
--------- -------- - --- Series/1 - - - - - --------_ .-

Event Driven Executive
Customization Guide

Version 6.0

Library Guide and
Common Index

SC34-0938

Language
Reference

SC34-0937

Operation
Guide

SC34-0944

Problem
Determination
Guide

SC34-0941

Installation and
System Generation
Guide

SC34-0936

Communications
Guide

SC34-0935

Event Driven
Language
Programming Guide

SC34-0943

Customizat ion
Guide

SC34-0942

SC34-0942-0

Operator Commands
and
Utilities Reference

SC34-0940

Messages and
Codes

SC34-0939

APPC
Programming Guide
and Reference

SC34-0960

Internal
Design

LY34-0364

--------- -------- - ---- - - ----------_.-

o

C 1o,

'I

Seriesl1

Event Driven Executive
Customization Guide

Version 6.0

Customization
Guide

SC34-0942

SC34-0942-0

First Edition (September 1987)

Use this publication only for the purposes stated in the section entitled "About This Book."

Changes are made periodically to the information herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM publications should be
made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers' comments
is provided at the back of this publication. If the form has been removed, address your comments to IBM
Corporation, Information Development, Department 28B (5414), P. O. Box 1328, Boca Raton, Florida
33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1987

,~-.,,\

~,c/-

o

o

Summary of Changes for Version 6.0

3151 Display Terminal

• Chapter 3, "Customizing the Session Manager," has been updated to include
the 3151 display terminal in all 31xx display references.

Extended Address Mode Support

• In Chapter 8, "Techniques for Improving Performance," the SUPVIO mapping
example has been updated to include systems with extended address mode.

• Screens and examples throughout this document have been updated for extended
address mode support.

System Partition Statements

• References to the SYSTEM statement have been replaced by the appropriate
system partition statement: SYSPARTS, SYSPARMS, SYSCOMM, or
SYSEND.

Editorial/Usability Changes

• Numerous editorial and usability changes have been made throughout this book.

• In Chapter 8, "Techniques for Improving Performance," information on loading
$MEMDISK has been removed from this document and added to the Operator
Commands and Utilities Reference.

Summary of Changes for Version 6.0 iii

o

c

o
iv SC34-0942

o Contents

Chapter 1. What is Customization? 1-1
What You Can Customize 1-1

Operator Commands 1-1
Session Manager 1-1
Task Error Exits 1-1
Initialization Routines 1-2
Device Support 1-2
EDL Instructions 1-2

Improving Performance 1-2
Parti ti ons 1-2

Chapter 2. Adding Your Own Operator Command 2-1
Designing and Coding Your Routine 2-1

Some Features You Can Include 2-2
Testing Your Routine 2-4
Including Your Routine in the Supervisor 2-5

Editing Your System INCLUDE Data Set 2-5
Operator Command Examples 2-6

Message Broadcast Routine 2-6
Display Terminal Name and Address Routine 2-7

Chapter 3. Customizing the Session Manager 3-1

o How Big Should the Partition Be? 3-1
How to Name New Menus and Procedures 3-1
Adding an Option to the Primary Option Menu 3-3

Do You Require Additional Menus? 3-4
Modifying or Creating a Secondary Option Menu 3-5

Adding an Option to a Secondary Option Menu 3-5
Creating a Secondary Option Menu 3-7
Do You Require a Parameter Input Menu? 3-8

Creating a Parameter Input Menu 3-9
Writing a Procedure to Pass Parameters 3-11

Writing the PARAMETER Section 3-12
Writing the $JOBUTIL Control Statements 3-16
Saving the Procedure 3-16
Examples of Procedures 3-17

Updating the Primary Procedure 3-19
Entering Changes to the Primary Procedure 3-19
Saving the Primary Procedure 3-23

Updating or Creating a Secondary Procedure 3-23
Updating an Existing Secondary Procedure 3-24
Saving an Existing Secondary Procedure 3-24
Creating a Secondary Procedure 3-25
Saving a New Secondary Procedure 3-25

Using an Alternate Session Menu 3-26
How to Modify Data Set Allocation and Deletion 3-26

Allocating Data Sets 3-28

o Deleting Data Sets 3-29

Chapter 4. Adding Your Own Task Error Exit Routine 4-1
Extending the System-Supplied Task Error Exit Routine 4-2

How to Code the Task Error Exit Extension 4-3

Contents V

vi SC34-0942

Link Editing the Task Err~r Exit Extension 4-3
Creating Your Own Task Error Exit Routine 4-4

Defining the Task Error Exit Control Block 4-4
Considerations on the Use of Task Error Exit Routines 4-7
What Happens When an Exception Occurs? 4-8

Chapter 5. Running Programs and Initialization Routines at IPL 5-1
How to Specify $INITIAL Programs 5-1

Things You Should Know About $INITIAL 5-2
Sample $INITIAL Programs 5-2

How to Use $PROGI at IPL 5-4
Link Editing $PROG 1 with the Supervisor 5-4
What Happens When $PROG 1 Executes? 5-5

How to Specify Initialization Routines 5-5
Designing and Coding the Routine 5-5
Link Editing the Routine with the Supervisor 5-6
Specifying the Routine on the SYSP ARMS Statement 5-7

Chapter 6. Adding Your Own Device Support 6-1
How You Can Use EXIO 6-1
Planning for Your Device Support 6-1

Do You Understand the Hardware Control Block Functions? 6-2
What Types of Device Interrupts Should You Plan For? 6-2
Does the Device Have Any Special Timing Considerations? 6-2
Do You Have to Detect and Handle Errors? 6-2
How Many Devices Will You Support? 6-2
How Many Applications Will Use the Device? 6-3
Do You Have to Initialize the Device? 6-3

Defining the Device at System Generation 6-3
Writing the EXIO Code 6-4

Preparing the Device for Interrupts 6-4
Establishing the Transmission Mode 6-7
Writing Data to the Terminal 6-9
Reading Data from the Terminal 6-10
Reporting Error Return Codes 6-13

Sample EXIO Program 6-14
Chaining DCBs in a Circle 6-19

Chapter 7. Creating Your Own EDL Instruction 7-1
Defining the Instruction Requirements 7-1
Creating an Overlay Program to Build the Instruction 7-2

Building the Model Instruction 7-2
Checking the Source Statement Syntax 7-3
Building Object Text 7-7
Sample Overlay Program for NEWCMD 7-12

Creating a Language Control Data Set Extension 7-13
Entering the Syntax Error Messages 7-13
Specifying the Overlay and Instruction Names 7-14
Control Statements 7 -15

Defining the Instruction Operation Code
Writing the Assembler Code for NEWCMD

Coding Considerations 7-18
Testing the New Instruction 7-19

System Generation Requirements 7-19
Coding a Test Program 7-20

Debugging Overlay Programs 7-21

7-17
7-18

o

c

o

Creating Unique Labels Within the Overlay Program 7-21

o Generating Source Statements 7-22
Creating a Source Statement - No Continuation Line 7-23
Creating a Source 'Statement - With Continuation Line 7-24

Overlay Program Statements 7-25
$IDEF Statement - Build Model EDL Instruction 7-25
ASMERROR Statement - Generate Syntax Error Messages 7-26
OTE Statement - Build Object Text Element 7-27
SLE Statement - Build Sublist Element 7-29

Overlay Program Subroutines 7-30
$INDEX Subroutine - Indicate Index Register Usage 7-30
BLDTXT Subroutine - Build Object Text 7-31
GETV AL Subroutine - Evaluate Character String 7-32
LABELS Subroutine - Define or Resolve Labels 7-33
MOVEBYTE Subroutine - Move a Byte String 7-35
OPCHECK Subroutine - Check Statement Syntax 7-36
SLPARSE Subroutine - Parse Input String 7-37

Chapter 8. Techniques for Improving Performance 8-1
Analyzing System Performance 8-1

Setting Up Controls 8-2
Analyzing System Reports 8-2

Gaining Faster Access to Data Sets 8-3
Gaining Faster Access to Volumes 8-3

Defining DISK Statements 8-4
Specifying Performance Volumes 8-4
Specifyinr a Fixed-Head Volume 8-4 o Defining a Memory Disk Volume 8-4

Improving Disk and Tape I/O Performance 8-5
Reducing $COMPRES, $COPYUTl, and $COPY Operating Times 8-5
Reducing $EDXASMCompilation Time 8-5
Improving Performance of EDL Instructions 8-6
Reducing Program Load Time 8-7
Setting Flags in the $TCBFLGS Word 8-8

Chapter 9. Customizing Partitions 9-1
When You Need to Customize Partitions 9-1
Ways to Customize Partitions 9-1

Including Your Supervisor Module before EDXSVCX 9-1
Mapping an Entire Partition as Static 9-2
Mapping Part of a Partition as Static 9-5

Index X-I

()

Contents vii

()

(~

~I

c
viii SC34-0942

o

o

About This Book

Audience

This book describes how to extend or enhance some of the Event Driven Executive
(EDX) software facilities to meet your own requirements.

This book is intended for application programmers who write and maintain
programs using the Event Driven Language (EDL). Readers should be familiar with
the language before using this book. You can learn EDL by using the Event Driven
Executive Language Programming Guide.

The Internal Design can assist you in understanding some of the topics presented.
Other topics will require you to be familiar with assembler language programming
and hardware control blocks.

How This Book Is Organized
This book contains nine chapters:

• Chapter 1, "What is Customization?" presents an overview of the facilities you
can enhance or extend and gives some ideas you can implement.

• Chapter 2, "Adding Your Own Operator Command" describes how to create a
new operator command. It explains design considerations and includes several
coding examples.

• Chapter 3, "Customizing the Session Manager" shows how to add options and
build menus that run under the session manager. This chapter also presents
several different techniques you can use when you add an option.

• Chapter 4, "Adding Your Own Task Error Exit Routine" describes how you
can pass control from a main program to an error-handling routine when a
program check occurs.

• Chapter 5, "Running Programs and Initialization Routines at IPL" shows three
different methods that execute your code as part of the IPL process.

• Chapter 6, "Adding Your Own Device Support" shows an approach to
I/O-level programming through the use of EXIO. This chapter shows a
technique you can use to extend the function of a supported device to meet your
needs.

• Chapter 7, "Creating Your Own EDL Instruction" explains how to build and
add your own EDL instruction to the EDL instruction set.

• Chapter 8, "Techniques for Improving Performance" presents several methods
for improving the performance of your system.

• Chapter 9, "Customizing Partitions" shows several methods for customizing
partitions when you have written a supervisor routine that needs to reside in a
static portion of the supervisor.

About This Book ix

Aids in Using This Book
This book contains the following aids to using the information it presents:

• A table of contents that lists the main headings in the book.

• In the step-by-step procedures, several utilities are used and the interactive
display screens are shown. Any responses you must make in answer to a prompt
are shown in red.

• An index of the topics covered in this book.

Using the Enter and Attention Keys
This book uses the term "enter key" to mean the key that indicates that you have
completed input to a screen and want the system to process data keyed in. It uses
the term "attention key" to mean the key that indicates that you want to direct
keyboard input to the operating system supervisor. If your keyboard does not have
these keys, use the corresponding keys on your keyboard.

A Guide to the Library
Refer to the Library Guide and Common Index for information on the design and
structure of the EDX library, for a bibliography of related publications, for a
glossary of terms and abbreviations, and for an index to the entire library.

Contacting IBM about Problems

X SC34-0942

You can inform IBM of any inaccuracies or problems you find with this book by
completing and mailing the Reader's Comment Form provided in the back of the
book.

If you have a problem with the Series/l Event Driven Executive, refer to the IBM
Series/l Software Service Guide, GC34-0099.

o

o

o

o

o

What is Customization?

Chapter 1. What is Customization?

The Event Driven Executive (EDX) consists of a variety of software support you can
use in your application. In addition, you can use tools such as utilities to assist you
in your operating environment. However, this IBM-supplied software may not
provide all the features you require for your application. You can extend or modify
the function of several of these facilities to meet your specific operational or
application requirements. Extending or modifying these facilities is called
customization.

This book describes how you can customize some of the EDX software. It also
includes a discussion on techniques to improve performance on your Series/I.

Whenever you customize any of the facilities, you should always copy the changes
onto a diskette or tape. A subsequent release of EDX or a program temporary fix
(PTF) could possibly overlay any customization changes you make to your current
release of EDX.

This chapter introduces the facilities you can customize and presents an overview of
the performance information presented in this book.

What You Can Customize
This book presents some examples of when you might consider customization. You
can customize the following facilities to meet your needs.

Operator Commands

Session Manager

Task Error Exits

You can create your own operator command to perform a function not available
with the existing operator commands. For example, you could create an operator
command that displays your terminal name and hardware address. On a Series/1
with many terminals attached, this information could be useful.

Chapter 2, "Adding Your Own Operator Command," contains detailed information
on how to create your own operator command.

You can add your application as a new option on an option menu. Further, you
can create your own menu screens and procedures to match your application.

Chapter 3, "Customizing the Session Manager," discusses this type of
customization.

You might consider adding your own task error exit routine to an EDL program.
For example, you may want to do this if the system-supplied routine does not yield
all the information you need.

Chapter 4, "Adding Your Own Task Error Exit Routine," explains how you can
perform this type of customization.

Chapter 1. What is Customization? 1-1

What is Customization?

Initialization Routines

Device Support

EDL Instructions

You can add initialization routines to your system to perform various tasks when
you IPL the Series/I. For example, you could have "program A" loaded in partition
1 and the session manager loaded in partition 2. In addition, you could supply a
routine to initialize new devices attached to the Series/!.

Chapter 5, "Running Programs and Initialization Routines at IPL," discusses this
type of customization.

You can extend the system's I/O interface by supplying your own device support. In
this way you can access additional devices not supported under EDX or you can
extend the device support EDX does provide.

Chapter 6, "Adding Your Own Device Support," explains the procedures required
to implement such device support.

You can create your own EDL instruction to perform operations not available with
the existing EDL instruction set.

Chapter 7, "Creating Your Own EDL Instruction," discusses the details of how to
do this.

Improving Performance

Partitions

1-2 SC34-0942

You can increase the performance of your system or application in various ways.
For example, you can decrease the time it takes the supervisor to access a volume.
You can also decrease the compilation time for $EDXASM.

Chapter 8, "Techniques for Improving Performance," discusses these topics.

If you have written a supervisor module that performs I/O into itself, performs I/O
from itself, or contains one or more data set control blocks (DCBs), the module
must reside in a static portion of the supervisor.

Chapter 9, "Customizing Partitions," discusses various ways to customize partitions.

o

o

c

o

o

Adding Your Own Operator Command

Chapter 2. Adding Your Own Operator Command

If you need a function that is not supported by the existing operator commands, you
can create your own routine to perform that function. EDX provides you with an
interface that enables you to include your routine in the supervisor. The $U
command is reserved for your use. When you add your routine and issue $U, the
system uses the new function.

This chapter explains the steps required to add your own operator command.

Designing and Coding Your Routine
Operator commands run as an ATTNLIST program. Therefore, you must adhere to
certain design considerations when you code the routine. A discussion of these
design considerations follows.

1. You must specify MAIN = NO on the PROGRAM statement of your routine.

2. Code an ENTRY statement specifying $USRCMD following the PROGRAM
statement. This statement identifies the entry point to which control is passed
when your routine is called. Optionally, you can specify a CSECT statement
following the PROGRAM statement. The label you specify can be 1- 8
characters.

Note: You can omit the ENTRY statement if you use $USRCMD as the label
of the CSECT statement.

Specify the name $USRCMD as the label of your routine. The executable code
you provide begins at this label.

3. You should design your routine so that it executes quickly. Doing this can
prevent possible degradation in execution of other tasks. The following
instructions are not recommended for use in your routine:

• ENQTjDEQT
• READ jWRITE
• STIMER
• WAIT
• LOAD
• DETACH
• ENDTASK

• TP
• PROGSTOP.

You must code an END ATTN instruction following the last executable
statement in your routine.

Chapter 2. Adding Your Own Operator Command 2-1

Adding Your Own Operator Command

4. The END statement must be the last statement in your routine.

Using these design considerations, your source code would look as follows:

NEWCMD PROGRAM MAIN=NO
ENTRY $USRCMD

$USRCMD EQU *
•
• (source code for your routine)
•
ENDATTN
END

Some Features You Can Include
You can provide various features in your operator command. The following
examples illustrate two features you could provide.

Operator Command for a Spe,cific Terminal

2-2 SC34-0942

You may want to restrict the function of the operator command to a specific
terminal, such as $SYSLOG. By obtaining the name of the terminal (located in the
CCB) that issues the command, you could compare the name from the CCB against
"$SYSLOG" and branch to an exit upon a "no match" condition. This requires a
cross-partition MOVE, with FKEY = 0, because the CCB information resides in
address space 0 (partition 1).

The following example illustrates how you can obtain and compare terminal names:

FETCH PROGRAM MAIN=NO
ENTRY $USRCMD
PRINT OFF
COpy CCBEQU CCB EQUATES
PRINT ON

$USRCMD TCBGET #l,$TCBCCB GET ADDR OF CCB
MOVE TNAME, ($CCBNAME,#l), (8,BYTES),FKEY=O GET NAME
IF (TNAME,NE,SYSLOG,8),GOTO,EXIT $SYSLOG?
•
• (perform function)
•

EXIT ENDATTN
TNAME TEXT LENGTH=8

END

o

o

c

o

Adding Your Own Operator Command

Multifunction Operator Command
You might want to have an operator command that provides more than one
function. The function executed could depend on the operator input when the
program issues the command. For example, the operator could enter $U A and the
system would execute the code at label RTNA. Similarly, if the operator enters $U
B, the system executes RTNB; it executes RTNC when the operator enters $U C.
Because no message text is coded on the READTEXT, you must specify A, B, or C
when you issue the command.

An example of how you could develop a multifunction operator command (three
routines) follows:

MULTI PROGRAM
ENTRY

$USRCMD READTEXT
IF
IF
IF
GOTO

RTNA EQU
•

MAIN=NO
$USRCMD
CMD,PROMPT=COND GET OPER REQUEST
(CMD,EQ,C'A',BYTE),GOTO,RTNA
(CMD,EQ,C'B',BYTE),GOTO,RTNB
(CMD,EQ,C'C',BYTE),GOTO,RTNC
EXIT INVALID REQUEST
*

• (perform routine A)

RTNB

RTNC

EXIT
CMD

•
GOTO
EQU
•
•
•
GOTO
EQU
•

EXIT
*

(perform routine B)

EXIT
*

• (perform routine C)
•
ENDATTN
TEXT
END

LENGTH=2

Chapter 2. Adding Your Own Operator Command 2-3

Adding Your Own Operator Command

Testing Your Routine

2-4 SC34-0942

After you design and code your routine, you should test it. By testing your routine
first and verifying that it gives you the desired results, you can avoid including an
inaccurate routine in your supervisor.

You can use the following sample program to verify that your routine meets your
requirements:

CMDTST PROGRAM START
EXTRN $USRCMD POINTS TO YOUR RTN
ATTNLIST (GO,$USRCMD,STOP,STOP)

START WAIT ATTNECB,RESET
PROGSTOP

ATTNECB ECB
STOP POST ATTNECB TELL IT WHEN TO QUIT

ENDATTN
ENDPROG
END

To test your routine using the sample program, you must do the following:

1. Assemble the sample program (CMDTST) using $EDXASM. The assembled
output from this step will be used in step 3.

2. Assemble your routine using $EDXASM. The assembled output from this step
will be used in step 3.

3. Link edit the assembled output from steps 1 and 2 using $EDXLINK. The
assembled output from step 1 must be specified on the first INCLUDE
statement.

4. Upon a successful link edit (-1 completion code), load the program you
specified during link editing.

5. Call your routine by pressing the attention key and entering GO. Press the
attention key and enter STOP to end the program.

After running the test program, you can determine whether your routine executed as
you expected. If the test is successful, you must include your routine in the
supervisor.

()

o

o

o

Adding Your Own Operator Command

Including Your Routine in the Supervisor
After a successful test of your new operator command routine, you must link edit
your routine into the supervisor. This section explains how to do this.

Editing Your System INCLUDE Data Set
If you performed a tailored system generation, edit the data set that defines the
supervisor modules currently in your supervisor (normally LINKCNTL on
EDX002). Otherwise, you must edit $LNKCNTL. Insert the name of the data set
and volume containing your routine's assembled output (from step 2 of testing
section) just before the module EDXINIT. For example, if your assembled output
module is named CMDOBJ on volume EDX002, the INCLUDE statement would be
as follows:

•
•
•

INCLUDE CMDOBJ,EDX002
INCLUDE EDXINIT
INCLUDE $OVLMGR0

*INCLUDE RW4963ID
•
•
•

YOUR NEW OPERATOR COMMAND
24 SUPERVISOR INITIALIZATION
25 OVERLAY MANAGER
3 4963 FIXED HEAD REFRESH SUPPORT

After inserting the new INCLUDE statement, save the edited data set in
LINKCNTL on EDX002. Next, load $JOBUTIL and specify SUPPREPS when
prompted for a data set. SUPPREPS will generate a new supervisor containing your
operator command.

Upon completion of the system generation, check the link-map listing. The link map
will contain the entry and address of $USRCMD if your routine is contained in the
supervisor. In addition, if you specified $USRCMD as the label on a CSECT
statement, this address will appear also. Initialize your new supervisor (II command
of $INITDSK) and IPL the system. You can now call your routine using $U as a
new operator command.

If $USRCMD appears as an unresolved EXTRN, the ENTRY or CSECT statement
specifying $USRCMD was omitted in your routine. You must compile and test the.
routine again, then perform another system generation.

Chapter 2. Adding Your Own Operator Command 2-5

Adding Your Own Operator Command

Operator Command Examples
The following are examples of routines you could use as operator commands:

Message Broadcast Routine

2-6 SC34-0942

This routine sends a broadcast message to three terminals. The routine is restricted
to $SYS[OG. The message text can be up to 60 characters in length. If any of the
terminals are in use when the message is sent, the operator is notified. Terminals in
use do not receive the broadcast message. You supply the message text when you
issue the $U command, for example:
"$U SYSTEM IPL IN 5 MINUTES OPER"

BCAST PROGRAM MAIN=NO
ENTRY $USRCMD
PRINT OFF
COPY CCBEQU CCB EQUATES
PRINT ON

$USRCMD EQU *
TCBGET #l,$TCBCCB GET CCB ADDR
MOVE TNAME,($CCBNAME,#1),(8,BYTES),FKEY=0 GET NAME
IF (TNAME,NE,SYSLOG,8),GOTO,EXIT $SYSLOG
READTEXT MSG,PROMPT=COND,MODE=LINE READ MESSAGE
MOVEA #2, LIST +2 POINT TO NAMES
DO 3, TIMES

MOVE TNAME,(0,#2),(8,BYTES) MOVE NAME FROM LIST
ENQT TNAME,BUSY=BSYRTN ENQT TERM
PRINTEXT MSG SEND MESSAGE
DEQT
ADD #2,10 INCREMENT INDEX
GOTO NDU BRANCH AROUND BUSY

BSYRTN EQU * BUSY ROUTINE
ENQT $SYSLOG NOTIFY OPER. WHICH
PRINTEXT (0,#2) TERMINAL IS BUSY
PRINTEXT I IS BUSY 1

DEQT
ADD #2,10 INCREMENT INDEX

NDU ENDDO
EXIT ENDATTN
LIST EQU * LIST OF TERM NAMES

TEXT ITERM1 1 ,LENGTH=8
TEXT ITERM2 1 ,LENGTH=8
TEXT ITERM3 1 ,LENGTH=8

SYSLOG TEXT I$SYSLOG 1 ,LENGTH=8
MSG TEXT LENGTH=60 MSG HOLD AREA
TNAME IOCB

END

o

4---'\
\' ',"J

o

o

o

o

Adding Your Own Operator Command

Display Terminal Name and Address Routine
The following routine displays the terminal name and its address on the terminal
from which you issue the command:

TERMID PROGRAM MAIN=NO
ENTRY $USRCMD
PRINT OFF
COpy CCBEQU CCB EQUATES
PRINT ON

$USRCMD EQU *
TCBGET #l,$TCBCCB
MOVE TNAME,($CCBNAME,#1),(8,BYTES),FKEY=O NAME
MOVE TADDR+l,($CCBPREP+l,#l),(l,BYTES),FKEY=O ADDR
PRINTEXT I@TERM ID ADDR@'
PRINTEXT TNAME PRINT NAME
PRINTNUM TADDR,MODE=HEX PRINT ADDR
PRINTEXT I@I
ENDATTN

TNAME TEXT LENGTH=8
TADDR DATA FlO'

END

Chapter 2. Adding Your Own Operator Command 2-7

,~ u

o
2-8 SC34-0942

o

o

o

Customizing the Session Manager

Chapter 3. Customizing the Session Manager

The session manager provides a set of menu screens and procedures that make EDX
utilities available for your use. The menu screens enable you to select options
(programs) or enter parameters. The procedures load the programs you select. By
customizing the session manager, you can make a commonly-used program a part of
a session manager menu. You can do this by modifying existing menus or by
creating new menus.

This chapter describes how you customize the session manager. This chapter uses a
hypothetical application named PAYROLL to show you how to run a program from
a newly created menu.

Before you add an application to the session manager, you must ensure the partition
in which you load the session manager has enough storage. In addition, you must
understand the naming conventions of session manager menus and procedures. You
must adhere to these conventions when you add menus and procedures.

How Big Should the Partition Be?
The session manager requires a minimum partition of 16K bytes of storage. When a
program, called by the session manager, begins execution, the session manager frees
14K bytes of storage. The program you call through the session manager must not
require more than the partition size minus 2K bytes of storage. For example, if your
program requires 34K bytes of storage, the partition must contain at least 36K bytes
of available storage.

How to Name New Menus and Procedures
Session manager menus and procedures are structured in a hierarchy. The names
used for these menus and procedures reflect their level within the hierarchy. Three
levels exist:

Primary Loads programs or presents secondary option menus

Secondary Loads programs or presents parameter input menus

Tertiary Passes parameters and loads programs.

Menu names must begin with the prefix $SMM. Each menu must have a
corresponding procedure. Procedure names must begin with the prefix $SMP.

The menu and procedure names also contain numbers. These numbers are used to
indicate the level and option number of the menu. For example, a menu or
procedure name containing two numbers indicates the secondary level. Menus or
procedures with four numbers indicate the tertiary level.

Chapter 3. Customizing the Session Manager 3-1

Customizing the Session Manager

An example of the naming convention hierarchy follows. The example illustrates the
hierarchy for the $EDXASM option under the program preparation option:

Primary Secondary Secondary
Option Option Secondary Option Parm Procedure
Menu Menu Procedure Menu Menu ($JOBUTIL)
Number Name Name Number Name Name

Option 2 $SMM02 $SMP02 Option 2 $SMM0202 $SMP0202

Figure 3-1. Naming Convention Example

Figure 3-2 illustrates the various paths through which you can call programs under
the session manager. You can choose any of these paths to call programs when you
add a new option.

I
Alternate
menu

I
Parameter
selection
menu

I
Execute
required
function

Logon
menu

I

Primary
option
menu

Execute
requested
function

Execute
requested
function

I

Secondary
option
menu

I

I
Parameter
selection
menu

I

Execute
requested
function

BG1090

Figure 3-2. Paths Through the Session Manager

3-2 SC34-0942

o

o

o

o

o

Customizing the Session Manager

Adding an Option to the Primary Option Menu
The primary option menu $SMMPRIM is the first menu presented after you enter
your session manager logon ID. You can update this menu to add your program as
an option.

This section describes how you can add a program name PAYROLL to the primary
option menu. All the following steps use EDX utilities through the session manager.

To add PAYROLL to the primary option menu:

1. Select option 4.4 from the primary option menu. This option loads the
$IMAGE utility.

2. Define a null character when the. COMMAND (?) prompt appears by entering:

l COMMAND (?): NULL I

Note: You can define any character as the null character except for a blank or a
character that has already been defined as an attribute character.

3. Specify the menu to edit when the COMMAND (?) prompt appears by entering:

l COMMAND (?): $SMMPRIM,EDxaa2

The primary option menu $SMMPRIM appears next on the terminal screen.

4. Press the PFI key to display the protected fields of menu $SMMPRIM as
unprotected fields. This enables you to modify the menu. The null character, #,
defined in step 2 represents the input data fields.

5. Position the cursor under the last option number and add the text for the new
option, option 11 - PAYROLL.

Chapter 3. Customizing the Session Manager 3-3

Customizing the Session Manager

6. Press the enter key. The enter key takes you out of edit mode. The
newly-defined menu image appears as shown in Figure 3-3.

Figure 3-3. Updated Session Manager Primary Option Menu

7. Press the PF3 key to return to the $IMAGE command mode. In response to the
COMMAND (?) prompt, enter:

SAVE $SMMPRIM,EDX'

8. In response to the message:

reply N if you want to save a 4978/4979/4980 screen image only. Reply Y to
this message if you are using the ATTR command of $IMAGE to define a 31xx
screen image. Refer to the Operator Commands and Utilities Reference for
details on the ATTR command of $IMAGE.

Note: A 31xx screen image is used for a 3101, 3151, 3161, 3163, or 3164
terminal.

At this point, the system saves the updated primary option menu. Enter EN to end
the $IMAGE utility. The session manager displays the updated primary option
menu with the PAYROLL option.

Do You Require Additional Menus?

3-4 SC34-0942

If you are loading a program directly from the primary option menu, you must
update the session manager primary procedure. The section "Updating the Primary
Procedure" on page 3-19 describes how you can do this.

o

()

o

o

o

o

Customizing the Session Manager

You can design your new option on the primary option menu so that it consists of
several options. To do this, you must create a secondary option menu. The section
"Modifying or Creating a Secondary Option Menu" describes how you can do this.

If your program requires input parameters at execution time, you must create a
parameter input menu to pass the parameters. The section "Creating a Parameter
Input Menu" on page 3-9 describes how you can do this.

Modifying or Creating a Secondary Option Menu
This section describes how you can add a new option to an existing secondary
option menu or create your own menu with options. The method you use to add
options is similar.

Adding an Option to a Secondary Option Menu
If you want to add your program as an option to a category of programs, you must
update an existing secondary option menu.

The following list shows the existing secondary option menus you can update and
their categories:

Menu
Name Category

$SMM02 Program preparation

$SMM03 Data management

$SMM04 Terminal utilities

$SMM05 Graphics utilities

$SMM08 Communication utilities

$SMM09 Diagnostic aids

$SMMlO Background job control

Figure 3-4. Existing Secondary Option Menus

Note: All these menus reside on EDX002.

Chapter 3. Customizing the Session Manager 3-5

Customizing the Session Manager

3-6 SC34-0942

If, for example, you want to add an option that combines both $EDXASM and
$UPDATE into one option to the program preparation secondary option menu
($SMM02), you must:

1. Select option 4.4 from the primary option menu. This option loads the
$IMAGE utility.

2. Define a null character when the COMMAND (?) prompt appears by entering:

Note: You can define any character as the null character except for a blank or a
character that has already been defined as an attribute character.

3. Specify the menu to edit when the COMMAND (?) prompt appears by entering:

$SMM02,EDX002

The secondary option menu $SMM02 appears next on the terminal screen.

4. Press the PFI key to display the protected fields of menu $SMM02 as
unprotected fields. This enables you to modify the menu. The null character, #,
defined in step 2 represents the input data fields.

5. Position the cursor under the last option number and add the text for the new
option, option 15 - $EDXASMj$UPDATE.

6. Press the enter key. The enter key takes you out of edit mode. The
newly-defined menu image appears as shown in Figure 3-5.

Figure 3-5. Updated Program Preparation Secondary Option Menu

o

o

o

o

0 _,-
"

Customizing the Session Manager

7. Press the PF3 key to return to the $IMAGE command mode. In response to the
COMMAND (?) prompt, enter:

l COMMAND (7): SAVE $SMM82,EDXG02

8. In response to the message:

SHOULD THE 31XX INFORMATION BE SAVED (YIN)?

reply N if you want to save a 4978/4979/4980 screen image only. Reply Y to
this message if you are using the ATTR command of $IMAGE to define a 3lxx
screen image. Refer to the Operator Commands and Utilities Reference for
details on the ATTR command of $IMAGE.

Note: A 31xx screen image is used for a 3101, 3151, 3161, 3163, or 3164
terminal.

At this point, the system saves the updated secondary option menu. Use the EN
command to end the $IMAGE utility.

Creating a Secondary Option Menu
This section describes how you can create a new secondary option menu.

Assume the newly-defined PAYROLL application (option 11 of primary option
menu) consists of a mailing list program and a program to print paychecks. To
create a menu with these programs as options:

1. Select option 4.4 from the primary option menu. This option loads the
$IMAGE utility.

2. Define a null character when the COMMAND (?) prompt appears by entering:

Note: You can define any character as the null character except for a blank or a
character that has already been defined as an attribute character.

3. Define the screen dimensions as 24 by 80 (full screen) by entering:

4. Enter the command EDIT. A blank screen appears.

5. Press the PFI key.

Chapter 3. Customizing the Session Manager 3-7

Customizing the Session Manager

6. Enter the text for your menu. You must use the null character (defined in step
2) to specify input data fields. Enter eight null characters following the
SELECT OPTION prompt. The secondary option menu for the PAYROLL
looks as follows:

Figure 3-6. Sample Secondary Option Menu

7. Press the enter key after you complete the design of your menu. The enter key
takes you out of edit mode.

8. Press the PF3 key to return to the $IMAGE command mode.

9. Save your new menu when the COMMAND (?) prompt appears by entering:

Note: Use the option number in the name of all related menus. For example,
secondary option menu $SMM11 corresponds to option 11 of the primary
option menu. See the section "How to Name New Menus and Procedures" on
page 3-1 for an explanation of how to name menus.

10. In response to the message:

reply N if you want to save a 4978/4979/4980 screen image only. Reply Y to
this message if you are using the ATTR command of $IMAGE to define a 31xx
screen image. Refer to the Operator Commands and Utilities Reference for
details on the ATTR command of $IMAGE.

Note: A 31xx screen image is used for a 3101, 3151, 3161, 3163, or 3164
terminal.

At this point, the system saves the new secondary option menu. Use the EN
command to end the $IMAGE utility.

Do You Require a Parameter Input Menu?

3-8 SC34-0942

If you are loading a program directly from a secondary option menu, you must
update the session manager primary and secondary procedure. The section
"Updating the Primary Procedure" on page 3-19 describes how you can do this.

If your program requires input parameters at execution time, you must create a
parameter input menu to pass the parameters. The section "Creating a Parameter
Input Menu" on page 3-9 describes how you can do this.

o

o

o

o

Customizing the Session Manager

Creating a Parameter Input Menu
A parameter input menu enables you to pass parameters to the program you want to
use. You can use these menus to specify and pass parameters such as data set
names, program options, or an output device.

This section shows how to create a parameter input menu for the PAYROLL option
and the combined $EDXASM and $UPDATE option.

Assume that the PA YCHK program from the PAYROLL secondary option menu
requires three parameters at execution time. The parameters are an input data set,
an output data set, and the period end date. To create a menu to pass these
parameters:

1. Select option 4.4 from the primary option menu. This option loads the
$IMAGE utility.

2. Define a null character when the COMMAND (?) prompt appears by entering:

Note: You can define any character as the null character except for a blank or a
character that has already been defined as an attribute character.

3. Define the screen dimensions as 24 by 80 (full screen) by entering:

4. Enter the command EDIT. A blank screen appears.

5. Press the PFI key.

6. Enter the text for your menu. The null character, #, defined in step 2 represents
the input data fields. The menu allows for 15 null characters for the data set
and volume name separated by a comma. The parameter input menu for
P A YCHK looks as follows:

Figure 3-7. Sample Parameter Input Menu

Chapter 3. Customizing the Session Manager 3-9

Customizing the Session Manager

3-10 SC34-0942

7. Press the enter key after you complete the design of your menu. The enter key
takes you out of edit mode.

8. Press the PF3 key to return to the $IMAGE command mode.

9. Save your new menu by entering:

Note: Use the option number in the name of all related menus. For example,
parameter input menu $SMM 1102 corresponds to option 2 of the secondary
option menu ($SMM 11). If your program does not use a secondary option
menu, you would name this menu $SMMII. See the section "How to Name
New Menus and Procedures" on page 3-1 for an explanation of how to name
menus.

10. In response to the message:

SHOULD THE 31 XX INFORMATION BE SAVED (YIN)?

reply N if you want to save a 4978/4979/4980 screen image only. Reply Y to
this message if you are using the ATTR command of $IMAGE to define a 31xx
screen image. Refer to the Operator Commands and Utilities Reference for
details on the ATTR command of $IMAGE.

Note: A 31xx screen image is used for a 3101, 3151, 3161, 3163, or 3164
terminal.

At this point, the system saves the new parameter input menu. End the $IMAGE
utility (EN command).

The next step is to write a procedure to pass parameters. See "Writing a Procedure
to Pass Parameters" on page 3-11.

o

o

o

o

Customizing the Session Manager

The same steps are required to create a parameter input menu for the
$EDXASM/$UPDATE option discussed in the section "Adding an Option to a
Secondary Option Menu" on page 3-5. You can design the menu as shown in
Figure 3-8. You must save this menu in a data set named $SMM0215.

$SMM0215 SESSION MANAGER $EDXASM PARAMETER INPUT MENU
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> ###############

OBJECT OUTPUT (NAME<VOLUME) ==> ###############

OPTIONAL PARAMETERS ==> ##################
(SELECT FROM LIST BELOW)

PARAMETERS: DESCRIPTION:
NOLIST SUPPRESS LISTING

(up to 64)

LIST TERMINAL-NAME
ERRORS TERMINAL-NAME
CONTROL DATASET,VOLUME
OVERLAY NO.

USE LIST * FOR THIS TERMINAL
USE ERRORS * FOR THIS TERMINAL
$EDXASM LANG .. CTRL DATA SET
NUMBER OF OVERLAY AREAS

$UPDATE PARAMETER INPUT MENU

PROGRAM .OUTPUT··.(NAME.VQLUME) ==> #1#############
REPLACE (YES IFPGM . EX ISrS) :::=> ###
LISTING (TERMINAL NAME/*) ==> #####i##

Figure 3-8. $EDXASM and $UPDATE Parameter Input Menu

Writing a Procedure to Pass Parameters
You must write a procedure whenever you pass parameters to your program from a
parameter input menu. A procedure consists of two parts:

• PARAMETER section

• $JOBUTIL control statements.

To begin writing the procedure:

1. Select option 1, text editing, from the primary option menu. This loads the
$FSEDIT utility.

2. Select option 2 and enter the statements you require for your application.

Chapter 3. Customizing the Session Manager 3-11

Customizing the Session Manager

Writing the PARAMETER Section
The PARAMETER section of the procedure consists of statements unique to the 0' __ II !
session manager. The PARAMETER statement must be the first statement of your
procedure. This section must end with an END statement.

Contained within the PARAMETER section are &PARMnn and &SA VEnn
statements. The &PARMnn statements enable your procedure to refer to
parameters entered on the menu. The optional &SAVEnn statements save the
parameters you enter from session to session.

&PARMnn Statements

3-12 SC34-0942

You can assign a &P ARMnn name to each parameter entered on the parameter
input menu, where nn is the parameter's position number on the menu. You use
these names on your $JOBUTIL control statements. Each input field on the menu
represents a parameter. For example, MYDS,MYVOL in the field below represents
a single parameter and would be assigned the name &P ARMO 1.

You assign numbers to parameters in ascending order, from left to right, top to
bottom. For example, if a menu contains two parameter entries, you assign the
names &PARMOI (first) and &PARM02 (second). The session manager always
assigns the name &P ARMOO to the 1 - 4 character session logon ID.

You must end a &PARMnn statement with a period whenever blanks immediately
follow that statement.

The statements of a procedure that reference two menu entries would look as
follows:

PARAMETER
&PARM01.
&PARM02.
END

The session manager substitutes the &PARMnn names with the actual parameters
you enter on the menu. You can use the &PARMnn statements in conjunction with
the &SAVEnn statements.

o

o

c~

o

Customizing the Session Manager

&SAVEnn Statements
The &SA VEnn statements in the procedure enable you to save parameters entered
on the menu from session to session. The session manager substitutes &SA VEnn
statements with the actual parameters entered on the menu. You can use these
statements to save parameters for the menus you create. Once you save a parameter
from a menu, the parameter will reappear the next time you access that menu.

The statements of a procedure that reference and save two menu entries would look
as follows:

PARAMETER
&PARM01,&SAVEOl
&PARM02,&SAVE02
END

The statement numbers &SAVE61- &SAVE90 are reserved for your use. Use these
statement numbers to save parameters from parameter input menus you create.

An example of how to use these statement numbers for the P A YCHK parameter
input menu (Figure 3-7 on page 3-9) follows:

PARAMETER
&PARM01,&SAVE61
&PARM02,&SAVE62
&PARM03,&SAVE63
END

(input data set)
(output data set)
(period end date)

The menu input fields for EDX utilities have preassigned &SAVE statement numbers
(1 - 60). If you create menus for these utilities and save the input parameters, you
must use the preassigned numbers on the &SA VEnn statements. See Figure 3-9 on
page 3-15 for the numbers assigned to the EDX utilities.

Chapter 3. Customizing the Session Manager 3-13

Customizing the Session Manager

3-14 SC34-0942

An example of the statements for the combined $EDXASM/$UPDATE parameter
input menu (Figure 3-8 on page 3-11) follows:

PARAMETER
&PARM01,&SAVE01
&PARM02,&SAVE02,&SAVE19
&PARM03,&SAVE03
&PARM04,&SAVE20
&PARM05,&SAVE21
&PARM06,&SAVE22
END

(source input)
(object output)
(compiler options)
(pgm name)
(replace?)
(termi nal)

You can determine which &SA VE statement the session manager assigns to a
particular parameter input field by:

1. Using $FSEDIT to list the $SMPxxxx procedure for the utility.

2. Comparing the &P ARM and &SA VE statements from the listing with the
parameter input menu the session manager uses for that utility.

The procedure you write must pass parameters to each utility in the order shown in
the $SMPxxxx procedure.

o

o

o

Customizing the Session Manager

The following figure shows the preassigned numbers for the EDX utilities:

0' Statement Procedure Utility IFunction

&SAVEOI-03 $SMP0201 $EDXASM

&SAVE04-06 $SMP0203 $SlASM

&SAVE07-13 $SMP0204 $COBOL

&SAVE14-16 $SMP020S $FORT

&SAVE17-18 $SMP0208 $EDXLINK,
$XPSLINK

&SAVE19-22 $SMP0209 $UPDATE

&SAVE23-24 $SMP0211 $PREFIND

&SAVE2S-26 $SMP0308 $MOVEVOL

&SAVE27 $SMP04OS $FONT

&SAVE28 $SMPOSOI $DIUTIL

&SAVE29 $SMPOS02 $DICOMP

&SAVE30 $SMPOS03 $DIINTR

&SAVE31-3S $SMP06 Execute application
program

&SAVE36 $SMP0801 $BSCTRCE,
$LCCTRCE

&SAVE37 $SMP0806 $PRT2780

&SAVE38 $SMP0807 $PRT3780

&SAVE39 $SMP0808 $HCFUTI

&SAVE4O-41 $SMP0211 $PREFIND

&SAVE42 $SMP0207 $EDXLINK

&SAVE43 $SMP0901 $DUMP

&SAVE44 $SMP0208 $XSPLINK

&SAVE4S-49 $SMP0206 $PLI

&SAVE4S-S0 $SMP0212 $PASCAL

&SAVE51 $SMP8101 $ARJE

&SAVES2-S8 $SMP0904 $VERIFY

&SAVES9 $SMP0204 $COBOL

&SAVE60 Reserved

Figure 3-9. &SAVEnn Numbers of EDX Utilities/Functions

o
Chapter 3. Customizing the Session Manager 3-15

Customizing the Session Manager

Writing the $JOBUTIL Control Statements
The procedure you write must use $JOBUTIL control statements. The session
manager passes the statements in this part of the procedure to $JOBUTIL, which
then loads and executes the program. The Operator Commands and Utilities
Reference describes the $JOBUTIL control statements in detail.

This section shows three examples of $JOBUTIL control statements used in
conjunction with &PARMnn statements. Use the examples presented as a guide as
you write your procedure. The first example is the procedure required to load
$EDXASM. The remaining examples show the procedures for the new options,
PAYCHK and $EDXASM/$UPDATE.

You must enter $JOBUTIL control statements in the following format:

Command Position 1 to 8

Operand Position 10 to 17

Comment Position 18 to 71.

Saving the Procedure

3-16 SC34-0942

After you enter the statements, do the following:

1. Return to the $FSEDIT primary option menu by entering MENU on the
command line.

2. Select option 4 and specify the data set name for the new procedure. Specify
EDX002 as the volume name.

Procedure names can be a maximum of eight characters in length ($SMPxxxx)
and must have the prefix $SMP. The "xxxx" portion of the name should
contain the numbers that reflect the option numbers on the primary option
menu and the secondary option menu (if you use one).

However, procedure names must correspond with the name of the parameter
input menu. For example, you name the procedure for the PA YCHK program
$SMPll02. This name corresponds to the name of the parameter input menu
$SMMll02. Similarly, you name the procedure for the $EDXASM/$UPDATE
option $SMP0215. This name corresponds to the parameter input menu
$SMM0215. See the section "How to Name New Menus and Procedures" on
page 3-1 for an explanation of how to name procedures.

3. After you save the procedure, enter option 8 to exit $FSEDIT and return to the
session manager.

The next step is updating the session manager's primary and/or secondary procedure.
The section "Updating the Primary Procedure" on page 3-19 explains how you can
do this.

o

o

o

Customizing the Session Manager

Examples of Procedures
Use the examples shown in this section as a guide for the procedures you write.

The session manager uses many different procedure formats. You can write more
sophisticated procedures by copying existing session manager procedures and
updating them. Use the $FSEDIT utility to change the procedures to call different
programs and save parameters.

$EDXASM Procedure

PAYCHK Procedure

PARAMETER
&PARM01,&SAVE01
&PARM02,&SAVE02
&PARM03,&SAV
END
LOG OFF

(source input)
(object output)
(compiler options)

REMARK
JOB
PROGRAM
PARM

@ASSEMBLE &PARM01. TO &PARM02. USERID=&PARM00.
$SMP0201

OS

$ EDXASM, ASMLI B
&PARM03.
&PARM01.

OS $SM1&PARM00.,EDX003 (work data set)
OS
EXEC
EOJ
END

&PARM02.

Figure 3-10. Procedure to Load $EDXASM

The system saves the parameters passed in &SA VE61 - &SA VE63. Figure 3-7 on
page 3-9 shows the parameter input menu for this procedure.

PARAMETER
&PARM01,&SAVE61
&PARM02,&SAVE62
&PARM03,&SAVE63
END

OFF

(input data set)
(output data set)
(period end date)

LOG
REMARK
JOB
PROGRAM
PARM

@PAYROLL PAYCHECK PROCEDURE
$SMP1l02

USERID=&PARM00.

OS
OS
EXEC
EOJ
END

PAYCHK,MYVOL
&PARM03.
&PARMOl.
&PARM02.

Figure 3-11. Procedure to Load PAYCHK

Chapter 3. Customizing the Session Manager 3-17

Customizing the Session Manager

$EDXASM/$UPDATE Procedure
T$ his proced~re combines the session manager procedure for $ED~SMhandA 0, ')'

UPDATE mto one procedure. One statement saves &PARM02 m bot &S VE02
and &SAVE19. Figure 3-8 on page 3-11 shows the parameter input menu for this

3-18 SC34-0942

procedure.

PARAMETER
&PARM01,&SAVE01
&PARM02,&SAVE02,&SAVE19
&PARM03,&SAVE03
&PARM04,&SAVE20
&PARM05,&SAVE21
&PARM06,&SAVE22
END
LOG OFF

(source input)
(object output)
(compiler options)
(pgm name)
(replace?)
(termi nal)

REMARK
JOB
PROGRAM
PARM

@ASSEMBLE &PARM01. TO &PARM02. USERID=&PARMOO.
$SMP0215

OS
OS
OS
EXEC
JUMP
REMARK
PROGRAM
PARM
EXEC
LABEL
EOJ
END

$EDXASM,ASMLIB
&PARM03.
&PARMOl.
$SM1&PARMOO.,EDX003
&PARM02.

EXIT, NE,-l

(work data set)

@CREATE LOAD MODULE &PARM02. TO &PARM04.
$UPDATE,EDX002
&PARM06. &PARM02. &PARM04. &PARM05.

EXIT

Figure 3-12. Procedure to Load $EDXASM/$UPDATE

C)

o

o

o

o

Customizing the Session Manager

Updating the Primary Procedure
You must update the session manager primary procedure ($SMPPRIM) whenever
you add an option to the primary option menu or to a secondary option menu. The
primary procedure contains all option numbers as well as menu and program names
associated with all options.

This section explains how you can update the primary procedure for options you
add.

Perform the following steps to update the primary procedure ($SMPPRIM) for a
new option:

1. Select option 1 (text editing) on the primary option menu and press the enter
key. The next menu to appear on the terminal screen is the primary option
menu for $FSEDIT.

2. Select option 3 (read) and specify $SMPPRIM as the data set name. Specify
EDX002 as the volume name. Press the enter key.

3. After the utility reads $SMPPRIM into your work data set, enter option 2 (edit)
to update $SMPPRIM.

Entering Changes to the Primary Procedure
The option number you specify can be either a number or a letter. Follow the
format of $SMPPRIM as you enter option numbers, program, and menu names.

Program with No Parameters
Assume the new option (11 - PAYROLL) on the primary option menu is a program
that does not require parameters. (The program can be loaded directly). To update
$SMPPRIM, scroll to the bottom (PF3 key) and add the new option number and
program name. You would update $SMPPRIM to look like the following:

Figure 3-13. Example of a Program Added with No Parameters

The asterisk before the program name indicates the program does not require
parameters when loaded.

Chapter 3. Customizing the Session Manager 3-19

Customizing the Session Manager

3-20 SC34-0942

Optionally, you could pass a data set and yolume name to a program. You might
want to do this if your program normally prompts you for a data set after you load
the program. For example, $FSEDIT and $EDXLINK prompt you for a work data
set when you load them. You can pass your program one of the session manager
work data sets or a data set you create. An asterisk must precede and follow the
data set name (padded to eight characters in length).

The following example shows how to use a session manager work data set:

$FSEDIT uses the session manager work data set $SMEuser, where "user" is your
1 - 4 character logon ID.

If you append an & to the data set name $SME, the session manager replaces the &
with your logon ID.

The next example shows how to pass a program the data set WORKDSI on volume
MYVOL:

At this point, you must save $SMPPRIM. See the section "Saving the Primary
Procedure" on page 3-23 for information on saving $SMPPRIM. After you save
$SMPPRIM, you can use your new option from the primary option menu.

o

o

o

o

0"·':: , ,

Customizing the Session Manager

Program Using Parameter Input Menu Only
If the new option (11 - PAYROLL) required only a parameter input menu, you
would update $SMPPRIM as shown in Figure 3-14. In this case, scroll to the
bottom (PF3 key) and add the new option number and the name of the parameter
input menu.

Note: The session manager searches for a procedure on EDX002 that corresponds
to the name of the parameter input menu. For example, to load the program for
$SMM 11 02, the session manager would search EDX002 for a procedure named
$SMPI102.

'9
'9.1
'9.2
'9.3
'9.4
'10
'10.1
110.2
III

•
•
•

, ,$SMM09
, ,$SMM0901
, ,*$DISKUT2EDX002
',*$IOTEST EDX002
',$SMM0904
',$SMM10
I, *$JOBQUT EDX002
',*$SUBMIT EDX002
',$SMM1l02

DIAGNOSTICS SECONDARY OPTION MENU
$DUMP PARM INPUT MENU
EXECUTE $DI5KUT2
EXECUTE $1OTE5T
$VERIFY PARM INPUT MENU
$JOBQUT/$SUBMIT OPTION MENU
EXECUTE $JOBQUT
EXECUTE $SUBMIT
EXECUTE PAYROLL PROGRAM

Figure 3-14. Example of a Program Added with Parameter Input Menu

After you make the entry, you must save $SMPPRIM. See the section "Saving the
Primary Procedure" on page 3-23 for information on saving $SMPPRIM. After
you save $SMPPRIM, you can use your new option from the primary option menu.

Chapter 3. Customizing the Session Manager 3-21

Customizing the Session Manager

Program Using Secondary Option Menu

3-22 SC34-0942

The PAYROLL example shown throughout this chapter is a new option on the
primary option menu but also uses a secondary option menu. To update
$SMPPRIM, scroll to the bottom (PF3 key) and make the entries as shown in
Figure 3-15. An explanation of the entries follows the figure.

Figure 3-15. Example of Program AddeQ Using Secondary Option Menu

The entry for option 11 points to the secondary option menu $SMMII (Figure 3-6
on page 3-8). The entry for option 11.1 points to the program MAILLIST on
volume MYVOL. MAILLIST requires no parameters when the session manager
loads it. The entry for option 11.2 points to the parameter input menu $SMMl102
(Figure 3-7 on page 3-9) for the P A YCHK program.

Note: The session manager searches for a procedure on EDX002 that corresponds
to the name of the parameter input menu. For example, to load the program for
$SMMl102, the session manager would search EDX002 for a procedure named
$SMPII02.

o

o

o

o

o

0'·" , .

Customizing the Session Manager

You would perform similar update steps to add the $EDXASM/$UPDATE example
discussed in "Adding an Option to a Secondary Option Menu" on page 3-5. For
this example, you enter option number 2.15 and the menu name $SMM0215 as
shown in Figure 3-16.

•
•
•

'2.11 1,$SMM0211 $PREFIND PARMINPUT MENU
12.12 i,$SMM0212 $PASCAL/$EDXLI NKPARM INPUT MENU
'2.13 ' ,$SMM0213 .$EDXASM/$XPSLINKPARM INPUT MENU
'2.14 I, *$MSGUTI EDX002*$SM1& *EDX~03
12.15 1,$SMM0215 NEW$EDXASM/$UPDATEOPTI0N

Figure 3-16. Example of Adding $EDXASMj$UPDATE Option

At this point, you must save $SMPPRIM. See the section "Saving the Primary
Procedure" for information on saving $SMPPRIM. After you save $SMPPRIM,
you must update or create a secondary procedure. The section "Updating or
Creating a Secondary Procedure" explains how to do this.

Saving the Primary Procedure
When you complete the updating of $SMPPRIM, do the following:

1. Enter MENU in the command field to return to the $FSEDIT menu.

2. Select option 4 from the $FSEDIT primary option menu. Respond Y to the
prompt message to write the updated procedure back to $SMPPRIM on volume
EDX002.

3. Enter option 8 to end $FSEDIT and return to the session manager primary
option menu.

Updating or Creating a Secondary Procedure
You must update a secondary procedure whenever you add an option to an existing
secondary option menu. Further, if you create a new secondary option menu you
must create a secondary procedure for that option menu.

The format of a secondary procedure is almost identical to the format of the primary
procedure ($SMPPRIM). A secondary procedure contains option numbers and
menu and program names that pertain only to a specific secondary option menu.

All secondary procedures begin with the name $SMPxx, where xx is the number
from the primary option menu. For example, $SMP04 is the secondary procedure
for terminal utilities (option 4).

Chapter 3. Customizing the Session Manager 3-23

Customizing the Session Manager

Updating an Existing Secondary Procedure
The $EDXASMj$UPDATE example (Figure 3-5 on page 3-6) shows how to add an 0.

1
'1

option to an existing secondary procedure ($SMP02). _

Perform the following steps to update $SMP02:

1. Select option 1 (text editing) on the primary option menu and press the enter
key. The next menu to appear on the terminal screen is the primary option
menu for $FSEDIT.

2. Select option 3 (read) and and specify $SMP02 as the data set name. Specify
EDX002 as the volume name.

3. After the utility reads $SMP02 into your work data set, enter option 2 (edit) to
update $SMP02.

4. Scroll to the bottom (PF3 key) and enter the new option number and the name
of the parameter input menu (Figure 3-8 on page 3-11).

The following is an example of the updated $SMP02 procedure:

SELECTION$SMP02
'I ',$SMM0201 $EDXASM PARM INPUT MENU
, 2 I ,$SMM0202 $EDXASM/$EDXLINK PARM INPUT MENU
13 ' ,$SMM0203 $S1ASM PARMINPUTMENU
'4 I ,$SMM0204 $COBOL . PARM INPUT MENU
'5 '.$SMM0205 $FORTPARM INPUT MENU
'6 ',$SMM0206 $PLI/$EDXLINK PARMINPUTMENU
r 7 ' ,$SMM0207 $EDXLINK PARM INPUT MENU
'8 ',$SMM0208 $XPSLINK FOR SUPERVISORS PARMINPUT MENU
'9 '.$SMM0209 $UPDATEPARMINPUTMENU
'10 " *$UPDATEHEDX002 EXECUTE $UPDATEH
III ' • $SMM0211 $PREFIND PARM INPUT MENU
, 12 ' ,$SMM0212 $PASCAL/$EDXLINK PARMJNPUT MENU
'13 '.$SMM0213 $EDXASM/$XPSLINK PARM INPUt'MENU
'14 ',*$MSGUT1 EDX002*$SMl& *EDX003
'15 1,$SMM0215 NEW$EDXASM/$UPDATE OPTION
END

Figure 3-17. Updated $SMP02 Secondary Procedure

Saving an Existing Secondary Procedure

3-24 SC34-0942

When you complete the updating of $SMP02:

1. Enter MENU in the command field to return to the $FSEDIT menu.

2. Select option 4 from the $FSEDIT primary option menu. Respond Y to the
prompt message to write the updated procedure back to $SMP02 on volume
EDX002.

3. Enter option 8 to end $FSEDIT and return to the session manager primary
option menu.

After completing these steps, you can use the new option from either the primary or
secondary option menu.

o

o

o

o

o

Customizing the Session Manager

Creating a Secondary Procedure
To show you how to create a new secondary procedure, the PAYROLL example
(Figure 3-6 on page 3-8) is used.

A simple way to create a new secondary procedure is to edit an existing secondary
procedure. You can add the appropriate entries you need for your program and
delete the entries you do not need. By editing an existing secondary procedure, you
can ensure that the required format remains correct. All existing secondary
procedures are named $SMPxx, where xx is an option number.

Perform the following steps to create a new secondary procedure:

1. Select option 1 (text editing) on the primary option menu and press the enter
key. The next menu to appear on the terminal screen is the primary option
menu for $FSEDIT.

2. Select option 3 (read) and specify the data set name of an existing secondary
procedure, for example $SMP02. Specify EDX002 as the volume name.

3. After the utility reads $SMP02 into your edit work data set, enter option 2 (edit)
to edit $SMP02.

4. Keeping the same format, replace the entries in $SMP02 with the entries for
PAYROLL.

The following is an example of the secondary procedure for PAYROLL:

SELECTION. $SMPll
11 I. *MAlLLIST
12 ',$SMMl102
END

Figure 3-18. New Secondary Procedure for PAYROLL

Saving a New Secondary Procedure
When you complete the updating, do the following:

1. Enter MENU in the command field to return to the $FSEDIT menu.

2. Select option 4 from the $FSEDIT primary option menu. Specify the new data
set name which will contain the secondary procedure. For this example, enter
$SMPll as the new data set name. $FSEDIT will create this data set for you.
Specify EDX002 as the volume name. Respond Y to the prompt message after
you specify the new data set name.

3. Enter option 8 to end $FSEDIT and return to the session manager primary
option menu.

After completing these steps, you can use the new option from the primary option
menu.

Chapter 3. Customizing the Session Manager 3-25

Customizing the Session Manager

Using an Alternate Session Menu
When you log on to the session manager, you can override the menu presentation by
specifying an option menu that you have created. You might consider this method
to provide menus tailored to your system.

You can use the ALTERNATE SESSION MENU prompt below the user ID
prompt if you create your own menus and procedures. Entering the name of your
menu as an alternate causes your menu to appear instead of the session manager
primary option menu.

When you use this method of customizing the session manager:

1. Adhere to the naming conventions discussed in the section "How to Name New
Menus and Procedures" on page 3-1.

2. Ensure the menus and associated procedures reside on volume EDX002.

3. Design the menus and procedures as discussed throughout this chapter.

The following example shows the logon menu with the name of an alternate menu,
$SM9901, specified:

Figure 3-19. Session Manager Logon Screen with Alternate Menu

How to Modify Data Set Allocation and Deletion

3-26 SC34-0942

The session manager allocates and deletes temporary data sets when you logon and
logoff respectively. The session manager uses these data sets as work data sets for
the various programs it loads. Two session manager data sets control allocation and
deletion. $SMALLOC controls the data sets to be allocated. $SMDELET controls
the data sets to be deleted.

You can tailor the work data set allocations and deletions by modifying the
$SMALLOC and $SMDELET data sets with $FSEDIT or $EDIT1N.
Modifications usually consist of changing the size or volume name of a data set.
However, you can also allocate and delete up to four additional data sets.

You can use these additional temporary data sets for programs you use. For
example, your program may need to write data to a temporary data set and later
retrieve data from that data set. You could run your program under the session
manager and have the session manager create that data set.

o

o

o

o

Customizing the Session Manager

Figure 3-20 lists all the session manager data sets with sizes and functions. The
session manager substitutes your logon ID for "user" and appends your logon ID to
the data set name.

Data Set Size in 256
Name EDX Records Function

$SMEuser 400 Used by '$FSEDITas a work data
set.

$SMPuser 30 Used by session manager to save
input parameters from session to
session. This data set is not
deleted at logoff.

$SMWuser 30 U sed by session manager to
submit procedures to $JOBUTIL.

$SM 1 user 400 1 Used by $SlASM, $EDXASM,
$COBOL, $PASCAL, $PLI, and
$FORT as a work data set.

$SM2user 400 1 Used by $EDXLINK, $SlASM,
$COBOL, $PLI, and $FORT as a
work data set.

$SM3user 250 1 Used by $SlASM, $COBOL,
$P ASCAL, and $PLI as a work
data set.

Figure 3-20. Data Sets Created by the Session Manager

Note: When using the background option, data sets $SMI user, $SM2user, and
$SM3user are reserved for use by the session manager. The session manager
allocates one additional work data set ($SMBJOBQ) for the entire system to use for
background processing. Every job submitted in background that needs a work data
set will use this preallocated data set. If you never intend to run background jobs,
your system manager can move the entry ($SMBJOBQ) after the end statement in
the data set $SMALLOC.

1 Using the assemblers and compilers noted may require that you delete and reallocate
these data sets to a larger size. Recommended sizes are 2000 for both $SM 1 and $SM2,
and 800 for $SM3. During system generation, you may have to increase the size of
$SM 1 user to 800 records.

Chapter 3. Customizing the Session Manager 3-27

Customizing the Session Manager

Allocating Data Sets

3-28 SC34-0942

In addition to allocating data sets $SMI through $SM3, you can allocate data sets
$SM 4 through $SM7. The default size of these data sets is 100 records.

The following is an example of how $SMALLOC looks:

Figure 3-21. $SMALLOC Data Set

If you want $SM4 allocated, move the END statement (in column 1) to follow
$SM4. The END statement indicates the end of the list of data sets to be allocated.
If you add data sets to the list in $SMALLOC, you should also add names of the
data sets to $SMDELET. If you change the volume name of a work data set in the
$SMALLOC and $SMDELET data sets, then you have to change all the session
manager procedures that use that work data set. After you complete your
modifications, you must save the updated $SMALLOC data set.

The only required data sets are $SMP and $SMW. You must allocate these data
sets on volume EDX003.

o

c

o

o

o

Customizing the Session Manager

Deleting Data Sets
Before you end the session manager, the session manager prompts you for the
disposition of the data sets. The data sets you allocated at the start of the session
are usually deleted before you end the session manager. Enter a Y to save the data
sets or an N to delete the data sets.

Note: Abnormal termination of the session manager prevents the deletion of the
temporary data sets.

If you add data set names in $SMALLOC, you must also update $SMDELET with
those data set names. Update $SMDELET in a similar manner to $SMALLOC.
The END statement (in column 1) indicates the last data set to be deleted. After
you complete your modifications, you must save the updated $SMDELET data set.

Figure 3-22 lists the contents of $SMDELET.

$SME EDX063 PREFIXNAME ... AND ... VOLUME TO DELETE
$SMI EDX6e3 PREFIXN~MEAND. VOLUME .TODELETE
$SM2 EDX003 PREFIX NAME AND . VOLUME TO DELETE
$SM3 EDXe03 PRE.FIXNAM.~ANDVOL~METO<DELETE
$SMWED)(003... . pREFIXNAMEdANQVOLUME TO .DELEJE
END :'<**TtRMINATOR- . INDICATES END qFPATA SETS TO BE <DELETED ***
$SM4 .EDX003 PREFIXNAMEA~DVOLUMETO··.· •. ·.DELETE
$SM~EDX~03P~EFIX~AME:ANDVOLUMETO.· DELETE,
$§M.~EO)(~~3 ~~~FIX·~AME+NPVOLUME···.IO.· •• OELETE
$SM'7 EOX003 PREFIXNAMEANOVOLUME.TO ··.·DELETE

** ... ·$SM6NO:WQ~K.OATASETPARAMETERVALUES .•• FOR DELETE .' FUNCTION ** .
** COPYRIGHT .==:R6FERTO.MOOULE$$COPYRT **

¥*************1f**.*******'It******:********:**,*******:**:'It******

Figure 3-22. $SMDELET Data Set

Chapter 3. Customizing the Session Manager 3-29

o

C)

o
3-30 SC34-0942

o

c

o

Adding Your Own Task Error Exit Routine

Chapter 4. Adding Your Own Task Error Exit Routine

When a program is executing, an exception condition may occur either in the
program itself or in the Series/l processor. If an exception occurs, the supervisor
calls the error handling routine, displays diagnostic information in the form of a
program check message on $SYSLOG, and cancels the program. You can provide
your own exception handling routine by writing a task error exit routine.

When you provide a task error exit routine in your program, the supervisor passes
control to your EDL routine when an exception occurs. Then your routine can
capture and format status information specific to your program.

Some of the processing your task error exit routine could perform is:

• Releasing any enqueued resources such as event control blocks (ECBs) or queue
control blocks (QCBs).

• Displaying, on all terminals currently being used by the program, a message that
would inform the operator(s) of a malfunction and the appropriate action to
take.

• Printing the data set control blocks (DSCBs) from the program header and the
program.

• Printing the input/output control blocks (IOCBs), terminal control blocks
(CCBs), and task control blocks (TCBs) in your application.

• Printing any sensor-based I/O control blocks (SBIOCBs) or any other data
special to your application.

• Reloading your program or loading another program.

You can:

• Extend the system-supplied task error exit routine ($$EDXIT).

• Provide your own routine independent of $$EDXIT.

You specify the EDL entry point name of the task error exit routine on the
ERRXIT = operand of the PROGRAM or TASK statement.

The following sections describe how to extend the system-supplied task error exit
routine or create your own task error exit routine.

Chapter 4. Adding Your Own Task Error Exit Routine 4-1

Adding Your Own Task Error Exit Routine

Extending the System-Supplied Task Error Exit Routine

4-2 SC34-0942

The system-supplied task error exit routine ($$EDXIT) prints and displays general
information regarding an exception check. Figure 4-1 shows an example of the
output. The Problem Determination Guide discusses this exception output in detail.

**
* WARNING!! AN EXCEPTION HAS OCCURRED!! *
**

PROGRAM NAME
PROGRAM VOLUME
PROGRAM LOAD POINT
ADDRESS OF ACTIVE TCB
ADDRESS OF CCB
NUMBER OF DATA SETS
NUMBER OF OVERLAYS
$TCBADS
ADDRESS OF FAILURE

(REL.TO PGM LOAD POINT)
DUMP OF FAIL ADDRESS

= PCHECK
= EDXWRK

0000
0120
0F5E

1
o

0001

010A

010A: 015C 0000 0034 8332
$TCBCO = -1 DEC; FFFF HEX
$TCBC02 = 0 DEC; 0000 HEX

PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

Figure 4-1. Sample Output from $$EDXIT

PSW = 8002
IAR = 2AD6
AKR = 0110
LSR = 8000
R0 (WORK REGISTER) . = 0064
Rl (EDL INSTR ADDR) = 010A
R2 (EDL TCB ADDR) = 0120
R3 (EDL OPI ADDR) = 0037
R4 (EDL OP2 ADDR) = 0034
R5 (EDL COMMAND) = 015C
R6 (WORK REGISTER) = 0000
R7 (WORK REGISTER) = 0000
#1 = 0037
#2 = 0000

o

o

o

C~)
/

o

Adding Your Own Task Error Exit Routine

How to Code the Task Error Exit Extension
$$EDXIT contains a WXTRN statement for a routine called PCHKRTN. If
PCHKRTN exists, $$EDXIT passes control to PCHKRTN after printing the
exception check data on $SYSPRTR. Use PCHKRTN as the extension to
$$EDXIT.

To provide your routine as an extension to $$EDXIT, you must:

• Specify MAIN = NO on the PROGRAM statement of your routine.

• Code an ENTRY statement specifying PCHKRTN.

• Specify PCHKRTN as the label of your routine. The executable code you
provide begins at this label.

• Specify a PROGSTOP statement following the executable code.

• Specify the END statement as the last statement of your routine.

F or example:

ERRRTN PROGRAM
ENTRY

PCHKRTN EQU
•

MAIN=NO
PCHKRTN
*

• (source code for your routine)
•
PROGSTOP
END

Link Editing the Task Error Exit Extension
After you assemble your routine, link edit the assembled output with your main
program and $$EDXIT. The system includes $$EDXIT in the link edit when you
specify an AUTOCALL statement referencing $AUTO,ASMLIB. The following is
an example of the link control statements you pass to $EDXLINK.

INCLUDE
AUTOCALL
INCLUDE
LINK

MAINOBJ,MYVOL
$AUTO,ASMLIB
PCHKOBJ,MYVOL
MAINPGM,MYVOL REPLACE END

(includes main pgm)
(includes $$EDXIT)
(includes your routine)

Chapter 4. Adding Your Own Task Error Exit Routine 4-3

Adding Your Own Task Error Exit Routine

Creating Your Own Task Error Exit Routine
This section explains how you can create your task error exit routine. A sample
program is also shown to assist you in coding the routine.

Defining the Task Error Exit Control Block

4-4 SC34-0942

When you create your own task error exit routine, you must define an area of
storage called a task error exit control block (TEECB). The TEECB provides the
linkage between the supervisor and your routine. The supervisor stores hardware
status information in the TEECB when an exception occurs. You must define the
TEECB area even if your routine does not use the status information.

You must align the TEECB on a fullword boundary. The TEECB has the following
format:

TEECB
TEECTL
TEESIA
TEEHSA

ALIGN
EQU
DC
DC
DC

WORD
*
X'0002 1

A(EXITRTN)
A(HSA)

ALIGN ON FULLWORD BOUNDARY
I

CONTROL WORD
ADDRESS OF STARTING INSTRUCTION
ADDRESS OF HARDWARE STATUS AREA

Figure 4-2. Format of the Task Error Exit Control Block (TEECB)

In the first word (TEECTL), bits 0 -7 are reserved and must be zero. Bits 8 -15
specify the number of data words that follow. Always code X I 0002 I as the value of
this word.

The second word (TEESIA) contains the starting instruction address (SIA) of your
task error exit routine.

The last word (TEEHSA) contains the address of a storage area you reserve to
receive the hardware status information. This storage area, called the hardware
status area (HSA), is 24 bytes in length.

You must align the HSA on a fullword boundary. The HSA has the following
format:

HSA
HSAPSW
HSALSB
HSAIAR
HSAAKR
HSALSR
HSAREGS

ALIGN
EQU
DC
EQU
DC
DC
DC
DC

WORD
*
F'O'
*
F'O'
F'O'
F'O'

BF'O'

ALIGN ON FULLWORD BOUNDARY

PROGRAM STATUS WORD
11 WORD LEVEL STATUS BLOCK
INSTRUCTION ADDRESS REGISTER
ADDRESS KEY REGISTER
LEVEL STATUS REGISTER
GENERAL REGISTERS 0-7

Figure 4-3. Format of the Hardware Status Area (HSA)

o

o

o

0

o

Adding Your Own Task Error Exit Routine

The contents of the various HSA locations (for example PSW and AKR) contain,
upon entry to your routine, the values that were in the corresponding hardware
registers at the time of the exception. Also, general register 1 contains the starting
instruction address (SIA) of your routine. General register 2 contains the address of
your task's TCB. Your routine can examine this status information to determine
whether to continue or end execution. The Problem Determination Guide can assist
you in interpreting the information returned from an exception.

Since entry to your routine is made at the Event Driven Language level, the contents
of the remaining general registers are dependent upon what instructions your
program executed when the exception occurred.

Sample Task Error Exit Routine
An example of a task error exit routine follows. The sample program examines the
processor status word (PSW) for the type of exception and displays the contents of
some selected fields upon the loading terminal.

PRINT OFF
COPY PROGEQU
PRINT ON
ENTRY TSKEXIT

ERRXT PROGRAM MAIN=NO
TSKEXIT EQU *

ALIGN WORD
TEECB EQU * TASK ERROR EXIT CONTROL BLOCK
TEECTL DC X' 0002 1 NUMBER OF DATA WORDS IN TEECB
TEESIA DC A(EXITRTN) ADDRESS OF ERROR EXIT ROUTINE
TEEHSA DC A(HSA) ADDRESS OF HARDWARE STATUS AREA

ALIGN WORD
HSA EQU * HARDWARE STATUS AREA
HSAPSW DC F'01 PROGRAM STATUS WORD
HSALSB EQU * 11 WORD LEVEL STATUS BLOCK
HSAIAR DC F'01 INSTRUCTION ADDRESS REGISTER
HSAAKR DC F'01 ADDRESS KEY REGISTER
HSALSR DC F'01 LEVEL STATUS REGISTER
HSAREGS DC BF ' 01 GENERAL REGISTERS 0-7
PCHKPLP DATA F'01 PGM LOAD POINT
FAILADDR DATA F'01 FAI LING ADDR
ADDRTBL EQU *

DC A(BIT0)
DC A(BITl)
DC A(BIT2)
DC A(BIT3)
DC A(BIT4)
DC A(BIT5)
DC A(BIT6)
DC A(BIT7)

Figure 4-4 (Part 1 of 2). Sample Task Error Exit Routine

Chapter 4. Adding Your Own Task Error Exit Routine 4-5

Adding Your Own Task Error Exit Routine

4-6 SC34-0942

PSWTBL
BIT0
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
BIT8
BIT9
BIT10
BIT11
BIT12
BIT13
BIT14
BIT15
BITCNT
PSWORK
MSGREC
EXITRTN

DC
DC
DC
DC
DC
DC
DC
DC
EQU
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
DATA
DATA
TEXT

A(BIT8)
A(BIT9)
A(BITI0)
A(BITll)
A(BITI2)
A(BITI3)
A(BITI4)
A(BITI5)
*
'SPECIFICATION CHECK'
'INVALID STORAGE ADDRESS'
'PRIVILEGE VIOLATE'
'PROTECT CHECK'
'INVALID fUNCTION'
'FLOATING POINT EXCEPTION'
'STACK EXCEPTION'
'EXTENDED ARCHITECTURE'
'STORAGE PARITY CHECK'
'BIT 9 NOT USED'
'CPU CONTROL CHECK'
'I/O CHECK'
'SEQUENCE INDICATOR'
'AUTO IPL'
'TRANSLATOR ENABLED'
'POWER/THERMAL WARNING'
F'0"
F'0'
LENGTH=80
* EQU

TCBGET
SUBTRACT
MOVE
PRINTEXT
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
MOVE
MOVEA

PCHKPLP,$TCBPLP GET PGM LOAD PT
HSAREGS+2,PCHKPLP,RESULT=FAILADDR FAIL ADDR
#1,PCHKPLP

DO
IF

SHIFTL
ENDIF

'@PROGRAM NAME = '
($PRGNAM ,#1)
'@PSW = '
HSA,MODE=HEX
'@IAR = '
HSA+2,MODE=HEX

'@PSW ANALYSIS: @'
PSWORK,HSAPSW
#l,ADDRTBL
16,TIMES,INDEX=BITCNT
(BITCNT ,GT , 1)
HSAPSW,l

IF (HSAPSW,LT,0)
MOVE PSWMSG,(0,#I)
PRINTEXT MSGREC,P1=PSWMSG,SKIP=1

ENDIF
ADD

ENDDO
PROGSTOP
END

#1,2

PRINT PGM NAME

PRINT HSA VALUE

PRINT INST ADDR REG

MOVE MSG LIST ADDR

POINT TO ERR MSG

INCREMENT INDEX

Figure 4-4 (Part 2 of 2), Sample Task Error Exit Routine

o

o

o

o

0"'
, ,

Adding Your Own Task Error Exit Routine

You must compile the task error exit routine and link edit the assembled output with
the main task. Specify the entry point name of the routine on the ERRXIT =
operand of the main task.

An example of the main task that specifies the previous routine follows:

MAINPGM PROGRAM
EXTRN

START EQU
•
•
•
PROGSTOP
ENDPROG
END

START,ERRXIT=TSKEXIT
TSKEXIT
*

Considerations on the Use of Task Error Exit Routines
You should understand the following items when you use a task error exit routine:

• A task error exit routine is a part of the task it serves. The supervisor passes
control to it at the task level; it is not a· subroutine of the supervisor's error
handler.

• If your main program attaches multiple tasks, you should specify the ERRXIT =
operand on each TASK statement.

• The registers (including the EDL software registers #1 and #2) used by the error
exit routine are those normally used by the task.

• To resume task execution after the task error exit routine, you must issue a
branch instruction (for Series!! assembler) or a GOTO instruction (for EDL) to
the appropriate location.

• If the task error exit routine is unable to recover from the exception, it should
issue a PROGSTOP instruction.

Chapter 4. Adding Your Own Task Error Exit Routine 4-7

Adding Your Own Task Error Exit Routine

What Happens When an Exception Occurs?

4-8 SC34-0942

If an exception (machine check, program check, or soft exception trap) occurs during
the execution of your task and you have specified a task error exit, the supervisor
locates your TEECB. It then uses the TEEHSA pointer to locate your HSA and
stores the hardware status information in it. Next, the supervisor retrieves the
TEESIA pointer and sets it to zero to prevent recursive exceptions. Finally, the
supervisor starts your task at the address it retrieved if that address is nonzero. If
the TEESIA is zero or an exception occurs during any of this processing (if, for
example, the TEECB is invalid), the supervisor treats the error as if you did not
specify a task error exit routine. Note that even if the TEESIA is zero, the
supervisor still attempts to store the hardware status.

Since the supervisor sets the TEESIA to zero prior to starting your task, your task
error exit routine only gets control on the first exception that occurs, unless your
routine restores TEESIA to its original condition. Setting TEESIA to zero allows
the supervisor to handle exceptions that occur in task error exit routines, preventing
recursion in the error handling process. When you write a task errorexit routine, do
not restore TEESIA until the error exit routine has completed.

o

o

o

o

o

Running Programs and Initialization Routines at IPL

Chapter 5. Running Programs and Initialization Routines at
IPL

You can design your system so that your programs and initialization routines are
run as part of the IPL process. You can do this by:

• Naming your program $INITIAL

• Creating a program named $PROGI linked with the supervisor

• Coding the INITMOD operand on the SYSPARMS statement.

Using $INITIAL to run programs at IPL is the simplest method. You can load
$INITIAL by using the INITPRT operand of the SYSPARMS statement.
Programs loaded through this method do not require link editing with the
supervisor. As a result, the programs loaded can reside on disk.

When you use $PROG 1 or specify initialization routines on the INITMOD operand,
you must link edit these routines to the supervisor during system generation.

The programs or routines that run could perform various functions. For example,
using $INITIAL, you could have the session manager loaded in a particular
partition and printer spooling in another.

Assume your Series/1 has no disk/diskette but communicates with a host over a BSC
line. The host could IPL the Series/1 by transmitting the supervisor (with $PROGI).
$PROG 1 would run after IPL.

If you always run a program that sets up an area of storage to some value, you
could specify this program as an initialization routine. You do this by coding the
INITMOD operand on the SYSPARMS statement.

This chapter describes how you can supply programs and routines to be run at IPL
using either of these methods.

How to Specify $INITIAL Programs
To have your programs loaded at IPL, you must name a program $INITIAL. Two
ways you can assign the name $INITIAL to a program are as follows:

• Using $DISKUTI to rename (RE command) an existing program.

• Specifying the name $INITIAL as your program name when you prepare the
program using $UPDATE or $EDXLINK.

The $INITIAL program must reside on the IPL volume.

Your $INITIAL program can issue LOAD instructions to other programs. You
have complete control of the function performed by this program.

After all system and user-written initialization routines execute, the supervisor issues
a LOAD instruction for $INITIAL.

Chapter 5. Running Programs and Initialization Routines at IPL 5-1

Running Programs and Initialization Routines at IPL

Things You Should Know About $INITIAL
Effectively, you can use any program as a $INITIAL program. However, consider 0, .. "i

the following when you create a $INITIAL program: ___ _

• You cannot use the "??" option to specify data sets (DS =) or overlays
(PGMS =) on the PROGRAM statement.

• No "program load" message is displayed when $INITIAL is loaded.

• Any errors that occur when $INITIAL is loaded are not displayed; you should
check all return codes.

• If you want to prevent the supervisor from loading $INITIAL, rename the
program using $DISKUTI.

• You can use the INITPRT operand of the SYSPARMS statement to specify the
partition into which $INITIAL is loaded.

• You can code the PARM = operand on the PROGRAM statement to receive a
parameter at load time. The system passes a I-word parameter that indicates
the type of IPL - manual or auto.

Sample $INITIAL Programs
The following examples show some of the functions you could use for $INITIAL.

Loading Programs in Three Partitions

5-2 SC34-0942

The following sample program loads three programs. The session manager is loaded
in partition 1, printer spooling in partition 2, and Indexed Access Method in
partition 3. The return code is checked for load errors.

INIT PROGRAM LOADPGM
LOADPGM EQU *
L1 LOAD $SMMAIN,PART=l,ERROR=NOSMGR
L2 LOAD $SPOOL,PART=2,ERROR=NOSPL
L3 LOAD $IAM,PART=3,ERROR=NOIAM

GOTO ALLDONE
NOSMGR MOVE RCODE,INIT

PRINTEXT I@LOAD ERROR FOR $SMMAIN, RC= I
PRINTNUM RCODE
GOTO L2 NEXT LOAD

NOSPL MOVE RCODE,INIT
PRINTEXT I@LOAD ERROR FOR $SPOOL, RC= I
PRINTNUM RCODE
GOTO L3 NEXT LOAD

NOIAM MOVE RCODE,INIT
PRINTEXT I@LOAD ERROR FOR $IAM, RC= I
PRINTNUM RCODE

ALLDONE PROGSTOP
RCODE DATA FIOI

ENDPROG
END

0

o

o

o

Running Programs and Initialization Routines at IPL

Determining the Type of IPL
The following sample code shows how you can determine the type of IPL based on
the IPL Mode switch setting. The system passes the parameter upon IPL. Your
$INITIAL program could decide what routine to use based on the parameter value.
A zero indicates manual IPL; a one indicates auto IPL. You must code the P ARM
operand on the PROGRAM statement to receive this parameter. Your program
must refer to this parameter as $P ARM 1.

If, for example, your system had an external battery-operated clock (connected
through a digital input feature) or kept the date and time on a disk data set, the
program could read the time and date upon an auto IPL. $INITIAL could then
load the time and date into the system time and date table ($TIMRTBL).

The following example shows how you could read the time and date from disk. The
time is set to 13:24:05 and the date to December 25, 1987.

INIT

START

MANIPL

PROGRAM
COPY
EQU
IF
PRINTEXT
•

START,PARM=I,DS=((TIMDAT,MYVOL))
PROGEQU RESOLVE $TIMRTBL REFERENCE
*
($PARMI,EQ,I),GOTO,AUTOIPL
'@MANUAL IPL DONE ... I

• (routine for manual IPL)
•
GO TO

AUTOIPL EQU
PRINTEXT
READ
•
•
•

EXIT
*
'@AUTO IPL DONE ... I

DSI,TIMRDATA READ TIME/DATE FROM DISK

MOVE #1,$TIMRTBL,FKEY=0
MOVE (8,#I),TIMRDATA,6,TKEY=0 LOAD TIME/DATE
•
•
•

EXIT PROGSTOP
TIMRDATA DC

Notes:

DC
DC
DC
DC
DC
ENDPROG
END

X'000D '
X'0018 1

X'0005 1

X' 000C '
X'0019 1

X' 0057 1

HOUR
MINUTE
SECOND
MONTH
DAY
YEAR

1. Under $EDXASM, you must include a COPY PROGEQU statement to resolve
the reference to $TIMR TBL.

2. TIMRDAT A is a 6-word table containing the time and date in hexadecimal.

Chapter 5. Running Programs and Initialization Routines at IPL 5-3

Running Programs and Initialization Routines at IPL

How to Use $PROG1 at IPL
You can have an application program run at IPL by link editing it with the
supervisor. Doing this makes your program always resident in storage. Using
$PROG 1 couid be usefui if your system does not have a disk or diskette device from
which to load programs.

After all system and user-written initialization routines execute, the supervisor issues
an ATTACH for a $PROG I.

To use $PROGI, you must code the program as follows. The program must contain
a CSECT statement with a label name of $PROG I.

$PROG1 CSECT
•
• (source code)
•
PROGSTOP
ENDPROG
END

link Editing $PROG1 with the Supervisor

5-4 SC34-0942

After you assemble your program, you must link edit the assembled output with the
supervisor. If you performed a tailored system generation, edit the data set that
defines the supervisor modules currently in your supervisor (normally LINKCNTL
on EDX002). Otherwise, you edit $LNKCNTL. An INCLUDE statement for
$PROG 1 on volume XS6005 exists in the link-control data set. You must blank out
the asterisk preceding the INCLUDE statement and indicate on which volume your
$PROG 1 resides.

An example of the link-control data set with an INCLUDE statement for $PROGI
(on volume USRVOL) follows:

•
•
•

* SYSTEM INITIALIZATION - MUST BE IN PARTITION 1 *

INCLUDE $PROG1,USRVOL *22*
*INCLUDE 101024 *21*

•
•
•

USER MODULE INCLUDED IN NUCLEUS GEN
1024 IPL SUPPORT

o

o

o

o

o

Running Programs and Initialization Routines at IPL

After changing the INCLUDE statement, save the edited data set in LINKCNTL on
EDX002. Next, you load $JOBUTIL and specify SUPPREPS when prompted for a
data set. SUPPREPS will generate a new supervisor containing your $PROG 1
program.

After you receive a-I completion code, load $INITDSK and issue the II command
to point to the new supervisor. IPL the new supervisor.

What Happens When $PROG1 Executes?
When the supervisor attaches $PROG 1, all of the storage in partition 1 is assigned
to $PROG 1. If you issue the $A operator command, the system will show $PROG 1
in storage. Because all of partition 1 is assigned to $PROG 1, you cannot load any
other programs until $PROG 1 issues a PROGSTOP.

How to Specify Initialization Routines
You can supply initialization routines that are run as part of the IPL. These
routines are called after the system initialization routines execute. This section
describes how you can do this.

Designing and Coding the Routine

Routine using EDL

The routine you supply can be written in EDL or Series/l assembler. However, the
first instruction of the routine must be an EDL instruction. You must also consider
the following:

• The routine must be written to receive and return control in EDL.

• You must use the USER instruction to switch from EDL to assembler.

• You must preserve the contents of register 2.

• You must preserve the task control block (TCB) pointer.

• LOAD and PROGSTOP instructions are not allowed.

• Upon exit, the routine must return control to the label INITEXIT. INITEXIT
is an entry point in the supervisor.

The following coding examples show how you should code your routine. The first
example uses EDL only; the second uses EDL and Series/l assembler.

INITRTN PROGRAM MAIN=NO
EXTRN INITEXIT
ENTRY INIT

INIT EQU *
•
• (EDL code)
•
GOTO INITEXIT

Chapter 5. Running Programs and Initialization Routines at IPL 5-5

Running Programs and Initialization Routines at IPL

Routine using EDL and Series/1 Assembler

I INITRTN CSECT
EXTRN INITEXIT
USER INIT

INIT EQU *
•
• (assembler code)
•
MVA INITEXIT, Rl
BX CMDSETUP BACK TO EDL

Link Editing the Routine with the Supervisor

5-6 SC34-0942

After you assemble your routine, you must link edit the assembled output with the
supervisor. If you performed a tailored system generation, edit the data set that
defines the supervisor modules currently in your supervisor (normally LINKCNTL
on EDX002). Otherwise, you edit $LNKCNTL. Insert an INCLUDE statement
specifying the name of the assembled output in the area designated for user
initialization modules. For example, if your assembled output module is named
INITOBJ on volume MYVOL, the INCLUDE statement would be as follows:

•
•
•

**
* INSERT USER INITIALIZATION MODULES HERE *
**

INCLUDE INITOB~,MYVOL YOUR NEW INIT ROUTINE
•
•
•

After inserting the new INCLUDE statement, save the edited data set in
LINKCNTL on EDX002. Optionally, you can include the initialization routine as
an overlay to save storage. The Installation and System Generation Guide describes
how to specify and use the overlay feature. If you do not use the overlay feature, go
to the section "Specifying the Routine on the SYSPARMS Statement" on page 5-7.

o

o

o

o

Running Programs and Initialization Routines at IPL

Specifying the Routine on the SYSPARMS Statement
You must edit the data set which defines your system to specify the routine. This
data set is normally $EDXDEFS on volume EDX002. Code the INITMOD
operand on the SYSPARMS statement to specify the entry point name of your
routine. You can specify one or more routines. If you do, specify each entry-point
name separated by a comma and enclose the name list in parentheses. The routines
are executed in the order you specify.

An example of the SYSPARMS statement with the INITMOD operand coded
follows. Two initialization routines are specified.

•
•
•

SYSPARMS INITMOD=(INIT,RTNA)
•
•
•

After you edit and save $EDXDEFS, load $JOBUTIL and specify SUPPREPS when
prompted for a data set. SUPPREPS will generate a new supervisor containing your
initialization routine.

Upon receiving a -1 completion code, load $INITDSK and issue the II command
to point to the new supervisor. IPL the new supervisor.

Chapter 5. Running Programs and Initialization Routines at IPL 5-7

o

o
5-8 SC34-0942

o

o

o

Adding Your Own Device SU}Jport

Chapter 6. Adding Your Own Device Support

If you have a need to use a device or device feature not supported under EDX, you
can provide support for that device or feature through the use of EXIO. The
system's EXIO support enables you to control, from your programs, any device that
meets the hardware channel architecture (such as plug compatibility and device
control blocks) of the Series/I. These devices can be IBM or original equipment
manufacturer (OEM) devices.

This chapter describes how you can provide your own device support using EXIO.
In addition, a sample program using EXIO is shown. The sample program
illustrates an approach you could use to support a device attached to the 2095/2096
Feature Programmable Multiline Controller/Adapter using expanded mode (with
continuous receive) and one stop bit.

How You Can Use EXIO
The system's EXIO support enables you to perform I/O-level programming for a
device attached to the Series/I. Furthermore, with EXIO, you can do the following:

• Gain closer control of an EDX-supported device. With EXIO, you control
every aspect of the device's operation. For example, you can provide a more
extensive error-handling and error-recovery procedure than EDX provides for
that device.

• Issue I/O from a program in any partition.

• Provide support for a device without adding any new supervisor code. The
device support resides in your program.

• Write the support as reentrant code or as subroutines you link to each program
using the device(s). (Refer to the Event Driven Executive Language Programming
Guide for a reentrant coding example.)

• Provide I/O level programming in EDL without using Series/l assembler.
However, some device operations may require the speed of execution that
Series/l assembler provides. You can mix the two languages and assemble with
$SlASM.

The next section discusses several considerations you need to think about before you
implement the device support. The topics presented can assist you when you
actually start writing the device support code.

Planning for Your Device Support
Because you must control every operation the device performs when you use EXIO,
you must be familiar with the device you intend to support. The IBM Series/1
Principles of Operation, GA34-0152 presents a general overview of the Series/I I/O
archi tecture.

The following topics describe some of the device requirements with which you should
be familiar.

Chapter 6. Adding Your Own Device Support 6-1

Adding Your Own Device Support

Do You Understand the Hardware Control Block Functions?
To properly control the device, you must understand the function of the hardware
control blocks. In particular, you must understand the immediate device control
block (lDCB) and the optional device control block (DCB). These control blocks
contain the I/O operation code and other information the attacp 1TI.ent needs to issue
I/O to the device.

The hardware description manual for the device or attachment you support normally
contains information on these control blocks and how you use them.

What Types of Device Interrupts Should You Plan For?
If the device produces interrupts, your device support must supply all required
information needed to service the interrupts. In addition, your device support must
prepare the device for interrupts as well as disable interrupts when the task ends.

You would typically have separate tasks in your program to handle device interrupts
and post events.

Normally, you obtain information on device interrupts from the hardware device
description manual.

Does the Device Have Any Special Timing Considerations?
You must determine if your device has any unique timing requirements. For
example, the amount of time in which an interrupt must be serviced or a data
transfer completed. If timing is critical for the device, you may have to establish
task priorities. You may also have to consider performance differences using EXIO
versus Series/1 assembler code.

Do You Have to Detect and Handle Errors?
The attachment reports status at the start of and after the completion of an I/O
operation. This information is returned as status words and condition codes. You
must design your device support to detect and handle any errors it encounters.

All possible error conditions should be described in the hardware device description
manual.

The device description manual describes the possible errors you could encounter and
how they are reported.

How Many Devices Will You Support?

6-2 SC34-0942

The number of d~vices you support may determine how you design the support.
Normally, if you only support one device from one program, the EXIO code and
much of the data and device control information can reside in that program.

When you support multiple devices, you must provide a copy of the data and device
control information for each device.

o

C)

o

o

o

0",', ,.

Adding Your Own Device Support

How Many Applications Will Use the Device?
If multiple applications will request the use of the support at the same time, you
must serialize the support I s use. You provide serial use through the ENQ/DEQ
instructions. Further, if these applications reside in different partitions, you must
use the system I s cross-partition services to move data -and device control information
across the partitions.

Do You Have to Initialize the Device?
Some attachments and/or devices require special initialization or a random access
memory load prior to their use. EDX does not initialize devices you define as an
EXIO device. Device initialization is your responsibility.

You must also know the engineering change (EC) level of your device. Different
device EC levels may require that you select from various random access memory
load modules at initialization. The EC level and initialization code must match for
the device.

Defining the Device at System Generation
You use the EXIODEV statement to define your device at system generation. The
device you define must not be defined in the system by any other configuration
statement.

If your device support performs cycle steal operations or requires chained DCBs to
complete an operation, you must specify the MAXDCB = operand. In addition,
cycle steal operations return residual status information. You must specify the
RSB = operand to indicate the number of residual status bytes returned from the
operation.

The supervisor must also contain EXIO support modules. You must specify
INCLUDE statements for the modules IOSEXIO and EXIOINIT in your link
control data set.

The EXIODEV statement is discussed in the Installation and System Generation
Guide.

Chapter 6. Adding Your Own Device Support 6-3

Adding Your Own Device Support

Writing the EXIO Code
This section explains a sample program that uses EXIO to control a device. The
3101 Model 1 terminal (character mode) is the device used and is connected to the
2095/2096 Feature Programmable multiline attachment. The program provides
support for expanded mode (with continuous receive) and one stop bit during data
transmission.

Controlling a device with continuous receive enables a receive channel for the device
to be open at all times. You would use this feature under EXIO when a device
requires input at a speed at which EDL terminal I/O instructions cannot provide.

The sample program, when loaded, prompts for input, loops to receive ten lines of
input, and prints the input on the printer.

The instructions and statements the program uses to perform I/O operations to the
device are: EXIO, EXOPEN, IDCB, and DCB. Refer to the Language Reference
for the coding syntax and description of these instructions and statements.

The EXIODEV statement for this device follows:

EXIODEV ADDRESS=60,MAXDCB=1,RSB=6,END=YES

As with any support you provide using EXIO, you must understand the
characteristics of the device or attachment. The IBM Series/l Communications
Features Description, GA34-0028 can assist you in understanding the I/O operations
to the attachment used in the sample program.

Preparing the Device for Interrupts

6-4 SC34-0942

Before the program issues any I/O operations to the device, it must initiate all
interrupt handling tasks, open the device, and prepare the device for interrupts.

The interrupt handling tasks are separate tasks which the (main) program attaches.
Each task waits for the hardware to post an ECB indicating an interrupt has
occurred. When the hardware posts the ECB, the task does some processing and
posts an ECB in the main program to indicate the interrupt has been serviced. After
the task posts the main program, the interrupt handling task waits again for the next
interrupt.

o

o

o

o

o

Adding Your Own Device Support

The tasks in this program service the following types of interrupts:

• Device end interrupts
• Controller end interrupts
• Exception interrupts ..

The descriptions and code for the interrupt handling tasks are explained in the
sections below.

Device End Interrupt Task
This program uses the task DEVINT to wait on and service device end interrupts. A
device end interrupt indicates that the device was able to successfully complete the
program I sIlO request.

This task waits for the hardware to post the event control block DEVEND. The
main program waits for this task to post DONEECB.

The code that handles device end interrupts follows:

DEVINT TASK
DEVSTART WAIT

RESET
POST
GOTO
ENDTASK

Controller End Interrupt Task

DEVSTART
DEVEND
DEVEND
DONEECB,-l
DEVSTART

WAIT FOR DEVICE END INTERRUPT

This program uses the task ENDINT to wait on and service controller end
interrupts. A controller end interrupt indicates that the attachment can now accept
an I/O request (no longer busy).

This task waits for the hardware to post the event control block CENDECB. The
main program waits for this task to post CTLREND.

The code that handles controller end interrupts follows:

ENDINT TASK
CTLSTART WAIT

RESET
POST
RESET
GOTO
ENDTASK

CTLSTART
CENDECB
CENDECB
CTLREND,-l
CTLREND
CTLSTART

WAIT FOR CONTROLLER END INTERRUPT

Chapter 6. Adding Your Own Device Support 6-5

Adding Your Own Device Support

Exception Interrupt Task

6-6 SC34-0942

This program uses the task EXCINT to wait on and service exception interrupts.
An exception interrupt indicates that the device was unable to perform the I/O
request successfully.

When an exception occurs, this task examines the hardware status information and
prints the information on the printer.

This task also examines word 1, bit 15 of the cycle steal status. When bit 15 is on, a
buffer overrun condition exists. This task signals a buffer overrun condition by
posting DONEECB with a value of 2. The main program must then issue a "read
adapter buffer" operation.

The code that handles exception interrupts follows:

EXCSTART EXCINT TASK
EXCSTART WAIT

RESET
IF

POST

EXCEPT
EXCEPT

WAIT FOR EXCEPTION INTERRUP

ELSE

(INTWORD,EQ,X 'A0 1 ,BYTE),THEN
DONEECB,-l

IF (INTWORD,EQ,X ' 20 1 ,BYTE),THEN
PRINTEXT '@LONG RECORD@'

ELSE

SHORT RECORD
POST GOOD RETURN

LONG RECORD

IF (INTWORD,EQ,X 'S0 1 ,BYTE),AND,((SCSSDATA+2),EQ,
X' 40 1 ,BYTE),THEN
PRINTEXT '@TIME-OUT@'

ELSE

TIME-OUT

PRINTEXT '@OTHER EXCEPTION INTERRUPT, I
ENDIF

ENDIF
ENQT

PRINTEXT .
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
MOVE
SHI FTL
IF

$SYSPRTR
ICSS = I
SCSSDATA,3,MODE=HEX
'@INTWORD,LSR,ECB ADDR
INTWORD,3,MODE=HEX
SKIP=l

WD1,SCSSDATA+2
WD1,15
(WD1,EQ,X 'S000 1

)

CYCLE STEAL STATUS

ISOLATE BIT 15
BIT 15 = 1 ?

C

POST
GOTO

ENDIF
POST

ENDIF

DONEECB,2
EXCSTART

INDICATE READ ADAPTER BUFFEF

GO TO
ENDTASK

DONEECB,l

EXCSTART

POST ERROR RETURN

o

()

o

o

0 "',
,,;

o

Adding Your Own Device Support

After the program attaches the interrupt handling tasks, the program opens and
prepares the device. The code that performs these functions follows:

EXSTART
*
DEVINT DEVICE END INTERRUPT HANDLING TASK
EXCINT EXCEPTION INTERRUPT HANDLING TASK

EXIOREC PROGRAM
EXSTART EQU

ATTACH
ATTACH
ATTACH
EXOPEN
EXIO
PRINTEXT

ENDINT CONTROLLER END INTERRUPT HANDLING TASK
60,INTWORK,ERROR=OPENERR OPEN BASE LINE
PREIDCB,ERROR=PREPERR ENABLE INTERRUPT
'@DEVICE OPEN AND PREPARED@'

•
•

CALL SETMODE

Next the program must establish the mode of transmission. The next section
explains how this is done.

Establishing the Transmission Mode
The program calls a subroutine (SETMODE) to establish the transmission mode.
SETMODE establishes the transmission mode as being expanded mode (with
continuous receive) using one stop bit.

The code for the SETMODE subroutine follows:

SUBROUT
EXIO

SETMODE
RESET DEVICE RESET

**

*
*

ISSUE SET MODE DCB TO CHANGE
NUMBER OF STOP BITS TO ONE

*
*

**
RESET
EXIO
WAIT

DONEECB
SETIDCB,ERROR=SETERR
DONEECB

**

*
*

ISSUE SET EXPANDED MODE DCB
TO SET CONTINUOUS RECEIVE

*
*

**
RESET
EXIO
WAIT
RETURN

DONEECB
EXPIDCB,ERROR=EXPERR
DONEECB

Chapter 6. Adding Your Own Device Support 6-7

Adding Your Own Device Support

6-8 SC34-0942

SETIDCB is the label of an IDCB statement and points to the label of the DCB
statement, SETDCB. These two statements define one stop bit:

SETIOCB roeB COMMAND=START,ADDRESS=60,DCB=SETDCB
**
*
*

DEVMOD SETUP FOR SET MODE 1 STOP BIT
9600BPS=07 CR=OD LF=OA

*
*

**
SETDCB DCB DEVMOD=B4,DVPARMl=070D,DVPARM2=OAOO

On the DCB statement, the value for the DEVMOD = operand is B4. This value
sets word 0 (bits 8 -15) of the device control block to the binary value 10110100.
These bit settings indicate the following:

• Set mode
• Asynchronous operation
• Eight bits per character
• One stop bit
• Odd parity
• Parity disabled.

EXPIDCB is also the label of an IDCB statement and points to the label of the
DCB statement, EXPDCB. These two statements define expanded mode with
continuous receive:

EXPIDCB IDCB COMMAND=START,ADDRESS=60,DCB=EXPDCB,MOD4=C
**

*
*

SET CONTINUOUS RECV MODE * 15 BYTE BUFFER *
* IN DEVICE ADAPTER *

**
EXPDCB DCB DEVMOD=Ol,DVPARM3=OOOI

Note that the operand MOD4 = C is coded on the IDCB statement. This operand
alters the IDCB and requests a "start control" operation.

The DVPARM3 =0001 operand on the DCB statement sets word 3 (bit 15) of the
device control block to indicate continuous receive.

After the program establishes the mode of transmission, the program writes a
prompt message to the terminal. This sequence is described next.

o

~\
V

o

o

o

o

Adding Your Own Device Support

Writing Data to the Terminal
The program requests input by writing the message "ENTER DATA:" to the
terminal. After writing the message, the program checks for a -1 return code and
also a controller (attachment) busy condition.

Note: For this program, only one port on the attachment is active, however, if
multiple ports were active, a controller busy condition could occur. This program
detects and handles controller busy conditions.

If the controller is busy when the program issues an I/O request to the device, the
EXIO operation fails. When the EXIO operation fails, you must reset the
attachment. However, the reset also resets the continuous receive. The program
calls the SETMODE subroutine to reenable continuous receive.

The code for the program at this point looks like the following:

EXIOREC PROGRAM
EXSTART EQU

ATTACH
ATTACH
ATTACH
EXOPEN
EXIO
PRINTEXT
CALL

LOOPl EQU

EXSTART
*
DEVINT DEVICE END INTERRUPT HANDLING TASK
EXCINT EXCEPTION INTERRUPT HANDLING TASK
ENDINT CONTROLLER END INTERRUPT HANDLING TASK
60,INTWORK,ERROR=OPENERR OPEN BASE LINE
PREIDCB,ERROR=PREPERR ENABLE INTERRUPT
'@DEVICE OPEN AND PREPARED@'
SETMODE
*

* ISSUE TRANSMIT END DCB *
* TO WRITE MESSAGE TO TERMINAL *

WRITE
RESET
EXIO
MOVE
IF

WAIT
CALL
GOTO

ENDIF
IF
WAIT
IF

DONEECB
WRlIDCB
RC,EXIOREC
(RC,EQ,7)

CTLREND
SETMODE
WRITE

(RC,NE,-l),GOTO,WRERR

TRANSMIT END

TEST FOR CONTROLLER BUSY

DONEECB WAIT FOR COMPLETION OF WRITE
(DONEECB,NE,-l),THEN CHECK FOR GOOD WRITE

* INSERT USER ERROR ROUTINE *

ENDIF
•
•
•

Chapter 6. Adding Your Own Device Support 6-9

Adding Your Own Device Support

The IDCB statement for WRIIDCB points to the DCB labeled WR1DCB. This
DCB contains the address of the message data (WRDATA). The message data is
ASCII code and is 16 bytes in length.

The IDCB and DCB statements for the write operation follow:

WRlIDCB IDCB
WRIDCB DCB
*

COMMAND=START,ADDRESS=60,DCB=WRIDCB
DEVMOD=01,DVPARM2=0003,CQUNT=16,DATADDR=WRDATA

TIMER1=10MS

The following code defines the message data area:

*
WRDATA DATA X' 0D0A ' CR/LF

DATA X' 454E ' EN
DATA X' 5445 1 TE
DATA X' 5220 1 R
DATA X'4441 ' DA
DATA X' 5441 ' TA
DATA X' 203A '
DATA X'2020 1

The next section describes how the program reads input data from the terminal.

Reading Data from the Terminal

6-10 SC34-0942

The program sets up to do a read operation (with time-out) by issuing an EXIO
instruction to the IDCB labeled RDIIDCB. The DCB associated with this read
operation indicates 12 bytes of data will be stored beginning at address REDATA.

The IDCB and DCB statements for the read operation follow:

RDlIDCB IDCB
RDIDCB DCB

*

COMMAND=START,ADDRESS=60,DCB=RDIDCB
IOTYPE=INPUT,DEVMOD=05,DVPARM2=1000,COUNT=12,

DATADDR=REDATA
TIMER1=13.6SEC

C

The program enters a DO loop that reads a line of input and writes the input
(REDATA) to the printer. The program loops 10 times and then prompts for input
again. If during the loop you enter "END," the program ends.

Also within the loop, the program checks for a "buffer overrun" condition. The
program indicates a buffer overrun condition when DONEECB equals 2. The
program calls the RDBUFF subroutine to handle buffer overrun conditions.

o

o

o

o

o

Adding Your Own Device Support

The code to perform the read operation within the DO loop follows:

•
•
•
DO lO,TIMES
MOVE REDATA,C ' ',(40,BYTES)

**
*
*

ISSUE RECEIVE WITH TIME-OUT DCB
TO READ DATA FROM TERMINAL

*
*

**
RESET DONEECB

READ EXIO RDlIDCB RECEIVE WITH TIME-OUT
MOVE RC,EXIOREC
IF (RC, EQ, 7) TEST FOR CONTROLLER BUSY

WAIT CTLREND
CALL SETMODE
GOTO READ

ENDIF
IF (RC,NE,-l),GOTO,RDERR
WAIT DONEECB WAIT FOR COMPLETION OF READ
IF (DONEECB,EQ,2)

CALL RDBUFF
GOTO RDEND

ENDIF
IF (DONEECB,NE,-l),THEN CHECK FOR GOOD READ

**
* INSERT USER ERROR ROUTINE *
**

RDEND

ENDIF
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
EQU
IF
ENDDO

$SYSPRTR
'@INPUT DATA FROM TERMINAL: I

REDATA,lO,MODE=HEX
SKIP=l

*
(REDATA,EQ,ENDDATA,3),GOTO,END TEST FOR "END"

GOTO LOOPl
END PROGSTOP

•
•
•

Chapter 6. Adding Your Own Device Support 6-11

Adding Your Own Device Support

Resetting Buffer Overrun Conditions
The RDB1UFF slubroutine perf~rms a "rhead ada~ter buffer

b
" °dPeration followebd f~Y a O· .

"start eye e stea status" operatIOn. Bot operatIOns must e one to reset a u ler __
overrun condition.

6-12 SC34-0942

The RDBUFF subroutine follows:

SUBROUT
RESET
EXIO
WAIT
PRINTEXT
PRINTNUM
PRINTEXT
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
RESET
EXIO
PRINTEXT
WAIT
PRINTEXT
PRINTNUM
PRINTEXT
RETURN

RDBUFF SUBROUTINE FOR BUFFER OVERRUN
DONEECB
RDAIDCB,ERROR=RABERR
DONEECB WAIT FOR COMPLETION OF WRITE
ICC = I PRINT COMPLETION CODE
DONEECB
SKIP=l
$SYSPRTR
'@READ ADAPTER BUFFER: I
REDATA,l8,MODE=HEX
SKIP=l

DONEECB
CSSIDCB,ERROR=CSSERR
'@READ CYCLE STEAL STATUS DCB ISSUED, I
DONEECB
ICC = I
DONEECB
SKIP=l

PRINT COMPLETION CODE

o

0

o

Adding Your Own Device Support

Reporting Error Return Codes
All EXIO programs should do extensive error checking and reporting. Use the
ERROR = operand on the EXIO instruction to set up an error exit. The system
passes control to the label you specify on this operand. The error exits in the sample
program follow:

**
* ERROR EXIT SECTION *
**
OPENERR EQU *

MOVE RC,EXIOREC
PRINTEXT '@OPEN FAILED, I

GOTO ERREND
PREPERR EQU *

MOVE RC,EXIOREC
PRINTEXT '@PREPARE FAILED, I

GOTO ERREND
SETERR EQU *

MOVE RC,EXIOREC
PRINTEXT '@SET MODE FAILED, I

GOTO ERREND
EXPERR EQU *

MOVE RC,EXIOREC
PRINTEXT '@SET EXPANDED MODE FAILED, I

GOTO ERREND
RABERR EQU *

MOVE RC, EXIOREC
PRINTEXT '@READ ADAPTER BUFFER FAILED, I

GOTO ERREND
CSSERR EQU *

MOVE RC,EXIOREC
PRINTEXT '@READ CYCLE STEAL STATUS FAILED, I

GOTO ERREND
WRERR EQU *

PRINTEXT '@WRITE ERROR, I

GOTO ERR END
RDERR EQU *

PRINTEXT I @READ ERROR, I

ERREND EQU *
PRINTEXT 'RETURN CODE = I

PRINTNUM RC
PRINTEXT SKIP=1
GOTO END

Chapter 6. Adding Your Own Device Support 6-13

Adding Your Own Device Support

Sample EXIO Program

6-14 SC34-0942

The coding segments throughout this chapter showed you can create your own
device support. The following is the sample program in its entirety:

EXIOREC PROGRAM
EXSTART EQU

ATTACH
ATTACH
ATTACH
EXOPEN
EXIO
PRINTEXT
CALL

LOOPI EQU

EXSTART
*
DEVINT DEVICE END INTERRUPT HANDLING TASK
EXCINT EXCEPTION INTERRUPT HANDLING TASK
ENDINT CONTROLLER END INTERRUPT HANDLING TASK
60,INTWORK,ERROR=OPENERR OPEN BASE LINE
PREIDCB,ERROR=PREPERR ENABLE INTERRUPT
I@DEVICE OPEN AND PREPARED@I
SETMODE
*

*
*

ISSUE TRANSMIT END DCB
TO WRITE MESSAGE TO TERMINAL

*
*

WRITE
RESET
EXIO
MOVE
IF

WAIT
CALL
GOTO

ENDIF
IF
WAIT
IF

DONEECB
WRlIDCB
RC,EXIOREC
(RC, EQ, 7)

CTLREND
SETMODE
WRITE

TRANSMIT END

TEST FOR CONTROLLER BUSY

(RC,NE,-l),GOTO,WRERR
DONEECB WAIT FOR COMPLETION OF WRITE
(DONEECB,NE,-l),THEN CHECK FOR GOOD WRITE

* INSERT USER ERROR ROUTINE *

ENDIF
DO
MOVE

10,TIMES
REDATA,C 1 I, (40,BYTES)

*
*

ISSUE RECEIVE WITH TIME-OUT DCB
TO READ DATA FROM TERMINAL

*
*

READ
RESET
EXIO
MOVE
IF

WAIT
CALL
GOTO

ENDIF
IF
WAIT
IF

CALL
GOTO

ENDIF

DONEECB
RDlIDCB
RC, EXIOREC
(RC, EQ, 7)

CTLREND
SETMODE
READ

RECEIVE WITH TIME-OUT

TEST FOR CONTROLLER BUSY

(RC,NE,-l),GOTO,RDERR
DONEECB WAIT FOR COMPLETION OF READ
(DONEECB,EQ,2)

RDBUFF
RDEND

Figure 6-1 (Part 1 of 6). Sample EXIO Program

o

o

o

o

o

Adding Your Own Device Support

IF (DONEECB,NE,-l),THEN CHECK FOR GOOD READ

* INSERT USER ERROR ROUTINE *

RDEND

END

ENDIF
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
EQU
IF
ENDDO
GOTD
PROGSTOP

$SYSPRTR
I@INPUT DATA FROM TERMINAL: I
REDATA,l0,MODE=HEX
SKIP=l

*
(REDATA,EQ,ENDDATA,3),GOTO,END

LOOPl

TEST FOR IIENDII

* INTERRUPT TASKS *

DEVINT TASK
DEVSTART WAIT

RESET
POST
GOTO
ENDTASK

DEVSTART
DEVEND
DEVEND
DONEECB,-l
DEVSTART

WAIT FOR DEVICE END INTERRUPT

ENDINT TASK
CTLSTART WAIT

RESET
POST
RESET
GOTO
ENDTASK

CTLSTART
CENDECB
CENDECB
CTLREND,-l
CTLREND
CTLSTART

WAIT FOR CONTROLLER END INTERRUPT

EXCSTART EXCINT TASK
EXCSTART WAIT

RESET
IF

POST

EXCEPT
EXCEPT

WAIT FOR EXCEPTION INTERRUPT

ELSE

(INTWORD,EQ,X 1A0 1 ,BYTE),THEN
DONEECB,-l

SHORT RECORD
POST GOOD RETURN

IF (INTWORD,EQ,XI20 1 ,BYTE),THEN LONG RECORD
PRINTEXT I@LONG RECORD@I

ELSE
IF (INTWORD,EQ,X I80 1 ,BYTE),AND,«SCSSDATA+2),EQ, C

XI40 1 ,BYTE),THEN TIME-OUT
PRINTEXT I@TIME-OUT@I

ELSE
PRINTEXT I@OTHER ,EXCEPTION INTERRUPT, I

ENDIF
ENDIF

Figure 6-1 (Part 2 of 6). Sample EXIO Program

Chapter 6. Adding Your Own Device Support 6-15

Adding Your Own Device Support

6-16 SC34-0942

ENQT $SYSPRTR
PRINTEXT ICSS = I
PRINTNUM SCSSDATA,3,MODE=HEX
PRINTEXT '@INTWORD,LSR,ECB ADDR
PRINTNUM INTWORD,3,MODE=HEX
PRINTEXT SKIP=1
DEQT
MOVE WD1,SCSSDATA+2

CYCLE STEAL STATUS

SHI FTL WD1, 15 ISOLATE BIT 15
IF (WD1,EQ,X '8000 1

) BIT 15 = 1 ?
POST DONEECB,2 INDICATE READ ADAPTER BUFFER
GOTO EXCSTART

ENDIF
POST DONEECB,1 POST ERROR RETURN

ENDIF
GOTO EXCSTART
ENDTASK

* ERROR EXIT SECTION *

OPEN ERR EQU *

MOVE RC,EXIOREC
PRINTEXT '@OPEN FAILED, I
GOTO ERREND

PREPERR EQU *
MOVE RC,EXIOREC
PRINTEXT '@PREPARE FAILED, I
GOTO ERREND

SETERR EQU *
MOVE RC,EXIOREC
PRINTEXT '@SET MODE FAILED, I
GOTO ERREND

EXPERR EQU *
MOVE RC,EXIOREC
PRINTEXT '@SET EXPANDED MODE FAILED, I
GOT a ERREND

RABERR EQU *
MOVE RC,EXIOREC
PRINTEXT '@READ ADAPTER BUFFER FAILED, I
GOTO ERREND

CSSERR EQU *
MOVE RC,EXIOREC
PRINTEXT '@READ CYCLE STEAL STATUS FAILED, I
GOT a ERREND

WRERR EQU *
PRINTEXT '@WRITE ERROR, I
GOTO ERREND

RDERR EQU *
PRINTEXT '@READ ERROR, I

ERREND EQU *
PRINTEXT 'RETURN CODE = I
PRINTNUM RC
PRINTEXT SKIP=1
GOTO END

Figure 6-1 (Part 3 of 6). Sample EXIO Program

o

o

o

C I "

o

Adding Your Own Device Support

* SUBROUTINES *

SUBROUT
EXIO

SETMODE
RESET DEVICE RESET

*
*

ISSUE SET MODE DCB TO CHANGE
NUMBER OF STOP BITS TO ONE

*
*

RESET

, EXIO
WAIT

DONEECB
SETIDCB~ERROR=SETERR

DONEECB

*
*

ISSUE SET EXPANDED MODE DCB
TO SET CONTINUOUS RECEIVE

*
*

RESET DONEECB
EXIO EXPIDCB~ERROR=EXPERR

WAIT DONEECB
RETURN
SUBROUT RDBUFF SUBROUTINE FOR BUFFER OVERRUN

RESET DONEECB
EXIO RDAIDCB~ERROR=RABERR

WAIT DONEECB WAIT FOR COMPLETION OF WRITE
PRINTEXT ICC = I PRINT COMPLETION CODE
PRINTNUM DONEECB
PRINTEXT SKIP=l
ENQT $SYSPRTR
PRINTEXT '@READ ADAPTER BUFFER: I
PRINTNUM REDATA~10,MODE=HEX

PRINTEXT SKIP=l
DEQT
RESET DONEECB
EXIO CSSIDCB,ERROR=CSSERR
PRINTEXT '@READ CYCLE STEAL STATUS DCB ISSUED, I
WAIT DONEECB
PRINTEXT ICC = I PRINT COMPLETION CODE
PRINTNUM DONEECB
PRINTEXT SKIP=l
RETURN

* DATA BUFFERS *

WRDATA DATA X' 0D0A ' CR/LF

DATA X'454E ' EN
DATA X' 5445 1 TE
DATA X'5220 1 R
DATA X'4441 1 DA
DATA X'5441 1 TA
DATA X' 203A '
DATA X'2020 1

Figure 6-1 (Part 4 of 6). Sample EXIO Program

Chapter 6. Adding Your Own Device Support 6-17

Adding Your Own Device Support

6-18 SC34-0942

REDATA DATA 20F'0'
ENDDATA DATA X'454E4400' ASCII END
SCSSDATA DATA 3F'0' 6 BYTE OF CYCLE STEAL STATUS
RC DATA F'0'
WDI DATA F'0'

* INTERRUPT DEFINE INFORMATION *

INTWORK DC A (INTWORD) INTERRUPT BYTE AND ADDRESS SAVE AREA

DC A(INTECB) INTERRUPT CONDITION CODE ECB
DC A(SCSSDCB) START CYCLE STEAL STATUS DCB

INTWORD DATA F'0' INTERRUPT STATUS / DEVICE ADDRESS
DATA F'0' LSR AT TIME OF INTERRUPT
DATA F'0' ADDRESS OF ECB POSTED

INTECB DATA A(CENDECB) CC=0
DATA A(NA) CC=l
DATA A(EXCEPT) CC=2 EXCEPTION
DATA A(DEVEND) CC=3 DEVICE END
DATA A(NA) CC=4
DATA A(NA) CC=5
DATA A(NA) CC=6
DATA A(NA) CC=7

* IMMEDIATE DEVICE CONTROL BLOCKS *

RESET
PREIDCB
SETIDCB
EXPIDCB
WRIIDCB
RDlIDCB
RDAIDCB
CSSIDCB

IDCB
IDCB
IDCB
IDCB
IDCB
IDCB
IDCB
IDCB

COMMAND=RESET,ADDRESS=60
COMMAND=PREPARE,ADDRESS=60,LEVEL=1,IBIT=ON
COMMAND=START,ADDRESS=60,DCB=SETDCB
COMMAND=START,ADDRESS=60,DCB=EXPDCB,MOD4=C
COMMAND=START,ADDRESS=60,DCB=WRIDCB
COMMAND=START,ADDRESS=60,DCB=RDIDCB
COMMAND=START,ADDRESS=60,DCB=RDADCB
COMMAND=START,ADDRESS=60,DCB=SCSSDCB,MOD4=F

* DEVICE CONTROL BLOCKS *

SETDCB DCB DEVMOD=B4,DVPARMl=070D,DVPARM2=0A00
* DEVMOD SETUP FOR SET MODE 1 STOP BIT
* 9600BPS=07 CR=0D LF=0A
EXPDCB DCB DEVMOD=01,DVPARM3=0001
* SET CONTINUOUS RECEIVE MODE ** 15 BYTE BUFFER **
* * IN DEVICE ADAPTER *
WRIDCB DCB DEVMOD=01,DVPARM2=0003,COUNT=16,DATADDR=WRDATA
* TIMERl=10MS
RDIDCB DCB IOTYPE=INPUT,DEVMOD=0~,DVPARM2=1000,COUNT=12,

DATADDR=REDATA
* TIMERl=13.6SEC

* READ ADAPTER BUFfER DCB *

RDADCB DCB IOTYPE=INPUT,DEVMOD=74,COUNT=14,DATADDR=REDATA
*
SCSSDCB DCB IOTYPE=INPUT,COUNT=6,DATADDR=SCSSDATA

Figure 6-1 (Part 5 of 6). Sample EXIO Program

0

/11,----"\

U

C

o

o

o

o

Adding Your Own Device Support

* EVENT CONTROL BLOCKS *

CENDECB ECB 0 INTERRUPT CONDITION CODE 0
EXCEPT ECB 0 INTERRUPT CONDITION CODE 2
DEVEND ECB 0 INTERRUPT CONDITION CODE 3
NA ECB 0 NOT USED, PAPER WORK ONLY
DONEECB ECB 0 OPERATION
CTLREND ECB 0 CONTROLLER END ECB

* THIS ECB WILL BE WAITED ON BY ANY LINE ATTACHED *
* TO THE CONTROLLER AT ADDRESS 60 WHEN THE LINE *
* GETS A CONTROLLER BUSY CONDITION. THE CONTROLLER *
* END INTERRUPT WILL COME BACK ON THE BASE ADDRESS 60 *
* FOR ANY LINE ATTACHED TO THE CONTROLLER. *

ENDPROG
END

Figure 6-1 (Part 6 of 6). Sample EXIO Program

Chaining DCBs in a Circle

Sample Program

EXIO allows you to chain DeBs together in a circle. Once you initiate the I/O with
an EXIO start I/O request, you can "break" these chained DeBs with the
EXBREAK instruction. For more information on the EXBREAK instruction, refer
to the Language Reference.

The following EXBREAK example specifies address 21 and says to break after DeB
number 4.

EXBREAK 21,4

The following EXIO program prints data to a 4973/74 printer at hardware address
X 1211 All DeBs used are chained together, with the last DeB chained to the first
(hence the "circular" chained DeBs). Each DeB points to a unique message that
the system will print endlessly until the operator enters an ATTENTION BREAK.
This command breaks the chain at DeB 2, and prints the DeB 2 buffer, as follows:

Chapter 6. Adding Your Own Device Support 6-19

Adding Your Own Device Support

6-20 SC34-0942

A sample program for circular chained DeBs follows.

TEST

BREAKIT

START

RETOPEN

RETEXIO

PROGRAM START
ATTNLIST
EQU
EXBREAK
ENDATTN

(BREAK, BREAKIT)
*
21,02

EQU *

BREAK CHAIN AT DCB2

RESET EXCOMM RESET ECB
RESET EXDUMMY RESET ECB
EXOPEN 21,EXIOADDR OPEN EXIO
TCBGET TCBRT,$TCBCO GET RETURN CODE
IF (TCBRT,NE,+OK) OK?

IF (TCBRT,EQ,+TWO),GOTO,RETOPEN RETRY IF BUSY
PRINTEXT 'EXOPEN COMMAND FAILED@'
GOTO STOP

ENDIF
ENDIF
EXIO PREPARE

EXIO RESET
RESET EXCOMM
RESET EXDUMMY
EXIO STARTIO
TCBGET TCBRT,$TCBCO
IF (TCBRT,NE,+OK)

IF (TCBRT,EQ,+TWO),GOTO,RETEXIO
PRINTEXT 'EXIO COMMAND FAILED@'

ENDIF
ELSE

WAIT EXCOMM

PREPARE DEVICE
FOR INTERRUPTS
RESET DEVICE
RESET ECB
RESET ECB

GET TCB ADD
OK?
RETRY IF BUSY

AND EXCOMM,X'0F00',RESULT=CCCODE
WAIT FOR END
GET RETURN CODE
RIGHT JUSTIFY
DEVICE END

SHIFTR CCCODE,8
IF (CCCODE,NE,+THREE)

PRINTEXT 'ERROR FROM EXIO STARTIO@'
ENDIF

ENDIF
STOP PROGSTOP

* IDCBs *

PREPARE
RESET
STARTIO

IDCB
IDCB
IDCB

COMMAND=PREPARE,ADDRESS=21,LEVEL=1,IBIT=ON
COMMAND=RESET,ADDRESS=21
COMMAND=START,ADDRESS=21,DCB=DCB01

Figure 6-2 (Part 1 of 2). Sample Program for Circular Chained DCBs

l o

o

o

0

0

Adding Your Own Device Support

* DCBs ARE IN A CIRCULAR CHAIN. THE LAST ONE
* ONE (DCB03) POINTS TO THE FIRST ONE (DCB01).

*
*

DCB01

DCB02

DCB03

DCB

DCB

DCB

IOTYPE=OUTPUT,DVPARM1=3000,DVPARM2=0001,
CHAINAD=DCB02,COUNT=16,DATADDR=TEXT1
IOTYPE=OUTPUT,DVPARM1=3000,DVPARM2=0001,
CHAINAD=DCB03,COUNT=16,DATADDR=TEXT2
IOTYPE=OUTPUT,DVPARM1=3000,DVPARM2=0001,
CHAINAD=DCBOl,COUNT=16,DATADDR=TEXT3

* TEST DATA TO BE PRINTED *

TEXTI
TEXT2
TEXT3

TEXT
TEXT
TEXT

'THIS IS DCB 1 ',LENGTH=16
'THIS IS DCB 2 ';LENGTH=16
'THIS IS DCB 3 ',LENGTH=16

* WORK AREA AND EQUATES *

CCCODE DATA F'O'
TCBRT DATA X'FFFF' TCB RETURN CODE

DATA X'FFFF' TCB RETURN CODE
OK EQU X'FFFF' TCB RETURN CODE
TWD EQU 2
THREE EQU 3
DEV DATA F'O' SAVE AREA FOR DEVICE ADDRESS

* EXOPEN INSTRUCTION PARAMETERS *

EXIOADDR DATA A(EXIOl) POINTER TO 3-WORD INTERRUPT

BLOCK
DATA A(EXECBS) ADDRESS OF ECB'S ADDRESSES
DATA A(EXSCSDCB) ADDRESS OF SCSS DCB

EXI01 DATA F'O' INTERRUPT ID WORD
DATA F'O' LSR AT INTERRUPT
DATA F'O' ADDRESS OF ECB POSTED

* INTERRUPT CONDITION CODES *

EXECBS DATA A(EXDUMMY) CC=O N,R

DATA A(EXDUMMY) CC=l N,R
DATA A(EXCOMM) CC=2 EXCEPTION
DATA A(EXCOMM) CC=3 DEVICE END
DATA A(EXCOMM) CC=4 N"R
DATA A(EXCOMM) CC=5 N,R
DATA A(EXCOMM) CC=6 N,R
DATA A(EXCOMM) CC=7 N,R

EXSCSDCB DCB IOTYPE=INPUT,COUNT=16,DATADDR=SSTDATA SCSS DCB
SSTDATA DATA 8F'0' CYCLE-STEAL STATUS
EXSCSWDS DATA 3F'0'
EXCOMM ECB 0 COMMON ECB
EXDUMMY ECB 0 DUMMY ECB (IGNORE THESE POSTS)

ENDPROG
END

Figure 6-2 (Part 2 of 2). Sample Program for Circular Chained DCBs

Chapter 6. Adding Your Own Device Support 6-21

o

o
6-22 SC34-0942

o

o

o

Creating Your Own EDL Instruction

Chapter 7. Creating Your Own EDL Instruction

If the Event Driven Language (EDL) does not provide an instruction that performs
a function you need, you can create your own instruction to provide that function.
This chapter explains how you can build an instruction that you can compile using
$EDXASM.

The Internal Design provides a detailed discussion of how $EDXASM processes
ED L instructions.

One of the steps to implement a new EDL instruction will require you to write some
Series/l assembler code. You will need the Series/l Macro Assembler ($SIASM) in
that step.

Defining the Instruction Requirements
The first step in creating a new instruction is defining what function the instruction
will perform. The function the instruction performs determines the coding syntax as
regards the use of:

• positional operands
• keyword operands
• indexable operands.

This chapter explains how to create a sample EDL instruction called NEWCMD.
NEWCMD has the following characteristics:

• One positional operand

• Two optional keyword operands (one of which is PI =)

• Two indexable operands

• Adds the value 1 to operand one, or

• Adds the value of the keyword parameter to operand one

• Generates a new operation code.

The system reserves two operation codes for your use: 01 and 02. The NEWCMD
instruction will use 01 as the new operation code.

Defining the characteristics listed above, you could code NEWCMD any of the
following ways:

LABEll
LABEL2
LABEL3
LABEL4

NEWCMD
NEWCMD
NEWCMD
NEWCMD

X
X, KWD=Y
X,KWD=Y,P1=Z
X,KWD=(4,#1)

ADD 1 TO X
ADD VALUE OF Y TO X
ADD VALUE OF Y TO X
ADD VALUE AT (4,#1) TO X

After you define the function and syntax of the instruction, you must define a model
of the instruction in an overlay program. This is discussed next.

Chapter 7. Creating Your Own EDL Instruction 7-1

Creating Your Own EDL Instruction

Creating an Overlay Program to Build the Instruction
You define a model of the instruction in an overlay program. In addition, the
overlay program contains statements and subroutines that check syntax and build
object code for the new instruction.

Note: The overlay program you supply is unique to $EDXASM. Do not confuse
the overlay program discussed in this chapter with EDL or $EDXLINK overlays.

A brief description of the statements you can use follows. These statements are
described in detail in the section "Overlay Program Statements" on page 7-25.

$IDEF Defines a model or prototype instruction.

ASMERROR Generates syntax error messages.

OTE Defines an object text element.

SLE Defines a sublist element.

The subroutines you can use follow. These are described in detail in the section
"Overlay Program Subroutines" on page 7-30.

$INDEX

BLDTXT

GETVAL

LABELS

Examines operands for index register usage.

Builds object text from object text elements.

Evaluates character strings from a sublist element.

Defines or resolves labels for symbol table entries.

MOVEBYTE Moves a byte string to a target location.

OPCHECK Checks instruction syntax and builds object code for each operand.

SLPARSE Divides (parses) an input string into sublist elements.

You may use any or all of these statements and subroutines in the overlay program
you create. The overlay program for the NEWCMD instruction uses $IDEF,
$INDEX, ASMERROR, and OTE.

Building the Model Instruction

7-2 SC34-0942

You use the $IDEF statement to build a model of the instruction. When you code
$IDEF, you specify the positional operands and keywords of the instruction. The
number of positional and keyword operands for an instruction must not exceed 50.

You can optionally specify error exits on $IDEF for invalid syntax. These error
exits are used in conjunction with the ASMERROR statement.

Note: For detailed examples of the operands and keyword parameters, refer to the
section "Analyzing and Checking Source Statement Syntax" in the Internal Design.

o

o

o

': C,'~"

0 '"
,',

Creating Your Own EDL Instruction

Coding $IDEF for the NEWCMD Instruction
In the following example, the instruction NEWCMD is defined with one positional
(OPl) and two keyword (KWD and PI) operands. The error exits are at labels
ERROR2 and ERROR3.

The $IDEF statement coded for NEWCMD in the overlay program looks as
follows:

ASMOLAYX PROGRAM BEGIN
•
•
•

BEGIN EQU *
•
•
•

NEWLIST $IDEF OPl,(KWD,Pl),PERR=ERROR2,KERR=ERROR3
•

ERROR2 •
ERROR3 •

Checking the Source Statement Syntax
When $EDXASM parses the NEWCMD instruction, it builds tables and pointers
and stores this data in the compiler common area. $EDXASM passes the address of
this area as a I-word parameter. Your overlay program must refer to this parameter
as $PARMI and then move it to either software register #1 or #2. Using the
ASMCOMM equates, you can then access the fields in the common area. You use
these fields to check syntax and build object text.

To illustrate how $EDXASM parses an instruction, Figure 7-1 on page 7-4 shows
an example of the parsed output if you coded the NEWCMD instruction as follows:

SAMPLE NEWCMD A,KWD=(4,#1),Pl=X

An explanation follows the example.

Chapter 7. Creating Your Own EDL Instruction 7-3

Creating Your Own EDL Instruction

o 1 2 3 4
1234567890123456789012345678901234567890

SAMPLE

OLEDATA

OLELENG

OLESLE

OLESLE#

OLEKEYWD

SLEDATA

SLELENG

SLETYPE

SLECHAIN

NEWCMD A,KWD=(4,#1) ,P1=X

OLEZ) OLE1~ OLE3 ~
0020 0026 0036

0001 0006 0001

A(SlE1) - A(SLE2) - A(SLE4) -

0001 0002 0001

0000 A(KEY1) ~'- A(KEY2) r-- ---

- .--- r---

SLE1 SLE2 SLE4
H ,~ "

0020 0027 0036

0001 0001 0001

0 SELFDEF 0

0 A(SLE3) 0

L-.-_____ ~ (ALABEL,#1)

SLEDATA

SLELENG

SLETYPE

SLECHAIN

r----L A(SLEO)

.. SLEO

0001

0006

o

o

SLE~
0029

0002

0

0

.. KWD

P1 ---
Keyword
table

(OPCODE,#1)

I NEWCMDI
Operation name

A0942001

Figure 7-1. Source Statement Parsing Example

7 -4 SC34-0942

In this example, software register #1 points to the compiler common area,
ASMCOMM. $EDXASM begins the parsing operation with the label SAMPLE
and stores the results in the location (ALABEL,#I). $EDXASM creates a sublist
element (SLE) for the label. A sublist element has four fields: SLEDATA,
SLELENG, SLETYPE, and SLECHAIN. SLEDATA points to the first character
of a label or operand. SLELENG is the number of characters in the label or
operand. SLETYPE is the type of sublist element. SLECHAIN is used internally
for creating chained sublist elements.

o

o

o

o

o

Creating Your Own EDL Instruction

The SLETYPE field can have the value 0 (undefined), 1 (self-defining term), or 2
(string).

Self-defining terms are decimal constants (for example, 5, 1000, and -32000),
hexadecimal constants (for example, X 11234 1, X I FF I , and X I AOBO I), EBCDIC
constants (for example, C I A I and C 112 1), or symbols preceded by a + or - sign
(for example, + LABELl, + $DSCBLEN, and - LABEL2).

SLETYPE is "string" if the entire operand is enclosed in quotes. In this case,
$EDXASM scans the entire data string for embedded double quotes which signify an
apostrophe. If double quotes are found, $EDXASM changes them to single quotes
and adjusts the SLE length field (SLELENG) accordingly.

In Figure 7-1 on page 7-4, the SLEDATA pointer for the label is 1, the field length
is 6, and the type is undefined. If the source statement has no label, the compiler
sets (ALABEL,#I) to O.

$EDXASM enters the operation name (EDL instruction) in the field (OPCODE,#l).
The compiler also generates a table of operand list elements that describe the coded
operands. The word (AOPTABLE,#I) is the pointer to this table.

The table has a 10-byte header. Each operand list element (OLE) in the table is also
IO-bytes in length. One OLE describes each operand.

An OLE has five fields: OLEDATA, OLELENG, OLESLE, OLESLE#, and
OLEKEYWD. OLEDAT A points to the first character of the operand.
OLELENG is the number of characters in the operand. OLESLE points to the first
sublist element (SLE) of the operand. The compiler generates at least one SLE for
every operand. OLESLE# is the number of SLEs in the operand. If you coded a
keyword operand, OLEKEYWD points to the entry in the keyword table that
contains the I -7 character name of the keyword operand.

The sample NEWCMD source statement has three operands. The positional
operand is A. The operand list element OLEI describes this positional operand.
The keyword operands are K WD = and PI =. These keyword operands are
described by OLE2 and OLE3, respectively.

OLEI indicates a I-character operand at relative address 0020, with one SLE
(SLEI). The operand type is undefined. OLE2 shows a 6-character operand
beginning at 0026, with two SLEs (SLE2 and SLE3). SLE2 points to the constant 4
and SLE3 points to #1. OLE3 shows a I-character operand at 0036, with one SLE
(SLE4). SLE4 points to the X, whose type is undefined. $EDXASM stores the
names of the keywords (KWD and PI) in the keyword table.

The following code shows how to receive the address of the compile~ common area
and check for a valid instruction name. Control passes to label #NEWCMD upon a
match; otherwise, control passes to label ERRORI.

Chapter 7. Creating Your Own EDL Instruction 7-5

Creating Your Own EDL Instruction

ASMOLAYX PROGRAM BEGIN,300,PARM=1
COpy ASMCOMM COPY CODE FOR EQUATES

BEGIN EQU *
MOVE #l,$PARMl GET ADDR OF COMMON AREA
IF ((OPCODE,#1),EQ,CNEWCMD,8),GOTO,#NEWCMD CODE OK?

ERRORI •
•
•

CNEWCMD DC
#NEWCMD EQU

CL8 I NEWCMD '
*

You must now write the code to check syntax and handle syntax errors. You use
the OPCHECK subroutine to check syntax against the model instruction. You use
the ASMERROR statement to issue syntax error messages.

Using the sample overlay program, the code to check syntax and issue syntax error
messages is shown:

ASMOLAYX PROGRAM BEGIN,300,PARM=1
COpy ASMCOMM COpy CODE FOR EQUATES

BEGIN EQU *
MOVE #l,$PARMl GET ADDR OF COMMON AREA
IF ((OPCODE,#1),EQ,CNEWCMD,8),GOTO,#NEWCMD CODE OK?

ERRORI ASMERROR 1,$EDXLUSR INVALID INSTRUCTION
ENDTASK EQU * SET UP EXIT

DETACH
GOTO BEGIN

ERROR2 ASMERROR 2,$EDXLUSR
ERROR3 ASMERROR 3,$EDXLUSR
ERROR4 ASMERROR 4,$EDXLUSR

INVALID POSITIONAL OPERAND

ASMERROR GENERATE
CNEWCMD DC CL8 I NEWCMD '

INVALID KEYWORD
OPERAND ONE MISSING

NEWLIST $IDEF OPl,(KWD,Pl),PERR=ERROR2,KERR=ERROR3
•
•
•

#NEWCMD EQU
CALL

*
OPCHECK,(NEWLIST) CHECK SYNTAX

MODEL

In the previous example, if the instruction name is not NEWCMD, you issue error
message I (invalid instruction) and exit the program. To exit the program, you must
code the label ENDT ASK. ASMERROR statements branch to this label. In
addition, you must end the overlay program with a DETACH followed by a GOTO
to the first executable instruction in the overlay program. If the instruction name is
NEWCMD, control passes to the label #NEWCMD.

o

()

At label #NEWCMD, you call the OPCHECK subroutine. The OPCHECK
subroutine compares the instruction syntax and fills in the tables and pointers of the
compiler common area. Upon encountering syntax errors, control passes to the
apPdrEOPriate label you define on the $IDEF statement. In this example, ERROR2 0
an RROR3 are the error exits.

7 -6 SC34-0942

o

0 '"
I" .,'1'

Creating Your Own EDL Instruction

Building Object Text
After OPCHECK executes, the tables and pointers in the compiler area contain the
addresses of the operand list elements (aLEs) and sublist elements (SLEs). You use
this data to build object text. The object text you build is called an,object text
element (aTE). You use the aTE statement to do this. $EDXASM uses OTEs to
build object code for further processing.

Before you build OTEs, you must understand the format of the expanded object
code. This is described next.

Expanded Object Code Format
The object code $EDXASM generated for NEWCMD will be either 2 or 3 words,
depending on whether you specified KWD. This is illustrated in the next three
examples. The label you code on NEWCMD is the label on the first word of the
object code.

The first word is the operation code word and contains a flag byte (bits 0 -7) and an
operation code byte (bits 8 -15). The operation code byte for NEWCMD contains
a value of 1.

Figure 7-2 and Figure 7-3 show the possible flag bit meanings for NEWCMD:

Bit Meaning

0 This bit is on if operand 2 (KWD) is a constant

Keyword operand is specified (KWD)

2&3 Not used

Figure 7-2. Flag Bit Meanings (Bits 0 - 3)

Bits 4 -7 indicate software register usage for operands 1 and 2 as follows:

#1 or #2
Register #1 used #2 used used as

Bits/operand not used as (x,#I) as (x,#2) operand

4 & 5 for op2 00 01 10 11

6 & 7 for opl 00 01 10 11

Figure 7-3. Flag Bit Meanings (Bits 4 -7)

Chapter 7. Creating Your Own ED L Instruction 7-7

Creating Your Own EDL Instruction

The second and third words are the address of the OPl and KWD operands
respectively. Both OPl and KWD can be indexed and KWD can a.lso be a
self-defining term. If you code KWD, the object code is three words in length. O·
Also, bit 1 of the operation code word is set to 1 (on). If you specify PI, PI will be

7-8 SC34-0942

the label on the second word.

The next three examples show the expansion depending on how you code
NEWCMD:

F or example, if you code:

I LABEll NEWCMD x

$EDXASM generates the following object code:

LABEll

If you code:

DC
DC

X10001 1 (bits 0-7 = 0000 0000)
A(X)

[LABEL2· NEWCMD Y,KWD=Z,P1=AY

$EDXASM generates the following object code:

LABEL2
AY

If you code:

LABEL3

DC
DC

X 14001 1

A(Y)
(bits 0-7 = 0100 0000)

NEWCMD (4,#1),KWD=7,P1=OP1ADDR

o

o

o

Ci

o

Creating Your Own EDL Instruction

$EDXASM generates the following object code:

LABEL3 DC
OP1ADDR DC

DC

Defining the Object Text Elements

X I C101 1 (bits 0-7 = 1100 (001)
F'41
F'71

Upon completion of the OPCHECK subroutine, you must define and build the
object text elements. The sample overlay program defines three OTEs for
NEWCMD. The first OTE definition (NEWOTE1) builds an operation code OTE
with a code of 1. You use the other two OTEs (NEWOTE2 and NEWOTE3) to
build object text for the OPI and KWD operands.

The following code defines the OTEs. In addition, the operation code and label
from NEWCMD are placed in NEWOTE1:

•
•
•

NEWLIST $IDEF OP1,(KWD,P1),PERR=ERROR2,KERR=ERROR3 MODEL
NEWOTE DC F' 31 NUMBER OF OTES
NEWOTEl OTE TVPE=OPCODE,SLEDATA=l SET OP CODE TO 1
NEWOTE2 OTE TVPE=ADDRESS OTE FOR nOP1 n
NEWOTE3 OTE TVPE=ADDRESS OTE FOR nKWD n
#NEWCMD EQU *

CALL OPCHECK,(NEWLIST) CHECK SYNTAX
* INITIALIZE nop CODEn OTE

MOVE NEWOTE1+0TEDATAP,1 RESET OP CODE TO 1
MOVE NEWOTE1+0TEDATAL,(ALABEL,#1) INSERT LABEL

If a label does not exist on NEWCMD, (ALABEL,#I) is zero and $EDXASM does
not generate a label. Note that although the operation code for NEWOTEI is
defined as 1 (SLEDATA= 1), the operation code is reset to 1 on the MOVE
instruction. Throughout your overlay program, you must reset any data fields that
might change. This is because $EDXASM could call up the program again without
ever reloading it.

You must now process the operands of NEWCMD and build object text. The next
section describes how you process the OPI operand.

Chapter 7. Creating Your Own EDL Instruction 7-9

Creating Your Own EDL Instruction

Processing the OP1 Operand
You process the OPI operand first by storing the sublist element (SLE) for the PI
operand in the label field of NEWOTE2. This moves the address of the SLE which 0
defines the label on PI = (if specified) into NEWOTE2. Processing the OPI operand -- .

7 -10 SC34-0942

in this manner causes the label for operand I to be created.

Because NEWOTE2 is defined as an address OTE, you must store the sublist
element (SLE) address that defines the label to be g~nerated. In this case, OPI + 2
contains the SLE address that defines the label.

Since OPI is indexable, you must also indicate if an index register is used for OPI.
The flag bit settings in the operation code word indicate register usage. You use the
$INDEX subroutine to store this information in the object text element for
NEWOTEI.

The following code processes OPI and stores register usage information. If OPI is
missing, an error message is issued and the program exits:

•
•
•

NEWOTEl OTE
NEWOTE2 OTE
NEWOTE3 OTE
#NEWCMD EQU

CALL

TYPE=OPCODE,SLEDATA=I
TYPE=ADDRESS
TYPE=ADDRESS
*
OPCHECK,(NEWLIST)

* INITIALIZE IIOP CODEII OTE

SET OP CODE TO I
OTE FOR IIOPI II
OTE FOR IIKWD II

CHECK SYNTAX

MOVE NEWOTEI+OTEDATAP,l RESET OP CODE TO I
MOVE NEWOTEl+OTEDATAL, (ALABEL,#I) INSERT LABEL

* PROCESS IIOPI II OPERAND
IF (OPI+2,EQ,O),GOTO,ERROR4 OPI MISSING?
MOVE NEWOTE2+0TEDATAL,PI+2 STORE ADDR OF PI SLE
MOVE NEWOTE2+0TEDATAP,OPI+2 STORE ADDR OF OPI SLE
CALL $INDEX,OPI,NEWOTEI+OTEDATAP,(NEWOTE2),1

Now you must write the code to process the KWD operand. The next section
describes how you do this.

~
i,; ... ,~.;)

o

o

o

o

Creating Your Own EDL Instruction

Processing the KWD Operand
When you process the KWD operand, you must first determine if it was coded on
NEWCMD. If KWD is not coded, you must set the type field of NEWOTE3 to
#NULL. This causes $EDXASM to ignore this OTE.

If KWD is coded, you must reset the type field of NEWOTE3 to #ADDRESS.
Next, you must set flag bit 1 to 1 in the operation code word. This indicates that
K WD is specified.

Because NEWOTE3 is defined as an address OTE, you must store the sublist
element (SLE) address that defines the data to be generated. In this case, KWD + 2
contains the SLE address which defines the data.

Similar to the OPl operand, KWD is also indexable. Again, you use the $INDEX
subroutine to store the appropriate bits in NEWOTEl.

The code you use to process the KWD operand follows:

* PROCESS "KWD"
IF

MOVE
ELSE

MOVE
lOR
MOVE
CALL

ENDIF

OPERAND
(KWD+2,EQ,0)
NEWOTE3+0TETYPE,+#NULL

KWD SPECIFIED?
SET OTE TYPE TO NULL

NEWOTE3+0TETYPE,+#ADDRESS RESET TYPE TO ADDRESS
NEWOTE1+0TEDATAP,X I 4000 I SET FLAG BIT 1 ON
NEWOTE3+0TEDATAP,KWD+2 STORE ADDR OF KWD
$INDEX,KWD,NEWOTE1+0TEDATAP,(NEWOTE3),2

You must now write the code to exit the overlay program and return control back to
$EDXASM. This is described next.

Ending the Overlay Program
After you process all the operands, you must store the number of OTEs built in the
overlay program. You do this by passing the address of the OTE count word, in
this case NEWOTE. You must then issue a GOTO to the label ENDT ASK.
$EDXASM generates the object code for NEWCMD when the ENDTASK exit is
taken.

The code you use to exit the overlay program follows:

* SET UP EXIT
MOVEA
GO TO
COPY
COPY
ENDPROG
END

(AMACDATA,#l),NEWOTE
ENDTASK

STORE OTE COUNT

COPCHECK
C$INDEX

COPY CODE FOR OPCHECK SUBRTN
COpy CODE FOR $INDEX SUBRTN

Chapter 7. Creating Your Own EDL Instruction 7-11

Creating Your Own EDL Instruction

Sample Overlay Program for NEWCMD

7 -12 SC34-0942

The coding segments throughout this section showed you how to create an overlay
program. The following is the overlay program in its entirety: 0

ASMOLAYX PROGRAM BEGIN,300,PARM=1
COPY ASMCOMM COPY CODE FOR EQUATES

BEGIN EQU *
MOVE #I,$PARMI GET ADDR OF COMMON AREA
IF ((OPCODE,#I),EQ,CNEWCMD,8),GOTO,#NEWCMD CODE OK?

ERRORI ASMERROR I,$EDXLUSR INVALID INSTRUCTION
ENDTASK EQU * SET UP EXIT

DETACH
GO TO BEGIN

ERROR2 ASMERROR 2,$EDXLUSR INVALID POSITIONAL OPERAND
ERROR3 ASMERROR 3,$EDXLUSR INVALID KEYWORD
ERROR4 ASMERROR 4,$EDXLUSR OPERAND ONE MISSING

ASMERROR GENERATE
CNEWCMD DC CL8 1 NEWCMDI
NEWLIST $IDEF OPI,(KWD,PI),PERR=ERROR2,KERR=ERROR3 MODEL
NEWOTE DC F' 3 1 NUMBER OF OTES
NEWOTEI OTE TYPE=OPCODE,SLEDATA=I SET OP CODE TO 1
NEWOTE2 OTE TYPE=ADDRESS OTE FOR "OPP
NEWOTE3 OTE TYPE=ADDRESS OTE FOR "KWD"
#NEWCMD EQU *

CALL OPCHECK,(NEWLIST) CHECK SYNTAX
* INITIALIZE "OP CODE" OTE

MOVE NEWOTEI +OTEDATAP, I RESET OP CODE TO I ,r-)
MOVE NEWOTEI+OTEDATAL,(ALABEL,#I) INSERT LABEL C

* PROCESS "OPI" OPERAND '''''-
IF (OPI+2,EQ,0),GOTO,ERROR4 OPI MISSING?
MOVE NEWOTE2+0TEDATAL,Pl+2 STORE ADDR OF PI SLE
MOVE NEWOTE2+0TEDATAP,OPI+2 STORE ADDR OF OPI SLE
CALL $INDEX,OPl,NEWOTEI+OTEDATAP,(NEWOTE2),1

* PROCESS "KWD" OPERAND

*

IF (KWD,EQ,0) KWD SPECIFIED?
MOVE NEWOTE3+0TETYPE,+#NULL SET OTE TYPE TO NULL

ELSE
MOVE
IOR
MOVE
CALL

ENDIF
SET UP EXIT

MOVEA
GOTO
COPY
COpy
ENDPROG
END

NEWOTE3+0TETYPE,+#ADDRESS RESET TYPE TO ADDRESS
NEWOTEI+OTEDATAP,X '4000 1 SET FLAG BIT I ON
NEWOTE3+0TEDATAP,KWD+2 STORE ADDR OF KWD
$INDEX,KWD,NEWOTEI+OTEDATAP,(NEWOTE3),2

(AMACDATA,#I),NEWOTE STORE OTE COUNT
ENDTASK
COPCHECK COPY CODE FOR OPCHECK SUBRTN
C$INDEX COPY CODE FOR $INDEX SUBRTN

Figure 7-4. Sample Overlay Program

o

o

o

o

Creating Your Own EDL Instruction

After you complete the coding of the overlay program, you must compile it using
$EDXASM. You must create a load module by using either $UPDATE or
$EDXLINK. You must specify the name of the load module in a language control
data set extension. How and why you do this is described in the section "Creating a
Language Control Data Set Extension."

Creating a Language Control Data Set Extension
$EDXASM uses a language control data set to generate syntax error messages and
to locate overlay programs. The $EDXL data set contains this information. You
create an extension to $EDXL to contain your error messages and overlays.
Creating an extension to $EDXL minimizes the changes you would have to make if
you receive a new version of $EDXL or $EDXASM.

A language control data set is divided into two logical parts. The first part contains
the syntax error messages. The second part contains the names of overlay programs
and instructions. Each overlay has a corresponding instruction which it processes.
The second part also contains the names of the copy code modules that you might
reference in an assembly. The extension you create has this same format.

There are five control statements you can use in a language control data set. The
following is a brief description of these control statements:

*COMMENT

*COPYCOD

*EXTLIB

*OVERLAY

STOP

Indicates a comment

Defines a copy code library

Defines a language control data set extension

Defines an overlay program and the instruction(s) it processes

Indicates the end of a language control data set.

The format and description of the control statements are in the section "Control
Statements" on page 7-15.

This section shows how to create an extension for the NEWCMD instruction. You
use a text editor to create the extension.

Note: Once the language control data set has been modified, you must update it
using the BUILD (BU) option of $EDXASM.

Entering the Syntax Error Messages
In the sample overlay program, four syntax messages were defined. The
ASMERROR statement was used to indicate the message number (1 - 4). The
messages you enter in this data set and their line numbers must correspond to the
ASMERROR message numbers.

You begin the message in column 2. The numbers you enter in columns 2 and 3
indicate the completion code. $EDXASM does not generate object code if you
specify a completion code greater than 8.

Chapter 7. Creating Your Own EDL Instruction 7-13

Creating Your Own EDL Instruction

The messages for NEWCMD look like the following:

88 *** INVALID OR UNDEFINED OPERATION CODE
88 *** AN INVALID POSITIONAL OPERAND WAS SPECIFIED
88 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED
88 *** OPERAND ONE IS MISSING

Following the syntax messages, you must specify the overlay program and
instruction names.

Specifying the Overlay and Instruction Names

7-14 SC34-0942

You use the *OVERLAY statement to define the name of the overlay program, the
volume it resides on, and the instruction(s) the overlay processes. This statement
must begin in column 1.

Assuming the load module for the sample overlay program is in data set
NEWOLA Y on volume ASMLIB, the *OVERLA Y statement would look like:

88 *** INVALID'OR UNDEFINED OPERATION CODE
88 *** AN INVALID POSITIONAL OPERAND WAS SPECIFIED
88 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED
88 *** OPERAND ONE IS MISSING

*OVERLAY NEWOLAY ASMLIB NEWCMD

You must enter a statement to indicate the end of the extension data set. You enter
the **STOP** statement beginning in column 1 to do this. The complete extension
data set now looks like:

88 *** INVALID OR UNDEFINED OPERATION CODE
88 *** AN INVALID POSITIONAL OP~RAND WAS SPECIFIED
88 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED
88 *** OPERAND ONE IS MISSING

*OVERLAY NEWOLAY ASMLIB NEWCMD
STOP

Because the name $EDXLUSR is specified on the ASMERROR statements in the
overlay program, you must save the extension with that name. After you save the
language control data set extension, you must specify its name and volume in
$EDXL. You do this by editing $EDXL and entering an *EXTLIB statement
beginning in column 1.

o

()

o

o

o

Creating Your Own EDL Instruction

An example of what $EDXL would look like with the *EXTLIB statement follows:

08 *** TOO MANY POSITIONAL OPERANDS WERE SPECIFIED
08 *** AN INVALID KEYWORD PARAMETER WAS SPECIFIED
08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED

•
•
•

08 *** PART NOT ALLOWED WITH DSX SPECIFICATIONS
*OVERLAY $ASM0008 ASMLIB MOVE MOVEA AND lOR EOR
*OVERLAY $ASM0009 ASMLIB WAIT POST ENQ DEQ
*COMMENT
*OVERLAY $ASM0003 ASMLIB PROGRAM LOAD DSCB
*EXTLIB $EDXLUSR ASMLIB
*COPYCOD ASMLI B
*COPYCOD EDX002
STOP

After you create the language control data set extension and update $EDXL, the
next step is to add the operation code for NEWCMD. The procedure for doing this
is described in "Defining the Instruction Operation Code" on page 7-17.

Control Statements
This section describes the control statements you can use in a language control data
set. '

*OVERLAY Statement
You use the *OVERLA Y statement to define the name of the overlay program, the
volume that it resides on, and the instructions that it processes.

The *OVERLA Y statement has the following format:

Column
1-8
10-17
19-24
28-35
37-44
46-53
55-62
64-71

Contents
* OVERLAY
Program name
Volume name (blank indicates IPL volume)
Instruction I
Instruction 2
Instruction 3
Instruction 4
Instruction 5.

If an overlay program processes more than five instructions, you continue the
instruction names in column 1 on the next line. You can specify up to eight
instruction names on the continued line. Each instruction is allowed eight columns
and one blank. Instructions would begin, for example, in columns 1, 10, and 19.

Chapter 7. Creating Your Own EDL Instruction 7-15

Creating Your Own EDL Instruction

*EXTLIB Statement
You use the *EXTLIB statement to define a language control data set extension. 0
This data set contains additional error message text, overlay and instruction names, _'
and copy code volume names. The extension data set has the same format and
characteristics as the primary language control data set ($EDXL).

The *EXTLIB statement has the following format:

Column
1-7
10-17
19-24

Contents
*EXTLIB
Language extension data set name
Volume name (blank indicates the IPL volume).

You should always insert this statement before any *COPYCOD statements in the
primary language control data set.

*COPYCOD Statement
You use the *COPYCOD statement to define a copy code library. The volume you
specify contains source code modules you reference on the compiler COpy
statement.

The *COPYCOD statement has the following format:

Column
1-8
10-17

Contents
*COPYCOD
Volume name.

The language control data set or its extensions may contain up to five different
*COPYCOD statements. When $EDXASM processes compiler COpy statements, it C~)
searches the defined *COPYCOD volumes in the order in which the *COPYCOD ,
statements occur in the language control data set.

*COMMENT Statement

STOP Statement

7-16 SC34-0942

You use the *COMMENT statement to insert optional comments in the language
control data set. $EDXASM ignores the text you specify on this statement.

You use the **STOP** statement to indicate the end of the language control data
set. You can add additional error messages, overlay programs, and copy code
modules after this point. The number of additional modules is limited by the size of
the operation code table (OPCTABLE).

o

o

Creating Your Own EDL Instruction

Defining the Instruction Operation Code
Every EDL instruction must have its operation code defined in the emulator
command table. This section explains how you can define the operation code for
NEWCMD through the use of an initialization routine. This routine will execute
every time you IPL.

The following code inserts the operation code into the emulator command table. An
explanation of this routine follows the example.

PROGRAM
COPY
EXTRN
ENTRY

CMDINIT EQU
MOVE
MOVEA
GOTO
ENDPROG
END

MAIN=NO
PROGEQU
INITEXIT ,MYRTN
CMDINIT
*
#l,$CMDTABL
(2,#1),MYRTN
INITEXIT

PROGRAM HDR EQUATES
DEFINE EXTERNAL ENTRY PTS

EMULATOR COMMAND TABLE
DEFINE OP CODE 01 PROCESS RTN
BRANCH TO SUPV IN IT RTN

The routine includes the PROGEQU equates. Doing this resolves references to
$CMDT ABL. $CMDT ABL contains the addresses of the routines that do the
processing for EDL instructions. Next, the routine defines two external entry points:
INITEXIT and MYRTN. INITEXIT is an entry point in the supervisor to which
your routine must return control upon exit. MYRTN is the entry point of the
Series/l assembler program that processes the NEWCMD instruction. This routine
is described later.

The code beginning at entry point CMDINIT places the address of MYRTN in the
emulator command table. The MOVE instruction moves the starting address of the
emulator command table ($CMDTABL) into software register I (#1). The MOVEA
instruction moves the address of MYRTN two bytes into the table. Hence, when the
emulator encounters operation code 01, the emulator passes control to MYRTN.

Note: Operation codes 01 and 02 are reserved for your use. To define operation
code 02, move the address of the routine four bytes into the emulator command
table.

You exit the routine by branching to label INITEXIT.

You must assemble and link edit this routine with the supervisor. You specify the
entry point name CMDINIT on the INITMOD = operand of the SYSPARMS
statement at system generation.

The entry point MYRTN, defined as an external, must be the entry point of the
routine that processes NEWCMD. The Series/l assembler code required for this
routine is described next.

Chapter 7. Creating Your Own EDL Instruction 7-17

Creating Your Own EDL Instruction

Writing the Assembler Code for NEWCMD
This section shows the Series/l assembler code that performs the function of
NEWCMD. For the instruction you create, you must also write the Series/l
assembler code that performs the function you need. Refer to the IBM Series/l
Event Driven Executive A1 aero Assembler, GC34-0317 for details on how to code in
Series/1 assembler.

You will need the Series/1 Macro Assembler ($SlASM) to perform this step.

Coding Considerations
When you code your Series/1 assembler routine, adhere to the following:

• Write the routine in Series/1 assembler code only.

• Follow the register conventions used by CMDSETUP.

• Ensure the routine is reentrant:

No subroutines are used.
No parameter naming operands (Px =) are coded.
Data areas are unique to each task.
Always test RS for the operation code.
Ensure R2 contains the TCB address upon exit.
Ensure R1 is incremented by the instruction length (in bytes) upon exit.

Description of Sample Program

o

Again, if you code one operand on the NEWCMD instruction, it adds 1 to the value (~--'\

of operand 1. If you code two operands, the value of operand 2 is added to the .. _.,.;i

7-18 SC34-0942

value of operand 1. The following description explains how this is done:

At the entry point MYRTN, the routine begins by checking the flag bits of the
operation code in register S (RS). The flag bits indicate whether one or two
operands were specified. If bit 1 equals 1, only one operand was coded on
NEWCMD. The routine branches to label OPND1 to process operand l. Here, the
routine adds the value 1 to the value of

The code at label OPND2 is executed when bit 1 of the operation code equals O.
This bit indicates both operand I and operand 2 were coded. The value of
operand 2 (R4) is added to the value of operand I (R3). Next, register I (R1) is
incremented by six bytes. After register I is incremented, the routine branches to
CMDSETUP.

o

o

o

MYRTN
*

ENTRY
EQU

Creating Your Own EDL Instruction

MYRTN
*

* CMDSETUP REGISTER CONVENTIONS:
* Rl ==> OP CODE
* R2 ==> TCB
* R3 ==> OPI ADDRESS
* R4 ==> OP2 ADDRESS OR DATA (IF IT EXISTS)
* R5 ==> OP CODE
*
*
CHKBITS TWI X '4GGG 1,5 TEST IF BIT 1 OFF; IF OFF
* THERE IS ONLY ONE OPERAND

JOFF OPNDI LABEL FOR ONLY ONE OPERAND
OPND2 AW (R4),(R3) ADD-OP2 TO OPI

AWl 6,Rl SET UP Rl FOR NEXT INSTRUCTION
BX CMDSETUP BRANCH BACK TO EMULATOR

OPNDI EQU *
AWl 1,(R3) ADD 1 TO OPI
AWl 4,Rl SET UP Rl FOR NEXT INSTRUCTION
BX CMDSETUP BRANCH BACK TO EMULATOR
END

Use $SIASM to assemble this routine. You must link edit the assembled output
from this routine and the output from the initialization routine with the supervisor.

Testing the New Instruction
To verify that the overlay program, initialization, and assembler routines work
properly, write a small program containing the new instructions, for testing
purposes.

System Generation Requirements
Before you test the instruction:

l. Use a text editor to read in the link-control data set that defines the modules
currently in your supervisor (normally LINKCNTL on EDX002).

2. Specify INCLUDE statements for the assembled output from the initialization
routine and the assembler routine. You specify the names of these data sets.

3. Write (save) the updated link-control data set back to LINKCNTL.

4. Use a text editor to read in the data set that defines your current system
configuration (normally $EDXDEFS on EDX002).

5. Code the INITMOD= operand on the SYSPARMS statement. You must
specify the entry point name of your initialization routine. For the NEWCMD
instruction, specify the entry point name CMDINIT.

Chapter 7. Creating Your Own EDL Instruction 7-19

Creating Your Own EDL Instruction

6. Write (save) the updated data set back to $EDXDEFS.

7. Perform a system generation.

8. After the system generation completes, initialize (II command of $INITDSK) the
new supervisor and IPL the system.

When you complete these steps, you can test your instruction.

Coding a Test Program

7-20 SC34-0942

When you test the instruction, you should code all the possible variations of the
instruction's syntax. You should also test for invalid syntax.

You can use the following sample program to test the NEWCMD instruction:

TEST PROGRAM BEGIN
BEGIN EQU *

NEWCMD A ADD 1 TO A (1)
NEWCMD A,KWD=B ADD B (2) TO A (2)
PRINTEXT '@THE RESULT IS: I

PRINTNUM A A = 4
MOVEA #l,VALUES SET UP INDEX
NEWCMD C,KWD=(4,#1) ADD D (5) TO C (3)
PRINTEXT '@THE RESULT IS: I

PRINTNUM C C = 8
MOVEA AY,X SET ADDR OF X
NEWCMD A,Pl=AY USE X AND ADD 1
PRINTEXT '@THE RESULT IS: I

PRINTNUM X X = 1
*
* INVALID SYNTAX - THESE GENERATE ERROR MESSAGES
*

NEWCMD X,KWDD
NEWCMD X,P2=ERR

*
*

PROGSTOP
A DATA Fill
VALUES EQU *
B DATA F'21
C DATA F' 31
D DATA F'51
X DATA F'O'

ENDPROG
END

If the overlay program is correct, the compiler listing for the test program will show
the object code generated for the valid statements. Further, $EDXASM should issue
error messages for the statements with invalid syntax.

Upon receiving a -1 completion code from $EDXASM, create a load module using
$UPDATE or $EDXLINK. Load the program with the $L command to execute the
program. The output from your program should yield the expected results.

o

0

c-

o

o

o

Creating Your Own EDL Instruction

Debugging Overlay Programs
You can use $DEBUG to debug an overlay program. To do this, you must:

1. Code a READTEXT, QUESTION, or WAIT KEY instruction as the first
executable instruction of the overlay program. When the overlay program is
loaded, it will stop at this instruction and wait for input from the terminal.

2. Load $EDXASM and specify one overlay area (OV option) when you compile
the source program containing your new EDL instruction.

3. Load $DEBUG in the same partition as $EDXASM when $EDXASM loads
your overlay program and the overlay program stops at the READTEXT,
QUESTION, or WAIT KEY.

4. Enter $ASMOPCD when $DEBUG prompts you for the program name. If
$ASMOPCD is already in storage, do not request a new copy to be loaded.

Once the overlay program is in storage, you can examine data areas and set
breakpoints with $DEBUG.

If a program check occurs in the overlay program, the system cancels the overlay
program and issues a program check message. The error message may not give the
correct displacement into the overlay program for the failing instruction (Rl) and
the TCB address (R2). If these addresses appear to be outside the program, you can
calculate the correct addresses by subtracting the program load point address from
the address of RI and R2. The resulting addresses may be in either $EDXASM or
in one of the overlay programs.

Creating Unique Labels Within the Overlay Program
Instructions may require unique labels which do not conflict with labels you create
from a previous call to your overlay program or labels define in an application
program. For example, $EDXASM creates a unique label (internally) for each
ENDIF statement when multiple IF-ENDIF statements are coded in a program.

$EDXASM provides a method for you to create unique labels when you use the field
$SYSNDX in an overlay program. $SYSNDX is a I-word field in the compiler
common area. You reference this field through the ASMCOMM equates.

$EDXASM sets up a 4-digit counter for this field. You must add 1 to this counter
to generate a unique label each time you use $SYSNDX. You can convert the
binary value of $SYSNDX to a 4-character EBCDIC representation of the number
using the CONVTB instruction. The following example shows how to convert the
value of $SYSNDX. Assume that #1 points to the compiler common area and that
$SYSNDX contains the value 2. After the conversion, INDEX contains the
character value "0002."

CONVTB INDEX,($SYSNDX,#1),FORMAT=(4,O,I)
•
•
•

INDEX DC

Chapter 7. Creating Your Own EDL Instruction 7-21

Creating Your Own EDL Instruction

After conversion, you append the four characters to a 1 - 4 character prefix to form
a unique label. For example, the following code shows how to define a unique label
with the prefix $$LI using the value in INDEX from the previous example:

•
•
•
MOVE
ADD
•
•
•

OTE1 aTE
SLE1 SLE
LAB1 DC
INDEX DC

LAB1+4,INDEX,(4,BYTES)
($SYSNDX,#l),l

TYPE=ADDRESS,SLENAME=SLE1
ADDRESS=LAB1,LENGTH=8
CL8 1 $$LI I

CL4 1 0000 '

The name on the label created would have the text $$LI0002. You could then refer
to this label in other object text elements.

Generating Source Statements

7-22 SC34-0942

An overlay program can generate one source statement which $EDXASM processes
after the generating overlay ends. $EDXASM processes this source statement before
processing the next statement in the source data set. One instance where this feature
is used, is when you specify TASK = YES on a DISK statement. The overlay
program $ASMOOOS, which processes the DISK statement, creates a TASK
statement for the device's disk task. The overlay program $ASMOOOT, which
processes the TERMINAL statement, also uses this feature to generate keyboard
tasks for terminals.

You can use this feature in your overlay program to generate a source statement and
optionally create a continuation line for that statement.

Notes:

1. If you built an instruction in the overlay program, the source statement must
also be an instruction. If you built a statement in the overlay program, the
source statement must also be a statement (nonexecutable).

2. The source statement you create does not appear in the compiler listing;
however, the object code generated does appear if the source statement is an
instruction.

3. If a compilation error occurs with the source statement you create, the error
message appears after the instruction or statement you built in the overlay
program.

o

()

o

o

o

Creating Your Own EDL Instruction

Creating a Source Statement - No Continuation Line
To create a source statement (with no continuation line), do the following:

1. Define an 80-byte area in the overlay program which contains the text of the
source statement. For example, the following statement:

TRMNL 10CB SCREEN=ROLL

looks as follows when defined in the overlay program:

SRCSTMT DATA CL8tl ' TRMNL 10CB SCREEN=ROLL '

2. Move the field #AINBUF to a software register. This field is defined in
ASMCOMM and contains an address of a storage area. The address to which
#AINBUF is pointing is where you move the source statement. For example, if
#1 points to ASMCOMM, the following code shows what you must do to move
the source statement to #2:

MOVE
MOVE

#2, (#AINBUF,#l)
(tl,#2),SRCSTMT,(8tl,BYTES)

GET ADDR OF STORAGE AREA
MOVE SOURCE STATEMENT

3. Move the value X I FFFF I to #AINBUF. This move indicates that the overlay
program is creating a source statement and that $EDXASM must process it
before the next statement in the source data set. After moving X I FFFF I to
#AINBUF, store the number of object text elements created in the overlay, and
return control to label-ENDT ASK to exit the overlay program. The following
example shows how to set #AINBUF and exit the overlay program:

MOVE
MOVEA
GOTO

(#AINBUF,#l),'FFFF '
(AMACDATA,#l),NEWOTE
ENDTASK

GENERATE SOURCE FLAG
PASS OTE COUNT

Chapter 7. Creating Your Own EDL Instruction 7-23

Creating Your Own EDL Instruction

Creating a Source Statement - With Continuation Line
To create a source statement with a continuation line, you do the same steps 0
previ.ously discussed plus some additional steps. These additional steps are explained . ..
III this section.

7-24 SC34-0942

After you define the source statement within the 80-byte area, do the following:

1. Insert a nonblank character in column 72 of the source statement.

2. Move the address, to column 77 of the source statement, of a subroutine that
will append the continuation line to the source statement.

The subroutine, which you must write and define in the overlay program, must be
written to receive the address of a storage area. $EDXASM calls the subroutine
(after the overlay program branches to ENDT ASK) and passes the subroutine an
address. Because $EDXASM defines the storage area for you, do not define this
area in the overlay program. The subroutine must use the buffer area at that
address to construct the continued source statement.

The following is an example of how you can do this:

•
•
•
MOVE
MOVE
MOVE
MOVEA
MOVE
MOVEA
GOTO

#2,(#AINBUF,#1)
(0,#2),SRCSTMT,(80,BYTES)
(71,#2),C 'X',(1,BYTE)
(76,#2) ,CONTSUB
(#AINBUF,#l),'FFFF '
(AMACDATA,#l),NEWOTE
ENDTASK

GET ADDR OF STORAGE AREA
MOVE SOURCE STATEMENT
SET CONTINUATION FLAG
MOVE ADDR OF SUBRTN
GENERATE SOURCE FLAG
PASS OTE COUNT

SRCSTMT DATA
CONTSRC DATA
CONTSAVE DATA

CL80 ' TRMNL IOCB SCREEN=ROLL,'

SUBROUT
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
RETURN

CL80 ' PAGSIZE=60,NHIST=6 1

F'O'
CONTSUB,CONTBUF
CONTSAVE,#2
#2,CONTBUF
(0,#2),C' ',(80,BYTES)
(15,#2),CONTSRC,(18,BYTES)
(71,#2),C' ',(1,BYTE)
#2,CONTSAVE

SAVE AREA ADDR

SAVE CONTENTS OF #2
GET BUFFER ADDR
SET BUFFER TO BLANKS
BUILD NEXT LINE
CLEAR CONTINUE COLUMN
RESTORE #2

The source statement created in the previous example and passed to $EDXASM
looks like the following:

TRMNL IOCB SCREEN=ROLL, X
PAGSIZE=60,NHIST=6

(~)

o

o

o

o

Creating Your Own EDL Instruction

Overlay Program Statements
This section describes in detail the overlay program statements you can use and their
coding syntax.

$IDEF Statement - Build Model EDL Instruction

Examples of $IDEF

You use the $IDEF statement to build a model of the instruction. When you code
$IDEF, you specify the positional operands and keywords of the instruction. The
number of positional and keyword operands for an instruction must not exceed 50.

You can optionally specify error exits on $IDEF for invalid syntax. These error
exits are used in conjunction with the ASMERROR statement.

The following is the syntax for the $IDEF statement:

Syntax:

label
Required:
Defaults:
Indexable:

Operand

posits

kwds

PERR=

KERR =

$IDEF posits,kwds,PERR = ,KERR =
none
PERR = INV ALPOS,KERR = INV ALKWD
none

Description

The list of allowable positional operands.

The list of allowable keyword operands. The keywords can be 1-7
characters in length. The keyword you specify is the actual keyword
coded for the new instruction.

The label of an instruction to branch to if more positional operands
are coded in the instruction than defined by the instruction model. If
omitted, control is passed to label INV ALPOS, which you must code.

The label of an instruction to branch to if a keyword operand is coded
in the instruction which is not listed in the instruction model. If
omitted, control is passed to label INV ALKWD, which you must
code.

The following are examples of how to code the $IDEF statement:

MODEll
MODEL2
MODEL3

$IDEF
$IDEF
$IDEF

(POSl,POS2),KWD
POS,(MODE,LINE,SKIP,SPACES)
POS,KWD,PERR=BADPOS,KERR=BADKWD

Chapter 7. Creating Your Own EDL Instruction 7-25

Creating Your Own EDL Instruction

ASMERROR Statement - Generate Syntax Error Messages
The ASMERROR statement generates a syntax error message for the input
statement currently being processed if you code that statement incorrectly.
ASMERROR is used in conjunction with the $IDEF statement. $EDXASM passes
control to the label ENDT ASK after the message is issued.

Note: A control block is required in the overlay program for you to use
ASMERROR statement. You create the control block by coding:

I ASMERROR GENERATE

You code ASMERROR GENERATE only once in a program.

Syntax:

label
Required:
Defaults:
Indexable:

Operand

number

extlib

ASMERROR
number
extlib - $EDXL
none

Description

number ,extlib,Pl =

Code a decimal number representing the error message number to be
generated. This number corresponds to a line number in the language
control data set ($EDXL or extension). If this number is greater than
the maximum error text line number, the system issues a general error
message.

The data set $EDXL or the name of the language control data set
extension in which the error message text is located. This name must
correspond to the data set name on an *EXTLIB control entry when
you load $EDXASM. If the specified data set is not included as an
extension tothe primary language control data set ($EDXL), a general
error message with asterisks for the data set name is printed. This
data set is not used for an error message in the primary language
control data set.

Examples of ASMERROR

7 -26 SC34-0942

The following are examples of the ASMERROR statement:

INVALPOS ASMERROR 1
INVALKWD ASMERROR 2

ASMERROR 17,$EDXLUSR

Note: You can use the first two examples for the default error exits on the $IDEF
statement. Messages 1 and 2 produce messages appropriate to these errors.

o

o

o

o

Creating Your Own EDL Instruction

OTE Statement - Build Object Text Element
The OTE statement defines an object text element. You can use an object text
element to do the following:

• Define a label

• Generate one or more bytes of object code

• Generate error messages

• Define external references and entry points.

The compiler aligns the object code on an even-byte address for TYPE = OPCOPE,
ADDRESS, and FCON.

Syntax:

label
Required:
Defaults:
Indexable:

Operand

TYPE =

OTE TYPE = ,DUPFAC = ,SLEDATA = ,SLENAME =
TYPE =
DUPFAC = 1,SLEDATA = O,SLENAME = 0
none

Description

The type of object text element to be defined. The ASMCOMM
equate field OTETYPE defines this operand. The following types are
valid:

NULL

OPCODE

ADDRESS

ERROR

FCON

DATA

EQUATE

EXTRN

OTE is to be ignored.

Data is an operation code. The SLEDATA operand
contains the 2-byte operation code.

Data is an address. The SLEDATA operand must
point to the sublist element (SLE) defining the address
constant.

Generate an error message. The SLEDAT A operand
defines the numerical error message to be printed.
This number corresponds to a line number in the
primary language control data set ($EDXL).

Data is a fullword constant. The SLEDAT A operand
contains the two bytes of data to be generated.

Define untranslated data. The SLEDAT A operand
must point to a sublist element defining the data.

A label at the current location counter (for example
LOCI EQU *). The SLENAME operand must point
to the SLE of the label. The SLEDAT A operand
should point to an SLE which points to the asterisk.
Note that if you require an equate for other purposes,
you can use the LABELS subroutine.

An external reference. The SLEDAT A operand
points to the SLE defining the name of the external
symbol.

Chapter 7. Creating Your Own EDL Instruction 7-27

Creating Your Own EDL Instruction

Examples of OTE

7-28 SC34-0942

WXTRN

ENTRY

A weak external reference. The SLEDAT A operand
points to the SLE defining the name of the external

. symbol.

An entry point. The SLEDATA operand points to
the SLE defining the symbol which is to be an entry
point.

DUPFAC = Specifies the duplication factor for the object text element, or the
number of times $EDXASM is to duplicate the object text in the
object file. Only the first byte of text has the label defined by
SLENAME.

You use this operand primarily for duplicating data definition fields,
for example 128F I 0 I

If you specify DUPFAC = 0, $EDXASM does not generate object text,
but does align boundaries. This is equivalent to coding:

ALIGN WORD

The ASMCOMM equate field OTEDATAC defines this operand.

SLEDATA=
If TYPE=OPCODE or FCON, SLEDATA defines the data to be
entered into the object file. If TYPE = ERROR, it defines the error
message number to be printed. If TYPE = ADDRESS, DATA,
EXTRN, WXTRN, or ENTRY, it must contain the address of the
sublist element (SLE) defining the data to be processed.

The ASMCOMM equate field OTEDATAP defines this operand.

SLENAME=
The label assigned to the first byte of object text generated by the
current OTE. If this field contains a 0, no label is assigned.
Otherwise, it must contain the address of the SLE defining the label to
be defined.

The ASMCOMM equate field OTEDATAL defines this operand.

The following are examples of the OTE statement:

OTEl OTE
OTE
OTE

TYPE=ADDRESS
TYPE=FCON,SLEDATA=O
TYPE=EXTRN,SLEDATA=SLEI

C)

o

o

o

c

o

Creating Your Own EDL Instruction

SLE Statement - Build Sublist Element

Examples of SLE

The SLE statement enables you to define a sublist element in the same format as a
sublist element generated by $EDXASM. You must use the SLE statement to
generate a label or a data string that does not appear in the original input data.

Syntax:

label
Required:
Defaults:
Indexable:

Operand

SLE ADDRESS = ,LENGTH = ,TYPE =

ADDRESS = ,LENGTH =

TYPE = 0 (address)
none

Description

ADDRESS = The address of the text string defining the data. The ASMCOMM
equate field SLEDAT A defines this operand.

LENGTH = The number of characters in the text string. The ASMCOMM equate
field SLELENG defines this operand.

TYPE = Omit this operand if the data defines an address; otherwise, specify
either SELFDEF or STRING. The ASMCOMM equate field
SLELENG defines this operand ..

SELFDEF Specify a self-defining term (for example, decimal or
hexadecimal constants).

STRING Specify string data. You must process this data by
coding an aTE with TYPE = DATA specified.

The following are examples of the SLE statement:

SLEl
SLE2
SLE3

SLE
SLE
SLE

NAME! DC
NAME2 DC
ASTERISK DC

ADDRESS=NAME1,LENGTH=3
ADDRESS=NAME2,LENGTH=1,TYPE=SELFDEF
ADDRESS=ASTERISK,LENGTH=l

CL3 I XYZ' label XYZ
CL1 ' 51 constant 5
CL1'*' current location counter

Chapter 7. Creating Your Own EDL Instruction 7-29

Creating Your Own EDL Instruction

Overlay Program Subroutines
This section describes in detail the overlay program subroutines you can use and
their coding syntax.

$INDEX Subroutine - Indicate Index Register Usage

Entry Conditions

7 -30 SC34-0942

The $INDEX subroutine examines an operand field for index register specification.
It also stores control information in the operation code word and in the object text
element for the operand being processed.

The $INDEX subroutine is in the form of copy code. You must include a COpy
C$INDEX statement in your program to use it.

The CALL to the $INDEX subroutine has the following syntax:

Syntax:

label

Operand

$INDEX

ole

opword

CALL $INDEX,oie,opword,ote,posit

Description

Code $INDEX as the first operand on the CALL instruction.

The address of the operand list element (OLE) of the operand being
processed.

The address of the operation code word into which index register usage
indicators may be set.

ote The address of the object text element (aTE) that indicates the type of
input.

posit The position number (1, 2, or 3) of the input operand on the source
statement.

You must store the SLE address of the operand being processed in the appropriate
aTE before you call $INDEX.

o

o

o

o

o

o

Exit Conditions

Registers Used

Creating Your Own ED L Instruction

How the "ole" operand is presented to $INDEX determines how the register flag
bits are set in "opword." The flag bit settings are shown in Figure 7-5.

#1 or #2
Register #1 Used #2 Used Used as

Bits/Operand Not Used as (x,#l) as (x,#2) Operand

6 & 7 for op1 00 01 10 11

4 & 5 for op2 00 01 10 11

2 & 3 for op3 00 01 10 11

Figure 7-5. Register Flag Bits from $INDEX

Error message No.4 is issued if the number of operand sublist elements is not 1 or
2. Error message No.5 is issued if an index register other than #1 or #2 is specified.

Software register #2 is used.

BLDTXT Subroutine - Build Object Text

Entry Conditions

Exit Conditions

The BLDTXT subroutine builds object text based on a list of object text elements
(OTEs). You use the OTE statement to build the object text element.

The BLDTXT subroutine is in the form of copy code. You must include a COpy
CBLDTXT statement in your program to use it.

The CALL to the BLDTXT subroutine has the following syntax:

Syntax:

[label CALL BLDTXT

Operand Description

BLDTXT Code BLDTXT as the operand on the CALL instruction.

The AMACDAT A field in compiler common area must point to a I-word count of
the number of object text elements. You must include the ASMCOMM equates in
your program to access the compiler common area. The AMACDAT A field must
be followed by the object text elements. The length of each OTE is defined by the
equa te LOTE.

None

Chapter 7. Creating Your Own EDL Instruction 7-31

Creating Your Own EDL Instruction

Registers Used
None

GETVAL Subroutine - Evaluate Character String

Entry Conditions

Exit Conditions

7 -32 SC34-0942

The GETV AL subroutine evaluates a character string which is a self-defining term.
A self-defining term is a fixed-decimal constant, a hexadecimal constant, or a 1- or
2-byte EBCDIC character string.

Examples of data handled by GETV AL:

• Decimal constants 1, 100, -300, 32767, -12345

• Hexadecimal constants X 112 I , X I ABCD I , X I FFFF I , X 111

• EBCDIC constants C'A', CIXYI, C ' Ol l
, C'E'

The GETV AL subroutine is in the form of copy code. You must include a COpy
CGETV AL statement in your program to use it.

The CALL to the GETV AL subroutine has the following syntax:

Syntax:

[label

Operand

GETVAL

sle

value

errexit

None

CALL GETV AL,sle,value,errexit

Description

Code GETVAL as the first operand on the CALL instruction.

The address of the sublist element (SLE) which points to the string to
be evaluated.

A word to receive the result of the evaluation.

The address of an error routine to be branched to if invalid syntax is
encountered in the evaluation.

If an error exit is taken, "value" contains the result computed at the time of the
error. For example, if the string 123X is evaluated, the result at the time of the
error exit is 123.

o

o

o

0

o

Creating Your Own EDL Instruction

LABELS Subroutine - Define or Resolve Labels

Defining Labels

You use the LABELS subroutine to define or resolve a label for a sublist element
(SLE). You can define or resolve the following label types:

• ADDRESS
• EQUATE
• EXTRN
• WXTRN
• ENTRY.

The LABELS subroutine is in the form of copy code. You must include a COPY
CLABELS statement in your program to use it.

You code the CALL for the LABELS subroutine differently for label definition and
label resolution.

The CALL for the LABELS subroutine for label definition puts the label you define
into the symbol table with the type and value you specify.

The CALL to the LABELS subroutine for label definition has the following syntax:

Syntax:

I label

Operand

LABELS

#value

#type

1

CALL LABELS,#value,#type,l

Description

Code LABELS as the first operand on the CALL instruction.

The address of the label value to be put into the symbol table.

Label type to be put into the symbol table.

Indicates label definition.

Chapter 7. Creating Your Own EDL Instruction 7-33

Creating Your Own EDL Instruction

Resolving Labels

Entry Conditions

Exit Conditions

Registers Used

7 -34 SC34-0942

If you call the LABELS subroutine to resolve a label and the label is defined, the
label type and value are returned in #type and #value, respectively. If the label is
undefined, an entry is made in the symbol table, and type and value are set to 0 in
the symbol table. The #type operand is set to 0, and #value is set to the symbol

. table pointer index for the symbol.

The CALL for the LABELS subroutine for label resolution has the following syntax:

Syntax:

ilabel

Operand

LABELS

#value

#type

o

CALL LABELS,#value,#type,O

Description

Code LABELS as the first operand on the CALL instruction.

The label value is returned here if label is defined; otherwise, the
symbol table pointer index for the symbol is returned.

The label type is returned here if label is defined; otherwise, a zero is
returned.

Indicates label resolution.

Software register #1 must point to the SLE of the label to be processed.

If a duplicate symbol is encountered in label definition, an error message is issued.
You reference the error message number through the #ERRMSG field in the
compiler common area. You must include the ASMCOMM equates to refer to this
field.

None

o

o

o

o

o

Creating Your Own EDL Instruction

MOVEBYTE Subroutine - Move a Byte String

Entry Conditions

Exit Conditions

Registers Used

The MOVEBYTE subroutine moves a variable-length byte string to a target location
and right pads with blanks.

The MOVEBYTE subroutine is in the form of copy code. You must include a
COPY MOVEBYTE statement in your program to use it.

The CALL to the MOVEBYTE subroutine has the following syntax:

Syntax:

label CALL

Operand

MOVEBYTE

fromsle

toaddr

count

None

MOVEBYTE,fromsle, toaddr ,count

Description

Code MOVEBYTE as the first operand on the CALL instruction.

The address of the sublist element (SLE) defining the source data.

The address of the target location.

The size of the target field.

If the number of characters in the SLE is greater than "count", control is passed to
ASMERROR. If "fromsle" or the number of characters in the SLE equals zero, the
target field is filled with blanks.

None

Chapter 7. Creating Your Own EDL Instruction 7-35

Creating Your Own EDL Instruction

OPCHECK Subroutine - Check Statement Syntax

Entry Conditions

Exit Conditions

Registers Used

7-36 SC34-0942

You use the OPCHECK subroutine for source statement syntax checking.
OPCHECK does the following:

• Compares the number of positional operands in the source statement against the
allowable number of positional operands.

• Matches keywords specified in the source against the allowable keywords.

• Stores the operand list element (OLE) and sublist element (SLE) addresses in the
$IDEF expansion for each operand coded in the source statement.

The OPCHECK subroutine is in the form of copy code. You must include a COpy
COPCHECK statement in your program to use it.

The CALL to the OPCHECK subroutine has the following syntax:

Syntax:

I label CALL OPCHECK,(oplist)

Operand

OPCHECK

oplist

None

Description

Code OPCHECK as the first operand on the CALL instruction.

The oplist operand is the label on a $IDEF statement defining the
model for an instruction.

Each positional and keyword operand specified in the source statement has its entry
in the $IDEF expansion filled in with its OLE and SLE address. If the operand is
missing, the corresponding entry in $IDEF is O.

If an invalid number of positional operands is coded, control passes to the error exit
for positional operand errors. This is the label specified (or default) for PERR= on
$IDEF. If an invalid keyword is coded, control passes to the error exit for keyword
operand errors. This is the label specified (or default) for KERR = on $IDEF.

Software register #2 is used.

o

o

o

o

o

Creating Your Own EDL Instruction

SLPARSE Subroutine - Parse Input String

Entry Conditions

Exit Conditions

Registers Used

The SLPARSE subroutine divides (parses) an input string into one or more sublist
elements (SLEs). The SLEs are separated by commas.

The CALL to the SLP ARSE subroutine has the following syntax:

Syntax:

label

Operand

SLPARSE

ops

opl

optbl

tblng

n

None

CALL SLP ARSE,ops,opl,optbl, tblng,n

Description

Code SLP ARSE as the first operand on the CALL instruction.

The address of the input string.

The number of characters in the input string.

The address of the output table to receive the results of the parse
routine.

The length of the table (in bytes) to be generated.

The address of an area to receive the number of elements found.

The value of the "n" operand is negative if unbalanced parentheses are encountered
in the input string.

None

Chapter 7. Creating Your Own EDL Instruction 7-37

o

o

o
7 -38 SC34-0942

o

o

o

Techniques for Improving Performance

Chapter 8. Techniques for Improving Performance

This chapter describes some of the techniques you can use to increase Series/l
performance.

Analyzing System Performance
You can use the following utilities to identify the major performance areas in your
system and to monitor any modifications you make to improve that performance.

• CPU Monitor-the $CPUMON utility monitors the system's CPU utilization
and displays the current data at a terminal in user specified intervals. The
$CPUPRT utility generates a CPU utilization report for a user-defined portion
of the calendar year. The printed report shows daily CPU utilization.

• Disk Trace Utility-the $DSKMON utility collects data on disk I/O activities
and displays the data at a terminal. The $DSKMON utility uses two utility
programs to print the statistics reports. The $DSKPRTl program lists the
user-specified operations recorded during the monitoring period. The
$DSKPRT2 program produces two reports and an optional graphical
representation of the disk I/O activity for a specific disk device.

• EDX Performance Analyzer-the $SIPSYS utility monitors the system's use of
I/O resources. $SlPSYS can track all task dispatches, I/O interrupts, and wait
states. The $SlPSYSR utility prints the system performance report from the
$SlPSYS data set. The $SlPPRG utility monitors and analyzes the resources
used within a program. The $SlPPRGR utility prints the program performance
report.

Note: Refer to the Operator Commands and Utilities Reference for information on
how to use these utilities and examples of the reports printed. The numbers that
appear in the reports that these utilities generate are not necessarily exact. For this
reason, you should use performance analysis as a relative measure of performance.

Once you have identified the performance problems, you can use the information
you gathered with the utilities to improve your system's performance. Improving
performance may be as simple as finding and eliminating the one major bottleneck
on your system. However, you may find that you need a detailed analysis, extensive
reprogramming, or even a change to the architecture of your system. Therefore, you
must have a thorough understanding of the application you are monitoring.

Chapter 8. Techniques for Improving Performance 8-1

Techniques for Improving Performance

Setting Up Controls
When you use performance tuning, you must establish a "control" group. Then you
can determine if your efforts are actually improving the performance of your system.

For example, if you have a transaction-based system, you can set up a control group
of ten transactions of a particular type. Using the Performance Analyzer or the
Disk Trace Utility, you would then monitor the group for data set access speeds,
response times, and number of disk I/O operations. Then each time you change
something on your system, monitor the same group to see what effect those changes
made.

Analyzing System Reports

8-2 SC34-0942

You can use the various reports generated by the $SlPSYSR, $DSKPRTl, and
$DSKPRT2 utilities and change your system accordingly.

l. Analyze the reports generated by $SlPSYSR and $DSKPRTI to determine the
volume which has the most disk activity. Put that volume in the center of the
disk. Put the next most heavily used volume on one side and the third most
heavily used volume on the other side, and so on.

For instance, you normally allocate volume EDX002 first after initializing a
disk, but in most cases you use this volume more heavily than any other. To
improve access time, place this volume in the center of the disk as follows:

a. Before allocating EDX002, allocate a volume that is one half the size of
your disk.

b. Allocate EDX002. (You might also consider making this volume large
enough to hold the required system modules only.)

c. Delete the volume you allocated initially.

You can also use the reports to analyze data set activity. Then you can
rearrange the data sets on each volume so that the most heavily used data sets
are side by side. If the average time required to access data sets on one volume
is significantly higher than on another volume, you may have initialized the disk
with "write verify" on. Write verify doubles the time required for each write
operation.

If your system contains more than one disk drive, analyze the reports generated
by $SlPSYSR and $DSKPRTI to determine the volume which has the most
disk activity. Place the most heavily used volume in the center of one disk drive,
the second most heavily used volume in the center of another disk drive, and so
on. You can also place your program-type data sets on one drive and your
data-type data sets on another.

o

()

o

o

o

o

Techniques for Improving Performance

2. Instead of putting all your application programs and data sets on your IPL
volume, you can improve directory search time by keeping only EDX functions
on that volume. Create a separate volume for your application programs,
another for application job streams, another for menus, and as many as you
need for data.

3. You can make all your volumes "performance" volumes to achieve the best
processing speeds. The Data Set Summary Report contains the number of
attempts the system made to open volumes other than performance volumes.
Under the totals for each volume is a reference to a volume name $$DDyy (yy is
the device address) and a data set $$. If the system accesses only performance
volumes, $$ does not appear on the report. If it does appear, you know that the
system is accessing nonperformance volumes. The number of times $$ appears is
an indication of your performance degradation.

You can use the Data Set Summary Report or the summary log from the
$CPUMON utility to determine the frequency of program loads. Every time you
load an application program, the system reads $LOADER into storage. If you place
$LOADER and executable programs onto a volume in unmapped storage (created
with the $MEMDISK utility), you can reduce your load times as described in
"Reducing Program Load Time" on page 8-7.

Gaining Faster Access to Data Sets
Whenever you reference a data set on a volume, the system searches the data set
directory to find the location of that data set on the volume. Assume the volume
has several hundred data sets and the data set you need is near the end of the
directory. The system has to read each data set directory entry until it finds the data
set you need. This searching requires processor time. You can, however, reduce the
amount of time it takes the system to search the directory. You do this by arranging
the directory to have the frequently used data sets placed at the beginning of the
directory. You can use the $DIRECT utility (explained in the Operator Commands
and Utilities Reference) to arrange data sets in the directory.

Gaining Faster Access to Volumes
Several factors can determine how fast the system can access a volume:

• The order in which you define your DISK statements at system generation
• Whether you define a volume as a "performance" volume
• Whether you define a fixed-head volume on a fixed-head disk.
• Whether you define the volume on a memory disk.

Chapter 8. Techniques for Improving Performance 8-3

Techniques for Improving Performance

Defining DISK Statements
When you define DISK statements at system generation, you should always define
(first) the device containing volumes you access frequently.

Each device has a volume descriptor entry (VDE) and the VDEs are chained in the
order you define the DISK statements. Therefore, the system has to read through
the VDE chain to locate a volume. If the volume you need resides on the first disk
device you define, the system only has to read the first VDE in the chain.

Specifying Performance Volumes
The system can access a volume designated as a "performance" volume faster than a
"nonperformance" volume. You specify performance volumes by coding the
VOLNAME= operand on the DISK or TAPE statements at system generation.

Specifying performance volumes saves time because the system records the address of
the volume in the volume descriptor entry (VDE) for that device at IPL time. For
nonperformance volumes, the system records the volume address in the volume
descriptor entry when you load the program.

A volume designated as a performance volume requires an additional 46 bytes in the
supervisor.

Specifying a Fixed-Head Volume
If you have a fixed-head disk, you should always allocate in the fixed-head area the
volume you use most frequently. Because no "disk seek" operations are required on
a fixed-head disk, the system can access directly the volume you need.

J

Analyze the report generated by $DSKPRT2 to determine that the largest number of
"disk seek" operations occurs at seek <e-distance o.

You allocate a fixed-head volume by using the $INITDSK utility (AF command).
You can allocate one volume in the fixed-head area of the device.

Defining a Memory Disk Volume

8-4 SC34-0942

The $MEMDISK utility enables you to use unmapped storage as a disk. You can
allocate up to six memory volumes in unmapped storage. The size of each volume is
limited only by the unmapped storage available. By placing data or programs on
these volumes, you can reduce access time. Keep in mind, however, that the volumes
created by $MEMDISK are in main memory. Therefore, you will lose these
volumes in the event of a power failure or an IPL.

o

o

c

o

Techniques for Improving Performance

Improving Disk and Tape 1/0 Performance
You can increase performance for disk and tape I/O operations by coding
TASK = YES on each DISK and TAPE statement at system generation. This causes
each device to have its own task to service I/O requests as opposed to one task
servicing all I/O requests for devices of the same type.

Each DISK or TAPE statement with TASK = YES specified requires an additional
128 bytes in the supervisor.

You can improve I/O performance by using $MEMDISK to allocate all or a portion
of unmapped storage to use as a "disk." By placing temporary work data sets on
volumes in unmapped storage, you can reduce the amount of time required to access
work data sets.

You can allocate up to six memory volumes in unmapped storage. The size of each
volume is limited only by the amount of unmapped storage available. But volumes
allocated in unmapped storage are part of main memory. Therefore, you will lose
these volumes in the event of a power failure or an IPL. Use volumes you create
with $MEMDISK only for work data sets, programs, and other files that you can
recover if a power failure or IPL does occur. See "Reducing Program Load Time"
on page 8-7 for tips on reducing program load times with $MEMDISK. The
Operator Commands and Utilities Reference describes the use of $MEMDISK
commands.

Reducing $COMPRES, $COPYUT1, and $COPY Operating Times
You can reduce the time it takes for $COMPRES, $COPYUTl, or $COPY
operations by requesting dynamic storage. You specify the amount of dynamic
storage when you load these utilities. The dynamic storage you specify is the
amount of contiguous storage in the partition minus the size of the program(s).

The following is an example of how you request the maximum dynamic storage
available in the partition you are loading the utilities:

> $L $COMPRES,,*
> $L $COPYUTl,,*
> $L $COPY" *

For $COMPRES, maximum performance is reached when you specify dynamic
storage as the number of data sets times 32. You can determine the number of data
sets by loading $DISKUTI and issuing the LS command. For $COPYUTI and
$COPY, the more dynamic storage you request, the greater the performance
improvement.

Chapter 8. Techniques for Improving Performance 8-5

Techniques for Improving Performance

Reducing $EDXASM Compilation Time
You can reduce the amount of time needed to compile a $EDXASM program by
requesting the maximum number of overlays (6) when you load $EDXASM. The
default is 6. Specifying the maximum reduces the number of storage loads required
by $EDXASM. Use the OVERLAY (OV) option to specify the number of overlays.
(Refer to the Installation and System Generation Guide for an explanation of using
the OVERLAY option.)

You can also reduce the amount of time required to compile or assemble programs
by creating temporary work data sets for the $EDXASM compiler, the $SIASM
assembler, and the $EDXLINK linkage editor. The $MEMDISK utility enables you
to create these data sets in unmapped storage. See the $JOBUTIL job stream in
"Reducing Program Load Time" on page 8-7 for an example.

In addition, you can decrease assembly or compilation time even further by copying
the entire assembler or compiler and all associated overlays onto volumes created
with the $MEMDISK utility.

Note: Since unmapped storage is part of main memory, you will lose the volumes
created with $MEMDISK in the event of a power failure or IPL. Use the volumes
in unmapped storage only for work data sets, programs, and other files that you can
recover if a power failure does occur.

Improving Performance of EDL Instructions

8-6 SC34-0942

To improve performance, you can move supervisor modules that contain emulation
support for specific EDL instructions and the supervisor module EDXALU from
partition 1 to another partition.

For example, to improve the performance of BSCAM, you can change the link
control data set as follows:

•
•
•

*--
PART 2

*--
* EDX EMULATOR SUPPORT - MAY BE INCLUDED IN PARTITION 1 TO 8
*--

INCLUDE EDXALU
INCLUDE BSCAM

30 EDL INSTRUCTION EMULATOR
13 BISYNC COMMUNICATION SUPPORT

*--
•
•
•

o

o

o

o

o

Techniques for Improving Performance

In this example, the BSCAM instruction set will show improved performance
because EDXALU resides in the same partition as BSCAM.

Note: If you move EDXALU from partition 1, some performance degradation will
occur for the supervisor modules that remain in partition 1 and that contain
emulation support for EDL instructions.

Reducing Program Load Time
You can reduce the amount of time it takes the system to load programs by using
the $PREFIND utility, fixed-head volumes, or the $MEMDISK utility.

Using $PREFIND: You can use $PREFIND to reduce program load times when:

• A program references a large number of data sets or overlays.

• You load a program frequently from disk or diskette.

• A program's environment (data sets/volumes) is not subject to frequent changes.

The $PREFIND utility stores the physical address of all referenced data sets and
overlays in the program header. Therefore, when you load the program for
execution, the system does not have to search volume and data set directories to find
the data sets or overlays. For a program requiring a large number of data sets or
overlays, the time saving could be significant.

The Operator Commands and Utilities Reference describes the use of $PREFIND in
more detail.

Using Fixed-head Volumes: By placing the EDX loader ($LOADER) on a
fixed-head volume, no disk-seek operations are required. This decreases program
load time. Allocate a fixed-head volume by using the $INITDISK utility (AF
command) on the disk from which you IPL. Copy $LOADER to this volume.
During IPL, the system uses the $LOADER on the fixed-head volume. If the
$LOADER is not on the fixed-head volume', the system next goes to the IPL volume
to use the $LOADER on the IPL volume.

Using $MEMDISK: By placing the EDX loader ($LOADER) on a volume created by
$MEMDISK, $LOADER also becomes storage-resident, which decreases program
load time. Normally, you would have to run the $MEMDISK and $COPYUTI
utilities interactively to load $MEMDISK and make $LOADER storage-resident.
However, through the use of a $INITIAL program or $JOBUTIL, you can do this
as part of the IPL process.

Chapter 8. Techniques for Improving Performance 8-7

Techniques for Improving Performance

Setting Flags in the $TCBFLGS Word

8-8 SC34-0942

You can set flags in the $TCBFLGS word that will override whatever is coded for
WAITIOSR in the $SRPROF data set (explained in the Installation and System
Generation Guide). The following example shows bit settings for $TCBFLGS. An
explanation -of the numbered iterns follows the example.

Note: An x indicates that the system ignores the value of the bit. It only checks the ° and 1 bits indicated below.

Example

II
XXX X XXXI XXX X XXXX
XXXX XXX0 XXXX XXXX

D
XXXX XXX X 0XXX XXXX
XXXX XXXX IXXX XXXX

DEFAULTS
XXXX XXXI 0XXX XXXX

CHECK IF I/O IS TO/FROM DYNAMIC/STATIC PARTITION
DON'T CHECK; ISSUE I/O

WAIT FOR ALLOCATION
DON'T WAIT; TASK REMOVED FROM SYSTEM. ERROR
MESSAGE IN $SYSLOG.

4-bit mode

D Indicates the $TCBCHK flag. When it is set to I, the system checks to see if
the I/O is to or from a static or dynamic partition. When it is set to 0, the system
does not check; it issues the I/O.

D Indicates the $TCBW AIT flag. When it is set to 0, the system waits until
segmentation registers are available to issue I/O. When it is set to 1, the system
removes the task and issues an error message to $SYSLOG.

Copy in the TCB equates as follows:

I COpy TCBEQU

The list of equates includes the following:

$TCBCHK EQU X'0I00 1

$TCBWAIT EQU X'0080 1

•
•
•

$TCBCHKB EQU 7
$TCBWAIB EQU 8

•
•
•

o

o

o

o

o

o

Techniques for Improving Performance

The sample program reads in $TCBFLGS, turns off the check bit, and puts it back
into $TCBFLGS as follows:

TCBGET FLAGWORD,$TCBFLGS
SETBIT FLAGWORD,OFF,+$TCBCHKB
TCBPUT FLAGWORD,$TCBFLGS

•
•
•

FLAGWORD DATA FIOI

Chapter 8. Techniques for Improving Performance 8-9

o

o
8-10 SC34-0942

Customizing Partitions

o Chapter 9. Customizing Partitions

o

o

This chapter describes when to customize partitions and the various ways you can
customize partitions.

When You Need to Customize Partitions
You need to customize your partitions when you have written a supervisor module
that

• Performs I/O operations into itself
• Performs I/O operations from itself
• Contains one or more data control blocks (DCBs).

If you have written a supervisor that does any of these things, you must customize
your partitions so that the module resides in a static portion of the supervisor.

Ways to Customize Partitions
You can customize your partitions in three different ways:

• Include the module before the module EDXSVCX in partition 1.
• Map an entire partition as static.
• Map part of a partition as static.

Including Your Supervisor Module before EOXSVCX
To include your supervisor module before EDXSVCX, you must edit the link
control data set ($LNKCNTL). Insert your module before the EDXSVCX module
as in the following example:

•
•
•

*---
* SUPERVISOR SUPPORT - MUST BE FIRST AND IN PARTITION 1
*---

PART 1
VOLUME XS5002

*OVLAREA OVLSTART OVLEND *23*
INCLUDE EDXSYS *1*
INCLUDE ASMOBJ,EDX002 *1*
INCLUDE MYBUFFl
INCLUDE EDXSVCX *1*

•
•
•

DEFAULT VOLUME FOR INCLUDE MODULES
USER DEFINED OVERLAY AREA
SYSTEM TABLES AND WORK AREA
OUTPUT FROM USER SYSTEM GENERATION
USER BUFFER AREA (MAPPED AREA)
TASK SUPERVISOR

Chapter 9. Customizing Partitions 9-1

Customizing Partitions

Mapping an Entire Partition as Static

9-2 SC34-0942

To map an entire partition as static, include the SUPVIO module in the partition.
Including SUPVIO in a partition causes the entire supervisor area and any common
area within the partition to be mapped as static.

Note: The common area will be static only if the common base partition is 1.

Figure 9-1 on page 9-3 shows the mapping of static and dynamic partitions.
Without SUPVIO, the supervisor area is dynamically mapped across partitions. The
common area is mapped dynamically for partitions 9 to 32 and it can be either static
or dynamic for partitions 2 through 8. Partition I must be static, but the supervisor
modules after entry point EDXSVCX in data set $EDXDEFS can be dynamic.

To include SUPVIO, edit the link control data set ($LNKCNTL), including
SUPVIO in the partition you want to be static. If you include SUPVIO in a
partition, you cause both common and supervisor areas to be mapped as static, even
if you define a partition as dynamic.

Note: Refer to the Installation and System Generation Guide for a more complete
explanation of static and dynamic partitions and how to assign them. Information
about the common base partition determined by the COMBASE keyword of the
SYSCOMM statement is available in the Installation and System Generation Guide
also.

If you include SUPVIO, a supervisor module that you wrote for a previous version
of EDX will work the same as it did in the previous version. If you do not include
SUPVIO, you must reset the flags in the task issuing the I/O command for the
supervisor module to work the same way as it did in the previous version. See
"Setting Flags in the $TCBFLGS Word" on page 8-8 for information on setting
these flags.

Another advantage of using SUPVIO to map as static a supervisor module that
performs I/O into itself is that you no longer need to acquire segmentation registers
for every I/O operation.

o

o

o

o

o

o

Customizing Partitions

The following figure shows the mapping if you include SUPVIO and the defaults
when you do not include SUPVIO. An explanation of the numbered items follows
the example.

MAPPING DEFAULTS WITHOUT SUPVIO:

Part # Part Type Common Area Supervisor Area User Area COMBASE Type
--------- ----------- ----------------- --------- ------------

01 STATIC STATIC fJ STATIC/DYNAMIC STATIC STATIC
1 STATIC N/A STATIC/DYNAMIC STATIC DYNAMIC
2 - 8 STATIC STATIC DYNAMIC STATIC STATIC
2 - 8 STATIC DYNAMIC DYNAMIC STATIC DYNAMIC
2 - 8 DYNAMIC STATIC DYNAMIC DYNAMIC STATIC
2 - 8 DYNAMIC DYNAMIC DYNAMIC DYNAMIC DYNAMIC
9 - 32 DYNAMIC STATIC N/A DYNAMIC I STATIC
9 - 32 DYNAMIC DYNAMIC N/A DYNAMIC DYNAMIC

MAPPING WITH SUPVIO INCLUDED:

Part # Part Type Common Area Supervisor Area User Area COMBASE Type
--------- ----------- --------------- --------- ------------

1 STATIC STATIC STATIC STATIC STATIC
1 STATIC N/A STATIC STATIC DYNAMIC
2 - 8 STATIC STATIC STATIC STATIC STATIC
2 - 8 STATIC DYNAMIC STATIC STATIC DYNAMIC
2 - 8 DYNAMIC STATIC STATIC DYNAMIC STATIC
2 - 8 DYNAMIC DYNAMIC STATIC DYNAMIC DYNAMIC

Figure 9-1. SUPVIO Mapping Example

II Partition I must be static.

D The supervisor area is static up to the end of the system definition statements in
partition l.

II For 5-bit processors and extended I/O attachments, partitions 9 - 32 are treated
as static since they are always mapped for I/O.

Chapter 9. Customizing Partitions 9-3

Customizing Partitions

9-4 SC34-0942

The following figures illustrate what happens to a dynamic or static partition in
which you have included SUPVIO. The shaded portions illustrate areas that are not
mapped for I/O operations. If you do not include SUPVIO, all of partitions 2 and 3
would be shaded. Figure 9-3 indicates that SUPVIO has no effect on static
partitions.

Note: This figure has a common base partition of 1,

Partition 3 Partition 2

Common
Common

Supervisor

BG0368

Figure 9-2. SUPVIO in Dynamic Partitions.

Partition 4

User

L..-________ ...J BG0369

Figure 9-3. SUPVIO in Static Partitions.

o

o

o

o

0

o

Customizing Partitions

The following is a partial listing of the $LNKCNTL data set showing the modules
that pertain to SUPVIO:

•
•
•

*--
* SUPERVISOR CODE BEING MOVED OUT OF
* PARTITION 1 MUST BE MOVED TO HERE
*---------------------------------~------------------------------------

PART 2
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*--

•
•
•

*--
*PART 3
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 4
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 5
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 6
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 7
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*PART 8
*INCLUDE SUPVIO *28* MAKE SUPERVISOR AND COMMON AREA STATIC
*
*--
* PROGRAMMING NOTES
*--

•
•
•

28 MAKES ALL THE COMMON AND SUPERVISOR AREA OF EACH PARTITION THAT
* SUPVIO IS INCLUDED IN STATIC (ONLY VALID FOR EXTENDED ADDRESS
* MODE SUPPORT).

Figure 9-4. Partial $LNKCNTL Data Set Showing SUPVIO

Mapping Part of a Partition as Static
To map part of a partition as static, include DYNSTART and DYNEND in the
$LNKCNTL data set (see "Editing $LNKCNTL" on page 9-6 for an example).
You can use these modules, either together or separately, to make part of the
supervisor in a static partition mapped for I/O segmentation registers. You can
include DYNSTART in partitions 2-8 and DYNEND in partitions 1-8.
However, if you include DYNEND in any partition, then you must include
DYNEND in every supervisor partition. The default is to include DYNEND right
before EDXINIT in partition 1 and the last supervisor module in partitions 2 - 8.

Chapter 9. Customizing Partitions 9-5

Customizing Partitions

Editing $LNKCNTL

9-6 SC34-0942

Notes:

1. If you limit the size of the unmapped I/O segmentation register area within your
static partitions, you limit the number of I/O segmentation registers that the
system can use for the partitions you defined as dynamic in the $SRPROF data
set, explained in the Installation and System Generation Guide.

2. If you include SUPVIO in a partition, it overrides DYNSTART or DYNEND.

3. If you include DYNSTART, link edit the supervisor, and the address of
DYNSTART does not fall on a 2K boundary, the system rounds the dynamic
supervisor area up to the nearest 2K boundary.

4. If you include DYNEND, link edit the supervisor, and the address of
DYNEND does not fall on a 2K boundary, the system rounds the dynamic
supervisor area down to the nearest 2K boundary.

In order to include DYNSTART and/or DYNEND in a partition, you must edit the
$LNKCNTL data set. The following examples show partition 2 in the $LNKCNTL
data set. Example 1 illustrates partition 2 without DYNSTART or DYNEND
included. Example 2 illustrates partition 2 with DYNSTART included. Example 3
illustrates partition 2 with DYNEND included. Example 4 illustrates partition 2
with DYNSTART and DYNEND included. Partition 2 is defined as static in the
PARTS= operand of $SRPROF.

Example 1: Partition 2 without DYNSTART or DYNEND included.

PART 2
INCLUDE DISKIO

*INCLUDE DISKIOX
INCLUDE D49624
INCLUDE D4963A
INCLUDE D4966A
INCLUDE DIDSKA

*INCLUDE D1024
*INCLUDE D4969A

•
•
•

3 BASIC DISKETTE SUPPORT
31 DYNAMIC DATA SET EXTENT SUPPORT-OPTIONAL
3 4962/4964 DISK(ETTE) SUPPORT
3 4963/4967/DDSK DISK SUPPORT
3 4965/4966 DISKETTE SUPPORT
3 IDSK DISK(ETTE) SUPPORT
3,21 1024 BYTES/SECTOR DISKETTE SUPPORT
3 BASIC TAPE SUPPORT
•
•
•

o

o

o

0 ·· ..

o

Customizing Partitions

Figure 9-5 illustrates partition 2 without DYNSTART or DYNEND. The shaded
region shows that the entire supervisor area is unmapped.

Partition 2

User

BG0370

Figure 9-5. Unmapped Supervisor Area without DYNSTART or DYNEND Included.

Example 2: Partition 2 with DYNST AR T included.

PART 2
INCLUDE MYBUFFl
INCLUDE DYNSTART
INCLUDE DISKIO

*INCLUDE DISKIOX
INCLUDE 049624
INCLUDE D4963A
INCLUDE D4966A
INCLUDE DIDSKA

*INCLUDE 01024
*INCLUDE D4969A

•
•
•

=========== USER BUFFER AREA (MAPPED AREA)
=========== START OF I/O SEG REG UNMAPPED AREA

3 BASIC DISKETTE SUPPORT
31 DYNAMIC DATA SET EXTENT SUPPORT-OPTIONAL
3 4962/4964 DISK(ETTE) SUPPORT
3 4963/4967/DDSK DISK SUPPORT
3 4965/4966 DISKETTE SUPPORT
3 IDSK DISK(ETTE) SUPPORT
3,21 1024 BYTES/SECTOR DISKETTE SUPPORT
3 BASIC TAPE SUPPORT
•
•
•

Chapter 9. Customizing Partitions 9-7

Customizing Partitions

9-8 SC34-0942

Figure 9-6 illustrates partition 2 with DYNSTART included. The shaded region
shows that only the supervisor area following DYNSTART remains unmapped.

Partition 2

Mapped r
supervisor i
area l

MYBUFF1

User

~DYNSTART

BG0371

Figure 9-6. Unmapped Supervisor Area with DYNSTART Included.

Example 3: Partition 2 with DYNEND included.

PART 2
INCLUDE DISKIO

*INCLUDE DISKIOX
INCLUDE D49624
INCLUDE D4963A
INCLUDE D4966A
INCLUDE DIDSKA

*INCLUDE D1024
*INCLUDE D4969A

INCLUDE DYNEND
INCLUDE MYBUFF2

•
•
•

3 BASIC DISKETTE SUPPORT
31 DYNAMIC DATA SET EXTENT SUPPORT-OPTIONAL
3 4962/4964 DISK(ETTE) SUPPORT
3 4963/4967/DDSK DISK SUPPORT
3 4965/4966 DISKETTE SUPPORT
3 IDSK DISK(ETTE) SUPPORT
3,21 1024 BYTES/SECTOR DISKETTE SUPPORT
3 BASIC TAPE SUPPORT

=========== END OF I/O SEG REG UNMAPPED AREA
=========== USER BUFFER AREA (MAPPED AREA)

•
•
•

o

()

o

o

0

o

Customizing Partitions

Figure 9-7 illustrates partition 2 with DYNEND included. The shaded region
shows that only the supervisor area before DYNEND remains unmapped.

Partition 2

{

-+---- DYNEND

supervisor 1-__ M_Y_B_U_FF_2 __ ---I
area

Mapped

User

BG0372

Figure 9-7. Unmapped Supervisor Area with DYNEND Included.

Example 4: Partition 2 with DYNSTART and DYNEND included.

•
•
•

PART 2
INCLUDE MYBUFF1 =========== USER BUFFER AREA (MAPPED AREA)
INCLUDE DYNSTART =========== START OF I/O SEG REG UNMAPPED AREA
INCLUDE DISKIO *3* BASIC DISKETTE SUPPORT

*INCLUDE DISKIOX *31* DYNAMIC DATA SET EXTENT SUPPORT-OPTIONAL
INCLUDE 049624 *3* 4962/4964 DISK(ETTE) SUPPORT
INCLUDE D4963A *3* (UNMAPPED) 4963/4967/DDSK DISK SUPPORT
INCLUDE D4966A *3* (UNMAPPED) 4965/4966 DISKETTE SUPPORT
INCLUDE DIDSKA *3* IDSK DISK(ETTE) SUPPORT

*INCLUDE 01024 *3,21* 1024 BYTES/SECTOR DISKETTE SUPPORT
*INCLUDE D4969A *3* BASIC TAPE SUPPORT

INCLUDE DYNEND =========== END OF I/O SEG REG UNMAPPED AREA
INCLUDE MYBUFF2 =========== USER BUFFER AREA (MAPPED AREA)

•
•
•

Notes:

I. MYBUFFI and MYBUFF2 are illustrations of statically-defined user I/O buffer
areas.

2. Since you included DYNEND in partition 2, you must include DYNEND in
every partition with supervisor code. The default for partition 1 is the module
listed above EDXINIT, and the default for partitions other than 1 is the last
module in that partition.

Chapter 9. Customizing Partitions 9-9

Customizing Partitions

9-10 SC34-0942

Figure 9-8 illustrates partition 2 with DYNSTART and DYNEND included. The
shaded region shows that only the supervisor area between DYNSTART and
DYNEND remains unmapped.

Mapped tf
supervisor
area

Partition 2

MYBUFF1

-+--- DYNSTART

{

-+--- DYNEND

supervisor 1-__ M_Y_B_U_F_F_2 __ ---f
area

Mapped

User

BG0373

Figure 9-8. Unmapped Supervisor Area with DYNSTART and DYNEND Included.

o

o

c

o

o

Index

Special Characters
&PARMnn statements, session manager 3-12
&SA VEnn statements, session manager 3-l3, 3-15
$$EDXIT task error exit routine

extending 4-2
$CMDTABL, emulator command table 7-17
$COMPRES utility

how to speed up 8-5
$COPYUTI utility

how to speed up 8-5
$CPUMON utility 8-1
$CPUPRT utility 8-1
$DSKMON utility 8-1
$DSKPRTI utility program 8-1
$DSKPRT2 utility program 8-1
$EDXASM Event Driven Language compiler

accessing the common area 7-3
control statements

STOP statement 7-16
*COMMENT statement 7-16
*COPYCOD statement 7-16
*EXTLIB statement 7-16
*OVERLA Y statement 7-15

creating an overlay program 7-2
debugging overlay programs 7-21
instruction parsing 7-4
language-control data set 7-13

$EDXL language control data set
creating an extension 7-13
in ASMTERROR statement 7-26

$IDEF statement, syntax 7-25
$INDEX subroutine, syntax 7-30
$INITIAL programs

coding considerations 5-2
how to create 5-1
sample programs

how to determine IPL type 5-3
loading three programs 5-2
setting time and date 5-3

$JOBUTIL utility
writing statements for session manager 3-16

$LNKCNTL
See link control data set

$LOADER program
make storage-resident with $MEMDISK 8-7

$MEMDISK utility
loading

through $INITIAL 8-7
through virtual terminals 8-7

make $LOADER storage-resident 8-7
performance techniques 8-5
reduce program load time 8-4

$PREFIND utility
reducing program load time 8-7

$PROG 1, program linked to supervisor
coding considerations 5-4
how to link edit 5-4

$SMMPRIM primary option menu
adding new options 3-3
updating primary procedure 3-19

$S 1 PPRG utility 8-1
$SlPSYS utility 8-1
$S 1 PSYSR report generator 8-2
$TCBFLGS word

example bit settings 8-8
set to override W AITIOSR 8-8

$U operator command
creating 2-1
designing and coding 2-1
examples 2-2, 2-3, 2-6, 2-7
link editing with supervisor 2-5
testing 2-4

STOP statement 7-16
*COMMENT statement 7-16
*COPYCOD statement 7-16
*EXTLIB statement 7-16
*OVERLAY statement 7-15

A
address, storing sublist element 7-11
allocate

data set
using session manager 3-28

alternate session menu, session manager
how to create 3-26

analyzing
$CPUMON information 8-2
$DSKMON information 8-2
program performance 8-1
system performance 8-1

ASMCOMM, compiler common area 7-3
ASMERROR statement, syntax 7-26
assembler program for NEWCMD 7-18

B
bi t settings

for $TCBFLGS word to override W AITIOSR 8-8
instruction flag 7-7,7-31

bits
defining stop (EXIO) 6-8
storing for new EDL instruction 7-10
storing with $INDEX subroutine 7-30

BLDTXT subroutine, syntax 7-31

Index X-I

branch
to CMDSETUP 5-6, 7-18

buffer overrun conditions
detecting 6-6
handling 6-10
resetting 6-12

building object text element 7-31
byte string, moving 7-35

C
chaining DCBs in a circle 6-19
character string

evaluating 7-32
CMDSETUP emulator entry point

branching to 5-6, 7-18
register conventions 7-18

code, defining operation 7-17
coding considerations, Series/l assembler 7-18
command table, emulator

add EDL operation code 7-17
reserved operation codes 7-1

command, creating an operator 2-1
common area, accessing compiler 7-3
compile

$EDXASM overlay program 7-13
new EDL instructions 7-19
speeding up 8-6

compiler common area, accessing 7-3
compress, faster volume 8-5
continuous receive, defining 6-7, 6-8
control data set, language 7-13
controller busy, handling 6-9
controller end interrupt, handling 6-5
copy code data set, defining 7-16
copy code, $EDXASM overlay

C$INDEX 7-30
CBLDTXT 7-31
CLABELS 7-33
COPCHECK 7-36
MOVEBYTE 7-35

copy, faster data set 8-5
CPU utilization, analyzing 8-1
create

$U - operator command 2-1
EDL instruction 7-1
session manager menus/options 3-1

customization, definition of 1-1

D
data set

allocate
session manager 3-28

creating language control 7-13
delete

session manager 3-29
gaining faster access to 8-3

X-2 SC34-0942

data set copy, faster 8-5
data set directory

sorting 8-3
DCBs, chaining in a circle 6-19
debugging $EDXASM overlay programs 7-21
define

EDL operation code 7-17
labels 7-33

delete
session manager data sets 3-29

design
$U operator commands 2-2
parameter input menus 3-9

device end interrupt, handling 6-5
device interrupt handling

preparing for 6-4
device support, EXIO

how to add 6-1
planning

control blocks 6-2
device interrupts 6-2
error detection 6-2
initialization 6-3
multiple applications 6-3
multiple devices 6-2
preparing EXIO 6-1
timing 6-2

sample program 6-14
system generation requirements 6-3

directory entry, sorting 8-3
disk

analyzing performance 8-1
improving performance 8-5

dynamic partition 9-2
DYNEND module

description 9-5
example 9-8

DYNSTART module
description 9-5
example 9-7

E
edit

$LNKCNTL to include DYNSTART and
DYNEND 9-6

EDL (Event Driven Language)
instruction processor 7-18

EDL instructions
creating language control data set extension 7-13
creating the overlay program

building model instruction 7-2
building object text 7-7
syntax checking 7-3

creating unique labels 7-21
debugging overlay programs 7-21
defining the operation code 7-17
defining the requirements 7-1

o

o

o

o

o

o

EDL instructions (continued)
generating a source statement 7-22
improving performance of EDL instructions 8-6
testing the instruction 7-19

EDXALU module
improve performance with 8-6

element
object text 7-7, 7-27
operand list 7-5, 7-7
sublist 7-7, 7-29

emulator command table
accessing 7 -17

end
an overlay program 7-11
language control data set 7-16

error messages
entering EDL instruction syntax 7-13
issuing EDL instruction syntax 7-6, 7-26

errors
reporting exception 4-1
reporting EXIO 6-13

event
posting (ECBs) 6-4

EXBREAK instruction
example 6-19

exception interrupt
handling 6-6

EXIO device support
circular chained DeBs 6-19
interrupt handler 6-4
open a device 6-7
planning

control blocks 6-2
device interrupts 6-2
error detection 6-2
initialization 6-3
multiple applications 6-3
multiple devices 6-2
timing 6-2

preparing a device 6-7
reading data 6-10
reasons for using 6-1
sample program 6-14
system generation requirements 6-3
writing data 6-10

exit
creating a task error 4-1
from $EDXASM overlay program 7-11

expanded mode, defining 6-7
Extended Address Mode support

defining static and dynamic partitions 9-2
set $TCBFLGS to override W AITIOSR 8-8

extension data set, defining 7-16
extension, language control data set 7-14

F
fixed-head

volume, specifying 8-4
flag bits, EDL instruction

register usage 7-31

G

sample ED L instruction 7-7
storing 7-10, 7-31

GETVAL subroutine, syntax 7-32

H
handling EXIO device interrupts 6-4
hardware status area, defining 4-4

I/O (input/output)
analyzing activity 8-1
improving disk 8-5
improving tape 8-5

IDCB statement
read operation 6-10
write operation 6-10

improve performance
$CPUMON utility 8-1
$DSKMON utility 8-1
$MEMDISK utility 8-5

index registers
indicating usage 7-10, 7-30

indexable operands, indicating 7-10
initialization routines, adding

designing and coding 5-5
EDL example 5-5
link editing 5-6
new EDL operation code 7-17
Series/l assembler example 5-6
system generation requirements 5-7

input string, parsing 7-37
instructions

building model EDL 7-2, 7-25
checking syntax 7-6, 7-36
compiling new ED L 7-19
creating new EDL 7-1
improving performance of EDL instructions 8-6
processor, CMDSETUP 7-18
storing the length 7-18
testing new ED L 7 -19

interrupt
attaching interrupt tasks 6-7
coding tasks to handle EXIO 6-4
handling

controller end 6-5
device end 6-5
exception 6-6

handling tasks 6-4

Index X-3

interrupt (continued)
preparing for device 6-4

IPL (initial program load)
determining type of 5-3
running programs at 5-1

K
keyword operand

defining 7 -3
processing 7 -11

L
label types, sublist element 7-33
LABELS subroutine

label definition 7-33
label resolution 7-34
syntax 7-33

language control data set
contents 7-13
control statements 7-15
creating 7-13
ending 7-16

length, storing instruction 7-18
link control data set

edit to include DYNSTART and DYNEND 9-6
edit to include SUPVIO 9-4

loading programs
at IPL with $INITIAL 5-1
with parameters 3-19

M
map supervisor area

using DYNSTART and DYNEND 9-5
using SUPVIO 9-2

menus, session manager
naming conventions 3-1
parameter input

creating 3-9
example 3-9
saving 3-10

primary option
example 3-4
saving 3-4
updating 3-3

secondary option
crea ting 3 -7
example 3-6
names 3-5
saving 3-7, 3-8
updating 3-6

message numbers, syntax error 7-13
mode

expanded 6-7
setting transmission 6-7

model, building instruction 7-2, 7-25

X-4 SC34-0942

monitor
disk activity ($DSKMON) 8-1
system performance 8-1

MOVEBYTE subroutine, syntax 7-35

N
null object text elements, storing 7-11

o
object list element, address 7-36
object text element

building 7-7,7-31
defining 7-9, 7-27
storing null 7-11
storing the count 7-11
types 7-11, 7-27

OPCHECK subroutine, syntax 7-36
open

EXIO device (EXOPEN) 6-7
operand

defining keyword 7-3
defining positional 7-3
indicating indexable 7-10
maximum number of 7-25
processing keyword 7 -11
processing positional 7-10

operand list element 7-7
operation codes

defining new ED L 7-17
flag bit meanings for 7-7
reserved ED L 7-1

operator commands
$U - user operator command

adding new 2-1
designing and coding 2-1
examples 2-2, 2-3, 2-6
link editing with supervisor 2-5
testing 2-4

examples 2-7
option menu

primary
example 3-4
saving 3-4
updating 3-3

secondary
creating 3-7
example 3-6, 3-8
saving 3-7, 3-8
updating 3-6

OTE statement, syntax 7-27
overlay program, $EDXASM

compiling 7 -13
creating 7-2
creating unique labels 7-21
debugging 7-21
defining the name 7 -15
ending the 7 -11

o

o

o

o

overlay program, $EDXASM (continued)
generating source statements 7-22
sample 7-12
statements 7-25
subroutines 7-30

p
parameter input menu

creating 3-9
example 3-9, 3-11
saving 3-10
specifying programs that use 3-21
statements used to retrieve input from 3-11

parameter passing
&PARMnn 3-12

parameter saving, &SA VEnn 3-13
PARAMETER section, session manager 3-12
parameters

referring to 3-12
parsing input strings 7-37
parsing, instruction 7-3
partition

customizing 9-1
mapping an entire partition as static 9-2
mapping part of a partition as static 9-5
ways to customize 9-1
when to customize 9-1

performance analyzer 8-1
performance techniques

$MEMDISK utility 8-5
analyze $CPUMON reports 8-2
analyze $DSKMON reports 8-2
analyze $SIPSYSR reports 8-2
compressing a volume 8-5
copying data sets 8-5
faster data set access 8-3
faster volume access 8-3

defining DISK statements 8-4
specifying fixed-head volumes 8-4
specifying performance volume 8-4

improving
disk I/O 8-5
EDL instruction performance 8-6
tape I/O 8-5

reducing compilation time 8-6
reducing program load time 8-7
setting up controls 8-2
utilities used 8-1

performance volume
specifying 8-4

positional operand
defining 7 -3
processing 7 -10

post
events (ECBs) 6-4

primary option menu, session manager
adding options to 3-3

primary option menu, session manager (continued)
example 3-4
saving 3-4

primary procedure, updating 3-19
procedure, session manager

examples 3 -1 7
naming conventions 3-1
primary

program with no parameters 3-19
programs using parameter input menu 3-21
programs using secondary option menu 3-22
saving 3-23
updating 3-19

saving 3-16
secondary

creating 3-25
example 3-24, 3-25
saving 3-8, 3-24, 3-25
updating 3-24

writing to pass parameters 3-11
program

execution at IPL 5-1
reducing load time 8-7

program analyzer ($SlPPRG utility) 8-1
program performance, analyzing 8-1

R
read

operation, EXIO 6-10
receive

continuous 6-7
reduce program load time through $MEMDISK 8-4
reducing program load time with $PREFIND 8-7
registers

conventions
flag bits 7-31
usage, indicating index 7-10

resolving
labels, LABELS subroutine 7-34

s
save

a procedure 3-16
parameters, session manager 3-13

secondary option menu
examples 3-6, 3-8
how to create with $IMAGE 3-7
saving 3-7, 3-8
updating with $IMAGE 3-6

secondary procedure, updating/creating 3-23
session manager

allocating data sets 3-26, 3-28
alternate session menu

considerations 3-26
creating 3-26

deleting data sets 3-26, 3-29
naming conventions 3-1

Index X-5

session manager (continued)
parameter input menu

creating 3-9
example 3-9, 3-11
saving 3-10

primary option menu
adding options to 3-3
example 3-4
saving 3-4

primary procedure, updating
no parameters used 3-19
parameter input menu only 3-21
reading in $SMPPRIM 3-19
saving 3-23
secondary option menu used 3-22

procedure, how to write
&PARMnn statements 3-12
&SA VEnn statements 3-13
$JOBUTIL statements 3-16
examples 3-17, 3-18
PARAMETER section 3-12

secondary option menu
adding options to 3-5
creating 3-7
example 3-6, 3-8
saving 3-7

secondary procedure
creating 3-25
example 3-24, 3-25
saving 3-24, 3-25
updating 3-23

storage requirements 3-1
setting up performance controls 8-2
SLE sublist element, $EDXASM

format 7-4
instruction parsing 7-4
syntax 7-29

SLPARSE subroutine, syntax 7-37
source statement

parsing 7-3
syntax checking 7-36

statements
$EDXASM overlay program 7-25
language control data set 7-13

static partition 9-2
stop bits, defining 6-8
store

instruction length 7 -18
new instruction flag bits 7-10
object text element type 7-11
sublist element 7-10
sublist element address 7-11

string evaluation, character 7-32
sublist element

after $IDEF expansion 7-36
contents 7-4
defining 7-29
label types 7-33

X -6 SC34-0942

sublist element (continued)
output of OPCHECK subroutine 7-7
output of SLPARSE subroutine 7-37
storing the address 7-10, 7-11
types 7-29

subroutines
$EDXASM overlay program 7-30
setting continuous receive 6-7

supervisor modules
including before EDXSVCX 9-1

SUPVIO module
$LNKCNTL data set example 9-4
description 9-2
examples 9-4
mapping example 9-3
mapping partition as static 9-2

syntax
checking 7-6, 7-36
error exit, $IDEF 7-25
error messages, entering 7-13
error messages, issuing 7-26

system
improving performance

with $CPUMON utility 8-1
with $DSKPRTI utility 8-1
with $SIPPRG utility 8-1
with $SIPSYS utility 8-1

system analyzer ($SIPSYS utility) 8-1
system generation

$PROG 1 routines 5-4
EXIO device 6-3
new EDL instruction 7 -19
new operator command 2-5

system performance, analyzing 8-1
system reports

analyzing 8-2
printing 8-1

T
tape

improving performance 8-5
task

interrupt handling 6-4
task error exit routine

considerations 4-7
creating your own 4-4
defining task error exit control block (TEECB) 4-4
extending the routine $$EDXIT

coding considerations 4-3
link editing 4-3
sample output 4-2

how it works 4-8
sample program 4-5

TEECB, task error exit control block 4-4
text

building object 7-7

o

o

o

o

o

time and date
obtain with $INITIAL 5-3

trace
transmission

setting mode 6-7
type, object text element 7-11

V
volume

access, faster 8-3
compress, faster 8-5
specifying fixed-head
specifying performance

W
write

EXIO operation 6-10

8-4
8-4

writing assembler code for instructions 7-18

Index X-7

o

o

c

o

0

--- ------ ----- ---- - ---- - - ----------_.- Series/1 Event Driven Executive

Publications Order Form

Instructions:

1. Complete the order form, supplying all of the

requested information. (Please print or type.)

2. If you are placing the order by phone, dial

1-800-1 BM-2468.

3. If you are mailing your order, fold the

postage-paid order form as indicated, seal

with tape, and mail.

Ship to:

Name:

Address:

City:

State: Zip:

Bill to:

Customer number:

Name:

Address:

City:

State: Zip:

Your PI·r~hase Order No.:

Phone: (

Signature:

Date:

Order:

Description:

Basic Books:

Advanced Program-to-Program Communica
tion Programming Guide and Reference

Communications Guide

Installation and System Generation Guide

Language Reference

Library Guide and Common Index

Messages and Codes

Operator Commands and Utilities
Reference

Problem Determination Guide

Additional books and reference aids:

Event Driven Executive Language
Programming Guide

Operation Guide

Language Reference Summary

Operator Commands and Utilities
Reference Summary

Conversion Charts Card

Binders:

Easel binder with 1 inch rings

Easel binder with 2 inch rings

Standard binder with 1 inch rings

Standard binder with 1 1/2 inch rings

Standard binder with 2 inch rings

Diskette binder (Holds eight 8-inch diskettes.)

Order
number Oty.

SC34-0935 __ _

SC34-0936 __ _

SC34-0937 __ _

SC34-0938 __ _

SC34-0939 __ _

SC34-0940 __ _

SC34-0941

SC34-0944

SX34-0199

SX34-0198

SX34-0163

SR30-0324

SR30-0327

SR30-0329

SR30-0330

SR30-0331

SB30-0479

Publications Order Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - -----------,-
®

Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM Corporation

1 Culver Road

Dayton, New Jersey 08810

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
'")

~ 0 "Tl
0
Co

J:>
0
:J
lO

C
:J
ro
I

I
I
I
I
I
I
I

o·

o

~
c
Q)

E
0..
:::l
0-
Q)

O'l
C

'';::;

0
en

.-
co
E

"0
Q)
co
E
0
:::l
CO

0 -5
.~

en
E
Q)

::0
0
Q.
~
:::l
co
u
c
co
u
en
Q)

0.
co

ci5

Q)
......
0 z

o

E
0

'+-
(/)

.£:
ro
Q)
(/)

0
Q)

0..
co

"0
Q)

E
E
:::l
O'l
'-
Q)

.£:
0

0
Q)

>
'';::;
'Vi
c
Q)
(/)

~
:::l
(/)
(/)

Q)

Q.
Q)
(/)

:::l
Q)
(/)

co
Q)

a::

IBM Series/l Event Driven Executive
Customization Guide

Order No. SC34-0942-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies ofIBJlJ publications are not stocked at the location to which this form is addressed.
Please direct any requests fc)r copies ofpublicatiof1s, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0942-0
Printed in U.S.A.

Reader's Comment Form

fold and tape

Fold and tape

--------- - ------- - ---- - - ----------_.-
®

Please Do Not Staple

III
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
5414 (Internal Zip)

P.O. Box 1328
Boca Raton, Florida 33429-9960

1 •• 11'1111111111111.11.1 •• 1.1111.1 ••• 11 •• 11 •••• 1.1.1

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
()

S- O ~
"T1
0
0:
~
0
:l
l!l

C.
:l
(l)

I

I
I
I
I
I
I
I

o

~
c
Cl.l

E
Q.

::;
CJ
Cl.l

OJ
C

'.j:;

0
Vl

co
E

'"0
Cl.l
+-'
co
E
0
+-'
::;

O~ , +-'
r .~

Vl

E
Cl.l

.0
0
0.
Cl.l
Vl
::;
co
(.)

c
co
(.)

Vl
Cl.l

Q.
co
+-'

CJ)

Cl.l
+-'
0
Z

o

E
0

'+-
Vl

-5
ro

Cl.l
Vl

0
+-'

Cl.l
Q.
co
+-'

'"0
Cl.l

E
E
::;
OJ
....
Cl.l

£
+-'
0

0
Cl.l
>

'.j:;
'in
c
~
e
~
Cl.l

0.
~
::;
Cl.l
Vl
co
Cl.l

0:::

IBM Series/1 Event Driven Executive
Customization Guide

Order No. SC34-0942-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies ofIBAJ publications are not stocked at the location to which this form is addressed.
Please direct allY requests for copies ofpuhlications, or for assistance in using your IBM system, to
your IBM represelltative or to the IBM hranch office serving your locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0942-0
Printed in U.S.A.

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - ----------_.-
®

Please Do Not Staple

II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
5414 (I nternal Zip)
P.O. Box 1328
Boca Raton, Florida 33429-9960

1 •• 11 ••• 111.1 •• 1 •• 1.11.1 •• 1.1 •• 1.1 ••• 11 •• 11 •••• 1.1.1

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
()

S- O ~
"'Tl
0
0:
~
0
:::l
lO

c:
:::l
(1)

I

I
I
I
I
I
I
I

o

--------- - ------- - ---- - - ----------_ . -
®

Printed in U.S.A.

Program Number
5719-XS6 , 5719-XX7 , 5719-ASA

5C34-0942-0

File Number
81-40

