIES. *

r,ERMCTRL
PRINlEXT
PRINTEXT
PRINTEXT
PRINTEXT
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT·

PDEN,DENSITY=DENSE
lyOU MAY PREFER THE ALPHABET AT 17.1 CHARACTERS I
I PER INCH: I
I (ABCDEFGHIJKLMNOPQRSTUVWXYZ) I ,SKIP=l
SKIP=2
PDEN,DENSiTY=NORMAL
lOR PERHAPS A MORE NORMAL 12: 1
I (ABCDEFGHIJKLMNOPQRSTUVWXYZ)',SKIP=1
SKIP=2
PDEN,DENSITY=LARGE
lyOU MAY ALSO TRY 10 CPI: '
I (ABCDEFGHIJKLMNOPQRSTUVWXYZ) I ,SKIP=1
SKIP=2

* DEMONSTRATE THE NLQ FONT IN COMPARISON TO DOUBLE STRIKE. *

PRINTEXT
TERMCTRL
PRINTEXT
TERMCTRL
PRINTEXT
PRINTEXT
TERMCTRL
PRINTEXT
TERMCTRL
PRINTEXT
TERMCTRL
TERMCTRL
PRINTEXT
TERMCTRL
TERMCTRL
PRINTEXT

lyOU WILL FIND THAT THE I
SETFONT,FONTID=2 SELECT NLQ FONT
'NLQ FONT I
SETFONT,FONTID=O SELECT DP FONT
I· IS INDISTINGUISHABLE '
I FROM ',SKIP=1
DSTRIKE BEGIN DOUBLE STRIKE
'DOUBLE STRIKE '
DSTRIKE,STATE=STOP STOP D.DUBLE STRIKE
I AND THE I
SETFONT,FONTID=2 SELECT NLQ FONT
DSTRIKE. BEGIN DOUBLE STRIKE
'COMBINATION OF THE TWO. I
SETFONT,FONTID=O SELECT DP FONT
DSTRIKE,STATE=STOP STOP DOUBLE STRIKE
SKIP=2

* DEMONSTRATE SUBSCRIPT AND SUPERSCRIPT FUNCTIONS. *

PRINTEXT ITO MAKE STEAM, ONE NEEDS HI
TERMCTRL SCRIPT,TYPE=SUB
PRINTEXT 121
TERMCTRL SCRIPT,TYPE=SU~,STATE=STOP

PRINTEXT 10 AND LOTS DF MC '
TERMCTRL SCRIPT,TYPE=SUPE~

PRINTEXT 12.1
TERMCTRL S~~IPT,TYPE=SUPER,STATE=STOP

PRINTEXT I- I
PRINTEXT SKI,P=2

c

()

o

()

o

()

TERMCTRL (4201/4202)

r

* DEMONSTRATE DIFFERENT LINE SPACING. *

*

*

TFRMCTRL
PRINTEXT
CALL
PRINTEXT

TERMCTRL
PRINTEXT
CALL
PRINTEXT

TERMCTRL
PRINTEXT
CALL

LPI,HEIGHT=216
IA LINE HEIGHT OF 216 YIELDS 1 LINE
PRINT
SKIP=l

LPI,HEIGHT=72

PER-INCH 1

IA LINE HEIGHT OF 72 YIELDS 3 LINES PER INCH 1

PRINT
SKIP=l

LPI,HEIGHT=24
IA LINE HEIGHT OF 24 YIELDS 9 LINES PER INCH 1

PRINT

* RESTORE PRINTER DEFAULTS AND RELEASE THE PRINTER. *

PRINTEXT
TERMCTRL
DEQT
PROGSTOP

LINE=8
RESTORE

ISSUE PAGE EJECT

* SUBROUTINE PRINT - PRINT THREE LINES *

SUBROUT
PRINTEXT
PRINTEXT
PRINTEXT
RETURN

PRINT
LI NE1, SKI P=l
LI N E2 , SKI P= 1
LINE3 ,SKIP=l

* DATA AREA *

IOCB4281 IOCB
PRINTER TEXT
LINE! TEXT
LINE2 TEXT
LINE3 TEXT

ENDPROG
END

I/O CONTROL BLOCK
LENGTH=8 PRINTER NAME
1******************* LINE-1 *******************1
1******************* LINE 2 *******************1
1******************* LINE 3 *******************1

Chapter 2. Instruction and Statement Descriptions 2-451

TERMCTRL (4201/4202)

2-452 SC34-0937

The following output results from the preceding example on the 4201 printer.

YOU MA Y WISH T 0 VJ.:LI)J~ R~~.!;.Q.F..;.I;. (J r~: (J\/ER~JCDRE A PO I N T ~
OR YOU MA Y WISH I~r::}')JI==mJTl:r.;:~

YOU MAY WISH TO BE BOLD OR TO STRIKE TWICE.

DDLJBLE ~J::r :C)E: t"1I~Jr)E P,LltJAYS GETS ATTENTION.

YOU "AY PREFER THE ALPHABET AT :7.1 CHARACTERS PER INCH:
(ABCDEFSHIJKl"NOPQRSTUVUXYZ)

OR PERHAPS A MORE NORMAL 12:
(ABCDEFGH I JKLMNOPQf::STU'-:L-J X '{ Z)

YOU MAY ALSO TRY 1(1 CPT:
(ABCDEFGHIJKLMNOPOFSrUVWXYZ)

YOU WILL FIND THAl THE NLQ FONT IS INDISTINGUISHABLE
FROM DOUBLE STRIKE AND THE COMBINATION OF THE TWO.

TO MAI<E STEAM ~ Cltn.: I 1 LYTIF; HI.:.,,(J pt!\!D LUTS OF 1"1Cr.!!.

A LINE HEIGHT OF 216 YIELDS 20~INE PER INCH

*****************~~ .INE 3 *******************

A LINE HEIGHT OF ~2 YIELDS 3 LINES PER INCH

*****************~¥ LINE **~**********.~****

*****************~! LINE 2 ~******************

******************* LINE 3 *~~.****~**********

A LINE HE I GHT OF ;'~i+ Y I [:LD~:; ') L I NE~:::; PER J NCH
*****~"IE-*.,..***.~*.y.--l'(.. ~l(.. f'~ L. I NE :I.';·!':·~··l!:·'~iH·:-l<- r: .. ~' jHHHH:'IHH~'lE-
******************~ LINE 2 ~~*****************
******************* l_INE J *~*****************

o

o

o

()

o

o

TERMCTRL (4201/4202)

Special Considerations
Applications that run currently on the 4975-02L printer will run (without complete
4201 printer function) on the 4201 printer without reassembly with certain exceptions
described below. However, a newsystem generation is required and applications
must be relinked to include a modified $4975 module.

In order to take advantage of any new printer function on the 4201 printer, modify
and reassemble 4975-02L printer applications. If you decide to modify your
application, you can avoid relinking with module $4975 by converting TERMCTRL
SET commands to the corresponding 420l-only commands that follow:

4975-02L Instruction 4201 Instruction

SET,LPI= LPI,HEIGHT=

SET,PMODE= SETFONT ,FONTID =

SET,PDEN= PDEN,DENSITY =

SET,CHARSET= not available

SET,RESTORE RESTORE

• Not all $TERMUTI and $TERMUT2 utility functions of the 4975-02L are
available for the 4201 printer. Refer to the Operator Commands and Utilities
Reference for information.

• The 4201 does not generate hardware status. Therefore, nothing is logged to the
EDX error log file for the 4201.

Applications which print on a 4975-02L will run on the 4201 printer with special
consideration made for the following:

SET,PMODE = DRAFT activates font ID 0 (DP).

SET,PMODE=TEXTI is the same as SET PMODE=DRAFT.

SET,PMODE=TEXT activates font ID 2 (NLQ), which is not
proportionally.spaced.

SET,CHARSET is a null operation.

'lhe DCB = operand is not supported on the 4201 printer.

The print densities for the 4201 printer are 17.1, 12, and 10 characters per
inch.

• The 4201 printer maintains physical page size in inches. You select the initial
physical page size by setting the appropriate switch. The 4201 printer support
maintains logical page size as a line count. Whenever you change logical page
size with ENQT, DEQT, or $TERMUT1, be sure to alter line heigpt so that
(physical page si.ze in inches) x (lines per inch) = (logical page size).

Chapter 2. Instruction and Statement Descriptions 2-453

TERMCTRL (4201/4202)

2-454 SC34-0937

• If you switch the power off and then on, the 4201 printer resets the following
functions as shown:

Function
BOLD
DSTRIKE
DWIDE
LPI
OVER
PDEN
SETFONT
SUBSCRIPT

. SUPERSCRIPT
UNDER

Hardware Default
Off
Off
Off
6LPI
Off
10 CPI
Data Processing
Off
Off
Ofr

• If you specify MODE = PAGE on the TERMINAL statement for the 4201/4202
printer, you define it as a page printer. When printer I/O crosses a page
boundary, the printer support issues a form feed to start on a new page and line
feeds to position the paper to the correct line.

The printer maintains physical page size in inches; the software that supports the
printer maintains logical page size as a count of lines per page. When you
specify MODE = PAGE and then change the logical page size using ENQT or
$TERMUTI, the printer support sends a 'control sequence to the 4201/4202 that
changes the physical page size to a value (in inches) of:

(logical page size) / (current LPI (lines per inch»

For example, if the logical pag~ size is 88 and the current value for LPI is 8, the
physical page size becomes II inches. A subsequent change to LPI does not
change the physical page size until the next time you change the logical page
size.

Each time you change the page size, the printer support assumes the new forms
have been inserted in the printer at the top-of-forms position. Make certain the
hardware top-of-forms indicator is set to this position To do this for the
4201/4202 pririter, switch the printer off then on again.

If the serial printer support detects a page change, it issues line feeds for the top
margin before printing any data. The space the top margin oC"cupies depends on
the size of the top margin (in lines) and the current value for LPI.

If your application varies line height within a page, the logical line pointer and
the physical line pointer get out of sync. To allow for this, use the following
procedure:

1. Issue a TERMCT'RL LPI to select the greatest density to be used on the
page.

2. ENQT on an 10CB, choosing a PAGSIZE such that PAGSIZE/LPI is equal
to the physical forms size in inches.

3. Print data and change LPI as needed without crossing the physical page
boundary.

4. Issue a PRINTEXT LINE = 0 to advance to a new page. This causes a form
feed to be sent to the printer to realign the logical and physical line pointer.

o

o

o

Return Codes

o

o

TERMCTRL (4201/4202)

For example, if your form length is 11 inches (with 1/2 inch top and bottom
margins) and your application uses both 6 LPI and 8 LPI on a page, your
application should:

1. Issue TERMCTRL LPI,HEIGHT = 27 to sele.ct g LPI.

2. ENQT on an IOCB with P AGSIZE = 88, TOPM = 4, and BOTM = 83.

3. Print data and change LPI as needed.

4. When the page has been filled, issue a PRINTEXT LINE =0.

• If your application issues PRINTEXT XLATE=NO (data streaming), the
printer support issues no control characters (such as line feed or carriage return)
to the printer for that PRINTEXT instruction.

Return
Code Condition

600 Invalid TERMCTRL command for the attached printer.

602 Invalid TERMCTRL - operand value exceeds 255.

611 Invalid density specification (PDEN).

612 Invalid line spacing specification (LPI).

640 Invalid font ID.

Chapter 2. Instruction and Statement Descriptions 2-455

TERMCTRL (4224)

4224 Pr·inter

Syntax Example

2..;456 SC34~0937

The 4224 printer is a serial printer. It provides support for both ASCII and
EBCDIC character sets. The system translates text data you send to the 4224 using
the translation table you identified at system generation unless you specify
XLAT"E=NO in the PRINTEXT statement or code CODTYPE=EBCDIC in the
terminal statement. Code XLATE = NO in the PRINTEXT statement to activate
the 4224 data streaming mode.

Note: Many of following functions are available through the $TERMUTI utility.
Commands related to the loading of printable images for the 4224 printer are
available through the $TERMUT2 utility. Refer to the Operator Commands and
Utilities Reference for information on the use of these utilities with the 4224 printer.

Syntax:

label TERMCTRL DISPLAY

Required: DISPLAY
Defaults: none
Indexable: none

Operand Description

DISPLAY Causes the system to write to the 4224 any buffered output, and causes
a carriage return to occur on the 4224.

The following example displays the contents of the 4224 printer buffer.

TERMCTRL DISPLAY DISPLAY BUFFER

o

o

c

()

o

C'·"
I',

Syntax:

label

Required:
Defaults:
Indexable:

Operand

SET

LPI=

TERMCTRL (4224)

TERMCTRL SET,operand or RESTORE

SET
none
CHARSET = ,PDEN = ,PMODE =

Description

Allows any of the following functions.

You must code one of the four operands (LPI =, CHARSET = ,
PDEN =, PMODE =) or RESTORE. The 4224 printer support does
not allow the DCB = operand since the 4224 printer is a serial device
driven by control characters and- escape. sequences.

You can code only one print operand on each TERMCTRL
instruction. When specifying parameters on the PMODE =, PDEN =,.
and CHARSET = operands, you can code the parameter name, an
indexed value, or an address.

Existing applications that contain TERMCTRL SET do not need to be
assembled to run on· the 4224 printer. See "Special Considerations" on
page 2-488 for additional information. To use TERMCTRL SET,
you must link module $4975 with your application. Equivalent
TERMCTRL instructions that do not require a link with this module
are:

SET Function
SET,PDEN
SET,LPI
SET,PMODE
SET,RESTORE

Equivalent Code
PDEN,DENSITY=
LPI,HEIGHT=
SET FONT ,FONTID =
RESTORE

Sets the number of lines per inch. Code either 6 (6 lines per inch) or 8
(8 lines per inch).

LPI causes any buffered output to be printed. The system also resets
the current output position to the beginning of the left margin.

PMODE = Specifies the print mode to be used.

Parameter
DRAFT

TEXT

Description
All characters are equal in width and printing is done
with a single pass of the print head. The font is Data
Processing Quality (Font ID 1).
Character width varies and printing is done with a single
pass of the print head. The font is proportionally spaced
Near Letter Quality (Font ID 5).

Chapter 2. Instruction and Statement Descriptions 2-457

TERMCTRL (4224)

PDEN=

CHARSET=

2-458 SC34-0937

TEXT 1 Character width varies. Printing is done with a single
pass of the 'print head. The font is proportionally spaced
Text Quality (Font ID 4).

TERMCTRL SETFONT with the proper FONTID =
operand coded is equivalent to SET,PMODE =. A
description of the SETFONT command follows in this
section. The default value for PMODE = is the same as
~he default value for SETFONT, 1, the data processing
font. Other 4224 printer commands that affect print
characteristics may also have an effect on PMODE.

Note: When you specify TEXT or TEXT 1, the printer
automatically resets the density to EXPD. You can
select another print density in this case. However, the
densities available are only approximations since the
width of each character varies.

While TEXT or TEXTI is in effect, the available print
densities are:

Parameter Description

NORMAL 10 characters per inch (approximately).

DENSE 12 characters per inch (approximately).

LARGE 8 characters per inch (approximately).

Specifies the density of printed characters on each line. The three
values for this operand are described below:

Parameter
NORM

COMP

EXPD

Description
The printer sets density to 15 characters per inch. This
allows a maximum of 198 characters per line.
The printer. sets density to 15 characters per inch,
compressed density. This allows a maximum of 198
characters per line.
The printer sets density to 10 characters per inch,
expanded density. This allows a maximum of 132
characters per line.

This is a null operation. To select a character set for languages other
than English, run ,offline test 303 to select a default character set and
code CODTYPE = EBCDIC on the TERMINAL statement.

For normaf4224 printer operation, the TERMCTRL CHARSET
instruction can be used in conjunction with TERMCTRL INITFONT
and TERMCTRL SETFONT to select one of the printer-provided
character sets. See TERMCTRL CHARSET for more information.

(\
I -,

()

o

()

Syntax Example

o

o

TERMCTRL (4224)

RESTORE Kesets the 4224 printer to its default state by setting PDEN, PMODE,
and LPI to those values you specified with the CT command of
$TERMUTI or to their initial values. These initial values are:

Operand
PDEN
PMODE
LPI

Initial Value
EXPD
DRAFT
6

When you change printer functions with a TERMCTRL instruction,
code the RESTORE option on another TERMCTRL instruction to
restore the original values before your program ends.

PMODE can be altered by using $TERMUTI to change the value of
SETFONT.

The following example demonstrates use of the TERMCTRL SET instruction on the
4224 printer to select the data processing quality font.

TERMCTRL SET,PMODE=DRAFT SET DATA PROCESSING FONT

Chapter 2. Instruction and Statement Descriptions 2-459

TERMCTRL (4224)

2-460 SC34-09J7

Syntax:

label

Required:
Defaults:

Indexable:

Operand

BARCODE

TERMCTRL BARCODE,loc,count,XCOORD == ,YCOORD =,
ORIENT = ,BAR TYPE = ,MOD = ,HEIGHT =,
WIDTH = ,P2 = ,P3 = ,P4 = ,P5 = ,P6 = ,P7.= ,P8 =,
P9=,PIO=

BARCODE,loc,count,XCOORD = ,YCOORD = ,MOD =
ORIENT = HQRZ,BARTYPE = CODE3#9,HEIGHT = 0
WIDTH = NARROW
loc,count

Description

Causes the 4224 to print a bar code. The printer defer~ the actual
printing of the bar code until other data being printed causes the print
head to reach the specified "X" and "Y" coordinates. Issue the
BARCODE command at the top of a page to be sure the printer
receives it before the print head reaches the point where the bar code is
to be placed.

If the bar code is sent to the printer after the print head has passed the
starting point of the desired print location, the 4224 may try to print
what it can of the bar code and will generate a hardware error
indicating an invalid request for backward movement of the print
head. For this reason, applications must issue a BARCODE command
before the print head reaches the point on the physical page where the
bar code is to begin.

Since bar code printing is completely independent of immediate
(normal) printing, the application must anticipate where the bar code
will be placed and skip the appropriate number of spaces and lines to
avoid overwriting. Select the location of a bar code on a page with the
XCOORD = and YCOORD = operands.

The 4224 prints bar codes in black only, regardless of the currently
active color.

ORIENT = Orientation of the bar code. Allowable values are:

loc

count

Parameter
HORZ
VERT

Description
Orient the bar code horizontally, the default.
Orient the bar code vertically.

The label of characters the system will encode and print in the bar
code you selected. The system does not translate this data before
sending it to the printer.

Count of characters the system will encode and print in the bar code
you selected. Valid counts are listed below for each bar code type
under BARTYPE = .

(".''\
.. i

()

o

XCOORD=

o
YCOORD=

BARTYPE=

Mnemonic

CODE3#9

MSI

UPC#A

UPC#E

UPC#2

UPC#5

EAN#8

o EAN#13

INDUST

MATRIX

LEAVED

MOD =

Bit

8

9-10

11

o

TERMCTRL (4224)

Word value in 1/1440 inch units specifying the location on the current
page where the bar code will be printed (upper left corner of the bar
code). The printer resolves the coordinates to the nearest increment it
supports (1/144 inch). Specify the X coordinate relative to the left
edge of the physical page.

Word value in 1/1440 inch units specifying the location on the current
page where the bar code will be printed (upper left comer of the bar
code). The printer resolves the coordinates to the nearest increment it
supports (1/144 inch). Specify the Y coordinate- relative to the top of
the page.

Word value specifying the type of bar code desired.

Count (Bytes) Bar Code Description

1-50 Code 30f9

1-50 MSI (MSI Data Corporation)

11 Uniform Product Code - Type A

10 Uniform Product Code - Type E

2 UPC - Magazine and Paperback (two digit)

5 UPC - Magazine and Paperback (five digit)

7 European Article Number - Type 8

12 European Article Number - Type 13

1-50 Two of Five Industrial

1-50 Two of Five Matrix

1-50 Two of Five Interleaved.

Note: You can select supplemental encoding EAN#2 and EAN#5 by
specifying bartypes UPC#2 and UPC#5 respectively.

Modifier word value specifying the unique characteristics of the bar
code. The first byte of this field is based on the type of bar code
selected and should be coded as specified for the modifier byte as
described in the IBM 4224 Printer Product and Programming
Description Manual, GC31-2550.

The second byte of this field contains eight bit flags as follows:

Value Description

Off Print human-readable code (RRI)

ON Do not print human-readable code (RRI)

Off Printer placement of RRI

Off Do not print * with code 3 of 9

ON Print * with code 3 of 9

Chapter 2. Instruction and Statement Descriptions 2-461

· TERMCTRL. (4224)

Syntax Example

2-462 SC34-0937

Bit

17

13-15

Value Description

I Off Barcode data is ASCII

ON Barcode data is EBCDIC

Reserved.

The characters to be- encoded in the bar code are NOT translated prior
to being sent to the printer. You must set bit 12 of the MOD =
keyword parameter to indicate whether the bar code data is ASCII
data or EBCDIC· data.

WIDTH = Width (in thousandths of an inch) of a single unit of the bar code.

Mnemonic
NARROW
WIDE

Description
Width is .014 of an lIlch.
Width is .021 of an inch.

HEIGHT = Height of the bar code in 1/1440 inch units. A value of 0 directs the
printer to select the optimum height. OptImum height selected by the
printer depends on the type bar code being printed. The formula for
calculating the optimum bar code height varies for each bar code.
There are twelve different technical specifications (one for each bar
code type) that contain the details of optimum height calculation. For
additional information, refer to the IBM 4224 Printer Product and
Programming Description Manual, GC31-2550.

Px= Parameter naming operands. See "Using the Parameter Nami~g
Operands (px =)" on page 1-10 for a detailed description of how to
code these operands.

Note: If the 4224 printer flashes an error code when you attempt to
print a bar code, then either the software and hardware top of forms
are out of sync or you issued the barcode after the print head passed
the bar code starting point. To synchronize the top of forms:

1. Change top margin to O.

2. Use $E to set the software top of forms.

3. Physically adjust the paper.

4. Press the "STOP" button on the 4224.

5. Press the "TOP OF FORMS" button on the 4224.

6. Press the "START" button on the 4224.

You can cause the 4224 printer to advance to top-of-forms by sending
X'OC' to the printer using PRINTEXT XLATE=NO.

The following is an example of using the BARCODE operand for the 4224 printer.
It orients a UPC-A bar code for horizontal printing using characters from the label
BARDATA and a count of 11. This bar code will have optimal height and a width
of .021 inch.

TERMCTRL BARCODE;BARDATA,11,XCOORD=720,
YCOORD=720,BARTYPE=UPC#A,MOD=X'0008' ,
HEIGHT=0,WIDTH=WIDE

x
X

('~.

,.i

o

o

Coding Example

o

o

o

TERMCTRL (4224)

The following program further demonstrates the use of the BARCODE command on
the 4224 printer.

TEST4224 PROGRAM START
*
START EQU *

* INPUT PRINTER NAME AND ENQUEUE ON PRINTER. *

READTEXT PRINTER,'@ENTER 4224 PRINTER NAME:
MOVE IOCB4224,PRINTER,(8,BYTES)
ENQT IOCB4224
TERMCTRL RESTORE RESTORE PRINTER DEFAULTS

* ISSUE A DEFERRED CODE 3 OF 9 BAR CODE. THE TOP LEFT CORNER *
* LIES 1 INCH FROM THE LEFT EDGE OF THE PHYSICAL PAGE AND *
* 2 INCHES FROM THE TOP OF THE PHYSICAL PAGE. THE MODIFIER WORD *
* CAUSES BOTH THE CHECK CHARACTER (2) AND THE 1*1 TO BE PRINTED.*
* IT ALSO INDICATES THAT THE DATA IS EBCDIC. HEIGHT=0 TELLS *
* THE 4224 TO SELECT THE OPTIMUM HEIGHT. THE WIDTH IS NARROW. *

TERMCTRL BARCODE,BARDATA,+COUNT,BARTYPE=CODE3#9, X
XCOORD=+INCHES#1,YCOORD=+INCHES#2, X
MOD=X '0218 1,HEIGHT=0,WIDTH=NARROW

* RESTORE PRINTER DEFAULTS AND RELEASE THE PRINTER. *

PRINTEXT LINE=0
TERMCTRL RESTORE
DEQT

FORCE BAR CODE TO BE PRINTED

PROGSTOP

* DATA AREA *
ww*****
INCHES#1 EQU
INCHES#2 EQU
IOCB4224 10CB
PRINTER TEXT
BARDATA DATA
COUNT EQU

ENDPROG
END

1440
2880

LENGTH=8
C' 1234567890 1
*-BARDATA

1440/1440 = 1 INCH
2880/1440 = 2 INCHES
.I/O CONTROL BLOCK
PRINTER NAME
DATA FOR BAR CODE
COUNT OF BAR CODE DIGITS

The following output results from the preceding example on the 4224 printer.

111

123l1S678902

Chapter 2. Instruction and Statement Descriptions 2-463

TERMCTRL (4224)

Syntax Example

2-464 SC34-0937

Syntax:

Label TERMCTRL RESTORE

Required: RESTORE
Defaults: none
Indexable: none

Operand Description

RESTORE Resets the printer to its default state. The state variables PDEN,
SETFONT, LPI, BOLD, DSTRIKE, DWIDE, and PCOLOR are set
to those values specified by the CT command of the $TERMUTI
utility Of, if the CT command has not been set, to the following default
values:

Operand
PDEN
LPI
BOLD
DSTRIKE
DWIDE
PCOLOR
SETFONT

Default
LARGE (10 CPI)
36/216 (6 LPI)
Off
Off
Off
Black
1 (DP Font)

When you change printer functions with a TERMCTRL statement, code the
RESTORE option on another TERMCTRL statement to restore the default values
before your program ends.

The following example restores seven printer defaults on the 4224 printer~

TERMCTRL RESTORE RESTORE DEFAULT. SETTINGS

o

()

o

o

o
Syntax Example

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

INITFONT

FONTID=

OLDFONT=

TERMCTRL (4224)

TERMCTRL INITFONT ,FONTID = ,OLDFONT =

INITFONT,FONTID = ,OLDFONT =
none
FONTID = ,OLDFONT =

Description

Initializes or modifies a font you ,have defined. If the font does not
exist, the system allocates storage and initializes the font. If the font
already exists, the system modifies it. This and other functions related
to initializing and loading fonts are available through $TERMUT2.
Refer to the Operator Commands and Utilities Reference for additional
information.

A I-word font ID of the font you are initializing or modifying.

A I-word font ID that specifies a previously initialized font or a
printer-provided font that the printer will use to initialize the
characteristics of the font you are creating or modifying. Any
character set and print characteristics associated with the original font
are carried over to the font you are creating or modifying.

Depending on the "original" font ID you selected, the "carry-over" to
the new font may be a print style or the characteristics of a totally
self-defining font. A self-defining font includes a print style and
character set.

The following example allocates storage on the 4224 printer and initializes a new
font whose ID is 32 with the characteristics and print style of the printer-provided
data processing font.

TERMCTRL INITFONT,FONTID=32,OLDFONT=1

Chapter 2. Instruction and Statement Descriptions 2-465

TERMCTRL (4224)

Syntax:

label

Required:
Defaults:
Indexable:

Operand

LOADFONT

2-466 SC34-0937

TERMCTRL· LOADFONT ,loc,FONTID =

LOADFONT,loc,FONTID =
none
loc,FONTID =

Description

Loads printer memory with the print images of specific code points. A
print image is a bit pattern used to form a printable character. A code
point is the internal representation of a character as a I-byte
hexadecimal value. The character set and font characteristics that are
associated with the printable images you load with this command
replace existing ones.

Use LOAD FONT to alter an existing font or create a brand new font.
If you wish to create a font, first issue the INITFONT operand to
reserve memory and establish the initial character set and print
characteristics of that font. Then, issue the LOADFONT command.
Once a font is in memory, you can select it to be the active font by
issuing the SETFONT operand.

This and other functions· related to initializing and loading fonts are
available through $TERMUT2. Refer to the Operator Commands and
Utilities Reference for additional information.

You create a completely new character set and font by sending a new
dot representation for each of the 255 code points. Alternatively, only
some of the characters and their print styles can be altered by sending
fewer than 255 printable images. You cannot alter code point X I 00 I •

c

o

o

, ' 0"'·

o

o

loe

TERMCTRL (4224)

The label of the 6-byte font header and the binary data that form the
print images known as character cells. This binary data is sent
untranslated to the printer. The font header must begin on a full-word
boundary. This data has the following format:

Byte Contents

0-1 Count of bytes of printable image data. Count does not
include 6-byte font header.

2 Value specifying the width of the character cells in dots.

3

4

5

For monospaced DP fonts, the correct value is X I OA I •

For monospaced TEXT and NLQ fonts, the correct
value is X I 14 I. For proportionally spaced TEXT and
NLQ fonts, the width may vary from X I 011 to X I FF I •

Value specifying the height of the character cells:

• X I 09 I for DP and text quality.
• X 1121 for NLQ (Near Letter Quality).

Hexadecimal code point which is the starting point for
the characters to be altered.

Code point X I 00 I is an invalid starting code point. You
cannot download a print image for code point X I 00 I •

Value specifying the number of characters to be altered.
This is always less than the count in bytes 0 and 1
because it takes multiple bytes to form the print image of
a single code point.

The maximum value of this count is 255, indicating that
code points X I 011 to X I FF I are being downloaded.
The starting code point plus the number of characters to
be altered must be no greater than 256.

For example, if the starting code point is X I FO I, a
character count greater than X I 10 1 would be invalid.

6 - N Binary data which forms the printable images.

FONTID = A I-word ID the printer uses to identify which existing font it should
alter.

Chapter 2. Instruction and Statement Descriptions 2-467

TERMCTRL (4224)

Coding Example

2-468 SC34-0937

The 4224 printer has storage available to contain fonts and deferred bar code tasks
you define. The size of printer storage varies among the different models of the 4224
printer. The space occupied by an individual font varies.

Multiple bytes of binary data are required to define each vertical slice of the
character cell. The slice data for each code point is presented in a contiguous
format, run together.

For example, if the slice data is nine bits high, the first eight bits (from top to
bottom) of the leftmost slice occupy byte one. The lowest bit of slice one occupies
the high order bit of byte two, followed by the top seven bits of slice two, and so on.

The contiguous format does not occur from one code point to the next. The top dot
of the leftmost slice of each code point is always the high order bit of the first byte
of image data for that code point.

A simple font would have printable images that are 9 dots high and 10 dots wide.
Such a font would occupy 12 bytes of printer storage for each code point defined.
For example, if 64 code points were being defined, the new font would occupy
X I 300 I bytes of storage in the printer.

A detailed font would have character cells that are 12 dots high and 20 dots wide.
Such a font would occupy 30 bytes of printer storage for each code point defined.
For example, if 255 code points were being defined, the new font would occupy
X I IDE21 bytes of storage in the printer.

Printer memory allows a maximum of 15 fonts at one time.

The following example loads print images for nine code points and prints those
images on the 4224 printer. This example also causes the 4224 printer to print in
three colors.

FONT PROGRAM START

* DEMONSTRATE THE DOWNLOAD FONT CAPABILITY OF THE 4224 PRINTER *

PRINTER IOCB PRTR4224 Ioca FOR ENQUEUING PRINTER
START EQU *

ENQT PRINTER OBTAIN EXCLUSIVE USE

* MUST MAKE 'NLQPR ' THE ACTIVE FONT PRIOR TO TERMCTRL INITFONT *

TERMCTRL SETFONT,FONTID=+NLQPR
PRINTEXT I FROM THE CITY OF ',SKIP=1

*
*
*
*

INITIALIZE 'NEWFONT ' TO HAVE THE SAME PRINT CHARACTERISTICS *
AS THE STANDARD NEAR LETTER QUALITY, PROPORTIONALLY-SPACED *
FONT (NLQPR). CHARACTER CELLS WILL BE 18 DOTS HIGH AND 12 *
DOTS WIDE. *

o

o

c

()

0

()

TERMCTRL (4224)

TERMCTRL INITFONT,FONTID=+NEWFONT,OLDFONT=+NLQPR
TCBGET RETCODE,$TCBCO CHECK FOR ERROR
IF (RETCODE,NE,-1),GOTO,INITERR

* DOWNLOAD THE NEW CHARACTERS TO 'NEWFONT' *

TERMCTRL LOAD FONT , FONTADDR, FONTID=+NEWFONT
TCBGET RETCODE,$TCBCO CHECK FOR ERROR
IF (RETCODE,NE,-1),GOTO,LOADERR

* MAKE 'NEWFONT' THE ACTIVE FONT *
* ISSUE SOME PRINT MODE COMMANDS FOR BETTER EFFECT *

TERMCTRL SETFONT,FONTID=+NEWFONT
TERMCTRL DWIDE,STATE=START DOUBLE WIDE PRINT MODE
TERMCTRL DSTRIKE,STATE=START DOUBLE STRIKE PRINT MODE
TERMCTRL PCOLOR,COLOR=CYAN COLOR CYAN

* THIS TABLE INDICATES WHICH CODE POINTS ARE ALTERED *
* *
* CODE POINT ASCII CHAR NEW IMAGE *
* ------------ ------------ --------------------- *
* 31 1 CURSIVE B (UPPERCASE) *
* 32 2 CURSIVE 0 (LOWERCASE) *
* 33 3 CURSIVE C (LOWERCASE) *
* 34 4 CURSIVE A (LOWERCASE) *
* 35 5 CURSIVE R (UPPERCASE) *
* 36 6 CURSIVE T (LOWERCASE) *
* 37 7 CURSIVE N (LOWERCASE) *
* 38 8 CURSIVE F (UPPERCASE) *
* 39 9 CURSIVE L (LOWERCASE) *

PRINTEXT '1234 54627' PRINT 'BOCA RATON'
TERMCTRL PCOLOR,COLOR=BLACK
PRINTEXT ',I
TERMCTRL PCOLOR,COLOR=MAGENTA
PRINTEXT '894' PRINT 'FLA'
TERMCTRL PCOLOR,COLOR=BLACK
TERMCTRL DWIDE,STATE=STOP
PRINTEXT ' ,
PRINTEXT SKIP=1

* RELEASE THE STORAGE IN THE PRINTER ALLOCATED FOR ,NEWFONT' *

TERMCTRL RESTORE RESTORE PRINTER DEFAULTS
TERMCTRL . DELFONT,FONTID=+NEWFONT
DEQT RELEASE CONTROL OF PRINTER

*
QUESTION 'TRY AGAIN ?',YES=START,SKIP=5
PROGSTOP

*
INITERR DEQT

PRINTEXT
PRINTNUM
PRINTEXT
PROGSTOP

*

'ERROR WITH INITFONT, RETURN CODE= ',SKIP=1
RETCODE
SKIP=1

Chapter 2. Instruction and Statement Descriptions 2-469

TERMCTRL (4224)

2-470 SC34-0937

-LOAD ERR DEQT
PRINTEXT 'ERROR WITH LOADFONT, RETURN CODE= ',SKIP=1
PRINTNUM RETCODE
PRINTEXT SKIP=1
PROGSTOP

* DATA AREA *

CYAN DC A(#CYAN) COLOR CYAN
MAGENTA DC A (#MAGENTA) COLOR MAGENTA
BLACK DC A(#BLACK) COLOR BLACK
NEWFONT EQU 127 NEW FONT 10
NLQPR EQU 5 NLQ PROPORTIONALLY-SPACED 10
RETCODE DC FI 01 RETURN CODE
FONTADDR DC A(COUNT) TOTAL lENGTH OF BINARY DATA

DC X'0C' WIDTH = 12 BITS
DC X' 12 1 HEIGHT = 18 BITS (NLQ)
DC X' 31 1 STARTING CODE POINT
DC X'09 1 NUMBER OF CODE POINTS ALTERED

BIDATA EQU * BINARY DATA TO FORM PRINT IMAGES
*
* UPPERCASE I B I; CODE POINT - X' 31 1
*

DC XI 00008C00 I
DC X'2200FI0F '
DC X I CC7C4110 I
DC X'20481812 1
DC X'06088284 1
DC X 111120383 1
DC X'000000 1

*
* LOWERCASE 10 1 ; CODE POINT - X'32 1
*

DC X'00020001 I
DC X'0001C000 1
DC X 188004100 I
DC X'20400810 1
DC X I 020800C4 I-
DC X'002E0004 1
DC X'000100 1

*-
* LOWERCASE I C I; CODE POINT - X'33 1
*

DC X'00200004 I
DC XI 0001C000 I
DC X 1880041001
DC X'20400810 1
DC X'02040061 I
DC X 100008000 1

DC X'200010 1

()

(~)

o

TERMCTRL (4224)

() *
* LOWERCASE I A I; CODE POINT - X' 34 1

*
DC XI 00040002 I

DC X' 00010000 1

DC XI F8004100 I

DC X' 20400810 1

DC X' 0208009E '
DC XI 00384000 1

DC XI 100004 1

*
* UPPERCASE 1 R 1 ; CODE POINT - X' 35 1

*
DC X' 00020400 1

DC XI 4200ElOF 1

DC X' C07C8010 '
DC XI 20080802 I
DC X' 021C8148 1

DC X' 108C03CO '
DC XI 000000 I

*
* LOWERCASE 1 T 1 ; CODE POINT - X' 36 1

*
DC XI 00010000 I
DC X'80004008 1

DC X' 20021000 '
DC X' 9F007820 '

0 DC XI E8040201 I
DC XI 00804000 I
DC XI 100004 1

*
* LOWERCASE IN 1 ; CODE POINT - X' 37 1

*
DC X' 00400020 1

DC X'00087001 I
DC X' E0004000 1

DC X' 20000800 '
DC X 102180099 I
DC X 100184000 1

DC XI 100008 1

*
* UPPERCASE 1 F 1 ; CODE POINT - X' 38 1

*
DC XI 60062400 1

DC X' 49101388 1

DC X 138827021 1

DC XI E00BA003 I
DC XI 08008200 I
DC XI 20800800 1

DC X' 010000 '

o
Chapter 2. Instruction and Statement Descriptions 2-471

TERMCTRL (4224)

2-472 SC34-0937

*
* LOWERCASE I L I; CODE POINT - X'39 1
*

DC X'00020000 I
DC X'40001000 1
DC X'08000401 I
DC X' FE0101C0 1
DC X'81882181 1
DC X 107804000 I
DC XI 100008 1

COUNT EQU *-BIDATA
*

ALIGN WORD

* EXAMPLE OF HOW THE DATA WAS OBTAINED FOR UPPERCASE 'F' *

* STEP 1 - *
* MAKE A PATTERN OF DOTS CORRESPONDING TO THE HEIGHT AND WIDTH*
* OF THE CHARACTER CELL. EACH DOT CORRESPONDS TO A BIT AND *
* MUST EITHER BE ON OR OFF. PLACE THE NUMBER SIGN (1#1) OVER *
* THE DOTS WHICH MUST BE TURNED ON TO FORM THE IMAGE. *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.....

•••••

• • • • • #

••••••

• • • • #

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* *

0

0

o

o

o

0

TERMCTRL (4224)

* STEP 2 - *
* STARTING FROM THE TOP LEFT HAND CORNER AND WORKING DOWN,
* REPLACE EACH DOT WITH A lei, AND EACH 1#1 WITH AlII.

*
*

* THEN SEPARATE THE BINARY DATA INTO GROUPS OF FOUR BITS. *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

e110 oeee eeee e11e ee
Ie e1ee eeoe eeee e1ee
1ee1 oee1 eooe eeel ee
11 1eeo Ieee ee11 Ieee
Ieee oe11 e111 eeee ee
Ie oee1 111e eeee eeee
1e11 1ee1 eoee eeee ee
11 eeee Ieee eeee eeoe
1eoe ee1e eeee eoee ee
Ie eeoe 1eeo eeee eeee
Ieee eeee eeee eeee ee
e1 eeee eeee eeee eeee

*
*
*
*
*
*
*
*
*
*
*
*
*
*

* STEP 3 - *
* CONVERT THE DATA TO HEXADECIMAL *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

6 e e 6 2
4 e 0 4

9 1 e 1 3
883 8

8 2 7 e 2
1 E e e

B A e e 3
e 8 e e

8 2 e e 2
e 8 e e

8 e eel
e e e e

*
*
*
*
'*
*
*
*
*
*
*
*
*
*

--------------------- END OF EXAMPLE ------------------------
*

ENDPROG
END

The previous program example set colors from the default, black, to cyan, and then
to magenta. Cyan and magenta portions of the actual output appear as red in the
following output example.

FR 0 M THE CIT Y OF 'B0'CA1 B~,. rJLa..

FROM THE CIT Y OF 'B0'C4. B~,. rJLa..

FROM THE CIT Y OF 'B0'CA1 B~,. rJLa..

FROM THE CIT Y OF 'B0'CA1 B~,. rLa..

Chapter 2. Instruction and Statement Descriptions 2-473

TERMCTRL (4224)

2-474 SC~4-0937

Syntax:

label TERMCTRL SETFONT,FONTID =

Required: SETFONT ,FONTID =
Defaults: none
Indexable: FONTID =

Operand Description

SETFONT Specifies the new active font for subsequent printing. This can be only
a print style such as NLQ (local font ID 3), or it can be a totally
self-defining font such as OCR-A (local font 16), which includes both
print style and a character set. It can also be a font you defined (local
font IDs 32 -127), which can include print images you loaded. Print
images you load are completely self-defining for individual code points.

FONTID = A I-word font ID that specifies the font you select as the active font.
You can select one of the permanent printer fonts or one you have
defined. Font IDs exceeding 255 are invalid.

Code
1
2
3
4
5
6-15
16
17
31
32-127
128-255

Font Name
DP (Data Processing) at current print density.
Text at current print density.
NLQ (Near Letter Quality) at current print density.
Text; proportionally spaced.
NLQ; proportionally spaced.
Reserved.
OCR-A (Optical Character Recognition).
OCR-B.
Reserved.
Fonts you have defined.
Reserved.

When an OCR font is selected, the OCR character set and print
density (LARGE) will become temporarily activated. When another
font is subsequently selected, the previous print characteristics will be
restored.

If any of the highlighting controls (SCRIPT, DSTRIKE, ITALICS,
UNDER, OVER) are in effect when an OCR font is selected, the OCR
characters may be unreadable by automatic identification equipment.

o

o

o

()

o
Syntax Example

o

TERMCTRL (4224)

Selecting fonts 4 or 5 automatically resets print density to LARGE and
redefines print densities while the font is active. You can select a new
print density. However, since the fonts are proportionally spaced, and
the width of each character varies, the number of characters per inch
are approximations. While fonts 4 or 5 are in effect, the available
print densities are:

Mnemonic
LARGE
NORMAL
DENSE

Print Density
8 characters per inch, approximately.
10 characters per inch, approximately.
12 characters per inch, approximately.

The following table shows the TERMCTRL SET instruction for the 4975-02L and
the corresponding TERM CTRL SETFONT command on the 4224. If you code
TERMCTRL SET,PMODE =, then $4975 must be linked with your application. If
you code TERMCTRL SETFONT,FONTID =, $4975 is not needed.

4975-02L Instruction 4224 Instruction

SET,PMODE=DRAFT SETFONT,FONTID = 1

SET,PMODE = TEXT SETFONT,FONTID = 5

SET,PMODE = TEXT 1 SETFONT,FDONTID = 4

If the selected font is a printer-provided font and it is being selected for the first
time, the 4224 printer initializes the font. This initialization binds the default
character set, which was selected during printer set-up· or with the CHARSET
command, to the font being initialized. For those fonts that define their own
character sets (OCR-A, OCR-B), no such binding occurs. If you delete a
printer-provided font with the DELFONT command, you can reinitialize it with the
SETFONT command.

The following example specifies the proportionally-spaced near-letter-quality font as
the new active font on the 4224 printer.

TERMCTRL SETFONT,FONTID=5 SET NEW FONT

Chapter 2. Instruction and Statement Descriptions 2-475

TERMCTRL (4224)

2-476 SC34-0937

Syntax:

label

Required:
Defaults:
Indexable:

Operand

CHARSET

TERMCTRL CHARSET ,CHARID = ,FONTID =

CHARSET
CHARID = PC2,FONTID = 255
CHARID = ,FONTID =

Description

Used in conjunction with INITFONT to assign a specific character set
to a font you define. Also used to establish a character set as the
default for subsequent initializations of printer-provided fonts.

To select the language character set for Japanese katakana, specify
CHARID = KANA on the TERMCTRL statement and
CODTYPE = EBCDIC during system generation.

Note: You can select one of a variety of languages other than English
by running offline test 303 to select the default character set and by
specifying CODTYPE = EBCDIC on the terminal statement. Once
you have done this, you do not need to issue the TERMCTRL
CHARSET statement.

CHARID = A word value that specifies the character set from which the printer
will assign graphic characters. The following is a list of available
character sets:

Parameter
PCI
PC2
INTI
INT5
APL
KANA

Description
Select the PC character set 1 (ASCII).
Select the PC character set 2, the default (ASCII).
Select the Internationall character set (EBCDIC).
Select the International 5 character set (EBCDIC).
Select the APL character set (EBCDIC).
Select the Japanese katakana character set (EBCDIC).

Both PCl, and pe2 are subsets of the standard PC ASCII character
set.

Wi th PC 1, code points X I 00 I - X I 1 F I are control characters (as
opposed to printable characters). Code points X 180 I - X '9F I are
control characters corresponding exactly to code points
X I 00 I - X I 1 Fl. Code point X I 7F I is also a control character. All
other code points are printable characters.

o

o

o

o
Syntax Example

o

TERMCTRL (4224)

With PC2, code points X I 00 I - X I 1 F I are control characters except
for code points X I 03 I - X I 06 I and X 115 I, which are printable
characters. Code points X 120 I - X I FF I are also printable characters.

Character set INT5 supersedes character set INT 1. Character set
INTI is provided for compatibility purposes.

Note: APL -and Japanese katakana character set selections are valid
only with a font of DP quality.

FONTID = A l-worej. font ID that specifies to which font the character set will be
assigned. On a subsequent font change, this character set will be the
active one.

Values of 1 - 31 are invalid. When FONTID = specifies a font you
defined (32 -127) that has been previously initialized with the
INITFONT operand, the printer assigns the character set you specified
with the CHARID = operand to this local font.

When FONTID = 255, the character set specified with CHARID =
becomes the default character set for subsequent initializations of
printer-provided fonts. 'This character set is bound to these fonts
during execution of the TERMCTRL SETFONT command. The only
exception to this is printer fonts that define their own character sets
such as OCR-A and OCR-B. These fonts are initialized without
regard to the default character set.

When FONTID = 255, CHARID = must not be APL or KANA.

The initial default character set should be set using customer test 303
during printer set-up. Refer to the Installation and System Generation
Guide for set-up information.

The following example establishes INT5 as the active character set on the 4224
printer with near letter quality print.

TERMCTRL CHARSET,CHARID=INT5,FONTID=255 ESTABLISH DEFAULT
TERMCTRL SETFONT,FONTID=3 ACTIVATE NLQ FONT

Chapter 2. Instruction and Statement Descriptions 2-477

TERMCTRL (4224)

Coding Example

2-478 SC34-0937

The following example demonstrates coding for the CHARSET command on the
4224 printer.

CHARSET PROGRAM START,TERMERR=ERROR

* DEMONSTRATE CHARACTER SET SELECTION ON THE 4224 PRINTER. *

START EQU *

* INPUT PRINTER NAME AND ENQUEUE PRINTER. *
-***********************

READTEXT PRINTER,'@ENTER 4224 PRINTER NAME:
MOVE IOCB4224,PRINTER,(8,BYTES)
ENQT IOCB4224
TERMCTRL RESTORE RESTORE PRINTER DEFAULTS

**********************************~******************************
* GENERATE CODE POINTS X'20 1 -X'FF' IN SEVEN GROUPS. *

MOVEA
DO

DO
MOVE
ADD
ADD

ENDDO
ADD

ENDDO

#1,CHAR1 POINT TO 1ST DATA AREA
+SEVEN,TIMES THERE ARE SEVEN GROUPS

+COUNT,TIMES GROUP SIZE IS 'COUNT '
(0,#1),NEXT+1,BYTE SAVE CURRENT CODE POINT
NEXT,+ONE COMPUTE NEXT CODE POINT
#l,+ONE INCREMENT DATA POINTER

END OF INNER LOOP
#l,+TWO POINT TO NEXT DATA AREA

END OF OUTER LOOP
ENQT PRINTER
TERMCTRL PCOLOR,COLOR=BLUE USE THE COLOR BLUE

* PRINTER-PROVIDED FONT 1 IS INITIALIALIZED AUTOMATICALLY. *
* INITIALIZE LOCAL FONT 33 AND MAKE IT THE ACTIVE FONT. *
* BIND CHARACTER SET KATAKANA TO LOCAL FONT 33. *

TERMCTRL INITFONT,FDNTID=33,OLDFONT=1
TERMCTRL SETF0NT,FONTID=33
TERMCTRL CHARSET,CHARID=KANA,FONTID=33
PRINTEXT 'CHARACTER SET KANA - DP FONT ',SKIP=2,XLATE=NU
CALL PRINT PRINT CHARS X'20~ - X'FF '

* BIND CHARACTER SET APL TO LOCAL FONT 33; CALL PRINT ROUTINE. *

TERMCTRL CHARSET,CHARID=APL,FONTID=33
PRINTEXT 'CHARACTER SET APL - DP FONT ',SKIP=2,XLATE=NO
CALL PRINT PRINT CHARS X'20 1

- X'FF '

*' MAKE INT5 THE DEFAULT CHARACTER SET FOR ALL SUBSEQUENT *
* INITIALIZATIONS OF PRINTER-PROVIDED FONTS. *
* INITIALIZE FONT 3; BIND DEFAULT CHARACTER SET INT5 TO FONT 3. *

TERMCTRL CHARSET,CHARID=INT5,FONTID=255
TERMCTRL SETFONT,FONTID=3
PRINTEXT 'CHARACTER SET INT5 - NLQ FONT ' ,SKIP=2,XLATE=NO
CALL PRINT PRINT CHARS X'20 1

- X'FF ' .

(j

o

o

o

o

()

TERMCTRL (4224)

* DELETE AND REINITIALIZE PRINTER-PROVIDED FONT 1 IN ORDER *
* TO BIND DEFAULT CHARACTER SET INT5 TO FONT 1. *

TERMCTRL DELFONT,FONTID=1
TERMCTRL SETFONT,FONTID~1
PRINTEXT 'CHARACTER SET INT5 - DP FONT ' ,SKIP=2,XLATE=NO
CALL PRINT PRINT CHARS X' 20 1

- X'FF'

* MAKE PC2 THE DEFAULT CHARACTER SET FOR ALL SUBSEQUENT *
* INITIALIZATIONS OF PRINTER-PROVIDED FONTS. *
* ISSUE A FORMFEED TO SYNCHRONIZE SOFTWARE AND HARDWARE SPACING.*
* DELETE LOCAL FONT 33 AND RESTORE THE PRINTER DEFAULT STATE *
* LEAVING CHARACTER SET INT5 BOUND TO FONTS 1 AND 3. *

TERMCTRL CHARSET,CHARID=PC2,FONTID=255
PRINTEXT LINE=0
TERMCTRL DELFONT,FONTID=33
TERMCTRL RESTORE
DEQT
PROGSTOP

* SUBROUTINE PRINT: *
* PRINT CODE POINTS X'20 1 -X'FF' ON SEVEN CONSECUTIVE LINES. *

SUBROUT PRINT
MOVEA #1,CHARI
DO +SEVEN,TIMES

PRINTEXT (0,#I),XLATE=NO,SKIP=1
ADD #1,+TEXTSIZE

ENDDO
PRINTEXT SKIP=1
RETURN

* ERROR HANDLER: *
* PRINT RETURN CODE AND ADDRESS OF INSTRUCTION CAUSING ERROR. *
~****

ERROR EQU *
TCBGET RETCODE,$TCBCO
TCBGET ADDRESS,$TCBC02
DEQT
PRINTEXT '@TERMINAL ERROR I

PRINTNUM RETCODE,MODE=HEX
PRINTEXT I OCCURRED AT ADDRESS I

PRINTNUM ADDRESS,MODE=HEX
PRINTEXT SKIP=1
PROGSTOP

* EQUATES *

ONE EQU 1
TWO EQU 2
SEVEN EQU 7
COUNT EQU 32

Chapter 2. Instruction and Statement Descriptions 2-479

TERMCTRL (4224)

2-480 SC34-0937

* DATA AREA *

IOCB4224 IOCB
PRINTER TEXT
RETCODE DC
ADDRESS DC
NEXT ~C
CHARI TEXT
CHAR2 TEXT
CHAR3 TEXT
CHAR4 TEXT
CHAR5 TEXT
CHAR6 TEXT
CHAR? TEXT
TEXTSIZE EQU

ENDPROG
END

DUMMY
LENGTH=8
FI 0 1

FI 0 1

FI321
LENGTH=32
LENGTH=32
LENGTH=32
LENGTH=32
LENGTH=32
LENGTH=32
LENGTH=32
CHAR2-CHARI

PRINTER IOCB
PRINTER NAME
RETURN CODE OF ERROR
ADDRESS OF BAD INSTRUCTION
NEXT CODE POINT
CODE POINTS XJ20 1-X 13FI
CODE POINTS X140 1-X 15FI
CODE POINTS XI60 1-XI?FI
CODE POINTS X180 1-X 19FI
CODE POINTS XIA0 1-XIBFI
CODE POINTS XIC0 1-XIDFI
CODE POINTS XIE0 1-XIFFI
TOTAL SIZE OF TEXT LINE

o

o

o

()

o

o

TERMCTRL (4224)

The preceding example produces the following output on the 4224 printer.

C H (..'1'< (..'1 C T E R SET I((..', N j~1 .•. D P F 0 NT

-:> r . .1 \ t :~? -('~ £ . <: (+ I \~~ I :-t f-' .1 :3 .~ ~ '!(' .)(.) .: "'1

40 ,1 . .. _ .. _ _ .. __ 00 __ " ._. " ;~ ~. "~' _ _ ••••••••••••• : =::: (~.! I :::: It

... jJ.(') I.it .~J ~: :;.1 ~T:::I ~,::)? t ..) ~ :i··J:-i' ~ :t ~: .~(' :!': . ./ }'It"; .)

........ /'l if\ 'v ::~ (~)' t t, .] ::/'3 I) .~ .•. '.' '-' _ ••• /.., U I);) '.'. ~: .

... ABC D E F Ci HI .. ··11< L. r·i N () P Q I~
$ r:.; T U I.) L·J):: Y Z ····0 1 ? ~::{ .'':1 !.=.=.; {, '.7 B 9··

C H I~ /~ (.~I erE I~ SET (~ PI... _. D P F I] N T

0§GP~E§HI¢. «+I&Jtbb~QPQB!$*);~
--,I ~.:.~ I~J.Y.H~J.: l: 1% > ? ~ A .• H/.~~ .~:i 1- .~'" , : :=:I~! • :::: II

Nab c d t:·:,f 9 h 'j t ·t· .S. r L .. :> J] :.i k ., m n 0 p q r ::. c: 0 ~ .

... :::. t u hI :r.: y' Z Ii l.I .l [.~. (~Ol ~: ~ p (r) :-: \ .: V l~ T] it! I
{ (:', Be DE F GH I:~ ;~: /] <N:;! i~~::- J !<L. MNO PO ~~:I: ! ·f.t,P] fI
\~STUVWXYZ/\~8S~0123456789-;4~2

CHARACTER SET INTS - NLQ FONT

aaaaaa~fi[.«+!&eeeeiiiiB]$*)j ~

-/AAAAAACN: ,%_>?0EEEEiiII' :#@'="

0abcdefqhi«»dt~±Ojklmnopqr§Q~~~~

)l-stuvwxyzilDYlt(!}¢£Y·i§4ft~~%"I-"·=

{ABCDEFGHI-00066}JKLMNOPQRIUtiUUY
, STUVWXYZ 2 6b66601234S6789 3 0UUU

CH(~I'~i~,CTEI~ SET INT~='='; DP FDN'r

iii ,3 ::~ ~:~ ~~ a .; f-i [• < (+ ~ \~ d:· E' ,~:; E'~ ~ ';' ., 1 f~ :I :I.~ .)(.).: ..
.... . / ;i;, ,:~. ,6. ~,,::;; .~ C ~~: } ~.~.... >? JJ t:~: f: E:': I~: :i: i :1: i . : :::: (\'! ' :::: "

f.~ abc: d (-?f 9 h 'j «».j :~~/ p :t: 0 j k ./ m'fl ()P q Y" .~~I~:} \-J.! ... it ~~
11 ." ~:. t II V ll.l X :y":z j (:. f) "f' 1- !:! o:~ ;c:{ , . .F ~3 ':R ~ .. ;·i ~.}.~ :k; .. , I o' ::::

{ f-i BCD E F G H I ._. () 0 ,:. 6 ('). } .J !< L. M N 0 P r:~ I~~ '1 n. ij 1:'1 I.). ::).:.

\ STUVWXYZ 2 6666601234567B9 J OU00

Chapter 2. Instruction and Statement Descriptions 2-481

TERMCTRL (4224)

Syntax Example

2-482 SC34-0937

Syntax:

label TERMCTRL DELFONT,FONTID =

Required:' DELFONT,FONTID =
Defaults: none
Indexable: FONTID

Operand Description

DELFONT Deletes a font you have initialized previously with the exception of the
currently active font. When you delete a font, your printer releases the
storage it allocated for that font. Any images you sent to the font
being deleted are lost.

FONTID= A I-word font ID that specifies the local font you intend to delete.
When FONTID = 255, the printer deletes all fonts except the currently
active one. If the font you specify with the FONTID = operand is, one
provided by the printer; you can reinitialize it using the SETFONT
operand. You must reinitialize fonts you define with TERMCTRL
INITFONT.

The following examl?le deletes the font with ID 32 on the 4224 printer.

TERMCTRL DELFONT,FONTID=32 DELETE LOCAL FONT 32

(
-~

j

()

o

o

Syntax Example

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

PDEN

DENSITY =

TERMCTRL PDEN,DENSITY =

PDEN
DENSITY = NORMAL
DENSITY =

Description

TERMCTRL (4224)

Alters the print density to 10, 12, or 15 characters per inch.

This command provides the same function as SET,PDEN =. It is
provided so that new applications for the 4224 do not need to be.
linked with module $4975.

A word value specifying the desired density.

Mnemonic
LARGE
NORMAL
DENSE

Description
10 CPI
12 CPI
15 CPI

If either NORMAL or DENSE is selected and the currently active font
is OCR, the printed OCR characters will be unreadable by Automatic
Identification equipment.

The 4224 densities differ from the 4975-02L densities as follows:

4975-02L 4975-02L 4224 4224
Mnemonic Density Mnemonic Density

COMP 20 CPI DENSE 15 CPI

NORM 15 CPI NORMAL 12 CPI

EXPD 10 CPI LARGE 10 CPI

The following table indicates comparable interpretations for the TERMCTRL SET
instruction on the 4975-02L and the TERMCTRL PDEN instruction on the 4224
printer.

4975-02L Instruction 4224 Instruction

SET,PDEN = NORM PDEN,DENSITY = DENSE

SET,PDEN = COMP PDEN,DENSITY = DENSE

SET,PDEN=EXPD PDEN,DENSITY = LARGE

The following example sets the print density to 15 characters per inch on the 4224
printer.

TERMCTRL PDEN,DENSITY=DENSE SET DENSITY TO 15 CPI

Chapter 2. Instruction and Statement Descriptions 2-483

TERMCTRL (4224)

Syntax Example

2-484 SC34-0937

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

STATE =

TERMCTRL function,STATE=-

function
STATE = START
none

Description

UNDER Turns the continuous underscore function on or off.

OVER Turns the continuous overscore function on or off.

ITALICS Turns the continuous italics print function on or off.

DSTRIKE Turns the double strike print function on or off. With
this function, each dot printed is printed twice. This
gives the print stroke a darker appearance.

DWIDE Turns the double width print function on or off. In this
mode the character being printed is adjusted to occupy
twice its current width.

BOLD Turns the bold (emphasized) print function on or off. In
this mode, each dot printed is accompanied by a second
dot appearing just to the right of and partially
overlapping the first dot. This gives the appearance of a
thicker print stroke.

Specifies the status of the function. Once you activate any of the
operands described above, that operand remains active until you issue
aTERMCTRLwith STATE = STOP. Select a STATE for the
function with one of the following parameters:

Parameter
START
STOP

Description
Turns the function on.
Turns the function off.

The following example starts the double width print mode on a 4224 printer.

TERMCTRL DWIDE,STATE=START BEGIN DOUBLE-WIDTH PRINT

o

o

o

o

o
Syntax Example

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

SCRIPT

TYPE =

STATE =

TERMCTRL SCRIPT, TYPE = ,STATE =

SCRIPT, TYPE =
STATE = START
none

Description

TERMCTRL (4224)

Turns one of two different print modes on or off.

Specifies the choice of a script_type.

Operand
SUB
SUPER

Description
Subscript print mode.
Superscript print mode.

The -4224 prints subscripts and superscripts by using half-high NLQ
characters. Subscript and superscript modes cannot be in effect at the
same time.

Specifies the status of the function. Once SCRIPT mode is activated,
it remains active until you issue a TERMCTRL SCRIPT with
STATE = STOP. Select a state for the function with the following
operands:

Parameter
START
STOP

Description
Turns the function on.
Turns the function off.

The following example starts subscripting on a 4224 printer.

TERMCTRL SCRIPT,TYPE=SUB,STATE=START START SUBSCRIPT MODE

Chapter 2. Instruction and Statement Descriptions 2-485

TERMCTRL (4224)

Syntax Example

2-486 8C34-0931

Syntax:

label

Required:
Defaults:
Indexable:

Operand

LPI

HEIGHT =

TERMCTRL LPI,HEIGHT =

LPI
HEIGHT =36
HEIGHT =

Description

Alters line spacing (height of aline).

A I-word value in 1/216 inch increments that specifies line height. The
default, HEIGHT = 36 (36/216 inch), results in 6 lines per inch. To get
8 lines per inch, specify HEIGHT =27 (27/216 of an inch). To
calculate line size values, divide 216 by the desired number of lines per
inch.

To maximize printer accuracy, choose a height that is a multiple of 3.

The line spacing you choose in combination with the logical page size (line count)
must match the physical length of the forms. For example, a line height of 27/216
inch or 8 lines per inch along with a logical page size of 88 matches a physical page
size of 11 inches.

See "Additional 4224 Printer Information" on page 2-490 for additional information
about page size.

The following table indicates comparable interpretations for the TERMCTRL SET
instruction on the 4975-02L and the TERMCTRL LPI instruction on the 4224.

4975-02L Instruction 4224 Instruction

SET,LPI=6 LPI,HEIGHT = 36

8ET,LPI=8 LPI,HEIGHT= 27

The following example specifies three lines per inch on the 4224 printer by resetting
the line height.

TERMCTRL LPI,HEIGHT=72 SET LPI to 3

o

o

o

c Syntax Example

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

PCOLOR

COLOR =

TERMCTRL PCOLOR,COLOR =

PCOLOR
COLOR = BLACK
COLOR =

Description

TERMCTRL (4224)

Specifies the color that the printer uses to print text. Eight colors are
available with the subtractive ribbon. Four colors (black, red, green,
and blue) are available with the accent ribbon. If you install the
wrong ribbon and the color you request is not available, the printer
uses the default color (black).

The following values are valid:

Parameter
BLUE
RED
MAGENTA
GREEN
CYAN
YELLOW
BLACK
BROWN

Description
Select the color blue.
Select the color red.
Select the color magenta.
Select the color green.
Select the color turquoise/cyan.
Select the color yellow.
Select the color black.
Select the color brown.

The following example specifies magenta as the active color on the 4224 printer.

TERMCTRL PCOLOR,COLOR=MAGENTA PRINT IN MAGENTA

Chapter 2. Instruction and Statement Descriptions 2-487

TERMCTRL (4224)

Return Codes

Error Logging

Return
Code Condition

600 Invalid TERMCTRL command for the attached printer.

602 Invalid TERMCTRL - operand value exceeds 255.

610 Invalid character set specification (CHARSET).

611 Invalid density specification (PDEN).

612 Invalid line spacing specification (LPI).

613 Invalid color specification (PCOLOR).

616 Invalid font ID - must be user font ID.

617 Invalid font ID - cannot be reserved font ID.

620 Invalid barcode orientation.

621 Invalid barcode data count.

622 Invalid barcode type.

623 Modifier incompatible with BARCODE selected.

624 Invalid barcode width.

630 Invalid character cell width for font download.

631 Invalid character cell height for font download.

632 Invalid code point - X I 00 I cannot be downloaded.

633 Starting code point plus the number of characters to be modified
exceeds 256 for font download.

634 Count of image data bytes not consistent with other parameters for
font download. The following equation describes the relationship:

(Number of Code Points) * (Height * Width / 8 rounded to the
nearest whole number) = Number of image bytes.

The 4224 printer sends status to the Series/1 to report conditions such as out of
paper and forms jam. Printer support will log such status conditions to the system
error log data set. These status conditions are reported as permanent errors. Errors
will appear in the standard EDX logging format. Refer to the Problem
Determination Guide for additional information on the log format.

The ISB will contain a status byte indicating the cause of any problem. Refer to the
IBM 4224 Printer Product and Programming Description Manual, GC31-2550 to
interpret this status byte.

Special Considerations

2-488 SC34;'0937

The 4224 printer support provides the same basic support as a 4975-02L. This
includes support for the following EDL statements:

• PRINTDATE
• PRINTEXT
• PRINTNUM
• PRINTIME
• TERMCTRL.

o

c

o

o

o

TERMCTRL (4224)

Applications that currently run on the 4975-02L printer will run on the 4224 printer
without reassembly with the exceptions noted in this section. However, a new
system generation is required and applications must be relinked to include the
modified $4975 module.

To take advantage of any new function provided by the 4224 printer, you must
modify and reassemble your 4975-02L printer applications. If you decide to modify
your application, you can avoid relinking with module $4975 by replacing the
TERMCTRL SET instructions in your program with corresponding TERMCTRL
instructions for the 4224 printer as follows:

4975-02L Instruction 4224 Instruction

SET,LPI= LPI,HEIGHT =

SET,PMODE= SETFONT,FONTID =

SET,PDEN= PDEN,DENSITY =

SET,CHARSET = (OFFLINE TEST 303)

SET,RESTORE RESTORE

If you decide not to reassemble your application, note the following:

• PMODE = TEXT on the 4224 printer produces near letter quality,
proportionally-spaced characters with a single pass of the print head
(FONTID=5). PMODE=TEXT directs the 4224 to reset the print density to
large and to redefine horizontal densities. See TERMCTRL SET for more
information. PMODE=TEXT on the 4975-02L printer produces TEXT quality,
proportionally-spaced characters with two passes of the print head.
PMODE=TEXT directs the 4975-02L to select the appropriate density for the
proportionally-spaced. characters.

• PMODE=TEXTl on both the 4975-02L and the 4224 printer produces TEXT
quality proportionally-spaced characters with a single pass of the print head
(FONTID=4 on the 4224). PMODE=TEXTl directs the 4975-02L to select
the appropriate density for the proportionally-spaced characters.
PMODE = TEXTl directs the 4224 to reset the print density to large and to
redefine horizontal densities. See TERMCTRL SET for more information.

• PMODE=DRAFT on both the 4975-02L and the 4224 produces data
processing quality, monospaced characters with a single pass of the print head.

Note: Near letter quality is a higher quality type than text quality.

• The TERMCTRL DCB = operand of the 4975-02L is not supported on the 4224
printer.

• TERMCTRL SET,CHARSET = is a null operation on the 4224 printer. You
can select a character set for languages other than English by running offline test
303. See TERMCTRL SET,CHARSET = for additional information.

• TERMCTRL SET,PMODE=TEXT or TEXTl on the 4975-02L printer
produces approximately 5 CPI. TERMCTRL SET,PMODE= TEXT .. {)r TEXTI
on the 4224 printer, however, produces approximately 8, 10, or 12 CPI
(depending on the density selected).

To produce approximately 5 CPI on the 4224 printer, simulating. the 4975-02L,
issue TERMCTRL DWIDE and TERMCTRL PDEN,DENSITY = NORMAL
after issuing TERMCTRL SET,PMODE=TEXT or TEXTl.

Chapter 2. Instruction and Statement Descriptions 2-489

'TERMCTRL (4224)

• TERMCTRL SET,PDEN= values (print densities in characters per inch) for the
4975-02L and 4224 printers differ in the following manner:

Density 4975-02L Printer 4224 Printer

Compressed COMP=20 COMP= 15

Normal NORM = 15 NORM=15

Expanded EXPD= 10 EXPD=IO

• If you switch the 4224 prlnter off and then on, it resets the following functions
as shown:

Function Hardware Default
BARCODE Deleted (if pending)
BOLD Off
CHARSET Offline test 303 value
DSTRIKE Ofr
DWIDE Off
ITALICS Off
Loaded fonts Deleted
LPI Offline test 302 value
OVER Off
PCOLOR Black
PDEN Offline test 302 value
SETFONT Offline test 302 value
SUBSCRIPT Off
SUPERSCRIPT Off
UNDER Off

• Data streaming mode is supported to allow the user access to features of the
4224 printer not implemented. Issuing a PRINTEXT with XLATE=NO
activates data streaming mode.

Text data to be sent to the 4224 printer is not translated when XLATE = NO is
coded. Each PRINTEXT, XLATE=NO is counted by the printer support as a
single line even though multiple physical lines may be printed. Therefore, when
switching from untranslated mode to translated mode, you may want to issue a
PRINTEXT LINE = 0 before issuing translated commands in order to
synchronize the hardware and the software. For details on the printer data
stream, refer to the IBM 4224 Printer Product and Programming Description
Manual, GC31-2550.

Additional 4224 Printer Information

2-490 SC34-0937

• Not all $TERMUTI and $TERMUT2 utility functions of the 4975-02L printer
are available directly on the 4224 printer. Refer to information on the use of
these utilities with the 4224 and 4975-02L printers in the Operator Commands
and Utilities Reference.

• The 4224 printer maintains physical page size in inches. You select the initial
physical page size using offline test 302. The 4224 printer support maintains
logical page size as a line count. Whenever you change logical page size with
ENQT, ,DEQT, or $TERMUTl, be sure to alter line height so that: (physical
page size in inches) x (lines per inch) = (logical page size).

()

0

o

o

c

o

TERMCTRL (4224)

• The 4224 printer supports both ASCII and EBCDIC character sets. The
different models of the 4224 are indistinguishable to the EDX; printer support.
Variations among the printer models are as follows:

Model 301 - runs at 200 characters per second (top speed). It has only one
color (black).

Model 302 - runs at 400 characters per second (top speed). It has only one
color (black).

Model 3C2 - runs at 400 characters per second (top speed). It supports up
to eight colors depending on which ribbon is installed.

• If the green light on the 4224 flashes after you have cancelled your application,
you can empty the printer's buffer as follows:

1. Press the STOP button on the 4224 printer.
2. Press the ALT and CANCEL buttons to clear the 4224 print buffer.
3. Press the START button on the 4224 printer.

• PRINTEXT instructions issued to the 4224 printer return the ACCA return
codes listed under "PRINTEXT - Display a Message on a Terminal" on
page 2-307.

• To interpret the ISB after an I/O completion error, refer to the hardware manual
of the Series/l attachment being used to drive the 4224 printer (MFA or
2095/2096). To interpret the ISB after an error is reported as an attention
interrupt, refer to the IBM 4224 Printer Product and Programming Description
Manual, GC31-2550.

• If you have issued an ENQT with an 10CB and provided a local buffer to be
used instead of the terminal control block (CCB) buffer, remember the
following.

Do not alter the buffer in any way (except for direct I/O) during the time
'when the buffer is in use as a system buffer.

The printer support issues additional I/O operations because the same buffer
must be used for both application data and TERMCTRL data. This
degrades performance.

The logical right margin on the 4224 printer is automatically set to buffer
size phl,s left margin minus 1, regardless of the value you specify for
RIGHTM =. If you exceed the physical right margin of the 4224, the extra
data is printed on the next line.

• If you specify MODE == PAGE on the TERMINAL statement for the 4224
printer, you define it as a page printer. When printer I/O crosses a page
boundary, the printer support issues a form feed to start on a new page and line
feeds to position the paper to the correct line.

The printer maintains physical page size in inches; the software that supports the
printer maintains logical page size as a counJ of lines per page. When you
specify MODE = PAGE and then change the logical page size using ENQT or
$TERMUTl, the printer support sends a control sequence to the 4224 that
changes the physical page size to a value (in inches) of:

(logical page size) / (current LPI (lines per inch))

For example, if the logical page size is 88 and the current value for LPI is 8, the
physical page size becomes 11 inches. A subsequent change to LPI does not
change the physical page size until the next time you change the logical page
size.

Chapter 2. Instruction and Statement Descriptions 2-491

TERMCTRL (4224)

2-492 SC34-0937

Each time you change the pag~ size, the printer support assumes the new forms
have been inserted in the printer at" the top-of-forms position. Make certain the
hardware top-of-forms indicator is set to this position To do this:

1. Press the STOP button on the 4224 printer.

2. Press the TOP-OF-FORM button on the 4224 printer.

3. Press the STARTbutton on the 4224 printer.

If the serial printer support detects a page change, it issues line feeds for the top
margin before printing any data. The space the top margin occupies depends on
the size of the top margin (in lines) and the current value for LPI.

If your application varies line height within a page, the logical line pointer and
the physical line pointer get out of sync. To allow for this, use the following
procedure:

1. Issue a TERMCTRL LPI to select the greatest density to be used on the
page.

2. ENQT on an IOCB, choosing a P AGSIZE such that PAGSIZE/LPI is equal
to the physical forms size in inches.

3. Print data and change LPI as needed without crossing the physical page
boundary.

4. Issue a PRINTEXT LINE = 0 to advance to a new page. This causes a form
feed to be sent to the printer to realign the logical and physical line pointer.

For example, if your form length is 11 inches (with 1/2 inch top and bottom
margins) and your application uses both 6 LPI and 8 LPI on a page, your
application should:

1. Issue TERMCTRL LPI,HEIGHT = 27 to select 8 LPI.

2. ENQT on an IOCB with PAGSIZE = 88, TOPM = 4, and BOTM = 83.

3. Print data and change LPI as needed.

4. When the page has been filled, issue a PRINTEXT LINE =0.

• If your application issues PRINTEXT XLATE = NO (data streaming), the
printer support issues no control characters (such as line feed or carriage return)
to the printer for that PRINTEXT instruction.

o

o

o

Programming Aids

o

C). 'q
, ,

TERMCTRL (4224)

All mnemonics have associated equates that can be used to generate values during
execution. The equate is the same 'as the mnemonic, but it has a # in front of it.
You can find the equates in the copy code module EQU4224.

The bar code orientation mnemonics have the following equates:

Mnemonic Equate Equate Value

HORZ #HORZ 0

VERT #VERT 1

The BARTYPE = mnemonics have the following equates:

Mnemonic Equate Equate Value

CODE3#9 #CODE3#9 1

MSI #MSI 2

UPC#A #UPC#A 3

UPC#E #UPC#E 5

UPC#2 #UPC#2 6

UPC#5 #UPC#5 7

EAN#8 #EAN#8 8

EAN#13 #EAN#13 9

INDUST #INDUST 10

MATRIX #MATRIX 11

LEAVED #LEAVED 12

The WIDTH = mnemonics have the following equates:

Mnemonic Equate Equate Value

NARROW #NARROW 14

WIDE #WIDE 21

The CHARID = mnemonics have the following equates:

Mnemonic Equate Equate Value

KANA #KANA 0

PCl #PCl 1

PC2 #PC2 2

INTI #INTI 3

INT5 #INT5 4

APL #APL 5

Chapter 2. Instruction and Statement Descriptions 2-493

TERMCTRL (4224)

Coding Example

2-494 SC34-0937

The DENSITY= mnemonics have the following equates:

Mnemonic Equate Equate Value

LARGE #LARGE 0

NORMAL #NORMAL 1

DENSE #DENSE 2

The PCOLOR = mnemonics have the following equates:

Mnemonic Equate Equate Value

BLUE #BLUE 1

RED #RED 2

MAGENTA #MAGENTA 3

GREEN #GREEN 4

. CYAN #CYAN 5

YELLOW #YELLOW 6

BLACK #BLACK 8

BROWN #BROWN 16

Equate values should never be hard-coded. Either the mnemonic should be used
(when the value is known at assembly time), or the equate should be used (for run
ti,me recognition).

The following example demonstrates accessing a color at run time.

MOVE #l,+#BLUE USE COLOR BLUE
TERMCTRL PCOlOR,COLOR=#l SET DESIRED COLOR
•
•
•
TERMCTRL PCOLOR,COLOR=SKYBLUE SET COLOR BLUE
•
•
•
MOVEA #l,SKYBLUE POINT TO BLUE
TERMCTRL PCOLOR,COLOR=(0,#1) SET DESIRED COLOR
•
•
•

SKYBLUE DATA A(+#BLUE) COLOR BLUE

All equates for the 4224 printer are word values. Be sure to define them as such in
storage with the data definition A(+ equate).

o

()

o

4973 Printer

()

o

Syntax Examples

o

TERMCTRL (4973)

Syntax:

label TERMCTRL function,LPI = ,DCB =

Required: function
Defaults: none
Indexable: none

Operand Description

function:

LPI=

DCB=

SET Sets the number of lines per inch and causes any b\lffered
output to be printed. The system also resets the current
output position to the beginning of the left margin.

When you specify SET, you must also specify LPI.

DISPLAY Causes the system to write to the 4973 any buffered
output.

The number of lines per inch (either 6 or 8) the 4973 is to print. This
operand is required when the SET function is specified.

The label of an 8-word device control block you define with the DCB
statement. The 4973 support code provides an IDCB that points to
this DCB and issues a START I/O instruction to the device. The
system does a wait operation and control returns to you after the
interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal
support updates the internal cursor position according to word 1 of the
DCB. If an error occurs, an error return is made according to normal
terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to
the one specified by the DCB operand. You should be familiar with
the 4973 hardware and terminal I/O internals when you use this
operand.

1) Print the contents of the buffer.

WRITEPTR TERMCTRL DISPLAY

2) Set printer to print eight lines per inch.

TERMCTRL SET,LPI=8

3) Set printer to print six lines per inch.

TERMCTRL SET,LPI=6

Chapter 2. Instruction and Statement Descriptions 2-495

TERMCTRL (4974)

4974 Printer

2-496 SC34-0937

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

opndl

opnd2

count

TYPE =

TERMCTRL function,opndl,opnd2,count, TYPE = ,LPI =,
DCB=

function
none
opndl,opnd2

Description

SET Sets the number of lines per inch and causes any buffered
output to be printed. The system also resets the current
output position to the beginning of the left margin.

When you specify SET, you must also specify LPI.

DISPLAY Causes the system to write to the 4974 any buffered
output.

PUTSTORE Transfers control data from the processor to the 4974
wiFe image buffer. If PUTSTORE is specified, operands
opndl, opnd2, count, and TYPE are required.

GETSTORE Transfers control data from the 4974 wire image buffer
to the processor. If GETSTORE is specified, opndl,
opnd2, count, and TYPE are required.

The address in the processor from which or to which the information is
to be transferred. Required with function PUTSTORE or
GETSTORE.

The address in the 4974 wire image buffer to which or from which the
information is to be transferred. Required with function PUTSTORE
or GETSTORE.

The number of bytes to be transferred. Required with function
PUTSTORE or GETSTORE.

The type of PUTSTORE or GETSTORE operation to be performed.

1, to transfer data between the processor and the 4974 wire image
buffer. If 1 is specified, function must be either PUTSTORE or
GETSTORE.

2, to show that the 4974 wire image buffer is to be initialized with the
standard 64-character EBCDIC set. If the count operand is zero, no
data is transferred. If the count is 8 or less, each bit of the data- string
shows replacement (l) or nonreplacement (0) of the corresponding
character in the standard set with· the alternate character as defined- i;n
the attachment. If 2 is specified, function must be PUTSTORE.

o

o

o

o

Coding Examples

o

o

LPI=

DCB=

TERMCTRL (4974)

The number of lines per inch, either 6 or 8, the 4974 is to use for
printing. This operand is required when the SET function is coded.

The label of an 8-word device control block you define with the DCB
statement. The 4974 support code provides an IDCB that points to
this DCB and issues a ST ART I/O instruction to the device. The
system performs a wait operation and control returns to you after the
interrupt is received from the device.

If the post.:cursor bit is set on in word 0 of the DCB, the terminal
support updates the internal cursor position according to word 1 of the
DCB. If an error occurs, an error return is made according to normal
terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to
the one specified by the DCB operand. You should be familiar with
the 4974 hardware and terminal I/O internals when you use this
operand.

1) This example initializes the 4974 wire image buffer to the standard EBCDIC
character set. The example also replaces the standard dollar sign ($) with its
alternate, the English pound sterling symbol (hex code 5B), and replaces the
standard cent sign (¢) with its alternate, the dollar sign ($) (hex code 4A).

REPLACE
PTR1

ENQT PTR1 ENQUEUE PRINTER
•
•
•

TERMCTRL PUTSTORE,REPLACE,0,2,TYPE=2
•
•
•

DATA
IOCB

X 11200 1
T4974

2) If RDWRFLAG in the following example equals 0, the TERMCTRL instruction
transfers 768 bytes of control data from the processor to the 4974 wire image buffer.
If the RDWRFLAG is not 0, the instruction transfers 768 bytes of control data from
the 4974 wire image buffer to the processor.

ENQT PTR1 ENQUEUE PRINTER
•
•
•
•

SUBROUT SETPRNTR,RDWRFLAG
IF (RDWRFLAG,EQ,0) IF WRITE WIRE IMAGE OPERATION

TERMCTRL PUTSTORE,BUFF,0,768,TYPE=1
ELSE ELSE READ WIRE IMAGE BUFFER
TERMCTRL GETSTORE,BUFF,0,768,TYPE=1

ENDIF
RETURN

BUFF DATA 768H I 01 BUFFER AREA FOR 4974 WIRE IMAGE
PTR1 IOCB T4974

Chapter 2. Instruction and Statement Descriptions 2-497

TERMCTRL (4975)

4975 Printer
Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

LPI=

DCB=

TERMCTRL function,LPI = . or print operand,DCB =

function
none
CHARSE1' ,PDEN,PMODE

Description

SET If you do not specify the LPI operand, you must code
the SET function along with one of four print operands
that allow you to set and control the special print
functions available with the 4975 Modell and Model 2
printers. (See "SET Function Operands" for a
description of each of the print operands.)

Note: You must code the SET function along with either
the LPI operand or one of the print operands.

DISPLAY Causes the system to write to the 4975 any buffered
output. No operands are valid with this function.

The number of lines per inch (either 6 or 8) the 4975 is to print. Use
this operand only with the SET function.

LPI = causes any buffered output to be printed. The system also
resets the current output position to the beginning of the left margin.

The label of an 8-word device control block you define with the DCB
statement. The 4975 support code provides an IDCB that points to
this DCB and issues a ST ART I/O instruction to the device. The
system does a wait operation and control returns to you after the
interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal
support updates the internal cursor position according to word 1 of the
DCB. If an error occurs, an error return is made according to normal
terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to
the one specified by the DCB operand. You should be familiar with
the 4975 hardware and terminal I/O internals when you use this
operand.

SET Function Operands
The SET function operands allow you to:

• Specify the print mode on a 4975 Model 2 printer (PMODE).
• Specify the density of printed characters (PDEN}~
• Specify the language character set (CHARSET).
• Restore the default values for the printer (RESTORE).

2-498 SC34-0937

()

()

o

o

c

()

TERMCTRL (4975)

Changing the printer functions of PDEN, PMODE, CHARSET, and LPI with a
TERMCTRL instruction does not cause a permanent change to the default values
established at system generation time. Using the CT command of $TERMUTl,
however, does change the default values permanently.

You can code only one print operand on each TERMCTRL statement. When
specifying parameters on the PM ODE, PDEN, and CHARSET operands, you can
code the parameter name, an indexed value, or an address. A given address must
not have the same name as the allowable parameters.

To simplify the coding of addresses and indexed values, the system provides an
equate table,EQU4975. The parameter equate is the parameter name preceded by a
"$" sign. For example, the parameter equate for the Italian character set, ITAL, is
$IT AL. Before using addresses or indexed values with the TERMCTRL statement,
you must copy the equate module (EQU4975) into your application program with a
COpy statement.

Note: To use the SET function operands, you must link-edit your program with
$EDXLINK and specify an auto call to $AUTO,ASMLIB. Refer to the Operator
Commands and Utilities Reference for details on the AUTOCALL option of
$EDXLINK.

Operand Description

PMODE = Specifies the print mode to be used on a 4975 model 2 printer.

PDEN=

Parameter
DRAFT

TEXT

TEXTl

Description
Print in draft-processing mode (all characters are equal
in width). The 4975 Modell printer prints only in
draft-processing mode.
Print in text-processing mode with two passes of the
print head (character width is variable).
Print in text-processing mode with a single pass of the
print head. This option produces characters that do not
have a full complement of dots. It can be used to check
the format of printed output.

Specifies the density of printed characters on each line. You can select
compressed, "normal," and expanded character density for the 4975
Model 2 printer. The 4975 Model 1 printer supports "normal" or
expanded character density. If you code compressed for the 4975
Modell printer, the density defaults to expanded.

In draft mode, the compressed density is 20 characters per inch, the
"normal" density is 15 characters per inch, and the expanded density is
10 characters per inch.

In text mode (PMODE=TEXT or TEXT1), the size of individual
characters varies (the letter "i", for example, is narrower than the letter
"m"), and the number of characters per inch depends on the mix of
characters in the data stream.

Parameter
NORM

COMP

Description
Print in "normal" or typewriter-like characters. In draft
mode, you can print up to 198 characters on a line.
Print in compressed characters. In draft mode, you can
print up to 230 characters on a line.

Chapter 2. Instruction and Statement Descriptions 2-499

TERMCTRL (4975)

2-500 SC34~0937

CHARSET=

EXPD Print in expanded characters. In draft mode, you can
print up to 132 characters on a line.

When you code the PDEN = operand, be sure the line
length of your TEXT or BUFFER statement does not
exceed the maximum line length for the density you
choose.

Specifies the language character set to be used. The CHARSET
operand changes the default character set specified during system
generation. (Refer to the TERMINAL statement for the 4975 printer
in the Installation and System Generation Guide.)

The character set coded with the CHARSET operand becomes the new
default for the printer. You can change the default character set with
another TERMCTRL statement or with the $TERMUTI utility.
(Refer to the Operator Commands and Utilities' Reference for details on
how to use the $TERMUTI utility.)

The following character sets are available on the 4975 printer:

AUGE
BELG
BRZL
DNNR
FRAN
FRCA
INTL
ITAL
JAEN
KANA
PORT
SPAN
SPNS
SWFI
UKIN
USCA

Austrian and German
Belgian
Brazilian
Danish and Norwegian
French
French Canadian
International (multinational)
Italian
Japanese and English
Japanese katakana
Portuguese
Spanish (Spain)
Spanish (other)
Swedish and Finnish
English (United Kingdom)
English (United States and Canada).

RESTORE Returns the printer to its default values for PDEN, PMODE,
CHARSET, and LPI. The system restores the current values to those
set with the last CT command of the $TERMUTI utility or, if the CT
command has not been used, to values specified at system generation.

Notes:

When you change printer functions with a TERMCTRL statement,
code the RESTORE option on another TERMCTRL statement to
restore the original default values before your program ends.

1. If any of the print operands are issued to devices other than the 4975, 5219,
5224, 5225, or 5262 printers, they will be ignored, and a return code of -1 will
be returned to the issuing program.

(~)

o

2. Do not confuse the 4975-01A ASCII printer with the 4975 printer. The
4975-01A ASCII printer uses data streaming and not TERMCTRL statements in
operation. {See "Request Special Terminal Function (4975-01A)" on page 2-316
for information on coding a data stream for the 4975-01A ASCII printer.) 0

Syntax Examples

()

Coding Example

o

Return Codes

o

1) Print the contents of the buffer.

WRITEPTR TERMCTRL DISPLAY

2) Set printer to print eight lines per inch.

TERMCTRL SET,LPI=8

3) Set printer to print six lines per inch.

TERMCTRL SET,LPI=6

TERMCTRL (4975)

The follQwing example shows three ways you can specify a parameter on one of the
SET function print operands. In the TERMCTRL instruction labeled T1, the
CHARSET operand is coded with the parameter name of the Italian character set
(ITAL). In the TERMCTRL instruction labeled T2, the CHARSET operand'is
coded with an address which contains the equate value for the Italian character set.
The MOVEA instruction at label INDEX moves the equate value contained in
TABLE into register #1. The CHARSET operand on the TERMCTRL instruction
labeled T3 points to a character set at the address defined by the contents of register
#1 plus 2.

T1
T2
INDEX
T3

•
•
•

COpy EQU4975
•
•
•

TERMCTRL SET,CHARSET=ITAL CODING THE PARAMETER NAME
TERMCTRL SET,CHARSET=ITALIAN CODING AN ADDRESS
MOVEA #1,TABLE
TERMCTRL SET,CHAR~ET=(2,#1) CODING AN INDEXED VALUE

•
•
•

TABLE DATA
ITALIAN DATA

A(+$AUGE)
A(+$ITAL)

NOTE THAT $AUGE AND $ITAL
ARE EQUATE VALUES

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program -or task (taskname). The supervisor places the address of the instruction
that produced the return code in the second word of the TCB (taskname + 2).

Return
Code Condition

'---

301 Invalid TERMCTRL request. Returned for SET function options
PDEN, PM ODE, and CHARSET No terminal error exit taken.

302 PRINTEXT message exceeds line width. Terminal error exit taken.

Chapter 2. Instruction and Statement Descriptions 2-501

TERMCTRL (4978)

4978 Display

2-502 SC34-0937

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

opndl

opnd2

count

ATTN =

TERMCTRL function,opndl,opnd2,count, TYPE = ,ATTN = ,

function
none

~ opndl,opnd2

Description

BLANK

DISPLAY

TONE

BLINK

UNBLINK

LOCK

Prevents displaying input or output characters on the
4978 screen. The contents of the internal buffer
remain unchanged. If you specify BLANK, no other
operands are required.

Causes the system to display the screen contents if
previously blanked by the, BLANK Tunction, to display
any buffered output, and to update the cursor position
accordingly.

Causes the system to sound the audible alarm, if one is
installed.

'Sets the cursor to the blinking state.

Sets the cursor to the nonblinking state.

Locks the keyboard.

UNLOCK Unlocks the keyboard.

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for
the device (when ATTN = NO).

PUTSTORE Transfers data from the processor to storage in the
4978. If this function is specified, ,opndl, opnd2,
count, and TYPE = are required.

GETSTORE Transfers data from storage in the 4978 to the
processor. If this function is specified, operands
opndl, opnd2, count, and TYPE arerequired~

The address in the processor from which or to which the data is to be
transferred.

The address in 4978 storage to which or from which data is to be
transferred.

The number of bytes to be transferred.

YES, to enable the attention function.

NO, to disable the attention function.

This operand must be used with the SET function.

o

o

TYPE =

()

DCB=

, , 0'"

TERMCTRL (4978)'

1, to indicate access to the character image buffer (a 2048-byte table, 8
bytes for each of the EBCDIC codes).

2, to indicate access to the control store (4096 bytes). The end
condition (required when writing the control store) can be indicated by
setting bit 0 on in the second operand. For example, to write the last
1024 bytes of the control store (#2 contains the control store address),
code the following:

TERMCTRL PUTSTORE,BUFFER,(X ' 8000 1 ,#2),1024,TYPE=2

4, to indicate transfer of the field table from the device to the
processor. If this option is specified, function must be GETSTORE.
The input area must be defined with a BUFFER statement. At
completion of the operation, the number of field addresses stored
(addresses of unprotected fields) is placed in the control word at
BUFFER-4.

5, to indicate transfer of the field table from the device to the
processor. If this option is specified, function must be GETSTORE.
A field table is transferred as for TYPE = 4, but the addresses are those
of the protected fields.

6, to indicate that the field table transferred contains only the
addresses of changed fields. If this option is specified, function must
be GETSTORE.

7, to indicate that the field table transferred contains the addresses of
the protected portions of changed fields. If this option is specified,
function must be GETSTORE.

The label of an 8-word device control block you define with the DCB
statement. The 4978 support code provides an IDCB that points to
this DCB and issues a START I/O instruction to the device. The
system does a wait operation and control returns to you after the
interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal
support updates the internal cursor position according to word 1 of the
DCB. If an error occurs, an error return is made according to normal
terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to
the one specified by the DCB operand. You should be familiar with
the 4978 hardware and terminal I/O internals when you use this
operand.

Chapter 2. Instruction and Statement Descriptions 2-503

TERMCTRL (4978)

Coding Examples

2-504 SC34-0937

1) The first TERMCTRL instruction prevents the displaying of characters on the
4978 screen. The second TERMCTRL instruction restores the displaying of
characters on the screen. The third TERMCTRL instruction transfers· data from
storage in the 4978 to the processor.

TERMCTRL BLANK
•
•
•

PRINTEXT LINE=A,SPACES=B
TERMCTRL DISPLAY

BLANK SCREEN

MODIFY DISPLAY

DEFINE CURSOR POSITION
ENABLE DISPLAY

TERMCTRL GETSTORE,BUFFER,O,2048,TYPE=1 READ 4978
* IMAGE STORE

2) The fl1110wing example shows several uses for the TERMCTRL instruction.

TERMCTRL TONE ISSUE TONE TO ALERT OPERATOR
TERMCTRL UNLOCK UNLOCK KEYBOARD
TERMCTRL BLINK SET CURSOR TO BLINK MODE

GETID READTEXT TXTl,'@ PLEASE ENTER YOUR 10 #,LINE=3
IF (TXTl-l,EQ,O),GOTO,GETID
TERMCTRL UNBLINK RESET CURSOR TO UNBLINK

*
GETPASS PRINTEXT '@ PLEASE ENTER YOUR PASSWORD'

TERMCTRL BLANK INHIBIT DISPLAY OF PASSWORD
WAIT KEY WAIT FOR ENTER KEY
READTEXT TXT2 GET USER'S ENTRY
CALL CHKPASS CALL PASSWORD VERIFY ROUTINE

*
IF (PASSCHK,NE,-l),GOTd,ENDIT IF PASSWORD

* DOES NOT MATCH USER 10, EXIT
TERMCTRL SET,ATTN=NO DISABLE ATTENTION KEY
•
•
•

TERMCTRL DISPLAY CLEAR THE BUFFER
*
ENDIT PRINTEXT '@ SESSION IS ENDING'

PRINTEXT '@ SYSTEM IS AVAILABLE AT 7 AM MON - FRI'
TERMCTRL SET ATTN=YES ENABLE THE ATTENTION KEY
TERMCTRL LOCK LOCK THE KEYBOARD
•
•
•

SUBROUT CHKPASS,PASSCHK
•
•
•

RETURN
•
•
•

TXTI TEXT LENGTH=30
TXT2 TEXT LENGTH=30

o

0

0

4979 Display

o

TERMCTRL (4979)

Syntax:

label TERMCTRL function,ATTN = ,DCB =

Required: function
Defaults: none
Indexable: none

Operand Description

function:

ATTN =

DCB=

BLANK Prevents displaying input or output characters on the
4979 screen. The contents of the internal buffer remain
unchanged. If you specify BLANK, no other operands
are required.

DISPLAY Causes the system to display the screen contents if
previously blanked by the BLANK function, to display
any buffered output, and to update the cursor position
accordingly.

LOCK Locks the key board.

UNLOCK Unlocks the keyboard.

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for the
device (when ATTN = NO).

YES, to enable the attention function.

NO, to disable the attention function.

This operand must be used with the SET function.

The label of an 8-word device control block you define with the DCB
statement. The 4979 support code provides an IDCB that points to
this DCB and issues a ST ART I/O instruction to the device. The
system does a wait 9peration and control returns to you after the
interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DeB, the terminal
support updates the internal cursor position according to word I of the
DCB. If an error occurs, an error return is made according to normal
terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to
the one specified by the DCB operand. You should be familiar with
the 4979 hardware and terminal I/O internals when you use this
operand.

Chapter 2. Instruction and Statement Descriptions 2-505

TERMCTRL (4979)

Coding Example

2-506 SC34-0937

The first TERMCTRL instruction prevents the displaying of characters on the 4979 C \.1
screen. The second TERMCTRL instruction restores the displaying of characters on
the screen.

TERMCTRL BLANK
•
•
•

PRINTEXT LINE=A,SPACES=B
TERMCTRL DISPLAY

BLANK SCREEN

MODIFY DISPLAY

DEFINE CURSOR POSITION
ENABLE DISPLAY

o

o

4980 Display

o

o

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

opndl

opnd2

count

ATTN =

TERMCTRL (4980)

TERMCTRL function,opndl,opnd2,count,T¥PE = ,ATTN =,
DCB=

function
none
opndl,opnd2

Description

BLANK Prevents displaying input or output characters on the
4980 screen. The contents of the internal buffer remain
unchanged. If you specify BLANK, no other operands
are required.

DISPLAY Causes the system to display the screen contents if
previously blanked by the BLANK function, to display
any buffered output, and to update the cursor position
accordingly.

TONE Causes the system to sound the audible alarm, if one is
installed.

BLINK Sets the cursor to the blinking state.

UNBLINK Sets the cursor to the nonblinking state.

LOCK Locks the keyboard.

UNLOCK Unlocks the keyboard.

SET Enables the ,attention function for the device (when
ATTN=YES) or disables the attention function for the
device (when ATTN=NO).

PUTSTORE Transfers data from the processor to storage in the 4980.
If you specify PUTSTORE, opndl, opnd2, count, and
TYPE are required.

GETSTORE Transfers data from storage in the 4980 to the processor.
If you specify GETSTORE, operands opndl, opnd2,
count, and TYPE are required.

The address in the processor from which or to which the data is to be
transferred.

The address in 4980 storage to which or from which data is to be
transferred.

The number of bytes to be transferred.

YES, to enable the attention function.

NO, to disable the attention function.

This operand must be used with the SET function.

Chapter 2. Instruction and Statement Descriptions 2-507

TERMCTRL (4980)

TYPE =

DCB=

2-508 SC34-0937

You may want to change the image and/or control stores on a 4980
terminal from an application program. For information on doing so,
see to "$RAMSEC - Replace Terminal. Control Block (4980)" on
page D-23

1, to show access to the character image buffer (a 4096-byte table, 8
bytes for each of the EBCDIC codes).

2, to show access to the control store.

4, to show transfer of the field table from the device to the processor.
If this option is specified, function must be GETSTORE. The input
area must be defined with a BUFFER statement. At completion of
the operation, the number of field addresses stored (addresses of
unprotected fields) is placed in the control word at BUFFER -4.

5, to show transfer of the field table from the device to the processor.
If this. option is specified, function must be GETSTORE. A field table
is transferred as for TYPE = 4, but the addresses are those of the
protected fields.

6, to show that the field table transferred contains only the addresses
of changed fields. If this option is specified, function must be
GETSTORE.

7, to show that the field table transferred contains the addresses of the
protected portions of changed fields. If this option is specified,
function must be GETSTORE.

8, to show that transfer of the microcode from the processor to the
device is in progress.

9, to show that the last segment of the microcode is being sent from
the processor to the device.

10, to show that the last segment of the control store is being sent
from the processor to. the device.

For example, to write the last 1024 bytes of the control store (#2
contains the control store address), code the following:

TERMCTRL PUTSTORE,BUFFER,(0,#2),1024,TYPE=10

The label of an 8-word device control block you define with the DCB
statement. The 4980 support code provides an IDCB that points to
this DCB and issues a START I/O instruction to the device. The
system does a wait operation and control returns to you after the
interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal
support updates the internal cursor position according to word 1 of the
DCB. If an error occurs, an error return is made according to normal
terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to
the one specified by the DCB operand. You should be familiar with
the 4980 hardware and terminal I/O internals when you use this
operand.

o

o

c

5219 Printer

o

o

o

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

TERMCTRL (5219)

TERMCTRL fUl~ction,STREAM = ,LPI = or print operand,
DCB=

function
STREAM=NO
CHARSET,PDEN

Description

SET Sets the number of lines per inch when coded with the
LPI operand. If you do not specify the LPI operand,
you must code the SET function along with one of the
three print operands that allow you to set and control
the special print functions available with the 5219
printer. (See "SET Function Operands" on page 2-510
for a description of each of the print operands.)

Note: You must code the SET function along with either
the LPI operand or one of the print operands.

DISPLAY Causes the system to write any buffered output to the
printer. No operands are valid with this function.

STREAM = YES, to show that you have already coded the escape sequences the
printer needs to do an output operation in the buffer area. For the
required escape sequences, refer to the IBM 5219 Printer Models D01
and D02 Programmer's Reference Guide, GA23-1025.

LPI=

DCB=

NO (the default), to show that the 5219 is in a mode that emulates the
4975 printer.

The number of lines per inch (either 6 or 8) the printer is to print. Use
this operand with the SET function only.

The label of an 8-word device control block you define with the DCB
statement. The printer support code provides an IDCB that points to
this DCB and issues a ST ART I/O instruction to the device. The
system does a wait operation and control returns to you after the
interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal
support updates the internal cursor position according to word 1 of the
DCB. If an error occurs, an error return is made according to normal
terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to
the one specified by the DCB operand. You should be familiar with
the printer hardware and terminal I/O internals to use this operand

Chapter 2. Instruction and Statement Descriptions 2-509

TERMCTRL (5219)

SET Function Operands

2-510 SC34-0937

The SET function operands allow you to:

• Select the density of printer characters on a line (PDEN).
• Select a language character set (CHARSET).
• Restore the default values for the printer (RESTORE).

Changing the printer functions of PDEN, PMODE, CHARSET, and LPI with a
TERMCTRL instruction does not cause a permanent change to the default values
established at system generation time. Using the CT command of $TERMUT1,
however, does change the default values permanently.

You can code only one print operand on each TERMCTRL statement. When
specifying parameters on the PDEN and CHAR SET operands, you can code the
parameter name, an indexed value, or the label of a data area that contains the
parameter name. A label must not have the same name as the allowable parameters.

To simplify the coding of labels and indexed values, the system provides an equate
table, EQU4975. The parameter equate is the parameter name preceded by a "$"
sign. For example, the parameter equate for the Italian character set, IT AL, is
$ITAL. Before coding labels or indexed values with the TERMCTRL statement,
you must copy the equate module (EQU4975) into your application program with a
COpy statement.

Note: To change the print density and character set on a 5219, you must physically
change the print wheel. When the PDEN, CHARSET, or RESTO'RE operands are
coded on the TERMCTRL instruction, they cause the 5219 printer to stop printing
and signal the operator. At that time, the operator can change the print wheel. The
operator must then press the start button to resume printing. Refer to the IBM
Series/1 5219 Printer Models DOl and D02 Setup Procedures/Operator Guide,
GA23-1019, for information on how to change the print wheel.

Operand

PDEN=

Description

Specifies the density of printed characters on each line. You can select
"normal" or expanded character density.

Note: All printed characters are of equal width.

NORM

EXPD

Print in "normal" or typewriter-like characters. You can
print up to 198 characters on a line (15 characters per
inch).

Print in expanded characters. You can print up to 132
characters on a line (10 characters per inch).

When you code the PDEN operand, be sure the line length of your
TEXT or BUFFER statement does not exceed the maximum line
length for the density you choose.

o

o

c

o

o

o

CHARSET=

TERMCTRL (5219)

Specifies the language character set the printer uses. The CHARSET
operand changes the default character set you specified during system
generation. (Refer to the Installation and System Generation Guide for
the 5219 TERMINAL statement.)

The character set coded with the CHARSET operand becomes the new
default for the printer. You can change the default character set with
another TERMCTRL statement or with the $TERMUTI utility.
(Refer to the Operator Commands and Utilities Reference for details on
how. to use the $TERMUTI utility.)

The following character sets are available on the printer:

AUGE
BELG
BRZL
DNNR
FRAN
ERCA
INTL
ITAL
JAEN
KANA
PORT
SPAN
SPNS
SWFI
UKIN
USCA

Austrian and German
Belgian
Brazilian
Danish and Norwegian
French
French Canadian
International (multinational)
Italian
Japanese and English
Japanese katakana
Portugese
Spanish (Spain)
Spanish (other)
Swedish and Finnish
English (United Kingdom)
English (United States and Canada).

RESTORE Returns the printer to its default values for PDEN, CHARSET, and
LPI. The system restores the current values to those set with the last
CT command of the $TERMUTI utility or, if the CT command has
not been used, to values specified at system generation.

Notes:

When you change printer functions with a TERMCTRL statement,
code the RESTORE option on another TERMCTRL statement to
restore the original default values.

1. If any of the print operands are issued to devices other than the 4975, 5219,
5224, 5225, or 5262 printers, they will be ignored, and a return code of -I will
be returned to the issuing program.

2. Do not confuse the 4975-01A ASCII printer with the 4975 printer. The
4975-01A ASCII printer uses data streaming and not TERMCTRL statements in
operation. (See "Request Special Terminal Function (4975-01A)" on page 2-316
for information on coding a data stream for the 4975-01A ASCII printer.)

Chapter 2. Instruction and Statement Descriptions 2-511

TERMCTRL (5219)

Syntax Examples

Coding Example

2-512 SC34-0937

I. Print the contents of the buffer.

WRITEPTR TERMCTRL DISPLAY

2. Set the printer to print eight lines per inch.

TERMCTRL SET,LPI=8

3. Set the printer to print six lines per inch.

TERMCTRL SET,LPI=6

The following example shows how you can specify the escape sequences for a 5219
printer and turn on data streaming. In the example, the labels MI through M7
supply the requested printer commands into the buffer. Label M8 is the test
message. The forms feed command at label FF is moved into the buffer by the
instruction at label Ml. This command ejects the printer page. The instruction at
label M9 contains the number of words being placed in the buffer. The STREAM
operand on the TERMCTRL instruction at label MIO is coded STREAM = YES to
show that you have supplied the required escape sequences. If STREAM = NO were
coded, the system would supply the default escape sequences. The instructions at
labels MIl through MI4 reset the printer and turn off data streaming.

Note: The labels MI through MI4 are shown for explanation purposes only and
should not be coded in an actual program.

c

o

o

TERMCTRL (5219)

•

0
•
•

MOVEA #1,BUFF GET BUFFER ADDRESS
M1 MOVE (0,#1),FF,(1,BYTE) FORMS FEED
M2 MOVE (1,#1),SItWP,(5,BYTES) SET INITIAL CONDITION

FOR WORD PROCESSING
M3 MOVE (6,#1),SHF,(4,BYTES) SET HORIZONTAL FORMAT
M4 MOVE (10,#1),SVF,(4,BYTES) SET VERTICAL FORMAT
M5 MOVE (14,#1),SCD,(6,BYTES) SET CHARACTER DENSITY
M6 MOVE (20,#1),SLD,(4,BYTES) SET LINE DENSITY
M7 MOVE (24,#1),PPM,(11,BYTES) PAGE PRESENTATION
M8 MOVE (35,#1),TESTMSG,(14,BYTES) MOVE MESSAGE INTO BUFFER
M9 MOVE BUFFINDX,49 SET NO. OF BYTES TO PRINT

ENQT P5219 ENQT ON 5219
M10 TERMCTRL SET,STREAM=YES TURN ON DATA STREAMING

PRINTEXT BUFF PRINT
•
•
•

Mll MOVE (0,#1),FF,(1,BYTE) FORMS FEED
M12 MOVE (1,#1,SICDP,(5,BYTES) RESET INITIAL CONDITION

TO DATA PROCESSING
M13 MOVE BUFFINDX.6 SET NO. OF BYTES TO PRINT

PRINTEXT BUFF PRINT
M14 TERMCTRL SET,STREAM=NO TURN OFF DATA STREAMING

•
•

0 •
*
FF DATA X' 0C ' FORMS FEED
SICWP DATA X' 2BD20345 1 INITIAL CONDITION FOR WORD PROCESSING

DATA X' 01 1

SHF DATA XI 2BC10284 I HORIZONTAL FORMAT OF 132 COLS PER LINE
SVF DATA XI 2BC2023C , VERTICAL FORMAT OF 60 LINES PER PAGE
SCD DATA X' 2BD20429 1 CHARACTER DENSITY OF 10 PER INCH

DATA X' 000A '
SLD DATA X' 2BC6020C ' LINE DENSITY OF 6 LINES PER INCH
PPM DATA X' 2BD20948 1 PAGE PRESENTATION MEDIA:

DATA XI 00000102 I
* 1---------- PAPER
* 1-------- SOURCE DRAWER 2

DATA X'000102 1

* 1------------ DESTINATION DRAWER 1
* 1---------- STANDARD QUALITY
SICDP DATA X'2BD20345 1 INITIAL CONDITION FOR DATA PROCESSING

DATA XtFF '
•
•
•

P5219 IOCB P5219,BUFFER=BUFF
BUFF BUFFER 1024,BYTES
BUFFINDX EQU BUFF-4
BUFFADDR DATA A(BUFF)

0
TESTMSG DATA CL14 1 THIS IS A TEST '

•
•
•

Chapter 2. Instruction and Statement Descriptions 2-513

TERMCTRL (5219)

Return Codes

2-514 SC34-0937

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). The supervisor places the address of the instruction
that produced the return code in the second word of the TCB (taskname + 2).

Return
Code Description

301 Invalid TERMCTRL statement] Returned for SET function operands
PDEN and CHARSET. No terminal error exit is taken.

302 PRINTEXT message exceeds line width. Terminal error exit is taken.

()

o

o

()

c

o

TERMCTRL (5224,5225,5262)

5224, 5225, and 5262 Printers
Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

TERMCTRL function,STREAM = ,LPI = or print operand,
DCB=

function
STREAM=NO
CHARSET,PDEN

Description

SET Sets the number of lines per inch when coded with the
LPI operand. If you do not specify the LPI operand,
you must code the SET function along with one of three
print operands that allow you to set and control the
special print functions available with the 5224, 5225, and
5262 printers. (See "SET Function Operands" on
page 2-516 for a description of each of the print
operands.)

Note: You must code the SET function along with either
the LPI operand or one of the print operands.

DISPLAY Causes the system to write to the printer any buffered
output. No operands are valid with this function.

STREAM = YES, to show that you have already coded the escape sequences the
printer needs to perform- an output operation in the text or buffer area.
For the required escape sequences, refer to the IBM Series/1 Printer
Attachment 5220 Series Description, GA34-0242 or the IBM Series/1
Data streaming Instructions for the 5220 Series Printer Attachment,
GA34-0269.

LPI=

DCB=

NO (the default), to show that the system should insert the requited
escape sequences in the text or buffer area before the printer performs
an output operation.

The number of lines per inch (either 6 or 8) the printer is to print. Use
this operand only with the SET function.

The label of an 8-word device control block you define with the DCB
statement. The printer support code provides an IDCB that points to
this DCB and issues a START I/O instruction to the device. The
system does a wait operation and control returns to you after the
interrupt is received from the device.

If the post-cursor bit is set on in word 0 of the DCB, the terminal
support updates the internal cursor position according to word 1 of the
DCB. If an error occurs, an error return is made according to normal
terminal I/O conventions.

Do not code any other operands when you specify this operand on the
TERMCTRL statement. You cannot have another DCB chained to
the one specified by the DCB operand. You should be familiar with
the printer hardware and terminal I/O internals when you use this
operand.

Chapter 2. Instruction and Statement Descriptions _2-515

TERMCTRL (5224,5225,5262)

SET Function Operands

2-516 SC34-0937

The SET function operands allow you to:

• Select the density of printed characters on a line (PDEN).
• Select a language character set (CHARSET).
• Restore the default values for the printer (RESTORE).

Changing the printer functions of PDEN, CHARSET, and LPI with a TERMCTRL
instruction does not cause a permanent change to the default values established at
system generation time. Using the CT command of $TERMUT1, however, does
change the default values permanently.

You can code only one print operand on each TERMCTRL statement. When
specifying parameters on the PD EN and CHARSET operands, you can code the
parameter name, an indexed value, or the label of a data area that contains the
parameter name. A label must not have the same name as the allowable parameters.

To simplify the coding of labels and indexed values, the system provides an equate
table, EQU4975. The parameter equate is the parameter name preceded by a "$"
sign. For example, the parameter equate for the Italian character set, ITAL, is
$ITAL. Before coding labels or indexed values with the TERMCTRL statement~
you must copy the equate module (EQU4975) into your application program with a
COpy statement.

Operand

PDEN=

CHARSET=

Description

Specifies the density of printed characters on each line. You can select
"normal" or expanded character density.

Note: All print characters are of equal width.

NORM

EXPD

Print in "normal" or typewriter-like characters. You can
print up to 198 characters on a line (15 characters per
inch).

Print in expande~ characters. You can print up to 132
characters on a line (10 character per inch).

When you code the PDEN = operand, be sure the line length of your
TEXT or BUFFER statement does not exceed the maximum line
length for the density you choose.

Specifies the language character set the printer uses. The CBARSET
operand changes the default character set you specified during system
generation. (Refer to the TERMINAL statement for the 5224, 5225,
and 5262 printers in the Installation and System Generation Guide.)

The character set coded with the CHARSET operand becomes the new
default for the printer. You can change the default character set with
another TERMCTRL statement or with the $TERMUTI utility.
(Refer to the Operator Commands and Utilities Reference for details on
how to use the $TERMUTI utility.)

c

o

c

o

o

Syntax Examples

o

TERMCTRL (5224,5225,5262)

The following character sets are available on the printer:

AUGE
BELG
BRZL
DNNR
FRAN
FRCA
INTL
ITAL
JAEN
PORT
SPAN
SPNS
SWFI
UKIN
USCA

Austrian and German
Belgian
Brazilian
Danish and Norwegian
French
French Canadian
International (multinational)
Italian
Japanese and English
Portugese
Spanish (Spain)
Spanish (other)
Swedish and Finnish
English (United Kingdom)
English (United States and Canada).

RESTORE Returns the printer to its default values for PDEN, CHARSET, and
LPI. The system restores the current values to those set with the last
CT command of the $TERMUTI utility or, if the CT command has
not been used, to values specified at system generation.

Notes:

When you change printer functions with a TERMCTRL statement
code the RESTORE option on another TERMCTRL statement to
restore the original default values before your program ends.

1. If any of the print operands are issued to devices other than the 4975, 5219,
5224, 5224, or 5262 printers, they will be ignored, and a return code of - 1 will
be returned to the issuing program.

2. Do not confuse the 4975-01A ASCII printer with the 4975 printer. The
4975-01A ASCII printer uses data streaming and not TERMCTRL statements in
operation. (See "Request Special Terminal Function (4975-01A)" on page 2-316
for information on coding a data stream for the 4975-01A ASCII printer.)

1) Print the contents of the buffer.

WRITEPTR TERMCTRL DISPLAY

2) Set printer to print 8 lines per inch.

TERMCTRL SET,LPI=8

3) Set printer to print 6 lines per inch.

TERMCTRL SET,LPI=6

Chapter -2. Instruction and Statement Descriptions 2-517

TERMCTRL (5224,5225,5262)

Coding Example

Return Codes

2-518 SC34::-0937

The following example shows three ways you can specify a parameter on one of the
SET function print operands. In the TERMCTRL instruction labeled T1, the
CHARSET operand is coded with the parameter name of the Italian character set
(ITAL). In the TERMCTRL instruction labeled T2, the CHARSET operand is
coded with the label that points to the equate value for the Italian character set.
The MOVEA instruction at label INDEX moves the equate value contained in
TABLE into register #1. The CHARSET operand on the TERMCTRL instruction
labeled T3 points to a character set at the address defined by the contents of register
#1 plus 2.

•
•
•

COPY EQU4975
•
•
•

Tl TERMCTRL SET,CHARSET=ITAL CODING THE PARAMETER NAME
T2 TERMCTRL SET,CHARSET=ITALIAN CODING AN ADDRESS
INDEX MOVEA #1,TABLE
T3 TERMCTRL SET,CHARSET=(2,#I) CODING AN INDEXED VALUE

TABLE
ITALIAN

•
•
•

DATA
DATA

A(+$AUGE)
A(+$ITAL)

NOTE THAT $AUGE AND $ITAL
ARE EQUATE VALUES

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). The supervisor places the address of the instruction
that produced the return code in the second word of the TCB (taskname + 2).

Return
Code Description

301 Invalid TERMCTRL statement. Returned for SET function operands
PDEN and CHARSET. No terminal error exit is taken.

302 PRINTEXT message exceeds line width. Terminal error exit is taken.

()

o

o

()

c

o

TERMCTRL (ACCA)

ACCA Attached Devices
When your program issues a TERMCTRL instruction to a device attached to an
ACCA card, the functions available to your program depend on whether the device
uses a modem. If the device uses a modem, you can code all the functions and the
ATTN operand.

If a 3101 in block mode is attached to the ACCA card, additional 3101
TERMCTRL functions are available. For a description of those functions see
"3101, 3151, 3161, 3163, and 3164 Display Terminals (Block Mode)" on page 2-436.

Syntax:

label TERMCTRL function,ATTN =

Required: function
Defaults: none
Indexable: none

Operand Description

function:

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for the
device (when ATTN = NO).

RING Waits until the modem presents the Ring Indicator (RI)
to the Series/I. It provides no timeout.

RINGT Waits until the modem presents the Ring Indicator (RI)
to the Series/I. If no 'Ring Indicator (RI) occurs after 60
seconds, this instruction ends and returns an error
condition. That information returns to your application
program in the first word of the task control block
(TCB).

ENABLE Activates Data Terminal Ready (DTR) if not jumpered
on and waits for the modem to return Data Set Ready
(DSR). No timeout is provided.

ENABLET Activates Data Terminal Ready (DTR) if not jumpered
on and waits for the modem to return Data Set Ready
(DSR). If Data Set Ready (DSR) is not returned within
15 seconds, this instruction ends and returns an error
condition. That information returns to your application
program in the .first word of the task control block
(TCB).

ENABLEA Activates Data Terminal Ready (DTR) if not jumpered
on and waits for the modem to return Data Set Ready
(DSR). When Data Set Ready (DSR) is returned, an
answer tone activates for three seconds. The modem
must allow for the control of the answer tone.

ENABLEAT Combines the functions ofENABLET and ENABLEA.

Chapter 2. Instruction and Statement Descriptions 2-519

TERMCTRL (ACCA)

Coding Example

2-520 SC34-'0937

DISABLE Disables Data Terminal Ready (DTR) if not jumpered
on and waits for I ~ seconds. This function is used to O~ .. "
disconnect (hang up) the modem. _

ATTN = YES, to enable the attention and PF key functions.

NO, to disable the attention and PF key functions.

This operand must be used with the SET function.

The TERMCTRL instruction at label Tl waits until the Series/l receives the Ring
Indicator from the modem. At label T2, the TERMCTRL instruction waits for the
Data Set Ready indicator. The TERMCTRL instruction at label T3 disconnects the
modem.

ENQT ACCATERM
IF (LINETYPE,EQ,+SWITCHED)

IF (DIALTYPE,EQ,+ANSWER)
Tl TERMCTRL RING

ENDIF
T2 TERMCTRL ENABLET
*

ENDIF
•
•
•

ENQUEUE TARGET TERMINAL
IF SWITCHED
IF CPU TO ANSWER
WAIT FOR RING INTERRUPT

THEN WAIT FOR DATA SET
READY

IF (LINETYPE,EQ,+SWITCHED) IF SWITCHED LINE
T3 TERMCTRL DISABLE DISABLE LINE

ENDIF
DEQT RELEASE THE TERMINAL
PROGSTOP

DIALTYPE DATA F'-I'
ANSWER EQU G
LINETYPE DATA F'G'
SWITCHED EQU -1
ACCATERM IOCB $SYSLOGA

o

o

Ci

()

TERMCTRL (GPIB)

General Purpose Interface Bus
The Event Driven Executive provides support for the General Purpose Interface Bus
(GPIB) Adapter, RPQ D02118. This support allows an application program to
control and access a set of interconnected devices attached to the adapter by a single
cable or "bus." These devices could include printers, plotters, graphics display units,
and programmable laboratory equipment.

The I/O operations directed to the attached devices and the GPIB bus control are
the responsibilities of the application program. The application must, for example,
perform device selection and polling, and begin all data transfer operations.

For additional details on the GPIB, refer to the Communications Guide.

Syntax:

label TERMCTRL function,command,options,data

Required: command
Defaults: none
Indexable: data

Operand Description

function:

command:

DISPLAY

GPm

Causes the system to write to the adapter any buffered
output. No other operands should be coded with
DISPLAY.

Indicates a GPIB function. The operation is
determined by other operands coded on the
TERMCTRL instruction.

CON The Configure Bus command is used to assign
talker/listener roles to devices and can be used to transfer
up to 100 bytes of configuration information from
programming information. The data delirlliter is a
double quote and comma (",) and can be used to
separate segments of configuration or programming
information. The combination double quote and
semicolon (":) characters will end the data transfer.

DCL The Device Clear command causes the system to
initialize all devices. The initialized state is device
dependent.

GET The Group Execute Trigger command causes the
specified listener devices to have their predefined basic
operation initiated (device dependent).

GTL The Go To Local command causes the specified listener
devices to respond to both the interface message and
panel controls.

Chapter 2. Instruction and Statement Descriptions 2-521

TERMCTRL (GPIB)

2-522 SC34-09j7

IFC The Interface Clear command causes the bus to enter an
inactive state. The timer override option cannot be
specified with this command.

LLO

MON

PPD

PPE

PPU

READ

REN

RPPL

RSB

RSET

SDC

SPD

SPE

SPL

The Local Lock Out command causes the specified
listener devices to respond to interface control messages
but not device panel controls.

The Monitor command allows the transfer of data
between devices on the bus. One device must have been
previously addressed as a talker and at least one as a
listener by a configure operation.

The Parallel Poll Disable command selectively disables
the specified listener devices and prevents them from
participating in a parallel poll sequence.

The Parallel Poll Enable command places the specified
listener devices in a response mode.

The Parallel Poll Unconfigure forces into a parallel poll
idle state all devices which are currently able to respond
to a parallel poll.

The Read command allows the transfer of data into
storage from a device on the bus. The device must
previously have been assigned as a talker. Any listener
devices will receive the data, also.

The Remote Enable command allows specified listener
devices to respond to further operations.

The Results of Parallel Poll command reads the result of
the latest parallel poll into storage. The address specified
in the data operand contains the results and is returned
as one byte.

The read adapter Residual Status Block operation
retrieves an adapter status block after an operation
which requested suppress exception (SE). The status
information is returned in the location specified by the
data operand of the TERMCTRL instruction.

The Reset Adapter command resets the GPIB adapter
and clears any pending interrupts.

The Selected Device Clear command causes the system to
reset the specified listener devices.

The Serial Poll Disable command disables the serial poll
status reporting ability of the devices previously enabled.

The Serial Poll Enable command initializes the specified
talker devices to present status in response to a parallel
poll.

Serial Poll Status reads'the results of the latest serial poll
into storage.

o

o

()

o

o

options:

STAT

WPPL

WRIT

TERMCTRL (GPIB)

Read Adapter Cycle Steal Status returns the GPIB
adapter cycle steal status resulting from a previous
operation. The status information is returned in the
storage location indicated by the data operand of this
command.

The Write Parallel Poll command does a parallel poll of
the devices that were previously enabled by a PPE
command.

A Write Data operation places device programming
information or data on the bus for those devices
specified as listeners.

When using more than one option, separate options with commas and
enclose them all in parentheses.

EOI The End-or-Identity terminator is a signal used by a
talker to indicate the last byte of a block of data. The
adapter ends a read operation with fewer than the
specified number of characters if a talker signals an
end-or-identity condition. The adapter can establish an
EOI condition by requesting the EOI option. EOI is
valid for the following commands: CON, MaN, READ,
and WRIT. You cannot specify EOI together with the
end-of-string (EOS) option.

EOS The End-of-String terminator ends a read operation
immediately. EOS is valid only for the MaN and
READ commands, but it cannot be coded in the same
instruction with the EOI option.

SE The Suppress Exception prevents the reporting of
exception conditions because of incorrect length records
(ILR). An ILR exception occurs when a GPIB read is
ended with fewer than the specified number of characters
read. The contents of the residual status block (RSB) is
meaningful only for this condition. SE is valid only for
the commands MaN and READ.

TO The Timer Override option causes the adapter to wait for
an operation to complete. All GPIB commands can
specify TO except for RSET, RSB, STAT, IFC, WPPL,
RPPL, and SPL.

data Use this operand to specify additional information for the commands
STAT, RSB, or RPPL, or for the option EOS.

Use it to specify the label of an address where a program will store
status data when you code it with commands STAT, RSB, or RPPL.

Specify either the EOS character or the address of a word which
contains, in bits 8 -15, the EOS character when you use it with the
EOS option.

Chapter 2. Instruction and Statement Descriptions 2-523

TERMCTRL (S/l-S/l)

Series/1-to-Series/1

2-524 SC34-0937

The Event Driven Executive provides support for the Series/l-to-Series/l
Attachment, RPQ D02241 and RPQ D02242. This attachment allows an application
to communicate with two or more Series/l processors over a communications link.

Either Series/l processor can begin a data transfer operation. To complete data
transfer operations, issue a read (READTEXT), write (PRINTEXT), or control
(TERMCTRL) instruction through an application program. Call the issuing
processor the "initiating" processor. Call the processor that must respond with the
opposite instruction the "responding" processor.

For TERMCTRL operations, the required state of the "other" processor (initiating
or responding) depends on the particular type of TERMCTRL operation you want
to perform.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

function:

TERMCTRL function,opndl,opnd2,count, WAIT =

function
WAIT=NO
opndl,opnd2

Description

ABORT Causes a write ABORT operation. The responding
processor will cause the operation on the beginning
processor to end the last operation. A return code of
1010 is returned in the task code word. If the operation
is attempted but no request is pending from the initiating
processor, an error code is returned.

Both the initiating and responding processors must have
active Series/l-to-Series/l application programs for this
request to be meaningful. The ABORT function is only
valid for the responding processor.

IPL Causes the initiating processor to send an IPL request to
the responding processor. The processor initiating the
IPL transfers from the address opndl indicates, the
number of bytes its count op~rand specifies. Opnd2
indicates the the address key from which the storage load
will be sent.

RESET

The responding processor receives a system reset from
the attachment then enters load mode and receives the
storage load.

Causes a device reset to the attachment specified by the
most recent ENQT instruction. This will clear any
pending interrupt or busy condition.

RESET can be issued anytime, by either process<?r,
regardless of the state of the other processor.

c

o

c

o

opndl

c opnd2

0 ,
" 1,·

STATUS

TERMCTRL (S/l-S/l)

Obtains status information from the responding
processor. Opndl specifies the address of a 2-word block
of storage that will receive the header data. The header
data represents requests that the initiating processor
issues. If you code opnd2, it is the target address of the
diagnostic jumper word plus the 11 cycle-steal-status
words. You can read cycle-steal-status words only
following an error.

Use this Qperand with the IPL and STATUS functions. When you use
it with IPL, it specifies the address from which you wish to send the
storage load to the responding processor.

When you use opndl with the STATUS function, it specifies an
address where the 2-word header is to be stored.

You can use the contents of the 2-word header to determine the
attached processor operations as follows:

Word 1

Word 2

Bits 0-1 = O.

Bit 2 = 0, then the -responding processor has issued a
READTEXT.

Bit 2 = 1, then the responding processor issued a
PRINTEXT.

Bits 4 -7 are the checksum value.

Bits 8-15 = O.
Specifies the number of bytes to be transferred.

Use this operand with the IPL and STATUS functions. When you use
it with IPL, it specifies the address key for the storage load. Code an
integer specifying the address key (the partition number minus 1).

When YO,u use this operand with the STATUS function, it specifies two
addresses. One is the address in which to place the I-word jumper
status. The other is the ll-word cycle steal status information.

The status words can be used to determine the status of the
attachments as follows:

Word 0 Jumper word

Bits 0-7 = 00000000 RPQ D02242

= 00000001 RPQ D02241

= 00000010 RPQ D)2241

= 00000011 is invalid

Bit 8 = RPQ D02241 is active

Bit 9 = RPQ D02242 is active
Words 1-12 Contain the attachment cycle steal status. These

words will be zero unless an error has occurred on the
device.

Note: IBM Series/l-to-Series/l Attachment RPQs D02241·& D02242
Custom Feature, GA34-1561 provides further descriptions of the bit
settings and the contents of words 1-12.

Chapter 2. Instruction and Statement Descriptions 2-525

TERMCTRL (S/I-S/I)

count

WAIT

2-526 SC34-0937

The count operand is used with the IPL function to specify the number
of bytes to be sent to the processor receiving the IPL.

This operand, when coded WAIT = YES, prevents control from being
returned to the initiating processor until the responding processor
issues a successful READ TEXT or PRINTEXT operation. Note that
neither a TERMCTRL ABORT nor TERMCTRL RESET can
override this operand when it is coded WAIT = YES. The default for
this operand is WAIT=NO.

c

o

o

o

o

o

TERMCTRL (Teletypewriter)

Teletypewriter Attached Devices

Syntax Examples

This can be a teletypewriter-equivalent device such as a 3101 operated in character
mode or an ASR 33/35 connected to a teletypewriter adapter.

Syntax:

label TERMCTRL function,ATTN =

Required: function
Defaults: none
Indexable: none

Operand Description

function:

ATTN =

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for the
device (when ATTN = NO).

DISPLAY Causes any buffered output to be written to the
teletypewri ter.

YES, to enable the attention function.

NO, to disable the attention function.

This operand must be used with the SET function.

1) Display the contents of the buffer.

TERMCTRL DISPLAY DISPLAY THE BUFFER

2) Disable the attention key function.

TERMCTRL SET,ATTN=NO

3) Enable the attention key function.

TERMCTRL SET,ATTN=YES

Chapter 2. Instruction and Statement Descriptions 2-527

TERMCTRL (Virtual)

Virtual Terminal

2-528 SC34-0937

Virtual terminal support uses the PRINTEXT. and READTEXT instructions to
communicate between programs. It requires two TERMINAL configuration
statements and the supervisor module IOSVIRT. Virtual terminal support provides
synchronization logic. For details on virtual terminal other than TERMCTRL
operands, refer to the Communications Guide.

Syntax:

label TERMCTRL function,code,ATTN =

Required: function
Defaults: none
Indexable: none

Operand Description

function:

code

ATTN =

DISPLAY Causes any buffered output to be transmitted across the
virtual channel.

PF Causes a simulated attention interrupt or program
function key interrupt to be presented if the program is
communicating with another program in the same
processor (DEVICE = VIRT) or with a program in
another processor (DEVICE = PROC).

If the code is not specified or is 0, the keyboard task
responds to the next READ TEXT with ">" and waits
for an attention list code to be returned. If the code has
a nonzero value ("x"), the attention list code $PFx is
generated automatically, and the" > " response does not
occur.

The code can be a self-defining term or a variable
containing the desired value.

SET Enables the attention function for the device (when
ATTN = YES) or disables the attention function for the
device (when ATTN = NO).

The attention or PF key value to be presented when using the PF
function. This operand determines the attention or function key value.

YES, enables attention function acknowledgement by the system.

NO, disables attention function acknowledgement by the system.

A systems ability to send attention interrupts is not affected in either
case. Each setting of this operand controls terminal operations until
reset.

This operand must be used with the SET function.

c

o

o

Coding Example

()

o

o

TERMCTRL (Virtual)

The following example can be used for program communication using virtual
terminal support when attention list processing is implemented with the PF key
evaluation.

The TERMCTRL instruction at label Tl disables the attention key for the virtual
terminal device. At label T2, the TERMCTRL instruction presents a program
function key interrupt.

Tl

*

*
T2

ENTRCMD

ENQT B
LOAD PGM4,LOGMSG=NO
ENQT A
TERMCTRL SET,ATTN=NO
READTEXT LINE,MODE=LINE
TCBGET RETURNCD,$TCBCO
DEQT A
IF (RETURNCD,EQ,5),GOTO,ENDIT

GET VIRTUAL CHANNEL B
LOAD COMMUNICATING PGM
GET VIRTUAL CHANNEL A
DISABLE ATTENTION KEY
GET OUTPUT FROM PGM4
GET RETURN CODE
RELEASE CHANNEL A

IF PGM4 ENDED, STOP
IF (LINE,EQ,ENTRCMD,(13,BYT~)) IF PGM4

REQUESTS INPUT COMMAND
TERMCTRL PF,4 SEND PF4 (SEARCH VOLUME)

ENDIF
•
•
•

PROGSTOP
DATA C'ENTER COMMAND'

Chapter 2. Instruction and Statement Descriptions 2-529

TEXT

TEXT - Define a Text Message or Text Buffer

2-530 'SC34-0937

The TEXT statement defines a message or a storage area for character data. You
can store character data in either EBCDIC or ASCII code.

You can use the PRINTEXT instruction to print or display a message on a terminal.
The READ TEXT instruction can be used to read a character string from a terminal
into the storage area defined by the TEXT statement.

READTEXT and GETEDIT instructions described in this manual can be used to
modify the TEXT statement. PRINTEXT and PUTEDIT instructions, also
described in this manual, use the TEXT statement to determine the number of values
to print.

In storage, the first word of each TEXT statement contains a length byte and a
count byte. The length byte (byte 0) contains the size of the storage area in bytes.
The count byte (byte 1) shows the actual number of characters in the storage area.

Figure 2-8 on page 2-532 shows the structure of the TEXT statement.

Syntax:

label

Required:
Defaults:

TEXT 'message' ,LENGTH = ,CODE =

'message' or LENGTH =
CODE = E EBCDIC is the standard internal

representation of all character
data

Indexable: none

Operand Description

label The label of the first byte of text. The GETEDIT, PUTEDIT,
READTEXT, and PRINTEXT instructions refer to this label.

"message' Any character string defined between apostrophes. The c;ount field will
equal the actual number of characters between apostrophes.

If you do not code this operand, you must code LENGTH, and the
storage area is filled with EBCDIC blanks. You should not code this
operand if you use the storage area initially for input.

If the LENGTH operand is not coded and the count value is even,
then LENGTH = count. However, if the count value is odd, then
LENGTH = count + 1.

Use two apostrophes to represent each printable apostrophe.

The symbol "@" causes a carriage return or line feed to occur on roll
screen terminals.

LENGTH= The size (in bytes) of the storage area. The maximum value you can
code is 254. If you do not code this operand, you must code the
I message' operand, and LENGTH equals the number of characters
between the apostrophes.

c

o

c

0,,·
, ,

Syntax Examples

o

o

CODE =

TEXT

The system truncates messages that exceed the length of the storage
area. If the message does not fill the storage area, the system pads the
area to the right of message with EBCDIC blanks.

Note: With $SIASM, TEXT has a maximum length of 98 and a
default length of 64.

If you do not code the I message I operand, the system fills the storage
area with EBCDIC blanks and the count byte is equal to the length
byte.

Defines the data type. Code E for EBCDIC or A for ASCII. E is the
default.

1) The PRINTEXT instruction displays the phrase "A MESSAGE" on a terminal.

•
•
•

PRINTEXT MSGl-
•
•
•

MSGI TEXT IA MESSAGE I

•
•
•

2) The PRINTEXT instruction displays the phrase "ABC " on a terminal.
Because the text buffer length is 10 bytes and the message is only 3 bytes long, the
system fills the buffer space to the right of the message with blanks. CODE = A sets
the character data'type to ASCII.

•
•
•

PRINTEXT MSG2
•
•
•

PROGSTOP
MSG2 TEXT IABC I,LENGTH=10,CODE=A

•
•
•

Chapter 2. Instruction and Statement Descriptions 2-531

TEXT

label TEXT

3) The READ TEXT instruction waits for a response entered from a terminal. The
system will place the response in the TEXT statement labeled MSG#. If the
response has fewer than 30 characters, the system pads the storage. area to a length
of 30 bytes. If the response is more than 30 characters, the system truncates it after
reading 30 bytes.

•
•
•

READTEXT MSG#, I ENTER YOUR HOMETOWN I

•
•
•

PROGSTOP
MSG# TEXT LENGTH=30

•
•
•

'message',LENGTH=length,CODE=

~
count

~ label m "
e

s

..... s r

a

9

e
)

blank

blank

blank

count -

ASCII
or
EBCDIC

} 2 bytes

Length in
bytes

A0937006

Figure 2-8. TEXT Statement

2-532 SC34-0937

o

o

o

o

o

o

TITLE

TITLE - Place a Title on a Compiler Listing

Coding Example

The TITLE statement places a title at the top of each page of the compiler listing.
A program can contain more than one TITLE statement. Each statement generates
a new title on the page that follows it. The system repeats this title on each page
until it encounters another TITLE statement.

Syntax:

blank TITLE message

Required: message
Defaults: none

Operand Description

message For the macro and host assemblers, you can code an alphanumeric
character string up to 100 characters in length. The string must be
enclosed in apostrophes.

The $EDXASM compiler will accept an alphanumeric string of up to
48 characters. The string must be enclosed in apostrophes and must be
all on one line.

See the PRINT statement for an example using TITLE.

Chapter 2. Instruction and Statement Descriptions 2-533

TP

TP Instruction - Perform Host Communications Facility O-perations

2-534 SC34-0937

The Host Communications Facility instruction (TP) can do the following operations:

• Write to a host data set (TP WRITE)

• Read from a host data set (TP READ)

• Submit a background job to the host system (TP SUBMIT)

• Get the time and date f~om the host system (TP TIMEDATE)

• Set the occurrence of a Series/! event so it can be tested by a program running
on the host system (TP SET)

• Test for the occurrence of an event set by the host system (TP FETCH)

• Erase the record, on the host system, of an event that occurred on either the
Series/! or the host system (TP RELEASE.)

You perform each operation using a different format of the TP instruction. Other
TP instruction formats prepare the Series/l for an operation (TP OPENIN/TP
OPENOUT) or end an operation (TP CLOSE). Each of the TP formats is described
on the following pages. Refer to the Communications Guide for sample programs
using the TP instruction formats.

()

o

o

o

c

o

TP (CLOSE)

TP (CLOSE) - End a Transfer Operation

Return Codes

TP CLOSE ends a transfer operation. Use this instruction to end an operation
begun with TP OPENOUT or TP OPENIN.

Notes:

1. If an error occurs, the system automatically closes an open data set. The only
time you must issue a TP CLOSE is when a data set transfer is heing ended and
no errors have occurred. This situation would occur, for instance, if only 10
records were being written to or read from a data set capable of containing 20
records.

2. Always test the return code after you issue a TP CLOSE because some errors are
only detected at this time (return codes 50 and 51, for example).

3. While you have an open data set, no one else is able to use the facility.

Syntax:

label TP CLOSE,ERROR =

Required: CLOSE
Defaults: none
Indexable: none

Operand Description

CLOSE Ends a transfer operation.

ERROR = The label of the first instruction of the routine to be called if an error
condition occurs during this operation. If you do not code this
operand, control passes to the next sequential instruction, and you
must test for errors.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions 2-535

TP (FETCH)

TP (FETCH) - Test for a Record in the System-Status Data Set

Return Codes

2-536 SC34-0937

TP FETCH tests for the existence of a specific record in the system-status data set
on the host system and, optionally, reads in the associated data record.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

FETCH

stloc

TP FETCH,stloc,length,ERROR = ,P2 = ,P3 =

FETCH,stloc
length =0
stloc,length

Description

Tests for the existence of a specific record in the system-status data set
on the host system and reads in the associated data record.

The label of a STATUS instruction. See the STATUS instruction for
more details.

length Specify the length, in bytes, of the data portion of the status record to
be received. A count of zero indicates that no data is to be received.
The maximum value of this field is 256.

ERROR = The first instruction of the routine to be called if an error condition
occurs during this operation. If you do not code this operand, control
is returned to the next sequential instruction and you must test for
errors.

Px= Parameter naming operands. See "Using the Parameter Naming,
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

All return codes for the TP instruction are listed under TP (WRITE).

o

o

o

o

()

TP (OPENIN)

TP (OPENIN) - Prepare to Read Data from a Host Data Set

Return Codes

TP OPENIN prepares the Series/1 to read data from a host data set.

Syntax:

label TP OPENIN,dsnloc,ERROR = ,P2 =

Required: OPENIN,dsnloc
Defaults: none
Indexable: dsnloc

Operand Description

OPENIN Prepares the Series/1 to read data from a host data set.

dsnloc The label of a TEXT statement that specifies the name of a host data
set of standard format.

The data set can be a sequential data set or a partitioned data set with
member name included.

ERROR = The first instruction of the routine to be called if an error condition
occurs during this operation. If you do not code this operand, control
is returned to the next sequential instruction and you must test for
errors.

P2= Parameter naming operand. See "Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions 2-537

TP (OPENOUT)

TP (OPENOUT) - Prepare to Transfer Data to a Host Data Set

Return Codes

2-538 SC34-0937

TP OPENOUT prepares the Series/1 to transfer data to a host data set.

Syntax:

label TP OPENOUT,dsnloc,ERROR = ,P2 =

Required: OPENOUT ,dsnloc
Defaults: none
Indexable: dsnloc

Operand Description

OPENOUT Prepares the Series/l to transfer data to a host data set.

dsnloc The label of a TEXT statement that specifies the name of a host data
set of standard format.

The data set can be a sequential data set or a partitioned data set with
member name included.

ERROR = The first instruction of the routine to be called if an error condition
occurs during this operation. If you do not code this operand, control
is returned to the next sequential instruction and you must test for
errors.

P2= Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

All return codes for the TP instruction are listed under TP (WRITE).

o

o

c

o

o

0···'1
, ,

TP (READ)

TP (READ) - Read a Record from the Host

Return Codes

TP READ reads a data record from the host system.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

READ

buffer

TP READ,buffer,count,END = ,ERROR = ,P2 = ,P3 =

READ,buffer
count =256
buffer ,count

Description

Reads a data record from the host system.

The label of the data buffer where the record is to be stored. This
buffer should be generated with, or should conform to the
specifications of, a BUFFER statement specifying TPBSC.

count The maximum number of bytes to be read. For variable-length
records, this count includes the 4-byte Record Descriptor Word
(RDW). Refer to the Communications Guide for more details on
variable-length records.

END = The first instruction of the routine to be called if an "end-of-data-set"
condition is detected (return code 300). If you do not specify this
operand, the system treats the end of data set condition as an error.

ERROR = The first instruction of the routine to be called if an error conditior
occurs during the execution of this operation. If you do not specify
this operand, control is returned to the next sequential instruction and
you must test for errors.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions 2-539

TP (RELEASE)

TP (RELEASE) - Delete a Record in the System-Status Data Set

Return Codes

2-540 SC34-0937

TP RELEASE deletes a specifio record in the system-status data set on the host
system and, optionally, reads the associated data record.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

RELEASE

stloc

length

TP RELEASE,stloc,length,ERROR = ,P2 = ,P3 =

RELEASE,stioc
length =0
stloc,length

Description

Deletes a specific record in the system-status data set on the host
system and reads the associated data record.

The label of a STATUS instruction. See the STATUS instruction for
more details.

Specify the length, in bytes, of the data portion of the status record to
be received. A count of zero indicates that no data is to be received.
The maximum value of this field is 256.

ERROR = The first instruction of the routine to be called if an error condition
occurs during this operation. If you do not code this operand, control
is returned to the next sequential instruction and you must test for
errors.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

All return codes for the TP instruction are listed under TP (WRITE).

o

o

o

()

o

TP (SET)

TP (SET) - Write a Record in the System-Status Data Set

Return Codes

TP SET writes a record in the system-status data set on the host system.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

SET

stloe

TP

SET,stloe
length =0
stloe,length

Description

SET,stloe,length,ERROR = ,P2 = ,P3 =

Writes a record in the system-status data set on the host system.

The label of a STATUS instruction. See the STATUS instruction for
more details.

length Specify the length, in bytes, of the data portion of the status record to
be transmitted. A count of zero indicates that no data is to be
transmitted. The maximum value of this field is 256.

ERROR = The first instruction of the routine to be called if an error condition
occurs during this operation. If you do not code this operand, control
is returned to the next sequential instruction and you must test for
errors.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions 2-541

TP (SUBMIT)

TP (SUBMIT) - Submit a Job to the Host

Return Codes

2-542 SC34-0937

TP SUBMIT submits a job from the SeriesJl to the host batch job stream.

Syntax:

label TP SUBMIT,dsnloc,ERROR = ,P2 =

Required: SUBMIT ,dsnloc
Defaults: none
Indexable: dsnloc

Operand Description

SUBMIT TP SUBMIT submits a job from the Series/l to the host batch job
stream.

dsnloc The label of a TEXT statement that specifies the name of a host data
set containing the job (JCL and optional data) to be submitted. You
can code either:

TEXT
TEXT

"dsname" for a sequential data set.
"dsname(membername)" for a partitioned data set.

In systems with a HASP/Host Communications Facility interface,
specifying DIRECT for dsnloc allows immediate transmission of data
records to the job stream without using an intermediate host data set.
To use this facility, code the following:

*

•
•
•

TP SUBMIT,DIRECT
TP WRITE,buffer,80

* Code one TP WRITE,buffer,80 for each job stream record
*

TP CLOSE

ERROR = The first instruction of the routine to be called if an error condition
occurs during this operation. If you do not code this operand, control
is returned to the next sequential instruction and you must test for
errors.

P2 = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

All return codes for the TP instruction are listed under TP (WRITE).

c

()

o

o

o

TP (TIMED ATE)

TP (TIMEDATE) - Get Time and Date from the Host

Return Codes

TP TIMEDATE obtains the time of day (hours, minutes, and seconds) and the date
(month, day, and year) from the host system.

Syntax:

label TP TIMEDATE,loe,ERROR = ,P2 =

Required: TIMEDATE,loe
Defaults: none
Indexable: loe

Operand Description

TIMEDATE
Obtains the time of day (hours, minutes, and seconds) and the date
(month, day, and year) from the host system.

loe The label of a 6-word data area where time of day and date are stored
in the order: hours, minutes, seconds, month, day, and year.

ERROR = The label of the first instruction of the routine to be called if an error
condition occurs during this operation. If you do not code this
operand, control passes to the next sequential instruction and you must
test for errors.

P2= Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

All return codes for the TP instruction are listed under TP (WRITE).

Chapter 2. Instruction and Statement Descriptions 2-543

TP Return Codes

TP (WRITE) - Write a Record to the Host

Return Codes

2-544 SC34-0937

TP WRITE sends a data record to the host system.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

WRITE

buffer

TP WRITE,buffer,count,END = ,ERROR = ,P2 = ,P3 =

WRITE,buffer
count = 256
buffer ,count

Description

Sends a data record to the host system.

The label of the data buffer that contains the record to be transmitted.
This buffer should be generated with, or should conform to the
specifications of, a BUFFER statement specifying TPBSC.

count The number of Series/1 bytes to be transferred. For variable-length
records, this includes the 4-byte Record Descriptor Word (RDW).

END = The label of the first instruction of the routine to be called if the
system detects an end-of-data-set (EOD) condition (return code 400).
If this operand is not specified, the system treats an EOD as an error.

ERROR = The label of the first instruction of the routine to be called if an error
condition occurs during the execution of this operation. If this
operand is not specified, control passes to the next sequential
instruction and you must test for errors.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code ~hese operands.

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). Because program execution halts until the operation is
complete, your program must test the return code to determine if the operation is
successful.

Note: If an error is detected, an open data set is closed for you automatically.

Return
Code Condition Module

-1 Successful completion. Supervisor

1 Illegal command sequence. Supervisor

2 TP I/O error. Supervisor

3 TP I/O error on host. HCFCOMM

4 Looping bidding for the line. Supervisor

o

o

o

TP Return Codes

o Return
Code Condition Module

5 Host acknowledgement to request. code Supervisor
was neither ACKO, ACKI, WACK, nor
NACK.

6 Retry count exhausted - last error was a Supervisor
time-out: the host must be down.

7 Looping wJ:1ile reading data from the host. Supervisor

8 The host responded with other than an Supervisor
EOT or an ENQ when an EOT was
expected.

9 Retry count exhausted - last error was a Supervisor
modem interface check.

10 Retry count exhausted - last error was not Supervisor
a timeout, modem check, block check, or
overrun.

11 Retry count exhausted - last error was a Supervisor
transmit overrun.

50 I/O error from last I/O in DSWRITE. DSCLOSE

51 I/O error when writing the last buffer. DSCLOSE

100 Length of DSNAME is zero. HCFCOMM

101 Length of DSNAME exceeds 52. HCFCOMM

102 Invalid length specified for I/O. HCFINIT

200 Data set not on volume specified for the HCFINIT
controller.

o
201 Invalid member name specification. DSOPEN

202 Data set in use by another job. DSOPEN

203 Data set already allocated to this task. DSOPEN

204 Data set is not cataloged. DSOPEN

205 Data set resides on multiple volumes. DSOPEN

206 Data set is not on a direct access device. DSOPEN"

207 Volume not mounted (archived). DSOPEN

208 Device not online. DSOPEN

209 Data set does not exist. DSOPEN

211 Record format is not supported. DSOPEN

212 Invalid logical record length. DSOPEN

213 Invalid block size. DSOPEN

214 Data set has no extents. DSOPEN

216 Data set organization is partitioned and no DSOPEN
member name was specified.

217 Data set organization is sequential and a DSOPEN
member name was specified.

o
Chapter 2. Instruction and Statement Descriptions 2-545

TP Return Codes

Return
Code Condition Module

218 Error during OS/OPEN. DSOPEN
o

219 The specified member was not found. DSOPEN

220 An I/O error occurred during a directory DSOPEN
search.

221 Invalid data set organization. DSOPEN

222 Insufficient I/O.buffer space available. DSOPEN

300 End of an input data set. DSREAD

301 I/O error during an OS/READ. DSREAD

302 Input data set is not open. DSREAD

303 A previous error has occurred. DSREAD

400 End of an output data set. DSWRITE

401 I/O error dllring an OS/WRITE. DSWRITE

402 Output data set is not open. DSWRITE

403 A previous error has occurred. DSWRITE

404 Partitioned data set is full. DSCLOSE

700 Index, key, and status record added. SET

701 Index exists, key and status added. SET

702 Index and key exist, status replaced. SET

703 Error - Index full. SET

704 Error - Data set full. SET o
710 I/O Error. SET

800 Index and key exist. FETCH

801 Index does not exist. FETCH

802 Key does not exist. FETCH

810 I/O error. FETCH

900 Index and/or key released. RELEASE

901 . Index does not exist. RELEASE

902 Key does not exist. RELEASE

910 I/O error. RELEASE

1xxx An error occurred in a subordinate module S7SUBMIT
during SUBMIT. xxx is the code returned
by that module.

o
2-546 SC34-0937

o

c

o

USER

USER - Use Assembler Code in an EDL Program
The USER instruction allows you to use Series/1 assembler code within an EDL
program.

Do not use Series/1 Assembler routines to issue input/output instructions to Series/1
standard devices. Use only standard EDL I/O instructions.

Your Series/1 assembler routine uses a set of hardware registers to perform
operations. You should save the contents of these registers on entry into the routine.
You must restore the register contents before returning control to the EDL program.
Details of the conventions that must be followed are described under
"Considerations when Coding Assembler Routines."

Syntax:

label USER

Required: name
Defaults: none
Indexable: none

Operand Description

name,P ARM = (parml, ... ,parmn),
P = (namel, ... ,namen)

name

PARM=

P=

The entry point name of your Series/1 assembler routine.

A list of parameters that are to be passed to your routine.

A list of names to be attached to the PARM operands.

Considerations when Coding Assembler Routines
On entry to the Series/1 assembler routine, hardware register 1 points to your first
parameter. If no parameters are passed to the routine, register 1 points to the
address of the next instruction following the USER instruction. Hardware register 2
contains the address of the current task' s TCB. Your routine must preserve the
contents of register 2 for eventual return to the supervisor. The routine must also
provide in register 1 the address of the next EDL instruction to be executed when
returning to the supervisor.

If parameters are passed to the routine, register 1 must be increased within your
routine by double the number of parameters used before returning to the supervisor.
If you want to return to an instruction other than the instruction following the
USER instruction, you can set register 1 to the address of the desired instruction. In
all cases, the assembly language routine must exit by a branch to the label
RETURN.

The USER instruction requires one of the following:

• Allowing the RETURN = operand on the ENDPROG statement in your
program to default to RETURN = YES

• $EDXLINK used to include the $$RETURN and the $$SVC object modules.

Chapter 2. Instruction and Statement Descriptions 2-547

USER

R1

The autocall feature of $EDXLINK also can be used. Refer to the Language
Programming Guide for additional information on $EDXLINK.

Figure 2-9 shows the control flow to and from a Series/l assembler routine.

No parameters

• ~ name1 EOU * · •
• •

•
USER name1

+ DC X'OOAE' Series/1 assembler instructions
•

+ DC A (name1) - •
~ EDX-instruction .-- •

• MVA NEXTEDL,R1
• MVA TCB,R2
• B RETURN

'-- RETURN interface routine

With parameters

• ~ name1 EOU • * • •
•

USER name1,PARM=(a,b) - •
+ DC X'OOAE' Series/1 assembler instructions
+ DC A (name1) •

R1 -----. + DC A (a) •
•

+ DC A (b)
ABI4R1

EDX-instruction IL B RETURN •
•
• RETURN interface routine

Note: + indicates statements generated by $S1 ASM.
A0937007

Figure 2-9. Calling a Series/l Assembler Routine and Returning

2-548 SC34-0937

You can pass parameters as constants, which will be stored in the calling list, or pass
the symbolic names (addresses) of the parameters. In the latter case, the address of
the parameter is contained in the calling list. If the parameter is a constant, it can
be addressed through hardware register I, which points to the first parameter on
entry to the user routine.

o

o

o

o

o

USER

The instruction,

MVW (R1,0),R3

wi11load the parameter into register 3. The second parameter also can be loaded by:

MVW (R1 ,2) ,R3

The following instruction shows how to acquire a parameter (in this case, the
second) whose addresS' is passed in the calling sequence.

MVW (R1,2)*,R3

Your routine is free to use all the registers if registers 1 and 2 are set properly for
return to the supervisor. The last instruction of your routine must branch to
RETURN which is an" entry point in the interface module $$RETURN. You must
link-edit this module to the assembler routine with the $EDXLINK utility.

In the following example, an EDL program p~sses control to a Series/l assembler
routine with USER * + 2. The routine passes control back to the EDL program with
BAL RETURN,RI.

*

OK

*

•
•
•

MOVE
ADD

USER
MVW
•
•
•

EQU
MVW
BAL

MOVE
SUB
•
•
•

A,B
A,10

*+2
R2,SAVER2

STANDARD INSTRUCTION EXAMPLE
ANOTHER INSTRUCTION

ENTRY TO ASSEMBLER CODE
SAVE HARDWARE REGISTER 2 (TCB)

ASSEMBLER CODE

*
SAVER2,R2
RETURN,R1

B,A
B,10

RESTORE HARDWARE REGISTER 2 (TCB)
SET HARDWARE REGISTER 1 AND RETURN

NOW BACK INTO THE EDL PROGRAM

If your EDL program contains assembler code, you must assemble the program
using the Series/l Macro or host assemblers. $EDXASM does not allow mixing
Series/1 code with the EDL instructions. If your assembler routine is in a separate
module, you must assemble the routine using one of the macro assemblers and
link-edit that module to the EDL program with $EDXLINK.

For information regarding use of the USER command in logging errors, see
"$USRLOG - Log Specific Errors From a Program" on page D-28.

Chapter 2. Instruction and Statement Descriptions 2-549 "

WAIT

WAIT - Wait for an Event to Occur

,

2-550 SC34-0937

The WAIT instru<;tion allows your program to wait for an event to occur, such as an
I/O operation or a process interrupt. An event has an associated name specified by
you. The initial status of any event defined by you is "event occurred" unless you
explicitly reset the event with the RESET instruction before issuing the WAIT or
reset the event in the WAIT instruction.

WAIT normally assumes the event is in the same partition as the currently executing
program. However, it is possible to wait on an event in another partition using the
cross-partition capability of the WAIT instruction. See
Appendix C, "Communicating with Programs in Other Partitions (Cross-Partition
Services)" on page C-I for an example that waits for an event to occur in another
partition. For more information on cross-partition services, refer to the Language
Programming Guide.

When compiling programs with $SlASM or the host assembler, ECBs are generated
automatically by the POST instruction when needed. When using $EDXASM,
ECBs must be explicitly coded unless one of the system event names previously
described is used (PIx, TIMER, DSn, and so on). Whea the WAIT is satisfied with
a POST instruction, the post code is stored in both the ECB and the waiting task's
TCB code location.

Syntax:

label WAIT event,RESET ,PI =

Required: event
Defaults: event not reset before wait
Indexable: event

Operand Description

event The label of the event for which the system is waiting.

For process interrupt, use PIx, where "x" is a user process interrupt
number in the range 1 - 99.

F or intervals set by STIMER, use TIMER as the event name.
However, do not code RESET with TIMER; the system always resets
the ECB associated with the TIMER option.

For disk I/O events, use DSn or the DSCB name from a DSCB
statement as the event name.

For terminals, use KEY to cause the task to wait for an operator to
press the enter key or any PF key.

WAIT KEY suspends the issuing ta~k until the enter key or a PF key
is pressed. Pressing one of these keys ends the WAIT condition and
execution resumes with the instruction following the WAIT KEY.
There is no automatic transfer to an attention routine. The WAIT
KEY instruction enqueues the currently active terminal and
temporarily inhibits the ATTNLIST capability while the task is
suspended by the WAIT instruction.

o

o

o

o

o

RESET

WAIT

The key that has been pressed can be identified by the value stored in
the second word of the task control block (taskname + 2). The
program function keys generate values as follows: PFI generates a
value of 1, PF2 generates a value of 2, and so on. The enter key
generates a value of o.
To determine which interrupt codes are returned for the 4978 PF key
operations, refer to the "Control Chart for 4978 Display Station"
shown under the command "C - Change a Key Definition" in the
$TERMUT2 utility in the Operator Commands and Utilities Reference.

For a 3151, 3161, 3163, or 3164 terminal in block mode, pressing PF
keys 13 - 24 will generate a value of zero in the second word of the
task control block. PF keys 1-12 will generate their corresponding
values.

For a 3101 in block mode, pressing the SEND key to satisfy a WAIT
KEY will reset changed data tags.

If a READTEXT with TYPE = MODDATA is to be executed after the
WAIT KEY, one of the PF keys must be pressed to satisfy the WAIT
KEY instruction.

Any terminal I/O' operation that takes place as a result of pressing the
enter key to satisfy a WAIT KEY instruction will cause a return code
to be placed in the first word of the task control block (taskname). If
the return code is not a-I, the address of this instruction will be
placed in the second w9rd of the task control block (taskname + 2).
The terminal I/O return codes are described at the end of the
PRINTEXT and READTEXT instructions in this manual and also in
Messages and Codes.

Reset (clear) the event before waiting. Using RESET will force the
wait to occur even if the event has occurred and been posted as
complete.

Do not code this operand when you want the system to wait foran
event you specified on the EVENT operand of either a PROGRAM or
a TASK statement.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Chapter 2. Instruction and Statement Descriptions 2-551

WAIT

Coding Example

2-552 SC34-0937

The WAIT instruction, at label WI, suspends execution of the primary task until the
loaded task, PROGI, signals its completion by posting the ECB labeled LOADECB. 0
The WAIT instruction at W2 suspends task execution until the operator presses a
PFI key, PF2 key, or the enter key. When one of those keys has been pressed, the
task uses the key number, stored in task word 1, to determine what action to take.

The WAIT at label W3 suspends task execution until a 60-second timer has elapsed
(it was set by the preceding STIMER instruction).

TASK
LOADECB
BEGIN

WI

W2

PROGRAM BEGIN
ECB
EQU *

•
•
•

LOAD PROGl,EVENT=LOADECB
WAIT LOADECB

•
•
•

PRINTEXT '@PRESS PF KEY 1 OR 2 TO INDICATE YOUR SELECTION I

WAIT KEY
IF (TASK+2,EQ,1)

GOTO RTNI
ELSE

IF (TASK+2,EQ,2)
•
•
•

STIMER 68888
W3 WAIT TIMER

•
•
•

o

o

o

WAITM

WAITM - Wait lor One or More Events in a List
The WAITM instruction waits for one or more events to occur from a list of events
that you specify with an MECB statement. These events can include I/O operations
or any process interrupts for which you have posted ECBs. Up to 64 WAITM
operations can be active in the system at anyone time. This depends on the value
you specified on the SYSPARMS statement at system generation time.

See "MECB - Create.a List of Events" on page 2-250 for information on how to
code the MECB statement.

WAIT normally assumes the event is in the same partition as the currently executing
program. However, it is possible to waiton an event in another partition using the
cross-partition capability of the WAIT instruction. See
Appendix C, "Communicating with Programs in Other Partitions (Cross-Partition
Services)" on page C-l for an example that waits for an event to occur in another
partition. For more information on cross-partition services, refer to the Language
Programming Guide.

Notes:

1. To use the W AITM instruction, you must have included the SW AITM module
in your system and modified the MECBLST keyword on the SYSPARMS
statement during system generation. (Refer to the Installation and System
Generation Guide for additional information.)

2. The W AITM instruction uses 1024 bytes of storage in partition 1.

3. The system processes the WAITM instruction in the same manner as the WAIT
instruction.

label W AITM mecb,RESET ,PI =

Required: mecb
Defaults: none
Indexable: mecb

Operand Description

mecb The label of the MECB statement that defines the list of events.

RESET Reset (clear) the· events before waiting. Using RESET forces the wait
to occur even if the events have occurred and have been posted
complete.

PI = Parameter naming operand. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code this operand.

Chapter 2. Instruction and Statement Descriptions 2-553

WAITM

Syntax Example
Wait with reset on a list labeled MECBl. o

WAITM MECB1,RESET
•
•
•

Post Codes
The following post codes. are returned in the first word of the MECB.

Post
Code Description

X'FFFF' Successful completion.

X'BADO' W AITM instruction not supported (SW AITM module not in system).

X'BADl' Too many W AITM operations active in system (maximum is 20).

X ' BAD2 1 Cannot reset MECB because another program is using it.

X ' BAD3 1 Invalid number of events specified.

o

o
2-554 SC34-0937

o

o

o

WHERES

WHERES - Locate an Executing Program
The WHERES instruction locates another program executing elsewhere in the
system. Note that it is not operable with programs you are unable to cancel. These
programs are those for which names in storage have been changed. As a result, they
do not cancel with the $C command. To locate another program, WHERES
searches each partition in ascending order from partition number 1 to determine if
the program is contained in that partition. It indicates results of that search by
placing a return code in the first word of the task control block. If more than one
copy of the program exists, the system reports only the first copy found.

The WHERES instruction does the cross-partition service communication among
independently loaded programs. The address key value can be used as input to the
cross-partition options of WAIT, POST, READ, WRITE, ATTACH, ENQ, DEQ,
BSCREAD, BSCWRITE, and MOVE. The address can be used with an
application-defined convention to gain addressability to data or code routines within
another program. One such technique is to get the contents of the $STORAGE
word from the located program's header and use that to address data which the
program has previously placed in its dynamic ar.ea. WHERES also can be used to
determine if a particular program is ,already loaded, thereby avoiding the need to
load another copy. See Appendix C, "Communicating with Programs in Other
Partitions (Cross-Partition Services)" on page C-I for examples using the WHERES
instruction.

Syntax:

label WHERES progname,address,KEY = ,PI = ,P2 = ,P3 =

Required: progname, address
Defaults: none
Indexable: none

Operand Description

progname The label of an 8-byte area containing the 1- 8 character program
name of the program to be located. If the label has",fewer than eight
characters, the program name must be left-justified and padded with
blanks on the right. The program name must begin on a full-word
boundary.

address The label of a word in which the load-point address of the located
program'will be returned if the program is found. This address is the
first byte of the program and is also the beginning of the program
header.

KEY =

If the program is not located, a -1 is stored at this location.

The label of a word in which the address key of the partition
containing the located program will be returned if the program is
found. The address key is one less than the partition number.

Chapter 2. Instruction and Statement Descriptions 2-555

WHERES

Coding Example

2-556 SC34-0937

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands. P3 is the name of the KEY operand.

The following example demonstrates a use of the cross-partition service WHERES
instruction. $TCBADS is not changed by the WHERES instruction.

GETNAME EQU *
READTEXT PGMNAME,'@ENTER THE PROGRAM

NAME TO BE FOUND'
IF

FI NDNAME EQU
(PGMNAME-1,EQ,0,BYTE),GOTO,GETNAME
*

*
*
*

*

WHERES PGMNAME,ADDRESS,KEY=ADDRKEY IF THE PROGRAM IS
FOUND, ADDRESS WILL CONTAIN THE
ENTRY POINT ADDRESS AND ADDRKEY
WILL CONTAIN THE ADDRESS KEY

IF (TASKNAME,NE,-l),GOTO,NOPGM
ADD ADDRKEY,l,RESULT=PARTNUM
PRINTEXT '@PROGRAM ',SKIP=2
PRINTEXT PGMNAME
PRINTEXT ' WAS FOUND IN PARTITION # '
PRINTNUM PARTNUM
PRINTEXT ' (ADDRESS SPACE '
PRINTNUM ADDRKEY
PRINTEXT I) AT LOAD POINT'
PRINTNUM ADDRESS
GOTO TRYAGAIN

NOPGM EQU *
PRINTEXT PGMNAME
PRINiEXT ' WAS NOT FOUND IN ANY ADDRESS SPACE'

*
TRYAGAIN EQU *

PRINTEXT PGMNAME
QUESTION '@DO YOU WISH TO TRY ANOTHER SEARCH',YES=GETNAME

*
ENDn EQU *
* GOTO STOPPER
*
PGMNAME TEXT LENGTH=8 STORE AREA FOR PROGRAM NAME
ADDRESS DATA FlO' PROGRAM'S PARTITION LOAD POINT
ADDRKEY DATA FlO' ADDRESS SPACE KEY
PARTNUM DATA F'0' PARTITION NUM~ER (ADDRKEY + 1)

x

The READ TEXT acquires the name of the program for which you are searching. If
the enter key is pressed without typing a response to the READ TEXT instruction,
the READTEXT and its PROMPT are issued again.

If the program is found, the program name, the address space in which it was
located, and the partition number are displayed on the terminal. Otherwise, the
system displays a not-found message.

o

o

You are always queried by the QUESTION instruction as to whether you wish to try 0
another search. If your reply is no, the program ends. If your reply is yes, the
program branches to GETNAME and the program executes again.

Return Codes

o

o

o

WHERES

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Code Description

-1 Program found.

0 Program not found.

Chapter 2. Instruction and Statement Descriptions 2-557

WRITE

WRITE - Write Records to a Data Set

2-558 SC34-0937

The WRITE instruction transfers one or more records from a buffer area to a disk,
diskette, or tape data set.

You can transfer (write) data sets to disk or diskette either sequentially or directly by
relative record. Records are 256 bytes long. The Operator Commands and Utilities
Reference describes the format of a record created with the text editor of $FSEDIT.

For tape data sets, you can write data sequentially only. Tape records can be from
18 to 32767 bytes long.

The WRITE. instruction can take advantage of the cross-partition capability that
enables your program to share data with a program or task in another partition.
Appendix C, "Communicating with Programs in Other Partitions (Cross-Partition
Services)" on page C-I contains an example of the cross-partition WRITE
operation. You can find more information on cross-partition services in the
Language Programming Guide.

Syntax:

label

Required:
Defaults:

Indexable:

Operand

DSx

loc

WRITE DSx,loc,count,relrecno Iblksize,PREC = ,
END = ,ERROR =, WAIT = ,PI = ,P2 = ,P3 = ,P4 =

DSx,loc
count = 1, relrecno = 0 or blksize = 256,
WAIT = YES, PREC=S
loc, count, relrecno or blksize

Description

The data set to which you are writing. Code DSx, where "x" is a
positive integer that indicates the relative position (number) of the data
set in the list of data sets you defined on the PROGRAM statement.
The value can range from I to the maximum number of data sets
defined in the list. The maximum range is from 1-9.

You can substitute a DSCB name defined by a DSCB statement for
DSx.

The label of the buffer area from which data is to be transferred.

WRITE normally assumes the buffer is in the same partition as the
currently executing program~ You can transfer records from a buffer
in another partition, however, by using the cross-partition capability of
the WRITE instruction.

count The number of contiguous records you want written. The maximum
value for this field is 255. If you code 0 for this field, no I/O
operation will be performed. A count of the actual number of records
transferred will be returned in the second word of the task control
block. If fewer records remain in the data set than specified by the
count field, the system writes as many records as will fit in the space
left on the disk data set. It then returns an end-of-data-set return code·
to the program. This is known as an end-of-data-set condition.

o

o

o

relrecno

o

blksize

PREC=

END =

o

WRITE

The location, by relative record number, where the system is to write a
record. The record number is relative to the first record in the data set
and the numbering starts with 1. You can code a positive integer or
the label of a data area containing the value.

You can request a sequential write operation by coding a 0 or by
allowing this operand to default. Sequential WRITE instructions start
with relative record 1 or the relative record number specified by a
POINT instruction. The supervisor keeps track of sequential WRITE
instructions and increments an internal next-record-pointer for each
record written in sequential mode (relrecno is 0). Direct WRITE
operations (relrecno is not 0) can be intermixed with sequential
operations, but this does not change the next-record-pointer used by
sequential operations.

If you code a self-defining term for this operand, or an equated value
indicated by a plus sign (+), then it is assumed to be a single-word
value and is generated as an in-line operand. Because this is a
one-word value, it is limited to a range of 1 to 32767 (X I 7FFF I).

If you code an indexable value or an address for this operand, the
PREC operand can be used to further define whether relrecno is to be
a single-word or double-word value.

If the PREC operand is coded as PREC = D, then the range of
relrecno is extended beyond the 32767 value to the limit of a
double-word value (2147483647 or X J 7FFFFFFF J).

The size, in bytes, of the record the system is to write to a tape data
set. The range is from 18 to 32767. You can code a self-defining term
or the label of a data area containing the value. If you do not code
this operand or code a 0, the system uses the default value of 256
bytes.

Do not code this operand in a WRITE instruction containing the
relrecno operand.

This operand further defines the relrecno operand when you specify an
address or indexable value for that operand. PREC = S (the default)
limits the value of relrecno to single-word precision or to a maximum
value of 32767 (X I 7FFF J).

Coding PREC = D gives the relrecno ope~and a doubleword precision
and extends the range of its maximum value to a doubleword value of
2147483647 (X J 7FFFFFFF I).

Do not code this operand in a WRITE instruction containing the
blksize operand.

The label of the first instruction of the routine to be called if an
end-of-data-set condition is detected during the WRITE operation
(return code = 10). If you do not code this operand, the system treats
an end-of-data-set (EOD) condition as an error.

For tape, if an end-of-tape (EOT) condition is detected, the EOT path
will be taken with return code 24, even though the block was
successfully written. See the CONTROL instruction for setting the
proper end-of-data (EOD) indicators for an output tape. Multiple
blocks (if specified by the count field) might not have been successfully
written. The second word of the TCB contains the actual number of
blocks written.

Chapter 2. Instruction and Statement Descriptions 2-559

WRITE

Do not code this operand if you code WAIT = NO.

You can set or change the end-of-data by using the SE command of
$DISKUTI. Refer to the Operator Commands and Utilities Reference
for additional information.

ERROR = The label of the first instruction of the routine to be called if an error
condition occurs during the execution of this operation. If you do -not
code this operand, control passes to the instruction following the
WRITE instruction and you must test for any errors.

WAIT =

For tape, if END is not coded, the system treatsan EOT as an error
and returns an EOT return code. The -ERROR path is taken for all
return codes other than EOT or a-I. An attempt to write to a tape
which has an unexpired date is also an error.

Do not code this operand if you code WAIT = NO

YES (the default), to suspend the current task until the operation is
complete.

NO, to return control to the current task after the operation is
initiated. Your program must issue a subsequent WAIT DSx to
determine when the operation is complete.

You cannot code the END and ERROR operands if you code
WAIT = NO. You must subsequently test the return code in the Event
Control Block (ECB) named DSx or in the first word of the task
control block (TCB). The label of the TCB is the label of the program
or task (taskname).

Two codes are of special significance. A -1 indicates a successful end
of operation. A + 10 indicates an End-of-Data-Set and may be of
logical significance to the program rather than an error. For
programming purposes, any other return codes should be treated as
errors.

Px = Parameter naming operands. See "Usi~g the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Special Considerations
If your program is writing data to a diskette and you remove the diskette between
write operations and replace it with another diskette, the system writes data to the
second diskette before detecting an error.

Syntax Examples for Tape WRITE-

2-560 SC34-0937

1) This WRITE instruction writes a single 1000-byte record from location BUFFI to
a tape data set named OUTDATA. OUTDATA is ona standard-label (SL) tape
that has volume serial number 1025.

TASKl PROGRAM START1,DS=((OUTDATA,1025))
•
•
•

STARTl WRITE DS1,BUFF1,1,lOOO,ERROR=ERR

o

o

o

o

Coding Example

c\

o

WRITE

2) This WRITE instruction writes two records to the tape data set. Each record is
502 bytes in length. Record I is located at BUFF2, record 2 is located at BUFF2 +
502 bytes.

TASK2 PROGRAM START2,DS=((OUTDATA,1025))
•
•
•

START2 WRITE DS1,BUFF2,2,502,ERROR=ERR

The WRITE instruction writes 256 bytes of data, beginning at the location labeled
DISKBUFF, into the next sequential record of the first data set specified in the
PROGRAM statement. If an end-of-file condition occurs during the write attempt,
the program passes control to the label EOFILE. If an unrecoverable I/O error is
encountered during the WRITE operation, the program will branch to the
DSKWRERR label.

SAMPLE PROGRAM DS=(CHART1,CHART2)
•
•
•

NXTEMPLY EQU *

*

•
•
•

MOVEA
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
WRITE
GO TO

#1,DISKBUFF
(000,#1),NAME,(50,BYTE)
(050,#1),STRTADDR,(58,BYTE)
(108,#1) ,CITY, (50,BYTE)
(150,#1),ZIP,(6,BYTE)
(280,#1),JOBTITLE,(58,BYTE)
(258,#1),JOBDESC,(50,BYTE)
DS1,DISKBUFF,1,8,END=EOFILE,ERROR=DSKWRERR
NXTEMPLY

EOFILE EQU *
PRINTEXT I@** EMPLOYEE FILE HAS EXCEEDED AVAILABLE bISK SPACE '
GOTO ENDIl

*
DSKWRERR EQU *

PRINTEXT '@UNRECOVERABLE DISK WRITE ERROR ON EMPLOYEE FILE'
GOTO ENDIl
PROGSTOP

DISKBUFF BUFFER 256,BYTES
ENDPROG
END

Chapter 2. Instruction and Statement Descriptions 2-561

WRITE

Disk and Tape Return Codes

2-562 SC34-0937

Disk and tape I/O return codes are returned in two places:

• The first word of the DSCB (either DSnor DSCB name) named DSn, where n is
the number of the data set to which you are referring.

• The first word of the task control block (TCB). The label of the TCB is the
label of your program or task (taskname).

The possible return codes and their meaning for disk and tape are shown in tables
later in this section.

If a tape error occurs, the read/write head positions itself immediately following the
record in which the error occurred. This indicates that a retry has been attempted
but was unsuccessful. The count field, in the WRITE instruction, mayor may not
have been set to zero under this condition.

You can get detailed information on an error by using the $LOG utility to capture
the I/O error. Refer to the Problem Determination Guide for information on how to
use $LOG.

Note: If an error is encountered during a sequential I/O operation, the relative
record number for the next sequential request is not updated. This will cause errors
on all following sequential I/O operations.

()

c

WRITE

Disk/Diskette Return Codes

o Return
Code Condition

-1 Successful completion.

1 I/O error and no device status present (this code may be caused by the
I/O area starting at an odd byte address).

2 I/O error trying to read device status.

3 I/O error retry count exhausted.

4 Read device status I/O instruction error.

5 Unrecoverable I/O error.

6 Error on issuing I/O instruction.

7 A no record found condition occurred, a seek for an alternate sector
was performed, and another no record found occurred, for example.
No alternate is assigned.

8 A system error occurred while processing an I/O request for a
1024-byte sector diskette.

9 Device was offline when I/O was requested.

10 READ request is beyond the end of the data set. Write request is
beyond the end of the nonextended data set.

11 Data set not open or device marked unusable when I/O was requested.

12 DSCB was not OPEN; DDB address = O.

o 13 If extended deleted record support was requested ($DCSBFLG bit 3
on), the referenced sector was not formatted at 128 bytes/sector or the
request was for more than one 256-byte sector. If extended deleted
record support was not requested ($DSCBFLG bit 3 off), a deleted
sector was encountered during I/O.

14 The first sector of the requested record was deleted.

15 The second sector of the requested record was deleted.

16 The first and second sectors of the requested record were deleted.

17 Cache fetch error. Contact your IBM customer engineer.

18 Invalid cache error. Contact your IBM customer engiJ?eer.

19 Insufficient table space for data set extent.

20 Insufficient disk storage available for a new extent. No directory
member entry available.

21 Insufficient disk storage available for extent. Directory member entry
is available, but no storage on volume for allocation of the extent data
area.

24 End of tape.

30 Device not a tape.

o
Chapter 2. Instruction and Statement Descriptions 2-563

WRITE

Tape Return Codes and Post Codes

2-564 SC34-0937

Return
Code Condition

-1 Successful completion.

1 Exception but no status.

2 Error reading cycle steal status.

3 I/O error; retry count exhausted.

4 Error issuing READ CYCLE STEAL STATUS.

6 I/O error issuing I/O operations.

lO End of data; a tape mark was read.

21 Wrong length record.

22 Device not ready.

23 File protected.

24 End of tape.

25 Load point.

26 Unrecoverable I/O error.

27 SL data set not expired.

28 Invalid blocksize.

29 Offline, in use, or not open.

30 Incorrect device type.

31 Close incorrect address.

32 Block count error during close.

33 Close detected on EOVI.

34 Write - Defective reel of tape.

The following post codes are returned to the event control block (ECB) of the calling
program.

Post
Code Condition

-1 Function successful.

101 T APEID not found.

lO2 Device not offline.

103 Unexpired data set on tape.

lO4 Cannot initialize BLP tapes.

o

o

o

o

o

WXTRN/EXTRN

WXTRN/EXTRN - Resolve Weak External Reference Symbols
The WXTRN and EXTRN statements identify labels that are not defined within an
object module. These labels reside in other object modules that will be link-edited to
the module containing the. WXTRN or EXTRN statements. The system resolves the
reference to an WXTRN or EXTRN label when you link-edit the object module
containing the WXTRN or EXTRN statement with the module that defines the
label. The module that defines the label must contain an ENTRY statement for that
label. (See the ENTRY statement for more information.)

If the system cannot resolve a label during the link-edit, it assigns the label the same
address as the beginning of the program. You can include up to 255 WXTRN and
EXTRN symbols in your program.

WXTRN labels are resolved only by labels that are contained in modules included
by the INCLUDE statement in the link-edit process or by labels found in modules
called by the AUTOCALL function. However, WXTRN itself does not trigger
A UTOCALL processing.

Only labels defined by EXTRN statements are used as search arguments during the
AUTOCALL processing function of $EDXLINK. Any additional external labels
found in the module found by AUTOCALL are used to resolve both WXTRN and
EXTRN labels. Refer to the description of $EDXLINK in the Language
Programming Guide for further information.

The main difference between the WXTRN and EXTRN statements is that you must
resolve an EXTRN label at link-edit time. It is not necessary to resolve a WXTRN
label at link-edit time. The unresolved label coded as an EXTRN receives an error
return code from the link process. The same unresolved label coded as a WXTRN
receives a warning return code. Both the error and the warning codes indicate
unresolved labels. If you know that your application program does not need a label
resolved, code it as a WXTRN and your program should execute successfully.
However, your application will not execute correctly if you try to reference an
unresolved label coded in your application program as a WXTRN.

Syntax:

blank
blank

Required:
Defaults:
Indexable:

Operand

label

WXTRN label
EXTRN label

One label
none
none

Description

An external label. You can code up to 10 labels, separated by
commas, on a single WXTRN or EXTRN statement.

Chapter 2. Instruction and Statement Descriptions 2-565

WXTRN/EXTRN

Coding Example

2-566 SC34-0937

The following. coding example shows a use of the WXTRN statement.

The labels DATAl, DATA2, LABELl, and LABEL2 are defined outside this
module. The ADD instruction adds the values at DATAl and DATA2 although the
values are defined outside the module where they are being added. The GOTO
instructions also can pass control to the two externally defined labels, LABELl and
LABEL2.

Each of the external labels could have been entered on a separate line or all three of
the EXTRN labels could have been coded on a single EXTRN statement.

•
•
•
EXTRN DATAl,DATA2
EXTRN LABEll
WXTRN LABEL2
•
•
•
ADD DATAl,DATA2,RESULT=INDEX
IF (INDEX,GT ,6)

GO TO LABEll
ELSE

GOTO LABEL2
ENDIF
•
•
•

INDEX DATA FIOI
•
•
•

c

0

o

o

o

o

XYPLOT

XYPLOT - Draw a Curve

Syntax Example

The XYPLOT instruction draws a curve that connects points defined by arrays of x
and y values. Data values are scaled to screen addresses according to the plot
control block. (See the PLOTGIN instruction for a description of the plot control
block.) Points outside the plot area are placed on the nearest boundary.

Syntax:

label XYPLOT x,y,pcb,n,Pl = ,P2 = ,P3 = ,P4 =

Required: x,y,pcb,n
Defaults: none
Indexable: none

Operand Description

x The label of a data area containing ap. array of x data values.

y The label of a data area containing an array of y data values.

pcb The label of an 8-word plot control block.

n The label of a data area that contains the number of points to be
drawn.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Draw a curve connecting the points specified by an x array at Y AXISX and a y
array at YAXISY. The data area labeled TWO contains the number of points to be
drawn.

XYPLOT YAXISX,YAXISY,PCB,TWO

Chapter 2. Instruction and Statement Descriptions 2-567

YTPLOT

YTPLOT - Draw a Curve

Syntax Example

2-568 SC34-0937

The YTPLOT instruction draws a curve connecting points that are equally spaced
horizontally and that have heights specified by an array of y values. Data values are
scaled to screen addresses according to the plot control block. (See the PLOTGIN
instruction for a description of the plot control block.) Points outside the range are
placed on the boundary of the plot area.

Syntax:

label YTPLOT y,xl,pcb,n,inc,PI = ,P2 = ,P3 = ,P4 = ,P5 =

Required: y,xl,pcb,n,inc
Defaults: none
Indexable: none

Operand Description

y The label of a data area containing an array of y data values.

xl The label of a data area containing the x data value associated with
the first point.

pcb The label of an 8-word plot control block.

n The label of a data area containing the number of points to be drawn.

inc The amount of space between points. This operand must be an
explicit integer value greater than zero.

Px= Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a detailed description of how to
code these operands.

Draw a curve with the heights specified by an array of y values at label YDATA.
The data area labeled NPTS contains the number of points to be drawri. The
instruction leaves one space between each point.

YTPLOT YDATA,Xl,PCB,NPTS,l

o

()

o

o

Formatted Screen Subroutines

Appendix A. Formatted Screen Subroutines

You can create, save, and modify formatted screen images using the $IMAGE
utility. Refer to the $IMAGE description in the Operator Commands and Utilities
Reference for information on creating or exchanging terminal screen images for
various terminals. The formatted screen subroutines retrieve and display these
images. This appendix describes each of the following subroutines and its operands:

• $IMDATA
• $IMDEFN
• $IMOPEN
• $IMPROT
• $PACK
• $UNPACK.

You can use the formatted screen subroutines with the following terminals:

• 4978 terminals
• 4979 terminals
• 4980 terminals
• 3101 terminals in block mode
• 3151 terminals in block mode
• 3161 terminals in block mode
• 3163 terminals in block mode
• 3164 terminals in block mode.

You can also use screen images created on a 4978, 4979, or 4980 on any of the
terminals listed above by calling subroutines described in this appendix.

You must code an EXTRN statement for each subroutine name to which your
program refers. You also must link-edit the subroutines with your application
program. Specify $AUTO,ASMLIB as the auto call library to include the screen
formatting subroutines. Refer to the Operator Commands and Utilities Reference for
details on the AUTOCALL option of $EDXLINK.

You call the formatted screen subroutines using the CALL instruction. The
following pages show the CALL instruction syntax for each subroutine.

If an error occurs, the terminal I/O return code is in the first word of the task
control block (TCB). These errors can come from instructions such as PRINTEXT,
READTEXT, and TERMCTRL.

Appendix A. Formatted Screen Subroutines A-I

$IMDATA

$IMDATA Subroutine

A-2 SC34-0937

The $IMDAT A< subroutine displays the initial data values for an image which is in
disk storage format. Use $IMDATA:

• To display the unprotected data associated with a screen image, if the buffer
contains a screen format retrieved with $IMOPEN.

• To "scatter write" the contents of a user buffer to the input fields of a displayed
screen image.

Note: You must call $IMDATA if any of your unprotected fields have the right
justify or must enter characteristics.

If the buffer is retrieved with $IMOPEN, the buffer begins with the characters
"IMAG," or "IM31," and the buffer index (buffer-4) equals the data length
excluding the characters "IMxx."

You can specify a user buffer containing application-generated data. Set the first 4
bytes of the buffer to the characters "USER" and set the buffer index (buffer - 4) to
the data length excluding the characters USER.

All or portions of the screen may be protected after $IMDAT A executes. Because
the operator cannot key data into protected fields, subsequent read instructions (such
as QUESTION, GETVALUE, and READTEXT) should be directed to unprotected
areas of the screen, or the protected areas should be erased.

Notes:

1. To use $IMDATA, you must code an EXTRN statement in your program. You
must also link-edit the program with $EDXLINK and specify an autocall to
$AUTO,ASMLIB.

2. Do not call both $IMDAT A and $IMPROT by separate tasks to operate
simultaneously. Problems will occur because both call the $IMDTYPE
subroutine.

Syntax:

label

Required:
Defaults:
Indexable:

CALL $IMDATA,(buffer),(ftab),P2 = ,P3 =

buffer,ftab (see note)
none
none

o

o

o

o

o

()

Operand

buffer

ftab

$IMDATA

Description

The label of an area containing the image in disk-storage format.

The label of a field table constructed by $IMPROT giving the location
(lines, spaces) and size (characters) of each unprotected data field of the
image.

Note: The ftab operand is required only if the application executes on
a 3101, 3151, 3161, 3163, or 3164 terminal in block mode, or if a user
buffer is used in $IMDATA.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a description of how to use these
operands.

$IMDATA Return Codes
The return codes are returned in the second word of the task control block (TCB) of
the program or task calling the subroutine. The label of the TCB is the label of
your program or task (taskname). Refer to taskname + 2.

Return
Code Condition

-1 Successful completion.

9 Invalid format in buffer.

12 Invalid terminal type.

Appendix A. Formatted Screen Subroutines A-3

$IMDEFN

$IMDEFN Subroutine

A-4 SC34-0937

The $lMDEFN subroutine creates an lOeB for the formatted screen image. You
can code the lOeB directly, but the use of $IMDEFN allows the image dimensions
to be modified with the $IMAGE utility without requiring a change to the
application program. $IMDEFN updates the lOeB to reflect OVFLlNE = YES.
Refer to the TERMINAL configuration statement in the Installation and System
Generation Guide for a description of the OVFLlNE parameter.

Once you define an lOeB for the static screen, the program can then acquire that
screen through ENQT. Once the screen has been acquired, the program can call the
$lMPROT subroutine to display the image and the $lMDAT A subroutine to display
the initial nonprotected fields.

Note: To use $IMDEFN, you must code an EXTRN statement in your program.
You must also link-edit the program with $EDXLlNK and specify an autocall to
$AUTO,ASMLIB.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

iocb

buffer

topm

leftm

Px=

CALL

iocb,buffer

$IMDEFN ,(iocb),(buffer), topm,leftm,
P2 = ,P3 = ,P4 = ,P5 =

topm = O,leftm = 0
none

Description

The label of an lOeB statement defining a static screen. The lOeB
need not specify the TOPM, BOTM, LEFTM, nor RlGHTM
parameters; these are "filled in" by the subroutine. The following
lOeB statement would normally suffice:

label IOCB SCREEN=STATIC

The label of an area containing the screen image in disk storage
format. The format is described in the Language Programming Guide.

This parameter indicates the screen position at which line 0 will
appear. If its value is such that lines would be lost at the bottom of
the screen, then it is forced to zero. This parameter mu,st equa,1,zero
for all 3101,3151, 3161, 3163, or 3164 terminal applications. The
default is also zero.

This parameter indicates the screen position at which the left edge of
the image will appear. If its value is such that characters would be lost
at the right edge of the screen, then it is forced to zero. This
parameter must equal zero for all 3101, 3151, 3161, 3163, or 3164
terminal applications. The default is also zero.

Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a description of how to u~e these
operands.

o

o

o

$IMDEFN

Coding Example

()
•

$IMDEFN,(IMGIOCB),(IMGBUFF),0,0 CALL

•
•

ENQT IMGIOCB
•
•
•

PROGSTOP
IMGIOCB IOCB SCREEN=STATIC
IMGBUFF BUFFER 1024,BYTES

o

o
Appendix A. Formatted Screen Subroutines A-5

$IMOPEN

$IMOPEN Subroutine

A-6 SC34-0937

The $IMOPEN subroutine reads a formatted screen image from disk or diskette into
your program buffer. You can also perform this operation by using the DSOPEN
subroutine or by defining the data set at program load time, and issuing the disk
READ instruction. Refer to the Language Programming Guide for a description of
buffer sizes. $IMOPEN updates the index word of the buffer with the number of
actual bytes read. To refer to the index word, code buffer - 4.

Note: To use $IMOPEN, you must code an EXTRN statement in your program.
You'must also link-edit the program with $EDXLINK and specify an autocall to
$AUTO,ASMLIB.

Syntax:

label

Required:
Defaults:
Indexable:

Operand

dsname

buffer

CALL $IM 0 PEN,(dsname),(buffer),(type),
P2 =,P3=,P4=

dsname,buffer
type = C'497S'
none

Description

The label of a TEXT statement which contains the name of the screen
image data set. You can include a volume label, separated from the
data set name by a comma.

The label of a BUFFER statement that defines the storage area into
which the image data will be read. Allocate the storage in bytes, as in
the following example:

label BUFFER ,1024,BYTES

type The label of a DATA statement that reserves a 4-byte area of storage
and specifies the type of image data set to be read. The DATA
statement must be on a full word boundary. Specify one of the
following types:

C'497S' The system reads an image data set for a 4978 terminal
with a 4978/4979/4980 terminal format. This is the default
terminal format.-

C'3101' The system reads an image data set for a 3101 terminal
with a 31xx terminal format.

C'3161' The system reads an image data set for a 3151 or 3161
terminal with a 31xx terminal format.

C'3163' The system reads an image data set for a 3163 terminal
with a 31xx terminal format.

C '3164' The system reads an image data set for a 3164 terminal
with a 31xx terminal format.

Note: The 31xx terminal format is the format used for a
3101, 3151, 3161, 3163, and 3164 terminal.

o

o

o

o

o

C'

$IMOPEN

The system reads an image data set whose format
corresponds with the type of terminal enqueued. If neither
a 4978,4979,4980,3101,3151,3161,3163, nor 3164 is
enqueued (ENQT), the system assumes the default 4978
image format.

If you specify this type, $IMOPEN will try to use the
format that corresponds with the device. If that is not
available, $IMOPEN will use a 4978/4979/4980 screen
image. This is the default condition when you do not code
this parameter. For example, if you are enqueued on a
3161 terminal, $IMOPEN will attempt to open a 31xx
screen image. If the screen image does not exist,
$IMOPEN will use the 4978 screen image.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on page 1-10 for a description of these operands.

Special Considerations
$IMAGE screens that have been saved using EDX version 5.2 and above require
additional setup if they are opened by DSOPEN instead of by $IMOPEN. The first
three words of the buffer must be as follows:

Word 1

Word 2

Word 3

C'IM'

C'AG'

xxxx, where xxxx is the address (in the buffer) where the 31xx terminal
format resides.

Or:

0000, if the 31xx terminal format is not used.

The $IMAGE screen then is read in at BUFFER + 6.

$IMOPEN Return Codes
The return codes are returned in the second word of the task control block (TCB) of
the program or task calling the subroutine. The label of the TCB is the label of
your program or task (taskname). Refer to taskname + 2.

Return
Code Condition

-1 Successful completion.

0 Undefined error encountered.

1 Disk I/O error.

2 Buffer too small for 3lO1, 3151, 3161, 3163 or 3164 terminal
information

3 Data set not found.

4 Incorrect header or data set length.

5 Input buffer too small.

6 Invalid volume name.

Appendix A. Formatted Screen Subroutines A -7

$IMOPEN

Return
Code Condition

7 No 3101 image available.
c

8 Data set name longer than 8 bytes.

o

o
A-8 SC34;;0937

o

o

$IMPROT

$IMPROT Subroutine
The $IMPROT subroutine uses an image created by the $IMAGE utility to prepare
the defined protected and blank nonprotected fields for display. At the option of the
calling program, a field table can be constructed. The field table gives the location
(LINE and SPACES) and length of each unprotected field.

Upon return from $IMPROT, your program can force the protected fields to be
displayed by issuing a TERMCTRL DISPLAY. This is not required if a call to
$IMDA T A follows because $IMDAT A forces the display of screen data.

All or portions of the screen may be protected after $IMPROT executes. Because
the operator cannot key data into protected fields, subsequent read instructions (such
as QUESTION, GETV ALUE, and READTEXT) should be directed to unprotected
areas of the screen, or the protected areas should be erased.

Notes:

1. To use $IMPROT, you must code an EXTRN statement in your program. You
must also link-edit the program with $EDXLINK and specify an autocall to
$AUTO,ASMLIB.

2. Do not call both $IMPROT and $IMDAT A by separate tasks to operate
simultaneously. Problems will occur because both call the $IMDTYPE
subroutine.

Syntax:

label CALL $IMPROT ,(buffer),(ftab),P2 = ,P3 =

Required: buffer,ftab (see note)
Defaults: none
Indexable: none

Operand Description

buffer The label of an area containing the screen image in disk storage
format. The format is described in the Language Programming Guide.

ftab The label of a field table constructed by $IMPROT giving the location
(lines, spaces) and size (characters) of each unprotected data field of
the image.

Note: The ftab operand is required only if the application executes on
a 3101, 3151, 3161, 3163, or 3164 terminal in block mode, or if a user
buffer is used in $IMDATA.

Px = Parameter naming operands. See "Using the Parameter Naming
Operands (Px =)" on pag~ 1-10 for a description of how to use these
operands.

Appendix A. Formatted Screen Subroutines A-9

$IMPROT

The field table has the following form:

label-4
label-2
label

label + 6

label + 6(n -1)

number of fields
number of words
line * FIELD 1 (one word)
spaces (one word)
size (one word)
line * FIELD 2
spaces
size

•
•
•

spaces
size

line * FIELD n

The field numbers correspond to the following ordering: left to right in the top line,
left to right in the second line, and so on to the last field in the last line. Storage for
the field table should be allocated with a BUFFER statement specifying the desired
number of words using the WORDS parameter. The buffer control word at label- 2
is used to limit the amount of field information stored, and the buffer index word at
buffer - 4 is set with the number of fields for which information was stored, the total
number of words being three times that value. If you do not want the field table,
code 0 for this parameter.

$IMPROT Return Codes

A-to SC34-0937

The return codes are returned in the second word of the task control block (TCB) of
the program or task calling the subroutine. The label of the TCB is the label of
your program or task (taskname). Refer to taskname + 2.

Return
Code Condition

-1 Successful completion.

9 Invalid format in buffer.

10 FT AB truncated due to insufficient buffer size.

11 Error in building FTAB from 3101 format; partial FTAB created.

12 Invalid terminal type.

c

o

o

o

o

$PACK

SPACK Subroutine
The $PACK subroutine moves a byte string and translates it into compressed form.

Note: To use $PACK, you must code an EXTRN statement in your program. You
must also link-edit the program with $EDXLINK and specify an autocall to
$AUTO,ASMLIB.

Syntax:

label CALL $P A CK,source,dest,P2 = ,P3 =

Required: source,dest
Defaults: none
Indexable: none

Operand Description

source The label of a fullword containing the address of the string to be
compressed. The length of the string is taken from the byte preceding
this location, and the string could, therefore, be the contents of a
TEXT buffer.

dest The label of a fullword containing the address at which the compressed
string is to be stored. At completion of the operation, this parameter
is incremented by the length of the compressed string.

Compressed Data Format for $PACK/$UNPACK

• • • Fn X'OO'

Each F1". Fn is either:

I
L I ~1 I C 2 ••• Cn (L is greater than zero and represents

...... _-J.._-..L.l_--L-_____ .J..----J the length of chars (C) that follow)

or

(L is less than zero and represents
L repetitions of C)

Land C are one byte in length.

Figure A-I. Compressed Data Format

BG0712

Appendix A. Formatted Screen Subroutines A-II

$UNPACK Subroutine

A-12 SC34-0937

The $UNP ACK subroutine moves a byte string and translates it to noncompressed
form.

Note: To use $UNPACK, you must code an EXTRN statement in your program.
You must also link-edit the program with $EDXLINK and specify an autocall to
$A UTO,ASMLIB.

Syntax:

label CALL $UNP ACK,source,dest,P2 = ,P3 =

Required: source,dest
Defaults: none
Indexable: none

Operand Description

source The label of a fullword containing the address of a compressed byte
string (see Appendix D for the compressed format). At completion of
the operation, this parameter is increased by the length of the
compressed string.

dest -The label of a fullword containing the address at which the expanded
string is to be placed. The length of the expanded string is placed in
the byte preceding this location. The $UNP ACK subroutine can,
therefore, conveniently be used to move and expand a compressed byte
string into a TEXT buffer.

For $UNPACK compressed data format, see Figure A-Ion page A-II.

o

o

o

o

c

o

Program Communication Through Virtual Terminals

Appendix B. Program Communication Through Virtual
Terminals

A "virtual terminal" is a logical EDX device that simulates the actions of a physical
terminal. An EDL application program can acquire control of, or enqueue, a virtual
terminal just as it would an actual terminal. By using virtual terminals, however,
programs can communicate with each other as if they were terminal devices. One
program (the primary) loads another program (the secondary) and takes on the role
of an operator entering data at a physical terminal. The secondary program can be
an application program or a system utility, such as $COPYUTI. You can use
virtual terminals, for example, to provide simplified menus for running system
utilities. An operator could load a virtual terminal program, select a utility to run,
and allow the program to pass predefined parameters to the utility.

Virtual terminals simulate roll screen devices. The terminals communicate through
EDL terminal I/O instructions contained in the virtual terminal programs. The
programs use a set of virtual terminal return codes to synchronize communication.
These return codes are shown under "Virtual Terminal Communication" on
page B-2 and following the READ TEXT and PRINTEXT instructions.

Requirements for Defining Virtual Terminals
You must define virtual terminals in pairs. You must include a TERMINAL
definition statement for each virtual terminal in your system during system
generation. Refer to Installation and System Generation Guide for details on how to
code the TERMINAL statements for virtual terminals. You must also include the
supervisor module IOSVIRT in your system during system generation.

The DEVICE operand of the TERMINAL statement defines a terminal as a virtual
terminal. The ADDRESS operand of the TERMINAL statement contains the label
of the other virtual terminal in the pair. The two TERMINAL statements must
refer to each other in one of the following ways:

1) The TERMINAL statements below define a pair of virtual terminals. The
SYNC=YES operand on the first TERMINAL statement (CDRVTA), indicates
that the task enqueuing this virtual terminal will 'receive the return codes that
provide program synchronization.

CDRVTA
CDRVTB

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,SYNC=YES
TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA

2) The TERMINAL statements that follow both contain SYNC = YES. In this
case, the task that last attempted an operation will receive a return code for program
synchroniza tion.

CDRVTA
CDRVTB

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,SYNC=YES
TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA,SYNC=YES

Appendix B. Program Commlmication Through Virtual Terminals B-1

Program Communication Through Virtual Terminals

Considerations for Coding a Virtual Terminal Program
When coding a program that enqueues a virtual terminal you should remember the
following:

• The primary virtual terminal program loads the secondary program or system
utility with a LOAD instruction. Code LOGMSG=NO on the LOAD
statement if the secondary program is unable to issue a READTEXT for the
message.

• The primary virtual terminal program can only communicate with one secondary
program or system utility at a time.

• Your program enqueues a virtual terminal with an ENQT instruction. The
primary program should enqueue the virtual terminal for the secondary
program, load the secondary program, and enqueue a virtual terminal for itself.

The 10CB statements to which the ENQT instructions refer can be in your
primary program or in a secondary application program. The following example
shows how a primary program would load the $TERMUTl utility.

PRIMARY
SECOND

•
•
•

ENQT SECOND
LOAD $TERMUTl,LOGMSG=NO,EVENT=ENDWAIT
ENQT PRIMARY
•
•
•

PROGSTOP
IOCB CDRVTA
lOCB CDRVTB

NAME OF THE PRIMARY VIRTUAL TERMINAL
NAME OF THE SECONDARY VIRTUAL TERMINAL

Virtual Terminal Communication

B-2 SC34-0937

To send and receive data through the virtual terminals, application programs use
terminal 1/0 instructions: READTEXT, PRINTEXT, GETV ALUE, and
PRINTNUM. Virtual terminals do not affect the operation of these instructions.
Your program can also generate attention interrupts using TERMCTRL PF, which
is described in this book under TERMCTRL (VIRTUAL).

Virtual terminal programs can use a set of return codes to synchronize their
operations. Programs or tasks receive the virtual terminal return codes in the first
word of their task control block. A program can obtain a return code by referring
to the label on the PROGRAM statement.

c

o

o

o

Program Communication Through Virtual Terminals

The virtual terminal return codes and their descriptions follow:

Return Transmit Receive
Code Condition Condition

X ' 8Fnn ' NA LINE = nn received.

X ' 8Enn ' NA SKIP = nn received.

-2 NA Line received (no CR).

-1 Normal completion. New line received.

1 Not attached. Not attached.

5 Disconnect. Disconnect.

8 Break. Break.

LINE=nn (X'8Fnn')
Returned for a READTEXT or GETVALUE instruction if the other
program issued an instruction with a LINE = operand. This operand tells
the system to perform an I/O operation on a certain line of the page or
screen. The return code enables the receiving program to reproduce on an
actual terminal the output format intended by the sending program.

SKIP=nn (X'8Enn')
The other program issued an instruction with a SKIP = operand. This
operand tells the system to skip a number of lines before performing an I/O
operation.

Line Received (- 2)
Indicates that an instruction (usually READ TEXT or GETV ALUE) has
sent information but has not issued a carriage return to move the cursor to
the next line. The information is usually a prompt message.

New Line Received (-1)
Indicates transmission of a carriage return at the end of the data. The
cursor is moved to a new line. This return code and the Line Received
return code help programs to preserve the original format of the data they
are transmitting.

Not attached (1)
A virtual terminal does not or cannot refer to another virtual terminal.

Disconnect (5)

Break (8)

The other virtual terminal program ended. This is because you specified a
PROGSTOP or an attention list process is complete.

Indicates that both virtual terminal programs are attempting to perform the
same type of operation. When one program is reading (READTEXT or
GETVALUE), the return code means the other program has stopped
sending and is waiting for input. When one program is writing,
(PRINTEXT or PRINTNUM), the return code means the other program is
also attempting to write.

If you defined only one virtual terminal with SYNC = YES, then that task
always receives the break code, whether or not it attempted the operation
first. If you defined both virtual terminals with SYNC = YES, then the
task that last attempted the operation receives the break code.

Appendix B. Program Communication Through Virtual Terminals B-3

Program Communication Through Virtual Terminals

Sample Virtual Terminal Programs
The sample programs that follow show two types of virtual terminal communication.
Both programs assume that the following TERMINAL statements were included
during system generation:

CDRVTA
CDRVTB

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,SYNC=YES
TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA

1) In this example, the program named SENDER transmits data to the program
named RECEIVER. RECEIVER prints the data it received on $SYSPRTR.
SENDER is the primary program; RECEIVER is the secondary program.

The SENDER program begins by requesting data from an operator with a
READTEXT instruction. SENDER then enqueues the first virtual terminal, loads
RECEIVER, and enqueues the second virtual terminal. The DO loop at label
CHECKl issues a READ TEXT instruction to determine if RECEIVER is ready to
receive data. The instruction

READTEXT LINE,MODE=LINE

gets the next line from the RECEIVER program. The loop continues until
SENDER receives a return code of 8.

o

RECEIVER issues a PRINTEXT instruction and then a READ TEXT instruction to
indicate that it is ready to receive data. When RECEIVER executes the
READTEXT, SENDER receives a return code of 8 that indicates both programs are
attempting to perform the same operation. SENDER checks the first word of the
TCB, finds the return code, exits the DO loop, and executes a PRINTEXT that C-)
transmits the operator data to RECEIVER. SENDER then enters a second DO ~.'
loop at label CHECK2. In this loop, SENDER checks the TCB until it finds a
return code of 5. The return code indicates that RECEIVER has printed the data
and has completed.

o
B-4 SC34-0937

Program Communication Through Virtual Terminals

SENDER PROGRAM START
PRINT OFF

0 PRINT ON
A IOCB CDRVTA SYNC TERMINAL
B IOCB CDRVTB
START EQU *

READTEXT DATA, I ENTER DATA TO TRANSMIT ',MODE=LINE
ENQT B
LOAD RECEIVER, LOGMSG=NO,EVENT=DONE
ENQT A

r.HECKl DO UNTIL, (RC,EQ,8) DO UNTIL BREAK
READTEXT LINE,MODE=LINE
TCBGET RC,$TCBCO

ENDDO
PRINTEXT DATA SEND INPUT TO OTHER PROGRAM

CHECK2 DO UNTIL,(RC,EQ,5) DO UNTIL DISCONNECT
READTEXT LINE,MODE=LINE
TCBGET RC,$TCBCO

ENDDO
WAIT DONE
PROGSTOP

DONE ECB
RC DATA F'O'
DATA TEXT LENGTH=80
LINE TEXT LENGTH=80

ENDPROG
END

0

RECEIVER PROGRAM START
START EQU *

PRINTEXT SKIP=l SIGNAL TO SEND INPUT
READTEXT DATA,MODE=LINE
ENQT $SYSPRTR
PRINTEXT 'THE DATA YOU SENT WAS
PRINTEXT DATA
DEQT $SYSPRTR
PROGSTOP

DATA TEXT LENGTH=80
ENDPROG
END

o
Appendix B. Program Communication Through Virtual Terminals B-5

Program Communication Through Virtual Terminals

B-6 SC34-0937

2) This example shows how an application can use virtual terminals to process the
prompt/reply sequence of the $INITDSK utility. The program initializes volume o. '
EDX003. ~

The replies to $INITDSK prompts begin at label REPLIES + 2; each reply is 8 bytes
in length (text plus length/count bytes). The program issues a READTEXT until
$INITDSK requests input. The program then issues a PRINTEXT to send the reply
to the $INITDSK prompt. After $INITDSK ends, the program sends a completion
message to the terminal.

INIT PROGRAM BEGIN
PRINT OFF
PRINT ON

A lOCB A SYNC TERMINAL
B lOCB B
DEND ECB
BEGIN EQU *

ENQT B
LOAD $INITDSK,LOGMSG=NO,EVENT=DEND
ENQT A GET SYNC TERMINAL
MOVEA #1, REPLI ES+2
DO 6, TIMES REPLY TO PROMPTS

DO UNTIL, (RETCODE,EQ,8) BREAK CODE
READTEXT LINE,MODE=LINE LOOP FOR PROMPT MESSAGES
TCBGET RETCODE,$TCBCO SAVE RETURN CODE

ENDDO
PRINTEXT (0,#1) SEND REPLY
ADD #1,8 NEXT REPLY

ENDDO
READTEXT LINE,MODE=LINE PROGRAM END MESSAGE
WAIT DEND WAIT FOR END EVENT
DEQT
PRINTEXT 'EDX003 INITIALIZED I

PROGSTOP
•
•
•

RETCODE DATA F'O' RETURN CODE
LINE TEXT LENGTH=80
REPLI ES EQU *

TEXT 'IV',LENGTH=6 COMMAND?
TEXT 'EDX003 1 ,LENGTH=6 VOLUME?
TEXT 'Y',LENGTH=6 CONTINUE?
TEXT '60 ' ,LENGTH=6 NUMBER OF DATA SETS?
TEXT 'N ' ,LENGTH=6 VERIFY?
TEXT 'N ' ,LENGTH=6 ALLOCATE $EDXNUC (YIN)?
TEXT 'EN',LENGTH~6 COMMAND?
ENDPROG
END

0

o

o

o

Communicating with Programs in Other Partitions (Cross-Partition Services)

Appendix C. Communicating with Programs in Other
Partitions (Cross-Partition Services)

EDL programs can communicate with other programs in the system through the use
of the following instructions: LOAD, MOVE, STIMER, ATTACH, ENQ, DEQ,
WAIT, POST, READ, and WRITE. These instructions enable your program to
communicate with another program in the same partition or with a program in
another partition. Communication between programs in different partitions is
referred to as "cross-partition services."

To communicate with another program, your program must use the WHERES
instruction to find the load-point address of the program and the partition where the
program resides.

This appendix contains examples of how to communicate with programs in other
partitions under the headings:

• "Transferring Data Across Partitions"

• "Starting a Task in Another Partition (ATTACH),' on page C-8

• "Synchronizing Tasks and the Use of Resources in Different Partitions" on
page C-10.

Refer to the Language Programming Guide for more information on the use of
cross-partition services in application programs.

When the system attaches a task, it updates the task control block (TCB) of the task
to include the number of the address space where the task is executing. The address
space value refers to a partition, and is equal to the partition number minus one.
Address space 0, for example, is partition 1. The address space value is also known
as the hardware address key. In most of the examples, the system uses the address
key and an address your program supplies to provide communication across
partitions. The equate that points to the address key in the TCB is $TCBADS.

Note: After issuing a cross-partition service request using $TCBADS, your program
should immediately restore $TCBADS to its original value. This procedure can
prevent unexpected or unpredictable results such as overlaying other applications
with data or having a program wait indefinitely because an ECB was never posted or
a D/EQ instruction was never issued.

Transferring Data Across Partitions
You can transfer data across partitions using the cross-partition capabilities of the
LOAD, MOVE, READ, and WRITE instructions.

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) C-l

Communicating with Programs in Other Partitions (Cross-Partition Services)

Load and Pass Parameters to a Program in Another Partition (LOAD)
In the following example, PROGA loads PROGB into partition 2 and passes
PROGB the parameters beginning at the label PROGASWI. After loading 0
PROGB, PROGA waits for the event ENDWAIT, which the system posts when the

C-2 SC34-0937

loaded program ends.

The PARM = operand on PROGB's PROGRAM statement specifies the length of
the parameter list that PROGB receives from PROGA. The system recognizes each
word in the parameter list by the label $PARMx, where "x" indicates the position of
the word in the list. $PARM1.refers to the first word in the list (PROGASW1) and
$PARM2 refers to the second word in the list (PROGAKEY).

At the label PROMPT in PROGB, the program displays a prompt message that tells
the operator how to cancel PROGB. The MOVEA instruction at label Ml moves
the address of CANCELSW into PROGA WRK. The MOVE instruction at label
M2 moves the first parameter (the address of PROGASW1) into software register 1.
At label M2, PROGB moves the contents of PROGAWRK to the address (0,#1) in
PROGA. The TKEY operand of the MOVE instruction supplies the address key of
PROGA. PROGB begins a loop at label LOOP until the operator cancels the
program.

When the operator presses the attention key and enters CA, the
attention-interrupt-handling routine at label CANCEL in PROGA begins executing.
At label M4, the routine moves a value of I to the address (0,#1) in PROGB. The
TKEY operand on the MOVE instruction supplies the address key for PROGB.
The address (0,#1) points to the address of CANCELSW. In PROGB, the IF
instruction at label LOOP checks CANCELSW and finds that the variable contains
a 1. The instruction passes control to the label STOP and PROGB ends. Control
returns to PROGA because the system posts the event ENDWAIT when PROGB
ends.

o

o

0

o

o

Communicating with Programs in Other Partitions (Cross-Partition Services)

PROGA
COMMAND
CANCEL

M4

START

*

PROGRAM START,l,MAIN=YES
ATTNLIST (CA,CANCEL)
EQU
MOVE
MOVE
ENDATTN
EQU
TCBGET

LOAD
IF

WAIT
ELSE

*
#l,PROGASWl
(O,#l),l,TKEY=l CROSS-PARTITION MOVE

*
PROGAKEY,$TCBADS GET PROGA ADDRESS KEY

PROGB,PROGASWl,EVENT=ENDWAIT,LOGMSG=YES,PART=2
(PROGA,EQ,-l),THEN

ENDWAIT

PRINTEXT ILOAD FAILEDI,SKIP=l
ENDIF
•
•
•

PROGSTOP
ENDWAIT ECB
PROGASWI DATA A(PROGASWl)
PROGAKEY DATA FIO I

ENDPROG
END

PROGB
START

PROGRAM START,509,PARM=2
EQU *
•
•
•

PROMPT PRINTEXT ITO CANCEL, ENTER: > CAl ,SKIP=l
PRINTEXT SKIP=l

Ml MOVEA PROGAWRK,CANCELSW
M2 MOVE #l,$PARMl
M3 MOVE (O,#1),PROGAWRK,TKEY=$PARM2 CROSS-PARTITION MOVE
LOOP IF (CANCELSW,EQ,l),GOTO,STOP

GOTO LOOP
STOP EQU *

PROGSTOP -l,LOGMSG=NO
PROGAWRK DATA FIO I
CANCELSW DATA FIO I

ENDPROG
END

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) C-3

Communicating with Programs in Other P~rtitions (Cross-Partition Services)

Move Data Across Partitions (MOVE)

C-4 SC34-0937

The following example shows how to move data to a program in another partition.
PROGA finds the program PROGB in storage, stores PROGB's address and address
key, and moves data to the dynamic storage area of PROGB.

PROGA uses the WHERES instruction to find the load-point address and address
key of PROGB. The WHERES instruction places the load-point address of PROGB
in ADDRB and the address key of the program in KEYB.

The READTEXT instruction in PROGA asks the operator to enter up to 30
characters of data. The instruction stores the data in MSG. The MOVE instruction
at label Ml moves the address key of PROGB into software register 2. The
TCBGET instruction places the address of PROGA's task control block (TCB) in
software register 1.

At label M2, the MOVE instruction moves the address of PROGB's dynamic storage
area into the data area PROGBBUF in PROGA. The STORAGE = operand on the
PROGRAM statement of PROGB causes the system to acquire a 256-byte storage
area when it loads the program. The address of this storage area is in PROGB's
program header (at $PRGSTG).

At label M3, PROGA saves it's address key in SAVEKEY. The MOVE instruction
at M4 moves PROGB's address key to the address key field ($TCBADS) of the
TCB. At M5, the MOVE instruction moves the address in PROGB's dynamic
storage area to software register 2. PROGA, at M6, moves the data in MSG into
PROGB's dynamic storage area. The TKEY operand on the MOVE instruction
supplies the address key of PROGB. At M7, PROGA restores its address key from
SAVEKEY.

Once PROGB receives the data, it moves the address of the dynamic storage area
(contained in $STORAGE) to software register 1. The program moves 30 bytes of
data from the dynamic storage area into MSG2, and prints the data it received.

o

o

o

o

o

o

Communicating with Programs in Other Partitions (Cross-Partition Services)

PROGA

START

PROGRAM
COPY
COPY
EQU
WHERES
IF

START
PROGEQU
TCBEQU
*
PROGBsADDRB,KEY=KEYB
(PROGA,EQ,0),THEN

PRINTEXT 'PROGRAM NOT FOUND',SKIP=l
GOTO DONE

ENDIF

FIND PROGB'S LOCATION

READTEXT MSG,'@ENTER UP TO 30 CHARACTERS' ,MODE=LINE
Ml MOVE #2,ADDRB

TCBGET #l,$TCBVER
M2 MOVE PROGBBUF,($PRGSTG,#2),FKEY=KEYB
M3 MOVE SAVEKEY,($TCBADS,#l)
M4 MOVE ($TCBADS,#l),KEYB
M5 MOVE #2,PROGBBUF
M6 MOVE (0,#2),MSG,(30 sBYTE),TKEY=KEYB
M7 MOVE ($TCBADS,#l),SAVEKEY
DONE PROGSTOP
MSG TEXT LENGTH=30
PROGBBUF DATA F'0'
PROGB DATA C'PROGB
PROGBUF DATA F'01

SAVEKEY DATA F'01

ADDRB DATA F'01

KEYB DATA F'01

ENDPROG
END

SAVE PROGA'S KEY

RESTORE PROGA'S KEY

**

PROGB PROGRAM START,STORAGE=256
START EQU *

•
•
•

MOVE #l,$STORAGE GET STORAGE AREA ADDRESS
MOVE MSG2,(0,#1),(30 sBYTE)
PRINTEXT '@THE DATA THAT WAS PASSED IS .1

PRINTEXT MSG2
PROGSTOP

MSG2 TEXT LENGTH=30
ENDPROG
END

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) C-5

Communicating with Programs in Other Partitions (Cross-Partition Services)

Read Data to or Write Data from· a Program in Another Partition

C-6 SC34-0937

The following example reads data from a data set and stores that data in a buffer in
another partition. The data set ACCOUNTS is in PROGA. The buffer is in
PROGB. You could use the same coding techniques to write data to a program in
another partition (WRITE).

PROGA uses the WHERES instruction to find the load-point address and address
key of PROGB. The WHERES instruction places the load-point address of PROGB
in ADDRB and the address key of the program in KEYB.

The MOVE instruction at label Ml moves the address key of PROGB into software
register 2. The TCBGET instruction places the address of PROGA's task control
block (TCB)in software register 1. At label M2, the MOVE instruction moves the
address of PROGB's dynamic storage area into PROGBBUF in PROGA. The
STORAGE = operand on the PROGRAM statement of'PROGB causes the system
to acquire a 256-byte storage area when it loads the program. The address of this
storage area is in PROGB's program header (at $PRGSTG). At label M3, PROGA
saves it's address key in SAVEKEY.

The MOVE instruction at M4 moves PROGB's address key to the address key field
($TCBADS) of the TCB. The READ instruction reads one record from the data set
ACCOUNTS into PROGBBUF. Because PROGBBUF is the label of the P2=
operand on the READ instruction, the system uses the contents of PROGBBUF as
the location where the data is to be stored. After the cross-partition read operation,
PROGA restores its address key from SA VEKEY.

Once PROGB receives the data, it moves the address of the dynamic storage area
(contained in $STORAGE) to software register 1. The program moves 50 bytes of
data from the dynamic storage area into OUTPUT and prints that data.

o

o

o

0

o

o

Communicating with Programs in Other Partitions (Cross-Partition Services)

PROGA PROGRAM START,DS=ACCOUNTS
COPY PROGEQU
COpy TCBEQU

START EQU *
WHERES PROGB,ADDRB,KEY=KEYB FIND PROGBIS LOCATION
IF (PROGA~EQ,G),THEN

PRINTEXT IPROGRAM NOT FOUNDI,SKIP=l
GOlO DONE

ENDIF
Ml MOVE #2,ADDRB

TCBGET #l,$TCBVER
M2 MOVE PROGBBUF,($PRGSTG,#2),FKEY=KEYB
M3 MOVE SAVEKEY,($TCBADS,#l) SAVE PROGAIS KEY
M4 MOVE ($TCBADS,#l),KEYB

READ DS1,*,P2=PROGBBUF CROSS-PARTITION READ
MOVE ($TCBADS,#l),SAVEKEY RESTORE PROGAIS KEY

DONE PROGSTOP
SAVEKEY DATA FIG I
PROGB DATA CIPROGB
ADDRB DATA FIG I
KEYB DATA FIG I

ENDPROG
END

PROGB
START

PROGRAM START,STORAGE=256
EQU *
•
•
•

MOVE #l,$STORAGE
MOVE OUTPUT,(G,#1),(5G,BYTE)
PRINlEXT I@THE DATA RECEIVED FROM PROGA IS : I
PRINlEXT OUTPUT,SKIP=l

OUTPUT TEXT LENGTH=5G
ENDPROG
END

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) C-7

Communicating with Programs in Other Partitions (Cross-Partition Services)

Starting a Task in Another Partition (ATTACH)

C-8 SC34-0937

The following example shows how you can use the ATTACH instruction to start, or 0
"attach," a task in another partition. PROGA starts the task labeled TASKADDR ' _ .
in PROGB.

PROGB begins by printing the message "PROGB STARTED." The program then
waits for an operator to press the enter key. (This example assumes that the
operator will not press the enter key until the task labeled TASKADDR in PROGB
has executed.)

PROGA uses the WHERES instruction to find the load-point address and address
key of PROGB. The WHERES instruction places the load-point address of PROGB
in ADDRB and the address key of the program in KEYB.

The TCBGET instruction places the address of PROGA's task control block (TCB)
in software register 1. The MOVE instruction at label MI saves PROGA's address
key. At label M2, the MOVE instruction moves PROGB's address key to the
address key field ($TCBADS) of the TCB.

The ADD instruction adds X 134 I to the load-point of PROGB. This address points
to the first word following PROGB's program header. The ADD instruction places
the result of the operation in TASKADDR. Because TASKADDR is the label of
the PI = operand on the ATTACH instruction, the system uses the contents of
TASKADDR as the address of the task to be attached. After the cross-partition
attach operation, PROGA restores its address key from SA VEKEY.

In PROGB, the task labeled TASKADDR is at the first word following the program
header generated by the PROGRAM statement. When TASKADDR is attached, it 0\
enqueues the system printer, $SYSPRTR, and prints the message "SUBTASK IS
ATTACHED." After TASKADDR ends, PROGB waits until an operator presses
the enter key.

o

0

o

Communicating with Programs in Other Partitions (Cross-Partition Services)

PROGA PROGRAM START
COpy PROGEQU
COpy TCBEQU

START EQU *
WHERES PROGB,ADDRB,KEY=KEYB FIND PROGB'S LOCATION
IF (PROGA,EQ,0),THEN

PRINTEXT 'PROGRAM NOT FOUND',SKIP=l
GOTO DONE

ENDIF
TCBGET #l,$TCBVER

Ml MOVE SAVEKEY,($TCBADS,#l) SAVE PROGA'S KEY
M2 MOVE ($TCBADS,#l),KEYB

ADD ADDRB,X'34',RESULT=TASKADDR POINT TO TASK ADDRESS
ATTACH *,Pl=TASKADDR CROSS-PARTITION ATTACH

M3 MOVE ($TCBADS,#l),SAVEKEY RESTORE PROGA'S KEY
•
•
•

DONE PROGSTOP
SAVEKEY DATA F'0'
PROGB DATA C'PROGB
ADDRB DATA F'0'
KEYB DATA F'0'

ENDPROG
END

PROGB PROGRAM START
**
TASKADDR TASK NEXT *
NEXT ENQT $SYSPRTR *

PRINTEXT '@SUBTASK IS ATTACHED' *
•
•
•

DEQT
ENDTASK

*
*
*

*
*

**
START EQU *

PRINTEXT '@PROGB STARTE~'
WAIT KEY
•
•
•

PROGSTOP
ENDPROG
END

AppendixC. Communicating with Programs in Other Partitions (Cross-Partition Services) e-9

Communicating with Programs in Other Partitions (Cross-Partition Services)

Synchronizing Tasks and the Use of Resources in Different Partitions
You can synchronize the execution of two or more tasks in different partitions by 0
using thhe W ~IThand POfST instructiobns. Tkhe. ENd.Qf~ and DE~ ~nstructions allow you . __
to sync rOnIze t e use 0 a resource y tas SIll l1erent partItIOns.

Post an ECB in Another Partition (POST)

C-IO SC34-0937

In the following example, PROGA posts an event control block (ECB) in another
partition. PROGB contains the ECB that is posted. You could use the same coding
techniques to wait for an event in another partition (W AIT).

PROGB begins by waiting for the event labeled ECBl to be posted. PROGA uses
the WHERES instruction to find the load-point address and address key of PROGB.
The WHERES instruction places the load-point address of PROGB in ADDRB and
the address key of the program in KEYB.

The TCBGET instruction places the address of PROGA's task control block (TCB)
in software register 1. The MOVE instruction at label MI saves PROGA's address
key. At label M2, the MOVE instruction moves PROGB's address key to the
address key field ($TCBADS) of the TCB.

The ADD instruction adds X '34' to the load-point of PROGB. This address points
to the first word following PROGB's program header. The ADD instruction places
the result of the operation in PROGBECB. Because PROGBECB is the label of the
PI = operand on the POST instruction, the system uses the contents of PROGBECB
as the address of the ECB to be posted. After the cross-partition post operation,
PROGA restores its address key from SA VEKEY.

In PROGB, the ECB labeled ECBI is at the first word following the program header 0
generated by the PROGRAM statement. When PROGA posts ECBI, PROGB- ..
continues processing.

o

........
0

o

Communicating with Programs in Other Partitions (Cross-Partition Services)

PROGA PROGRAM START
COpy TCBEQU

START EQU *
WHERES PROGB,ADDRB,KEY=KEYB FIND PROGB'S LOCATION
IF (PROGA,EQ,0),THEN

PRINTEXT I PROGRAM NOT FOUND',SKIP=l
GOTO DONE

ENDIF
TCBGET #l,$TCBVER

Ml MOVE SAVEKEY,($TCBADS,#l) SAVE PROGA'S KEY
M2 MOVE ($TCBADS,#l),KEYB

ADD ADDRB,X ' 34 1 ,RESULT=PROGBECB POINT TO PROGB ECB
POST *,-l,Pl=PROGBECB CROSS-PARTITION POST

M3 MOVE ($TCBADS,~l),SAVEKEY RESTORE PROGA'S KEY
•
•
•

DONE PROGSTOP
SAVEKEY DATA F'01

PROGB DATA C'PROGB
ADDRB DATA F'01

KEYB DATA F'01

ENDPROG
END

PROGB
ECBl
START

PROGRAM START
ECB
EQU
WAIT
•
•
•

PROGSTOP
ENDPROG
END

*
ECBl WAIT FOR'ECBl TO BE POSTED

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) C-l1

Communicating with Programs in Other Partitions (Cross-Partition Services)

Enqueue a Resource in Another Partition (ENQ)

C-12 SC34-0937

PROGA, in this example, attempts to· enqueue a queue control block (QCB) in
another partition. The QCB is located in PROGB. PROGA must enqueue the QCB
before it can call the subroutine labeled COMMON, which is link-edited to the
program. The COMMON subroutine, which is also link-edited to other programs in
the system, can only be used by one program at a time.

PROGB begins by waiting for an operator to press the enter key. The program
contains the QCB and should remain active while other programs in the system are
using the COMMON subro).ltine.

PROGA.uses the WHERES instruction to find the load-point address and address
key of PROGB. The WHERES instruction places the load-point address of PROGB
in ADDRB and the address key of the program in KEYB. The TCBGET
instruction places the address of PROGA's task control block (TCB) in software
register 1. The MOVE instruction at label MI saves PROGA's address key. At
label M2, the MOVE instruction moves PROGB's address key to the address key
field ($TCBADS) of the TCB.

The ADD instruction adds X I 34 I to the load-point of PROGB. This address points
to the first word following PROGB's program header. The ADD instruction places
the result of the operation in PROGBQCB. Because PROGBQCB is the label of the
PI = operand on the ENQ instruction, the system uses the contents of PROGBQCB
as the address of the QCB to be enqueued.

If the first word of the QCB in PROGB contains a zero, the COMMON subroutine
is being used by another program. PROGA, in this case, would pass control to the
label CANTHA VE. The busy routine at CANTHA VE would begin by displaying
the message "RESOURCE BUSY" and restoring PROGA's address key. If the first
word of PROGB's QCB is not a zero, PROGA can call the COMMON subroutine
by executing a CALL instruction. When COMMON finishes executing, PROGA
dequeues the subroutine. After the cross-partition enqueue operation, PROGA
restores its address key from SA VEKEY.

In PROGB, the QCB labeled QCBI is at the first word following the program
header generated by the PROGRAM statement. PROGB remains active until an
opera tor presses the enter key on the terminal.

o

o

o

0

C'

o

Communicating with Programs in Other Partitions (Cross-Partition Services)

PROGA PROGRAM START
COPY TCBEQU
EXTRN ROUTINE

START EQU *
WHERES PROGB,ADDRB,KEY=KEYB
IF (PROGA,EQ,G),THEN

PRINTEXT 'PROGRAM NOT FOUND',SKIP=l
GOTO DONE

ENDIF
TCBGET #l,$TCBVER

Ml MOVE SAVEKEY,($TCBADS,#l)
M2 MOVE ($TCBADS,#l),KEYB

ADD ADDRB,X ' 34 1 ,RESULT=PROGBQCB
ENQ *,BUSY=CANTHAVE,Pl=PROGBQCB
CALL ROUTINE
DEQ

M3 MOVE ($TCBADS,#l),SAVEKEY
GOTO DONE

CANTHAVE EQU *
PRINTEXT '@RESOURCE BUSY '
MOVE ($TCBADS,#l),SAVEKEY
•
•
•

DONE PROGSTOP
SAVEKEY DATA F'G '
PROGB DATA C'PROGB
ADDRB DATA F'G '
KEYB DATA F'G'

ENDPROG
END

The subroutine link-edited with PROGA looks like:

SUBROUT ROUTINE
ENTRY ROUTINE
PRINTEXT '@SUBROUTINE HAS BEGUN I

•
•
•

RETURN
END

FIND PROGB'S LOCATION

SAVE PROGA'S KEY

POINT TO PROGB QCB
CROSS-PARTITION ENQUEUE

BUSY ROUTINE

**

PROGB
QCBl
START

PROGRAM START
QCB
EQU *
WAIT KEY
PROGSTOP
ENDPROG
END

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition Services) C-13

o

o

o
C-14 SC34-0937

o

o

o

EDX Programs, Subroutines, and In-Line Code

Appendix D. EDX Programs, Subroutines, and In-Line Code

EDX Programs

This appendix describes EDX programs, subroutines, and in-line code that you can
run.

The following pages ~escribe the EDX programs:

• $DISKUT3

• $PDS

• $RAMSEC

• $SUBMITP

• $USRLOG.

$DISKUT3 - Manage Data from an Application Program
The $DISKUT3 program enables you to perform the following operations for disks
and diskettes from your application program:

• Allocate a data set

• Allocate a data set with extents

• Open a data set

• Delete a data set

• Release unused space in a data set

• Rename a data set

• Set end-of-data indicator in a data set.

You can specify one or more of these operations at the same time. For example,
you can open two data sets and allocate two other data sets with one request.
Multiple operations save execution time.

You load $DISKUT3 with the LOAD instruction and pass it the address of a list of
request block addresses. A word containing zeros indicates the end of the request
block address list. Figure D-I on page D-2 shows how the system maps the request
blocks and addresses. The request blocks define the operation the system is to
perform.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-l

EDX Programs, Subroutines, and In-Line Code

I List address I I

Request block 1

... Request block address ... Word 1 ,..

Request block address - Word 2

End of list (0) Word 3

Word 4

Word 5

Word 6-9

Word 10

~ Re uest block 2 q
•
•
•

A0937008

Figure D-l. Request Block Example

Note: Words 6-10 are needed only for request 8 (allocate with-extents).

Request Block Contents

D-2 SC34-0937

A request block consists of ten words.

Word 1: The value in the rightmost byte indicates the operation to be performed.
The values are:

Value Operation

1 Open a data set (OPEN).

2 Allocate a new data set (ALLOCATE).

3 Rename a data set (RENAME).

4 Delete a data set (DELETE).

5 Release unused space in a data set (RELEASE).

6 Set end-of-data indicator in a data set (SETEOD).

7 Reserved.

8 Allocate data set with extents (ALX).

c

o

o

o

C'
"I

, ji

()

EDX Programs

The 8 leftmost bits are reserved for use as special-purpose flags:

Bit Function

0 I - In~icates that the system should wait if the requested volume is in use.

o - Indicates that the system should not wait if the requested volume is in
use

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

For example, if word 1 contains X 18004 1, it tells the system to delete a data set, but
to wait if the requested volume is busy.

Word 2: This word contains the address of an associated data set control block
(DSCB). The DSCB describes the volume and data set you are using. You must
specify a DSCB for each operation you request. In addition, you must fill in the
data set name ($DSCBNAM) and volume ($DSCBVOL) fields of the DSCB.

Words 3 and 4: The contents of these words vary according to the operation you
request. The contents for each operation follows:

Operation Contents

ALLOCATE Number of records to be allocated (must be in the range of 0 to
2147483647).

ALX

DELETE

OPEN

RELEASE

RENAME

SETEOD

Number of extent records to be allocated for primary data set (must
be in the range of 0 to 2147483647).

Nothing required.

Nothing required.

The new size of the data set in records (must be greater than zero and
less than the current size.) The minimum size of an extended data set
is the size of the primary and one extent.

Word 4 contains the address of a 1 - 8 byte field containing the new
data set name.

Word 4 contains the number of bytes in the last record if it is not yet
full; otherwise this word is O.

$DISKUT3 places the value in request block word 4 into bytes
24 - 25 of the directory member entry (DME). If this value is
nonzero, it represents the number of bytes in the last record that is
considered not completely full. Bytes 20 - 23 of the DME indicate
the value of $DSCBNEX minus 2. If this value is zero, your system
considers the last record to be full and sets bytes 20 - 23 of the DME
to the value of $DSCBNEX minus 1.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-3

EDX Programs

Word 5: This word specifies the data set type. The valid types are:

Code Type

0 Undefined

1 Data

3 Program

-1 Unspecified

Code 0, 1, or 3 when you allocate a data set. Code 1 when you allocate data sets
with extents. Code -1 when you open, rename, or delete a data set. Code I or -1
when releasing storage from an extent data set. When $DISKUT3 ends, the system
sets word 5 to 0, 1, or 3, depending upon the type of the data set you specified. If
your application sets this word to a value other than -1, $DISKUT3 compares the
data set type you specified with the type of the existing data set. If the data sets are
not alike, $DISKUT3 issues a return code of 17 and ends.

The system returns the DSCB in an open condition except when it deletes a data set.
Therefore, when you allocate a data set, you do not need to perfor.m an open
operation or use DSOPEN.

Words 6 through 9: Contents of these words are reserved.

Word 10: Contents of this word are reserved except for ALX. It contains the
maximum size each extent can reach.

If you include dynamic data set extent support, your data sets can grow dynamically
when your application needs more space. For instance, if during a write operation
the system reaches the end of a data set allocated with extents, it will automatically
"extend" the data set provided volume directory and disk space exist.

Operation

ALX

Contents

Size of extents to be allocated. Must be in the range of 1 to 32767
records.

Note: Words 6 -10 are required only when allocating with extents.

Special Considerations

D-4 SC34-0937

Consider the following when using $DISKUT3:

• If you use $DISKUT3 to process data sets that occupy the same volume as your
program, you can retrieve the volume name from the $PRGVOL field of the
program header. To refer to $PRGVOL, you must include a COPY
PROGEQU statement in your program.

• The system considers an attempt to delete a data set that does not exist a
successful operation.

• The system considers an attempt to allocate an existing data set a successful
operation if:

The existing data set is of the same type as the data set you specified for the
operation.

The size of the existing data set is the same as size you requested in the
operation.

o

o

o

o

$DISKUT3 Example

o

o

EDX Programs

• If you attempt to allocate an existing data set and the data set types match but
not the sizes, your program receives a return code indicating whether the data
set you requested is smaller or larger than the one that exists.

• The OPEN and SETEOD operations are valid for tape data sets.

• When you specify a new 'size for an extended data set using the release function,
the actual size that results will include the entire extent necessary to accomodate
that new size.

• The $LOG data set cannot be an extendable data set.

• System work data sets, such as edit work, $EDXASM work data sets, and
$EDXLINK work data sets, cannot be extendable data sets.

The following example uses four of the $DISKUT3 operations (OPEN,
ALLOCATE, RENAME and ALX, allocate an extendable data set) in an
application program. The LOAD instruction loads $DISKUT3 to open a data set
(DATA3), allocate a new data set (DATA4), rename an existing data set (DATAl),
and allocate data sets with extents (DATA5). DSK3EVNT, the label on the
EVENT = operand, is the label of the event control block (ECB) to be posted when
$DISKUT3 completes. LISTPTRI is the label that points to the address of the list
of request block addresses. The WAIT instruction waits for the system to post the
completion of $DISKUT3.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-5

EDX -Programs

TASK PROGRAM GO,DS=«DATAl,EDX002),(DATA2,EDX003))

0 COpy DSCBEQU
GO EQU *

•
•
•
LOAD $DISKUT3,LISTPTRl,EVENT=DSK3EVNT
WAIT DSK3EVNT
•
•
•
PROGSTOP
•
•
•

DSK3EVNT ECB 0 SET ECB TO ZERO
LISTPTRI DC A(LISTI) ADDRESS OF LIST OF REQUEST
* BLOCK ADDRESSES
LISTI DC A(REQUESTl)

DC A(REQUEST2)
DC A(REQUEST3)
DC A(REQUEST4)
DC F' 01 END OF LIST FLAG

RfQUESTl DC Fill REQUEST:'OPEN ' A DATA SET
DC A(DSY) DSCB FOR 'DATA3 1
DC 0101 UNUSED FOR OPEN REQUESTS
DC F'-I' UNUSED FOR OPEN REQUESTS

REQUEST2 DC F'21 REQUEST: I ALLOCATE I A DATA SET 0 DC A(DSX) DSCB FOR 'DATA41
DC 0150 1 ALLOCATE 50 RECORDS
DC Fill DATA SET TYPE IS 'DATA'

REQUEST3 DC Ft 31 REQUEST: 'RENAME' A DATA SET
DC A(DSl) DSCB FOR I DATAl I

DC F' 01 UNUSED FOR RENAME REQUEST
DC A(NEWNAME) ADDRESS OF NEW DATA SET NAME
DC F'-l' FOR RENAME REQUESTS

REQUEST4 DC F'B' ALLOCATE WITH EXTENTS ('ALX')
DC A(DSZ) DSCB FOR 'DATA5 1
DC 0110001 SIZE OF PRIMARY DATA SET
DC Fill DATA SET TYPE IS DATA
DC 4F '01 RESERVED
DC F' 100 1 SIZE OF EXTENTS IN RECORDS
DSCB DS#=DSY,DSNAME=DATA3,VOLSER=EDX003
DSCB DS#=DSX, DSNAME=DATA4, VOLSER=EDX003
DSCB DS#=DSZ,DSNAME=DATA5,VOLSER=EDX003

NEWNAME DC CLB'RENAMED ' NEW DATA SET NAME
ENDPROG
END

o
D-6 SC34-0937

o

o

0 ."
, . '

EDX Programs

$DISKUT3 Return Codes
$DISKUT3 return codes are returned to the first word of the data set control block
(DSCB). When you specify more than one operation, $DISKUT3 performs the
operations in the order you specify. The system issues a return code for each
operation attempted.

Note: If you load $DISKUT3 and request more than one operation that refers to
the same DSCB, the return code reflects the results of the last operation the system
attempted using that DSCB.

Return
Code Condition

-1 Successful completion.

1 Invalid request code parameter (not 1 - 6, 8).

2 Volume does not exist (all functions).

3 Volume not specified ($JOBUTIL: ALLOCATE).

4 Insufficient space in library (ALLOCATE, ALX).

5 Insufficient space in directory (ALLOCATE, ALX, RELEASE).

6 Data set already exists (smaller than the requested allocation).

7 Insufficient contiguous space (ALLOCATE, ALX).

8 Disallowed data set name; for example, $$EDXVOL or $$EDXLIB (all
functions except OPEN).

9 Data set not found (OPEN, RELEASE, RENAME).

10 New name pointer is zero (RENAME).

11 Disk is busy (ALLOCATE, ALX, DELETE, RELEASE, RENAME).

12 I/O error writing to disk (ALLOCATE, ALX, DELETE, RELEASE,
RENAME).

13 I/O error reading from disk (all functions).

14 Data set name is,all blanks (ALLOCATE, ALX, RENAME).

15 Invalid size specification (ALLOCATE, ALX).

16 Invalid size specification (RELEASE).

17 Mismatched data set type (DELETE, OPEN, RELEASE, RENAME).

18 Data set already exists (larger than the requested allocation) ..

19 SETEOD only valid for data set of "data" type.

20 Load of $DISKUT3 failed ($RMU only).

21 Tape data sets are not supported.

23 Volume not initialized or Basic-Exchange Diskette has been opened.

24 Extent data set being allocated and data set type is a program.

25 Data set already exists and is not extendable.

26 Data set already exists and the primary data set is smaller than the
requested allocation.

27 Data set already exists and the primary data set is larger than the
requested allocation.

AppendIX D. EDX Programs,Subroutines, and In-Line Code D-7

EDX Programs

Return
Code Condition

28 Data set already exists .. The primary data set is equal to but the o
extent data set is smaller than the requested allocation.

29 Data set already exists. The primary data set is equal to but the
extent data set is larger than the requested allocation.

o

c
D-8 SC34-0937

o

c

o

EDX Programs

$PDS - Use Partitioned Data Sets
The display data base utility ($DIUTIL) uses a utility program, $PDS, to make
partitioned data sets available for its use. Your programs also can use $PDS to get
access to the members of a partitioned data set (such as report data members and
realtime data members)., You also can use any of the other functions of $PDS in
your programs.

Use the LOAD instruction to execute $PDS in your program. $PDS can be used as
an overlay program as well as a program loaded by another program.

$PDS allows you to:

• Open a member

• Allocate a member for a fixed number of records

• Allocate a member for the maximum number of records

• Release unused space from a member

• Delete a member

• Store the next record

• Store a record

• Fetch a record.

The types of members and their member codes are as follows:

Type of Member Member Code

Report member 1

Graphic member 2

Graphic member 3D 3

Report data member 4

Plot curve data member 5

Realtime data member 6

Data members you define 7,8,9

You define lO-n

Member types 1, 2, and 3 store commands that are used by $DIINTR to create a
display. Member types 4, 5, and 6 contain data that is saved by your application
program. Member types 7, 8, and 9 have the same format as member types 4, 5,
and 6 but are for use by application programs. Member types 10 and up are for use
by application programs.

Appendix D. EDX Programs, Subroutines~ and In-Line Code D-9

EDX Programs

Member types 4 through 9 are special members because they contain multiple
records with a length of 1 to. 32767 bytes. This feature allows the application
program to Fetch and Store data by record number within a member. This
technique could be used by an application program to update data members defined
with the Display Utility Program Set.

You may create members in the following ways:

• Use $DIUTIL utility

Data member, member codes 4,5,6
User data members, member codes 7,8,9
User defined members, member codes 10 and up
Member codes 1,2,3 cannot be created by $DIUTIL

• Use $DICOMP program

Report member, member code 1
Graphic member, member code 2
Graphic 3D member, member code 3

• Use $PDS

- All member types

Allocating a Data Set
A'data set that is to be used by $PDS must be allocated using $DISKUTI. Records
should be allocated for the directory as well as members. Each record in the
directory of a partitioned data set can contain sixteen directory entries except the
first record, which can contain fifteen. For example, if space is required for 40
members each with five records of space, you should allocate 203 records, 200 for
members and three for the directory.

After a data set has been defined by $DISKUTI, it must be formatted for use by
$PDS. $DIUTIL functions IN (Initialize), AL (Allocate), and BU (Build Data) are
used for this purpose. $PDS can also be used to allocate members. Once members
are allocated, they can be used by the application program. The $DIUTIL program
is used to maintain the data set.

The data set to be used with $PDS consists of a directory area and a member area.

Directory Area Format
The first entry in the directory describes the data set and has the following format:

Byte Usage

0-1 Next available record number for member

2-3 Total size of data set in records

4-5 Number of next directory entry

6-7 Total available directory entries allocated and unallocated

8-15 Unused space

D-IO SC34-0937

o

o

o

EDX Programs

Each succeeding directory entry is 16 bytes with the following format:

o Byte Usage

0-7 EBCDIC member name

8-9 First record number (relative to start of data set)

10-11 Number of records in member

12-13 Member code

14-15 Your code or clear screen indicator

Member Code
(Bytes 12 - 13) Description

-1 Deleted member

0 Available space

1 Report member

2 Graphic member

3 Reserved

4 Report data member

5 Plot curve data member

6 Realtime data member

o
7-9 Data member you define

10-n Members you define

VourCode (Bytes 14 -15)

Defined by you and stored by $PDS allocate or a value of 1
if clear screen (ESC,FF) is not to be sent on $DIINTR request.

$DIUTIL can be used to display this data for reference.

o
Appendix D. EDX Programs, Subroutines, and In-Line Code D-ll

EDX Programs

Member Area Format

D-12 SC34-0937

Each member type has a unique format.

Member Types 1 - 3 Display Control Member

No specific format is defined. The data See "Display Control Member Format"
is· generated by the $DICOMP Utility for information about the contents of
Program. these members.

Member Type 4 Byte Report Data Member Usage

0-7 Unused

8-9 Number of records

10-11 Record length in bytes (1 - 132)

12-13 Number of records available

14-15 Unused

16-n Data Area

Member Type 5 Byte Plot Curve Data Member Usage

0-1 X Axis Range

2-3 Y Axis Range

4-5 X Base Line Value

6-7 Y Base Line Value

8-9 Number of records

10-11 Record length in bytes (1 - 32767)

12-13 Number of records available

14-15 Unused

16-n Data Area

Note: Each record can be larger than 4 bytes; however, relative bytes 0,1 must
contain the X-coordinate value and bytes 2,:5 must contain the Y-coordinate value.

o

o

o

EDX Programs

Member Type 6 Byte Real-Time Data Member Usage

0-7 Unused

8-9 Number of records

lO-l1 Record length in bytes (must be 16)

12-13 Number of records available

14-15 Unused

16-n Data Area

Member Type 7,8,9 Byte Data Member You Define Usage

0-7 Unused

8-9 Number of records

10-11 Record length in bytes (1 - 32767)

12-13 Number of records available

14-15 Unused

16-n Data Area

I Member type 10 - n I Member You Define

o
Appendix D. EDX Programs, Subroutines, and In-Line Code D-13

EDX Programs

Display Control Member Format

D-14 SC34-0937

Each of the display profile elements contained in the control members, type codes
(1,2,3), is shown in this section. You may wish to use $PDS to access a control
member. The application program could then generate a display profile command
string and use $DIINTR to display the results. Following is the format of each of
the display profile elements.

LB - Display Characters

Byte Bits Value Content

0 0-3 1 Display characters
code

0 4-7 0 Unused

1 0-7 1-72 Number of
characters to display

2-n 0-7 EBCDIC EBCDIC data to
display

MP - Move Position

Byte Bits Value Content

0 0-3 2 Move Position Code

0-1 4-7/0-7 0-1023 X Coordinate Value

2-3 0-7 0-1023 Y Coordinate Value

For 3D Members:

Byte Bits Value Content

0 0-3 2 Move Position Code

0-1 4-15 0 Unused

2-3 0-15 - 32768 - + 32767 X Coordinate Value

4-5 0-15 - 32768 - +32767 Y Coordinate Value

6-7 0-15 - 32768 - + 32767 Z Coordinate Value

LI - Draw Line

Byte Bits Value Content

0 0-3 3 Draw Line Code

0-1 4-7/0-7 0-1023& X Coordinate Value

2-3 0-7 0-1023 Y Coordinate Value

o

o

o

EDX Programs

For 3D memb~rs:

o Byte Bits Value Content

0 0-3 3 Move Position Code

0-1 4-15 0 Unused

2-3 0-15 -32768 - + 32767 X Coordinate Value

4-5 0-15 -32768 - + 32767 Y Coordinate Value

6-7 0-15 -32768 - + 32767 Z Coordinate Value

DR - Draw Symbol

Byte Bits Value Content

0 0-3 4 Draw Symbol Code

0 4-7 1-15 SymbolID

1 0-7 0-255 Symbol Modifier

2-3 0-7 0-32767 User's Symbol
Number

OR

Byte Bits Value Content

2 0-5 0 Unused o 2 6 0-1 Start top (0) or
bottom (1) for Arc

2-3 7/0-7 0-508 # of Y units in Arc

VA - Display Variable

Byte Bits Value Content

0 0-3 5 Display Variable
Code

0 4-7 0-7 Word Number
within record

1 0-3 0-15 Function Code

1 4-7 0-3 Type Code

2-3 0-7 1- 32767 Record number in
Realtime Data
Member

4 0-7 1-40 Field Width

5 0-7 0-39 Number of Decimals

o
Appendix D. EDX Programs, Subroutines, and In-Line Code D-15

EDX Programs

JP - Jump

. Byte Bits Value Content

0 0-3 6 Jump Code
o

0 4-7 -0-7 Word number within
record

1 0-7 0-2 Jump Modifier

0= Unconditional

1 = Zero

2=Nonzero

2-3 0-7 1- 32767 Record number in
Realtime Data
Member

4-5 0-7 0-32767 Jump to Address
(offset in words from
beginning of Control
Member)

01 - Direct Output to Another Device

Byte Bits Value Content

0 0-3 8 Direct Output Code

0 4-7 0 Unused

1 0-7 0 Unused

2-9 0-7 EBCDIC 8-character name of o
output device (see
ENQT instruction)

P,C _. Plot Curve from Plot Curve Data Member

Byte Bits Value Content

0 0-3 9 Plot Curve Code

0 4-7 0 Unused

1 0-7 o or EBCDIC EBCDIC character
for plot if character
plot

2-9 0-7 EBCDIC 8-character member
name of a plot data
member

o
D-16 SC34-0937

EDX Programs

** - Display Report Line Items

o Byte Bits Value Content

0 0-3 10 Display Report Line
Items

0 4-7 0 Unused

1 0-7 0 Unused

2-9 0-7 EBCDIC 8-character member
name of a report
data member

AD - Advance X, Y

Byte Bits Value Content

0 0-3 11 Advance X, Y code

0-1 4-7/0-7 0-1023 X advance value
(adjusted by +512)

2-3 0-7 0-1023 Y advance value
(adjusted by + 512)

For 3D Members:

Byte Bits Value Content

c 0 0-3 11 Advance X,Y,Z
Code

0-1 4-7/0-7 0-1023 X Advance Value
(adjusted by + 512)

2-3 0-7 0-1023 Y Advance Value
(adjusted by + 512)

4-5 0-7 0-1023 Z Advance Value
(adjus~ed by + 512)

1M - Insert Member

Byte Bits Value Content

0 0-3 12 Insert Member Code

0 4-7 0 Unused

1 0-7 0 Unused

2-9 0-7 EBCDIC 8-character member
name of a central
member

o
Appendix D. EDX Programs, Subroutines, and In-Line Code D-17

EDX Programs

LR - Draw Line Relative

Byte Bits Value Content o
0 0-3 13 Draw Line relative

code

0-1 4-7/0-7 0-1023 Delta X Value
(adjusted by +512)

2-3 0-7 0-1023 Delta Y Value
(adjusted by + 512)

For 3D Members:

Byte Bits Value Content

0 0-3 13 Draw Line Relative
Code

0-1 4-7/0-7 0-1023 Delta X Value
(adjusted by + 512)

2-3 0-7 0-1023 Delta Y Value
(adjusted by +512)

4-5 0-7 0-1023 Delta Z Value
(adjusted by + 512)

RT - Change Realtime Data Member Name

Byte Bits Value Content o
0 0-3 14 Change Realtime

Data Member Code

0 4-7 0 Unused

1 0-7 0 Unused

2-9 0-7 EBCDIC 8-character member
name of a new
realtime data
member (for V A and
+ P codes)

TO - Display Time and Data

Byte Bits Value Content

0 0-3 15 Display time and
data code

0 4-7 0 Unused

1 0-7 0 Unused

o
D-18 SC34-0937

$PDS Example

o

o

o

EDX Programs

You get access to $PDS by loading it with the LOAD instruction. The following
example shows how to open a member.

XYZ PROGRAM
START EQU

•
•
•

READTEXT
•
•
•

LOAD
•
•
•

WAIT
IF
•
•
•

START, DS=(??)
*

H~CB,IENTER MEMBER NAME@I.

$PDS,$MCB,DS=(DSl),EVENT=HPDS,LOGMSG=NO

HPDS
(HPDS,NE,-l),GOTO,ERROR

* NORMAL PROCESSING OF OPENED MEMBER *
•
•
•

READ MBR,BUFF

BUFF
$MCB

•
•
•

WRITE
•
•
•

PROGSTOP
•
•
•

DATA
DATA
•
•
•

HMCB TEXT
HMCBCMD DATA
HMCBDSA DATA
HMCBDTe DATA
HMCBDTI DATA
HMCBDT2 DATA
HMCBDT3 DATA

•
•
•

MBR,BUFF

l28F le i
A(HMCB)

LENGTH=8
Fill
A(MBR)
Fle l
Fle l
Fle l
Fle l

DISK I/O BUFFER
POINTER TO MEMBER CONTROL BLOCK

MEMBER NAME
$PDS COMMAND(OPEN)
ADDRESS OF DSCB
Data Field e
Data Field 1
Data Field 2
Data Field 3

DSCB DSH=MBR,DSNAME=DUMMY,VOLSER=DUMMY
•
•
•

ENDPROG
END

Appendix D. EDX Programs, Subroutines, and In-Line Code D-19

EDX Programs

Member Control Block
The 20-byte member control block (MCB) is passed to the $PDS utility program by
the PARM facility. The member control block (MCB) is filled in by your
application program.

The format of the MCB is as follows:

Byte Usage

0-7 EBCDIC Member Name

8-9 $PDS Command (see below)

10-11 Address of Callers DSCB

12 -19 Data field 0 through 3 (see below)

$PDS Commands (Bytes 8 - 9)

Command Function

1 Open Member

2 Allocate Member

3 Allocate Member (Maximum Space)

4 Release Space

5 Delete Member

6 Store Next Record

7 Store Record

8 Fetch Record

Command Descriptions

D-20" SC34-0937

Open Member
The member specified in bytes 0 -7 of the MCB is located and the
DSCB specified in bytes 10- 11 is filled in to point to the member.

Allocate Member
The- member specified in bytes 0 -7 of the MCB is dynamically
allocated with the parameter specified in bytes 14 -19.

Allocate Member (maximum space)
The member specified in bytes 0 - 7 of the MCB is dynamically
allocated with the parameter specified in bytes 16 -19. Maximum
space is allocated.

o

o

o

o

c

o

Release Space

EDX Programs

The member specified in bytes 0 -7 of the MCB is located and unused
;pace is returned to the a vaila ble space in the data set. Bytes 14 - 15
must contain the number of records that the member will contain.

Delete Member
The member specified in bytes 0 - 7 of the MCB is located and marked
for deletion.

Note: The space occupied by the deleted member is NOT returned to
the available space in the data set. Use the utility $DIUTIL to reclaim
deleted space.

Store Next Record

Store Record

Fetch Record

The member specified in bytes 0 - 7 of the MCB is located. The
member header is used to determine which record is next, and data is
stored in that record. Your data buffer address is located in bytes
14-15 of the MCB.

The member specified in bytes 0 - 7 of the MCB is located. The
record specified in bytes 12-13 is located and the data is stored in
that record. Your data buffer address is located in bytes 14 -15 of the
MCB.

The member specified in bytes 0 -7 of the MCB is located. The
record specified in bytes 12 - 13 is located. All the data is retrieved
and stored in your data buffer. The data buffer address is located in
bytes 14-15 of the MCB.

Data fields 0 through 3 must contain modifier information for the various $PDS
commands. Also, these areas contain data following the action taken by the $PDS
program. The following tables show the data required before executing $PDS and
the data returned after $PDS has executed.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-21

EDX Programs

Before $PDS executes (N j A means not applicable):

Data Data Data Data
Command Word 0 Word 1 Word 2 Word 3 o
Open N/A N/A N/A N/A

Allocate N/A Records Member Type Your Code
Code

Allocate Max N/A N/A Member Type Your Code
Code

Release N/A Records N/A N/A

Delete N/A N/A N/A N/A

Store Next N/A Data Buffer Address N/A N/A

Store Record Data Buffer Address N/A N/A

Fetch Record Data Buffer Address N/A N/A

After $PDS executes (NjA means not applicable):

Data Data Data Data
Command Word 0 Word 1 Word 2 Word 3

Open 1st Record Records Member Type Your Code
Code o

Allocate 1st Record Records Member Type Your Code
Code

Allocate Max 1st Record Records Member Type Your Code
Code

Release N/A N/A N/A N/A

Delete N/A NjA N/A N/A

Store Next Record Data Buffer Address Records in N/A
Member

Store . Record Data Buffer Address Records in N/A
Member

Fetch Record Data Buffer Records N/A.

o
D-22 SC34-0937

o

o

o

EDX Programs

$RAMSEC - Replace Terminal Control Block (4980)
$RAMSEC enables you to replace the current image and/or control stores in the
terminal control block (CCB) from an application program by changing the data set
names. Replacement data set names are held in the CCB to govern 4980 terminal
operations requested after power off and on. They are held until a new $RAMSEC
load or IPL occurs.

When you load $RAMSEC from a program, The LOAD instruction passes
parameters that indicate the new data set names. You can load your own data sets
in combination with any of the two data sets loaded by the initial control store
program. The names of the system data sets are:

• Image store: $4980ISO

• Control store: $4980CSO.

In the following data sets, "x" represents any letter or special character that is
allowed in a data set name. The characters 0 through 9 are reserved by EDX. These
data sets must appear on the IPL volume. Required names for replacement data sets
are:

• Image store: $4980ISx

• Control store: $4980CSx.

Meaning of the Parameter Listings
P ARMJ Meaning

ClOY' When Y is the last character of the image store data set name, the
system loads $4980ISY to the terminal. The system modifies the CCB
to reflect the current data set.

X' 0000' The system loads $4980ISO, the system default image store, to the
terminal. The system modifies the CCB to reflect the current image
store data set.

X' 0001' The system loads the image store name currently in the CCB.. It does
not modify the CCB.

X' FFFF' l The system loads no image store nor does it modify the CCB.

P ARM2 Meaning

C 'OY' When Y is the last character of the control store data set name, the
system loads $4980ISY to the terminal. The system does not modify
the CCB to reflect this data sets name.

X' 0000' The system loads $4980C~O, the system default control store, to the
terminal. The system modifies the CCB to reflect the current data set.

X' 0001' The system loads the control store name in the CCB. It does not
modify the CCB.

X 'FFFF' The system loads no control store, nor does it modify the CCB.

PARM3 Meaning

2F' --I' Reserved. Must be coded as indicated.

Note: The character X above indicates hexadecimal numbers. The character Y in
the list above represents any character except the numbers 0 through 9, which are
reserved by EDX.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-23

EDX Programs

Special Considerations

$RAMSEC Example

D-24 SC34-0937

• To load a 4980 terminal other than the terminal on which your application is
running, you must ENQT the other terminal before loading $RAMSEC.

• Do not specify DEQT = NO on the load instruction, even if you have had to
ENQT on a terminal before loading $RAMSEC.

• You cannot replace the default image and control stores at IPL. The system
always loads the default image and control stores.

• If you switch 4980 terminal off and then on, and your supervisor linkmap does
not contain the PWRAM80 module,' you will need to load the 4980 before using
it again. To load the 4980, use the $TERMUT2 LT command. For additional
information, refer to Operator Commands and Utilities Reference.

The following examples load $RAMSEC to change the image store. In either case,
the system loads only the image store, $4980ISY, to the terminal. You can code the
parameters as either binary values or characters. Only the rightmost byte, - 1, is
used by $RAMSEC. The leftmost byte is ignored for all data sets.

MOVE
LOAD
WAIT
•
•
•

PARMI DC
PARM2 DC
PARM3 DC

PARMI+l,C ' Y',BYTE MOVE IN LAST CHAR. OF IMAGE STORE
$RAMSEC,PARMl,EVENT=ECBI,PART=ANY
ECBl WAIT FOR COMPLETION OF $RAMSEC

X'FFFF '
X'FFFF '
2F'-ll

IMAGE STORE PARM
CONTROL STORE PARM
RESERVED - MUSl BE -1

Equivalent code would be:

LOAD
WAIT
•
•
•

PARMI DC
PARM2 DC
PARM3 DC

$RAMSEC,PARMl,EVENT=ECBI,PART=ANY
label WAIT FOR COMPLETION OF $RAMSEC

CIOyl
X'FFFF '
2F'-I'

IMAGE STORE PARM
CONTROL STORE PARM
RESERVED - MUST BE -1

o

o

o

o

c

o

EDX Programs

$RAMSEC Return Codes
A PROGSTOP statement in$RAMSEC issues the following return codes to the
application.

Return
Code Condition

-1 Successful operation.

1 Image store load failed.

2 Control,store load failed.

3 Image store and control store load failed.

8 You did not enqueue 4980.

9 System not able to ENQT 4980 before loading $RAMSEC.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-25

EDX Programs

$SUBMITP - Submit a Job for Execution

$SUBMITP Example

D-26 SC34-0937

The $SUBMITP program enables you to submit a job to the job queue processor,
$JOBQ, from an application program. You load $SUBMITP from your program
with the LOAD instruction and pass it a list of parameters. $SUBMITP can execute
two job queue processor commands: SJ and SH. The SJ command submits a job
for e{(ecution. The SH command submits a job and holds it until you release the job
for execution using the RJ command. The RJ command ~s available under the
$SUBMIT utility. (Refer to the Operator Commands and Utilities Reference for
more information on $SUBMIT.)

You must pass the $SUBMITP program the following parameters (in the order
shown):

1. The command name (SJ or SH)

2. The job priority (0 - 3; 0 is the highest priority)

3. Name of data set containing $JOBUTIL statements

4. Data set volume

5. Address (label) of word containing the job number.

The $SUBMITP program attempts to load the job queue processor if it is not
already running; The program places the number of the job at the address of the
label you specify in the parameter list.

You must code the EVENT = operand on a LOAD instruction that loads
$SUBMITP. The system posts the label on the EVENT = operand when the
$SUBMITP program ends. Coding a WAIT instruction following the LOAD
instruction enables you to test to see if $SUBMITP submitted the job successfully.
You can load $SUBMITP in another partition by specifying the PART = operand
on the LOAD instruction.

The following example loads $SUBMITP to submit a job for execution.

ERROR

PARMS

JOB
FINISH

LOAD
WAIT
IF
•
•
•

EQU
•
•
•

EQU
DATA
DATA
DATA
DATA
DATA
•
•
•

DATA
ECB

$SUBMITP, PARMS , LOGMSG=NO,EVENT=FINISH
END
(END,NE,-l) ,GOTO, ERROR

*

*
CISJ I COMMAND NAME
X'0002 1 JOB PRIORITY
CL8 ICOMPILE ' DATA SET NAME
CL6 1 EDX002 1 VOLUME NAME
A(JOB) ADDRESS OF JOB NUMBER

F'01 JOB NUMBER RETURNED TO THIS WORD

o

o

0

o

o

EDX Programs

$SUBMITP Return Codes
$SUBMITP return codes are returned to the first word of the event control block
you specify with the EVENT = operand of the LOAD instruction.

Return
Code Condition

-1 Job submitted successfully.

1 Job queue is full.

2 Invalid data found in job queue data set.

3 Disk I/O error is updating queue data set.

4 Cannot load $JOBQ.

5 Invalid command.

Appendix D. EDX Programs, Subroutines, and In-Line Code D .. 27

EDX Programs

$USRLOG - Log Specific Errors From a Program

D-28 SC34-0937

The USER instruction allows you to use Series/1 assembler code within an EDL
program. See "USER - Use Assembler Code in an EDL Program" on page 2 ... 547 0
for information on use of this instruction. Through this instruction, the $USRLOG . "
subroutine enables you to log specific program errors from an application program.
Use of this subroutine is explained below.

Syntax:

label USER $USRLOG,PARM = (logtype,datatype,
dataaddr ,datakey ,devaddr),
P = (logtype,datatype,dataddr,
datakey ,devaddr)

Required: logtype,datatype,dataaddr ,datakey ,devaddr
Defaults: none
Indexable: none

Operand Description

logtype The type of log record. Use one of the following values:

datatype

dataaddr

datakey

devaddr

1 Soft error (device recoverable)
2 Hard (unrecoverable) error
3 Software (recoverable) error.

The type of control block data being logged. Values 0 to 127 are used
by the supervisor; values 128 to 255 are reserved for your use. The
actual hexadecimal value must be coded.

The address of the log data.

The address space key of the log data address.

The device address.

o

o

o

0

o

$USRLOG Example

EDX Programs

The following program example logs a buffer of ones (1s) with $USRLOG.

Define both $DEVLOG and $USRLOG as EXTRNs in programs calling
$USRLOG to avoid assembler errors. Also, before executing the $USRLOG
subroutine, you must link-edit your application program with the $$SVC,
$$RETURN and $DEVLOG object modules.

**
WHEN LINKING THIS LOG-CALLING PROGRAM, USE THE *

* FOLLOWING LINK CONTROL STATEMENTS *
* AUTOCALL $AUTO, ASMLI B *
* IN LOGS, OBJ LI B *
* IN $$SVC,ASMLIB *
* IN $DEVLOG ,ASMLIB *
* LINK $LOGS,SRCLIB REP END *
**

EXTRN $DEVLOG
EXTRN $USRLOG

START EQU
TCBGET ADSO,$TCBADS GET USER ADDRESS SPACE KEY
MOVE ADRSPACE,ADSO MOVE INTO LOG PARM. LIST
USER $USRLOG LOG RECORD
PROGSTOP

ERRTYPEl DC F'3 1 LOGTYPE
DATYPEl DC X'0080 1 DATATYPE
DATADRl DC A(BUFFER) DATA ADDRESS
ADRSPACE DC F'0 1 ADDRESS SPACE OF BUFFER
DEVADRl DC X'0068 1 DEVICE ADDRESS
BUFFER DC 256C ' l ' BUFFER OF ONES
ADSO DC F'0 1

ENDPROG
END

To make $USRLOG code reentrant, you may need to disable the system while your
program is modifying the parameter list. Disa ble the system by using the DIS
assembler instruction. Note that the logging routine disables the system for a short
time. The system is enabled after logging functions are complete. At that time
$USRLOG passes control back to the program that called it. .

Special Considerations
1. If LOGLOAD support loads $LOG, your system will automatically place error

logs in the default error log data set, EDXLOGDS. You can also create an
error log data set by loading $LOG and specifying EDXLOGDS or another
error data set name. Your system allocates an error log data set at 200 records.
You can change the size of this data set by reallocating the error log data set
with $DISKUTI.

2. You can copy EDXLOGDS to another data set for backup purposes. Use
$DISKUT2 to print error logs from a backup data set.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-29

EDX Programs

Tape Source Dump Program Example

D-30 SC34-0937

The following sample program illustrates how to copy EDX source modules from
the IEBUPDTE formatted tape. You may want to add additional code to perform
error checking on your system.

You will need to compile this program after entering it into a source data set.

*
*
*

SAMPLE PROGRAM TO COPY EDX SOURCE TAPE TO SERIES/l DISK
*
*
*

* USER INSTRUCTIONS: BEFORE STARTING THIS PROGRAM, BE SURE *
* THAT THE TAPE CONTAINING THE SOURCE CODE IS MOUNTED *
* AND ONLINE AND THAT AN EDX DISK VOLUME OF SUFFICIENT *
* SIZE HAS BEEN ALLOCATED TO RECEIVE THE DATA. APPROX. *
* VOLUME SIZES NEEDED FOLLOWS: *
* *
* TAPE EDX VOLUME SIZE VOLUME DIRECTORY *
* --------------- ---------------- *
* *
* 5719-XS6 118,000 RECORDS 450 DIRECTORY ENTRIES *
* 5719-XX7 44,000 RECORDS 95 DIRECTORY ENTRIES *

TAPEDISK PROGRAM START,DS=((NL,TAPE02)),PGMS=(($DISKUT3,EDX002))
START EQU *

***GET THE NAME OF THE SOURCE VOLUME TO WRITE THE TAPE RECORDS INTO ***

GETVOL READTEXT VOL,'ENTER SOURCE VOLUME NAME OR CA TO CANCEL I

* IF CA ENTERED END PROGRAM *

IF (VOL,EQ,C'CA'),GOTO,END CHECK FOR 'CA I

* PUT SOURCE VOLUME NAME IN DSCB AND BLANK THE DATA SET NAME FIELD *

LOOP

MOVE
MOVE
EQU

DSA+$DSCBVOL,VOL,(6,BYTES)
DSA+$DSCBNAM,C I 1,(8,BYTES)
*

MOVE VOLUME NAME TO DSC
BLANK NAME FIELD IN DSC

* THE SUBROUTINE GETREC RETURNS 'EACH RECORD FROM TAPE IN LINEBUFF *

CALL GETREC CALL SUBROUTINE GETREC

* IF THE RETURN CODE IN RC IS NOT A -1, THERE WAS AN ERROR

IF (RC,NE,-I),GOTO,END IF ANY ERROR, END

*

o

o

o

o

o

o

EDX Programs

* IF THE RECORD STARTS WITH '*/#' OR II/Ii SKIP THE RECORD *

IF
IF

(LINEBUFF,EQ,SKIP,3),GOTO,LOOP
(LINEBUFF,EQ,SKP2,3),GOTO,LOOP

CHECK TO SEE IF DATA
IS TO BE SKIPPED

* IF THE RECORD STARTS WITH './ ADD' THIS IS THE START OF A NEW MEMBER*

IF (LJNEBUFF,EQ,CONTROL,6) CHECK IF NEW MEMBER

* ALLOCATE THE NEW MEMBER ON DISK *

CALL NEWMEM CALL SUBROUTINE NEWMEM

* IF THE RETURN CODE IN RC IS NOT A -1, THERE WAS AN ERROR

IF
GOTO

ELSE

(RC,NE,-I),GOTO,END
LOOP

IF ANY ERROR, END

*
*

SKIPSW WILL BE '0' IF PROCESSING A VALID SOURCE MODULE
SKIPSW WILL BE 'I' IF NOT PROCESSING A VALID SOURCE MODULE

*
*

IF (SKIPSW,EQ,I),GOTO,LOOP SKIP UNTIL VALID MODULE

* THE SUBROUTINE PUTREC WRITES EACH RECORD TO DISK *

CALL PUTREC CALL SUBROUTINE PUTREC

* IF THE RETURN CODE IN RC IS NOT A -1, THERE WAS AN ERROR

IF (RC,NE,-I),GOTO,END IF ANY ERROR, END
ENDIF
GO TO LOOP RETURN TO BEGINNING

END EQU *
IF (RC,NE,-I)

PRINTEXT 'PROGRAM ENDED WITH RETURN CODE = '
PRINTNUM RC PRINT RETURN. CODE

ENDIF IF ERROR
PROGSTOP
EJECT

*
*
*
*
*
*
*
*

GET RECORD SUBROUTINE

THIS SUBROUTINE PUTS THE SOURCE RECORDS INTO THE
LINE BUFFER (LINEBUFF)

*
*
*
*
*
*
*
*

*

*

Appendix D. EDX Programs, Subroutines, and In-Line Code D-31

EDX Programs

D-32 SC34-0937

SUBROUT
IF

GETREC
(COUNT,LE,0) ALL RECS. PROCESSED?

*
*

IF ALL OF THE RECORDS FROM THE TAPE BLOCK WERE PROCESSED,
READ THE NEXT TAPE RECORD

*
*

CALL

ENDIF
MOVE
SUB
ADD
RETURN

READ YES, GET NEXT TAPE BLOCK

LINEBUFF,(0,#I),(80,BYTES) MOVE DATA FRM TAPE BUFFER
COUNT,1 SUBTRACT 1 FROM COUNT
#1,80 INCREMENT #1 TO NEXT RECORD

*
*
*
*
*
*
*
*

PUT RECORD SUBROUTINE

THIS SUBROUTINE BLOCKS THE SOURCE RECORDS AND WRITES
THEM TO DISK

*
*
*
*
*
*
*
*

SUBROUT
IF

MOVE
WRITE
MOVE
MOVE
MOVE

ELSE
MOVE
MOVE

ENDIF
RETURN
EJECT

PUTREC
(WRITESW,EQ,I) IS THIS 2ND SOURCE RECORD

DISKBUFF+128,LINEBUFF,(80,BYTES) YES
DSA,DISKBUFF WRITE TO DISK
RC,TAPEDISK SAVE RETURN CODE
DISKBUFF,X ' 40 1 ,{256,BYTES) CLEAR DISKBUFF TO BLANK
WRITESW,0 NEXT RECORD WILL BE 1ST

SOURCE RECORD IN BLOCK
DISKBUFF,LINEBUFF,(80,BYTES)
WRITESW,l NEXT RECORD WILL BE 2ND

SOURCE RECORD IN BLOCK

*
*
*
*
*
*
*
*

NEW MEMBER SUBROUTINE

THIS SUBROUTINE WILL CREATE A NEW MEMBER ON DISK USING
THE INFORMATION IN THE CONTROL RECORD

*
*
*
*
*
*
*
*

SUBROUT NEWMEM

* CHECK TO SEE IF THE DSCB WAS USED *

o

o

o

o

o

o

EDX Programs

IF (DSA+$DSCBNAM,NE,BLANK,8) IF BLANK, 1ST TIME THRU

*
*

CHECK TO SEE IF THE DISK BUFFER NEEDS TO BE WRITTEN
(PARTIAL RECORD)

*
*

IF

WRITE
MOVE
IF
MOVE

ENDIF

(WRITESW, EQ, 1)
DSA,DISKBUFF
RC,TAPEDISK
(RC,NE,-l),GOTO,ENDNEW
WRITESW,0

LAST MEMBER HAD ODD COUNT
WRITE TO DISK, LAST HALF
RECORD WILL BE BLANK.

* CALCULATE THE END OF DATA POINTER *

SUB DSA+$DSCBNEX,l,RESULT=NEWSIZ,PREC=D

*
*

LOAD $DISKUT3 TO SET THE END OF DATA POINTER AND
RELEASE THE UNUSED DISK SPACE

*
*

LOAD
WAIT
MOVE
IF

ENDIF

PGMl,LIST2,EVENT=UT3ECB
UT3ECB
RC,DSA
(RC,NE,-l),GOTO,ENDNEW

* CLEAR THE NAME IN THE DSCB *
ww*************

MOVE DSA+$DSCBNAM,C' ',(8,BYTES) MOVE BLANKS TO DSCB NAME

* CHECK TO SEE IF MEMBER NAME IS VALID *

IF
MOVE
GOTO

ENDIF
MOVE

(LINEBUFF+24,EQ,C '#',BYTE)
SKIPSW,1
ENDNEW

SKIPSW,0

NAME STARTS WITH 1#1
SETUP TO SKIP TO NEXT
MEMBER.
I F VALID NAME
RESET THE SKIP SWITCH

*
*
*

MOVE NEW MEMBER NAME INTO THE DSCB AND LOAD
$DISKUT3 TO DELETE IT IF IT ALREADY EXISTS
AND THEN REALLOCATE IT.

*
*
*

MOVE
LOAD
WAIT
MOVE

ENDNEW EQU
RETURN
EJECT

DSA+$DSCBNAM,LINEBUFF+24,(8,BYTES)
PGMl,LIST1,EVENT=UT3ECB
UT3ECB
RC,DSA
*

Appendix D. EDX Programs, Subroutines, and In-Line Code D-33

EDX Programs

D-34 SC34-0937

*
*
* READ TAPE RECORD SUBROUTINE
*
*

*
*
*
*
*

SUBROUT READ

* READ SOURCE RECORDS FROM TAPE *
******************~**

READ
MOVE

DSl,BUFF,,3120,END=END
RC,TAPEDISK

READ TAPE RECORD

*
*

IF THE RECORD COUNT IS NOT 39, CALCULATE THE NUMBER
OF RECORDS IN THIS BLOCK *

IF

MOVE
DIVIDE

IF
MOVE

ELSE
MOVE

ENDIF
MOVEA
RETURN

(RC,EQ,21)
RECL,TAPEDISK+2
RECL,B0,RESULT=COUNT

(COUNT,GT,39)
RC,-1

COUNT,39

#1,BUFF

WRONG LENGTH RECORD ERROR
GET RECORD LENGTH
CALCULATE RECORD COUNT
IS COUNT GREATER THAN 39?
RESET RETURN CODE

SET COUNT TO 39 RECORDS

MOVE BUFFER ADDRESS TO #1

*************-**
* DATA AREA *

CONTROL DATA
COUNT DATA
RC DATA
SKIP DATA
SKP2 DATA
BLANK DATA
DISKBUFF DATA
BUFF DATA
VOL TEXT

DSCB
LINEBUFF DATA
RECL DATA
WRITESW DATA
SKIPSW DATA
UT3ECB ECB
*
LISTI DATA
*
LISTIA DATA

DATA
DATA

CI
./ ADD' RECORD HEADER FOR NEW MEMBER

F 10 I TAPE BLOCKI NG COUNTER
F'-ll RETURN CODE SAVE AREA
CI */# I RECORD HEADER TO SKIP
CI //# I RECORD HEADER TO SKIP
CI BLANK AREA FOR COMPARE
12BF '01 DISK WRITE BUFFER AREA
1560F ' 01 TAPE READ BUFFER AREA
LENGTH=6 TEXT AREA FOR VOLUME INPUT
DS#=DSA,DSNAME=DUMMY DSCB USED BY $DISKUT3
B0C I I TEMPORARY HOLD AREA
F' 01 TAPE READ BYTE COUNT LENGTH
F'0' USED TO INDICATE FULL/HALF RECORD
F' 01 SET WHEN SKIPPING RECORDS
o $DISKUT3 END ECB

A(LISTIA)

A(DELETE)
A(ALLOCATE)
FI 0 1

$DISKUT3 LIST POINTER

POINTER TO DELETE
POINTER TO ALLOCATE
END OF LIST INDICATOR

o

*

o

o

0

o

o

EDX Programs

*
DELETE DATA Xl8004 1 REQUEST A DELETE

DATA A(DSA) DSCB NAME
DATA DI01

DATA FI-li TYPE IS ANY
*
ALLOCATE DATA XI8002 1 REQUEST, AN ALLOCATE

DATA A(DSA) DSCB NAME
DATA DI3500 1 MUST BE AS LARGE AS THE LARGEST SOURCE MEMBER
DATJI Fill TYPE IS DATA

*
LIST2 DATA A(LIST2A) $DISKUT3 LIST POINTER
*
LIST2A DATA A(SEOD) POINTER TO SET END OF DATA
*
RELLST DATA A(RELEASE) POINTER TO RELEASE SPACE

DATA FI01 END OF LIST INDICATOR
*
SEOD DATA XI8006 1 REQUEST SET END OF DATA

DATA A(DSA) DSCB NAME
DATA DI01

DATA FI-li
*
RELEASE DATA XI8005 1 REQUEST RELEASE UNUSED SPACE

DATA A(DSA) DSCB NAME
NEWSIZ DATA DI01

DATA FI-li

* COPY THE DSCB EQUATES INTO THE PROGRAM *

PRINT
COpy
PRINT
ENDPROG
END

OFF
DSCBEQU
ON

* END OF SAMPLE PROGRAM *

Appendix D. EDX Programs, Subroutines, and In-Line Code D-35

EDX Subroutines

EDX Subroutines

D-36 SC34-0937

This section describes the following EDX subroutines:

• DSOPEN

• Formatted Screen Subroutines (syntax only)

• Indexed Access Method (syntax only)

• Multiple Terminal Manager (syntax only)

• SETEOD

• UPDTAPE.

You call these subroutines in your application program with the CALL instruction.

The following syntax conventions are used for the subroutines listed in this
appendix.

• Operands shown in brackets [] are optional

• Operands not shown in brackets are required

• Default values are italicized

• The OR symbol I indicates mutually exclusive operands or parameters.

o

o

o

o

o

o

EDX Subroutines

DSOPEN - Open a data set
You can open a data set from an application program with the DSOPEN copy code.
By initializing a DSCB, DSOPEN opens a disk, diskette, or tape data set for input
and/or output operations. The results of DSOPEN processing are identical to the
implicit open performed by $L or LOAD for data sets specified in the PROGRAM
statement.

Note: Only one DSCB can be open to a tape at a time. If a tape has been opened,
a close must be issued before another open can be requested.

DSOPEN performs the following functions:

• Verifies that the specified volume is online
• Verifies that the specified data set is in the volume
• Initializes the DSCB.

To use DSOPEN, you must first copy the source code into your program by coding:

COPY DDODEF
COPY TCBEQU
COpy PROGEQU
COpy DDBEQU
COpy DSCBEQU

•
•
•

COpy DSOPEN

Note: You must code the equates in the order given.

During execution, DSOPEN is called with the CALL instruction as follows:

CALL DSOPEN,(dscb)

DSOPEN Error Exit Labels
The DSOPEN subroutine contains labels for a number of error exits. By moving the
address of your error routine into the area defined by the DSOPEN label, the
subroutine will perform the error routine you supply. The routine. you supply can
not be another subroutine. If you move a zero into the area defined by the
DSOPEN label (except for $$EXIT), the subroutine passes control to the first
instruction following the CALL instruction for DSOPEN. The labels are as follows:

Label Description

$DSNFND Data set name not found in directory If DSOPEN can not find the
data set, then it does not fill in the DSCB.

$DSBVOL Volume not found in disk directory. The system set the DDB pointer
in the DSCB to 0 ($DSCBVDE does not equal 0).

$DSIOERR Read error occurred while DSOPEN was searching the directory. See
the READ instruction return codes for more information.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-37

EDX Subroutines

$$EXIT Exit address. If $$EXIT is 0 and $DSCBNAME equals $$ or
$$EDXVOL, then DSOPEN initializes the DSCB to the first record

. (first recond in the library) of the volume specified in the $DSCBVOL.
If $$EXIT is 0 and $DSCBNAME is $$EDXVOL, then DSOPEN
initializes the DSCB to the first record of the device where the volume
specified on $DSCBVOL resides.

$DSDCEA Address of area for DSOPEN to store the DCE (Directory Control
Entry). This label contains a 0 if this area does not exist.

o

DSOPEN Considerations

DSOPEN Example

D-38 SC34-0937

You must have a 256-byte work area labeled DISKBUFR in your program as
follows:

DISKBUFR DC 128F'0'

The DSCB to be opened can be DSI to DS9 or a DSCB defined in your program
with a DSCB statement. The DSCB must be initialized with a 6-character volume
name in $DSCBVOL and an 8-chanicter data set name in $DSCBNAM. The
volume name can be specified as six blanks, which causes the IPL volume to be
searched for the data set.

After DSOPEN processing, #1 contains the number of the directory record
containing the member entry and #2 contains the displacement within DISKBUFR
to the member entry. The fields $DSCBEND and $DSCBEDB contain the next
available logical record data, if any, placed in the directory by SETEOD.

Only one data set on any tape volume may be open at anyone time. Multiple data 0
sets, in a program header, or if opened by DSOPEN, cannot refer to more than one
data set per tape volume. If this is attempted, the second open attempt will fail and
take the Invalid VOLSER error exit.

The following is an example using of the DSOPEN subroutine. The name of the
subroutine that calls DSOPEN is USROPEN.

USROPEN opens a data set and returns information about the data set to a
lO-word area in the program. Figure D-2 on page D-4l shows the information that
USROPEN will return if the DSOPEN subroutine successfully opens the data set.

The call to the USROPEN subroutine would appear as follows:

CALL USROPEN,(label)

where (label) is the address of the lO-word area.

At entry to USROPEN, #1 equals A (the DSCB to be opened). This DSCB must
have the fields $DSCBNAM and $DSCBVOL filled with the name of the opened
data set and the name of the data set volume, respectively.

o

o

o

o

EDX Subroutines

In order not to receive information about the opened data set after the DSOPEN
operation, the call to USROPEN would be coded as follows:

CALL USROPEN,0

When USROPEN completes, #1 and #2 are as they were on entry. If DSOPEN
takes an error exit during the operation, USROPEN will return the appropriate
return code. The return codes set up for USROPEN are as follows:

Return
Code Condition

-J Operation completed successfully. Data set is open, and if requested,
the DM parameters were transferred to a specified area.

2 Data set not found. The data set requested was not found on the
volume specified.

3 Volume not found. The volume that the data set is supposed reside on
does not exist or is not on line.

6 While DSOPEN was attempting to open the data set, an unrecoverable
I/O error occurred on the volume directory.

18 Directory not initialized or is not in correct format.

Appendix D. EDX Programs, Subroutines, and In-Line CodeD-39

EDX Subroutines

SUBROUT USROPEN,OPNDMEP 10-WORD DATA AREA

0 •
•
•

MOVE OPNS#I,#1 SAVE #1
MOVE OPNS#2,#2 SAVE #2

* SET UP DSOPEN ERROR EXITS *

MOVEA $DSNFND,OPNDNF DATA SET NAME NOT FOUND
MOVEA $DSBVOL,OPNVNF VOLUME NOT FOUND
MOVEA $DSIOERR,OPNIOE ERROR READING DIRECTORY
MOVEA $DSBLIB,OPNLIB VOLUME NOT INITIALIZED
MOVE $$EXIT ,O- ALLOW $$, $$EDXLIB, $$EDXVOL

*
CALL DSOPEN,OPNS#1 CALL DSOPEN
IF (OPNDMEP,NE,0) IF ADDRESS OF DME PARAMETER AREA

* IS PASSED, TRANSFER DM PARAMETER
* INFORMATION FROM DISKBUFFR

MOVE #1,OPNDMEP
MOVE (0,#I),(DISKBUFR+$$FPMT,#2),8

ENDIF
OPNXIT MOVE #1,0,P2=OPNS#1 RESTORE #1

MOVE (O,#1),#2 #2 INTO DSCB
MOVE #2,0,P2=OPNS#2 RESTORE #2
RETURN

*
OPNDNF MOVE #2,2 DATA SET NOT FOUND CODE 0 GOTO OPNXIT CLEAN UP AND RETURN
*
OPNVNF MOVE #2,3 VOLUME NOT FOUND CODE

GOTO OPNXIT CLEAN UP AND RETURN
*
OPNLIB MOVE #2,18 VOLUME NOT INTIALIZED CODE

GO TO OPNXIT CLEAN UP AND RETURN
*
OPNIOE MOVE #2,6 DIRECTORY I/O ERROR CODE

GOTO OPNXIT CLEAN UP AND RETUR~
END

o
D-40 SC34-0937

o

o

o

EDX Subroutines

After DSOPEN opens the data set, USROPEN fills in the lO-word data area at label
OPNDMEP with the following information about the opened data set.

Offset Contents

0 DMEKIND - Data set type:

o - Unspecified

1 - Date member (sequential or direct)

3 - Program member

2 DMELA - The load address, if the data set is a program
(0 - relocatable)

DMERL - The logical record length, if the dataset contains data
(usually 256).

4 DMEMS - If the member is a data set, its size in bytes (doubleword)

DMEER - If the data set contains data, the number of the physical
record that contains the last logical record (doubleword)

8 DMEEP - If the data set is a program, its entry point.

DMEEO - If the data set contains data, the offset in the EOD
physical record of the first byte that is not in a logical record.

-
10 DMERS - If the data set is a program, the size of its relocation

dictionary in bytes. This field is reserved if the data set is not a
program.

12 DMEEOF - For data sets containing data, bit 0 equals 1 if DMEER
is valid. This field is reserved for programs.

Figure D-2. Information Returned from DSOPEN

Appendix D. EDX Programs,Subroutines, and In-Line Code D-41

EDX Subroutines

Formatted Screen Subroutines (Syntax Only)

D-42 SC34-0937

seehApPbendit~ A, 'd' ~tormatteddscreen Subroutines" on page A-I for a description of 0 ..
eac su rou me an 1 s operan s.

All parameters coded in these subroutines must be labels.

Syntax:.

label CALL $IMOPEN,(dsname,volume),(buffer),
[(type. ~'49781 IC '3191 ' lc' I),]
[P2=, P3=, P4=]

label CALL $IMDEFN,(iocb),(buffer) [,topm,leftm,P2=,P3=,P4=]

label CALL $IMPROT,(buffer) [,(ftab),P2=,P3=]

label CALL $IMDATA,(buffer),(ftab) [,P2=,P3=]

label CALL $PACK,source,dest[,P2=,P3=]

label CALL $UNPACK,source,dest[,P2=,P3=]

o

o

c

0

o

EDX Subroutines

Indexed Access Method (Syntax Only)
Refer to the IBM Series/1 Event Driven Executive Indexed Access Method
(5719-AM4) for a description of each of the following subroutines.

Syntax:

label CALL lAM, (DELETEIDELETC),iacb, (key)

label CALL !AM,(DlSCONN),iacb

label CALL lAM, (ENDSEQ),iacb

label CALL lAM, (EXTRACT),iacb, (buff), (size), (type)

label CALL lAM, (GETIGETCIGETRIGETCR),iacb, (buff), (key),
(mode/krel)

label CALL lAM,(GETBIGETBC),iacb,(recptr),(key),(mode/krel)

label CALL lAM,(GETNBIGETNBC),iacb,(recptr),(key)

label CALL lAM,(GETSEQIGETSEQCIGETSEQCRIGETSEQR),iacb,(buff),
(key), (mode/krel)

label CALL lAM, (LOAD),iacb, (dscb), (opentab),(mode)

label CALL lAM, (PROCESS),iacb, (dscb), (opentab),(mode)

label CALL lAM, (PUTlpUTC),iacb,(buff)

label CALL IAM,(PUTDElpUTDEC),iacb,(buff)

label CALL lAM, (PUTUP I PUTUPC) ,iacb, (buff)

label CALL lAM, (RELEASE),iacb

Appendix D. EDX Programs, Subroutines, and In-Line Code D-43

EDX Subroutines

Multiple Terminal Manager (Syntax Only)

D-44 SC34-0937

Refer to the Multiple Terminal Manager Guide and Reference for a description of
each of the following subroutines.

Note: All parameters passed in Multiple Terminal Manager functions must be labels
of either values, tables, buffers, or text strings.

Syntax:

label CALL ACTION, [(buffer), (length), (crlf)]

label CALL ASYNCH

label CALL BEEP

label CALL BLINK

label CALL CDATA, (type), (userid), (userclass),(termname),
(buffersize)

label CALL CHALT

label CALL CHGPAN

lable CALL CRECVE

label CALL CSEND

label CALL CYCLE
label CALL FAN

label CALL FILEIO,(FCA),(buffer),(return code)

label CALL FTAB,(table), (size), (return code)

label CALL GETCUR,(row),(column)

label CALL LINK, (pgmname)

label CALL LINKON, (pgmname)

label CALL MENU

label CALL PSEUDO

label CALL SETCUR,(row),(column)

label CALL SETFMT,(dsname);(rc)

label CALL SETPAN,(dsname),(return code)

label CALL WRITE,(buffer),(length),(crlf)

o

0

0

o

o

o

EDX Subroutines

SETEOD - Set the Logical End-ot-File on Disk
The copy code routine SETEOD allows you to indicate the logical end of file on
disk. If your program does not use SETEOD when creating or overwriting a file,
the READ end-of-data exception occurs at either the physical or logical end that was
set by some previous use of the data set.

SETEOD places the relative record number of the last full physical record,in the
$$FPMF field of the directory member entry (DME).

Notes:

1. If the $DSCBEDB field is zero, the $$FPMF field is set to the next record
pointer field ($DSCBNEX) minus one.

2. If the $DSCBEBD field is not zero, the $$FPMF ·field is set to the $DSCBNEX
minus two.

If the last physical record is partially filled, the number of bytes contained in this
record is placed in the $$FPMD of the DME. Otherwise, a zero is placed in this
field. (This is done by copying the $DSCBEDB field of the DSCB directly into the
DME.) (Further information on the DME can be found in &int ..)

If the next record pointer field ($DSCBNEX) in the DSCB is 1 when SETEOD is
executed, the DME is set to indicate that the data set is empty and $DSCBEND is
set to X I -11, indicating that the data set is empty. If $DSCBEND is zero, the data
set is unused.

You can use SETEOD before, during or after any READ or WRITE operation. It
does not inhibit further I/O and can be used more than once. The only requirement
is that the DSCB passed as input must have been previously opened.

The POINT instruction modifies the $DSCBNEX field. If SETEOD is used after a
POINT instruction, the new value of $DSCBNEX is used by SETEOD.

SETEOD requires that the DSOPEN copy code, PROGEQU, TCBEQU, DDBEQU,
and DSCBEQU be copied in your program. To use SETEOD, copy the source code
into your program and allocate a work data set as follows:

COpy TCBEQU
COpy PROGEQU
COpy DDBEQU
COpy DSCBEQU

•
•
•

COpy DSOPEN
COpy SETEOD

DISKBUFR DC 128F I OI WORK AREA FOR DSOPEN

You call SETEOD with the CALL instruction and pass it the DSCB and an I/O
error exit routine pointer as parameters. In the following example,

CALL SETEOD,(DSl),(IOERROR)

DSI pojnts to a previously opened DSCB and IOERROR is the label of the
program routine that receives control if an I/O error occurs.

Appendix D. EDX Programs, Subroutines, and In-Line Code D-45

UPDT APE - Add Records to a Tape File
The copy code routine UPDT APE allows you to add records to an existing (or new)
tape file. The records added are placed after existing records on the file. On
standard label tapes, the routine updates the block count counters in the EOFI label.

To use UPDTAPE, you must copy the source code into your program by coding:

COpy UPDTAPE

You call UPDT APE with the CALL instruction and pass it the DSCB as a
parameter. In the following example,

CALL UPDTAPE,(DS1)

DSI points to a previously opened DSCB.

After the CALL, you must check the return code in the first word of the DSCBfor
the tape return code. A -1 return code indicates that the tape is positioned
correctly for writing records. (See the CONTROL instruction for a list of tape
return codes.)

Iin-Line-Code (EXTRACT)

D-46 SC34-0937

This section describes how to find a device type by including the in-line copy code
routine EXTRACT in your program. EXTRACT determines the device type from
the device descriptor block. This routine can be useful for programs that perform
operations on a variety of devices. For example, a program may not have to
allocate a data set if the data set will reside on a tape. The program can use the
EXTRACT routine, in this case, to determine if the device it will use is a tape
device.

To use EXTRACT, you must copy the source code into your program. The routine
requires the address of a DSCB in #1 and returns the address of a DSCB in #1.

The following example copies the EXTRACT code into the program and checks to
see if the device is a tape unit. X' 3186' is the device identifier of an IBM 4969
Magnetic Tape unit.

MOVEA #1,DS1
COPY EXTRACT
IF (#1,EQ,X'3186'),GOTO,TAPEDS

o

()

o

o

0 ','
'I

o

Creating, Storing, and Retrieving Program Messages

Appendix E. Creating, Storing, and Retrieving Program
Messages

When designing EDL programs, place prompt messages and other message text in a
separate message data set. You save storage space and coding time by doing so.
The message utility, $MSGUTI, formats the messages in such a data set. The
formatted messages can reside on disk, diskette, or in a module that you link-edit
with your application program. The MESSAGE, GETV ALUE, READTEXT, and
QUESTION instructions enable your program to retrieve and print the appropriate
message text when the program executes.

By placing messages in a separate data set, you also can change the text of a
message without having to alter and recompile each program that uses that message.
For more information on how to build and store program messages, refer to the
&appl..

Creating and using your own messages involves the following steps:

1. Creating a data set for source messages

2. Entering the source messages into the data set

3. Formatting and storing the source messages using the message utility,
$MSGUTI

4. Retrieving and printing the formatted messages.

The following pages cover each of these steps.

Creating a Data Set for Source Messages
You create a data set for source messages with one of the text editors described in
the &util.. You can create one or more source message data sets and can store them
on any volume. Messages can be simple statements or questions. They can also
include any variable fields necessary to contain parameters supplied by your
program.

Entering Source Messages into a Data Set
After creating a source message data set, enter your source messages using the
following syntax rules:

• Begin each message in column 1.

• Precede each variable field with two less than symbols « <) and follow each
variable field with two greater than symbols (> ».

• End messages with the characters: j*

• Begin and end comments with double slashes (f jcommentj j). A comment must
be associated with a message.

• Use the at sign (@) to cause the message to skip to the next line.

• Continue a message on a new line by coding any nonblank character in column
72. Begin the continued line in column 1.

Appendix E. Creating, Storing, and Retrieving Program Messages E-l

Creating, Storing, and Retrieving Program Messages

Source messages can be a maximum length of 250 bytes. You can calculate the
length of a message by allowing one byte for each character in the text and one byte
for each variable field.

The system identifies each message by its position in the source message data set.
For example, the system assigns a message number of 3 to the third message in the
source message data set. Once you format source messages with the $MSGUTI
utility, add any new messages you have to the end of the source message data set.
Leave messages no longer needed in the source message data set or replace them
with new messages to preserve the numbering scheme.

Coding Messages with Variable Fields

E-2 SC34-0937

You may want to construct a message that can return information supplied or
generated by your program. To do this, you can code a message with one or more
variable fields. When you execute your program, the system inserts the appropriate
parameters in these variable fields and prints a complete message. For example, to
construct a message that tells a program operator how many records are in a
particular data set on a particular volume, code the following:

THERE ARE «SIZE>S> RECORDS IN «DATA SET NAME>T> ON «VOLUME>T>/*

The variable fields in the previous example are the number of records in the data set
(SIZE), the data set name, and the volume name. The variable field names do not
need to correspond with names in a program.

Note: To print or display a message with variable fields, you must have included the
FULLMSG module in your system during system generation.

Set the variable fields off from the message text with two less than and two greater
than symbols « < > ». The symbols should enclose a description of the field.
The system treats the field description as a comment. You can include up to 8
variable fields within a single message.

All variable fields must also contain a control character that describes the type of
parameter your program will pass to the variable field. The previous example
illustrates this point. "s" is the control character in the field < < SIZE> S >; "T" is
the control character in the field < < VOLUME> T >. The following is a list of the
valid control characters and their descriptions:

C Character data. Specify the number of characters allowed in the field by
coding a value from 1 to 250 before the "c" (for example,
< <NAME>8C». There is no default.

T Text. No length is necessary. This control character is similar to "c" but you
cannot specify the size of the variable field.

H Hexadecimal data. The length is four EBCDIC characters.

S Single-word integer. Specify a length for the data by coding a value from 1 to
6 before the "S." The default is six EBCDIC characters. The valid range for a
single-word integer value is from - 32768 to 32767.

D Double-word integer. Specify a length for the data by coding a value from 1
to 11 before the "D." The default is six EBCDIC characters. The valid range
for a double-word integer value is from - 2147483648 to 2147483647.

o

o

o

o

c

o

Creating, Storing, and Retrieving Program Messages

Your program passes parameters to a message in the order you specified the
parameters in the EDL instruction. The following example shows a MESSAGE
instruction with a parameter list (P ARMS =):

SAMPLE

ID
SIZE
DSNAME
VOLUME

PROGRAM START,DS=((MSGSET,EDX003))
•
•
•

MESSAGE 2,COMP=ID,PARMS=(DSNAME,VOLUME,SIZE)
•
•
•

COMP
DC
TEXT
TEXT

ISRCE 1,DS1,TYPE=DSK
FI100 1
IDATA SET 11
1 EDX002 1

The MESSAGE instruction retrieves message number 2. The source message for
message number 2 is:

«DATA SET NAME>T> ON «VOLUME>T> IS ONLY «SIZE>S> RECORDS/*

When the MESSAGE instruction executes, the system places the first parameter
(DSNAME) in the first variable field. It places the second parameter (VOLUME) in
the second field, and the third parameter (SIZE) in the third field.

You may, however, want to alter or reword the message in the previous example. It
is possible to change the order of variable fields in a source message withotlt
changing the order of the parameter list in the program. To do so, code an
additional number after the control character. This number, from 1 to 8, points to
the parameter that the system should insert into the variable field. The number
corresponds to the position of the parameter in the parameter list. For example,
< < NAME> C3 > tells the system to retrieve the third parameter in the parameter
list.

The order of the variable fields in message number 2 has been switched in the
following example. Note that a number following the control character, however,
points to the correct parameter for the variable field:

THERE ARE ONLY «SIZE>S3> RECORDS IN «DATA SET NAME>T1> ON x

«VOLUME>T2>/*

"S3" points to the third parameter in the list (SIZE), "Tl" points to the first
parameter in the list (DSNAME), and "T2" points to the second parameter in the
list (VOLUME).

Appendix E. Creating, Storing, and Retrieving Program Messages E-3

Sample Source-Message Data Set
The following is a sample of a source-message data set:

THIS IS A SAMPLE MESSAGE //THIS IS A SAMPLE COMMENT// /*
OUTPUT TO SYSTEM PRINTER? /*
ENTER «TYPE OF VALUE>Tl> VALUE LESS THAN «VALUE>S2> /*
THE PROGRAM HAS PROCESSED THE INPUT DATA./*
ENTER YOUR «FIRST/LAST/~ULL NAME>10C>/*
«NUMBER>3S> RECORDS HAVE BEEN RECEIVED FROM «SOURCE>8C>./*
THE ANSWER IS : «VALUE>D> /*
SORRY, THE DATA YOU ENTERED IS «ERROR>T>/*
THE DEVICE AT ADDRESS «DEVICE ADDRESS>Hl> IS
IN USE/*

x

Formatting and Storing Source Messages (using $MSGUT1)
Once you have created a source-message data set, you must use the message utility,
$MSGUTl, to convert the source messages into a form the system can use. The
utility copies the source messages, formats them, and stores the formatted messages.
(Refer to the &util. for a detailed explanation of how to use the message utility.)

You can store the formatted messages on disk or diskette or in a module. If you
choose to store your formatted messages in a module, you must link-edit the module
containing the messages to your application programs.

Each time you add new messages to the source-message data set, you must reformat
the data set with $MSGUTI.

Note: If you included MINMSG in your system during system generation, your
program can only retrieve formatted messages from a module.

Retrieving and Printing Formatted Messages

E-4 SC34-0937

To retrieve a message from storage and include it in your program, you must code a
CaMP statement and anyone of the following instructions: MESSAGE,
GETVALUE, QUESTION, and READTEXT. (See the CaMP statement and each
of the instructions for information on how to retrieve and print formatted messages.)

The system retrieves program messages from the data set or module you allocated
with $MSGUTI. If you store formatted messages on disk or diskette, you must
include the data set that contains the messages on the PROGRAM statement for
your program. The CaMP statement must point to this message data set. If you
store formatted message in a module, you must link-edit that module to your
program. The CaMP must also contain the name of this module.

o

o

o

Conversion Table

o Appendix F. Conversion Table

o

o

The following conversion table shows the hexadecimal, binary, EBCDIC, and ASCII
equivalents of decimal values. The table also contains transmission codes for
communications devices.

Appendix F. Conversion Table F-l

Conversion Table

ASCII EBASC*
(see Notes 1 (see Notes 2

o
Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

0 00 00000000 NUL NUL NUL
1 01 0001 SOH SOH NUL space space
2 02 0010 STX STX @ 1 1.1
3 03 0011 ETX ETX @

4 04 0100 PF EOT space 2 2
5 05 0101 HT ENQ space
6 06 0110 LC ACK
7 07 0111 DEL BEL 3
8 08 1000 BS OLE 4 5
9 09 1001 RLF HT OLE

10 OA 1010 SMM LF P
11 OB 1011 VT VT P 5 7
12 OC 1100 FF FF 0
13 OD 1101 CR CR 0 6 6
14 OE 1110 SO SO p 7 8
15 OF 1111 SI SI p
16 10 0001 0000 DLE OLE BS 8 4
17 11 0001 DCl DCl BS
18 12 0010 DC2 DC2 H
19 13 0011 TM DC3 H 9 0
20 14 0100 RES DC4 (

21 15 0101 NL NAK (0 Z
22 16 0110 BS SYN h @ (EOA) © (EOA),9
23 17 0111 IL ETB h
24 18 1000 CAN CAN CAN
25 19 1001 EM EM CAN
26 lA 1010 CC SUB X RS RS
27 lB 1011 CUl ESC X

28 lC 1100 IFS FS 8 upper case upper case o
29 ID 1101 IGS GS 8 i\
30 lE 1110 IRS RS x
31 IF 1111 IUS US x © (EOT) © (EOT)
32 20 00100000 DS space EOT @ t
33 21 0001 SOS ! EOT
34 22 0010 FS " D
35 23 0011 # D I x
36 24 0100 BYP $ $
37 25 0101 LF % $ s n
38 26 0110 ETB & d t u
39 27 0111 ESC d
40 28 1000 (DC4
41 29 1001) DC4 u e
42 2A 1010 SM * T v d
43 2B 1011 CU2 + T
44 2C 1100 4 w k
45 2D 1101 ENQ 4
46 2E 1110 ACK t
47 2F 1111 BEL I t x c
48 30 0011 0000 0 form feed
49 31 0001 1 form feed y I
50 32 0010 SYN 2 L z h

*The no-parity TWX code for any given character is the code that has the rightmost bit position off.

o
F -2 SC34-0937

Conversion Table

o ASCII EBASC·
(see Not. 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

51 33 0011 3 L
52 34 0100 PN 4
53 35 0101 RS 5
54 36 0110 UC 6 1 SOA
55 37 0011 0111 EOT 7 1 ~ (SOA),comma b
56 38 1000 8 FS
57 39 1001 9 FS
58 3A 1010 : \
59 38 1011 CU3 ; \ index index
60 3C 1100 0C4 < <
61 3D 1101 NAK = < ® (EOB)
62 3E 1110 > I
63 3F 1111 SUB ? I
64 40 01000000 space @ STX ® (NAK),- !
65 41 0001 A STX
66 42 0010 B 8
67 43 0011 C 8 i m
68 44 0100 0 "
69 45 0101 E " k
70 46 0110 F b I v
71 47 0111 G b
72 48 1000 H OC2
73 49 1001 I OC2 m
74 4A 1010 C J R n r
75 48 1011 K R
76 4C 1100 < L 2 0 i
77 40 1101 (M 2 o 78 4E 1110 + N r
79 4F 1111] 0 r p a
80 50 0101 0000 & P line feed
81 51 0001 a line feed q 0

82 52 0010 R J r s
83 53 0011 S J
84 54 0100 T *
85 55 0101 U *
86 56 0110 V j
87 57 0111 W j $ w
88 58 1000 X SUB
89 59 1001 y SUB
90 5A 1010 ! Z Z
91 58 1011 $ [Z CRLF CRLF
92 5C 1100 * \ :
93 50 1101)] : backspace backspace
94 5E 1110 ; /\ z idle idle
95 5F 1111 ---"1 - z
96 60 01100000 \ ACK
97 61 0001 I a ACK & j
98 62 0010 b F a 9
99 63 0011 c F
100 64 0100 d & b
101 65 0101 e &
102 66 0110 f f
103 67 0111 9 f c f

o
Appendix F. Conversion Table F -3

Conversion Table

ASCII EBASC*
(see Notes 1 (see Notes 2 o

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

104 68 1000 h SYN d p
105 69 1001 i SYN
106 6A 1010 I j V I

107 6B 1011 k V e
108 6C 1100 % 1 6
109 6D 1101 m 6 f q

110 6E 1110 > n v 9 comma
111 6F 1111 ? 0 v
112 70 0111 0000 p shift out h /
113 71 0001 q shift out
114 72 0010 r N
115 73 0011 s N i y

116 74 0100 t
117 75 0101 u

~ 118 76 0110 v n (YAK),period
119 77 0111 w n
120 78 1000 x RS
121 79 1001 y RS
122 7A 1010 : z 1\ horiz tab tab
123 7B 1011 # I 1\
124 7C 1100 @ I > lower case lower case
125 7D 1101 ~ >
126 7E 1110 = '" 'V

127 7F 1111 " DEL 'V delete
128 80 10000000 NUL SOH
129 81 0001 a SOH SOH space space
130 82 0010 b STX A = ±,[
131 83 0011 c ETX A
132 84 0100 d EOT ! < @

133 85 0101 e ENO ! o
134 86 0110 f ACK a
135 87 0111 9 BEL a ; #
136 88 1000 h BS DCl : %

137 89 1001 i HT DCl
138 8A 1010 LF 0
139 8B 1011 VT 0 % &
140 8C 1100 FF 1
141 8D 1101 CR 1 ¢

142 8E 1110 SO q > *
143 8F 1111 SI q

144 90 1001 0000 DLE horiz tab * $
145 91 0001 j DCl horiz tab
146 92 0010 k DC2 I
147 93 0011 I DC3 I ()

148 94 0100 m DC4)

149 95 0101 n NAK)) Z
150 96 0110 0 SYN i D (EOA)," (

151 97 0111 p ETB i
152 98 1000 q CAN EM
153 99 1001 r EM EM
154 9A 1010 SUB Y
155 9B 1011 ESC Y
156 9C 1100 FS 9 upper case upper case

o
F-4 SC34-0937

Conversion Table

o ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

157 90 1101 GS 9
158 9E 1110 RS y
159 9F 1111 US y C (EOT) C (EOT)
160 AO 10100000 Space ENQ ¢ T
161 Al 0001 ! ENQ
162 A2 0010 s " E
163 A3 0011 t =II E ? X
164 A4 0100 u $ %

165 A5 0101 v % % S N
166 A6 10100110 w & e T U
167 A7 0111 x e
168 A8 1000 y (NAK
169 A9 1001 z) NAK U E
170 AA 1010 * U V 0
171 AB 1011 + U
172 AC 1100 5 W K
173 AD 1101 5
174 AE 1110 u
175 AF 1111 / u X C
176 BO 1011 0000 0 return
177 Bl 0001 1 return y L
178 B2 0010 2 M Z H
179 B3 0011 3 M
180 B4 0100 4
181 B5 0101 5
182 B6 0110 6 m
183 B7 0111 7 m ® (SOA),I B

o 184 B8 1000 8 GS
185 B9 1001 9 GS
186 BA 1010 :]
187 BB 1011 ;] index index
188 Be 1100 < =
189 BO 1101 = = ® (EOB),ETB
190 BE 1110 > I
191 BF 1111 ? l
192 CO 11000000 t @ ETX @ (NAK),-
193 C1 0001 A A ETX
194 C2 0010 B B C
195 C3 0011 C C C J M
196 C4 0100 0 0 =II
197 C5 0101 E E =II K
198 C6 0 0110 F F c L V
199 C7 0111 G G c
200 C8 1000 H H OC3
201 C9 1001 I I OC3 M "
202 CA 1010 J S N R
203 CB 1011 K S
204 CC 1100 J L 3 0 I
205 CO 1101 M 3
206 CE 1110 l(N s
207 CF 1111 0 s P A
208 DO 1101 0000 l p vertical tab
209 01 0001 J Q vertical tab Q 0

o
Appendix F. Conversion Table F-5

Conversion Table

ASCII EBASC·
(... Notes' (s .. Notes 2 o

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

210 02 0010 K R K R S
211 . 03 0011 L S K
212 04 0100 M T +
213 05 0101 N U +
214 06 0110 0 V k
215 07 0111 P W k ! W
216 08 1000 Q X ESC
217 09 1001 R Y ESC
218 OA 1010 Z [
219 DB 1011 [[CRLF CRLF
220 DC 1100 \ ;
221 DO 1101] ; backspace backspace
222 DE 1110 /\ t idle idle
223 OF 1111 - I
224 EO 11100000 \ bell
225 E1 0001 a bell + J
226 E2 0010 S b G A G
227 E3 0011 T c G
228 E4 0100 U d B +
229 E5 0101 V e
230 E6 0110 W f 9
231 E7 0111 X 9 9 C F
232 E8 1000 Y h ETB 0 P
233 E9 1001 Z i ETB
234 EA 1010 j W
235 EB 1011 k W E
236 EC 1100 rl I 7
237 ED 1101 m 7 F Q
238 EE 1110 n w G comma
239 EF 1111 0 w

o
240 FO 1111 0000 0 p shift in H ?
241 F1 0001 1 q shift in
242 F2 0010 2 r 0
243 F3 0011 3 s 0 I Y
244 F4 0100 4 t I
245 F5 0101 5 u I
246 F6 0110 6 v 0 G) (YAK), ---,
247 F7 0111 7 w 0

248 F8 1000 8 x US
249 F9 1001 9 y US
250 FA 1010 LVM z - horiz tab tab
251 FB 1011 I -
252 FC 1100 I ? lower case lower case
253 FO 1101 J ?
254 FE 1110 ,.., DEL
255 FF 1111 DEL DEL delete

Notes:

1. ASCII terminals attached via #1310, #7850, #2095 with #2096, or #2095 with RPQ 002350.
2. ASCII terminals attached via #1610 or #2091 with #2092.
3. There are two entries for each character, depending on whether the parity is odd or even.

o
F -6 SC34-0937

o

o

o

Index

Special Characters
$$ 2-337
$$EDXLIB 2-337
$$EDXVOL system name 2-337
$DICOMP utility

create partitioned data set member D-10
$DISKUT1 utility

create partitioned data set D-I0
$DISKUT3 program

description D-l
input to D-l
request blocks D-2
return codes D-7

$DIUTIL utility
build data member D-10

$ID statement
description 2-4
system release level 2-4

$IMAGE subroutines
See formatted screen subroutines

$IMDA T A subroutine
description A-2
return codes A-3

$IMDEFN subroutine
coding example A-5
description A-4

$IMOPEN subroutine
description A-6
return codes A -7

$IMPROT subroutine
description A-9·
field table format A-I0
return codes A-I 0

$P ACK subroutine
description A-II

$PDS utility program
AD command D-17
allocating a data set D-IO
command descriptions D-20
description D-9
DI function D-16
DR function D-15
example D-19
1M function D-17
JP command D-16
LB function D-14
LI function D-14
LR function D-18
MP function D-14
PC function D-16
R T function D-18
TD command D-18
VA function D-15

$RAMSEC program
description D-23
example D-24
parameter listings D-23
return codes D-25

$SUBMITP program
description D-26
example D-26
return codes D-27

$UNPACK subroutine
description A-12

$USRLOG subroutine
description D-28
error log data set, allocated D-28
example D-29

1 index register 1 1-8
#2 index register 2 1-8

A
A-conversion 2-176
A/I

See analog input
A/O

See analog output
ACCA

TERMCTRL instruction 2-519
add

floating point 2-154
integer data 2-6
vectors 2-9

ADD instruction
coding example 2-7
description 2-6
valid precisions, table 2-7

address move 2-260
ADDV instruction

coding example 2-10
description 2-9
index register use 2-9
syntax example 2-10
valid precisions, table 2-10

advance input 2-372
ALIGN statement

coding example 2-13
description 2-13

aligning data on a boundary 2-13
alphabetic string, rules for 1-6
alphanumeric string, rules for 1-6
analog input

IODEF statement 2-225
SBIO instruction 2-387

analog output
IODEF statement 2-226

Index X-l

analog output (continued)
SBIO instruction 2-389

AND instruction
description 2-14
syntax examples 2-15

anding, performing 2-14
AO

See analog output
application, identifying host 2-273
arithmetic

comparison 2-213
operators 1-7

arrays, adding 2-9
assembler code, use in EDL program 2-547
attach

task 2:-16
ATTACH instruction

coding example 2-17
description 2-16

attention interrupt handling 2-18, 2-118
attention list

See ATTNLIST statement
ATTNLIST statement

coding example 2-20
description 2-18
syntax example 2-19

attribute bytes (31xx) 2-310

B
bar coding 2-460
base SNA function codes 2-276
binary

converting to 2-77
to EBCDIC 2-74

binary synchronous communications (BSC)
close BSC line (BSCCLOSE) 2-22
define I/O control block (BSCIOCB) 2-23
line address, specifying 2-23
open BSC line (BSCOPEN) 2-25
read data (BSCREAD) 2-28
write data (BSCWRITE) 2-32

bit-string comparisons
AND 2-14
EOR 2-132
lOR 2-231

bits
loop while on or off 2-106
set value of 2-397
test setting 2-213

boundary
alignment 2-13
instruction and address 1-13
requirement, fullword (PROGRAM) 2-335

branch
to an instruction 2-207

Break circular chained DCBs (EXBREAK) 2-143

X-2 SC34-0937

BSC
See binary synchronous communications (BSC)

BSC buffers, specifying 2-23
BSC instructions

See binary synchronous communications (BSC)
BSCCLOSE instruction

description 2-22
return codes 2-36

BSCEQU equates, description 2-82
BSCIOCB statement

buffers for BSCREAD/BSCWRITE 2-24
description 2-23

BSCOPEN instruction
description 2-25
return codes 2-36

BSCREAD instruction
description 2-28
required buffers for 2-24
return codes 2-36
types of BSC read operations 2-30

BSCWRITE instruction
coding description 2-32
required buffer for 2-24
return codes 2-36
types of BSC write operations 2-33

BSF (backward space file) 2-68
BSR (backward space record) 2-69
buffer

collect data from 2-188
defining 2-39

buffer address, update (SBIO) 2-386
buffer overflow condition 2-310
BUFFER statement

C

buffer index 2-40
coding example 2-42
description 2-39

CAGLOSE instruction
description 2-43
return and post codes 2-43
syntax examples 2-43

CAIOCB (channel attach I/O control block) statement
description 2-45
syntax example 2-45

CALL instruction
coding example 2-47
description 2-46
parameter passing 2-46
syntax examples 2-47

CALLFORT instruction
description 2-49
syntax examples 2-50

calling a FORTRAN subroutine or program 2-49
calling a subroutine 2-46
CAOPEN instruction

description 2-51

o

o

o

o

c

o

CAOPEN instruction (continued)
return and post codes 2-52
syntax examples 2-51

CAPCB (channel attach port control block)
capital letters

convert data during READTEXT 2-370
printing in 2-309

CAPRINT instruction
description 2-53
return codes 2-54
syntax examples 2-54

CAREAD instruction
description 2,.55
return and post codes 2-56
syntax examples 2-55

CAST AR T instruction
description 2-57
return and post codes 2-58
syntax example 2-57

CASTOP instruction
description 2-59
return and post codes 2-59
syntax example 2-59

CATRACE instruction
description 2-61
return codes 2-62
syntax examples 2-61

CA WRITE instruction
description 2-63
return and post codes 2-64
syntax examples 2-63

CCBEQU equates, description 2-83
channel attach

close a port (CACLOSE) 2-43
create I/O control block 2-45
open a port (CAOPEN) 2-51
print trace data (CAPRINT) 2-53
read from a port (CAREAD) 2-55
start device (CAST ART) 2-57
stop a device (CASTOP) 2-59
turn tracing on/off (CATRACE) 2-61
write to a port (CA WRITE) 2-63

character search 2-160, 2-162
character string

condense 2-209
defining 2-88

characters, highlighting 2-316
circular chained DCBs, break 2-143
close

BSC line (BSCCLOSE) 2-22
channel attach port 2-43
EXIO device 2-145
LCC device subchanne1 (LCCCLOSE) 2-236

CLSOFF function, CONTROL instruction 2-69
CLSRU close tape data set 2-69
CMDEQU equates, description 2-83
code extension sequences 2-317'

communication between programs C-l
in separate partitions C-l
in the same partition C-l
through virtual terminals B-1

COMP statement
description 2-65
syntax examples 2-66

comparing bit-strings
AND instruction 2-14
exclusive-OR 2-132
inclusive OR 2-231
with the IF instruction 2-213

compiler listing
control printing of 2-304
eject page 2-115
inserting blank lines 2-402
titling 2-533

completion codes
See post codes, return codes

compressed byte string A-11
CON CAT instruction

description 2-67
syntax examples 2-67

concatenate graphics data strings 2-67
conditional statements 2-217
connection data set

BSCOPEN parameter 2-25
constant, definition of 1-5
continuation line 1-6
control blocks

getting information from 2-82
CONTROL IDCB command 2-211
CONTROL instruction

coding example 2-71
description 2-68
syntax examples 2-70
tape return and post codes 2-73

control operations, NETCTL 2-265
conversion, specifying format of data 2-170
convert

binary to EBCDIC 2-74
data 2-170, 2-180
EBCDIC to binary 2-77

CONVTB· instruction
coding example 2-76
description 2-74
return codes 2-76
syntax examples 2-75

CONVTD instruction
coding example 2-80
description 2-77
return codes 2-81
syntax examples 2-80

copy
source code into source program 2-82

COPY instruction
coding example 2-84
description 2-82

Index X-3

COPY instruction (continued)
system equates 2-82

cross-partition services
DEQ 2-97
description and examples C-l
ENQ 2-125
loading a program C-2
MOVE 2-256
moving data across partitions C-4
POST 2-300
READ 2-359
reading data across partitions C-6
sharing resources C-12
starting a task C-8
synchronizing tasks C-I0
WAIT 2-550
WHERES 2-555
WRITE 2-558

CSECT statement
coding example 2-86
description 2-85

cursor position, storing 2-357
curves, drawing 2-567, 2-568

D
D/l

See digital input
D/O

See digital output
data

adding 2-6, 2-154
collect 2-170
convert data to character string 2-344
converting 2-170, 2-180, 2-188
defining 2-87
dividing 2-103, 2-15'7
moving 2-256
multiplying 2-167, 2-261
reading 2-359
shift left 2-398
shift right 2-400
subtracting 2-185, 2-416
translated 2-253, 2-308, 2-369
writing 2-558

data set
allocate

dynamic data set extents D-l
from program D-l

delete
from a program D-l
one data set D-l

extents, dynamic' D-5
for program messages E-l
format with $PDS D-I0
open from a program D-l
parti tioned

with $PDS D-9

X-4 SC34-0937

data set (continued)
release space from program D-l
rename from program D-l
set end-of-data from program D-l
specifying 2-335
use with $PDS D-I0

data set control block (DSCB)
creating 2-112
generated by system 2-336

DATA statement
considerations 2-88
conversion specifications

See conversion
description 2-87
syntax examples 2-89

data stream
code extension sequence 2-316
control sequence 2-317
example 2-320
final character 2-317
intermediate character 2-319
numeric parameter (np) 2-317
ppsitioning unit mode (PUM) 2-317
Reset to Initial State (RIS) 2-320
set decipoint PUM 2-319
set spacing increment (SPI) 2-317
4975-01A ASCII Printer 2-316

data, boundary alignment 2-13
date

GETTIME instruction 2-197
obtain from host system 2-543
PRINDATE instruction 2-302

DC statement
considerations 2-88
description 2-87
syntax examples 2-89

DCB statement
coding example 2-92
description 2-91
syntax examples 2-92

DDBEQU equates, description 2-83
DDODEFEQ equates, description 2-83
define

buffer 2-39
data 2-87

DEFINEQ statement
description 2-93
queue layout 2-93
syntax examples 2-96

density
setting for tape 2-69

DEQ instruction
coding example 2-126
description 2-97

DEQT instruction
description 2-99
syntax examples 2-100

o

o

o

o

o

o

dequeue
logical resource 2-97
terminal I/O device 2-99

detach
a task 2-101

DETACH instruction
coding example 2-101
description 2-101

device
find type from program D-46

device busy, resetting 2-146
device control block 2-91
device subchannel command, LCCIOCB 2-234
DI

See digital input
digital input

IODEF statement 2-227
SBIO 2-391

digital output
IODEF statement 2-228
SBIO 2-393

direct
output to another device, $PDS utility D-16

direct I/O
Series/ 1-to-Series/ 1 2-524
with IOCB 2-221
with PRINTEXT 2-307

directory entries D-I0
directory member entry (DME)

updated by SETEOD D-45
disk immediate read, coding 2-359
display

control member D-12
control member format D-14
display 2-328
number 2-330
report line items D-17
time 2-328
time and data ($PDS) D-18
variab~e D-15

display profile elements, $PDS D-14
display screen, erase 2-137
divide

arithmetic operator (j) 1-7
floating-point numbers 2-157
integers 2-103

DIVIDE instruction
arithmetic operator 1-7
coding example 2-104
description 2-103
syntax example 2-104
valid precisions, table 2-104

DO
See digital output

DO instruction
coding example 2-111
description 2-106
operators 2-107

DO instruction (continued)
syntax examples 2-109

draw
curve (XYPLOT) 2-567
curve (YTPLOT) 2-568
lineielative D-18

DSCB (data set control block) statement
description 2-112
syntax example 2-112

DSCBEQU equates, description 2-83
DSOPEN subroutine

description D-37
example D-38

dump program from tape, example D-30
dynamic data set extents, example D-5
dynamic storage, specifying 2-340

E
E-conversion 2-173
EBCDIC-to-binary conversion 2-77
ECB (Event Control Block)

address (SNA) 2-276
create 2-113
post 2-300
reset 2-383

ECB statement
description 2-113
syntax example 2-114

EDL (Event Driven Language)
instructions, definition of 1-1
purpose 1-1
statements, definition of 1-1

EDXLOGDS error log data set D-29
EJECT statement

coding example 2-305
description 2-115

ELSE instruction
description 2-116
syntax examples 2-215

end
attention-interrupt-handling routine 2-118
IF-ELSE structure 2-120
program 2-121
program execution 2-342
program loop 2-119
SNA session 2-288
source statements 2-117
task 2-123
transfer operation (HCF) 2-535

end-of-data, setting D-45
end-of-file, indicating with SETEOD D-45
END statement

coding example 2-117
description 2-117

END ATTN instruction
coding example 2-20
description 2-118

Index X-5

ENDDO instruction
coding example 2-111
description 2-119
syntax examples 2-109

ENDIF instruction
description 2-120
syntax examples 2-215

ENDPROG statement
description 2-121
syntax example 2-122

ENDT ASK instruction
coding example 2-123
description 2-123

ENQ instruction
coding example 2-126
description 2-125

ENQT instruction
coding example 2-129
description 2-127
special considerations 2-128
~yntax examples 2-129

enqueue
a logical resource 2-125
a terminal (I/O device) 2-127

entry point, defining 2-130
ENTRY statement

coding example 2-131
description 2-130

EOR instruction
description 2-132
syntax examples 2-133

EQU statement
coding example 2-136
description 2-134
special considerations 2-134
syntax examples 2-135

equate tables
access to 2-82

erase
display screen 2-137
tape 2-69

ERASE instruction
coding examples 2-140
description 2-137
syntax examples 2-139
31xx display considerations 2-139

error codes
See return codes

error handling
PROGRAM statement 2-339
TASK statement 2-422

error log data set, allocated D-29
ERRORDEF equates, description 2-83
event

reset 2-383
signal occurrence of 2-300
specify attention 2-276
wait for 2·550

X-6 SC34-0937

event control block
address (SNA) 2-276
creating 2-113
creating list 2-250
post 2-300
reset 2-383

Event Driven Language(EDL)
See EDL (Event Driven Language)

events, wait for mUltiple 2-553
EXBREAK

restriction with extended address mode
support 2-143

return codes 2-144
syntax example 2-143

EXCLOSE instruction
description 2-145
syntax example 2-145

exclusive-OR operation 2-132
execute 1/0

See EXIO device support
execution, delaying 2-407
EXIO device support

close a device 2-145
execute a command 2-146
open a device 2-150

EXIO instruction
coding description 2-146
coding example 2-147
return codes 2-148

EXOPEN instruction
coding example 2-151
description 2-150
interrupt codes 2-149
return codes 2-148

exponent (E) notation, definition of 2-88
EXT = operand example 2-413
extended address mode support

coding the LOAD instruction 2-248
LOAD instruction 2-243
restriction with EXBREAK instruction 2-143
specify partition in which to load a program 2-246
specify 1 to 32 partitions 2-246
with the LCCIOCB statement 2-234
with the MOVE instruction 2-257

extended error information, requesting 2-276
external labels or references 2-152
EXTRN statement

coding example 2-153
description 2-152

o

o

o

o

o

0,,,
I j.

F
F-conversion (Fw.d) 2-172
F ADD instruction

description 2-154
index registers 2-155
return codes ,2-156
syntax examples 2-155

false condition
code a path for 2-116
test for 2-213

FCBEQU equates, description 2-83
FDIVD instruction

description 2-157
index registers 2-158

file

return codes 2-159
syntax examples 2-158

backward space file (BSF) 2-68
forward space file (FSF) 2-68
tape control commands 2-68

FIND instruction
coding example 2-161
description 2-160
syntax examples 2-160

FINDNOT instruction
coding example 2-163
description 2-162
syntax examples 2-162

FIRSTQ instruction
coding example 2-165
description 2-165
return codes 2-166

floating-point
addition 2-154
conversion 2-180
division 2-157
E notation definition 2-88
multiplication 2-167
requirements to use instructions 2-339, 2-422
subtraction 2-185

FMUL T instruction
description. 2-167
index registers 2-168
return codes 2-169
syntax examples 2-168

format
instructions (general) 1-1
statements (general) 1-1

FORMAT statement
A-conversion 2-176
alphanumeric data 2-174
blank lines in output 2-177
coding example 2-178
conversion of alphanumeric data 2-176
conversion of numeric data 2-171
description 2-170
E-conversion 2-173
F -conversion 2-172

FORMAT statement (continued)
H -conversion 2-175
I-conversion 2-172
multiple field format 2-177
numeric data 2-171
repetitive specification 2-177
storage considerations 2-178
using multipliers 2-177
X-type format 2-176

formatted program messages E-l
formatted screen subroutines

$IMDATA A-2
$IMDEFN A-4
$IMOPEN A-6
$IMPROT A-9
description A-I

FORTRAN
calling a program or subroutine 2-49

FPCONV instruction
coding example 2-181
description 2-180
syntax examples 2-181

FREESTG instruction
coding example 2-419
description 2-183
return codes 2-184
syntax examples 2-183

FSF (forward space file) 2-68
FSR (forward space record) 2-69
FSUB instruction

description 2-185
index registers 2-186
return codes 2-187
syntax examples 2-186

fullword boundary requirement 2-335

G
General Purpose Interface Bus

TERMCTRL coding description 2-521
GETEDIT instruction

coding example 2-191
description 2-188
return codes 2-194
syntax example 2-191
31 xx display considerations 2-190

GETSTG instruction
coding example 2-419
description 2-195
return codes 2-196

/ syntax examples 2-196
GETTIME instruction

coding example 2-198
description 2-197
syntax example 2-198

GETVALUE instruction
coding examples 2-204
description 2-199

Index X-7

GETVALUE instruction (continued)
message return codes 2-205
syntax examples 2-202
31xx considerations 2-202

GIN instruction
description 2-206
syntax example 2-206

GLOBAL ATTN LIST 2-19
GOTO instruction

description 2-207
syntax example 2-208

GPIB
See General Purpose Interface Bus

graphics

H

concatenate data strings (CONCAT) 2-67
convert coordinates to a text string

(SCREEN) 2-396
draw a curve (XYPLOT) 2-567
draw a curve (YTPLOT) 2-568
enter scaled cursor coordinates 2-296
enter unscaled cursor coordinates 2-206

H-conversion 2-175
HASHV AL instruction

description 2-209
syntax examples 2-210

HCF
See Host Communications Facility

highlight characters 2-316
host (HCF)

.get date and time from 2-543
read a record from 2-539
submit job to 2-542
write record to 2-544

Host Communications Facility
delete record in system-status data set 2-540
end a transfer operation (TP CLOSE) 2-535
get time and date from host 2-543
prepare to read from host data set 2-537
prepare to write data to host data set 2-538
read a record from the host 2-539
return codes 2-544
set fields to check host status data set 2-405
submit job to host 2-542
test for record in system-status data set 2-536
TP instruction operations 2-534
write a record to a host 2-544
write record in system-status data set 2-541

host data set, HCF
prepare to read 2-537
prepare to write to 2-538
read a record from 2-539

host ID data list, build 2-273
host status data set

set fields to refer to 2-405

X-8 SC34-0937

I-conversion 2-171
I/O direct

Series/l-to-Series/l 2-524
with 10CB 2-221
with PRINTEXT 2-307
with READTEXT 2-367

IAMEQU equates, description 2-83
ID data list, build 2-273
ID statement

See identify
IDCB statement

description 2-211
IDCB command 2-211
syntax examples 2-212

identify
host program 2-273
syntax examples 2-5

IF instruction
description 2-213
IF-ELSE structure, ending 2-120
operators 2-214
sample conditional statements 2-217
syntax examples 2-215

immediate data 1-5
immediate device control block

creating 2-211
execute a command in 2-146

INCLUDE statement (EXTRN) 2-152
inclusive OR 2-231
index registers

considerations when using 1-10
description 1-9

index, automatically (SBIO) 2-386
indexing with software registers 1-9
initiate LCC control functions (LCCCNTL) 2-237
input

area, defining 2-39, 2-87, 2-530
operations

GETVALUE 2-199
QUESTION 2-352
READ 2-359
READTEXT 2-367

Input translation, 3151/3161/3163/3164
terminals 2-373

input/output control block
See 10CB instruction

instruction and address boundaries 1-13
instructions

definition of 1-1
listing by use 2-1

integer
adding 2-6
converting from EBCDIC L-//

converting from floating point 2-180
converting to EBCDIC 2-74
converting to floating point 2-180
dividing 2-103

o

c

o

o

c

o

integer (continued)
multiplying 2-261
subtracting 2-416

interpartition services C-l
interrupt

servicing
reset interrupt processing 2-383

types
interrupt, process 2-229

INTIME instruction
coding example 2-220
description 2-219

IOCB instruction
coding example 2-223
description 2-221
direct I/O considerations 2-223
using PRINTEXT 2-307
using READ TEXT 2-367

IODEF statement
analog input 2-225
analog output 2-226
description 2-224
digital input 2-227
digital output 2-228
process interrupt 2-229

lOR instruction
description 2-231
syntax examples 2-232

IPL, time elapsed since last 2-219

J
job queue processor

submitting job from program D-26

K
keyword operand

definition of 1-1

L
label

assign a value to 2-134
definition 1-1
syntax description 1-6

LASTQ instruction
description 2-233
return codes 2-233

LCC instructions
See Local Communications Controller (LCC)

J LCCCLOSE instruction
description 2-236
return codes 2-236

LCCCNTL instruction
description 2-237
return codes 2-237

LCCIOCB statement
description 2-234

LCCIOCB statement (continued)
with extended address mode 2-234

LCCOPEN instruction
description 2-238
return codes 2-238

LCCRECV instruction
description 2-239
return codes 2-239

LCCSEND instruction
description 2-241
return codes 2-241

level status block (LSB)
for digital input 2-392
with digital output 2-394
with SPECPIRT instruction 2-403

line continuation, source 1-6
line sharing support

with the 3101/3151/3161/3163/3164 TERMCTRL
instruction 2-437

listing control instructions
EJECT 2-115
PRINT 2-304
SPACE 2-402
TITLE 2-533

load
overlay programs 2-243
program 2-243
virtual terminal B-1

LOAD instruction
coding for extended address mode 2-248
description 2-243
example 2-248
passing data sets 2-244
return codes 2-249

LOCAL ATTNLIST 2-19
Local Communications Controller (LCC)

LCCCLOSE instruction 2-236
LCCCNTL instruction 2-237
LCCIOCB statement 2-234
LCCOPEN instruction 2-238
LCCRECV instruction 2-239
LCCSEND instruction 2-241

locate
executing program 2-555

log specific errors from a program D-28
logical comparison

AND instruction 2-14
description 2-213
EOR instruction 2-132
lOR instruction 2-231

logical end-of-file on disk D-45
loops 2-106, 2-119

Index X-9

M
MCB (member control block) D-20
MECB statement

description 2-250
syntax example 2-251
WAITM instruction 2-553

member area D-12
member control block (MCB) D-20
message

SNA
receiving from SNA host 2-269
requesting verihcation 2-285
specifying length 2-284

MESSAGE instruction
coding examples 2-254
description 2-252
return codes 2-255
syntax examples 2-254

messages, program
adding to data set E-2
creating

coding variable fields E-2
data set for E-l
sample messages E-4
syntax rules E-l

define location of message text 2-65
formatting E-4
GETVALUE instruction 2-199
MESSAGE instruction 2-252
QUESTION instruction 2-352
READTEXT instruction 2-368
retrieving E-4

minus (-), arithmetic operator 1-7
move

an address 2-260
data 2-256

MOVE instruction
description 2-256
syntax examples 2-258

MOVEA instruction
description 2-260
syntax examples 2-260

multiply
floating point 2-167
integers 2-261

multiply (*), arithmetic operator 1-7
MULTIPLY instruction

coding example 2-263
description 2-261
syntax examples 2-262
valid precisions, table 2:262

x-tO SC34-0937

N
NETCTL instruction

coding examples 2-266
description 2-264
return codes 2-267
types of control operations 2-265

NETGET instruction
coding example 2-270
description 2-269
return codes 2-270

NETHOST instruction
description 2-273

,NETINIT instruction
coding examples 2-279
description 2-275
return codes 2-280

NETPACT instruction
coding example 2-282
description 2-282
return codes 2-283

NETPUT instruction
coding description 2-284
coding examples 2-285
description 2-284
return codes 2-286

NETTERM instruction
coding description 2-288
coding example 2-289
description 2-288
return codes 2-289

next-record pointer
set 2-298
store 2-294
syntax examples 2-299

NEXTQ instruction
coding examples 2-292
description 2-291
return codes 2-293

noncompressed byte string A-12
NOTE instruction

description 2-294
syntax examples 2-295

number strings, adding 2-9

o
object module segments, identifying 2-85
OFF function, CONTROL instruction 2-69
open

BSC line (BSCOPEN) 2-25
channel attach port 2-51
EXIO device (EXOPEN) 2-150
host data set to read data (HCF) 2-537
host data set to write data (HeF) L-:)j~

LCC device subchannel (LCCOPEN) 2-238
operand

definition 1-1
keyword 1-1

o

o

o

()

o

o

operand (continued)
parameter naming (Px) 1-10
positional 1-1

operators, arithmetic 1-7
output

area, defining 2-39, 2-87, 2-530
operations

COMP statement 2-65
MESSAGE instruction.. 2-252
PRINDATE instruction 2-302
PRINTEXT instruction 2-307
PRINTIME instruction 2-328
PRINTNUM instruction 2-330
TERMCTRL instruction 2-426
WRITE instruction 2-558

overlay program loading
See LOAD instruction

overlay program, $EDXASM
specifying 2-338

overprint characters 2-316

p
parameter list, defining 2-338
parameter naming operands in instruction format 1-10
parameter passing

with the CALL instruction 2-46
with the CALLFORT instruction 2-49

parameters
definition of 1-2
in the LOAD instruction 2-244

partial messages (SNA), sending 2-286
partition

locating an executing program 2-555
perform operations across C-l

partitioned data sets D-9
passing parameters

to FORTRAN programs 2-49
to subroutines 2-46
with the LOAD instruction 2-244

PI
See process interrupt

plot control block (graphics) 2-296
plot curve data member, $PDS utility D-12
PLOTCB control block 2-296
PLOTGIN instruction

description 2-296
plot control block 2-296
syntax example 2-297

plus (+), arithmetic operator 1-7
POINT instruction

description 2-298
positional operand

definition of 1-1
post codes

See also return codes
CACLOSE instruction 2-43
CAOPEN instruction 2-~2

post codes (continued)
CAREAD instruction 2-56
CAST ART instruction 2-58
CASTOP instruction 2-59
CA WRITE instruction 2-64
tape CONTROL 2-73
tape READ 2-366
tape WRITE 2-564

POST instruction
coding example 2-301
description 2-300

PREPARE IDCB command 2-211
PRINDATE instruction

coding example 2-303
description 2-302
31xx considerations 2-302

print
a number 2-330
date 2-302
text 2-307
time 2-328
trace data, Channel Attach 2-53

PRINT statement
coding example 2-305
description 2-304

printers
data stream on 4975-01A 2-316

PRINTEXT instruction
buffer considerations 2-310
coding examples 2-313
description 2-307
return codes 2-322
syntax examples 2-312
uppercase characters (CAPS =) 2-309
31xx considerations 2-310
4975 spacing capability 2-311

PRINTIME instruction
coding example 2-329
description 2-328
31xx considerations 2-328

PRINTNUM instruction
coding example 2-334
description 2-330
syntax examples 2-333
31xx considerations 2-333

priority
program 2-335
task 2-421

process interrupt
IODEF statement 2-229
resetting 2-383
return from routine 2-403
SPECPI = operand 2~230

PROGEQU equates, description 2-83
program

communication C-l
defining 2-335
ending 2-121

Index X-II

program (continued)
entry 2-335
entry point, defining 2-130
execution

delaying 2-407
stopping 2-342

locate during execution 2-555
loops, coding 2-106, 2-119
specify partition in which to load a program 2-246

program messages
See messages, program

PROGRAM statement
description 2-335
specifying data sets 2-335
specifying overlays 2-338
syntax examples 2-341

PROGSTOP instruction
description 2-342

Proprinter/Proprinter XL
See 4201/4202 Printer

PUTEDIT instruction
coding example 2-347
description 2-344
return codes 2-349
syntax example 2-347
31xx considerations 2-347

Px = parameter naming operand 1-10

Q
QCB statement

coding example 2-351
description 2-350

QD queue descriptor 2-93
QUESTION instruction

coding example 2-355
description 2-352
return codes 2-356
special considerations 2-354
syntax example 2-354
31xx terminals 2-354

queue control block
create 2-350
obtain control of 2-125
release control of 2-97

queue descriptor 2-93
queue processing

add entries 2-291
define a queue 2-93
get first queue entry 2-165
get last queue entry 2-233
queue layout 2-93

X-12 SC34-0937

R
RDCURSOR instruction

coding example 2-358
description 2-357

read
data

from a BSC line 2-28
from disk 2-359
from diskette 2-359
from tape 2-359

disk immediate 2-364
from a channel attach port 2-55
from disk(ette), priority request 2-364
record from the host (RCF) 2-539
text entered at a terminal 2-367

READ IDCB command 2-211
READ instruction

coding example 2-363, 2-364
description 2-359
disk immediate 2-359
disk/diskette return codes 2-364, 2-365
requesting a priority read 2-359
syntax examples 2-362
tape post codes 2-364, 2-366
tape return codes 2-364, 2-366

READID IDCB command 2-211
READTEXT instruction

advance input 2-372
coding example 2-374
description 2-367
return codes 2-322, 2-377
syntax examples 2-373
uppercase characters (CAPS =) 2-370
31xx considerations 2-372
3151,3161,3163,3164 considerations 2-372

READ 1 IDCB command 2-211
realtime data member

change name D-18
format D-13

receive
LCC data (LCCRECV) 2-239

messages from SNA host 2-269
recording

system release level 2-4
records

read disk/diskette 2-359
read from host' 2-539
read tape 2-359
write disk/diskette 2-558
write tape 2-558
write to host 2-544

reduction, EDL and Boolean 2-108
registers

index 1-9
software 1-8

rele~se
resource (DEQ) 2-97
terminal 2-99

o

o

o

o

c

o

release level, recording 2-4
report data member ($PDS) D-12
reserved labels 1-7
reset

event or process interrupt 2-383
timer 2-383

RESET instruction
description 2-383

resources
defining serial 2-350

resynchronization support, specifying 2-277
retrieve

program messages 2-252
return

from a subroutine 2-385
from process interrupt routine 2-403

return codes
See also post codes
$DISKUT3 D-7
$IMDATA A-3
$IMOPEN A-7
$IMPROT A-lO
ACCA/Serial Printer 2-325, 2-380
BSC instructions 2-36
CACLOSE 2-43
CAOPEN 2-52
CAPRINT 2-54
CAREAD 2-56
CAST ART 2-58
CASTOP 2-59
CATRACE 2-62
CA WRITE 2-64
checking 1-3
CONVTB 2-76
CONVTD 2-81
disk/diskette 2-365
EXIO 2-148
EXIO interrupt 2-149
FADD 2-156
FDIVD 2-159
FIRSTQ 2-166
-FMULT 2-169
FREESTG 2-184
FSUB 2-187
general 2-323, 2-377
General Purpose Interface Bus 2-326, 2-381
GETEDIT 2-194
GETSTG 2-196
GETV ALUE 2-205
Host Communications Facility 2-544
Interprocessor Communication 2-326, 2-380
LASTQ 2-233
LCCCLOSE 2-236
LCCCNTL 2-237
LCCOPEN 2-238
LCCRECV 2-239
LCCSEND 2-241
LOAD 2-249

return codes (continued)
MESSAGE 2-255
NETCTL· 2-267
NETGET 2-270
NETINIT 2-280
NETPACT 2-283
NETPUT 2-286
NETTERM 2-289
NEXTQ 2-293
PRINTEXT 2-322,2-377
PUTEDIT 2-349
QUESTION 2-356
READ 2-364
READ tape 2-366
READTEXT 2-322, 2-377
SBIO 2-395
Series/l-to-Series/l 2-327
STIMER 2-411
SWAP 2-420
tape 2-73
TERMCTRL 2-322, 2-377
terminal I/O 2-377
TP instruction 2-544
virtual terminal 2-379
virtual terminals B-3
WHERES 2-557
WRITE disk/diskette 2-562, 2-563
WRITE tape 2-562, 2-564
4201/4202 Printer 2-455
4224 Printer 2-488
4975 Printer 2-501
5219 Printer 2-514

RETURN instruction
coding example 2-385
description 2-385

REW (rewind tape) 2-69
right to send, granting 2-285
ROFF (rewind offline) 2-69
RST ATUS IDCB command 2-211

s
save

session parameters 2-276
SBIO instruction

analog input
coding example 2-388
description 2-387
return codes 2-395

analog output
coding example 2-390
description 2-389
return codes 2-395

control block 2-386
description 2-386
digital input

coding example 2-392
description 2-391
return codes 2-395

Index X-13

SBIO instruc~ion (continued)
digital output

coding examples 2-394
description 2-393
return codes 2-395

return codes 2-395
scatter write operation 2-309, A-2
screen

description 2-396
syntax example 2-396

screen image subroutines
. See formatted screen subroutines

SCREEN instruction
erase portions of 2-l37
images
retrieving and displaying A-I

SCSS IDCB command 2-211
search a character string 2-160, 2-162
self-defining terms 1-5
send

messages to SNA host 2-284
par.tial messages (SNA) 2-286
record to host, Host Communications Facility 2-544
records to a data set 2-558

Send data, LCCSEND 2-241
sensor-based I/O

assign a symbolic device name 2-224
specify I/O operation 2-386

serially reusable resource (SRR)
defining 2-350
obtain control of 2-125
release control of 2-97

Series/l-to-Series/1 Attachment
TERMCTRL statement 2-524

session (SNA)
end 2-288
establish 2-275
saving parameters 2-276

set
next-record pointer 2-298
value of ~ bit 2-397

SETBIT instruction
description 2-397
syntax examples 2-397

SETEOD subroutine D-45
SHIFTL instruction

description 2-398
syntax example 2-399

SHIFTR instruction
description 2-400
syntax example 2-401

SNA
See System Network Architecture (SNA)

software registers
description . 1-8
indexing with 1-9

source code. copy 2-82

X-14 S<::34-0937

source statements, end of 2-117
SPACE statement

coding example 2-305
description 2-402

special process interrupt routine
executing 2-229, 2-230
return control to supervisor 2-403

specifications, data conversion 2-170
SPECPIR T instruction

description 2-403
SQRT instruction

description 2-404
syntax example 2-404

square root, obtain a 2-404
start

Channel Attach device 2-57
task 2-16

START, IDCB command 2-211
START, PROGRAM statement operand 2-335
statement label 1-6
statements

conditional 2-2l3, 2-217
definition of 1-1
listing by use 2-1

statements, logically connected 2-108
STATUS statement

coding example 2-405
description 2-405

STIMER instruction
description 2-407
return code 2-411
special considerations 2-409
syntax examples 2-409

stop
Channel Attach device 2-59

storage
area, defining 2-39, 2-87, 2-530
mapped

define areas 2-412
obtain 2-195
release 2-183

releasing allocated storage 2-342
specifying dynamic storage 2-340
unmapped

define areas 2-412
gain access to 2-418
obtain 2-195
release 2-183

storage control block, creating 2-412
STORBLK statement

coding example 2-419
description 2-412
STOREQU equates 2-4l3
syntax examples 2-413

STOREQU equates, description 2-83
strings, conditional statement 2-218
submit

job to host, Host Communications Facility 2-542

o

o

o

o

o

o

submit (continued)
jobs from a program D-26

subprogram, defining a 2-335
SUBROUT statement

coding description 2-414
coding example 2-415

subroutines
calling 2-46
defining 2-414
DSOPEN D-37
EXTRACT D-46
formatted screen A-I
Indexed Access Method (syntax) D-43
Multiple Terminal Manager (syntax) D-44
returning control 2-385
SETEOD D-45
UPDT APE D-46

subtract
floating-point data 2-185
integers 2-416

SUBTRACT instruction
description 2-416
syntax example 2-417
valid precisions, table 2-417

SW AP instruction
coding example 2-419
description 2-418
return codes 2-420
syntax examples 2-419

symbol
assign a value to 2-134
resolving (EXTRN) 2-152
resolving (WXTRN) 2-565

syntax
rules 1-6

system
release level, recording 2-4

system control blocks
See control blocks

System Network Architecture (SNA)
activate a specific PU 2-282
build host ID data list 2-273
control message exchange 2~264
establish a session 2-275
identify host program 2-273
receive messages from host 2-269
send messages to host 2-284

system reserved labels 1-7
system status data set, RCF

delete a record from 2-540
test for a record 2-536 .
write a record to 2-541

System/370 Channel Attach instructions
See channel attach

T
tape

CONTROL instruction 2-68
density, setting 2-69
post codes 2-73
READ instruction 2-359
return codes 2-73
tapemark2-68
WRITE instruction 2-558, 2-562

tape source dump program example D-30
task

attaching 2-16
defining 2-421
detaching 2-101
ending 2-123
error exit routine 2-339, 2-422
priority 2-421

task control block (TCB)
description of 2-335
obtain data from 2-424
store data in fields 2-425

TASK statement
coding example 2-422
description 2-421
priority 2-421

TCB
See task control block (TCB)

TCBEQU equates, description 2-83
TCBGET instruction

description 2-424
syntax examples 2-424

TCBPUT instruction
description 2-425
syntax examples 2-425

teletypewriter·
TERMCTRL Instruction 2-527

TERMCTRL instruction
ACCA attached devices

coding example 2-520
description 2-519

description 2-426
General Purpose Interface Bus 2-521
line sharing 2-437
return codes 2-377
Series/l-to-Series/l 2-524
Teletypewriter attached devices

description 2-527
syntax example 2-527

terminal buffer size 2-372
terminal function chart 2-426
virtual terminal

coding example 2-529
description 2-528

wrapped fields /; 2'-372
2741 communications terminal

coding example 2-435
description 2-435

3101 display (block mode)
ATTR= operand 2-437

Index X-15

TERMCTRL instruction (continued)
3101 display (block mode) (continued)

description 2-436
STREAM = operand 2-438

3151 display
ATTR = operand 2-437
description 2-436
line sharing 2-437
STREAM = operand 2-438

3161 display
ATTR = operand 2-437
description 2-436
line shar~ng 2-437
STREAM = operand 2-438

3163 display
ATTR = operand 2-437
description 2-436
line sharing 2-437
STREAM = operand 2-438

3164 display
ATTR= operand 2-437
description 2-436
line sharing 2-437
STREAM = operand 2-438

4013 graphics terminal
coding example 2-439
description 2-439

4201/4202 printer
BOLD operand description 2-441
coding examples 2-440
description 2-440
DISPLA Y operand description 2-440
DSTRIKE operand description 2-441
DWIDE operand description 2-441
LPI operand description 2-443
OVER operand description 2-441
PDEN operaJ).d description 2-445
RESTORE operand description 2-448
SCRIPT operand description 2-442
SET operand description 2-446
SETFONT operand description 2-444
syntax examples 2-440
UNDER operand description '2-441

4224 printer
BARCODE operand description 2-460
BOLD operand description 2-484
CHARSET operand description 2-476
coding examples 2-456
DELFONT operand description 2-482
description 2-456
DISPLAY operand description 2-456
DSTRIKE operand description 2-484
DWIDE operand description 2-484
INITFONT operand description 2-465
ITALICS operand description 2-484
LOAD FONT operand description 2-465
LPI operand description .2-486
OVER operand description 2-484
PCOLOR operand description 2-487

X-16 SC34-0937

TERMCTRL instruction (continued)
4224 printer (continued)

PDEN operand description 2-483
RESTORE operand description 2-464
SCRIPT. operand description 2-485
SET operand description 2-457
SETFONT operand description 2-474
syntax examples 2-456
UNDER operand description 2-484

4973 printer
description 2-495
syntax example 2-495

4974 printer
coding example 2-497
description 2-496

4975 printer
coding example 2-501
description 2-498
return codes 2-501
syntax examples 2-501

4978 display
coding examples 2-504
description 2-502

4979 display
coding example 2-506
description 2-505, 2-509

4980 display
description 2-507

5219 printer
coding example 2-512
return codes 2-514
syntax examples 2-512

5224 printer
coding example 2-518
description 2-515
return codes 2-518
syntax examples 2-517

5225 printer
coding example 2-518
description 2-515
return codes 2-518
syntax examples 2-517

5262 printer
description 2-515

TERMERR operand
PROGRAM statement 2-339
TASK statement 2-421

terminal
ACCA support 2:519
collect data from 2-188
define characteristics 2-221
erase screen 2-137
handling unrecoverable errors 2-339, 2-422
print

date 2-302
number 2-330
text 2-307
time 2-328

o

o

o

o

c

o

terminal (continued)
read

text entered at terminal 2-367
value entered at terminal 2-199

request special functions (TERMCTRL) 2-426
return codes 2-322, 2-377
virtual B-1

text
defining 2-530
read from a terminal 2-367

TEXT statement
description 2-530
syntax examples 2-531

time and date
GETTIME instruction 2-197
obtain from host system 2-543
PRINTIME instruction 2-328

time since last IPL 2-219
timer

setting system timer 2-407
TITLE statement

coding example 2-305
description 2-533

TP instruction
CLOSE 2-535
FETCH 2-536
OPENIN 2-537
OPEN OUT 2-538
overview 2-534
READ 2-539
RELEASE 2-540
return codes 2-544
SET 2-541
SUBMIT 2-542
TIMEDATE 2-543
WRITE 2-544

trace
Channel Attach 2-61
print Channel Attach trace data 2-53

transfer
records to a data set 2-558

transfer operation (HCF), end 2-535
translated data 2-253, 2-308, 2-369
true or false condition, test for 2-213
turn a bit off 2-397
turn a bit on 2-397

U
unmapped storage

defining storage areas 2-412
gain access to storage 2-418
obtaining 2-195
releasing 2-183
STOREQU equates 2-413

untranslated data 2-253, 2-308, 2-369.
uppercase charaCters

with PRINTEXT 2-309

uppercase characters (continued)
with READTEXT 2.:370

user-defined data member, $PDS utility D-13
USER instruction .

description 2-547
effect on ENDPROG 2-121
hardware register conventions 2-547
Log Specific Errors From a Program D-28
to call $USRLOG D-29

V
variable names 1-6
variable, definition of 1-5
vectors, adding 2-9
virtual terminals

coding considerations B-2
communication by return codes B-2
defining B-1
definition of B-1
return codes B-3
sample programs B-4
TERMCTRL instruction 2-528

W
wait for multiple events 2-553
WAIT instruction

coding example 2-552
description 2-550

W AITM instruction
description 2-553
MECQ statement 2-250
post codes 2-554
syntax. example 2-554

weak external reference (WXTRN) 2-565
WHERES instruction

coding example 2-556
description 2-555
return codes 2-557

word boundary requirement
PROGRAM 2-335

wrapped fields, 3151/3161/3163/3164 terminals 2-372
write

data to BSC.line 2-32
record in system-status data set 2-541
record to host, Host Communications Facility 2-544
records to a data set 2-558
to a channel attach port 2-63

WRITE instruction
coding example 2-561
description 2-558
IDCB command 2-211
post codes 2-562, 2-564
return codes. 2-562
special considerations 2-560
syntax examples (tape) 2-560
WRITE tape 2-564

Index X-I7

WRITEI IDCB command 2-211
WTM (write tapemark) 2-69
WXTRN statement

X

coding example 2-566
description 2-565

X-type format 2-176
X.21 circuit switched network

BSCOPEN parameter 2-25
coding BSCOPEN data area 2-26

XYPLOT instruction

y

description 2-567
syntax example 2-567

YTPLOT instruction
description 2-568
syntax example 2-568

Numerics
2741 Communications Terminal

TERMCTRL instruction 2-435
3101 Display Terminal

line sharing 2-437
TERMCTRL instruction 2-436

3151 Display Terminal
line sharing 2-437
TERMCTRL instruction 2-436

3161 Display Terminal
line sharing 2-437
TERMCTRL instruction 2-436

3163 Display Terminal
line sharing 2-437
TERMCTRL instruction 2-436

3164 Display Terminal
line sharing 2-437
TERMCTRL instruction 2-436

4013 graphics terminal (TERMCTRL) 2-439
4201/4202 Printer

BOLD operand description 2-441
DISPLAY operand description 2-440
DSTRIKE operand description 2-441
DWIDE operand description 2-441
LPI operand description 2-443
OVER operand description 2-441
PDEN operand description 2-445
RESTORE operand description 2-448
return codes 2-455
SCRIPT operand description 2-442
SET operand description 2-446
SETFONT operand description 2-444
TERMCTRL instruction 2-440
UNDER operand description 2-441
4975-02L printer differences 2-453

X-IS SC34-0937

4224 Printer
BARCODE operand description 2-460
BOLD operand description 2-484
CHARSET operand description 2-476
DELFONT operand description 2-482
DISPLAY operand description 2-456
DSTRIKE operand description ·2-484
DWIDE operand description 2-484
INITFONT operand description 2-465
ITALICS operand description 2-484
LOAD FONT operand description 2-465
LPI operand description 2-486
OVER operand description 2-484
PCOLOR operand description 2-487
PDEN operand description 2-483
RESTORE operand description 2-464
return codes 2-488
SCRIPT operand description 2-485
SET operand description 2-457
SETFONT operand description 2-474
TERMCTRL instruction 2-456
UNDER operand description 2-484
4975-02L printer differences 2-488

4973 Line Printer
TERMCTRL instruction 2-495

4974 Matrix Printer
TERMCTRL instruction 2-496

4975 Printer
return codes 2-501
spacing with PRINTEXT 2-311
TERMCTRL instruction 2-498

4975-01A ASCII Printer 2-316
4978 Display Station

TERMCTRL instruction 2-502
4979 Display Station

TERMCTRL instruction 2-505
4980 Display Station

Replace Terminal Control Block (CCB) D-23
TERMCTRL instruction 2-507

5219 Printer
TERMCTRL instruction 2-509

5224 Printer
TERMCTRL instruction 2-515

5225 Printer
TERMCTRL instruction 2-515

5262 Printer
TERMCTRL instruction 2-515

o

o

o

o

o

0

--- -----
~ : :f"f~ Series/1 Event Driven Executive

Publications Order Form

Instructions:

1. Complete the order form, supplying all of the

requested information. (Please print or type.)

2. If you are placing the order by phone, dial

1-S00-IBM-246S.

3. If you are mailing your order, fold the

postage-paid order form as indicated, seal

with tape, and mail.

Ship to:

Name:

Address:

City:

State: Zip:

Bill to:

Customer number:

Name:

Address:

City:

State: Zip:

Your Purchase Order No.:

Phone: (

Signature:

Date:

Order:

Description:

Basic Books:

Set of the follmiVingeight books. (For
indi vidual .. copJes, order.by booknurnber.)

Order

number Qty.

Advanced Program-to-Program Communica- SC34-0960 __ _
tion Programmin,g Guide and Reference

Communications Guide

Installation and System Generation Guide

Language Reference

Library Guide and Common Index

Messages and Codes

Operator Commands and Utilities
Reference

Problem Determination Guide

A~ditional books and reference aids:

Customization Guide

Event Driven Executive Language
Programming Guide

Operation Guide

Language Reference Summary

Operator Commands and Utilities
Reference Summary

Conversion Charts Card

Binders:

Easel binder with 1 inch rings

Easel binder with 2 inch rings

Standard binder with 1 inch rings

Standard binder with 1 1/2 inch rings

Standard binder with 2 inch rings

Diskette binder (Holds eight 8-inch diskettes.)

SC34-0935 __ _

SC34-0936 __ _

SC34-0937 __ _

SC34-0938 __ _

SC34-0939 __ _

SC34-0940 __ _

SC34-0941

SC34-0942

SC34-0943

SC34-0944

SX34-0199

SX34-0198

SX34-0163

SR30-0324

SR30-0327

SR30-0329

SR30-0330

SR30-0331

SB30-0479

Publications Order Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - ---------~~; ®

Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation

1 Culver Road

Dayton, New Jersey 08810

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fol d and tape

J
'")

....

0 ~
il
0
0:
~
0
:J
\0

C.
:J
(!)

I

I
I
I
I
I
I
I

o

o

o

0,":··: I

Q)
+-' o
Z

IBM Series/l Event Driven Executive
Language Reference

Order No. SC34-0937-0

READER'S
COMMENT
FORM

This manual is part of a library that selVes as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0937 -0
Printed in U.S.A.

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

I
n
5-
~
"T1
0
c:
~
0
::J
\0

C.
::J
CD

I

I
I
I
I
I
I
I ·

Fold and tape

--------- - ------- - ---- - - ----------_.-
®

I I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
5414 (Internal Zip)

P.O. Box 1328
Boca Raton, Florida 33429-9960

11111 ••• 11111111 •• 1.11.1 •• 1.1 •• 1.111.111111 •••• 1.1.1

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

0

G

o

--------- - ------- - ---- -- ----------_ .-
®

Printed in U.S.A.

Program Number
5719-XS6, 5719-SX1 , 5719-XX9,
5719-AM4, 5719-CX1 , 5719-MS2

SC34-0937-0

File Number
S1-35

